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Abstract—The dynamics of an electron in a weakly focusing accelerator with rectilinear gaps is studied by the
method of averaging and by the perturbation method. The asymptotic solutions found are used to investigate
the angular properties of the synchrotron radiation of electrons. It is shown that vertical betatron oscillations
play an important role in the formation of the angular distributions of the radiation. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Interest in the problem posed in the title of this
paper has not diminished with time, since a number of
weakly focusing accelerators are still operating suc-
cessfully in this country. The basic aspects of the theory
of synchrotron radiation were expounded, specifically,
in [1–3], and the corresponding experiments [1, 4–6]
were performed first on accelerators with continuous
axisymmetric and then discontinuous magnetic fields.
These experiments have largely confirmed the results
of the theory, but at the same time they have also
revealed some new features. In this connection theoret-
ical investigations have been performed of the proper-
ties of the radiation for an axisymmetric magnetic field
[7–9]. These investigations have explained the change in
the spectral-angular distributions of the radiation intensity
as being due to betatron oscillations. The experiments sub-
sequently performed at the Kharkov Physicotechnical
Institute [10, 11] have already been analyzed on the
basis of [8].

The existing machines contain, as a rule, rectilinear
gaps with no magnetic field which have a definite effect
on the properties of the radiation. In the present paper
this question is studied for the example of a somewhat
simplified model, where one periodicity cell of a closed
orbit consists only of a steering magnet with a uniform
field and is completely free of the gap field.

The particle dynamics in periodic magnetic fields is
ordinarily described by the matrix method and using
the betatron function [12]. However, the direct applica-
tion of the results obtained to the problem of the radia-
tion of an electron excessively complicates the compu-
tational procedure.

To simplify this difficult problem the calculations
can proceed from the physical assumptions that the par-
ticle trajectory is continuous, stable, and smoothed.
This makes it necessary to apply the methods of the the-
ory of averaging and, consequently, to obtain continu-
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ous solutions to describe the revolution of an electron on
an orbit. This device has been used by the present author
to study the characteristics of synchrotron light in peri-
odic magnetic fields with strong focusing [13, 14].

2. DESCRIPTION 
OF THE DYNAMICAL PROBLEM

Let a charged particle revolve in a magnetic system
consisting of N periods, where one element of the sys-
tem consists of a steering magnet of length a = 2πR/N
(R is the radius of curvature) and a free gap of length l.
The length of the entire orbit will be

2πR + Nl = 2πR0,

where R0 is the so-called average radius, R0 = (1 + k)R,
and we shall assume the parameter k = l/a to be small.

The magnetic-field gradient has the value 0 < n < 1
for azimuthal angle

and zero for

This step function can be represented, after expan-
sion in a series, as n(τ) = f(τ)n, where the function or the
operator f(τ) has the form
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This operator is 1 on the section with the magnetic field
and 0 in the free gap. It also “switches on” and “switches
off” the magnetic field components Hr and Hz and the
curvature and angular velocity near the steering magnets.
We note that the angular velocity for an axisymmetric
magnetic field has been found in [7, 8] in the form

where

On the basis of the remarks made above the equa-
tions for the betatron oscillations of an electron can be
put into the form

(1)

(2)

These Hill equations give the correct oscillation fre-
quencies. Their solutions will be found in the next two
sections.

For what follows it is also necessary to determine
the angular velocity of a particle moving in an accelera-
tor with a discontinuous magnetic field. Certain assump-
tions concerning the radial rotation can be made in order
to avoid singularities associated with the transition from
circular to rectilinear motion and vice versa. This is also
due to the fact that the amplitudes of the oscillations in
the plane of the orbit are small compared with the
radius and that these oscillations have only a weak
effect on the properties of the radiation, in contrast, for
example, to axial oscillations. In this connection it can
be assumed that a particle moves along a circle with
radius R0, and the guiding magnetic field H0 can be
averaged over the entire length of the period. Then the
transverse components of the magnetic field will
assume the form

where ρ = r – R0.
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The angular velocity of the corresponding average
motion can be determined by the expression

(3)

3. APPLICATION OF THE AVERAGING METHOD

We shall consider equation (1) first. According to
the averaging method of [15], we represent this equa-
tion in the standard form

where ε = 1/N,

We recall that the general theory of averaging stud-
ies the matrix equation

where the averaging operation

is introduced for the function Y(τ, Z) and the integrating
operator is

Here the vector ξ satisfies the equation

and using this vector the first approximation is deter-
mined as

This procedure was known up to the second approx-
imation [15, 16]. However, the next corrections can
also be obtained using the method of iterations. Specif-
ically, taking
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For Y(τ, Z) = GZ we obtain

(4)

where

(5)

and the matrices have the form

For our problem

where, specifically,

An equation for ξ (here ξ is no longer a vector) can
be found from equation (5):
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Denoting the expression in brackets as , we can
write the average solution as

where B and δ are, respectively, the amplitude and ini-
tial phase of the oscillations.

The frequency

(6)

agrees, in the indicated approximation, with the well-
known formula [17] for weak focusing

where µ = 2πνz/N is the phase shift.

Substituting the matrices Gi into equation (4) we
obtain

This solution can be represented as

(7)

where

The asymptotic form can be written, by analogy, for
equation (2) also:

(8)

where A and ρ are, respectively, the amplitude and
phase of the radial oscillations,
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It is interesting to note that the series appearing in the
solutions (7) and (8) can be summed [18] and expressed
in terms of Bernoulli polynomials as follows:

where 0 ≤ x ≤ 2.

4. PERTURBATION METHOD
The results found in the preceding section can also

be compared with the expressions obtained below by
combining the methods used in [15, 19] to solve the
Mathieu equation.

For example, let us return to the Hill equation (1).
We seek its solution, according to the Floquet theorem,
in the form z = exp(iγzτ)ϕz(τ), where ϕz(τ) = ϕz(τ + 2π).
We set Imγz = 0 in order to switch to the region of sta-
bility. Now we have a different differential equation for
ϕz(τ):

We set here

Substituting these expressions in the preceding
equation and equating terms with like powers of the
parameter 1/N to zero we arrive at the following sequence
of simpler equations:
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where b0, b1 = const. According to [15, 19], the next
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equations must be solved by illuminating the secular
terms. We introduce the notation

We obtain from the third equation

Next we find that γ2 = 0,

The last equation gives

whence we find γ3 = π2n2k2/6γ1.

The frequency νz = γN = γ1 + γ3/N2 is identical to the
expression (6) found above. The general solution is
constructed in accordance with the Floquet theory as

Substituting (B/2)exp(iδ) for the arbitrary constants
C(b + b1/N), the asymptotic solution assumes the form

and is identical to equation (7).
We note that the last method is simpler than the aver-

aging procedure. The expansion parameter in these
asymptotic expansions is actually the quantity n/N2,
which, for example, for n = 0.67 and N = 4 will be approx-
imately 0.04.

5. PROPERTIES OF SYNCHROTRON RADIATION

To study the synchrotron light itself we shall use
Schwinger’s semiclassical approach [20, 21], where the
quantum recoil accompanying the emission of photons
is taken into account but smaller corrections associated
with the quantum motion of an electron in a magnetic
field are neglected.

We shall give the direction of the radiation vector
k = wn/c by the vector θ, where n = {0, sinθ, cosθ} is
the spherical angle. The components of linear polariza-
tion of the radiation, which are characterized by two
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orthogonal components of the electric field vector, can
be determined by the vectors

Using the methods of [8], the components of the lin-
ear polarization of the radiation intensity can be repre-
sented in the first quantum approximation as

(9)

where the radiation frequency is ω = νω0 and ν' = ν(1 +
"ω/E).

Here the phase is

Radiation in a prescribed direction, where, for
example, a detector is located, is formed on a small sec-
tion of the orbit with angle ϕ ≈ ω0t/(1 + k) and near the
plane of the orbit θ ~ π/2 (cosθ ~ m0c2/E). We shall also
assume τ, A/R0, and B/R0 to be expansion parameters.

From equation (7) we determine to within 1/N2

(10)

If only the main terms are taken into account in the
components of the vector b = v/c
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(11)

Here we also took account of the fact that

From equation (3) we determine, by integrating, ϕ
and therefore the quantity sinϕ ≈ ϕ – ϕ3/6. The param-
eter R0ω0/c can be found using the expression for the
total velocity

Making the substitution βx = –ω0t to calculate the
integrals appearing in equation (9), the expressions
obtained will no longer depend on the radial oscilla-
tions. Moreover, averaging them over the initial phases
δ of the axial oscillations, the spectral-angular formulas
of the radiation can be represented in the form

(12)

In these expressions

Since radiation occurs only at the moment when the
particle passes through a steering magnet, the total
motion is more extended than a circular orbit, and this
leads in equation (12) to R0 instead of R.

The transition from the results obtained to an axi-
symmetric magnetic field [8] occurs for k = 0.

The quantum corrections in the formulas (12) are
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νv B/R0, and m0c2/E are infinitesimals of the same order,
the curves of the spectral-angular and angular distribu-
tions will differ strongly from the corresponding plots
for a uniform magnetic field.

To perform the integration over δ in equation (12) and
to use existing tables [22], different specifications can be
used for the Airy function V(x) and its derivative with the
initial Fock conditions, when V(0) = 0.629271 and V '(0) =

–0.458745. We note that V(x) = Φ(x) = Ai(x).
Then the expressions (12) in the classical approxi-

mation will assume the form

(13)

where

The circular polarization can be described using the
formula

(14)

where we arrive at right-hand circular polarization (i = 1)
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tion (13) will assume, correspondingly, the form
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These formulas are convenient in the indicated
region for estimating the degree of polarization

which for θ = π/2 is no longer equal to 1 because of the
presence of vertical oscillations.

Away from the plane of the orbit ε ≈ 1 – β2 + cos2θ
increases and p ! 1. In this case we obtain on the right-
hand side in equation (13)

(16)

where V = V(x), V ' = V '(x), and U = xV 2 + V '2.
Since there are no betatron oscillations in a uniform

magnetic field, p = 0 and the known spectral-angular
distributions can be written as

(17)

Using the formulas presented above and additional
terms, it is possible to calculate plots of the angular dis-
tributions (see figure) near the critical wavelength λ =
50 Å, taking, for example, the parameters for the Tomsk
synchrotron [23]. In this case n = 0.58, N = 4, l = 157 cm,
and R = 423 cm. Here, for electron energy E = 1 GeV the
rms amplitude of the vertical oscillations B is about
2 mm. The effect of betatron oscillations on both radi-
ation components can be seen in the figure. The degree
of polarization in the plane of motion of the particles is
0.830 instead of 1.

In addition, the calculation performed with λ = 35 Å
(for a given energy this corresponds to the extreme
value ν ~ (m0c2/E)3) as shown in the presence of a max-
imum in the π component in the plane of the orbit
instead of a minimum, a further decrease in the values
for the σ component, and a decrease in the degree of
polarization to 0.818. A similar analysis for wave-

c2 V2 0( ), c3 V 0( )V' 0( ),= =

p
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2ε
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θ2cos
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-------------, and q2 νv
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+ 3 1 16x3g 24x3g2+ +( )VV' ] } ,

W1x g p+( )V2 2xgp 2xU 5VV'+( ) 3x p2VV'+ +{

+
1
2
---x2g p2 39 16x3g2+( )U 28xgV2+[

+ 8x2g 14 3g+( )VV' ] } ,

dWσ ν( )
dΩ
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dWπ ν( )
dΩ

------------------ W1xgV2 x( ).=
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lengths 1000 and 1500 Å has revealed that the role of
vertical oscillations in the formation of radiation
decreases when a shift into the long-wavelength region
of the spectrum occurs. Here the degree of polarization
is 0.953 and 0.963, respectively.

Approximately the same picture is also observed for
angular distributions if summation over the entire spec-
trum is performed in the formulas (12).

Then we obtain without quantum corrections

(18)

Methods for calculating the integrals appearing in
equations (18) have been examined in [7]. In this case
we introduce the additional notations

The angular distributions of the components of lin-
ear polarization can be represented as

(19)

where K(r) and E(r) are complete elliptic integrals,
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To construct plots the values of the total elliptic inte-
grals can be taken from the tables in [24].

However, if the integration over the angles θ and ψ
is performed in equation (12), then the spectral formu-
las will be essentially identical to the corresponding
expressions for a uniform field.

Additional analysis has also revealed the physical
meaning of the parameter

in ε2, which is equal to βz|τ = 0 or the slope angle of the
electron velocity vector. For any magnetic system it is
sufficient to find formulas similar to equation (10) or (11)
and to take them into account in the expressions (12).
Such an approach makes it possible to return to the ques-
tion of using the technique of β-functions, since plots of
these functions are available for all recently constructed
accelerators. Then, for the vertical oscillations

where A is the emittance, βz is the betatron function
which depends on the length s of the orbit, and δ0 is the
initial phase. Here the emittance is the phase volume

G3 1 2 p1 g1–( )+=

+
1
∆
--- 4 p2

2 f 2–( ) 3g p2 7 f–( ) 7g2–+[ ]

+ 8
gf

∆2
----- 7 9 p2

2– 2 p2 g f–( )+[ ] .

νv B R0⁄( ) δ δ0+( )cos

z
βzAz

π
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βz

----- δ0+∫ 
  ,cos=

π

σ

1.0

0.5

90° 90°4′89°56′

W

θ

Spectral-angular distribution of the components of linear
polarization with radiation wavelength λ = 50 Å and energy
E = 1 GeV. The dashed lines correspond to a uniform mag-
netic field. 
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occupied by the transverse motion of the particles in the
beam.

Then, in equations (12), as shown in [25],

Here the angle can be measured from the point whence
radiation is extracted, and the derivative can be
replaced by the tangent of the slope angle of the plot of
the βz function, where the dimensions along the both
coordinate axes should be the same.

6. CONCLUSIONS

Since synchrotron radiation in accelerators is
mainly incoherent, the results of the present paper are
also applicable for a beam of particles. Nonetheless, the
influence of the beam was taken into account here by
averaging over the initial phases of the oscillations,
since particle injection into the accelerator occurs dur-
ing several revolutions, as well as by using in the com-
putational formulas the rms amplitude of the oscilla-
tions. The latter parameter replaces the entire diversity
of amplitudes from 0 up to maximum value in any
transverse cross section of the beam. It follows from the
expressions obtained that in order to improve the polar-
ization, the amplitudes of the vertical oscillations of the
particles must be decreased in the beam. Using the
parameter α, the formulas obtained were extended to
the magnetic systems of other accelerators and storage
rings.
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Abstract—The resonance fluorescence of an individual atom excited by an optical field in a Yurke–Stoler state,
consisting of a superposition of two coherent states with opposite phase, is studied. It is proposed that the deco-
herence of the field state be eliminated by means of electrooptic feedback [Phys. Rev. Lett. 78, 840 (1997)].
The master equation for the density operator of the atom–field system is derived and an analytic solution is
obtained for the case where the change in the field is adiabatically slow. It is shown that the interaction entangles
the atomic and field states. A new effect is predicted: there are no Rabi oscillations of the dipole moment and
of the atomic populations with the excitation method described. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Resonance fluorescence is one of the most funda-
mental phenomena in modern optics and atomic phys-
ics. The history of the investigation of this phenomenon
starts in 1931, when elastic resonance scattering of
light by an atom was studied in [1]. In the 1960s the
advent of lasers made it realistic to study inelastic scat-
tering—resonance fluorescence itself. In a series of
works [2] a semiclassical theory of resonance fluores-
cence was constructed and one of the most striking
properties of this phenomenon was found—the triplet
structure of the fluorescence spectrum, experimentally
confirmed in the 1970s [3]. Further investigations in
this field clarified the quantum features of resonance
fluorescence of an individual atom excited by a coher-
ent field. Phenomena such as antibunching of fluores-
cence photons [4, 5] and bunching of photons of the
side components [6, 7] were predicted and observed
experimentally. At the end of the 1980s, when nonclassi-
cal sources of light appeared, great interest developed in
studying resonance fluorescence excited by fields differ-
ent from a coherent laser field, for example, resonance
interaction of an atom with a squeezed vacuum [8].

In the last few years, one of the most intently studied
quantum states of light is a superposition of two
coherent states with opposite phase [9]: |ψ〉 = N(|α〉  +
eiϕ|–α〉 ), where N is a normalization factor and ϕ is the
relative phase. Such a state realizes the well-known
“Schrödinger’s cat” paradox [10], and the experimental
attainment of this state [11] shows that it is possible for
quantum superpositions to exist at a macroscopic level
and makes it possible to investigate the process of their
decoherence—the transformation into a statistical mix-
ture in an interaction with the environment. The inves-
tigation of the process of decoherence of optical fields
has become in the last few years one of the central prob-
1063-7761/00/9005- $20.00 © 20733
lems of quantum optics. This is due to its fundamental
significance for constructing a consistent quantum the-
ory of measurement and the urgent need to eliminate
decoherence in applications of quantum optics, such as
quantum cryptography and the development of quan-
tum computers (see review in [12]).

Thus, the analysis of the fundamental process of res-
onance fluorescence accompanying the excitation of an
atom by a field in a superposition state is very interest-
ing and topical. The existence of the interference part in
the state of a field can result in fundamentally new
behavior of an atom.

The main obstacle to realizing such an experiment is
decoherence of the field state. To organize an atom-
field interaction it is necessary either to use a stationary
field source for exciting the atom or to place the atom
in a cavity containing a field in a prescribed state. The
first approach, without any modifications, is inapplica-
ble for our case, since the superposition state in an open
cavity undergoes rapid decoherence in connection with
the escape of the field out of the cavity. The second
approach for a field initially in a superposition state
with ϕ = π/2—a positive Yurke–Stoler state (YSS) |α+〉 =
(|α〉 + i |–α〉 )/ —has recently been examined in detail
in [13]. In this case the field also undergoes rapid deco-
herence because of the interaction with the atom and in
a time tdecoh it transforms into a statistical mixture.
However, even for times t ! tdecoh a number of interest-
ing features can be observed in the behavior of the
atom, for example, the suppression of Rabi oscillations
of the dipole moment and exponential growth of the lat-
ter. Nonetheless, the problem of stationary resonance
fluorescence excited by a quantum superposition
remains unresolved.

2
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In the present paper we propose one and possibly
the only method for solving this problem [14]. The
method is based on the first of the above-described
approaches, which is modified taking into account the
fact that coherent superpositions with ϕ = ±π/2 (posi-
tive and negative YSS) in an open cavity can be pro-
tected from decoherence by the method, which we pro-
posed recently in [15], of organizing electrooptic feed-
back between a detector continuously measuring the
radiation escaping from the cavity and the field in the
cavity. In Section 2 we shall show how this method
makes it possible to produce a quasistationary source of
a field in a YSS. Such a source can be used to excite res-
onance fluorescence of an individual atom; this is the
content of Section 3. The general structure of the atom-
field state will be analyzed in Section 4, and the quasis-
tationary values of the atomic variables with the
described method of excitation will be found in Section 5.
The basic results of our investigation are discussed in
the conclusions.

2. QUASISTATIONARY SOURCE
OF SUPERPOSITION STATES

As is well known, the superposition state of a field
in an open cavity is subject to rapid decoherence asso-
ciated with losses on a half-transmitting mirror. This
phenomenon is completely described by the master
equation for the density matrix ρF of one cavity mode
with line width κ:

(1)

where a is an operator annihilating a photon of the
given mode. The decoherence process can be repre-
sented most clearly by expanding the solution of equa-
tion (1) in an ensemble of quantum trajectories [16–
18]:

(2)

Each trajectory |ψ(t |t1, …, tn)〉  is, physically, a con-
ditional unnormalized state of the field in a cavity,
under the condition that the radiation escaping from the
cavity is measured with a photodetector with 100%
quantum efficiency and this detector detects precisely n
counts at the times t1, t2, …, tn, and is determined by the
expression

ρ̇F
κ
2
--- 2aρFa

+
a

+
aρF– ρFa

+
a–( ),=

ρF t( ) 1
n!
-----

n 0=
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∫ tn ψ t t1 … tn, ,( )| 〉 ψ t t1 … tn, ,( )〈 |.d

0

t

∫
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(3)

where |ψ(0)〉  is the initial state of the field. The expres-
sion (3) describes the continuous reduction of the field
state in the process of quantum measurement consisting

of two elementary processes: the operator R = a
describes an abrupt reduction with the appearance of a
count and the operator W(t) = exp(–κa+at/2) describes
the continuous reduction between counts. When a
count is present in the interval dt the increment of the
density operator is (dρF)1 = RρR+dt and in the absence
of a count the increment is (dρF)0 = dWρ + ρdW+, where
dW is taken at t = 0 [19]. In the absence of information
about detector counts, the unconditional evolution is
given by the equation

(4)

which is identical to equation (1).

Let us examine the dynamics of a field initially in a

positive YSS  = (|α0〉  + i|–α0〉)/ . Using the iden-
tities exp(xa+a)|α〉 = |αex〉 exp{– |α|2(1 – |e2x|)/2} and
a|α〉 = α|α〉 , which are satisfied for coherent states and
automatically follow from the expansion of the coher-
ent state in a Fock basis [17, 18], we find

(5)

(6)

i.e., the amplitude of the state will decrease exponen-
tially between counts, αt = α0exp(–κt/2), and at the
moment of a count the state will change from a positive

YSS  = (|αt〉 + i|–αt〉)/  to a negative state  =

(|αt 〉  – i |–αt 〉)/  and vice versa. Thus, at the moment
t the state of the field is either a positive or a negative
YSS depending on whether the number of counts
observed at the detector is even or odd. For sufficiently
long times t @ tdecoh the even and odd number of counts
are equally probable and averaging over the detector
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indications gives the following density matrix of the
field:

(7)

The formula (7) describes the statistical mixture of
states |α〉 and |–α〉  and does not contain interference
terms characteristic of superposition. We can see that in
this case decoherence appears as a result of a loss of
information about the system [20]. The same result is
obtained by solving equation (1) exactly. This gives an
expression for the decoherence time tdecoh = 1/(2κ|α0|2) [9].

In the method which we developed to eliminate the
above-described decoherence process [15], we pro-
posed correcting the relative phase of the field state
after each count via a feedback circuit. This procedure
employs the fact that a negative YSS can be obtained
from a positive YSS (and vice versa) by a simple phase
shift of the field by π. This can be shown as follows.
A phase shift of the coherent state by π can be
described mathematically by the operator exp(iπa+a),
since exp(iπa+a)|α〉  = |–α〉. From the physical stand-
point, the operator exp(iπa+a)can be regarded as an
evolution operator of the system under the action of the
Hamiltonian H = –∆ωa+a, which contributes a detuning
of the frequency in the time tint = π/∆ω, which should
result in a phase shift by π. Applying the phase shift
operator to a YSS gives

(8)

which is the required result. Thus, if another phase shift
of the field by π, effectuated via a feedback circuit, fol-
lows after each count of the detector, then the state of
the field in the cavity will remain a positive YSS with a
decaying amplitude.

To describe such a feedback in the master-equation
formalism (neglecting the time delay in the feedback
circuit) the operator R must be replaced by the operator

 = exp(iπa+a) a, describing reduction and the
phase shift which follow one another [15]. Feedback
does not operate between counts, and therefore the
operator W(t) is not subject to modification. The evolu-
tion of the conventional field state will now be
described by the following quantum trajectory:

(9)
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Using the relations (5), (6), and (8) it is easy to show

that the state (9) is  to within a numerical factor.
Constructing an equation similar to equation (4) we
find that the unconditional evolution is given by the
equation

(10)

which is a modification of equation (1) for the case
where feedback is present.

In summary, by preparing a YSS in a cavity and
organizing feedback it is possible to produce a quasista-
tionary source of such a state. On account of energy
losses, the field state decays in a time tdecay = κ –1, but this
time interval may be sufficient for achieving a stationary
state for the interaction of a field with other systems.

3. RESONANCE FLUORESCENCE
IN A FEEDBACK LOOP

The above-described source of a superposition state
can be used to excite the resonance fluorescence of an
individual atom. In order that the field–atom interaction
not destroy the structure of the field state, it is necessary
to employ unidirectional action of the cavity field on
the atom, such that the atom is irradiated with light
leaking out of the cavity while the light scattered by the
atom does not return into the cavity. In the scheme pro-
posed the atom is placed between the cavity and a detector,
which measures the outgoing radiation; we designate this
detector as D. To follow the phase of the field in the cavity
it is necessary to have complete control of the photons
leaving the cavity, so that all of the light scattered by the
atom, including the backscattered light, must be collected
on photodetectors included into the same feedback circuit.
We shall designate these detectors as D' (figure). Just as in
the preceding section the feedback circuit shifts the phase
of the field in the cavity by π after a count is recorded at
any of these detectors.

A systematic quantum description of a unidirec-
tional action of one quantum system on another has
been developed in [21]. Application of this approach to
the excitation of resonance fluorescence of an isolated
atom has been studied in [22]. We shall examine first the
basic processes occurring in this scheme in the absence of
feedback. When the field is in resonance with a transition
between the ground |1〉 and excited |2〉 states of an atom,
the dynamics of the field in the cavity and of the atom is
described by the following master equation for the density
operator ρ of the atom–field system [22]:

(11)

α t
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κ
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--- 2 iπa
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a( )aρFa
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iπa

+
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– a
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+
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+
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+
aρ– ρa

+
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+
γ γ'+

2
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+ κγ σ–ρa
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+σ–– aσ+ρ–+( ),
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M

D'

D'

D

The arrangement of the experimental apparatus for observing the resonance fluorescence of an individual atom excited by a quantum
superposition. The field in the cavity is initially prepared in a superposition state. The radiation leaking out of the cavity excites the
atom, which is in the ground state initially. The transmitted radiation is collected at the detector D, while the radiation scattered by
the atom is collected at the detectors D'. The electric feedback circuit shifts, by means of a modulator M, the phase of the field in the
cavity by π after each count on one of the detectors.
where γ and γ' are the rates of spontaneous emission of
an atom into the solid angles covered by the detectors
D and D', respectively; we shall designate the total rate
of spontaneous emission as Γ = γ + γ'. The operators
σ– = |1〉〈 2| and σ+ =|2〉〈 1| are lowering and raising oper-
ators of the atom, respectively.

The first term in equation (11) describes the decay
of the field through a half-transmitting mirror, the sec-
ond term describes spontaneous emission of the atom, and
the third term describes the unidirectional action of the
field on the atom, as described in the Kolobov–Sokolov

approach [21]. In this description the parameter 
plays the role of the field–atom coupling constant. Aver-
aging equation (11) over the states of the atom leads to
equation (1) for the field, whose dynamics therefore does
not depend on the atom, as should be for describing a uni-
directional action of a field on an atom.

The solution of equation (11) can be expanded in an
ensemble of quantum trajectories, which have the
meaning of a conventional state of the field–atom sys-
tem for given successive counts at the detectors D and
D'. Each trajectory is formed by a combination of three
elementary processes: reduction of the state when a
count is recorded at the detector D, as described by the

operator R1 = a + σ–; reduction of the state when
a count is recorded at the detector D', described by the

operator R2 = σ–; and, continuous evolution
between counts, described by the operator

(12)

For example, for one photon at the detector D at the
moment t1 and one photon at the detector at D' at the

κγ

κ γ

γ'

V t( ) κa
+
a Γσ+σ– 2 κγaσ++ +( )t 2⁄–{ } .exp=
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moment t2 > t1, the trajectory will have the form

(13)

The equation obtained for the unconditional evolution
of the density operator by averaging over such trajecto-
ries

(14)

is identical to equation (11). The equation (11)
describes very well the known properties of resonance
fluorescence—the triplet structure of its spectrum and
the antibunching of scattered photons [22].

When feedback is present, a phase shift of the field
in the cavity by π, described by the operator exp(iπa+a),
will follow after each count. Just as in the preceding
section, when the delay in the feedback circuit is
neglected, the action of the feedback can be taken into
account by replacing the operators R1 and R2 by the

operators  = exp(iπa+a)R1 and  = exp(iπa+a)R2,
which describe the reduction and phase shift which fol-
low one another. The unconditional evolution of the
atom–field system in the presence of feedback is
described by the equation

(15)

or

ψ t t1 t2,( )| 〉 V t t2–( )R2V t2 t1–( )R1V t1( ) ψ 0( )| 〉 .=

dρ R1ρR1
+
dt R2ρR2

+
dt dVρ ρdV

+
,+ + +=

R̃1 R̃2

dρ R̃1ρR̃1
+
dt R̃2ρR̃2

+
dt dVρ ρdV

+
,+ + +=

ρ̇ κ
2
--- 2 iπa

+
a( )aρa

+
iπa

+
a–( )expexp[=

– a
+
aρ ρa

+
a– ] γ γ'+

2
------------- 2 iπa

+
a( )σ–ρσ+exp[+
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(16)

Finding the solution of equation (16) in the general
case is a quite difficult problem. In the next section we
shall find an analytic solution for the case where the ini-
tial state of the field is a positive YSS, while the atom is
in the ground state.

4. ENTANGLEMENT 
OF ATOMIC AND FIELD STATES

The above-described scheme for exciting the reso-
nance fluorescence of an isolated atom in the absence of
losses possesses a definite internal symmetry. As a result,
the solution of equation (16) with the initial condition

(17)

can be immediately sought in the form

(18)

where Cij(t) are unknown functions, C11 + C22 = 1, and

C21 = .

The structure of equation (18) signifies a strong cor-

relation or “entanglement” between the states  and

|1〉  on the one hand and the states  and |2〉  on the
other. The relation (18) can be proved by examining the
transformation of a state of the system in the presence
of three elementary processes described by the opera-

tors , , and V(t).

Let us examine first the evolution operator V(t) (12)
between counts. It can be rewritten in the form

(19)

The operator aσ+ converts the state |1〉  into |2〉
in accordance with equation (6). The operator σ+σ– is
diagonal in the basis |1〉  and |2〉 , and therefore it
changes only the numerical factors in front of these

× iπa
+
a–( )exp σ+σ–ρ– ρσ+σ–– ]

+ κγ iπa
+
a( )σ–ρa

+
iπa

+
a–( )expexp[

+ iπa
+
a( )aρσ+ iπa

+
a–( )expexp

– ρa
+σ– aσ+ρ] Lρ.≡–

ρ 0( ) α0
+| 〉 α0

+〈 | 1| 〉 1〈 |⊗=

ρ t( ) C11 t( ) α t
+| 〉 α t

+〈 | 1| 〉 1〈 |⊗=

+ C22 t( ) α t
–| 〉 α t

–〈 | 2| 〉 2〈 | C21 t( ) α t
–| 〉 α t

+〈 | 2| 〉 1〈 |⊗+⊗

+ C12 t( ) α t
+| 〉 α t

–〈 | 1| 〉 2〈 |,⊗

C12
*

α t
+| 〉

α t
–| 〉

R̃1 R̃2

V t( ) κa
+
at

2
--------------– 

 exp
Γσ+σ–t

2
------------------– 

 exp=

× 1 aσ+ κγ Γ κ–( )τ
2

--------------------–exp τd

0

t

∫–
 
 
 

.

α t
+| 〉 α t

–| 〉
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vectors. The operator exp{–κa+at/2} leads to exponen-
tial decay of the field amplitude, αt + τ = αt exp(–κτ/2),
in accordance with equation (5). Therefore the operator

(19) converts the state |1〉  into a state of the form

(20)

where c1(τ) and c2(τ) are functions of time. It can be
shown similarly that the operator (19) converts the state

|2〉  into the state |2〉  to within a numerical
factor.

On the basis of the relations (6) and (8) it can be

concluded that the operators  and  do not change
the structure of the state (20) and influence only the
numerical factors.

In summary, we find that a quantum trajectory, i.e.,
the conventional state of the system at the moment t,
under the condition that a sequence of counts is
observed at the detector D at the moments t1, t2, …, tn

and a sequence of counts is observed at the detector D'
at the moments , , …, , has the form

(21)

An unconditional state can be obtained by averaging
over all possible indications of the detectors similarly to
the expression (2) with the difference that the integration
and summation must be performed over the counts of both
detectors. Such averaging leads to equation (18).

The mathematical relations presented above have a
clear physical explanation. When a photon emerges
from the cavity, the field state changes abruptly from a
positive to a negative YSS. Next, the photon enters one
of the detectors, irrespective of whether or not it has
been scattered by an atom, and the feedback circuit,
shifting the phase of the field by π, restores a positive
YSS in the cavity. When a photon is scattered by an
atom, the photon is delayed by a time of the order Γ–1;
equation (16) takes this delay into account. During this
time the atom is in an excited state, and the field is in a
negative YSS. Thus, the conventional atom–field state
of the system has the form (21) for any number of
counts.

The entanglement of the atomic and field states in
the above-described excitation method is itself a
remarkable phenomenon, which could be employed in
various applications of quantum information theory—
quantum computation, quantum teleportation, and
quantum cryptography (see the review in [12]). We note
that for the conventional excitation of resonance fluo-
rescence using coherent laser light, the states of the

α t
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c1 τ( ) α t τ+
+| 〉 1| 〉 c2 τ( ) α t τ+

–| 〉 2| 〉 ,+
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–| 〉 α t τ+
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field and atom remain statistically independent, which
makes the semiclassical description applicable.

5. QUASISTATIONARY REGIME

To find the equations for the coefficients Cij(t) the
expression (18) must be substituted in equation (16).
We find the temporal evolution of the field vectors from
equation (5)

(22)

whence direct differentiation using equation (6) gives

(23)

(24)

where L0 is the Liouville field evolution operator deter-
mined by equation (10).

Now, substituting the expression (18) into equation
(16) and equating the coefficients in front of the identi-
cal atomic matrix elements gives the equations

(25)

(26)

The physical meaning of the coefficients C22 and C21
is determined by the relations 〈σ+(t)σ–(t)〉  = C22(t) and
〈σ–(t)〉  = C21(t)exp{–2|αt |2}, i.e., C22 is the population
of the upper level of the atom and C21 is, to within a fac-
tor, the dipole moment. Thus equations (25) and (26)
are the analogs of the conventional Bloch equations for
the atomic variables, which hold for excitation of reso-
nance fluorescence by coherent light. The equation (25)
is identical to the corresponding Bloch equation, and
equation (26) differs from the corresponding equation
in two respects. In the first place, the relaxation rate of
the dipole moment includes an additional term propor-
tional to the field intensity. In the second place, this
equation contains not the difference of the populations
of the upper and lower levels but rather their sum,
which is equal to 1. In consequence, equations (25) and
(26) do not have oscillating solutions, i.e., the so-called
Rabi oscillations do not occur in the above-described
method of excitation.

In what follows we shall be interested primarily in
the case κ ! Γ, i.e., a regime in which the field essen-
tially does not change in times required for the atom to
reach a stationary state. In such a regime the time
dependence of the field amplitude αt in equations (20)

α t
±| 〉 κa

+
at

2
--------------– 

  α0
±| 〉exp=

× 1
2
--- α0

2
1 κ t–( )exp–[ ]

 
 
 

,exp

d
dt
----- α t

±| 〉 α t
±〈 | L0 α t

±| 〉 α t
±〈 |,=

d
dt
----- α t

±| 〉 α t
+−〈 | L0 2κ α t

2
+( ) α t

±| 〉 α t
+−〈 |,=

Ċ22 ΓC22– κγ α tC12 α t*C21+( ),–=

Ċ21
Γ
2
--- 2κ α t

2
+ 

  C21– κγα t C11 C22+( ).–=
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and (26) can be neglected, and these equations can be
solved with a fixed amplitude α. For the initial condi-
tion (17), i.e., C22(0) = C21(0) = 0, the solutions of equa-
tions (25) and (26) have the form

(27)

(28)

where the quasistationary values of  and  are
given by the expressions

(29)

(30)

For 4κ|α|2 = Γ equation (28) assumes the form

(31)

Using equations (18), (25), and (26) it is also possi-
ble to calculate the spectrum of the scattered radiation,
which on account of the absence of oscillating solu-
tions of equations (25) and (26) will possess a singlet
and not a triplet structure, characteristic for the reso-
nance fluorescence spectrum under excitation by a suf-
ficiently intense coherent field. However, measurement
of the fluorescence spectrum in the scheme under con-
sideration is problematic, since the measurement pro-
cedure itself can interfere with the use of scattered light
in the feedback circuit. The correlation function G(2)(τ)
of the intensity of the scattered light is of much greater
practical interest. This function can be obtained by ana-
lyzing the photocurrent of the detector D' without addi-
tionally complicating the measurement scheme. This
function is determined in terms of the stationary den-
sity matrix ρss as follows:

(32)

where L is the Liouville operator determined by equa-
tion (16). The derivation of equation (32) took account
of the fact that equations (17)–(31) are invariant under

the substitution   , i.e., the solution of

equation (16) with the initial condition  has the
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form (18) with the positive YSS replaced by a negative
YSS and vice versa.

The equations (32) and (28) show that the intensity
correlation function reaches a stationary value in times
of the order of Γ–1 with no oscillations for any values of

the Rabi frequency Ω = α. This behavior differs
strongly from the case of resonance fluorescence
excited by a coherent state, when for sufficiently large
values of Ω > Γ/4 the intensity correlation function of
the scattered light oscillates with frequency Ω .

6. DISCUSSION

In the present paper, the resonance fluorescence of
an individual atom excited by a field in a superposition
state was examined, and the laws of the behavior of an
atom in a quasistationary regime were found for the
first time. The relations obtained lead to the conclusion
that certain familiar properties of resonance fluores-
cence, specifically, oscillations of the dipole moment
and of the populations of the atomic levels, are related
with the use of a coherent or a nearly coherent state of
the field for excitation of the atom. It was found that
when a superposition of two coherent states is used for
this purpose, the oscillations of the dipole moment and
populations do not occur for arbitrarily large values of
the field intensity. This can be observed by measuring
the spectrum of the intensity of the scattered light. It
should be noted that the absence of oscillations of the
dipole moment was predicted in [13], where the inter-
action of an isolated atom in a cavity with the field of
this cavity, initially in a superposition state, was exam-
ined. The populations of the atomic levels in this prob-
lem undergo the familiar Rabi oscillations for suffi-
ciently high field intensities. However, the field state in
this approach is destroyed because of induced emission
of the atom into a cavity mode at precisely the rate
determined by the Rabi frequency. Thus, the present
paper extends [13] to the case of a quasistationary
regime.

The absence of Rabi oscillations in the excitation
method described above can be explained quite simply.
According to equation (26), the rate of decay of the off-
diagonal density matrix element acquires an additional
term 2κ|α|2. This quantity is the photon flux incident on
the atom; it is identical to the decoherence rate of the
superposition state interacting with the environment. At
the same time it is well known [23] that as the time T2
(the coherence time of the off-diagonal element)
decreases, for example, as a result of collisional
dephasing, Rabi oscillations are suppressed for a given
value of the field amplitude, though as the latter
increases, oscillations could be restored. In our case the
dephasing rate increases quadratically with increasing
field amplitude, while the Rabi frequency is related
with the latter linearly, so that for any values of the field
intensity the oscillations of the atomic variables are
overdamped. The described “dephasing via the field”

κγ
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can be related with the property of a superposition state
and with the property of an excitation scheme employ-
ing feedback, since 2κ|α|2 is the rate of change of the
phase of the cavity field (the number of switchings per
second). This duality is due to the fact that it is the
Yurke–Stoler superposition state that is the “eigen-
state” of such a feedback loop [15].

The scheme, studied in the present paper, for reso-
nance fluorescence of an individual atom is in our view
an interesting “Gedanken experiment,” making it possi-
ble to understand more deeply the quantum aspects of
the interaction of light and matter. At the same time it
seems to us that the predictions of the theory can be
checked experimentally now or in the near future. To
assess this possibility we shall find the limits of appli-
cability of the two basic approximations on which the
above description is based: the unit quantum efficiency
of detectors and the absence of time delay in the feed-
back circuit. As shown in [15], for quantum efficiency
of a detector in the feedback loop η < 1 the YSS under-
goes decoherence at the rate 2κ(1 – η)|α|2, i.e., decoher-
ence can be neglected for Γ @ 2κ(1 – η)|α|2, which is
achievable for modern detectors and high-Q microwave
and optical cavities. Thus, for Γ ~ 108 Hz, κ ~ 106 Hz,
η ~ 0.9 (optical range) or κ ~ 104 Hz, η ~ 0.1 (micro-
wave range [11]) the inequality presented above holds
well for an average number of photons |α|2 ≤ 100. The
delay in the feedback circuit must be less than the aver-
age time between two successive counts, i.e., κ−1|α|–2,
which is hundreds of nanoseconds for optical cavities
with κ ~ 106 Hz and mesoscopic superpositions with
|α|2 ~ 10, while the delay in the electric circuit usually
does not exceed several tens of nanoseconds. This rela-
tion is even more optimistic in the microwave range. At
the present time the rapid development of techniques
for working with individual atoms and “brittle” quan-
tum field states leaves no doubt that very soon it will be
possible to investigate experimentally the characteristic
features of resonance fluorescence of an individual
atom excited by nonclassial light.
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Abstract—Boltzmann’s collision integral is extended to the case of helical (Larmor) particle trajectories in a
magnetic field of arbitrary strength. The main characteristics of collisions of electrons with positively charged
ions in strong magnetic fields, where the Larmor radius of electrons becomes less than the characteristic impact
parameter of close collisions in the absence of a magnetic field (Landau’s parameter), are investigated. The dif-
ferential scattering cross section and the corresponding electron–ion collision integral in strong fields are found.
The transport collision frequencies are calculated, and the results are compared with the similar quantities for
weaker magnetic fields. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that strong magnetic fields substan-
tially change the state of atoms and molecules (see the
review [1]) and the collisions between charged parti-
cles.1 For example, the ground state of a stationary
hydrogen atom contracts in a direction across the mag-
netic field and acquires the form of a needle oriented
parallel to the field, when the energy interval between
the Landau levels exceeds 13.6 eV. This relationship
obtains in magnetic fields B * 2.35 × 109 G. An approx-
imate calculation of the ground-state energy can be
found in [3]. In [4, 5] a numerical method was pre-
sented for performing an accurate calculation of the
energy levels and wave functions of the hydrogen atom
in arbitrary fields. The translational motion of an atom
across the field results in further transformation of the
electron cloud (see, for example, [6] and the references
cited there), since a uniform electric field, which shifts
the electronic cloud relative to the nucleus, appears in
the coordinate system of the atom.

For free states of an electron (as well as the Rydberg
states and excitons in semiconductors) the effect of a
magnetic field is substantially manifested in weaker
fields. In the classical method of describing collisions
of an electron moving with a definite velocity v and a
stationary ion with charge number Z, the magnetic field
becomes strong when the electron cyclotron period
2π/ωB is less than the duration rs/v of close collisions
in the absence of a field. Here

is equal to the distance r at which the electron kinetic
energy mv2/2 is of the order of its potential energy Ze2/r
in the field of an ion;

1 New results concerning the configuration of the ground state of the
hydrogen molecule in a strong magnetic field were presented in [2].

rs Ze2 mv 2⁄=

ωB eB mc⁄=
1063-7761/00/9005- $20.00 © 20741
is the electron cyclotron frequency; m and e > 0 are the
electron mass and charge; and, c is the speed of light.
The strong-field condition

(1)

where the constant

depends on the particle velocity v. For this reason, fast
and slow particles for which a given field is weak or
strong, respectively, are singled out in a fixed magnetic
field.

In weak magnetic fields, where the condition oppo-
site to (1) is satisfied, collisions with impact parameters
pr less than the Larmor radius rB(v) = v/ωB occur just
as without a magnetic field: the well-known hyperbolic
trajectory connects the helical lines of Larmor rotation
of an electron before and after a collision. For distant col-
lisions with impact parameters pr * rB the condition for the
magnetic drift approximation are satisfied and the pitch
angle of the electron remains essentially unchanged. Con-
sequently, the Larmor radius becomes the natural maxi-
mum impact parameter pmax in the Coulomb logarithm
L = ln(pmax/rs) for collision frequencies that characterize
the rate of transformation of the energy of motion of an
electron in a direction parallel and transverse to the mag-
netic field.

A distinguishing feature of investigations of colli-
sions in weak fields is the use of an approximate
method in which the action of the Coulomb center is
treated as a weak perturbation to the initial cyclotron
rotation of an electron and the main transport frequen-
cies are proportional to the squared charges of the col-
liding particles. In [7] this method was used to calculate
the relaxation times of an electron gas in a magnetic
field with an azimuthally symmetric particle velocity

Z
B

Bcl
------- v

c
---- 
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distribution. In [8] the method was extended to plasma
with an arbitrary particle distribution function. In [9] the
pair-collision integral was obtained for an ideal magne-
tized plasma where the maximum impact parameter in
the form of the Debye radius rD is introduced to take
account of collective effects (electrostatic screening). In
[10, 11] the transport collision frequencies, appearing in
the high-frequency permittivity of a plasma, as well as
the rate of energy transfer between the electronic and
ionic components in plasma (see also [12]) were investi-
gated. In [13] the Lenard–Balescu collision integral was
extended to the case of a magnetized plasma. In [14–16]
the changes in the parameters of test particles in colli-
sions with plasma particles were calculated.

The quantum calculation of Coulomb collisions in
weak fields is based on the Born approximation, where
the particle velocity is quite high and the distance rs is
shorter than the de Broglie wavelength λB = "/mv. The
quantum-mechanical transition probabilities between
Landau levels in Coulomb collisions were calculated in
[17] and then in [18] in a simpler form. A relativistic
quantum-mechanical calculation of the transition prob-
abilities was performed in [19] as well as in [20]. The
corresponding transport coefficients in a quantized
plasma were investigated in [21] and [22, 23]. Expres-
sions for the bremsstrahlung absorption coefficients off
the cyclotron line can be found in [24].

In strong magnetic fields (1) the character of the col-
lisions changes as compared with a zero magnetic field
at all impact parameters. In this case, the collisions of an
electron with positively and negatively charged particles
exhibit qualitatively different properties. In an effective
collision the electron velocity near the scattering center
is substantially different from the initial velocity. This
characteristic property of effective collisions precludes
the use of perturbation methods, which are used for
weaker fields, in this case.

The case of strong magnetic fields (1) was realized
in [25] under laboratory conditions in an experiment
with an electron plasma. In [26] the basic properties of
interelectronic collisions were investigated and a corre-
sponding collision integral was obtained. As a result of
electron–electron collisions over a time equal to the
stopping time of a thermal electron in a unmagnetized
plasma, a particle distribution of the form

(2)

is established. Such rapid relaxation is due to head-on
collisions of electrons with close velocities, in which
the particles exchange the given components of the veloc-
ity, along a magnetic field. However, isotropization of the
distribution and transformation of energy between the
electronic degrees of freedom in a direction parallel and
transverse to the magnetic field are substantially slower,
since as a result of collisions the particles approach only
to distances of the order of rs @ rB and the total trans-
verse electron energy is conserved, to a high degree of
accuracy, in collisions [27, 28].

f v( ) f || v ||( ) f ⊥ v ⊥( )=
JOURNAL OF EXPERIMENTAL
              

Under astrophysical conditions the case of strong
fields is characteristic for photospheres of magnetic
white dwarfs, where the magnetic fields attain magni-
tudes of 109 G and the temperature T ~ 104 K is not too
high. A qualitative analysis of electron-proton collisions
[29, 30] has shown that a large change in the electron
pitch angle occurs primarily in collisions with impact
parameters ph & pcr , where

(3)

is the classical electron radius. In these collisions the
characteristic time over which the Coulomb field
changes during the passage of an electron near an ion is
less than the cyclotron period. The distance pcr is on the
one hand less than the distance rs and on the other hand
greater than the Larmor radius. For effective collisions
the particles move along quasi-bound trajectories, i.e.,
the direction of the electron velocity along the magnetic
field changes repeatedly during a collision, and a pro-
ton plays the role of an “electrostatic” trap.

For an ideal plasma the distance rs @ pcr is much
shorter than the distance between particles, so that
effective collisions can be treated as pair collisions. In
Section 2 the general form of the pair-collision integral in
a magnetic field is found in Boltzmann’s form for an arbi-
trary electron distribution function (including a function
which is asymmetric with respect to the directions of the
velocities transverse to the magnetic field). For this, the
corresponding impact parameters are determined for
helical (Larmor) particle trajectories in a magnetic field
of arbitrary magnitude. In Section 3 a logarithmically
accurate value of the parameter pcr is found and the role
of distant collisions ph * pcr in the change in the param-
eters of an electron in strong magnetic fields is investi-
gated. In Section 4 the differential scattering cross sec-
tion and the collision integral for an electron colliding
with positive ions in a strong magnetic field (1) are
found. The basic transport collision frequencies of an
electron with positive and negative ions in strong and
weak fields are compared in the conclusions.

2. COLLISION INTEGRAL IN BOLTZMANN’S 
FORM IN A MAGNETIC FIELD

We shall consider a spatially uniform magnetized
plasma consisting of electrons and stationary ions of
one kind with density ni . To obtain the collision integral
we shall employ the well-known kinetic method, which
is described in, for example, [31] for the case of an iso-
tropic medium. We shall consider electron–ion and
electron–electron collision integrals

(4)

pcr
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(5)

where Uei(r) and Uee(r) are, respectively, the electron–
ion and electron–electron interaction potentials and the
functions fee(r, vrel, vcm, t '; t) and fei(r, v, t '; t) approxi-
mate the two-particle electron–electron and electron–
ion distribution functions.2 Since the ion distribution is
spatially uniform, the function fei depends only on the
electron velocity v and the electron position r relative
to an ion. The arguments of the function fee are the rel-
ative position of the electrons in a pair r = r1 – r2, the
relative velocity of the electrons vrel = v1 – v2, and the
center-of-mass velocity vcm = (v1 + v2)/2, where r1, v1
and r2, v2 are the coordinates and velocities, respec-
tively, of the first and second electrons in a pair. It
should be noted that in a collision of two electrons in a
magnetic field their motion and the motion of the center
of mass are independent. The motion of the center of
mass is a cyclotron rotation, described by the equation

and the relative motion

is a scattering of a particle with mass m in the potential
2Uee of a stationary center. This effect makes it possible to
assume the function fee to be uniform with respect to the
center-of-mass coordinate.

Boltzmann’s collision integral models the change in
the single-particle electron distribution function f (v, t)
as a result of instantaneous pair collisions, whose dura-
tion tcol is short compared with the characteristic time
trel of the change occurring in the distribution f as a
result of collisions. To calculate the collision integral in
a magnetic field it is necessary to take into account in an
appropriate manner the quasiperiodic change in the dis-
tribution f as a result of the cyclotron rotation of the elec-
trons. In the present section the collision integrals are
studied for cyclotron periods 2π/ωB which are short com-
pared with the mean free time trel and for an arbitrary

ratio of the collision duration tcol and the quantity .

To find the general form of the collision integral we
seek the corresponding expressions for the functions fei

and fee in terms of f on the basis of the kinetic equations

(6)

2 It should be underscored that the time dependence of the func-
tions fei and fee is described by the argument t ' and the parameter
t. The advantages of using two variables and their meaning will
be specially discussed below (see equations (6), (7) and (8), (9)).

Ist
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JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
(7)

supplemented by the boundary conditions

(8)

(9)

Here wB = (eB/mc)z° and  is a linear operator
which rotates an arbitrary vector a by an angle ωB∆t
around the axis z°

In the limit ωB  0 the operator  becomes the unit
operator and the expressions (8) and (9) become identi-
cal with the well-known condition for the particles to be
uncorrelated before a collision. Then the conditions (8)
and (9) and the corresponding solutions of equations
(6) and (7) are stationary with respect to the argument
t '. In a magnetic field the distribution f changes on time
intervals ∆t ! trel primarily as a result of the cyclotron
rotation of the electrons. Consequently, for arbitrary
times t and t ' we have

The last relation is used in the boundary conditions (8)
and (9) to separate formally the fast quasiperiodic vari-
ations of f with the cyclotron frequency and the slower
collisional relaxation of f on time intervals of the order
of trel . Ultimately, the dependence of the functions fei

and fee on the argument t ' is periodic and reflects rapid
variations of the two-particle distributions, while the
dependence on the parameter t corresponds to a slow col-
lisional relaxation of the electron distribution, which is
negligible in instantaneous-collisions models. Actually,
the functions fei and fee approximate to an adequate degree
of accuracy the two-particle distributions at an arbitrary
time t0 with t' = t0 and the parameters |t – t0| ! trel.

In the present paper we shall study the collision inte-
grals for stationary axisymmetric particle interaction
potentials. In this case the periodic change in the distri-
butions fei and fee is especially simple. The solutions of
equations (6) and (7) with the boundary conditions (8)
and (9) possess a symmetry, which can be convention-
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ally called a synchronous rotation in coordinate and
velocity space:

(10)

(11)

where ∆t' is an arbitrary time shift. The distributions (10)
and (11) become identical when particles with the same
initial rotation phase before a collision arrive at definite
points of the phase space at corresponding moments in
time. Indeed, let r(t ') be the trajectory of a particle in a
collision with a stationary center. Then the function

r(t ' – ∆t ') corresponds to a different par-
ticle trajectory. Far from a scattering center the particle
velocities on both trajectories are the same:

Consequently, the distribution functions on these trajecto-
ries are also the same, specifically, they are equal at the
time  at the point r( ),  and the at  =  + ∆t' at

the point  = ,  = , which
corresponds to the expressions (10) and (11).

The symmetry property (10) and (11) established
above imposes additional differential relations on the
derivatives of the functions fei and fee:

These relations make it possible to eliminate the time
derivatives ∂fei /∂t' and ∂fee /∂t' from the kinetic equations
(6) and (7) and to express the integrands in the collision
integrals (4) and (5) in the equivalent divergence form

Then the initial collision integrals (4) and (5) reduce to
the corresponding integrals over distant closed surfaces
of arbitrary shape:

(12)
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If the surfaces of integration were to rotate with the
cyclotron frequency relative to the symmetry axes of
the potentials, then the quantities wB × r in the expres-
sions (12) and (13) would represent the instantaneous
velocities of points on these surfaces. Consequently,
the collision integrals in the form (12) and (13) can be
interpreted as fluxes of particles with the velocities v
and vrel through the surfaces rotating with the cyclotron
frequency ωB.

Now we shall reduce the expressions (12) and (13)
to the standard form, where the functions fei and fee are
expressed in terms of the single-particle distribution
function, and common variables, which do not depend
on the choice of surfaces, are used for the integration.
For rectilinear particle trajectories in the absence of a
magnetic field this is achieved by introducing the well-
known impact parameter pr(r) = r – v(r · v)/v2 (in the
case of electron–electron collisions the velocity v here
and below in this section is vrel). The scattering cross
section is the Jacobian of the transformation pr(n'),
where n' = v'/v is the direction of the particle velocity
after a collision. Since in a magnetic field the direction
n' varies continuously because of Larmor rotation, the
difference of the states of a particle before and after a
collision must be characterized by the change in the sta-
tionary parameters of its free motion: the pitch angle θ,
the initial rotation phase φ0, and the modulus of the
velocity v. Then an elastic collision is characterized by
the change ∆θ in the pitch angle and the change ∆φ in
the initial rotation phase. The pair of variables ph, ϕ
(Fig. 1), which give the position of the helical line of a
particle,

(14)

before or after a collision relative to a scattering center,
is the analog of the impact parameter pr in a magnetic
field (compare [16]). The parameter ph is the distance
between the axis of the helical line and the symmetry
axis of the potential, i.e., the modulus of the radius vec-
tor of the guiding center of rotation

The angle φB is the azimuthal angle of the vector .
The parameter ϕ is the angle between the vectors rB =

–wB × v/  and  at an arbitrary point r of the undis-
turbed trajectory, increased by the phase difference of the
Larmor rotation (–ωBz/vz) at z = 0 and at the point r.

Since the interaction potential is axisymmetric, the
change ∆θ in the pitch angle and the change ∆φ in
the  rotation phase are functions of four arguments:
∆θ(ph, ϕ, θ, v) and ∆φ(ph, ϕ, θ, v).

In the limit ωB  0, when the characteristic size of
the collision region Lcol ! rB and the standard impact

x ph φB rB ωBz v z⁄ φB ϕ+ +( ),cos+cos=

y ph φB rB ωBz v z⁄ φB ϕ+ +( )sin+sin=

RB⊥
r wB v ωB

2 z° r z°⋅( ).–⁄×+=

RB⊥

ωB
2 RB⊥
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parameter pr can be used, the quantities ( ph, ϕ) and pr

are related as follows:

Here n1  v × wB and n2  v × [v × wB] are mutually
orthogonal unit vectors.

It should be noted that the expressions (14) are valid
if the interaction potential decreases sufficiently rapidly
with distance (for example, for a screened Coulomb
potential U ∝  exp(–r/rD)/r), while an ordinary Coulomb
field changes the longitudinal velocity of the particle and
the pitch of the helical line at arbitrarily large distances
from the scattering center. In the latter case, for

the trajectory is determined by the same expressions (14),
if ωBz/vz is replaced by

where l is a constant (compare [32]). This modification
changes the definition of the parameter ϕ, but it has no
effect on the final form of the collision integral. Conse-
quently, to simplify the exposition we shall assume the
Coulomb potential to be screened.

Having determined the method for parameterizing
the trajectories, we express the functions fei and fee in
the collision integrals (12) and (13) in terms of the sin-
gle-particle distribution function f and the shifts ∆θ and
∆φ. We divide the surface of integration S by the plane
z = 0 into two parts, S1 and S2, for which, respectively,
zvz < 0 and zvz > 0. The particles on the surface S1 have
still not collided, so that for them, in accordance with
the boundary conditions (8) and (9),

(15)

(16)

The particles which have collided lie on the surface S2.
Using the constancy of the distributions along the par-
ticle trajectories and the symmetry of the trajectories
under time reversal and specular reflection relative to
an arbitrary plane passing through the symmetry axis of
the potential, we find the distributions on the surface S2:

(17)
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are the changes in the pitch angle and phase of a parti-
cle in a collision in the corresponding potentials 
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establishes a correspondence between an arbitrary vector
a with the spherical coordinates (a, θ, φ) and the vec-
tor a' = (a, θ + δθ, φ + δφ).

The parameters (ph, ϕ) introduced above are also
convenient from the standpoint of the integration in
equations (12) and (13) over an arbitrary surface S,
since the differential

(19)

The plus and minus signs in equation (19) refer, respec-
tively, to particles leaving and entering the volume.
This relation can be established by a direct calculation
of the Jacobian of the transformation ( ph(r), ϕ(r)),
where r ∈  S.

Using the expressions (15)–(19) the integrals (12)
and (13) can be finally put into the form
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Fig. 1. Parameterization of the helical trajectory of an elec-
tron far from a scattering center.
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The definition of the differential scattering cross sec-
tion in the form

(22)

makes it possible to write the expressions (20) and (21)
in the standard Boltzmann form

(23)

(24)

which is identical to the analogous expression in an iso-
tropic medium.

3. CHARACTERISTIC FEATURES
OF ELECTRON COLLISIONS 

WITH POSITIVE IONS IN STRONG
MAGNETIC FIELDS

It is shown in [29, 30] that in strong magnetic fields
the change in the electron pitch angle is determined by
close collisions with impact parameters

However, the Coulomb force near an ion is much stron-
ger than the Lorentz force on an unperturbed Larmor tra-
jectory, so that the pitch angle changes substantially even
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Fig. 2. Deformed contour of integration for calculating J.
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with larger impact parameters differing from (mc2/B2)1/3

by a logarithmic factor.
In the present section the dimensionless lengths,

velocities, and times, normalized to

respectively, will be used. In this normalization the elec-
tron equations of motion

contain no numerical parameters.
To calculate pcr we shall find the change in the trans-

verse velocity of an electron with respect to the corre-
sponding “unperturbed” particle trajectory r(t). We shall
assume that on a given trajectory the Coulomb field
changes only the component vz of the electron velocity

where v0|| > 0 is the initial electron velocity along the
magnetic field. In this approximation the displacement
of the guiding center of rotation, as a result of electric
and polarization drifts, as well as the change in the elec-
tron rotation frequency in the presence of a nonuniform
electric field are neglected. All indicated effects are
important only for ph ~ 1. Then, after a collision the
components of the electron velocity in the xy plane
have the form

where

v0⊥  is the modulus of the initial particle velocity in the
xy plane, the constant  is uniquely related with the
collision parameter ϕ, and the function z(t ') is deter-
mined by the relation

The variable t ' and the corresponding function z(t ') can
be assumed to be complex. We deform the contour of
integration along the real axis t ' (Fig. 2) into a contour
directly encompassing the cut (
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where

(see formula 2.5.3.1 in [33]), and Γ(x) is the gamma
function. Then

(25)

where the contour C passes in a clockwise direction
around the positive semiaxis (0, +∞) and the corre-
sponding integral along this contour is identical to the
Hankel integral [34].

We shall determine the desired parameter pcr as the
value of the parameter ph for which the quantity (25) is
the initial electron velocity v0:

(26)

or in dimensional form

(27)

The expressions (26) and (27) are logarithmically accu-
rate values of the parameter pcr .

We shall now consider a change in the initial rota-
tion phase of an electron. In close collisions it is of the
order of π. Consequently, the corresponding contribu-
tion of close trajectories to the transport frequencies
and the collision integral are characterized by cross sec-

tions of the order of σ0 = π . This contribution will
be considered in the next section.

In each distant collision the change in the initial
phase is ∆φ ! 1, but its magnitude decreases quite
slowly—according to a power law—with increasing
impact parameter. The shift ∆φ is related with the dif-
ference of the electron rotation frequency in the pres-
ence of the nonuniform electric field of the scattering
center and the cyclotron frequency: a variable compo-
nent of the force, proportional to the gradient of the field
and the rotation radius of the particle, which produces an
additional centripetal acceleration, is present on the parti-
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cle trajectory.3 The small shift of the instantaneous rota-
tion frequency ω can be found as done in [26]:

(28)

where

is the Laplace operator in a plane orthogonal to the
magnetic field. The shift of the initial rotation phase as
a result of collisions has regular and diffusion compo-
nents which are characterized by the cross sections

Assuming the trajectories of the guiding centers to be
rectilinear and using the expression (28), we find the
phase shift in a distant collision

Then the cross section σr can be written as

where

(29)

3 In the magnetic drift approximation (averaging method of [35]) it
can be shown that the adiabatic inclusion of an additional centri-
petal acceleration changes the effective rotation radius while pre-
serving the oscillatory velocity of the particle.
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The component σr2 can be found exactly in the limit

/2 ! 1:

The component σr1 should be especially noted,
since in a strict analysis the integral (29) does not con-
verge: in the region ζ @ 1 and η @ 1 the integrand in
equation (29) slowly approaches 0 as 1/(ζ2 + η2). Ulti-
mately, the result of the integration depends strongly on
the method of passage to the limits with respect to ζ and
η. Even though there is an additional indefiniteness in
the cross section σr1, we note that this cross section
increases as the velocity v0|| decreases and it exceeds
the cross section σ0 for close collisions with low veloc-
ities v0||. However, the value of σr1 is not fundamental
for calculating the collision integral (see also [14]). It
follows from the expression (29) that

and the regular shift of the rotation frequency

does not depend on the particle velocity. Consequently,
the regular collisional change in the initial phase can be
reduced to a replacement of the magnetic field B by the
corresponding effective value

We shall now find the cross section σd using the
same approximation as in the calculation of σr2:

As one can see, the cross section σd ! σ0 = π  so that
the effect of distant collisions on particle diffusion
along the initial rotation phases is negligible compared
with the analogous contribution of close collisions.

Thus, as a result of the specific form of the regular
change in the initial rotation phase in distant collisions
and the smallness of the cross section σd compared with
σ0, it can be concluded that only close collisions deter-
mine the form of the electron–ion collision integral in
strong magnetic fields (1).
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4. DIFFERENTIAL SCATTERING CROSS 
SECTION IN A STRONG MAGNETIC FIELD

A general expression for the collision integral in a
magnetic field for an arbitrary axisymmetric interaction
potential was obtained in Section 2. For a specific poten-
tial it is necessary to perform a corresponding calculation
of the differential scattering cross section. This calcula-
tion can be performed either analytically or numerically.
A large number of collisions must be taken into account
in order to find the differential scattering cross section
numerically. Moreover, under conditions where the
drift velocity is large compared with the Larmor rota-
tional velocity the required accuracy for the numerical
values of the pitch angle and phase can be attained only
by highly accurate calculations of the trajectories.

There is no known general analytical solution of the
problem of the motion of an electron in a uniform mag-
netic field and a Coulomb electric field. Approximate ana-
lytic methods of the type “instantaneous impact” [36] or
the magnetic drift approximation are inapplicable in
strong magnetic fields (1). Thus, an assumption based on
a characteristic property of collisions is required in order
to calculate the scattering cross section analytically.
Since an electron in an effective collision moves along a
quasi-bound trajectory with multiple passes near the ion,

 

4

 

it is natural to infer that the result is equivalent to several
collisions with a single pass, i.e., the distribution of the
particles scattered by an individual ion does not depend on
the distribution of the particles in the incident flux.

Let us consider a spatially uniform flux of electrons
with unit density and a fixed pitch angle 

 

θ

 

0

 

, initial phase

 

φ

 

0

 

, and velocity 

 

v

 

0

 

:

(30)

where 

 

δ

 

(

 

x

 

) is a delta function. We shall find the rate of
appearance of particles with pitch angle 

 

θ

 

 and phase 

 

φ

 

which are different from the corresponding parameters

 

θ

 

0

 

 and 

 

φ

 

0

 

 + 

 

ω

 

B

 

t

 

 in the incident flux:

(31)

The total number of close collisions per unit time for
the incident flux 

 

n

 

i

 

v

 

0

 

|

 

cos

 

θ

 

0

 

|σ0 must be identical to the
expression (31) integrated over all directions (θ, φ) with

4 See the qualitative analysis and discussion of numerical calcula-
tions of such trajectories in [30].
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the exception of the direction of the velocity in the inci-
dent flux (θ0, φ0 + ωBt):

(32)

In accordance with the assumption made above con-
cerning the character of the scattering by a single cen-
ter, the ratio σei(θ0, φ0 + ωBt; θ, φ, v0)/(|cosθ0|σ0) of the
expressions (31) and (32) should not depend on θ0 and
φ0. Therefore the differential cross section σei has the
form of the product σei(θ'; θ) = σ0|cosθ'|w(θ), where the
function w(θ) satisfies the normalization

The condition for the conservation of the total number
of particles

uniquely determines the factor w(θ) = |cosθ|/2π and the
differential cross section

(33)

where

The scattering cross section (33) admits a simple
quantum-mechanical interpretation. An electron occu-
pies with equal probability an arbitrary Landau level
with energy less than the initial energy of the electron.
Here the nth Landau level is treated as a collection of

states with definite energy m /2 = (n + 1/2)"ωB .
Indeed, the rate of change of the level populations
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(34)

is the same for all v⊥  ≤ v

 

0

 

 for scattering of the flux (30).
Having occupied a level 

 

n

 

, the electron occupies with
equal probability one of the states with a fixed momen-
tum 

 

p

 

||

 

 in the direction of the magnetic field in the inter-
val from 

 

p

 

||

 

(

 

n

 

) to 

 

p

 

||

 

(

 

n

 

) + 
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p

 

||

 

(

 

n

 

). If the initial electron

energy 
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/2 falls into the range from 
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0

 

 to 
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0

 

 + 
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,
then the corresponding interval is

Since the number 

 

∆

 

k

 

 of states in the interval 

 

∆

 

p

 

||

 

 is pro-
portional to the length of this interval, the conditional
probability 1/

 

∆

 

k

 

 for an electron to occupy one of these
states is proportional to 

 

|

 

cos

 

θ|

 

, which the factor 

 

|

 

cos

 

θ|

 

in the expression (33) describes.
It should be noted that the electron–ion collisions

considered above result in isotropization of the electron
distribution, since the collision integral (23) with the
cross section (33) is zero only for an isotropic distribu-
tion function.

5. DISCUSSION

In the present paper we found the pair-collision inte-
gral in Boltzmann’s form (20)–(24) in a magnetic field
and we obtained the cross section (33) for electron–ion
collisions in a strong magnetic field (1) for positively
charged ions. The results obtained are limited by the
possibility of the classical method of describing the
motion of particles in a collision, when the de Broglie
wavelength 

 

λ

 

B

 

 = 

 

"

 

/

 

m

 

v

 

 is less than the characteristic
lengths in the problem. The Larmor radius of an electron
is such a smallest scale, so that the results obtained are
valid in the region 

 
λ

 

B

 
 < 

 
v

 
/

 
ω

 

B

 
, where the quantization of

the transverse motion of an electron is unimportant:
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ω

 

B

 

 < 

 

m

 

v

 

2

 

.

In the “magnetic field–electron energy” parameter
plane (Fig. 3) the classical approximation is valid below
the line 

 

r

 

B

 

 = 

 

λ

 

B

 

 and to the left of the vertical straight
line 

 

r

 

s

 

 = 

 

λ

 

B

 

. In this region the sectors of strong (

 

1

 

) and
weak (

 

2

 

) magnetic fields are separated by the line 

 

r

 

B

 

 = rs .
The Born approximation is valid in the region (3) to the
right of the straight line rs = λB, including for E < "ωB,
where the electron can be scattered only backwards,
remaining in the lowest Landau level. A special inves-
tigation and calculation of Coulomb collisions is
required in the sector (4).

It should be noted that the spatial nonuniformity of
the plasma leads to the appearance of additional terms
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in the collision integral. These terms describe the diffu-
sion of the guiding center of rotation because of colli-
sions and are proportional to the spatial derivatives of
the particle distribution function. In [38] an electron–
ion collision integral in a weak magnetic field was
obtained. This integral takes account of the nonunifor-
mity of the particle density (see also [39]). In a strong
magnetic field (1) the spatial diffusion is due primarily
to electric drift of the guiding center at distant colli-
sions ph * rs, so that it can be calculated using the
results of [38]. Compared with [38], only the Coulomb
logarithm changes in the collision integral. This prob-
lem requires additional calculations.

The scattering cross section (33) found above makes
it possible to calculate the relaxation of the electron dis-
tribution as a result of elastic electron–ion collisions5

with other factors, for example, electron–electron colli-
sions or electromagnetic radiation and absorption, being
negligible. Thus, in a quasineutral plasma a distribution of
the form (2) is established as a result of electron–elec-
tron collisions. In the general case this distribution is
nonisotropic and possesses a directed hydrodynamic
velocity. The electron–ion collisions lead to isotropiza-
tion of this distribution, as a result of which Maxwell’s

5 Energy transfer between electrons and ions requires a special
investigation. Distant collisions, whose duration is shorter than an
ion cyclotron period, as well as close collisions as a result of the
long residence time of an electron near an ion on a quasi-bound
orbit could be important for this process.
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Fig. 3. Regions of applicability of various approximations
for calculating collisions. E = mv 2/2—electron energy.
Above the straight line rB = λB, where E < "ωB  and the elec-
tron occupies the lowest Landau level, the quantity E refers

to the energy m /2 of longitudinal motion. The dots show

the corresponding parameters for thermal electrons in the
photospheres of magnetic white dwarfs [37].
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distribution is established over a characteristic mean
free time (nivTσ0(vT))–1 of a particle with thermal
velocity vT .

We shall now present the main transport frequencies
characterizing the relaxation. The change in the veloc-
ity u|| ! vT directed along the magnetic field for the dis-
tribution

where ne = ni is the electron density, is given by the fre-
quency

(35)

so that du||/dt = –ν||u||. A similar change in the modulus
of the hydrodynamic velocity in a direction transverse
to the magnetic field is given by the frequency

(36)

Relaxation of the anisotropy of the temperatures for the
distribution

is characterized by the rate

where for any ratio of  and  the frequency

(37)

It should be noted that estimates of ν|| and νeff for
electron-proton collisions have been found in [29, 30]:

(38)
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The numerical factor in equation (38) was determined
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quantity (38) is equal to the corresponding frequency in
weak magnetic fields (see (41) and the discussion below).
Adjustment of the analogous coefficient in equation (39)
gives a smooth transition from the frequency (39) to the
corresponding frequency νeff (see equation (40)) in weak
magnetic fields. This transition occurs at ln(rB/rs) = 3/4.

As already noted, in strong magnetic fields the col-
lisions of electrons with positive and negative ions pos-
sess completely different properties (the latter can be cal-
culated using directly the results of the investigation of
electron–electron collisions [26]), while in weak fields
their properties are largely similar (the transport frequen-
cies depend on the squared ion charge). We shall trace the
reasons for the difference in collisions with different ions
for the transport frequencies (35), (36), and (37). Using
the collision integral from [12] or [13] in weak mag-
netic fields, it is easy to find the frequency

(40)

At the boundary of the regions of the parameters for
weak and strong fields this frequency is equal in order
of magnitude to the corresponding frequencies for pos-
itive ions (37) and negative ions (compare [27]). For
subsequent motion in the strong-field region, the fre-
quency νeff of collisions with negative ions decreases
exponentially, lnνeff ~ (rs/rB)2/5 [27], and satisfies the
expression (37) for positive ions.

The transport frequency ν|| in weak magnetic fields
has the form [10]

(41)

The corresponding frequency in strong fields for nega-
tive ions, calculated by analogy to electron–electron
collisions [26], is

(42)

At the boundary of the regions of the parameters for
strong and weak magnetic fields rB = rs , the frequencies
(41) and (42) differ by a factor of 2,6 while the frequen-
cies (41) and (35) differ by a large logarithmic factor
ln(rD/rs). This difference is due to the fact that the sec-
ond logarithmic factor in expression (41) is of the same
nature as the corresponding factor in expression (42). It
is determined by collisions of thermal particles with
small longitudinal velocities

6 A similar and more general relation for the electron–electron col-
lision integral has been given in [26].
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for which the distance

is much greater than their Larmor radius rB(vT) ! rD
but less than the Debye radius rD. The indicated colli-
sions with impact parameters ph < 2rs(v||) are head-on
collisions of electrons with negative ions, for which the
direction of the longitudinal velocity of the electron
changes while the modulus of this velocity is con-
served. The factor of two difference between the fre-
quencies (41) and (42) is due to the fact that the pertur-
bation method does not give a correct description of
such collisions. Similar collisions with positive ions do
not lead to any resulting change in the longitudinal
velocity: the electron simply passes by the ion with
acceleration. This makes it possible to conclude that in
weak magnetic fields the second logarithmic factor in
the expression (41) is present in the frequency of colli-
sions with negative ions and must be multiplied by two,
but it does not occur in the corresponding frequency for
positive ions. The analysis of the frequency ν|| also shows
that in weak magnetic fields perturbation methods must be
used with great care for particles with small components
of the velocity along the magnetic field, especially when
Fourier transforms of the interaction potentials are used
and the region where the perturbation method breaks
down is difficult to single out explicitly. In very weak
magnetic fields, where rB(vT) @ rD, the effects deter-
mined by slow particles become negligible because the
number of such particles is relatively small: their veloc-
ities in a direction transverse to the magnetic field are
limited from above by the quantity 

 

ω

 

B
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D

 

 

 

!

 

 

 

v
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.

The frequency 

 

ν

 

||

 

 ordinarily also characterizes
bremsstrahlung absorption of electromagnetic waves
polarized in the direction of the magnetic field. For this it
is necessary to calculate the contribution to 

 

ν

 

||

 

 only from
collisions whose duration is shorter than the period of
oscillations of the electromagnetic wave. For collisions
of longer duration the change in the electron velocity
occurs without absorption of a wave with a fixed fre-
quency. In strong magnetic fields, for a fixed radiation
frequency 

 

ω

 

 

 

&

 

 

 

ω

 

B

 

 there exist many collisions with
impact parameters 

 

p

 

h

 

 

 

*

 

 

 

p

 

cr

 

 in which the longitudinal
velocity essentially does not change as a result of colli-
sions, but the duration of the collisions is shorter than the
period of the oscillations of the electromagnetic wave.
Radiation absorption occurs in these collisions and it can
be substantial in a definite frequency range. The calcula-
tion of the inverse bremsstrahlung coefficients in strong
fields is the subject of further investigations.
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Abstract—The problem of the motion of a classical relativistic electron in a focused high-intensity laser pulse
is solved. A new three-dimensional model of the electromagnetic field, which is an exact solution of Maxwell’s
equations, is proposed to describe a stationary laser beam. An extension of the model is proposed. This exten-
sion describes a laser pulse of finite duration and is an approximate solution of Maxwell’s equations. The equa-
tions for the average motion of an electron in the field of a laser pulse, described by our model, are derived
assuming weak spatial and temporal nonuniformities of the field. It is shown that, to a first approximation in
the parameters of the nonuniformities, the average (ponderomotive) force acting on a particle is described by
the gradient of the ponderomotive potential, but it loses its potential character even in second order. It is found
that the three-dimensional ponderomotive potential is asymmetric. The trajectories of relativistic electrons
moving in a laser field are obtained and the cross sections for scattering of electrons by a stationary laser beam
are calculated. It is shown that reflection of electrons from the laser pulse and the surfing effect are present in
the model studied. It is found that for certain impact parameters of the incident electrons the asymmetic pon-
deromotive potential can manifest itself effectively as an attractive potential. It is also shown that even in the
case of a symmetric potential the scattering cross section contains singularities, known as rainbow scattering.
The results are applicable for fields characterized by large (compared to 1) values of the dimensionless param-
eter η2 = e2〈E2〉/m2ω2 and arbitrary electron energies. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The present paper is concerned with the solution of
the problem of the motion of a classical relativistic
electron in a rapidly oscillating electromagnetic field
with amplitude varying slowly in space and time.

In nonrelativistic mechanics this problem can be
solved by representing the motion of an electron as a
displacement along a smooth trajectory with simulta-
neous rapid oscillations around it. After averaging over
the rapid oscillations the equations for the smooth tra-
jectory assumes the form of Newton’s equations with a
potential force [1, 2], said to be a ponderomotive force
(see, for example, [3]). The ponderomotive potential
corresponding to this force is the average kinetic
energy of the oscillatory motion [1].

The concept of a ponderomotive potential is widely
used to explain many effects in atomic and plasma
physics. Specifically, ponderomotive scattering plays a
large role in the formation of the spectrum and the
angular distribution of electrons in the phenomenon of
above-threshold ionization [3, 4] and a variety of non-
linear effects (for example, self-focusing), arising when
a laser beam propagates in plasma [5]. Inelastic scatter-
ing of nonrelativistic electrons (the surfing effect and
reflection) by a ponderomotive potential produced by a
1063-7761/00/9005- $20.00 © 20753
comparatively high-power laser pulse in vacuum was
first observed experimentally in 1986 [6].

The analysis of the ponderomotive effect in nonrel-
ativistic mechanics assumes that, besides the electron
energy being small, the dimensionless parameter

(1)

which characterizes the field intensity and determines
the energy of the oscillatory motion of an electron [7],
is small.1 Compact optical-frequency lasers with pulse
intensity I greater than 1018 W/cm2, which corresponds
to η * 1, have now been developed, and experiments on
collisions of ultrarelativistic electron beams with laser
pulses of this power are being conducted [8, 9]. Conse-
quently, the problem of the interaction of relativistic
particles with laser fields of relativistic intensity (η * 1)
is now topical.

Kibble [10] was the first to examine the interaction
of relativistic electrons with a nonuniform laser field.
He obtained equations for the average motion of a rela-
tivistic electron in such a field and predicted that elec-
trons will be reflected from the center of the focal
region and the surfing effect. Although Kibble’s work

1 We employ the system of units in which the speed of light c = 1.

η2 e2 E2〈 〉
m2ω2

----------------,=
000 MAIK “Nauka/Interperiodica”



 

754

        

NAROZHNY, FOFANOV

                                              
[10] gives a clear picture of the mechanism leading to
ponderomotive scattering, it assumed that the intensity
of the laser field is small η ! 1, which limits the possi-
bility of using this work to describe experiments with
laser pulses of relativistic intensity.

The interaction of relativistic electrons with a
focused laser beam for η * 1 was first studied in [11,
12]. In these works a field with a two-dimensional con-
figuration was used as a model of the laser pulse. Such
a field is a solution of Maxwell’s equations, and in prin-
ciple it can be obtained by using a long cylindrical lens
to focus a plane wave. The equations obtained in [11,
12] for the average motion describe qualitatively cor-
rectly the characteristic features of the motion of a rel-
ativistic electron in a focused pulse, but, of course, they
cannot serve to describe a real laser experiment.

In the present paper we propose a new three-dimen-
sional model of a field. This model is a generalization
of the model employed in [11, 12]. Our model is an
exact solution of Maxwell’s equations, it is character-
ized by the parameters R and L, which can be inter-
preted as, respectively, the focusing radius and the dif-
fraction length, and it can serve to describe a stationary
laser beam. In this model the field configuration is
determined by giving certain coordinate functions
which satisfy second-order partial differential equa-
tions. The choice of various solutions of these equa-
tions corresponds to various physical models. Specifi-
cally, they can be chosen so that the field corresponds
to a superposition of monochromatic plane waves
which have the same frequencies and whose wave vec-
tors lies inside a cone with a small aperture angle. Such
a field is very close to a model studied in the mono-
graph [13] and obtained by applying the Huygens–
Fresnel principle to the problem of Fraunhofer diffrac-
tion of a spherical wave by a circular opening. Another
choice of solutions describes the Gaussian beams
which are widely used in optics [14, 15]. Here, if an
ordinary Gaussian envelope can be used to describe a
weakly focused field, we propose a generalization of
this envelope which is also applicable for a laser beam
focused to the diffraction limit. Just as in [11, 12], the
proposed model can be generalized to a laser pulse with
a finite duration τ. In this case, however, it will be an
approximate solution of Maxwell’s equations. The next
section of this paper is concerned with a discussion of
the field model.

The equations of the average motion of an electron
in the field of a laser pulse, as described by our model,
are derived in Section 3. The derivation employs the
standard method of separating the motion into smooth
and rapidly oscillating components [1], so that the
equations are derived under the assumption that the
characteristic field dimensions R and L are much
greater than the characteristic wavelength, and the
pulse duration is much greater than the reciprocal of the
frequency:

ωR @ 1, ωL @ 1, ωτ @ 1. (2)
JOURNAL OF EXPERIMENTAL 
It is also assumed that

ωτ * ωR. (3)

The expression for the ponderomotive force is obtained
up to second-order infinitesimals in the parameters

(4)

We note, however, that the method which we propose
for deriving the equations of motion makes it possible,
in principle, to obtain an expression for the ponderomo-
tive force in a stationary laser beam with a prescribed
accuracy. This procedure is meaningless for a pulsed
field, since this field itself is an approximate solution of
Maxwell’s equations.

It is shown to a first approximation in the parameters

∆ and  that the ponderomotive force is determined by
the gradient of the ponderomotive potential, but it loses
its potential character even in second order. The most
important result of this section is the discovery that the
three-dimensional ponderomotive potential is asym-
metric, which is the reason for a variety of interesting
and, in principle, observable effects which are dis-
cussed in the next section.

In Section 4 the derived equations of motion are
used to solve the problem of the scattering of relativis-
tic electrons by a laser field. We confine our attention
only to a collision geometry in which an electron in the
initial state moves in a direction perpendicular to the
direction of propagation of the laser beam. The results of
a numerical solution of the equations of average motion,
including calculations of the trajectories of electrons and
a calculation of the cross section for scattering of elec-
trons by a stationary laser beam, are presented. It is
shown that for certain impact parameters of the incident
electrons an asymmetric ponderomotive potential can
effectively manifest itself as an attractive potential. It is
also shown that even in the case of a symmetric poten-
tial the scattering cross section contains singularities
which are known as rainbow scattering [16].

The conditions for applicability of the method
developed and the relation between the equations
obtained for the average motion and Kibble’s equations
are discussed in Section 5. A solution of the equations
of the field model corresponding to Gaussian beams is
presented in the Appendix.

2. FIELD MODEL

We shall consider first a field which is a superposi-
tion of monochromatic plane waves with the same fre-
quencies and wave vectors lying inside a cone with
aperture angle 2∆. Choosing a coordinate system with
the z axis oriented along the axis of the cone, the vector
potential of such a field can be represented in the form

(5)

∆ 1 ωR, ∆̃⁄ 1 ωτ .⁄= =

∆̃

A r t,( ) k3 A k( ) i k r⋅ ωt–( )[ ] ,expd∫=

A0 0,=
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where ω = |k| and

(6)

Here α is the angle between the projection of the vector
k on a plane perpendicular to the z axis and the x axis,
ϑ  is the angle between the vector k and the z axis, and
θ(x) is the Heaviside step function. As ∆  0 the field
obtained passes, as should happen, into the field of a
monochromatic plane wave:

(7)

We introduce two orthogonal unit vectors:

(8)

which form a basis in a plane perpendicular to the vec-
tor k = ωn, and we expand the vector a(ϑ , α) in terms
of these unit vectors:

(9)

It is easy to see that the Cartesian components of the
vector a(ϑ , α) can be expressed in terms of the func-
tions a1 and a2 as follows:

(10)

We shall assume that ai depend only on the angle α
(it is easy to see that they cannot be set equal to con-
stants, since in this case the vector potential of the field
vanishes in the limit ∆  0):

(11)

The vector potential (5) and (6) can then be represented
in the form (we shall designate the frequency of the
field (5) by the letter ω without an index)

(12)

A k( )
1

π∆2ω2
----------------a ϑ α,( )θ ∆2 ϑ 2–( )δ ω ω0–( ),=

k a ϑ α,( )⋅ 0.=

A r t,( ) b –iω0 t z–( )[ ] ,exp

b
1

2π
------ αa 0 α,( ).d

π–

π

∫=

l
n ez×

ϑsin
-------------, l n,×=

a ϑ α,( ) a1 ϑ α,( )l a2 ϑ α,( )l n.×+=

ax a1 ϑ α,( ) αsin a2 ϑ α,( ) ϑ α ,coscos–=

ay a1 ϑ α,( ) αcos– a2 ϑ α,( ) ϑ α ,sincos–=

az a2 ϑ α,( ) ϑ .sin=

ai ai α( ).=

A r t,( )
iϕ( )exp

2π
--------------------=

× αd

π–

π

∫ a1 α( ) αsin a2 α( ) α 1 i∆2

χ∂
∂

– 
 cos– ex





– a1 α( ) αcos a2 α( ) α 1 i∆2

χ∂
∂

– 
 sin+ ey

– i∆a2 α( ) ν∂
∂

ez




G ν χ;  ∆,  ( ),                            
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where

(13)

and the function G(ν, χ; ∆) is determined by the rela-
tion

(14)

We have for the field strengths

(15)

We are interested in the case of weak nonuniformity
of the laser field, so that the field can be assumed to be
close to that of a plane wave. It is obvious that for this
the variance in the directions of the wave vectors k of
the monochromatic waves comprising the superposi-
tion (5) must be small, i.e.,

(16)

The properties of integrals of the type (12) with the
function G(ν, χ; 0) determined by the relation (14) are
well-known in connection with the problem of Fraun-
hofer diffraction by a circular opening (see, for exam-
ple, [13]). Specifically, it is known that the field (13) is
maximum at the point ν = 0 and χ = 0, and as ν and χ
increase, it oscillates with a gradual decrease of the
amplitude. The first zeros of the field amplitude arise
for ν ~ 1 and χ

 
 ~ 1. Thus, the range of variation of the

parameters  ν  and  χ

|ν|
 

 
 

&

 
 1,

 
|χ|

 
 

 

&

 
 1

ϕ ω t z–( ), ν ωr∆ α φ–( ),cos= =

χ ωz∆2, r x2 y2+ ,= =

φcos
x
r
--, φsin

y
r
--,= =

G ν χ;  ∆,  ( ) 2 u ∆ u sin 
∆

 -------------- d 

0

1

 ∫ =  

×

 

i

 

ν ∆

 

u

 

sin

 

∆

 

-------------- 2

 

i

 

χ

∆

 

u

 

2
-------

 

 
 

 

2

 

sin

 

∆

 

2

 

----------------------–

 

 
 
 
 
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.exp

E iωA,=

H
iω
2π
------ iϕ–( )exp=

× αd

π–

π

∫ a1 α( ) α 1 i∆2

χ∂
∂

– 
  a2 α( ) αsin+cos ex





+ a1 α( ) α 1 i∆2

χ∂
∂

– 
  a2 α( ) αcos–sin ey

+ i∆a1 α( ) ν∂
∂

ez




G ν χ;  ∆,  ( ).

∆  !  1.
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gives the region of space where the field differs most
strongly from zero. It is convenient to characterize the
dimensions of this region by the parameters

(17)

The parameter R is the focusing radius of the field, and
L is sometimes called the diffraction length. In the lan-
guage of these parameters the condition (16) can be
written as

ωR @ 1, L = ωR2 @ R. (18)

This means that the focusing radius must be much
greater than the wavelength, and the diffraction length
must be much greater than the focusing radius.

It is important to note that the potential (12) is the
exact solution of Maxwell’s equations for any function
G(ν, χ; ∆) satisfying the equation

(19)

Of course, the function (14) is not the only solution of this
equation. Consequently, the representation (12) gives an
entire class of exact solutions of Maxwell’s equations in
empty space which, physically, do not generally speak-
ing reduce to the initial model (5) and (6). Of course, in
order to be able to treat the field determined by the solu-
tion of equation (19) as a model of a focused laser
beam, the following conditions must be satisfied:

(20)

We shall show below that the Gaussian beams widely used
in the literature also can be represented in the form (12).

We shall now examine the question of the polariza-
tion of the field (12) and (15). Strictly speaking, the
concept of polarization is ordinarily used for fields
which possess the transversality property. As we can
see from equations (12) and (15), our field is not trans-
verse. Nonetheless, it can always be represented as a
combination of two fields for which either the vector E
or the vector H lies in a plane perpendicular to the
direction of propagation of the wave. Just as in [13], we
shall call such waves, respectively, E and H polarized2

or simply E and H waves. It is evident from equation
(15) that to obtain an expression for E or H polarized
waves the function a2(α) or a1(α), respectively, must be
set to zero in equation (9).

In view of the conditions (18), there exists in the
field (12) a spatial region

r ! R, |z| ! L,

which can be called a plane-wave zone, since inside
this region the properties of the field (12) are very close
to the properties of the field of a plane wave with the
potential (7). We shall attribute the polarization of a

2 In waveguide optics E and H polarized waves are called, respec-
tively, H and E type waves. See, for example, [17].

R
1

ω∆
--------, L

1

ω∆2
----------.≡≡

2Gχ' i∆2Gχχ'' iGνν''–– 0.=

G 0 0;  ∆,  ( ) 
∆

 
0

 
→

 lim 1, G ν χ ;  ∆,  ( ) 
ν ∞→
χ ∞→

 lim 0.= =                          
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wave in the plane-wave zone to the field (15) as a whole
and, in this sense, we shall talk about, for example, a
linearly or circularly polarized E or H wave.

Let ai(α) be linear functions of sinα and cosα

(21)

where ci and di are constants. After the expressions (10)
with ai(α) from equation (21) are substituted into the
second of equations (7) we obtain for the amplitude of
the wave in the plane-wave zone

(22)

Hence it is evident that for an E

 

 wave linearly polarized
along the 

 

x

 

 axis the coefficients 

 

c

 

i

 

 and 

 

d

 

i

 

 

 

must be chosen
in the form

and for a circularly polarized 

 

E 

 

wave in the form

and so on.

It will be convenient to use in what follows the
expressions for the field strengths (15) written in terms
of the functions

(23)

where 

 

ξ

 

 = 

 

r

 

/

 

R

 

. For example, in the case of circular
polarization we obtain for an 

 

E 

 

wave

(24)

The expressions for the field strengths of a circularly
polarized 

 

H

 

 wave can be calculated according to the
formulas

(25)
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d1 c2–
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---------------, by
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1

2
 π ------ α G ξ α χ ;  ∆,  cos( ), d  
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;  ∆,  ( )
1

2
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π

 

–

 

π

 ∫=

He ωb –iϕ( ) 1 i∆2

χ∂
∂

– 
 





exp±=

× F1 ex iey±( ) F2 2iφ±( ) ex iey+−( )exp+[ ]

+ 2i∆ iφ±( )
∂F1
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---------ezexp





,

Ee iωb iϕ–( )exp=

F1 ex iey±( ) F2 2iφ±( ) ex iey+−( )exp–{ }× .

Eh iHe, Hh± iEe.+−= =
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The field strengths (24) and (25) are once again
exact solutions of Maxwell’s equations, if the function
F1 satisfies the equation

(26)

and the function F2 is expressed in terms of F1 as fol-
lows:

(27)

These relations follow from the definition of the func-
tions F1 and F2 (23) in terms of the function G and equa-
tion (19). In accordance with the conditions (20), the func-
tions F1 and F2 must approach zero as ξ, |χ|  ∞ and, in
addition, they must satisfy the conditions

(28)

We note that one of the solutions of equations (26) and
(27) for ∆ ! 1 can be written in the form (see Appen-
dix)

(29)

Waves with envelopes of this type are ordinarily called
Gaussian beams (compare [14, 15]).

The field which we have considered thus far can be
used as a model of a stationary laser beam. Proceeding
by analogy to [11], equations can be obtained for the
field which models a short laser pulse. For this, the fol-
lowing substitutions must be made in equations (24)
and (25):

(30)

where the function f(ϕ) contains, besides an ordinary
phase factor, the temporal envelope g(ϕ/ωτ) of the
pulse

(31)

The envelope g is assumed to be 1 at the center of the
pulse, g(0) = 1, and exponentially decreasing for |ϕ| @ ωτ.
Here τ is the duration of the laser pulse in the laboratory
coordinate system. We assume that

τ * R. (32)

Such a field is no longer an exact solution of Maxwell’s
equations. But, as can be easily check directly, it will
satisfy Maxwell’s equations to terms of order 1/(ωR)2

and (1/ωτ)(1/ωR), inclusively.
In closing this section we note that the dimension-

less field-intensity parameter determined by the rela-
tion (1) can be written for circularly polarized E and H

2i
∂F1

∂χ
--------- ∆2∂2F1

∂χ2
----------- 1

ξ
---

ξ∂
∂ ξ

∂F1

∂ξ
--------- 

 + + 0,=

F2 F1
2

ξ2
----- ξξF1.d∫–=

F1 0 0;  ∆,  ( ) 
∆

 
0

 
→

 lim 1, F 2 0 0;  ∆,  ( ) 
∆

 
0

 
→

 lim 0.= =

F1 1 2iχ+( ) 2–
1 ξ2

1 2iχ+
-----------------–

 
 
  ξ2

1 2iχ+
-----------------–

 
 
 

,exp=

F2 ξ2 1 2iχ+( ) 3– ξ2

1 2iχ+
-----------------–

 
 
 

.exp–=

–iϕ( ) i f ' ϕ( ), ∆ –iϕ( ) ∆ f ϕ( ),expexp

f ϕ( ) g ϕ ωτ⁄( ) i– ϕ( ).exp=
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waves for 

 

∆

 

 

 

!

 

 1 in the form

(33)

As should be the case, in the field of a focused laser
pulse the parameter 

 

η

 

 depends on the coordinates and
time and reaches its maximum value 

 

η

 

0

 

 at the center of
the pulse. By virtue of the relations (28) and the prop-
erties of the temporal envelope 

 

g

 

(

 

ϕ

 

/

 

ωτ

 

)

(34)

3. EQUATIONS OF AVERAGE MOTION

We write the equations of the motion of an electron
in the form

(35)

where 

 

π

 

 is the kinetic 4-momentum of an electron and

 

s

 

 is the proper time of the electron. The tensor  for
the present model of the field is a function of the phase

 

ϕ

 

 = (

 

kx

 

) of the wave, where the 4-vector 

 

k

 

µ

 

 in the labo-
ratory system is

 

k

 

µ

 

 = (

 

ω

 

, 0, 0, 

 

ω

 

)
and the spatial coordinates 

 

x

 

, 

 

y

 

, and 

 

z

 

(36)

Just as for a monochromatic plane wave (see, for
example, [7]), it is convenient to switch in the equations
of motion (35) from the proper time 

 

s

 

 to the variable 

 

ϕ

 

,
which we shall call the “phase time.” The relation

(37)

follows trivially from equations (35). Using this rela-
tion we rewrite equation (35) in the form

(38)

(39)

We shall seek the solutions of these equations in the
form

(40)

η2 e2b2

m
2
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ωτ
------- 
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2 F2

2
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m
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e
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2
,= = =

Fν
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Fν
µ Fν
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x
R
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R
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2
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  .=

dϕ
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m
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dπµ
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e
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µπν, π2 m2,= =

dxµ

dϕ
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πµ

kπ
------.=

π q ϕ( ) π', x+ x 0( ) ϕ( ) x',+= =

π' π n( ) ϕ( ) nϕ( ) π̃ n( ) ϕ( ) nϕ( )sin+cos( ),
n 1=
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where q(ϕ), x(0)(ϕ), π(n)(ϕ), , x(n)(ϕ), and 
are slowly varying functions of ϕ.

A search for a solution in this form corresponds to
separation of the electron motion into a regular dis-
placement along a smooth trajectory and rapid oscilla-
tions around the trajectory with frequencies which are
a multiple of the frequency of the external field. The
form of the smooth electron trajectory x(0)(ϕ), just as
the quantity q(ϕ), can be obtained by averaging, respec-
tively, the functions x(ϕ) and π(ϕ) over the rapid oscil-
lations. Consequently, we shall call x(0)(ϕ) the trajec-
tory of the average motion, and q(ϕ) the average kinetic
momentum. However, it should be kept in mind that the
proposed method makes it possible to obtain a solution
of the equations of motion (38) and (39) in the form
(40) with a prescribed accuracy without using any aver-
aging procedures. Of course, this assertion makes sense
if the external field is an exact solution of Maxwell’s
equations.

It goes without saying that a representation of the
solution of the equations of motion (38) and (39) in the
form (40) is justified only if the problem contains two
substantially different time scales. Specifically, the
time of flight of an electron over distances of the order
of the dimensions of the field nonuniformities, which in
our case are determined by the focusing radius R and
the diffraction length L, should be much greater than
the period of the wave. For this, of course, the condi-
tions (18) must be satisfied. For a relativistic particle,
however, certain additional conditions must be satis-
fied. We shall assume that these conditions are satisfied
in the following calculations; we shall establish their
specific form later.

We note that for the field of a monochromatic plane
wave the solutions of the equations of motion can also
be represented in the form (40). Then the quantity q and
all coefficients in the oscillating parts of the functions
π(ϕ) and x(ϕ) are constants, and only one harmonic will
be present in them for a circularly polarized wave and
only two harmonics will be present for a linearly polar-
ized wave (see [7]).

Using the representation (40) we write the electro-
magnetic field tensor (36) in the form

(41)

where we have introduced the notation

(42)

We shall assume that the amplitude of the particle oscil-
lations is the same in order of magnitude as the wave-
length of the external field (the corresponding restric-
tion on the parameter η0 is discussed in Section 5). As

π̃ n( ) ϕ( ) x̃ n( ) ϕ( )

F F ϕ ;  ρ x 
x ' 
R

 --- ρ y y ' 
R

 --- ζ z ' 
ω

 
R

 
2

 ----------+ , +  ,  +   
  ,=

x 0( )

R
-------- ρx,

y 0( )

R
-------- ρy,

z 0( )

ωR2
---------- ζ .= = =
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a result, the following estimates, which calculations
confirm, hold:

(43)

Consequently, for ∆ ! 1 the amplitude of the intensity
of the laser field changes very little during the oscilla-
tions of particles around the trajectory of the average
motion and the electromagnetic field tensor can be
expanded in a series:

(44)

Here we have introduced the notation

(45)

Substituting the expansion (44) into equation (38),
using the representation (40), and equating the coeffi-
cients of cos(nϕ) and sin(nϕ) for each n on the right-
and left-hand sides of equations (38), we obtain a sys-
tem of equations for determining the coefficient func-
tions in equations (40). We shall illustrate the proposed
method for a laser pulse modeled by a circularly polar-
ized E wave (24) with the temporal envelope (31). As
we have already noted, such a field is an approximate
solution of Maxwell’s equations, so that for this case it
makes sense to retain in the equations of motion (38)
and (39) terms of order no higher than second in the

parameters ∆

 

 and . For conciseness, we shall obtain
the equations of the average motion taking into account
first-order terms only, and we shall present the second-
order terms without derivation.

Substituting into the equation for the kinetic
momentum (38) the expressions for the real parts of the
field intensities of a circularly polarized 

 

E

 

 wave (24)
with the temporal envelope (31) and retaining only the

terms which are first-order in the parameters  ∆  and 
we obtain the equations
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(46)

Here Fi = Fi(ρ, ζ, ∆), and

(47)

Equating on both sides of equations (46) and (39)
terms which do not contain rapidly oscillating func-
tions, we obtain equations of the average motion which
can be written in the form

(48)

(49)

– ebg
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---Im e i– ϕ ψsin
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∂A–

∂ρ
--------- i ψ

2F2

ρ
---------e 2iψ±cos+−

 
 
 

,

dqy

dϕ
--------

ebg∆
2q–

-------------± Im πx
1( ) iπ̃x

1( )–( )K{ }=

+−
ebg
2R
---------Re x 1( ) i x̃ 1( )–( ) ψ

∂A+

∂ρ
---------cos i ψ

2F2

ρ
---------e 2iψ±sin+−

 
 
 

+−
ebg
2R
---------Re y 1( ) i ỹ 1( )–( ) ψsin
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Here we employed the fact that to the accuracy which
we require, as follows from the third of equations (46),

(50)

As one can see from equations (48), the coefficient
functions entering there must be known with accuracy
up to zero order in the parameter ∆. The expressions for

the coefficient functions π(1) and  can be easily
obtained by equating the coefficients of cosϕ and sinϕ
on the right- and left-hand sides of equations (46). The

derivatives of π(1) and  must be dropped, since they
are at least first-order infinitesimals in the parameter ∆.
As a result, we have

(51)

The expressions for the coefficient functions x(1), 

and y(1),  can be obtained similarly after substituting
the expansions (40) into equation (39)

(52)

We note that, compared with the functions found, all
other coefficient functions in the expansions (40) are
higher-order infinitesimals, in complete agreement
with the fact that, as already noted, only one harmonic
is present in the solutions of the equations of motion in
the limit of a circularly polarized plane wave.

Substituting the expressions (51) and (52) into equa-
tions (48), we obtain finally for the equation of the aver-
age motion in a circularly polarized field, up to terms of
order ∆,

(53)

(54)

where U, given by

(55)

can be called the ponderomotive potential by analogy
to the nonrelativistic case.
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ebg
ωq–
---------A+*.±=

dqx

dϕ
--------

m
ωq–
--------- ∂U

∂x 0( )-----------– ∆ m
q–
-----∂U

∂ρ
------- ψ,cos–= =

dqy

dϕ
--------

m
ωq–
--------- ∂U

∂y 0( )-----------– ∆ m
q–
-----∂U

∂ρ
------- ψ,sin–= =

dx 0( )

dϕ
-----------

qx

ωq–
---------,

dy 0( )

dϕ
-----------

qy

ωq–
---------,

dz 0( )

dϕ
-----------

qz

ωq–
---------,= = =

U
e2b2

2m
----------g2 ϕ

ωτ
------- 

  F1
2 F2

2
+ 

  mη2

2
----------= =
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It is simplest to determine the quantity qz appearing
in equation (54) by averaging the z component of the
kinetic momentum

(56)

where we have introduced the quantity m*

(57)

which can be called the effective mass of an electron in
an external field. Using the relation (51) it is easy to
show that the effective mass is related with the ponder-
omotive potential as

(58)

Differentiating the expression (56) for qz with respect to ϕ
and using the equations of motion (53) and (54) and the
expression for the ponderomotive potential (55), we
obtain

(59)

It is evident from the relation (59) that in a stationary
beam, where g(ϕ/ωτ) = 1, the z component of the aver-
age kinetic momentum and by virtue of the relation
(50) the average energy q0 = q– + qz are conserved in our
approximation. In a pulsed field these quantities are not
conserved. This is the so-called surfing effect.

The calculations show that in the approximation
under study the equations of the average motion (53)
and (54), together with the relation (56), retain their
form in an external field (15) with any polarization and
differ only by the form of the ponderomotive potential.
Specifically, the ponderomotive potential for a circu-
larly polarized H wave is identical to the expression
(55), and for a circularly polarized mixed-type wave,
obtained as a result of a superposition of E and H
waves, it can be qualitatively different. For example, if
the coefficients in equation (21) are chosen in the form

(60)

then the field (15), according to the criteria formulated
in the preceding section, remains circularly polarized
but the ponderomotive potential for it will assume the
form

(61)
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An important feature of the potential (61) is its
asymmetry, i.e., the dependence on the azimuthal angle
ψ. The ponderomotive potential for linearly or ellipti-
cally polarized E or H waves possesses the same prop-
erty. The fact that the expression (61) is substantially
different from equation (55) (although the field deter-
mined by the coefficients (60) is a linear superposition
of E and H waves) is, of course, due to the nonlinearity
of the equations of motion (38).

We shall now present the equations of the average
motion, up to terms of second order, inclusively, with

respect to the parameters ∆ and , for a circularly
polarized E wave. In cylindrical coordinates they have
the form

(62)

where an overdot indicates differentiation with respect
to the phase time ϕ,

(63)

and W and V are determined by the following relations:

(64)

The functions Φ and ϒ in equation (64) are linear com-
binations of F1 and F2:

(65)

The components of the vector f in equations (62)
are, to within a constant factor, the phase-time-aver-
aged spatial components of the four-vector of the force
acting on an electron in the field of a laser pulse. We
shall call this force the relativistic ponderomotive
force. The formulas (63) give its expansion with respect

∆̃
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Fig. 1. The ponderomotive potential (a) in a circularly polarized E or H wave and (b) a wave of mixed type.
to the parameters ∆ and . To a first approximation the
relativistic ponderomotive force is determined by the
gradient of the ponderomotive potential. For the sym-
metric potential (55), of course, it possesses only a
radial component. For an asymmetric potential, for
example, determined by the expression (61), a nonzero
azimuthal component fψ appears even in the first
approximation. In the second approximation the pon-
deromotive force is not of a potential character, as one
can see from equations (63). The azimuthal component
appears even for a circularly polarized E wave and, in
addition, a longitudinal force component arises. The
presence of a longitudinal component of the relativistic
ponderomotive force was first discovered in [11] (see
also [18]). In an E wave the longitudinal component
arises because of averaging of the corresponding com-
ponent of the Lorentz force. In the general case, the
average longitudinal component of the electric field
also contributes to it.

4. SCATTERING OF AN ELECTRON 
BY A LASER PULSE

In this section we present the results of a numerical
solution of the equations of the average motion (53) and
(54) and calculations of the cross section for scattering
of electrons in the field of a focused laser pulse (15). As
one can see from equations (53) and (54), the trajectory
of an electron is determined, to a first approximation,
entirely by the form of the ponderomotive potential. We
shall consider both the symmetric (55) and asymmetric
(61) potentials. As noted in the preceding section, the
first case pertains to circularly polarized E and H
waves, and therefore they are the same in the present
approximation of the trajectory of an electron colliding
with such waves. The second case determines the tra-

∆̃
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jectory of an electron in the field of a circularly polar-
ized wave of a mixed type. However, the specific form
of the dependence of the asymmetric potential on the
variable ψ has no effect on the qualitative features of
the electron motion, and for this reason the qualitative
results obtained for this case pertain equally to linearly
polarized E and H waves.

The numerical calculations were performed for
Gaussian beams (29). Plots of the potentials (55) and
(61) in the z = 0 plane with the functions F1 and F2
determined by equations (29) are shown in Figs. 1a, 1b,
respectively. For a collision of electrons with a pulsed
field the temporal envelope of the pulse was chosen to
be of the form

(66)

The collision geometry was chosen so that the electrons
are incident on the laser beam in a direction perpendic-
ular to the direction of propagation of the beam.

Figure 2 shows the trajectory of electrons in the field
of a stationary laser beam with the ponderomotive
potential (61). For the collision geometry under consid-
eration here, the initial longitudinal momentum qz = 0.
Since to a first approximation the longitudinal compo-
nent of the average kinetic momentum is conserved
(see equation (59)), the electron trajectory is flat to the
same accuracy. Figure 2 shows electron trajectories
intersecting a laser beam in the z = 0 plane, i.e., in a
plane passing through the focal center. All electrons in
this figure have the same initial energy but different
impact parameters. For clarity, the level lines of the
ponderomotive potential (61) are shown.

g
ϕ

ωτ
------- 

  ϕ
ωτ
------- 

 
2

– .exp=
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It is evident from Fig. 2 that for small impact param-
eters, when the incident electron falls into a region near
the maximum of the ponderomotive potential, particles
are reflected from the laser beam (trajectory 1), as first
predicted by Kibble [10] and then observed experimen-
tally in [6]. Naturally, this effect occurs only for parti-
cles with a comparatively low energy. As the energy
increases, electrons with any impact parameter will be
able to overcome the potential barrier and the reflection
effect will not be observed.

The condition under which reflection will occur
when an electron is scattered by a symmetric potential,
can be obtained in an explicit form. As one can easily
see from the equations of motion (62) written in cylin-
drical coordinates, to a first approximation, besides the
energy, the projection of the angular momentum on the
z axis is also conserved:

(67)

where p is the impact parameter and  is the initial
value of the radial component of the electron momen-
tum. It should be kept in mind that because of the pos-
sible asymmetry of the ponderomotive potential, posi-

tive (corresponding to  > 0) and negative (corre-

sponding to  < 0) impact parameters should be
distinguished. Then, we have from the energy conser-
vation q0 = q– + qz, using equations (56) and (67),

(68)

(It is interesting to note that the second part of the equa-
tion (68) is identical to the expression for the energy of
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Fig. 2. Trajectories of the average motion of electrons
(gamma factor γ = 1.2) in a circularly polarized field of
mixed type with intensity η0 = 1 and various values of the
impact parameter of the particles.
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a nonrelativistic particle in a central field; see, for
example, [1].) It is obvious that the most stringent con-
ditions will be the conditions for a particle to pass by
with zero impact parameter or with Mz = 0. Then it fol-
lows from the relation (68) that all particles with initial
momentum

will overcome the potential barrier. Therefore the con-
dition for reflection during scattering of electrons by a
symmetric potential can be written as

(69)

and is identical to the corresponding condition obtained
in [12] for the two-dimensional field model. For an
asymmetric potential, because angular momentum is
not conserved, the equations of motion will have to be
solved completely in order to obtain the reflection con-
dition in an explicit form. Such a solution cannot be
obtained analytically. However, as we shall see below,
the corresponding restriction on the energy, though not
identical to the condition (69), is of the same order of
magnitude.

It should be noted that for an asymmetric potential
an electron with certain impact parameters is deflected
in the direction of the focus (trajectory 2 in Fig. 2), i.e.,
for such values of p the potential is effectively attrac-
tive. The existence of such trajectories is easy to under-
stand. It is clear from Fig. 1b that an asymmetric poten-
tial contains, besides the main maximum, a series of
additional maxima at the periphery, though these max-
ima are not as high. Consequently, for certain impact
parameters an electron could feel more strongly not the
main maximum but rather the additional maximum,
which, in addition, could lie to the right of the main
maximum. This is the reason that an electron is
deflected in the “wrong” direction.

We note that all trajectories shown in Fig. 2, except
for the trajectory 3, correspond to particles incident on
a laser beam along the x axis. The trajectory 3 refers to
an electron incident at an angle π/4 to the x axis and
characterizes another feature of an asymmetric poten-
tial: the fact that even a particle with a zero impact
parameter can be scattered by a nonzero angle. This is
due to the presence of a nonzero azimuthal component
of the ponderomotive force

We note that for z = 0 for the potential (61), fψ = 0 at
ψ = 0 and π/2. Consequently, trajectories of the type 3
are not observed if the incident particle initially moves
along the x- or y-axis.

Figures 3 and 4 show the scattering angle χsc as a
function of the impact parameter p for different ener-
gies and angles of incidence of the electrons for sym-
metric (55) (dashed line) and asymmetric (61) (solid

qρ
in( )2

2mUmax>

γ q0 m 1 η0
2+<⁄=

f ψ ∆ m
q–
----- 1

ρ
---∂U

∂ψ
-------.–=
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line) potentials. Figure 3a corresponds to electrons
incident along the x axis with energy somewhat less
than (η0 = 1, γ = 1.40) and Fig. 3b corresponds to elec-
trons with energy somewhat greater than (η0 = 1, γ =
1.42) the critical value for a symmetric potential

For lower energies the scattering angle in both cases for
some values of p is greater than π/2. This attests to the
existence of reflection of an electron from the laser
focus, and for higher energies the scattering angle for
p = 0 is zero and does not reach π/2 for any value of the
impact parameter. This indicates the absence of reflec-
tion. Hence it follows that the reflection criterion for an
asymmetric potential (61) with a zero angle of inci-
dence is essentially identical to the potential (69). As
the impact parameter increases, the scattering angle
changes nonmonotonically, which is a consequence of
the complicated structure of the potential. In addition,
for an asymmetric potential the scattering angle for a
definite range of impact parameters assumes negative
values. As follows from the preceding discussion, this
effect can be explained by reflection from the addi-
tional maxima.

Figure 4 shows χsc as a function of p for electrons
incident on a beam with an asymmetric potential along

γ 1 η0
2+ 2.= =

Fig. 3. The scattering angle χsc as a function of the impact
parameter of an electron in asymmetric (solid line) and sym-
metric (dashed line) potentials with incidence along the x
axis: η0 = 1, γ = 1.4 (a) and 1.42 (b).
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the line ψ0 = π/4 for the same value η0 = 1, and γ = 1.42
(Fig. 4a) and 1.48 (Fig. 4b). In contrast to Fig. 3, the
values of χsc for positive and negative impact parame-
ters are presented. It is evident from the plots that for
γ = 1.42, in contrast to the case of incidence along the x
axis, reflection for an asymmetric potential occurs,
while for γ = 1.48 there is no reflection. This means that
for an asymmetric potential the reflection criterion
depends on ψ0, but this dependence is quite weak. We
call attention to the fact that the curves χsc( p) are sym-
metric with respect to the point p = 0 for a ponderomo-
tive potential (55), while for the potential (61) there is
no such symmetry. Moreover, the maximum scattering
angle for an asymmetric potential corresponds to not a
zero but rather a negative impact parameter. This is
explained by the existence, already discussed above, of
an azimuthal component of the ponderomotive force.
A particle incident on an asymmetric potential with zero
impact parameter p (i.e., moving along the trajectory 3,
Fig. 2) does not reach the maximum of the potential.
This happens for a particle with negative p, which is
reflected in Fig. 4. We also note that for incidence at an
angle ψ0 = π/4 scattering of particles with positive
impact parameters by negative angles is not observed.

The computed functions χsc( p) make it possible to
find the effective cross sections for scattering of elec-

ρ/R

χsc, rad

3π/4

π/2

π/4

0

–π/4

–2 1–1 0 2

(a)

(b)

χsc, rad

3π/4

π/2

π/4

0

–π/4

–2 –1 1 2
ρ/R

0

Fig. 4. The scattering angle χsc as a function of the electron
impact parameter in asymmetric (solid line) and symmetric
(dashed line) potentials with incidence at angle ψ0 = π/4 to
the x axis: η0 = 1, γ = 1.42 (a) and 1.48 (b).
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trons by a laser field. If the collision of a beam of elec-
trons with a laser field occurs in a region close to the
focal plane, and the diameter of the beam cross section
is small compared with the diffraction length L, then it
can be assumed that the target (laser field) possesses
cylindrical symmetry. In this case it is possible to intro-
duce a differential scattering cross section calculated
per unit length:

(70)

where the summation extends over all branches of the
function p(χsc).

Figure 5 shows the differential scattering cross sec-
tion for electrons in a laser field with an asymmetric
potential (61) as a function of the scattering angle χsc.
The parameters ψ0 = 0, η0 = 1, and γ = 1.4 correspond
to the function χsc( p) shown in Fig. 3a. It is evident
from Fig. 5 that the cross section is singular for definite
values of the scattering angle. These singularities of the
cross section (with the exception of the trivial singular-
ity at zero, due to the fact that the scattering by small
angles corresponds to infinite impact parameters) are
related with the presence of extrema on the curve χsc( p)
and are called rainbow scattering (see, for example,
[16]). The cross section corresponding to the case
shown in Fig. 3b, when there is no reflection, differs
from the case shown in Fig. 5 only by the presence of
rainbow scattering with one additional value of χsc,
which corresponds to the maximum scattering angle.

As one can easily see from Figs. 3a, 3b, rainbow
scattering also occurs for the potential (55). Small dif-
ferences occur because scattering by negative angles is
impossible for a symmetric potential. But these differ-
ences do not greatly change the overall picture, and
therefore we do not present here the corresponding
dependences. The dependence of the scattering cross
section on the parameter ψ0 strongly distinguishes the

dσ
dχscdz
---------------- d pi χsc( )

dχsc

-------------------- ,
i

∑=

χsc, rad
–π/2 –π/4 0 π/4 π/2

dσ
/d

χ s
cd

z,
 a

rb
. u

ni
ts

Fig. 5. The differential scattering cross section for electrons
in a laser beam with an asymmetric ponderomotive potential
as a function of the angle χsc: ψ0 = 0, γ = 1.4, and η0 = 1.
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case of an asymmetric potential. This is easy to see by
comparing Figs. 5 and 6. We note that besides “defor-
mation” the cross section shown in Fig. 6 differs from
Fig. 5 by the presence of rainbow scattering at the left-
and right-hand boundaries. This is explained by the fact
that for negative impact parameters for the case shown
in Fig. 6 reflection does not occur at all, while for pos-
itive impact parameters the maximum deflection angle,
though exceeding π/2, is less than π (see Fig. 4a), i.e.,
backscattering is impossible.

We shall now examine a collision of an electron
with a laser pulse of duration τ. In this case the longitu-
dinal component of the electron momentum qz is not
conserved and the trajectory of an electron incident on
the laser pulse in a direction perpendicular to the prop-
agation of the pulse is not planar. As follows from equa-
tion (59), the electron is displaced in the positive or
negative direction along the z axis from the direction of
incidence, depending on whether the electron in a col-
lision falls on the leading or trailing edge of the laser
pulse. In this case the electron energy also is not con-
served. Since in the first approximation the quantity q–
once again remains an integral of the motion, the
change in energy is given by the same formula (59).
Consequently, if a particle interacts with the leading
edge of the focus, the energy of the particle increases,
and if it interacts with the trailing edge, the particle energy
decreases. This is the so-called surfing effect [6, 10].

The total change in energy can be calculated accord-
ing to the formula

(71)

It can be positive as well as negative, depending on the
intervals of phase time that the particle spent on the
leading and trailing edges of the laser pulse. Figure 7
shows the electron energy versus the delay δϕ. Here the

δq0
m
q–
----- ϕ ϕ∂

∂
U

ϕ
ωτ
------- r0 ϕ( ), 

  .d
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∞
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Fig. 6. The differential scattering cross section for electrons
in a laser beam with an asymmetric ponderomotive potential
as a function of the angle χsc: ψ0 = π/4, γ = 1.42, and η0 = 1.
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delay is the interval of phase time between the moment
when an electron is located at the origin, if the electron
has not interacted with the laser pulse, and the moment
when the focal center of the laser pulse is located at the
same point. For large positive (negative) values of δϕ,
the electron energy does not change. This is due to the
fact that the electron crosses the region of the focus
before (after) the arrival of the laser pulse, not interact-
ing with it. As δϕ decreases, the electron starts to feel
the leading edge of the laser pulse. During the motion
the particle acquires a potential energy, which converts
into kinetic energy when the particle leaves the light
pulse. On account of this, the particle energy increases
after the passage of the pulse. As δϕ decreases further,
the reverse process occurs: the electron is on the trailing
edge of the laser pulse and is slowed down by the pulse.
The nonmonotonic dependence of the energy for posi-
tive as well as negative values of δϕ can be explained
by the complicated structure of the potential.

5. CONDITIONS OF APPLICABILITY 
OF THE METHOD AND THE KIBBLE EQUATIONS

We shall show that, to a first approximation, the
equations which we have obtained for the average
motion are formally identical to the Kibble equations.
For this, it is sufficient to show that the equations for qz

and q0 can be written in a form similar to equation (53).
We recall that since

both equations have the same form (see equation (59)),

(72)

Just as in the derivation of equations (54), it is easy to
show that the time t(0) averaged over ϕ is determined by
the equation

(73)

Then, it is obvious that

(74)

Substituting this expression into the equation for the
ponderomotive potential on the right-hand sides of
equations (72), we rewrite these equations in the form

(75)

Switching now to differentiation with respect to the
proper time s, using the relation (37), which to a first
approximation is

q– q0 qz– const= =

dqz

dϕ
--------

dq0

dϕ
--------

m
q–
-----

ϕ∂
∂

U
ϕ

ωτ
------- r 0( ) ϕ( ), 

  .= =

dt 0( )

dϕ
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ωq–
---------.=
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dqz
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m
ωq–
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we rewrite the complete system of equations for the
average motion (54), (53), (75), and (73) in the form

(76)

which is identical to the Kibble equations in [10]. How-
ever, the derivation of the Kibble equations in [10]
made substantial use of, besides the assumption that the
nonuniformity of the field is weak, the condition that
the field is weak or, in other words,

η ! 1.

In our method the solution of the equations of motion
in the field of a monochromatic plane wave of arbitrary
intensity was used as the zeroth approximation, and

only the parameters of the spatial ∆ and temporal 
nonuniformities were assumed to be small.

We shall now discuss in greater detail the conditions
of applicability of equations (53), (54), or (76) obtained
in the present paper. They are determined by two
requirements. In the first place, the phase time for an
electron to traverse distances of the order of the charac-
teristic dimensions of the field nonuniformities must be
much greater than the period of the oscillations. In the
second place, the amplitude of the transverse particle
oscillations must be much less than the focal radius R,
and the amplitude of the longitudinal oscillations must
be much less than the diffraction length L.

The phase times ϕR and ϕL, in which an electron
traverses distances of the order of the radius R of the
focus and the diffraction length L, respectively, can be
easily estimated from equations (54) as

dqµ

ds
--------

xµ
0( )∂

∂
U x 0( )( ), m

dxµ
0( )

ds
----------- qµ,= =

∆̃

ϕR

ωRq–
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Fig. 7. The electron energy after interaction with a short
laser pulse as a function of the delay δϕ. The solid line cor-
responds to an asymmetric and the dashed line to a symmet-
ric ponderomotive potential: ψ0 = 0, η = 1, γ = 1.2, p/R = 0.5,
and τ/R = 1.
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where q⊥  is the absolute magnitude of the component of
the average momentum perpendicular to the direction
of propagation of the laser pulse. Then the first condi-
tion can be written in the form

(77)

The amplitudes of the transverse and longitudinal oscil-
lations can be estimated using the solutions of the equa-
tions of motion of an electron in the field of a mono-
chromatic plane wave (see, for example, [7]). They are

of the order of mη0/ωq– and mη0q⊥ /ω , respectively.
(We note that the first estimate follows immediately
from equations (52).) It follows from these estimates
and equations (77) that the second condition can be
written as

(78)

and is therefore the limit on the intensity of the laser
field (compare with equation (17) of [12]).

It is easy to see that the conditions (77) and (78)
depend, generally speaking, on the collision geometry.
Since the parameter ∆ is small, the conditions (77) are
satisfied for any value of the transverse q⊥  and longitu-
dinal qz momenta of the electron, if qz < 0. Then

For qz > 0 it is possible to have q– ! m*. This clearly
occurs for a collision geometry in which the initial elec-
tron momentum is oriented almost in the direction of
propagation of the laser pulse (parallel motion), and the
electron itself is ultrarelativistic. This case requires a
separate analysis.

For values of q– which are not small, the condition
on the field intensity (78) is quite soft, and by virtue of
equation (2) it is possible to study quite strong fields,
including fields with η0 @ 1. This circumstance distin-
guishes our equations for the average motion from the
Kibble equations, even though they are formally iden-
tical in the first approximation. In this connection we
call attention to [19], where an endeavor is made to
derive an expression for the ponderomotive force by
averaging the Lagrangian of a relativistic particle in a
nonuniform electromagnetic field of arbitrary intensity.
The equations obtained in [19] for the average motion
are identical to our equations (and hence for η0 ! 1
they are also identical with the Kibble equations) only
in the nonrelativistic limit, where the average kinetic
momentum of a particle is small compared to the parti-
cle mass. This result is explained by the inconsistent
and therefore incorrect method of averaging employed
in [19]. In terms of our paper, in averaging over the
phase time we assumed the coefficients of the function
in the expansions (40) to be functions of the laboratory
time t.

∆
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q–
-----  !  1, ∆ 

2 
q
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q
 

–

 -------  !  1.

q–
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q
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m
 ∆ 
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JOURNAL OF EXPERIMENTAL
We shall now consider the possibility of using our
equations for the problem of parallel motion of an
ultrarelativistic electron. Let

Under these conditions the quantity q– is related with qz

as follows:

(79)

Substituting this expression for q– into equations (77)
we obtain the condition of applicability of our method
to the problem of parallel motion, which can be written
as

(80)

The relations (78) and (79) give a limit on the field

(81)

We note that the problem of parallel motion without the
limits (80) and (81) was studied in [20] using computer
simulation.

In conclusion we note that equations (76) are explic-
itly covariant, thereby proving that our method is cova-
riant. This is not surprising, since we use an invariant
averaging procedure and consequently

are 4-vectors, and the ponderomotive force is deter-
mined (see equation (58)) in terms of the invariant

effective mass  = q2 and therefore it too is a relativ-
istic invariant. However, it should be remembered that

the meaning of the parameters ∆ and , which in the
laboratory coordinate system are, respectively, the
ratios of the wave length of the field to the focusing
radius and the period of the field to the pulse duration,
generally speaking, will change in an arbitrary coordi-
nate system.
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APPENDIX

Let us consider the first of equations (26). The sub-
stitution σ = ξ2 changes the equation into the form

(A.1)

We seek the solution of this equation in the form

(A.2)

Substituting the expression (A.2) into equation (A.1)
gives

(A.3)

We now require that the function f(χ, χ') satisfy the
equation

(A.4)

Then, assuming f(χ, χ')h1(σ, χ')  0 as χ'  ±∞
and integrating equation (A.3) by parts gives

(A.5)

and in order that the integral (A.2) be the solution of
equation (A.1) the function h1(σ, χ') must satisfy equa-
tion (A.1) without the term with the second derivative
with respect to χ.

We consider equation (A.4) first. Let f(χ, χ') = f(µ,
χ'), where µ = χ – χ'. Then equation (A.4) can be rewrit-
ten as

(A.6)

This equation can be easily solved by separation of
variables. We choose its solution in the form

(A.7)

The choice of a normalization factor is justified below.
First, we consider the equation for h1(σ, χ'):
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(A.8)

We seek its solution in the form

Substituting this expression into equation (A.8) and
equating the coefficients of like powers of σ, we obtain
the following equations for the functions u1, u2, and v:

These equations can be solved trivially, and we have for
the function h1 the result

(A.9)

where

(A.10)

We note that as χ'  ± ∞ the function (A.9) does
indeed vanish, which justifies the method of solution
proposed above.

Substituting the expressions (A.7) and (A.9) into
equation (A.2), we obtain a particular solution of equa-
tion (A.1) in the form

(A.11)

It is obvious that for ∆ ! 1 the neighborhood of the
point µ = 0 makes the main contribution to the integral
in equation (A.11). Therefore, to calculate the asymp-
totic form of the function F1(σ, χ; ∆) for ∆ ! 1 it is con-
venient to represent the expression (A.11) in the form

(A.12)

after which the standard formula for estimating the
asymptotic behavior of the Fourier integrals [21] can be
applied to each of the integrals appearing on the right-
hand side of equation (A.12). The result is

(A.13)
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We can see that the expression (A.13) differs from the
first of equations (29) only by a phase factor. However,
since the variables χ and z are related (see equation
(13)), the presence of the phase factor reduces to redef-
inition of the phase of the field intensities (24)

which is of no consequence in our approximation. For
this reason, the phase factor in equation (A.13) should
be dropped, and the asymptotic expression for the func-
tion (A.11) for ∆ ! 1 is identical to the first of equa-
tions (29).

Using the relation (27), we obtain for the function
F2(ξ, χ; ∆) a representation that differs from equation
(A.11) by the function h1 being replaced by h2, which is
identical to the expression on the right-hand side of the
second of equations (29). It is easy to see that the cor-
responding asymptotic formula is identical to the func-
tion F2 from equation (29).

In conclusion, we note that, of course, equation (29)
for F1 can be obtained directly by solving the first of
equations (26) with the term containing ∆2 being
dropped, just as we did in order to find the function h1.
Nonetheless, we presented a detailed derivation of
equation (A.11), since it (together with the correspond-
ing expression for F2) serves as an extension of the
Gaussian envelope to the case ∆ ~ 1 and therefore is of
interest in itself.
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Abstract—The fluorescence resonance energy-transfer (FRET) process is investigated between donor dye
molecules deposited on the sample surface and acceptor dye molecules deposited on the tips of scanning near-
field and atomic force microscopes. The FRET process was observed only when the tip acquired contact with
the sample and took place in regions of sizes of only a few tens of nanometers with only a few thousands (or
even hundreds) of molecules involved. The dependence of the FRET intensity on the tip-sample acting force is
recorded and interpreted. In relation to the obtained results, the construction of a previously proposed one-atom
FRET SNOM is described. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Scanning near-field optical microscopy (SNOM) is
a valuable research tool for imaging and investigating
different samples with a subwavelength spatial resolu-
tion. The spatial resolution of SNOM is usually limited
by the size of the aperture for light transmission and
ranges from 50 to 100 nm, although a 20 nm resolution
has been demonstrated [1, 2]. Further improvement of
the resolution seems problematic for the “classical”
SNOM configurations because the number of photons
“seeping” through an aperture is rapidly decreasing
with the decrease of the aperture size. A number of new
approaches have been proposed recently to improve the
resolution, such as the molecular exciton-based SNOM
[3], apertureless SNOM [4], and SNOM using Fluores-
cence Resonant Energy Transfer (FRET) between a
single fluorescence center of the tip and the sample
under study [5].

In the latter case, the idea is based on the fact that
when the distance between donor and acceptor mole-
cules becomes smaller than the characteristic radius of
a resonant energy transfer R0 (which for typical donor–
acceptor pairs ranges within 2–6 nm [6]), the probability
of a dipole–dipole energy transfer between these mole-
cules is close to unity (see, for instance, papers [6, 7] for a
review). One should prepare the tip containing a single
fluorescent center in the apex and scan it in close prox-
imity to the sample surface (the relative distance should

¶ This article was submitted by the authors in English.
1063-7761/00/9005- $20.00 © 20769
be smaller than R0). If the donor fluorescent centers of
the imaging tip are excited and the fluorescence of the
acceptor centers of the sample is monitored (or vice
versa), the spatial resolution will be governed not by
the aperture size of the microscope but by the value of
R0. An analysis shows that not only the spatial resolu-
tion, but the sensitivity as well can be improved when
using these FRET SNOMs [5, 8], which, of course,
would be very important for the subsequent progress in
the field.

The applicability of SNOM to detect a single mole-
cule fluorescence is well established at present (see,
e.g., recent reviews [9, 10] and references therein) and
the possibility of the nondestructive scanning of the
SNOM tips in the close proximity of the sample surface
(in the contact mode) has been demonstrated [11, 12].
In this paper, we present the first experimental evidence
of the applicability of FRET phenomena for near-field
optical microscopy: a nanolocal resonant energy trans-
fer process has been observed between two different
dyes. One of them (the donor) has been deposited onto
the glass sample surface and other (the acceptor) has
been deposited onto the surface of a SNOM tip (sharp-
ened optical fiber) or a standard AFM silicon nanotip.
The FRET process has been realized only when the tip
acquires a contact with the sample, i.e., in the regions
with the sizes of only a few tens of nanometers, and it
involves only thousands (or even hundreds) of dye mol-
ecules.
000 MAIK “Nauka/Interperiodica”
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A part of these results has been briefly discussed
earlier in the letter [13]. A recent paper by Vickery and
Dunn [14], where first images obtained with a FRET
SNOM (without an analysis of the signal as a function
of the tip-sample acting force) should also be men-
tioned in relation with the described problem.

2. SELECTION OF A DONOR–ACCEPTOR PAIR

A careful selection of a donor and acceptor dye mol-
ecule pair was necessary for the experiments described.
When the laser excitation radiation wavelength is fixed
(we have selected the 488 nm line of a cw argon ion
laser), the donor molecules to be used should efficiently
absorb this laser radiation and reemit light with a suffi-
ciently large Stokes shift and a high quantum efficiency.
The acceptor molecules to be used should efficiently
absorb the photons reemitted by the donor, (i.e., good
overlapping of the corresponding fluorescence and
absorption spectra is required) and should also exhibit a
high fluorescence yield with a large red shift with respect
to the donor fluorescence. In addition, their direct excita-
tion by the laser radiation should be minimal in order to
diminish the background fluorescence and facilitate the
observation of a nanolocal FRET phenomenon.

DCM dye molecules (4-dicyanomethilene-2-methyl-
6-(p-dimethylaminoatyryl)-4H-pyran, number LC 6500
in Spectra Physics GmbH catalogue [15]) have been
selected as donors because of their excellent fluores-
cent properties (the fluorescence quantum yield in solu-
tions is close to unity, the absorption cross section value
σ at the 488 nm wavelength is 6 × 10–17 cm2) and high
photostability.

Different dyes have been tested as acceptors. The
best results have been obtained when using 1-butyl-3,3-
dimethyl-2-[5-(1-butyl-3,3-dimethyl-3H-benz[e]indo-
lin-2-yliden)-1,3-pentadienyl]-3H-benz[e]indolium per-
chlorate molecules (OM57 dye, Al’pha Akonis Company,
Moscow): their absorption spectrum corresponds well
to the fluorescence spectrum of DCM, and their absorp-
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Fig. 1. Fluorescence spectrum of codeposited submonolay-
ers of DCM and OM57 dyes.
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tion at the 488 nm wavelength is at least three orders of
magnitude smaller than at the maximum; these mole-
cules also have a reasonable fluorescence quantum
yield (no smaller than 0.3) and photostability.

In Fig. 1, we present the spectrum of fluorescence of
the two dyes, DCM and OM57, codeposited onto the
same glass slide with the surface concentrations 3 ×
1013 cm–2. Such a concentration corresponds to a sub-
monolayer coating: as known for Rhodamine dyes, one
monolayer coating corresponds to the surface concen-
tration ~1014 cm–2 [16]. It is clear from this figure that
under such conditions, the fluorescence of OM57 mole-
cules (the spectral range 650–800 nm) is even more prom-
inent than that of DCM (the spectral range 550–700 nm),
keeping in mind that OM57 molecules do not absorb the
excitation wavelength (the fluorescence spectrum of
OM57 molecules, deposited in the same concentration but
without DCM molecules on a glass slide, was orders of
magnitude less intense and barely exceeded the noise
level). Thus, this figure can be regarded as a demonstra-
tion of the dipole–dipole resonant energy transfer pro-
cess between DCM and OM57 dye molecules on the
surface.

For some other pairs of donor and acceptor molecules
(DCM–DTDCI, DCM–HITCI, see [15] for the descrip-
tion of these dyes), the FRET process has been also
observed but was not so prominent and the donor and
acceptor fluorescence spectra were not so well resolved as
for the DCM–OM57 pair. This is why we selected this
particular pair of dyes for the subsequent experiments.

The characteristic radius R0 of the resonance
dipole–dipole energy transfer for this pair can be calcu-
lated using the well known relation [6, 7]

(1)

where F(ω) is the normalized fluorescence line shape
of the donor and σ(ω) is the optical absorption cross
section of the acceptor. From (1), it is easy to see that such
a radius has a relatively slight dependence on the spectral
overlapping integral (inverse sixth power only); calcula-
tions show that it ranges between 3 and 4 nm for all “rea-
sonably overlapping” dye pairs, including DCM–OM57
(compare with the data given in [6]).

3. SCANNING NEAR-FIELD OPTICAL 
MICROSCOPE GEOMETRY

3.1. Experimental Equipment and Procedures

Different experimental schemes have been imple-
mented for the demonstration of FRET phenomena in
scanning probe microscopy. We start our discussion of
the experimental results with the SNOM-based scheme
where more quantitative results have been obtained.

The scheme of the experiment performed using the
photon scanning tunneling (PSTM) version of SNOM
[1, 2] is shown in Fig. 2. Two different homemade shear
force-based SNOMs and homemade electronic units to

R0
3

4π
------ c4

ω4n4
-----------F ω( )σ ω( ) ωd∫ 

 
1/6
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Fig. 2. Scheme of the PSTM-based FRET experiment.
control its performance have been used. In most of the
experiments, the standard optical detection method to
measure the amplitude of the lateral tip vibrations [1, 2]
was utilized, but some critical experiments were per-
formed using a non-optical shear force detection method
similar to that described in [17]. We used SNOM tips with
the curvature radius 100–200 nm prepared by the usual
etching procedure of optical fibers in concentrated HF
solutions [1, 2] or commercially available from Nanonics
Supertips (Israel). Additional details about the construc-
tion of the microscopes used in the experiments can be
found in [13, 18, 19].

To deposit the donor dye molecules onto the sample
surface, we used the spin coating technique [20] as well
as the simple method of spreading a small droplet
(10 µl) of the dye solution onto the surface with the
subsequent drying in air. No essential difference of the
results has been observed.

Acceptor molecules have been deposited onto the
surface of the SNOM tip. In this case, it seems essen-
tially more difficult to elaborate the procedure to deposit
the dye layers with a known and well-controllable con-
centration of the molecules: the complex shape of the tip,
its very small size, and fragility make it impossible to use
such well-established methods as the spin coating tech-
nique or long-time deposition of the sample inside a dye
solution with the subsequent elimination of the excess
solution by a tissue paper [21]. Thus the so-called with-
drawal, or “dipping” approach seems to be the most suit-
able: the sharpened fiber tip is rapidly dipped into and
extracted out of the dye solution; the thickness of the
deposited film (and thus the surface concentration of
dye molecules) is governed by fluid dynamics. The
OURNAL OF EXPERIMENTAL AND THEORETICAL PHY
results of our experiments did not contradict the data
known about the concentration dependence for flat sur-
faces [22, 23], and we are planning to finally clarify this
point in future experiments.

The 488 nm spectral line of a cw argon ion laser was
focused onto a glass prism surface under the conditions
of total internal reflection (spot sizes were of the order
300 µm and the laser irradiation intensity I was
15 W/cm2). Light coming out of the opposite side of the
sharpened fiber was detected by a single photon avalanche
diode (SPAD; EG & G, Canada, noise level 80 s–1) after
passing through a number of filters to suppress stray
light and select the light originating from fluorescence
of the acceptor molecules. The set of filters included a
holographic notch filter for the 488 nm line, a red glass
filter with the absorption edge of 660 or 695 nm, and
interference filters centered at 750 nm with a width of
70 or 40 nm. It can be seen from Fig. 1 that such a set
of filters enables the separation of the fluorescence
coming from OM57 molecules from that coming from
DCM molecules.

3.2. Results

In Fig. 3, we present the dependence of the fluores-
cence signal recorded by the EG & G SPAD for the case
of DCM and OM57 molecules deposited with the sur-
face concentrations 3 × 1013 cm–2 on the voltage driving
the piezotube in the z-direction. Each point on this
graph is a result of an average of 10–20 counts during
one second each. The moment of contact between the
tip and the sample was determined by the beginning of
SICS      Vol. 90      No. 5      2000
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a decrease of the tip dithering amplitude as observed on
an oscilloscope.

The distance between the tip and the sample, ∆z,
when out of contact, can be easily calculated as a func-
tion of the potential difference ∆U using the known cal-
ibration data for the driving piezo, ∆z = ζ∆U, where,
ζ = 9.5 nm V. After acquiring the contact, it is more rea-
sonable to speak about the change in the force acting
between the tip and the sample rather than about the
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PZT driving voltage, V

Nph, s–1

Fig. 3. The acceptor fluorescence signal dependence on the
acting force recorded during the PSTM-based FRET exper-
iment.
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change of a relative distance; an increase of the voltage
tends to push the tip (rigidly fixed on the piezo) more
strongly against the sample. The acting force F can be
calculated using the spring constant k of the sharpened
fiber by an obvious relation F = kζ∆U, and an action of
this force leads to the flexural bending [12, 24, 25] and
deformation of the tip.

From Fig. 3, it is easy to see that after acquiring the
contact, the acceptor fluorescence signal starts to
increase rapidly as the acting force increases. This
effect has been well reproduced during at least a few
tens of the cycles contact–out of contact measurements,
but an overall slow decrease in the signal due to the
photodegradation of the dyes was noticed.

A number of control experiments have been per-
formed using the same tip-sample configuration but
with the donor and acceptor dyes (either or one of or
both them) absent. None of these control experiments
revealed a behavior analogous to that presented in Fig. 3;
only a very slow change in the fluorescence signal as a
function of the driving voltage was usually observed
and the contact point did not correspond to any pecu-
liarities in the fluorescence signal. Of course, the abso-
lute value of the recorded signal was smaller.

Similar results were obtained when we used another
mode of SNOM operation, namely, the illumination
mode SNOM (see Fig. 4) instead of the PSTM version
described above. Donor dye molecules were deposited
onto a thin glass slide surface. The SNOM tip, covered
488 red red

SPAD

488 nm
Ar-ion

laser line

Diode
Laser

Photodiode

Electronics

PZT

Fig. 4. Scheme of the illumination mode SNOM-based FRET experiment.
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with a OM57 acceptor molecule layer, was used as a
light source. The same detector and combination of fil-
ters were used. As in the previous case, the OM57 flu-
orescence signal drastically increased after the acquisi-
tion of the contact only when both dye layers were
present.

3.3. Discussion

Thus, the acceptor fluorescence signal behavior pre-
sented in Fig. 3 is definitely due to the presence of both
dyes and should be regarded as a demonstration of
FRET phenomena in scanning-probe microscopy. The
increase of the fluorescence signal as a result of the
increase of the acting force was due to the corresponding
increase of the contact surface and thus, of a number of
molecules involved in the energy transfer process.

Semiquantitatively, the experimental data can be
described as follows. Experimental measurements of
the spring constant k for the glass fiber tips [11] as well
as calculations based on the mechanical properties of
the flexural bending of a glass cone [24] show that for
a tip with the curvature radius 100 nm, the spring con-
stant should be of the order 500–1000 N/m. This means
that for an equivalent displacement of the piezo, ζ∆U,
(maximum value attains 1.9 µm) the acting force value
should range within 10–4–10–3 N. (Note that a similar
range of forces was used in the recent SNOM experi-
ments using normal dithering of a tip [12, 24]. Under
the action of such a force, the tip will exhibit flexural
bending [24, 25] and elastic deformation. Both these
processes will result in an increase of the contact sur-
face. For a rough estimate of the elastic deformation,
one can use the known Hertzian expression to describe
the contact radius rc of a sphere pressed against a flat
sample surface as a function of the acting force F (see,
for example, [18], where the problem of elastic defor-
mations in AFM has been specially investigated:

(2)

Here r is the curvature radius of the tip, E = 7 × 1010 N/m2

and ν = 0.25 are typical Young modulus and Poisson ratio
for glass. For F = 10–4 N, r = 100 nm, this expression gives
rc = 46 nm, which corresponds to N1 ~ 2000 molecules in
the “FRET active” contact area for the surface concen-
tration 3 × 1013 cm–2.

An absolute value of the fluorescence signal
recorded for the sharpest tips used was equal to Nph =
80–100 s–1 (with the signal to noise ratio of the order of
unity). Knowing this value, we can estimate the number
of molecules N2 contributing to the measured signal
using the simple relation

(3)

rc
3 1 ν2–( )Fr

4E
----------------------------- 

 
1/3

.=

N2

N phhν
IσηΦ
---------------,=
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where hν = 4.07 × 10–19 J is the photon energy, Φ is the
fluorescence quantum yield of the acceptor molecule, and
η is an overall efficiency of the photon collection and
detection for our experimental system. The latter can be
estimated as follows. The efficiency of the fluorescence
photon collection by a sharpened fiber for a geometry sim-
ilar to ours was reported to be 2–5 × 10–3 [26]. We esti-
mate the efficiency of the detection of photons coming
out of the fiber about 0.1–0.05 (this value is mainly due
to the registration only within a rather narrow spectral
band of the total acceptor fluorescence because of the
strong filtering, see above) and thus, the overall effi-
ciency of the detection is 1–5 × 10–4. This means that
N2 ~ 300–1500 acceptor molecules contribute to the
measured signal (we assume Φ = 0.3). Both N1 and N2
values are in reasonable coincidence with each other,
which strengthens our conclusions about an observa-
tion of the “nanolocal” FRET phenomenon with only
hundreds to thousands of molecules involved.

4. ATOMIC FORCE MICROSCOPE GEOMETRY

The above results were qualitatively confirmed in
another series of experiments performed with the same
DCM–OM57 dye pair. OM57 acceptor molecules were
deposited onto the surface of a silicon tip of a standard
AFM cantilever (NT–MDT, Moscow, the force constant
0.12 N/m, the curvature radius of the tip 10–20 nm).
DCM donor molecules were deposited onto a thin glass
slide surface and a 488 nm laser line was focused onto
this surface by a 40× microobjective after a reflection
from a selective mirror at the angle of 45° (see Fig. 5).
Contact between the AFM tip and the sample as well as
the acting force was controlled by monitoring the
reflection of a focused diode laser radiation from the
opposite side of the cantilever, as is typical in the usual
contact mode AFM. The same driving piezo and elec-
tronic control unit as in the SNOM-based experiment
described above were used. Fluorescent light was col-
lected using the same 40 x microobjective, and after the
passage through the selective mirror without reflection,
it was refocused onto the entrance slit of a CCD-cam-
era-equipped monochromator. The same set of filters as
described earlier (except for an interference filter cen-
tered at 750 nm) was used. Light intensity was essen-
tially higher, ~600 W/cm2, and as a result, the photo-
degradation was more prominent. Nevertheless, it was
possible to observe the difference between the “con-
tact” and “noncontact” fluorescence during a number of
the cycles contact-out of contact measurements (analo-
gous to the SNOM experiments described above).

No quantitative information has been collected in
these series of experiments, but in Fig. 6, we present
two fluorescence spectra recorded when in deep contact
(1) and out of contact (2). The acting force, estimated
for the “deep contact” case in the same manner as dis-
cussed above for the SNOM case, was equal to ~10–6 N.
It can be clearly seen that the signal obtained while in
SICS      Vol. 90      No. 5      2000
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Fig. 5. Scheme of the AFM-based FRET experiment.
contact was 10–20% larger than that obtained out of
contact. This effect was not observed in control experi-
ments, when both or one dye were missing, which is an
additional indication of the observation of the AFM- (or
SNOM-) related nanolocal FRET phenomenon.

5. FLUORESCENCE RESONANCE ENERGY 
TRANSFER PROBE MICROSCOPE

The results presented in this work should be treated
as a demonstration of the FRET phenomenon in scan-
ning near-field optical microscopy and atomic force
microscopy techniques. Of course, the difference
between SNOM and AFM is rather arbitrary in this con-
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Fig. 6. Fluorescence signals recorded during the AFM-
based FRET experiment for the tip in contact (curve 1) and
out of contact (curve 2) with the sample.
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text: for example, silicon AFM levers similar to those
described in Section 4 are optically semitransparent and
optical near-field microscopy can be implemented to
measure the light passing through these levers [27]. An
important point is that we succeeded in recording a
nanolocal “contact dependent” fluorescence signal cor-
responding to a few thousands or even hundreds of
FRET-active molecules. Relying on the obtained experi-
mental data. Sensitivity, noise level, etc., we believe that
using a slightly modified approach (for example, that
based on an illumination-geometry SNOM, where single
fluorescent molecules were indeed observed recently
[9, 10]), it will be possible to observe the FRET phenom-
enon at the level of only one single molecule.

Thus, based on the experimental results already
obtained, we believe that it is now the time to briefly
discuss a FRET probe Microscope that is under con-
struction in our laboratory (Troitsk). The particular
scheme of this microscope is presented in Fig. 7. The prin-
cipal element of the FRET probe is a small polystyrene
bead stained with a dye. Such microspheres are commer-
cially available in a broad range of sizes (10 µm–20 nm)
and dyes and are routinely used in the optical fluores-
cent microscopy as markers (see, e.g., [28]). Prelimi-
nary results indicating FRET processes involving some
dye doped beads commercially available from Molecu-
lar Probes, Oregon, have been recently obtained in our
laboratory (Lausanne: unpublished), but one should be
sure that the dye molecules at the surface are not cov-
ered by protective layers.

To provide the possibility of the probe manipula-
tion, we are elaborating the method to fix it to the apex
of a microcapillary, as indicated in Fig. 7. Fixing may
 AND THEORETICAL PHYSICS      Vol. 90      No. 5      2000
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Fig. 7. Scheme of a FRET probe microscope. Only the upper part of the capillary is shown. The glass slide with the sample is sup-
posed to be moved by a scanner of the microscope. The electronic part (not shown) is similar to that of a scanning probe microscope.
be possible relying on the van-der-Waals forces or a
specific chemical binding, and a number of microcapil-
laries with the diameter ranging from 100 nm to a few
microns is now commercially available.

The optical scheme of the FRET probe microscope
is similar to that of the confocal fluorescent micro-
scope. The laser beam is reflected from a dichroic mir-
ror and is focused on the sample. Let us assume that the
sample contains donor molecules and the bead contains
acceptor dye molecules. If the donor–acceptor pair is
chosen as described above, mainly the donor molecules
are excited due to the FRET process. The light from flu-
orescent acceptor molecules is collected by the same
objective that is used for illumination of the sample.
The light coming through the dichroic mirror is
detected by a SPAD or a PMT.

The possibility to modulate the probe-sample dis-
tance is implemented in the microscope construction.
This enables one to improve the sensitivity and to remove
the background signals caused by “tails” of donor fluores-
cence and the direct excitation of acceptor molecules. The
modulation allows the distance-dependent part of the sig-
nal to be extracted, because the FRET between the probe
and the sample is possible only when the bead comes in
contact with the sample. The modulation in the range of
several tens of nanometers will suffice because the
Förster radius does not exceed several nanometers [6],
and such a modulation can be realized based on the
usual shear force feedback [1, 2] or normal tip vibra-
tions that we have recently realized [12, 24].

A simple estimation of the lateral resolution of the
microscope can be made from elementary geometrical
considerations. If we model the sphere as touching the sur-
face without elastic deformation (see insert in Fig. 7), the
FRET is possible for acceptor molecules located
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
between the surface and the imaginary plane at the dis-
tance R0 (Förster radius) from the surface, one should now
distinguish between two different situations: i) there is
only one acceptor molecule inside this area, and ii) there
are several molecules inside it. In the former case, the
resolution is governed by the Förster radius [5]. Note
that this is exactly the case for the commercially avail-
able beads with the diameter 2r = 20 nm (Molecular
Probes, Oregon). Such a bead contains N ~ 180 mole-
cules of the dye distributed in the volume of the sphere
(not the surface) [28], and therefore, we can find

acceptor molecules in the FRET-active area (we take
the Förster radius R0 equal to 2 nm). Indeed, it is not
necessary to use the smallest available spheres with the
diameter 20 nm to attain such a resolution. Similar
numbers can be obtained for much large beads: apply-
ing the same relation for 2r = 1 µm and N = 1.3 × 107

[28] gives n = 0.4.

In the latter case, the resolution is determined by the
diameter d of the interaction zone. Taking into account
that the radius of the sphere r @ R0, it is easy to find

that d ≈ 2 , which corresponds to the resolution
d ≈ 12 nm for the beads with 2r = 20 nm. An important
issue is the number N of interacting molecules in the
bead. The area of the bead surface inside the diameter
d is defined by the expression

n 1/2( )N R0 r⁄( )3 0.7≈≈

2rR0

2πr2 1 d2

4r2
-------–

 
 
 

.
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For an estimate, an approximation gives simply S = πd 2/4.
If the surface density of dye molecules is n = 1014 cm–2

(beads having dye molecules on the surface can be easily
prepared in the laboratory), we have N = nS ≈ 270 mole-
cules, which is large enough to avoid the photostability
problem, which is crucial at the single-molecule level.

We emphasize that the resolution 10–20 nm can be
achieved without the subwavelength aperture that is a
principal element of the standard near-field micro-
scope. Complex boundary conditions for the near-field
at the probe apex of SNOM considerably complicate
the analysis of SNOM images which can lead to a num-
ber of artifacts (see, e.g., [29]). The FRET probe micro-
scope is free from these drawbacks because of the
absence of the aperture and the physical clarity of the
interaction.

6. CONCLUSIONS

In this paper, we have presented experimental results
concerning an observation of nanolocal FRET processes
for the usually used SNOM and AFM geometries; we
then discussed the FRET probe microscope currently
under construction in Troitsk. In addition, practical elab-
oration of this FRET microscope is especially timely
because we have at our disposal the already finished
one-atom fluorescent tips made of LiF : F2 crystal frag-
ments, where only one effective and very photostable
fluorescent center in the tip apex region (F2 aggregate
center, which is the specific defect of LiF crystalline
lattice) has been observed using the laser selective pho-

Fig. 8. The field emission image of the borosilicate glass
microcapillary with the inner diameter of 0.5 µm. The
image of the central hole is shifted to the upper part of the
figure. The thickness of walls looks exaggerated due to the
peculiarities of image formation in the field emission micro-
scope.
JOURNAL OF EXPERIMENTAL
toelectron projection microscopy technique [8, 30]. We
used the same technique to observe the apex of the
nanocapillary currently explored in the FRET probe
microscope under construction (see Fig. 8), and will
use it to control the fixing of a dye-saturated bead on
the capillary apex, as described in Section 5.

The practical realization of the FRET probe micro-
scope makes it possible to drastically improve the spa-
tial resolution and the sensitivity of scanning near-field
optical microscopy, thereby opening new prospects in
the field [5, 8]. The FRET SNOM will be very useful
when working not only at the single-molecule level, but
also with hundreds or thousands of molecules involved
(exactly as reported here), because this approach, in any
case, improves the resolution and sensitivity of SNOM
and enlarges the number of possible experimental
schemes of the microscope to be used.
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Abstract—A generalized Keldysh model is used to obtain simple analytical expressions for the energy and
angular distributions of photoelectrons rescattered by the parent ion. The dependence of the form, absolute
magnitude, and interference structure of the distributions on the parameters of the field and atom is investigated.
It is shown that even though the semiclassical three-step rescattering model determines correctly the position
of the boundaries beyond which the distributions decay rapidly, the model itself is inapplicable near them.
© 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigations of the nonlinear ionization of atoms
in strong laser fields have revealed a variety of physical
phenomena which are determined by the interaction of
the freed electron with the parent atom (see the reviews
[1, 2]). One channel of this interaction, ordinarily
termed elastic rescattering, leads to the fact that a small
fraction of the electrons injected into the continuum
and accelerated by the laser field acquires high energies
as a result of interacting with the parent ion. As a result,
the electron spectrum detected in a fixed direction con-
sists of two sections with substantially different proper-
ties. The initial segment up to energies of the order of
2Up (Up = F2/4ω2 is the average oscillatory energy of an
electron in a linearly polarized field with amplitude F
and frequency ω) is explained by the mechanism of
direct above-threshold ionization. Here the spectrum
decays rapidly as the electron energy increases. Next
follows an extended section with small decay (high-
energy plateau) which is produced as a result of rescat-
tering. The plateau terminates clearly in a distinct
boundary, beyond which exponential decay occurs
once again. The structure and details of the electron dis-
tributions on the plateau are seen in greatest relief and
most clearly in the data from a series of experiments
performed in the tunneling regime [3–5].

The theory of electronic distributions in the region
of the plateau is based primarily on three approaches:
numerical integration of the Schrödinger equation [6],
a semiclassical three-step model [3–5, 7, 8], and a gen-
eralized Keldysh model [9–13]. Numerical methods are
ineffective in the tunneling regime. The three-step
model describes separately the freeing of an electron
from an atom, the subsequent motion of the electron
along a classical trajectory returning to the parent ion,
and finally the act of scattering by an ion. This model
has successfully explained the position of the top
1063-7761/00/9005- $20.00 © 20778
boundary of the plateau and the maximum angle of
emergence of electrons, but the reason for the discrep-
ancies with quantum calculations in the description of
the angular distributions has remained unclear [8], and
there is no clear picture of its accuracy and conditions
of applicability.

The generalized Keldysh model arises as a result of
an iterative solution of the quantum equations of
motion of an electron in laser and atomic fields, when
the Keldysh approximation serves as the zeroth approx-
imation and the interaction of the freed electron with
the atomic fragment is taken into account as a perturba-
tion [9–13]. This substantially quantum approach
makes it possible, specifically, to calculate the interfer-
ence structure in the distributions of the rescattered
electrons, which is in principle impossible to do on the
basis of the three-step model. A complicating feature of
this approach is that the rescattering amplitude has a
very complicated form (a five-fold integral). A model
of the atom as a zero-radius potential permits reducing
this expression to a single integral of an infinite sum of
products of Bessel functions [11]. An attempt to con-
struct the rescattering amplitude, after calculating three
of the five integrals by the saddle-point method, has
been made in [10]. This calculation confirmed that the
classical trajectories returning to the parent ion play an
important role in the formation of the rescattering
amplitude. However, the computational scheme
adopted led to a singularity in the remaining double
integral, and the final results turned out to be sensitive
to the value of the regularization parameter, which is
the initial width of the ionized wave packet.

The objective of the present work is to obtain, in the
tunneling regime, for the spectral-angular distribution
of the rescattered electrons quite simple formulas from
which the dependences on the parameters of the field
and the atom would be evident and the mechanism of
000 MAIK “Nauka/Interperiodica”
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quantum interference in the distributions of the rescat-
tered electrons would be understandable, as done previ-
ously for direct ionization [14, 15]. Looking ahead, we
note that the results will be presented in a form closely
related with the three-step model, which will make it
possible to establish the status and region of applicabil-
ity of the latter.

A general expression for the rescattering amplitude
is obtained in the next section. Section 3 is devoted to a
derivation of the approximate formulas for the tunnel-
ing limit. Finally, the physical consequences are dis-
cussed in section 4. Some of the results presented have
been reported in preliminary publications [13, 16, 17].

2. FORMULATION OF THE MODEL 
AND THE RESCATTERING AMPLITUDE

The wave function of an atomic electron interacting
with a laser field satisfies the Schrödinger equation
(atomic units are employed)

(1)

where A(t) is the vector potential of the field in the
dipole approximation. Before the field is switched on,
in the limit t  –∞, the atom is in a bound state

with ionization potential I. We seek the solution in the
form of a sum of the initial state and a new, unknown
function

In contrast to the phenomenological approach of [18],
this formulation transforms equation (1) in a natural
manner into a Schrödinger equation with a source.
Switching to the momentum representation and using
an exponential substitution to eliminate the diagonal
matrix elements of the kinetic energy

are equivalent to writing the desired function in the
form of the expansion

over the Volkov states

with the phase

i
∂Ψ r t,( )

∂t
------------------- 1

2
--- p

1
c
---A t( )+ 

 
2

U r( )+
 
 
 

Ψ r t,( ),=

ϕ0 r t,( ) ϕ0 r( )eiIt=

Ψ r t,( ) ϕ0 r t,( ) χ r t,( ).+=

εp t( ) p A t( ) c⁄+( )2
2⁄=

χ r t,( ) χ p t,( )Ψp r t,( )
p

∑=

Ψp r t,( ) ipr iSV p t,( )–{ }exp=

SV p t,( ) τεp τ( ).d

∞–

t

∫=
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The amplitudes in the expansion satisfy the initial con-
dition

and the equation

(2)

where ϕ0(p) and U(q) are the Fourier transforms of the
initial state and the atomic potential, respectively, and

The equation (2) can be solved by iteration

provided that the integral term is small.
The solution in the zeroth approximation is obtained

in the form of an integral of the source:

(3)

and its limiting value χ(0)(p, +∞) is identical to the ion-
ization amplitude used in practical calculations of the
energy and angular distributions in the Keldysh model
[14, 19].

Performing the next iteration we find

(4)

The expression (4) has a simple meaning: it is the scat-
tering amplitude, calculated in first-order perturbation
theory in the atomic potential, for the ionization-pro-
duced coherent packet of the Volkov states χ(0)(r, t) into
the final Volkov state Ψp(r, t). Taking an individual
Volkov wave as the initial state in equation (4), we obtain
the Born amplitude for induced bremsstrahlung [20].

The coordinate function in the zeroth approximation

describes a spreading electron cloud. The norm of this
function grows linearly with time [21]. This makes it
possible to interpret in the limit t  ∞ the quantity

χ p t ∞–,( ) 0=

iχ̇ p t,( ) V p t,( )ϕ0 p( )Ψp* 0 t,( ) iIt{ }exp=

+ U p k–( )Ψp* 0 t,( )Ψk 0 t,( )χ k t,( ),
k

∑

V p t,( ) p A c⁄⋅ A2 2c2.⁄+=

χ p t,( ) χ 0( ) p t,( ) χ 1( ) p t,( ) …+ +=

χ 0( ) p t,( ) iϕ0 p( )–=

× t1V p t1,( ) iIt1 iSV p t1,( )+{ } ,expd

∞–

t

∫

iχ 1( ) p ∞,( )

=  td

∞–

∞

∫ U p k–( )Ψp
* 0 t,( )Ψk 0 t,( )χ 0( ) k t,( ).

k

∑

χ 0( ) r t,( ) χ 0( ) k t,( )Ψk r t,( )
k

∑=

dW t 1– χ 0( ) p t,( )
2
d p3 2π( )3⁄=
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as the ionization probability per unit time. Taking into
account the first iteration, the following substitution
must be made in this probability:

As noted in the Introduction (see also [11]), for final
states with the energies

direct above-threshold ionization predominates, i.e.,

and for ε > 2Up the relation between the amplitudes is
reversed. In each of the indicated regions it is sufficient
to retain only the main contribution. Then the desired
ionization probability in states with high energies is
determined by the rescattering amplitude (4). We shall
not study the transitional region, where

and interference of the two terms is possible.

The integrand in the amplitudes χ(0, 1) has the form

where

A standard Fourier series expansion of the periodic fac-
tor gives the ionization probability in the form

In the tunneling regime

(5)

the energy of a laser photon is the smallest energy scale
in the problem, and replacing in the probability the sum
over n by an integral we obtain the momentum (spec-
tral-angular) distribution, which describes the envelope
of the above-threshold peaks of direct ionization and
ionization with rescattering (indices d and r, respec-
tively)

(6)

The Fourier coefficients in equation (6) are denoted as

 = B(0, 1)(p).

We also note that with time the amplitudes Wt ! 1
satisfying the zero initial condition remain small as
long as χ(0)(p, t), making the integral term in equation
(2) small and justifying the use of an iteration proce-
dure.

χ 0( ) p +∞,( )
2

χ 0( ) p +∞,( ) χ 1( ) p +∞,( )+
2
.

ε p2 2 2U p<⁄=

χ 0( )   @  χ 1
 

( )
 ,

χ 0( ) χ 1( )≈

B 0 1,( ) t( ) iλ t{ } ,exp

B 0 1,( ) t 2π ω⁄+( ) B 0 1,( ) t( ), λ p2 2⁄ U p I .+ += =

dW 2π Bn
0 1,( ) 2

δ λ nω–( )
d p3

2π( )3
-------------.

n

∑=

F Fa< 2I( )3/2, ω I , γ< ω 2I( )1/2 F 1,<⁄= =

dWd r, 2π B 0 1,( ) p( )
2 d p3

ω 2π( )3
----------------.=

Bn λ ω⁄=
0 1,( )
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3. RESCATTERING AMPLITUDE 
IN THE TUNNELING LIMIT

The conditions (5) make it possible to calculate the
amplitudes (3) and (4) by the saddle-point method. If a
linearly polarized field 

 

F

 

sin(

 

ω

 

t

 

) acts along the 

 

x

 

 axis,
then the equation for the saddle-points of the integral
(3) is

(7)

where

In the tunneling limit the complex roots 

 

t

 

s

 

 of equation
(7) lie near the real axis. Neglecting the contributions of
order 

 

γ

 

2

 

 

 

!

 

 1 and higher we obtain

This time, interpreted as the transit time of an electron
through the barrier, is a small fraction of the optical
period [19]. To the same accuracy Re

 

t

 

s

 

 is identical to
the real moment in time 

 

t

 

0

 

 when the electron kinetic
energy reaches its minimum value. For momenta 

 

|

 

k

 

x

 

|

 

 < 

 

p

 

F

 

which are important in the direct-ionization spectrum,
the projection of the velocity on the direction of the
field vanishes at the time 

 

t

 

0

 

:

(8)

The contribution of an individual saddle point, calcu-
lated in the approximation described, is

(9)

Here 

 

k

 

⊥

 

 is the momentum in a plane perpendicular to
the 

 

x

 

 axis, 

 

F

 

(

 

t

 

) = 

 

|

 

F

 

sin(ωt)| is the magnitude of the field,
and the function t0 = t0(kx) found from equation (8)
must be substituted. The factor

C(F) = 1

corresponds to ionization from a well with zero radius,
and

gives the correct static limit for a Coulomb field [22, 23].

The partial amplitude (9) looks as if the quantum
transition into a given state of the continuum occurs
instantaneously, at the moment of the minimum kinetic
energy, which depends on the initial momentum kx. The
integral in equation (3) is equal to the sum of the con-
tributions of all points t0 falling within the limits of

2I k ⊥
2 νx

2 ts( )+ + 0,=
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integration. It is convenient to represent this sum over
real stationary points as an integral:

(10)

The amplitude for direct ionization in equation (6) is
related with the partial contribution (9) by the relation

since for a given kx there are two stationary points t0–
and t0+ in one optical period. The presence of two terms
gives rise to interference in the direct-ionization distri-
butions [14, 15]. Keeping in mind the subsequent com-
parison with rescattering, we underscore that for direct
ionization t0± belong to neighboring optical half-peri-
ods with opposite orientation of the electric field.

The five-fold integral in the rescattering amplitude
(4) can be calculated as follows. We substitute the
expression (10) into equation (4), and using the δ func-
tion we calculate the integral over kx. Since the ampli-
tude δχ(0)(k, t) decreases rapidly for

the k⊥  in the argument of the atomic potential can be
neglected, setting

where the vector k(t0) possesses a single projection

(A more radical but somewhat less accurate approxima-
tion q ≈ p is also possible, since the amplitudes χ(0)(k, t)
are large only for k2/2 ! 2Up and we are interested in
rescattering into states with high energies ε = p2/2 >
2Up.) After this simplification the integral over k⊥
becomes Gaussian, and a calculation of the integral
leads to the appearance of a complex transverse width
of a spreading wave packet in the denominator of the
integrand (see equation (11) below). In the remaining
double integral we change the order of integration and
switch to the dimensionless times

It is easy to verify that the integrand in the outer integral
over infinite limits in the variable ϕ0 possesses the nec-
essary property of periodicity, ensuring the correct
form of the law of conservation of energy during ion-
ization (see discussion preceding equation (5)). Under

χ 0( ) k t,( )

=  t0F t0( )δ kx pF ωt0( )cos–( )δχ 0( ) k t0,( ).d
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t

∫

B 0( ) p( )
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2π
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q p k– p k t0( )– ,≈=

kx t0( ) pF ωt0( ).cos–=
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the transformations described above, the amplitude B(1)

in equation (6) becomes

(11)

Here the phase is determined by the relation

(12)

and ∆0 =  is the transverse width of the
electron wave packet at the moment of ionization [21].
Since the phase (12) is proportional to the large param-
eter

zF = 4Up/ω @ 1,

we shall calculate the double integral (11) by the sad-
dle-point method. The conditions of stationariness

yield the equations

(13)

(14)

The solution of the system (13) and (14) is the point
(ϕ0(ε, θ), ϕ1(ε, θ)), whose position depends on the final
electron energy ε = p2/2 and angle of emergence θ,
measured from the direction of the field. Depending on
(ε, θ), the solutions can be both complex and real. The
latter are of greatest interest, since their contribution
does not contain an exponential smallness additional to
with the tunneling exponential present in the integrand.
This is why a plateau arises in the energy spectrum. The
implicit functional relations between the four real
parameters determined by equations (13) and (14) have
been studied in detail in the three-step rescattering
model [8]. We shall use these results, appropriately
reformulated, to find the stationary points. In the three-
step model equation (13) signifies that the freed elec-
tron, having left the atom at the time ϕ0 with zero initial
velocity and moving subsequently in a laser field,
returns to the origin of coordinates at the time ϕ1. At the
moment it returns the electron is elastically scattered in
accordance with the law of conservation of energy (14).
The transformations

(ϕ0, ϕ1)  (ϕ0 + 2π, ϕ1 + 2π),

(ϕ0, ϕ1, θ)  (ϕ0 + π, ϕ1 + π, π – θ)
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do not change the form of the equations, and therefore
it is sufficient to analyze the solutions on one half-
period of the laser field, for example, 0 < ϕ0 < π. For
moments of ionization in the interval 0 < ϕ0 < π/2
returns are impossible, and for π/2 < ϕ0 < π (depending
on the value of ϕ0) one to several returns (right up to an
infinite number) are possible. The contribution from the
later returns decreases rapidly because of the transverse
spreading of the wave packet, and in what follows we
shall consider only the first return. For electrons which
are freed in the time interval π/2 < ϕ0 < π and possess a
finite energy p2/2 > 2Up, the directions of emergence
fall into the range π/2 < θ < π. The instantaneous elec-
tron velocity appearing in the energy conservation law
(14) rotates by the angle π/2 < θ0 < π, i.e., the electron
is scattered backward with respect to the velocity which
it possessed immediately prior to scattering. The angles
θ and θ0 are related by the relation [8]

(15)

Rescattering in the interval 0 < θ < π/2 occurs on an
adjoining half-period with the opposite orientation of
the field. The energy of the rescattered electron, consid-
ered as a function of the moment of ionization, pos-
sesses an isolated maximum on the segment π/2 < ϕ0 < π
(see Fig. 1). The height of the maximum ε = εcl(θ) is the
upper limit of the spectrum, as predicted by the semi-
classical model for electrons rescattered by the angle θ.
It follows from the existence of a maximum in the func-
tion ε = ε(ϕ0, θ) that the inverse function ϕ0 = ϕ0(ε, θ)
required to calculate the amplitude (11) is two-valued.
In other words, on a quarter period there are two
moments in time ϕ0– and ϕ0+ (see Fig. 1) which corre-

p pF⁄( ) θ ϕ1cos+cos

=  ϕ1cos ϕ0cos–( ) θ0.cos

10

0
π/2 

8

6

4

2

12

ϕ0+ϕ0– π
Moment of ionization φ0

Final electron energy

Fig. 1. Final energy of the rescattered electron as a function
of the moment of ionization. The curve ε(ϕ0, θ = π)/Up was
calculated using equations (13) and (14) in the first-return
approximation. The form of the curve for θ ≠ π is similar but
the height of the maximum decreases monotonically with
increasing angle: εcl(θ) < εcl(π) = 10Up. The contributions
of the points ϕ0– and ϕ0+ interfere in the rescattering ampli-
tude in the state (ε = 8Up, θ = π).
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spond to rescattering in a direction θ with energy ε.
According to equation (13), their respective moments
of return are ϕ1– and ϕ1+. To calculate the rescattering
amplitude by the saddle-point method the phase in
equation (12) must be expanded in a Taylor series
around each of the points (ϕ0–, ϕ1–) and (ϕ0+, ϕ1+), a
two-dimensional Gaussian integral must be calculated,
and the results must be summed. Summing the contri-
butions of the indicated stationary points engenders
interference in the rescattering amplitude [13]

(16)

The contribution of an individual stationary point has
the form (we omit the indices ±)

(17)

The following notation has been introduced in equa-
tions (16) and (17):

where the phase S is determined by equation (12) with-
out the term Iϕ0;

is the difference of the reduced phases at the stationary
points;

is the squared transverse width of the wave packet of a
freed electron at the moment of return [21];

is the determinant of the matrix of second derivatives of
the phase with respect to ϕ0 and ϕ1 at the expansion
point. The sign of D is different for the two branches of sta-
tionary points, and therefore the interference term in equa-
tion (20) contains a sine and not a cosine, as in [13, 16].

The procedure for summing the contributions of
independent stationary points is inapplicable if the final
state (ε, θ) lies near the classical boundary. It is evident
from Fig. 1 that as ε  εcl(θ) the points ϕ0– and ϕ0+
approach from different sides the point ϕ0m(θ) where
the function ε = ε(ϕ0, θ) reaches a maximum, and it can-
not be assumed that they are isolated. A manifestation of
this circumstance is that the distribution (17) becomes
infinite in the limit ε  εcl(θ), since D  0 in the
denominator. At the boundary itself D = 0, and this
equality is equivalent to the condition for an extremum

dWr

=  w– w+ 2 w–w+ zFs+–( )sin–+( )d p3 .

w ϕ1 ϕ0,( )
2IC2 F( )U2 q( )ω3 ϕ2

0sin

2π( )4
F2Fa∆⊥

2 ϕ1 ϕ0,( ) D
-----------------------------------------------------------=

×
2Fa

2F ϕ0( )
----------------– 

  .exp

s S zF⁄ ,=

s+– s+ s––=

∆⊥
2 ϕ1 ϕ0,( ) ∆0

2 ϕ1 ϕ0–( )2 ω∆0( )2⁄+=

D s00s11 s01( )2
–=

∂ε θ ϕ0,( ) ∂ϕ0⁄ 0.=
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Indeed, writing equations (13) and (14) in the form

differentiating with respect to ϕ0 with constant θ, and
eliminating dϕ1/dϕ0, it is easy to see that

(here and below the partial derivatives of the reduced
phase s with respect to the times ϕ0 and ϕ1 are denoted
by ∂s/∂ϕ0 ≡ s0, ∂2s/∂ϕ0∂ϕ1 ≡ s01, and so on).

Near the boundary the method for calculating the
integral must be modified as follows. Since we are
interested in the final state (θ, ε) close to the boundary,
let us consider the state (θ, εcl(θ)) that lies on the bound-
ary and to which the stationary points ϕ0+ = ϕ0– = ϕ0m(θ)
and ϕ1+ = ϕ1– = ϕ1m(θ) correspond in the plane of inte-
gration variables. We expand the phase (12) with respect
to the deviations δϕ0 = ϕ0 – ϕ0m and δϕ1 = ϕ1 – ϕ1m in a
Taylor series as follows:

(18)

In equation (18) the energy is a free parameter, and
therefore at the chosen point of expansion s1 ≠ 0, while
the ε-independent derivative s0 = 0 is absent in equation
(18). The substitutions

reduce the quadratic form in equation (18) to the diag-
onal form

It is evident that when calculating the amplitude (11)
under the conditions D  0, the integral over the vari-
able η diverges. To regularize the integral it is sufficient
to take into account the next term in the expansion, spe-
cifically, sηηηη3. An additional investigation shows that
we can set sηηη  ≈ s111 in the region important for the
integral, as done in equation (18). Using the expansion
(18), the integral (11) can be calculated analytically,
and the spectral-angular distribution of the photoelec-
trons near the classical boundary can be written as [17]

(19)

The smooth function of order one

(20)

s0 ϕ0 ϕ1 ϕ0( ),( ) 0, s1 θ ϕ0 ε θ ϕ0,( ) ϕ1 ϕ0( ), , ,( ) 0,= =

∂ε θ ϕ0,( ) ∂ϕ0 D∝⁄

s s ϕ0m ϕ1m,( ) s1δϕ1
1
2
--- s00 δϕ0( )2[+ +=

+ 2s01δϕ0δϕ1 s11 δϕ1( )2+ ] 1
6
---s111 δϕ1( )

3
.+

ξ δϕ0 s01δϕ1 s00, η⁄+ δϕ1= =

s00 ξ2 Dη2 s00
2⁄+ 

  .

dWr = 
Iω3

C2 F( )U2 p( ) ϕ2
0m 2Fa– 3F ϕ0m( )⁄( )expsin

4π3
FaF 4/3∆⊥

2 ϕ0m ϕ1m,( ) s00 s111 2⁄ 2/3
-----------------------------------------------------------------------------------------------------------

× Ai2 zF
2/3 Y ε θ,( )

 
 
 

d3 p.

Y ε θ,( ) 2 ε111⁄( )1/3
s1 D2 2 s111 s00

2( )⁄–[ ]=
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vanishes on the classical boundary and assumes posi-
tive and negative values, respectively, for ε > εcl(θ) and
ε < εcl(θ). It follows from the properties of the Airy
function Ai(x) that the distribution (19) has no singular-
ities at the classical boundary and describes the transi-
tion from monotonic decay beyond the limits of the
classical region to an interference structure with min-
ima and maxima inside this region.

The distributions (16) and (19) match fairly well in
the classically allowed region. In the first place, replac-
ing Ai(x) in equation (19) by its asymptotic form (the
term s1 in equation (20) must be neglected in so doing)
and averaging over the oscillations (sin2ϕ0  1/2)
gives a result which is literally identical to the distribu-
tion (16), in which the sign-alternating term must be
dropped and the contributions w– = w+ must be taken at
the same point (ϕ0m, ϕ1m). In the second place, super-
posing the spectra tabulated according to the complete
formulas (16) and (19) shows that on a small section
(marked by arrows in Fig. 2) the interference spikes in
both curves coincide to graphical accuracy. An estimate
[17] shows that a match obtains near the energy

The existence of a match is an additional argument in
favor of the approximation (18).

The small term γ2/2sinϕ0, arising from the differen-
tiation of the term Iϕ0 in the phase (12) and equal to the
ratio of the width of the oscillating potential barrier to
the amplitude of the electron oscillations in the laser
field, was dropped in equation (13). Just as in the prob-
lem of the generation of high harmonics [24], this con-

ε* θ( ) εcl θ( ) 40–60( )zF
2/3– U p.–≈

logW, arb. units
0

–2

–4

–6

–8

–10

–12

0 2 4 6 8 10 12
Energy/ponderomotive potential

1

2

Fig. 2. Rescattering spectrum in the direction of polarization
of the field, calculated using equations (16) and (19) for ion-
ization of helium (I = 24.6 eV) by Ti:Sa-laser radiation
("ω = 1.58 eV). Curve 1: intensity 2 × 1014 W/cm2 (γ = 1,
zF = 30, F/Fa = 0.03). Curve 2: intensity 1015 W/cm2 (γ =
0.46, zF = 148, F/Fa = 0.07). The curves are normalized to
unit value of the direct-ionization probability (dotted line) in
a state with zero energy. The arrows mark the locations
where the distributions (16) and (19) match.
SICS      Vol. 90      No. 5      2000



784 GORESLAVSKIŒ, POPRUZHENKO
tribution shifts the classical boundary of the spectrum
into the high-energy range by an amount of the order of
the ionization potential.

4. DISCUSSION OF THE RESULTS

The spectral-angular distribution of the rescattered
photoelectrons (16), (17), and (19) agrees with the
numerical results of model, but precise, quantum calcu-
lations [11, 12] and describes these experiments com-
pletely satisfactorily [3–5]. Our approximate expres-
sions show explicitly the dependence of the character-
istics of the distribution on the parameters of the atom
and the laser.

4.1. Interference Structure of the Spectrum

Figure 2 shows the electron energy spectrum, calcu-
lated using equations (16) and (19), in the direction of
the field. Just as in [11, 12], the interference spikes
increase in size as the plateau boundary is approached,
so that the last maximum, beyond which the distribu-
tion decays into the classically inaccessible region, has
the largest width and the greatest height.

A change in the laser intensity changes the number
of spikes within the plateau. Calculations show that the
function s+–(ε/Up, θ = 0) decreases monotonically,
almost linearly, from the value s+–(2, 0) = 1.33 to 0 at
ε = 10Up. Hence it follows that within the plateau there
are approximately zF /4 interference maxima, whose
width ∆ε ≈ 8ω on most of the plateau is independent of
the intensity. A different characteristic scale is obtained
from equation (19) for several interference maxima
adjoining the classical boundary. Thus, the distance
between the greatest maximum at the end of the spec-
trum and the preceding dip is

∆ε 4U p
1/3ω2/3.≈

1D 2D 4D

Fig. 3. Angular distributions of electrons with energy ε = 7Up,
calculated from equation (19) and averaged over a Gaussian
intensity distribution at the laser focus in accordance with
equation (23). The curves are normalized to a unit value at
the maximum. The peak intensity at the center of the focus
is 3.5 × 1014 W/cm2, which corresponds to γ = 0.77 and
zF = 51 for a He atom and a Ti:Sa laser. The first figure shows
the unaveraged distribution. The second figure shows the result
of one-dimensional averaging (for example, over the temporal
nonuniformity of the laser pulse), and so on.
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In estimates of other dimensions of the interference
pattern in this part of the spectrum, only the numerical
factor will change.

A decrease of the laser intensity decreases not only
the number of spikes but also the degree of modulation
of the interference pattern (see curve 1 in Fig. 2). The
reason is that for a large value of the ratio Fa/F the inter-
fering amplitudes differ more strongly from one
another because of the tunneling exponential. The
interference relief structure remains only at the end of
the plateau, where w+ and w– are always close.

The heights of the maxima in the spectrum (Fig. 2)
and in the angular distribution (Fig. 3) vary monotoni-
cally. Similar plots in [11, 12] show that the individual
maxima destroy this monotonicity. The nonmonotonic-
ity is due to the contribution of the subsequent returns
[25], which were neglected in our calculations.

4.2. The Atomic Potential and the Form of the Spectrum

Thus far, the form of the scattering potential has not
been specified. The question of the choice of a potential
does not arise in the single-electron problem (hydrogen
atom); the potential in the rescattering amplitude (4)
must be the same as the potential used to find the initial
wave function in the direct-ionization amplitude. How-
ever, if the model with one active electron is applied to
a multielectron atom, it is natural to assume that the
freed electron moves in the average field of the atomic
core. To calculate the initial state of the external elec-
tron in this complex potential, large distances, where
the nuclear charge is screened essentially to 1, are sub-
stantial. At the same time, the energy of the electrons
returning to the parent ion is of the order of Up @ I, and
their scattering into a state on the plateau is determined
by the structure of the average potential at short dis-
tances. For this reason, it is physically entirely justified
to use different potentials to calculate the direct ioniza-
tion and rescattering.

The experimentally observed behavior in the elec-
tron distributions on the plateau [3–5] is described well
by the expressions (16), (17), and (19) with a potential
of the form

(21)

where the electron density for helium is

and for a singly charged ion of a complex atom

(see [26]). For rescattering into a state on the plateau
the transferred momentum is determined primarily by
the magnitude p of the final momentum (see the discus-
sion preceding equation (11)). For this reason, the fac-
tor U2(q) in equations (17) and (19) strongly influences
the energy spectrum and has virtually no effect on the

U q( ) 4π Z n q( )–{ } q2,⁄=

n q( ) 1 1 q
2

16⁄+( )
2
,⁄=

n q( ) Z 1–( ) 1 0.48qZ–1/3( )2
+⁄=
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form of the angular distribution. The small slope of the
plateau in the direction of high energies [4] is due to the
Coulomb factor q–2 in equation (21). A zero-radius
scattering potential gives a horizontal plateau [11]. On
most of the plateau the transferred momentum is much
greater than the atomic momentum and the effective
charge in equation (21) is close to the nuclear charge Z,
i.e., for otherwise equal conditions, rescattering by
heavy atoms is more effective [4, 13].

The plateau level with respect to the direct-ioniza-
tion spectrum moves lower as the laser intensity
increases [4] (see Fig. 2). Since

and at the moment of return

the field dependence in equation (17) can be written in
the form

while for direct ionization

The ratio of these probability densities decreases with
increasing field as F–6. Multiplying the density by the

corresponding phase volume for rescattering  ∝  F3

and for direct ionization ( px)eff ∝  F5/2, we find that
the fraction of the electrons rescattered into all states of
the plateau varies with the field as

The experimentally measured dependence has the
form [4]

We note that µ does not depend on the Coulomb correc-
tion C(F), but it depends strongly on the form of the
scattering potential. For scattering by a zero-radius
potential µ ∝  F–1.5. The Landau–Dykhne method [27]
gives the correct position of the plateau boundary but it
does not permit discussing the relative height of the pla-
teau.

Taking account of the Coulomb factor C(F) for scat-
tering by the hydrogen atom (Z = 1, n(p) = 0) the total
rescattering probability is

where λ is a number of the order of 1, arising in the
integration over dimensionless variables.

U2 q( ) ε 2– U p
2–∝ ∝

∆⊥
2 ∆0

2– F,∝ ∝

dWr

d3 p
---------- C2 F( )F 7– 2Fa

3F
---------– 

  ,exp∝

dWd

d3 p
---------- C2 F( )F 1– 2Fa

3F
---------– 

  .exp∝

pF
3

p⊥
2

µ Wr Wd F 5.5–∝ .⁄=

µexp F 5– .∝

Wr λ Iγ6 2Fa– 3F⁄( ),exp=
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4.3. Angular Distributions

The first diagram in Fig. 3 for electrons with energy
ε = 7Up (see [17] for a more detailed discussion) dem-
onstrates the typical, for the center of a plateau, angular
distribution where the side maximum predominates. As
ε increases, the cone angle into which scattering occurs
and the number of interference spikes within the cone
angle decrease. In this part of the plateau the angular
distribution is described by equation (19) and is deter-
mined primarily by an Airy function. In the region θ ≤ 30°,

ε ≥ 8Up and for  > 7.7 its argument is approximated
well by the expression

(22)

which makes it possible to find easily in an explicit
form the position of the characteristic points and the
critical values of the energy, which determine the qual-
itative change in the form of the angular distribution.
Specifically, the positions of the large side maximum
θmax(9Up) = 17.5° and θmax(8Up) = 27° predicted by
equation (22) with zF = 146 do not differ much from the
numerical results θmax(9Up) = 20° and θmax(8Up) = 30°
[12]. At the end of the plateau the angular diagram con-

sists of a single lobe of width ≈ , extending in the
direction of the field.

As ε decreases below 7Up compared with Fig. 3, the
scattering cone expands and the number of interference
spikes increases. In these angular diagrams the distribu-
tion (19) describes a large outer maximum and its
immediate vicinity. The rest of the distribution must be
calculated using the formula (16). The spikes near θ = 0, π
are lower than near the maximum angle and, there-
fore, averaging the distribution over the interference
oscillations (actually dropping the last term in equation
(16)) gives a smooth angular distribution with a mini-
mum in the direction of the field. For energies close to
8Up the ratio of the height of this minimum to the
height of the main side maximum, estimated using

equations (19) and (22), is ≈  [17]. Hence it follows
that the minimum in the average angular distribution at

θ = 0, π is a deep dip for  @ 1 and a small decrease

for  of the order of 1. The angular distribution of
rescattered electrons with a deep dip in the direction of
the field was first predicted on the basis of a three-step
model [8]. It was concluded that the model underesti-
mates the rescattering by angles close to 0 and π. How-
ever, as shown below in Subsection 4.4, the three-step
model adequately describes precisely this range of
angles, but it is inapplicable near the large side maxi-
mum and therefore cannot correctly predict its height.

A dip is not seen in the angular distributions mea-
sured in the tunneling regime on the plateau [4]. This is
due to the nonuniformity of the laser radiation. In a
field with envelope F(r, t) the contribution of the space-

zF
2/3

x ε θ,( ) zF
2/3Y ε θ,( )≡ 0.13zF

2/3 ε
U p

------ 10– 7.8θ2+ 
  ,≈

zF
1/3–

zF
1/3–

zF
1/3

zF
1/3
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time point to the measured density of the momentum
distribution is proportional to w(ε, θ, F(r, t))d3rdt,
where w(ε, θ, F) is determined in equation (16) or (19).
Integrating this expression successively over separate
variables, it is possible to trace how a superposition of
the distributions corresponding to different laser field
intensities averages and smears the interference pat-
tern. This is especially easily done for a Gaussian field
profile in space and time, for which the result of the
n-fold integration (1 ≤ n ≤ 4) has the form

(23)

where

and F0 is the peak field in the focused laser pulse. It
should be underscored that in the integral (23) the elec-
tron energy ε is fixed, and the dimensionless combina-
tion ε/Up(u) appearing in the momentum distribution
depends on the variable of integration. Figure 3 shows
the evolution of the angular distribution of electrons
with ε = 7Up(0) in subsequent averaging. The last dia-
gram attests to the fact that for field and atom parame-
ters which are standard for a modern experiment com-
plete averaging over the volume of the focus and over
the time completely smears the interference pattern and
the expected minimum of the angular distribution in the
direction of polarization. This diagram agrees qualita-
tively with the measurements performed in [4].

4.4. Relation with the Three-Step Model

We now switch in the probability (16) from quanti-
ties characterizing the final state (p, θ, β) to the vari-
ables (ϕ0, θ0, β) used in the three-step model [8]. The
equations (13)–(15) give the relation between them.
The azimuthal angle β in both sets of variables is the
same. We have for the differentials of the variables

(24)

where the Jacobian of the transformation is

(25)

Dropping the interference term in equation (16) and
using equation (25) as well as the fact that w– and w+ are
determined as functions of ϕ0, respectively, in the inter-
vals π/2 < ϕ0 < ϕm(θ) and ϕm(θ) < ϕ0 < π, we obtain in
the new variables

(26)

w ε θ,( )〈 〉 n un 1– w ε θ F u( ), ,( ) u,d∫∝

F u( ) F0 u2– 2⁄( )exp=

dϕ0dΩ0 JdpdΩ,=

J
∂ θ0cos ϕ0,( )
∂ θcos p,( )

-------------------------------=

=  
∂ θ0cos ∂ θcos⁄( )ϕ0

∂p ∂ϕ0⁄( )θ
---------------------------------------------

p2 ϕ0sin

pF
3 D

-------------------.=

dWr
σ q( )

π∆⊥
2 ϕ1 ϕ0,( )

----------------------------Wst F ϕ0( )( )
dt0dΩ0

T
-----------------.=
JOURNAL OF EXPERIMENTAL
Here π/2 < ϕ0 < π and the following notations have been
introduced:

is the Born differential scattering cross section, q =
2pF|cosϕ1 – cosϕ0|sin(θ0/2);

is the probability of ionization by a static field; and,

The formula (26) determines the probability per unit
time that at the moment of return Wst(ϕ0)dt0 electrons
freed in a time dt0 are scattered into the solid angle dΩ0;
this corresponds precisely to the assertion of the three-
step model. Thus the three-step model and the approx-
imate quantum calculation by the saddle-point method
using isolated stationary points give the same (to within
the interference term) distribution of rescattered elec-
trons, only written in different variables.

It follows from the equivalence of these two
approaches that their regions of applicability are the
same and therefore the three-step model is inapplicable
near the classical boundary. In the variables of the
three-step model (26), the distribution itself has no sin-
gularities. The transformation of variables

(ϕ0, θ0)  ( p, θ)

introduces a singularity, and therefore it is of a univer-
sal character: it is conserved for any form of the ioniza-
tion-time distribution and of the scattering cross section
as well as when the effect of the Coulomb field of the
ion on the classical electron trajectory in the continuum
is taken into account.

Ordinarily, in the three-step model [3–5, 8] the tran-
sition to measured quantities is done numerically. The
distribution given on a discrete grid (ϕ0, θ0) is projected
onto the grid in the (p, θ) plane. The finite sizes of the
grid cells mask the singularity of the transformation.
The singularity is nonetheless manifested in the fact
that as the size of the cells in the plane of the final states
( p, θ) decreases, the distribution increases near the
classical boundary while remaining unchanged in the
interior region of the phase space. Apparently, this
computational instability explains the maximum in the
energy spectrum in Fig. 3 in [3] as well as the exceed-
ingly large magnitude of the angular distribution near
the limiting rescattering angle [8].

5. CONCLUSIONS
The semiclassical analysis, presented above, of the

electronic distributions in the region of the high-energy
plateau makes it possible to describe in an explicit form
the dependence of the distributions on the parameters
of the laser field and the atom. The theory preserves the
freedom of choice of the specific form of the potential
of the parent ion and contains no other free parameters.

σ q( ) U q( ) 2π⁄( )2
=

Wst F( ) IC2 F( ) F Fa⁄( ) 2Fa– 3F⁄( )exp=

F ϕ0( ) F ϕ0sin , T 2π ω.⁄= =
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The results presented agree well, not only qualitatively
but also quantitatively, with measurements in the tun-
neling regime and with the numerical calculations of
the interference structure of electronic distributions
performed using a generalized Keldysh model.
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Abstract—An universal description of the polarization bremsstrahlung of a fast charged particle on a multi-
electron atom (Z @ 1, Z is the nuclear charge) is obtained using the local electron density method and the Tho-
mas–Fermi statistical model. It is shown that the cross section of the process can be represented in the form

dσPB(ω) = Z2d , where the function d  exhibits approximate scaling with respect to the parameter
ω/Z = ν, and the corresponding R factor (ratio of the cross sections in the polarization and ordinary channels)
is greater than 1 in a wide range of frequencies and reaches its maximum value at frequencies ω ≈ Z Ry. It is
demonstrated that in the frequency range pac < "ω < γ2pac (γ is the relativistic factor, pa is the characteristic
momentum of the atomic electrons, and c is the speed of light) the angular distribution of the polarization
bremsstrahlung of a relativistic charged particle undergoes narrowing due to the compensation, by the momen-
tum of the emitted photon, of the momentum transfer from the incident particle to the atomic core. © 2000
MAIK “Nauka/Interperiodica”.

σ̃PB ν( ) σ̃PB ν( )
1. INTRODUCTION

The local electron density method, which is widely
used to calculate atomic characteristics [1], has been
used to investigate polarization bremsstrahlung and its
interference with ordinary bremsstrahlung in the case of
strong inelastic scattering of quasiclassical electrons
with moderate energies by ions with a core [2]. This is
situation is of current interest for radiation processes
occurring in plasma with the participation of plasma
electrons with thermal energies. The advantages of the
local electron density method are due to the universal,
for all atoms, character of the results which it yields. It
is of interest to use this approach to calculate the polar-
ization bremsstrahlung of a fast, including relativistic,
charged particle on a multielectron system.

As is well known [3], a variety of features appear in
the bremsstrahlung of a relativistic electron (positron)
in the ordinary (static) channel: the directional pattern
of the radiation becomes narrower as the energy of the
incident particle increases, and a density effect, which
suppresses the static bremsstrahlung at low frequen-
cies, arises in the radiation in a medium. As first shown
in [4, 5], polarization bremsstrahlung is modified in a
special manner for relativistic particles: its spectral
cross section increases logarithmically with increasing
energy of the incident particle, and for not too short
wavelengths (λ > Ra, λ is the wavelength of the radia-
1063-7761/00/9005- $20.00 © 20788
tion and Ra is the characteristic size of the atom) the
directional pattern retains its dipole character.

The purpose of the present paper is to investigate,
using the local electron density method for a Thomas–
Fermi atom, the frequency and angular dependences of
the polarization bremsstrahlung cross section of a fast
charged particle.

2. POLARIZABILITY OF A THOMAS–FERMI 
ATOM IN THE LOCAL ELECTRON DENSITY 

APPROXIMATION

As is well known [6], the main characteristic deter-
mining the bremsstrahlung cross section in the polar-
ization channel is the nondipolar dynamic polarizability
of the atom α(ω, q). The systematic quantum-mechanical
calculation of this quantity for a multielectron atom is a
very complicated computational problem that must be
solved anew for each specific target [7].

In this connection it is helpful to use simple univer-
sal models suitable for estimating the polarization
bremsstrahlung cross section and determining the gen-
eral qualitative characteristics of this process.

One such model is the local electron density method
(or local plasma frequency method), first proposed by
Brandt and Lundquist for calculating the photoelectric
absorption cross section of multielectron atoms [1].
000 MAIK “Nauka/Interperiodica”
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In this model the expression for the dynamic polar-
izability of an atom has the form

(1)

Here ωp(r) =  is the local plasma fre-
quency, which depends on the local electron density
n(r) of the electronic core.

The Thomas–Fermi approximation will be used below
for the function n(r). This approximation gives [8]

(2)

Here rTF = ba0/Z1/3 is the Thomas–Fermi radius (b =
(9π2/128)1/3 . 0.8853, a0 is the Bohr radius, and Z is the
nuclear charge), and χ(x) is the Thomas–Fermi function.

The expression (1) can be transformed into a form
that reveals the similarity (scaling) law with respect to
the parameter ν = "ω/2RyZ (Ry = 13.6 eV):

(1a)

Here a dimensionless complex function β(ν) (the reduced
polarizability of a Thomas–Fermi atom) has been intro-
duced. The imaginary part of this function is (the prime
denotes differentiation with respect to the argument x)

(3a)

and the real part can be calculated from the Kramers–
Kronig relation:

(3b)

In equations (3a) and (3b) the quantity xν is determined
by the solution of the equation

(4)

The dependence g(ν) of the ratio of the modulus of
the function β(ν), calculated using equations (3a) and
(3b), to the modulus of its high-frequency limit (β∞(ν) =
–ν–2) is presented in Fig. 1. The figure also shows for a
KrI atom the corresponding dependence reconstructed
from the data of [7], where the dynamic polarizability
of an atom was calculated quantum mechanically on
the basis of the random-phase with exchange approxi-
mation.

It is evident that the function g(ν) = ν2|β(ν)| for a
Thomas–Fermi atom is maximum for small values of

α ω( )
ωp

2 r( )r2 rd

ωp
2 r( ) ω2– i0–
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9π3
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α ν( ) rTF
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Im β ν( ){ } π
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2

f ' xν( )
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Re β ν( ){ } 2
π
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ν2 ν̃2–
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0

∞

∫=

4πf x( ) ν2.=
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the dimensionless parameter ν ≈ 0.5 and approaches its
high-frequency limit for ν > 10.

However, it should be kept in mind that the approx-
imation used becomes inadequate at low frequencies
ν < 0.1, since, on the one hand, the local plasma fre-
quency approximation for the polarizability (1) of the
atom works poorly, and on the other hand the peripheral
regions of the atom, where the statistical model is inap-
plicable, contribute to the polarizability at these fre-
quencies. Indeed, a calculation using equation (4) gives
x0.1 = 3.4, x1 = 0.64, and x10 = 0.053, while the region of
validity of the statistical model in the variable x is deter-
mined by the inequality Z–2/3 ! x ! Z1/3.

Consequently, the analysis below will be confined to
the range ν > 0.1. We note that for Z ≈ 50 this corre-
sponds to photon energies "ω > 130 eV, which is much
higher than the ionization potential of the outer electron
shell of a neutral atom, so that the electronic core can
be assumed to be “unfrozen.” In addition, as one can
see from the values of xν presented above, the inequal-
ity xν ≤ 3.4 holds in this frequency range. According to
[9], the limiting reduced radius of a neutral atom as calcu-
lated in the Thomas–Fermi–Dirac model (with exchange)
is approximated well by the formula x0 = 4Z0.4. Thus, in
our case (Z @ 1) xν ! x0 and the results of the further
analysis are essentially independent of the refinements
of the initial statistical Thomas–Fermi model; they are
also valid for ions with a sufficiently low ionization
density, if x0(Zi/Z) @ xν, which is confirmed by the cal-
culation performed.

|β(ν)/β∞(ν)|
2.0

1.5

1.0

0.5

0 4 8 12
ν

2

1

Fig. 1. Dynamical polarizabilities, normalized to their high-
frequency limit, as a function of the dimensionless fre-
quency ν = "ω/2Z Ry for a KrI atom according to data from
[7] (curve 1) and for a Thomas–Fermi atom in the local elec-
tron density model (curve 2).
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As one can see from Fig. 1, good agreement
between the modulus of the dynamic polarizability of a
Thomas–Fermi atom, calculated in the local electron
density approximation, and the results of the quantum-
mechanical calculations [7] obtains for the dimension-
less frequency ν > 2. Both approaches give the same
values of the frequency at the maximum of the function
g(ν): ν = 0.5 or "ωmax = 490 eV, so that "ωmax @ Ip(KrI) =
14 eV and the electronic core of KrI can be assumed to
“unfrozen.” Near the maximum of the function g(ν) the
difference is less than 30% in the case at hand.

As shown in [2], the static polarizabilities in the sta-
tistical model on the basis of the local electron density
approximation agree satisfactorily with the results of
more systematic calculations [10], performed in a sta-
tistical model of the atom, and with the experimental
results.

3. POLARIZATION 
BREMSSTRAHLUNG CROSS SECTION

The spectral polarization bremsstrahlung cross sec-
tion of a fast electron on an atom is described in the
Born approximation by the expression [6, Chap. 5]
(hereafter, we employ the relativistic system of units,
" = c = me = 1)

(5)

Here dΩn is the solid angle in the direction of emission
of the photon, k and ω are, respectively, the wave vector
and frequency of the bremsstrahlung photon, q = pf  –  pi

is the change in the momentum of the incident particle,
and A(q) is the space–time Fourier transform of the
vector potential of the electromagnetic field of the inci-
dent particle, which in the axial gauge (A0 = 0) is given
by the expression

(6)

We note that the formula (5) is of a classical charac-
ter: it does not contain Planck’s constant, and it can be
obtained on the basis of classical calculations for a uni-
formly moving charge.

In what follows we shall calculate the bremsstrahl-
ung cross section in the Born–Bethe approximation, in
which one can set

(7)

where θ(x) is the unit step function.

dσPB
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We shall use the Thomas–Fermi momentum pa =
Z1/3/(ba0) as the characteristic atomic momentum.

The integral in equation (5) can be calculated ana-
lytically in the Born–Bethe approximation (7). The
result, however, remains unwieldy. Consequently, we
present here a general formula which explicitly singles
out two characteristic frequency ranges (ω < pav and
ω > pav) for the spectral polarization bremsstrahlung
cross section in terms of a single integral over the mag-
nitude of the transferred momentum:

(8)

Here

(8a)

The formula (8) in the frequency range ω < pav,
where the first term in braces contributes to the cross
section, reduces in the “large logarithm” approximation
to the well-known expression for the spectral polariza-
tion bremsstrahlung cross section of a relativistic inci-
dent electron [4, 5] (see also [5, Chap. 5):

(9)

where γ = (1 – v2)–1/2 is the relativistic factor.
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Switching in equation (9) to dimensionless vari-
ables using equation (1a) and the definition of the Tho-
mas–Fermi radius, we obtain the following expression
for the spectral polarization bremsstrahlung cross sec-
tion:

(10)

In equation (10) we have introduced the function

, which can be naturally called the reduced cross
section for the process, since in the case of the polarization
bremsstrahlung of a fast incident particle, considered
here, an approximate scaling in the parameter ω/Z
holds for it, while the dependence on the nuclear charge
is only logarithmic.

The spectral cross section for ordinary (static)
bremsstrahlung taking account of the screening of the
nuclear field [3] in the case of weakly inelastic scatter-
ing of an electron is given by the expression

(11)

The ratio of the cross sections determined by equa-
tions (10) and (11) makes it possible to find the R factor

dσPB ν( )
16Z2b6

3v 2
----------------- ν2β ν( )

2dν
ν

------=

× 2γv
ν0 1 v+( )Z2/3
--------------------------------ln Z2dσ̃PB ν( ).=

dσ̃PB ν( )

dσOB ω( )
16Z2

3v 2
------------dω

ω
------- v

pa

-----, ω pav .<ln=

ν

3.5
R

3.0

2.5

2.0

1.5

1.0

0.5

0

(a)

1
2

2 4 6

Fig. 2. Curves of the R factor versus the reduced frequency ν, calc
tivistic factor) on a Thomas–Fermi atom with nuclear charge Z: 
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in the frequency range under study (ω < pav) and in the
relativistic limit (v . 1):

(12)

The computational results for the R factor as a func-
tion of the dimensionless frequency ν are presented in
Fig. 2 for various values of Z and γ in the range ν <
137/Z2/3.

We note that photon energies "ω < 14 keV corre-
spond to the given values of the dimensionless fre-
quency ν (for nuclear charge Z ≈ 50).

It is evident that the value of the R factor of a rela-
tivistic incident electron is of the order of 1 in a wide
frequency range, and it reaches its maximum value of
the order of 2.5–3 for ω ≈ ZRy (ν = 0.5). The “sublog-
arithmic” effect of the nuclear charge on the scaling
with respect to Z is vanishingly small, and the effect of
the relativistic factor is stronger.

We note that the interference of the polarization and
static bremsstrahlung channels in the case of a relativ-
istic charged particle is small because of the differences
in the directional patterns of the radiation: the standard
channel gives sharply directed radiation in a cone with
an angle of the order of 1/γ [3], while the angular distri-

R ν Z γ, ,( )
dσPB

dσOB
------------≡ b6 ν2β ν( )

2
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------------ln
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------------------,=
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R
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1.0
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0 2 4 6
ν

(b)

2

1

ulated for bremsstrahlung of a fast electron (γ = (1 – v2)–1/2—rela-
(a) γ = 10; Z = (1) 60, Z = (2) 30; (b) Z = 60; γ = (1) 3, γ = (2) 10.
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bution of the polarization bremsstrahlung for frequen-
cies ω < pav is of a dipole character [4, 5].

In the present case of weakly inelastic scattering of
a charged Born particle in the frequency range ω < pav,
small scattering angles, where the influence of the pen-
etration of the incident particle into the electron core of
the atom is small, make the main contribution to
bremsstrahlung. Here lies the substantial difference
from the situation studied in [2], where bremsstrahlung
of electrons with threshold energies is accompanied by
penetration of the plasma electron into the ion core, the
penetration being all the stronger the higher the fre-
quency of the emitted bremsstrahlung photon.

As a result, the frequency dependences of the polar-
ization bremsstrahlung cross section are different for
different degrees of inelasticity of the scattering of the
incident electron. For the process studied in the present
work, the frequency maximum of the bremsstrahlung
cross section is shifted substantially into the region of
high frequencies and decreases more slowly with
increasing bremsstrahlung frequency than the corre-
sponding spectral dependences for emission of thresh-
old-energy photons [2].

In the frequency range ω > pav the law of conser-
vation of energy–momentum makes it necessary for the
incident charged particle to penetrate into the electronic
core of the target. For this reason, remission of a virtual
photon of the intrinsic field of the electron itself into a
photon on atomic electrons loses it coherent character.
As a result, the spectral polarization bremsstrahlung
cross section is suppressed compared with the cross
section for standard bremsstrahlung.

σ(θ, ω), arb. units
1.0

0.8

0.6

0.4

0.2

0 1 2 3
θ, rad

1

2

Fig. 3. Normalized angular dependences of the cross section
of polarization bremsstrahlung of a relativistic electron
(γ = 2.3) on a Thomas–Fermi atom (Z = 30) for various pho-
ton energies: "ω = (1) 50; (2) 5 keV.
JOURNAL OF EXPERIMENTAL
As first noted in [5], in the relativistic case for fre-
quencies pa < ω < γ2pa there exists a range of emission

angles ϑ  ≤  where compensation of the momen-
tum transfer from the incident particle to the target is pos-
sible as a result of the momentum of the bremsstrahlung
photon, so that bremsstrahlung remains coherent in the
polarization channel.

This range of angles is determined by the inequality
|qmin + k| ≤ pa, which can be rewritten in the form

(since qmin = –ωv/v2 by virtue of the law of conserva-
tion of energy–momentum). Hence follows in the rela-
tivistic limit for pa < ω < γ2pa the fact that the bremsstrahl-
ung in the polarization channel is directed, and the charac-
teristic maximum angle of emission is determined by the

quantity  and not by the reciprocal of the relativ-
istic factor, as in the case of ordinary bremsstrahlung.

The indicated narrowing of the directional pattern of
the bremsstrahlung in the polarization channel as the
energy of the bremsstrahlung photon increases from 5
to 50 keV for an incident electron with a relativistic fac-
tor γ = 2.3 and a Thomas–Fermi atom with Z = 30 is
shown in Fig. 3. In the high-frequency range ω > pav
the dimensionless frequency ν satisfies the inequality
ν > 10 (we assume that Z ≥ 30), and as one can see from
Fig. 1 the reduced polarizability of the Thomas–Fermi
atom is close to its high-frequency limit: β(ν) ≈ β∞(ν) =
–ν–2. The frequency dependence of the polarization
bremsstrahlung cross section in this case is determined
primarily by the integral over the angular variables and
over the magnitude q of the momentum transfer in
equation (5).

The formula (9) is no longer valid in the frequency
range ω > pav, and the general expression (8) must be
used to determine the polarization bremsstrahlung
cross section. In this case the second term in braces in
equation (8) makes a contribution. Analysis shows that
the factor (pa/ω)2, determining the smallness of the
contribution of the polarization channel to the total spec-
tral bremsstrahlung cross section, appears in the expres-
sion for the spectral cross section. However, the spectral-
angular cross section for polarization bremsstrahlung in

the range of photon emission angles γ–1 < ϑ ≤  is
larger than the corresponding cross section in the static
channel.

The model developed also makes it possible to cal-
culate the cross section for induced bremsstrahlung and
absorption of photons. Such calculations, including the
polarization channel and its interference with the ordi-
nary (static) channel, have been performed and ana-
lyzed recently [11] for thermal-energy electrons scat-
tered by ions in a near-resonance laser field. It follows

pa ω⁄

ϑ
2
--- 1

2
---

pa
2v

ω2
---------- 1 v–( )2

–≤sin

pa ω⁄

pa ω⁄
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from these calculations, specifically, that the magnitude
of the corresponding cross sections in the ultraviolet
spectral range studied is very small even with a reso-
nant external field. The effect will be even smaller in
the nonresonant case considered in this paper. Indeed,
as is well known [12], the cross section for induced
bremsstrahlung and absorption in the standard (static)
channel decreases as the inverse of the fourth power of
the frequency of the external radiation. Since the ratio
of the cross section in the polarization channel to the
static channel does not exceed a value of the order of 1
in the entire frequency range, it is obvious that the
bremsstrahlung cross section in the high-frequency
range considered here ("ω > 100 eV) will be extremely
small. In addition, a direct photoelectric absorption
channel is open in this case. This channel will prevail
over absorption in the bremsstrahlung channel.

4. CONCLUSIONS
A universal description of polarization bremsstrahl-

ung of a fast charged Born particle on a multielectron
atom (Z @ 1) in the bremsstrahlung photon energy
range "ω > 100 eV was given on the basis of the local
electron density method and the Thomas–Fermi model.

It was shown that the R factor, which determines the
relative contribution of the polarization channel to the
total bremsstrahlung cross section, possesses approxi-
mate scaling in the parameter ω/Z and reaches its max-
imum value Rmax(γ) = 2.5–3, which increases logarith-
mically with increasing energy of the incident particle,
at frequencies ωmax ≈ ZRy.

The decrease in the R factor with increasing energy of
the emitted photon in the low-frequency range ω < pav is
most strikingly expressed right up to frequencies of the
order of 20ZRy, where the modulus of the polarizabil-
ity of the Thomas–Fermi model decreases, reaching its
high-frequency asymptotic value.

In the spectral interval 10Z Ry < ω < pav the
decrease in the R factor and in the intensity of the polar-
ization bremsstrahlung is weakly logarithmic and is
due to the decrease in the maximum impact parameter.

In the high-frequency range ω > pav the frequency
variation of the intensity of the polarization bremsstrahl-
ung is determined primarily by kinematic factors and by
the breakdown of the coherence of the reradiation of a
virtual photon into a real photon on the atomic elec-
trons. The decay of the spectral intensity follows a
power law. At the same time, the directional pattern of
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
the radiation in the polarization channel becomes nar-

rower, so that ϑ  ≤ , and in the frequency range
pa < ω < γ2pa there exists a range of bremsstrahlung

angles, γ–1 < ϑ  ≤ , where the polarization mech-
anism prevails over the standard (static) emission mecha-
nism.
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Abstract—It is shown that the rate and degree of ionization of an atom can be controlled by preparing a specific
superposition of Rydberg states. This effect is due to the Raman interaction of Rydberg levels via resonant
lower-lying levels of the atom. Depending on the initial population of an atom interacting with a strong laser
field, the atom either ionizes completely or exhibits an extremely high degree of stability (in this case the prob-
ability of the atom remaining in a bound state when the laser pulse is switched off is close to 1). It is shown that
states which are stable against ionization decay or, conversely, decay rapidly into the continuum can be prepared
using double laser pulses with a controllable time delay. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that stabilization of an atom is pos-
sible in a strong laser field [1–10]. Here stabilization
means saturation (at a level less than 1) or even a
decrease in the ionization probability of an atom with
increasing field intensity. Two types of stabilization are
distinguished: stabilization of unexcited atoms by the
Kramers–Henneberger mechanism, which appears in
relatively intense fields (>1014 W/cm2) [7], and interfer-
ence stabilization of initially excited (Rydberg) atoms
in weaker fields. The physical mechanism leading to
interference stabilization is coherent repopulation of
Rydberg levels as a result of Raman-type transitions in
the course of ionization. Such a repopulation can occur
as a result of virtual transitions via the continuum
(Λ-type transitions) and via lower-lying resonance lev-
els (V-type transitions) (see Fig. 1). Correspondingly,
depending on the predominant transition channel, Λ- and
V-type interference stabilization are distinguished. The
characteristic radiation intensities at which interference
stabilization appears vary over wide limits, which depend
on the configuration of the quantum system (1010–
1013 W/cm2 for Λ stabilization and 107–1010 W/cm2 for V
stabilization).

If the temporal profile of the laser pulse is square,
then it is best to use the formalism of quasienergies and
quasistationary states to describe an atom in the field of
the laser wave. The corresponding analysis shows that
the stability of various quasistationary states (for a
quantum system using V-type transitions) against ion-
ization decay is different and different quasienergy levels
possess different decay times. The weight of the quasis-
tationary states with long and short decay times and dif-
ferent phase relations between the initial amplitudes of
population of the coherent Rydberg state could be dif-
ferent. In this connection it is reasonable to infer that
1063-7761/00/9005- $20.00 © 20794
depending on the initial population of the atomic levels,
an atom can decay into a continuum within longer or
shorter times (or, if the interaction time with the laser
field is fixed, depending on the initial population, a dif-
ferent fraction of the atomic population enters the con-
tinuum). The objective of the present work is to check
this conjecture and to formulate the conditions under
which it is possible to observe the dependence of the
emergence of an electron on the initial atomic popula-
tion distribution. The influence of the phase properties
of the initial state of an atom on the ionization of V and
Λ systems was investigated. It was shown that even
though the decay time of various quasienergy levels in
a Λ system is the same, for short times (shorter than the
Kepler period of revolution of an electron on a classical

ω, É

En

Em
~

ω, ΩR

Fig. 1. Scheme of Raman-type transitions via the continuum
(Λ type) and lower-lying resonance states (V type), resulting
in coherent repopulation of the Rydberg atom giving rise to
interference stabilization.
000 MAIK “Nauka/Interperiodica”
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orbit) the initial population of an atom strongly influ-
ences the ionization probability of the atom.

We note that this is the first time that the problem
considered here has ever been formulated. In other
works [1–6, 8–10] concerning interference stabiliza-
tion only one atomic level was initially populated. An
attempt to investigate the dependence of the ionization
on the initial atomic population distribution (on the
basis of a Λ system) was made in [11], but a compre-
hensive phase analysis was not made there. An impor-
tant and absolutely new result obtained in the present
work is a prescription for preparing a special coherent
state of an atom and for controlling the ionization of
this state. We propose that the atom be exposed to two
successive laser pulses. Depending on the time interval
between the pulses, the electron can either completely
leave the atom and enter the continuum or it can be
trapped, to a high degree, in the atomic levels.

In Section 2 all calculations are performed on the
basis of a model that takes into account only Λ-type
transitions. In Section 3 similar calculations are per-
formed for a model that takes into account V-type tran-
sitions. Section 4 is devoted to a discussion of the pos-
sibility of observing experimentally the dependence of
the emergence of an electron on the initial state of the
electron. The basic results of this work are summarized
in the Conclusions section. The atomic system of units
(e = me = " = 1) is used throughout.

2. COHERENT POPULATION AND IONIZATION
OF A Λ SYSTEM

Let the atom be initially excited in such a way that
the Rydberg levels near a certain level  are coher-
ently populated. Let the frequency of the field, which
ensures single-photon emergence into the continuum
(ω > ), be such that there are no resonances with
lower-lying levels. This is a typical scheme for Λ-type
interference stabilization.

The evolution of an atom in the field of an electro-
magnetic wave is determined by the nonstationary
Schrödinger equation

(1)

Here  is the atomic Hamiltonian and  = –F ·
rcos(ωt) is the operator describing the interaction of
the atom and the field (F is the amplitude of the laser
field).

To solve equation (1) we expand the wave function
of the atom in a field in terms of the eigenfunctions of
a free atom. We shall assume the polarization of the
field to be linear, and we shall also assume that the
angular momentum quantum number for all Rydberg
levels which effectively interact because of the laser
field is the same (for simplicity, we set l = 0) and that

En0

En0

i
∂Ψ
∂t

-------- Ĥ0 V̂ t( )+[ ]Ψ.=

Ĥ0 V̂ t( )
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transitions to levels with other orbital angular momenta
can be neglected. We shall also neglect free-free atomic
transitions and we shall take into account only the inter-
action of levels with the states of the continuum with
l = 1. The applicability, quality, and possibility of going
beyond the framework of these approximations has
been discussed in detail in [11].

We shall write the wave function Ψ(t) of the atom in
the form of an expansion:

(2)

where ϕn and ϕE are the wave functions of the discrete
spectrum and the continuum, respectively (n is the prin-
cipal quantum number and E > 0 is the energy in the
continuum).

The probability of ionization of an atom during the
interaction with the pulse is

(3)

where the functions an are taken at the moment the laser
pulse is switched off.

Using the expansion (2), the Schrödinger equation (1)
can be reduced to a system of equations for the proba-
bility amplitudes an(t) and aE(t). Using the procedure of
adiabatic elimination of the continuum [11, 12], the
functions aE(t) can be expressed in terms of an(t) and
the equations for the latter can be written as

(4)

Here

is the ionization-widths tensor, Vαβ = –F · rα, β, and
rα, β = 〈α|r|β〉 are the dipole moment matrix elements.

If the amplitude F of the field does not depend on
the time, then the system of equations (4) possesses sta-
tionary solutions an(t) = bnexp(–iγt), which determine
the complex quasienergies γj of an atom in a field and the
corresponding quasistationary wave functions ψj . The
equations for the quasienergies and the constants bn fol-
low directly from equation (4):

. (5)

In terms of the quasienergies, the solution of the ini-
tial problem is determined by a superposition of the
quasienergy states. Specifically, the probability ampli-

Ψ t( ) an t( )ϕn r( )
n

∑ EaE t( )ϕE r( ),d∫+=

wion 1 an
2
,

n

∑–=

iȧn Enan i
Γn n',

2
----------an' .

n'

∑–=

Γn n', 2π
Vn E,

2
----------

VE n',

2
-----------=

γ En–( )bn i
Γn n',

2
----------bn'

n'

∑–=
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tudes an(t) in such an approach can be represented in
the form

. (6)

The expansion coefficients Cn, j satisfy, in the first
place, the same equations as the constants bn (5) and, in
the second place, the initial conditions

(7)

(an(0) are the probability amplitudes of initial popula-
tion of the levels).

We shall assume everywhere below that the matrix
elements Vn, E and the components of the ionization-
widths tensor Γn, n' do not depend on the index n: Vn, E ≈

 and Γn, n' ≈  ≡ Γ, which is valid for n @ 1 [13].

The simplest model in which interference stabiliza-
tion can occur is a model in which there are two dis-
crete levels plus the continuum. The complex quasien-
ergies of such a system have the form

(8)

where E1 and E2 are the energies of the discrete levels,
∆ = E2 – E1 is the distance between the levels, and

For a two-level system the strong-field criterion is Γ @ ∆.
In this limiting case the widths of the two quasienergy
levels are substantially different: Im[γ–] = –Γ and
Im[γ+] = –∆2/4Γ. The smallness of the level width γ+ for
Γ @ ∆ corresponds to interference stabilization.

The solution of the initial problem for a two-level
model gives

(9)

The probability amplitudes—a1(0) and a2(0)—of
the initial coherent population satisfy the normalization

condition  +  = 1. In the strong-field

an Cn j, iγ jt–( )exp
j

∑=

Cn j,

j

∑ an 0( )=

Vn0 E, Γn0 n0,

γ± E1
∆
2
--- i

Γ
2
---– iβ,±+=

β Γ
2
--- 

 
2

∆
2
--- 

 
2

– .=

a1 t( )
i Γ 2⁄( )2

2β ∆ 2⁄ iβ+( )
----------------------------------a1 0( ) Γ 2⁄

2β
----------a2 0( )– iγ+t–( )exp=

+
i– Γ 2⁄( )2

2β ∆ 2⁄ iβ–( )
---------------------------------a1 0( ) Γ 2⁄

2β
----------a2 0( )+ iγ–t–( ),exp

a2 t( )
Γ 2⁄–
2β

-------------a1 0( ) i
∆ 2⁄ iβ+

2β
----------------------a2 0( )– iγ+t–( )exp=

+
Γ 2⁄
2β

----------a1 0( ) i
∆ 2⁄ iβ–

2β
---------------------a2 0( )+ iγ–t–( ).exp

a1 0( )
2

a2 0( )
2
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limit (Γ @ ∆) and at sufficiently long times (Γt > 1) the
formulas (9) take the extremely simple form

(10)

In equation (10) we neglected the exponentially small
terms proportional to the factor exp(–iγ–t) ~ exp(–Γt).

The formulas (10) are interesting in that the proba-
bility amplitudes for an atom to occupy discrete levels
(after the laser field is switched off) are proportional to

the difference of the initial amplitudes (  – ).
Thus, depending on the value of this difference, the
population of the discrete spectrum could be substan-
tially different. Correspondingly, the ionization proba-
bility, determined by the expression

(11)

depends strongly on the initial population of the atom.

As the field increases, the argument of the exponen-
tial in equation (11) approaches zero (see equation (8))
and, hence, the exponential itself can be made as close

to 1 as desired. If it is assumed that  and  are

equal to one another in absolute magnitude (  =

 = 1/ ) and only their phases are different, then

the ionization probability of an atom is either 1 (if 

and  are in-phase) or it is close to 0 (in the opposite

case, when the difference of the phases of  and 
is π)! Thus, controlling the phase difference between
the amplitudes of the initially populated atomic levels
makes it possible either to attain complete ionization of
the atom or to forbid an electron to leave the atom into
the continuum.

Everything said above is valid only for a two-level
system, and it is not claimed that the description of a
Rydberg atom is adequate. The model of an atom with
an infinite number of equidistant energy levels with the
same oscillator strengths is found to be much closer to
reality. In such a model En ≈  + (n – n0)∆, where

∆ =  (in the atomic system of units), and the sys-
tem (5) can be rewritten as

(12)

(In equation (12), energy is measured from the level .)

a1 t( )
1
2
--- a1 0( ) a2 0( )–[ ] iγ+t–( ),exp=

a2 t( ) 1
2
---– a1 0( ) a2 0( )–[ ] iγ+t–( ).exp=

a1
0( ) a2
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wion 1
1
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The solution of the initial-value problem for the sys-
tem (12) gives

(13)

where γ are the complex quasienergies levels deter-
mined as roots of the equation

(14)

In the limit Γ @ ∆ the solutions of equation (14)
have the asymptotic form [1]

(15)

where s = 0, ±1, ±2, ….
Substituting the expression (13) into equation (3)

gives the following expression for the ionization prob-
ability of an atom when the laser pulse is switched off:

(16)

where Γstr = 4∆/π2Γ is the ionization width of the
quasienergy levels of the atom in the field of an intense
electromagnetic wave [1]. In the strong-field limit the
width Γstr is small (Γstr ! ∆), which once again corre-
sponds to interference stabilization. Therefore, in a
strong field the expression on the right-hand side of
equation (16) can be expanded in powers of Γstr/∆. In
the first approximation this expansion has the form

(17)

We call attention to the fact that the formula (17) is
identical to the analogous formula from [11, p. 190], if the
latter is written to the same accuracy as equation (17).
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It is easy to see that if only one atomic level is pop-
ulated at the moment the laser field is switched on, the
second term in braces in equation (17) vanishes. In such
a situation the ionization probability as a function of the
duration of the laser pulse follows a simple exponential
law (with decay constant Γstr). However, as follows
from equation (17), a large deviation from this law will
occur if several Rydberg levels are initially populated.

To simplify the analysis and make it clearer we
switch from the expression for the ionization probabil-
ity to a formula for the ionization rate. For this we dif-
ferentiate the expression (17) with respect to time

(18)

It follows from equation (18) that the course of the
ionization process depends strongly on the initial
atomic population. Indeed, if initially N Rydberg levels
are populated, then the ionization rate (at the time t = 0)

will vary from 0 (when  = 0) to NΓstr (when
the phases am(0) do not depend on m). Correspond-
ingly, at short times (much shorter than the Kepler
period TK = 2π∆–1) the initial population of the Rydberg
atom strongly influences the degree of ionization of the
atom (which in the present case can be calculated as the
product of the ionization rate by the duration of the
laser pulse).

This influence vanishes at longer interaction times.
Integrating the expression (18) over time in one Kepler
period we obtain

(19)

As follows from equation (19), on the average over
one Kepler period a fraction of the atomic population
that ionizes does not depend on the initial population of
the atom. This is also confirmed by numerical calcula-
tions (see Fig. 2): the ionization curve has a “step” form
with “steps” of identical height. Thus, in a quantum
system where population redistribution on the quantum
levels is due to Raman transitions via the continuum
(Λ type), at times comparable to a Kepler period, it is
impossible to control the emergence of an electron into
the continuum by varying the initial population of the
atom. This is probably due to the fact that in a Λ system
the ionization widths of all quasienergy levels of an
atom in a field are identical, i.e., a single parameter
determines the time scale on which ionization occurs,
and an electron emerges into the continuum, on the
average, at the same rate.

We note that if the nonequidistant nature of the
atomic spectrum, as is characteristic for a Rydberg
atom, is taken into account, then the “step” character of
the curve Wion(t) will be destroyed for large values of t
(see Fig. 3). For times at which the nonequidistant
nature of the atomic spectrum becomes important, the

Ẇ ion Γ str Γ strt–( ) am 0( ) imt∆–( )exp
m

∑
2

.exp=

am 0( )
m∑

W ion t

t TK+
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Fig. 2. Ionization probability of a Λ system (equidistant
spectrum), whose initial population is a Gaussian distribu-
tion (an(0) = Aexp{–(n – n0)2/σ2 + inθ}), as a function of the
duration of the laser pulse. θ = (1) 0, (2) π/2, (3) π. Values of
the remaining parameters: Γ/∆ = 4, σ = 2.0. The computa-
tional scheme contains 17 levels.
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Fig. 3. Ionization probabilities for a Λ system, whose initial
population is a Gaussian distribution (an(0) = Aexp{–(n –
n0)2/σ2 + inθ}), as a function of the duration of the laser
pulse. The values of the parameters chosen for the calcula-
tions are: Γ/∆ = 9, σ = 2.0, θ = π/2. The curves 1 and 2 cor-
respond to the equidistant spectrum and the real spectrum
of a Rydberg atom, respectively; n0 = 60. The computa-
tional scheme contains 17 levels.
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ionization probability curve passes into a curve corre-
sponding to exponential decay with rate Γstr .

3. COHERENT POPULATION
AND THE IONIZATION OF A V SYSTEM

For a two-level system the widths of the quasienergy
levels were different and, as a result, the ionization pro-
cess depended strongly on the initial atomic population
distribution. Is it possible for a situation where different
quasienergy levels possess different widths to arise in a
system that adequately describes a real atom (in the
simplest case, a system consisting of an infinite number
of equidistant levels coupled with the field by different
matrix elements)?

We shall show that such a situation occurs when the
Rydberg levels interact owing to Raman transitions via
the lower-lying resonance levels. Just as in the preced-
ing section, we assume that the orbital angular momen-
tum quantum number of the Rydberg levels is fixed. For
definiteness we shall assume that initially the Rydberg
levels of the s series (l = m = 0), coupled by the field
with the p continuum and a collection of low-lying res-
onant p levels, are populated. For such a system the
wave function of the atomic electron can be written in
the form

(20)

The formula (20) differs from equation (2) by the pres-
ence of the additional term

(  and  are, respectively, the wave functions of the
lower-lying levels and the expansion coefficients corre-
sponding to these levels). The formula (3) for the ion-
ization probability of the atom will also change simi-
larly. It assumes the form

(21)

Here, just as in equation (3), the values of the functions
an and  are taken at the moment the laser pulse is
switched off.

The equations determining an and  in the adia-
batic elimination of the continuum approximation have
the form

(22)
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where  = /2 are the components of the Rabi-
frequency tensor.

If |En| ! ω, where En is the characteristic energy of
the initially populated Rydberg levels, then, as can be
easily shown [10], the spacing between neighboring
lower-lying resonance levels can be greater than all
other frequency parameters in the problem. Thus, if the
initially populated Rydberg levels are in resonance with

a lower-lying state (i.e., when |En –  – ω| ~ ∆, where
∆ is the spacing introduced in equation (8) between

neighboring Rydberg energy levels and  is the
lower-lying energy level closest to resonance), then in
equation (22) only one term (the term corresponding to
the index m0) need be retained in the sum over m'.

Once again, we shall employ the approximation of
index-independent matrix elements (Γn, n' ≈ Γ,  ≈
ΩR) and an equidistant level spectrum En (En ≈  +
(n – n0)∆). Assuming, as we did in the preceding sec-
tion, that the temporal profile of the laser pulse is
square, we shall solve the system (22) by the method of
eigenvalues (quasienergies) and the corresponding eigen-
vectors, i.e., we seek the solution of equation (22) in the
form

(23)

The formulas (23) are a modification of the rela-
tion (6) for an atomic model corresponding to V-type
transitions. Substituting the expressions (23) into equa-
tion (22) easily gives the general form of the solution of
the system of equations (23):

(24)
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In equation (24), just as in equation (13), an(0) are
the initial probability amplitudes for finding an atom in
the nth Rydberg level (it is assumed that initially the
population of the lower-lying resonance level is zero),
and δ =  + ω –  is the detuning from resonance.
The quasienergies γ are determined from the character-
istic equation

(25)

Let us analyze the role of the parameters appearing
in equation (25). As we have shown in [8], when the
frequency is much greater than the ionization threshold
(ω @ |En|)—the condition formulated above—in the
field range where nonlinear effects can be observed, the
Rabi frequency ΩR is much larger than all other fre-
quency parameters—∆ and Γ—in equation (25). Then
an approximate solution of the equation can be sought

by expanding in powers of . In the first nonvanish-
ing approximation the real and imaginary parts of γj

have the form

(26)

As follows from equation (26), because of reso-
nance mixing of Rydberg levels with the lower-lying

level , ionization is strongly suppressed (|Im[γj]| ! Γ),
and a large number of levels described by the inequality

(27)

are drawn into resonance.
When the condition (27) no longer holds, the reso-

nance interaction of the Rydberg levels with the lower-

lying level  is negligible, and the quasienergies are
now determined not by the formulas (26) but rather by the
relations obtained by solving the problem of the evolution
of a Λ-type system (see equations (14) and (15)).

As follows from equation (26), the imaginary part of
individual quasienergies can be made to vanish by
varying the detuning δ. For an equidistant spectrum this
situation is realized when the detuning δ from reso-
nance satisfies

(28)
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where s is an arbitrary integer. In this case the quasien-
ergy level γs is equal to the detuning δ, and its imaginary
part vanishes exactly (this is easily shown by substituting
the expression (26) (with j = s) into equation (25)). Thus,
when the condition (28) is satisfied, the quasienergy spec-
trum contains an absolutely stable level whose popula-
tion is “locked”: an electron cannot leave a level γs into
the continuum, irrespective of the duration of the laser
pulse.

Without loss of generality of the exposition we can
remain with the case δ = ∆/2, since adding to the detun-
ing δ an integer multiple of the value of ∆ can be
reduced to the same case by renumbering the infinite
system of Rydberg levels. The ionization probability
can be calculated using equations (24) only numeri-
cally, and an analytic solution of the problem can be
sought only in the limiting case of long-duration laser
pulses. If a laser field interacts with the atom for a
period of time long enough so that all quasienergy lev-
els with the exception of the level with zero width can
be emptied, then in equations (24) the summation over
j can be removed, retaining only one term correspond-
ing to the stable level γ = ∆/2, since all other terms will
be exponentially small. The criterion for a long pulse
duration for which such an approach is valid is

(29)

where t is the time during which the pulse interacts with
the atom. Using equation (26) the latter formula can be
written as

(30)

To estimate the pulse duration, satisfying the condi-
tion (30), the parameters Γ and ∆ can be set equal to one
another. In addition, if the inequality (30) holds for
|j | = 1, then it clearly holds for other values of j. Thus
the criterion for a long pulse duration will be

(31)

Here TK is the classical period of revolution, introduced
in the preceding section, of an electron on a Kepler
orbit.

The condition (31) is very stringent: the pulse dura-
tion must be several times greater than the Kepler period.
Assuming the inequality (31) to hold, an approximate
(neglecting contributions from all quasienergies
except γ = ∆/2) calculation of the ionization probability
gives

(32)

It is easy to see that when only one Rydberg level is
populated initially, an(0) = δn, k (δn, k is the Kronecker

Im γ ∆/2≠[ ] t 1,>

Γ ∆2

πΩR
2

----------
 
 
  2

j2t 1, j> 1 2 …,±,±=

t
ΩR

∆
------- 

 
4

TK .>

W ion 1
ΩR ∆⁄( )2

1 π2 ΩR ∆⁄( )2+
------------------------------------

an 0( )
n n0– 1/2–
---------------------------

n

∑
2

.–=
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delta function), the formula (32) is identical to the for-
mula obtained in [6]. However, in the more general case
where several atomic levels are coherently populated
initially, the formula (32) is much richer.

If the initial distribution {an(0)} is fixed, then as the
field increases the ionization probability decreases,
reaching in the limit of a laser field of infinite intensity
the value

i.e., as the field intensity increases, the atom becomes
increasingly more stable with respect to ionization
decay. The ionization probability (32) is maximum and
becomes equal to 1 if an(0) is an “even” function of the
difference n – n0 (i.e.,  = , n = n0,
n0 ± 1, n0 ± 2 …). Then the sum presented in equation (32)
vanishes exactly.

What is the minimum value of the ionization proba-
bility (32) and for what initial distribution is it obtained?
It is obvious that if the population amplitudes of the Ryd-
berg levels are initially chosen so that when the laser
field is switched on they form a vector corresponding to
quasienergy γ = ∆/2, then the population of the atom
remains unchanged (because the quasienergy level
does not have the decay width) when the laser field is
switched off, and therefore the ionization probability of
the atom will be zero in this case. Thus, the problem of
searching for the most stable state of an atom reduces
to finding the state vector corresponding to the quasien-
ergy level γ = ∆/2. It is easy to calculate this vector. Tak-
ing account of the normalization, it is given by

(33)

We recall that everywhere in the discussion above
we solved the problem of the ionization of a V-type
quantum system in which only the upper levels En were
populated initially. The state (33) will satisfy this con-
dition in the limit of a high-intensity field, ΩR @ ∆,
when in equation (33)  approaches zero. Such a
state gives a minimum ionization probability (32) on
the class of states studied on the basis of this work. The
higher the intensity of the laser field, the smaller the
emergence of an electron from this state is.

Such a state can be represented explicitly as

(34)
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and the formula for the probability calculated accord-
ing to the state (34) has the form

(35)

As follows from equation (35), even in compara-
tively weak fields, for which ΩR ~ ∆, the ionization
probability does not exceed 10% and drops rapidly with
increasing field (inversely as the laser intensity).

The formulas (32) and (35) are valid only when the
condition (31) is satisfied, i.e., in the approximation of
a laser pulse with infinite duration. The problem was
solved numerically for finite interaction times with the
electromagnetic field. Figure 4 displays the dependence
of the ionization probability of an atom which initially
is in the state (34) on the laser field strength (expressed
in dimensionless units, V = F/ω5/3) for different dura-
tions of the laser pulse. As one can see in the figure, the
probability curve reaches its asymptotic limit (35) all
the earlier the longer the field-atom interaction time,
but even for short pulses with t = TK/6 the asymptotic
limit is reached in fields V < 1.

Figure 5 also shows the probability of ionization
from the state (34), but as a function of the detuning δ.
As one can see from the figure, in a strong field the ion-
ization probability is insensitive to a change in the
detuning. This result corresponds to the conclusions
drawn in [10], we showed that in the strong-field limit
the ionization of a Rydberg atom becomes increasingly
less sensitive to the detuning.

4. ANALYSIS OF THE RESULTS

As follows from the two preceding sections, the
dependence of the ionization probability on the initial
population distribution on Rydberg levels in the limit of
long pulse duration (>TK) is manifested only in the case
of a system in which a resonance interaction (V-type
transitions) is taken into account. Therefore a possible
experiment to observe the indicated effect at such times
necessarily requires examining atoms and laser fields
forming a scheme of V-type transitions (i.e., the spec-
trum of the atom and the frequency of the laser field
must be such that the populated Rydberg levels initially
are in a resonance state with respect to any lower-lying
atomic level).

All results presented in the preceding section for a
V-type system were obtained on the basis of an equidis-
tant model of an atomic spectrum. However, it is easy
to show that the conclusions drawn in the preceding
section remain valid when the nonequidistant nature of
the atomic spectrum and the dependence of the oscilla-
tor strengths on the principal quantum number n are
taken into account. For this it is sufficient to show that
for an arbitrary nonequidistant spectrum there always
exists a detuning δ such that one of the levels in the
quasienergy spectrum will possess zero width. Two

W ion 1
π2 ΩR ∆⁄( )2

1 π2 ΩR ∆⁄( )2+
------------------------------------–

1

1 π2 ΩR ∆⁄( )2+
------------------------------------.= =
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Fig. 4. Ionization probability of an V system (equidistant
spectrum) initially in an “absolutely stable” state (34) as a
function of the dimensionless parameter V = F/ω5/3 =
(Γ/∆)1/2. Pulse duration t = (1) TK, (2) 5TK, (3) 15TK,
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questions remain. How can such coherent states whose
ionization is either virtually complete or, conversely,
almost zero be produced? Can the emergence of an
electron be controlled by regulating the initial state of
the atom?

The technology for selectively exciting a distin-
guished Rydberg level is now well developed. If an
atom with one excited level is prepared, then there is no
difficulty in “smearing” the atomic population over
neighboring Rydberg levels. It is sufficient to expose
the atom to an intense laser field and then, on account
of Raman transitions through the continuum (Λ type) or
lower-lying resonance state (V-type), the atomic popu-
lation becomes redistributed over levels neighboring
the initially excited levels. Photoionization from the
coherent state produced can be observed by exposing
the atom to a second laser pulse.

However, let us follow in greater detail the state pro-
duced by the first pulse. We require that the parameters
of the pulse—the frequency, intensity, duration, and
polarization—be the same as for the second pulse. We
also require that the frequency permit the presence of a
stable state in the quasienergy spectrum (equation (28)
in the case of an equidistant spectrum). If the duration
of both pulses is sufficiently long, then there is enough
time for all quasienergy states with a nonzero ioniza-
tion width to decay over the interaction time with the
first pulse. This means that by the moment when the
atom starts to interact with the second laser pulse the
distribution of the probability amplitudes for popula-
tion of the Rydberg levels, more precisely, their abso-
lute values, is identical to the analogous distribution for
an absolutely stable state.

Does this mean that ionization of the atom by the
second pulse is impossible? A careful analysis shows
that this is not the case. It is necessary to take account
of the fact that the phases of the amplitudes an for expan-
sion of the wave function of an atomic electron over the
spectrum of a free atom (when the first pulse is switched

x
Target

α

Laser radiation

Fig. 6. Diagram of an experiment designed to observe the
controllable ionization of a Rydberg atom by double laser
pulses.
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off) evolved differently in time. If a distribution of the
atomic population {an} was present when the pulse was
switched off, then at the moment the second pulse is
switched on this distribution will be different:

(36)

We designated the distribution of probability ampli-
tudes at the moment the second pulse is switched on in
accordance with the notations used in the preceding
sections: τ is the time delay between the two laser
pulses and  is the energy level populated up to the
start of the interaction.

For an equidistant spectrum En –  = (n – n0)∆. It
is obvious that if the delay time τ between the two laser
pulses is a multiple of the Kepler period TK = 2π∆–1,
then to within an irrelevant general phase factor the dis-
tribution (36) will transform into {an}, and at the
moment the second pulse is switched on the atom will
be in an absolutely stable state, the probability of ion-
ization from which is zero. However, the situation will
be qualitatively different for other delay times. More-
over, it is easy to see that for τ equal to a half-integer of
the Kepler period TK, it will be completely opposite - in
this case the atom ionizes completely. It is easy to arrive
at this conclusion by noting that if the distribution {an}
were “odd” (i.e.,  = – , k = 0, 1, 2, …),
which is valid for an absolutely stable state (see preced-
ing section), then the distribution (36) for τ = π/∆
becomes “even” (  = ), and for such states
the ionization probability (32) becomes 1. Thus, the
probability of ionization of an atom by a second pulse
as a function of the delay time varies from 0 (τ = 0,
TK, 2TK, …) to 1 (τ = TK/2, 3TK/2, …); it is easy to see
that the ionization probability is TK-periodic. (We note
that the periodicity of the structure of this function for a
real Rydberg atom on long times will break down because
the atomic spectrum is naturally nonequidistant.)

The technique for producing a pair of pulses sepa-
rated by a controllable delay time is now quite well
developed. An experiment for checking the results of
the theory expounded here can employ the scheme
shown in Fig. 6, similar to the scheme proposed in [14].
Two wide laser beams, propagating in directions mak-
ing an angle α with one another, converge on a target
consisting of a rarefied gas of Rydberg atoms. If it is
assumed that at the point x = 0 the time delay between
the pulses is zero, then at an arbitrary point the time
delay is given by the formula

(37)

Thus, if the spatial ionization pattern is photo-
graphed after both pulses interact with the atom, then a
periodic structure with period cTK/α will be obtained.
Figure 7a shows the dependence of the ionization prob-
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=  an i En En0
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Fig. 7. Probability of ionization of a Rydberg atom by successive laser pulses as a function of the delay between the pulses:
(a) n0 = 5,  = 2, ω ≈ 4 × 1015 s–1, F = 1 × 108 V/cm (I = 3 × 1013 W/cm2), t = 15TK = 0.3 ps; the computational scheme contains

6 levels; (b) n0 = 25,  = 10, ω ≈ 1.7 × 1014 s–1, F = 6 × 105 V/cm (I = 1 × 109 W/cm2), t = 50TK = 120 ps; the computational

scheme contains 18 levels.

m̃0

m̃0
ability on the delay time between the two pulses for the
case at the limit of applicability of the theory
expounded in this paper: the principal quantum number
of the initially populated level is relatively small, n0 = 5.
Nonetheless, even for such a weakly excited state the
dependence of the decay probability on τ is appreciable
(although this dependence is not periodic because of
the strongly nonequidistant nature of the atomic spec-
trum for small principal quantum numbers). Switching
in the plot from the time coordinate to the spatial coor-
dinate x (assuming α = 5°), the characteristic scale of
the structure obtained will be 10–2 cm. The fact that the
ionization probability is different from zero at τ = 0 can
be explained by the fact that the first pulse “washes out”
a definite fraction of the atomic population.

The conditions of an experiment capable of reveal-
ing the dependence of the emergence of an electron on
the initial population of the atom which are consistent
with the assumptions and the approximations employed
in this work can be chosen as follows: n0 = 25, ,
ω ≈ 1.7 × 1014 s–1 (more accurately, the frequency must be
determined taking into account the characteristic features
of the spectrum of a specific atom), F = 6 × 105 V/cm
(I = 1 × 109 W/cm2), t = 100 ps (t is the duration of each
pulse), and α = 5°. In this case the experiment should
give a picture close to the one shown in Fig. 7b (the
period of the spatial structure corresponding to the
curve presented in Fig. 7b is of the order of 1 cm).

5. CONCLUSIONS

Summarizing the results obtained in this work, there
is no question that the ionization process for a Rydberg
atom is extremely sensitive to the initial state of the

m̃0 10=
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atom. However, for two different transition schemes,
Λ and V types, between Rydberg levels the effect of the
initial population of the atom on the ionization process
is substantially different.

For a Λ-type system a coherent initial population of
the atom results either in suppression (right up to com-
plete) of the initial ionization rate or, conversely, to a
several-fold intensification of the rate. Nonetheless, the
ionization rate is a strongly oscillating function of time
and, as a result, on average over a Kepler period the
same fraction of the atomic population, independent of
the initial population of the atom, emerges into the con-
tinuum. Thus, for a Λ system the dependence of the ion-
ization process on the initial coherent state of the
atomic electron is observable only at times not exceed-
ing the Kepler period TK = 2π∆–1.

The situation is completely different for a V system.
The ionization probability is strongly dependent on the
initial state of the atom, and this dependence is all the
sharper the longer the interaction time with the laser
pulse (this interaction time must at least exceed the
Kepler period). Depending on the state the electron
occupies at the moment the interaction of the atom with
the laser field is switched on, the electron either com-
pletely emerges into the continuum (Wion = 1) or,
conversely, it remains completely in the bound state
(Wion = 0).

Such a difference in the behavior of the Λ and V sys-
tems can be explained by the fact that for a Λ system
(containing an infinite number of equidistant energy
levels) the widths of all quasienergy levels are the same
and therefore the decay time of such a system is the
same irrespective of its initial state. For a V system,
SICS      Vol. 90      No. 5      2000
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however, the widths are different for different quasien-
ergy levels and, moreover, for a definite choice of field
parameters the state with zero width, absolutely stable
with respect to ionization decay, can be singled out.
The closer the initial population of the atom is to this
state, the more stable the atom is for an arbitrarily long
interaction time with the laser pulse.

In the present paper the conditions of an experiment
(see preceding section) in which the phenomenon
described can be observed were formulated: the emer-
gence of an electron depends on the initial population
of the Rydberg atom. The results of the numerical
experiment are presented in Fig. 7. It seems to us that
the proposed scheme—improved and modified—for
controlling the ionization of an atom using a laser field
can be used in telecommunications and computer tech-
nology.

Of course, the dependence of the ionization of a
Rydberg atom on the initial coherent population of the
atom is manifested only when all conditions and
assumptions stipulated in the preceding sections are
satisfied. The fundamental condition, and possibly the
one most difficult to satisfy, is the condition that the
atom-field interaction is switched on and off instanta-
neously (the “instantaneousness” means that the char-
acteristic time for switching the interaction on and off
must be much shorter than the Kepler period). The
degree to which the results of the problem are sensitive
to the approximations is an independent problem, the
solution of which is urgent not only for the present
work but also for other problems concerning the inter-
action of a Rydberg atom with radiation. This question
merits further investigations, but we are confident that
they will not affect qualitatively the results of the
present work.
JOURNAL OF EXPERIMENTAL
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Abstract—It is established for a photoionized plasma formed in the barrier-suppression ionization regime that
the preliminary population of the excited states of the ionizing atoms plays an important role. It is established
that in this case an anomalously strong (several orders of magnitude) increase occurs in the efficiency of gen-
eration of the harmonics of the pump radiation. It is shown that a relative decrease of the harmonics generation
efficiency occurs with time as a result of collisions of the electrons produced by ionization. © 2000 MAIK
“Nauka/Interperiodica”.
It has long been recognized, correctly, that the opti-
cal nonlinearity of plasma increases when the excited
states of the atoms and ions become populated [1, 2].
This was first substantiated in a calculation of the cubic
optical susceptibility of a gas of excited hydrogen
atoms [2]. On the other hand, the concept of using a
power series expansion in the components of the inter-
acting fields to describe the nonlinearly optical interac-
tion has very limited applicability for high-harmonics
generation in plasma [3]. As a result, specifically, the
answer to the question of the role of the excited states
population in the generation of high harmonics has
never been adequately worked out. In the present paper,
a very large increase in the high-harmonics generation
efficiency under the conditions of photoionization from
excited states is predicted theoretically for harmonics
generation accompanying the photoionization of a gas
in the generation barrier-suppression regime. A quanti-
tative description of this phenomenon is given for a
hydrogen-like atom.

The theory of coherent harmonic bremsstrahlung of
the pump field in plasma, employing the electron-ion
collision integral in the Fokker–Planck–Landau form
[3, 4], has made it possible to write down the following
comparatively simple relation for the density δj of the
electric current of the source of harmonics generation:

(1)

Here e and m are the electron charge and mass, ei and ni

are the ion charge and density, Λ is the Coulomb loga-
rithm, f(p) is the electron momentum distribution func-
tion, and uE(t) is the oscillatory velocity of electrons in
the pump field. Assuming the electric field E = (Ex, 0,
0) of the pump wave to be linearly polarized and mono-

∂δj
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chromatic, Ex = Ecos(ωt – φx), we have uE = (uEx, 0, 0)
and uEx(t) = –VEsin(ωt – φx), where VE = (|e|E/mω).

We shall assume, in accordance with the ideas con-
cerning the barrier-suppression ionization regime [5–7],
that an electron is ejected from an atom freely when
the pump energy flux density q exceeds the threshold

value [6] QBSI = ( [eV]/Z2) × 4 × 109 W cm–2, where Ii

is the ionization potential and Z is the nuclear charge of
the atom. Then, in accordance with [8], the distribution
function of ionized electrons in the coordinate system
of their oscillations in the pump field corresponds to the
electron momentum distribution in the atom

(2)

where the summation extends over the quantum states
of the electrons in the atom and VZ = Ze2/" = ZVa is the
Coulomb unit of velocity [9].

In the present paper we shall demonstrate that the
population of the high states of an atom influences the
coherent harmonic bremsstrahlung. This influence can
be seen for the example of the ns states of an electron
in a hydrogen-like atom, where

(3)

Then we obtain from the relation (1)

(4)

where in the strong pump field limit

(5)

Ii
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8n 2n nζarctan( )2sin

ζ2 1 n2ζ2+( )2
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∂δ jx
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t∂
∂ σxx

2N 1+( )E 2N 1+( ) ωt φx–( )[ ] ,cos
N 1=
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VE  @  V Z ,        
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we have

(6)

Here

(7)

(8)

(9)

(10)

where Zi is the ionization multiplicity of the ion, IZ =

Z2IH, OZ = (4π/3)  = Z–3 × 6.3 × 10–25 cm–3, aZ =
"2/Ze2m is the Coulomb unit of length [9], IH = me4/2"2

is the ionization potential of the hydrogen atom, and

is the cosine integral [10].
It what follows we shall examine for the ns states of

a hydrogen-like atom the function [8]

(11)

characterizing, in accordance with equation (3), the
dependence of the nonlinear partial conductivity (6) on
the scaling parameter

(12)

First, we present here the following expressions for n =
1, 2, 3:

(13)

σxx
2N 1+( ) χ ω( )ν VZ( ) 2N 1+( ) 3–=
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4
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where

is the exponential integral [10]. We now consider cer-
tain asymptotic relations for the functions (11). In the
limit

(14)

the following asymptotic expression follows from the
formula (11):

(15)

where C = γ = 0.577 is Euler’s constant [10]. In the
opposite limit,

(16)

we have from equation (11)

(17)

The formulas (15) and (17) indicate the existence of
scaling associated with the variable

(18)

This makes it possible to write

(19)

where in the case (15)

(20)

and in the case (17)

(21)
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For highly excited states (n @ 1) the latter formula can
be written, using Stirling’s formula, in the form

(22)

The maximum of the expression (22) occurs at

(23)

and then

(24)

The latter formula describes the very strong depen-
dence on the principal quantum number n of the energy
states of an electron in a hydrogen-like atom. For a
hydrogen atom these states correspond to highly
excited states of an electron.

We shall now use the relations obtained above for
the characteristics of the harmonics generation effi-
ciency as a function of the principal quantum number n.
For this, we shall consider the case of a plane-wave
pump field, which corresponds to

(25)

Substituting the expression (4) into Maxwell equations
in plasma and using the relations (25) gives the har-
monics field in the form of plane waves [3, 4]. Corre-
spondingly, we obtain the following expression for the
ratio of the energy flux density of the radiation of the
2N + 1 harmonic to the energy flux density q of the
pump:

(26)

where [8]

(27)

The generation efficiency  of various harmon-
ics is characterized by the function

(28)

The approximate formulas (22) and (24) show the
extremely pronounced dependence of (28) on the prin-
cipal quantum number n of the excited state for n @ 1.
On the other hand, it is important to know the corre-
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sponding dependence for small principal quantum
numbers also. We shall show that a sharp dependence,
similar to equation (24), also holds for small values of
n. For this we use the functions

(29)

which characterize, specifically, the difference of the
maxima of the functions  from the scaling corre-
sponding to the law (24). Three curves corresponding
to the functions (29) for 1s, 2s, and 3s states are pre-
sented in the figure. The maximum values of these
curves are approximately the same. This corresponds to
the fact that the scaling (24) holds for small values also.
We note that the corresponding maximum of these
curves is approximately two times greater than the
approximate value which can be obtained from the for-
mula (24). The values of the ratios of the squared
maximum values of the functions determined by the
formulas (13) follow from the figure and equations (28)
and (29):

(30)

Thus, ionization from the 2s state increases the maxi-
mum efficiency of harmonics generation as compared
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with ionization from the 1s state by three orders of
magnitude, and ionization from the 3s state increases
the efficiency by 5.5 orders of magnitude. The scaling
(24) corresponds to the ratio

(31)

The increase in the efficiency of harmonics generation
by electrons freed from excited states is nonstationary.
The time variation of this effect is due to collisions of
electrons stripped from atoms. Since electron–ion col-
lisions are suppressed in a strong pump field [3], the
main collisions are electron–electron collisions, character-
ized by the electron–electron collision integral Jee[fe, fe]
(see, for example, [11]). However, we shall not require
the explicit form of the collision integral here. The tem-
poral evolution of the electronic distribution function at
short times of the order of the electron–electron colli-
sion time tee (appreciable heating of electrons has still
not appeared) is described by the equation

(32)

In our situation it must be assumed that initially, at t = 0,
the electron distribution function corresponds to elec-
trons arising from the ns states:

(33)

The equation (32) possesses two conserved integrals.
The first integral

(34)

corresponds to conservation of the number of particles
in collisions, and the second integral corresponds to
conservation of the kinetic energy in collisions

(35)

Aside from this, in accordance with Boltzmann H the-
orem [11], the initial distribution (33) relaxes to Max-
well distribution, for which, according to equation (34),
the electron density is known and the temperature is
determined by the fact that in the final state the integral
(35) is equal to (3/2)nekBT, where kB is Boltzmann con-
stant. Thus, the electron temperature is

(36)

Since the temperature is inversely proportional to the
squared principal quantum number, in the final Max-
wellian state arising after collisional relaxation the
comparatively cold electrons arising from the excited
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states generate harmonics more efficiently. This can be
seen directly from the scaling of the maximum of the
generation efficiency of high harmonics by Maxwellian
electrons

(37)

established in [12] (see also the review [13]). Indeed,
since

(38)

we have according to equations (36) and (38)

(39)

Therefore, we obtain

(40)

for the efficiency of high-harmonics generation by elec-
trons from ns states after their distribution relaxes to a
Maxwell distribution. According to the latter formula
the efficiency of generation by 2s and 3s electrons is 64
and 729, respectively, times greater than the efficiency
of generation by 1s electrons. However, even though
the increase in the efficiency is comparatively large
compared with the efficiency of generation by 1s elec-
trons, the relaxation to the Maxwell distribution
decreases the relative increase in the harmonics gener-
ation efficiency. Indeed, comparing the consequences
of the formula (40) with the relations (30) shows that as
a result of the relaxation of 2s and 3s states to a Max-
well distribution, the relative generation efficiency
decreases approximately by a factor of 20 and 480,
respectively.

A Maxwell distribution is established in the charac-
teristic time

(41)

Consequently, for laser pump pulses with a shorter
duration there is not enough time for the high relative
efficiency corresponding to the distribution (33) to
decrease. Conversely, for long times the relative effi-
ciency can be described by the law (40), which con-
serves the relative increase in the harmonics generation
by high s-state electrons, though this effect is not so
strikingly expressed as for an electron momentum dis-
tribution corresponding to the intraatomic distribution.

To understand best the quantitative magnitude of the
effects being discussed, we shall present some relations
which are convenient for applications. Thus, the ratio of
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the characteristic collision frequency and the pump
field frequency can be written as

(42)

where "ω [eV] is the pump frequency and ni [18] is the
number density of ions in units of 1018 cm–3. From
equations (26) and (42) we obtain for the maximum
generation efficiency of high harmonics (2N + 1) @ 1

(43)

Hence, specifically, we have for the generation of the
seventh (N = 3) and fifteenth (N = 7) harmonics with
ionization of one electron from the 1s state

Rewriting equation (43) using the expression (24) we
have

Hence, for example, we obtain for the 5s state

The last expression shows that our entire analysis is
applicable only when the harmonics generation effi-
ciency is much less than 1.

In summary, an anomalously striking increase (by
several orders of magnitude) in the harmonics genera-
tions efficiency under conditions of ionization of high-
energy electronic states was established for coherent
harmonic bremsstrahlung by plasma electrons pro-
duced by ionization with powerful pump radiation in
the barrier-suppression ionization regime. It was shown
how the increase in the harmonics generation efficiency
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in the electron–electron collision time becomes less
pronounced. However, the effect remains until the elec-
trons are heated by the pump radiation and the memory
of their effective intraatom temperature (36) is lost.
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Abstract—An equation for the spectral energy density of collisionless Alfvén waves, propagating at arbitrary
angles to the average magnetic field, is derived on the basis of the theory of weak turbulence. The main nonlin-
ear processes for the case studied are induced scattering and two-photon absorption of Alfvén waves by thermal
ions. An equation is derived for thermal particles which describes particle diffusion, accompanying these pro-
cesses, in momentum space. The results are qualitatively different from previous results obtained by other authors
for Alfvén waves propagating along the average magnetic field. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is now known that Alfvén waves are an important
component of cosmic plasma. It is believed that most of
the energy of interplanetary and interstellar magneto-
hydrodynamic (MHD) turbulence is contained in
Alfvén waves. The main reason probably is that two
other types of low-frequency waves—ion-sound and
magnetosonic—are subjected to strong linear Landau
damping [1, 2]. For Alfvén waves this damping is quite
weak, and nonlinear effects must be taken into account
in order to investigate dissipation of MHD turbulence.
The main nonlinear processes for Alfvén waves are
induced scattering and two-photon absorption of waves
by thermal ions. The corresponding damping decre-
ments have been obtained by many authors [3–9].
Nonetheless, a complete analysis of the above-indi-
cated effects has still not been performed. Induced scat-
tering of Alfvén waves was first studied in [3], but for
β ! 1. Here β is the squared ratio of the thermal veloc-

ity of ions vTi =  (Ti is the ion temperature in
energy units and mi is the ion mass) to the Alfvén veloc-

ity va = B0/  (B0 is the average plasma density).
The case where waves propagate along the magnetic
field was studied in [4–7]. Finally, Alfvén waves prop-
agating at an angle with respect to the average magnetic
field were studied in [8, 9], but the effect of the random
components of the magnetic field, which correspond to
magnetosonic waves, which are second-order in the
amplitude of the Alfvén waves, was neglected. It will
be shown below that taking these components into
account strongly changes the nonlinear damping decre-
ments. Specifically, the interaction of waves for which

Ti mi⁄

4πρ0
1063-7761/00/9005- $20.00 © 20810
the projection of the wave vector on the direction of the
average magnetic field has the same sign is found to be
impossible.

2. BASIC EQUATIONS

The kinetic approach is the most systematic method
in nonlinear plasma theory. In the theory of weak turbu-
lence the method entails an expansion of the distribu-
tion function of thermal particles in powers of the ran-
dom field and calculation of the nonlinear currents,
which are then substituted into Maxwell equations.
This procedure applied to Alfvén waves leads to very
complicated expressions containing multiple series
with Bessel functions (see, for example, [3]). For mag-
netized thermal particles these functions must be
expanded in powers of their small argument. These cal-
culations are very complicated. We shall use a different
method, which seems to us to be more attractive from
the physical standpoint also. We shall employ for mag-
netized thermal particles the guiding center equation in
the zero-gyroradius approximation. This means that we
shall neglect all effects associated with the finite gyro-
radius of thermal particles. The system of equations
employed for the fully ionized plasma is [10]

(1)
ρ ∂u

∂t
------ u ∇⋅( ) u⋅+ 

  1
4π
------ B ∇ B×[ ]×[ ]–=

– ∇ P⊥ ∇ b⋅( ) b P|| P⊥–( ),⋅–

∂Fα

∂t
--------- uE v ||b+( ) ∇ Fα⋅+
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(2)

(3)

(4)

(5)

Here b = B/B is a unit vector in the direction of the mag-
netic field B, uE = c[E × B]/B2 is the electric-drift veloc-
ity, E|| is the component of the electric field E in the
direction of the magnetic field, ρ and u are, respec-
tively, the density and velocity of the plasma, and
Fα(v||, v⊥ ) is the distribution function of thermal parti-
cles of type α. The parallel and perpendicular pressure
in equation (1) are determined by the formulas

(6)

(7)

The equation for the guiding center (2) describes the
kinetic effects of thermal particles. For a frozen-in
magnetic field, which is the case considered here, the
electric drift velocity uE is equal to the plasma velocity
component u perpendicular to the magnetic field.

3. SERIES EXPANSION IN POWERS 
OF THE VELOCITY OF THE MEDIUM

We shall assume that the average magnetic field B0
is directed along the z axis. We write all quantities in the
form B = B0 + δB, ρ = ρ0 + δρ, and so on, and we
expand them in Fourier series

where k = (k, ω). All Fourier components should be
expanded in powers of the plasma velocity uk in the
Alfvén waves. The plasma velocity in an Alfvén wave
is directed perpendicular to the average field and the
wave vector. The polarization of the Alfvén waves is
linear. Since in the linear theory of Alfvén waves δρk = 0,
E||k = 0, Bzk = 0, and uzk = 0, these quantities should be
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viewed as being of order higher than first. The expan-
sion of equation (2) in powers of the velocity of the
medium makes it possible to determine δFαk in second
order. Substituting this quantity into the equation of
quasi-neutrality (5) makes it possible to find E||k. As a
result, we have

(8)

(9)

Here and below, for conciseness, we drop the averages
of the products (uk' · uk''), which must be subtracted
from the corresponding product. The quantities σ0 and
σ1 in equations (8) and (9) can be expressed in terms of
the average distribution function F0α of the thermal par-
ticles:

(10)

(11)

In what follows, we shall require an expression for
the z component of the random magnetic field Bzk. To
find this expression it is sufficient to expand the Fourier
transform of equations (1) and (3) up to second order
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and multiply the first equation by k⊥ . Finally, simple
calculations give

(12)

Here the quantity σ2 is determined by the expression

(13)

and the denominator

(14)

corresponds to the dispersion equation of magneto-
sonic waves ∆(k) = 0. The velocity

is the group velocity of Alfvén waves in a plasma with
anisotropic pressure. Here we are considering a plasma
which is stable with respect to the development of the
firehose instability. In this case the expression in the
radicand is positive. The quantity D0(k) is determined
by the expression

(15)
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4. CALCULATION 
OF THE DAMPING DECREMENTS

The standard method for calculating damping dec-
rements assumes that a dynamic equation is obtained
for the waves. For this, equations (1)–(3) must be
expanded up to third order in the amplitude of the
waves. Then the equation is averaged, using the ran-
dom-phase approximation [11]. Here we shall employ
a simpler method, which gives the same result. We
derive an equation for the thermal particles and deter-
mine the scattering probability and the probability of
two-photon absorption. In practice, a quasilinear equa-
tion must be derived from equation (2). The difference
lies only in the fact that in equation (2) quantities of
second order in the field amplitude stand in front of the
derivatives of the velocity distribution function. The
result is

(16)

Using the expression (12) and performing the averag-
ing, we arrive at the equation

(17)

Here, to perform the averaging we employed the rela-
tion

(18)

where W(k) is the spectral density of Alfvén waves with
the dispersion relation ω(k) = ca|kz|. The first term in
brackets on the right-hand side of equation (17) corre-
sponds to two-photon absorption, and the second term
corresponds to induced scattering. The two-photon
absorption probability w(k', k'', ω(k'), ω(k'')) is given
by the expression
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(19)

Here  is the angle between the vectors 

and . The evolution equation for the energy density
of Alfvén waves has the form

(20)

and the damping decrement Γ(k) can be expressed in
terms of the distribution function of thermal particles
and the probability of two-photon absorption [11, 12]:

(21)

It is easy to see from the expression for the probabil-
ity (19) that waves with identical signs of kz do not

interact. This is not so if  and  are formally set to
zero in the expression (19). The same result is obtained
if Bzk is set to zero in equation (16). This means that the
propagation of waves strictly along the field is a special
case (see the discussion below).
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The expression (21) for the decrement with the
probability (19) can be converted to the simpler form

(22)

Here the quantities D1(k) and D2(k) are expressed in
terms of the distribution function of the thermal parti-
cles:

(23)

(24)

and σ3(k) is determined by the expression

(25)

It should be noted that the expression (22) for the dec-
rement can be obtained directly by averaging the
dynamical equation for the waves, but it requires more
laborious calculations. Both methods lead to the same
result, since it is known that three-wave processes, in
which the resonance particles do not participate, are
impossible for Alfvén waves [1]. The plus sign in the
expression (22) corresponds to two-photon absorption,
and the minus sign corresponds to induced scattering.

5. DAMPING DECREMENTS FOR PLASMA
WITH A MAXWELL DISTRIBUTION 

Strictly speaking, the particle collision integral,
which describes the approach of the system to a state of
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thermodynamic equilibrium, must be added to the
right-hand side of equation (17). If the particle colli-
sion frequency is sufficiently high, the particle distri-
bution function can be assumed to be Maxwellian (in
this case, the collision frequency must be low enough so
that the waves can be assumed to be collisionless). For
simplicity, we shall assume the plasma to be a purely
hydrogen plasma. In this case the nonlinear damping
decrement (22) can be expressed in terms of the func-
tion J+(x) [1]:

(26)

The integral in this expression is to be understood in the
principal-value sense. Ions make the main contribution
to the damping [9]. Then the dependence of the quanti-
ties D0(k), D1(k), and D2(k) on the wave vector and fre-
quency reduces to a dependence on the quantity x =
ω/vTi|kz|:

(27)

(28)

(29)

Here it was assumed that ions and electrons can have
different temperatures Ti and Te, since temperature
equalization occurs more slowly than Maxwellization
of the ion and electron distributions separately. None-
theless, the expression (22) is still quite complicated.
Two extreme cases will be examined below: small and
large β.

(1) β ! 1. In this case induced scattering, described
by the first term, and two-photon absorption,
described by the second term, make the main contri-
bution to the decrement (22). The imaginary part of
the second term arises as a result of the denominator
∆(k). It is obvious that this term corresponds to exci-
tation of a magnetosonic wave, which is absorbed by
the thermal particles. The first term describes induced
scattering of Alfvén waves, which can be interpreted
as excitation of an ion-sound wave, also absorbed by
the plasma particles. In this case scattering is of a dif-
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ferential character in kz—waves with close absolute
values of kz interact:

(30)

Expanding the spectral energy density of Alfvén waves
near –kz and switching from summation to integration,
we obtain

(31)

where α1 is determined by the integral
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The first term in the expression (31) corresponds to the
result obtained in [3]. However, the numerical factor α1
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depends on the ratio Ti/Te. The coefficient from [3] is
obtained by setting x = 0 in the denominator in the inte-
grand in the expression (32). In addition, the coefficient
(32) contains an additional factor of 2. The relation
obtained here is more accurate. It should be noted that
the expression (31) can be obtained on the basis of ordi-
nary magnetohydrodynamics.

(2) β @ 1. In this case two-photon absorption, which
once again is of a differential character in kz, makes the
main contribution to the damping:

(33)

For a smooth spectral density of Alfvén waves, we
replace summation by integration and obtain the damp-
ing decrement

(34)

and the coefficient α2 can be expressed in terms of the
following integral:

(35)

Numerical integration shows that this quantity is essen-
tially independent of the ratio Ti/Te. The value obtained
for α2(Ti = Te) is 2.25.

6. DISCUSSION

The main result of this work is a general expression
for the decrement (22) with the formulas (14), (23)–(25)
for the quantities appearing in it. Some particular cases
have been examined previously. The result obtained is
different from the results obtained in [8, 9], where
Alfvén waves propagating at an angle with respect to
the average magnetic field were also considered. The
method employed in the present work differs in that it
takes into account the components of the magnetic field
which correspond to magnetosonic waves. Since the mag-
netosonic waves decay strongly in plasma with β * 1 [2]
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(quasi-longitudinal and quasi-transverse propagation
are exceptions), these quantities should be expressed in
terms of the components of the velocity of Alfvén
waves. Actually, we assume that they are second-order
quantities, just as the longitudinal electric field E||k. This
approach seems to us to be more consistent than the
method employed in [8, 9], where the magnetic field
components corresponding to magnetosonic waves
were completely neglected. To reproduce the results of
[8, 9] it is sufficient to neglect Bzk in equation (16). In
the opinion of the author this is correct only for propa-
gation of waves predominantly along the average mag-
netic field. In practice, the results of [8, 9] are the same
as the results obtained in [4–7] for this case. The differ-
ence lies only in the fact that in a more rigorous kinetic
analysis the waves propagating at small angles with

respect to the field (k⊥ /kz ! , Ω is the gyrofre-
quency of ions) are circularly polarized [1]. In the
present work, we neglect this small region in the wave-
vector space. To obtain the condition of applicability of
the small-angle approximation, when the results of [8, 9]
are valid, it is sufficient to use an expression for the prob-
ability (19) and set  and  to zero. Then, one can
see that everything depends on the ratio of the squares

of these quantities and on (ω' + ω'')2/  – (  + )
2
,

which are contained in ∆(k). For waves with the same
signs of kz, the next to last expression is zero, if the dis-
persion relation for Alfvén waves is used. In reality,
there exists another nonlinear correction to the fre-
quency, which is of the same order of magnitude as the
nonlinear decrement of the waves. Finally, we obtain
the condition of applicability of the method used in the
present work:

(36)

Here

is the average squared random magnetic field of Alfvén
waves, and kz and k⊥  are the values of the components
of the wave vector of Alfvén waves, which contain
most of the turbulence energy. The condition (36) sig-
nifies that most of the energy is not concentrated in
waves propagating at small angles with respect to the
average field. For the opposite relation, the results
obtained in [8, 9] are correct. Specifically, waves with
the same signs of kz can interact.

Analysis of this problem shows that the above-men-
tioned effect arises as a result of terms containing ∇  · b =
(B · ∇ )B–1 in equation (2) and describing magnetic
reflection of particles. If two Alfvén waves propagate at
an angle with respect to the average field, then their
magnetic pressure gives rise to additional plasma
motions and second-order components of the magnetic
field. For waves with the same signs of kz, the compo-

ω Ω⁄

k ⊥' k ⊥''

v a
2 kz' kz''
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 . ⁄⁄
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nent Bzk arising has precisely the value required to com-
pensate the change in the absolute value of the mag-
netic field (see the second term in the expression (12)),
and as a result magnetic reflection vanishes and these
waves do not interact. However, if the waves propagate
along the average field, such compensation is impossi-
ble, since in this case Bzk = 0.

The second term in the expressions (22) and (31)
corresponds to excitation of a magnetosonic wave. If
the damping of magnetosonic waves is quite weak,
their amplitude can become comparable to the ampli-
tude of Alfvén waves, which does not correspond to the
method employed. In plasma with β * 1 the magneto-
sonic waves decay weakly for propagation at small
angles with respect to the field. The linear damping
decrement is determined by thermal ions and has the
form [2]

(37)

Comparing this decrement with the nonlinear decre-
ment (34), we find that the condition of applicability of
the method employed is the same as the condition (36).
For β ! 1 this approach is valid for even lower energy
density of Alfvén waves. For

 ! β ! 1 (37a)

the linear damping decrement of magnetosonic waves is
determined by Landau damping on thermal electrons [1]:

(38)

Comparing this decrement with the second term in the
expression (31), we find that the condition of applica-
bility of our method for the case (37a) is

(39)

For the opposite relation the linear damping of magne-
tosonic waves is small compared with the nonlinear
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effects. Then, not only scattering processes [3] but also
three-wave processes [1] with the participation of
Alfvén and magnetosonic waves must be taken into
account. Thus, it can be concluded that the approach
considered in this paper is valid in plasma with β * 1
when the condition (36) for the energy of Alfvén turbu-
lence is satisfied. For meTi/miTe & β ! 1 the approach is
valid if the stronger condition (39) is satisfied.
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Abstract—The results of experimental investigations of a type of dusty plasma which has been least studied—
the plasma of solid fuel combustion products—were presented. Experiments to determine the parameters of the
plasma of the combustion products of synthetic solid fuels with various compositions together with simulta-
neous diagnostics of the degree of ordering of the structures of the particles of the dispersed condensed phase
were performed. The measurements showed that the charge composition of the plasma of the solid fuels com-
bustion products depends strongly on the easily ionized alkali-metal impurities which are always present in syn-
thetic fuel in one or another amount. An ordered arrangement of the particles of a condensed dispersed phase
in structures that form in a boundary region between the high-temperature and condensation zones was
observed for samples of aluminum-coated solid fuels with a low content of alkali-metal impurities. © 2000
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The plasma of the combustion products of solid
fuels is one of the least studied types of dusty plasma.
A dusty plasma, or a plasma with macroscopic particles
(such a plasma is often said to be aerosol, heterogeneous
plasma or a plasma with a condensed dispersed phase), is
characterized by the fact that the particles (which can vary
in size from the hundredths of a micron up to several tens
of microns) effectively interact with electrons and ions
and therefore strongly influence the properties of the
plasma.

Gas-discharge and thermal plasmas have been stud-
ied in greatest detail thus far. A thermal dusty plasma is
formed from a heated neutral gas (1700–3000 K) at
atmospheric pressure. The temperatures of the elec-
trons, ions, and neutral particles are equal to one
another, and the electron density lies in the range 109–
1012 cm–3. When particles are introduced into or appear
in the plasma, for example, as a result of condensation,
they can become charged as a result of electron and ion
fluxes as well as thermal emission of electrons. Elec-
tron emission from particle surfaces can result in a pos-
itive electric charge, and the particles emitting elec-
trons can increase the electron density in and the elec-
tric conductivity of the gas phase. In the limiting case
of a nonionized gas, the presence of macroparticles
completely determines the electrophysical properties of
plasma. The conditions for the existence of a plasma
with macroparticles can vary substantially. On account
1063-7761/00/9005- $20.00 © 20817
of the large charges which the particles can acquire (of
the order of 102–103 elementary charges), the entire
range of plasma states from a Debye plasma up to a
strongly nonideal system of charged particles, depending
on the density and sizes of the particles and the electron
work function, as well as the densities of the electrons and
ions present can be realized in plasma under typical con-
ditions (Tg = 1700–3000 K, ne = 109–1012 cm–3).

The increased interest shown in the last few years in
the properties of dusty plasma is due to practical prob-
lems (dusty plasma is a working object in a number of
fields in technology, including power engineering,
rocket building, plasma sputtering, and fusion) and fun-
damental studies in the field of nonideal-plasma phys-
ics and the electrophysics and electrodynamics of the
combustion products of solid fuel. The discovery of
plasma-crystalline structures [1–4] has stimulated fur-
ther investigations of dusty plasma. A large part of
these studies concerns plasma-dust formations in vari-
ous types of discharges.

The thermodynamic properties of dusty plasma are
largely determined by the interparticle interaction
parameter, which is equal to the ratio of the interaction
potential energy to the average thermal kinetic energy
of the particles. Particle interactions are customarily
described using either the single-component plasma
model or a model with a screened (Debye) potential.
The latter model is also known as the Yukawa model.
000 MAIK “Nauka/Interperiodica”
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In the single-component plasma model for a classi-
cal, quasi-neutral, spatially unbounded plasma the
interaction parameter has the form

(1)

where Ze is the charge of a macroparticle, Tg is the
plasma temperature, 〈r〉  = (4πnp/3)–1/3 is the average
interparticle distance, and np is the particle density.

Screening of the charges of the macroparticles by
the electrons and ions in the exterior plasma is taken
into account in the Yukawa model, where the parameter

(2)

where λD is the Debye radius, is used to analyze the
type of dust structure.

It is known from the single-component plasma
model that short-range order appears in the system for
γ > 4, and a single-component plasma crystallizes for
γ . 170 [5]. If screening effects play a large role in a
dusty plasma, then two parameters—γ and k = 〈r〉/λD—are
used to describe the structural transformation. Nonethe-
less, in a number of works [6–8] a single parameter, deter-
mined by the expression (2) and satisfactorily describing
the properties of plasma for small values of Γ, is used to
describe such a system. Short-range order is established in
the system for Γ > 1 [9, 10].

Few experiments to study ordered structures in ther-
mal plasma have been performed. In the early works
the spatial distribution of the particles in the dispersed
phase was investigated using electron microscopy of
samples extracted by a probe introduced for a certain
period of time into a plasma flow. Such photomicro-
graphs were obtained in [11] in the flame of a synthetic
aluminum-coated fuel. The arrangement of the parti-
cles in the photographs attested to the presence of an
ordered structure of a polydispersed system of particles
on the surface of the sampling probe. On this basis the
authors concluded that structures of particles are
present in the plasma.

γ Ze( )2

r〈 〉 kTg

-----------------,=

Γ Z2e2

r〈 〉 kTg

----------------- r〈 〉
λD

-------– 
  ,exp=

Solid fuel

(a) (b)

Fig. 1. Methods for securing the fuel samples: pellet on a
stand (a); pellet in a holder (b).
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In [12–14] the formation of ordered structures of
macroparticles was observed in a weakly ionized, lam-
inar, plasma flow at atmospheric pressure and tempera-
ture near 1700 K. The plasma consisted of positively
charged micron-size CeO2 particles, electrons emitted
by the particles, and singly charged sodium ions. In
these experiments the dusty plasma was produced by
introducing particles into the inner flame of a two-flame
Mekker-type burner; this gave a narrow range of varia-
tion of the plasma parameters and a relatively short
plasma lifetime (of the order of 10 ms). As a result,
crystallization could not be observed for a system of
particles of a condensed dispersed phase in a propane-
air flame.

The study of ordered structures of charged macro-
particles in a plasma of the combustion products of syn-
thetic solid fuels opens up greater possibilities. This is
because the range of values of the plasma parameters is
larger and the sizes and density of the particles of the
condensed dispersed phase can be varied over a wide
range. Our objective in the present work was to perform
experimental investigations of the formation of ordered
structures of particles of a condensed dispersed phase
in the plasma of combustion products of synthetic solid
fuel.

2. EXPERIMENTAL SETUP

The investigations were performed with samples of
synthetic magnesium- and aluminum-coated solid fuel.
The fuel samples were cylindrical with various lengths
and diameters. Pellets whose size depended on the burn
rate of the fuel and which were chosen so as to give an ade-
quate time for performing the measurements (20–40 s)
were fabricated to perform the measurements. Heaters
consisting of nichrome wire (200 µm in diameter, 6 A
heating current) were used for controlled and safe igni-
tion of the fuel. The experimental procedure was as fol-
lows. Synchronized measurements of the main plasma
parameters were started at the moment the fuel was
ignited and structural diagnostics of the system of par-
ticles of the condensed dispersed phase was performed.
The samples were secured using the schemes displayed
in Fig. 1.

A diagnostics complex (see Fig. 2) which made it
possible to determine the following parameters of the
plasma formed by the combustion of solid fuel was
used for the measurements: the temperature Tg of the
gas phase, the sizes D32 and density np of the particles
of the dispersed phase, the density na of the alkali-metal
atoms, and the ion density ni . A modified inversion
method [17] was used to determine the temperature Tg

in the high-temperature zone and a thermocouple was
used to determine the temperature in the condensation
zone thermocouple. The aperture transmittance [16]
and spectral transmittance [15] methods were used to
determine the particle sizes D32 and density np, respec-
AND THEORETICAL PHYSICS      Vol. 90      No. 5      2000
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tively. The total absorption method was used to deter-
mine the density of alkali-metal atoms [17].

A single, continuously rotating, probe with a con-
stant voltage V0 = –15 V was used to measure the ion
density ni . As the probe passes through the plasma, an
ion current flows onto the probe. A current pulse with a
duration of about 2 ms corresponds to the ni profile, and
the current at the center of the pulse corresponds to the
ion density in the measuring volume. Next, we deter-
mined ni in the combustion-products plasma using cal-
ibration functions of the form

where I0 is the current measured in a plasma seeded
with an alkali metal with potential V0 and ni0 is the ion
density determined according to the saturation current.

The particle visualization method was used to
observe and analyze the structures of the particles of
the condensed dispersed phase in the solid fuel com-
bustion products plasma. Illumination in a horizontal or
vertical plane with a probe laser beam was used to visual-
ize the particles. A cylindrical lens formed the argon-ion
laser beam into a flat converging beam with a 100 µm
thick and 3 mm wide waist in the combustion region.
The horizontal probe beam could be moved over the
height of the combustion zone, and the vertical probe
beam could be moved over the height and radius. The
light scattered by the particles was observed with a
CDD camera at angles of 70° (in the case of a horizon-
tal beam) and 90° (in the case of a vertical beam) with
respect to the plane of the waist. The output signal from
the video camera was recorded on a video tape recorder.
The video images of the particles were digitally processed
using a specially developed program and a binary correla-
tion function g(r) was constructed. Analysis of g(r) makes

f 0 I0( ) I0 ni0⁄ ,=

TL

å HTM O5

O1

P

IF

SFP

O6

L2

SA

ë1

O2

ë2

S

L1O4

DG

O3

Fig. 2. Experimental setup: TL—tungsten reference lamp;
M—modulator; HTM—half-transmitting mirror; O1—lens
(F = 150 mm); O2–O6—objectives; C1—single-fiber light
guide; C2—multifiber light guide; S—slit diaphragm;
DG—diffraction grating; SA—spectral apparatus; IF—
interference filter; P—photomultiplier; SFP—solid fuel pel-
let; L1, L2—CCD arrays.
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it possible to describe the spatial structure and interparticle
correlation of the particles.

3. MEASUREMENTS AND ANALYSIS
OF THE RESULTS

The measurements were performed using nine fuel
mixtures with different compositions (see Table 1). The
aluminum-coated fuel produces a 10–30 mm high
brownish-colored flame. A distinct condensation zone
can be seen above the flame. The magnesium-coated fuel
gives a strongly nonuniform combustion zone and
numerous sparks. For the aluminum-coated fuel, the
measurements were performed in characteristic regions
of the plasma flame: in the high-temperature zone (in the
flame), in a boundary region, and in the condensation
zone (see Fig. 3); for the magnesium-coated fuel the
measurements were performed at different heights of

Al2O3 particles

Condensation
region

Tp ~ 600 ä,
np ≥ 104 cm–3,

É ! 1

Fuel
pellet

Boundary
region

Tp ~ 2000 ä,
np = 103–108 cm–3,

É = 3–40

Flame
Tp ~ 3000 ä,

np ≤ 102 cm–3,
É ! 1

Fig. 3. Diagram of the main zones of the solid fuel combus-
tion products plasma.

Table 1.  Composition of solid fuels

Sample 
no.

Al (Mg for 
samples 1 and 2) NU, % Binders, %

% D, µm

1 30 1–30

2 20 100

3 40 30 20 40

4 10 100 50 P-2200-36, TMDN-4

5 20 30 40 P-2200-32, TMDN-6

6 10 1–10 40 50

7 10 1–30 40 50

8 20 30–90 36 PI-44

9 10 40 40 50
SICS      Vol. 90      No. 5      2000
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the plasma flow. The nonstationary nature of the com-
bustion and the strong nonuniformity of the plasma
region made it impossible to perform an accurate mea-
surement of the parameters of the combustion-products

Table 2.  Results of experimental measurements

Sample 
no. D, µm np, cm–3 T, K na, cm–3 ni, cm–3

3 1.6 3.5 × 105 2105 2.72 × 1012 2.54 × 1010

4 0.3–0.5 1.8 × 105 2095 9.27 × 1011 1.33 × 1010

5 <0.2 8 × 104 2100 8.2 × 1010 6.2 × 109

6 <0.2 1.2 × 105 2125 7.20 × 1011 1.20 × 1010

7 <0.2 2.5 × 106 1950 3.0 × 1010 1.2 × 109

8 0.4 6.8 × 105 2090 4.5 × 1010 3.4 × 109

9 0.5 8 × 105 2085 6.1 × 1010 4.7 × 109
JOURNAL OF EXPERIMENTAL 
plasma and structural diagnostics for magnesium-
coated fuel. For this reason, experimental data are pre-
sented below only for aluminum-coated fuel with dif-
ferent compositions (samples 3–9 in Table 1).

The experimental measurements showed that the
charge composition of the solid fuel combustion-prod-
ucts plasma depends strongly on the easily ionized
alkali-metal impurities (Na and K), which are always
present in one or another amount in the synthetic fuel
and end up in the combustion products. The density na

of alkali-metal atoms, the gas temperature T . Tp, and
the work function Wte of the thermal electrons from the
surfaces of the particles determine the electrophysical
properties of the thermal dusty plasma and have a large
effect on the magnitude and sign of the charge of the
(‡) (b) (c)

Fig. 4. Video images of particles in the high-temperature zone: fuel no. 7, T = 1950 K (a); fuel no. 8, T = 2090 K (b); fuel no. 9,
T = 2085 K (c).

(‡) (b) (c)

(d) (e)

Fig. 5. Video images of particle structures in the condensation zone: fuel No. 7, h = 45 mm (a); fuel no. 8, h = 45 mm (b); fuel no. 9,
h = 45 mm (c); fuel no. 7, h = 35 mm (d); fuel no. 9, h = 35 mm (e) (h—height above the solid-fuel pellet). The scale for images (a)
(b) and (c) corresponds to 500 mm and for images (d) and (e) the scale is 100 mm.
AND THEORETICAL PHYSICS      Vol. 90      No. 5      2000
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dust particles and therefore also on the formation con-
ditions of ordered structures.

We shall employ the results of [10] and the results of
diagnostics measurements (see Table 2) in order to ana-
lyze the value of the parameter Γ in a combustion-prod-
ucts plasma consisting of electrons, ions, and micron-
size particles of a condensed dispersed phase. It is known
that for given sizes and density of the particles of the
condensed dispersed phase the value of the parameter Γ
is determined by the screening of the particles by the
plasma component formed as a result of the ionization of
the alkali-metal impurity atoms. Numerical analysis

(‡) (b)

Fig. 6. Video images of particle structures in the boundary
region of the condensation zone: fuel no. 7 (the scale indi-
cated corresponds to 100 mm) (a), fuel no. 9 (the scale indi-
cated corresponds to 300 mm) (b).
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shows that for the characteristic sizes of the particles of
the condensed dispersed phase, which form in the com-
bustion products of the solid fuel (see Table 2), struc-
ture formation requires that

(3)

For this reason, a solid fuel with small, natural alkali-
metal impurities (mass fraction < 0.01%) must be used
in order to observed ordered structures. This gives a
density of easily ionized atoms in the combustion-prod-
ucts plasma not exceeding 109 cm–3 with the density of
the particles of the condensed dispersed phase in the
high-temperature zone greater than 104 cm–3. The data
in Table 2 show that in experiments with samples 3–6
η ≈ 106–107, and the condition (3) is not satisfied, i.e.,
the particles were strongly screened and could form
ordered structures. An estimate of the parameter Γ for
the combustion products of fuel no. 3 gives a value of
the order of 0.1, which shows that interparticle correla-
tion is impossible in this system.

Figures 4–7 show video images of the particles
obtained in experiments with fuels nos. 7–9. For these
samples the parameter η was of the order of 104–105.
For this reason it was of greatest interest to investigate
these fuel samples. Figures 4 and 5 display typical
video images of the particles in a flame and in the con-
densation zone of the combustion products. The
extremely low densities (<102 cm–3, which corresponds
to an optical density τ < 0.01) of the particles of the dis-

η
na

np

-----   !  10 5 .=                                          
1.2

0.8

0.4

g(
r)

1

0

g(
r)

0 1 2 3 4 5 6
r/〈r〉

(‡)

(c)

2

3

(b)

(d)

0 1 2 3 4 5 6
r/〈r〉

00 1 2 3 4 5 6
r/〈r〉

0 1 2 3 4 5 6
r/〈r〉

Fig. 7. Binary correlation functions g(r) for the particle structures shown in Fig. 5d (a), Fig. 5e (b), Fig. 6a (c), and Fig. 6b (d).
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persed phase in the flame are interesting. According to
equation (2), under these conditions Γ will be close to
zero and it is difficult to expect formation of ordered struc-
tures in this region. Chain structures can often be observed
in the video images (see Fig. 4b), but the nature of these
formations is still unclear. The particle density is much
higher in the condensation zone (104 cm–3), but the tem-
perature of the medium is low—about 600 K (τ > 0.1,
D ~ 0.4 µm)—and therefore Γ ! 1. Dust formations
with different shapes, observed in the condensation
zone, can be seen in Fig. 5. Analysis of the correlation
functions did not show short-range order in the particle
arrangement (Figs. 7a, 7b). Gas-dynamic processes
probably determine the form and arrangement of the
observed formations of particles of the condensed dis-
persed phase.

Analysis of small (V < 10–4 cm–3) structures of par-
ticles of the condensed dispersed phase, which form in
the boundary region where the temperature is still high
(T ~ 1500 K) and regions with high particle density
appear (see Fig. 6), shows a different picture. Short-
range order (see Figs. 7c, 7d) is observed in these
structures when the particle density is sufficiently high
(np ~ 107–108 cm–3). The degree of correlation in the
arrangement of the particles depends on the value of the
parameter η. The highest correlation was observed in
experiments with fuels nos. 7 and 9.

4. CONCLUSIONS

Experiments to determine the parameters of the
plasma of combustion products of synthetic solid fuel
with different compositions were performed. In most of
the experiments the parameters of the solid fuel com-
bustion-products plasma were such that the interparti-
cle interaction parameter Γ was much less than 1.
Ordered structures of particles of the condensed dis-
persed phase were not observed. The main obstacle for
the formation of ordered structures was a large amount
of alkali-metal impurities in the fuel samples and, in
consequence, high electron and ion densities in the
plasma. A low density of particles of the condensed dis-
persed phase in the high-temperature region was also an
inhibiting factor. Ordered structures of particles of the
condensed dispersed phase were also not observed in the
condensation zone, where the particle density is quite
high but the charge on the particles is low on account of
the relatively low temperature of the medium.

An ordered arrangement of particles of the con-
densed dispersed phase in structures formed in the
boundary region between the flame and the condensation
zone was observed for samples of aluminum-coated
solid fuel with a low alkali-metal impurity content. An
estimate of the parameter Γ based on diagnostics mea-
surements gives a value from 10 to 30 for various fuels.
This corresponds to a “plasma liquid” type structure.

Our experiments show that formation of ordered
structures of charged particles of a condensed dispersed
JOURNAL OF EXPERIMENTAL
      

phase is possible in a solid fuel combustion-products
plasma. The main difficulties in performing further
investigations on this object are a strong nonuniformity
of the plasma parameters and the short lifetime of the
structures formed. To overcome these difficulties, the
scheme of the combustion of the solid fuel must be sub-
stantially updated and the existing diagnostics methods
must be modified.
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Abstract—SiO2 surface films with different thicknesses (ranging from 20 to 630 Å), grown on a crystal silicon
substrate, have been investigated by the method of reflection and scattering of ultrashoft X-rays. It is shown on
the basis of a simultaneous analysis of the SiL2, 3 reflection spectra and the scattering indicatrix that the critical
angle θc for total external reflection for SiO2 at λ = 57 Å lies in the range 4.5°–5°. The angular dependence of
the thickness of the surface layer that forms the specular reflection is obtained. It is shown that the surface layer,
whose thickness corresponds to the penetration depth of the radiation into the material with glancing angle close
to the critical value θc, plays a large role in the formation of the anomalous scattering peak (Yoneda peak).
© 2000 MAIK “Nauka/Interperiodica”.
Ultrasoft X-ray spectroscopy is a promising experi-
mental method for investigating the atomic and elec-
tronic structure of matter [1]. The small penetration
depth of the radiation in matter (tens–hundreds of ang-
stroms) and the local character of the photon absorption
process in a specific atom in a multiatomic system
make this method surface-sensitive [2, 3].

The purpose of the present work is to determine the
depth of the near-surface layer of matter forming the
reflected and scattered radiation in a two-phase system
(surface layer + substrate) in the ultrasoft X-ray range.
The system Si–SiO2 with various thicknesses of the
SiO2 surface film, ranging from 20 to 630 Å, was cho-
sen as such a system. This choice is due not only to the
existence of details, differing in type and energy posi-
tion, of the fine structure of the SiL2, 3 reflection spectra
for crystalline Si and SiO2 but also the well-known
importance of this system in the production of various
objects in the microelectronic industry.

All investigations were performed on an RSM-500
spectrometer-monochromator in a special camera
attachment [4] using the bremsstrahlung and character-
istic radiations from a tungsten anode. The energy res-
olution of the details of the spectra in the region of the
SiL2, 3 ionization threshold was ∆E . 0.3 eV, and the
angular resolution of the scattering indicatrix was 1.2°.
The radiation was detected with a VEU-6 channel-type
secondary-electron multiplier with a CsI photocathode.
Wafers of a KDB (111) 4° silicon single crystal, which
were 380 µm thick and 30 mm in diameter and were
oxidized in a dry-oxygen atmosphere at T = 1050°C,
were investigated. The thickness of the surface SiO2
films grown was monitored using ellipsometry on an
LÉF-2 apparatus.

Figure 1 shows the experimental SiL2, 3 reflection
spectra for various SiO2 thicknesses on a silicon sub-
1063-7761/00/9005- $20.00 © 20823
strate for various glancing angles θ0 of the radiation. All
systems were studied in a wide range of angles 4° ≤
θ0 ≤ 16°, i.e., inside and outside the region of total
external reflection of X-rays. The spectra presented are
normalized to the maximum B (.108.9 eV), with the
exception of the spectrum for a system with a 20 Å
thick surface film. We note that the fine structure of the
reflection spectrum of crystalline Si is characterized by the
presence of the details a–g (energy range 100–104 eV),
while the spectrum of crystalline SiO2 is characterized
by the details A–C (105–120 eV). Thus, the presence of
only one group of details in the spectrum corresponds
to the case where the reflected radiation is formed by a
single-phase system. The manifestation of details of
both groups in the spectrum attests to reflection from a
substrate + surface layer system. The fact that the con-
tribution of the components of this system to the reflec-
tion is different should cause the corresponding group
of details in the spectrum to dominate. It is natural to
compare the thickness of the film for which details
characteristic for a silicon spectrum, specifically, the
bands b and d–f, appear in the reflection spectrum with
the corresponding value of d—the penetration depth of
the radiation in the material. Thus, for an Si–SiO2 sys-
tem with different thicknesses of the surface film,
details characteristic of the substrate spectrum are
present in the spectra for θ0 = 4° right up to a thickness
of 85 Å, and for glancing angles θ0 = 8°, 12°, and 16°
they are present up to thicknesses 140, 190, and 260 Å,
respectively. We also note the observed correlation of
the spectra for different thicknesses of the surface layer
but for different glancing angles. For example, the rel-
ative intensity distribution for the spectrum for a 85 Å
thick film for θ0 = 4° is virtually identical to that of the
spectrum obtained for a 260 Å thick film for θ0 = 16°.
This shows that the relative contributions of the surface
000 MAIK “Nauka/Interperiodica”
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Fig. 1. SiL2, 3 reflection spectra for the system Si–SiO2: θ0 = (a) 4°; (b) 8°; (c) 12°; (d) 16°; d is thickness of the surface SiO2 film.
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Fig. 2. Scattering indicatrix for the system Si–SiO2 for λ =
57 Å for SiO2 surface films with various thicknesses ((1) 20;
(2) 85; (3) 140; (4) 190; (5) 630 Å): θ0 = (a) 4°; (b) 8°;
(c) 10°.
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film and substrate to the reflected radiation are identical
in these spectra.

The angular distribution of the scattered radiation
(scattering indicatrix) from the surfaces of two-phase
systems was also studied in this work. It is known [5, 6]
that for glancing angles less than the critical angle θc,
i.e., in the region of total external reflection, the scatter-
ing indicatrix carries information primarily about the
roughness of the surface. In the range of angles θ0 > θc,
the characteristic features of the atomic spectra of the
near-surface regions of materials can be judged from
the form of the scattering indicatrix. For the samples
investigated with different thicknesses of the surface
film, it was found that in the region of total external
reflection (θ0 = 4°) the forms of the phase functions are
essentially identical (Fig. 2a). Outside the region of
total external reflection (θ0 = 8°, 10°) an anomalous
scattering peak appears in the scattering indicatrix
(Yoneda peak) (Figs. 2b, 2c). In the figures presented,
the detected radiation intensity was normalized to the
intensity of the specularly reflected radiation. As one
can see, the angular position of the Yoneda peak lies in
the range 4.5°–5°, and the relative intensity is substan-
tially different for different samples. The angular posi-
tion of the anomalous scattering peak corresponds to
AND THEORETICAL PHYSICS      Vol. 90      No. 5      2000
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the value of the critical angle θc [5], so that the critical
angle for SiO2 for λ = 57 Å can be assumed to fall
within the indicated limits.

The angular dependence of the thickness of the sur-
face layer forming the specularly reflected radiation in
silicon dioxide can be constructed on the basis of the
spectra obtained. This dependence is displayed in Fig. 3
together with the computed curve. The calculation was
performed using the formula [7]

where γ = (λ/2π)µ, for the following values of the
parameters: θc = 9°, λ = 117.4 Å, and µ = 105 cm–1. The

d
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2 2π
--------------=

× θ2
csin θ2
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Fig. 3. Angular dependence of the formation depth of a
specularly reflected beam in SiO2: dots—calculation, trian-
gles—experiment.

Fig. 4. Relative intensity of the anomalous scattering peak
for SiO2 surface films (λ = 57 Å) with different thicknesses:
θ0 = (1) 8°, (2) 10°.
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value of the critical angle was chosen on the basis of the
fact that it is directly proportional to the wavelength of
the radiation [8]. It is obvious that the theoretical and
experimental curves agree well with one another in the
entire range of comparison.

Figure 4 displays the dependence of the relative
intensity of the Yoneda peak on the thickness of the
SiO2 film. As one can see, this dependence is distinctly
nonmonotonic, and the maximum corresponds to a
layer thickness of 85 Å. As inferred in [5], the largest
relative intensity of the Yoneda peak can appear in
cases where the vacuum-material boundary possesses a
so-called transitional layer, i.e., the spatial structure of
the material changes in a certain layer near the surface.
The fact that the intensity of the Yoneda peak is greatest
for d = 85 Å indicates that the largest structural changes
occur in the layer forming this peak. On the other hand,
the penetration depth of the radiation in the material for
θ0 = 4°–5° is close to d = 85 Å. It can be asserted on this
basis that primarily a layer whose thickness corresponds to
the penetration depth of the radiation in the material for
θ0 = θc (in this case θc = 4.5°–5°, d = 60–80 Å) influences
the relative intensity of the anomalous scattering peak.

In summary, in the present work the thickness of the
surface layer forming the specularly reflected radiation
in silicon dioxide was determined for various glancing
angles θ0 (4°–16°) on the basis of experimental SiL2, 3
spectra for the system Si–SiO2. The distinct nonmono-
tonic character established for the relative intensity of
the Yoneda peak in the scattering indicatrix as a func-
tion of the thickness of the SiO2 surface layer shows
that the layer of matter corresponding to the radiation
penetration depth in matter for θ0 = θc has the dominant
effect on the form of this peak. This circumstance could
make it possible to extract additional information when
studying the characteristics of radiation scattered from
the surface of various substances.
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Abstract—We formulate a simple Landau type model describing macroscopic behavior recently discovered in
new smectic phases composed of achiral bent-shaped molecules. Films of such smectics exhibit three types of
ordering related to dipole polarization, molecular tilt, and chirality. However, due to specific third-order cou-
pling of the order parameters, these three symmetry-breaking types are not independent and this fact leads to
specific domain structures that are observed in experiments. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A variety of molecules form liquid crystalline
phases (see, e.g., [1]). Many mesogen molecules have
symmetries consistent with the formation of ferroelec-
tric phases and nonzero dipole moments. Ferroelectric
ordering is, however, extremely rare in positionally-
disordered liquids or liquid crystals, and the surprising
discoveries of ferroelectric [2] and antiferroelectric [3]
behavior in liquid crystals are fundamental milestones
in condensed matter physics. Since the discovery of fer-
roelectric liquid crystals, it has been usually assumed
that ferroelectricity is possible only in the chiral smec-
tic-C* phase (formed by chiral molecules) that has the
polar symmetry group C2. In this case, polarization can
be written as P = Pn × n0, where n is director [4] and n0

is the smectic layer normal.1 The necessary conditions
for the existence of nonzero polarization are a finite tilt
angle (i.e., n × n0 ≠ 0 or θ ≠ 0) and a molecular dipole
perpendicular to the long axis of molecules. In racemic
mixtures, which contain both enantiomers (that is, mol-
ecules that are mirror images of each other) in equal
amounts, the electric polarization vanishes. Obviously,
the electric polarization is directly connected to the
molecular chirality in the SmC* ferroelectric liquid
crystals.

However, there is no fundamental reason that non-
chiral liquid crystals should not be ferroelectrics, since
there is no unambiguous correspondence between the
chirality of molecules and the existence of macroscopic
ferroelectric properties or the structures they formed.
The attempts of observation of ferroelectricity in non-
chiral liquid crystals are, as a rule, centered around the

¶This article was submitted by the authors in English.
1Unlike non-polar nematic phases, where n and –n are equivalent,

in ferroelectric smectics, the symmetry requires that n  –n
simultaneously with n  –n0 give equivalent states.
1063-7761/00/9005- $20.00 © 20826
synthesis and investigations of non-conventional liquid
crystalline structures [5]. Recently, ferroelectric phases
composed of achiral molecules were reported and
investigated [6–8, 10–12]. In these papers, it was dem-
onstrated that tilted smectic phases of achiral molecules
show ferroelectric switching, and specific chiral
domain structures. In [9], the bulk macroscopic proper-
ties of the lowest possible symmetry smectic phase (tri-
clinic) were investigated and it was shown that such a
system (though formed from achiral molecules) may
possess ferroelectric and piezoelectric properties as
well as macroscopic chirality. Due to polarity within
smectic layers, such a smectic may have only integer
strength of point-like defects in layers.

Note that in the above mentioned papers [6–8, 10–12]
investigated experimentally only relatively thin freely
suspended films (2–20 layers) and care must be taken in
drawing conclusions about the bulk properties of liquid
crystals from the behavior of films, as the surface layers
of the film may be in a phase with higher (or lower)
order than the bulk system. The surface phases cannot
even exist as bulk phases. Particularly in [6, 8] instead
of point-like defects predicted theoretically in [9] for
the bulk phase, domain walls, i.e., two-dimensional
defects in smectic layers were observed.

In our paper, we present a simple theory describing
consistently experimental facts known for such low
symmetrical smectic films formed by bent-shaped mol-
ecules. Our justification for adding one more paper on
this topic is the fact that we alone seem to have taken
into account entropic (and therefore, universal by the
nature) third-order coupling between polarization, ori-
entation, and chirality, specific just for these kind of
systems. The organization of our paper is the following.
In Section 2, we formulate our model and introduce (in
the frame work of the Landau theory) the basic thermo-
dynamics necessary for our discussions. In Section 3,
000 MAIK “Nauka/Interperiodica”
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we discuss different types of domain structures which
may appear in smectics under consideration, and
inspected the role of external influences (electric or
magnetic fields and the concentration of chiral impuri-
ties). In Section 4, the analysis of how the coupling of
the local order parameters near domain walls modify its
structure is presented. Section 5 is devoted to a discus-
sion and summary of our main results.

2. THEORETICAL MODEL

According to experimental data presented in the lit-
erature (see [6, 8, 10–12]), new smectic structures
(labeled often in these papers as smectics B2), are
formed by polar but achiral molecules (“banana”-
shaped) having the symmetry group C2v, and macro-
scopic behavior of these structures is characterized by
three spontaneous symmetry-breaking leading to the
appearance of the following properties: molecular tilt,
ferroelectric polarization, and chirality. The maximal
macroscopic point symmetry group allowing these
three types of symmetry breaking is C2, where the sec-
ond order axis should be parallel to smectic planes.

The tilt order parameter in any tilted smectic phases
can be characterized by the two-component order
parameter ψ = θexp(iφ), where θ is the polar angle (tilt)
and φ is the azimuthal angle of the nematic director n.
Instead of ψ one can use the so-called c-director, which
is the projection of the director n onto the layer plane.
The magnitude of the tilt order parameter |c| = sinθ.
The ferroelectric polarization P is also a vectorial quan-
tity, and it is only possible along the symmetry axis C2.

From the general point of view, the chirality of the
system is a third-order antisymmetric tensor which can
be reduced for the system under study to the pseudo-
scalar χ. However, we have the only symmetry-break-
ing, namely C2v  C2 and therefore, all three order
parameters should be interrelated, and the problem we
now face is to find this relation. In fact, since the bend
of c removes the c – n0 mirror symmetry plane, it pro-
duces a local chiral symmetry breaking. This breaking
of chiral symmetry can occur on two distinct length
scales (microscopic or macroscopic). The distinction
between microscopic and macroscopic chiral symme-
try breaking is similar to the distinction between spon-
taneous and induced order parameters. From the mac-
roscopic symmetry point of view to describe chiral,
tilted, ferroelectric smectic films we have to introduce
three order parameters (χ, c, P). Note that these three
order parameters are not independent ones, and con-
densation of any pair amid them inevitably induces the
non-zero value for the third one. Indeed, by the defini-
tion of c-director as the preferred direction (or projec-
tion of the director) in a smectic layer c = n × n0, and
thus if we have not only the tilt but as well non-zero fer-
roelectric polarization P, the system becomes macro-
scopically chiral, and as a measure of the chirality one
can chose naturally
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
However, in this paper (unlike, e.g., [7]) we are inter-
ested in mainly microscopic causes of macroscopic
symmetry breaking.

From the microscopic viewpoint, the existence of a
tilt in smectic phases comes from the requirement of
the molecular packing, (i.e., steric forces). These
requirements fix for the polar molecules in our case
(thin free standing films) the azimuthal angle φ and the
module of the c-director, and therefore there are two
allowed values of molecular tilt ±θ. Thus, any molecule
in a smectic layer i2 can be framed by two state systems
labelled by indexes ± according to the sign of its tilt. In
the same manner, the dipole moment P can be oriented
either parallel or anti-parallel to the second order sym-
metry axis and it gives two more states attached to each
molecular site. Therefore, each molecular site is a four
state system: (+, +), (+, –), (–, +), (–, –), where the first
sign corresponds to the tilt, and the second one to the
dipole moment. If among the Ni molecules in a certain
smectic layer i, the number of molecules in each state
is Ni(+, +), Ni(+, –), Ni(–, +), Ni(–, –) then evidently

Ni = Ni(+, +) + Ni(+, –) + Ni(–, +) + Ni(–, –). (2.1)

Analogously it is easy to see, that the tilt angle for the
layer i can be represented as:

Niθi = Ni(+, +) + Ni(+, –) – Ni(–, +) – Ni(–, –), (2.2)

and the polarization is given by

NiPi = Ni(+, +) + Ni(–, +) – Ni(+, –) – Ni(–, –). (2.3)

It is important to note that, for each molecular site,
the product of Pθ represents the chirality of the given
molecule, independently of site and of layer i. We fol-
low here the idea and method developed recently for
solid racemic solutions [13]. However, though for each
individual molecular site χ ≡ Pθ, this relation generally
is not valid for the local mean values for a layer i, i.e.,
θiPi ≠ 〈χ i〉 , since analogously to (2.2), (2.3) one can
write:

Niχi = Ni(+, +) + Ni(–, –) – Ni(–, +) – Ni(+, –). (2.4)

In the spirit of the Bragg–Williams mean-field approx-
imation, we can compute the entropy of the layer i

(2.5)

Solving the equations (2.1)–(2.4), introducing the
found expressions for Ni(±, ±) in terms of the order

2 For the simplicity and according to the layer structure of smec-
tics, we suppose (unless the opposite will be said) that the order
parameters are uniform within smectic layers.

χ P n n0×[ ] P c.⋅≡⋅=

S
Ni!

Ni + +,( )!Ni + –,( )!Ni – +,( )!Ni – –,( )!
------------------------------------------------------------------------------------- .ln=
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parameters θ, P, χ, and expanding of (2.5) for small val-
ues of the order parameters we obtain

It is important to notice (and this is one of the main
points of our investigation) the presence of the specific
third order term θiPiχi. The free energy of the system
F = U – TS (where U is the internal energy associated
to intermolecular interactions) should have the same
structure as the entropy but with non-universal
(depending on detail of the interaction potentials) coef-
ficients, namely for the layer i:

(2.6)

The fact that the third order term necessarily figures in
the free energy is related to the symmetry, since the
product of the three representations to which θ, χ, and
P belong includes the identical representation. The
coefficients ai, bi, ci, and γ can be considered as phe-
nomenological parameters and ai should become small
near the corresponding symmetry-breaking transitions.

Taking into account the pair interactions between
nearest neighboring layers, the total free energy can be
written in the following general form:

Note that only pair interactions do not produce third
order coupling found above. Therefore, in this approx-
imation, (i.e., neglecting three-particle and further
interactions) the third order coupling has the universal
pure entropic origin, and γ = –1. The natural estimation
for the entropic contribution is the temperature T (i.e.,
of the order of two-particle interactions responsible for
the liquid-crystalline ordering) and therefore, this cou-
pling can be larger than the three particle forces which
we neglected.

To say more requires further knowledge of all these
coefficients. Unfortunately, using only the data known
from the literature, we are not able to extract values of
all needed parameters. Therefore, we will not quantita-
tively compare our theory with available experimental
data, since with too many unknown parameters the the-
ory tends to become an exercise in curve fitting, which
loses predictive credibility. Instead of this, we will dis-
cuss, in the next section, qualitative features of the
model.

Si Ni 1
2
--- Pi2 θi2 χ i2+ +( )–=

+
1
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--- Pi2χ i2 Pi2θi2 χ i2θi2+ +( )

+
1
12
------ Pi4 χ i4 θi4+ +( ) θiχ iPi– .
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3. MODULATED DOMAIN STRUCTURES

Let us consider some very general consequences of
the model. If we suppose to escape a conflict between
experiment and theory that all three order parameters
are uniform within smectic planes, this third order cou-
pling means that the modulations of the order parame-
ters χ(q1), θ(q2), and P(q3) along the normal to smectic
layers should be matched to provide

where q0 = 2π/d is the wave vector of smectic density
modulation (d is the interlayer distance). Thus, to sat-
isfy the matching, there are only two possibilities: (1)
one of the three wave vectors is zero and two others are
anti-parallel; (2) all three wave vectors are zero.

In principle, in the continuous model, there are no
restrictions on the period of the modulation, except for
the requirement that it should be commensurate with q0
(see also conclusion section of the paper). However, in
the discrete model we use (i.e., each layer is a four state
system), only wave vectors ±q0/2 and ±q0/4 are admis-
sible. Even more, since independently on the model the
chirality of the structure is always equal ±1, only the
wave vectors ±q0/2 lead to distinguishable macroscop-
ically states for the smectic structures under consider-
ation.

Let us assume that one from the three coefficients ai

is much smaller than the two others. Therefore, in the
temperature region where this condition is fulfilled, we
have only one soft order parameter, and we may neglect
two others (hard in the region of parameters) degrees of
freedom.

Experimentally (see [6, 8, 10–12]) for the smectic
films which we consider, the main transition is associ-
ated with the condensation of the tilt θ. In this case, the
theory is reduced to the well-known Landau theory for
a scalar order parameter [14]. However, due to its
importance for the present context (and for conve-
nience), we repeat well-known results to apply them to
our concrete case (free standing films). This is just the
case where it is easy and more useful to derive these
results for the concrete system under consideration than
to try to find the suitable references, and to modify all
expressions to apply them to the case.

There are two effects that are related to the existence
of the surface in free standing films. The first is a purely
geometrical one (finite size effects). The surfaces break
the translational and rotational invariance (because the
surface is a specific plane which breaks the transla-
tional invariance, and the normal to the surface is a spe-
cific direction which breaks the rotational invariance).
Besides, certainly, there are physical modifications of
the system due to the existence of the surface (surface
effects). The surface can suppress the bulk ordering
(this case is traditionally called the ordinary phase tran-
sition), the surface can enhance the bulk ordering (it is
called the extraordinary phase transition), or as a third

q1 q2 q3+ + 0 modq0( ),=
AND THEORETICAL PHYSICS      Vol. 90      No. 5      2000



COUPLING BETWEEN POLARIZATION, ORIENTATION, AND CHIRALITY 829
possibility, the surface can experience its intrinsic crit-
ical behavior. There is also a so-called special phase
transition which is intermediate between ordinary and
extraordinary transitions.

Both effects related to the existence of the surface
can be taken into consideration in the framework of the
Landau expansion. In our particular case (film geome-
try and a1 ! a2, a3) it has the form

(3.1)

where we added to (2.6) the gradient term (with the
coefficient d1) to describe the tilt profile over the film
thickness L, and Fs is the surface energy which should
have the same form as the bulk energy (3.1):

(3.2)

Usually, it is supposed that a' ≡ d1λ–1, where λ is called
by extrapolation length and experimental data indicate
that (at least as it concerns to the tilt) we have λ < 0 and
it is traditionally called by extraordinary phase transi-
tion. From the microscopic viewpoint, the existence of
the extraordinary phase transitions necessarily imply
first- and second-layer interactions for the surface layer
(see [15]).

In this case, the surface enhances the ordering and
therefore, on the surface, one can expect the onset of
ordering before (i.e., at higher temperatures) it occurs
in the bulk. So one can expect, in this case, the surface
transition for temperatures Ts > Tc (by the definition the
bulk transition temperature is determined from a1(Tc) = 0).
However, at Tc, due to the onset of the bulk order, the
surface will experience some critical behavior as well.
In the regime of Tc < T < Ts, the bulk correlation length
ξb is finite and the order parameter decays from its max-
imum value at the surface. One can easily find the tran-
sition temperature for the surface layer:

To find the profile for the order parameter, we have to
solve the Euler–Lagrange equation which follows from
(3.1) supplemented by the boundary condition, which
can be found from (3.2). We describe this rather routine
procedure in the Appendix, and present only the results
here. One can find that there are two types of configu-
rations providing the minimum of the bulk functional
(3.1) and simultaneously minimizing the surface
energy (3.2). The first natural solution is symmetrical
(we will term this solution by synclinic structure):

S-configuration: θ(z = 0) = θ(z = L).
We imply that a' = α'(T – Ts), where Ts is the surface

transition temperature (it can be extracted from experi-
mental data for very thin films, e.g., for two-layer

F z
1
2
---a1θ

2 1
4
---c1θ

4 1
2
--- ∇ θ( )2

1d+ + 
  Fs,+d

0

L

∫=

Fs
a'
2
---- θ2 0( ) θ2 L( )+( ) c'

4
--- θ4 0( ) θ4 L( )+( ).+=

Ts

Tc

----- 1–
d1

Tc

-----λ 2– .=
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films). Determining the surface transition temperature,
we can omit the third-order term in the equation for the
bulk, and the transition in the film with N-layers occurs
at TN which can be found from the following equation

(3.3)

The second solution (we will term it by anticlinic) is
antisymmetrical:

A-configuration: θ(z = 0) = –θ(z = L), and for this
case

(3.4)

The solution of both transcendental equations can be
found very easily numerically and (as it should be) for
small film thicknesses L ! ξb(TN) synclinic configura-
tion has always the higher transition temperature while
for thick films with L @ ξb(TN) the anticlinic solution
can have the higher transition temperature. However,
the anticlinic state can be only metastable due to the
gradient energy (or in other words, due to the energy
penalty which one must pay for the domain wall
appearing inevitably for the anticlinic structure). How-
ever, the given above statement is valid only for the
case a1 ! a2, a3, when we have to deal with one scalar
order parameter condensation. This is not the case
when we have two or three soft degrees of freedom
(condensed order parameters) due to third order cou-
pling between them.

4. ORDER PARAMETER COUPLING 
AND DOMAIN WALLS

We have mentioned already that for smectics under
consideration, the first spontaneous symmetry breaking
leads to the appearance of the tilt (though it could be
only metastable pra-phase). When the temperature is
decreased further on, the two remaining order parame-
ters might be condensed as well. To study this scenario
in the spirit of the mean-field approximation, one has to
insert the average tilt 〈θi〉  into the free energy expansion
(2.6). The result will be the free energy expansion with
two coupled-order parameters P and χ. Diagonalization
of the free energy introduces two new order parameters
η1, η2 which are linear combinations of P and χ. Since
parameters a2, a3 depend on the temperature, the eigen-
vectors ensuring the diagonalization of the free energy
are not fixed by the symmetry.

In principle, three different situations can arise
according to the higher order terms:

(1) η1 ≠ 0; η2 = 0;
(2) η1 = 0; η2 ≠ 0;
(3) η1 ≠ 0; η2 ≠ 0.
Cases (1) and (2) correspond to different ordered

phases with the same energy, while case (3) corre-

T N Ts

d1

α'ξb T N( )
-------------------- L

2ξb T N( )
------------------- 

  .tanh–=

TN Ts

d1

α'ξb T N( )
-------------------- L

2ξb T N( )
------------------- 

  .cosh–=
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sponds to a situation of different energy. Clearly, the
condition of lowest energy must prevail, and to find it,
we have to know all coefficients entering the Landau
expansion, which we do not have. However, as we men-
tioned already, the specific third-order coupling of the
order parameters came mainly from the entropy of the
system, i.e., from the number of states corresponding to
smectic layers framed by four level systems. Therefore,
in the main approximation, (i.e., neglecting non-
entropic interactions) the coefficients a2 . a3, and η1 .
χ – P, η2 . χ + P. Evidently in this case, the solutions
(1) or (2) should take place. Thus, below this second
phase transition, eight different domains can appear in
the system. They are characterized by ±θ, ±η1, ±η2 = 0
or ±θ, ±η2, ±η1 = 0.

In the case when all three order parameters are con-
densed, the minimization of the third order coupling
energy leads to the following possible structures of
smectics under consideration

(i)

where q0 is the wave vector of smectic modulation. This
structure corresponds to the synclinic, antiferroelectric,
and racemic phases;

(ii)

i.e., anticlinic, ferroelectric, and racemic;
(iii)

i.e., anticlinic, antiferroelectric, and homochiral;
(iv)

i.e., synclinic, ferroelectric, and homochiral.
It is worth noting that all four types of the predicted

structures are really observed in experiments [6, 8].
Even more, it is clear that the application of the external
electric field should stimulate the ferroelectric ordering
of dipoles and therefore, only (ii) and (iv) structures
will be stable in a strong enough field. This is also
exactly what was observed in [6]. The same manner the
external field conjugated to the chirality should induce
(iii) and (iv) structures. As a physical realization of this
field, one can have in mind the concentration of homo-
chiral impurities. And the field conjugated to the tilt
angle must induce (i) and (iv) structures only. Physi-
cally, such a field can be provided by the anchoring or
magnetic field.

Note that for all structures (i)–(iv), the uniformly
condensed order parameter is not necessarily uniform

θ q 0=( ), P q
q0

2
-----= 

  , χ q
q0

2
-----–= 

  ,

θ q
q0

2
-----= 

  , P q 0=( ), χ q
q0

2
-----–= 

  ,

θ q
q0

2
-----= 

  , P q –
q0

2
-----= 

  , χ q 0=( ),

θ q 0=( ), P q 0=( ), χ q 0=( ),
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over the whole smectic layer. In the case when we have
the condensation of two order parameters (there are
three types of such pairs), one can observe a very rich
behavior with many types of domain walls. For each
type of wall at the variation of the parameters a1, a2, a3,
the wall transformations can be observed, which can be
understood as an Ising–Bloch phase transition with the
domain wall symmetry breaking (this type of transition
was predicted theoretically in the neighborhood of the
Curie point of a magnetic system in [18, 19]; here we
have analogous transitions in chiral, tilted, and polar
smectics under consideration).

For the illustration, we consider here one particular
case of such a transformation in the structure of domain
walls. As we mentioned already in the plausible sce-
nario, the first transition is associated with the conden-
sation of tilt θ. Let us imagine that in a certain smectic
plane we have two domains with opposite signs of the
tilt angle θ. Therefore, we get a domain wall in between
them. After further cooling of the system at a certain
temperature, the second order parameter will be con-
densed (let it will be the polarization P). However,
owing to specific third order coupling, any variation of
the order parameter χ at a given θ should lead to the
corresponding variation of the polarization P. Depend-
ing on the coupling constant, different types of walls
could exist. This corresponds to different trajectories
between stable points in the order parameter space (on
the plane χ–P for the case). When the coefficients a2
and a3 in the Landau expansion (2.6) are not very dif-
ferent (in the case when the entropic contribution into
the free energy is dominant a2 = a3 (≡a)), the main con-
tribution into the free energy (2.6) can be rewritten in
the form

(4.1)

where η± ≡ [P ± χ]/ . Therefore, in the domain of
positive 〈θ〉 , one has the condensation of η+, while in
the domain of negative 〈θ〉 , the order parameter η– will
be condensed first. Thus, we have four stable points in
the order-parameter space. All trajectories linking these
points correspond to different structures of Ising-like
domain walls (see Fig. 1 for the illustration).

Even between the same stable points depending on
parameters, different types of domain walls (trajecto-
ries) can be realized. We schematically show three pos-
sible trajectories in Fig. 2.

Note that as it follows from (4.1), the anisotropy of
the domain wall structures leading to Ising-like behav-
ior of the walls is proportional to 〈θ〉 , and therefore,
strictly speaking, the Ising–Bloch phase transition,
accompanied by the symmetry breaking in domain
walls, can be reached only at 〈θ〉  = 0.

As the wall thickness depends on both the uniform
terms and the gradient energy, it is clear that these two
components of the wall (namely χ and P) have different

a
2
--- η+

2 η–
2+( ) θ〈 〉 η+

2 η–
2–( ),–

2
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thicknesses. Following the arguments given in the
paper [20], we can relate the trajectory to the chirality
of the wall. One can call the domain wall of the type
shown in Fig. 2, a double chiral one, since it can be
characterized by two different types of chirality. The
first one is the order parameter χ which defines the
chirality of the system in a real coordinate space. It is a
chiral structure in the space of the order parameters χ
and P as well. The latter one can be defined via the gra-
dient of the “angle” between two order parameters in
order parameter space. As a measure for this second
type of chirality, it is convenient to choose the Lifshits
type of invariant, since it is not zero only for chiral
domain walls:

(4.2)

where z-axis is taken in the direction perpendicular to
the wall and x, y are arbitrary axes in the plane of the
wall. This contribution to the energy gives the energy of
double chirality defects (χ–P domain walls) for smec-
tics under considerations.

Unfortunately, we can find no guidance from exper-
imental or theoretical sources for choosing all phenom-
enological coefficients that appear in these expressions.
Thus, the primary function of this section must be to
give a qualitative interpretation of our results and to
demonstrate the possibility of chiral and ferroelectric
ordering and domain ways in basically non-chiral sys-
tems, as opposed to proving exactly their existence.

5. CONCLUSION

We formulated a simple Landau-type model
describing macroscopic behavior that recently discov-
ered new smectic phases composed of achiral bent-
shaped molecules. Films of such smectics exhibit three
types of ordering related to dipole polarization, molec-
ular tilt, and chirality. However, due to specific third

χ Px

Pyd
zd

-------- Py

Pxd
zd

--------– 
  ,

P

χ

Fig. 1. Schematical trajectories on χ–P plane describing
Ising domain walls.
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order coupling of the order parameters, these three
types of symmetry-breaking are not independent, and
this fact leads to specific structures (i)–(iv) actually
observed in experiments. This inhomogeneous order-
ing physically means that, over a large region of thick-
nesses of free standing films, they can be considered as
some effective interfaces. It is typical for liquid crystals
[21] that the width of the interface of experimental
mesogenes is 40–100 times the length of molecules. We
observed the example of how the presence of an inter-
face may induce a type of ordering in the inhomoge-
neous region (for free standing films it may be the
whole thickness of the system) that does not occur in
the bulk phases. The analogous phenomena are also
known for Langmuir monolayers where chiral symme-
try can be spontaneously broken [22], and it leads to a
chiral phase composed of non-chiral molecules. In fact,
for a thick free-standing film, the top and bottom layers
are each equivalent to Langmuir monolayers. We have
seen the same type of structures for A-configuration
where the tilt arrangement is anticlinic; i.e., the top and
the bottom of the film are tilted in opposite directions.
If it is anticlinic with the smectic periodicity, one can
get conventional antiferroelectric structures, as has
been recently found from ellipsometric studies in [23].3

Physical mechanisms providing the polarization
properties of non-chiral and chiral-free standing films
are very different. For the non-chiral systems the polar
order is induced by the steric packing of anisotropic
(but non-chiral) molecules, whereas in the ordinary
(chiral) ferroelectric liquid crystalline phases, the polar
order is a consequence of the molecular chirality.
Owing to this fact, the value of spontaneous polariza-
tion for smectic constructed from achiral bent-shaped
molecules is rather large (according to [8] it is around

3 Note also the recent reflectivity and ellipsometric studies [24]
which are fitted for thick free standing films by a model of the
film consisting of surface anticlinic layers and an interior–azi-
muthal helix.

P

χ

Fig. 2. Schematical trajectories on χ–P plane describing
Bloch domain walls.
SICS      Vol. 90      No. 5      2000



832 KATS, LAJZEROWICZ
300nC/cm2) and, therefore, the systems (unlike classi-
cal smectic C* liquid crystals which are ferro-elastic
ones, or free standing films of achiral smectics C show-
ing piezoelectric polarization [7]), are genuine strong
ferroelectrics. Note also that, as we have seen for such
smectics, the polarization is parallel to the smectic lay-
ers and therefore, the depolarization field (appearing
due to finite lateral size of the system) is very small.

In the presence of an external electric field E align-
ing the order parameter P (i.e., polarization P = κE,
where κ is the dipole polarizability of the system), the
quadratic part of the free energy expansion (2.6)
reduces to

Excluding χ, one can find the renormalization of the
main phase transition temperature (associated to the tilt
angle condensation) or, what is the same, the renormal-
ization of the coefficient a1. The renormalized value of
a1 is

As it should be, the external field stimulates the phase
transition (independently on signs of the coupling con-
stants γ and κ). Thus, in the presence of the external
electric field, the transition temperature into the smec-
tic C field (associated to the tilt ordering) increases pro-
portional to E2.

Since the low-temperature phase of our system pos-
sesses the chiral and polar ordering, it should be char-
acterized by non-zero Lifshits invariant of the type

(5.1)

This term, in the presence of electromagnetic waves,
leads to the natural optical activity, (i.e., it exhibits dou-
ble circular refraction, and when a linearly polarized
wave is propagated in the system possessing such a
contribution into the energy, the plane of polarization is
rotated and the angle of rotation per unit path length of
the ray is proportional to ωχ(ProtP), where ω is optical
frequency).

Certainly, in a general case, (e.g., for thick films) we
have to include into the consideration the azimuthal
angle φ of the c-director, and the corresponding degree
of freedom for P as well. Due to third order coupling,
both azimuthal degrees of freedom are not independent
ones. In this case, we get two order parameters c and P
having the common one Goldstone degree of freedom
φ for both of them. The contribution to the elastic
energy of the smectic, analogous to the Lifshits invari-
ant (5.1),

(5.2)

leads to a spiral ordering of c-director as takes place for
chiral smectics C* or cholesterics.

1
2
---a1θ

2 1
2
---a3χ

2 γκEχθ.+ +

a1R a1
γ2κ2E2

2a3
-----------------.–=

χ ProtP( ).

χ crotc( ),
JOURNAL OF EXPERIMENTAL 
ACKNOWLEDGMENTS

We are very grateful to Prof. P. Barois for sending
all relevant publications on the subject. This work was
supported in part by the Russian Foundation for Basic
Research and INTAS grants and by the Russian State Pro-
gram “Statistical Physics.” E. K. thanks Prof. M. Vallade
for supporting his stay at the Lab. Spectro., Joseph-Fou-
rier University Grenoble-1 and for fruitful discussions.
One the authors (E. K.) has greatly benefited from con-
versations with V.K. Dolganov and S.V. Malinin.

APPENDIX

LANDAU THEORY FOR FILMS

Minimization of (3.1) and (3.2) gives the following
Euler–Lagrange equation

(A.1)

which should be supplemented by the boundary condi-
tions

(A.2)

Here we introduced the following notations:

where  is the magnitude of the order parameter at T !
Tc, l = L/ξb, and used the natural form of the Landau
coefficients

Let us consider first the case when we have the surface
transition, but the bulk phase is still not tilted (θb = 0).
Neglecting into the bulk equation m3, we find for the
symmetrical case (m = const ) expression (3.3)
from the paper. The same manner for the antisymmetric
case m(x) = const  and we get the expression (3.4)
from the text. To find the magnitude of the order param-
eter induced by the surface phase transition, one should
explicitly take into account the nonlinear terms into the
equations.

The same manner near the bulk transition point we
should include the bulk non-linear terms. For S-config-
uration from (A.1), (A.2) follow two relations:

(A.3)
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and

(A.4)

where m0 = m(L/2).
Transition point for a finite thickness of the film L

corresponds in the symmetrical case to m0 = 0. Thus,
the solution of both equations can be written in the
parametric form

(A.5)

and the explicit solution for τc(L) which is in fact the
point where the surface order parameter appears (in the
limit of L ! λ):

(A.6)

For A-configuration instead of (A.3), (A.4) we get a
system

and 

and again in the limit L ! λ we obtain

(A.7)

Thus, expressions (3.3) and (3.4) from the text give
us the modification of the surface phase transition point
due to the interaction with the bulk, and (A.6) and (A.7)
express the bulk transition temperature dependences on
the thickness owing to the existence of the surface lay-
ers.
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Abstract—The rf magnetoresistance of Fe/Cr superlattices is studied for two orientations of the current: par-
allel and across the superlattice layers. A mutually single-valued correspondence is established between the rel-
ative magnetoresistance measured at dc current and the change in the transmission coefficient of electromag-
netic waves in the magnetic field. When rf currents flow across the layers, the relative change in the signal
amplitude is proportional to twice the change in the electrical resistance of the superlattice and is of opposite
sign. It is shown that the rf losses are determined by the surface resistance which is proportional to the super-
lattice thickness and inversely proportional to its conductivity. An equation is derived for the rf electric field
distribution in the superlattice. It is established that when the thickness of the superlattice is small compared
with the skin layer depth, field and current components which penetrate through the entire superlattice exist.
© 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION 

Studies of the magnetic and electrical properties of
metal superlattices are one of the main trends in the
modern physics of nanostructures. Of particular inter-
est here is the giant magnetoresistance of metal multi-
layers [1]. This effect is caused by a change in the rela-
tive orientation of the magnetic moments of the ferro-
magnetic layers in the superlattice when an external
magnetic field is applied and depends strongly on the
nature of the exchange interaction between neighboring
layers separated by a thin “nonmagnetic” layer. This
effect is also sensitive to electron scattering processes at
the interface between the magnetic and nonmagnetic lay-
ers. Of particular interest is the situation when electric
current flows across the superlattice layers. In this case,
the giant magnetoresistance effect is most clearly
defined and has important features associated with the
phenomena of spin injection and electron accumulation.
It should be noted that, because of the extremely low
electrical resistance of the samples, it is difficult to carry
out experiments in a geometry where the current in the
superlattice flows across the layers. Fairly complex
methods of preparing samples for such measurements
are described in the literature. In particular, in order to
increase their transverse electrical resistance, the super-
lattices in these experiments were prepared in one case
by depositing atomic layers on specially prepared
grooved substrates [2] and in another case by electro-
chemical deposition in small-diameter apertures and
the fabrication of so-called nanowires [3].

Promising methods of studying the giant magnetore-
sistance effect involve using microwave electromagnetic
oscillations and waves. By using different types of oscil-
lations and waves, it is fairly easy to achieve various ori-
entations of rf electric and magnetic fields and currents
1063-7761/00/9005- $20.00 © 20834
relative to one another and to an external magnetic field.
In addition, the rf technique can be used to answer the sep-
arate question: up to what frequencies can the giant mag-
netoresistance of superlattices be observed? The answer
to this contains information on the rf conductivity of
superlattices, which is relevant to predicting the practi-
cal application of metal superlattices in high-speed
devices. 

Only a few publications have dealt with the rf prop-
erties of metal superlattices [4–6]. It was shown in [4]
that a direct relationship exists between the absorption of
rf electromagnetic waves and the giant magnetoresistance
effect. The electromagnetic properties of superlattices in
the infrared were studied in [5]. One-to-one correlation
between the giant magnetoresistance effect and the
propagation of microwaves through the superlattice
was established in [6].

In the present paper we make a detailed study of the
rf magnetoresistance of superlattices. Particular atten-
tion is paid to achieving different relative orientation of
the rf fields and currents in the layers. The objects stud-
ied are Fe/Cr superlattices for which the magnetic
moments of the neighboring Fe layers exhibit noncol-
linear ordering [7]. The rf properties are studied in
comparison with the giant magnetoresistance effect. 

The superlattice sample is positioned either in the
cross section of a waveguide or in an empty resonator.
In the second case, any change in the electrical resis-
tance of the sample in the magnetic field changes the
electromagnetic losses. The complex resistance Z near
the resonance at frequency ω0 may be expressed as Z .
R(1 + 2iQ∆ω/ω0), where R is the resistance of the cir-
cuit, Q is the Q factor, and ∆ω is the detuning from res-
onance. The oscillation power in resonance at ∆ω = 0 is
000 MAIK “Nauka/Interperiodica”
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proportional to 1/R2. The relative change in the power
T in the magnetic field H is given by

where r = [R(H) – R(0)]/R(0) is the relative magnetore-
sistance. For small r the relative change in the rf power
is T . –2r. When the negative magnetoresistance of the
superlattice is high, T may appreciably exceed |r |. This
essentially describes the enhancement of the giant mag-
netoresistance of superlattices: the change in the rf
power is a factor of two or more greater than the relative
magnetoresistance measured at dc current.

2. EXPERIMENTAL CONDITIONS

The samples were Fe/Cr superlattices grown by
molecular beam epitaxy. The substrates were single-
crystal magnesium oxide (MgO) wafers cut along the
(100) plane. The wafers measured 30 × 30 × 0.5 mm.
The substrate temperature during deposition of the Fe
and Cr layers was 200°C. Details of the superlattice
fabrication technology are given in [8]. In the present
study we took into account several factors when select-
ing the samples. First, the superlattice samples must
have a fairly high magnetoresistance. Second, it is
desirable that the field dependence of the magnetoresis-
tance in samples of different thickness should be differ-
ent. The characteristics of the superlattices used in this
study are given in the table. Sample 4 is not a superlat-
tice but an Fe film whose thickness is of the order of the
total layer thickness in the superlattices. By comparing
the microwave properties of the thin Fe film and Fe/Cr
superlattices, we can identify the contribution made by
the multilayer structure of the superlattices.

All the measurements were made at room temperature.
The relative magnetic resistance r = [R(H) – R(0)]/R(0)
was measured in magnetic fields H up to 32 kOe. The dc
electrical resistance was measured by a standard four-
contact method. In this case the magnetic field was ori-
ented parallel to the plane of the superlattice.

The microwave measurements were made by two
methods. In the first the sample was positioned in the
cross section of a rectangular waveguide operating in
the TE01 mode. The position of the sample in the
waveguide is shown in Fig. 1 which gives the directions
of the external magnetic field H, the rf electric field E~,
and the wave vector q of the electromagnetic wave. The
vectors are mutually perpendicular: H ⊥  E~, E~ ⊥  q. In
this case, the rf field E~ and the currents are parallel to
the superlattice layers. An experiment was carried out
using sample 1 in the frequency range between 5.4
and 11 GHz. We measured the relative change rm in the
modulus of the transmission coefficient D: rm = [D(H) –
D(0)]/D(0). The transmission coefficient was intro-
duced as the ratio of the transmitted power Pout to the
input power Pin. 

1 R2 H( ) 1 R2 0( )⁄–⁄
1 R2 0( )⁄

----------------------------------------------- 2r
1 r 2⁄+

1 r+( )2
------------------,–=
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In the second method the sample was positioned at
the maximum of the electric field of a coaxial resonator
(Fig. 2). The resonant frequency was varied by varying
the gap between the central rod and the bottom of the
resonator. This method used frequencies between 0.5
and 2.1 GHz. Eddy currents appear in the superlattice
and the Joule losses reduce the resonator Q factor. Any
change in the electrical resistance in the magnetic field as
a result of the giant magnetoresistance effect changes the
resonator losses and the Q factor. Since the electric field
E~ is oriented perpendicular to the layers, the rf current
flows in the same direction so that the magnetoresis-
tance can be measured fairly easily using the so-called
current-perpendicular-to-plane experimental geometry.
A method of measurement for this geometry was devel-
oped in [9].

A coaxial resonator was connected into a microwave
circuit as a transfer element. As we know, the transmission
coefficient of a resonant transmission element can be
expressed in terms of the Q factor as follows [10]:

(1)D
2QL

2
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1 QL
2 ∆ω ω0⁄( )2+

-----------------------------------------,=
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4 710 – 85 1 795
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Fig. 1. Position of sample in waveguide: (1) electromagnet;
(2) superlattice.
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where QL is the loaded resonator Q factor, Q1 and Q2

are the Q factors of the input and output coupling ele-
ments, and ∆ω is the detuning of the frequency ω from
the resonant frequency ω0. The relative change T in the
transmission coefficient D in a magnetic field at the res-
onant frequency is given by

(2)T
D H( ) D 0( )–

D 0( )
------------------------------

QL
2

H( )

QL
2 0( )

--------------- 1.–= =

E~

1 2

Fig. 2. Position of sample in resonator: (1) MgO; (2) super-
lattice.

r, rm, %

–4

–8

0 10 20
H, kOe

0

Fig. 3. Magnetoresistance r (m) and transmission coefficient
rm (n) at frequency f = 8.4 GHz.
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The stored oscillation energy of the resonator is given by

where H~ is the amplitude of the rf magnetic field and
V is the resonator volume. The power loss in the sample is

where j is the surface density of the rf current at the sur-
face S of the sample and Rs is the surface resistance. In
our case Rs = d/σeff where d is the total thickness of the
superlattice metal layer and σeff is the effective conduc-
tivity. If QL ! Q1, 2, then bearing in minding the defini-
tion of the loaded Q factor, we obtain the following for-
mula for the relative change T:

(3)

where Q0(0) and QL(0) are the intrinsic and loaded res-
onator Q factors without a magnetic field. Formula (3)
holds if the relative change in the surface resistance is
small. Thus, the value of T is directly related to the
change in the resistance in the magnetic field. Since the
magnetoresistance of superlattices is negative, it is pre-
dicted that the change T in the magnetic field as given
by (3) will be positive. If the losses in a high-Q resona-
tor are caused mainly by Joule losses in the superlat-
tice, we have Q0(0) ≈ QL(0). The changes in the coeffi-
cient T are then twice the modulus of the relative mag-
netoresistance measured at dc current.

3. MICROWAVE MAGNETORESISTANCE

These experiments show that a single-valued corre-
lation exists between the transmission coefficient of the
electromagnetic waves and the magnetoresistance of
the superlattices measured at dc current. We shall first
consider the waveguide measurement method. Figure 3
gives the results of measurements of the magnetoresis-
tance r of sample 1 and the dependence of the rf trans-
mission coefficient rm on the static magnetic field. The rf
measurements were made at f = 8.4 GHz. These results
convincingly demonstrate the similarity between the
dependences r(H) and rm(H) and the numerical values
contained in them. This confirms the correlation
between the rf transmission coefficient and the dc mag-
netoresistance. Figure 4 shows dependences of the coef-
ficient rm(H) measured at different frequencies. It can
be seen that these curves are identical. 

The experiments have shown that the coefficient of
transmission of electromagnetic waves across the
superlattice is completely determined by the giant mag-
netoresistance effect. The region of existence of the rf

W
H~

2

2
----------- V ,d

V

∫=

Ploss
1
2
--- j2 Rs S,d

s

∫=

T 2
QL 0( )
Q0 0( )
-------------

Rs H( ) Rs 0( )–
Rs 0( )

--------------------------------,–=
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analog of the giant magnetoresistance effect is at least
tens of Gigahertz.

We shall now discuss the second method, where the
sample is placed in a coaxial resonator. Figure 5 shows
the transmission coefficient T measured as a function of
frequency f. The symbols give the experimental data
obtained for sample 5 for H = 0; the solid curve gives
the calculations using formula (1) for the loaded Q factor
QL = 1089.

The correlation between the magnetoresistance r
measured for a dc current flowing along the superlattice
layers and the changes in the rf losses T is not obvious
a priori since under these experimental conditions the
microwave currents flow across the layers. Neverthe-
less, a clear correlation can be identified. Figure 6 shows
the correspondence between the field dependences of r
(Fig. 6a) and T (Fig. 6b) for samples 2, 3, and 4. The
microwave measurements were made at f = 779 MHz.
As we can see, the dependences r(H) and T(H) are sim-
ilar. Sample 2 typically has a relatively weak saturation
field, around 5 kOe. It can be seen from Fig. 6 that sat-
uration is observed for the magnetoresistance and for
the microwave coefficient T. Sample 3 does not reach
saturation in the magnetic fields used in the present
study and for this the dependences r(H) and T(H) are
close to linear. The iron film (sample 4) exhibits a very
low magnetoresistance, considerably lower than the
giant magnetoresistance of the superlattices, and the
change in the microwave coefficient T is also negligi-
ble.

Thus, the results obtained by the resonator method
indicate an undisputed correlation between the magne-
toresistance of superlattices measured at dc current and
the change in the rf losses. It will be shown in the fol-
lowing section that a current-perpendicular-to-plane
geometry is achieved for this orientation of the super-
lattice plane.

4. DISCUSSION OF RESULTS

Fairly weighty evidence indicates that a mutually
single-valued correlation exists between the change in
the electrical conductivity in the magnetic field and the
microwave absorption and propagation through the
superlattice. We shall first consider the change in the
coefficient of propagation of electromagnetic waves
through the superlattice. Let us assume that a plane
wave is incident normally on a thin metal object. For
the amplitudes of the incident Ei , reflected Er , and
transmitted Et waves at the metal interface we can write
the system of equations

(4)
Ei Er+

c
4π
------ Z00 Ei Er–( ) Z01Et–[ ] ,=

Er
c

4π
------ Z01 Ei Er–( ) Z11Et–[ ] .=
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This system includes the elements Zij of the impedance

matrix. For a good conductor the inequality δ !  is
satisfied, where δ is the skin layer depth and q0 is the
wave number (q0 = ω/c). If this condition is satisfied,

q0
1–

rm, %

–4

–8

0 10 20
H, kOe

0

Fig. 4. Dependence of the transmission coefficient on the
magnetic field at frequencies f = 6.85 (n), 8.15 (s), and
8.4 (e) GHz.

4

0
886 889

f, MHz

T, arb. units

888887

2

Fig. 5. Frequency dependence of the transmission coefficient
of a resonator with a superlattice (sample 5), H = 0.
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Fig. 6. Correlation between the magnetoresistance (a) and the resonator transmission coefficient (b) when rf currents flow perpen-
dicular to the superlattice layers for various samples: (1) 2; (2) 3; (3) 4.
simple expressions are known [11] for the coefficients
of reflection R and transmission D:

(5)

The reflection coefficient R is close to –1. Under our
experimental conditions we are dealing with a situation
where the total metal thickness d is much smaller than
the skin-layer depth (d ! δ) under conditions of the
normal skin effect. In this case, the transmission coeffi-
cient D is expressed simply in terms of the effective
electrical conductivity σeff :

(6)

On the right-hand side of equation (6) only the electri-
cal conductivity σeff depends on the magnetic field.
Expression (6) yields a mutually single-valued correla-
tion between the relative magnetoresistance r and the
relative change rm in the transmission coefficient of the
microwave electromagnetic waves. The data plotted in
Fig. 3 convincingly demonstrate that such a correlation
exists for Fe/Cr superlattices.

Incidentally, it should be noted that expression (6)
for the transmission coefficient was obtained for condi-
tions slightly different from the experimental ones.
First, the electromagnetic wave in the waveguide
exhibits velocity dispersion. This factor may prove sig-
nificant if the experiments are carried out near the
waveguide cutoff frequency. In the present study the
frequencies at which the measurements were made are
considerably higher than the cutoff frequency so that
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the influence of the wave velocity dispersion can be
neglected. Second, the real structure of the superlattice
was not taken into account in deriving equation (6). The
possibility of introducing the effective conductivity σeff
for a finely layered medium [12] arises because the
layer thicknesses tFe and tCr are small compared with the
skin layer depth δ @ tFe, tCr. 

Note that under these assumptions the transmission
coefficient D does not depend on the electromagnetic
wave frequency. This is also demonstrated by the
experimental results plotted in Fig. 4. 

We shall now discuss the results obtained when the
sample is placed in the electric field region of a coaxial
resonator. If the sample possessed infinitely high con-
ductivity, the boundary conditions would require the
vector of the rf electric field E~ to be strictly perpendic-
ular to the sample plane. In a real sample a tangential
component Et appears and we shall estimate this using
the Leontovich condition [13]. If H~ is the amplitude of
the magnetic field at the metal surface, the tangential
component Et is given by [14]

(7)

Under our conditions of a quasisteady-state electro-
magnetic field (δ . 10–4–10–3 cm, q0 . 0.2 cm–1) the
product is q0δ
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 is low
in the region of strong electric field in the coaxial reso-
nator where the sample is located. Since the tangential
component of the electric field is small, we can assume
that the rf field enters the superlattice along the normal
to its surface (along the 
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axis). Bearing in mind that the
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metal thickness d is small compared with the skin layer
depth δ, we assume that the electric field inside the
superlattice only has a z-component Ez . The subscript
“z” will be omitted subsequently.

As we have noted, at these frequencies the superlat-
tice is a small-scale medium. The electrodynamics
equations written for the electric fields averaged over
the period of the superlattice 

are equivalent to the equations for a homogeneous thin
film having a certain effective conductivity [12]. Under
the experimental conditions, a normal skin effect is
achieved where the spatial dispersion can be neglected.
The possibility of introducing the effective conductiv-
ity tensor of the superlattice was analyzed in [15] where
it was shown that this is determined by the matrices of the
electron scattering frequencies and uniquely describes the
motion inside the layer, reflection from the layer bound-
aries, and the transition to a neighboring layer with change
of spin. The expression for the effective conductivity in
[15] was obtained for the case where the electric field lies
in the plane of the superlattice layers. The calculations of
the field distribution given below refer to the current-per-
pendicular-to-plane geometry and allow for screening of
the field by the conductor. The aim of these qualitative
calculations is to demonstrate the existence and estimate
the magnitude of the current component flowing across
the entire thickness of the superlattice considerably
greater than the Debye length rD. 

Jointly solving the transport equation in the τ-
approximation, the Maxwell equations for the diver-
gences, and the equation of continuity yields the fol-
lowing equation:

(8)

where ω0 =  is the plasma frequency, n and
m are the electron density and mass, E(0) is the electric
field at the metal interface, and ZD is the screening
parameter, which will be determined subsequently.
A simplified derivation of equation (8) is given in the
Appendix. Equation (8) is the equation for the plasma
oscillations of the carriers in the metal. The oscillations
are induced by the electric field E(0) at the interface.
The presence of a metal boundary is reflected in (8) by
the second partial derivative with respect to the coordi-
nate z. In equation (8) the time dispersion of the carriers
is taken into account by replacing the square of the
wave frequency with ω2 + iων, where ν is the collision
frequency.

E z( )
1

tFe tCr+
----------------- E z( ) zd
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2
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2 ∂2E z( )
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---------------– ω2 iων+( )E 0( ),–=

4πne2 m⁄
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The screening parameter 

is expressed simply in terms of the Debye screening
length rD = vF/ω0, where vF is the Fermi velocity:

(9)

Formula (9) holds for ω ! ω0 and ν ! ω0. 

The solution (8) consists of a general solution of the
corresponding homogeneous equation and a particular
solution of the inhomogeneous equation (8). The inte-
gration constants are determined from the conditions at
the metal interface: (1) the conduction current is zero at
z = 0; (2) the electric field is E(0). The result of solving

(8) is the distribution of the average electric field ,

conduction current density , and the volume charge

density :

(10)

As was to be expected, an increased charge density forms
near the superlattice surface, which decreases rapidly to a
depth of the order of ZD. This is a dynamic analog of elec-
trostatic screening [13]. In the present study we shall not
investigate the detailed characteristics of screening [16],
since we are mainly interested in the electromagnetic
losses inside the metal. The first two expressions in the
system (10) deserve close attention. In addition to the
field and current components associated with screen-
ing, penetrating components also exist. The penetrating
component of the electric field is fairly small when ω,
ν ! ω0, 

(11)

but together with the penetrating current component, it
makes a contribution to the losses which must be taken
into account. It should be noted that the field and cur-
rent structure in (10) does not reflect the skin effect. We
recall the conditions required for the existence of the
distribution (10) and the penetrating component (11):
small metal thickness d compared with the skin layer
depth δ, quasi-steady-conditions, and high superlattice
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conductivity. Expressions (10) and (11) allow us to
introduce the effective conductivity

Under the conditions of weak time dispersion (ω/ν ! 1)
achieved experimentally at room temperature, σeff is the
dc conductivity. Bearing in mind that the surface resis-

tance Rs . d  is present in formula (3), we can con-
clude that the changes in the transmission coefficient T
in the magnetic field are attributable to the magnetore-
sistance of the superlattice in the current-perpendicu-
lar-to-plane geometry. 

We shall now calculate the electromagnetic losses
and determine

which are the Joule losses per unit sample area. Under
the experimental conditions ω, ν ! ω0 and

(12)

The electromagnetic losses (12) are caused by the pen-
etrating component of the electric field. The value of Rs

on the right-hand side ensures a correlation between the
magnetoresistance and the electromagnetic losses of
the superlattice.

5. CONCLUSIONS
We have studied the giant magnetoresistance of

Fe/Cr superlattices at microwave frequencies. We have
established that there is a mutually single-valued corre-
lation between the microwave transmission coefficient
and the static magnetoresistance when current flows in
the superlattice plane. This correlation is explained the-
oretically by solving the problem of the reflection and
transmission of an electromagnetic wave through a thin
metal object. It is shown that at room temperature the rf
analog of the giant magnetoresistance effect is deter-
mined by the static conductivity at least up to frequen-
cies of tens of Gigahertz. 

Experimental measurements were made of the rf
analog of giant magnetoresistance when an rf current
flows perpendicular to the plane of the layers. It has
been shown theoretically that a correlation exists
between the microwave losses and the static magne-
toresistance. The structure of the rf fields and currents
averaged over the period of the superlattice has been
calculated. It has been shown that penetrating compo-
nents exist which induce microwave losses.
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APPENDIX

We shall analyze an rf electric field Ez(z) = E(z) in a
thin metal film under quasi-steady-state conditions,
ω ! c/Lmax, where Lmax is the maximum dimension of
the sample. We introduce the nonequilibrium correc-
tion ϕ = ϕ(v, z) to the electron distribution function. We
assume that ϕ depends on the coordinate z and electron
velocity v. We write the transport equation in the τ
approximation:

(A.1)

where  = ∂f0/∂ε, f0 is the equilibrium distribution
function, ν is the collision frequency, and ϕ = [ϕ(v) +
ϕ(–v)]/2. To simplify the calculations we make the
model assumption that the electron velocity is constant
at the Fermi surface |v | = vF . Writing equation (A.1)
for electrons having the velocities v = vF and v = –vF

and taking into account the relations

(A.2)

where m and n are the electron mass and velocity, ρ is
the charge density, and j is the current density.

Taking into account the current continuity equation,
we can derive the following equation:

(A.3)

In our case it follows from divE = 4πρ that 

The conduction current at the metal interface should
vanish, j(0) = 0. We then obtain 

(A.4)

Substituting (A.4) into (A.3), we obtain

We introduce the notation: ω0 is the plasma frequency,
ZD is the screening parameter,
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assuming ν ! ω0, ω ! ω0. Finally the equation for the
electric field has the form

(A.5)

This determines the electromagnetic oscillations under
the action of the inducing field E(0).
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Abstract—An analysis is made of some characteristics of the low-temperature thermal conductivity of a bal-
listic quantum dot, attributed to the influence of long-range Coulomb interaction in the geometric capacitance
approximation. It is shown that at fairly low temperatures the thermal conductivity K exhibits Coulomb oscil-
lations as a function of the electrostatic potential of the quantum dot. At the maximum of the Coulomb peak we
find K ∝  T whereas at the minimum K ∝  T3. The dependence K(T) is essentially nonmonotonic at temperatures
corresponding to the characteristic spacing between the size-quantization levels in the quantum dot. © 2000
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Electrostatic energy strongly influences charge
transport in mesoscopic systems connected by tunnel-
ing junctions with the surroundings (supply conduc-
tors) at low temperatures [1–4]. Electron tunneling
through a potential barrier is accompanied by a change
in the charge of the mesoscopic sample by 1e and a
change in the system energy by Ec = e2/(2C), where e is
the electron charge and C is the electrostatic capaci-
tance of the sample. At temperatures T ! Ec charge
transport is generally strongly suppressed (Coulomb
blockade effect) [5–10].1 However, for certain values
of the potential difference Vg between the sample and
the surroundings the electrostatic energy of the system
E = (q – eN)2/(2C) (where q is the charge of the sample;
N = CVg/e) is degenerate with respect to change in the
charge by 1e: q  q + e (this occurs for half-integer
values of N) [7, 11]. In this case, the Coulomb blockade
is broken and this is manifest as an appreciable increase
in the conductance of the system.

A similar effect should be observed for other kinetic
coefficients, in particular for the thermal conductivity K
which is studied in the present paper. In a one-dimen-
sional system the nontrivial appearance of the Coulomb
blockade effect in the heat transport case consists in
(neutral) electron–hole pairs making a considerable
contribution to the heat transfer because of the follow-
ing circumstance. It was shown in [12] that for a quan-
tum dot (i.e., a phase-coherent mesoscopic sample con-
nected by two quantum point contacts to supply con-
ductors) in the strong tunneling regime, integration of
the charge fluctuations of the quantum dot at low tem-
peratures T ! Ec can reduce the problem of tunneling
of spinless Fermi electrons through a double barrier to

1 For mesoscopic samples the capacitance may reach C ≤ 10–15 F
which corresponds to Ec ≥ 1 K.
1063-7761/00/9005- $20.00 © 20842
the tunneling of a Luttinger liquid [13–16] with g = 1/2
(where g is the Haldane parameter) through an isolated
impurity [17]. Heat transfer in a Luttinger liquid with
an isolated impurity was considered in [18]. It was
shown that at low temperatures in addition to the elec-
tron (caused by electron tunneling) contribution to the
thermal conductivity Ke ∝  T 2/g – 1, electron–hole pairs
[plasmons, i.e., small-amplitude fluctuations of the
boson (phase) field describing a Luttinger liquid] also
make a significant contribution Kp ∝  T 3. In the case g =
1/2 these contributions are of the same order of magni-
tude. It should be noted that the important role of plas-
mons in heat transfer in a Luttinger liquid was noted in
[19–21]. 

Thus, heat transfer across a double potential barrier
(quantum dot) under conditions when the electrostatic
energy is substantial (i.e., when T ! Ec) is accom-
plished by electrons and by neutral particles (plas-
mons).2 At low temperatures both contributions are of
the same order of magnitude. This factor can be used to
develop a theory of heat transport based on a self-con-
sistent harmonic approximation [22, 23]. This approxi-
mation in fact describes plasmon propagation. How-
ever, electron tunneling processes are also partly taken
into account by renormalizing the potential barrier
height. 

It should be noted that studies of heat transport are
important first from the point of view of observing the
non-Fermi liquid behavior of an electron system [19–21].
Second, heating effects also influence the properties of

2 The present study only takes into account the long-range Cou-
lomb interaction of electrons in the quantum dot described in the
approximation of the geometric capacitance C. Allowance for
short-range interelectron interaction (g ≠ 1) like the spin will
modify the dependence K(T, Vg) and is not considered here. Note
that the spinless electron model can be used in the presence of a
strong magnetic field which polarizes the electron gas near the
quantum dot.
000 MAIK “Nauka/Interperiodica”



        

INFLUENCE OF THE COULOMB BLOCKADE EFFECT ON HEAT TRANSFER 843

                                                                 
mesoscopic systems which exhibit a Coulomb block-
ade effect (single-electron transistors and so on) [24],
which requires a study of heat transfer processes in
these systems.

In the present study we calculate the thermal con-
ductivity K of a quantum dot as a function of tempera-
ture T and potential Vg. The dependence K(Vg) contains
peaks corresponding to destruction of the Coulomb
blockade. The form of the Coulomb peak depends on
temperature. The dependence K(T) is essentially non-
monotonic at temperatures corresponding to the spac-
ing between the size-quantization levels in a quantum
dot.

2. FORMULATION 
OF THE PROBLEM AND BASIC EQUATIONS

We shall consider a one-dimensional ballistic chan-
nel containing spinless noninteracting electrons as our
model. Two point potential barriers of height V1 and V2
positioned at points x1 = –d/2 and x2 = d/2 simulate the
quantum dot. With respect to the rest of the channel, the
quantum dot has the potential Vg which can be varied
by using an additional metal electrode (gate). One-
dimensional conductors corresponding to x < x1 and x >
x2 connect the quantum dot to remote reservoirs having
the temperature T and chemical potential µ. We shall
neglect any inelastic processes in the system (quantum
dot plus supply conductors) and we shall consider the
quantum dot as a purely elastic scatterer. This holds at
fairly low temperatures when the phase coherence
length of the electrons Lφ(T) is greater than the distance
between the electron reservoirs. Heat transport (like
charge transport) is understood in the usual meaning for
mesoscopic physics [25, 26] as transport between
(remote) reservoirs where electron energy relaxation
takes place. In calculations of the thermal conductivity
in the linear approximation we assume that the electron
reservoirs have the same chemical potentials µ1 = µ2 =
µ and their temperatures differ by the small amount
∆T = |T1 – T2| ! T.

This highly simplified model can nevertheless allow
for the influence of the electrostatic energy and the spa-
tial quantization in the quantum dot [27] on the electron
transport at low temperatures. Note that this model [28]
corresponds to the experimental situation where a bal-
listic quantum dot is connected to supply conductors
using single-mode quantum point contacts whose
transmission coefficient may vary between zero and
one.

As we know, in the one-dimensional case the elec-
trostatic energy (in the geometric capacitance approxi-
mation) can be taken into account exactly (beyond the
limits of perturbation theory) using the bosonization
method [14, 15]. In order to describe the low-energy
properties of the system (∆e ! µ) we can linearize the
electron spectrum near the Fermi energy µ. In this case,
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
the Lagrangian density of the spinless electrons has the
form [17]

(1)

where v, g are the Haldane parameters [16]. In the
present case we confine our analysis to noninteracting
electrons: g = 1; v = vF = π"ρ0/m*, where vF is the
Fermi velocity, ρ0 is the average electron density, and
m* is the effective electron mass. The boson (phase)
field θ(x, t) determines the deviation δρ of the electron
density from the average density and the electron cur-
rent j:

The presence of potential barriers is taken into
account by the following Lagrangian [17]:

(2)

where kF = πρ0 is the Fermi wave number. We shall
assume that in the energy range of interest to us ∆e ~
T ! µ, the values of V1 and V2 do not depend on the
electron energy. Following [12], we can assume Vi =
µπ–1ri/ti (i = 1, 2), where ri and ti are the moduli of the
reflection coefficient and the transmission coefficient
for electrons having the Fermi energy, which character-
ize a point potential barrier at the point xi. Note that
according to the Landauer–Büttiker approach [29], the
conductance of an isolated barrier for the case of one-
dimensional spinless noninteracting electrons is Gi =

G0 , where G0 = e2/(2π") is the conductance quantum.
For interacting electrons (g ≠ 1) this is not the case
which leads to a temperature dependence of the con-
ductance at low temperatures [17]. 

The electrostatic energy associated with the capaci-
tance C of the quantum dot is described by

(3)

The partition function Z required to describe the
properties of the system may be expressed as a func-
tional integral:

(4)

L0
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The Euclidean (calculated at imaginary time τ = it)
action is

where β = "/T. 
Since the nonquadratic part of the Lagrangian (LV)

with respect to θ only depends on the fields at two fixed
points, we can integrate over the fluctuations of the
field θ at all points apart from x = x1 and x = x2. As a
result, we obtain the effective Euclidean action [27]:

(5)

Here we introduce the following notation: ωn = 2πn/β
is the Matsubara frequency (n is an integer); ∆ω = vF/d;
θ(τ) = [θ(x2, τ) + θ(x1, τ)]/2; φ(τ) = θ(x2, τ) – θ(x1, τ);
θn and φn are the coefficients of the Fourier series
expansion:

(x ≡ θ, φ; ζx is the zeroth-order mode). Note that the
field φ(τ) determines the excess charge of the quantum
dot δq = eπ–1/2φ and the field θ(τ) determines the trans-
mitted current:

[17, 27].
We then obtain an approximate expression for Seff

which corresponds to small-amplitude oscillations of
the boson field θ(τ). For this we first assume that V1 and
V2 are small (i.e., V1, V2 ! µ) and we integrate over
charge fluctuations of the quantum dot (over fluctua-
tions of the field φ). 

If the condition 

(6)

SE xd

∞–

∞

∫ τ L0 LV LC+ +( ),d

0

β

∫–=

Seff θ φ,[ ] "
β
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2 ωn θn
2

1 ωn ∆ω⁄–( )exp+
------------------------------------------------
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
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+
ωn φn

2
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+ τ V1 π1/2 2θ τ( ) φ τ( )–[ ] kFd–( )cos{d

0

β

∫

+ V2 π1/2 2θ τ( ) φ τ( )+[ ] kFd+( )cos }

+
Ec

π
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.

0

β

∫

x τ( )
1
β
--- iωnτ–( )xn ζ x+exp
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I
ie

π1/2
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∂τ
-------------=

T  !  E c                                                
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is satisfied, we obtain the effective action in the follow-
ing form:

(7)

The value of V is defined as

(8)

where γ = eC, C ≈ 0.5772 is the Euler constant. We shall
subsequently only allow for small fluctuations of the
field θ and set cos(2π1/2θ) ≈ 1 – 2πθ2. We then need to
renormalize the potential V  V* [22, 23] after inte-
grating over high-frequency fluctuations whose energy
"ωN exceeds the renormalized potential V*. This is pos-
sible since these fluctuations are not sensitive to the
potential V* and may be considered as free-field fluctu-
ations. The final expression for the effective action in
the self-consistent harmonic approximation has the fol-
lowing form:

(9)

The value of ωV is obtained from

(10)

where the Fermi energy µ plays an rf cutoff role. We
shall use this action (9) to describe heat transport across
a quantum dot assuming that the results will be valid for
any (and not only small) value of the scattering poten-
tials V1 and V2. As was noted in the Introduction, this
approximation describes plasmon transport which in
this particular case yields the same temperature depen-
dence of the thermal conductivity as for electron trans-
port (K
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where Re  G  (  ω  ) is the real part of  G  (  ω  ). 
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In order to calculate the dependence G(ω) in the
model (9), we use the Kubo formula [30, 31]:

(12)

Substituting the formula for the current I expressed in
terms of θ(τ)we obtain

where Φn = 〈θnθ–n〉 . Averaging

can easily be performed if the following fictitious term
is added to the action

Then we have

Direct calculations using the effective action (9) give

Finally the rf conductivity of the quantum dot in this
model is given by

(13)

Expressions (13) and (11) determine the thermal con-
ductivity of the quantum dot allowing for the Coulomb
blockade effect in the self-consistent harmonic approx-
imation. The dependence K(T, ωV) will be analyzed in
the following section. 

It should be stated that the expression obtained for
G(ω) describes the plasmon contribution to the conduc-
tivity of a double barrier (a similar expression for a sin-
gle barrier was given in [22]). In the limit ω  0 this
contribution vanishes since these plasmons (small-
amplitude oscillations of the boson field corresponding
to electron–hole pairs) are neutral particles and do not
carry charge [22]. In the formalism used, topological
excitations of the boson (phase) field [16] carry charge
which corresponds to an appreciable change in the
value of θ (transport of a single electron across the bar-
rier corresponds to a change in θ by π1/2 [17]). Note that
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expression (13) was obtained assuming that the charac-
teristic energy scale (T or "ω) is much less than Ec (6). 

3. THERMAL CONDUCTIVITY 
OF A SYMMETRIC QUANTUM DOT

In this section we consider the case where the poten-
tial barriers separating the quantum dot from the supply
conductors have the same height: V1 = V2, ri = r, ti = t
(i = 1, 2). In this case we have

(14)

It can be seen from this expression that for certain val-
ues of N(Vg) the effective potential barrier disappears
(ωV = 0) as a result of the energy degeneracy of the sys-
tem with respect to a change in the number of particles
in the quantum dot by one (q  q + 1) [7, 11] and cor-
responds to destruction of the Coulomb blockade. As a
result, the heat flux increases appreciably and this is
observed as a series of peaks on the dependence K(Vg)
(Fig. 1). This effect is exactly the same as the conduc-
tance oscillations [1–4]. 

For the case of an asymmetric quantum dot (V1 ≠ V2)
the value of V (8) does not vanish for any Vg so that the
oscillations on the dependence K(Vg) are weak. 

ωV ωV0 πN kFd+( )2 ,cos=

"ωV0

16γEc

π2
--------------- r

t
-- 

 
2

.=

0.5

0.4

0.3

0.2

0.1

0 0.5 1.0 1.5 2.0 2.5 3.0
N

κ

2

1

Fig. 1. Dependences of the normalized thermal conductivity
κ = K/K0 (K0 = πT/(6")) on the quantum dot potential N =
CVg/e for low ("ωV0/T = 10, curve 1) and high ("ωV0/T =
0.1, curve 2) temperatures. The curves were plotted for a
symmetric quantum dot (V1 = V2) for T = ∆F.
SICS      Vol. 90      No. 5      2000



846 MOSKALETS
3.1. Shape of Coulomb Peak

The shape of the peak on the dependence K(Vg)
depends strongly on temperature (see Fig. 2). A cross-
over takes place at T ~ T* where T* = ∆F/π2; ∆F =
π"vF/d is the spacing between the spatial quantization
levels near the Fermi energy µ in an isolated (V1, 2 
∞) quantum dot. Near the maximum of the peak
("ωV ! T) the thermal conductivity is given by

(15)

(16)

Here K0 = πT/(6") is the thermal conductivity of a one-
dimensional ballistic channel [32, 33]. Thus, as the
temperature increases, the thermal conductivity at the
peak maximum is halved. This is attributable to the
influence of the electrostatic energy (capacitance C)
which is responsible for the frequency dispersion of the
conductance G(ω) (13).3 At low temperatures (T ! T*)
the main contribution to the thermal conductivity is
made by low-frequency (long-wavelength) plasmons
which do not “sense” the internal structure of the dou-
ble barrier. In this case, the thermal conductivity of the
system (at the peak maximum) is determined by the
thermal conductivity of the one-dimensional ballistic
channel. As the temperature increases, as a result of the

3 It should be stated that for Ec = 0 and "ωV = 0 we obtained
G(ω) = G(0).

K
K0
------ 1

3"ωV

2πT
-------------, "ωV   !  T  !  T ∗ ,–=

K
K0
------ 1

2
---

3"ωV

25/2πT
---------------, T  @  T ∗    " ω V . ,  –=                          

1.00
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0.25

0
–10 –5 0 5 10

∆ωV/T

κ

1

2

3

Fig. 2. Dependences of the normalized thermal conductivity
κ on the potential barrier height for a symmetric quantum
dot. The value of ∆ωV is measured from the value of ωV cor-
responding to the position of the maximum. The curves cor-
respond to T ! T* (1); T = 2T* (2); T @ T* (3) (T* = ∆F/π2).
JOURNAL OF EXPERIMENTAL
destructive interference of plasmon contributions at
different frequencies the thermal conductivity is
halved. This can effectively be considered to be the
result of the incoherent (at T @ T*) propagation of plas-
mons through two barriers. In this case, at the peak
maximum (ωV = 0) we have two series-connected inco-
herent (classical) contacts (barriers having the trans-
mission coefficient t = 1) each characterized by the
thermal conductivity K0. In this case, the thermal con-
ductivity of the system will be K = K0/2 (for similar rea-
soning on the electrical conductance see [12, 17]).
However, it should be stressed that the halving of the
thermal conductivity is caused by averaging over tem-
perature in the phase-coherent system in the absence of
real inelastic processes (which take place far from the
system in the electron reservoirs). The destructive inter-
ference effect with increasing temperature is fairly gen-
eral for the mesoscopic physics of ballistic structures.
The characteristic energy scale T* ~ ∆F/

 

π

 

2

 

 was first
introduced in the persistent current problem [34]. This
energy scale is also important for describing the kinetic
properties of ballistic mesoscopic samples [35]. 

 

3.2. Temperature Dependence 
of the Thermal Conductivity

 

Figure 3 shows temperature dependences of the
thermal conductivity for various values of the effective
potential barrier. It can be seen that for a small barrier
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First the destructive interference of plasmon contribu-
tions at different energies leads to a reduction in K with
increasing temperature. Second, an increase in the ther-
mal conductivity is caused by an increase in the number
of above-barrier (ballistic) plasmons with increasing
temperature. Note that the condition (17) can only be
satisfied in the immediate vicinity of the maximum of
the K(Vg) peak or for barriers having a low reflection
coefficient (r  0; t ~ 1) (strong tunneling). In this
last case, the dependence K(Vg) only contains weakly
defined oscillations (see Fig. 1, curve 2).

Analytic expressions for the dependence K(T) can
be obtained for ωV = 0 and "ωV @ T. 

3.2.1. Thermal conductivity at the maximum of
the coulomb peak. Assuming that ωV = 0, we obtain
from (13) and (11)

(18)

where T* = ∆F/π2. The dependence K(T) is plotted in
Fig. 3 (curve 1). Note that a similar crossover for the
conductance at the maximum of the Coulomb peak (at
g = 1) was obtained in [27]. 

3.2.2. Thermal conductivity far from the maxi-
mum of the coulomb peak. We shall now assume that
the following condition is satisfied

"ωV @ T, T*. (19)

In this case the main heat transfer mechanism is plas-
mon tunneling. For T ! T* expression (13) yields
ReG(ω) = G0(ω/ωV)2. Substituting into (11), we obtain

(20)

A similar expression was first obtained in [18, 21] for a
single potential barrier.

At higher temperatures (T @ T*) the thermal con-
ductivity is strongly influenced by an effect involving
the resonant tunneling of plasmons through the quan-
tum dot. The importance of allowing for this effect was
emphasized in [20, 21]. 

Resonant tunneling occurs for plasmons of fre-

quency ω .  = ωn[1 + 2∆F/(π"ωV)], where "ωn =
∆F(2n + 1), n = 0, 1, …. Under condition (19) expres-
sion (13) may be represented as a sum of Breit–Wigner
resonances and a quadratic background in terms of fre-
quency:

(21)
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where the resonance width is 

(22)

Substituting (21) into (11), we obtain
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On comparing expressions (20) and (24) we can see
that in the plasmon tunneling regime, 
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 is obtained
over the entire temperature range. However, the propor-
tionality factor is doubled for 
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* (see Fig. 4) as a
result of the resonant tunneling effect.
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 for the thermal con-
ductivity of a symmetric quantum dot far from the maxi-
mum of the Coulomb peak.
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4. DISCUSSION AND CONCLUSIONS

In the present study we have considered the thermal
conductivity of a quantum dot in the Coulomb blockade
regime at low temperatures for the case of spinless elec-
trons. The thermal conductivity was calculated using a
self-consistent harmonic approximation [22, 23] which
describes the plasmon heat conduction mechanism. It
was shown that the dependence of the thermal conduc-
tivity on the potential of the quantum dot contains
peaks caused by destruction of the Coulomb blockade.

At the maximum of the Coulomb peak, the thermal
conductivity is linear with respect to temperature K ∝  T
as a result of the ballistic heat transfer regime. How-
ever, the proportionality factor is halved for T > T* (18)
because of a transition from coherent plasmon propaga-
tion through a two-barrier potential to incoherent prop-
agation through two series-connected barriers. This is
consistent with the behavior of the conductance at the
maximum of the Coulomb peak (for g = 1) [12, 27]. 

In the plasmon tunneling regime ("ωV @ T) the ther-
mal conductivity is K ∝  T3 (20), (24). We shall compare
the plasmon contribution to the electron tunneling con-
tribution. At low temperatures in the Coulomb block-
ade regime the dominant electron transport mechanism
is elastic (T ! ∆F) and inelastic (T @ ∆F) cotunneling
[8, 9]. Both in the case of a weakly reflecting potential
(r  0; t  1) [12] and for a potential having the
transmission coefficient t  0 [8, 9] inelastic cotun-

1

2

0.5

0.4

0.3

0.2

0.1

0 2 4 6 8 10
ωV/T

κ

Fig. 5. Dependence of the normalized thermal conductivity
κ for a symmetric quantum dot in the strong cotunneling
regime (Ec @ T @ ∆F; r  0) on the ratio "ωV/T. The
thermal conductivity was calculated using the self-consis-
tent harmonic approximation (curve 1), the exact expression
for the conductance obtained in [12] (curve 2), and the self-
consistent harmonic approximation using a refined value of

the renormalized potential  = 1.2ωV (circles on curve 2). ωV
*
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neling processes lead to a quadratic dependence of the
conductance on temperature G ∝  T2 (for T ! "ωV)
which corresponds to the electron contribution to the
thermal conductivity Ke ∝  T3. This temperature depen-
dence was obtained in our study (24). At lower temper-
atures (T ! T*) when the dominant charge transport
mechanism is elastic electron cotunneling, the electri-
cal conductance does not depend on temperature G ∝
(∆F/Ec)2. In this case the electron contribution to the
thermal conductivity exceeds the plasmon contribution
Kp ∝  (T/Ec)2 (20): Ke/Kp ~ (∆F/T)2 @ 1. For T ~ ∆F (more
accurately T ~ T*) these contributions are comparable
and the nonmonotonicity caused by the resonant plas-
mon tunneling (see Fig. 4) may be observed in the total
thermal conductivity (K = Ke + Kp).

In the strong cotunneling limit (r  0; Ec @ T @
∆F) the conductance of the quantum dot can be calcu-
lated exactly [12]. Substituting this expression into
(11), we obtain the thermal conductivity in the strong
cotunneling regime (SC):

(25)

where f0(x) = [exp(βx) + 1]–1 is the Fermi function,

We compare the coefficient (25) with the thermal con-
ductivity in the self-consistent harmonic approximation
(11), (13) (it should be borne in mind that "ωV = 2Γ0).
Figure 5 gives dependences of KSC (curve 1) and K
(curve 2) on the ratio "ωV/T. It can be seen that these
curves show fairly good agreement. For example, for
T @ Γ0 we have

On comparing with (16) we can see that the deviation
from the ballistic value is described by the plasmon
approximation with a relative accuracy of around 15%.
At low temperatures ∆F ! T ! Γ0, the thermal conduc-
tivity is

and a comparison with (24) shows that the accuracy is
around 30%. The agreement between the plasmon
approximation and (25) can be improved by introduc-
ing the correction factor a ≈ 1.2 in the definition of the
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renormalized potential (10) "  = 2πaV2/µ, which in
fact implies a negligible change in the rf cutoff. The

resulting dependence K(" /T) is shown by the circles
in Fig. 5.

REFERENCES
1. D. V. Averin and K. K. Likharev, in Mesoscopic Phe-

nomena in Solids, Ed. by B. Altshuler, P. A. Lee, and
R. A. Webb (North-Holland, Amsterdam, 1991), p. 176.

2. Single Charge Tunneling, Ed. by H. Grabert and
M. H. Devoret (Plenum, New York, 1992).

3. M. A. Kastner, Rev. Mod. Phys. 64, 849 (1992).
4. L. P. Kouwenhoven, C. M. Marcus, P. L. McEuen,

S. Tarucha, R. M. Westervelt, and N. S. Wingreen, in
Mesoscopic Electron Transport, Ed. by L. Sohn, L. P. Kou-
wenhoven, and G. Schön, Vol. 345 of NATO ASI E:
Applied Sciences (Kluwer, Dordrecht, 1997).

5. R. I. Shekhter, Zh. Éksp. Teor. Fiz. 63, 1410 (1972) [Sov.
Phys. JETP 36, 747 (1973)].

6. I. O. Kulik and R. I. Shekhter, Zh. Éksp. Teor. Fiz. 68,
623 (1975) [Sov. Phys. JETP 41, 308 (1975)].

7. L. I. Glazman and R. I. Shekhter, J. Phys.: Condens.
Matter. 1, 5811 (1989).

8. D. V. Averin and A. A. Odintsov, Zh. Éksp. Teor. Fiz. 96,
1349 (1989) [Sov. Phys. JETP 69, 766 (1989)]; D. V. Averin
and A. A. Odintsov, Phys. Lett. A 140, 251 (1989).

9. D. V. Averin and Yu. V. Nazarov, Phys. Rev. Lett. 65,
2446 (1990).

10. L. I. Glazman and K. A. Matveev, Zh. Éksp. Teor. Fiz.
98, 1834 (1990) [Sov. Phys. JETP 71, 1031 (1990)].

11. H. van Houten and C. W. J. Beenakker, Phys. Rev. Lett.
63, 1893 (1989).

12. A. Furusaki and K. A. Matveev, Phys. Rev. B 52, 16676
(1995).

13. J. M. Luttinger, J. Math. Phys. 15, 609 (1963).
14. Sólyom, Adv. Phys. 28, 201 (1979).
15. V. J. Emery, in Highly Conducting One-Dimensional

Solids, Ed. by J. T. Devreese (Plenum, New York, 1979).

ωV
*

ωV
*

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
16. F. D. M. Haldane, J. Phys. C 14, 2585 (1981).
17. C. L. Kane and M. P. A. Fisher, Phys. Rev. B 46, 15233

(1992).
18. C. L. Kane and M. P. A. Fisher, Phys. Rev. Lett. 76, 3192

(1996).
19. R. Fazio, F. W. J. Hekking, and D. E. Khmelnitskii, Phys.

Rev. Lett. 80, 5611 (1998).
20. I. V. Krive, Fiz. Nizk. Temp. 24, 498 (1998) [Low Temp.

Phys. 24, 377 (1998)].
21. I. V. Krive, Phys. Rev. B 59, 12 338 (1999).
22. F. Guinea, G. Gómez Santos, M. Sassetti, and M. Ueda,

Europhys. Lett. 30, 561 (1995).
23. M. P. A. Fisher and W. Zwerger, Phys. Rev. B 32, 6190

(1985).
24. V. A. Krupenin, S. V. Lotkhov, H. Scherer, et al., Phys.

Rev. B 59, 10778 (1999).
25. M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys.

Rev. B 31, 6207 (1985).
26. U. Sivan and Y. Imry, Phys. Rev. B 33, 551 (1986).
27. A. Furusaki and N. Nagaosa, Phys. Rev. B 47, 3827

(1993).
28. K. Flensberg, Phys. Rev. B 48, 11156 (1993).
29. R. Landauer, Philos. Mag. 21, 863 (1970); M. Büttiker,

Phys. Rev. Lett. 57, 1761 (1986).
30. L. D. Landau and E. M. Lifshitz, Statistical Physics

(Nauka, Moscow, 1976; Pergamon Press, Oxford, 1980),
Chap. 1.

31. E. M. Lifshitz and L. P. Pitaevskiœ, Physical Kinetics
(Nauka, Moscow, 1979; Pergamon Press, Oxford, 1981).

32. H.-L. Engquist and P. W. Anderson, Phys. Rev. B 24,
1151 (1981).

33. L. W. Molenkamp, Th. Gravier, H. van Houten, et al.,
Phys. Rev. Lett. 68, 3765 (1992).

34. H. F. Cheung, Y. Gefen, E. K. Riedel, and W. H. Shih,
Phys. Rev. B 37, 6050 (1988).

35. M. V. Moskalets, Zh. Éksp. Teor. Fiz. 114, 1827 (1998)
[JETP 87, 991 (1998)].

Translation was provided by AIP
SICS      Vol. 90      No. 5      2000



  

Journal of Experimental and Theoretical Physics, Vol. 90, No. 5, 2000, pp. 850–860.
Translated from Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 117, No. 5, 2000, pp. 978–989.
Original Russian Text Copyright © 2000 by Balagurov, Kashin.

                                                                  

SOLIDS
Electronic Properties
Conductivity of a Two-Dimensional System
with a Periodic Distribution of Circular Inclusions

B. Ya. Balagurov and V. A. Kashin*
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 117997 Russia

*e-mail: vkashin@deom.chph.ras.ru
Received September 29, 1999

Abstract—A systematic method of solving the problem of the conductivity of a two-dimensional model with
circular inclusions forming a square lattice is proposed. The complex potential outside the inclusions is
expressed in terms of the Weierstrass zeta function and its derivatives. For a low concentration of inclusions an
analytic expression is obtained for the effective conductivity σe which is a rapidly converging series in powers
of the concentration. A numerical analysis of general formulas is used to determine σe and tabulate this in
graphical form over the entire range of variation of the parameters appearing in the problem. The vicinity of the
metal–insulator phase transition point is studied and the corresponding critical indices are estimated with an
exact value being obtained for one of these. Four two-parameter functions contained in the expressions for the
effective Hall coefficient and the effective magnetoresistance are also determined and tabulated so that it is pos-
sible to give a complete description of the galvanomagnetic properties of this system in a weak magnetic field.
© 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A theoretical study of various physical properties
(in particular the electrical conductivity) of inhomoge-
neous media, especially disordered ones, encounters
well-known mathematical difficulties. Hence, very few
nontrivial analytic results are available in this field and
they mainly apply to the two-dimensional case. In par-
ticular, these include the reciprocity relation [1, 2], and
also the conductivity [2], galvanomagnetic [3] and ther-
moelectric [4, 5] characteristics of two-dimensional
systems of critical composition (having the concentra-
tion p = 1/2). It was also shown in [6, 7] that the results
of [3–5] can be applied to the case of arbitrary concen-
trations, for which it is sufficient to know the dimension-
less effective conductivity f(p, h) (where h is the conduc-
tivity ratio of the components) of the corresponding two-
dimensional two-component model. However, for ran-
domly inhomogeneous systems the function f(p, h) is only
known as the result of numerical analyses over the entire
range of variation of the arguments p and h. A similar
numerical analysis is required for each macroscopi-
cally nonequivalent disordered system.

Periodic models, for which the problem is simpli-
fied considerably, being reduced to finding the potential
within a single unit cell, are more interesting. Various
exact results have been obtained for these structures, i.e.,
two-dimensional systems with a regular distribution of
similar inclusions (see, for example, [8, 9]). Various
models with dielectric or ideally conducting inclusions
were analyzed in [8, 9] allowing the solution to be con-
fined to the external problem. A closed solution of a
considerably more complex problem for the case where
both components have finite (nonzero) conductivity is
1063-7761/00/9005- $20.00 © 20850
only known for a single model, comprising a two-
dimensional system with a checkerboard structure [8]. 

An exact solution for a checkerboard-structure sys-
tem can be used to find various effective characteristics
(conductivity, galvanomagnetic and thermoelectric
properties, and so on) of this model as a function of the
parameter h = σ2/σ1 (σi is the conductivity of the ith
component) for a fixed concentration p = 1/2, the same
as the critical concentration. This then makes it possible
to study the metal–insulator phase transition in the sys-
tem merely in terms of one of two parameters (p or h). At
the same time, the effective conductivity of a two-
dimensional system with square inclusions (dielectric
or ideally conducting) distributed in a checkerboard
pattern was determined in [9] (see also [8]). This can be
used to study the critical behavior of the electrical con-
ductivity as a function of concentration for a fixed argu-
ment h (h = 0 or h = ∞). Thus, the results of [8, 9] for a
checkerboard-structure model can be used to obtain some
representation (albeit incomplete) of the critical conduc-
tivity behavior of this system. However, the absence of a
unified approach to the analysis of the vicinity of the phase
transition point, the impossibility of studying the entire
range of variation of the parameters p and h, and also some
characteristics associated with the angularity of the inclu-
sions (see [9]) reduce the value of this model.

Of considerable interest for the theory of transport phe-
nomena in inhomogeneous media is a detailed study of a
two-dimensional system with periodically distributed cir-
cular inclusions. Although this model is one of the “sim-
plest” and has already been studied by Rayleigh [10],
no closed exact solution exists for it. Also no suffi-
ciently comprehensive study of this system has been
000 MAIK “Nauka/Interperiodica”
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made over the entire range of parameters p and h. How-
ever, a comprehensive study of this model is interesting
for various reasons. First, it can be used to study a
metal–insulator phase transition in a regular structure
with smooth inclusions. Second, this model being the
simplest and most studied, serves as the “touchstone”
for various approximate methods. Finally, these struc-
tures are widely used in microelectronics so that their
study is necessary from the practical point of view.

In the present paper we propose a systematic
method of calculating the effective electrical character-
istics of a two-dimensional system with a doubly peri-
odic distribution (at the apexes of a square lattice) of
circular inclusions. The method is based on expanding
the solution of the Laplace equation in terms of the for-
mally small parameter R/a, where R is the radius of the
inclusion and 2a is the size of the unit cell. In the lowest
approximation with respect to R/a, the potential outside
the circle is sought as the sum of the potentials from
dipoles induced by an external homogeneous electric
field at each inclusion. The corresponding sum has a
particularly simple form when a complex representa-
tion is used: the dipole complex potential is in fact the
same as the Weierstrass zeta function ζ(z). In this rep-
resentation the algorithm to allow for multipoles of any (in
this case, odd) orders in successive approximations is also
extremely simple since it reduces to an even number of
differentiations of the function ζ(z). In view of the proper-
ties of the Weierstrass functions (see [11–13]), the poten-
tial thus obtained automatically satisfies all the neces-
sary conditions at the boundaries of the unit cell.

The standard boundary conditions for r = R yield an
infinite system of equations for the unknown coeffi-
cients contained in the general expression for the poten-
tial. For R/a ! 1 this system can easily be solved itera-
tively, which gives rapidly converging expansions in
powers of the parameter R/a (or in powers of the con-
centrations c = πR2/(2a)2) for the conductivity and other
effective characteristics of the model. For fairly large
R/a we used numerical methods; instead of an infinite
system we solved a subsystem of ten equations and
near the phase transition point (i.e., for R/a  1) this
subsystem was increased to forty equations. As a result
of this numerical analysis, the dimensionless effective
conductivity f(p, h), its derivative with respect to the
argument h, and various other characteristics of this
model were obtained with a high degree of accuracy
over the entire range of R (0 ≤ R ≤ a) for various values
of the parameter h. In particular, we investigated the
vicinity of the metal–insulator phase transition point
and estimated both critical indices. In addition, we
obtained an exact value for the index t: t = 1/2.

In accordance with [6, 7], for two-dimensional two-
component isotropic systems a knowledge of the func-
tion f(p, h) over the entire range of variation of the argu-
ments p and h is sufficient to describe the galvanomag-
netic (and also thermogalvanomagnetic [14]) properties
of these systems for arbitrary magnetic fields. Neverthe-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
less, we make a separate analysis of the case of a weak
magnetic field H when the Hall coefficient and the
magnetoresistance are particularly simply related to the
dimensionless conductivity f(p, h) and its derivative
with respect to the argument h. For this model all the
functions (which depend on p and h) contained in the
expressions for the effective Hall coefficient and the
effective magnetoresistance were calculated and tabu-
lated in graphical form. 

The model discussed is analyzed in terms of the
conductivity problem (using the corresponding termi-
nology). Solutions of similar problems involving ther-
mal conductivity, permittivity, steady-state diffusion,
and so on can be obtained by obvious changes in nota-
tion. We also note that the proposed method (for the
case of circular inclusions) can be generalized to struc-
tures of different symmetry and systems with a higher
number of components.

2. ELECTRIC FIELD IN THE MEDIUM

The model comprises a two-dimensional isotropic
matrix of conductivity σ1 with circular inclusions of
radius R and conductivity σ2. The inclusions form a
regular structure with their centers located at the apexes
of a square lattice having the period 2a (see Fig. 1). The
effective conductivity of this system is isotropic so that
the direction of the average electric field 〈E〉  can be
selected arbitrarily. We shall direct 〈E〉 along the x axis.
In this case, in order to determine the electric field (and
current) in the entire plane, it is sufficient to analyze the
problem in the unit cell shown in Fig. 2. In the selected
geometry the electric field strength E(x, y) possesses
specific symmetry: 

(1)
Ex x y,–( ) Ex x y–,( ) Ex x y,( ),= =

Ey x y,–( ) Ey x y–,( ) E– y x y,( ).= =

Fig. 1.
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In particular, the vertical boundaries of the unit cell
(and also the line x = 0) are equipotential contours on
which Ey = 0 and the horizontal boundaries (and the line
y = 0) are lines of flow on which Ey = 0 is also found.

The solutions of the two-dimensional Laplace equa-
tion in polar coordinates (r, θ) have the form r±kcoskθ
and r±ksinkθ, where k = 0, 1, 2, …. Inside the circle
(r < R) allowing for the symmetry of the electric field
(1) we have

(2)

In the two-dimensional case, it is convenient to use the
complex potential Φ(z) (where z = x + iy) whose deriv-
ative is expressed in terms of the strength components
of E as follows:

(3)

where ϕ(r) = ReΦ(z). For the complex potential inside
the circle (|z| < R) we obtain from (2) and (3)

(4)

with the real (in the selected geometry) coefficients
A2n + 1 . 

Outside the circle (r > R) it is permissible to have
solutions with both positive and negative exponents k =
2n + 1. From these solutions we need to construct an
analytic function possessing the required properties
(see above) at the boundaries of the unit cell. We shall
attempt to construct this function assuming that the
parameter R/a is formally small. In the absence of any
inclusions, the complex potential contains only one
(linear with respect to z) term which is responsible for
the external homogeneous electric field applied to the

ϕ i( ) r( ) A2n 1+ r2n 1+ 2n 1+( )θ.cos
n 0=

∞

∑=

Φ' z( ) Ex– iEy,+=

Φ i( ) z( ) A2n 1+ z2n 1+

n 0=

∞

∑=

xa

R

y

a

〈E〉

Fig. 2. Unit cell. Dashed lines are equipotential contours,
solid lines with arrows are flow lines.
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system. In the lowest approximation with respect to R/a
the existence of inclusions can be taken into account by
summing the fields from the dipole moments induced at
them, taking them as points. The potential created at
point z by a dipole positioned at site zlm is proportional
to (z – zlm)–1. Summation over all l and m gives the dipole
component Φd(z) of the complete potential. However, the
corresponding sum does not converge so it must be reg-
ularized. After this procedure the complex potential in
the dipole approximation for |z| > R has the form

(5)

(6)

Here ζ(z) is the Weierstrass zeta function [11–13]; sum-
mation in (6) is performed over all integer values of l
and m except l = m = 0. The coefficients β and B0 in (5)
are real. It follows from (5) that

(7)

where 3(z) = –ζ'(z) is an elliptic Weierstrass function
[11–13]. Since for z = iy, z = ±a + iy, z = x, and z = x ± ia,
we have Im3(z) = 0 (see [11, 13]) and Ey = 0 on these
curves. Thus, the complex potential (5) satisfies the condi-
tions at the unit cell boundaries (and on their axes of sym-
metry) imposed by the selected formulation of the
problem.

In the next approximations with respect to R/a we
need to allow for higher-order odd multipoles. The cor-
responding contributions to the potential can be
obtained by differentiating the function ζ(z) from (6) an
even number of times. As a result, for the complex
potential in the region outside an inclusion we obtain
the following expression for |z| > R:

(8)

with the real coefficients β and B2n (in the selected
geometry). In (8) ζ(2n)(z) is a 2nth order derivative of the
zeta function (6). On account of the properties of the
Weierstrass functions ζ(z) and 3(z) (see [11–13]) the
potential Φ(e)(z) satisfies the same conditions at the unit
cell boundaries and on its axes of symmetry as its
dipole part (5).

In accordance with [11–13], the zeta function is
quasi-periodic:

(9)

and the function 3(z) and its derivatives are doubly
periodic having the periods 2ω and 2ω'. For the square

Φd z( ) βz B0ζ z( ),+=

ζ z( ) 1
z
--- 1

z zlm–
-------------- 1

zlm

------ z

zlm
2

------+ + ,
l m,

'∑+=

zlm 2la i2ma.+=

Φd' z( ) β B03 z( ),–=

Φ e( ) z( ) βz B2nζ
2n( ) z( )

n 0=

∞

∑+=

ζ z 2ω+( ) ζ z( ) 2η , η+ ζ ω( ),= =

ζ z 2ω'+( ) ζ z( ) 2η', η'+ ζ ω'( ),= =
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lattice studied (having the half-periods ω = a, ω' = ia,
known as the lemniscate case [11, 12]) we have

(10)

where g2 and g3 are invariants of the Weierstrass func-

tion [11–13], K(1/ ) = 1.85407… is a complete ellip-

tic integral of the first kind with the modulus k = 1/ . 

The electric potentials ϕ(e) = Re Φ(e)(z) and ϕ(i) =
ReΦ(i)(z) should satisfy standard conditions at the inclu-
sion boundary (r = R):

(11)

From (11) we obtain a system of equations for the
unknown coefficients A2n + 1 and B2n appearing in
expressions (2), (4), and (8). In this procedure we use
an expansion for the function ζ(z) which has the follow-
ing form in the lemniscate case [12]

(12)

where

(13)

with g2 from (10). The coefficients c2k satisfy the recur-
rence formula [12] 

(14)

which can be used to successively find the values of c2k

with increasing index k.

It follows from (6) that the coefficients c2k are
expressed in terms of the double sums
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For k @ 1 the following asymptotic expansion holds
for Fk

which can be used to calculate the coefficients c2k with
large indices.

Instead of the coefficients B2n we introduce the
“variables” ξn:

(15)

The finite system of equations for ξn derived from (11)
then has the form (see Appendix A)

(16)

where

(17)

The coefficients cn + m + 1 with even indices (n + m + 1 = 2k)
are determined in (12)–(14) and those with odd indices
are zero. Thus, the value of Mnm is only nonzero when
the indices n and m have different parity. The coeffi-
cients A2n + 1 are expressed in terms of ξn as follows:

(18)

The equations (16) and expressions (15) and (18)
provide the fundamental possibility of expressing all
the coefficients B2n and A2n + 1 in terms of β which in
turn is related to the potential difference U [see (20)].
Thus, expressions (4), (8), and (15)–(18) together with
(20) provide a complete formal solution of the formu-
lated problem.

3. EFFECTIVE CHARACTERISTICS

For the unit cell shown in Fig. 2, the potential differ-
ence U and the total current I are expressed in terms of
the complex potential Φ(z) as follows:

(19)
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Substituting into (19) the expressions (8) allowing for (9)
and (10) gives

(20)

For the dimensionless effective conductivity f = σe/σ1 =
I/(σ1U) we obtain from (20) (B0 = ξ0R2δ)

(21)

so that the function f can be determined if we know ξ0
(i.e., the coefficient B0).

For R ! a (low concentrations) the system (16) can
be solved iteratively by expanding in powers of the

matrix . As a result, we find

(22)

whence it follows that for n = 0

(23)

In (22) and (23) summation over each of the indices is
performed between 0 and ∞. In (23) allowance is made

for the property of the  matrix elements noted above:
Mnm = 0 if n and m have the same parity. Determining
ξ0/β from (23) with the required accuracy and substitut-
ing into (21), we obtain the function f with the same
accuracy. 

However, it is more convenient to invert equality (23),
expressing β in terms of ξ0. For n = 0, in accordance
with (16) we have

(24)

Thus, for n ≠ 0 (16) yields the equality

(25)
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Solving equation (25) iteratively (expanding in powers

of ) and then substituting the expression obtained for
ξn (for n ≠ 0) into (24), we obtain 

(26)

Here the prime after the summation sign indicates that
summation is performed between 1 and ∞. Note that

formula (26) only contains even powers of .

Using the explicit form of the matrix  [see (17)],
from (26) we can obtain the value of α as an expansion
in powers of R/a. Thus, to within terms ~(R/a)24 inclu-
sive, we have

(27)

where g = g2/20, g2was determined in (10), and δ in
(15). The expansion (27) converges rapidly for R/a ! 1.
A comparison with the results of a numerical analysis
(see below) of the system (16) shows that expressions
(21) and (27) give the function f to within ~1% over the
entire range of concentration (i.e., for 0 ≤ R ≤ a) for
|δ| & 0.7 and for 0 ≤ R ≤ 0.95a for |δ| = 1 (for h = 0 or
h = ∞). Such a wide range of validity of this approxima-
tion is obtained because, as is deduced from (27), the
parameter of the virial expansion in this case is not the
inclusion concentration c = πR2/(2a)2 but its fourth
power. For this reason even for α = 1 formula (21) gives
the function f to within ~1% in the range 0 ≤ R ≤ 0.7a
(for |δ| = 1).

Note that in accordance with (26) [see also (27)] the
value of α does not depend on the sign of δ since it is a
function of δ2. Thus, making the substitution σ1  σ2
(i.e., h  1/", δ  –δ) we have f  1/f. Conse-
quently,

(28)

so that for this model the reciprocity relation [1, 2] (see
also [4]) is satisfied automatically. 

For arbitrary R/a the system (16) was solved by
numerical methods (in the range 0 ≤ R ≤ a). In this case
we analyzed a finite subsystem of N equations with N
unknowns ξ0, ξ1, …, ξN – 1 with the maximum N = 40 (in
the range R . a). Corresponding results for f as a func-
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tion of the concentration of the first component p for
three values of the argument h (0.5; 0,1; 10–5) are plot-
ted in Fig. 3. Using these data the function f (p, h) for
h > 1 can be determined from the reciprocity relation (28).

The mean-square characteristics of the electric field
are directly related to the effective conductivity σe

(29)

Here 〈E〉  is the average over the volume (area in the
two-dimensional case) of the sample V and 〈…〉 (i) is the
integral over the volume of the ith component divided
by V. For a two-component medium we have [15]

(30)

(31)

It is easy to see that for this model 〈Ex〉  = U/(2a) with
U from (20). Determining the value of 〈E2〉 (2) using (2)
and (4), we obtain

or allowing for (18) and (20)

(32)

Calculating (32) to within (R/a)24 inclusive and com-
paring the expression obtained for ψ2 with the deriva-
tive of h from (21) with α from (27), we can confirm
that the relationship ψ2 = f ' is satisfied in this approxi-
mation. A proof of the validity of this relationship for
this particular model for arbitrary R/a is given in
Appendix B. 

Results of a numerical analysis for ψ1 and ψ2 are
plotted in Figs. 4 and 5. In this case ψ2 was calculated
using formula (32) and ψ1 from the relationship ψ1 =
f – hψ2 [see (30)]. The functions ψ1 and ψ2 for h > 1 can
be obtained from their values for h < 1 using the equal-
ities
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which are obtained from the definitions (30) and (31)
and the reciprocity relation (28).

4. CRITICAL REGION

If the conductivity of the second component (inclu-
sions) is zero, for R  a the effective electrical con-
ductivity of the medium σe goes to zero since a metal–

0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

p

ƒ pc

h = 0.5

0.1

10–5

Fig. 3. Dimensionless effective conductivity f as a function
of the concentration of the first component p for three values
of the argument h. Circles give results of model experiment
for h = 0 (see Fig. 39 from [8]).
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1.0
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pcψ1

h = 0.5

10–5

Fig. 4. Dependence of ψ1 = 〈e2〉(1) = f ' – hf ' on the concen-
tration p for three values of the argument h. The dotted curve
corresponds to the case h = 0.1.
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insulator phase transition takes place in the system. The
corresponding critical concentration of the conducting
(first) component is pc = (4 – π)/4 = 0.21460…. For ran-
domly inhomogeneous media the properties of σe (or
the function f) in the critical region h ! 1 or |τ| ! 1
(τ = (p – pc)/pc is the similarity parameter at the transi-
tion point in terms of concentration) are described in
terms of the similarity hypothesis [16]. In a certain
sense this description is also suitable for periodic sys-
tems, see for example [9]. Below we confine our analy-
sis to the region p ≥ pc (i.e., R ≤ a) since the method pro-
posed in the present study cannot be applied for p < pc

(R > a).

In accordance with [16] (see also, for example [15])
the function f(p, h) in the critical region has the follow-
ing expansions (τ > 0):

(33)

(34)

Here 

(35)

is the size of the smearing region [16]. Corresponding
expansions for the functions ψ1 and ψ2 are obtained
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Fig. 5. Dependence of ψ2 = 〈e2〉(2) on the concentration p for
three values of the argument h. 
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after substituting (33) and (34) into relations (30) and
(31). In particular, for ∆0 ! τ ! 1

(36)

where

(37)

For randomly inhomogeneous media the value of q' is
the same as the critical index q characterizing the
behavior of the function f for τ < 0 [16]. 

For this particular model an investigation of the crit-
ical region encounters certain difficulties because of its
closeness to the limit of validity of the model used. For
R  a the corresponding expansions (in powers of
R/a) converge fairly slowly which necessitates allowing
for a considerably larger number of terms of these
expansions. For example, using expression (27) for α
for h = 0 and R = a gives f(pc, 0) 
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We note that relation (37) allowing for (38) and (40)
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)
can be determined approximately by calculating the
resistance of the appropriate “contact.” This problem is
solved in terms of bipolar coordinates [17]. As a result,
for dielectric inclusions we obtain

(41)

For ideally conducting inclusions the effective conduc-
tivity may be determined from the reciprocity relation
(28). Note that the accuracy of formula (41) increases
as the ratio 
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For R  a we obtain from (41) (cf. [18]) 

which, when converted to concentration, gives

(42)

which agrees with (38). Expression (41) describes the
results of numerical calculations for f in the range 0.216 ≤
p ≤ 0.218 to within ≤1%. 

This analysis shows that a scaling description can be
applied to this periodic model. However, compared
with “ordinary” disordered systems this case has vari-
ous differences. This particularly applies to the critical
index t. In accordance with the assumption put forward
in [9], the value of t is less than one. This then has the
result that ∂f/∂τ  ∞ for τ  +0 whereas in the ordi-
nary case t > 1 (for two-dimensional systems t . 1.3) and
∂f/∂τ  0 for τ  +0. Another important difference is
the smallness of the smearing region (35) since for this
particular model s/t . 2 whereas for a randomly inho-
mogeneous two-dimensional system s/t . 0.4. Finally
attention is drawn to the extreme smallness of the index
q' (instead of the ordinary q' = t . 1.3) which indicates
that the dependence of f on τ may be logarithmic for
τ < 0.

5. GALVANOMAGNETIC PROPERTIES

The problem of the galvanomagnetic properties of
two-dimensional two-component systems in a trans-
verse magnetic field H with the conductivity tensor 

(43)

has an exact solution for arbitrary H [6, 7]. In this case,
the components of the effective conductivity tensor 
are expressed in terms of the galvanomagnetic charac-
teristics of individual components and the function f(p, λ)
obtained from the dimensionless effective electrical
conductivity (for H = 0) f(p, h) by substituting h  λ.
The parameter λ is also expressed in terms of the galva-
nomagnetic characteristics of the components and thus
depends on H. The relevant fairly cumbersome formu-
las for  and λ are given in [6, 7]. We shall subse-
quently confine our analysis to the case of weak mag-
netic fields when the components of the tensor  can
be expressed directly in terms of the electrical conduc-
tivity for H = 0, i.e., in terms of the function f(p, h). 
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In the linear approximation with respect to H the
Hall component of the tensor  for a two-component
system has the form [15]

(44)

where ϕ(p, h) is a certain function which depends on
the properties of the medium for H = 0. In the two-
dimensional case ϕ(p, h) can be expressed in terms of
f(
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) [15]:
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 is plotted in Fig. 6 for three values of
the argument 
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which is an obvious consequence of the reciprocity
relation (28). 
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Fig. 6. The function ϕ determined using formula (45).
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We express the diagonal components of the conduc-
tivity tensors  and  in a weak magnetic field in the
form

(47)

where σe and σi are the conductivities for H = 0, and γe

and γi are quadratic with respect to H. In accordance
with [15] for γe we have

(48)

Here the functions ψ1 = ψ1(p, h) and ψ2 = ψ2(p, h) are
the same as in (30), (31). The function χ(p, h) in the
two-dimensional case can be expressed in terms of
f (p, h) [15]:

(49)

with ψ1 from (30) and ϕ from (45). For the model being
studied the dependence of χ on the concentration p is
plotted in Fig. 7 for three values of the argument h (h < 1).
The following equality obtained from the definition
(49) and the reciprocity relation for the functions f, ψ1,
and ϕ

can be used to determine χ for h > 1.

For the magnetoresistance 
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Fig. 7. The function χ determined using formula (49).
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where ρx = σx/(  + ), in the quadratic approxima-
tion with respect to H we have

(50)

Here σe is the electrical conductivity for H = 0, σae is
defined in (44) and (45), and γe in (48) and (49). Expres-
sion (50) can be used to describe the magnetoresistance
of a two-dimensional two-component system over the
entire concentration range and in particular in the criti-
cal range.

6. CONCLUSIONS

We shall briefly discuss the main differences
between the results of the present study and those
obtained (for the two-dimensional case) in [10]. An
advantage of the proposed approach compared with
that developed in [10] is first that the lattice structure of
the model is taken into account in the lowest dipole and
in each successive approximation. Thus, in all orders of
the virial expansion accurate allowance is made for the
symmetry of the electric field and in particular, the con-
ditions at the unit cell boundaries. (In [10] these condi-
tions were not discussed despite their importance.)
Then the potential outside the inclusions is in fact
expressed in terms of the same quantity, the Weierstrass
zeta function, which has been fairly well studied. Using
the known properties of the zeta function significantly
simplifies the solution of the main problem of deter-
mining the potential, and simplifies the calculations of
the effective model characteristics. Another important
advantage is the establishment of an explicit form of
Mnm [see formulas (16) and (17)] which means that in
principle, numerical methods can be applied to find the
conductivity and other effective characteristics over a
wide range of parameters p and h with arbitrary accu-
racy. This last factor allowed us to study the vicinity of
the metal–insulator phase transition point. (In [10]
however only the first few terms of the corresponding
virial expansion were obtained so that it is not possible
to consider the critical region.) The existence of an
exact formal solution also allows us to study problems
of a general nature. For instance, relation (31) can be
proved by direct calculations (for arbitrary p and h)
which is a serious argument in support of the accuracy
of this solution. Finally, a considerably wider range of
physical problems was considered in the present study
compared with [10]. 

APPENDIX A

We write the expansion (12) in the form

(A.1)
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where the coefficients cl with odd indices are zero in
this lemniscate case (square lattice). Differentiating (A.1)
2n times gives

(A.2)

We substitute (A.2) into (8), set z = rexp{iθ}, and sep-
arate the real part. As a result, for r > R we obtain

(A.3)

Substituting (2) and (A.3) into (11) yields the fol-
lowing system of equations

(A.4)

where δn0 is the Kronecker symbol. Subtracting the sec-
ond term from the first in (A.4), we find

(A.5)

Eliminating the coefficient A2n + 1 from (A.4), we obtain

(A.6)

Substituting into (A.5) and (A.6) B2n = ξnR2δ with δ
from (15), we arrive at formulas (16)–(18).

APPENDIX B

We shall show that expressions (21), (26), and (32)
identically satisfy relation (31).
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---------------------------cn m 1+ + r2n 1+
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---------------------------cn m 1+ +
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∑ hA2n 1+ ,=

A2n 1+
2
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B2n
1 h–
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------------ B2m
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------------------------------------R4n 2+ cn m 1+ +

m 0=

∞

∑+
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1 h–
1 h+
------------βR2δn0.
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We introduce the matrix  which is related to 
from (17) as follows:

(B.1)

Using  the solution of equation (25) may be written
in the form

(B.2)

so that for α = β/ξ0 from (24) allowing for (B.2) we
obtain

(B.3)

Expressions (B.3) and (26) are equivalent since only

even powers of  make a nonzero contribution to α
Differentiating f from (21) with respect to h gives

(B.4)

The matrices  and  depend linearly on δ so that for
the last factor from (B.4) allowing for (B.3) we obtain

(B.5)

We write ψ2 from (32) in the form

(B.6)

(B.7)

Substituting (B.2) into (B.7) gives

(B.8)

It is easy to see that for n ≠ 0 

(B.9)

Thus, for n ≠ 0 we have

(B.10)
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so that for J from (B.8) we obtain

(B.11)

It follows from the definition (B.1) that

Thus, summation in (B.11) can be extended to all n ≥ 0
and we then finally obtain for J:

(B.12)

A comparison of (B.4) and (B.5) with (B.6) and (B.12)
yields relation (31). 
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Abstract—Higher-order perturbation-theory corrections to the superfluid transition temperature in a weakly
nonideal Fermi gas with repulsion are determined. This involves calculating the contribution of third- and
fourth-order diagrams in terms of the gas parameter apF to the effective interaction which determines the super-
fluid transition temperature and also allowing for effects associated with retardation and renormalization of the
polar part of the Green’s function. The expressions obtained provide evidence in support of attraction in the
effective interaction in the second, third, and fourth orders of perturbation theory. It is shown that the critical tem-
perature is mainly determined by second- and third-order terms of perturbation theory. Calculations are made of
the superfluid transition temperature for a gas comprising neutral Fermi particles in a magnetic field. The limits
of validity of the theory are analyzed and the possibility of applying the results to dilute solutions of 3He in 4He
and neutral-particle Fermi gases in magnetic traps is discussed. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION 

Nonphononic Cooper pairing mechanisms have
recently started to attract greater attention. This is pri-
marily attributable to the discovery of high-temperature
superconducting (HTSC) systems, superconductivity
in organic compounds and heavy-fermion compounds,
and also because of the search for superfluidity in solu-
tions of 3He in 4He and in atomic Fermi gases in traps.
Moreover, HTSC systems and heavy-fermion systems
belong to a class of strongly correlated systems whose
theoretical analysis requires the development of new
methods. At the same time, solutions of 3He in 4He and
atomic Fermi gases in traps can be described using the
model of a weakly nonideal Fermi gas. In this case the
interparticle interaction can be either attractive or
repulsive. In the attractive case normal singlet Cooper
pairing takes place where the orbital momentum of the
pair is l = 0 (according to the BCS type), for which the
critical temperature was first calculated by Gor’kov and
Melik-Barkhudarov [1]. In systems with repulsive
interaction, the formation of l = 0 Cooper pairs is
clearly impossible and in order to investigate the exist-
ence of superfluidity, we need to study the possibility of
l ≠ 0 Cooper pairing. 

The possible existence of superfluidity in Fermi sys-
tems with repulsion was first indicated by Kohn and
Luttinger in 1965. In [2] they examined the contribu-
tion of collective effects to the scattering amplitude in
a particle–hole channel which lead to effective quasi-
1063-7761/00/9005- $20.00 © 20861
particle interaction at the Fermi surface via polarization
of the Fermi background. A principal role in the forma-
tion of attractive harmonics in the effective interaction
and consequently the superfluidity is played by the
Kohn singularity in the effective interaction. In the
three-dimensional case, this has the form

(1)

In coordinate space the Kohn singularity leads to alter-
nating oscillating RKKY interaction between quasipar-
ticles:

It should be noted that the singular part of the effective
interaction decreases over large distances more slowly
that the seed interaction U0(r – r') and consequently
makes the main contribution to the scattering amplitude
in the limit of large momenta l. Integrating the singular

part  using Legendre polynomials yields the fol-
lowing results [2]:

A simple extrapolation made by the authors of [2]
yields extremely low estimates at superfluid transition
temperatures in the limit l  2, 10–16 K and 10–11 K
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for 3He and the electron subsystem in the metal, respec-
tively. 

It was subsequently shown in [3, 4] that effective
attraction is also observed for the angular momentum
l = 1 which gives the following expression for the crit-
ical triplet-pairing temperature in the second order of
perturbation theory: 

(2)

where λ = 2apF/π is the effective gas parameter, a is the
s-scattering length, pF is the Fermi momentum, and 
is the energy parameter, of the order of the Fermi energy,
which functions as a cutoff parameter at high energies.
Substituting real values for 3He in which triplet pairing
takes place gives good agreement with experiment: Tc1 ~
10–3 K. (Obviously, the seed interaction in real 3He is far
more complex than that in this model). 

The aim of the present paper is to determine the crit-
ical superfluid transition temperature of a weakly non-
ideal Fermi gas with repulsive interparticle interaction
to within the preexponential factor. For this purpose we
calculate the irreducible vertex in the Cooper channel
in the third and fourth orders of perturbation theory
with respect to the gas parameter λ. We also allow for
renormalization of the polar parts of the Green’s func-
tion (corrections associated with the Z factor and the
effective mass) in the Bethe–Salpeter equation (3) and
take into account retardation effects (the influence of
the frequency and pulse momentum dependences of the
irreducible vertex).

This article is constructed as follows. In Section 2
we derive and analyze an equation for the critical tran-
sition temperature in a weakly nonideal Fermi gas with
repulsion. In Section 3 we calculate the irreducible ver-
tex in the Cooper channel in the second, third, and
fourth orders of perturbation theory. In Section 4 we
examine the contribution of retardation effects. In Sec-
tions 5 and 6 we give the final formula for the critical
temperature and discuss the contribution of the seed
scattering in the p-channel. In Section 7 we note the
possibility of an abrupt increase of Tc1 in an external
magnetic field. In Section 8 we discuss possible exper-
imental applications of these results. In particular, we
discuss the possibility of triplet Cooper pairing in solu-
tions of 3He in 4He and in a neutral-particle Fermi gas
in magnetic traps at ultralow temperatures.

Tc1 ε̃ 5π2

4 2 2 1–ln( ) a pF( )2
---------------------------------------------–

 
 
 

ε̃ 13.0

λ2
----------–

 
 
 

,exp≈exp∼

ε̃

= +

–q–p1

q

–p1 –p1–p3 –p3 –p3
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ÉÉ É

~
É
~

Fig. 1. Bethe–Salpeter equation for complete vertex Γ.
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2. SUPERFLUID TRANSITION
IN A FERMI GAS WITH REPULSION

We shall consider a weakly nonideal Fermi gas
described by the Hamiltonian

where the indices α, β = 1, 2 number the system com-
ponents which we assume to have equal masses m and

concentrations n1, 2 = /6π2, µ is the chemical poten-
tial, and the constant g characterizes the interparticle
interaction which we shall assume to be point (here and
subsequently we assume " = 1). The specific physical
content of the concept of component depends on the
particular system. For example, for a solution of 3He in
4He it corresponds to an “upward” and “downward”
projection of the spin, whereas in the case of an atomic
gas in a magnetic trap, it corresponds to a hyperfine-
structure component (or projection of the nuclear spin).
The interparticle interaction selected by us assumes
that only s-scattering takes place in the system, charac-
terized by the scattering length a. (In the principal order
of perturbation theory a = mg/4π.) The corresponding
small dimensionless parameter, the gas parameter λ, is
given by

We subsequently show how the final result is modified
in the presence of scattering in channels with nonzero
orbital momenta.

As we well know, the appearance of superfluid pair-
ing is associated with the presence of a pole in the com-
plete two-particle vertex function Γ in the particle–par-
ticle channel (Cooper channel) for zero total momen-
tum and frequency [5]. This vertex function Γ is a solution
of the Bethe–Salpeter integral equation (Fig. 1):

(3)

where  is the irreducible vertex in the Cooper channel
(having no singularities at zero total momentum and
frequency), G is the single-particle Green’s function,
and the arguments of the vertex functions denote the
corresponding sets of Matsubara frequencies and
momenta: q = (ωn, q), p1 = (ωn1, p1), and so on. Note
that in formula (3) (and in the following formulas) we
do not give the explicit form of the indices distinguish-
ing the components of the Fermi gas (for example,
Γ should be taken to mean Γαβγδ, and so on). Writing
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these in explicit form does not present any difficulties.
We also note that the nonsymmetrized (in terms of the

component indices) irreducible vertex function  is
used in equation (3). 

The vertex functions Γ and  appearing in (3) are in
fact functions of the Matsubara frequencies, the moduli
of the incoming and outgoing momenta, and the angle
between them. For example, we have

Thus, expanding Γ and  as a series in terms of Leg-
endre polynomials

(4)

and integrating over angles, we easily obtain from (3)

the following equation for the polar part  of the lth
harmonic of the vertex function:

(5)

As usual, the critical temperature corresponds to the
appearance of a nontrivial solution of this equation
which is associated with singular (logarithmic) behav-
ior of the Cooper loop near the Fermi surface. Thus, in
order to determine the critical temperature in the prin-
cipal order with respect to λ in all the vertex functions
contained in (5), it is sufficient to set the frequencies to
zero and the moduli of the momenta to pF. We then have

(6)

where νF = mpF/2π2 is the density of states at the Fermi
surface, m* is the effective mass, and Z is the residue in
the polar part of the single-particle Green’s function. In
equation (6)  ~ εF is the cutoff parameter which

depends on the behavior of  at high momenta and fre-
quencies. Now equation (5) can be rewritten in the form

(7)
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where

so that a nontrivial solution is only possible for  < 0
and occurs at temperature T = Tcl where

(8)

For the case of a Fermi gas with interparticle attrac-
tion we have

and the system is unstable with respect to traditional
s-pairing (l = 0). The superconducting transition tem-
perature in this case was obtained in [1] to within terms
O(λ0) inclusive and is given by

(9)

where C = 0.58… is the Euler constant. This expression
only differs from the normal expression for Tc1 in BCS
theory in that the Debye frequency ωD is replaced by εF

in the expression for the preexponential function. This
replacement means that in this particular case, the
entire Fermi sphere and not only its vicinity of the order
of the Debye frequency, is involved in the pairing. Note
that in order to find the preexponential factor in [1] we

need to calculate  to within terms of the second order
of perturbation theory inclusive.

For repulsive interaction, a > 0, equation (5) for l =
0 only has a trivial solution and s-pairing is impossible.
In this case, superfluid pairing will take place in the

channel having the orbital momentum l for which  is
negative and has the maximum absolute value. As we
well know [6], the scattering amplitude of slow parti-
cles having the orbital momentum l at the short-range
potential has the order of magnitude a(ap)2l, where p is
the particle momentum and a is the s-scattering length.
Thus, in our particular case the corresponding contribu-

tion to  from scattering at the seed interparticle
potential has a maximum for l = 1 and has the order

At the same time, many-particle effects associated with
polarization processes of the Fermi background in a
Fermi gas have the order λ2 and are consequently a
determining factor for l ≥ 4 [4]. Corresponding dia-
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p1 p3 p1 p3 p1 p3 p1 p3
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+ (p3 ↔ –p3)

(a) (b) (c) (d)

Fig. 2. Second-order diagrams in terms of gas parameter for irreducible interaction.
                  
grams for  in the second order with respect to λ are
plotted in Fig. 2. For our particular case of point inter-

action the first three diagrams cancel out so that  is
completely determined by the last exchange diagram
and is given by (we assumed T = 0)

where

(10)

In this expression n(p) is the Fermi particle distribution
function for T = 0, ξ(p) = p2/2m – µ, and θ is the angle
between p1 and p3. 

From formula (10) we can easily obtain an expres-
sion for the irreducible vertex at zero external frequen-
cies and momenta lying on the Fermi surface. In terms
of the angle θ between p1 and p3 we have

As a result of integrating using Legendre polynomials
we obtain

(11)

All the other partial components  with l > 1 also cor-

respond to attraction but are smaller than  and their
absolute value decreases rapidly with increasing l (see
[4]). Thus, we conclude that a weakly nonideal Fermi
gas with interparticle repulsion is unstable with respect
to triplet p-pairing. The corresponding critical temper-
ature in the principal order with respect to λ is

(12)
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It can be seen from this formula that in order to
determine the preexponential factor  in equation (5)
we need to retain terms through order λ4. (This follows

from the fact that since  begins from terms λ2, in
order to obtain terms of the order λ0 in the argument of

the exponential function, we need to know  to within
terms λ4 inclusive.)

Note that the contribution of triple collisions can be
neglected to within the selected accuracy since this has
the order λ5 [5, §6].

3. CONTRIBUTION OF HIGHER ORDERS 
OF PERTURBATION THEORY

The irreducible vertex  in the third and fourth
orders of perturbation theory is given by the diagrams
shown in Figs. 3 and 4, respectively. The points on
these diagrams correspond to antisymmetrized two-
particle interaction. In expanded notation when the
interaction is represented as a dashed line (as in Fig. 2)
these corresponds to two different methods of connect-
ing the incoming and outgoing lines.

Figures 3 and 4 only give skeletal diagrams
(neglecting the self-energy components) and Fig. 4
only gives “nonoriented” diagrams. The corresponding
Feynman diagrams are obtained by arranging the
arrows (taking into account the particle number conser-
vation law at the vertexes) and also the incoming and
outgoing momenta. Figure 5 shows an example of such
an arrangement.

Direct calculations of these diagrams using standard
rules of the diagram technique yield diverging expres-
sions obtained from integrating over large momenta in
subdiagrams containing Cooper loops (loops formed
from two lines in the same direction). By way of exam-
ple we consider the first third-order diagram in Fig. 3
together with its corresponding diagram in which p. In
expanded form this corresponds to the sum of the dia-
grams in Fig. 6 where the dashed line corresponds to
interparticle interaction. It is easily established that for
our point potential the first three diagrams cancel out
leaving only the fourth diagram which contains a
diverging subdiagram at large momenta, corresponding
to a Cooper loop between two parallel dashed lines.
However, it is easy to see that this subdiagram is the
first correction of a ladder series to one of the dashed

ε̃

Γ̃1

Γ̃1

Γ̃
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lines on the fourth diagram in Fig. 2 which gives a con-

tribution to  in the second order with respect to λ.
Quite clearly, the second diagram in Fig. 3 paired with
its corresponding diagram where the substitution p is
made in the sum is the correction to the dashed line in
Fig. 2.

These corrections only differ from the first term of
the Born series for the scattering amplitude in that they
contain the single-particle Green’s functions in the
medium G and not in vacuum G(0). However, at large
momenta the difference between G and G(0) disappears
so that the divergence in the diagram in Fig. 7 can be
eliminated by changing from the seed interaction g to
the scattering length a (renormalization procedure).
This length is determined by the scattering amplitude
of two particles in vacuum in the limit where the ener-
gies of the colliding particles tend to zero and may be
obtained from 

(13)

Γ̃

4πa
m

--------- g
ωd

2π
------- p3d

2π( )3
-------------gG 0( ) ω p,( )G 0( ) ω– p–,( )

4πa
m

---------∫∫+=

=  g
p3d

2π( )3
-------------g

1
2ε p( ) i0+
------------------------4πa

m
---------.∫+

+ +

+ (p3 ↔ –p3)+

p1

–p1

p3 p1 p3 p1 p3

–p3 –p1 –p3 –p1 –p3

p1 p3

–p1 –p3 –p1 –p3

p1 p3

Fig. 3. Skeleton diagrams of the third order of perturbation

theory for the irreducible vertex . Γ̃1

= +

+

Fig. 5. Example of decoding “nonoriented” diagrams (first
diagram in Fig. 4).

+

+
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After integrating in diagram Fig. 6d over the inter-
mediate frequency of the Cooper loop ω, we obtain the
expression

(14)

where

The integral over the internal momentum p from the
expression in brackets diverges at the upper limit. As
we have noted, this is because it is the same as the Born
correction to the scattering amplitude in this region.
This divergence can be eliminated in the second-order
diagram in Fig. 2d by going over from the seed interac-
tion constant g to the zero-energy particle scattering
amplitude a in the center-of-mass system.

p4d

2π( )4
------------- p3d

2π( )3
-------------

1 θ ξ1( )– θ ξ2( )–
Ω ξ1 ξ2+( )– iδ ξ1 ξ2sgn+sgn( )+
----------------------------------------------------------------------------------- 

 ∫∫
× 1

Ω ξ3– iδ ξ3sgn+( ) Ω ξ4– iδ ξ4sgn+( )
---------------------------------------------------------------------------------------------,

ξ1 ξ p q w+
2

-------------+ 
  , ξ2 ξ p– q w+

2
-------------+ 

  .= =

ξ3 ξ q s–( ), ξ4 ξ q s+( ),= =

p1 s w, p3+ s w.–= =

Fig. 4. Skeleton “nonoriented” diagrams of the fourth order

of perturbation theory for the irreducible vertex . Γ̃1

+ +

+

p1

p2

p1 p3 p1 p3p3

p4 p2 p2 p4

p2

p1 p3

p4

p4
(a) (b) (c)

(d)

Fig. 6. First third-order diagram from Fig. 3 showing dia-
gram corresponding to the substitution p3 ↔ –p3 in
expanded representation.
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To within the required accuracy the relationship
between g and a is obtained from (13) and has the form

(15)

where ε(p) = p2/2m. The renormalization procedure is
shown schematically as follows:

(16)

where (GG) corresponds to the first cofactor in formula

(14),  corresponds to the second cofactor,

and the pair factor in the second term allows for the
contribution of the second diagram in Fig. 3. As we can

easily see, the expression for , being integrated over
frequency, exactly gives the polarization operator Π
which appears in the first term in formula (14). The last
term in formula (14) has the explicit form

(17)

g
4π
m
------a

4π
m
------a 

 
2 p3 ωdd

2π( )4
---------------G 0( ) ω p,( )G 0( ) ω p–,–( )∫+=

=  
4π
m
------a

4π
m
------a 

 
2 p3d

2π( )3
------------- 1

2ε p( ) iδ+
------------------------.∫+

νF g2Π 2g3 GG( )Π̃+{ }

λ2Π 2λ3 GG( ) G 0( )G 0( )( )–[ ] Π̃ ,+

Π̃

G 0( )G 0( )( ) ωd
2π
-------G 0( ) ω p–,( )G 0( ) ω p–,( )∫=

=  
1

2ε p( ) iδ+
------------------------,

Π̃

Γ 3a( ) 2i
2π2λ
m pF

------------ 
 

3
p4d

2π( )4
-------------∫ p3d

2π( )3
-------------∫–=

×
1 θ ξ1( )– θ ξ2( )–

Ω ξ1 ξ2+( )– iδ ξ1sgn ξ2sgn+( )+
---------------------------------------------------------------------------------- 1

2ε p( ) iδ+
------------------------– 

 

× 1
Ω ξ3– iδ ξ3sgn+( ) Ω ξ4– iδ ξ4sgn+( )

---------------------------------------------------------------------------------------------.

Ω/2 + ω, p + w

Ω/2 – ω, –p + w

Ω, q – s Ω, q + s

–p1

p1 p3

–p3

Fig. 7. Diagram of the third order of perturbation theory
containing a Cooper loop as subdiagram.
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This expression contains no divergences and can be
integrated numerically. It can be established that all the
order third-order diagrams contain no divergences and,
as a result of numerical calculations, we obtain the final
result for the third-order contribution to the p-harmonic
of the irreducible vertex:

(18)

It should be noted that formula (18) contains no contri-
bution from Hartree–Fock self-energy components in
the second-order diagrams since this contribution cor-
responds to renormalization of the chemical potential.
We also note that the appearance of a large numerical
coefficient 0.33 (compared with the coefficient of 0.077
for the second-order contribution) is associated with
the stronger angular dependence of the third-order dia-
grams (see Fig. 8). This dependence is mainly deter-
mined by the first two diagrams in Fig. 3 and can be
attributed to the existence of subdiagrams with Cooper
loops.

All divergences in the fourth-order diagrams are
eliminated in exactly the same way. For this purpose, in
the third-order diagrams we need to go over from g to
a in accordance with formula (15) and in the second-
order diagrams, renormalize in the expression for g in
terms of a allowing for the term ~a3, which can easily
be obtained from equation (13). (This term is required
to eliminate the divergences in the second diagram in
Fig. 4.) As a result, the contribution of the fourth-order
diagrams in Fig. 4 is given by

(19)

In order to calculate  to within λ4 we also need to
allow for the contribution of the self-energy compo-
nents of the second order in λ in the second-order dia-

grams , see Fig. 2. These contributions can no
longer be reduced to renormalization of the chemical

νFΓ̃1
3( )

  .  0.33 λ 
3 .–

νFΓ̃1
4( )

  .  0.39 λ 
4 .–

Γ̃1

Γ̃1
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 Dependence of the irreducible vertex in the second and
third orders on the angle between the incoming and outgoing
momenta 
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1–3

 

: 
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(2)/λ2—solid curve, Γ(3)/λ3—dashed curve.
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potential. They also result in the appearance of a non-
trivial Z-factor and the effective mass m* [7]: 

(20)

in the polar part of the single-particle Green’s function
which now also contains a nonpolar part proportional to
λ2. By means of direct numerical calculations of the
corresponding diagrams we can establish that the con-

tribution of the latter to  is negligible. Thus, we
finally obtain the following expression with the
required accuracy in terms of λ for the irreducible ver-
tex in a Cooper channel with orbital momentum l = 1:

(21)

4. ALLOWANCE 
FOR RETARDATION EFFECTS

In order to determine the critical temperature in Sec-
tion 2, in equation (5) we replaced the irreducible ver-

tex , which is a function of the incoming and outgo-

ing frequencies and moduli of momenta (ωi, pi), by
its value at zero frequencies and momenta lying on the

Fermi surface (ωi = 0, pi = pF). In this section we
shall show that allowance for the difference between

(ωi, pi) and (ωi = 0, pi = pF) (retardation effects)
introduces a correction of the order of λ4 to the vertex

. In other words, these effects influence the numeri-
cal coefficient in the preexponential factor.

Retardation effects are most conveniently taken into
account using a method proposed in [8, Chapter 2].
Omitting the appropriate procedures, which are a trivial
generalization of the derivation of [8] to the case of
p-pairing, we arrive at the following integral equation: 

(22)

for which the condition for existence of a trivial solu-
tion determines the critical temperature Tc1. The unknown
function Φ1 in (22) can be related to the spectral density of
the anomalous Green’s function (or more accurately its
first harmonic in the expansion in terms of Legendre poly-
nomials), and the kernel R1(ξ, ξ') is given by

(23)

Z 1 λ2 2,
m∗
m
-------ln– 1

2
15
------ 7 2ln 1–( )λ2+= =

Γ̃1

νFZ2m∗
m
-------Γ̃1 νFZ2m∗

m
------- Z2m∗

m
-------Γ̃1

2( ) Γ̃1
3( ) Γ̃1

4( )
+ + 

 =

=  0.077λ2– 0.33λ 3
– 0.26λ4.–

Γ̃ 1

Γ̃1

Γ̃1

Γ̃1 Γ̃1

Γ̃1

Φ1 ξ( ) ξ'
ξ' 2T⁄( )tanh

2ξ'
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εF–

∞

∫–=

R1 ξ ξ',( )
m

4π2 p2 ξ( )
--------------------- q qd

p ξ( ) p ξ'( )–

p ξ( ) p ξ'( )+

∫=

× Eσ E m,( )d
E ξ ξ'+ +
----------------------------- p2 ξ( ) k2 ξ'( ) q2–+

2k ξ'( )
------------------------------------------,

0

∞

∫
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where σ(E, q) is related to (ω = ω1 – ω3, q = p1 – p3)
by

(24)

and the factor ((p2 + k2 – q2)/2pk is precisely the cosine
of the angle between the incoming and outgoing
momenta which isolates the first harmonic in the
expansion (4) in terms of Legendre polynomials.

Dividing the region of integration over ξ' in equation
(22) into three parts: |ξ'| ≤ zεF, –εF < ξ' < –zεF, and ξ' >
zεF, where z is an arbitrary number satisfying the con-
dition Tc1 ! zεF ! εF, and integrating by parts (where
the dependence on ξ' in R(ξ, ξ') and Φ1(ξ') can be
neglected in the first region and the hyperbolic tangent
in the second and third regions can be replaced by ,
respectively), equation (22) can be reduced to the form

(25)

(As was to be expected, the arbitrary constant z was
dropped from this equation.) We introduce the new
variable

(26)

which allows us to write the expression for the critical
temperature in the form

(27)

where the function χ(ξ) satisfies

(28)

Since the kernel R1 contains the small parameter
(R ~ λ2), equation (22) can be solved by an iterative
method. In the zeroth approximation we set:

The first correction χ(1) is given by the integral on the
right-hand side of (28) with χ = χ(0):

(29)

and, as can easily be seen, begins with terms of the
order λ4. The principal term with respect to λ in χ1 is

Γ̃

Γ̃ iωn p,( )
E2d σ E p,( )

E2 ωn
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--------------------------,

0

∞
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obtained if only the leading (~λ2) terms are retained in
the kernel R1 in formula (29). In this case, the spectral
function σ(E, q) is the same as the imaginary part of the
polarization operator

where 

 = q/pF,  = Em/ .

Direct calculations using formula (29) give χ(1) ≥
0.004λ4 which is equivalent to adding  in formula (8),

(30)

Note that a similar estimate of the contributions of
retardation effects was made in [9] where the authors
used the step function approximation for the frequency
dependence of the polarization operator. 

5. CRITICAL TEMPERATURE Tc1

Collecting these results together [formulas (21) and
(30)], we obtain the following expression for the criti-
cal temperature which is determined numerically to
within two decimal places:

(31)

σ E q,( )
1
π
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=  
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4πq̃
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Fig. 9. Dependence of Tc1/εF on the gas parameter λ.
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where the omitted terms have the order λ. This last for-
mula assumes λ < 0.23 since for λ = 0.23 the second-
and third-order terms with respect to λ in the exponen-
tial function in (31) are the same. For 0.23 ≤

 

 

 

λ

 

 

 

≤

 

 1 the
fourth-order term with respect to 

 

λ

 

 in (31) is much
smaller than the first two so that (31) can accurately be
rewritten in the form

(32)

This formula may be considered as an extrapolation of
the expression for the critical temperature from 

 

λ

 

 

 

!

 

 1
[formula (31)] to the region 

 

λ

 

 < 1 [formula (32)]. A
graph of the dependence 

 

T

 

c

 

1

 

(

 

λ

 

) is plotted in Fig. 9. 

6. INFLUENCE OF SEED 

 

p

 

-SCATTERING
So far we have only considered 

 

s

 

-scattering between
particles, assuming that the interparticle potential is a
point. However, as we have already noted for the finite-
radius potential, the problem will always contain scat-
tering having an arbitrary orbital momentum 

 

l

 

 whose
amplitude for particles having momenta equal to the
Fermi momentum 

 

p

 

F

 

 may be estimated as 

 

f

 

l

 

 ~ 

 

a

 

(

 

ap

 

F

 

)

 

2

 

l

 

[6]. From this it follows that with the required accuracy
we can confine our analysis to 

 

p

 

-scattering (

 

l 

 

= 1). In
this case, only two contributions will be important: a
contribution of the order 

 

λ

 

3

 

 from 

 

p

 

-scattering at the
seed interparticle potential and a contribution of the
order 

 

λ

 

4

 

 corresponding to the diagram in Fig. 2d where
one of the dashed lines corresponds to 

 

s

 

-scattering and
the other to 

 

p

 

-scattering. More precisely, if the ampli-
tude of 

 

p

 

-scattering of two particles having momenta 

 

p

 

F

 

is written in the form

(33)

where  α  1   is a numerical coefficient, the contribution of

triplet scattering to the irreducible vertex  has the
form

We can see that the fourth-order contribution with
respect to 

 

λ

 

 can be neglected and consequently the crit-
ical temperature is given by 

(34)

Nevertheless, we can specify a physical situation
when the contribution of 

 

p

 

-scattering can be neglected.
This corresponds to the case when a shallow level hav-
ing the orbital momentum 

 

l

 

 = 0 (resonance scattering)
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exists in the potential. In this case, the p-scattering
amplitude is estimated as

where r0 is the radius of action of the potential while the
s-scattering amplitude (length) is given by

where E is the discrete level energy (we assume that the
condition |E| @ εF is satisfied so that apF ! 1). Then for
α1 in formula (1) we obtain the estimate

and if the condition 

is satisfied, the contribution of the p-harmonic of the
seed interparticle interaction can be neglected com-
pared with the fourth order of the effective interaction
which allows only for s-scattering. 

7. CRITICAL TEMPERATURE
IN A MAGNETIC FIELD

In this section we study the influence of an external

magnetic field on the irreducible vertex  and conse-
quently on the critical temperature Tc1 to within terms
of the order λ3. As was shown in [10], in the principal
approximation with respect to λ in the model being
studied the critical p-pairing temperature may increase
appreciably if a static magnetic field is applied to the
system. This is because for conventional singlet pairing
the role of a magnetic field is always destructive due to
of the paramagnetic suppression of Cooper pairing
caused by the flipping of one of the pair spins. However
for triplet p-pairing no paramagnetic effect occurs so
that the role of the magnetic field was not clear a priori.

In this approach the mechanism for variation of Tc1
in a magnetic field is based on the magnetic field depen-
dence of the many-particle effects which determine the
effective interaction. On the one hand, as a result of a
difference in the number of particles (and consequently
Fermi momenta) having spins directed parallel and
antiparallel to the field, the Kohn singularity increases

sharply, causing an increase in . On the other hand,

the value νF↓  decreases with increasing magnetic
field because of a monotonic decrease in the number of
particles with spin antiparallel to the field. (We recall
that s-scattering can only occur between Fermi parti-
cles having different spin projections.) Competition
between these two effects leads to an abruptly non-
monotonic dependence of the critical temperature on
the magnetic field (more accurately, on the degree of
polarization α = (n↑ – n↓)/(n↑ + n↓)) with an abrupt

f 1 r0 r0 pF( )2,∼

a 1/2m E( )1/2  @  r 0 ,=
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a
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 
3
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Γ̃1
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increase in Tc1 for small α, a maximum at intermediate
α, and a decrease for α  1. (In this case of a com-
pletely polarized Fermi gas seed p-scattering between
parallel spins can only take place between the parti-

cles.) The dependence of  on the polarization α to
within second-order terms was calculated in [10]:

(35)

where

In the third order with respect to λ the result can
only be obtained numerically. The corresponding con-
tribution is given by the diagrams in Fig. 3 where the
spins on the outer lines are directed parallel to the field
and those in the inner loops can be oriented either par-
allel or antiparallel to the field. The calculations
(including renormalization of the diverging diagrams)
are exactly the same as the case of no external magnetic
field and the result is plotted in Fig. 10 (solid curve)
which also gives the second-order contribution (35) for
comparison (dashed curve). 

It can be seen that the maximum of  is

obtained at αm = 48 whereas  decreases mono-
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 Dependence of the second- and third-order contri-
butions to the irreducible vertex on the degree of polariza-
tion 
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tonically. Thus, the maximum of Tc1 is determined by

competition between increasing  and decreas-

ing . For typical λ this is in the region of 0.4.
Graphs of the critical temperature as a function of the
degree of polarization are plotted in Fig. 11 for typical
values of λ. For λ = 0.6 the value of Tc1 at the maximum
is approximately six times the value in the absence of
the field. In this case the maximum is mainly deter-
mined by the second order and is reached at λ ~ 0.45. 

8. DISCUSSION OF RESULTS

The experimental search for nontrivial l ≠ 0 pairing
in isotropic Fermi systems has recently been actively
pursued. Until recently the main candidate was a solu-
tion of 3He in 4He. So far superfluidity has not yet been
observed in this system although temperatures of the
order of 97 mK have been achieved experimentally
[11]. In the concentration range x < x0 ≈ 3% the scatter-
ing length corresponds to attraction so that singlet s-
pairing may be achieved. The critical temperature is
given by formula (9) allowing for 

where εF0 and pF0 are the Fermi energy and momentum
of pure 3He. According to estimates made in [12], we
have

The authors of [13] predict an even lower critical tem-
perature:

Note that the value Tc0 ≈ 10–5 K was obtained in [13] as
a fitting parameter to describe magnetostriction experi-
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Fig. 11. Dependence of Tc1/εF on the degree of polarization
α for various λ.
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ments and Tc0 ≈ 4 × 10–6 K was obtained in spin diffu-
sion experiments. It should be noted that for a given
concentration x the gas parameter of the theory apF0 x1/3

 

depends weakly on pressure. Hence the pressure cannot
be considered as an instrument to obtain optimum
parameters for 

 

s

 

-pairing. 

For high concentrations (

 

x

 

 > 

 

x

 

0

 

) the scattering length
changes sign 

 

a

 

 > 0 and 

 

s

 

-pairing becomes impossible.
Nevertheless, in this case the subsystem of 

 

3

 

He atoms
may become superfluid but because of the instability
with respect to 

 

p

 

-pairing. The critical temperature is
given by formula (32) with 

 

λ

 

 replaced by 

 

λ

 

x

 

1/3

 

 and 

 

ε

 

F

 

replaced by 

 

ε

 

F

 

0

 

x

 

1/3

 

. It has a maximum at 

 

P

 

 = 10 atm
when the maximum 

 

3

 

He concentration of 9.5% is
achieved. Figure 12 gives the dependence of 

 

T

 

c

 

1

 

on the
concentration calculated by using the extrapolation for-
mula (32). At maximum concentration 

 

x

 

 = 9.5% the
temperature 

 

T

 

c

 

1

 

 is of the order of 10

 

–5

 

K. A further
increase in 

 

T

 

c

 

1

 

 in solution may occur in strong magnetic
fields. For example, at 

 

x

 

 = 9.5% the maximum of 

 

T

 

c

 

1

 

 in
a field is more than six times that in the absence of a
field, leading us to experimentally measurable temper-
atures of 6 

 

×

 

 10

 

–5

 

 K. 

Recently the properties of Bose-condensed gases of
alkali elements in traps (

 

23

 

Na, 

 

7

 

Li, 

 

87

 

Rb) have been
studied intensively. A combination of laser and evapo-
rative cooling in magnetic traps can reach gas-phase
densities of the order of 10

 

12

 

–10

 

14

 

 cm

 

–3

 

 and tempera-
tures of 10

 

–6

 

–10

 

–8

 

 K. In addition these elements have a
long scattering length 

 

a 

 

of quasi-resonant origin. For Rb
and Na the scattering lengths are positive. It is also found
that the scattering length may cover a broad spectrum of
values from negative to positive as a result of the Fesh-
bach effect. This effect was observed for 

 

23

 

Na [14].
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Fig. 12. Dependence of Tc1 on the concentration x in a solu-

tion of 3He in 4He for various degrees of polarization:
α = 0.2—solid curve, α = 0.1—dashed curve, and α =
0—dotted curve.
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A logical continuation of studies of Bose condensa-
tion in gases of low-density alkali elements in magnetic
traps would be to obtain Fermion superfluidity in low-
density Fermion systems in bounded geometry. The
case of a negative scattering length makes it possible to
achieve s-pairing with a transition temperature deter-
mined by formula (9). For 6Li, for example, we have a =
–2.3 × 10–3 Å < 0. Thus, for n ~ 1014 cm–3 the critical tem-
perature Tc0 is of the order of magnitude of 10–6 K. Note
that because of the Pauli principle the wave function of
an l = 0 Cooper pair should be antisymmetric with
respect to the transposition of quantum numbers char-
acterizing the internal state of the atoms forming the
pair. These numbers are indices determining the mul-
tiplet component of the hyperfine interaction for the
case of zero (optical trap) or weak magnetic field, or
projections of the nuclear spin when the strong external
magnetic field of the trap destroys the hyperfine cou-
pling. Thus, l = 0 pairing can only take place between
atoms of different gas components. This imposes a very
stringent constraint on the closeness of their densities
from the experimental point of view:

In the opposite case the Cooper pair would have a
velocity higher than the critical velocity vc ~ Tc0/pF. It
may therefore prove difficult to achieve this type of
pairing experimentally. 

For p-pairing, a Cooper pair may be formed by
atoms of the same component (an analog of the A2
phase in superfluid 3He). Note that the superfluid tran-
sition temperature in the triplet case may be increased
substantially by using the existence of several compo-
nents in the trap. This increase is similar to the increase
in Tc1 in a magnetic field and is associated with the idea
of channel separation: Cooper pairing is achieved
between particles of one component as a result of the
polarization of the other components. In this case, it is
possible to obtain a superfluid p-pairing temperature of
the order of 10–7–10–5 K, which is quite feasible exper-
imentally. By virtue of this fact this type of pairing may
be quite promising from the experimental point of view. 
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Measurement of Landau Coefficients
in Ferroelectrics Using Nonlinear Dielectric Spectroscopy
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Abstract—A method of measuring the phenomenological Landau–Ginzburg coefficients in an expansion of the
free energy of ferroelectrics near the phase transition is proposed. This method is based on simultaneously
recording five Fourier components of the current response to a sinusoidal voltage as a function of temperature.
An analysis is made of a specific application of the method to Langmuir–Blodgett ultrathin ferroelectric films.
© 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A vast number of experimental methods are now
available for studying polar structures, including ferro-
electrics [1, 2]. In most cases, each method is generally
based on measuring a specific physical quantity (such
as the pyroelectric coefficient, polarization, dielectric
susceptibility, and so on). Studies of phase transitions
require temperature measurements. Since a single mea-
surable quantity is generally insufficient to gain a com-
plete understanding of the phase transition, investiga-
tions must be made by other methods which frequently
involves not only repeated temperature cycles but also
preparing new samples having suitable characteristics
for a particular method. All this undoubtedly leads to
additional errors caused by changes in the structure of
the sample as a result of temperature cycles and by the
characteristics of “new” samples prepared for a different
experiment. In the present study we consider a method
which, in the authors’ opinion, can fairly comprehen-
sively characterize ferroelectric phase transitions and
which is based on measurements in a single temperature
cycle. The method involves simultaneously recording
the linear and nonlinear dielectric properties of ferro-
electrics which are particularly clearly pronounced near
the phase transition. It should be noted that the idea of
studying the nonlinear dielectric properties in order to
obtain information on the phase transition parameters
such as the Landau–Ginzburg coefficients in the expan-
sion of the free energy is not a new one. For example,
in [1] (relevant literature is cited there) we can familiar-
ize ourselves with several approaches to determining
the Landau–Ginzburg coefficients based on studying
the nonlinearity in the paraelectric phase. The most sig-
nificant development in methods of studying nonlinear
dielectric properties was clearly achieved in [3–5] in
which the first three harmonic components of the
response to a sinusoidal voltage were recorded. How-
ever, in the view of the present authors, the methodolog-
1063-7761/00/9005- $20.00 © 20872
ical approach presented in [3, 5] has some inaccuracies
which may substantially influence the interpretation of
the data. The authors [3–5] attribute the number of the
recorded harmonic solely to the magnitude of the
dielectric susceptibility of the corresponding order. For
example, the third-order dielectric susceptibility is
exclusively attributed to the third harmonic. This is
incorrect, even in the limit of very weak fields. Since
the nth-order dielectric susceptibility is by definition a
coefficient in the term proportional to the nth power of
the electric field in the expansion of the electric dis-
placement as a power series, even if the third-order sus-
ceptibility is zero, a nonzero fifth-order susceptibility
will lead to the appearance of the third as well as the
fifth harmonic. In other words, the authors do not ana-
lyze possible intermodulation contributions caused by
the presence of higher-frequency spectral components
in the response. The intermodulation contributions may
exceed the fundamental contribution, which means that
all the harmonic components in the signal spectrum
must be measured so that they can be taken into account
in the interpretation of the results. There are also vari-
ous other important characteristics which, in our view,
have been omitted or not analyzed in the literature. For
example, data obtained in [3] for ferroelectric films of
75/25 vinylidene fluoride/trifluoroethylene copolymer
using nonlinear dielectric spectroscopy are at variance
with other results, even with regard to the order of the
phase transition, which is acknowledged by the authors
but the reasons for the contradictions are not clarified.
Thus, by developing a method of measuring nonlinear
dielectric properties, we can give a clear idea of what is
specifically being measured experimentally and how
the measured quantities relate to the model parameters
of the theory. In the present study we demonstrate that
it is important to measure the first five harmonics to
adequately determine the Landau coefficients. Simulta-
neous measurements of the linear and nonlinear contri-
butions result in a new quality: not only can all the coef-
000 MAIK “Nauka/Interperiodica”
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ficients of the Landau–Ginzburg model be measured in
a single temperature cycle and the nature of the phase
transition thus determined but also information can be
obtained on various characteristics such as the sponta-
neous polarization and pyroelectric coefficient. 

The samples to which the method is applied are
Langmuir–Blodgett films of 70/30 vinylidene fluo-
ride/trifluoroethylene (PVDF–TFE) copolymer. First,
PVDF–TFE has been extensively studied, including
using nonlinear dielectric spectroscopy [3, 5]. Second,
Langmuir–Blodgett ferroelectric films are fundamen-
tally new multilayer systems whose thickness can be
varied to within a single monomolecular layer [6, 8].
Thus, the experimental data obtained in the present
study are also of independent interest and importance.

2. EXPERIMENTAL METHOD

The apparatus is shown schematically in Fig. 1. The
sample temperature is varied between –20 and +120°C
in a thermostat using Peltier elements and a platinum
resistance as temperature sensor. The measuring system is
a set of virtual devices (generator, synchronous detector,
digital oscilloscope, and so on) realized by the PhysLab
program, developed for a different purposes [9].

The virtual generator synthesizes the sinusoidal
voltage applied to the sample and the amplitude and
phase relations of the harmonic components of the cur-
rent response are recorded using the virtual synchro-
nous detector. PhysLab can be used with a sinusoidal
voltage at frequencies between 10 Hz and 20 kHz and
amplitude between 1 and 2500 mV without an external
amplifier. The load for the current measurements is 100 Ω.
The PhysLab synchronous detector can simultaneously
record not only the real and imaginary components of
the current at the fundamental frequency but can also
record the corresponding components at different har-
monics. This possibility of simultaneously recording
the harmonics forms the basis of the proposed method
of studying the temperature behavior of the linear and
nonlinear components of the dielectric susceptibility
typical of ferroelectric phase transitions. The total coef-
ficient of the intrinsic nonlinear distortions of the gen-
erator and the PhysLab recording system is approxi-
mately 0.005% so that the nonlinear properties of our
samples can be studied up to the fifth harmonic with a
large margin.

In accordance with the equivalent circuit diagram of
the sample shown in Fig. 1, the current in the circuit is
given by

(1)

where IR and IC are the resistive and capacitive compo-
nents of the current, respectively, R is the sample resis-
tance, and U is the sample voltage. In (1) the sample
capacitance C cannot be removed from the derivative
operator because in nonlinear dielectrics it is a function

I IR IC+ U
R
----

d CU( )
dt

-----------------,+= =
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of voltage. Taking this into account, the capacitive cur-
rent component can be expressed in the form

(2)

where C0 = C(U = 0). In (2) we used the weak depen-
dence of the capacitance on the field at low sample volt-
ages, confining ourselves to two terms in the Taylor
series. An analysis shows that these constraints do not
significantly influence the accuracy. Allowance for the
next term in the expansion, which is proportional to the
second derivative of the capacitance, yields a correction
at the third harmonic which, however, does not exceed
25% of the contribution already taken into account. 

If a sinusoidal voltage U(t) = U0sin(ωt) is applied to
the sample, where U0 is the amplitude and ω is the
cyclic frequency, formula (1) allowing for (2) has the
form

(3)

It is easy to see that by using phase-sensitive detection
(which essentially performs a Fourier analysis of the
signal) at the fundamental frequency, we can measure
the first two components, which are proportional to the
conductivity and capacitance of the sample. These
components can easily be separated by the synchronous
detector since they have a relative phase shift of 90°.
The third term reflects the nonlinear contribution and is
observed at higher harmonics. Here we consider the sit-

IC C U( )
dU
dt
------- U t( )
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dt
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Fig. 1. Schematic of apparatus.
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uation where the resistive component of the conductiv-
ity is much smaller than the capacitive component so
that the nonlinear contribution from the conductivity
can be neglected. The nonlinear contribution from the
resistive component (conduction or dielectric losses), if
this exists, is also recorded by the synchronous detector
but with a phase shift of 90° and can be taken into
account if necessary.

3. THEORETICAL PRINCIPLES
OF THE METHOD AND RELATIONSHIP 

BETWEEN MEASURED QUANTITIES
AND COEFFICIENTS

OF THE LANDAU–GINZBURG MODEL

In accordance with the phenomenological Landau–
Ginzburg model [10], in the vicinity of a phase transition
the contribution to the free-energy density of the ferroelec-
tric caused by the polarization P can be expressed in the
form

(4)

where α0, β, and γ are the temperature-dependent Lan-
dau coefficients, T0 is the Curie temperature, and E is
the external electric field. Note that for β > 0, γ ≥ 0, for-
mula (4) describes a second-order phase transition and
for β < 0, γ > 0 it describes a first-order one.

By minimizing the free energy (4) we can easily find
the equation of state in the electric field:

(5)

In order to obtain the nonlinear contribution deter-
mined by the last term in (3), we need to find the deriv-
ative of the dielectric susceptibility χ with respect to the
field which is determined from (5) by differentiating
with respect to the polarization:

(6)

where ε0 . 8.85 × 10–12 F/m is the dielectric constant of
vacuum.

The derivative of interest to us is obtained by repeated
differentiation of (6):

(7)

In (7) the polarization depends on the field in accordance
with the equation of state (5) although for weak fields
(below the coercive field) corresponding to the experi-
ment, the polarization can be conveniently expressed in
the approximate form:

(8)

where Ps is the spontaneous polarization which is only
nonzero in the ferroelectric phase.

F
1
2
---αP2 1

4
---βP4 1

6
---γP6 EP,–+ +=

α α0 T T0–( ),=

E P α0 T T0–( ) βP2 γP4+ +[ ] .=

χ 1– α 3βP2 5γP4+ +( )ε0,=

dχ
dE
------- χ3ε0

2 6βP 20γP3+( ).–=

P  .  P s ε 0 χ E ,+     
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Substituting (7) into (3) allowing for (8), we obtain
the nonlinear contributions as far as the fifth harmonic:

(9.1)

(9.2)

(9.3)

(9.4)

(9.5)

where S is the overlap area of the sample electrodes and
d is the film thickness. 

It is easy to see that by measuring these current har-
monics, we can determine all the Landau coefficients.
In (9.1) we neglect the contribution of the conductivity
and also the contributions of the third and fifth harmon-
ics since these are much smaller than the fundamental
contribution at fairly low sample voltages. The second
terms in (9.2) and (9.3) reflect the intermodulation con-
tributions. These must be treated with caution: they can
be neglected if the fourth and fifth harmonics in the sig-
nal spectrum are negligible compared with the second
and third. This condition can sometimes be satisfied
experimentally by selecting a suitable sample voltage.
A very useful tool here is the signal spectrum analyzer,
which in PhysLab uses a fast Fourier transformation
algorithm, which allows us to observe all existing har-
monics of the current response and facilitates the correct
choice of experimental conditions. We subsequently con-
sider the situation when the intermodulation contributions
to the first three harmonics are not significant. In this
case, it is convenient to use quantities defined in terms
of the ratios of the Fourier components measured by the
synchronous detector as follows: 

(10.1)
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(10.2)

(10.3)

(10.4)

where Φ1y , Φ2x , Φ3y, Φ4x, and Φ5y are the effective val-
ues of the x and y Fourier components recorded by the
synchronous detector from the first to the fifth har-
monic, respectively. In cases when χ @ 1, which is usu-
ally the case near a phase transition, the term ε0ωU0S/d
in the denominator can be neglected. Note that the x
component corresponds to the signal in phase with the
reference signal ∝ sin(kωt), where k is the harmonic
number] and the y-component has a phase shift of 90°
relative to the reference signal. Since abrupt changes in
the amplitudes and phases of the harmonics may occur
near the phase transition, simultaneous recording of the
kth and first harmonics is a necessary condition for
obtaining correct values of Ak .

In the Landau–Ginzburg model the quantities Ak

introduced in accordance with expressions (9.1)–(9.5)
are related to the Landau coefficients as follows:

(11.1)

(11.2)

(11.3)

(11.4)

It is easy to see that the measured values of A5 and

A3 in the paraelectric phase (  = 0) give us the values
of the coefficients γ and β. With these values we can
easily obtain the temperature dependence of the spon-
taneous polarization. The value of the coefficient α0 is
determined from measurements at the first harmonic
which are equivalent to measurements of the capaci-
tance [11]. 

The temperature behavior of Ak depends on the
order of the phase transition. For a first-order transition
we have β < 0, γ > 0. Thus, at certain temperatures T2
and T3 it is possible to have zero points [A2(T2) = 0 and
A3(T3) = 0] and even a change in the sign of the signals.
This situation is achieved subject to the conditions:

(12.1)

(12.2)

A3
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5 2Φ1y ωε0
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----------------------------------------------------
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d
------ ωS( )5,=

A2 Ps 3β 10γPs
2+( ),=

A3 β 10γPs
2,+=

A4 γPs,=

A5 γ.=

Ps
2

3β 10γ Ps T2( )( )2+ 0,=

β 10γ Ps T3( )( )2+ 0.=
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For these points it is also easy to obtain relationships
to determine the Landau coefficients:

(13.1)

(13.2)

and the spontaneous polarization:

(14.1)

(14.2)

In the temperature range (T2, T3) it is easy to esti-
mate the pyroelectric coefficient:

(15)

At this point it is convenient to note that the model
proposed above refers to a homogeneous polarized fer-
roelectric. In practice, we need to deal with many-
domain samples. The measured values are the result of
averaging over the sample volume. If the sample is not
polarized, even harmonics may not be observed (A2 = 0)
because the contributions from various sections of the
sample are mutually compensated so that the average
polarization is zero. Odd harmonics are also observed
in an unpolarized sample since the average of the
square of the polarization is always nonzero in the fer-
roelectric phase. In order to obtain the most compre-
hensive information, the sample must be polarized. 

In formulas (4)–(7) the dielectric susceptibility χ
corresponds to a state of thermodynamic equilibrium.
However, if a fairly high-frequency alternating electric
field is applied to the sample, the vector of the induced
polarization may not have time to follow the direction
of the electric field, for example, as a result of the pres-
ence of dielectric relaxation processes. If a sinusoidal
field is applied to the sample, the frequency dispersion
may be taken into account by using the following
expression in (7) instead of (8):

(16)

where the frequency dependence of the induced polar-
ization is reflected using the complex transfer function

(17)

and |K(ω)| and φ(ω)determine the amplitude-frequency
and phase characteristics of the dielectric susceptibility.
Thus, an additional phase shift appears in relations
(9.1)–(9.5). The existence of this phase shift may
cause problems in determining the order of the phase
transition from the sign of the recorded components at

β 1
2
---A3 T2( ),–=

γ 1
20
------A3 T2( )

A3 T2( )
A2 T3( )
--------------- 

 
2

=

Ps T3( )
A2 T3( )
A3 T2( )
---------------,–=

Ps T2( )( )2 3 Ps T3( )( )2.=

p  .  
P
 

s 
T

 
2 

( )
 

P
 

s 
T

 
3 

( )–
 

T
 
3
 

T
 

2
 
–

------------------------------------  .  
P
 

s 
T

 
3 

( ) 3 1–
 

( )
 
T
 

3
 

T
 

2
 

–
------------------------------------

=  

 

A

 

2

 

T

 

3

 

( )

 

A

 

3

 

T

 

2

 

( )

 

T

 

3

 

T

 

2

 

–

 

( )

 

-------------------------------------- 3 1–

 

( )

 

.–

P ω( )  .  P s ε 0 K ω ( ) χ E ,+

K ω( ) K ω( ) eiφ ω( ),=
SICS      Vol. 90      No. 5      2000



876 PALTO et al.

                  
harmonics higher than the second. It is easy to establish
that even when the intermodulation contributions are
small, the phase shift φ is present at the third harmonic
and increases threefold at the fifth harmonic. Hence, the
second harmonic may be a more reliable additional cri-
terion for correctly determining the order of the phase
transition using the sign of the corresponding Fourier
component. Measurements of the frequency dependence
of the corresponding harmonics may also be very useful
for determining the optimum operating frequency but
when the temperature varies, both the amplitudes of the
Fourier components and their phases must be recorded
simultaneously for subsequent use to obtain a correct
interpretation of the measured values of Ak .

4. EXPERIMENTAL RESULTS
AND DISCUSSION

The samples for the investigations were Langmuir–
Blodgett films of 70/30 VDF (TFE) copolymer consist-
ing of 20 monomolecular layers. The monomolecular
layers were transferred from the surface of water onto
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Fig. 2. Temperature dependences of the Fourier components
of the current response when a voltage U = U0sin(2πft) (f =
1000 Hz, U0 = 1 V) is applied to the sample. Curve 1 corre-
sponds to Φ1y , 2—Φ2x , and 3—Φ3y . The arrows indicate
the direction of change in temperature. The inset gives the
amplitude-frequency characteristic of the current response
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glass substrates with a deposited aluminum electrode at
room temperature (20–22

 

°

 

C) and 3 mN/m surface pres-
sure. At room temperature this pressure corresponds to
a close-packed monolayer 5 Å thick when the probabil-
ity of local collapse (the formation of a bimolecular
layer 10 Å thick at various points on the water surface)
is low. In the present study, instead of the horizontal lift
method used in [6] when the substrate plane is parallel
to the water surface during transfer of the monolayer,
we used the classical Langmuir–Blodgett method and
the apparatus described in [12]. However, transfer was
made by pulling the substrate from the water (

 

Z

 

-type
transfer) so that the normal to the substrate surface was
oriented approximately at an angle of 45

 

°

 

 to the water
surface, which helped to improve the homogeneity of
the films. A second aluminum electrode was deposited
on the polymer film from above. The total overlap area
of the electrodes was 0.01 

 

±

 

 0.0005 cm

 

2

 

. The thickness
of the polymer films calculated using the number of
transfers and the thickness of a single monomolecular
layer was 10 nm. 

The measurements were made after polarizing the
film with a single 15 V pulse of 200 

 

µ

 

s duration. Both
positive and negative pulses were used for polarization
and this was reflected in the sign of the recorded values
of 

 

Φ

 

2

 

x

 

. 

Figure 2 gives temperature dependences of the first,
second, and third harmonics of the current response

 

Φ

 

1

 

y

 

, 

 

Φ

 

2

 

x

 

, and 

 

Φ3y measured under conditions when the
amplitudes of the fourth and fifth harmonics are negli-
gible (corresponding to the noise level) so that the inter-
modulation contributions in (9.2) and (9.3) can be
neglected for the analysis. The first harmonic (curve 1)
gives the well-known temperature hysteresis of the
dielectric constant which can be attributed to the first
order of the phase transition [11]. The first order is also
confirmed by the change in the sign of the third (curve 3)
and second (curve 2) harmonics. The sign of the sec-
ond-harmonic Fourier component corresponds to the
first order of the phase transition. In fact, curve 2 was
obtained after polarizing the film with a negative pulse
(without changing the sample switching geometry)
which corresponds to negative Ps . In this case, accord-
ing to (9.2) in the temperature range T > T2 [see also
(12.1)] the sign of the second-harmonic signal should
be determined by the sign of the coefficient β. Thus, the
negative second-harmonic signal at temperatures above
90°C reflects the first order of the phase transition. The
temperature behavior of the phases of the second- and
third-harmonic signals is an important factor, see Fig. 3. It
is easy to see that the second-harmonic signal corre-
sponds to the x-component. In fact, the phase shift over
the entire temperature range (except for the point where
the sign changes and the signal phase is not deter-
mined) is either zero or ±180°. The third harmonic sig-
nal has an x-component as well as a dominant y compo-
nent. This contribution is particularly significant at
temperatures below 40°C where, according to various
 AND THEORETICAL PHYSICS      Vol. 90      No. 5      2000
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data [13–15], a “surface” phase transition takes place.
In the temperature range between +40 and +115°C the
phase shift corresponds to a dominant y-component.
The phase behavior of the third-harmonic signal very
clearly shows a range of temperature hysteresis corre-
sponding to a region where the ferroelectric and
paraelectric phases may coexist although the sign of the
signal, as in [3], does not correspond to the first order
of the phase transition. Bearing in mind that the domi-
nant contribution at the third harmonic corresponds to
the y-component and the second harmonic correctly
reflects the order of the phase transition, the “sign” con-
tradiction may be attributed to a φ . 180° phase shift
[see formulas (16) and (17) and their discussion above].
According to the model, this phase shift should also
have an influence at the fifth harmonic in the form of a
sign inversion since, being trebled, it remains equiva-
lent to 180°. Thus, we can see that the sign of Φ2x is a
more reliable criterion for directly determining the sign
of β than the sign of Φ3y . 

The experimental values of A2 and A3 determined
above using formulas (10.1) and (10.2) respectively
and plotted in Fig. 4 are more informative. We stress
that the dependence of A3 allows for a sign inversion
caused by the phase shift φ . 180° at the third harmonic
[the amplitude-frequency dependence of the third-har-
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Fig. 3. Temperature dependences of the phase shifts of the
current response relative to a reference signal when a volt-
age U = U0sin(2πft) (f = 1000 Hz, U0 = 1 V) is applied to
the sample; curve 1 corresponds to the third harmonic (ref-
erence signal ∝ cos(6πft)); 2—second harmonic (reference
signal ∝ sin(4πft)). The arrows indicate the direction of
change in temperature. 
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monic signal (see inset to Fig. 2) is weak and was
neglected.] It is easy to see that the dependences of A2

and A3 can have a very clear interpretation in terms of
the Landau–Ginzburg model and the relationships
(11.1) and (11.2) obtained by us for A2 and A3, respec-
tively. The zero conditions (12.1) and (12.2) are achieved
at temperatures T2 . 89°C and T3 . 102°C, respectively.
In this case we have A2(T3) . –5 × 109 J C –3 m3 and
A3(T2) . 3.9 × 1012 J C–4 m5. In accordance with (13.1),
we have β . –2 × 1012 J C–4 m5 which is close to the
value β . –1.5 × 1012 J C–4 m5 obtained in [16]. How-
ever it is important to note at this point that the point T2

belongs to the region of temperature hysteresis where
the ferroelectric and paraelectric phases may coexist.
The existence of a certain fraction of the paraelectric
phase reduces the measured value of A3 which in turn
corresponds to reduced absolute values of β. For exam-
ple, in [11] the value of β calculated using the characteris-
tic temperature points of the transition and the determined
Curie–Weiss constant was –3.9 × 1012 J C–4 m5. At this
point attention should be drawn to another contradic-
tion. According to the model, in the paraelectric phase
where Ps = 0, A3 should be independent of temperature.
In fact, during heating above the transition temperature
T . 110°C, this dependence of A3 almost disappears
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(curve 1) becomes parallel to the abscissa). This prop-
erty is also conserved during cooling to T0 . 70°C
which indicates that a small quantity of incipient polar
phase is formed. However, the value of A3 which in this
case, according to (11.2), should correspond to the
coefficient β is –6 × 1012 J C–4 m5 which is considerably
lower than the value obtained above in terms of abso-
lute value. All this could be explained by the fact that
even above the transition temperature, 110°C, “rema-
nent” polarization is found and this depends weakly on
temperature. In the following analysis of the measured
temperature dependence of A2 we can see that even
above the transition temperature T . 110°C nonzero
polarization exists.

In accordance with (15), an estimate of the pyro-
electric coefficient in the temperature range (T2, T3)
gives 0.7 × 10–4 C m–2 K–1 which is approximately
1.5 times higher than the value obtained in this temper-
ature range by direct pyroelectric measurements [17].
Everything again looks as if the value of A3(T2) was
slightly too low.

The temperature behavior of A2 (curve 2 in Fig. 4) is
extremely interesting. According to the model, above
the upper transition temperature which, as can be seen
from the first-harmonic measurements, is 110°C the
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Fig. 5. Temperature dependences of A2 obtained after polar-
izing the sample using pulses of different polarity. Curves 1
and 2 were obtained after polarization using single negative
and positive pulses, respectively. The amplitude of the sin-
gle pulses is 15 V and the duration 200 µs.
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value of A2 should abruptly go to zero, which would
correspond to zero spontaneous and therefore average
(remanent) polarization. The experiment gives a non-
zero value of A2 above the transition temperature and
indicates that not only is the spontaneous polarization
nonzero but the average polarization (in our geometry
this corresponds to the component along the normal to
the plane of the film) also does not go to zero above the
upper transition temperature. The fact that we are deal-
ing with the polarization of a film and not some para-
sitic effect from the surface which produces a signal at
even harmonics is demonstrated by the sign inversion
of the temperature dependence of A2 after the film has
been polarized by a pulse of opposite polarity, see Fig. 5.
Thus, we can see that the observed phase transition is
fairly complex. It follows from these data that only part
of the film volume is responsible for the transition in
the range T . 110°C. The remainder of the film (to be
specific we call this the X-state) undergoes a phase tran-
sition at a higher temperature. The existence of the
X-state obviously distorts the picture determined by the
homogeneous Landau–Ginzburg model and introduces
additional error in the determination of the coefficients.
If the fraction of the film volume belonging to the
X-state were larger for some reason, it would be possi-
ble for us not to observe a change in sign of A2 and A3.
In this case, the influence of the X-state makes it diffi-
cult to estimate the coefficient γ using formula (13.2)
since the values of A3(T2) and A2(T3) are raised to some
power, and even an acceptable error in determining
A3(T2) and A2(T3) separately has an unfavorable influ-
ence on the resultant error in the calculation of γ.
According to (11.4) an alternative method of determin-
ing the coefficient γ involves recording the Fourier
y-component at the fifth harmonic. Figure 6 shows cor-
responding curves for the Fourier y and x components
at the fifth harmonic. It can be seen that in the low-tem-
perature range (up to +50°C) corresponding to a sur-
face phase transition, the active losses make a very
strong contribution to the x-component (curve 2 in
Fig. 6). Consequently this temperature range cannot be
used to determine the coefficient γ and in addition it is
some distance from the phase transition of interest to
us. Only at temperatures above +100°C is the x-compo-
nent fairly small. Figure 7 shows the temperature
dependence of A5 (as in the case of the third harmonic,
allowance is made for a sign inversion caused by a 180°
phase shift). Above +90°C the value of A5 does not
depend on temperature to within measurement error
and it can be assumed that in this temperature range the
contribution of the surface phase transition is negligible
and in accordance with (11.4) we have A5 = γ . (5 ± 3) ×
1014 J C–6 m9. This last value agrees within measure-
ment error with the values of γ . 8 × 1014 J C–6 m9 and
γ . 2 × 1014 J C–6 m9 obtained for Langmuir–Blodgett
 AND THEORETICAL PHYSICS      Vol. 90      No. 5      2000
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and thick films of a similar polymer, respectively, in
[11] and [16]. 

The coefficient α0 (or the Curie–Weiss constant C' =
1/ε0α0) could be determined using the temperature
dependence of the linear dielectric susceptibility which
corresponds to the first-harmonic data (Fig. 2). How-
ever, problems arise first, because of the possible influ-
ence of the amorphous (nonferroelectric) phase and the
oxide film at the electrodes and second, an additional
assumption must be made on the “slow” formation of a
new phase in the temperature hysteresis region. Details
of an approach to solve these problems may be found in
[11]. Another method of determining α0 based on non-
linear measurements is also possible. Solving the equa-
tion of state (5) in a zero field (E = 0) gives a region of
temperature hysteresis determined by

(18)

This region of temperature hysteresis is clearly
expressed in the temperature dependence of the phase
at the third harmonic (Fig. 3, curve 1) giving ∆T . 35 K.
Using the values of β and γ, from (18) we find α0 =
(0.9 ± 0.5) × 108 J m C–2 K–9 which corresponds to the
Curie–Weiss constant C ' = (2 ± 1) × 103 K.
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The arrows indicate the direction of change in temperature.
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Abstract—The effective conductivity of the sample with a chessboard structure is found. The corner points are
singular for the electric field and charge density. The effective conductivity, charge density and electric potential
are expressed in terms of a Weierstrass elliptic function. The results are valid for films and for cylindrical sam-
ples with the same cross-section structure. We confirm the conjecture of Dykhne about the value of the effective
conductivity for the chessboard structure. © 2000 MAIK “Nauka/Interperiodica”.
The conductivity of two or more component sys-
tems is an object of intensive study [1]. Probably the
first strong result of the effective conductivity of a two
component system with conductivities σ1, 2 and for ran-
dom symmetric and isotropic distribution of both com-
ponents was obtained by Dykhne [1]. He found a very
simple expression for the effective conductivity σeff ,
that is valid for the whole region of ratio σ1/σ2

(1)

Expression (1) looks so simple, that hope arises that it
has an even larger region of application, that was sup-
ported by derivation. The conjecture that equation (1)
can be valid also for ordered systems was made in the
same paper of Dykhne [1]. If it is true, then the simple
symmetry arguments can help to restore the effective
conductivity of a more complicated system [6].

To prove the conjecture of Dykhne, we solved the
problem of conductivity of the chessboard for arbitrary
values of the conductivities σ1, 2 of components. The
result is that the effective conductivity is given by the
expression

(2)

and the function  is given by the ratio of two sin-
gle integrals. We prove that the ratio of these two inte-

grals is such that  = 1.

The in-plane conductivity tensor

(3)

σeff σ1σ2( )1/2
.=

σeff σ1σ2( )1/2 f̃ Z2( ), Z
σ1 σ2–
σ1 σ2+
-----------------,= =

f̃ Z2( )

f̃

σ̂eff δαβσeff=

¶This article was submitted by the authors in English.
1063-7761/00/9005- $20.00 © 20881
where δαβ is the Kronecker symbol. For this reason, we
shall consider the orientation of external electric field
along the diagonals of cells, as given in Fig. 1.

The chessboard possess translational symmetry.
Elementary cell vectors are

, (4)

where a is the size of a cell.
Translational symmetry and reflectional symmetry

over the y-axis reduce the number of independent
charge distribution functions to two: ρ1, 2 . We will show
below, that

(5)

2a 1 0,( ), 2a 0 1,( )

ρ1 t( ) ρ2 t( )–=

––
– –

––

– –
––

– – –
–

–

+
+

+++
+ +++

E0

y
ρ1ρ2 ρ2

ρ1

x

Fig. 1. The chessboard structure of the sample.
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where t is the distance along the edge of a cell counted
from the corner of the cell.

The scalar potential ϕ on the chessboard can be
taken in the form

, (6)

where G is the two-dimensional Green’s function

(7)

On the edge of a cell we have also

(8)

where n is normal vector to the edge of the cell, E is the
electric field, and ρ is the charge density per unit of
length. The equation system (6), (8) gives an integral
equation for the charge distribution on the edges of
cells. Simple proof shows that

,

and hence, we obtain only one integral equation for the
quantity ρ1;

(9)

In equation (9), we have used the new variables

(10)

The effective conductivity σeff is connected with a
charge density  by a simple expression:

(11)

The change t   1 –  shows that σeff is a symmetric
function of variables σ1, 2 and has a form given by equa-
tion (2). For this reason, we will suppose below that
σ1 > σ2.

One sum over l in equation (9) can be taken in
explicit form. As a result, we have

(12)

ϕ E0y 4π r2
1G r r1–( )ρ r1( )d∫–=

G r r1–( )
1

2π
------ r r1– .ln=

En
1( ) En

2( )– 4πρ,=

σ1En
1( ) σ2En

2( )=

ρ1 t( ) ρ2 t( )–=

Z
2π
------ 1

2
-------





+ 4 t̃
t̃ k l+ +

t̃ k l+ +( )
2

t'˜ k l–+( )
2

+
----------------------------------------------------------ρ̃ t̃( )d

0

1

∫
k l, ∞–=

∞

∑




ρ̃ t'˜( ).=

t a t̃ , ρ1 E0ρ̃ t̃( ).= =

ρ̃

σeff

4π 2σ1σ2

σ1 σ2–
-------------------------- t̃ ρ̃ t̃( ).d

0

1

∫=

t̃ t̃

Z
2π
------ 1

2
------- 2π td

0

1

∫
k ∞–=

∞

∑+




× π t k+( )( )sin
π t' k+( )( ) π t k+( )( )cos–cosh

----------------------------------------------------------------------------ρ̃ t( )




ρ̃ t'( ).=
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From equation (12), we obtain that  is an analytical
double periodic function of t with periods {1 ± i}. In
each cell, it has two branch points

If σ1 > σ2, we have near the branch points

(13)

Parameter κ is the solution of equation

(14)

With the help of equations (13), (14) we obtain that
near the branch points the following expansion for 
is valid:

(15)

Equations (14), (5) mean that function  can be pre-
sented in the form

(16)

where Ψ(t) is the elliptic function, and B is some con-
stant. Inside the unit cell, this function has only one
pole. The order of this pole cannot be higher than two.
Since the elliptic function of the first order does not
exist, Ψ(t) is the Weierstrass elliptic function ℘  [7]

(17)

From equation (15), it is trivial to prove that the
solution (17) is unique. The value of the constant B will
be found below. First, we give the parameters of the
elliptic function ℘ (t)

(18)

where K is a complete elliptic integral of the first kind.
Note, that the existence of the corner points on the
chessboard leads to the singular distribution of a elec-
tric charge, given by equation (17), because for small
values of the t Weierstrass function have a pole of the
second order:

(19)

ρ̃ t( )

tN M, N M;  i N M –( )+  { } .=

tN M,
1 1 N M;  i N M –( )+ +  { } .=

ρ̃ t( )
1

t tN M,–( )2
------------------------

κ

,∼

ρ̃ t( ) t t1
N M,–( )2[ ]

κ
.∼

πκ( )sin Z .=

ρ̃ t( )

ρ̃ t1( )
1

t1
2κ------ Cnt1

4n

n 0=

∞

∑ , t1 t 2k– 2il,–= =

ρ̃ t1( ) t1
2k C̃nt1

4n

n 0=

∞

∑ , t1 t 2k– 1– 2il.–= =

ρ̃ t( )

ρ̃ t( ) BΨκ t( )=

ρ̃ t( ) B℘ κ .=

g3 0, g2 4K4 1/ 2( )– 47.26817928,–= = =

℘ t( ) 1

t2
---

g2

20
------t2 …, t   !  1.+ +=
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Near the point t = 1 the function ℘ (t) is given by equa-
tion

(20)

The complete Loran expansion of the function ℘ (t) in

the circle |t| <  is [8]

, (21)

where for k ≥ 4

In our case, the constant g3 = 0, and thus, all odd coef-
ficients C2k + 1 are equal to zero. As the result, the Loran
expansion of the function ℘ (t) is given by the equation

(22)

(23)

The representation of Weierstrass function ℘ (t) with
the help of Jacobi elliptic function cn is even more con-
venient for use than equation (23)

(24)

where K = K(1/ ) = 1.854074677 and

(25)

is the Jacobi elliptic function.

℘ t( )
g2

4
----- 1 t–( )2– …, 1 t–   !  1.+=

2

℘ t( ) 1

t2
---

g2

20
------t2 g3

28
------t4 Ckt

2k 2–

k 4=

∞

∑+ + +=

Ck
3

2k 1+( ) k 3–( )
----------------------------------- CmCk m– .

m 2=

k 2–

∑=

℘ t( ) 1

t2
---

g2

20
------t2 C̃kt

4k 2– ,
k 2=

∞

∑+ +=

C̃k
3

4k 1+( ) 2k 3–( )
--------------------------------------- C̃mC̃k m– ,

m 1=

k 1–

∑=

k 2,≥

C̃1
g2

20
------

1
5
---K4 1

2
------- 

 – 2.36340896.–= = =

℘ t( ) K21 cn 2Kt 1/ 2,( )+

1 cn 2Kt 1/ 2,( )–
--------------------------------------------=

2

cn 2Kt
1

2
-------, 

  2 2π
K

--------------=

× e π n 1/2–( )–

1 e π 2n 1–( )–+
---------------------------- πt 2n 1–( )( )cos

n 1=

∞

∑
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For calculation of the quantity B, it is convenient to
introduce two functions G1, 2. By the definition, we put

(26)

From equations (26), we obtain symmetry properties of
functions G1, 2

(27)

The expression (26) for quantity G2 can be essentially
simplified. We have

Integration of the equation (12) over t' leads to the fol-
lowing expression for B:

(28)

Inserting this expression for the coefficient B into (11),
we obtain the final expression for the effective conduc-
tivity

(29)

The point σ1/σ2  0 is bifurcation point of equa-
tion (12). In the vicinity of this point, we have

(30)

This point is singular for the quantity G1. In the main
approximation, we obtain from equations (23), (26)

(31)

In this point, the quantity G1 – zG2 is finite and equal to

G1 t
℘ t( )

K2
----------- 

  κ
,d

0

1

∫=

G2 t'd

0

1

∫ td

0

1

∫=

× π t n+( )( )sin
π t' n+( )( )cosh π t n+( )( )cos–

---------------------------------------------------------------------------- ℘ t( )

K2
----------- 

 
κ

.
n ∞–=

∞

∑

G1 κ( ) G1 κ–( ), G2 κ( ) G2 κ–( ).–= =

G2 t'd

0

∞

∫ t
2πt( )sin

πt'( )2cosh πt( )cos–
-------------------------------------------------- ℘ t( )

K2
----------- 

  κ
d

0

1

∫=

=  t 1 2t–( ) ℘ t( )

K2
----------- 

  κ
.d

0

1

∫

B
Z

2π 2K2κ----------------------- 1
G1 zG2–
---------------------.=

σeff

2σ1σ2

σ1 σ2+
-----------------

G1

G1 zG2–
---------------------.=

κ 1
2
---

2
π
---

σ2

σ1
-----.–=

G1
π

4K
-------

σ1

σ2
-----.=

G1 zG2– 2 tt
cn kt 1/ 2,( )

sn kt 1/ 2,( )dn kt 1/ 2,( )
------------------------------------------------------------d

0

1

∫=
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(32)

sn, dn are also Jacobi elliptic function.

Inserting expressions (31), (32) into equation (29),
we obtain the value of effective conductivity near the
bifurcation point,

(33)

The expression in figured brackets is equal to π/2, and
thus, we obtain near the bifurcation point

(34)

Now we will find the value of σeff for all values of
the parameter z. First, we will find the value of quantity
G1. To do this, we use the substitution

(35)

and relation

(36)

=  
π
k
--- tt

πt
2
----- 

  4
1–( )n

e πn–

1 1–( )ne πn–+
-------------------------------- πnt( )sin

k 1=

∞

∑ 
 
 

–cotd

0

1

∫

=  
1
k
--- 2 2ln 4 e πn–

n 1 1–( )n
e πn–+( )

----------------------------------------
n 1=

∞

∑+ ,

σeff σ1σ2( )1/2π
2
---=

× 2 2 4 e πn–

n 1 1–( )n
e πn–+( )

----------------------------------------
n 1=

∞

∑+ln
 
 
 

1–

.

σeff σ1σ2( )1/2
.=

℘ t( )

K2
----------- y=

∂℘ t( )
∂t

-------------- 2 ℘ t( ) ℘ 2 t( ) K4+–=

1 + i

1 – i–1 – i 

–1 + i

10–1

Fig. 2. The contour of integration for the quantity I.
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with the help of equations (35), (36) we obtain

(37)

where Γ(x) is the Euler I-function. Now we calculate
the integral I, defined as

(38)

The integral over the contour between two branch points
(0, 1) can be transformed into the integral over the con-
tour, given in the Fig. 2.

Simple calculation leads to the answer

(39)

Hence, we obtain

(40)

Inserting this expression for the quantity G2/G1 into
equation (29) we obtain

(41)

for all values of the parameter z. And thus, we confirm
the Dykhne conjecture about the value of σeff for chess-
board structure.

Now we do not know whether the simple expression
(11) for the effective conductivity is also valid for other
regular two component systems or it is the property
only of the chessboard structure.

Note, that the problem of the calculation of σeff was
reduced to the calculation of two single integrals, given
by equation (26). We have obtained the explicit expres-
sion for conductivity as well as for field and current dis-
tribution in samples with a chessboard structure.

It looks very plausible that effective conductivity of
more complicated many component periodic structures
can also be expressed in terms of elliptic functions, as
it is given by equations (17), (26), and (29) for the
chessboard sample.
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Abstract—The concept of strong interaction in the same unit cell is used to establish the possible existence of
ferromagnetism in hexagonal Co and manganese compounds: MnAs, MnSb, and MnBi. A phase diagram is
constructed for the existence of ferromagnetic ordering and it is established that the Curie temperature depends
on the occupancy of the transition-element 3d-shell. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Exchange interaction of free electrons, if considered
as a perturbation, invariably results in a negative energy
correction which corresponds to a tendency of the elec-
trons toward ferromagnetism.

In studies of the excitations of localized s-electrons
strong Hubbard repulsion at low electron density also
leads to a substantial increase in the spin component of
the paramagnetic susceptibility although no ferromag-
netism occurs (see, for example, [1]). 

In order to explain the reasons for the appearance of
ferromagnetic ordering in α-iron, cobalt, and nickel,
the lowest-energy 3d states corresponding to a particu-
lar crystal lattice must be considered as the zeroth
approximation. 

An analysis of the ferromagnetic states of manga-
nese having an NiAs structure is exactly the same as an
analysis of hexagonal cobalt which at T < 723 K has an
almost ideal hcp structure.

The Hubbard energy for manganese is 15.27 eV and
17.77 eV for cobalt so that in both cases, this energy is
the largest energy parameter and is subsequently con-
sidered to be infinite.

In hexagonal cobalt the fourfold degenerate x2 – y2,
2xy-shell is filled by holes. In order to calculate the
orbital magnetism it is convenient to diagonalize the
atomic Hamiltonian and consider the filling of the
(x ± iy)2-shell.

When studying the band-structure of the high-spin
manganese states, we need to consider all possible sin-
gle-particle transitions from three-electrons xz, yz, and
3z2 – r2 states with spin S = 3/2 to the four-electron
states xz, yz, 3z2 – r2, (x ± iy)2, for which the sign of the
projection of the orbital momentum differs and S = 2. 

It follows from general reasoning, and will become
apparent from the following, that in zero magnetic
1063-7761/00/9005- $20.00 © 20886
field, single-particle excitations only differ from single-
hole ones in terms of sign.

2. GENERAL EQUATIONS

In compounds having a Γ12 structure the crystal
field splits the atomic levels into levels for which the
projection of the orbital momentum is zero and which
are doubly degenerate with respect to the electron spin
projection, and fourfold degenerate levels for which the
momentum projection is nonzero and which are degen-
erate with respect to the sign of the momentum projec-
tion and with respect to the sign of the spin projection.

For 3d cations the levels are split into the lowest
fourfold degenerate xz, yz level, the doubly degenerate
3z2 – r2 level, and also the highest-energy quadruple
2xy, x2 – y2 level.

We shall assume that hopping takes place between
neighboring atoms, each having a wave function pro-
portional to one of the components 2xy or x2 – y2. In
order to study the magnetic properties associated with
orbital splitting we need to use those linear combina-
tions of atomic wave functions which diagonalize the
atomic Hamiltonian. This condition is satisfied by two
complex-conjugate wave functions (x ± iy)2having dif-
ferent energies in a given magnetic field (±2H) where
the magnetic field is measured in energy units. 

The matrix of hopping between nearest ions 
does not depend on the spin index σ but depends
strongly on the orbital indices m and n. 

Introducing the creation  and annihilation

 operators of holes states in a cell having the
coordinates r, we write the interaction Hamiltonian in

tn
m r( )

â m σ,( )
+ r( )

â m σ,( ) r( )
000 MAIK “Nauka/Interperiodica”
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terms of the matrix of transitions between neighboring
atoms:

(1)

After diagonalizing the zeroth Hamiltonian corre-
sponding to nonoverlapping atomic states, the creation
and annihilation operations are expressed as an expan-

Ĥ tn
m r r'–( )â m σ,( )

+ r( )â n σ,( ) r( )
m n σ r r', , , ,

∑=

– µ σH 2mH–+( )â m σ,( )
+ r( )â m σ,( ) r( ).

m , σ r,±=

∑
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sion in terms of all possible transitions between N and
N ± 1-particle states (see [2]):

(2)

Here the indices α and β correspond to the mutually
inverse transitions s  p, i.e., β(p, s) = –α(s, p). The

quantities  are called genealogical coefficients and
are calculated below.

Assuming that the Hubbard energy is infinite, we
write the inverse matrix of the virtual Green’s function:

â m σ,( )
+ r( ) gα

m σ, X̂r
α
, â n σ,( ) r( ) gβ

n σ, X̂r
β
.

β
∑=

α
∑=

gα
m σ,
(3)Ĝ
1– e2iφ

e 2iφ–

e2iφ e 2iφ–

iω eα
+–( )δα β, gα f α

+( )Upgβ– gα f α
+( )Bpgγ–

f ν
–( )gνBp*gβ– iω eν

––( )δν γ, f ν
–( )gνUpgγ– 

 
 
 
 
 

.=
Here we introduce the external magnetic field H and the
chemical potential µ: 

and 2m = ±2 is the projection of the orbital momentum.

The so-called end factors  are equal to the sum of
the average occupation numbers of the N- and N – 1-
particle states, where i, k is a set of indices characteriz-
ing the N- and N – 1-particle states corresponding to the
i  k transition. 

The coefficients U and B are expressed in terms of
the integral of hopping to nearest neighbors (t) and the
angle of rotation of the angles of the unit cell ϕ = π/3:

(4)

the same as in the hopping matrix for the strong cou-
pling approximation. In this case, the matrix elements
are calculated in terms of the atomic wave functions
assigned to the orbital momentum l = 2 and differing in
respect of the sign of its projection lz = ±2.

eα
m µ– Σα H( ) 2mH– σH ,–+=

f α k i,( )
σ ±,( ) nN

i( ) nN 1–
k( ) ,+=

f α k i,( )
σ ±,( )

Up t px
1
2
--- px

3
2

------- py+ 
 cos+cos





=

+
1
2
--- px

3
2

------- py+ 
 cos





,

Bp t px e4iϕ 1
2
--- px

3
2

------- py+ 
 cos+cos





=

+ e 4iϕ– 1
2
--- px

3
2

------- py– 
 cos





,

The equations for the variations of the N-particle

states of the occupation numbers , where s = 1,
2, …, m are the numbers of the lowest-energy N-parti-
cle states, can be obtained from the general equation for
the averages of the T-products of the annihilation oper-
ator  and the linear combination of m conjugate
X-operators with arbitrary coefficients βs:

(5)

Here gk are the given genealogical coefficients, δ is an

infinitely small positive quantity, and  are the
Fourier components of the single-particle Green’s
function which in the zero-loop approximation is
defined in terms of its inverse matrix (3). 

In the particular case of transitions between high-
spin states, the indices s can be conveniently replaced
by the level numbers of the Zeeman multiplets Sz split
under the influence of a weak magnetic field δH. 

3. ZERO-LOOP APPROXIMATION

We note that the variations of the occupation num-
bers of the various multiplet components are interre-
lated by the extremely simple equation [3]:

δnN
s

âν

âν gs X̂a
N 1– N s( ),

,
s 1=

m

∑=

gsβsnN
s

s

∑ T gkβs Gω
k s, p( ) f se

iωδ.
ω p,
∑

s k,
∑=

Gω
k s, p( )

δn
Sz( )

δ n0
w
T
----SzH 

 exp 
 ≈ w

T
----SzδHn

Sz( )
,=
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where 

We then obtain relationships which do not depend on
the gyromagnetic factor w nor on the “zero” occupation
numbers n0:

(6a)

for integer values of the total spin S;

(6b)

for half-integer values of the total spin S.
We establish coupling relationships between varia-

tions of the various high-spin multiplets formed by par-
ticles whose number differs by one. We shall confine
our analysis to the zero-loop approximation (Hubbard I
approximation [2]) where all the self-energy compo-
nents Σ are assumed to be constant and are added to the
chemical potential. 

We shall first assume that the coefficients βs in equa-

tion (5) satisfy the orthogonality conditions:  =
0. As a result of varying the occupation numbers
according to the magnitude of the external magnetic
field and going to the limit H  0, we obtain relation-
ships which do not depend explicitly on the applied
external field:

(7)

Here K0 is the average virtual Green’s function (3) cal-
culated for zero external magnetic field. In our case

(8)

and  are the so-called end factors which are equal to
the sum of the occupation numbers corresponding to a
particular transition between various multiplets. Accord-
ingly, for N = 2S and integer spin S we have [3, 4]

(9)

where k = 1 – S, 2 – S, …, S. Substituting this definition
into equation (7) and using expressions (6a) and (6b)
instead of the orthogonality condition, we obtain

(10)

Relations (6) and (10 can be used to express all the vari-
ations in terms of one another and substitute them into

Sz S S– 1 … S., ,+,–=

δnkσ kδnσ, σ 1, k± 0 1 2 … S±, ,±,±,= = =

δn k 1/2+( )σ 2k 1+( )δnσ/2,=

σ 1, k± 0 1 2 … S 1/2–( )±, ,±,±,= =

f cβss∑

gkβkδnN
k

k 1=

∑ T

g2
----- gsgnGω

s n, p( )eiωδ

ω p,
∑

s n,
∑=

× gkβkδ f N
K

k

∑ K0 gkβkδ f N
k .

k

∑=

K0
1
2
--- nF ξp

λ( ),
p λ, ±=

∑=

f N
k

gk
S k+
2S

------------, δ f N
k δnN

kσ δnN 1–
k 1/2–( )σ,+= =

1 K0–( )δnN 2S=
σ 2K0δn2S 1– N 1–=

σ/2 .=
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the equation of state which we obtain from the equation
of state (5) under the condition βs = gs:

(11)

Here all the coefficients are calculated for zero mag-
netic fields and are expressed in terms of integrals of
the Fermi function nF(e) and its derivative .

(12)

The chemical potential µ is determined for H = 0 in
terms of the total number of ns and nd states defined in
terms of the condition of electroneutrality for each tran-
sition-group element:

(13)

Here the brackets [nd] denote the integer part of the
average number of particles (nd) or holes (hd = 10 – nd)
in the incompletely filled d-shell. The end factors f for
zero field and all the coefficients are defined for each
integer-value range of the variables nd or hd and are
given in table (z2 ≡ 3z2 – r2). 

The final equation to determine the magnetic sus-
ceptibility can be obtained by substituting into equation
(11) all the variations for all possible values of the spin
projection from equation (6a) or (6b). Finally, the con-
dition for positive magnetic susceptibility has the sim-
plest form:

(14)

In this relationship the dimensionless quantity γd is
expressed in terms of the squares of the genealogical

coefficients . For transitions between smaller (in
terms of number N and spin S) and larger-numbered
(N = 2S) high-spin states we have 

(15)

The specific values of g2 and γd are given in table.

gs
2δnN

s

s 1=

m

∑ T gsgk δ Gω
s k, p( ) f k{ } eiωδ

ω p,
∑

s k,
∑=

=  K0 g2 f D1+( ) gk
2δ f N

k g2 fσD0δH .–
k

∑

nF' e( )

K0
1
2
--- nF ξp

λ( ),
p λ, ±=

∑=

Dn
1
2
--- ep

λ( )n
nF' ξp

λ( ),
p λ, ±=

∑=

ξp
λ g2 f ep

λ µ.–=

nd nd[ ] f R nd[ ] 1+ K0,+=

or hd hd[ ] f R hd[ ] 1+ K0.+=

K0 1 K0–( ) g2 f D1 γd K0+( ).>

gk
2

γd
2S 1–

3
---------------, g2 S

1
2
---.+= =
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Table

Particles f g2 γd High-spin states

1 < nd < 2 (2 + nd)/12 3/2 1/2 3 1/3 zeiφ, ze–iφ

2 < nd < 3 (6 – nd)/12 2 1 4 2/3 zeiφ, ze–iφ, z2

3 < nd < 4 (14 – 3nd)/20 5/2 3/2 10 1 zeiφ, ze–iφ, z2, e±2iφ

4 < nd < 5 (2nd – 5)/30 3 2 6 4/3 zeiφ, ze–iφ, z2, e2iφ, e–2iφ

Holes f g2 γd High-spin states

4 < hd < 5 (2hd – 5)/30 3 2 6 4/3 e2iφ, e–2iφ, z2, zeiφ, ze–iφ

3 < hd < 4 (14 – 3hd)/20 5/2 3/2 10 1 e2iφ, e–2iφ, z2, ze±iφ

2 < hd < 3 (6 – hd)/12 2 1 4 2/3 e2iφ, e–2iφ, z2

1 < hd < 2 (2 + hd)/12 3/2 1/2 3 1/3 e2iφ, e–2iφ

S nd[ ] R nd[ ] 1+

S nd[ ] R nd[ ] 1+
4. SINGLE-LOOP APPROXIMATION

The final expression (14) in the previous section was
obtained in the simplest Hubbard I approximation
where the temperature and field dependences of the end
factors are taken into account. In this case, all the self-
energy components are assumed to be the same so that
their contribution reduces to an additive correction to
the chemical potential. 

In the next single-loop approximation the self-
energy components Σk do not depend on the frequency
or momentum although their dependence on the mag-
netic field differs substantially for different numbers (k)
of single-particle transitions.

In order to find the single-loop self-energy compo-
nents, it is sufficient to calculate the various loops and
then sum these taking into account commutation rules
which determine the nonzero vertex components of the
kinematic interaction, see Fig. 1 and also [3]. 

The equations for the single-loop self-energy com-
ponents can be expressed in terms of the product of the
hopping integrals tk, n(p) and the Fourier components of
the virtual Green’s function:

(16)

(17)

Here summation is performed over the recurrent indi-

ces k and the coefficients , , , and  are
determined using perturbation theory in accordance
with the rules of the diagram technique for Hubbard
operators [3]. We can see from Fig. 1 that these coeffi-
cients are ±1.

Allowing for the symmetry conditions of the crystal

lattice, we can write:  = . 

Am
σ ta a',

m s, p( )Gω a' a, ,
s m, p( ),

s ω a' p, , ,
∑=

Bm
σ tb b',

m s, p( )Gω b' b, ,
s m, p( ),

s ω b' p, , ,
∑=

Σα
σ Kα

k Ak
σ Lα

k Ak
σ– Mα

k Bk
σ Nα

k Bk
σ– .+ + +=

Kα
k Lα

k Mα
k Nα

k

Am
σ Bm

σ
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In each specific case we can show that for zero mag-
netic field the self-energy components do not depend
on the transition number α or the spin index σ so that
their influence is reduced to renormalization of the
chemical potential. 

After applying an infinitely weak magnetic field δH,

we have the following relationships: δ  = δ  =

−δ  = –δ . Note that each of the values of  and

 is proportional to the square of the corresponding

genealogical coefficient . Accordingly we determine

the matrix  corresponding to the right-hand side of the
system (17):

(18)

Differentiating (16) and (17) allowing for the explicit
expression for the inverse single-particle Green’s func-
tion (3), we obtain the following equations for the vari-
ations:

(19)

Here the matrices  = Dk  differ by the tempera-
ture factor and are proportional to the same matrix

Am
σ Bm

σ

Am
σ– Bm

σ– Am
σ

Bm
σ

gm
2

Ŝ

Sα k, Kα
k Lα

k Mα
k– Nα

k–+{ } gk
2.=

δΣα
σ δΣα

σ–– Fα n,
0( ) Dα n,

1( )–[ ]δΣn
σ–= =

+ g2Dα n,
2( ) δ f n

σ σδHRα D1.–

D̂
k( )

Û

(p, m)

(n, m) (n, m)

+

(n, m) (n, m)

(s, n)

–

n s,( )
s n≠
∑–p m,( )

p m≠
∑

Fig. 1. Single-loop self-energy components.
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 which is expressed in terms of the numerical val-

ues of the matrix (  constructed in accordance
with the definition of the self-energy matrix (17):

(20)

The operator is  = Q(µ) , where

(21)

The matrix  has a zero sum of elements of each row:

(22)

The equations for the variations of the end factors also
contain variations of the self-energy components:

(23)

Here the index k has all the same possible transition
numbers corresponding to a given change in the projec-
tion of the momentum and spin as the index α. 

Deficient equations are written using the auxiliary
quantities βk satisfying the orthogonality condition

 = 0. 

(24)

(25)

Half of the variations of the N-particle states δ  are

expressed in terms of each other: δ  = –δ . All

Ûα m,

Ŝ( )α m,

Rα Sα n, , Uα n,

n

∑ Rαgn
2

g2
-----------,= =

Dk
1
2
--- ep

λ( )k
nF ξp

λ( ).
p λ,
∑=

F̂
0( )

Ŵ

g2 gk
2

k

∑= ,

Wα n, Uα n, Sα n,–
gn

2

g2
----- Sα k, Sα n, .–

k

∑= =

Ŵ

Q µ( )
1
2
---

nF ξp
λ( ) nF µ–( )–[ ]

f g2
------------------------------------------

p λ, ±=

∑=

=  
K0 nF µ–( )–[ ]

f g2
---------------------------------.

gs
2δnN

s

s 1=

m

∑ K0 g2 f D1+( ) gk
2δ f k

σ

k

∑=

+ f D0 gk
2δΣk

σ

k

∑ g2 f 0σD0δH .–

βkgkk∑

gkβkδnN
k∑ K0 gkβkδ f k

δ

k

∑ A µ( ) βkgkΣk
σ.

k

∑+=

Am
σ 1

2
---

nF ξp
λ( ) nF µ–( )–

ξp
λ µ+

-------------------------------------.
p λ, ±=

∑=

nN
k

nN
σk nN

σk–
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remaining independent variations of N-particle states
are expressed in terms of sums of the variations of the
end factors: 

(26)

so that equations (19), (23), (24), and (26) completely
determine the variations of all the occupation numbers.

The condition for solvability of this system of equa-
tions for zero magnetic field δH = 0 is the condition for
formation of ferromagnetic instability.

5. FERROMAGNETISM OF COBALT

Zero-loop approximation. Experiments show that
the structure of hexagonal cobalt is very close to ideal

close-packed: c/a ≈ 1.62 instead of c/a =  ≈ 1.63
(see [5]). In accordance with the condition of electro-
neutrality, the difference between the number of holes
(nh) at the fourfold degenerate 2xy, x2 – y2 shell and the
number of electrons in the 4s-shell (ns) for cobalt is 1:
nh = ns + 1. According to different estimates, the
observed magnetic moment is 1.6–1.75µB [5] so that
1 < nh < 2. 

The end factors  are expressed in terms of the

average occupation numbers of the two-hole 

and single-hole  states

(27)

The matrix elements of the transition between layers in
an hcp-lattice are proportional to the fourth power of
the sine of the angle between the z axis and the vector
joining the nearest atoms between the layers. This value
is close to 1/9 so that for the wave functions used (x ±
iy)2 transitions between layers can be neglected and the
following analysis is made in the xy plane. 

Dividing the equations into even and odd in terms of
spin index which gives odd and even solutions in terms
of the sign of the orbital momentum projection, we find
the conditions for solving these equations in the follow-
ing general form: 

(28)

The first equation corresponds to the occurrence of spin
instability and is the same as (14). 

δnN
1( ) δ f k

σ, δnN
2( )

k 1=

m

∑ δ f k
σ,

k 2=

m 1–

∑= =

δnN
3( ) δ f k

σ…,
k 3=

m 2–

∑=

8/3

f a b,
σ ±,( )

nII
0 1±,( )

nI
σ ±,( )

f 1
σ ±,( ) nII

± nI
σ ±,( ), f 2

σ ±,( )+ nII
0 nI

σ ±,–( ).+= =

K0 1 K0–( ) g2 f hD1
1
3
--- K0+ 

  ,=

K0 1 K0–( ) Ql γl K0+( ).=
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For T = 0 the condition for the occurrence of ferro-
magnetism is determined by the density of states at the
Fermi surface:

(29)

for  = µ/fh. The condition for the occurrence of orbital
instability (28) which was obtained in a study by one of
the authors [6] contains the coefficient Ql whose abso-
lute value does not exceed one:

In our case, γl = –1 so that orbital instability does not
occur at these temperatures. 

A study of spin instability involves calculating two
densities of states:

(30)

For a triangular lattice the functions Up and Vp have the
following form:

(31)

where 

For the case of hole filling, the integral of hopping to
nearest neighbors is t > 0 so that this can be set at
1 assuming that the temperature and chemical potential
are expressed in units of t. This value is known from
band calculations and for cobalt is (8/9) eV ≈ 104 K.

In the range adjacent to n ≈ 1 the system has a fairly
high transition temperature ≈0.3|t| which decreases
with increasing hole density (see Fig. 2a). 

In the range 1.062 < nh < 1.139 the transition tem-
perature goes to zero and then it has a small maximum.
This maximum is attributed to the logarithmic singular-
ity in the density of states at e = e* = –33/16 and may
be calculated with logarithmic accuracy:

K0 1 K0–( ) µ1
2
--- δ ξp

λ( ) 1
3
--- K0+ 

 
λ p,
∑–=

=  µ1
2
--- ρλ

e µ=( ) 1
3
--- K0+ 

 
λ
∑–

µ

Ql

ep
+( )

ep
–( )+( ) nF ξp

+( )( ) nF ξp
–( )( )–( )

2 ep
+( )

ep
–( )–( )

--------------------------------------------------------------------------
 
 
 

.
p

∑=

ρ ±( )
e( ) δ e ep

±( )–( )
p

∑=

=  δ e Up Up
2 3Vp–+−–( ).

p

∑

Up t pk, Vpcos
k 1=

3

∑ t2 pk pn,coscos
k n;  k n >,  ∑

 
= =

p1 px, p2
px

2
-----

py 3
2

-------------, p3+
px

2
-----

py 3
2

-------------.–= = =

Tm
γ
π
--- t e 1/Λ– ,≈
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where 

(32)

Here lnγ = C ≈

 

 0.577 is the Euler constant,

(33)

if 

 

K

 

0

 

 = 0.187 then 

 

n

 

h

 

 = 1.147.

The transition temperature goes to zero for  =

 

−

 

33/16 

 

± δµ

 

 = –33/16 

 

±

 

 (

 

π

 

/2

 

γ

 

)

 

T

 

m

 

 so that 

 

T

 

m

 

 = 2

 

δµγ

 

/

 

π

 

 

 

≈

 

1.13

 

δµ

 

.

 

Single-loop approximation.

 

 In order to refine the
results of the previous section we calculate the single-
loop self-energy components.

It may be noted that the off-diagonal self-energy
components in terms of transition numbers (

 

k

 

, 

 

p

 

 = 1, 2)
go to zero whereas the diagonal ones are determined in
terms of integrals of the Green’s functions with a given
projection of the spin 

 

σ

 

 (see Fig. 1):

(34)

It can be shown that quantities on the right do not
depend on the number (superscript 

 

a

 

 or 

 

b

 

) of the atomic
state and for given 

 

σ

 

 differ by a factor proportional to
the square of the corresponding genealogical coeffi-

cient:  = 1 and  = 1/2. 

(35)

In a zero magnetic field, the functions 

 

C

 

(

 

σ

 

) do not
depend on the spin projection so that after substituting
these into (34), we can observe that in this limit both
self-energy components reduce to a constant compo-
nent which gives a correction to the chemical potential
and is subsequently neglected. 

Λ 11

π2 42
--------------- 1/3 K e∗( )+

K e∗( ) 1 K e∗( )–( )
------------------------------------------=

≈ 0.172
1/3 K e∗( )+

K e∗( ) 1 K e∗( )–( )
------------------------------------------.

K e∗( )
1
2
--- Θ 33

16
------– ep

λ– 
  0.187,≈

p λ,
∑=

Λ 0.5887, Tm 0.567te 1/Λ– 0.11t,≈ ≈=

nh 2
2 K0+
4 K0–
---------------,=

µ̃

Σ1
a σ, A2

σ–– B1
σ,+=

Σ2
a σ, A1

σ–– B2
σ– A2

σ– B2
σ,+ + +=

Σ1
b σ, B2

σ–– A1
σ,+=

Σ2
b σ, B1

σ–– A2
σ– B2

σ– A2
σ.+ + +=

g1
2 g2

2

Ak
σ Bk

σ T tp
k n, Gω

n k, gk
2C σ( ).∼

n ω p, ,
∑= =
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We obtain two equations for  using their differ-
ent definitions in terms of the Green’s function:

(36)

Here the matrices 

differ by the temperature factor and are proportional to

the same matrix  = Rn /g2 which is expressed in

terms of numerical values of the matrix  constructed
in accordance with the definition of the self-energy
matrix (for Ak = Bk):

(37)

The matrix  is expressed in the form of the products 

(38)

The operator is  where

δΣk
σ

δΣk
σ δΣk

σ–– Fk n,
0( ) Dk n,

1( )–[ ]δΣn
σ–= =

+ g2Dk n,
2( ) δ f n

σ σδHRkD1.–

D̂
n( ) 1

2
--- ξp

λ µ+( )n
nF' ξp( )Û

p λ, ±=

∑=

Ûn m, gm
2

Ŝ

Ŝ
g1

2 1,= g2
2 1/2=

g1
2 1,= g– 2

2 –1/2= 
 
 
 

,=

Rk Sk n,

n

∑ 3
2
--- 1

2
---, 

  .= =

Û

Uk n,
Rk

g2
-----gn

2, so that Û 1, 1/2

1/3, 1/6 
 
 

.= =

F̂
0( )

Q µ( )Ŵ=

Q µ( )
1

f g2
-------- nF ξp( ) nF µ–( )–[ ]

p

∑=

=  
1

f g2
-------- K0 nF µ–( )–[ ] .
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The matrix  has a zero sum of elements in each row:

(39)

Thus, it is convenient to use the first equation:

(40)

Here we introduce the squares of the genealogical coef-

ficients:  = 1,  = 1/2, and g2 =  = 3/2. 

Since the influence of the external field and also the
relation with the variation of the end factors are deter-
mined by the vector R, we can obtain general relation-
ships which depend only on the variations . In order
to achieve this aim, we multiply both sides of equations
(36) by the components of the vector N = (–1/2, –3/2)
orthogonal to the vector R. As a result, we obtain an
equation which does not depend on the external field or
the end factors fk:

(41)

The occurrence of ferromagnetic instability is deter-
mined by the condition that it is impossible to solve this
system of equations for δH = 0. In other words, the
determinant of the following matrix must be equated to
zero:

Ŵ

Ŵ Û Ŝ–=

=  
U1 1, g1

2 0=– U1 2, g2
2 0=–

U2 1, g1
2 2/3–=– U2 2, g2

2 2/3=+ 
 
 
 

.

σΣ1
σ D1 gk

2δΣk
σ

k 1 2,=

∑–

– D2g2 gk
2δ f k

σ

k 1 2,=

∑ g2σδHD1.=

g1
2 g2

2 gk
2

k∑

δΣk

g2
2 δΣ1

σ( ) δΣ2
σ( )+( ) g1

2 Q µ( )+( ) δΣ1
σ( ) δΣ2

σ( )–( ).=
(42)

1 g1
2 K0 f g2D1+( )– 1 g2

2 K0 f g2D1+( )– f D0g1
2– f D0g2

2–

1 K0– 1 K0+ A µ( )– A µ( )

D2g2g1
2– D2g2g2

2– 1 D1g1
2– D1g2

2–

0 0 g2
2 g1

2 Q–– g1
2 g2

2 Q++ 
 
 
 
 
 
 
 

.

The matrix thus written can be represented as a deter-
minant in a simple form where the only singular opera-
tor A(µ) is multiplied by the operator D2 which com-
pletely compensates for the logarithmic singularity of

 in the limit µ  0. Â
For the fcc phase of cobalt, which exists at high tem-
peratures (723 < T < 1768 K), we have

Up px py py pz pz px,coscos+coscos+coscos=

Vp px py pz pk.cos
k
∑coscoscos=
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In the temperature range T < 723 K where cobalt exists
in the hcp phase, the functions Up and Vp were deter-
mined in (31).

The logarithmic divergence appearing in the coeffi-
cient A(µ) for µ  0 after calculating the determinant
(42) is compensated by the factor D2:

(43)

The first term on the right-hand side is the same as the
formula in the zero-loop approximation (28). The sec-
ond and third terms give a contribution of opposite sign
but their difference remains positive. As a result, it is
found that the transition temperature remains finite
over the entire range of hole concentrations between 1
and 1.17 and the height of the logarithmic maximum
increases substantially. 

6. FERROMAGNETISM 
OF MnAs COMPOUNDS

Zero-loop approximation. The experiment shows
that all manganese compounds having an NiAs struc-
ture: MnAs, MnSb, MnBi have an extremely high satu-
ration magnetic moment higher than 3.4µB (see, for
example [7]).

Thus, the 3d electrons of manganese in these com-
pounds resonate between states with spin 3/2 and a
state with spin 2. We therefore need to consider the sit-
uation where the system resonates between three-parti-
cle {(3z2 – r2), t(zx), t(yz)} and four-particle {(3z2 – r2),
t(zx), t(zy), {2xy, x2 – y2}}states, each corresponding to
the lowest-energy states with the highest possible total
spin.

The integrals of hopping to nearest neighbors (t) for
single-particle electron transitions have a negative sign
so that t may be replaced by –1 and it can be assumed
that the temperature and chemical potential are
expressed in units of |t|:

(44)

g2 = 5/2 is the sum of the squares of all the genealogical
coefficients, 3 < n < 4.

The excitation spectrum  only depends on the

transverse quasi-momenta α = px/2 + py /2, β =

px/2 – py /2:

K0 1 K0–( )

=  D1 f g2 1
3
--- K0+ 

  g2K0 1 K0–( )

Q g2+
------------------------- Q

7
6
---+ 

 +

–
D2

2
------ f

A µ( )

Q g2+
--------------- f g2 D0D2 D1

2–

Q g2+
-------------------------- 1

3
--- K0+ 

  Q
7
6
---+ 

  .+

ξp
± f g2

ep
± µ, ep

±– Up Up
2 3Vp– ,±= =

f
14 3n–

20
------------------,=

ξp
±( )

3

3

Up α β α β+( ),cos–cos–cos–=

Vp α βcoscos αcos βcos+( ) α β+( ).cos+=
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To these equations we need to add the equation of state
for H = 0:

(45)

The condition for the occurrence of ferromagnetic
instability in the zero-loop approximation has the same
general form as (14) in which the amplitude γs = 1 is
substituted. 

(46)

In the range adjacent to n = 3 the system has a fairly
high transition temperature ≈1.1|t| which decreases
with increasing electron density (see Fig. 2b).

The transition temperature goes to zero in the range
3.41 < nd < 3.56. With further increasing concentration
we observed a small maximum (see Fig. 2b). This max-

n 2
3 7K0+
2 3K0+
-------------------, 3 n 4.< <=

K0 1 K0–( ) f g2D1 1 K0+( ),=

nd 2
3 7K0+
2 3K0+
-------------------.=

T/ |t|

0.3

0.2

0.1

0
1.0 1.02 1.06 1.12 1.16

nh

(a)

T/ |t|

1.0

0.8

0.6

0
3.0 3.1 3.2

nd

(b)

0.4

0.2

3.3 3.4 3.5 3.6

Fig. 2. (a) Dependence of the temperature of transition to
the ferromagnetic state on the number of holes calculated in
the zero-loop approximation for cobalt. (b) Dependence of
the temperature of transition to the ferromagnetic state on
the number of d-electrons calculated in the zero-loop
approximation for MnAs.
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imum is associated with the presence of singular saddle
points (α = β = π); (α = 0, β = π); (α = π, β = 0) which
leads to a logarithmic singularity in the density of states
for e = –1. The maximum transition temperature is
determined from the same relationship as for cobalt but
with a different constant Λ:

where 

(47)

Here lnγ = C is the Euler constant, 6|t| is the width of
the conduction band, 

is the number of states within the Fermi surface e = –1.
In this case, nd ≈ 3.57,

As for cobalt the maximum transition temperature is
related to the energy range δµ in which the ferromag-
netic transition temperature has a very steep maximum.
This relationship has the very simple form: Tm =
2γ|δµ|/π ≈ 1.13|δµ|.

Single-loop approximation. We obtain four equa-
tions for δΣm directly from (16) and (17) in terms of the
integrals of the Green’s function, the so-called single-
loop approximation (see Fig. 1):

(48)

Taking into account the symmetry conditions, we can
write:

so that we obtain four equations for the variation δΣm:

(49)

Here the matrices  = Dk  differ by the temperature

factor and are proportional to the same matrix  =

Rn /g2 which is expressed in terms of the numerical
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values of the matrix  constructed in accordance with
the definition of the self-energy matrix: 

(50)

(51)

The matrix  is represented as the products Uk, n =

Rk /g2 or

(52)

The operator is  = Q(µ)  where  =  – ,

The matrix  has a zero sum of matrix elements in
each row:

(53)

The inhomogeneous term is proportional to the vec-
tor quantity R = [1/2, 0, –1/2, –1]. 

Since the influence of the external field and also the
relationship with the variation of the end factors is
determined by the vector R, we can obtain general rela-
tionships containing only δΣk. To achieve this we multiply
both sides of equations (49) by the components of the vec-
tors N(λ) orthogonal to the vector R, i.e., (RN(λ)) = 0, or

Ŝ

Ŝ

=  

g1
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(54)

Here λ = 1, 2, 3, and the third equation can be obtained
by multiplying by the vector M whose components sat-
isfy the condition for orthogonality of the result of

action of the operator . Thus, for an arbitrary vector

Hk: Mn Hk = 0. 

In our case we can select M = (8, 9, 8, 5). 
This possibility arises because the determinant of

the matrix is zero whereas none of its principal
minors goes to zero. As a result, we obtain

N 2( ) 1 0 1 0, , ,( ),=

N 3( ) 1 0 1– 1, , ,( ),=

δΣk
σNk

λ Q µ( )Nk
λWn

kδΣn
σ.=

Ŵ

Wk
n

Ŵ
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(55)

Here we have

In our case Sk = –2 .

The occurrence of ferromagnetic instability is deter-
mined from the condition that this system of equations
can be solved for δH = 0. In other words, we need to
equate to zero the determinant of the following matrix

(where  = K0 + fg2D1):

δΣk
σ( )Mk SnD1σΣk

σ( )–

=  g2SnD2σ f n
σ( ) σδH MkRk( )D1.–

Dk
1
2
--- tp

k nF' ξp
λ( ), Sn

p λ,
∑ MkUn

k .= =

gk
2

K̃

(56)

1 g1
2K̃– 3/2 g2

2K̃– 3/2 g3
2K̃– 1 g4

2K̃– f D0g1
2– f D0g2

2– f D0g3
2– f D0g4

2–

0 1 1 K0– K0 0 0 A µ( )– A µ( )

1 K0– K0 0 1 A µ( )– A µ( ) 0 0

1 K0– 3 K0– 3 K0+ 1 K0+ A µ( )– A µ( )– A µ( ) A µ( )

2D2g2g1
2 2D2g2g2

2 2D2g2g3
2 2D2g2g4

2 8 2D1g1
2+ 9 2D1g2

2+ 8 2D1g3
2+ 5 2D1g4

2+

0 0 0 0 0; 1 3/4( )Q µ( )+ Q µ( )– 1/4( )Q µ( )

0 0 0 0 1 Q µ( )+ 3/2( )Q µ( )– 1 Q µ( )+ 1/2( )Q µ( )–

0 0 0 0 1 Q µ( )– 9/4( )Q µ( ) 1– Q µ( )– 1 1/4( )Q µ( )– 
 
 
 
 
 
 
 
 
 
 
 
 
 

.

Here the first row corresponds to the equation of state
(23) differentiated with respect to the external field.
The second, third, and fourth rows correspond to the
equations (24) written in terms of the variation of the
end factors δfk. The fifth row corresponds to the linear
combination of equations (55) for the three self-energy
components thus summed to eliminate the action of the

linear operator . The last three rows are written in
accordance with equations (54).

The final equation to determine the ferromagnetic
instability temperature generalizes the corresponding
equation (46):

(57)

where g2 = 5/2, Q = (K0 – nF(–µ))/fg2. 

For a small number of excitations n – 3 ! 1 we find
K0 ≈ 5Q/8 ! 1 so that the left-hand side of equation
(57) vanishes whereas the right-hand side remains pos-
itive, which corresponds to ferromagnetic instability.

F̂

K0 1 K0–( ) D1 f g2 1 K0+( )
K0 1 K0–( )Q
6 Q 2/3+( )

-------------------------------–=

–
5
6
--- f

A µ( )D2

Q 2/3+
------------------ g2 f D2D0 D1

2–( )
1 K0+( )Q

6 Q 2/3+( )
--------------------------,–
The first term on the right-hand side is the same as
the right-hand side of the equation in the zero-loop
approximation (46) and in the low-temperature limit is
proportional to the product of the density of states and
the Fermi energy having the opposite sign. 

As the number of excitations increases, the left-
hand side of equation (57) increases whereas the
increase of the right-hand side is slowed by the
increased contribution of the second and third terms,
each having a negative sign at negative Fermi energy.

Thus, allowance for single-loop corrections changes
the condition of occurrence of ferromagnetism com-
pared with the zero-loop condition (46). 

In the limit T = 0 when D2D0 = , the concentra-
tion range of existence of ferromagnetism becomes
slightly narrower and the small logarithmic region orig-
inating from the van Hove singularity completely dis-
appears. 

Another two numbers also exist, Q+ ≈ 1.457 and Q– ≈
–0.457, for which the determinant of the matrix (56)
goes to zero. The first number should not be considered
since it is too large and corresponds to a nonphysical
value of K0 > 1.

D1
2
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The second number Q– < 0 corresponds to positive
Fermi energy and for T = 0 corresponds to a concentra-
tion n ≈ 3.95 close to four. It can be shown that in the
region µ > 0 the amplitude of the scattering of excita-
tions with opposite spin projection is negative and thus
the system cannot be transferred to a state of ferromag-
netic ordering. Thus, the question of stability for 4 – n
requires special analysis. 

7. DISCUSSION OF RESULTS
For cobalt and for manganese compounds we have

therefore observed a ferromagnetic region adjacent to
the integer-value concentrations: nCo ≥ 1 and nMn ≥ 3.
Here the transition temperature is high and has the
order of the hopping integral. 

As the concentration increases, the transition tem-
perature decreases rapidly to 0.1|t| when it becomes
multivalued, corresponding to a first-order phase tran-
sition. 

As the concentration increases further, a fairly nar-
row region of existence of ferromagnetism appears
whose existence is attributed to the presence of a van
Hove singularity in the density of states (Fig. 2).

In this range of concentrations the Curie tempera-
ture does not exceed 0.1|t| and a difference is observed
between the ferromagnetism of cobalt and the high-
spin states of manganese. 

For hexagonal cobalt on going from the zero-loop to
the single-loop approximation the Curie temperature
increases so substantially that it remains finite over the
entire range of hole concentrations between 1 and
JOURNAL OF EXPERIMENTAL 
1.174. The height of the Curie temperature maximum
attributed to the van Hove singularity is at least dou-
bled.

For high-spin manganese on going from the zero-
loop to the single-loop approximation the Curie tem-
perature decreases. The van Hove maximum disappears
and the transition temperature remains finite over the
range of d-electron concentrations between 3 and 3.6.
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Abstract—Numerical experiments on the structure of the chaotic component of motion under multiple-cross-
ing of the separatrix of a nonlinear resonance with a time-varying amplitude are described with the emphasis
on the ergodicity problem. The results clearly demonstrate nonergodicity of this motion due to the presence of
a regular component of a relatively small measure with a very complicated structure. A simple 2D-map per
crossing is constructed that qualitatively describes the main properties of both chaotic and regular components
of the motion. An empirical relation for the correlation-affected diffusion rate is found including a close vicinity
of the chaos border where evidence of the critical structure is observed. Some unsolved problems and open
questions are also discussed. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The present work continues the studies of chaotic
motion under a slow separatrix crossing. This is a par-
ticular case of adiabatic processes that is very important in
physics because of the adiabatic invariance, that is, of the
conservation of action variables (J) under a slow paramet-
ric perturbation (even though this is only an approximate
invariance). The main problem here is the degree of accu-
racy or of violation of the adiabatic invariance. Separatrix
crossing produces the largest chaotic component in
phase space whose size does not depend on the adia-
batic parameter e  0 (which nevertheless affects the
detailed structure of the motion and its time scale).

In our previous paper [1], the single separatrix
crossing for a particular model was described in detail.
Remarkably, a fairly simple relation, that we used for
the model of [2], turned out to be surprisingly accurate
within a large part of the chaotic component.

In this paper, we describe the results of numerical
experiments on multiple separatrix crossing. We focus
on statistical properties of the motion, including the
structure and measure of the regular component dis-
seminated into the chaotic “sea” in a rather tricky way.
The existence of the regular component means noner-
godicity of the motion, the question which has
remained unclear for a long time up until recently. To
our knowledge, the nonergodicity of motion in a similar
model was first predicted theoretically and estimated
numerically in [3]. We have confirmed this result by
different methods and found many other characteristics
of the motion structure. The present work, as well as the
previous one [1], was stimulated by a very interesting
study of the corresponding quantum adiabaticity [4]. We
use the same classical model, which is briefly described,

¶This article was submitted by the authors in English.
1063-7761/00/9005- $20.00 © 0897
for the reader’s convenience, in the next section (for
details, see [1]).

2. THE MODEL AND TECHNIQUES

The model is determined by the Hamiltonian

(2.1)

which describes a single nonlinear resonance in the
pendulum approximation (see, e.g., [5, 6]) with a time-
varying amplitude

(2.2)

The dimensionless adiabaticity parameter is defined
in the usual way as the ratio of perturbation/oscillation
where the tilde denotes the quantities rescaled by the
frequencies,

(2.3)

where  is a constant frequency of the small pendu-
lum oscillation for the maximal amplitude.

Two branches of the instant, or “frozen”, separatrix
at some t = const are given by the relation

(2.4)

Following previous studies of the separatrix crossing,
we restrict ourselves to this frozen approximation in

H x p t, ,( ) p2

2
----- A0 Ωt( ) x,cossin+=

A t( ) A0 Ωt( )sin .=

e
Ω
A0

----------,=

A0

ps x';  t ( ) 2 A t ( ) 
x

 
'

2
---  

  ,sin ± =  
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what follows. As shown in [1], the latter provides good
accuracy of rather simple theoretical relations.

In this approximation, the action variable is defined
in the standard way as

(2.5)

where the integral is taken over the whole period for x
rotation (off the resonance) and over a half of that for x
oscillation (inside the resonance). This distinction is
necessary to avoid the discontinuity of J at the separa-
trix where the action is given by a simple expression

(2.6)

At Ωt = 0 (mod π), the action is J = |p|, and the conju-
gated phase is θ = x. Note that unlike p, the action J ≥ 0
is never negative.

In what follows, we set A0 = 1, and introduce the
dimensionless action by the transformation J/Jmax  J.
The crossing region swept by the separatrix is then the
unit interval, and J is simply related to the crossing time
t = tcr by

(2.7)

while the adiabaticity parameter becomes e = Ω .
Numerical integration of the equations of motion for

Hamiltonian (2.1) was performed in (x, p) variables using
two algorithms. In most cases, it was the so-called bilat-
eral symplectic fourth-order Runge-Kutta algorithm as in
[1]. However, in a few long runs, we applied a very simple
first-order algorithm as in [2], which also is symplectic
and which actually amounts to the well-known stan-
dard map [5] with the time-varying parameter

(2.8)

where the tilde denotes the quantities rescaled by the
transformation

(2.9)

J
1

2π
------ p x( )dx,∫°=

J Js t( )
4
π
--- A t( ) Jmax≤ 4

π
--- A0.= = =

A tcr( ) J2, 0 J 1,≤ ≤=

p̃ p̃ Ã0 Ω̃ t̃( ) x, xsinsin+ x p̃,+= =

Ã0
1

s2
----, t̃ st, Ω̃ Ω

s
----, p̃

p
s
---.= = = =

Regular component under separatrix crossing

n e µr × 102 T × Ntr Nb

1 0.1 0.68 ± 0.2 2 × 103 × 1000 200

2 0.05 0.75 ± 0.06 4 × 105 × 200 500

3 0.033 0.70 ± 0.2 4 × 105 × 200 200

4 0.033 0.81 ± 0.08 4 × 105 × 150 500

5 0.02 0.60 ± 0.05 2 × 106 × 100 200

6 0.01 0.75 ± 0.04 4 × 106 × 100 200

Note: e is the adiabaticity parameter; µr is the total relative mea-
sure of regular component; T is the number of separatrix
crossings for each of the Ntr trajectories; Nb is the number of
histogram bins in Fig. 1. n is the reference number for Fig. 1.
JOURNAL OF EXPERIMENTAL
                              

Here, s is the scaling parameter and we remind the
reader that A0 = 1. The primary goal of the rescaling

was to decrease the parameter  that controls the

computation accuracy. Usually, it was around  ≈ 0.1.
As is well known, the variation of J under an adia-

batic perturbation consists of two qualitatively different
parts: (i) the average action, which is nearly constant
between the crossings up to an exponentially small correc-
tion, and which is of primary interest in our problem, and
(ii) the rapid oscillation with the motion frequency. The

ratio of the two time scales is ~e/  ! 1, which
allows one to efficiently suppress the second unimpor-
tant part of the J variation by simply averaging J(t) over
a long time interval ~1/e(see [1]).

3. ERGODICITY
The ergodicity is the weakest statistical property in

dynamical systems (see, e.g., [7]). Nevertheless, it is an
important characteristic of the motion, necessary in sta-
tistical theory (see, e.g., [8]).

The question of ergodicity of the motion under the
separatrix crossing remained open for a long time up
until recently. The upper bound for the measure (the
phase - space area) of a separate domain with the regu-
lar motion (a “stability islet”) was estimated in [9] as
µ1 & e.

To our knowledge, the nonergodicity of motion in a
similar model was first predicted theoretically and esti-
mated numerically in [3]. The authors directly calcu-
lated the number and positions of stable trajectories for
two different periods. Moreover, they were able to
locate some of these trajectories in the computation,
thereby measuring their area in phase space (which
turned out to be surprisingly small).

Here, we use a different, statistical, approach. To
this end, we first obtain, from numerical experiments,
the steady-state distribution fs(J) in the action. For the
ergodic motion, it must be constant. Examples of the
distribution are shown in Fig. 1 with the parameters
listed in the table. The striking feature of all the distri-
butions is a clear and rather specific inhomogeneity,
reminiscent of a burst of icicles hanging down from a
nearly “ergodic roof”. This directly demonstrates the
generic nonergodic character of motion under the sep-
aratrix crossing.

The histograms are normalized such that fs(J) = 1 for
the ergodic motion, and the sum over all the bins is also
unity for any distribution. As a result, the dips in the
distribution (“icicles”), indicating the regular compo-
nent, are compensated by an increase in the ergodic
background. The latter is clearly seen in all the distribu-
tions, especially for small J, and is a measure of the reg-
ular component. Namely, the relative measure (share) is
given by the approximate relation

(3.1)

Ã0

Ã0

A t( )

µr f s J( ) 1–〈 〉 , J J1,<≈
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where J1 is the position of the first dip from the bottom.
The approximation comes from the border effects
around J = 1 for any finite e. Typically, at this theoreti-
cal border fs(1) ≈ 0.5, and drops to zero within the inter-
val |J – 1| ~ e. For this reason, we also used other meth-
ods for measuring µr . One of them was the direct cal-
culation of the area of dips in Fig. 1. Scattering of the
values provides an estimate for the accuracy of mea-
surement of µr which is also given in the table.

If we are interested in statistical data only, as in Fig. 1,
the computation of the J value after each crossing is not
necessary, nor is the averaging of J(t) done in [1]. This
can be used to further speed up the computation by
applying a simple relation J = |p| at A(t) = 0, that is, at
every second passage between crossings (see Section 2).
It is especially important for the simple code in equa-
tion (2.8) that was used, and in particular, for the long-
est run n = 6 in Fig. 1. With the main standard code, this
also was used for calculating two different distribu-
tions, after odd and even passages. Both are shown in
Fig. 1 for n = 1 and 5. The total regular areas for both
distributions are close to each other,. Yet the positions
of dips are different, sometimes significantly. Another
interesting peculiarity is the concentration of a regular
component near J ≈ 0.9.

Even though the total regular area is very small
(~1%), its local share can be as large as 20%. In spite of
stability islets, the chaotic component remains con-
nected in the whole crossing region.

The dependence µr(e) is weak, if any. Apparently,
the measured value already is close to the asymptotic
one µr(0) ≈ 〈µr〉  = 0.0072 where the average is taken
over all six cases in the table.

All these peculiarities are further discussed in Sec-
tion 5.

4. DIFFUSION, INSTABILITY, 
AND THE CRITICAL STRUCTURE

The diffusion in J was studied for a similar model in
[2]. The essential difference from our mode (2.1) was
the restriction of the separatrix oscillation in (2.2) by
the requirement that A(t) > 0. In this case, the diffusive
kinetics is valid in the whole crossing region. In our
model, the diffusive regime is restricted to the domain
J > e1/3, while the ballistic regime takes over for J < e1/3

with completely different kinetics (see [1] and below).

The diffusion rate in the random phase approxima-
tion (RPA) immediately follows from a simple expres-
sion for the change of J per separatrix crossing

(4.1)∆J J φ e, ,( )
e
2
--- 1 J4–

J2
------------------ 2 φsin ,ln+−=
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where the sign coincides with that of , and is given
by the relation

(4.2)

where the subscript zero indicates the RPA (see [2] and
[14] therein).

The simple relation in equation (4.1) was carefully
checked in [1], and proved to be surprisingly accurate
in the whole diffusive region J > e1/3. However, as was
shown already in [2], the correlation-free diffusion rate
(4.2) is valid for few crossings only (see also [1]). After
that, the correlation in φ builds up, thereby decreasing
the diffusion rate D by a factor of 2. We present the
results of more systematic local diffusion rate measure-
ments than in the RPA theory (4.2). To this end, we
computed the correlation factor as the ratio

(4.3)

This was done as follows. The number of trajectories
Ntr = 100 with initial value J = J0 and random x were
run during T = 800 to 1600 separatrix crossings. The
empirical diffusion rate was then calculated in the stan-
dard way, as

with averaging over all the trajectories, while the RPA
theoretical rate 〈D0〉  was computed by averaging

Ȧ t( )

D0 ∆J( )2〈 〉 e
2π2

48
---------- 1

J4
----- 1– 

  ,= =

R J〈 〉( ) D〈 〉
D0〈 〉

------------.=

D〈 〉
J T( ) J0–( )2〈 〉

T
----------------------------------=

1.6

1.4

1.2

1.0

0.8

0.6

0.4
0 0.2 0.4 0.6 0.8 1.0

J

fs

Fig. 1. Histogram of the steady-state distribution for three
values of e (see the table): (n = 4) the upper curve shifted up
by 0.3; (n = 5) the middle curve; and (n = 6) the lower curve
shifted down by 0.3. Solid lines correspond to J values at
|A(t)| = 1, and the dotted ones are related to A(t) = 0 (see the
text).
SICS      Vol. 90      No. 5      2000



900 CHIRIKOV, VECHESLAVOV
expression (4.1) over all Ntr × T crossings. Altogether,
23 groups of trajectories with different initial J0 in the
whole range 0 ≤ J0 <1 (and with random x) were run
and related to the mean value 〈J〉  ≠ J0 over all the cross-
ings. Actually, all the 〈J〉  values were found to lie out-
side the ballistic domain because the trajectory quickly
leaves the latter [1]. Nevertheless, for the initial value
J0 > e1/3, the trajectory spent some time within this
domain, and we needed a certain empirical relation for
the “diffusion rate” to perform averaging 〈D0〉 . This was
obtained from the results of [1] in the form

It depends on e but not on J.

D0 0.16e
2/3, J e

1/3.<=

10–210–3 10–1 10010–2

10–1

100

1 – 〈J 〉

R = Numerics/theory

Fig. 2. The ratio of empirical to theoretical diffusion rate (the
correlation factor (4.3)) vs. the mean action 〈J〉: e = 0.001 (cir-
cles); e = 0.003 (dots). Error bars show the spreading of tra-
jectories during diffusion. The dashed straight line is fit
(4.4) to four extreme left points (e = 0.001).

10–3 10–2 10–1 100
0.2

0.4

0.6

0.8

1.0

2.0

1 – 〈J 〉

Λ

Fig. 3. The Lyapunov exponent Λ per crossing vs. mean
action 〈J〉: e = 0.001 (circles); e = 0.003 (dots). The dashed
straight line is fit (4.6) to ten extreme left points (e = 0.001).
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The results of these numerical experiments are pre-
sented in Fig. 2 in the log–log scale using the quantity
1 – 〈J〉  rather than 〈J〉  as the argument. The reason for
this is our special interest in the asymptotic regime
J  1 at the chaos border in phase space on the edge
of the crossing region. Typically, one would expect a
very peculiar critical structure here (see, e.g., [8]). This
interesting question is discussed later in this section.

We show in Fig. 2, the fit of the four extreme left
points in the immediate vicinity of the chaos border to a
power law expected in the critical structure. The result is

(4.4)

It is interesting that this simple relation also describes,
to a reasonable accuracy, the rest of points except the
five with the smallest 〈J〉  that are affected by the ballis-
tic regime as explained in what follows. Some clear devi-
ations from the smooth relation (4.4) reveal a certain fine
structure of the diffusion of an unknown origin.

The factor R in (4.3) is always less than one, which
means there is suppression of the diffusion by the cor-
relation. The minimal suppression (maximal R) occurs
at J = JD ≈ 5e1/3, which is much larger than the crossover
to the ballistic region at J = e1/3. This is the answer to
the question about the width of the ballistic-affected
region put forward in the conclusion of our previous
publication [1]. For J & JD, the correlation strongly sup-
presses the diffusion down to a very low rate, which is
apparently determined by fluctuations. These unusual
kinetics certainly deserve further study. In any event,
such a suppression explains a surprisingly long-motion
time required for a good steady-state distribution in
Fig. 1. The value of JD marks the diffusion crossover
from a big to a small correlation (cf. Fig. 3). In the com-
plementary region J * JD, the correlation factor also
decreases, although very slowly, see (4.4). Within fluc-
tuations, which increase with e, the factor R does not
depend on e (for the explanation, see Section 5).

The diffusion rate itself is given by the empirical
relation

(4.5)

where the latter expression represents the asymptotics
as J  1, and cD ≈ 5/4 is the diffusion critical expo-
nent.

A power law in equation (4.5) suggests the existence
of a critical structure at the chaos border J = 1. Detailed
study of this structure is hampered by some additional
border effects as discussed in Section 3. Even for a
rather small e = 0.001, we managed to follow the
asymptotic behavior to 1 – J ~ 10–3 only (see Fig. 2).
Also, we are not able, as yet, to calculate the critical
exponent cD from the existing resonant theory of the
critical phenomena [8]. However, there is another way
to test our conjecture. Namely, besides the local diffu-

R J( ) 1.05 1 J–( )0.25.=

D J( )
π2

48
------e

2 1 J4–( ) 1 J–( )1/4

J4
----------------------------------------- π2

12
------e

2 1 J–( )
cD

,≈
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sion rate, we might measure the asymptotic behavior of
the Lyapunov exponent Λ(J) In fact, we did both simul-
taneously in the same run.

A positive Lyapunov exponent (Λ > 0) is the main
condition for the strongest statistical properties in a
dynamical system, including the randomness of most
trajectories [10] (see also [11, 12]). The other condition
for chaos is the boundedness of motion in the phase
space. The first measurement of Λ (for the same model)
was reported in [13], just as a criterion for chaos. For-
mally, the Lyapunov exponent is defined in the ergodic
theory of dynamical systems in the limit as t  ∞ [7]
(as is the diffusion rate, by the way). However, for
rather different time scales of motion, the local
Lyapunov exponent Λ(J) also becomes a meaningful
and, moreover, a very important characteristic of the
motion. Roughly, the ratio of time scales is that of error
bars to the corresponding J values in Fig. 2 provided the
number of crossings T per trajectory is sufficiently
large for Λ to saturate.

In Fig. 3, we present the results for Λ(J) measured,
as D(J), per one separatrix crossing, and for the same
parameters and initial conditions as in Fig. 2. A clear
crossover to asymptotic behavior is seen at 〈J〉 = JΛ ≈ 0.8.
The latter was also fitted to the power law

(4.6)

with the critical exponent cΛ = 0.156. In fitting, we used
ten extreme left points besides the two at 〈J 〉  = 0.95 that
represent some unknown fine structure (cf. Fig. 2).
Below the crossover (J > JΛ), the dependence is approx-
imately linear,

(4.7)

The fluctuations are now much less than for D(J). In
both cases, the e-dependence, if any, is weak. Interest-
ingly, no effect of the ballistic region is seen for Λ(J)
(cf. Fig. 2).

The theory of critical phenomena [8] allows one to
calculate the ratio of the two exponents, irrespective of
other details of the critical structure. The ratio is

(4.8)

while the empirical value for this ratio from equations
(4.5) and (4.6) is rexp = 8.01, a surprising agreement!

To illustrate this result, we plot, in Fig. 4, the depen-
dence D(Λ)/e2 together with the expected asymptotic
relation

(4.9)

This appealing result strongly suggests the existence of
a critical structure at the chaos border J = 1, and further
studies of this interesting problem are needed.

Λ J( ) 0.98 1 J–( )
cΛ,=

Λ J( ) 1.9 1.4J .–≈

rth

cD

cΛ
----- 8,= =

D

e
2

---- Λ8.=
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5. A SIMPLE MAP

Because the principal change in the adiabatic invari-
ant J occurs at the separatrix crossing, it is natural to
derive a 2D-map per crossing. These sorts of maps were
considered by many authors [2, 3, 14, 15]. All these
maps are rather complicated, at least for theoretical
analysis. For the model under consideration here, the
global map (in J) has the form

(5.1)

where the sign coincides with that of  (see equation
(4.1)). The difficulty of constructing and using such a
map lies in the second equation. Note that both equa-
tions are approximate and cannot be substitutes for the
exact equations of motion even in the simplest form of
another map (2.8).

To simplify the global map (5.1), we first transform
it to a local one by the standard procedure, the linear-
ization of the second equation (see, e.g., [5, 6]):

(5.2)

The new parameter Jn satisfies the equation Φ(Jn) = πn
with any integer n, and ∆J = J – Jn . In our problem, this
approximation is rather accurate for sufficiently small
e  0. In particular, we can consider the discrete vari-
able Jn as a continuous one (see below).

Typically, the derivative Φ' = dΦ/dJ is still very
complicated, and we assume another principal approx-
imation; calculating the change in φ between succes-

J J
e
2
--- 1 J4–

J2
------------------ 2 φsin ,ln+−=

φ φ= Φ J( ),+

Ȧ t( )

Φ J( ) πn
dΦ
dJ
------- 

 
J Jn=

∆J .+
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D/∈ 2

Fig. 4. Diffusion rate vs. the Lyapunov exponent: e = 0.001
(circles); e = 0.003 (dots). The dashed straight line is the
theoretical prediction for the critical structure (4.9)
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sive separatrix crossings, we use the limiting motion
frequencies neglecting the change of those near the sep-
aratrix. They are

(5.3)

The rotation frequency (off the resonance) remains con-
stant between crossings, while the oscillation slowly var-
ies due to the separatrix motion. Now, the full period of
the phase φ, which is equal to π, corresponds to the full
period of the rotation, but only to a half of that for the
oscillation. Therefore, the speed of the o variation in
this approximation becomes

(5.4)

The latter inequalities determine the transition from
rotation to oscillation and back, which occurs at the
crossing time t = tcr where (see equation (2.7))

(5.5)

For the local map in question, we need only the
derivatives Φ', which are expressed in terms of elemen-
tary functions as

(5.6)

Since the most interesting part of the motion structure is
essentially concentrated near sufficiently large J ≈ 0.9 (see
Fig. 1), we can keep in the first equation (5.6) only the
second term with the coefficient 4/e from the second
equation. In fact, the difference between the two factors
is less than it appears just because of the contribution of
the omitted term. However, the latter correction would
be certainly an excess in accuracy for our rather crude
map. Finally, we assume

(5.7)

The local map is now derived from equations (5.1),
(5.2), and (5.7) in the standard way (see, e.g., [5, 6, 16]),
and has the form

(5.8)
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where the signs in both equations change simulta-
neously at each crossing, and where

(5.9)

is a new, local, momentum, and the only parameter K ≈ 2
is simply a constant in the approximation assumed. An
additional phase change by π/4 comes from the shift of
the separatrix by π in x each time it crosses zero (see
equation (2.4)). Literally, this change in ϕ is equal to
π/4 ± π/4, but the alternating part simply shifts P by a
constant π/4 and, thus, can be omitted.

The phase space of the local map (5.8) is a 2D-torus
π × π. It approximately represents a narrow strip ∆1J × π
in the phase space of our main system (2.1), where

(5.10)

For the local map to be applicable, the following two
conditions are to be satisfied:

(5.11)

and

(5.12)

The latter condition excludes a very narrow domain
1 – Jn & e2, which is practically impossible to observe,
while the former comprises the whole ballistic region.

The density of local strips (5.10) in Jn,

(5.13)

is rapidly increasing with Jn , which explains the con-
centration of the regular component near the chaos bor-
der (Fig. 1). This also explains the shift δJ of the dips
between two different groups in Fig. 1. The largest
δJ ≈ 0.15 on the upper curve between the two extreme
left dips is close to the full width of the corresponding
local strip ∆1J ≈ 0.16.

An interesting feature of the 4-step map in equation
(5.8) over a period of the adiabatic perturbation (four
separatrix crossings) is a singularity at φ = 0 (mod π).
The Fourier spectrum of this singularity

(5.14)

is similar to that of the function with a finite disconti-
nuity. As is well known (see, e.g., [8, 17] and references
therein), the chaotic component of such a motion is
always connected. This means that there is no invariant
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curve in the entire range 0 ≤ φ ≤ π that would cut
through and disconnect the chaotic component.

This confirms earlier conjectures on the universality
of chaos under the separatrix crossings (see, e.g., [13]).
The motion in such a system is typically nonergodic,
that is, it contains a regular component. For a particular
model under consideration, it was first found in [3], and
studied in detail in the present work (Section 3). Using
a simple map in equation (5.8), we are able to analyze
and understand particular features of this less-known
component of the motion.

To this end, we first measured the relative area µr of
the regular component (stability islets) within the local
phase-space cell (π × π) as a function of the parameter K.
The result is shown in Fig. 5 (lower circles). In the
approximation of a constant parameter K, the relative
area is the same in each cell, and thus, is approximately
equal to the relative area in the whole range of J in the
main system. The latter is also shown in Fig. 5 (the
lower dashed line). The agreement, within a factor of 2,
seems reasonable provided the local parameter is K & 0.8,
which is about half of the estimated value. Assuming
K ≈ 0.8, we can further compare the Lyapunov expo-
nent in the local map (upper circles in Fig. 5) with that
of the main system at J = 0.9, the latter being larger by
a factor of 2 (the upper dashed line).

Besides a qualitative description, therefore, a simple
local map (5.8) leads to quantitative estimates within a
factor of 2, which is not that bad for such a primitive
map.

The local map is independent of e, and so are all the
dimensionless quantities of the variables and the
parameters of this map. These include the relative area
µr (cf. Fig. 1 and the table), the Lyapunov exponent Λ

0.6 0.7 0.8 0.90.5 1.0
10–5

10–4

10–3

10–2

10–1

100

Λ

µr

K

Fig. 5. Comparison of local map (5.8) (circles connected by
lines to guide the eye) and the main system (2.1) (dashed
lines) with respect to: the relative measure µr of the regular
component (lower data), and the Lyapunov exponent Λ
(upper data). For the main system, the dashed lines give
µr = 0.007 and Λ (J = 0.9) = 0.67 (see the text).
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per separatrix crossing (or per perturbation period)
(Fig. 3), and the correlation factor R (Fig. 2) except for
small J close to the ballistic region, where the local map
is not applicable.

6. CONCLUSION

We studied the structure and statistical properties of
the chaotic motion under the separatrix crossing in
numerical experiments with a typical model (2.1) used
in such studies. An interesting distinction from the pre-
vious studies (except [13]) is in that we allow the full
swing of the separatrix (–1 ≤ A(t) ≤ 1). In this case, the
chaos comprises the whole range (0 ≤ J ≤ 1), and there
is only one chaos border at J = 1. Usually, the perturba-
tion amplitude A(t) > 0 is strictly positive (or negative)
which implies two chaos borders with the chaotic com-
ponent between them (0 < J1 ≤ J ≤ 1), but without an
interesting ballistic region.

We have qualitatively confirmed the previous results
on the existence of the regular component (nonergodicity)
of motion [3] and the correlation in the chaotic compo-
nent suppressing the diffusion [2]; we have found many
other interesting details of the motion structure (Sec-
tions 3 and 4). For a physical interpretation and under-
standing of our empirical results, we have constructed
a very simple but meaningful local map per separatrix
crossing, which leads not merely to a qualitative
description of the chaos structure, but also to a reason-
able quantitative estimates within a factor of 2.

In Fig. 1, most of the regular component is seen near
the chaos border, at J ≈ 0.9. We never observed any at
J = 0, which is at variance with the prediction in [14]
based on approximating the equations of motion by the
Mathieu equation at small e  0. The resolution of
this apparent contradiction is that the parametric pertur-
bation amplitude in the Mathieu equation increases as
∝ e–2 (see equation (2.9)), and therefore, stable periodic
solutions are only possible in special very narrow win-
dows of e. An interesting open question is the size of
the corresponding stability islets.

Another interesting problem is the expected critical
structure at the chaos border J = 1. The standard
method—statistics of the Poincare recurrences (see,
e.g., [8] and references therein)—is difficult to apply
here because of the confusion with many internal chaos
borders around stability islets of the regular compo-
nent. Instead, we measured the J  1 asymptotic
behavior of the two quantities, Λ(J) and R(J). Unfortu-
nately, we were not able to calculate from the existing
theory [8] the two critical exponents separately,
because of the singularity at J = 1 (see equation (5.6)).
However, we have found that their ratio (4.8) is inde-
pendent of the singularity and agrees surprisingly well
with the empirical result (Fig. 4). This is strong evi-
dence in favor of the critical structure, and it certainly
deserves further studies.
SICS      Vol. 90      No. 5      2000
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In the present work, as well as in the previous one
[1], we studied the crossing of a single separatrix that is
one of the two separatrix branches of a nonlinear reso-
nance (see equation (2.1)). As is well known, there is
another, related but not identical, process, the crossing
of the whole resonance with both of its branches. The
latter was studied even much earlier [18] (see also
[19]). From the beginning, it was found that the change
in the adiabatic invariant per crossing, ∆J ~ elne (in
dimensionless variables), differs from that for the sep-
aratrix crossing, calculated much later, by an additional
factor lne, which slowly but indefinitely grows as e  0.
The importance of this factor for the regular component
of the motion was understood in [3]. Namely, it was
theoretically predicted that the stable trajectories of the
two particular periods are destroyed, together with the
surrounding islets, for sufficiently small e. An interest-
ing open question is whether the whole regular compo-
nent, containing infinitely many islets [8], also van-
ishes, and if so, then how fast.

In terms of our local map (5.8), the additional factor
would completely change all the underlying motion
structure because now the map parameter K ~ |lne|  ∞
does depend on the adiabaticity parameter, and more-
over, indefinitely grows as e  0. This implies the e-
dependence of all the dimensionless characteristics of
the motion, in particular, the measure of regular com-
ponent. We performed some preliminary numerical
experiments to estimate the dependence µr(K). Asymp-
totically, it looks like an exponential, which would
imply a power law for µr(e).

In the very conclusion, we would like to mention
that the latter particular interesting question is a part of
a very important and very difficult unsolved general
problem in the theory of dynamical systems, the prob-
lem of ergodicity in the case of analytic or even suffi-
ciently smooth equations of motion.
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Abstract—The physical idea of the natural origin of diseases and deaths has been presented. The fundamental
microscopical reason is the destruction of any metastable state by thermal activation of a nucleus of a irre-
versible change. On the basis of this idea the quantitative theory of age dependence of the death probability
has been constructed. The obtained simple Death Laws are very accurately fulfilled almost for all known dis-
eases. © 2000 MAIK “Nauka/Interperiodica”.
All of us will die, as well as all other living organ-
isms and plants. Each and every machine or construc-
tion will break. Mountains will fall down or earth-
quakes will happen.

Why? Physics gives the general answer – all of these
systems are not in full equilibrium, but represent meta-
stable states. In other words: (1) they are stable against
small external influences, but (2) each of them, the
worst ones, as well as the best ones, has a finite proba-
bility to be spontaneously destroyed without any exter-
nal influence even in the ideal environment and at per-
fect conditions. According to Gibbs [1], the fundamen-
tal reason of the destruction of metastable equilibrium
is the thermal activation of a critical nucleus of irrevers-
ible change in the system.

Let us consider a simple example: a stretched ideal
monocrystal string. If we wait a sufficiently long time,
the temperature fluctuations will produce a critical
Griffith’s crack [2] at some place and the string will
break. It is possible that the critical crack will appear
earlier if there are some defects in the crystal. Such a
nucleation process occurs in different ways for differ-
ent cases (activation of point defects in the crystals,
condensation in a super saturated solution, nucleation
of a new phase in a first order phase transition) and it is
well studied in condensed matter physics.

The described phenomena can also take place in any
living organism, even if the latter are much more com-
plicated. The thermal activation of a critical nucleus is
the last and unremovable killer. [Last—if we exclude
all other origins of diseases and deaths. Unremovable,
but, one can hope, not unanalyzable.]

I want to stress here that the known qualitative and
quantitative facts for the majority of diseases can be
understood from the point of view of theoretical phys-
ics in terms of metastability and the activation of a crit-

¶This article was submitted by the authors in English.
1063-7761/00/9005- $20.00 © 0905
ical nucleus. So, I think that the thermodynamic killer
works, and that it is the main killer.

Gompertz [3] discovered that the probability D(x) to
die at the age x in the time interval dt exponentially
increases with age

(1)

According to modern mortality statistics, Gompertz
law is valid in the age range from 30–70 years, while an
even stronger increase appears in older age groups. The
exponential age dependence of D, from my point of
view, is the most crucial sign of the microorigin nature
of diseases leading to death.

I have no answer for many questions one can ask
about the details of the relationship between a given
disease and the proposed idea of their natural microor-
igin. Nonetheless, I believe that the age dependence of
the death rate can be interpreted in terms of the proba-
bility of formation of critical nuclei of irreversible
change that cause the collapse of metastable equilib-
rium states. In the following, I present a theory that
relates the probability of the arising of a critical nucleus
to the age of the system in which it takes place.

Unremovable point defects on a molecular (and
macromolecular) scale can arise due to the process of
oxidation [4]. Thermal fluctuations can produce config-
urational transformations of individual molecules [5].
The same effect can be caused also by some external
agents (photons, impurity atoms or molecules, elemen-
tary particles). If a concentration of those point defects
is small, then the probability of the arising of new
defects does not depend upon the interaction between
them. It means that the concentration of point defects
should be simply proportional to the age x. This linear
law is known in an absolutely analogous situation, the
Zeldovich stage of nucleation in I order phase transition
[6]. It is quite natural to assume that, at any age, the

D
x
a
--- 

  .exp∝
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dimensionless molecular concentration of the point
defects remains small, so that this law is valid at any age.

A growing concentration of the point defects gives
rise to small changes of the physical parameters of the
body structures on a macroscopic scale (membranes,
cells, as well as higher level structures). One can imag-
ine that some functionally significant defects are ther-
mally activated on this scale (as, e.g., the arising of a
Griffith-like critical crack in a microcapillary, periodi-
cally stressed by oscillating blood pressure) or that
point defects will tend to precipitate into a condensed
state (as it is in supersaturated solutions), or even that
some type of a structural phase transition occurs at
some critical value of defect concentration. Some such
types of spontaneous changing in the body can have
serious functional consequences leading to diseases,
and death.

The probability W of such microdamages arising is
governed by the Gibbs law

(2)W exp U
T
----– 

  ,∝

(038)
exp(–3.9 + x/10)
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Fig. 1. Septicemia (038). Death rate.

(150 – 159)
exp(9.7 – 310/x)

0 20 40 60 80
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300

450

Fig. 2. Malignant neoplasms of digestive organs and perito-
neum (150–159). Death rate.
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where U is the minimum energetic barrier of the irre-
versible change (critical nucleus), and T is the temper-
ature. Usually, it is possible to expand the energy of the
critical nucleus in the small concentration, or equiva-
lently in age: U = U0 + U'x, and if U ' is negative, the
barrier diminishes with the age, we obtain the exponen-
tial law, equation (1). If U ' is positive, one has the
growth of the barrier, and the stability of the body
increases. It is possible that the decreasing age of infant
mortality is partly related to this circumstance.

The expansion of U in the concentration is impossi-
ble in the case of condensation in a supersaturated gas
with a small concentration (as well as in the vicinity of
I order phase transition). In a two-dimensional conden-
sation of supersaturated gas, the energy of the critical
nucleus is inversely proportional to the concentration,
or in our case U ∝  x–1, corresponding to the second
exponential law

(3)

In a three-dimensional condensation, there should be
U ∝  x–2, and the third exponential law is

(4)

Let us consider the US-97 death statistics specified
by selected causes [7]. If one plots ln(Di) versus x, or
versus 1/x, and 1/x2, it is easy to find that almost all cases
have a clearly distinguishable age behavior: 20 cases of
Gompertz exponential law, equation (1); 14 cases of sec-
ond exponential law (3); 4 cases with more complicated
behavior, but the laws (1) or (3) are valid there in a wide
age range, and some strange crossover occurs to some
other behavior; 24 cases are not related with aging.
Only in 3 cases statistics does not permit to make a def-
inite conclusion on the type of age dependence. Exam-
ples of the clearly detectable exponential age behavior
of the death rate are presented in Fig. 1.

The death rate here is the number of deaths per 100000
population of specified age groups 0–5, 5–14, …, 75–84,
85 years and over in 1997. There are a lot of intriguing
coincidences of the parameters (a, b) for different dis-
eases. This possibly means that a number of discussed
different microorigins is substantially smaller than a
number of diseases. Some of the diseases arise presum-
ably as a combined effect of two different microorigins.
This analysis is in progress.

The characteristic magnitude of function D in cases
with Gompertz law (1) at x = 0 is exp(–13)…exp(–22)
per year, or exp(–30)…exp(–39) per second. Let us
compare this value with equation (2). One should intro-
duce some preexponential value. Its simplest estimate
is the characteristic frequency of oscillations of atoms in
condensed matter ω ~ kΘ/", where Θ ~ 102 K is Debye
temperature; k, Boltzmann constant; ", Planck’s con-
stant. One should introduce an additional factor, an

W
b
x
---– 

  .exp∝

W exp c

x2
-----– 

  .∝
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effective number N of possible places where the given
critical nucleus can arise. The temperature of the body
is T = 273 + 36.6 ≈ 310 K. The comparison gives a rea-
sonable estimate of barriers U ~ (1.2–1.4) × 104 K +
T lnN, or U ~ 1.1–1.3 eV if N ~ 1, and only U ~ 3 eV
even if N is equal to the total amount of the molecules
in the human body (this effective number is of course

(188–189)
exp(8.5 – 350/x)

0 20 40 60 80

30

60

90

Fig. 3. Malignant neoplasms of urinary organs (188–189).
Death rate.

(410)
exp(–0.51 + x/11.7)

0 20 40 60 80

500

1000

1500

Fig. 4. Acute myocardial infarction (410). Death rate.
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unrealistic). It is noteworthy to say here that the esti-
mated barrier values are comparable to those typically
encountered in condensed matter physics for the pro-
cesses mentioned in the previous pages.

In order to estimate the age change of barriers, one
does not need to know the preexponential factor in the
expression (2). Typical 90 years increasing factor of Di

is exp(8). It corresponds to the diminishing of barriers
δU ~ 8T, this value is also reasonable δU ~ 0.2 eV ! U.
Two parameters δU/U ! 1 and U/T @ 1 are the main
parameters of the theory.

In the framework of the presented picture, the small
difference in barriers of the order of 0.02 eV for males and
females corresponds to the known ratio Dm/Df ~ 2, and
can be directly related to the difference 1/23 in chromo-
some compositions. The variation of the parameters
with time and specific groups of population, countries,
races, etc., should be of the same order of magnitude.
The situation is similar to the usual one in condensed
matter physics, where the experimental data are observ-
ably dependent on the sample preparation conditions.

Note, that there is no real contradiction between the
presented idea and the fact that there are a lot of dis-
eases caused by viruses and bacteria. The age depen-
dence of those diseases can be related to the microori-
gin of the destruction of the immune system.

Moreover, I think that the discussed thermal activa-
tion mechanism could play a role in the generation of
congenital anomalies.
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Abstract—Analytical expressions for the binding energy of electrons and positrons in dielectric clusters, ana-
lyzed in this work, neglect the elastic effects. Therefore, we present the density-functional theory for neutral
liquid clusters that experience the spontaneous deformation. Using the 1/R-expansion, R being the cluster
radius, the exact analytical expressions for the size corrections to the chemical potential, surface tension, and
atomic density are derived from the condition of mechanical equilibrium. The problem of calculating these cor-
rections is reduced to calculating the quantities for a liquid with a flat surface. The size compression and tension
of density occur in the 1/R and 1/R2 orders respectively. The sizes of charged rigid and elastic critical clusters,

for which the electron or positron binding energy is close to zero, are calculated for , , , ,

. The calculations show significant contribution of self-compression to the binding energy of the excess
electron in contrast to the positron. © 2000 MAIK “Nauka/Interperiodica”.

XeN
– KrN

– ArN
– NeN

+

HeN
+

1. INTRODUCTION

Excess charged particles and polarization interac-
tions are of great importance in physical chemistry and
biology. The interaction of electrons with atoms, which
posses large polarizabilities, exhibits an attractive char-
acter. That is why their localization is possible in clus-
ters [1–3]. Electronic clusters (or negative cluster’s
ions) were discovered experimentally in a dense xenon
[4, 5]. In helium, which has a very small atomic polar-
izability, localization of electrons happens in a void bub-
ble [6]. Recently, the electronic bubbles were observed
even in the helium microdroplets [7]. The interaction of
the positrons with atoms, owing to the absence of the
exchange interaction, always demonstrates their attrac-
tive character. Positron clusters were discovered in all
dense gases of rare atoms [8, 9]. The temperatures of
clusterization and the “optimal” sizes of clusters were
estimated in [2]. Such clusters contain hundreds of
atoms, and their density is close to that of a liquid clus-
ter. On the other hand, the mass-spectrometry measure-
ments allowed to discover the existence of xenon clus-
ters which contain near dozen of atoms and are charged
by only one electron [10]. They have a noticeable life-
time and are called “critical” clusters. The size depen-
dence of the electron affinity and critical size of xenon
solid clusters were examined by a continuum model
[11], and by taking full account for the atomic structure
[12]. In this work, we propose an improvement of ear-
lier theories.

¶This article was submitted by the authors in English.
1063-7761/00/9005- $20.00 © 20908
The main purpose of this paper is to discuss a true
asymptotic for binding energy of quantum particle
localized in a large dielectric cluster. Subsequently, we
point out the importance of elastic effects in the deter-
mination of the cluster’s energetics. We develop a for-
mal density-functional theory for finite classical sys-
tems in order to account for the self-deformation of the
clusters. For smallest clusters, the theory based on the
continuum model retains the simplicity of the method
developed for rigid clusters. Furthermore, critical sizes
of single-charged elastic clusters are calculated.

2. LARGE RIGID CLUSTER

The quantum particles localized in large clusters are
almost free. Their energy spectra are determined by the
character of scattering on cluster atoms and depend
upon the atomic density. In [13], the following expres-
sion for electron binding energy was discussed,

(1)

where  is the standard binding energy component
that contains the Born correction,

(2)

where V0 < 0 is the ground state energy of the electron
in a extended dielectric (Ar, Er, Xe); R = N1/3  is the
cluster radius; N is the number of its atoms; and  is the

Eb Eb
0 "

2π2

2meff R
2

-------------------,–=

Eb
0

Eb
0 V0–

e2

2R
-------ε 1–

ε
-----------,–=

r
r
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average distance between the atoms of density  =

(4π /3)–1. The second term in (1) is the kinetic energy
of the electron localized inside cluster and meff is the
effective mass. The radius of critical clusters R* may be
crudely estimated [11] directly from the condition

(R) = 0.

An alternative asymptotic expression for the bind-
ing energy of a charged particle has been derived in the
effective medium approach and pseudopotential theory
of scattering [15],

(3)

and

(4)

where T = /2m. The sum of the first two terms in
(4) gives (–V0) and the last term gives –e2(ε – 1)/(2Rε)

The dielectric constant ε = 1 + 3α/(  – α) was taken in
the Clausius–Mossotti approximation. The second term
in (4) gives the shift of the energy due to the mean
polarization of infinite liquid. The minus and plus sign
appearing in T correspond to L > 0 and L < 0, respec-
tively, where L ≡ L( ) is the scattering length of a quan-
tum particle in dielectric. σ is the atomic polarizability;
α is the parameter of the Lennard–Jones potential; f =

(1 + 2α )
–1

 is the Lorentz local-field correction; C ≈
2.86; and ξ = L/  is the small parameter. A simple form
of step function was used for the pair-correlation func-
tion for atoms,

(5)

where σ corresponds to the mean closest interatomic
distance in the cluster.1 The solution of the Schrödinger
equation in the Wigner–Seitz cell for the two princi-
pally different regimes of scattering [17], gives the fol-
lowing equation for q0:

(6)

1 In [16, 17] the radial distribution function g(r) was used, which
reflected the real structure of simple liquids in coefficients I0, I2,
I4 appearing in the expressions for the phase shifts scattering
waves, V0 and meff . The present version of g(r) corresponds to
I0 = I2 = I4 = 1.

ρ
r3

Eb
0

Eb Eb
0 "

2π2

2mR2
-------------- 1 Cξ–( ),–=

Eb
0 T

3
2
---αe2

r3σ
-------- 1 σ

R
---– 

  f ,+=

"
2q0

2+−

r3

r

r3

r

g r( ) θ σ r–( ),=

q0r δ0 q0( )+[ ]tan q0r,=

δ0 Lq0– O q0
3( ), for L 0,>+=

q0r Imδ0 iq0( )+[ ]tanh q0r,=

δ0 iLq0– O iq0
3–( ), for L 0.<+=
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Here δ0(x) is the phase shift of the charged particle’s s-
wave scattered in cellular infinite medium [18].2 

In principle, both expressions (1) and (3) follow
from the Bardeen theory [19] for the extended system.
They give, however, different size-dependence of bind-
ing energy. In this section, our consideration is
restricted to a special case of large clusters when both
the electron mean free path in extended liquid (which is
of the order of hundreds of bohrs) and the electron
wave length in the cluster are close to cluster radius. In
this case, the binding energy should be calculated from
equation (3). Calculations using equation (1), assuming
the input of effective mass, are not correct because the
effective mass can be correctly calculated and entered
to (1) only if the mean free path is much smaller than
the cluster radius.

We describe the fluid number density ρ as of undis-
turbed fluid of uniform density up to spherical bound-
ary, i.e., as for a rigid cluster with zeroth compressibil-
ity, and we put ρ(r) = θ(r – R). The values of V0 and
meff for electrons and positrons in considered media
were measured in a wide range of densities [20–26]. We
calculated these values (Table 1), taking into account
the simple correlation function given by (5). The input
experimental values of L( ) for excess electrons are
taken from [4, 25, 26]. The input calculated values of
scattering lengths for positrons are used from [17].

In Fig. 1, the binding energies Eb(N) calculated

from (1) and (3) are shown for  ≡ XeN + e–,  ≡

KrN + e–, and  ≡ ArN + e+ clusters of densities cor-
responding to a liquid state in the triple point. As is seen
from Fig. 1, the two curves for Eb(N) differ consider-

ably. The difference in the curves for  and 
originates from the effective masses meff and from the
sign of scattering length L. Equation (3) predicts a

smaller size “critical” cluster  and  (which
correspond to the condition Eb(N*) = 0). These results
suggest that equation (3) is superior over (1) because it
predicts smaller sizes of critical electronic clusters. In
Section 4, we show that these sizes are determined by
the availability of surface states. The latter effect was
ignored in [14, 15].

Finally, putting aside the problem of availability of
surface states, we should add that formula (3) is for-
mally correct but exclusively for electronic clusters,
L > 0, with N > 100. This is confirmed by numerical
solution of eigenvalue problem for the potential well of

2 It should be noted that "2 /2m appearing in (4) is not the kinetic

energy of the particle in the cell, as it seems to be. This term
describes only scattering inside a cell. The wave number q0 is
obtained from (6) using the boundary conditions by means of the
scattering length which allow to account entirely for the repulsion
and partially for the attraction, i.e., the scattering at the polariza-
tion potential profile inside cell.

q0
2

ρ

r

XeN
– KrN

–

ArN
+

XeN
– ArN

+

XeN
– KrN

–
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Table 1.  The calculated input values of V0 and meff, and used for the estimation of the binding energy Eb(N). The dates are
taken from [4, 17, 25, 26, 40, 41], a0 is the Bohr radius

T, K , a0 , a0 V0, eV dV0/dρ, eV meff/m γ0/ , a0 ζ

161.4 4.855 0.70 –0.680 +1140 0.664 0.63 1.10

115.7 4.544 0.60 –0.454 +676 0.678 0.57 1.02

83.8 4.225 1.10 –0.201 +1122 0.711 0.49 0.97

83.8 4.225 –0.63 –0.986 –303 1.203 0.49 0.97

24.8 3.531 –0.027 –0.446 –17.8 1.099 0.46 0.93

4.2 4.404 –0.29 –0.259 –45.0 1.05 0.44 0.95

r0 L r0( ) a0
3 B0

+

XeN
–

KrN
–

ArN
–

ArN
+

NeN
+

HeN
+

radius R and of depth . The point is that the sum of
exact kinetic energy and the last term that contains weight
coefficient C ≡ C(R) (see [15]) shows the size dependence
similar to that for large clusters in equation (3).

However, in general, the cluster may be compressed
under the action of surface tension and tensed by a
localized quantum particle. We can neglect the pressure
Pq of localized charge q = ±e in two cases: for a large
and “bulk” cluster (Pq has an order R–4, that is much
less then the Laplace pressure) and for a critical cluster
(Eb  0, Pq  0). In these cases, one can take into
consideration, in analytical form, the effect of self-
compression of cluster under the action of surface

Eb
0

1

2

3

0 0.1 0.2

0.4

0.8

N–1/3

Eb, eV

Fig. 1. The binding energy Eb(N) calculated from equations

(1) and (3) (dashed and solid line, respectively) for: (1) ;

(2) ; (3) .

ArN
+

XeN
–

KrN
–
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forces upon the energetics of a bound quantum particle.
For intermediate sizes of clusters, the self-consistent
solution of the problem of a particle localized in the liq-
uid cluster is required.

The analytical sum-rule approach, developed for
neutral metallic clusters [27, 28], describes the influ-
ence of self-compression upon ionization potential
only in terms proportional to the first order in 1/R. As
will be shown, for a dielectric cluster, this approach is
more progressive, and the desired corrections propor-
tional to 1/R2 are obtained. In the following section, we
briefly present the density-functional theory of a self-
deformed cluster.

3. DENSITY-FUNCTIONAL THEORY

Consider a classical, dense vapor at temperature T,
and of chemical potential µ, in a box of volume V. The
free energy of a system of cluster-vapor, F ≡ F[ρ(r, R)]
is a functional of the inhomogeneous atomic concentra-
tion ρ(r, R), R is the cluster radius. In the framework of
the square-gradient theory, the free energy can be writ-
ten in the form

(7)

where f ≡ f[ρ(r, R)] is the energy density of the quasi-
homogeneous part of the functional, g ≡ g[ρ(r, R)]
gives the first inhomogeneity term represented by the
first gradient term.

The grand free energy is found by minimizing the
functional

(8)

F r3 f g ∇ ρ( )2+( ),d∫=

ΩV ρ[ ] F ρ[ ] µ r3 ρ r( )d∫ r3 "
2

2m
------- ∇ ψ 2d∫+–=

+ r3 r3 ' ψ r( ) 2v r r'–( )ρ r'( )d∫d∫
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with respect to variation of ρ(r) and ψ(r) under the con-
ditions

Here, v(r) is the electron/positron-atom potential, and
N0 denotes the total number of atoms in a box. By vary-
ing ΩV[ρ] with respect to ψ(r) while using a Lagrange
multiplier, one finds the following Schrödinger equa-
tion for ψ(r):

(9)

where

(10)

is the mean potential field, produced by atoms. For a
given ρ(r) we want the lowest-energy solution to equa-
tion (9). Let us denote the energy in this state by E[ρ].
For the equilibrium profile ρ(r, R), the functional
ΩV[ρ(r, R)] = E + F – µN0 has a minimum and equals
the Gibbs grand potential Ω = –PV, where P is the pres-
sure in a box.

In this paper, we use V(r) in the form of the sum of
short range (see equation (4)) and long-range (polariza-
tion) components:

(11)

where δ(r) is the Dirac δ function. For a dense cluster
in the delute vapor the last term in (11) has a standard
form of the interaction energy of a point charge with a
dielectric sphere [16, 29]. We consider the case of weak
perturbation of the atomic distribution ρ(r) by the
excess quantum particle (see the above discussion in
Section 2). However, the effect of the correction may be
estimated after the fact and such an estimate is made in
the end of the Section.

3.1. Neutral Elastic Cluster

Using (7), the Euler–Lagrange equation can be writ-
ten in the form

(12)

For the equilibrium concentration profile ρ(r, R) we
have µ(r, R) ≡ µ(R). By definition, the surface free
energy per unit area, γ and surface tension (stress, for a
solid) τ [30] are given by

(13)

r3 ψ r( ) 2d∫ 1, r3 ρ r( )d∫ N0.= =

"
2

2m
-------∆ψ r( )– V r( )ψ r( )+ Eψ r( ),=

V r( ) r3 'v r r'–( )ρ r'( )d∫=

V r( ) Tδ r( ) r3 'V p r r'–( )ρ r'( ),d∫+=

µ r R,( )
δF ρ[ ]

δρ r R,( )
--------------------=

=  ∂f
∂ρ
------

∂g
∂ρ
------ ∇ ρ( )2– 2g ∇ ρ 2

r
--- ∇ ρ+ 

  .–

γ 1
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– F ρ0
+[ ]θ r R–( ) F ρ0

–[ ]θ R r–( )– ] ,
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(14)

where A = 4πR2 is the area of “equimolecular surface”
of cluster, which is defined by the condition

(15)

Here  is the atomic concentration in the uniform

condensed matter,  the density of uniform vapor
beyond the surface, and θ(–x) the Heaviside step func-
tion. In the following, we employ the expansion of Y ≡
ρ, µ, γ, τ quantities in powers of the inverse radius 1/R,

(16)

The zeroth-order terms in (16) are relevant to the sys-
tem with a planar boundary. Inserting this expansion
into (12) and (14), and using the series

one can compile the terms having equal powers of 1/R,
getting a set of equations for ρk and µk . The equations
for k = 0, 1, 2 have the form

(17)

(18)

(19)

(20)

(21)

where we have changed the variable x = r – R, and we
have made use of the limit R  ∞, ρ+ ≡ ρ(x = –∞),
ρ– ≡ ρ(x = +∞). For brevity, we use the notation ∇  =
d/dx and ∆ = d2/dx2. The liquid under consideration
occupies the half-space x < 0, and vapor is for x > 0. It

τ γ A
dγ
dA
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is convenient to introduce the useful definition of the
“average over a planar surface”

(22)

and “first average over spherical surface”

(23)

To transform in equation (13), we have to carry out the
following procedure. Multiply equation (17) by ∇ρ 0(x)
and then express the result in the form

(24)

which represents a microscopic analogue of the condi-
tion of mechanical equilibrium for cluster-vapor sys-
tem. Next, integrate equation (24) in the limits (–∞, x)
to yield

(25)

where  ≡ f( ). This makes it possible to separate γ0

and γ1 in the expression (13) for γ(R). Using equations
(20)–(22), after cumbersome transformations, one gets
the analogue of results obtained earlier, and in another
form, in the framework of the Van der Waals theory (see
[31–33], where g0 = constant was used)

(26)

(27)

A similar expression was derived earlier [31] in the
two-component plasma model and stabilized jellium
for a self-compressed metal cluster.

We conclude this section by deriving necessary
exact sum-rules. Using equations (17), (18), (22), (23),
and (26), (27) one can obtain the following expressions,

(28)

(29)

and

(30)
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(31)

where µ+ ≡ µ(x = –∞), µ– ≡ µ(x = +∞), and  =

∂2 /∂  ≡  is the bulk modulus (inverse
compressibility) of liquid and vapor, respectively. In
particular, equation (29) defines the size correction to
the “atomic work function” or cohesive energy εcoh(R) =

εcoh0 + εcoh1/R, where εcoh1 = –2γ0/(  – ).

The equilibrium conditions,  =  =  =

, lead to cancellation of the second term in (31)
and, after trivial algebra, we derive the desired equali-
ties

(32)

(33)

which will be used in further calculations. The “size”
coefficient δ = γ1/γ0 is defined by the dependence γ(R) =

γ0(1 + δ(R)), and χ = /2 . The quantities ρ1, ρ2

appearing in (32) and (33) can be calculated by solving
the problem for a flat surface. It should be noted that for

liquid rare gases the value γ0/  is close to one half of
the Bohr radius a0 = "2/me2, thus giving some “funda-
mental” length by analogy with the liquid metals [34].

Expression (32) means that atomic concentration in

the bulk of the cluster increases by /R compared to

the  case where R  ∞. Thus, self-compression is
a result of surface curvature that creates extra pressure,
2γ0/R, in comparison to the planar case. It will be dem-

onstrated below that the second correction, /R2, has
a negative sign. This points to the size self-tension that
appears in the term of order 1/R2.

The sign of coefficient δ in (32) may be derived intu-
itively in the following way. The response of the cluster
to the decreasing of its size corresponds to the well-
known Le Chatelier principle. Taking into account the
size dependence of surface energy, the extra pressure
inside the cluster is 2γ(R)/R, where γ(R) < γ0. Conse-
quently, the decreasing of γ(R)in comparison to γ0,
counteracts the increase in capillary pressure, caused
by the decreasing of cluster size. In order to make a
connection to [10], we will restrict our consideration to
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the cluster-vacuum system. It means that we need to set

 = 0 in (32) and to make a change γ(R)  τ(R) [35].
Then, by definition of surface tension (14), we have

(34)

Here, for simplicity, we assume that τ0 = γ0 (see discus-
sion in [36–38]). Following equation (34), the correc-

tion /R2, defined by (33), decreases by a factor of 2.

Let us discuss the influence of localized quantum
particle upon the atomic density in a cluster. In general,
the corresponding component of pressure is defined by
the two last terms of equation (8). In the considered
system, the intrinsic pressure has a form

(35)

The pressure Pq stipulated by the excess particle is
defined by derivative dE/dVcl over the volume of cluster
Vcl , E = –Eb. For a large cluster,

  1,

Eb corresponds to equations (2), (3), and this compo-
nent of pressure can be written as follows

(36)

Thus, we obtain an analogue of the Tompson equation
[39]. The “surplus” pressure Pq of the quantum particle
introduces the additional correction to atomic density

∆ρq = ρ0Pq/  (see Section 1). Simple calculations
demonstrate the weak effect of the tension of Xe clus-
ters, induced by a particle in the range for N > 100. With
decreasing N, its effect becomes somewhat noticeable.
However, for the smallest, i.e., the near-critical clusters,
this physical picture become simpler because the occupa-
tion probability for the electron (or positron) is close to
zero, and the pressure term Pq disappears.

3.2. Small Clusters

Consider the ground state of the particle localized in
a small cluster. Using (8), let us write the wave equation
for the radial wave function

(37)

where u(r) = rψ(r), ψ(r) is the particle wave function
and the potential V(r) ≡ V(R, r). The ground-state wave
function is symmetrical about the center of the cluster,
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so that the boundary conditions u(0) = 0, and u(∞) = 0,
have to be satisfied.

With cluster size decreasing, the near-surface region
occupies the considerable part of its volume and the
electron mainly can be found to be outside the formal
cluster boundary at the polarization tail of the potential
V(r > R). It is stipulated by the electrostatic component
of V(r), which can be calculated exactly as the interac-
tion energy of a point charge e± with the dielectric
sphere of radius R. The behavior of the electrostatic
component of V(r) at the boundary has a nonphysical
singularity [29]. Therefore, the singularity at r = R is
removed by a usual cut-off procedure and replaced by
a constant potential. The discontinuities of V(r) are an
artifact of this model and have only a small influence on
V(r) and the binding energy [11]. On the other hand, the
short-range component of V(r) can be calculated only
when r ≤ R [15] (see equation (11)). Thus, we assume
that the one-particle “pseudopotential” in equation (37)
has a form similar to the Heine-Abarenkov electron-ion
pseudopotential for a metal, i.e., it can be written as fol-
lows

(38)

where for the polarization tail Vp(r), the cut-off at r =
R +  is used, and

(39)

The pseudopotential (38) has the right asymptotics:
V(r)  V0 for σ/R  0, and V(r)  –Nαe2/2r4 for
r/R  ∞. The binding energy Eb results from a com-
petition of kinetic and polarization energies, and for a
critical cluster is close to zero. Thus, solving equation
(37), we find V(R*, r), and consequently N* = (R*/ )3.

The potential in the center of a large cluster can be
assumed as the nearest to the bottom V0 of the conduc-
tion-band in the infinite liquids. For solid state, V0 is
close to zero (especially for Ar) [20], and by taking into
account the Born size correction and self-compression,
it becomes even positive (more incapable to retain an
electron). On the other hand, the polarization tail Vp(r),
in the region r > R, depends rather weakly upon the
cluster state (liquid or solid). Therefore it is clear, that
when the first bound state appears, the electron will
probably be localized outside the cluster, in a near-sur-
face state.

V r( )

Eb
0, r R,<–

V p R r 2⁄+( ), R r R r 2⁄ ,+< <
V p r( ), r R r 2⁄ ,+>






=

r 2⁄

V p r( )
e2

2
---- ε 1–( )R

ε 1+( )r2
--------------------- R2

r2 R2–
----------------

1
ε 1+
----------- r2

r2 R2–
---------------- 

 ln––=

–
1

k kε k 1+ +( )
------------------------------ R

r
--- 

 
2k

k 1=

∞

∑ ,

r R.>

r

SICS      Vol. 90      No. 5      2000



914 POGOSOV et al.
For the positron, in contrast to the electron, it is
more probable that it will be situated inside the cluster.
In a large cluster ArN, the value V0 is about –1 eV, that
is, in the center of the cluster, the positron feels a deep
potential well. The positron localizes on much smaller
clusters of Ar than the electron. This is conditioned by the
comparative prevalence of attraction over repulsion in
the positron-atom interaction.

4. CALCULATIONS

4.1. Large Clusters

First, let us define δ = c1 + c2 for the calculation of

 = (1/2) (δ – χ) (see equation (33) and comment
below equation (31)). From the semi-empirical rule
[38], derived from the vacancy formation energy and
the cohesive energy results c1 = +0.5 . The re-defini-
tion of “equimolecular surface” for an icosahedral clus-
ter [36] gives c2 = –1.32  and thus δ = –0.82 . The
calculation of the third derivative of free energy with
respect to density is a difficult problem. On the other
hand, the third derivative in (33) can be expressed by

the first derivative of the ( / ) with respect to .
Let us use the well-known sum-rule for compressibility

(40)

ρ2
+ ρ1

+

r0

r0 r0

B0
+ ρ0

+2 ρ0
+

Sk 0=

ρ0
+kBT

B0
–

---------------,=

1

2

3
4

0 0.1 0.2

0.4

0.8

N–1/3

Eb, eV

Fig. 2. The binding energy Eb(N) for electron and positron
in rigid and elastic clusters (dashed and solid line, respec-

tively), calculated from equation (3): (1) ; (2) ;

(3) ; (4) . For  the experiment gives N* =

5–8 [10].

ArN
+

XeN
–

KrN
–

HeN
+

XeN
–
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where Sk = 0 is the structure factor of a liquid for zeroth
wave vector and for the constant temperature, T. For
bulk properties of liquids, the hard-sphere model gives
good results so we employed the Percus–Yevick fluid
structure factor, SHS = (1 – η)4/(1 + 2η)2. Here, η =

πd3 /6 is the packing fraction and d is the hard-sphere
diameter. Then, we have

where

Using the experimental magnitudes of Sk = 0 in the triple
point [40] we determine d and then χ. This allows
rewriting expression (33) with more reasonable accu-
racy in the following form

(41)

where ζ is the constant (see Table 1). Comparing the

values of  and  one can see that size tension is a
noticeable effect on the atomic density corresponding
to smallest clusters.

It should be noted that the compression of the clus-
ter leads to the rise/drop of the potential bottom V0 for
the electron/positron and to the growth of its kinetic
energy owing to the decrease of the radius. The position
of the bottom of the band shows strong dependence on
the density of atoms (see [17] and Table 1). In the fol-

lowing, for simplicity, in the calculation of the 
component in (3), for self-deformed clusters, we
employed linear approximation

and

where, R0 = N1/3 . To illustrate, Fig. 2 compares the
electron binding energy, calculated from equation (3),
for elastic and for rigid clusters. The difference is much
greater than the energy kBT of thermal excitation. One
can see that the shrinkage of a Xe or Kr cluster leads to
a strong positive shift of the electron discrete energy
level. This effect was not revealed by the previous cal-
culations for critical solid clusters [11–13]. For the
positron in the ArN clusters, the self-compression leads
to negative shift in energy. The positron in the ArN the

 term grows faster then the kinetic energy, therefore,
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Table 2.  The number of atoms N* constituting the electron and positron critical cluster for different rare gases and two dif-
ferent binding potentials. The  values were determined from rule (42), which corresponds Eb = 0, using square potentials
barrier (I* = π2/8). The given values of Eb, N* and NT are determined quantum mechanically with the potential given by (38).
The values of NT correspond to Eb = kBT

Elastic Rigid

NT Eb, meV N* NT Eb, meV N*

9 0.37 5 6–7 7 0.008 4 4–5

17 0.019 9 13–14 14 0.13 8 9–10

52 0.00002 24 78–79 32 0.27 19 28–29

6 4.33 5 4 6 3.12 5 4

23 0.07 20 18 23 0.02 19 17

22 0.0005 20 19 22 0.02 20 18–19

NJPC
*

NJPC
* NJPC

*

XeN
–

KrN
–

ArN
–

ArN
+

NeN
+

HeN
+

 is bigger for the self-compressed cluster than for
rigid one. For HeN, this correlation breaks down. This is
also reflected in the results for the critical positron clus-
ters presented in Table 2.

4.2. Critical Clusters

The critical size of cluster, corresponding to the
number of atoms N*, may be semi-quantitatively calcu-
lated from the Jost-Pais-Calogero (JPC) rule, i.e., from
the condition for the appearance of the first bound state
in the potential V(r) < 0, which is given by

(42)

For different potentials, usually employed in the
nuclear physics, the value of I* changes from π2/8 to
1.6 [42]. Solving equation (42) with respect to R*, we
can calculate N* = (R*/ )3. It should be remembered
that condition (42) was formulated for zeroth binding
energy of the captured particle.

As a rough estimation, we have calculated R* and
N* by (42) using the square potential well. The results
for rigid as well as for elastic clusters are presented in
Table 2. According to this simple estimation, the elec-
tronic stabilization must be observed for  > 4, 9

and 28 atoms for rigid and for  > 6, 13 and 78 atoms
for elastic clusters of Xe, Kr, and Ar, respectively.

As mentioned above, the absence of the exchange
(repulsive) interaction creates more favorable condi-
tions for the localization of the positron. Positron in
critical ArN clusters feels a deep potential well. Our
estimations demonstrate the stabilization of positively

Eb
0

m

"
2

----- rV r( )d

0

∞

∫ I∗ .=

r

NJPC
*

NJPC
*
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charged clusters for  > 4, 18 and 19 for Ar, Ne and
He, respectively. In these materials, a small value of the
derivative, dV0/dρ, causes the self-compression not to
significantly influence the binding energy of the anti-
particle. It is interesting to note the different influence
of this effect on Ar as compared to Ne and He. Self-
compressing leads to a positive shift of the positron
energy level in NeN and to a negative one for NeN and
HeN . This is determined by the competition between
the size dependences of the bottom of the potential
well, the polarization tail and the kinetic energy of anti-
particle. In critical NeN and HeN clusters, the polariz-
ability tail is very small and the positron encounters a
nearly square potential well. Thus, our estimation of N*
based on equation (42) and the square potential well is
close to realistic values (Table 2).

In a second step, we determine the sizes of critical
clusters N* by the numerical solution of equation (37).
To simplify the calculations, we assume that Vp(r) = 0
for r > R + a [11]. Putting a = 7R, which is a good
approximation because |Vp(R + a)| < 0.1 meV, and owing
to the fact that wave function in the region r > R + a has
a purely exponential form, we can replace the boundary
condition outside the cluster from r = ∞ to r = R + a.
The new boundary condition put at r = R + a is

We determine the critical N* by calculating the least
positive value of the binding energy. The results of cal-
culations for N* and Eb(N*)are presented in Table 2.
The actual forms of the pseudopotential (38) and the
density r2|ψ(r)|2 for electron in Xe and Ar and positron
in Ar critical clusters are plotted in Figs. 3.

NJPC
*

rd
d

u r( )ln
2mEb

"
2

-------------.–=
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Fig. 3. Pseudopotential V(r) (curves 1, 2, 3) and radial density distribution r2|ψ(r)|2 (arbitrary units, curves 1', 2', 3') for: (a) critical

elastic  (solid lines 1, 1'), critical rigid  (dashed lines 2, 2') and “thermal” cluster  (solid lines 3, 3'); (b) critical elastic

 (solid lines 1, 1') and critical elastic  (dashed lines 2, 2').

Xe5
–

Xe4
–

Xe9
–

Ar24
–

Ar5
+

It is interesting to compare the obtained values of
N* with the ones calculated from (42). As one can sur-
mise, for electronic clusters, N* < . It is stipulated
by the fact that condition (42) was derived for V(r) < 0.
However, in the electronic clusters V(r) > 0 for r < R
and V(r) < 0 for r > R; i.e., in the interior of the cluster,
an electron encounters not potential well but a barrier
(see Figs. 3). Therefore, the attractive and repulsive part
of V(r) compensate each other in equation (42). To ful-
fill the equality in equation (42) the “negative” region
of V(r) has to be increased, which is equivalent to a fic-
titious increase of N*. The results of the numerical
solution of equation (37) confirm the role of self-defor-
mation. The magnitudes of N* for the rigid and elastic
clusters differ on 30%. This is caused by the significant
magnitude of the derivative dV0/dρ. In spite of that, in
the smallest clusters, the size self-compression is neu-
tralized by the size self-tension.

For positron clusters, the values of N* are higher
then . This result is clear too: despite that V(r) < 0
for arbitrary r (see Fig. 3), the using I* = π2/8 in (42)
corresponds to the use of a square potential well. This
is because positron states the account for the size
dependence of the polarization tail leads to N* > .

Thus, for the fixed magnitudes of the density ρ0

and temperature T, the “optimal” clusters are: ,

, , , , . Note that
these values of N* are underestimated, because they do
not take into account the possibility of thermal excita-

NJPC
*

NJPC
*

NJPC
*

XeN 5>
–

KrN 9>
– ArN 24>

– ArN 24>
+ ArN 20>

+ HeN 20>
+
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tions, i.e., Eb > kBT. In a final step, we calculate the sizes
of clusters NT corresponding to the condition Eb = kBT
(see Table 2).

Analyzing the results for elastic electronic clusters,

it is seen that the calculated critical number for 
agrees well with the experimental result giving N* = 5–8
[10]. On the other hand, the agreement with another
theoretical result for solid Xe and Kr clusters (N* = 8
and 14) is quite good, but not for Ar (N* = 46) [13]. Our
results point on the noticeable influence of self-com-
pression, which has not been taken into account before.
Self- deformation leads to an increase of N by 30–50%.
In view of the latter fact, the accurate prediction of crit-
ical number N* by the authors of [11–13] must be
rather considered as fortuitous.

5. CONCLUSIONS

The estimation presented in this work demonstrate
that analytical equation (3) points on smaller sizes of
the electron critical cluster and thus gives better agree-
ment with measured values. The theory underlying this
formula does not use adjustable parameters and is
based on the information about electron/positron scat-
tering length, and the Lennard-Jones potential. We have
developed a formal density-functional theory of a finite
classical system which allows to account for the effect
of self-compression, originating from the curvature of
the cluster surface, and the effect of self-tension due to
the reduction of the cluster’s size. The critical sizes of
clusters were determined quantum-mechanically by

XeN
–
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solving the Schrödinger equation and from the Jost-
Pais-Calogero criterion. The effects of self-compres-
sion and tension give a significant contribution to the
critical sizes of clusters charged by the electron and
should be taken into consideration in any comparison
of critical cluster’s sizes with the measured ones. For
positron charged clusters the elastic effects are negli-
gible.

Our model based on the continuum approximation
may not be used to describe the localization of elec-
tron/positron at a single atom having a large polariz-
ability. The appropriate methods for the solution of this
problem have been developed before [43, 44] (see also
[45]). However, for the direct application of these
methods to the single “ion” Xe1 + e+ one needs to be
aware of the radius of the short-range core of potential.

The behavior of the one-particle potential V(r) of
electronic clusters qualitatively resemble that for a
positron in a metal with a negative positron work func-
tion (Al, Mo, Fe, Ni) [46]. It suggests a possibility of
the application of our method to large metallic clusters
charged by a positron. The results of this investigation
may find application in positron diagnostics in ultradis-
persed media and possibly in rare-gas atom nanotech-
nology.
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