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Abstract—The dynamics of an electron in aweakly focusing accelerator with rectilinear gapsis studied by the
method of averaging and by the perturbation method. The asymptotic solutions found are used to investigate
the angular properties of the synchrotron radiation of electrons. It is shown that vertical betatron oscillations
play an important role in the formation of the angular distributions of the radiation. © 2000 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

Interest in the problem posed in the title of this
paper has not diminished with time, since a number of
weakly focusing accelerators are still operating suc-
cessfully in this country. The basi ¢ aspects of the theory
of synchrotron radiation were expounded, specifically,
in [1-3], and the corresponding experiments [1, 4-6]
were performed first on accelerators with continuous
axisymmetric and then discontinuous magnetic fields.
These experiments have largely confirmed the results
of the theory, but a the same time they have aso
revealed some new features. In this connection theoret-
ical investigations have been performed of the proper-
ties of the radiation for an axisymmetric magnetic field
[7-9]. These investigations have explained the change in
the spectral-angular distributions of the radiation intensity
asbeing dueto betatron oscillations. The experiments sub-
sequently performed at the Kharkov Physicotechnical
Institute [10, 11] have already been analyzed on the
basis of [9].

The existing machines contain, as arule, rectilinear
gaps with no magnetic field which have a definite effect
on the properties of the radiation. In the present paper
this question is studied for the example of a somewhat
simplified model, where one periodicity cell of aclosed
orbit consists only of a steering magnet with a uniform
field and is completely free of the gap field.

The particle dynamicsin periodic magnetic fieldsis
ordinarily described by the matrix method and using
the betatron function [12]. However, the direct applica-
tion of the results obtained to the problem of theradia-
tion of an electron excessively complicates the compu-
tational procedure.

To simplify this difficult problem the calculations
can proceed from the physical assumptionsthat the par-
ticle trgjectory is continuous, stable, and smoothed.
Thismakesit necessary to apply the methods of the the-
ory of averaging and, consequently, to obtain continu-

ous solutions to describe the revolution of an electron on
an orhbit. This device has been used by the present author
to study the characteristics of synchrotron light in peri-
odic magnetic fields with strong focusing [13, 14].

2. DESCRIPTION
OF THE DYNAMICAL PROBLEM

Let a charged particle revolve in amagnetic system
consisting of N periods, where one element of the sys-
tem consists of a steering magnet of length a = 2nR/N
(Ristheradius of curvature) and afree gap of length |.
The length of the entire orbit will be

2R + NI = 21R,,
where R, isthe so-called average radius, Ry = (1 + KR,
and we shall assume the parameter k = I/a to be small.

The magnetic-field gradient hasthevalue0<n<1
for azimuthal angle

a 21
0 2570

and zero for

This step function can be represented, after expan-
sioninaseries, asn(t) = f(1)n, wherethefunction or the
operator f(1) has the form

f(o) = 1ik[1+2(1+k)ZQVCOS[V(T—TD]},

Tt
v=1

Ta _sinvt,
o

1 A
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Thisoperator is 1 on the section with the magnetic field
and 0 inthefreegap. It also “ switcheson” and “ switches
off” the magnetic field components H, and H, and the
curvature and angular velocity near the steering magnets.
We note that the angular velocity for an axisymmetric
magnetic field has been found in[7, 8] in the form

2
_ p,3-np’, nZp
¢—°00%|-_R+ 2 R2+2R2D
where
ceH
ANE %, Hy==, b=cons, p=r-R.

On the basis of the remarks made above the equa-
tions for the betatron oscillations of an €lectron can be
put into the form

j; (1+k) LK) i)z = o, (1)
a0, (14K 1 _nypp = 0 2
d'[2+ NE (1-n)f(m)p - 2

These Hill equations give the correct oscillation fre-
guencies. Their solutions will be found in the next two
sections.

For what follows it is also necessary to determine
the angular velocity of a particle moving in an accelera-
tor with adiscontinuous magnetic field. Certain assump-
tions concerning the radial rotation can be made in order
to avoid singularities associated with the transition from
circular to rectilinear motion and vice versa. Thisis also
due to the fact that the amplitudes of the oscillations in
the plane of the orbit are small compared with the
radius and that these oscillations have only a weak
effect on the properties of the radiation, in contrast, for
example, to axial oscillations. In this connection it can
be assumed that a particle moves along a circle with
radius R,, and the guiding magnetic field H, can be
averaged over the entire length of the period. Then the
transverse components of the magnetic field will
assume the form

—%nf(r)},

T
o
H
+ |
x~

H, = —Hoénf(T),
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The angular velocity of the corresponding average
motion can be determined by the expression

_ Wy
¢_1+k

P 3p°
x|1-— +——
h

3. APPLICATION OF THE AVERAGING METHOD

We shall consider equation (1) first. According to
the averaging method of [15], we represent this equa-
tion in the standard form

(©)
J’(zz pp) f(r)dt}

da% = eGZ,
wheree = 1/N,
02z Oq 40
7 = %gfm G = %; é% g = (1+Kk)’nf(1).

We recall that the general theory of averaging stud-
ies the matrix equation

dz/dt = €Y(1, 2),

where the averaging operation
N

— imi
(1, Z2)0= T|I[T’IOOTJ'Y(T,Z)dT
0

isintroduced for the function Y(t, Z) and the integrating
operator is

Y, ) = [IY( &) - DY(x §dr.
Here the vector & satisfies the equation

dg _
dt

and using this vector the first approximation is deter-
mined as

el (t, &)U

Z(t) = £(1) +Y(1, &).

This procedure was known up to the second approx-
imation [15, 16]. However, the next corrections can
also be obtained using the method of iterations. Specif-
ically, taking

3
Zt) = £+ S €Y,
2
we obtain

3 oY,

oY
Y,=Y, Y,= aﬁYlf —Zdt v
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6Y 2
o = G [Ee < >Iazdm
For Y(1, Z) = GZ we obtain
3
d O
() = 0+ €G3, 4
O 4 g
where
de 0 o
el e<GEj.+le G,@E, (5)
and the matrices have the form
Gl= é, Gzzé\él—éﬂ:GD

G, = GG,—G1[GG,[-G, G
For our problem
0o

10 ~ 0
(GO= 0 0O G=0"
—n(1+k) 0O g

150 o,-f, O

D G; = . %
Ogg +n(1+k)g

E0
G2 2g|:L
DO o0 00

where, specifically,

2n(1+ k)2

g = n(l+k)+———" Z gy cos[V(T—Ty)],

[gO= n(1+Kk),

5 = %ﬂ(_lj'_l_()_z =sin[v(T-T1y)],

Tt
v=1
H0= 0,

2n(1+ K)?
Tt

«Qu

Z ~CoS[V(T —T,)].
v

v=1

An equation for & (here & isno longer avector) can
be found from equation (5):

dE_ 1

= "W[ (L+Kk) - ztgam}z,

0= 2k’ o O _ K
g T[2 2 3 -

v:lV
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Denoting the expression in brackets as vf , We can
write the average solution as

_ Y- O
¢ = Bcos[Nr+ES[r

where B and o are, respectively, the amplitude and ini-
tial phase of the oscillations.

The frequency

2,2
v, = Jn(1+k)+¥nf
3N

(6)

agrees, in the indicated approximation, with the well-
known formula[17] for weak focusing

Bn o Lo

02 RO"
where i = 21v,/N is the phase shift.
Substituting the matrices G; into equation (4) we

obtain
1 =
£= Btk

This solution can be represented as

T['\/F'Er

Cosp = Cosg

2 &d
3gd$'

z= BcosENLZT + 6%1 +S)

(7
+ Bsina%r + 65\1282,
where
2n(1+k)
S == zv cos[v(t - 1,)],
4n(1+k)
S = =5 zv sin[v(t -19)].

v=1

The asymptotic form can be written, by analogy, for
equation (2) also:

p = Acosgﬁ’r + x%l +S)
)
+ AsingﬁT + x%)psz,

where A and p are, respectively, the amplitude and
phase of the radial oscillations,

= J(l—n)(1+ K) + i(l—__”z_)fﬁz
3N
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It isinteresting to note that the series appearing in the
solutions (7) and (8) can be summed [18] and expressed
in terms of Bernoulli polynomials asfollows:

9 _ 010 g (E=200

V;V ' cos[v(T—1))] = [53@ 0,0 D}

9 _ 0T0 g (F=200

\Zlv zSin[v(t-1y)] = [B“EQT[D B > D}'
By(X) = X —gx2+; X,

1
B,(x) = x'—=2x*+x° -3’

where0< x< 2.

4. PERTURBATION METHOD

The results found in the preceding section can aso
be compared with the expressions obtained below by
combining the methods used in [15, 19] to solve the
Mathieu equation.

For example, let us return to the Hill equation (1).
We seek its solution, according to the Floquet theorem,
intheform z = exp(iy,1)$ (1), where ¢ (1) = (I)Z(T + 2m).
We set Imy, = 0 in order to switch to the region of sta-
bility. Now we have adifferent differential equation for

o(0):

d’9, do,  r(1+K’nf@ _ 2], _
d'[2 + 2|yz dt [T_yz}bz = 0.
We set here

Substituting these expressions in the preceding
equation and equating terms with like powers of the
parameter 1/N to zero we arrive at the following sequence
of simpler equations:

$o =0, ¢;+2iy;¢o =0,

2 = 2i(y101+Y200) + [(1+K)*nf —yildo = O,
B3+ 2i(y1d2+ Vo1 +V3do)
+[(1+K)°nf 3141 —2y1y,00 = O,

G2+ 2i(y103+ Yodo+ yadi + Yido)
+[(1+K)°nf —yi]¢,

—2Y1Y201—2Y1Y300— ng)o =0.

The first two equations give ¢, = b and ¢, = b;,
where by, b; = const. According to [15, 19], the next
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equations must be solved by illuminating the secular
terms. We introduce the notation

C, = z%cos[v(r )],
:1V
e O
S, = zv—35|n[v(r—rl)].

v=1

We obtain from the third equation
= J(@+K)n and ¢, = 2bn(1+Kk)°C,/ .
Next wefind that y, = 0,

4ibny, (1 +k)’S, ,2nbi(1+ k)°C,
T L1 '

¢3 = _
The last equation gives

20?1+ k)’ o
2y1Ys = % 9_21

whence we find y; = T8n?k?/6y;.

Thefrequency v,=yN =y, + yo/N?isidentical to the
expression (6) found above. The general solution is
constructed in accordance with the Floquet theory as

z = Cexp(iy,1)9(1) + Clexp(-iy,1)$7 (1).

Substituting (B/2)exp(id) for the arbitrary constants
C(b + by/N), the asymptotic solution assumes the form

B V. E{ 2n(1+k)® }
z = Beost+04 1+ ="2 C
|:'\I 'r[N2 2

An(1+ k)283

Vs
+ Bsm[NT +2'>%/l e

and isidentical to equation (7).

We note that the last method is smpler than the aver-
aging procedure. The expansion parameter in these
asymptotic expansions is actualy the quantity n/N?,
which, for example, for n=0.67 and N = 4 will be approx-
imately 0.04.

5. PROPERTIES OF SYNCHROTRON RADIATION

To study the synchrotron light itself we shall use
Schwinger’s semiclassical approach [20, 21], wherethe
guantum recoil accompanying the emission of photons
is taken into account but smaller corrections associated
with the quantum motion of an electron in a magnetic
field are neglected.

We shall give the direction of the radiation vector
K = wn/c by the vector 6, wheren = {0, sin@, cost} is
the spherical angle. The components of linear polariza-
tion of the radiation, which are characterized by two

No. 5 2000
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orthogonal components of the electric field vector, can
be determined by the vectors

e ={1,0,0} and e, = {0, cosB, —sinB}.

Using the methods of [8], the components of thelin-
ear polarization of the radiation intensity can be repre-
sented in the first quantum approximation as

2 ' 2
d\évo = Ce3V Idtvxexp[i\i(oot—lc D)} ,
dkx  (2m)°Ryv v
dW,, ce’V'
3. o 3 )
dx (2m) Ryv

2

X Idt(vycose—vzsine)exp[i%l(oot—x Er)} ,

where the radiation frequency isw=vwyandv' =v(1 +
hW/E).
Here the phaseis

- _v_
—-xlr = 1Tk

X [mot—(i)é’(Ro + p)sinpsine—(-LC)"zcose}.

Radiation in a prescribed direction, where, for
example, adetector islocated, isformed on asmall sec-
tion of the orbit with angle ¢ = wyt/(1 + k) and near the
plane of the orbit © ~ 172 (cos® ~ my,c/E). We shall also
assume T, A/R,, and B/R, to be expansion parameters.

From equation (7) we determine to within 1/N?

dz _ Nz, 50
at le+ksmEN o

0 2n(l1+k
XE]_ ﬂ;ﬁz‘)‘ﬁlv cos[v(T — TD]E

2 1+k
— BMCOSDLZT + 6%

TN CN

(10)

z Lsinfv(r-1,)].

v=1

If only the main terms are taken into account in the
components of the vector § = v/c

then they can be represented as

Bx=—0 —vp—ésinx[l + 0 (;N_Zr(])lkflk)_ k)}
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+ Am(l-n)k
R, N
By=1,
nznk(l—k)} Brnk
3NY (1+k)] Ro N
Here we a so took account of the fact that

k
2(1+k)*

COSsX,
X (11)

BZ:—VZREOsiné[l + c0sd.

z g"sm(vrl) =

v=1

3
z gvcos(vrl) = m_kg)
LV 6(1+K)

From equation (3) we determine, by integrating, ¢
and therefore the quantity sing = ¢ — ¢3/6. The param-
eter Rywy/c can be found using the expression for the
total velocity

2 - p2+22+r2¢2.

Making the substitution B, = —wt to calculate the
integrals appearing in equation (9), the expressions
obtained will no longer depend on the radia oscilla
tions. Moreover, averaging them over the initial phases
o of the axial oscillations, the spectral-angular formulas
of the radiation can be represented in the form

2n

23 42
dW(v) ce’v %;'D O
= d6 cD‘ T~ € D 1
do ZZST[?’RS(V')MI { O lD
’ (12)
213
dWT[(V) ce V(V) %-D Ul
= doe, P =~ ¢€,0
do 24/3 3 2 I 2 0 1D
In these expressions

g, = 1-p*+e,,

2
VREOcos<6+ 50)]

v, = v, /1+T[2ni<(2+k)’
3N?(1+k)

Tk
Nv,

Since radiation occurs only at the moment when the
particle passes through a steering magnet, the total
motion is more extended than a circular orbit, and this
leads in equation (12) to R, instead of R.

The transition from the results obtained to an axi-
symmetric magnetic field [8] occursfor k=0.

The quantum corrections in the formulas (12) are
negligible. However, because the parameters cos6,

€, = [cose—v

cosd, =

No. 5 2000



730

v, B/R,, and myc?E areinfinitesimal s of the same order,
the curves of the spectral-angular and angular distribu-
tions will differ strongly from the corresponding plots
for auniform magnetic field.

To perform the integration over d in equation (12) and
to use exigting tables [22], different specifications can be
used for the Airy function V(x) and its derivative with the
initial Fock conditions, when V(0) = 0.629271 and V'(0) =

—0.458745. We note that V(x) = D(X) = J/TTAI(X).

Then the expressions (12) in the classical approxi-
mation will assume the form

aW,(v) 1
o - Wagg[dOVix),

° (13)
dW.(v)

dQ

vl

— v L 2

= WlEQD 2T[J’déiszv (X)),
0

where
1/3 2 2/3
W, = 2 ce;)
TR

The circular polarization can be described using the
formula

et

and x; = &ir50 -

dWi(v) _ ., 1
dQ

o1
2 (14)

on
3 O
x J'd5%2V'(X1) + I3%EU /\/E_ZV(Xl) 0,
7 h 0

where we arrive at right-hand circular polarization (i = 1)
forl, =-3 = 1/./2 and left-hand circular polarization
(i=-1)forl,=13=1/./2.

For low frequencies (in the visible part of the spec-
trum) and near the plane of the orbit, where the param-
eter x; ismuch lessthan 1, the right-hand sides of equa-
tion (13) will assume, correspondingly, the form

3
Wl[cl +eXEL+2p+4pg+ pg
+ 3e0C[2+3p(2+ 3p)(1+4g) +5p |,
(15)
W1X[cz(g +Pp) +CsX(2p +3p° + 2+ 10pg) + %clx2
x[2p+6p”+5p° + g2+ 20p + 39p°) + 8pg’] |,

where

x = e(v/2)*%, ¢, = V¥0),
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c, = VA0), c; = V(O)V(0),

_q _ cos’0 » _ VB
p - EE’ - € ’ d q - 2
Ro

These formulas are convenient in the indicated
region for estimating the degree of polarization

(dW, —dW,)/ (dW, + dW,),
which for 8 = 172 is no longer equal to 1 because of the
presence of vertical oscillations.

Away from the plane of the orbit € = 1 — 3? + cos’0
increasesand p < 1. In this case we obtain on the right-
hand side in equation (13)

Wo{ V2 + 2x°p[2xgU + (1 +2g)VV']

1.2

+ 5XP [12X°g(1 + g)V° + x(3 + 249 + 16X°g°)U

+3(1+16X°g + 24X°g9)VV'] },

(16)
W, x{ (g + p)V* + 2xgp(2xU + 5VV'") + 3xp°VV'

+ 1

2ng p’[(39 + 16x°g%)U + 28xgV>

+8x°g(14 + 3g)VV']},

whereV=V(x), V' =V'(x), and U = xV2 + V"2,
Since there are no betatron oscillationsin auniform

magnetic field, p = 0 and the known spectral-angular
distributions can be written as

dW,(v) _ W,V2(%)
e @
10 - W, xgV2(x).

Using the formulas presented above and additional
terms, it is possibleto cal culate plots of the angular dis-
tributions (see figure) near the critical wavelength A =
50 A, taking, for example, the parameters for the Tomsk
synchrotron [23]. Inthiscasen=0.58, N=4, | = 157 cm,
and R= 423 cm. Here, for eectron energy E =1 GeV the
rms amplitude of the vertical oscillations B is about
2 mm. The effect of betatron oscillations on both radi-
ation components can be seen in the figure. The degree
of polarization in the plane of motion of the particlesis
0.830 instead of 1.

In addition, the calculation performed with A = 35A
(for a given energy this corresponds to the extreme
value v ~ (myc?/E)?®) as shown in the presence of amax-
imum in the 1T component in the plane of the orbit
instead of a minimum, a further decrease in the values
for the o component, and a decrease in the degree of
polarization to 0.818. A similar analysis for wave-
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lengths 1000 and 1500 A has revealed that the role of
vertical oscillations in the formation of radiation
decreases when a shift into the long-wavelength region
of the spectrum occurs. Here the degree of polarization
is0.953 and 0.963, respectively.

Approximately the same pictureisalso observed for
angular distributions if summation over the entire spec-
trum is performed in the formulas (12).

Then we obtain without quantum corrections

dw, 7cée’?
g - 6
dQ 64T[2R0-[
(18)
dW,, _ 5ce’
dQ 64T[2 RO'I 7/2

Methods for calculating the integrals appearing in
equations (18) have been examined in [7]. In this case
we introduce the additional notations

£ = go+C0sB, € =1-PB° p,= /s,

p, = q°/€, g, = cos’0/¢g,,

f =gv/e, A= (1+p,) —4p,g,

2r® = 1—(1-p,)/ J/D.

The angular distributions of the components of lin-
ear polarization can be represented as

dw, 14w,
dQ 3T[85/2A5/4

0 2
xm%,+pl+16%— szEr( 2A/ZG ED
O

A 2
Jar Y (19
daW, _ 2W,
dQ  3pe¥2p%

GSED

2o

where K (r) and E(r) are complete eliptic integrals,

2
ce 2 2 2
W, = € G, =p—g,+[(p+ F)2=d7,
2 32T[R(2) 1= P1—0 A[(pz ) —97]
1
G, = p1+z[8pz(p2+ f)—25p,g + 15¢]

3p:9 9)° =72+ 2f(p, + g,

[9(p, -
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G; = 1+2(p;—01)

1
+ 3 [4(p2~ %) +3g(p, - 7) - 79]

f
+8i—2[7—9p§+2p2(g—f)1.

To construct plotsthe values of thetotal ellipticinte-
grals can be taken from the tablesin [24].

However, if the integration over the angles 6 and
is performed in equation (12), then the spectral formu-
las will be essentially identical to the corresponding
expressions for a uniform field.

Additional analysis has also revealed the physical
meaning of the parameter

v, (B/Ry)cos(d + ;)

in &, which is egual to 3,]; - o or the slope angle of the
electron velocity vector. For any magnetic systemitis
aufficient to find formulas similar to equation (10) or (11)
and to take them into account in the expressions (12).
Such an approach makesit possible to return to the ques-
tion of using the technique of B-functions, since plots of
these functions are available for all recently constructed
accelerators. Then, for the vertical oscillations

/BZ cosH S + 60D

where A is the emittance, BZ is the betatron function
which depends on the length s of the orbit, and §, isthe
initial phase. Here the emittance is the phase volume

89°56'

Spectral-angular distribution of the components of linear
polarization with radiation wavelength A = 50 A and energy
E = 1 GeV. The dashed lines correspond to a uniform mag-
netic field.
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occupied by the transverse motion of the particlesinthe
beam.

Then, in equations (12), as shownin [25],

€, = (cose—acosé)z,

_ A4 |, dg
nT Fbﬁz “E?dsﬂlzo'

Here the angle can be measured from the point whence
radiation is extracted, and the derivative can be
replaced by the tangent of the slope angle of the plot of
the (3, function, where the dimensions aong the both
coordinate axes should be the same.

6. CONCLUSIONS

Since synchrotron radiation in accelerators is
mainly incoherent, the results of the present paper are
also applicablefor abeam of particles. Nonetheless, the
influence of the beam was taken into account here by
averaging over the initial phases of the oscillations,
since particle injection into the accelerator occurs dur-
ing several revolutions, as well as by using in the com-
putational formulas the rms amplitude of the oscilla
tions. The latter parameter replaces the entire diversity
of amplitudes from O up to maximum value in any
transverse cross section of the beam. It followsfromthe
expressions obtained that in order to improve the polar-
ization, the amplitudes of the vertical oscillations of the
particles must be decreased in the beam. Using the
parameter a, the formulas obtained were extended to
the magnetic systems of other accelerators and storage
rings.
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Abstract—The resonance fluorescence of an individual atom excited by an optical field in aYurke-Stoler state,
consisting of asuperposition of two coherent states with opposite phase, is studied. It is proposed that the deco-
herence of the field state be eliminated by means of electrooptic feedback [Phys. Rev. Lett. 78, 840 (1997)].
The master equation for the density operator of the atom-field system is derived and an analytic solution is
obtained for the case where the change in thefield isadiabatically slow. It isshown that the interaction entangles
the atomic and field states. A new effect is predicted: there are no Rabi oscillations of the dipole moment and
of the atomic populations with the excitation method described. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Resonance fluorescence is one of the most funda-
mental phenomena in modern optics and atomic phys-
ics. The history of the investigation of this phenomenon
starts in 1931, when elastic resonance scattering of
light by an atom was studied in [1]. In the 1960s the
advent of lasers made it realistic to study inelastic scat-
tering—resonance fluorescence itself. In a series of
works [2] a semiclassical theory of resonance fluores-
cence was constructed and one of the most striking
properties of this phenomenon was found—the triplet
structure of the fluorescence spectrum, experimentally
confirmed in the 1970s [3]. Further investigations in
this field clarified the quantum features of resonance
fluorescence of an individual atom excited by a coher-
ent field. Phenomena such as antibunching of fluores-
cence photons [4, 5] and bunching of photons of the
side components [6, 7] were predicted and observed
experimentally. At the end of the 1980s, when nonclassi-
cal sources of light appeared, great interest developed in
studying resonance fluorescence excited by fields differ-
ent from a coherent laser field, for example, resonance
interaction of an atom with a squeezed vacuum [8].

Inthelast few years, one of the most intently studied
guantum states of light is a superposition of two
coherent states with opposite phase [9]: W= N(Ja[H
€?|-al), where N is a normalization factor and ¢ isthe
relative phase. Such a state realizes the well-known
“Schrédinger’scat” paradox [10], and the experimental
attainment of this state[11] showsthat it is possible for
guantum superpositions to exist at a macroscopic level
and makes it possible to investigate the process of their
decoherence—the transformation into a statistical mix-
ture in an interaction with the environment. The inves-
tigation of the process of decoherence of optical fields
has becomein thelast few years one of the central prob-

lems of quantum optics. Thisis due to its fundamental
significance for constructing a consistent quantum the-
ory of measurement and the urgent need to eliminate
decoherence in applications of quantum optics, such as
guantum cryptography and the development of quan-
tum computers (seereview in [12]).

Thus, the analysis of the fundamental process of res-
onance fluorescence accompanying the excitation of an
atom by afield in a superposition state is very interest-
ing and topical. The existence of theinterference partin
the state of a field can result in fundamentally new
behavior of an atom.

The main obstacleto realizing such an experiment is
decoherence of the field state. To organize an atom-
field interaction it is necessary either to use a stationary
field source for exciting the atom or to place the atom
in a cavity containing afield in a prescribed state. The
first approach, without any modifications, is inapplica-
blefor our case, sincethe superposition statein an open
cavity undergoes rapid decoherence in connection with
the escape of the field out of the cavity. The second
approach for a field initially in a superposition state
with ¢ = 1/2—apositiveYurke-Stoler state (Y SS) |o =

(|aC+ i |aD)/ /2 —has recently been examined in detail
in[13]. In this case thefield a so undergoes rapid deco-
herence because of the interaction with the atom and in
a time ty. it transforms into a statistical mixture.
However, even for timest < ty..,, @ number of interest-
ing features can be observed in the behavior of the
atom, for example, the suppression of Rabi oscillations
of the dipole moment and exponential growth of thelat-
ter. Nonetheless, the problem of stationary resonance
fluorescence excited by a quantum superposition
remains unresolved.
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In the present paper we propose one and possibly
the only method for solving this problem [14]. The
method is based on the first of the above-described
approaches, which is modified taking into account the
fact that coherent superpositions with ¢ = 172 (posi-
tive and negative YSS) in an open cavity can be pro-
tected from decoherence by the method, which we pro-
posed recently in [15], of organizing electrooptic feed-
back between a detector continuously measuring the
radiation escaping from the cavity and the field in the
cavity. In Section 2 we shall show how this method
makesit possibleto produce a quasi stationary source of
afieldinaY SS. Such asource can be used to exciteres-
onance fluorescence of an individua atom; this is the
content of Section 3. The general structure of the atom-
field state will be analyzed in Section 4, and the quasis-
tationary values of the atomic variables with the
described method of excitation will be found in Section 5.
The basic results of our investigation are discussed in
the conclusions.

2. QUASISTATIONARY SOURCE
OF SUPERPOSITION STATES

Asiswel known, the superposition state of afield
in an open cavity is subject to rapid decoherence asso-
ciated with losses on a half-transmitting mirror. This
phenomenon is completely described by the master
equation for the density matrix pr of one cavity mode
with line width k:

. K + + +
Pr = 5(2apea —a ape—pra a), 1)

where a is an operator annihilating a photon of the
given mode. The decoherence process can be repre-
sented most clearly by expanding the solution of equa
tion (1) in an ensemble of quantum trajectories [16—
18]:

pe) = 3 =
Coo 2
XJ’dtl...IdtnlljJ(tHl, R A 1uir 1T S 8

Each trgjectory |U(t|t,, ..., t,)ds, physically, a con-
ditional unnormalized state of the field in a cavity,
under the condition that the radiation escaping from the
cavity is measured with a photodetector with 100%
quantum efficiency and this detector detects precisely n
counts at thetimest,, t,, ..., t,,, and isdetermined by the
expression
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n Tat—t,
Wty ..., t)0= K ’Zexp[—%}

©)

x aexp[——K a+a(tn2— t“‘l)}a. .. aexp[—K a;atl} W)

where |[P(0)Distheinitial state of the field. The expres-
sion (3) describes the continuous reduction of the field
statein the process of quantum measurement consisting

of two elementary processes: the operator R = .J/k a
describes an abrupt reduction with the appearance of a
count and the operator W(t) = exp(—ka*at/2) describes
the continuous reduction between counts. When a
count is present in the interval dt the increment of the
density operator is (dpg); = RpR*dt and in the absence
of acount theincrement is (dpg), = dWp + pdW*, where
dWistaken at t = 0 [19]. In the absence of information
about detector counts, the unconditional evolution is
given by the equation

dpe = (dpg), + (dpe)o, 4
which isidentical to equation (1).
Let us examine the dynamics of afield initially ina

positiveY SS |aoC = (|0 i,V /2 . Using the iden-

tities exp(xa*a)|al= |aeexp{—|a(1 — |e*))/2} and
ala= aja) which are satisfied for coherent states and
automatically follow from the expansion of the coher-
ent state in a Fock basis[17, 18], we find

ka'at[ 1 .
exp%— > ETZUO(E&H—O(D
_ 1 [] KT . [] KT
= E[GEXpD__Z—% ti —aexpD—-z— } (5)

O |af® 0
x e [1- exp(—«1)] ]
O 0

1 . _ K .
«/RaTZ(IGDiII—GD = A/;OI(IO(DﬁTII—O(D, (6)

i.e., the amplitude of the state will decrease exponen-
tially between counts, a; = agexp(—kt/2), and at the
moment of acount the state will change from a positive

YSS |, 0= (|o, O+ i -0,V /2 to anegative state Jor, =

(low O i |-a, 0/ /2 and vice versa. Thus, at the moment
t the state of the field is either a positive or a negative
YSS depending on whether the number of counts
observed at the detector is even or odd. For sufficiently
long timest > t,..., the even and odd number of counts
are equally probable and averaging over the detector
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indications gives the following density matrix of the
field:

1 + + - -
Pe(t) = é(lat (M6, | + for (o, |)

. ™
= 2oy + f-a T ).

The formula (7) describes the statistical mixture of
states |adand |-aOand does not contain interference
terms characteristic of superposition. We can seethat in
this case decoherence appears as a result of a loss of
information about the system [20]. The same result is
obtained by solving equation (1) exactly. This gives an
expression for the decoherencetimet.,, = 1/(2K| ) [9].

In the method which we devel oped to eliminate the
above-described decoherence process [15], we pro-
posed correcting the relative phase of the field state
after each count via a feedback circuit. This procedure
employs the fact that a negative Y SS can be obtained
from apositiveY SS (and vice versa) by asimple phase
shift of the field by 1. This can be shown as follows.
A phase shift of the coherent state by 1T can be
described mathematicaly by the operator exp(ita‘a),
since exp(ima*ta)|al= |-all From the physical stand-
point, the operator exp(iTa*a)can be regarded as an
evolution operator of the system under the action of the
Hamiltonian H = —-Awa*a, which contributes a detuning
of the frequency in the time t;; = TWAw, which should
result in a phase shift by 1t Applying the phase shift
operator to aY SS gives

NN | N L
exp(ima <’:1)72(IOMEli o0 = iﬁ(IGtDFII a0, (8)

whichistherequired result. Thus, if another phase shift
of thefield by T, effectuated via afeedback circuit, fol-
lows after each count of the detector, then the state of
the field in the cavity will remain a positiveY SSwith a
decaying amplitude.

To describe such a feedback in the master-equation
formalism (neglecting the time delay in the feedback
circuit) the operator R must be replaced by the operator

R = exp(imata)J/k a, describing reduction and the
phase shift which follow one another [15]. Feedback
does not operate between counts, and therefore the
operator W(t) is not subject to modification. The evolu-
tion of the conventiona field state will now be
described by the following quantum trajectory:

_ 02 ka'a(t—t,)
W(tty, ..., ty 0= K eXp[_T}

ka' a(t,—t,_,)
SR

x exp(ina+a)aexp[—

s s Ka'aty +
x exp(iTa a)a...exp(ima a)aexp%— > %GOD
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Using therelations (5), (6), and (8) it is easy to show
that the state (9) is |o, Oto within a numerical factor.
Constructing an equation similar to equation (4) we

find that the unconditional evolution is given by the
equation

pe = S[2exp(ima‘a)ap.a’ exp(—ima’a)
2 (10)
—a apg—pea a] = Lopg,
which is a modification of equation (1) for the case
where feedback is present.

In summary, by preparing aYSS in a cavity and
organizing feedback it is possible to produce a quasista-
tionary source of such a state. On account of energy
losses, thefield state decaysin atime tye, = K2, but this
timeinterval may be sufficient for achieving a stationary
gtate for the interaction of afield with other systems.

3. RESONANCE FLUORESCENCE
IN A FEEDBACK LOOP

The above-described source of a superposition state
can be used to excite the resonance fluorescence of an
individual atom. In order that the fiel d—atom interaction
not destroy the structure of thefield state, it isnecessary
to employ unidirectional action of the cavity field on
the atom, such that the atom is irradiated with light
leaking out of the cavity while the light scattered by the
atom does not return into the cavity. In the scheme pro-
posed the atomis placed between the cavity and adetector,
which measures the outgoing radiation; we designate this
detector asD. To follow the phase of thefield in the cavity
it is necessary to have complete control of the photons
leaving the cavity, so that dl of the light scattered by the
atom, including the backscattered light, must be collected
on photodetectorsincluded into the same feedback circuit.
We shall designate these detectorsas D' (figure). Just asin
the preceding section the feedback circuit shifts the phase
of thefield in the cavity by Ttafter acount is recorded at
any of these detectors.

A systematic quantum description of a unidirec-
tional action of one quantum system on another has
been developed in [21]. Application of this approach to
the excitation of resonance fluorescence of an isolated
atom has been studied in [22]. We shall examine first the
basi ¢ processes occurring in this scheme in the absence of
feedback. When the field isin resonance with a transition
between the ground |10and excited |200¢tates of an atom,
the dynamics of the field in the cavity and of the atom is
described by thefollowing master equation for the density
operator p of the atom-field system [22]:

p = E(Zapa+ —a'ap-pa’a)

+ \%\/I(Zo_pm -0,0_p—p0,0) (11)
+.Jky(o_pa’ +apo, —pa’o_-ao.p),
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‘A
&

The arrangement of the experimental apparatusfor observing the resonance fluorescence of an individual atom excited by aquantum
superposition. Thefield in the cavity isinitially prepared in asuperposition state. The radiation leaking out of the cavity excitesthe
atom, which isin the ground state initially. The transmitted radiation is collected at the detector D, while the radiation scattered by
the atom is collected at the detectors D'. The electric feedback circuit shifts, by means of amodulator M, the phase of thefield in the

cavity by mtafter each count on one of the detectors.

wherey and y are the rates of spontaneous emission of
an atom into the solid angles covered by the detectors
D and D', respectively; we shall designate the total rate
of spontaneous emission asl” =y + V. The operators
o_=|1012] and o, =|2[11| are lowering and raising oper-
ators of the atom, respectively.

The first term in equation (11) describes the decay
of the field through a half-transmitting mirror, the sec-
ond term describes spontaneous emission of the atom, and
the third term describes the unidirectiona action of the
field on the atom, as described in the Kolobov—Sokolov

approach [21]. In this description the parameter /Ky
plays the role of the field-atom coupling constant. Aver-
aging equation (11) over the states of the atom leads to
equation (1) for the field, whose dynamics therefore does
not depend on the atom, as should be for describing a uni-
directional action of afield on an atom.

The solution of equation (11) can be expanded in an
ensemble of quantum trajectories, which have the
meaning of a conventional state of the field—atom sys-
tem for given successive counts at the detectors D and
D'. Each trgjectory isformed by a combination of three
elementary processes. reduction of the state when a
count is recorded at the detector D, as described by the

operator R, = ./k a+ ./y 0_; reduction of the state when
acount is recorded at the detector D', described by the

operator R, = ./y'o_; and, continuous evolution
between counts, described by the operator

V(t) = exp{—(ka'a+Tl0,0_+2./kyac,)t/2}. (12)

For example, for one photon at the detector D at the
moment t; and one photon at the detector at D' at the

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90

moment t, > t;, the trgjectory will have the form

[W(t]ts, t)0= V(t-t) RV(t, — 1) Ry V(1) [W(O)L) (13)

The equation obtained for the unconditional evolution
of the density operator by averaging over such trgjecto-
ries

dp = R,pRjdt + R,pRydt + dVp + pdV",  (14)
is identical to equation (11). The equation (11)
describes very well the known properties of resonance

fluorescence—the triplet structure of its spectrum and
the antibunching of scattered photons [22].

When feedback is present, a phase shift of the field
inthe cavity by 11, described by the operator exp(iTa*a),
will follow after each count. Just as in the preceding
section, when the delay in the feedback circuit is
neglected, the action of the feedback can be taken into
account by replacing the operators R, and R, by the
operators R; = exp(ita*a)R; and R; = exp(imata)R,,
which describe the reduction and phase shift which fol-
low one another. The unconditional evolution of the

atom-field system in the presence of feedback is
described by the equation

dp = RipRydt + RypRodt +dVp + pdV’,  (15)

or
p = g[Zexp(ina+a)apa+exp(—ina+a)
—a’'ap—pa‘a] + \%V[Zexp(ina+a)0_po+
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x exp(—ima‘a) —0,0_p—po,0_] (16)
+ Jky[exp(ima‘a)o_pa’exp(-ima’a)

+ exp(ima‘’a)apo, exp(—ima‘a)
—pa‘o_-ao,p] =

Finding the solution of equation (16) in the general
case is aquite difficult problem. In the next section we
shall find an analytic solution for the case wheretheini-
tial state of thefield isapositiveY SS, whiletheatomis
in the ground state.

4. ENTANGLEMENT
OF ATOMIC AND FIELD STATES

The above-described scheme for exciting the reso-
nance fluorescence of an isolated atom in the absence of
losses possesses a definite internal symmetry. As aresult,
the solution of equation (16) with theinitial condition

p(0) = Joo | O |21 (17)
can be immediately sought in the form
p(t) = Cy(t)|a; e, | O 21011
+ Cop(t) oy [0, | O [2012] + Coy (1) Jor; o, | O [2012| (18)

+ Cp(V) ot Mo | O [2012],
where C;(t) are unknown functions, Cy; + C, = 1, and
*
Ca=Cp.
The structure of equation (18) signifies a strong cor-
relation or “entanglement” between the states |o; Dand

|100on the one hand and the states |a, Cand |2C0on the

other. Therelation (18) can be proved by examining the
transformation of a state of the system in the presence
of three elementary processes described by the opera-

tors Ry, R, and V(t).

Let us examine first the evolution operator V(t) (12)
between counts. It can be rewritten in the form

Ka+atgex ol 0+0_tD

V() = exp%— 0

(19)

x[ﬂ_ aoJﬁIexp[ (r— K)T}drg;

The operator ao, convertsthe state Ja, [J10into |o; 020
in accordance with equation (6). The operator 0,0_ is

diagonal in the basis [10and [2[] and therefore it
changes only the numerical factors in front of these
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vectors. The operator exp{ —ka*at/2} leadsto exponen-
tial decay of the field amplitude, a, . , = a,exp(—k1/2),
in accordance with equation (5). Therefore the operator

(19) converts the state |a, [J1C0into a state of the form

Cl(T) |at++r|:l]1|:|+ CZ(T) |at_+T EIIZD (20)

where ¢,(1) and c,(1) are functions of time. It can be
shown similarly that the operator (19) convertsthe state

|a, O200into the state |a, ., . (J200to within a numerical
factor.

On the basis of the relations (6) and (8) it can be

concluded that the operators R; and R, do not change

the structure of the state (20) and influence only the
numerical factors.

In summary, we find that a quantum trgjectory, i.e.,
the conventional state of the system at the moment t,
under the condition that a sequence of counts is
observed at the detector D at the momentsty, t,, ..., t,
and a sequence of countsis observed at the detector D'

at themomentst;, t,, ..., t,, hasthe form
W(t|ty, ..o to; th, oo, b0
= Cy(t[ty, vor By Ty, ooy T oty OO (21)
+Cy(t|ty, oovy by T, oeny t) o 0RO

An unconditional state can be obtained by averaging
over dl possible indications of the detectors similarly to
the expression (2) with the difference that the integration
and summation must be performed over the counts of both
detectors. Such averaging leads to equation (18).

The mathematical relations presented above have a
clear physical explanation. When a photon emerges
from the cavity, the field state changes abruptly from a
positive to a negative Y SS. Next, the photon enters one
of the detectors, irrespective of whether or not it has
been scattered by an atom, and the feedback circuit,
shifting the phase of the field by m, restores a positive
YSS in the cavity. When a photon is scattered by an
atom, the photon is delayed by atime of the order ;
equation (16) takes this delay into account. During this
time the atom isin an excited state, and thefield isin a
negative Y SS. Thus, the conventional atom-field state
of the system has the form (21) for any number of
counts.

The entanglement of the atomic and field states in
the above-described excitation method is itself a
remarkable phenomenon, which could be employed in
various applications of quantum information theory—
guantum computation, guantum teleportation, and
guantum cryptography (seethereview in[12]). We note
that for the conventional excitation of resonance fluo-
rescence using coherent laser light, the states of the
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field and atom remain statistically independent, which
makes the semiclassical description applicable.

5. QUASISTATIONARY REGIME

To find the equations for the coefficients Cy(t) the
expression (18) must be substituted in equation (16).
Wefind the temporal evolution of thefield vectorsfrom
equation (5)

s ka'at[}_+
lo; 0= expE— > HGOD
(22)

1 O
X exp%-2|ao|2[1 — exp(—Kt)] E;

whence direct differentiation using equation (6) gives

£ oG I = Lola; T, (23)
d + ¥ + F
Gl o] = (Lo+ 2o )laima],  (24)

where L, isthe Liouvillefield evolution operator deter-
mined by equation (10).

Now, substituting the expression (18) into equation
(16) and equating the coefficients in front of the identi-
cal atomic matrix elements gives the equations

Cxu = _rCZZ_’\/K_y(atclz+ a; Cy), (25)

Cau = - % + 2K|at|2%:21_'\/K_yat(Cll +Cy). (26)

The physical meaning of the coefficients C,, and C,;
is determined by the relations [0, (t)o_(t) (= Cx(t) and
0_(t)O= Cy(t)exp{-2|a.[?}, i.e., C,, is the population
of the upper level of theatom and C,, is, to within afac-
tor, the dipole moment. Thus equations (25) and (26)
are the analogs of the conventional Bloch equations for
the atomic variables, which hold for excitation of reso-
nance fluorescence by coherent light. The equation (25)
is identical to the corresponding Bloch equation, and
equation (26) differs from the corresponding equation
in two respects. In the first place, the relaxation rate of
the dipole moment includes an additional term propor-
tiona to the field intensity. In the second place, this
equation contains not the difference of the populations
of the upper and lower levels but rather their sum,
whichisequal to 1. In consequence, equations (25) and
(26) do not have oscillating solutions, i.e., the so-called
Rabi oscillations do not occur in the above-described
method of excitation.

In what follows we shall be interested primarily in
thecasek < T, i.e., aregimein which the field essen-
tially does not change in times required for the atom to
reach a stationary state. In such a regime the time
dependence of the field amplitude a, in equations (20)
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and (26) can be neglected, and these equations can be
solved with a fixed amplitude a. For the initial condi-
tion (17), i.e., C,,(0) = C,;(0) = 0, the solutions of equa-
tions (25) and (26) have the form

_ ~sH gl o174
Cx(t) = Czlgl eXp[ ) + 2K|al Eﬂ% (27)
Calt) = czz[l—exp(—rt)—#ilalz
(28)

0 _|j: 2 _ . O
xgexp[ E!Z+2K|G| %} exp( Ft)%},

where the quasistationary values of C;; and Cs, are
given by the expressions

Jkya

Cy = ——1—;, (29)
r/2+ 2k|a
2
5 = Y__‘Bil_a_l___z (30)
2r + 4k|al
For 4k|a]? =T equation (28) assumes the form
Coll) = %[1—e_rt—rte_”]. (31)

Using equations (18), (25), and (26) it is also possi-
ble to calculate the spectrum of the scattered radiation,
which on account of the absence of oscillating solu-
tions of equations (25) and (26) will possess a singlet
and not a triplet structure, characteristic for the reso-
nance fluorescence spectrum under excitation by a suf-
ficiently intense coherent field. However, measurement
of the fluorescence spectrum in the scheme under con-
sideration is problematic, since the measurement pro-
cedureitself can interfere with the use of scattered light
in the feedback circuit. The correlation function G@(t)
of theintensity of the scattered light is of much greater
practical interest. Thisfunction can be obtained by ana-
lyzing the photocurrent of the detector D' without addi-
tionally complicating the measurement scheme. This
function is determined in terms of the stationary den-
sity matrix pg as follows:

c?w) = Tr{o.0.€"0_p.0.} ()
= Tr{[202le" C3lo Mo | 0 1ML} = C5Cx(1),
where L is the Liouville operator determined by equa-

tion (16). The derivation of eguation (32) took account
of the fact that equations (17)—(31) are invariant under

the substitution |o;0] — |0, L, i.e., the solution of
equation (16) with the initial condition |a,10has the
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form (18) with the positive Y SS replaced by a negative
Y SS and vice versa.

The equations (32) and (28) show that the intensity
correlation function reaches a stationary value in times
of the order of I with no oscillations for any values of

the Rabi frequency Q = ./kya. This behavior differs
strongly from the case of resonance fluorescence
excited by a coherent state, when for sufficiently large
values of Q > /4 the intensity correlation function of
the scattered light oscillates with frequency Q.

6. DISCUSSION

In the present paper, the resonance fluorescence of
an individual atom excited by afield in a superposition
state was examined, and the laws of the behavior of an
atom in a quasistationary regime were found for the
first time. The relations obtained lead to the conclusion
that certain familiar properties of resonance fluores-
cence, specifically, oscillations of the dipole moment
and of the populations of the atomic levels, are related
with the use of a coherent or a nearly coherent state of
the field for excitation of the atom. It was found that
when a superposition of two coherent statesis used for
this purpose, the oscillations of the dipole moment and
populations do not occur for arbitrarily large values of
the field intensity. This can be observed by measuring
the spectrum of the intensity of the scattered light. It
should be noted that the absence of oscillations of the
dipole moment was predicted in [13], where the inter-
action of an isolated atom in a cavity with the field of
this cavity, initially in a superposition state, was exam-
ined. The populations of the atomic levelsin this prob-
lem undergo the familiar Rabi oscillations for suffi-
ciently high field intensities. However, the field state in
this approach is destroyed because of induced emission
of the atom into a cavity mode at precisely the rate
determined by the Rabi frequency. Thus, the present
paper extends [13] to the case of a quasistationary
regime.

The absence of Rabi oscillations in the excitation
method described above can be explained quite simply.
According to equation (26), the rate of decay of the off-
diagonal density matrix element acquires an additional
term 2k|al?. This quantity isthe photon flux incident on
the atom; it is identical to the decoherence rate of the
superposition stateinteracting with the environment. At
the same time it iswell known [23] that asthe time T,
(the coherence time of the off-diagonal element)
decreases, for example, as a result of collisiona
dephasing, Rabi oscillations are suppressed for a given
value of the field amplitude, though as the latter
increases, oscillations could be restored. In our case the
dephasing rate increases quadratically with increasing
field amplitude, while the Rabi frequency is related
with thelatter linearly, so that for any values of thefield
intensity the oscillations of the atomic variables are
overdamped. The described “dephasing via the field”
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can be related with the property of a superposition state
and with the property of an excitation scheme employ-
ing feedback, since 2k|a? is the rate of change of the
phase of the cavity field (the number of switchings per
second). This duality is due to the fact that it is the
Yurke-Stoler superposition state that is the “eigen-
state” of such afeedback loop [15].

The scheme, studied in the present paper, for reso-
nance fluorescence of an individual atomisin our view
an interesting “ Gedanken experiment,” making it possi-
ble to understand more deeply the quantum aspects of
the interaction of light and matter. At the same time it
seems to us that the predictions of the theory can be
checked experimentally now or in the near future. To
assess this possibility we shall find the limits of appli-
cability of the two basic approximations on which the
above description is based: the unit quantum efficiency
of detectors and the absence of time delay in the feed-
back circuit. As shown in [15], for quantum efficiency
of adetector in the feedback loop n < 1 theY SS under-
goes decoherence at therate 2k(1—n)|af?, i.e., decoher-
ence can be neglected for I > 2k(1 —n)|af?, which is
achievable for modern detectors and high-Q microwave
and optical cavities. Thus, for ' ~ 108 Hz, k ~ 10° Hz,
n ~ 0.9 (optical range) or kK ~ 10* Hz, n ~ 0.1 (micro-
wave range [11]) the inequality presented above holds
well for an average number of photons |af? < 100. The
delay in the feedback circuit must be less than the aver-
age time between two successive counts, i.e., K™Yal?,
which is hundreds of nanoseconds for optical cavities
with k ~ 10° Hz and mesoscopic superpositions with
|af? ~ 10, while the delay in the electric circuit usually
does not exceed severa tens of nanoseconds. Thisrela-
tion is even more optimistic in the microwave range. At
the present time the rapid development of techniques
for working with individual atoms and “brittle” quan-
tum field states |eaves no doubt that very soon it will be
possibleto investigate experimentally the characteristic
features of resonance fluorescence of an individual
atom excited by nonclassial light.
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Abstract—Boltzmann’s collision integral is extended to the case of helical (Larmor) particle trgjectoriesin a
magnetic field of arbitrary strength. The main characteristics of collisions of electrons with positively charged
ionsin strong magnetic fields, where the Larmor radius of electrons becomes|essthan the characteristic impact
parameter of close collisionsin the absence of amagnetic field (Landau’s parameter), are investigated. The dif-
ferential scattering cross section and the corresponding el ectron—ion collisionintegral in strong fields are found.
The transport collision frequencies are calculated, and the results are compared with the similar quantities for
weaker magnetic fields. © 2000 MAIK “ Nauka/lInterperiodica” .

1. INTRODUCTION

Itiswell known that strong magnetic fields substan-
tialy change the state of atoms and molecules (see the
review [1]) and the collisions between charged parti-
cles. For example, the ground state of a stationary
hydrogen atom contracts in a direction across the mag-
netic field and acquires the form of a needle oriented
paralel to the field, when the energy interval between
the Landau levels exceeds 13.6 eV. This relationship
obtainsin magnetic fields B = 2.35 x 10° G. An approx-
imate calculation of the ground-state energy can be
found in [3]. In [4, 5] a numerical method was pre-
sented for performing an accurate calculation of the
energy levels and wave functions of the hydrogen atom
in arbitrary fields. The trandational motion of an atom
across the field results in further transformation of the
electron cloud (see, for example, [6] and the references
cited there), since a uniform electric field, which shifts
the electronic cloud relative to the nucleus, appears in
the coordinate system of the atom.

For free states of an electron (aswell asthe Rydberg
states and excitons in semiconductors) the effect of a
magnetic field is substantially manifested in weaker
fields. In the classical method of describing collisions
of an electron moving with a definite velocity v and a
stationary ion with charge number Z, the magnetic field
becomes strong when the electron cyclotron period
217wy is less than the duration ry/v of close collisions
in the absence of afield. Here

rg = ze’/mv?

is equal to the distance r at which the electron kinetic
energy mv?/2 isof the order of its potential energy Ze?/r
inthefield of anion;

wg = eB/mc

1 New results concerning the configuration of the ground state of the
hydrogen molecule in a strong magnetic field were presented in [2].

isthe electron cyclotron frequency; mand e > 0 are the
electron mass and charge; and, c is the speed of light.
The strong-field condition

B, Ll
where the constant
By = mc'/e® = 6.05x 10" G,

depends on the particle velocity v. For this reason, fast
and slow particles for which a given field is weak or
strong, respectively, are singled out in a fixed magnetic
field.

In weak magnetic fields, where the condition oppo-
siteto (1) issatisfied, collisions with impact parameters
p, less than the Larmor radius rg(v) = v/wg occur just
as without a magnetic field: the well-known hyperbolic
trajectory connects the helical lines of Larmor rotation
of an electron before and after acollision. For distant col-
lisonswithimpact parametersp, = rg the condition for the
magnetic drift approximation are satisfied and the pitch
angle of the éectron remains essentialy unchanged. Con-
sequently, the Larmor radius becomes the natural maxi-
mum impact parameter p,,.. in the Coulomb logarithm
L = In(pyadry for collision frequencies that characterize
the rate of transformation of the energy of motion of an
electronin adirection parallel and transverse to the mag-
netic field.

A distinguishing feature of investigations of colli-
sions in weak fields is the use of an approximate
method in which the action of the Coulomb center is
treated as a weak perturbation to the initial cyclotron
rotation of an electron and the main transport frequen-
cies are proportional to the squared charges of the col-
liding particles. In[7] this method was used to calcul ate
the relaxation times of an electron gas in a magnetic
field with an azimuthally symmetric particle velocity

-3
BOD 5 4, (1)

1063-7761/00/9005-0741$20.00 © 2000 MAIK “Nauka/Interperiodica’



742

distribution. In [8] the method was extended to plasma
with an arbitrary particle distribution function. In [9] the
pair-collision integral was obtained for an ideal magne-
tized plasma where the maximum impact parameter in
the form of the Debye radius ry, is introduced to take
account of collective effects (electrostatic screening). In
[10, 11] the transport collision frequencies, appearing in
the high-frequency permittivity of a plasma, as well as
the rate of energy transfer between the electronic and
ionic components in plasma (see dso [12]) were investi-
gated. In [13] the Lenard-Balescu collision integra was
extended to the case of a magnetized plasma. In [14-16]
the changes in the parameters of test particlesin colli-
sions with plasma particles were calculated.

The quantum calculation of Coulomb collisions in
weak fields is based on the Born approximation, where
the particle velocity is quite high and the distancer,is
shorter than the de Broglie wavelength Ag = #/mv. The
guantum-mechanica transition probabilities between
Landau levelsin Coulomb collisionswere calculated in
[17] and then in [18] in a simpler form. A relativistic
guantum-mechanical calculation of the transition prob-
abilities was performed in [19] aswell asin [20]. The
corresponding transport coefficients in a quantized
plasma were investigated in [21] and [22, 23]. Expres-
sions for the bremsstrahlung absorption coefficients off
the cyclotron line can be found in [24].

In strong magnetic fields (1) the character of the col-
lisions changes as compared with azero magnetic field
at all impact parameters. In this case, the collisions of an
electron with positively and negatively charged particles
exhibit qualitatively different properties. In an effective
collision the electron velocity near the scattering center
is substantially different from the initial velocity. This
characteristic property of effective collisions precludes
the use of perturbation methods, which are used for
weaker fields, in this case.

The case of strong magnetic fields (1) was realized
in [25] under laboratory conditions in an experiment
with an electron plasma. In [26] the basic properties of
interelectronic collisionswereinvestigated and a corre-
sponding collision integral was obtained. As aresult of
electron—electron collisions over a time equa to the
stopping time of athermal electron in a unmagnetized
plasma, a particle distribution of the form

f(v) = fi(v)falvo) 2

is established. Such rapid relaxation is due to head-on
collisions of electrons with close velocities, in which
the particles exchange the given components of the veloc-
ity, dong amagnetic field. However, isotropization of the
digtribution and transformation of energy between the
electronic degrees of freedom in a direction parale and
transverse to the magnetic field are substantialy dower,
since as aresult of collisons the particles approach only
to distances of the order of ry > rg and the total trans-
verse electron energy is conserved, to a high degree of
accuracy, in collisions [27, 28].
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Under astrophysical conditions the case of strong
fields is characterigtic for photospheres of magnetic
white dwarfs, where the magnetic fields attain magni-
tudes of 10° G and the temperature T ~ 10* K is not too
high. A qualitative analysis of e ectron-proton collisions
[29, 30] has shown that a large change in the electron
pitch angle occurs primarily in collisions with impact
parameters py, < pg, Where

2 13 _2/3
- - 0BO
T E—=f = fee—m »and
Por = Ogz0 = "elB, 0 3

r,=e/mc® = 282x10 > cm

is the classical electron radius. In these collisions the
characteristic time over which the Coulomb field
changes during the passage of an electron near anionis
less than the cyclotron period. The distance p,, ison the
one hand less than the distance r, and on the other hand
greater than the Larmor radius. For effective collisions
the particles move along quasi-bound trgjectories, i.e.,
the direction of the electron vel ocity along the magnetic
field changes repeatedly during a collision, and a pro-
ton playsthe role of an “electrostatic” trap.

For an ideal plasma the distance rg > p, is much
shorter than the distance between particles, so that
effective collisions can be treated as pair collisions. In
Section 2 the genera form of the pair-collision integral in
amagnetic field isfound in Boltzmann’'sform for an arbi-
trary eectron digtribution function (including a function
which is asymmetric with respect to the directions of the
velocities transverse to the magnetic field). For this, the
corresponding impact parameters are determined for
helical (Larmor) particletrajectoriesin amagnetic field
of arbitrary magnitude. In Section 3 a logarithmically
accurate value of the parameter p,, isfound and therole
of distant collisions p;, = p, in the changein the param-
eters of an electron in strong magnetic fieldsis investi-
gated. In Section 4 the differential scattering cross sec-
tion and the collision integral for an electron colliding
with positive ions in a strong magnetic field (1) are
found. The basic transport collision frequencies of an
electron with positive and negative ions in strong and
weak fields are compared in the conclusions.

2. COLLISION INTEGRAL IN BOLTZMANN'S
FORM IN A MAGNETIC FIELD

We shall consider a spatially uniform magnetized
plasma consisting of electrons and stationary ions of
one kind with density n;. To abtain the collisionintegral
we shall employ the well-known kinetic method, which
isdescribed in, for example, [31] for the case of an iso-
tropic medium. We shall consider electron-ion and
electron—€lectron collision integrals

@)y - 19Uei0fe
ISt (V) - rﬂ_[ ar av

dr, (4)

t=t
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2 aUeeafee

(ee)
la (V) = m) or v,y

dv,4dr, 5)

em = V=Vg/2

t

where Ug(r) and U(r) are, respectively, the electron—
ion and electron—electron interaction potentials and the
functions f(r, Vg, Vem, t'; ) @nd f4(r, v, t'; t) approxi-

mate the two-particle electron—electron and electron—
ion distribution functions.? Since the ion distribution is
spatialy uniform, the function f; depends only on the
electron velocity v and the electron position r relative
to an ion. The arguments of the function f are the rel-
ative position of the electronsin apairr =r; —r,, the
relative velocity of the electrons v,y = v, — v,, and the
center-of-mass velocity v,,, = (v, + V,)/2, whererq, v;
and r,, v, are the coordinates and velocities, respec-
tively, of the first and second electrons in a pair. It
should be noted that in a collision of two electronsin a
magnetic field their motion and the motion of the center
of mass are independent. The motion of the center of
mass is a cyclotron rotation, described by the equation

ch = (’)B X ch’
and the relative motion

Vrel = W XVig— |:l(zuee)/m

is ascattering of a particle with mass min the potential
2U, of agtationary center. Thiseffect makesit possibleto
assume the function f., to be uniform with respect to the

center-of -mass coordinate.

Boltzmann's collision integral modelsthe changein
the single-particle electron distribution function f (v, t)
asaresult of instantaneous pair collisions, whose dura-
tion ty, is short compared with the characteristic time
ty Of the change occurring in the distribution f as a
result of collisions. To calculate the collision integral in
amagnetic field it is necessary to take into account in an
appropriate manner the quasiperiodic change in the dis-
tribution f asaresult of the cyclotron rotation of the elec-
trons. In the present section the collision integrals are
studied for cyclotron periods 217wy which are short com-
pared with the mean free time t,4 and for an arbitrary

ratio of the collision duration t., and the quantity cogl .

To find the genera form of the collision integral we
seek the corresponding expressions for the functionsfy
and f in terms of f on the basis of the kinetic equations

of Yo

atl el B 6
16Ue,6fe, -0 ©)
“mor ov ’

2t should be underscored that the time dependence of the func-
tions fg and fe is described by the argument t' and the parameter
t. The advantages of using two variables and their meaning will
be specially discussed below (see equations (6), (7) and (8), (9)).

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90

743
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at rel ee) + g X Vrel 6vj
I
(7
20U 0fe O0fee _
“m or 0vg 0 XVemay Ven
supplemented by the boundary conditions
fe(r, v, 15 0], <o = MF(FE-t)v, 1), (8)
4~ w
fee(rs Vies Vemi 5 1) |zv,e| 2<0
I w
= (B =) (Ven * Vi’ 2). 1) ®
X f(l’i(t _t')(vcm_vrd/2)1 t)'

Here mg = (eB/mc)z° and F(At) is a linear operator
which rotates an arbitrary vector a by an angle wgAt
around the axis z°

F(At)a = z°(z° (&)
+z° x asin(wgAt) + [z° x a] x z° cos(wgAt).

In the limit wg — O the operator F becomes the unit
operator and the expressions (8) and (9) become identi-
ca with the well-known condition for the particles to be
uncorrelated before a collision. Then the conditions (8)
and (9) and the corresponding solutions of equations
(6) and (7) are stationary with respect to the argument
t'. In amagnetic field the distribution f changes on time
intervals At <ty primarily as aresult of the cyclotron
rotation of the electrons. Consequently, for arbitrary
timest and t' we have

f(v,t) = f(Ft=t)v,1).

The last relation is used in the boundary conditions (8)
and (9) to separate formally the fast quasiperiodic vari-
ations of f with the cyclotron frequency and the slower
collisional relaxation of f on time intervals of the order
of tg. Ultimately, the dependence of the functions fy
and f., on the argument t' is periodic and reflects rapid
variations of the two-particle distributions, while the
dependence on the parameter t corresponds to adow col-
lisona relaxation of the eectron distribution, which is
negligible in ingtantaneous-collisons models. Actually,
the functionsf, and f., approximate to an adequate degree
of accuracy the two-particle digtributions at an arbitrary
timet, witht' =t, and the parameters |t —to| < t.g.

In the present paper we shall study the collision inte-
grals for stationary axisymmetric particle interaction
potentials. In this case the periodic change in the distri-
butions f, and f. is especially simple. The solutions of
equations (6) and (7) with the boundary conditions (8)
and (9) possess a symmetry, which can be convention-
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aly called a synchronous rotation in coordinate and
velocity space:

fa(r,v,t';t)
= f4(F(AD)r, F(At)v, t' +At'; 1),
fee(rs Vigs Vem 15 1)
= fo(F(A)I, F(AY)V,g, F(AY)V gy t + AL 1),

where At' is an arbitrary time shift. The distributions (10)
and (11) become identical when particleswith the same
initial rotation phase before acollision arrive at definite
points of the phase space at corresponding momentsin
time. Indeed, let r (t") be the trgjectory of aparticlein a
collison with a stationary center. Then the function

F(t) = F(At) r(t'— At") corresponds to a different par-
ticle trgjectory. Far from a scattering center the particle
velocities on both trajectories are the same:

(10)

(11)

F(t) = E(AL)F(t —At) = FAL)E(AL)F(T) = F(t).

Consequently, the distribution functions on these trgjecto-
ries are also the same, specifically, they are equa at the
timet; atthepointr(t}), r(t}) andtheat t, =t; +At'at

thepoint 7 (ty) = F(At)r(t)), r(ty) = F(At)F(ty) , which
corresponds to the expressions (10) and (11).

The symmetry property (10) and (11) established
above imposes additional differentia relations on the
derivatives of the functions fy and fe:

af, af, af,
St T @eXTg t@ex Vol =0,
0fee 0fee
TR T
of
+mBXVreI5\7f+mechaV:r: =0

These relations make it possible to diminate the time
derivatives of /ot' and of ./ot' from the kinetic equations
(6) and (7) and to express the integrands in the collision
integrals (4) and (5) in the equivalent divergence form

10U 0fy

mor ov div. ((v-—ogxr)fy),
ZaUeeafee —_ i
m or 0v = div, (Vg —p X 1) fe).

Then theinitial collision integrals (4) and (5) reduce to
the corresponding integrals over distant closed surfaces
of arbitrary shape:

1$(v) = ffa ((v-wgxr) (TS),
159(v) = [vie

Xffee((vrd — g X I’) [ds)lvcmzv—vrd/Z'

(12)

(13)
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If the surfaces of integration were to rotate with the
cyclotron frequency relative to the symmetry axes of
the potentials, then the quantities mg X r in the expres-
sions (12) and (13) would represent the instantaneous
velocities of points on these surfaces. Consequently,
the collision integrals in the form (12) and (13) can be
interpreted as fluxes of particles with the velocities v
and v,4 through the surfaces rotating with the cyclotron
frequency .

Now we shall reduce the expressions (12) and (13)
to the standard form, where the functions f and f., are
expressed in terms of the single-particle distribution
function, and common variables, which do not depend
on the choice of surfaces, are used for the integration.
For rectilinear particle trajectories in the absence of a
magnetic field thisis achieved by introducing the well-
known impact parameter p,(r) =r —v(r - v)/v? (in the
case of electron—€lectron collisionsthe velocity v here
and below in this section is v,y). The scattering cross
section is the Jacobian of the transformation p,(n’),
where n' = v'/v is the direction of the particle velocity
after acollision. Since in amagnetic field the direction
n' varies continuously because of Larmor rotation, the
difference of the states of a particle before and after a
collision must be characterized by the changein the sta-
tionary parameters of its free motion: the pitch angle 6,
the initia rotation phase @, and the modulus of the
velocity v. Then an élastic collision is characterized by
the change A8 in the pitch angle and the change A@ in
the initial rotation phase. The pair of variables p;, ¢
(Fig. 1), which give the position of the helical line of a
particle,

X = ppCOSQg + rgCOS(WZ/ V,+ Qg + ¢),
Yy = ppSiN@g +rgsin(wgz/ v, + Qg+ ¢)

before or after acollision relative to a scattering center,
is the analog of the impact parameter p, in a magnetic
field (compare [16]). The parameter p, is the distance
between the axis of the helical line and the symmetry
axis of the potential, i.e., the modulus of the radius vec-
tor of the guiding center of rotation

(14)

Rp, = I +@pxV/wg—2°(r [2°).

The angle @ is the azimuthal angle of the vector Rg_ .
The parameter ¢ is the angle between the vectorsrg =

—wg % V/wg and Rp, a anarbitrary point r of the undis-

turbed trgjectory, increased by the phase difference of the
Larmor rotation (—wg2/V,) at z=0and at the point r.

Since the interaction potential is axisymmetric, the
change A8 in the pitch angle and the change A in
the rotation phase are functions of four arguments:
AB(pn, 6, 6, v) and AQ(py, 9, 6, V).

Inthelimit wg — 0, when the characteristic size of
the collision region L., < rg and the standard impact
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parameter p, can be used, the quantities (py,, ¢) and p,
arerelated asfollows:

Pr = (rg—pp)Ny+ V rg(d —mn,/v.

Heren, TT vV X @gand n, TT Vv X [V x @g] are mutually
orthogonal unit vectors.

It should be noted that the expressions (14) arevalid
if theinteraction potential decreases sufficiently rapidly
with distance (for example, for a screened Coulomb
potential U O exp(—/rp)/r), while an ordinary Coulomb
field changesthe longitudinal velocity of the particle and
the pitch of the helical line at arbitrarily large distances
from the scattering center. In the latter case, for

r > max[p,, |Zle’”/mv?]

thetrgjectory is determined by the same expressions (14),
if wgZ/v, isreplaced by

(ws2/ V,)(1—In(|4/1)2e"/ mv2|2),

wherel isaconstant (compare [32]). This modification
changes the definition of the parameter ¢, but it has no
effect on the final form of the collision integral. Conse-
guently, to simplify the exposition we shall assume the
Coulomb potential to be screened.

Having determined the method for parameterizing
the trajectories, we express the functions f4 and fe in
the collision integrals (12) and (13) in terms of the sin-
gle-particle distribution function f and the shifts A8 and
A@. We divide the surface of integration Sby the plane
z=0into two parts, S, and S,, for which, respectively,
zv,<0and zv, > 0. The particles on the surface S, have
till not collided, so that for them, in accordance with
the boundary conditions (8) and (9),

fa(r,v, t; t)|81 = n;f(v, 1), (15)

fee(r1 Vres Vems t; t)|sl
= (Ve +Vig/ 2, 1) T (Vg —Via/ 2, 1).

The particles which have collided lie on the surface S,.
Using the constancy of the distributions along the par-
ticle trajectories and the symmetry of the trajectories
under time reversal and specular reflection relative to
an arbitrary plane passing through the symmetry axis of
the potential, we find the distributions on the surface S;:

(16)

fa(r, v, t; t)|s, = nf(L(-08g, —Da)V, 1),  (17)
fee(rv Vres Voms t; t)|sZ
= f(ch + L(_Aeee1 _A(pee)vrd/z! t) (18)

x f(ch - I:(_Aeeea _A(pee)vrel/zv t)a
where
DBgiee = ABgieq (Ph(r, V), —0(r, v), M-8, v),

AQsiee) = DQeiee)(PA(r, V), —0(r, V), T-6, v)
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Fig. 1. Parameterization of the helical trgjectory of an elec-
tron far from a scattering center.

are the changes in the pitch angle and phase of a parti-
cleinacallisioninthe corresponding potentials U and
2U. with the parameters of the trajectory before a col-

lison p,, =pp, ¢'=—09, 0 =1—-6, and v' = v, and the
parameters p(r, v), ¢(r, v), 8, and v refer to the point of

integration r on the surface S,. The operator L(06, d¢)
establishes a correspondence between an arbitrary vector
a with the spherical coordinates (a, 8, ¢) and the vec-
tora' =(a, 6+ 06, o+ d9).

The parameters (py,, ¢) introduced above are aso
convenient from the standpoint of the integration in
equations (12) and (13) over an arbitrary surface S
since the differential

(v—ogxr) ™S = #|v,p,dp,dd|. (19)

The plus and minus signsin equation (19) refer, respec-
tively, to particles leaving and entering the volume.
This relation can be established by a direct calculation
of the Jacobian of the transformation (py(r), ¢(r)),
wherer O S

Using the expressions (15)—19) the integrals (12)
and (13) can be finally put into the form

i o

19, 1) = njv} [ [dpyp,
—TT 0

(20)
x [ f(L(-A8g, -A@g)V, t) — f(v, 1)],
159v, 1) = J&VialViad [ o [dpypy
—Tt 0
x [ f(ch + E(_Aeee’ _A(pee)vrel/zv t) (21)

X f(vcm - I:(_Aeeel _A(pee)vrd/21 t)
- f(v, ) f(v—-va, ]|

Ven = V=V,q/2"
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Re ¢’

Fig. 2. Deformed contour of integration for calculating J.

The definition of the differential scattering cross sec-
tion in the form

] 1. _ |74
O-ei(ee)(ea (P, 9, (P, V) - p
ABg(ee)(Pry =9, 16, V) = 8- z
A eo(P =0 -0, v) = o-¢  (22)

9 a(COS(e —Aeeiee)1 A(peiee)|_1
3(Pn. 9) |

makes it possible to write the expressions (20) and (21)
in the standard Boltzmann form

19, t) = n, vfdn ou(n; V)[F(vn', t) = f(v, 1)], (23)

Ig[%e)(v’ t) = Idvrdfdn'vrdcee(n'; Vrel)
X[f(Vgnt VaN' /2, ) f(Vg—V,gn' /2, 1)
-tV V=V, D1}y —v_v 2

whichisidentical to the analogous expression in aniso-
tropic medium.

(24)

3. CHARACTERISTIC FEATURES
OF ELECTRON COLLISIONS
WITH POSITIVE IONS IN STRONG
MAGNETIC FIELDS

It isshown in [29, 30] that in strong magnetic fields
the change in the electron pitch angle is determined by
close collisions with impact parameters

1/3
Ph = P O(mc’/ B%)

However, the Coulomb force near an ion is much stron-
ger than the Lorentz force on an unperturbed Larmor tra
jectory, so that the pitch angle changes substantialy even
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with larger impact parameters differing from (mc%B?)Y3
by alogarithmic factor.

In the present section the dimensionless lengths,
velocities, and times, normalized to

1/3
, = (Zmc?/BY T, V, = wgly,

respectively, will be used. In this normalization the elec-
tron equations of motion

T, = Wg,

Fl—r/r®
contain no numerical parameters.

To calculate p., we shall find the change in the trans-
verse velocity of an electron with respect to the corre-
sponding “unperturbed” particle trgjectory r (t). We shall
assume that on a given tragjectory the Coulomb field
changes only the component v, of the electron velocity

2 2 2
z

= VO||+ ,
Jpi+7

where vy, > O is the initial electron velocity along the
magnetic field. In this approximation the displacement
of the guiding center of rotation, as aresult of electric
and polarization drifts, aswell asthe changeinthe elec-
tron rotation frequency in the presence of anonuniform
electric field are neglected. All indicated effects are
important only for p, ~ 1. Then, after a collision the
components of the electron velocity in the xy plane
have the form

V(1) = Re[vosexp(—igy—it)(1-Jexp(i))],

Vy(t) = —Im[vopexp(—igy—it)(1-Jexp(i$))],
where

r=[z°

v

J. _exp(it) it
) P+ Z(t)°
Voo isthe modulus of theinitial particle velocity in the

xy plane, the constant ¢ is uniquely related with the
collision parameter ¢, and the function z(t") is deter-
mined by the relation

Z/py
o dw
=y,
2 0 A/Vg”ph/2+(1+wz) i

Thevariablet' and the corresponding function z(t") can
be assumed to be complex. We deform the contour of
integration along the real axist' (Fig. 2) into a contour
directly encompassing the cut (it,, +ic0). Confining our
attention to the case VS”ph < 1, wefind in the region
that isimportant for the integration

27/ DT[D 32[]Z DEM
exp P
D8D h [bh

t2 =

t@ =it +
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- B'ZSD 031 e/5(t _it0)6/51

(P+2) f>0 &PEE P

where

3/21
to(py) = j(l w’)d
r (]J4) 3/2

_ /\/ﬁF(SM) p3/2 —
8r (7/4) 12 ﬁ
(see formula 2.5.3.1 in [33]), and '(X) is the gamma
function. Then

3/2

= 0.62p;

_ 2%q exp(—t
J= 56/5pJJ5 exp (= 0)_I( )—6/5
(25)
2% exp(—t) _ 1.50

= = exp(—t,),
56/5pr11/5 r(6/5) ph1/5 p( 0)

where the contour C passes in a clockwise direction
around the positive semiaxis (0, +) and the corre-
sponding integral along this contour is identical to the
Hankel integral [34].

We shall determine the desired parameter p,, as the
value of the parameter p;, for which the quantity (25) is
theinitial electron velocity vy

2/3
DlZﬁT 10 Lqagpl

b2 uay voD Vo
or in dimensional form

(26)

s 12.4/m Bap

23 B 13
Inmgjm Dﬁ% 27
C|D D/O ( )

“2(va) BH

The expressions (26) and (27) arelogarithmically accu-
rate values of the parameter p,,.

We shall now consider a change in the initia rota-
tion phase of an electron. In close collisionsit is of the
order of 1. Consequently, the corresponding contribu-
tion of close trgjectories to the transport frequencies
and the collisionintegral are characterized by cross sec-

tions of the order of g, = Ttp, . This contribution will
be considered in the next section.

In each distant collision the change in the initia
phase is A@ < 1, but its magnitude decreases quite
slowly—according to a power law—with increasing
impact parameter. The shift A is related with the dif-
ference of the electron rotation frequency in the pres-
ence of the nonuniform electric field of the scattering
center and the cyclotron frequency: a variable compo-
nent of the force, proportiona to the gradient of the field
and the rotation radius of the particle, which produces an
additional centripetal acceleration, is present on the parti-

Per =
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cletrg ectory.3 The smal shift of the instantaneous rota-
tion frequency w can befound asdonein [26]:

Iau,

AW=EwW—-wg = 5

(28)
where
Ay = 8°/0X° +0°/ 0y

is the Laplace operator in a plane orthogona to the
magnetic field. The shift of theinitial rotation phase as
aresult of collisions has regular and diffusion compo-
nents which are characterized by the cross sections

o, = Id¢IdphphA(P:
- Per

0q = [do jdphph(Acp)z.
T Py

Assuming the tragjectories of the guiding centers to be
rectilinear and using the expression (28), we find the
phase shift in a distant collision
_ 1 dz Oy 10
) L AL S
—°°A/V§||+2/ pr+7 =

Then the cross section g, can be written as

00

o, = —nIdph
pCI'
h Pn 10 _
x [ dz 3 : Z%DFE‘[: 7 = 0,1—0;y,
oo ,\/v0“+2/ p,+Z v
where
Tt
O, = _V_Ol dr]
0
o (29)
x (dZ n 10

9 n 10

N
e i

3 In the magnetic drift approximation (averaging method of [35]) it
can be shown that the adiabatic inclusion of an additional centri-
petal acceleration changes the effective rotation radius while pre-
serving the oscillatory velocity of the particle.
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The component g,, can be found exactly in the limit
pcrv§||/2 <1

0. = 1 (314), /o,

_ 21m__ Qg .
~ 15In(1/v,) <

The component o,; should be especialy noted,
since in a strict analysis the integral (29) does not con-
verge: intheregion { > 1 and n > 1 theintegrand in
equation (29) slowly approaches 0 as 1/(¢? + n?). Ulti-
mately, the result of theintegration depends strongly on
the method of passage to the limitswith respect to { and
n. Even though there is an additional indefiniteness in
the cross section o,,, we note that this cross section
increases as the velocity vy, decreases and it exceeds
the cross section o, for close collisions with low veloc-
ities vq. However, the value of o, is not fundamental
for calculating the collision integral (see also [14]). It
follows from the expression (29) that

— 2
Op = TP

o, 0 Vg
and the regular shift of the rotation frequency
d@y/dt = nyvy 0,4

does not depend on the particle vel ocity. Consequently,
theregular collisional changein theinitial phase can be
reduced to areplacement of the magnetic field B by the
corresponding effective value

Bsii = B+ (mc/e)dg,/dt=B.

We shall now find the cross section g4 using the
same approximation asin the calculation of g,,:

2
Per V0||/2
2

O N S
xOfdZ(1+%) L ——[
v 0¢" 1+¢0
_2r'sa) _ 1w o
25p; 450|041/ v,)

Asone can seg, the cross section 64 <€ 0y = npi, so that
the effect of distant collisions on particle diffusion
along theinitial rotation phases is negligible compared
with the anal ogous contribution of close collisions.

Thus, as aresult of the specific form of the regular
change in theinitial rotation phase in distant collisions
and the smallness of the cross section o4 compared with
0O,, it can be concluded that only close collisions deter-
mine the form of the electron—ion collision integral in
strong magnetic fields (1).
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4. DIFFERENTIAL SCATTERING CROSS
SECTION IN A STRONG MAGNETIC FIELD

A general expression for the collision integral in a
magnetic field for an arbitrary axisymmetric interaction
potential was obtained in Section 2. For aspecific poten-
tial itisnecessary to perform acorresponding calculation
of the differential scattering cross section. This calcula
tion can be performed either analytically or numerically.
A large number of collisions must be taken into account
in order to find the differential scattering cross section
numerically. Moreover, under conditions where the
drift velocity is large compared with the Larmor rota-
tional velocity the required accuracy for the numerical
values of the pitch angle and phase can be attained only
by highly accurate calculations of the trajectories.

Thereis no known general analytical solution of the
problem of the motion of an eectron in a uniform mag-
netic field and a Coulomb el ectric field. Approximate ana-
Iytic methods of the type “instantaneous impact” [36] or
the magnetic drift approximation are inapplicable in
strong magnetic fields (1). Thus, an assumption based on
acharacteristic property of collisionsisrequired in order
to caculate the scattering cross section anaytically.
Since an electron in an effective collision moves along a
guasi-bound trgjectory with multiple passes near thei on?
it isnatural to infer that the result is equivalent to severa
collisions with a single pass, i.e., the distribution of the
particles scattered by an individual ion does not depend on
the distribution of the particlesin theincident flux.

Let us consider aspatially uniform flux of electrons
with unit density and afixed pitch angle 8,, initial phase
@, and velocity v,:

fv.0) = S8(v vy
Vo (30)

X &((— @y — wgt) 5(cosO — coshy),

where §(X) is a delta function. We shall find the rate of
appearance of particles with pitch angle 6 and phase @
which are different from the corresponding parameters
8, and @, + wgt in the incident flux:

0ot #6

QF @+ wgt

oodv sz@ftD
-(l: (31)

= NV o080, @+ wgt; 6,9, vy).
The total number of close collisions per unit time for

the incident flux n;vy|cosB,|o, must be identical to the
expression (31) integrated over all directions (6, @) with

4 See the qualitative analysis and discussion of numerical calcula:
tions of such trajectoriesin [30].
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the exception of the direction of the velocity intheinci-
dent flux (B, @ + wWgt):

dpdosing x dvsza Do,
e¢feo I ot [(%#%WBt

QZ @y + wgt

(32)

= ;v o|CcosB| 0.

In accordance with the assumption made above con-
cerning the character of the scattering by a single cen-
ter, theratio a4(8,, @ + Wwgt; 6, @, v)/(JcosB,|oy) of the
expressions (31) and (32) should not depend on 6, and
@. Therefore the differential cross section o, has the
form of the product o4(0'; 8) = oy|cosB'|w(B), wherethe
function w(8) satisfies the normalization

1

2nfdesinew(e) = 1.

The condition for the conservation of the total number
of particles

] 2n m 2n T

dv v> [do[dBsin® [ dg [d6'sind'c4(0"; 6)

fors foofwons o
x[fi(v,0,9,1)—1(v,6,¢1)]

T

= (2TI)2Vo_[d9$1'n9[0ei(90: 6) —0.i(6; 80)]
0

= 2TV 40(|cosBy| —2Tw(6y)) = 0

uniquely determines the factor w(6) =
differential cross section

|cosB|/2rtand the

G, (06, V) = %mw cosh), (33)

where
12./m D4/3
O(v) = TIpe(v) = TH
° ¢ EILZ(JM)D
[ch D In 4!3DZ€ B D
D 2 o q\’IZCVE}E| .

The scattering cross section (33) admits a simple
guantum-mechanical interpretation. An electron occu-
pies with equal probability an arbitrary Landau level
with energy less than the initial energy of the electron.
Here the nth Landau level is treated as a collection of

states with definite energy mv2/2 = (n + U2)ho.
Indeed, the rate of change of the level populations
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2nﬁwBa
— atJ fu(v, t)dv,
e (34)
hw y | VD < VO
= ni|COSGO|0°(VO)m_V2X it sy
o” Vo

isthesamefor all v < v, for scattering of the flux (30).
Having occupied a levd n, the electron occupies with
equal probability one of the states with a fixed momen-
tum p; in the direction of the magnetic field in the inter-
val from py(n) to p;(n) + Apy(n). If the initial electron

energy mv /2 fallsinto the range from E, to E, + AE,,
then the corresponding interval is

Ap,(n) = MAEy/|p,(n)] O |cos|™

Since the number Ak of statesin theinterval Ap,is pro-
portional to the length of this interval, the conditional
probability 1/Ak for an electron to occupy one of these
states is proportional to |cosB|, which the factor |cos8|
in the expression (33) describes.

It should be noted that the electron—ion collisions
considered above result inisotropization of the electron
distribution, since the collision integral (23) with the
cross section (33) is zero only for an isotropic distribu-
tion function.

5. DISCUSSION

In the present paper we found the pair-collision inte-
gra in Boltzmann's form (20)—(24) in a magnetic field
and we obtained the cross section (33) for electron—on
collisions in a strong magnetic field (1) for positively
charged ions. The results obtained are limited by the
possibility of the classical method of describing the
motion of particles in a collision, when the de Broglie
wavelength Ag = A/mv is less than the characteristic
lengthsin the problem. The Larmor radius of an electron
is such a smallest scale, so that the results obtained are
valid in the region Ag < v/wg, where the quantization of
the transverse motion of an electron is unimportant:

fikog <mv 2,

In the “magnetic field—electron energy” parameter
plane (Fig. 3) the classical approximationisvalid below
the line rg = Ag and to the left of the vertical straight
line rg = Ag. In this region the sectors of strong (1) and
weak (2) magnetic fields are separated by thelinerg =r..
The Born approximationisvalid intheregion (3) to the
right of the straight linerg = Ag, including for E < A,
where the electron can be scattered only backwards,
remaining in the lowest Landau level. A special inves-
tigation and calculation of Coulomb collisions is
required in the sector (4).

It should be noted that the spatial nonuniformity of
the plasma leads to the appearance of additional terms
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Fig. 3. Regions of applicability of various approximations

for calculating collisions. E = mv%/2—electron energy.
Abovethestraight linerg = Ag, where E < iwg and the elec-
tron occupies the lowest Landau level, the quantity E refers

totheenergy m vﬁ /2 of longitudinal motion. The dots show

the corresponding parameters for thermal electrons in the
photospheres of magnetic white dwarfs [37].

inthe collision integral. These terms describe the diffu-
sion of the guiding center of rotation because of colli-
sions and are proportional to the spatial derivatives of
the particle distribution function. In [38] an electron—
ion collision integral in a weak magnetic field was
obtained. This integral takes account of the nonunifor-
mity of the particle density (see aso [39]). In a strong
magnetic field (1) the spatial diffusion is due primarily
to electric drift of the guiding center at distant colli-
sions p, = I, SO that it can be calculated using the
results of [38]. Compared with [38], only the Coulomb
logarithm changes in the collision integral. This prob-
lem requires additional calculations.

The scattering cross section (33) found above makes
it possibleto cal cul ate the rel axation of the electron dis-
tribution as a result of elastic electron—on collision
with other factors, for example, eectron—dectron colli-
sions or electromagnetic radiation and absorption, being
negligible. Thus, inaquasineutra plasmaadistribution of
the form (2) is established as a result of electron—elec-
tron collisions. In the general case this distribution is
nonisotropic and possesses a directed hydrodynamic
velocity. The electron-ion collisions lead to isotropiza-
tion of thisdistribution, as aresult of which Maxwell’s

5Energy transfer between electrons and ions requires a special
investigation. Distant collisions, whose duration is shorter than an
ion cyclotron period, as well as close collisions as a result of the
long residence time of an electron near an ion on a quasi-bound
orbit could be important for this process.
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distribution is established over a characteristic mean
free time (nvo,(v7)™* of a particle with thermal
velocity vy.

We shall now present the main transport frequencies
characterizing the relaxation. The change in the veloc-
ity uj << vy directed along the magnetic field for the dis-
tribution

f(v) = (—Z——rlﬁ——exm—(v—u”z")z/(zﬁ)),

32 3
) Vr
where n, = n; isthe electron density, is given by thefre-

quency
Vi = ZA/Emi Vr pgr

3
_ Zmc’ 7 w0zets O (35)
= 9.52nivTD?D In %WE )
T

so that duydt = —vu,. A similar change in the modulus
of the hydrodynamic velocity in a direction transverse
to the magnetic field is given by the frequency

[— 2
VD = 2Tmi VT pcr

2 23 N7e3p [1°
= a76nv,EIC L |n*eZe By |
B O cv:O

(36)

Relaxation of the anisotropy of the temperaturesfor the
distribution

n O v: viO
V) = ——expl b -]
(2m) Vi Vs, O 2VT” 2vy O

is characterized by the rate
dv7/dt = ver(vr,—v7),

where for any ratio of v;_and Ve, the frequency

_ Tt 2
Vett = Eni VT”pcr

_ Zmc’ P, 4:07e°B
= 2.38nivT”D BZ 0 In %nw% .
T

(37)

It should be noted that estimates of v and v for
electron-proton collisions have been found in [29, 30]:

2 2/3
C
v”D0.88nivT%E , (38)
2 23
ve”DO.37nivT%E . (39)

The numerical factor in equation (38) was determined
from the condition that in the region In(rg/ry) = 1 the

No. 5 2000



ELECTRON—ION COLLISION INTEGRAL IN A STRONG MAGNETIC FIELD

guantity (38) isequal to the corresponding frequency in
weak magnetic fields (see (41) and the discussion below).
Adjustment of the analogous coefficient in equation (39)
gives a smooth transition from the frequency (39) to the
corresponding frequency v (see equation (40)) in weak
magnetic fields. Thistransition occursat In(rg/ry) = 3/4.

As already noted, in strong magnetic fields the col-
lisions of electrons with positive and negative ions pos-
sess completely different properties (the latter can be cal-
culated using directly the results of the investigation of
electron—dectron collisons [26]), while in weak fields
their properties are largely similar (the transport frequen-
cies depend on the squared ion charge). We shall trace the
reasons for the differencein collisons with different ions
for the transport frequencies (35), (36), and (37). Using
the collision integral from [12] or [13] in weak mag-
netic fields, it is easy to find the frequency

2
Vet = «/_T[n VTB_D In (40)
mv D 2

S

At the boundary of the regions of the parameters for
weak and strong fields this frequency is equal in order
of magnitude to the corresponding frequencies for pos-
itive ions (37) and negative ions (compare [27]). For
subsequent motion in the strong-field region, the fre-
guency Vg of collisions with negative ions decreases
exponentialy, Invg ~ (rdrg)?® [27], and satisfies the
expression (37) for positive ions.
The transport frequency v, in weak magnetic fields
has the form [10]
O
Vi = g'\/ﬁniVT Ze % o0

—In D

(41)

The corresponding frequency in strong fields for nega-
tive ions, calculated by analogy to electron—electron
collisions [26], is

2 f
m r

VTD s

At the boundary of the regions of the parameters for
strong and weak magnetic fieldsrg =r,, the frequencies

(41) and (42) differ by afactor of 2,8 whilethe frequen-
cies (41) and (35) differ by a large logarithmic factor
In(rp/ry). This difference is due to the fact that the sec-
ond logarithmic factor in expression (41) is of the same
nature as the corresponding factor in expression (42). It
is determined by collisions of thermal particles with
small longitudinal velocities

J1Z1€¥/ (mro) < vy < min[vy, J1ZIe?/ (mrg(v))],

6 A similar and more general relation for the electron-electron col-
lision integral has been given in [26].
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for which the distance

Z|€e?
vy = 28
Vi

is much greater than their Larmor radius rg(vy) < rp
but less than the Debye radius rp. The indicated colli-
sions with impact parameters p, < 2r(v,) are head-on
collisions of electrons with negative ions, for which the
direction of the longitudinal velocity of the electron
changes while the modulus of this velocity is con-
served. The factor of two difference between the fre-
guencies (41) and (42) is due to the fact that the pertur-
bation method does not give a correct description of
such collisions. Similar collisions with positive ions do
not lead to any resulting change in the longitudinal
velocity: the electron simply passes by the ion with
acceleration. This makesit possible to conclude that in
weak magnetic fields the second logarithmic factor in
the expression (41) is present in the frequency of colli-
sions with negative ions and must be multiplied by two,
but it does not occur in the corresponding frequency for
positiveions. The andysis of the frequency v, al'so shows
that in weak magnetic fields perturbation methods must be
used with great care for particles with small components
of the velocity aong the magnetic field, especialy when
Fourier transforms of the interaction potentials are used
and the region where the perturbation method breaks
down is difficult to single out explicitly. In very weak
magnetic fields, where rg(vy) > rp, the effects deter-
mined by slow particles become negligible because the
number of such particlesisrelatively small: their veloc-
ities in a direction transverse to the magnetic field are
limited from above by the quantity wgrp << V.

The frequency v, ordinarily aso characterizes
bremsstrahlung absorption of eectromagnetic waves
polarized in the direction of the magnetic field. For thisit
Is necessary to calculate the contribution to v, only from
collisions whose duration is shorter than the period of
oscillations of the electromagnetic wave. For collisions
of longer duration the change in the electron velocity
occurs without absorption of a wave with a fixed fre-
guency. In strong magnetic fields, for a fixed radiation
frequency w = wg there exist many collisions with
impact parameters p, = p. in which the longitudinal
velocity essentially does not change as aresult of colli-
sions, but the duration of the collisonsis shorter than the
period of the oscillations of the electromagnetic wave.
Radiation absorption occurs in these collisons and it can
be substantial in a definite frequency range. The cacula-
tion of the inverse bremsstrahlung coefficients in strong
fiddsisthe subject of further investigations.
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Abstract—The problem of the motion of aclassical relativistic electron in afocused high-intensity laser pulse
issolved. A new three-dimensional model of the electromagnetic field, which is an exact solution of Maxwell’s
equations, is proposed to describe a stationary laser beam. An extension of the model is proposed. This exten-
sion describes alaser pulse of finite duration and is an approximate solution of Maxwell’s equations. The equa-
tions for the average motion of an electron in the field of alaser pulse, described by our model, are derived
assuming weak spatial and temporal nonuniformities of the field. It is shown that, to afirst approximation in
the parameters of the nonuniformities, the average (ponderomotive) force acting on a particle is described by
the gradient of the ponderomoative potential, but it loses its potential character evenin second order. It isfound
that the three-dimensional ponderomotive potential is asymmetric. The trajectories of relativistic electrons
moving in alaser field are obtained and the cross sections for scattering of electrons by a stationary laser beam
are calculated. It is shown that reflection of electrons from the laser pulse and the surfing effect are present in
the model studied. It is found that for certain impact parameters of the incident electrons the asymmetic pon-
deromotive potential can manifest itself effectively as an attractive potential. It is a'so shown that even in the
case of a symmetric potential the scattering cross section contains singularities, known as rainbow scattering.
The results are applicable for fields characterized by large (compared to 1) values of the dimensionless param-

eter n? = E2Inwy and arbitrary electron energies. © 2000 MAIK “ Nauka/ I nterperiodica” .

1. INTRODUCTION

The present paper is concerned with the solution of
the problem of the motion of a classical relativistic
electron in a rapidly oscillating electromagnetic field
with amplitude varying slowly in space and time.

In nonrelativistic mechanics this problem can be
solved by representing the motion of an electron as a
displacement along a smooth tragjectory with simulta-
neous rapid oscillations around it. After averaging over
the rapid oscillations the equations for the smooth tra-
jectory assumes the form of Newton's equations with a
potential force[1, 2], said to be a ponderomotive force
(see, for example, [3]). The ponderomoative potential
corresponding to this force is the average kinetic
energy of the oscillatory motion [1].

The concept of a ponderomotive potential iswidely
used to explain many effects in atomic and plasma
physics. Specifically, ponderomotive scattering plays a
large role in the formation of the spectrum and the
angular distribution of electronsin the phenomenon of
above-threshold ionization [3, 4] and a variety of non-
linear effects (for example, self-focusing), arising when
alaser beam propagatesin plasma|[5]. Inelastic scatter-
ing of nonrelativistic electrons (the surfing effect and
reflection) by a ponderomotive potential produced by a

comparatively high-power laser pulse in vacuum was
first observed experimentally in 1986 [6].

The analysis of the ponderomotive effect in nonrel-
ativistic mechanics assumes that, besides the electron
energy being small, the dimensionless parameter

2
e’[E0

N’ = —, (1)
maw

which characterizes the field intensity and determines
the energy of the oscillatory motion of an electron [7],
issmall.! Compact optical-frequency lasers with pulse
intensity | greater than 10 W/cm?, which corresponds
ton = 1, have now been devel oped, and experimentson
collisions of ultrarelativistic electron beams with laser
pulses of this power are being conducted [8, 9]. Conse-
guently, the problem of the interaction of relativistic
particles with laser fields of relativistic intensity (n = 1)
is now topical.

Kibble [10] was the first to examine the interaction
of relativistic electrons with a nonuniform laser field.
He obtained equations for the average motion of arela-
tivistic electron in such afield and predicted that elec-
trons will be reflected from the center of the focal
region and the surfing effect. Although Kibble's work

Twe employ the system of unitsin which the speed of light c = 1.
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[10] gives a clear picture of the mechanism leading to
ponderomotive scattering, it assumed that the intensity
of thelaser field issmall n < 1, which limits the possi-
bility of using this work to describe experiments with
laser pulses of relativistic intensity.

The interaction of relativistic electrons with a
focused laser beam for n = 1 was first studied in [11,
12]. In these works afield with atwo-dimensional con-
figuration was used as a model of the laser pulse. Such
afieldisasolution of Maxwell’s equations, and in prin-
cipleit can be obtained by using along cylindrical lens
to focus a plane wave. The eguations obtained in [11,
12] for the average motion describe qualitatively cor-
rectly the characteristic features of the motion of arel-
ativistic electron in afocused pulse, but, of course, they
cannot serve to describe areal laser experiment.

In the present paper we propose a new three-dimen-
sional model of afield. This modd is a generalization
of the model employed in [11, 12]. Our model is an
exact solution of Maxwell’s equations, it is character-
ized by the parameters R and L, which can be inter-
preted as, respectively, the focusing radius and the dif-
fraction length, and it can serve to describe a stationary
laser beam. In this model the field configuration is
determined by giving certain coordinate functions
which satisfy second-order partial differentia egqua-
tions. The choice of various solutions of these equa-
tions corresponds to various physica models. Specifi-
cally, they can be chosen so that the field corresponds
to a superposition of monochromatic plane waves
which have the same frequencies and whose wave vec-
torsliesinside aconewith asmall aperture angle. Such
afield is very close to a modd studied in the mono-
graph [13] and obtained by applying the Huygens—
Fresnel principle to the problem of Fraunhofer diffrac-
tion of a spherical wave by acircular opening. Another
choice of solutions describes the Gaussian beams
which are widely used in optics [14, 15]. Here, if an
ordinary Gaussian envelope can be used to describe a
weakly focused field, we propose a generaization of
this envelope which is also applicable for a laser beam
focused to the diffraction limit. Just asin [11, 12], the
proposed model can be generalized to alaser pulse with
afinite duration t. In this case, however, it will be an
approximate solution of Maxwell’s equations. The next
section of this paper is concerned with a discussion of
the field model.

The equations of the average motion of an electron
in the field of alaser pulse, as described by our model,
are derived in Section 3. The derivation employs the
standard method of separating the motion into smooth
and rapidly oscillating components [1], so that the
equations are derived under the assumption that the
characteristic field dimensions R and L are much
greater than the characteristic wavelength, and the
pulse duration is much greater than the reciprocal of the

frequency:
wR>1 wL>1 wt>1. 2
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It is also assumed that
wT = wR 3

The expression for the ponderomotive force is obtained
up to second-order infinitesimals in the parameters

A=1/wR, A=1/wr. (4)

We note, however, that the method which we propose
for deriving the equations of motion makes it possible,
in principle, to obtain an expression for the ponderomo-
tive force in a stationary laser beam with a prescribed
accuracy. This procedure is meaningless for a pulsed
field, sincethisfield itself is an approximate solution of
Maxwell’'s equations.

It isshown to afirst approximation in the parameters

Aand A that the ponderomotive forceis determined by
the gradient of the ponderomotive potential, but it |oses
its potential character even in second order. The most
important result of this section is the discovery that the
three-dimensional ponderomotive potential is asym-
metric, which is the reason for a variety of interesting
and, in principle, observable effects which are dis-
cussed in the next section.

In Section 4 the derived equations of motion are
used to solve the problem of the scattering of relativis-
tic electrons by a laser field. We confine our attention
only to acollision geometry in which an electron in the
initial state moves in a direction perpendicular to the
direction of propagation of thelaser beam. The results of
anumerica solution of the equations of average motion,
including calculations of the trgjectories of electronsand
a caculation of the cross section for scattering of elec-
trons by a dtationary laser beam, are presented. It is
shown that for certain impact parameters of the incident
electrons an asymmetric ponderomotive potential can
effectively manifest itself as an attractive potential. Itis
also shown that even in the case of a symmetric poten-
tial the scattering cross section contains singularities
which are known as rainbow scattering [16].

The conditions for applicability of the method
developed and the relation between the equations
obtained for the average motion and Kibble's equations
are discussed in Section 5. A solution of the equations
of the field model corresponding to Gaussian beamsis
presented in the Appendix.

2. FIELD MODEL

We shall consider first afield which is a superposi-
tion of monochromatic plane waves with the same fre-
guencies and wave vectors lying inside a cone with
aperture angle 2A. Choosing a coordinate system with
the z axis oriented along the axis of the cone, the vector
potential of such afield can be represented in the form

A(r,t) = J'd?’kA(k)exp[i(k 0 —wt)],
A, = 0,

()
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where w = |k| and

1 2 2
AK) = ——a(d@, 0)8(A" -3 o(w— ,
(9] Zooza( a)6( )O( — ) ©)
k [a(d,a) = 0.

Here a isthe angle between the projection of the vector
k on a plane perpendicular to the z axis and the x axis,
9 isthe angle between the vector k and the z axis, and
B(x) isthe Heaviside step function. AsA — Othefield
obtained passes, as should happen, into the field of a
monochromatic plane wave:

A(r,t) — bexp[—iw(t—2)],

T

1 (7)
= Z—Tj'daa(o, a).
We introduce two orthogonal unit vectors:
nxe,
l_sinﬁ’ [ xn, (8)

which form a basis in a plane perpendicular to the vec-
tor k = wn, and we expand the vector a(d, a) in terms
of these unit vectors:

a(d,a) = a, (8, a)l + a3, a)l xn. 9

It is easy to see that the Cartesian components of the
vector a(d, a) can be expressed in terms of the func-
tions a, and a, as follows:

a, = (9, a)sina —a,(¥, a) cosd cosa,
a, = —ay(9, a)cosa —a,(9, a)cosdsina,  (10)
a, = a,(d,a)sing.

We shall assume that a, depend only on the angle a

(it is easy to see that they cannot be set equal to con-
stants, sincein this case the vector potential of thefield
vanishesin thelimit A — 0):
a, = a(a). 1D

The vector potential (5) and (6) can then be represented
in the form (we shall designate the frequency of the
field (5) by the letter w without an index)

A(r,t) = 2000

s

J’ da ﬁal(a) sina —a,(a) cosa %l —in* aaxg}
(12)

[al(a) cosal + a,(0) sina %l - |Azaaxg}ey

. O
—|Aa2(0()aa—veZ EG(V, X D),
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where
b = w(t—2), v = wrAcos(a-@),
X = wzh?, 1= S+ (13)

cos@ = )F( sng = %/

and the function G(v, X; 4) is determined by the rela-
tion

sinAu

G(v, X; ) = 2J’d

0 sin z[AUDD (14)

sndu_,.— D200
A X G %

O 0
We have for the field strengths

E = iwA,

a
X expv
0

H = Lexp(-i9)

T

x J’da ﬁal(a) cosa %L - iAzaa—XE+ a,(0) sincz(}eX (15)
+ [al((x) sina %L - iAZaa—XE— a,(0) cosa}ey

. 0o 0O
+ |Aal(0()meZ EG(V, X; D).

We areinterested in the case of weak nonuniformity
of the laser field, so that the field can be assumed to be
close to that of a plane wave. It is obvious that for this
the variance in the directions of the wave vectors k of
the monochromatic waves comprising the superposi-
tion (5) must be small, i.e.,

A<1. (16)

The properties of integrals of the type (12) with the
function G(v, X; 0) determined by the relation (14) are
well-known in connection with the problem of Fraun-
hofer diffraction by a circular opening (see, for exam-
ple, [13]). Specifically, it is known that the field (13) is
maximum at the pointv =0and x =0, and asv and ¥
increase, it oscillates with a gradual decrease of the
amplitude. The first zeros of the field amplitude arise
for v ~ 1 and x ~ 1. Thus, the range of variation of the
parametersv and x

V=1, [xIs=1

No. 5 2000



756

gives the region of space where the field differs most
strongly from zero. It is convenient to characterize the
dimensions of this region by the parameters

I

R_ooA’ L_wAz' a7

The parameter R is the focusing radius of the field, and
L is sometimes called the diffraction length. In the lan-
guage of these parameters the condition (16) can be
written as

WR>1, L=wR?>R (18)

This means that the focusing radius must be much
greater than the wavelength, and the diffraction length
must be much greater than the focusing radius.

It is important to note that the potential (12) is the
exact solution of Maxwell’s equations for any function
G(v, x; Q) satisfying the equation

1 s A2 An P LI
2G, —iA’Gy, —iGy, = O. (19)

Of course, the function (14) is not the only solution of this
equation. Consequently, the representation (12) gives an
entire class of exact solutions of Maxwell’s equations in
empty space which, physically, do not generally speak-
ing reduce to the initial model (5) and (6). Of course, in
order to be ableto treat the field determined by the solu-
tion of equation (19) as a model of a focused laser
beam, the following conditions must be satisfied:

limG(0,0; 4) = 1, limG(v,x;A) = 0.
A0 Vo o
X - ©

We shall show bel ow that the Gauissian beamswidely used
in the literature aso can be represented in the form (12).

We shall now examine the question of the polariza-
tion of the field (12) and (15). Strictly speaking, the
concept of polarization is ordinarily used for fields
which possess the transversality property. As we can
see from eguations (12) and (15), our field is not trans-
verse. Nonetheless, it can always be represented as a
combination of two fields for which either the vector E
or the vector H lies in a plane perpendicular to the
direction of propagation of thewave. Just asin [13], we
shall call such waves, respectively, E and H polarized?
or simply E and H waves. It is evident from equation
(15) that to obtain an expression for E or H polarized
waves the function a,(a) or a,(a), respectively, must be
set to zero in equation (9).

In view of the conditions (18), there exists in the
field (12) a spatial region

r<R, |4<L,
which can be called a plane-wave zone, since inside
thisregion the properties of thefield (12) are very close

to the properties of the field of a plane wave with the
potential (7). We shall attribute the polarization of a

(20)

2 |n waveguide optics E and H polarized waves are called, respec-
tively, H and E type waves. See, for example, [17].
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wavein the plane-wave zoneto thefield (15) asawhole
and, in this sense, we shall talk about, for example, a
linearly or circularly polarized E or H wave.

Let a(a) belinear functions of sina and cosa

g,(a) = ¢cosa +d;sina, i =1,2, (2D
where ¢; and d, are constants. After the expressions (10)
with a(a) from equation (21) are substituted into the
second of equations (7) we obtain for the amplitude of
the wave in the plane-wave zone
_d,—-¢c _ G +d,

b, = 5 b, = - 5

(22)

Henceit isevident that for an E wave linearly polarized
along the x axisthe coefficients ¢, and d; must be chosen
in the form

d =2b, ¢, =¢,=d,=0,

and for acircularly polarized E wave in the form
C, = F2ib, d; =2b, ¢, =d, =0,

and so on.

It will be convenient to use in what follows the
expressions for the field strengths (15) written in terms
of the functions

Fi(& x; D) = %TJ'dGG(Ecosa,x;A),
. (23)
F.&, Xx; D) = %Jda cos(2a)G(& cosa, x; A),

where ¢ = r/R. For example, in the case of circular
polarization we obtain for an E wave

e _ : . 20|:|
H™ = J_roobexp(—lq))%l—m ax0

x[Fi(e,xie) + Fexp(x2ig)(e Fie)]

+ 2iAexp(iicp)a—F1ezE (24)
¢

E° = iwbexp(-i¢)
x{Fi(ectie)—F,exp(x2ig)(e Fie)}.
The expressions for the field strengths of a circularly

polarized H wave can be calculated according to the
formulas
H" = FE®

E" = +iH® (25)
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The field strengths (24) and (25) are once again
exact solutions of Maxwell’s equations, if the function
F, satisfies the equation

aFl 26 Fl aFlD
2i— 0,
X C oy aaz% N
and the function F, is expressed in terms of F; as fol-
lows:

(26)

2
F, = F,—=[dEEF,. 27
2= Fimg I 3331 (27)
These relations follow from the definition of the func-
tions F; and F, (23) in terms of the function G and equa:
tion (19). In accordance with the conditions (20), thefunc-
tionsF; and F, must approach zero asé, || — o and, in

addition, they must satisfy the conditions

ii moFl(O, 0;4) =1, ii mOFz(O, 0;4) =0. (28
We note that one of the solutions of equations (26) and
(27) for A < 1 can be written in the form (see Appen-
dix)

_ 20 g 0. 0 g 0
Fu= (1+2i%) %ﬂ 1+2i)(%@(p8_1+2i)(%l
(29)
F, = £%(1+ 2ix) “expr—5 5
2 = X pD_J-"‘Z'X

Waves with envel opes of this type are ordinarily called
Gaussian beams (compare [14, 15]).

The field which we have considered thus far can be
used as amodel of a stationary laser beam. Proceeding
by analogy to [11], equations can be obtained for the
field which models a short laser pulse. For this, the fol-
lowing substitutions must be made in equations (24)
and (25):

exp(-i¢)— if'(¢), Aexp(-ip)— Af(d), (30)

where the function f(¢) contains, besides an ordinary
phase factor, the temporal envelope g(¢/wt) of the
pulse

f(9) = 9(¢/ wr)exp(-i9). (31)

The envelope g is assumed to be 1 at the center of the
pulse, g(0) = 1, and exponentially decreasing for |§| > wT.
Heret istheduration of thelaser pulsein the laboratory
coordinate system. We assume that

=R (32

Such afield isno longer an exact solution of Maxwell’s

equations. But, as can be easily check directly, it will

satisfy Maxwell’s equations to terms of order 1/(wR)?
and (Vw1)(YwR), inclusively.

In closing this section we note that the dimension-

less field-intensity parameter determined by the rela
tion (1) can be written for circularly polarized E and H
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wavesfor A < 1intheform
n’ = zgzaj‘,’ IR+ (R

As should be the case, in the field of a focused laser
pulse the parameter n depends on the coordinates and
time and reaches its maximum value ), at the center of
the pulse. By virtue of the relations (28) and the prop-
erties of the temporal envelope g(d/w1)

(33)

2_82b2
No = 2"
m

(34)

3. EQUATIONS OF AVERAGE MOTION

We write the equations of the motion of an electron
in the form

u
dr _ Fﬁn", mdX - 2= n?
ds ds
where 1tis the kinetic 4-momentum of an electron and

sisthe proper time of the electron. The tensor F. for

the present model of the field is afunction of the phase
¢ = (kx) of the wave, where the 4-vector kH in the labo-
ratory systemis

(35)

kh=(w 0,0, w
and the spatial coordinatesx, y, and z

Ho_ M Xy z [0
F“‘FV%’ R R kr?J

Just as for a monochromatic plane wave (see, for
example, [7]), itisconvenient to switch in the equations
of motion (35) from the proper time sto the variable ¢,
which we shall call the “phase time.” The relation

dp _ km
= (37)

follows trivially from equations (35). Using this rela-
tion we rewrite equation (35) in the form

drt

(36)

i knF“ , ™ =nm, (38)
H
gd% =L (39)

We shall seek the solutions of these equationsin the
form

™= q()+,

S (@) cos(ng) + E"(@)sin(ne)),

x = xX9(¢) +x,

118

40)

=
|

= 3 (X"(@)cos(ng) + K"()sn(n)).
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where g(), XO(9), T€(¢), T”(9) , x"($), and X(¢)

are sowly varying functions of ¢.

A search for a solution in this form corresponds to
separation of the electron motion into a regular dis-
placement along a smooth trajectory and rapid oscilla
tions around the trgjectory with frequencies which are
a multiple of the frequency of the external field. The
form of the smooth electron trajectory x©(¢), just as
the quantity q(¢), can be obtained by averaging, respec-
tively, the functions x(¢) and 1(¢) over the rapid oscil-
lations. Consequently, we shall call xX9(¢) the trajec-
tory of the average motion, and q(¢) the averagekinetic
momentum. However, it should be kept in mind that the
proposed method makes it possible to obtain a solution
of the equations of motion (38) and (39) in the form
(40) with a prescribed accuracy without using any aver-
aging procedures. Of course, this assertion makes sense
if the external field is an exact solution of Maxwell’s
equations.

It goes without saying that a representation of the
solution of the equations of motion (38) and (39) in the
form (40) is justified only if the problem contains two
substantialy different time scales. Specifically, the
time of flight of an electron over distances of the order
of thedimensions of the field nonuniformities, whichin
our case are determined by the focusing radius R and
the diffraction length L, should be much greater than
the period of the wave. For this, of course, the condi-
tions (18) must be satisfied. For a relativistic particle,
however, certain additional conditions must be satis-
fied. We shall assume that these conditions are satisfied
in the following calculations; we shall establish their
specific form later.

We note that for the field of a monochromatic plane
wave the solutions of the equations of motion can also
be represented in the form (40). Then the quantity g and
all coefficients in the oscillating parts of the functions
() and x(¢) are constants, and only one harmonic will
be present in them for a circularly polarized wave and
only two harmonicswill be present for alinearly polar-
ized wave (see[7]).

Using the representation (40) we write the electro-
magnetic field tensor (36) in the form

z
F=Fip+% o+ ,z+w—R2g (42)
where we have introduced the notation
(0) (0) (0)
R pX’ R pyv Q)Rz Z' (42)

We shall assumethat the amplitude of the particle oscil-
lations is the same in order of magnitude as the wave-
length of the external field (the corresponding restric-
tion on the parameter n, is discussed in Section 5). As
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a result, the following estimates, which calculations
confirm, hold:

X A z A
=0=0A, —— |:|— DA
R R wR?  wR?

Consequently, for A < 1 the amplitude of the intensity
of the laser field changes very little during the oscilla-
tions of particles around the trgjectory of the average
motion and the electromagnetic field tensor can be
expanded in a series:

(43)

FEb: o+ 50y + Z+ =F(0;p, ¥, Q)
y Xcf @
+F ﬁ*': R+Fz—+"prpx[RD
Here we have introduced the notation
Px = cos\, %’ = sny,
(45)

(0)

o ST =

Substituting the expansion (44) into equation (38),
using the representation (40), and equating the coeffi-
cients of cos(ng) and sin(ng) for each n on the right-
and left-hand sides of equations (38), we obtain a sys-
tem of equations for determining the coefficient func-
tionsin equations (40). We shall illustrate the proposed
method for alaser pulse modeled by a circularly polar-
ized E wave (24) with the tempora envelope (31). As
we have aready noted, such afield is an approximate
solution of Maxwell’s equations, so that for this case it
makes sense to retain in the equations of motion (38)
and (39) terms of order no higher than second in the

parameters A and A . For conciseness, we shall obtain

the equations of the average motion taking into account
first-order terms only, and we shall present the second-
order terms without derivation.

Substituting into the equation for the kinetic
momentum (38) the expressions for therea parts of the
field intensities of a circularly polarized E wave (24)
with the temporal envelope (31) and retaining only the
terms which are first-order in the parameters A and A
we obtain the equations

dr,

65 = —ebgl m(e‘i¢A_) - ebg'ARe(e‘iq’A_)

T ebgA;—[ylm(e‘iq’K)

X', U g 0A 2F, el 0

—ebg=Im [cos —tisin }
GRIMEE™| cosy 5 isiny=r%e™ |
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y'. O g [ 0A_ F, +2|¢}D
—ebg=Im sin Ficos
gRIMEE | Snu 5 y=: ¢ )0

dr, _ TebgRe(e'?A.,) + ebgAlm(e '*A,)

3% (46)
+ebgA Im(e""K)
_ X' O —id A 2F2 +2|l|J O
F ebg=Re[e [coqu ]D
R g op 0
y [ 0A, F, +2|¢}D
Feb Re sin *icos
gRRer® | sSnw g s e
dr _
W@ 0.
HereF, = Fi(p, ¢, 4), and
A, = Fi+Fe?, A = F —Fe?",
K = 26':1 Y (47
op

Equating on both sides of equations (46) and (39)
terms which do not contain rapidly oscillating func-
tions, we obtain equations of the average motion which
can be written in the form

dqx _ ebgA 1) .~(1)
a6 = Faq My -im Ky
_ebg M) _ iz 0A 2F; s2iv]E
2RIm[(x —ix )[coqu 3p tisng—= 5 ]E
_ebg (D) _ e 0A Foge2iv]
2le[(y —iy )[squ 30 +|coqu > }D
48)
da, _ ebgA 1) . ~(1) (
TR Im{ (¢ —i7")K}
- €bg (1) _ (D) 0A, 2F; s2iy]0
2RRe[(x —iX )[cosw 30 Fisnp— 5 ]E
Re[(y(l) |y(1))[smlp g |cosw Pz +2"“}E
3R ap 5
d i(0) i
(’;—q) = %. (49)
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Here we employed the fact that to the accuracy which
we require, as follows from the third of equations (46),

TL = q_ = const. (50)

As one can see from equations (48), the coefficient
functions entering there must be known with accuracy
up to zero order in the parameter A. The expressionsfor

the coefficient functions @ and 7” can be easily

obtained by eguating the coefficients of cos$ and sing
on the right- and |eft-hand sides of equations (46). The

derivatives of TtV and 7 must be dropped, since they
are at least first-order infinitesimalsin the parameter A.
Asaresult, we have

T[(l) m(l)- —ebgA*,
) —ifdY = +iebgA*,

(51)

The expressions for the coefficient functions x®, X

and y, ¥ can be obtained similarly after substituting
the expansions (40) into equation (39)

(1) _ 50— i%A*

X o -
b_ (52)
oD w *
y —iy ooq_A+ .

We notethat, compared with the functionsfound, all
other coefficient functions in the expansions (40) are
higher-order infinitesimals, in complete agreement
with the fact that, as already noted, only one harmonic
is present in the solutions of the equations of motion in
the limit of acircularly polarized plane wave.

Substituting the expressions (51) and (52) into equa-
tions (48), we obtain finally for the equation of the aver-
agemotioninacircularly polarized field, up to terms of
order A,

doy _

m du mouU

W oo x| Caap Y -

dqy _ m oJuU _ m@_q .

b oo 9y® | “gop ¥
dx¥_ & dy? G 2% &gy
do wqg.' db wq.' dé wq.’

where U, given by

_ €°b° o 20 _ mn’

- SLPHE MR =T

can be called the ponderomotive potential by analogy
to the nonrel ativistic case.
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It is simplest to determine the quantity g, appearing
in equation (54) by averaging the z component of the
kinetic momentum

m'+ 000 g _ mi+qd g

qZ = Ij-[Z[|= 2q_ - 2 2q_ - 2’ (56)
where we have introduced the quantity m.
m; = m’+ &0 (57)

which can be called the effective mass of an electronin
an external field. Using the relation (51) it is easy to
show that the effective massis related with the ponder-
omoative potential as

m; = m +2mU = m(1+n?.

(58)
Differentiating the expression (56) for g, with respect to ¢
and using the equations of motion (53) and (54) and the
expression for the ponderomotive potentia (55), we
obtain

do, _m d 09 0
% - o _¢UQ0 r ((I))D
4 (59)
_ €
= 55 d¢[ ¢ EEH R+ IR,

It is evident from the relation (59) that in a stationary
beam, where g(¢/wT) = 1, the zcomponent of the aver-
age kinetic momentum and by virtue of the relation
(50) the average energy g, = qg_+ g, are conserved in our
approximation. In apulsed field these quantities are not
conserved. Thisisthe so-called surfing effect.

The calculations show that in the approximation
under study the equations of the average motion (53)
and (54), together with the relation (56), retain their
form in an external field (15) with any polarization and
differ only by the form of the ponderomotive potential.
Specifically, the ponderomotive potentia for a circu-
larly polarized H wave is identical to the expression
(55), and for a circularly polarized mixed-type wave,
obtained as a result of a superposition of E and H
waves, it can be qualitatively different. For example, if
the coefficients in equation (21) are chosen in the form

(60)

then the field (15), according to the criteria formulated
in the preceding section, remains circularly polarized
but the ponderomotive potentia for it will assume the
form

a, = 2bsna, a, = F2ibsina,

b’ 2019

%g QE Fl—F2|2COSZlIJ

(61)

. . .0
+|F, + F)*sin’W Fi( F,F5 — F1 F,)sin2y %
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An important feature of the potential (61) is its
asymmetry, i.e., the dependence on the azimuthal angle
Y. The ponderomotive potential for linearly or dllipti-
cally polarized E or H waves possesses the same prop-
erty. The fact that the expression (61) is substantially
different from equation (55) (although the field deter-
mined by the coefficients (60) is alinear superposition
of E and H waves) is, of course, due to the nonlinearity
of the equations of motion (38).

We shall now present the equations of the average
motion, up to terms of second order, inclusively, with
respect to the parameters A and A, for a circularly

polarized E wave. In cylindrical coordinates they have
the form

qp_qtpl-]" = fp’ q.l]J+qqu = flu! qz = f21
A oA . NP (62)
p = q_qp, pY = q_%’ (= q_qz,

where an overdot indicates differentiation with respect
to the phasetime ¢,

moU _ .20y
fo = —A—=—=FA=LV,
g q.0p  2¢?
(63)
f, = +200 9 MW, A2 %y
99.0p = 2¢°
_moU ,omoU ~g'mgy, oW
f, = —o= —A"——= +4AAZ
0.0¢ — g.og g ¢ 0p
- Azmqwqpmgaiv_a W

¢ op gp2H
and Wand V are determined by the following relations:

2,2 2
eb 2 2
29 (17| F ),

W =

_ 2,2 2U 0 2 2
V = €b°g E%+ p%%Y‘lp + YY) (64)

. . |
—2(D,Y1 =Y Py + Y, P — D, Yy) %l

Thefunctions ® and Y in equation (64) are linear com-
binations of F, and F:

®=F,+F, = O, +id,
Y =F,—F, = Y; +iY,.

The components of the vector f in equations (62)
are, to within a constant factor, the phase-time-aver-
aged spatial components of the four-vector of the force
acting on an electron in the field of a laser pulse. We
shall call this force the relativistic ponderomotive
force. Theformulas (63) giveits expansion with respect

(65)
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Fig. 1. The ponderomotive potential (a) in acircularly polarized E or H wave and (b) a wave of mixed type.

to the parameters A and A . To afirst approximation the
relativistic ponderomotive force is determined by the
gradient of the ponderomotive potential. For the sym-
metric potential (55), of course, it possesses only a
radial component. For an asymmetric potential, for
example, determined by the expression (61), a honzero
azimuthal component f, appears even in the first
approximation. In the second approximation the pon-
deromotive force is nhot of a potential character, as one
can see from equations (63). The azimuthal component
appears even for a circularly polarized E wave and, in
addition, a longitudinal force component arises. The
presence of alongitudinal component of the relativistic
ponderomotive force was first discovered in [11] (see
also [18]). In an E wave the longitudinal component
arises because of averaging of the corresponding com-
ponent of the Lorentz force. In the general case, the
average longitudinal component of the electric field
also contributes to it.

4. SCATTERING OF AN ELECTRON
BY A LASER PULSE

In this section we present the results of a numerical
solution of the equations of the average mation (53) and
(54) and calculations of the cross section for scattering
of electronsinthefield of afocused laser pulse (15). As
one can seefrom equations (53) and (54), the trgjectory
of an electron is determined, to a first approximation,
entirely by theform of the ponderomotive potential. We
shall consider both the symmetric (55) and asymmetric
(61) potentials. As noted in the preceding section, the
first case pertains to circularly polarized E and H
waves, and therefore they are the same in the present
approximation of the trajectory of an electron colliding
with such waves. The second case determines the tra-
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jectory of an electron in the field of a circularly polar-
ized wave of a mixed type. However, the specific form
of the dependence of the asymmetric potential on the
variable Y has no effect on the qualitative features of
the electron mation, and for this reason the qualitative
results obtained for this case pertain equally to linearly
polarized E and H waves.

The numerical calculations were performed for
Gaussian beams (29). Plots of the potentials (55) and
(61) in the z = O plane with the functions F; and F,
determined by equations (29) are shownin Figs. 1a, 1b,
respectively. For a collision of electrons with a pulsed
field the temporal envelope of the pulse was chosen to
be of theform

ne o_
QQED—-WD[

The collision geometry was chosen so that the el ectrons
areincident on the laser beam in a direction perpendic-
ular to the direction of propagation of the beam.

Figure 2 showsthetrajectory of electronsinthefield
of a stationary laser beam with the ponderomotive
potential (61). For the collision geometry under consid-
eration here, theinitial longitudina momentum g, = 0.
Since to afirst approximation the longitudinal compo-
nent of the average kinetic momentum is conserved
(see equation (59)), the electron trgjectory isflat to the
same accuracy. Figure 2 shows electron trgjectories
intersecting a laser beam in the z= 0 plang, i.e, ina
plane passing through the focal center. All electronsin
this figure have the same initial energy but different
impact parameters. For clarity, the level lines of the
ponderomotive potential (61) are shown.

(66)

_mgﬁ
Leot |
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Fig. 2. Trgectories of the average motion of electrons
(gamma factor y = 1.2) in a circularly polarized field of
mixed type with intensity ng = 1 and various values of the
impact parameter of the particles.

Itisevident from Fig. 2 that for small impact param-
eters, when the incident electron fallsinto aregion near
the maximum of the ponderomotive potential, particles
are reflected from the laser beam (tragjectory 1), asfirst
predicted by Kibble [10] and then observed experimen-
tally in [6]. Naturally, this effect occurs only for parti-
cles with a comparatively low energy. As the energy
increases, electrons with any impact parameter will be
ableto overcomethe potential barrier and the reflection
effect will not be observed.

The condition under which reflection will occur
when an electron is scattered by a symmetric potential,
can be obtained in an explicit form. As one can easily
see from the equations of motion (62) written in cylin-
drical coordinates, to afirst approximation, besides the
energy, the projection of the angular momentum on the
zaxisis also conserved:

M, = pq, = g|q;,”| = congt, (67)

where p is the impact parameter and qipn is the initia
value of the radial component of the electron momen-

tum. It should be kept in mind that because of the pos-
sible asymmetry of the ponderomotive potential, posi-

tive (corresponding to qiqj‘ > 0) and negative (corre-

sponding to q, < 0) impact parameters should be
distinguished. Then, we have from the energy conser-
vation g, = ¢_ + g,, using equations (56) and (67),

2

2
= i+—22+U(p) = congt.
2mp

Qo—g-m" _
2m

2m (68)

(Itisinteresting to note that the second part of the equa-
tion (68) isidentical to the expression for the energy of
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a nonrelativistic particle in a central field; see, for
example, [1].) It isobvious that the most stringent con-
ditions will be the conditions for a particle to pass by
with zero impact parameter or with M, = 0. Theniit fol-
lows from the relation (68) that all particles with initial
momentum

(gy)*>2mU

will overcome the potential barrier. Therefore the con-
dition for reflection during scattering of electrons by a
symmetric potential can be written as

Y = q/m<,J1+n; (69)

and isidentical to the corresponding condition obtained
in [12] for the two-dimensional field model. For an
asymmetric potential, because angular momentum is
not conserved, the equations of motion will have to be
solved completely in order to obtain the reflection con-
dition in an explicit form. Such a solution cannot be
obtained analytically. However, as we shall see below,
the corresponding restriction on the energy, though not
identical to the condition (69), is of the same order of
magnitude.

It should be noted that for an asymmetric potential
an electron with certain impact parameters is deflected
in the direction of the focus (trgjectory 2in Fig. 2), i.e.,
for such values of p the potential is effectively attrac-
tive. The existence of such trgjectoriesis easy to under-
stand. It isclear from Fig. 1b that an asymmetric poten-
tial contains, besides the main maximum, a series of
additional maxima at the periphery, though these max-
ima are not as high. Consequently, for certain impact
parameters an electron could feel more strongly not the
main maximum but rather the additional maximum,
which, in addition, could lie to the right of the main
maximum. This is the reason that an electron is
deflected in the “wrong” direction.

We note that all trgjectories shown in Fig. 2, except
for the trgjectory 3, correspond to particles incident on
alaser beam along the x axis. The trgjectory 3 refersto
an electron incident at an angle 174 to the x axis and
characterizes another feature of an asymmetric poten-
tial: the fact that even a particle with a zero impact
parameter can be scattered by a nonzero angle. Thisis
due to the presence of a nonzero azimuthal component
of the ponderomotive force

We note that for z = O for the potential (61), f, = 0 at
U = 0 and 172. Consequently, trajectories of the type 3
are not observed if the incident particle initially moves
along the x- or y-axis.

Figures 3 and 4 show the scattering angle X as a
function of the impact parameter p for different ener-
gies and angles of incidence of the electrons for sym-
metric (55) (dashed line) and asymmetric (61) (solid
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Xse Tad

—ty4l

Fig. 3. The scattering angle X as a function of the impact
parameter of an electronin asymmetric (solid line) and sym-
metric (dashed line) potentials with incidence along the x
axis:ng=1,y=14(a) and 1.42 (b).

line) potentials. Figure 3a corresponds to electrons
incident along the x axis with energy somewhat less
than (no = 1, y = 1.40) and Fig. 3b correspondsto elec-
trons with energy somewhat greater than (no =1, y =
1.42) the critical value for a symmetric potential

y = J1+ng = J2.

For lower energies the scattering angle in both casesfor
some values of p is greater than 172. This attests to the
existence of reflection of an electron from the laser
focus, and for higher energies the scattering angle for
p = 0iszero and does not reach 172 for any value of the
impact parameter. This indicates the absence of reflec-
tion. Hence it follows that the reflection criterion for an
asymmetric potential (61) with a zero angle of inci-
dence is essentialy identical to the potential (69). As
the impact parameter increases, the scattering angle
changes nonmonotonically, which is a consequence of
the complicated structure of the potential. In addition,
for an asymmetric potentia the scattering angle for a
definite range of impact parameters assumes negative
values. As follows from the preceding discussion, this
effect can be explained by reflection from the addi-
tional maxima.

Figure 4 shows X, as a function of p for electrons
incident on abeam with an asymmetric potential along
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Fig. 4. The scattering angle X4 asafunction of the electron
impact parameter in asymmetric (solid ling) and symmetric
(dashed line) potentials with incidence at angle Y = 174 to
thex axis: ng=1, y=1.42 (a) and 1.48 (b).

theline Y, = 14 for the samevalueny,=1,andy=1.42
(Fig. 4a) and 1.48 (Fig. 4b). In contrast to Fig. 3, the
values of X for positive and negative impact parame-
ters are presented. It is evident from the plots that for
y = 1.42, in contrast to the case of incidence along the x
axis, reflection for an asymmetric potential occurs,
whilefory = 1.48 thereis no reflection. This meansthat
for an asymmetric potential the reflection criterion
depends on Y, but this dependence is quite weak. We
call attention to the fact that the curves x.(p) are sym-
metric with respect to the point p = 0 for a ponderomo-
tive potential (55), while for the potential (61) thereis
no such symmetry. Moreover, the maximum scattering
angle for an asymmetric potential corresponds to not a
zero but rather a negative impact parameter. This is
explained by the existence, already discussed above, of
an azimuthal component of the ponderomotive force.
A particle incident on an asymmetric potential with zero
impact parameter p (i.e., moving along the trgjectory 3,
Fig. 2) does not reach the maximum of the potential.
This happens for a particle with negative p, which is
reflected in Fig. 4. We also note that for incidence at an
angle Y, = 14 scattering of particles with positive
impact parameters by negative angles is not observed.

The computed functions X.(p) make it possible to
find the effective cross sections for scattering of elec-
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Fig. 5. The differential scattering cross section for electrons
inalaser beam with an asymmetric ponderomotive potential
asafunction of theangle Xg.: Yo=0,y=14,andng=1.

trons by alaser field. If the collision of a beam of elec-
trons with a laser field occurs in a region close to the
focal plane, and the diameter of the beam cross section
is small compared with the diffraction length L, then it
can be assumed that the target (laser field) possesses
cylindrical symmetry. Inthiscaseit ispossible to intro-
duce a differential scattering cross section calculated
per unit length:

d_O' = dpi(Xsc)
dXsch Z‘ dXsc

where the summation extends over al branches of the
function p(Xg.)-

Figure 5 shows the differential scattering cross sec-
tion for electrons in a laser field with an asymmetric
potential (61) as a function of the scattering angle Xq..
The parameters Y, = 0, Ny, = 1, and y = 1.4 correspond
to the function x..(p) shown in Fig. 3a. It is evident
from Fig. 5 that the cross section is singular for definite
values of the scattering angle. These singularities of the
cross section (with the exception of the trivial singular-
ity at zero, due to the fact that the scattering by small
angles corresponds to infinite impact parameters) are
related with the presence of extremaon the curve Xo.(p)
and are called rainbow scattering (see, for example,
[16]). The cross section corresponding to the case
shown in Fig. 3b, when there is no reflection, differs
from the case shown in Fig. 5 only by the presence of
rainbow scattering with one additional value of X,
which corresponds to the maximum scattering angle.

As one can easily see from Figs. 3a, 3b, rainbow
scattering also occurs for the potential (55). Small dif-
ferences occur because scattering by negative anglesis
impossible for a symmetric potential. But these differ-
ences do not greatly change the overal picture, and
therefore we do not present here the corresponding
dependences. The dependence of the scattering cross
section on the parameter ), strongly distinguishes the

: (70)
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Fig. 6. The differential scattering cross section for electrons
inalaser beam with an asymmetric ponderomotive potential
asafunction of theangle Xy Wo=1U4,y=1.42,andng=1.

case of an asymmetric potential. Thisis easy to see by
comparing Figs. 5 and 6. We note that besides “ defor-
mation” the cross section shown in Fig. 6 differs from
Fig. 5 by the presence of rainbow scattering at the left-
and right-hand boundaries. Thisisexplained by thefact
that for negative impact parameters for the case shown
in Fig. 6 reflection does not occur at all, while for pos-
itive impact parameters the maximum deflection angle,
though exceeding 172, is less than 1t (see Fig. 4d), i.e,,
backscattering isimpossible.

We shall now examine a collision of an electron
with alaser pulse of duration T. In this case the longitu-
dinal component of the electron momentum @, is not
conserved and the trajectory of an electron incident on
the laser pulse in a direction perpendicular to the prop-
agation of the pulseisnot planar. Asfollows from equa-
tion (59), the electron is displaced in the positive or
negative direction along the z axis from the direction of
incidence, depending on whether the electron in a col-
lison falls on the leading or trailing edge of the laser
pulse. In this case the electron energy also is not con-
served. Since in the first approximation the quantity q_
once again remains an integral of the motion, the
change in energy is given by the same formula (59).
Consequently, if a particle interacts with the leading
edge of the focus, the energy of the particle increases,
and if it interactswith thetrailing edge, the particle energy
decreases. Thisisthe so-called surfing effect [6, 10].

Thetotal changein energy can be cal culated accord-
ing to the formula

O\

_ Mo 0,00
0y = — [dd-U=

Go q_J b
It can be positive as well as negative, depending on the
intervals of phase time that the particle spent on the
leading and trailing edges of the laser pulse. Figure 7
showsthe electron energy versusthe delay ¢. Herethe
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delay istheinterval of phase time between the moment
when an electron islocated at the origin, if the electron
has not interacted with the laser pulse, and the moment
when the focal center of the laser pulseislocated at the
same point. For large positive (negative) values of o9,
the electron energy does not change. Thisis due to the
fact that the electron crosses the region of the focus
before (after) the arrival of the laser pulse, not interact-
ing with it. As ¢ decreases, the electron starts to feel
the leading edge of the laser pulse. During the motion
the particle acquires a potential energy, which converts
into kinetic energy when the particle leaves the light
pulse. On account of this, the particle energy increases
after the passage of the pulse. As d¢ decreases further,
the reverse process occurs: the electronison thetrailing
edge of thelaser pulse and is slowed down by the pulse.
The nonmonotonic dependence of the energy for posi-
tive as well as negative values of d¢ can be explained
by the complicated structure of the potential.

5. CONDITIONS OF APPLICABILITY
OF THE METHOD AND THE KIBBLE EQUATIONS

We shall show that, to a first approximation, the
equations which we have obtained for the average
motion are formally identical to the Kibble equations.
For this, it is sufficient to show that the equations for g,
and g, can be written in aform similar to equation (53).
We recall that since

0. = go—0, = const
both equations have the same form (see equation (59)),
d_qz_qu_ma 00 @40

Just as in the derivation of equations (54), it is easy to
show that the time t© averaged over ¢ is determined by
the equation

dt® _ q
Then, it is obvious that
o = w(t® -2, (74)

Substituting this expression into the equation for the
ponderomotive potential on the right-hand sides of
equations (72), we rewrite these equationsin the form

dqz _ m 0 ( (O))

dé ~ wo 9/ 79
75

dgo _ m 0 U,

dp ~ wg_ 9@

Switching now to differentiation with respect to the
proper time s, using the relation (37), which to a first
approximation is

d¢/ds = wg_/m,
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Fig. 7. The electron energy after interaction with a short
laser pulse as a function of the delay 6¢. The solid line cor-
responds to an asymmetric and the dashed line to asymmet-
ric ponderomotive potential: y9=0,n=1,y=1.2, p/R=0.5,
and /R=1.

we rewrite the complete system of equations for the
average motion (54), (53), (75), and (73) in the form

dg" _ oy 4%
—=U(x"), M=

ds ~ ox <0> (70)

= Oy

whichisidentical to the Kibble equationsin [10]. How-
ever, the derivation of the Kibble equations in [10]
made substantial use of, besides the assumption that the
nonuniformity of the field is weak, the condition that
the field isweak or, in other words,

n<.l

In our method the solution of the equations of mation
in the field of amonochromatic plane wave of arbitrary
intensity was used as the zeroth approximation, and

only the parameters of the spatial A and temporal A
nonuniformities were assumed to be small.

We shall now discussin greater detail the conditions
of applicability of equations (53), (54), or (76) obtained
in the present paper. They are determined by two
requirements. In the first place, the phase time for an
electron to traverse distances of the order of the charac-
teristic dimensions of the field nonuniformities must be
much greater than the period of the oscillations. In the
second place, the amplitude of the transverse particle
oscillations must be much less than the focal radius R,
and the amplitude of the longitudinal oscillations must
be much less than the diffraction length L.

The phase times ¢z and ¢, in which an electron
traverses distances of the order of the radius R of the
focus and the diffraction length L, respectively, can be
easily estimated from equations (54) as

(wR)’q_
|aL]

wRa_
orO7 6.0

’
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where g isthe absol ute magnitude of the component of
the average momentum perpendicular to the direction
of propagation of the laser pulse. Then the first condi-
tion can be written in the form

2 2% g

(77)

The amplitudes of the transverse and longitudinal oscil-
lations can be estimated using the sol utions of the equa:
tions of motion of an electron in the field of a mono-
chromatic plane wave (see, for example, [7]). They are

of the order of mny/wa. and manD/wqf, respectively.
(We note that the first estimate follows immediately
from equations (52).) It follows from these estimates
and equations (77) that the second condition can be
written as

<i
n0<mA

(78)
and is therefore the limit on the intensity of the laser
field (compare with equation (17) of [12]).

It is easy to see that the conditions (77) and (78)
depend, generally speaking, on the collision geometry.
Since the parameter A is small, the conditions (77) are
satisfied for any value of the transverse g and longitu-
dinal g, momenta of the electron, if g, < 0. Then

laj/q.<1,
For g, > O it is possible to have g_ < mk. This clearly

occursfor acollision geometry inwhich theinitial elec-
tron momentum is oriented almost in the direction of
propagation of the laser pulse (parallel motion), and the
electron itself is ultrarelativistic. This case requires a
separate analysis.

For values of g_which are not small, the condition
on thefield intensity (78) is quite soft, and by virtue of
equation (2) it is possible to study quite strong fields,
including fields with ny > 1. This circumstance distin-
guishes our equations for the average motion from the
Kibble equations, even though they are formally iden-
tical in the first approximation. In this connection we
call attention to [19], where an endeavor is made to
derive an expression for the ponderomotive force by
averaging the Lagrangian of a relativistic particlein a
nonuniform electromagnetic field of arbitrary intensity.
The equations obtained in [19] for the average motion
are identical to our eguations (and hence for ng < 1
they are also identical with the Kibble equations) only
in the nonrelativistic limit, where the average kinetic
momentum of a particleis small compared to the parti-
cle mass. This result is explained by the inconsistent
and therefore incorrect method of averaging employed
in [19]. In terms of our paper, in averaging over the
phase time we assumed the coefficients of the function
in the expansions (40) to be functions of the laboratory
timet.

g =m, 9o/ 9-<1
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We shall now consider the possibility of using our
equations for the problem of parallel motion of an
ultrarelativistic electron. Let

qz>0, qz> my, QD'

Under these conditions the quantity g_isrelated with g,
asfollows:

o= m; +qf
- 2q
Substituting this expression for q_ into equations (77)

we obtain the condition of applicability of our method
to the problem of parallel motion, which can be written

as
1
i+ ol <o < Fmi + o

The relations (78) and (79) give alimit on the field

<ay. (79)

(80)

2 2
m, +Jg
€ 81
o= mafa, ey
We note that the problem of parallel motion without the
limits (80) and (81) was studied in [20] using computer
simulation.

In conclusion we note that equations (76) are explic-
itly covariant, thereby proving that our method is cova-
riant. This is not surprising, since we use an invariant
averaging procedure and consequently

q, = Ot4 X&O) = k0

are 4-vectors, and the ponderomotive force is deter-
mined (see equation (58)) in terms of the invariant

effective mass mi = @? and thereforeit too is arelativ-
istic invariant. However, it should be remembered that

the meaning of the parameters A and A, which in the
laboratory coordinate system are, respectively, the
ratios of the wave length of the field to the focusing
radius and the period of the field to the pulse duration,
generally speaking, will change in an arbitrary coordi-
nate system.
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APPENDIX
Let us consider the first of equations (26). The sub-
stitution o = &2 changes the equation into the form

2
6F1+A26—F1 46—':1 406—':21=0.
) x> 00 00

We seek the solution of this equation in the form

2i (A1)

0

Fi(o,x; ) = _[ dx' f(x, X)h.(o, X). (A2

Substituting the expression (A.2) into equation (A.1)
gives

oo [ ah(o,x)
IR Ef(x,x){4 35 "
= (A.3)

Af(X, X) 202f(X,X')} N
+|2i +A h,(o, =0.
%k S e

90°

2 '
PCAUICH X)}

We now require that the function f(x, X') satisfy the
equation

£i0F0 X) 4 A20°FOGX) _ 2,6f(x X)
X ox’

Then, assuming f(x, x)h,(o, X) — Oas ) —= £
and integrating equation (A.3) by parts gives

(A9

0 dh
J’dx f(x, x)m4 1(0 X)
(A.5)
+aoZPOX) | oh(e ) D
do ox' D

and in order that the integral (A.2) be the solution of
equation (A.1) the function h, (o, x") must satisfy equa-
tion (A.1) without the term with the second derivative
with respect to X.

We consider equatlon (A.4) first. Let f(x, X" = f(u,
X"), wherepl =X —X'. Then equation (A.4) can berewrit-
ten as

5 0f(LX) _ A za 07 F (LX)
ox' op’

This equation can be easily solved by separation of
variables. We choose its solution in the form

(A.6)

LX) = sxepliWa-x/2). (A7)

The choice of anormalization factor isjustified below.
First, we consider the equation for hy(o, X):
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2010, %), , 00, X) | ,.9h(0, X)

o Py o = 0. (A.8)

We seek its solution in the form

hy(@, X) = [u(X) + ouy(X)] exp[-v(X)a].
Substituting this expression into equation (A.8) and
equating the coefficients of like powers of o, we obtain
the following equations for the functions u,, u,, and v:
ivi = v® iU, = 6u,v?, 4u,—4uv’+2iu; = 0.
These equations can be solved trivially, and we have for
the function h, the result

hyo, x) = vioOI[1-ovix)le” ®°,  (A.9)

where

v(x) = (1+2ix)""% (A.10)
We note that as X' — + o the function (A.9) does
indeed vanish, which justifies the method of solution
proposed above.

Substituting the expressions (A.7) and (A.9) into
equation (A.2), we obtain a particular solution of equa-
tion (A.1) intheform
—|x/2

Fi(o,x; 8) = —Z
- (A.11)
x Idue’“/Ae'“/zhl(o, X —H).

It isobviousthat for A < 1 the neighborhood of the
point L = 0 makes the main contribution to the integral
in equation (A.11). Therefore, to calculate the asymp-
totic form of thefunction F,(o, x; A) for A < 1itiscon-
venient to represent the expression (A.11) in the form

1
F.(0,X; D) = TG x/2

ipn/A |u/2

xD dpe
0

(U,X—U) (A12)

0

after which the standard formula for estimating the
asymptotic behavior of the Fourier integrals[21] can be
applied to each of the integrals appearing on the right-
hand side of equation (A.12). Theresult is

; -4 U

_ -ix/2 . 2 _
Fi=e 7 (1+2ix) %ﬂ' 1+2|x%BXpE_1+2|XD
A.13
o= 2 (A.13)
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We can see that the expression (A.13) differs from the
first of equations (29) only by a phase factor. However,
since the variables x and z are related (see equation
(13)), the presence of the phase factor reducesto redef-
inition of the phase of the field intensities (24)

b = w(t—2) — wt—w(l+A%/2)z

which is of no consequence in our approximation. For
this reason, the phase factor in equation (A.13) should
be dropped, and the asymptotic expression for the func-
tion (A.11) for A < 1 isidentica to the first of equa-
tions (29).

Using the relation (27), we obtain for the function
F,(&, X; A) arepresentation that differs from equation
(A.11) by the function h, being replaced by h,, whichis
identical to the expression on the right-hand side of the
second of equations (29). It is easy to see that the cor-
responding asymptotic formulaisidentical to the func-
tion F, from equation (29).

In conclusion, we note that, of course, equation (29)
for F, can be obtained directly by solving the first of
equations (26) with the term containing A? being
dropped, just aswe did in order to find the function h;.
Nonetheless, we presented a detailed derivation of
equation (A.11), sinceit (together with the correspond-
ing expression for F,) serves as an extension of the
Gaussian envelope to the case A ~ 1 and therefore is of
interest in itsalf.
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Abstract—The fluorescence resonance energy-transfer (FRET) process is investigated between donor dye
mol ecules deposited on the sample surface and acceptor dye molecul es deposited on the tips of scanning near-
field and atomic force microscopes. The FRET process was observed only when the tip acquired contact with
the sample and took place in regions of sizes of only afew tens of nanometers with only a few thousands (or
even hundreds) of molecules involved. The dependence of the FRET intensity on the tip-sample acting forceis
recorded and interpreted. In relation to the obtained results, the construction of apreviously proposed one-atom
FRET SNOM isdescribed. © 2000 MAIK “ Nauka/lnterperiodica” .

1. INTRODUCTION

Scanning near-field optical microscopy (SNOM) is
a valuable research tool for imaging and investigating
different samples with a subwavelength spatial resolu-
tion. The spatial resolution of SNOM isusually limited
by the size of the aperture for light transmission and
ranges from 50 to 100 nm, although a 20 nm resolution
has been demonstrated [1, 2]. Further improvement of
the resolution seems problematic for the “classical”
SNOM configurations because the number of photons
“seeping” through an aperture is rapidly decreasing
with the decrease of the aperture size. A number of new
approaches have been proposed recently to improve the
resol ution, such as the molecular exciton-based SNOM
[3], apertureless SNOM [4], and SNOM using Fluores-
cence Resonant Energy Transfer (FRET) between a
single fluorescence center of the tip and the sample
under study [5].

In the latter case, the idea is based on the fact that
when the distance between donor and acceptor mole-
cules becomes smaller than the characteristic radius of
aresonant energy transfer R, (which for typical donor—
acceptor pairs ranges within 26 nm [6]), the probability
of a dipole-dipole energy transfer between these mole-
culesiscloseto unity (see, for instance, papers[6, 7] for a
review). One should prepare the tip containing asingle
fluorescent center in the apex and scan it in close prox-
imity to the sample surface (the rel ative distance should

T This article was submitted by the authorsin English.

be smaller than R;). If the donor fluorescent centers of
the imaging tip are excited and the fluorescence of the
acceptor centers of the sample is monitored (or vice
versa), the spatial resolution will be governed not by
the aperture size of the microscope but by the value of
Ry. An analysis shows that not only the spatial resolu-
tion, but the sensitivity as well can be improved when
using these FRET SNOMs [5, 8], which, of course,
would be very important for the subsequent progressin
thefield.

The applicability of SNOM to detect asingle mole-
cule fluorescence is well established at present (see,
e.g., recent reviews[9, 10] and references therein) and
the possibility of the nondestructive scanning of the
SNOM tipsin the close proximity of the sample surface
(in the contact mode) has been demonstrated [11, 12].
In this paper, we present thefirst experimental evidence
of the applicability of FRET phenomena for near-field
optical microscopy: a nanolocal resonant energy trans-
fer process has been observed between two different
dyes. One of them (the donor) has been deposited onto
the glass sample surface and other (the acceptor) has
been deposited onto the surface of a SNOM tip (sharp-
ened optical fiber) or a standard AFM silicon nanotip.
The FRET process has been realized only when the tip
acquires a contact with the sample, i.e., in the regions
with the sizes of only afew tens of nanometers, and it
involves only thousands (or even hundreds) of dye mol-
ecules.

1063-7761/00/9005-0769%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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Fig. 1. Fluorescence spectrum of codeposited submonolay-
ersof DCM and OM57 dyes.

A part of these results has been briefly discussed
earlier in the letter [13]. A recent paper by Vickery and
Dunn [14], where first images obtained with a FRET
SNOM (without an analysis of the signal as afunction
of the tip-sample acting force) should also be men-
tioned in relation with the described problem.

2. SELECTION OF A DONOR-ACCEPTOR PAIR

A careful selection of adonor and acceptor dye mol-
ecule pair was necessary for the experiments described.
When the laser excitation radiation wavelength is fixed
(we have selected the 488 nm line of a cw argon ion
laser), the donor molecul esto be used should efficiently
absorb this laser radiation and reemit light with a suffi-
ciently large Stokes shift and ahigh quantum efficiency.
The acceptor molecules to be used should efficiently
absorb the photons reemitted by the donor, (i.e., good
overlapping of the corresponding fluorescence and
absorption spectra is required) and should also exhibit a
high fluorescence yield with alarge red shift with respect
to the donor fluorescence. In addition, their direct excita-
tion by the laser radiation should be minimal in order to
diminish the background fluorescence and facilitate the
observation of ananolocal FRET phenomenon.

DCM dye molecules (4-dicyanomethilene-2-methyl-
6-(p-dimethylaminoatyryl)-4H-pyran, number LC 6500
in Spectra Physics GmbH catalogue [15]) have been
selected as donors because of their excellent fluores-
cent properties (the fluorescence quantum yield in solu-
tionsiscloseto unity, the absorption cross section value
o at the 488 nm wavelength is 6 x 10717 cm?) and high
photostability.

Different dyes have been tested as acceptors. The
best results have been obtained when using 1-butyl-3,3-
dimethyl-2-[5-(1-butyl-3,3-dimethyl-3H-benz[ e]indo-
lin-2-yliden)-1,3-pentadienyl]-3H-benz[ €]indolium per-
chlorate molecules (OM57 dye, Al’ phaAkonis Company,
Moscow): their absorption spectrum corresponds well
to the fluorescence spectrum of DCM, and their absorp-
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tion at the 488 nm wavelength is at |east three orders of
magnitude smaller than at the maximum; these mole-
cules also have a reasonable fluorescence quantum
yield (no smaller than 0.3) and photostability.

InFig. 1, we present the spectrum of fluorescence of
the two dyes, DCM and OM57, codeposited onto the
same glass dide with the surface concentrations 3 x
10% cm™. Such a concentration corresponds to a sub-
monolayer coating: as known for Rhodamine dyes, one
monolayer coating corresponds to the surface concen-
tration ~10'* cm [16]. It is clear from this figure that
under such conditions, the fluorescence of OM57 mole-
cules (the spectral range 650-800 nm) is even more prom-
inent than that of DCM (the spectrd range 550-700 nm),
keeping in mind that OM57 molecules do not absorb the
excitation wavelength (the fluorescence spectrum of
OM57 molecules, deposited in the same concentration but
without DCM molecules on a glass dide, was orders of
magnitude less intense and barely exceeded the noise
level). Thus, thisfigure can be regarded as ademonstra-
tion of the dipole—dipole resonant energy transfer pro-
cess between DCM and OM57 dye molecules on the
surface.

For some other pairs of donor and acceptor molecules
(DCM-DTDCI, DCM—-HITCI, see [15] for the descrip-
tion of these dyes), the FRET process has been aso
observed but was not so prominent and the donor and
acceptor fluorescence spectrawere not so well resolved as
for the DCM-OM57 pair. This is why we sdected this
particular pair of dyesfor the subsequent experiments.

The characteristic radius R, of the resonance
dipole—dipole energy transfer for this pair can be calcu-
lated using the well known relation [6, 7]

4 1/6

F(wo(wdws 1)

_ 03
Ro =

where F(w) is the normalized fluorescence line shape
of the donor and o(w) is the optical absorption cross
section of the acceptor. From (1), it iseasy to seethat such
aradius has ardatively dight dependence on the spectral
overlapping integral (inverse sixth power only); cacula-
tions show that it ranges between 3 and 4 nm for al “rea
sonably overlapping” dye pairs, including DCM-OM57
(compare with the data given in [6]).

4 4
wn

3. SCANNING NEAR-FIELD OPTICAL
MICROSCOPE GEOMETRY

3.1. Experimental Equipment and Procedures

Different experimental schemes have been imple-
mented for the demonstration of FRET phenomena in
scanning probe microscopy. We start our discussion of
the experimental results with the SNOM-based scheme
where more quantitative results have been obtained.

The scheme of the experiment performed using the
photon scanning tunneling (PSTM) version of SNOM
[1, 2] isshownin Fig. 2. Two different homemade shear
force-based SNOMs and homemade el ectronic unitsto
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Fig. 2. Scheme of the PSTM-based FRET experiment.

control its performance have been used. In most of the
experiments, the standard optical detection method to
measure the amplitude of the lateral tip vibrations[1, 2]
was utilized, but some critical experiments were per-
formed using anon-optical shear force detection method
similar to that described in [17]. We used SNOM tipswith
the curvature radius 100-200 nm prepared by the usua
etching procedure of optical fibers in concentrated HF
solutions [1, 2] or commercialy available from Nanonics
Supertips (Isragl). Additional details about the construc-
tion of the microscopes used in the experiments can be
found in[13, 18, 19].

To deposit the donor dye mol ecul es onto the sample
surface, we used the spin coating technique [20] aswell
as the simple method of spreading a small droplet
(10 pl) of the dye solution onto the surface with the
subsequent drying in air. No essential difference of the
results has been observed.

Acceptor molecules have been deposited onto the
surface of the SNOM tip. In this case, it seems essen-
tialy more difficult to elaborate the procedure to deposit
the dye layers with a known and well-controllable con-
centration of the molecules. the complex shape of thetip,
itsvery small size, and fragility makeit impossibleto use
such well-established methods as the spin coating tech-
nique or long-time deposition of the sample inside adye
solution with the subsequent elimination of the excess
solution by atissue paper [21]. Thus the so-called with-
drawal, or “dipping” approach seemsto be the most suit-
able: the sharpened fiber tip is rapidly dipped into and
extracted out of the dye solution; the thickness of the
deposited film (and thus the surface concentration of
dye molecules) is governed by fluid dynamics. The
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results of our experiments did not contradict the data
known about the concentration dependence for flat sur-
faces[22, 23], and we are planning to finally clarify this
point in future experiments.

The 488 nm spectral line of acw argonion laser was
focused onto a glass prism surface under the conditions
of total internal reflection (spot sizes were of the order
300 um and the laser irradiation intensity | was
15 W/cm?). Light coming out of the opposite side of the
sharpened fiber was detected by asingle photon avalanche
diode (SPAD; EG & G, Canada, noise level 80s) after
passing through a number of filters to suppress stray
light and select the light originating from fluorescence
of the acceptor molecules. The set of filtersincluded a
holographic notch filter for the 488 nm line, ared glass
filter with the absorption edge of 660 or 695 nm, and
interference filters centered at 750 nm with a width of
70 or 40 nm. It can be seen from Fig. 1 that such a set
of filters enables the separation of the fluorescence
coming from OM57 molecules from that coming from
DCM molecules.

3.2. Results

In Fig. 3, we present the dependence of the fluores-
cencesignal recorded by the EG & G SPAD for the case
of DCM and OM57 molecules deposited with the sur-
face concentrations 3 x 10% cm on the voltage driving
the piezotube in the zdirection. Each point on this
graph is aresult of an average of 10-20 counts during
one second each. The moment of contact between the
tip and the sample was determined by the beginning of
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Fig. 3. The acceptor fluorescence signal dependence on the
acting force recorded during the PSTM-based FRET exper-
iment.

adecrease of thetip dithering amplitude as observed on
an oscilloscope.

The distance between the tip and the sample, Az,
when out of contact, can be easily calculated as afunc-
tion of the potential difference AU using the known cal-
ibration data for the driving piezo, Az = (AU, where,
¢ =9.5nmV. After acquiring the contact, it ismorerea-
sonable to speak about the change in the force acting
between the tip and the sample rather than about the

SEKATSKII et al.

change of arelative distance; an increase of the voltage
tends to push the tip (rigidly fixed on the piezo) more
strongly against the sample. The acting force F can be
calculated using the spring constant k of the sharpened
fiber by an obviousrelation F = k(AU, and an action of
this force leads to the flexural bending [12, 24, 25] and
deformation of thetip.

From Fig. 3, it is easy to see that after acquiring the
contact, the acceptor fluorescence signa starts to
increase rapidly as the acting force increases. This
effect has been well reproduced during at least a few
tens of the cycles contact—out of contact measurements,
but an overal slow decrease in the signal due to the
photodegradation of the dyes was noticed.

A number of control experiments have been per-
formed using the same tip-sample configuration but
with the donor and acceptor dyes (either or one of or
both them) absent. None of these control experiments
revealed a behavior analogous to that presented in Fig. 3;
only avery slow changein the fluorescence signal asa
function of the driving voltage was usually observed
and the contact point did not correspond to any pecu-
liarities in the fluorescence signal. Of course, the abso-
lute value of the recorded signal was smaller.

Similar results were obtained when we used another
mode of SNOM operation, namely, the illumination
mode SNOM (see Fig. 4) instead of the PSTM version
described above. Donor dye molecules were deposited
onto athin glass dlide surface. The SNOM tip, covered

~ ™\
488 nm
Ar-ion
SPAD laser line
Diode
Laser
488 red red
A i
PZT
Photodiode
( Electronics ]
N
- J
Fig. 4. Scheme of the illumination mode SNOM-based FRET experiment.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90 No.5 2000



TOWARDS THE FLUORESCENCE RESONANCE ENERGY TRANSFER (FRET)

with a OM57 acceptor molecule layer, was used as a
light source. The same detector and combination of fil-
ters were used. Asin the previous case, the OM57 flu-
orescence signal drastically increased after the acquisi-
tion of the contact only when both dye layers were
present.

3.3. Discussion

Thus, the acceptor fluorescence signal behavior pre-
sented in Fig. 3isdefinitely due to the presence of both
dyes and should be regarded as a demonstration of
FRET phenomena in scanning-probe microscopy. The
increase of the fluorescence signa as a result of the
increase of the acting force was due to the corresponding
increase of the contact surface and thus, of a number of
moleculesinvolved in the energy transfer process.

Semiquantitatively, the experimental data can be
described as follows. Experimental measurements of
the spring constant k for the glass fiber tips[11] as well
as calculations based on the mechanical properties of
the flexural bending of a glass cone [24] show that for
atip with the curvature radius 100 nm, the spring con-
stant should be of the order 500-1000 N/m. This means
that for an equivalent displacement of the piezo, (AU,
(maximum value attains 1.9 um) the acting force value
should range within 10-10- N. (Note that a similar
range of forces was used in the recent SNOM experi-
ments using normal dithering of atip [12, 24]. Under
the action of such aforce, the tip will exhibit flexural
bending [24, 25] and elastic deformation. Both these
processes will result in an increase of the contact sur-
face. For a rough estimate of the elastic deformation,
one can use the known Hertzian expression to describe
the contact radius r, of a sphere pressed against a flat
sample surface as a function of the acting force F (see,
for example, [18], where the problem of elastic defor-
mationsin AFM has been specialy investigated:

_ BA-v)Fr”

Herer isthe curvature radius of thetip, E =7 x 10 N/m?
and v =0.25 aretypica Young modulus and Poisson ratio
for glass. For F=10*N, r = 100 nm, thisexpression gives
r. = 46 nm, which correspondsto N, ~ 2000 moleculesin
the “FRET active” contact area for the surface concen-
tration 3 x 103 cm2.

An absolute value of the fluorescence signal
recorded for the sharpest tips used was equal to N, =
80-100 s (with the signal to noise ratio of the order of
unity). Knowing thisval ue, we can estimate the number
of molecules N, contributing to the measured signal
using the simple relation

Npnhv

N2 = Tono )
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where hv = 4.07 x 101° Jisthe photon energy, ® isthe
fluorescence quantum yield of the acceptor molecule, and
n is an overdl efficiency of the photon collection and
detection for our experimental system. The latter can be
estimated as follows. The efficiency of the fluorescence
photon collection by asharpened fiber for ageometry sim-
ilar to ours was reported to be 2-5 x 1072 [26]. We esti-
mate the efficiency of the detection of photons coming
out of the fiber about 0.1-0.05 (thisvalueis mainly due
to the registration only within a rather narrow spectral
band of the total acceptor fluorescence because of the
strong filtering, see above) and thus, the overall effi-
ciency of the detection is 1-5 x 10™. This means that
N, ~ 300-1500 acceptor molecules contribute to the
measured signal (we assume ® = 0.3). Both N; and N,
values are in reasonable coincidence with each other,
which strengthens our conclusions about an observa-
tion of the “nanolocal” FRET phenomenon with only
hundreds to thousands of molecules involved.

4. ATOMIC FORCE MICROSCOPE GEOMETRY

The above results were qualitatively confirmed in
another series of experiments performed with the same
DCM-OM57 dye pair. OM57 acceptor molecules were
deposited onto the surface of asilicon tip of a standard
AFM cantilever (NT-MDT, Moscow, the force constant
0.12 N/m, the curvature radius of the tip 10-20 nm).
DCM donor molecules were deposited onto athin glass
dlide surface and a 488 nm laser line was focused onto
this surface by a 40x microobjective after a reflection
from a selective mirror at the angle of 45° (see Fig. 5).
Contact between the AFM tip and the sample aswell as
the acting force was controlled by monitoring the
reflection of a focused diode laser radiation from the
opposite side of the cantilever, asistypical in the usua
contact mode AFM. The same driving piezo and elec-
tronic control unit as in the SNOM-based experiment
described above were used. Fluorescent light was col-
lected using the same 40 x microobjective, and after the
passage through the selective mirror without reflection,
it was refocused onto the entrance dlit of a CCD-cam-
era-equipped monochromator. The same set of filtersas
described earlier (except for an interference filter cen-
tered at 750 nm) was used. Light intensity was essen-
tially higher, ~600 W/cm?, and as a result, the photo-
degradation was more prominent. Nevertheless, it was
possible to observe the difference between the “con-
tact” and “ noncontact” fluorescence during anumber of
the cycles contact-out of contact measurements (analo-
gous to the SNOM experiments described above).

No quantitative information has been collected in
these series of experiments, but in Fig. 6, we present
two fluorescence spectrarecorded when in deep contact
(2) and out of contact (2). The acting force, estimated
for the “deep contact” case in the same manner as dis-
cussed above for the SNOM case, was equal to ~10° N.
It can be clearly seen that the signal obtained while in
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Fig. 5. Scheme of the AFM-based FRET experiment.

contact was 10-20% larger than that obtained out of
contact. This effect was not observed in control experi-
ments, when both or one dye were missing, whichisan
additional indication of the observation of the AFM- (or
SNOM-) related nanolocal FRET phenomenon.

5. FLUORESCENCE RESONANCE ENERGY
TRANSFER PROBE MICROSCOPE

The results presented in this work should be treated
as a demonstration of the FRET phenomenon in scan-
ning near-field optical microscopy and atomic force
microscopy techniques. Of course, the difference
between SNOM and AFM is rather arbitrary in this con-
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Fig. 6. Fluorescence signals recorded during the AFM-
based FRET experiment for thetip in contact (curve 1) and
out of contact (curve 2) with the sample.
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text: for example, silicon AFM levers similar to those
described in Section 4 are optically semitransparent and
optical near-field microscopy can be implemented to
measure the light passing through these levers [27]. An
important point is that we succeeded in recording a
nanolocal “contact dependent” fluorescence signal cor-
responding to a few thousands or even hundreds of
FRET-active molecules. Relying on the obtained experi-
mental data. Sensitivity, noise level, etc., we believe that
using a dightly modified approach (for example, that
based on an illumination-geometry SNOM, wheresingle
fluorescent molecules were indeed observed recently
[9, 10Q]), it will be possibleto observethe FRET phenom-
enon at the level of only one single molecule.

Thus, based on the experimental results already
obtained, we believe that it is now the time to briefly
discuss a FRET probe Microscope that is under con-
struction in our laboratory (Troitsk). The particular
scheme of thismicroscopeis presented in Fig. 7. The prin-
cipa element of the FRET probe is a smal polystyrene
bead stained with a dye. Such microspheres are commer-
cidly available in abroad range of sizes (10 um-20 nm)
and dyes and are routinely used in the optical fluores-
cent microscopy as markers (see, e.g., [28]). Prelimi-
nary resultsindicating FRET processes involving some
dye doped beads commercially available from Molecu-
lar Probes, Oregon, have been recently obtained in our
laboratory (Lausanne: unpublished), but one should be
sure that the dye molecules at the surface are not cov-
ered by protective layers.

To provide the possibility of the probe manipula-
tion, we are elaborating the method to fix it to the apex
of amicrocapillary, asindicated in Fig. 7. Fixing may
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Fig. 7. Scheme of aFRET probe microscope. Only the upper part of the capillary is shown. The glass slide with the sampleis sup-
posed to be moved by a scanner of the microscope. The electronic part (not shown) issimilar to that of a scanning probe microscope.

be possible relying on the van-der-Waals forces or a
specific chemical binding, and anumber of microcapil-
laries with the diameter ranging from 100 nm to a few
micronsis now commercially available.

The optical scheme of the FRET probe microscope
is similar to that of the confocal fluorescent micro-
scope. The laser beam is reflected from a dichroic mir-
ror and isfocused on the sample. Let us assume that the
sampl e contains donor molecules and the bead contains
acceptor dye molecules. If the donor—acceptor pair is
chosen as described above, mainly the donor molecules
are excited dueto the FRET process. Thelight from flu-
orescent acceptor molecules is collected by the same
objective that is used for illumination of the sample.
The light coming through the dichroic mirror is
detected by a SPAD or aPMT.

The possibility to modulate the probe-sample dis-
tance is implemented in the microscope construction.
This enables one to improve the sengtivity and to remove
the background signals caused by “tails’ of donor fluores-
cence and the direct excitation of acceptor molecules. The
modulation allows the distance-dependent part of the Sig-
nal to be extracted, because the FRET between the probe
and the sample is possible only when the bead comesin
contact with the sample. The modulation in the range of
severa tens of nanometers will suffice because the
Forster radius does not exceed several nanometers [6],
and such a modulation can be realized based on the
usual shear force feedback [1, 2] or normal tip vibra-
tions that we have recently realized [12, 24].

A simple estimation of the lateral resolution of the
microscope can be made from elementary geometrical
consderations. If wemodel the sphereastouching the sur-
face without dlastic deformation (seeinsert in Fig. 7), the
FRET is possible for acceptor molecules located
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between the surface and the imaginary plane at the dis-
tance R, (Forgter radius) from the surface, one should now
distinguish between two different Stuations: i) there is
only one acceptor molecule inside this area, and ii) there
are severa molecules inside it. In the former case, the
resolution is governed by the Forster radius [5]. Note
that thisis exactly the case for the commercialy avail-
able beads with the diameter 2r = 20 nm (Molecular
Probes, Oregon). Such a bead contains N ~ 180 mole-
cules of the dye distributed in the volume of the sphere
(not the surface) [28], and therefore, we can find

n=(L2)N(Ry/r)’=0.7

acceptor molecules in the FRET-active area (we take
the Forster radius R, equal to 2 nm). Indeed, it is not
necessary to use the smallest available spheres with the
diameter 20 nm to attain such a resolution. Similar
numbers can be obtained for much large beads: apply-
ing the same relation for 2r = 1 um and N = 1.3 x 107
[28] givesn=0.4.

Inthelatter case, the resolution is determined by the
diameter d of the interaction zone. Taking into account
that the radius of the spherer > R,, it is easy to find

that d = 2,/2r R,, which corresponds to the resolution

d = 12 nm for the beads with 2r = 20 nm. An important
issue is the number N of interacting molecules in the
bead. The area of the bead surface inside the diameter
d is defined by the expression

0 4’0
2m?p1-L 5
4r°0
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Fig. 8. The field emission image of the borosilicate glass
microcapillary with the inner diameter of 0.5 um. The
image of the central hole is shifted to the upper part of the
figure. The thickness of walls looks exaggerated due to the
peculiarities of image formation in the field emission micro-
Scope.

For an estimate, an approximation givessimply S= md%/4.
If the surface density of dye moleculesis n = 10* cm?
(beads having dye molecules on the surface can be easily
prepared in the laboratory), we have N = nS= 270 mole-
cules, which islarge enough to avoid the photostability
problem, which is crucial at the single-molecule level.

We emphasize that the resolution 10-20 nm can be
achieved without the subwavelength aperture that is a
principal element of the standard near-field micro-
scope. Complex boundary conditions for the near-field
a the probe apex of SNOM considerably complicate
the analysis of SNOM images which can lead to anum-
ber of artifacts (see, e.g., [29]). The FRET probe micro-
scope is free from these drawbacks because of the
absence of the aperture and the physical clarity of the
interaction.

6. CONCLUSIONS

In this paper, we have presented experimental results
concerning an observation of nanolocal FRET processes
for the usually used SNOM and AFM geometries; we
then discussed the FRET probe microscope currently
under congtruction in Troitsk. In addition, practical elab-
oration of this FRET microscope is especially timely
because we have a our disposa the aready finished
one-atom fluorescent tips made of LiF : F, crystal frag-
ments, where only one effective and very photostable
fluorescent center in the tip apex region (F, aggregate
center, which is the specific defect of LiF crystaline
lattice) has been observed using the laser selective pho-
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toel ectron projection microscopy technique [8, 30]. We
used the same technique to observe the apex of the
nanocapillary currently explored in the FRET probe
microscope under construction (see Fig. 8), and will
use it to control the fixing of a dye-saturated bead on
the capillary apex, as described in Section 5.

The practical redization of the FRET probe micro-
scope makes it possible to drastically improve the spa-
tial resolution and the sensitivity of scanning near-field
optical microscopy, thereby opening new prospects in
the field [5, 8]. The FRET SNOM will be very useful
when working not only at the single-moleculelevel, but
a so with hundreds or thousands of moleculesinvolved
(exactly as reported here), because this approach, in any
case, improves the resolution and sengtivity of SNOM
and enlarges the number of possible experimental
schemes of the microscope to be used.
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Abstract—A generalized Keldysh model is used to obtain simple analytical expressions for the energy and
angular distributions of photoelectrons rescattered by the parent ion. The dependence of the form, absolute
magnitude, and interference structure of the distributions on the parameters of thefield and atom isinvestigated.
It isshown that even though the semiclassical three-step rescattering model determines correctly the position
of the boundaries beyond which the distributions decay rapidly, the model itself is inapplicable near them.
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1. INTRODUCTION

Investigations of the nonlinear ionization of atoms
in strong laser fields have revealed avariety of physical
phenomena which are determined by the interaction of
the freed electron with the parent atom (see the reviews
[1, 2]). One channel of this interaction, ordinarily
termed elastic rescattering, leadsto the fact that a small
fraction of the eectrons injected into the continuum
and accelerated by the laser field acquires high energies
asaresult of interacting with the parent ion. Asaresult,
the electron spectrum detected in a fixed direction con-
sists of two sectionswith substantially different proper-
ties. The initial segment up to energies of the order of
2U, (U, = F%/4uy isthe average oscillatory energy of an
electron in alinearly polarized field with amplitude F
and frequency w) is explained by the mechanism of
direct above-threshold ionization. Here the spectrum
decays rapidly as the electron energy increases. Next
follows an extended section with small decay (high-
energy plateau) which is produced as aresult of rescat-
tering. The plateau terminates clearly in a distinct
boundary, beyond which exponential decay occurs
once again. The structure and detail s of the electron dis-
tributions on the plateau are seen in greatest relief and
most clearly in the data from a series of experiments
performed in the tunneling regime [3-5].

The theory of eectronic distributions in the region
of the plateau is based primarily on three approaches:
numerical integration of the Schroédinger equation [6],
asemiclassical three-step model [3-5, 7, 8], and agen-
eralized Keldysh model [9-13]. Numerical methods are
ineffective in the tunneling regime. The three-step
model describes separately the freeing of an electron
from an atom, the subsequent motion of the electron
along a classical trgjectory returning to the parent ion,
and finally the act of scattering by an ion. This model
has successfully explained the position of the top

boundary of the plateau and the maximum angle of
emergence of electrons, but the reason for the discrep-
ancies with quantum calculations in the description of
the angular distributions has remained unclear [8], and
there is no clear picture of its accuracy and conditions
of applicability.

The generalized Keldysh model arises as aresult of
an iterative solution of the quantum equations of
motion of an electron in laser and atomic fields, when
the Keldysh approximation serves asthe zeroth approx-
imation and the interaction of the freed electron with
the atomic fragment istaken into account as a perturba-
tion [9-13]. This substantially quantum approach
makes it possible, specificaly, to calculate the interfer-
ence structure in the distributions of the rescattered
electrons, which isin principle impossible to do on the
basis of the three-step model. A complicating feature of
this approach is that the rescattering amplitude has a
very complicated form (a five-fold integral). A model
of the atom as a zero-radius potential permits reducing
this expression to asingle integral of an infinite sum of
products of Bessel functions [11]. An attempt to con-
struct the rescattering amplitude, after calculating three
of the five integrals by the saddle-point method, has
been made in [10]. This calculation confirmed that the
classical trajectories returning to the parent ion play an
important role in the formation of the rescattering
amplitude. However, the computational scheme
adopted led to a singularity in the remaining double
integral, and the final results turned out to be sensitive
to the value of the regularization parameter, which is
theinitial width of the ionized wave packet.

The objective of the present work isto obtain, inthe
tunneling regime, for the spectral-angular distribution
of the rescattered electrons quite simple formulas from
which the dependences on the parameters of the field
and the atom would be evident and the mechanism of
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guantum interference in the distributions of the rescat-
tered el ectronswould be understandabl e, as done previ-
ously for direct ionization [14, 15]. Looking ahead, we
note that the results will be presented in aform closely
related with the three-step model, which will make it
possible to establish the status and region of applicabil-
ity of the latter.

A general expression for the rescattering amplitude
is obtained in the next section. Section 3isdevotedto a
derivation of the approximate formulas for the tunnel-
ing limit. Finally, the physical consequences are dis-
cussed in section 4. Some of the results presented have
been reported in preliminary publications [13, 16, 17].

2. FORMULATION OF THE MODEL
AND THE RESCATTERING AMPLITUDE

The wave function of an atomic electron interacting
with a laser field satisfies the Schrédinger equation
(atomic units are employed)

iw = E_ZlB)%A(t)gw(r)éP(r,t), (1)

where A(t) is the vector potentia of the field in the
dipole approximation. Before the field is switched on,
inthelimitt — —oo, the atom isin abound state

Po(r, 1) = do(r)e"

with ionization potential I. We seek the solution in the
form of a sum of the initia state and a new, unknown
function

W, 1 = oofr, ) +X(r, 1).

In contrast to the phenomenological approach of [18],
this formulation transforms equation (1) in a natura
manner into a Schrédinger equation with a source.
Switching to the momentum representation and using
an exponential substitution to eliminate the diagonal
matrix elements of the kinetic energy

g(t) = (p+A()/c)*/2

are equivalent to writing the desired function in the
form of the expansion

X8 = 3 X )W, Y
p

over the Volkov states

Wo(r, 1) = exp{ipr —iS,(p, 1)}
with the phase

Sdp.) = [ drey(o).
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The amplitudes in the expansion satisfy the initial con-
dition

X(p! t _>_°°) =0
and the equation

iX(p, 1) = V(p, )$o(p) W5 (O, t) exp{ilt}

)
+ > Ulp-K)W; (0. )W (0, Hx(k, 1),
k

where ¢4(p) and U(q) are the Fourier transforms of the
initial state and the atomic potential, respectively, and

V(p,t) = pCA/c+A%/2¢°
The equation (2) can be solved by iteration

x® 0 = xe, ) +xp. ) + ..
provided that the integral termis small.

The solution in the zeroth approximation is obtai ned
in the form of an integral of the source:

xO(p, 1) = -ido(p)

t — ©)
X Idtlv(pa tyexp{ilt, +iS,(p, t)},

and its limiting value x©(p, +) isidentical to theion-
ization amplitude used in practical calculations of the
energy and angular distributions in the Keldysh model
[14,19].

Performing the next iteration we find

ix“(p, )

[

_ x © “)
= [dY U -k, 9%,(0. X"k,
—oo k

The expression (4) has asimple meaning: it is the scat-
tering amplitude, calculated in first-order perturbation
theory in the atomic potential, for the ionization-pro-
duced coherent packet of the Volkov states x©(r, t) into
the fina Volkov state W, (r, t). Taking an individual
Volkov wave astheinitial statein equation (4), we abtain
the Born amplitude for induced bremsstrahlung [20].

The coordinate function in the zeroth approximation

X0 = 3 Xk )Wl 0
k

describes a spreading electron cloud. The norm of this
function grows linearly with time [21]. This makes it
possibleto interpret in the limit t — oo the quantity

aw = txOp, vl d®p/ (2m)°
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as the ionization probability per unit time. Taking into
account the first iteration, the following substitution
must be made in this probability:

2 2
X (p, +o0)| " —= [xO(p, +o0) + xP(p, +e0)| .

As noted in the Introduction (see also [11]), for final
states with the energies

g = p/2<2U,
direct above-threshold ionization predominates, i.e.,
X > x®),

and for € > 2U, the relation between the amplitudes is
reversed. In each of the indicated regionsit is sufficient
to retain only the main contribution. Then the desired
ionization probability in states with high energies is
determined by the rescattering amplitude (4). We shall
not study the transitional region, where

X9 =[x

and interference of the two termsis possible.
Theintegrand in the amplitudes x© Y has the form

B® (1) exp{iAt},
where
BOY(t+2mw) = B®Y), A= p¥2+U,+1.
A standard Fourier series expansion of the periodic fac-
tor gives the ionization probability in the form

dw =

In the tunneling regime
F<F, = (21)*, y = w(2)¥’/F<1, (5)

the energy of alaser photon isthe smallest energy scale
inthe problem, and replacing in the probability the sum
over n by an integral we obtain the momentum (spec-
tral-angular) distribution, which describes the envel ope
of the above-threshold peaks of direct ionization and
ionization with rescattering (indices d and r, respec-
tively)

w<l,

_d&p_
dw,, = 2B Y(p)[* (6)

w(2m®
The Fourier coefficients in equation (6) are denoted as

BA-3/e = BO(p).

We & so note that with time the amplitudes Wt < 1
satisfying the zero initial condition remain small as
long as X©(p, t), making the integral term in equation

(2) small and justifying the use of an iteration proce-
dure.
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3. RESCATTERING AMPLITUDE
IN THE TUNNELING LIMIT

The conditions (5) make it possible to calculate the
amplitudes (3) and (4) by the saddle-point method. If a
linearly polarized field Fsin(wt) acts along the x axis,
then the equation for the saddle-points of the integral
(3)is

21 + K3 +vit) = 0, )
where

v(t) = k,+ pecos(wt), pe = F/w.

In the tunneling limit the complex roots t, of equation
(7) lienear thereal axis. Neglecting the contributions of
order y? < 1 and higher we obtain

Imt; = y/w.

Thistime, interpreted as the transit time of an electron
through the barrier, is a small fraction of the optical
period [19]. To the same accuracy Ret, is identical to
the real moment in time t, when the electron kinetic
energy reaches its minimum value. For momenta |k | < pe
which are important in the direct-ionization spectrum,
the projection of the velocity on the direction of the
field vanishes at the time t,,;:

Vi(to) = Ky + pecos(wty) = 0. )

The contribution of an individual saddle point, calcu-
lated in the approximation described, is

2T

JFG)
- ©

F
kaﬂm&% mD'U%+&WtMD

53Xk, to) = C(F)

Here k5 is the momentum in a plane perpendicular to
thex axis, F(t) = |Fsin(wt)| isthe magnitude of thefield,
and the function t, = ty(k,) found from equation (8)
must be substituted. The factor

C(F)=1

corresponds to ionization from awell with zero radius,
and

C(F) = 2J2F,/F

givesthe correct static limit for a Coulomb field [22, 23].

The partial amplitude (9) looks as if the quantum
transition into a given state of the continuum occurs
instantaneously, at the moment of the minimum kinetic
energy, which depends on theinitial momentum k,. The
integral in equation (3) is equal to the sum of the con-
tributions of al points t, falling within the limits of
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integration. It is convenient to represent this sum over
real stationary points as an integral:

Xk, 1)

= [ dtoF(to)3(ky~ prcos(wto)) X (K, to). (10

The amplitude for direct ionization in equation (6) is
related with the partial contribution (9) by the relation

BY(p) = 723X, to) + 5V, 15.)),

since for a given k, there are two stationary points t,_
and t,, in one optical period. The presence of two terms
givesrise to interference in the direct-ionization distri-
butions[14, 15]. Keeping in mind the subsequent com-
parison with rescattering, we underscore that for direct
ionization ty, belong to neighboring optical half-peri-
ods with opposite orientation of the electric field.

The five-fold integral in the rescattering amplitude
(4) can be caculated as follows. We substitute the
expression (10) into equation (4), and using the  func-
tion we calculate the integral over k. Since the ampli-
tude 6x©(k, t) decreases rapidly for

k> (F/F)Y2.J/2I,

the k; in the argument of the atomic potential can be
neglected, setting

q = lp—kl[=|p—k(to),
where the vector K(t,) possesses a single projection
Ku(to) = —prcos(wty).

(A moreradical but somewhat |ess accurate approxima-
tion g = p is dso possible, since the amplitudes x(k, t)
are large only for k?/2 < 2U, and we are interested in
rescattering into states with high energies € = p%2 >
2U,.) After this simplification the integral over kg
becomes Gaussian, and a calculation of the integral
leads to the appearance of a complex transverse width
of a spreading wave packet in the denominator of the
integrand (see equation (11) below). In the remaining
double integral we change the order of integration and
switch to the dimensionless times

bo = Wty, ¢, = wt;.

Itiseasy to verify that theintegrand in the outer integral
over infinite limitsin the variable ¢, possesses the nec-
essary property of periodicity, ensuring the correct
form of the law of conservation of energy during ion-
ization (see discussion preceding equation (5)). Under
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the transformations described above, the amplitude B®Y
in equation (6) becomes

C(F)U(Q) vF(®o)

(ZH)ZCO%SS + i¢1;¢0%

BY(p) = [dof b,
0 b

(11)
Fa
3F(¢0)

Here the phase is determined by the relation
WP, §o, 1) = 19
2] 61

+ :I- do'e,(9") — Jd¢'5k<¢o)(¢')

0 _ O
x eXp- +iSp, $o ¢
0 O

(12)

and Ay = JF./2IF(d,) isthe transverse width of the

electron wave packet at the moment of ionization [21].
Since the phase (12) is proportional to the large param-
eter

z- =4U,/w> 1,

we shall calculate the double integral (11) by the sad-
dle-point method. The conditions of stationariness

0S/0¢, = 0, 0S/0¢, =0
yield the equations
(¢1—0o)cospo—sing, +sing, = 0, (13)
Ep(h) = Exep(da)- (14)

The solution of the system (13) and (14) is the point
(Po(g, 0), ¢4(g, B0)), whose position depends on the final
electron energy € = p%2 and angle of emergence 6,
measured from the direction of the field. Depending on
(¢, 9), the solutions can be both complex and real. The
latter are of greatest interest, since their contribution
does not contain an exponential smallness additional to
with the tunneling exponential present in the integrand.
Thisiswhy aplateau arisesin the energy spectrum. The
implicit functional relations between the four rea
parameters determined by equations (13) and (14) have
been studied in detail in the three-step rescattering
model [8]. We shall use these results, appropriately
reformulated, to find the stationary points. In the three-
step model equation (13) signifies that the freed elec-
tron, having left the atom at the time ¢, with zeroinitial
velocity and moving subsequently in a laser field,
returnsto the origin of coordinates at thetime ¢,. At the
moment it returns the electron is elastically scattered in
accordance with the law of conservation of energy (14).
The transformations

(b0, §1) — (¢o + 211, ¢, + 20,
(b0 01, 8) —= (9o + 1T, d; + 1T, T 6)
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Final electron energy
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10

8
6
4L
2
0

T[/2 ¢O— ¢0+ i

Moment of ionization @,

Fig. 1. Final energy of the rescattered electron as afunction
of the moment of ionization. The curve (¢, 8 = /U, was
calculated using equations (13) and (14) in the first-return
approximation. Theform of the curvefor 6 # Ttissimilar but
the height of the maximum decreases monotonically with
increasing angle: £y(0) < gy(m) = 10U, The contributions
of the points ¢_and ¢ interferein the rescattering ampli-
tudein the state (€ = 8U, 8 =11).

do not change the form of the equations, and therefore
it is sufficient to analyze the solutions on one half-
period of the laser field, for example, 0 < ¢, < Tt For
moments of ionization in the interval 0 < ¢, < 102
returns are impossible, and for W2 < ¢, < 1t (depending
on the value of ¢,) oneto several returns (right up to an
infinite number) are possible. The contribution from the
later returns decreases rapidly because of the transverse
spreading of the wave packet, and in what follows we
shall consider only the first return. For electrons which
arefreed inthetimeinterval 172 < ¢, < 1Tand possess a
finite energy p%/2 > 2U,, the directions of emergence
fall into the range W2 < 6 < 1T The instantaneous €l ec-
tron velocity appearing in the energy conservation law
(14) rotates by the angle V2 < 8, < 11, i.€,, the electron
is scattered backward with respect to the vel ocity which
it possessed immediately prior to scattering. The angles
0 and 6, are related by the relation [8]

(p/ pe)cosB + cosd, (15)
= (cosd, — cosd,) cosh,.

Rescattering in the interval 0 < 8 < 172 occurs on an
adjoining half-period with the opposite orientation of
thefield. The energy of the rescattered electron, consid-
ered as a function of the moment of ionization, pos-
sesses an isolated maximum on the segment 02 < ¢y < Tt
(seeFig. 1). The height of the maximum € = €4(8) isthe
upper limit of the spectrum, as predicted by the semi-
classical model for electrons rescattered by the angle 6.
It follows from the existence of amaximum in the func-
tion € = g(¢, 6) that the inverse function ¢, = ¢(€, )
required to calculate the amplitude (11) is two-valued.
In other words, on a quarter period there are two
moments in time ¢,_ and ¢, (see Fig. 1) which corre-
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spond to rescattering in a direction 6 with energy €.
According to equation (13), their respective moments
of return are ¢,_ and ¢,,. To calculate the rescattering
amplitude by the saddle-point method the phase in
equation (12) must be expanded in a Taylor series
around each of the points (4., ¢,) and (¢o., §1.), @
two-dimensional Gaussian integral must be calcul ated,
and the results must be summed. Summing the contri-
butions of the indicated stationary points engenders
interference in the rescattering amplitude [13]

dw,

= (w_+w, — 2./W_W+sin(zps+_))d3p.

The contribution of an individual stationary point has
the form (we omit the indices +)

21CH(F)U(q)w’sin’d,

(21 'F*F.A% (91, §0)ID
2F,

2F(po)

The following notation has been introduced in equa-
tions (16) and (17):

s = Y7z,

(16)

W(dy, do) =

(17)

X exp%-

where the phase Sis determined by equation (12) with-
out the term 1 ¢;

S, = S,—S_

isthe difference of the reduced phases at the stationary
points,

Al (D1, 0o) = A5+ (1—Bo)°/ (w0D,)°

is the squared transverse width of the wave packet of a
freed electron at the moment of return [21];

D = SpSu— (301)2

isthe determinant of the matrix of second derivatives of
the phase with respect to ¢, and ¢, at the expansion
point. Thesign of D isdifferent for thetwo branches of sta
tionary points, and therefore the interference term in equa-
tion (20) containsasine and not acosing, asin[13, 16].
The procedure for summing the contributions of
independent stationary pointsisinapplicableif thefinal
state (g, ©) lies near the classical boundary. It is evident
from Fig. 1 that as € — €4(0) the points ¢, and ¢,
approach from different sides the point ¢4,(8) where
thefunction € = g(¢,, 8) reachesamaximum, and it can-
not be assumed that they are isolated. A manifestation of
this circumstance is that the distribution (17) becomes
infinite in the limit € — €4(8), snce D — 0 in the
denominator. At the boundary itself D = 0, and this
equality is equivalent to the condition for an extremum

e(8, o)/, = O
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Indeed, writing equations (13) and (14) in the form

So(®or 01(90)) = 0, 16, by, €(B, o), §4(d)) = O,

differentiating with respect to ¢, with constant 8, and
eliminating d¢,/dd,, it is easy to see that

€8, o)/, 0D

(here and below the partial derivatives of the reduced
phase s with respect to the times ¢, and ¢, are denoted
by 0s/0¢, = s, 0250900, = S, and so on).

Near the boundary the method for calculating the
integral must be modified as follows. Since we are
interested in the final state (0, €) close to the boundary,
let us consider the state (6, £4(0)) that lies on the bound-
ary and to which the stationary points ¢4, = do_ = don(6)
and ¢4, = ¢1_ = ¢,(6) correspond in the plane of inte-
gration variables. We expand the phase (12) with respect
to the deviations d¢, = ¢y — Og, and 8¢, = ¢, — oy ina
Taylor series asfollows:

S = SBom G1n) *+ 5,50, + S[5(500)°
(18)
+25,,00,00, + 311(6‘1)1)2] + %5111(64) 1)3-

In equation (18) the energy is a free parameter, and
therefore at the chosen point of expansion s, # 0, while
the e-independent derivative s, = 0 isabsent in equation
(18). The substitutions

& = 0o+ Sx001/Se0, N = O,y

reduce the quadratic form in equation (18) to the diag-
onal form

SooFE” + DN/ sip

It is evident that when calculating the amplitude (11)
under the conditionsD — 0, theintegral over the vari-
ablen diverges. To regularize theintegral it is sufficient
to take into account the next term in the expansion, spe-
cifically, s,,,n An additional investigation shows that
we can set s, = ;41 in the region important for the
integral, as done in equation (18). Using the expansion
(18), the integral (11) can be calculated analytically,
and the spectral-angular distribution of the photoel ec-
trons near the classical boundary can be written as[17]

|0’ CHF)U%(p) Sin“0omexp(—2F ./ 3F(9or)

dw, =
4T[3FaF 413Aé(¢0m1 ¢1m)|SOO||5111/ 2| 2
(19)
x AP Y(e, ) P,
| U
The smooth function of order one
Y(e, 0) = (2/[e1])°[5,~ D%/ (2lsiulS)]  (20)

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90

783

logW, arb. units

L
S
T

0 2 4 6 8 10 12
Energy/ponderomotive potential

Fig. 2. Rescattering spectrum in the direction of polarization
of thefield, cal culated using equations (16) and (19) for ion-
ization of helium (I = 24.6 eV) by Ti:Sa-laser radiation
(o= 1.58 eV). Curve 1: intensity 2 x 10™* W/cm? (y = 1,
z- = 30, F/F, = 0.03). Curve 2: intensity 10> W/cm? (y =
0.46, zg = 148, F/F, = 0.07). The curves are normalized to
unit value of the direct-ionization probability (dotted line) in
a state with zero energy. The arrows mark the locations
where the distributions (16) and (19) match.

vanishes on the classical boundary and assumes posi-
tive and negative values, respectively, for € > £4(0) and
€ < g4(0). It follows from the properties of the Airy
function Ai(x) that the distribution (19) has no singul ar-
ities at the classical boundary and describes the transi-
tion from monotonic decay beyond the limits of the
classical region to an interference structure with min-
ima and maximainside this region.

The distributions (16) and (19) match fairly well in
the classically alowed region. In thefirst place, replac-
ing Ai(x) in equation (19) by its asymptotic form (the
term s, in equation (20) must be neglected in so doing)
and averaging over the oscillations (sin’dp, — 1/2)
givesaresult which isliterally identical to the distribu-
tion (16), in which the sign-alternating term must be
dropped and the contributions w_ = w, must be taken at
the same point (¢gm, ¢1,). [N the second place, super-
posing the spectra tabulated according to the complete
formulas (16) and (19) shows that on a small section
(marked by arrows in Fig. 2) the interference spikesin
both curves coincide to graphical accuracy. An estimate
[17] showsthat a match obtains near the energy

£4(6) = £,(0) — (40-60)z7°U .

The existence of a match is an additional argument in
favor of the approximation (18).

The small term y?/2sing,, arising from the differen-
tiation of theterm | ¢, in the phase (12) and equal to the
ratio of the width of the oscillating potential barrier to
the amplitude of the electron oscillations in the laser
field, was dropped in equation (13). Just asin the prob-
lem of the generation of high harmonics[24], this con-
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1D 2D 4D

Fig. 3. Angular distributions of electrons with energy & = 7U,,

calculated from equation (19) and averaged over aGaussian
intensity distribution at the laser focus in accordance with
equation (23). The curves are normalized to a unit value at
the maximum. The peak intensity at the center of the focus

is 3.5 x 10 W/cm?, which corresponds to y = 0.77 and
z==51foraHeatomand aTi:Salaser. Thefirst figure shows

the unaveraged distribution. The second figure showstheresult
of one-dimensiona averaging (for example, over the temporal
nonuniformity of the laser pulse), and so on.

tribution shifts the classical boundary of the spectrum
into the high-energy range by an amount of the order of
the ionization potential.

4. DISCUSSION OF THE RESULTS

The spectral-angular distribution of the rescattered
photoelectrons (16), (17), and (19) agrees with the
numerical results of model, but precise, quantum calcu-
lations [11, 12] and describes these experiments com-
pletely satisfactorily [3-5]. Our approximate expres-
sions show explicitly the dependence of the character-
istics of the distribution on the parameters of the atom
and the laser.

4.1. Interference Sructure of the Spectrum

Figure 2 shows the el ectron energy spectrum, calcu-
lated using equations (16) and (19), in the direction of
the field. Just as in [11, 12], the interference spikes
increase in size as the plateau boundary is approached,
so that the last maximum, beyond which the distribu-
tion decays into the classically inaccessible region, has
the largest width and the greatest height.

A change in the laser intensity changes the number
of spikes within the plateau. Calculations show that the
function s, (e/U,, 8 = 0) decreases monotonically,
amost linearly, from the value s, (2, 0) = 1.33to O at
€ = 10U, Hence it follows that within the plateau there
are approximately z-/4 interference maxima, whose
width Ae = 8w on most of the plateau is independent of
theintensity. A different characteristic scale is obtained
from equation (19) for severa interference maxima
adjoining the classical boundary. Thus, the distance
between the greatest maximum at the end of the spec-
trum and the preceding dip is

Ae=4U W™,
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In estimates of other dimensions of the interference
pattern in this part of the spectrum, only the numerical
factor will change.

A decrease of the laser intensity decreases not only
the number of spikes but also the degree of modulation
of the interference pattern (see curve 1 in Fig. 2). The
reason isthat for alarge value of theratio F,/F theinter-
fering amplitudes differ more strongly from one
another because of the tunneling exponential. The
interference relief structure remains only at the end of
the plateau, where w, and w_ are always close.

The heights of the maximain the spectrum (Fig. 2)
and in the angular distribution (Fig. 3) vary monotoni-
cally. Similar plotsin [11, 12] show that the individual
maxima destroy this monotonicity. The nonmonotonic-
ity is due to the contribution of the subsequent returns
[25], which were neglected in our calculations.

4.2. The Atomic Potential and the Form of the Spectrum

Thusfar, the form of the scattering potential has not
been specified. The question of the choice of a potential
does not arise in the single-electron problem (hydrogen
atom); the potential in the rescattering amplitude (4)
must be the same as the potential used to find the initial
wave function in the direct-ionization amplitude. How-
ever, if the model with one active electron is applied to
a multielectron atom, it is natural to assume that the
freed electron moves in the average field of the atomic
core. To calculate the initial state of the external elec-
tron in this complex potential, large distances, where
the nuclear charge is screened essentialy to 1, are sub-
stantial. At the same time, the energy of the electrons
returning to the parent ion is of the order of U, > |, and
their scattering into a state on the plateau is determined
by the structure of the average potential at short dis-
tances. For thisreason, it is physically entirely justified
to use different potentialsto calculate the direct ioniza-
tion and rescattering.

The experimentally observed behavior in the elec-
tron distributions on the plateau [3-5] is described well
by the expressions (16), (17), and (19) with a potential
of theform

U@ = 4 Z-n(@}/d",
where the electron density for heliumis

(21)

n(g) = 1/(1+q°/16)°,
and for asingly charged ion of a complex atom

n(g) = (z—1)/[1 + (O.48qZ_”3)2}

(see [26]). For rescattering into a state on the plateau
the transferred momentum is determined primarily by
the magnitude p of the final momentum (see the discus-
sion preceding equation (11)). For this reason, the fac-
tor U?(q) in equations (17) and (19) strongly influences
the energy spectrum and has virtually no effect on the
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form of the angular distribution. The small slope of the
plateau in the direction of high energies[4] isdueto the
Coulomb factor g2 in equation (21). A zero-radius
scattering potential gives a horizontal plateau [11]. On
most of the plateau the transferred momentum is much
greater than the atomic momentum and the effective
chargein equation (21) is close to the nuclear charge Z,
i.e., for otherwise equal conditions, rescattering by
heavy atomsis more effective [4, 13].

The plateau level with respect to the direct-ioniza-
tion spectrum moves lower as the laser intensity
increases [4] (see Fig. 2). Since

U*q) O0e?0Uy
and at the moment of return
A OASOF,

the field dependence in equation (17) can be written in
the form

dw, . 7 02F,0
em OC(F)F XPE3ED

while for direct ionization

de 2 -1 D 2Fa[|

e OC(F)F XPE3ED
The ratio of these probability densities decreases with
increasing field as F-°. Multiplying the density by the

corresponding phase volume for rescattering pi OF3

and for direct ionization (pé P« O F2, we find that

the fraction of the electrons rescattered into all states of
the plateau varies with the field as

H=W/W,OF

The experimentally measured dependence has the
form [4]

Hep O F .

We notethat 1 does not depend on the Coulomb correc-
tion C(F), but it depends strongly on the form of the
scattering potential. For scattering by a zero-radius
potential p O F15, The Landau—Dykhne method [27]
givesthe correct position of the plateau boundary but it
does not permit discussing the relative height of the pla-
teau.

Taking account of the Coulomb factor C(F) for scat-
tering by the hydrogen atom (Z = 1, n(p) = 0) the total
rescattering probability is

W. = Ayexp(-2F,/3F),

where A is a number of the order of 1, arising in the
integration over dimensionless variables.
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4.3. Angular Distributions

Thefirst diagram in Fig. 3 for electrons with energy
€ = 7U, (see[17] for amore detailed discussion) dem-
onstratesthetypical, for the center of aplateau, angular
distribution where the side maximum predominates. As
€ increases, the cone angle into which scattering occurs
and the number of interference spikes within the cone
angle decrease. In this part of the plateau the angular
distribution is described by equation (19) and is deter-
mined primarily by anAiry function. Intheregion 6 < 30°,

£>8U,andfor z2° > 7.7 itsargument is approximated
well by the expression

X, 0) = Z2°Y(e, 0) = o.13zESEU£ ~10+7.86°5 (22)
p

which makes it possible to find easily in an explicit
form the position of the characteristic points and the
critical values of the energy, which determine the qual-
itative change in the form of the angular distribution.
Specifically, the positions of the large side maximum
Bmax(9Up) = 17.5° and 6,,(8U,) = 27° predicted by
equation (22) with z- = 146 do not differ much from the
numerical results 6,,,(9U,) = 20° and 6,,,(8U,) = 30°
[12]. At the end of the plateau the angular diagram con-

sists of a single lobe of width zz;m, extending in the
direction of thefield.

Ase decreases below 7U, compared with Fig. 3, the
scattering cone expands and the number of interference
spikesincreases. In these angular diagramsthe distribu-
tion (19) describes a large outer maximum and its
immediate vicinity. The rest of the distribution must be
calculated using the formula (16). The spikesnear 8 =0, Tt
are lower than near the maximum angle and, there-
fore, averaging the distribution over the interference
oscillations (actually dropping the last term in equation
(16)) gives a smooth angular distribution with a mini-
mum in the direction of the field. For energies close to
8U, the ratio of the height of this minimum to the
height of the main side maximum, estimated using

equations (19) and (22), is:z;”3 [17]. Henceit follows

that the minimum in the average angular distribution at
0=0, mtisadeepdip for zé’s > 1 and asmall decrease

for z=> of the order of 1. The angular distribution of

rescattered electrons with a deep dip in the direction of
the field was first predicted on the basis of a three-step
model [8]. It was concluded that the model underesti-
mates the rescattering by angles close to 0 and 1@ How-
ever, as shown below in Subsection 4.4, the three-step
model adequately describes precisely this range of
angles, but it is inapplicable near the large side maxi-
mum and therefore cannot correctly predict its height.

A dip is not seen in the angular distributions mea-
sured in the tunneling regime on the plateau [4]. Thisis
due to the nonuniformity of the laser radiation. In a
field with envelope F(r, t) the contribution of the space-
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time point to the measured density of the momentum
distribution is proportional to w(e, 6, F(r, t))d3rdt,
wherew(g, 6, F) isdetermined in equation (16) or (19).
Integrating this expression successively over separate
variables, it is possible to trace how a superposition of
the distributions corresponding to different laser field
intensities averages and smears the interference pat-
tern. Thisis especially easily done for a Gaussian field
profile in space and time, for which the result of the
n-fold integration (1 < n < 4) hasthe form

(e, 6)0} O Iu”‘lw(s, 8, F(u))du, (23)

where
F(u) = Foexp(—u2/2)

and F, is the peak field in the focused laser pulse. It
should be underscored that in the integral (23) the elec-
tron energy ¢ is fixed, and the dimensionless combina-
tion &/Up(u) appearing in the momentum distribution
depends on the variable of integration. Figure 3 shows
the evolution of the angular distribution of electrons
with & = 7U,(0) in subsequent averaging. The last dia-
gram attests to the fact that for field and atom parame-
ters which are standard for a modern experiment com-
plete averaging over the volume of the focus and over
the time compl etely smearsthe interference pattern and
the expected minimum of the angular distributionin the
direction of polarization. This diagram agrees qualita-
tively with the measurements performed in [4].

4.4, Relation with the Three-Step Model

We now switch in the probability (16) from quanti-
ties characterizing the final state (p, 6, B) to the vari-
ables (¢, 6y, B) used in the three-step model [8]. The
equations (13)—(15) give the relation between them.
The azimuthal angle (3 in both sets of variables is the
same. We have for the differentials of the variables

d$,dQ, = JdpdQ, (29)
where the Jacobian of the transformationis
_ 0(cosBy, 9o)
~ 0(cosh, p)
_ (0cosBy/acosB),.  p’sind,
(0p/0¢0)e piD|
Dropping the interference term in equation (16) and
using equation (25) aswell asthefact that w_and w, are
determined as functions of ¢, respectively, in theinter-

vals U2 < ¢y < ¢,(6) and ¢,(6) < ¢, < 11, we obtain in
the new variables

(25)

aw, = —2D W (F(o0)

(26)
TAZ (01, §o)

dt,dQ,
—==.
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Here1v2 < ¢, < tand the following notations have been
introduced:

a(q) = (U(g)/2m)°

is the Born differential scattering cross section, q =
2pe|cosd, — cosdylsin(By/2);

W(F) = IC¥F)(F/F,)exp(—2F,/ 3F)
is the probability of ionization by a static field; and,
F(do) = Flsing,, T = 2 w.

The formula (26) determines the probability per unit
time that at the moment of return Wg(¢,)dt, eectrons
freed in atime dt, are scattered into the solid angle dQ,,
this corresponds precisely to the assertion of the three-
step model. Thus the three-step model and the approx-
imate quantum calculation by the saddle-point method
using isolated stationary points give the same (to within
the interference term) distribution of rescattered elec-
trons, only written in different variables.

It follows from the equivalence of these two
approaches that their regions of applicability are the
same and therefore the three-step model isinapplicable
near the classical boundary. In the variables of the
three-step model (26), the distribution itself has no sin-
gularities. The transformation of variables

(90, 8) — (P, 6)

introduces a singularity, and therefore it is of a univer-
sal character: it is conserved for any form of theioniza-
tion-time distribution and of the scattering cross section
as well as when the effect of the Coulomb field of the
ion onthe classical electron trajectory in the continuum
is taken into account.

Ordinarily, in the three-step model [3-5, 8] the tran-
sition to measured quantities is done numericaly. The
distribution given on adiscretegrid (¢, 6,) isprojected
onto the grid in the (p, ) plane. The finite sizes of the
grid cells mask the singularity of the transformation.
The singularity is nonetheless manifested in the fact
that asthe size of the cellsin the plane of thefina states
(p, ©) decreases, the distribution increases near the
classical boundary while remaining unchanged in the
interior region of the phase space. Apparently, this
computational instability explains the maximum in the
energy spectrum in Fig. 3in [3] aswell as the exceed-
ingly large magnitude of the angular distribution near
the limiting rescattering angle [8].

5. CONCLUSIONS

The semiclassical anaysis, presented above, of the
electronic distributionsin the region of the high-energy
plateau makesit possible to describe in an explicit form
the dependence of the distributions on the parameters
of the laser field and the atom. The theory preservesthe
freedom of choice of the specific form of the potential
of the parent ion and contains no other free parameters.
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The results presented agree well, not only qualitatively
but also quantitatively, with measurements in the tun-
neling regime and with the numerical calculations of
the interference structure of electronic distributions
performed using a generalized Keldysh model.
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Abstract—An universal description of the polarization bremsstrahlung of afast charged particle on a multi-
electron atom (Z > 1, Zisthe nuclear charge) is obtained using the local electron density method and the Tho-
mas—Fermi statistical model. It is shown that the cross section of the process can be represented in the form

doPB(w) = Z2dGT5(v) , where the function d&" °(v) exhibits approximate scaling with respect to the parameter
w/Z =v, and the corresponding R factor (ratio of the cross sections in the polarization and ordinary channels)
is greater than 1 in a wide range of frequencies and reaches its maximum value at frequencies w =ZRy. It is
demonstrated that in the frequency range p,c < #iw < y?p,C (Y is the relativistic factor, p, is the characteristic

momentum of the atomic electrons, and c is the speed of light) the angular distribution of the polarization
bremsstrahlung of arelativistic charged particle undergoes narrowing due to the compensation, by the momen-
tum of the emitted photon, of the momentum transfer from the incident particle to the atomic core. © 2000

MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The local electron density method, which is widely
used to calculate atomic characteristics [1], has been
used to investigate polarization bremsstrahlung and its
interference with ordinary bremsstrahlung in the case of
strong inelastic scattering of quasiclassical electrons
with moderate energies by ions with acore [2]. Thisis
situation is of current interest for radiation processes
occurring in plasma with the participation of plasma
electrons with thermal energies. The advantages of the
local electron density method are due to the universal,
for al atoms, character of the results which it yields. It
is of interest to use this approach to calculate the polar-
ization bremsstrahlung of a fast, including relativistic,
charged particle on a multielectron system.

Asiswell known [3], avariety of features appear in
the bremsstrahlung of a relativistic electron (positron)
in the ordinary (static) channel: the directional pattern
of the radiation becomes narrower as the energy of the
incident particle increases, and a density effect, which
suppresses the static bremsstrahlung at low frequen-
cies, arisesin the radiation in amedium. Asfirst shown
in [4, 5], polarization bremsstrahlung is modified in a
special manner for relativistic particles. its spectra
Ccross section increases logarithmically with increasing
energy of the incident particle, and for not too short
wavelengths (A > R,, A is the wavelength of the radia-

tion and R, is the characteristic size of the atom) the
directional pattern retainsits dipole character.

The purpose of the present paper is to investigate,
using the local electron density method for a Thomas-
Fermi atom, the frequency and angular dependences of
the polarization bremsstrahlung cross section of a fast
charged particle.

2. POLARIZABILITY OF A THOMAS-FERMI
ATOM IN THE LOCAL ELECTRON DENSITY
APPROXIMATION

Asiswell known [6], the main characteristic deter-
mining the bremsstrahlung cross section in the polar-
ization channdl is the nondipolar dynamic polarizability
of the atom a(w, g). The systematic quantum-mechanical
calculation of this quantity for a multielectron atom is a
very complicated computational problem that must be
solved anew for each specific target [7].

In this connection it is helpful to use simple univer-
sal models suitable for estimating the polarization
bremsstrahlung cross section and determining the gen-
eral qualitative characteristics of this process.

One such model isthelocal electron density method
(or local plasma frequency method), first proposed by
Brandt and Lundquist for calculating the photoel ectric
absorption cross section of multielectron atoms [1].

1063-7761/00/9005-0788%20.00 © 2000 MAIK “Nauka/Interperiodica’
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In this model the expression for the dynamic polar-
izability of an atom hasthe form

ae) = [—STd_

0

(D)

Wi(r) -’ —i0

Here wy(r) = JATe’n(r)/m is the local plasma fre-
guency, which depends on the local electron density
n(r) of the electronic core.

The Thomas—ermi approximation will be used below
for the function n(r). This approximation gives[8]

- - 72000 0O
nr) = ne(r) = Z fGTFD

_ 32 (M)
f(x) = 5050

)

Here r{r = bay/Z"® is the Thomas—Fermi radius (b =
(918/128)V3 =~ 0.8853, a, is the Bohr radius, and Z isthe
nuclear charge), and x(X) is the Thomas—Fermi function.

The expression (1) can be transformed into a form
that reveals the similarity (scaling) law with respect to
the parameter v = 2Aw/2RyZ (Ry = 13.6 eV):

b3 3

a(v) = reB(v) = 2B(Y). (13
Here adimensionless complex function 3(v) (the reduced
polarizability of a Thomas—Fermi atom) has been intro-
duced. The imaginary part of this function is (the prime
denotes differentiation with respect to the argument x)

f(x,)X;

Im{BW)} = s

and the real part can be calculated from the Kramers—
Kronig relation:

(32)

Re{B(V)} = %J[ Im{ B(v)} - ImN{ZB(G)} Vv (30)
: vV —v
In equations (3a) and (3b) the quantity X, is determined
by the solution of the equation

amtf(x) = V> (%)

The dependence g(v) of the ratio of the modulus of
the function (v), calculated using equations (3a) and
(3b), to the modulus of its high-frequency limit (B, (v) =
—v2) ispresented in Fig. 1. The figure also shows for a
Krl atom the corresponding dependence reconstructed
from the data of [7], where the dynamic polarizability
of an atom was calculated quantum mechanically on
the basis of the random-phase with exchange approxi-
mation.

It is evident that the function g(v) = v?|B(v)| for a
Thomas-Fermi atom is maximum for small values of

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90

789
IBV)/Be (V)
201
-
0.5
0 | s | 8 | 12
\Y)

Fig. 1. Dynamical polarizabilities, normalized to their high-
frequency limit, as a function of the dimensionless fre-
quency v = Aw/2Z Ry for aKrl atom according to datafrom
[7] (curve 1) and for aThomas—Fermi atominthelocal elec-
tron density model (curve 2).

the dimensionless parameter v = 0.5 and approachesits
high-frequency limit for v > 10.

However, it should be kept in mind that the approx-
imation used becomes inadequate at low frequencies
v <0.1, since, on the one hand, the local plasma fre-
guency approximation for the polarizability (1) of the
atom works poorly, and on the other hand the peripheral
regions of the atom, where the statistical model isinap-
plicable, contribute to the polarizability at these fre-
guencies. Indeed, a calculation using equation (4) gives
Xo1 = 3.4, X, = 0.64, and x5 = 0.053, while the region of
validity of the statistical model inthe variable xisdeter-
mined by the inequality Z2° < x < Z*%.

Consequently, the analysis below will be confined to
the range v > 0.1. We note that for Z = 50 this corre-
sponds to photon energies 4w > 130 eV, which ismuch
higher than the ionization potential of the outer electron
shell of a neutral atom, so that the electronic core can
be assumed to be “unfrozen.” In addition, as one can
see from the values of x, presented above, the inequal-
ity X, < 3.4 holdsin this frequency range. According to
[9], the limiting reduced radius of aneutral atom as calcu-
lated in the Thomas—ermi—Dirac model (with exchange)
is approximated well by the formula x, = 42°4. Thus, in
our case (Z > 1) x, < Xy and the results of the further
analysis are essentially independent of the refinements
of theinitial statistical Thomas—Fermi model; they are
also valid for ions with a sufficiently low ionization
density, if x,(Z/Z) > x,, which is confirmed by the cal-
culation performed.
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As one can see from Fig. 1, good agreement
between the modulus of the dynamic polarizability of a
Thomas—Fermi atom, calculated in the local e ectron
density approximation, and the results of the quantum-
mechanical calculations [7] obtains for the dimension-
less frequency v > 2. Both approaches give the same
values of the frequency at the maximum of the function
g(v): v =0.50r A, =490 eV, so that 7itg > 1(Krl) =
14 eV and the electronic core of Krl can be assumed to
“unfrozen.” Near the maximum of the function g(v) the
difference isless than 30% in the case at hand.

Asshownin [2], the static polarizabilitiesin the sta-
tistical model on the basis of the local electron density
approximation agree satisfactorily with the results of
more systematic calculations [10], performed in a sta-
tistical model of the atom, and with the experimental
results.

3. POLARIZATION
BREMSSTRAHLUNG CROSS SECTION

The spectral polarization bremsstrahlung cross sec-
tion of a fast electron on an atom is described in the
Born approximation by the expression [6, Chap. 5]
(hereafter, we employ the relativistic system of units,
hA=c=m,=1)

dO_PB wS
do  (2m°v (5)
x [dQ,dala(w, g + K)I“[n x A(@)]°8(c0 + q V).

Here dQ,, is the solid angle in the direction of emission
of the photon, k and w are, respectively, the wave vector
and frequency of the bremsstrahlung photon, g =p; — p;
is the change in the momentum of the incident particle,
and A(Q) is the space-time Fourier transform of the
vector potential of the electromagnetic field of the inci-
dent particle, which in the axial gauge (A, = 0) isgiven
by the expression

4re q-vq’
0 2°
9°-(q)
We note that the formula (5) is of aclassical charac-
ter: it does not contain Planck’s constant, and it can be

obtained on the basis of classical calculationsfor auni-
formly moving charge.

In what follows we shall calculate the bremsstrahl-
ung cross section in the Born-Bethe approximation, in
which one can set

a(w, q) = a(w)8(p.—0a), (7)

where 6(X) is the unit step function.

A’ q) = (6)
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We shall use the Thomas—Fermi momentum p, =
ZY3/(ba,) as the characteristic atomic momentum.

The integral in equation (5) can be calculated ana-
lytically in the Born-Bethe approximation (7). The
result, however, remains unwieldy. Consequently, we
present here a general formulawhich explicitly singles
out two characteristic frequency ranges (w < p,v and
w > p,Vv) for the spectral polarization bremsstrahlung
cross section in terms of asingle integral over the mag-
nitude of the transferred momentum:

do™® _ 4¢°
Q- V—|0((00)|

22— o (6, Py =) + Hyfo)]

0
+GB‘J 1+ v%_' B*) (\;)ED ®

Pa

d
1((*) qmln) - J.Gl(q, 00) q qz 21
qmln ( _w )
Pa—w d
HAW = [ Ga )L
w/v (0" - )
Here
2
_ Pa=(a-w)’ 2 5., o
G, = 2000 [00 vo+q -50 +2q2V2}
Pa (A=), M2 524 39
S[D 2wg U 1}[(1 2% +2q2v2} (5
_ 5. 2[0,2 50,4 2
G, = 20°H -3+ 34"

The formula (8) in the frequency range w < p,V,
where the first term in braces contributes to the cross
section, reducesin the*largelogarithm” approximation
to the well-known expression for the spectral polariza-
tion bremsstrahlung cross section of arelativistic inci-
dent electron [4, 5] (see dso [5, Chap. 5):

2ypav
Inoo(1+v)’ w<pv, (9

do™ _ 16w’ a(w)’
dw 3v?

wherey = (1 - v¥)2istherdativistic factor.
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Fig. 2. Curves of the R factor versus the reduced frequency v, calculated for bremsstrahlung of afast electron (y= (1 — vz)‘ﬂz—relar
tivistic factor) on a Thomas—Fermi atom with nuclear charge Z: (a) y=10; Z= (1) 60, Z = (2) 30; (b) Z=60; y= (1) 3, y=(2) 10.

Switching in equation (9) to dimensionless vari-
ables using equation (1a) and the definition of the Tho-
mas—Fermi radius, we obtain the following expression
for the spectral polarization bremsstrahlung cross sec-
tion:

2,6
16Z°b |V2

PB _ Z(B
do™(v) = == 'S

B(v)
» (10)

_ -2 ,~PB
W—ch (V)

xIn

In equation (10) we have introduced the function

dG">(v) , which can be naturally called the reduced cross
section for the process, sincein the case of the polarization
bremsstrahlung of a fast incident particle, considered
here, an approximate scaling in the parameter w/Z
holdsfor it, while the dependence on the nuclear charge
isonly logarithmic.

The spectral cross section for ordinary (static)
bremsstrahlung taking account of the screening of the
nuclear field [3] in the case of weakly inelastic scatter-
ing of an electron is given by the expression

_ 16Z%dw, v

3V2 W Pa

do®®(w) W< P,V. (11)

The ratio of the cross sections determined by equa-
tions (10) and (11) makesit possibleto find the R factor
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in the frequency range under study (w < p,v) and in the
relativistic limit (v = 1):

In137y
do® 2 vz?®
Rv.ZY) =5 = BVBOI —57
lnz_us (12)
137
V< ?’

The computational resultsfor the R factor as afunc-
tion of the dimensionless frequency v are presented in
Fig. 2 for various values of Z and y in the range v <
137/Z725.

We note that photon energies #w < 14 keV corre-
spond to the given values of the dimensionless fre-
guency v (for nuclear charge Z = 50).

It is evident that the value of the R factor of arela-
tivistic incident electron is of the order of 1 in awide
frequency range, and it reaches its maximum value of
the order of 2.5-3 for w =ZRy (v = 0.5). The “ sublog-
arithmic” effect of the nuclear charge on the scaling
with respect to Z is vanishingly small, and the effect of
the relativistic factor is stronger.

We note that the interference of the polarization and
static bremsstrahlung channels in the case of arelativ-
istic charged particleis small because of the differences
in the directional patterns of the radiation: the standard
channel gives sharply directed radiation in a cone with
an angle of the order of 1/y[3], whilethe angular distri-
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Fig. 3. Normalized angular dependences of the cross section
of polarization bremsstrahlung of a relativistic electron
(y = 2.3) onaThomas—Fermi atom (Z = 30) for various pho-
ton energies: iw = (1) 50; (2) 5 keV.

bution of the polarization bremsstrahlung for frequen-
ciesw< p,Vv isof adipole character [4, 5].

In the present case of weakly inelastic scattering of
acharged Born particlein the frequency range w < p,v,
small scattering angles, where the influence of the pen-
etration of theincident particleinto the electron core of
the atom is small, make the main contribution to
bremsstrahlung. Here lies the substantial difference
from the situation studied in [2], where bremsstrahlung
of electrons with threshold energies is accompanied by
penetration of the plasma electron into the ion core, the
penetration being all the stronger the higher the fre-
guency of the emitted bremsstrahlung photon.

Asaresult, the frequency dependences of the polar-
ization bremsstrahlung cross section are different for
different degrees of inelasticity of the scattering of the
incident electron. For the process studied in the present
work, the frequency maximum of the bremsstrahlung
cross section is shifted substantially into the region of
high frequencies and decreases more slowly with
increasing bremsstrahlung frequency than the corre-
sponding spectral dependences for emission of thresh-
old-energy photons[2].

In the frequency range w > p,v the law of conser-
vation of energy—momentum makesit necessary for the
incident charged particleto penetrateinto the electronic
core of thetarget. For this reason, remission of avirtua
photon of the intrinsic field of the electron itself into a
photon on atomic electrons loses it coherent character.
As a result, the spectral polarization bremsstrahlung
cross section is suppressed compared with the cross
section for standard bremsstrahlung.
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Asfirst noted in [5], in the relativistic case for fre-
quencies p, < w < y?p, there exists arange of emission

anglesd < ,/p./ w where compensation of the momen-

tum transfer from the incident particle to the target is pos-
sible as aresult of the momentum of the bremsstrahlung
photon, so that bremsstrahlung remains coherent in the
polarization channel.

Thisrange of anglesis determined by the inequality
|Omin + K| < pa, Which can be rewritten in the form

(since gy, = —wv/v? by virtue of the law of conserva-
tion of energy—momentum). Hence follows in the rela
tivistic limit for p, < w < y?p, thefact that the bremsstrahl-
ung in the polarization channdl isdirected, and the charac-
teristic maximum angle of emission is determined by the

quantity ,/p,/ w and not by the reciproca of the relativ-
istic factor, asin the case of ordinary bremsstrahlung.

Theindicated narrowing of the directional pattern of
the bremsstrahlung in the polarization channel as the
energy of the bremsstrahlung photon increases from 5
to 50 keV for anincident electron with arelativistic fac-
tor y = 2.3 and a Thomas—Fermi atom with Z = 30 is
shown in Fig. 3. In the high-frequency range w > p,v
the dimensionless frequency v satisfies the inequality
v > 10 (weassumethat Z > 30), and as one can seefrom
Fig. 1 the reduced polarizability of the Thomas—Fermi
atomiscloseto itshigh-frequency limit: B(v) = B,(V) =
—v~2. The frequency dependence of the polarization
bremsstrahlung cross section in this case is determined
primarily by the integral over the angular variables and
over the magnitude g of the momentum transfer in
equation (5).

The formula (9) is no longer valid in the frequency
range w > p,Vv, and the general expression (8) must be
used to determine the polarization bremsstrahlung
cross section. In this case the second term in bracesin
equation (8) makes a contribution. Analysis shows that
the factor (p,/w)?, determining the smallness of the
contribution of the polarization channdl to the total spec-
tral bremsstrahlung cross section, appears in the expres-
sion for the spectral cross section. However, the spectral-
angular cross section for polarization bremsstrahlung in

the range of photon emission anglesy* <9 < ,/p,/ W is

larger than the corresponding cross section in the static
channel.

The model developed also makes it possible to cal-
culate the cross section for induced bremsstrahlung and
absorption of photons. Such calculations, including the
polarization channel and its interference with the ordi-
nary (static) channel, have been performed and ana-
lyzed recently [11] for thermal-energy €electrons scat-
tered by ionsin a near-resonance laser field. It follows
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from these calculations, specifically, that the magnitude
of the corresponding cross sections in the ultraviolet
spectral range studied is very small even with a reso-
nant external field. The effect will be even smaller in
the nonresonant case considered in this paper. Indeed,
as is well known [12], the cross section for induced
bremsstrahlung and absorption in the standard (static)
channel decreases as the inverse of the fourth power of
the frequency of the external radiation. Since the ratio
of the cross section in the polarization channel to the
static channel does not exceed a value of the order of 1
in the entire frequency range, it is obvious that the
bremsstrahlung cross section in the high-frequency
range considered here (i > 100 eV) will be extremely
small. In addition, a direct photoelectric absorption
channel is open in this case. This channel will prevail
over absorption in the bremsstrahlung channel.

4. CONCLUSIONS

A universal description of polarization bremsstrahl-
ung of a fast charged Born particle on a multielectron
atom (Z > 1) in the bremsstrahlung photon energy
range 2w > 100 eV was given on the basis of the local
electron density method and the Thomas—Fermi model.

It was shown that the R factor, which determinesthe
relative contribution of the polarization channel to the
total bremsstrahlung cross section, possesses approxi-
mate scaling in the parameter w/Z and reaches its max-
imum value R..(y) = 2.5-3, which increases logarith-
mically with increasing energy of the incident particle,
at frequencies wy, = ZRYy.

The decrease in the R factor with increasing energy of
the emitted photon in the low-frequency range w < p,v is
most strikingly expressed right up to frequencies of the
order of 20ZRy, where the modulus of the polarizabil-
ity of the Thomas—Fermi model decreases, reaching its
high-frequency asymptotic value.

In the spectra interval 10ZRy < w < p,v the
decreasein the Rfactor and in theintensity of the polar-
ization bremsstrahlung is weakly logarithmic and is
due to the decrease in the maximum impact parameter.

In the high-frequency range w > p,v the frequency
variation of the intensity of the polarization bremsstrahl-
ung is determined primarily by kinematic factors and by
the breakdown of the coherence of the reradiation of a
virtual photon into a rea photon on the atomic elec-
trons. The decay of the spectra intensity follows a
power law. At the same time, the directional pattern of
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the radiation in the polarization channel becomes nar-
rower, so that & < ,/p,/ w, and in the frequency range
P, < W < y?p, there exists a range of bremsstrahlung

angles, y1 <39 < ,/p,/ w, wherethe polarization mech-

anism prevails over the standard (static) emission mecha-
nism.
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Abstract—It is shown that the rate and degree of ionization of an atom can be controlled by preparing aspecific
superposition of Rydberg states. This effect is due to the Raman interaction of Rydberg levels via resonant
lower-lying levels of the atom. Depending on the initial population of an atom interacting with a strong laser
field, the atom either ionizes completely or exhibits an extremely high degree of stability (in this case the prob-
ability of the atom remaining in abound state when the laser pulseis switched off iscloseto 1). It is shown that
stateswhich are stable against ioni zation decay or, conversely, decay rapidly into the continuum can be prepared
using double laser pulses with a controllable time delay. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

It iswell known that stabilization of an atomis pos-
sible in a strong laser field [1-10]. Here stabilization
means saturation (at a level less than 1) or even a
decrease in the ionization probability of an atom with
increasing field intensity. Two types of stabilization are
distinguished: stabilization of unexcited atoms by the
Kramers-Henneberger mechanism, which appears in
relatively intensefields (>10*W/cm?) [7], and interfer-
ence stabilization of initially excited (Rydberg) atoms
in weaker fields. The physica mechanism leading to
interference stabilization is coherent repopulation of
Rydberg levels as aresult of Raman-type transitionsin
the course of ionization. Such arepopulation can occur
as a result of virtual transitions via the continuum
(\-type transitions) and via lower-lying resonance lev-
els (\type trangitions) (see Fig. 1). Correspondingly,
depending on the predominant transition channel, A- and
\Atype interference stabilization are digtinguished. The
characterigtic radiation intendities at which interference
stabilization appears vary over wide limits, which depend
on the configuration of the quantum system (10%°—
103 W/cn?? for A stabilization and 10°-10° W/cm? for V
stabilization).

If the temporal profile of the laser pulse is square,
then it is best to use the formalism of quasienergies and
guasistationary states to describe an atomin the field of
the laser wave. The corresponding analysis shows that
the stability of various quasistationary states (for a
guantum system using V-type transitions) against ion-
ization decay isdifferent and different quasienergy levels
possess different decay times. The weight of the quasis-
tationary states with long and short decay times and dif-
ferent phase relations between the initial amplitudes of
population of the coherent Rydberg state could be dif-
ferent. In this connection it is reasonable to infer that

depending on theinitial population of the atomic levels,
an atom can decay into a continuum within longer or
shorter times (or, if the interaction time with the laser
field isfixed, depending on the initial population, a dif-
ferent fraction of the atomic population enters the con-
tinuum). The objective of the present work is to check
this conjecture and to formulate the conditions under
which it is possible to observe the dependence of the
emergence of an electron on the initial atomic popula-
tion distribution. The influence of the phase properties
of theinitial state of an atom on the ionization of V and
N\ systems was investigated. It was shown that even
though the decay time of various quasienergy levelsin
a/\ system isthe same, for short times (shorter than the
Kepler period of revolution of an electron on aclassical

Lo

w, Qp

E

m

Fig. 1. Scheme of Raman-typetransitionsviathe continuum
(A type) and lower-lying resonance states (V type), resulting
in coherent repopulation of the Rydberg atom giving rise to
interference stabilization.
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orbit) the initial population of an atom strongly influ-
ences the ionization probability of the atom.

We note that this is the first time that the problem
considered here has ever been formulated. In other
works [1-6, 8-10] concerning interference stabiliza-
tion only one atomic level was initially populated. An
attempt to investigate the dependence of the ionization
on the initial atomic population distribution (on the
basis of a A system) was made in [11], but a compre-
hensive phase analysis was hot made there. An impor-
tant and absolutely new result obtained in the present
work is a prescription for preparing a specia coherent
state of an atom and for controlling the ionization of
this state. We propose that the atom be exposed to two
successive laser pulses. Depending on thetime interval
between the pulses, the electron can either completely
leave the atom and enter the continuum or it can be
trapped, to a high degree, in the atomic levels.

In Section 2 all calculations are performed on the
basis of a model that takes into account only A-type
transitions. In Section 3 similar calculations are per-
formed for amodel that takes into account V-type tran-
sitions. Section 4 is devoted to a discussion of the pos-
sibility of observing experimentally the dependence of
the emergence of an electron on the initial state of the
electron. The basic results of thiswork are summarized
in the Conclusions section. The atomic system of units
(e=m, =% = 1) is used throughout.

2. COHERENT POPULATION AND IONIZATION
OF A A SYSTEM

Let the atom be initially excited in such away that
the Rydberg levels near a certain level E, are coher-

ently populated. Let the frequency of the field, which
ensures single-photon emergence into the continuum

(w> |E,]| ), be such that there are no resonances with

lower-lying levels. Thisis atypical scheme for A-type
interference stabilization.

The evolution of an atom in the field of an electro-
magnetic wave is determined by the nonstationary
Schrodinger equation

oW

i [Ho+ V(®)]W. (1)

Here Hop isthe atomic Hamiltonian and V(t) = —F -
r cos(wt) is the operator describing the interaction of
the atom and the field (F is the amplitude of the laser
field).

To solve equation (1) we expand the wave function
of the atom in afield in terms of the eigenfunctions of
a free atom. We shall assume the polarization of the
field to be linear, and we shall also assume that the
angular momentum quantum number for all Rydberg
levels which effectively interact because of the laser
field is the same (for simplicity, we set | = 0) and that
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transitionsto level swith other orbital angular momenta
can be neglected. We shall also neglect free-free atomic
transitions and we shall takeinto account only theinter-
action of levels with the states of the continuum with
| = 1. The applicability, quality, and possibility of going
beyond the framework of these approximations has
been discussed in detail in [11].

We shall write the wave function WP(t) of theatomin
the form of an expansion:

o = Zan(t)q)n(r)+J-dEaE(t)¢E(r)l )

where ¢,, and ¢ are the wave functions of the discrete
spectrum and the continuum, respectively (nistheprin-
cipal quantum number and E > 0 is the energy in the
continuum).

The probability of ionization of an atom during the
interaction with the pulseis

Wior = 1= [a’, )
n

wherethefunctions a, are taken at the moment the laser
pulseis switched off.

Using the expansion (2), the Schrodinger equation (1)
can be reduced to a system of equations for the proba-
bility amplitudes a,(t) and ag(t). Using the procedure of
adiabatic elimination of the continuum [11, 12], the
functions ag(t) can be expressed in terms of a,(t) and
the equations for the latter can be written as

r

ia, = Enan—iz 2a (4)
.
Here
V. Ve .

is the ionization-widths tensor, Vg = —F - 14 5, and
', g = [@]r|BCare the dipole moment matrix elements.

If the amplitude F of the field does not depend on
thetime, then the system of equations (4) possesses sta-
tionary solutions a,(t) = b,exp(—iyt), which determine
the complex quasienergiesy; of an atomin afield and the
corresponding quasistationary wave functions ;. The
equationsfor the quasi energies and the constants b, fol -
low directly from equation (4):

r

(y_En)bn = _Iz ;nlbn" (5)

In terms of the quasienergies, the solution of theini-
tial problem is determined by a superposition of the
guasienergy states. Specifically, the probability ampli-
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tudes a,(t) in such an approach can be represented in
the form

a, = ch,jexp(_iyjt)- (6)

The expansion coefﬂuents C,; satisfy, in the first
place, the same equations asthe constants b, (5) and, in
the second place, the initial conditions

zcn,j = an(o) (7)

J
(a,(0) are the probability amplitudes of initial popula
tion of the levels).
We shall assume everywhere below that the matrix
elements V, ¢ and the components of the ionization-
widths tensor I, ,; do not depend on the index n: V,, g =

Vi, eandl, w=T, . =l whichisvaidforn>1[13].

The simplest model in which interference stabiliza-
tion can occur is a model in which there are two dis-
crete levels plus the continuum. The complex quasien-
ergies of such a system have the form

AT
V. = Ei+2-is £, ®

where E; and E, are the energies of the discrete levels,
A = E, — E, isthe distance between the levels, and

B = [FD [AD
\Cp0 ~ 020

For atwo-level system the strong-field criterionisT > A.
In this limiting case the widths of the two quasienergy
levels are substantially different: Im[y] = -I' and
Im[y,] =-A%4r . The smallness of the level widthy, for
I > A corresponds to interference stabilization.

The solution of the initial problem for a two-level
model gives

. 2
a0 = | 3022 17 (0) ~ 35 20| ep-iv.0)
—i(r/2)* r/2 .
+ [mal(o) + 2—[332(0)} exp(—iy_t), o
() = [ T557au(0) ~i2 5 Pa0) Je(-iv.0
r/2 A/2-iB y
+| g a(0) +i% 57 2,(0) | exp(-iy.).

The probability amplitudes—a;(0) and a,(0)—of
theinitial coherent population satisfy the normalization

condition |a1(0)|2 + |.512(0)|2 = 1. In the strong-field
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limit (' > A) and at sufficiently long times ('t > 1) the
formulas (9) take the extremely simple form

a,(t) = 3[a,(0) - ay0)] exp(-iv.t),

1 (10)
2y(t) = —5[a(0) —a0)]exp(=iy.t).

In equation (10) we neglected the exponentialy small
terms proportional to the factor exp(—iy.t) ~ exp(-t).

The formulas (10) are interesting in that the proba-
bility amplitudes for an atom to occupy discrete levels
(after the laser field is switched off) are proportional to

the difference of the initial amplitudes (al” — al).

Thus, depending on the value of this difference, the
population of the discrete spectrum could be substan-
tialy different. Correspondingly, the ionization proba-
bility, determined by the expression

Wigp = 1 | exp[ (T —2B)t]

1
~5la”-a (1)

depends strongly on theinitial population of the atom.

Asthefield increases, the argument of the exponen-
tial in equation (11) approaches zero (see equation (8))
and, hence, the exponential itself can be made as close

to 1 as desired. If it is assumed that a'” and af” are

equal to one another in absolute magnitude (|a(°) =

(0)

|a = 1/./2) and only their phases are different, then

the ionization probability of an atom is either 1 (if al”

and a areln-phase) oritiscloseto O (in the opposite

case, when the difference of the phases of a.” and al”

is ! Thus, controlling the phase difference between
the amplitudes of the initially populated atomic levels
makesit possible either to attain completeionization of
the atom or to forbid an electron to leave the atom into
the continuum.

Everything said above is valid only for a two-level
system, and it is not claimed that the description of a
Rydberg atom is adequate. The model of an atom with
an infinite number of equidistant energy levelswith the
same oscillator strengths is found to be much closer to

reality. In such amodel E, = E, + (n—ng)A, where

A= n53 (in the atomic system of units), and the sys-
tem (5) can be rewritten as

I\)I_I

ia, = (n—ny)Aa,—

z (12)

(Inequation (12), energy ismeasured fromthelevel E, .)
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The solution of theinitial-value problem for the sys-
tem (12) gives

ay(t) = [Z(V—Ak)‘z}
k

exp(=iyt) « am(0)
* Z y—nA Z y—mA’
y m
where y are the complex quasienergies levels deter-
mined as roots of the equation

1

(13)

1+ibg 1 -9

2L y-mA
m
In the limit ' > A the solutions of equation (14)
have the asymptotic form [1]

1 C 20
Y=t 1=
5t er
wheres=0, +1, +2, ....
Substituting the expression (13) into equation (3)

gives the following expression for the ionization prob-
ability of an atom when the laser pulse is switched off:

(14)

(15)

-2

Wion =1- exp(_rstrt)

Y (y-ka)”
k

X Z exp[—i (s, — ) At[{[(s;—n+ V2)A—il /2]
n s, s,
x[(s,—n+U2)A+iT g /2]} Z an,(0)ar,(0) (16)

x {[(sy—my + U2)A—il /2]
X [(S;—my+ U2)A +il 2]} 7,

where [y, = 4A/TT is the ionization width of the
guasienergy levels of the atom in the field of an intense
electromagnetic wave [1]. In the strong-field limit the
width Iy, issmall (I'y, < A), which once again corre-
sponds to interference stabilization. Therefore, in a
strong field the expression on the right-hand side of
equation (16) can be expanded in powers of I'g/A. In
the first approximation this expansion has the form

Wion = 1_exp(_rstrt)

(17)
x Ell *i mZm am (0)ar, (0) — %

We call attention to the fact that the formula (17) is
identicd to the andlogousformulafrom[11, p. 190], if the
latter iswritten to the same accuracy as equation (17).
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Itiseasy to seethat if only one atomic level is pop-
ulated at the moment the laser field is switched on, the
second termin bracesin equation (17) vanishes. In such
asituation theionization probability asafunction of the
duration of the laser pulse follows a simple exponential
law (with decay constant I'y,). However, as follows
from equation (17), alarge deviation from this law will
occur if several Rydberg levels areinitially populated.

To simplify the analysis and make it clearer we
switch from the expression for the ionization probabil-
ity to aformulafor the ionization rate. For this we dif-
ferentiate the expression (17) with respect to time

2

Wion = rstrexp(_rstrt) : (18)

z a,(0) exp(—imtA)

It follows from equation (18) that the course of the
ionization process depends strongly on the initia
atomic population. Indeed, if initially N Rydberg levels
are populated, then theionization rate (at thetimet = 0)

will vary from O (when } ~a,(0) =0) to NIy, (when

the phases a,(0) do not depend on m). Correspond-
ingly, at short times (much shorter than the Kepler
period Ty = 2mA™) theinitial population of the Rydberg
atom strongly influences the degree of ionization of the
atom (which in the present case can be calculated asthe
product of the ionization rate by the duration of the
laser pulse).

This influence vanishes at longer interaction times.
Integrating the expression (18) over timein one Kepler
period we obtain
t+ Ty

Wionlt = rstrTKeXp(_rstrt)- (19)

Asfollows from equation (19), on the average over
one Kepler period a fraction of the atomic population
that ionizes does not depend on theinitial population of
the atom. Thisis also confirmed by numerical calcula-
tions (see Fig. 2): theionization curve hasa* step” form
with “steps’ of identical height. Thus, in a quantum
system where population redistribution on the quantum
levels is due to Raman transitions via the continuum
(A type), at times comparable to a Kepler period, it is
impossible to control the emergence of an electron into
the continuum by varying the initial population of the
atom. Thisis probably dueto the fact that ina/ system
the ionization widths of all quasienergy levels of an
atom in a field are identical, i.e., a single parameter
determines the time scale on which ionization occurs,
and an electron emerges into the continuum, on the
average, at the same rate.

We note that if the nonequidistant nature of the
atomic spectrum, as is characteristic for a Rydberg
atom, istaken into account, then the “ step” character of
the curve W,,,(t) will be destroyed for large values of t
(see Fig. 3). For times at which the nonequidistant
nature of the atomic spectrum becomes important, the
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Fig. 2. lonization probability of a A system (equidistant
spectrum), whose initial population is a Gaussian distribu-
tion (a,(0) = Aexp{—(n—np)%/a® +inB}), asafunction of the
duration of thelaser pulse. 8 = (1) O, (2) 172, (3) Tt Values of
the remaining parameters. I'/A = 4, ¢ = 2.0. The computa-
tional scheme contains 17 levels.
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Fig. 3. lonization probabilities for a/A system, whoseinitial
population is a Gaussian distribution (a,(0) = Aexp{—(n —
n0)2/02 +inB}), as a function of the duration of the laser
pulse. The values of the parameters chosen for the calcula-
tionsare: N'/A=9, 0 =2.0,0 =1/2. The curves 1 and 2 cor-
respond to the equidistant spectrum and the real spectrum
of a Rydberg atom, respectively; ng = 60. The computa-
tional scheme contains 17 levels.
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ionization probability curve passes into a curve corre-
sponding to exponential decay with ratel g, .

3. COHERENT POPULATION
AND THE IONIZATION OF A V SYSTEM

For atwo-level system the widths of the quasienergy
levelswere different and, as aresult, the ionization pro-
cess depended strongly on theinitial atomic population
distribution. Isit possiblefor asituation where different
guasienergy levels possess different widthsto arisein a
system that adequately describes a real atom (in the
simplest case, asystem consisting of an infinite number
of equidistant levels coupled with the field by different
matrix elements)?

We shall show that such a situation occurs when the
Rydberg levelsinteract owing to Raman transitionsvia
the lower-lying resonance levels. Just asin the preced-
ing section, we assume that the orbital angular momen-
tum quantum number of the Rydberg levelsisfixed. For
definiteness we shall assume that initially the Rydberg
levels of the s series (I = m = 0), coupled by the field
with the p continuum and a collection of low-lying res-
onant p levels, are populated. For such a system the
wave function of the atomic electron can be written in
the form

W) = 3 E080) + T a,00,(r)

+IdEaE(t)¢ ()

The formula (20) differs from equation (2) by the pres-
ence of the additional term

S (0B

(¢, and &, are, respectively, the wave functions of the

lower-lying levels and the expansion coefficients corre-
sponding to these levels). The formula (3) for the ion-
ization probability of the atom will also change simi-
larly. 1t assumes the form

Wign = 1= [a* = 5 [an” (21)

Here, just asin equation (3), the values of the functions
a, and a,, are taken at the moment the laser pulse is
switched off.

The equations determining a, and a,, in the adia-
batic elimination of the continuum approximation have

the form
iam = Iszém"' Qm, n'eiwtan‘f
>
(22)
. St =l nn
ia, = an,mle R+ Enan—|2%an.,
-

n
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where Q, g = \~/q, g /2 are the components of the Rabi-
frequency tensor.

If |E,| < w, where E, is the characteristic energy of
the initially populated Rydberg levels, then, as can be
easily shown [10], the spacing between neighboring
lower-lying resonance levels can be greater than al
other frequency parametersin the problem. Thus, if the
initially popul ated Rydberg levelsarein resonance with

alower-lying state (i.e., when |E,, — I~Em0 —w|~A, where
A is the spacing introduced in equation (8) between
neighboring Rydberg energy levels and Iémo is the
lower-lying energy level closest to resonance), then in

eguation (22) only one term (the term corresponding to
the index my) need be retained in the sum over m'.

Once again, we shal employ the approximation of
index-independent matrix elements (M, , =TI, Q=
Qg) and an equidistant level spectrum E, (E, = E, +
(n = ng)A). Assuming, as we did in the preceding sec-
tion, that the temporal profile of the laser pulse is
square, we shal solve the system (22) by the method of
eigenvalues (quasienergies) and the corresponding eigen-
Vectors, i.e., we seek the solution of equation (22) in the
form

B, = zémo,jexp(—iyjtﬂmt),
) (239)
a, = ZCn,jexp(—iyjt).

The formulas (23) are a modification of the rela-
tion (6) for an atomic model corresponding to V-type
transitions. Substituting the expressions (23) into equa-
tion (22) easily givesthe general form of the solution of
the system of equations (23):

B(y))

an(t) = QRZA( )exp( iyt +iot).
l

(24)

QR =8)
—(n- no)A]A(Vj)B(yJ)eXp( yt),

40 =Yg,

T 1
A = 1413 T o

T 2 1
-y
ay(0)
Bly) = Zy (N"=ng)A°
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In equation (24), just as in equation (13), a,(0) are
theinitial probability amplitudes for finding an atomin
the nth Rydberg level (it is assumed that initially the
population of the lower-lying resonance level is zero),

and 0 = E, + w- E, isthedetuning from resonance.

The quasienergiesy are determined from the character-
istic equation

0

(Y- 6)zﬂ+| Zy—(n_nO)AD
(25)

2 1 _
I X O S

Let us analyze the role of the parameters appearing
in equation (25). As we have shown in [8], when the
frequency is much greater than the ionization threshold
(w > |E,[)—the condition formulated above—in the
field range where nonlinear effects can be observed, the
Rabi frequency Qg is much larger than al other fre-
quency parameters—A and M'—in equation (25). Then
an approximate solution of the equation can be sought
by expanding in powers of Q" . In the first nonvanish-
ing approximation the real and imaginary parts of y,
have the form

Rely;] = Ell ; [hQ D[% 2%A }

) 29)
imiy) = 5520+
: 2040

As follows from equation (26), because of reso-
nance mixing of Rydberg levels with the lower-lying

level I~Em0 , ionizationisstrongly suppressed (|Im[y]| <),
and alarge number of levels described by the inequality

(27)

are drawn into resonance.

When the condition (27) no longer holds, the reso-
nance interaction of the Rydberg levels with the lower-
lying level En, is negligible, and the quasienergies are
now determined not by the formulas (26) but rather by the
relations obtained by solving the problem of the evolution
of a/\-type system (see equations (14) and (15)).

Asfollowsfrom equation (26), theimaginary part of
individual quasienergies can be made to vanish by
varying the detuning &. For an equidistant spectrum this

situation is realized when the detuning & from reso-
nance satisfies

d = (s+1/2)A, (28)
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where sis an arbitrary integer. In this case the quasien-
ergy level y,isequal to thedetuning 6, and itsimaginary
part vanishes exactly (thisis easily shown by subgtituting
the expression (26) (with j = ) into equation (25)). Thus,
whenthe condition (28) issatisfied, the quasienergy spec-
trum contains an absolutely stable level whose popula-
tionis“locked”: an electron cannot leave alevel y; into
the continuum, irrespective of the duration of the laser
pulse.

Without loss of generality of the exposition we can
remain with the case 6 = A/2, since adding to the detun-
ing & an integer multiple of the value of A can be
reduced to the same case by renumbering the infinite
system of Rydberg levels. The ionization probability
can be calculated using equations (24) only numeri-
cally, and an analytic solution of the problem can be
sought only in the limiting case of long-duration laser
pulses. If a laser field interacts with the atom for a
period of time long enough so that all quasienergy lev-
els with the exception of the level with zero width can
be emptied, then in equations (24) the summation over
j can be removed, retaining only one term correspond-
ing to the stable level y= A/2, since all other terms will
be exponentially small. The criterion for a long pulse
duration for which such an approach isvalid is

[Im[y #zA/2]|t>1, (29)

wheret isthe time during which the pulseinteractswith
the atom. Using equation (26) the latter formulacan be
written as

02 [f_z )
I_D—lejt>l, ] = £1,£2, ...
Ot

R

(30)

To estimate the pulse duration, satisfying the condi-
tion (30), the parameters” and A can be set equal to one
another. In addition, if the inequality (30) holds for
li] =1, then it clearly holds for other values of j. Thus
the criterion for along pulse duration will be

(31)

Here Ty istheclassical period of revolution, introduced
in the preceding section, of an electron on a Kepler
orbit.

The condition (31) is very stringent: the pulse dura-
tion must be several times greater than the Kepler period.
Assuming the inequality (31) to hold, an approximate
(neglecting contributions from all quasienergies
except y = A/2) calculation of the ionization probability
gives
2

2
(Qr/D) . @

1+ 12(Qp/ A

It is easy to seethat when only one Rydberg level is
populated initialy, a,(0) = &, (8,  is the Kronecker

a,(0)
n—ng—1/2

n

ion —
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deltafunction), the formula (32) isidentical to the for-
mulaobtainedin[6]. However, inthe more general case
where several atomic levels are coherently populated
initially, the formula (32) is much richer.

If theinitial distribution {a,(0)} isfixed, then asthe
field increases the ionization probability decreases,
reaching in the limit of alaser field of infinite intensity
the value

2

1 >0,

us
i.e., asthe field intensity increases, the atom becomes
increasingly more stable with respect to ionization

decay. The ionization probability (32) is maximum and
becomes equal to 1if a,(0) isan “even” function of the

differencen—ng (i.e., &, _(n-n;) = @n,+(n=ny)+1+ N = No,
Nox1,nyx2...). Thenthe sum presented in equation (32)
vanishes exactly.

What is the minimum value of the ionization proba-
bility (32) and for what initial distribution isit obtained?
Itisobviousthat if the population amplitudes of the Ryd-
berg levels are initidly chosen so that when the laser
field is switched on they form avector corresponding to
quasienergy y = A/2, then the population of the atom
remains unchanged (because the quasienergy level
does not have the decay width) when the laser field is
switched off, and therefore the ionization probability of
the atom will be zero in this case. Thus, the problem of
searching for the most stable state of an atom reduces
to finding the state vector corresponding to the quasien-
ergy level y=A/2. Itiseasy to calculatethisvector. Tak-
ing account of the normalization, it is given by

a,(0)

1- n—ny—1/2

B, = 1+ T0(Q/A) e,
_ Qn/A 1
[1+718(Qp/0)7 N~ MNo— 12

(33)

a,

We recall that everywhere in the discussion above
we solved the problem of the ionization of a V-type
guantum system in which only the upper levels E,, were
populated initialy. The state (33) will satisfy this con-
dition in the limit of a high-intensity field, Qg > A,
when in equation (33) 5m0 approaches zero. Such a
state gives a minimum ionization probability (32) on
the class of states studied on the basis of thiswork. The
higher the intensity of the laser field, the smaller the
emergence of an electron from this stateiis.

Such a state can be represented explicitly as
1 (34)
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and the formula for the probability calculated accord-
ing to the state (34) has the form

_TP(Qw/B)’ _ 1
1+1(Qe/D0)? 1+ TR(Qr/A)

As follows from equation (35), even in compara-
tively weak fields, for which Qg ~ A, the ionization
probability does not exceed 10% and dropsrapidly with
increasing field (inversely asthe laser intensity).

The formulas (32) and (35) are valid only when the
condition (31) is satisfied, i.e., in the approximation of
a laser pulse with infinite duration. The problem was
solved numerically for finite interaction times with the
electromagnetic field. Figure 4 displaysthe dependence
of the ionization probability of an atom which initially
isinthe state (34) on the laser field strength (expressed
in dimensionless units, V = F/w>®) for different dura-
tions of the laser pulse. As one can seein thefigure, the
probability curve reaches its asymptotic limit (35) all
the earlier the longer the field-atom interaction time,
but even for short pulses with t = T,/6 the asymptotic
limitisreached in fieldsV < 1.

Figure 5 also shows the probability of ionization
from the state (34), but as a function of the detuning d.
Asone can see from thefigure, in astrong field theion-
ization probability is insensitive to a change in the
detuning. This result corresponds to the conclusions
drawn in [10], we showed that in the strong-field limit
theionization of a Rydberg atom becomesincreasingly
less sensitive to the detuning.

W,

(35)

ion —

4. ANALY SIS OF THE RESULTS

As follows from the two preceding sections, the
dependence of the ionization probability on the initial
population distribution on Rydberg levelsinthelimit of
long pulse duration (>Ty) ismanifested only in the case
of a system in which a resonance interaction (V-type
transitions) is taken into account. Therefore a possible
experiment to observe theindicated effect at such times
necessarily requires examining atoms and laser fields
forming a scheme of V-type transitions (i.e., the spec-
trum of the atom and the frequency of the laser field
must be such that the popul ated Rydberg levelsinitialy
are in aresonance state with respect to any lower-lying
atomic level).

All results presented in the preceding section for a
V-type system were obtained on the basis of an equidis-
tant model of an atomic spectrum. However, it is easy
to show that the conclusions drawn in the preceding
section remain valid when the nonequidistant nature of
the atomic spectrum and the dependence of the oscilla-
tor strengths on the principal quantum number n are
taken into account. For thisit is sufficient to show that
for an arbitrary nonequidistant spectrum there always
exists a detuning 6 such that one of the levels in the
quasienergy spectrum will possess zero width. Two

Wio
0.5

0.4

0.3

0.2

0.1

Fig. 4. lonization probability of an V system (equidistant
spectrum) initially in an “absolutely stable” state (34) as a

function of the dimensionless parameter V = F/w3 =

(F/8)Y2. Pulse duration t = (1) Tx, (2) 5Tk, (3) 15Tk,
(4t — oo. The values of all other parameters are 6 =

A/2 and Qé/r = 9. The computational scheme contains 18
levels.
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Fig. 5. lonization probability of a V system (equidistant
spectrum) initially in an “absolutely stable” state (34) as a
function of the detuning 8. V = (1) 0.3, (2) 1.0, (3) 3.0. The
values of al other parameters are t = Ty, QzR/r =9. The

computational scheme contains 18 levels.
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Target

Laser radiation

Fig. 6. Diagram of an experiment designed to observe the
controllable ionization of a Rydberg atom by double laser
pulses.

guestions remain. How can such coherent states whose
ionization is either virtually complete or, conversely,
almost zero be produced? Can the emergence of an
electron be controlled by regulating the initial state of
the atom?

The technology for selectively exciting a distin-
guished Rydberg level is now well developed. If an
atom with one excited level is prepared, then thereisno
difficulty in “smearing” the atomic population over
neighboring Rydberg levels. It is sufficient to expose
the atom to an intense laser field and then, on account
of Raman transitions through the continuum (A type) or
lower-lying resonance state (V-type), the atomic popu-
lation becomes redistributed over levels neighboring
the initially excited levels. Photoionization from the
coherent state produced can be observed by exposing
the atom to a second laser pulse.

However, let usfollow in greater detail the state pro-
duced by thefirst pulse. We require that the parameters
of the pulse—the frequency, intensity, duration, and
pol arization—>be the same as for the second pulse. We
also require that the frequency permit the presence of a
stable state in the quasienergy spectrum (eguation (28)
in the case of an equidistant spectrum). If the duration
of both pulsesis sufficiently long, then there is enough
time for al quasienergy states with a nonzero ioniza-
tion width to decay over the interaction time with the
first pulse. This means that by the moment when the
atom starts to interact with the second laser pulse the
distribution of the probability amplitudes for popula-
tion of the Rydberg levels, more precisely, their abso-
lute values, isidentical to the analogous distribution for
an absolutely stable state.

Does this mean that ionization of the atom by the
second pulse is impossible? A careful analysis shows
that thisis not the case. It is necessary to take account
of the fact that the phases of the amplitudes a,, for expan-
sion of the wave function of an atomic eectron over the
spectrum of afree atom (when the first pulseis switched
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off) evolved differently in time. If adistribution of the
atomic population { a,} was present when the pulse was
switched off, then at the moment the second pulse is
switched on this distribution will be different:

an(o) = anexp(_i EnT)

. . (36)
= { anexp[_l (En - EnO)T]} exp(—l EnoT)'

We designated the distribution of probability ampli-
tudes at the moment the second pulse is switched on in
accordance with the notations used in the preceding
sections. T is the time delay between the two laser

pulses and E, isthe energy level populated up to the
start of the interaction.

For an equidistant spectrum E, — E,, = (n—np)A. It
isobviousthat if the delay time T between the two laser
pulses is a multiple of the Kepler period T, = 2mA~,
then to within an irrelevant general phasefactor the dis-
tribution (36) will transform into {a,}, and at the
moment the second pulse is switched on the atom will
be in an absolutely stable state, the probability of ion-
ization from which is zero. However, the situation will
be qualitatively different for other delay times. More-
over, it iseasy to seethat for T equal to a half-integer of
the Kepler period T, it will be completely opposite- in
this casethe atom ionizes completely. It iseasy to arrive
at this conclusion by noting that if the distribution { a.}

were “odd” (i.e, a, _x = —a, +k+1, K=0, 1,2, ...),

whichisvalid for an absolutely stable state (see preced-
ing section), then the distribution (36) for T = 1A
becomes “even” (a, _x = @ +k+1), and for such states

the ionization probability (32) becomes 1. Thus, the
probability of ionization of an atom by a second pulse
as a function of the delay time varies from 0 (t = O,
Tk, 2Tk, ...) 0L (T =Ty/2, 3T(/2, ...); it iseasy to see
that the ionization probability is T-periodic. (We note
that the periodicity of the structure of this function for a
real Rydberg atom on long timeswill break down because
the atomic spectrum is naturally nonequidistant.)

The technique for producing a pair of pulses sepa-
rated by a controllable delay time is now quite well
developed. An experiment for checking the results of
the theory expounded here can employ the scheme
shownin Fig. 6, similar to the scheme proposed in [14].
Two wide laser beams, propagating in directions mak-
ing an angle a with one another, converge on a target
consisting of a rarefied gas of Rydberg atoms. If it is
assumed that at the point x = 0 the time delay between
the pulses is zero, then at an arbitrary point the time
delay is given by the formula

t = 226n2 =%,
c 2 c

Thus, if the spatial ionization pattern is photo-
graphed after both pulses interact with the atom, then a
periodic structure with period cT/a will be obtained.
Figure 7a shows the dependence of the ionization prob-

(37)

No. 5 2000



PHASE CONTROL OF THE DEGREE OF IONIZATION OF RYDBERG ATOMS

Wion

0.7

0.6

0.5

04

803

20

25
A

0 5 25

TA

Fig. 7. Probability of ionization of a Rydberg atom by successive laser pulses as a function of the delay between the pul ses:
(@ ng=5, My =2, w=4x10s? F=1x103V/em (1 = 3 x 108 W/em?), t = 15T, = 0.3 ps; the computational scheme contains

6 levels; (b) ng = 25, M, =10, 0 =1.7 x 101 571, F = 6 x 10° v/em (I = 1 x 10° W/em?), t = 50Ty = 120 ps; the computational

scheme contains 18 levels.

ability on the delay time between the two pulsesfor the
case at the limit of applicability of the theory
expounded in this paper: the principal quantum number
of theinitialy populated level is relatively small, ny = 5.
Nonetheless, even for such a weakly excited state the
dependence of the decay probability on T isappreciable
(although this dependence is not periodic because of
the strongly nonequidistant nature of the atomic spec-
trum for small principal quantum numbers). Switching
in the plot from the time coordinate to the spatial coor-
dinate x (assuming a = 5°), the characteristic scale of
the structure obtained will be 102 cm. The fact that the
ionization probability isdifferent from zero at 1 = 0 can
be explained by thefact that the first pul se “ washes out”
a definite fraction of the atomic population.

The conditions of an experiment capable of reveal-
ing the dependence of the emergence of an electron on
the initial population of the atom which are consistent
with the assumptions and the approximations employed
inthiswork can be chosen asfollows. n,= 25, m, = 10,

w =1.7 x 10% s (more accurately, the frequency must be
determined taking into account the characteristic features
of the spectrum of a specific atom), F =6 x 10°V/cm
(I'=1x10°W/cm?), t = 100 ps (t is the duration of each
pulse), and a = 5°. In this case the experiment should
give a picture close to the one shown in Fig. 7b (the
period of the spatial structure corresponding to the
curve presented in Fig. 7b is of the order of 1 cm).

5. CONCLUSIONS

Summarizing the results obtained in thiswork, there
is no question that the ionization process for a Rydberg
atom is extremely sensitive to the initial state of the
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atom. However, for two different transition schemes,
A\ and V types, between Rydberg levelsthe effect of the
initial population of the atom on the ionization process
is substantially different.

For aA-type system a coherent initial population of
the atom results either in suppression (right up to com-
plete) of the initial ionization rate or, conversaly, to a
several-fold intensification of the rate. Nonetheless, the
ionization rate is astrongly oscillating function of time
and, as a result, on average over a Kepler period the
same fraction of the atomic population, independent of
theinitial population of the atom, emergesinto the con-
tinuum. Thus, for a/\ system the dependence of theion-
ization process on the initial coherent state of the
atomic electron is observable only at times not exceed-
ing the Kepler period T = 2mA.

The situation is completely different for aV system.
Theionization probability is strongly dependent on the
initial state of the atom, and this dependence is al the
sharper the longer the interaction time with the laser
pulse (this interaction time must at least exceed the
Kepler period). Depending on the state the electron
occupies at the moment the interaction of the atom with
the laser field is switched on, the electron either com-
pletely emerges into the continuum (W, = 1) or,
conversely, it remains completely in the bound state
(Wion = 0).

Such adifferencein the behavior of the A and V sys-
tems can be explained by the fact that for a A system
(containing an infinite number of equidistant energy
levels) the widths of all quasienergy levels are the same
and therefore the decay time of such a system is the
same irrespective of its initial state. For a V system,
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however, the widths are different for different quasien-
ergy levels and, moreover, for a definite choice of field
parameters the state with zero width, absolutely stable
with respect to ionization decay, can be singled out.
The closer the initial population of the atom is to this
state, the more stable the atom isfor an arbitrarily long
interaction time with the laser pulse.

In the present paper the conditions of an experiment
(see preceding section) in which the phenomenon
described can be observed were formulated: the emer-
gence of an electron depends on the initial population
of the Rydberg atom. The results of the numerical
experiment are presented in Fig. 7. It seems to us that
the proposed scheme—improved and modified—for
controlling the ionization of an atom using alaser field
can be used in telecommunications and computer tech-
nology.

Of course, the dependence of the ionization of a
Rydberg atom on the initial coherent population of the
atom is manifested only when al conditions and
assumptions stipulated in the preceding sections are
satisfied. The fundamental condition, and possibly the
one most difficult to satisfy, is the condition that the
atom-field interaction is switched on and off instanta-
neously (the “instantaneousness’ means that the char-
acteristic time for switching the interaction on and off
must be much shorter than the Kepler period). The
degree to which the results of the problem are sensitive
to the approximations is an independent problem, the
solution of which is urgent not only for the present
work but also for other problems concerning the inter-
action of a Rydberg atom with radiation. This question
merits further investigations, but we are confident that
they will not affect qualitatively the results of the
present work.
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Abstract—It is established for a photoionized plasmaformed in the barrier-suppression ionization regime that
the preliminary population of the excited states of the ionizing atoms plays an important role. It is established
that in this case an anomalously strong (several orders of magnitude) increase occurs in the efficiency of gen-
eration of the harmonics of the pump radiation. It is shown that arelative decrease of the harmonics generation
efficiency occurs with time as a result of collisions of the electrons produced by ionization. © 2000 MAIK

“ Nauka/Interperiodica” .

It has long been recognized, correctly, that the opti-
cal nonlinearity of plasma increases when the excited
states of the atoms and ions become populated [1, 2].
Thiswasfirst substantiated in a calculation of the cubic
optical susceptibility of a gas of excited hydrogen
atoms [2]. On the other hand, the concept of using a
power series expansion in the components of the inter-
acting fields to describe the nonlinearly optical interac-
tion has very limited applicability for high-harmonics
generation in plasma [3]. As a result, specificaly, the
answer to the question of the role of the excited states
population in the generation of high harmonics has
never been adequately worked out. In the present paper,
avery large increase in the high-harmonics generation
efficiency under the conditions of photoionization from
excited states is predicted theoretically for harmonics
generation accompanying the photoionization of a gas
in the generation barrier-suppression regime. A quanti-
tative description of this phenomenon is given for a
hydrogen-like atom.

The theory of coherent harmonic bremsstrahlung of
the pump field in plasma, employing the electron-ion
collision integral in the Fokker—Planck—Landau form
[3, 4], has made it possible to write down the following
comparatively simple relation for the density 9j of the
electric current of the source of harmonics generation:

are’e’n A\ . ev

5 - —-r-n;—'-jdp$ fe(p—mug®). (1)
Here eand mare the electron charge and mass, g and n;
are the ion charge and density, A is the Coulomb loga-
rithm, f(p) is the electron momentum distribution func-
tion, and ug(t) isthe oscillatory velacity of electronsin
the pump field. Assuming the electric field E = (E,, O,
0) of the pump waveto be linearly polarized and mono-

chromatic, E, = Ecos(wt — @,), we have ug = (Ug,, O, 0)
and ug,(t) = —Vesin(wt — @), where Ve = (Je|E/mw).
We shall assume, in accordance with the ideas con-
cerning the barrier-suppression ionization regime [5-7],
that an electron is gjected from an atom freely when
the pump energy flux density q exceeds the threshold

value[6] Qgg = (17 [eV]/Z?) x 4 x 10° W cm2, where |
istheionization potential and Z isthe nuclear charge of
the atom. Then, in accordance with [8], the distribution
function of ionized electrons in the coordinate system

of their oscillationsin the pump field correspondsto the
electron momentum distribution in the atom

p) = MV Y RS @
q

where the summation extends over the quantum states
of the electronsin the atom and V, = Ze?/# = ZV, isthe
Coulomb unit of velocity [9].

In the present paper we shall demonstrate that the
population of the high states of an atom influences the
coherent harmonic bremsstrahlung. This influence can
be seen for the example of the ns states of an electron
in ahydrogen-like atom, where

8nsin2(2narctannZ)

F”Sﬂ B 2 2,2\2
mVy ¢(1+n°C)
Then we obtain from the relation (1)

H=Fuf0) = 3)

0], _ 0@ c (2N +1)
st = azoxx Ecos[(2N + 1)(wt—@)], (4)

N=1

where in the strong pump field limit
Ve >V, (5)
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we have 3
_ X0 oXn, 64, 290X0, 820X(f
g2V = Y(@V(Vo) (2N + 1) o E@E%D* 55 " 35080" 35080
x R([2N + 1]V,/ V). . ) .
26 (X' A X, 2 [XOxe
Here 2 * S15080 ~ 35080 * 35500 J
—_ e ne
X@ = =, D where
V(Vy) = 6A(Z/Z)%(1,/5)Q,m;, ® ® dt
Ei(X) = IT exp(-t)
R(X) = z;lz X*G4(X), 9) X

q

(10)

Gy = HUROEZE-CiOfK.
0

where Z; is the ionization multiplicity of theion, |, =
Z2,, O, = (43)a> = Z3 x 6.3 x 10% cm3, a, =

h2Ze?misthe Coulomb unit of length [9], I, = me*/2A2
istheionization potential of the hydrogen atom, and

Ci(x) = I CTl'[cost

isthe cosineintegral [10].
It what follows we shall examine for the ns states of
a hydrogen-like atom the function [8]

_x® _2X°n
S1S(X) - EGns(X) - T[2
w (11)
sin’(2narctann?) (sin X2

~Ci(xQ)g

x (d(
o ey IX

characterizing, in accordance with equation (3), the
dependence of the nonlinear partial conductivity (6) on
the scaling parameter

X = (2N +1)V,/ V. (12)

First, we present here the following expressionsfor n =
1,23

_ X’ i, XgxH
S0 = GREO) g 3D

_ X oXo, 86, 11X
%2d%) = 4néhmzm+ 05 * 15050

+ J‘EP—(DZ + 1 Q(ﬁ%a'm E; (13)
0

50 -~ 15020
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is the exponentia integral [10]. We now consider cer-
tain asymptotic relations for the functions (11). In the
limit

Ve> (2N +1)V, (14
the following asymptotic expression follows from the
formula (11):

_X3D n 2n O
%S(X)—Egln——C+2— —0

(15)
X 4n" =10

where C = y = 0.577 is Euler's constant [10]. In the
opposite limit,

V, < Vg < (2N+1)V, (16)
we have from equation (11)
X @xd"t, 0 Xo
SlX) D41'[(2n Fni0n0 POqo (17

The formulas (15) and (17) indicate the existence of
scaling associated with the variable

_ X _(2N+1)V,
=N T (18)
This makes it possible to write
Si(X) = Sisl8), (19)
where in the case (15)
5yf) = el _chep__2n [
So(€) = 7 Elné C+2 4n2—15 (20)
and in the case (17)
B nSE3(ZE)2n—1
Si(€) = mexp(—z). (21)
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ROLE OF EXCITED STATES IN COHERENT HARMONIC BREMSSTRAHLUNG

For highly excited states (n > 1) the latter formula can
be written, using Stirling’s formula, in the form

n3(n + l)ﬂ2 x 92n=3

Sw(8) =
S 1‘[3/2 ”
2n+2 ( )
L] [l _
X B0 exp(—¢€ +2n+2).
The maximum of the expression (22) occurs at
€ = &max = 2N+ 2, (23)
and then
3 12
= n(n+1 n—
Slfred = UL w202 (24)

The latter formula describes the very strong depen-
dence on the principal quantum number n of the energy
states of an electron in a hydrogen-like atom. For a
hydrogen atom these states correspond to highly
excited states of an electron.

We shall now use the relations obtained above for
the characteristics of the harmonics generation effi-
ciency asafunction of the principal quantum number n.
For this, we shall consider the case of a plane-wave
pump field, which corresponds to

k= 2T am(@.

Substituting the expression (4) into Maxwell equations
in plasma and using the relations (25) gives the har-
monics field in the form of plane waves [3, 4]. Corre-
spondingly, we obtain the following expression for the
ratio of the energy flux density of the radiation of the
2N + 1 harmonic to the energy flux density q of the

pump:

@ = kz, (25)

(2N+1)
N = q—————q
V)~ 2N +1]V 0
- g’zi(f) S (N) S5 e 2
where [8]
h(N) = [NS\I . (N 4 1)} 27)

(2N +1)

The generation efficiency nq of various harmon-

icsis characterized by the function

sﬁgzml] §52N+1]

The approximate formulas (22) and (24) show the
extremely pronounced dependence of (28) on the prin-
cipal quantum number n of the excited state for n > 1.
On the other hand, it is important to know the corre-

(28)
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Curves corresponding to the function (29); scaling variable
& = ([2N + 1]VZInVE).

sponding dependence for small principal quantum
numbers also. We shall show that a sharp dependence,
similar to equation (24), also holds for small values of
n. For this we use the functions

Si(®)

n3(n + 1)112 x 22n—2’

2n€) = (29)

which characterize, specifically, the difference of the

maxima of the functions S.(§) from the scaling corre-
sponding to the law (24). Three curves corresponding
to the functions (29) for 1s, 2s, and 3s states are pre-
sented in the figure. The maximum values of these
curves are approximately the same. This corresponds to
the fact that the scaling (24) holds for small values also.
We note that the corresponding maximum of these
curves is approximately two times greater than the
approximate value which can be obtained from the for-
mula (24). The values of the ratios of the squared
maximum values of the functions determined by the
formulas (13) follow from the figure and equations (28)
and (29):

EﬁZS maxﬁ DSBS maxﬁ
= 1300, = 350 000.
Esls max |$ls max

Thus, ionization from the 2s state increases the maxi-
mum efficiency of harmonics generation as compared

(30)
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with ionization from the 1s state by three orders of
magnitude, and ionization from the 3s state increases
the efficiency by 5.5 orders of magnitude. The scaling
(24) correspondsto theratio

[Dhs max ”‘aXDZ =~ 0.008n" x 2",
l:sls max

The increase in the efficiency of harmonics generation
by electrons freed from excited states is nonstationary.
The time variation of this effect is due to collisions of
electrons stripped from atoms. Since el ectron—ion col-
lisons are suppressed in a strong pump field [3], the
main collisions are e ectron-e ectron collisions, character-
ized by the eectron-electron collision integra Jf., fdl
(see, for example, [11]). However, we shall not require
the explicit form of the collisionintegral here. Thetem-
poral evolution of the electronic distribution function at
short times of the order of the electron—electron colli-
sion time t., (appreciable heating of electrons has still
not appeared) is described by the equation

0fee
ot

In our situation it must be assumed that initialy, at t = 0,
the electron distribution function corresponds to elec-
trons arising from the ns states:

sin %narctan[r:p }D

(31)

= J[fe fel. (32)

VA n
fpt) = el @
EvaD v O

The equation (32) possesses two conserved integrals.
Thefirst integral

Idpfe = n, = const (34
corresponds to conservation of the number of particles
in collisions, and the second integral corresponds to
conservation of the kinetic energy in collisions

Ern
J’ dpEQp Efe = neB—D = const. (35)

02n°0

Aside from this, in accordance with Boltzmann H the-
orem [11], the initial distribution (33) relaxes to Max-
well distribution, for which, according to equation (34),
the electron density is known and the temperature is
determined by the fact that in the final state the integral
(35) isequal to (3/2)nksT, where kg is Boltzmann con-
stant. Thus, the electron temperature is

keT = (mV3/3n%). (36)

Since the temperature is inversely proportiona to the
squared principal quantum number, in the final Max-
wellian state arising after collisiona relaxation the
comparatively cold electrons arising from the excited
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states generate harmonics more efficiently. This can be
seen directly from the scaling of the maximum of the
generation efficiency of high harmonics by Maxwellian
electrons

N+ = 0.006(v,/ N'w)’, (37)

established in [12] (see also the review [13]). Indeed,
since

v = 4JE[e e n;: (39)
3M ™ (kgT)
we have according to equations (36) and (38)
Vg = 1L4n%v(V,). (39)
Therefore, we obtain
NCRE ) 012[\’ (C\O/Z)T NZ (40)

for the efficiency of high-harmonics generation by elec-
trons from ns states after their distribution relaxes to a
Maxwell distribution. According to the latter formula
the efficiency of generation by 2s and 3s electronsis 64
and 729, respectively, times greater than the efficiency
of generation by 1s electrons. However, even though
the increase in the efficiency is comparatively large
compared with the efficiency of generation by 1s elec-
trons, the relaxation to the Maxwell distribution
decreases the relative increase in the harmonics gener-
ation efficiency. Indeed, comparing the consequences
of the formula (40) with the relations (30) showsthat as
aresult of the relaxation of 2s and 3s states to a Max-
well distribution, the relative generation efficiency
decreases approximately by a factor of 20 and 480,
respectively.

A Maxwell distribution is established in the charac-
teristic time

_3mP(ksT) ¥
*© a2ne'nA

1102 10‘13 “
= FOAD

Zin/10" cm™

Consequently, for laser pump pulses with a shorter
duration there is not enough time for the high relative
efficiency corresponding to the distribution (33) to
decrease. Conversaly, for long times the relative effi-
ciency can be described by the law (40), which con-
servesthe relative increase in the harmonics generation
by high s-state electrons, though this effect is not so
strikingly expressed as for an electron momentum dis-
tribution corresponding to the intraatomic distribution.

To understand best the quantitative magnitude of the
effects being discussed, we shall present somerelations
which are convenient for applications. Thus, theratio of
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the characteristic collision frequency and the pump
field frequency can be written as

0
%\% A 8L O o0,
Shw [eV] 0
where fiw [eV] isthe pump frequency and n; [18] isthe
number density of ions in units of 10 cm™=. From

equations (26) and (42) we obtain for the maximum
generation efficiency of high harmonics (2N + 1) > 1

& 17 B max DZ
~2x107° %8
22N 51 e

Hence, specifically, we have for the generation of the

seventh (N = 3) and fifteenth (N = 7) harmonics with
ionization of one € ectron from the 1s state

(42)

(2N +1)
r]ns max

(43)

n(32ma< =11x10 6%?52,

e = 1.2% 10‘9E'Z;g.
i

r]3s, max

Rewriting equation (43) using the expression (24) we
have

n%Nm;i) ~ 53x 10—7[|_1gN—8n724(n—3) <1

Hence, for example, we obtain for the 5s state

n(2N+1) 10. 6[|_|[F -8

ns, max

The last expression shows that our entire analysis is
applicable only when the harmonics generation effi-
ciency is much lessthan 1.

In summary, an anomalously striking increase (by
severa orders of magnitude) in the harmonics genera-
tions efficiency under conditions of ionization of high-
energy electronic states was established for coherent
harmonic bremsstrahlung by plasma electrons pro-
duced by ionization with powerful pump radiation in
the barrier-suppression ionization regime. It was shown
how theincrease in the harmonics generation efficiency
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in the electron—electron collision time becomes less
pronounced. However, the effect remains until the elec-
trons are heated by the pump radiation and the memory
of their effective intraatom temperature (36) is lost.
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Abstract—An equation for the spectral energy density of collisionless Alfvén waves, propagating at arbitrary
anglesto the average magnetic field, is derived on the basis of the theory of weak turbulence. The main nonlin-
ear processes for the case studied areinduced scattering and two-photon absorption of Alfvén waves by thermal
ions. An equation is derived for thermal particles which describes particle diffusion, accompanying these pro-
cesses, in momentum space. Theresults are qualitatively different from previous results obtained by other authors
for Alfvén waves propagating along the average magnetic field. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

It is now known that Alfvén waves are an important
component of cosmic plasma. It isbelieved that most of
the energy of interplanetary and interstellar magneto-
hydrodynamic (MHD) turbulence is contained in
Alfvén waves. The main reason probably is that two
other types of low-frequency waves—ion-sound and
magnetosonic—are subjected to strong linear Landau
damping [1, 2]. For Alfvén waves this damping is quite
weak, and nonlinear effects must be taken into account
in order to investigate dissipation of MHD turbulence.
The main nonlinear processes for Alfvén waves are
induced scattering and two-photon absorption of waves
by thermal ions. The corresponding damping decre-
ments have been obtained by many authors [3-9].
Nonetheless, a complete analysis of the above-indi-
cated effects has still not been performed. Induced scat-
tering of Alfvén waves was first studied in [3], but for
B < 1. Here B isthe sguared ratio of the thermal veloc-

ity of ions vy, = ./T;/m; (T, is the ion temperature in
energy unitsand m istheion mass) to the Alfvén veloc-

ity v, = By /41 py (B, isthe average plasma density).
The case where waves propagate along the magnetic
field was studied in [4—7]. Finally, Alfvén waves prop-
agating at an angle with respect to the average magnetic
field were studied in [8, 9], but the effect of the random
components of the magnetic field, which correspond to
magnetosonic waves, which are second-order in the
amplitude of the Alfvén waves, was neglected. It will
be shown below that taking these components into
account strongly changes the nonlinear damping decre-
ments. Specifically, the interaction of waves for which

the projection of the wave vector on the direction of the
average magnetic field has the same sign isfound to be
impossible.

2. BASIC EQUATIONS

The kinetic approach is the most systematic method
in nonlinear plasmatheory. In the theory of weak turbu-
lence the method entails an expansion of the distribu-
tion function of thermal particles in powers of the ran-
dom field and calculation of the nonlinear currents,
which are then substituted into Maxwell equations.
This procedure applied to Alfvén waves leads to very
complicated expressions containing multiple series
with Bessel functions (see, for example, [3]). For mag-
netized thermal particles these functions must be
expanded in powers of their small argument. These cal-
culations are very complicated. We shall use a different
method, which seems to us to be more attractive from
the physical standpoint also. We shall employ for mag-
netized thermal particles the guiding center equation in
the zero-gyroradius approximation. Thismeansthat we
shall neglect al effects associated with the finite gyro-
radius of thermal particles. The system of equations
employed for the fully ionized plasmais[10]

o+ (uD) Off = —H[B x [0 xB]]

—0Py— (0 b) [b(P;—Pp),

(D

oF,
W + (UE + V”b) (HF,
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INDUCED SCATTERING AND TWO-PHOTON ABSORPTION OF ALFVEN WAVES

;ZF +Ug (b [T)) [b)
2
OF 4 o v
+uEEH/”(b[D)b+(uE[D)b+ab% 0,
0B
% - [ox[uxe]), @
0B =0, @)
zqa J'd?’v F, = 0. (5)

Hereb = B/Bisaunit vector in the direction of the mag-
neticfield B, ug = c[E x B]/B?isthe el ectric-drift veloc-
ity, E; is the component of the electric field E in the
direction of the magnetic field, p and u are, respec-
tively, the density and velocity of the plasma, and
Fa(v), vp) isthe distribution function of thermal parti-

cles of type a. The paralld and perpendicular pressure
in equation (1) are determined by the formulas

P, = Zj'dgvmq(vn—u [b)*F,, (6)

3mVD

Po= Y Jdv (7)
The equation for the guiding center (2) describes the
kinetic effects of thermal particles. For a frozen-in
magnetic field, which is the case considered here, the
electric drift velocity ug is equal to the plasma velocity
component u perpendicular to the magnetic field.

3. SERIES EXPANSION IN POWERS
OF THE VELOCITY OF THE MEDIUM

We shall assume that the average magnetic field B,
isdirected along the zaxis. Wewrite all quantitiesin the
form B = By + 0B, p = p, + &p, and so on, and we
expand them in Fourier series

OB = ZBkexp{i(k 0 —wt)},

op = > dpexp{i(k [F —wt)},

where k = (k, w). All Fourier components should be
expanded in powers of the plasma velocity u, in the
Alfvén waves. The plasma velocity in an Alfvén wave
is directed perpendicular to the average field and the
wave vector. The polarization of the Alfvén waves is
linear. Sinceinthelinear theory of Alfvén wavesdp, =0,
Ek=0, Bx =0, and u, = 0, these quantities should be
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viewed as being of order higher than first. The expan-
sion of equation (2) in powers of the velocity of the
medium makes it possible to determine &F,, in second
order. Substituting this quantity into the equation of
quasi-neutrality (5) makes it possible to find E. As a
result, we have

K, k" 0F oy

k )|: n DaVD

k=K +k" (8)
K, 0Foqvokk;
vk, —0 v, U2 ww'

K2
z [0

%E% =0 1+—00(k k") }

. |B
Ex = m{é}k 0,(k)

)

1 1 1]

= Y 500K k) (u mk--)}.
k=K +k"

Here and below, for conciseness, we drop the averages
of the products (u, - u.), which must be subtracted
from the corresponding product. The quantities o, and
0, in equations (8) and (9) can be expressed in terms of
the average distribution function F, of the thermal par-

ticles:
2 3 -1
1 (0} o dV aFa
O-0(k!k) = |:Zr?]_‘|’ , " \ "avoi|
o ed v (k k) —w -w I
Z J, OF o0 (10
vy (K, +k") w-a' 9V
2 " ..2
G v e i
0 200" i
-1
— qa dV aFch
0(k) = {Z Iv|k wav”}
(11)
d3V VDaFOG

8 Zq“Iv”kz—w—Z— v,

In what follows, we shall require an expression for
the z component of the random magnetic field B,. To
find this expression it is sufficient to expand the Fourier
transform of equations (1) and (3) up to second order
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and multiply the first equation by kg. Finally, smple

calculations give

B _ (Ui Tk (uy OK") (KT CS
Bo e vid  Hwe T

1 Kik;

=5 Z (U [Uk)w-w..
k=K +k'
. kK,
_ (“kf“k)[ 22 (o — K) (12)
(e VAR LOW

vk, vi0F,,
* sz Ej’v”kz—wf ov,

2
ke, Ko
XEkZ[b)' w'd 1+

Here the quantity o, is determined by the expression

‘; o, (K, k")%}.

qa d3V aFO:;( N
NASE
oAk ) = {z Iv”(k +K) - — " av“}

Z J, = 13)
v (K, +k) W —w' 0V
2 2
VoK Lk %
X Eﬂ_ =+ =
O k +k Eh) w
and the denominator

A(K) = kADg(K) + (cak —w°)/ v (14)

corresponds to the dispersion equation of magneto-
sonic waves A(K) = 0. The velocity

Ca = «/Vj_(Puo_PDo)/po

is the group velocity of Alfvén wavesin a plasmawith
anisotropic pressure. Here we are considering aplasma
which is stable with respect to the development of the
firehose instahility. In this case the expression in the
radicand is positive. The quantity Dy(k) is determined
by the expression

8mP
Do(k) = 1+—=+ Mg
0 Z I v”k )
(15)
x EV_D_& ( )DV_Da_FOO‘
02 “YO2 avy”

a
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4. CALCULATION
OF THE DAMPING DECREMENTS

The standard method for calculating damping dec-
rements assumes that a dynamic equation is obtained
for the waves. For this, equations (1)—(3) must be
expanded up to third order in the amplitude of the
waves. Then the equation is averaged, using the ran-
dom-phase approximation [11]. Here we shall employ
a simpler method, which gives the same result. We
derive an equation for the thermal particles and deter-
mine the scattering probability and the probability of
two-photon absorption. In practice, a quasilinear equa-
tion must be derived from equation (2). The difference
lies only in the fact that in equation (2) quantities of
second order in the field amplitude stand in front of the
derivatives of the velocity distribution function. The
resultis

aFch — zk|j/D qa O
ot av”Z B,02 ~m, M0
1 VakK v K
= 0 Az T2 O
"2 Z (Ue L) 75 o "R "W (16)

kK=K+K'
qO( o 2 ki al:Oor
+ma0°(k’k)a i(vk,—w) v’

Using the expression (12) and performing the averag-
ing, we arrive at the equation

0Foq
a° = —ZW(k)W(k D)

x [(K, + k) w(k', k", 6(k), w(k”) (17)

oF
+ (k= k) wik, =k, oK), —oo(k’ ))]avmX

Here, to perform the averaging we employed the rela
tion

[ u 0= d(k+K
U= 9( )0 (18)

x [W(k)d(w — (k) + W(K)d(w + a(k))],

where W(Kk) isthe spectral density of Alfvénwaveswith
the dispersion relation w(k) = ¢,k J. The first term in
brackets on the right-hand side of equation (17) corre-
sponds to two-photon absorption, and the second term
corresponds to induced scattering. The two-photon
absorption probability w(k', k", w(k"), (k™)) is given
by the expression

wik, k", w(k), k") = ——
4p0v
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1

x 3(w(k) + (k") — v y(k; + k7)) AK +K)

z_v_ugg

ok +K )H

2Kk,
wl Ul

x [Zk'ukas'nzda(k'u, ) &

) (0 + Y -+ kY

3 (19)
Comie Mo dv(krk) ViR,
+(kD+kD) ZpoIv”(k'ﬁk'z')—co'—w" 2 aV“

—cos¢ (kn, k

kzD

U
o201+ Eoge 00
Eb.) w my 00

+ vacosh(kp, ki)
2
1+ —oz(k K )a

Here ¢ (k, ko) is the angle between the vectors ko

kzD

g v 2
* ”-B% w0

and k. The evolution equation for the energy density
of Alfvén waves has the form

OW(k) _
ot
and the damping decrement I' (k) can be expressed in

terms of the distribution function of thermal particles
and the probability of two-photon absorption [11, 12]:

= =2 (K)W(k), (20)

F(k) = —(k) y mW(K)
a, k'

x [dV Ik, Kk, K (k). e(k) (1)

0
+ (k. —kw(k, ', w(k), —a(k?))] aFVO:-

Itis easy to see from the expression for the probabil-
ity (19) that waves with identical signs of k, do not

interact. Thisisnot so if k, and k; areformally set to
zero in the expression (19). The same result is obtained
if B, iSset to zero in equation (16). This means that the
propagation of waves strictly along thefield isa special
case (see the discussion below).
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The expression (21) for the decrement with the
probability (19) can be converted to the simpler form

1 wk) D 1 +wE?D
Frk) = =o(k)imy\y ———=
(0= 3 IZBS/4HD Gk, ka0
(Kot kh)™
x Dy(k + K) cos’d(k ., kb) + ﬁ
x (ko kL — 2k (@
O
+ d(kp, ki )Eﬂ. %?D
COS s -
Sy Ekzik
O , c2k k. DD
x Dk £ k) (ko ki)' = =25k, £ k) OO
] DD $_uu>§(lf())

Here the quantities D,(k) and D,(k) are expressed in
terms of the distribution function of the thermal parti-
cles:

dvk

— 9& FOor
Dy(K) = -v z ol et~ m oWy @3
d Vk q(X DVDaFOa
(k>——2 PN [ e U lnp i G
and og5(K) is determined by the expression
qu d 4 aFO(}( _
o) = {Z Iv||k —wav,
(25)
d 4 aFOow

* Zq"J’v”kz—w ov)’

It should be noted that the expression (22) for the dec-
rement can be obtained directly by averaging the
dynamical equation for the waves, but it requires more
laborious calculations. Both methods lead to the same
result, since it is known that three-wave processes, in
which the resonance particles do not participate, are
impossible for Alfvén waves [1]. The plus sign in the
expression (22) corresponds to two-photon absorption,
and the minus sign corresponds to induced scattering.

5. DAMPING DECREMENTS FOR PLASMA
WITH A MAXWELL DISTRIBUTION

Strictly speaking, the particle collision integral,
which describes the approach of the system to a state of
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thermodynamic equilibrium, must be added to the
right-hand side of equation (17). If the particle colli-
sion frequency is sufficiently high, the particle distri-
bution function can be assumed to be Maxwellian (in
this case, the callision frequency must be low enough so
that the waves can be assumed to be collisionless). For
simplicity, we shall assume the plasma to be a purely
hydrogen plasma. In this case the nonlinear damping
decrement (22) can be expressed in terms of the func-
tion J,(x) [1]:

- (26)

Theintegral in thisexpression isto be understood in the
principal-value sense. lons make the main contribution
to the damping [9]. Then the dependence of the quanti-
ties Dy(k), D4(K), and D,(K) on the wave vector and fre-
guency reduces to a dependence on the quantity x =
(*yv‘ﬁ Ikzl:

D) = 1428300 + BT A ey @D
—1 1- ‘]+(X)

D:) = B F I3 /7.—3.00" (28)

D, = O+ 10 _2= ) (29)

T+ T/ Te=3.(X)

Here it was assumed that ions and electrons can have
different temperatures T, and T, since temperature
equalization occurs more slowly than Maxwellization
of the ion and electron distributions separately. None-
theless, the expression (22) is still quite complicated.
Two extreme cases will be examined below: small and
large 3.

(1) B < 1. Inthis case induced scattering, described
by the first term, and two-photon absorption,
described by the second term, make the main contri-
bution to the decrement (22). The imaginary part of
the second term arises as a result of the denominator
A(K). 1t is obvious that this term corresponds to exci-
tation of a magnetosonic wave, which is absorbed by
the thermal particles. The first term describes induced
scattering of Alfvén waves, which can be interpreted
as excitation of an ion-sound wave, also absorbed by
the plasma particles. In this case scattering is of a dif-
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ferential character in k—waves with close absolute
values of k, interact:

WK) | vaT;
2

(k)
Mk, ko) = z B(—k k) = 82/ an| v2 T2

cos'0(k., k), Tre 2T

X

2
Tl T2 2
[l —ReJ,(x) + _?] + 5X exp(—x7)|,

e

= (k) (k) (30)

vilk,— k]

+8(4k,k, + (kg +kD) )ﬁ

2

1 . 1 1 2 1
x Hik Kosin®(k o, ki) — (kg + k) “cos(k, ki)H |-

Expanding the spectral energy density of Alfvén waves
near —k, and switching from summation to integration,
we obtain

v k2 2
Mk, ko) = =22 d’Kk’
( D) S 4T[J. O
x| =0t Nk, k) + kzak 1 WK, ki)Feos (ko ki)
(30)
RIGE +kb)® K’
S Eu6(kD+kD)

o . VL2 ,
x %‘kmkmsnzq)(km’ ko) — (kg + kp) cosd(kp, km)g ,

where a, is determined by the integral

200

_ mh
o, = “/;T,f;[dx

x> exp(—x/ 2)

[1-ReJ,(X) + T/ T + (W 2) X exp(-x%)

Thefirst term in the expression (31) corresponds to the
result obtained in [3]. However, the numerical factor a,
differsfrom the corresponding coefficient in [3], which

(32)

X
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depends on the ratio T/T.. The coefficient from [3] is
obtained by setting x = 0 in the denominator in the inte-
grand in the expression (32). In addition, the coefficient
(32) contains an additional factor of 2. The relation
obtained here is more accurate. It should be noted that
the expression (31) can be obtained on the basis of ordi-
nary magnetohydrodynamics.

(2) B> 1. Inthiscase two-photon absorption, which
once again is of adifferential character in k,, makes the
main contribution to the damping:

W(K')

ko ko) = ‘”(k)VT'ZG(—k M2

1- \]+(X) 4
EI1+T/T —3.00"

X coszq)(kD, kp)Im

T
x| = +
=

For a smooth spectral density of Alfvén waves, we
replace summation by integration and obtain the damp-
ing decrement

(33)

(1+T/To)[1-3.()]

U
- o) + o) [
J+(x)[2+2Ti/Te—J+(x)]Hx—%D

lek2
Oy———

Flke ko) = B2/ 4Tt
0

(34)
x [k Wk, ki) cos' (ke ki,

and the coefficient a, can be expressed in terms of the

following integral:

1- J+(X)

J.(%)

) 0
_ 2
a, = J'x dXImE1+Ti/Te—

(35)

T, (A+T/TY1-3,0] 70
[T_e J+(x)[2+2Ti/Te—J+(x)]}

Numerical integration showsthat this quantity is essen-
tially independent of the ratio T;/T,.. The value obtained
for a,(T,=T,) is2.25.

6. DISCUSSION

The main result of thiswork isageneral expression
for the decrement (22) with the formulas (14), (23)—(25)
for the quantities appearing in it. Some particular cases
have been examined previously. The result obtained is
different from the results obtained in [8, 9], where
Alfvén waves propagating at an angle with respect to
the average magnetic field were also considered. The
method employed in the present work differsin that it
takes into account the components of the magnetic field
which correspond to magnetosonic waves. Since the mag-
netosonic waves decay strongly in plasmawith 3 = 1 [2]
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(quasi-longitudinal and quasi-transverse propagation
are exceptions), these quantities should be expressed in
terms of the components of the velocity of Alfvén
waves. Actually, we assume that they are second-order
quantities, just asthelongitudina electricfield E. This
approach seems to us to be more consistent than the
method employed in [8, 9], where the magnetic field
components corresponding to magnetosonic waves
were completely neglected. To reproduce the results of
[8, 9] it is sufficient to neglect B, in equation (16). In
the opinion of the author thisis correct only for propa-
gation of waves predominantly along the average mag-
netic field. In practice, the results of [8, 9] are the same
asthe results obtained in [4—7] for this case. The differ-
ence liesonly in the fact that in amore rigorous kinetic
analysis the waves propagating at small angles with

respect to the field (k-/k, < Jw/Q, Q isthe gyrofre-
quency of ions) are circularly polarized [1]. In the
present work, we neglect this small region in the wave-
vector space. To obtain the condition of applicability of
the small-angle approximation, when the results of [8, 9]
arevalid, itissufficient to use an expression for the prob-

ability (19) and set k;; and ki, to zero. Then, one can
see that everything depends on the ratio of the squares
of these quantities and on (w' + 6"/ v2 — (K, + k)%,
which are contained in A(K). For waves with the same
signs of k,, the next to last expression is zero, if the dis-
persion relation for Alfvén waves is used. In redlity,
there exists another nonlinear correction to the fre-
guency, which is of the same order of magnitude as the
nonlinear decrement of the waves. Finally, we obtain
the condition of applicability of the method used in the
present work:

BB B, < K/K. (36)

Here
BB°O= 4nJ’d3kW(k)

isthe average squared random magnetic field of Alfvén
waves, and k, and k; are the values of the components
of the wave vector of Alfvén waves, which contain
most of the turbulence energy. The condition (36) sig-
nifies that most of the energy is not concentrated in
waves propagating at small angles with respect to the
average field. For the opposite relation, the results
obtained in [8, 9] are correct. Specifically, waves with
the same signs of k, can interact.

Analysis of this problem shows that the above-men-
tioned effect arises asaresult of terms containing [ - b =
(B - 0)B™? in equation (2) and describing magnetic
reflection of particles. If two Alfvén waves propagate at
an angle with respect to the average field, then their
magnetic pressure gives rise to additional plasma
motions and second-order components of the magnetic
field. For waves with the same signs of k,, the compo-
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nent B, arising has precisely the value required to com-
pensate the change in the absolute value of the mag-
netic field (see the second term in the expression (12)),
and as a result magnetic reflection vanishes and these
waves do not interact. However, if the waves propagate
along the average field, such compensation is impossi-
ble, sinceinthiscase B, = 0.

The second term in the expressions (22) and (31)
corresponds to excitation of a magnetosonic wave. If
the damping of magnetosonic waves is quite weak,
their amplitude can become comparable to the ampli-
tude of Alfvén waves, which does not correspond to the
method employed. In plasmawith 3 = 1 the magneto-
sonic waves decay weakly for propagation at small
angles with respect to the field. The linear damping
decrement is determined by thermal ions and has the

form [2]
2
= m, ko
y - /\/;VTI||(Z|.

Comparing this decrement with the nonlinear decre-
ment (34), we find that the condition of applicability of
the method employed is the same as the condition (36).
For 3 < 1 this approach is valid for even lower energy
density of Alfvén waves. For

(37)

meTi

=1 <B<
T <B<1 (373)

the linear damping decrement of magnetosonic waves is
determined by Landau damping on therma eectrons[1]:

_ fjv ki m,
V 8 Te|kz| mi .
Comparing this decrement with the second term in the

expression (31), we find that the condition of applica-
bility of our method for the case (37a) is

(38)

2

BB°D_ [MeTeks
BS mT, " k2

For the opposite relation the linear damping of magne-
tosonic waves is small compared with the nonlinear

T,
P (39)
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effects. Then, not only scattering processes [ 3] but also
three-wave processes [1] with the participation of
Alfvén and magnetosonic waves must be taken into
account. Thus, it can be concluded that the approach
considered in this paper is valid in plasmawith 3 = 1
when the condition (36) for the energy of Alfvén turbu-
lenceissatisfied. For m.T./mT, < B < 1 theapproachis
valid if the stronger condition (39) is satisfied.
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Abstract—Theresults of experimental investigations of atype of dusty plasmawhich has been |least studied—
the plasma of solid fuel combustion products—were presented. Experiments to determine the parameters of the
plasma of the combustion products of synthetic solid fuels with various compositions together with ssimulta-
neous diagnostics of the degree of ordering of the structures of the particles of the dispersed condensed phase
were performed. The measurements showed that the charge composition of the plasma of the solid fuels com-
bustion products depends strongly on the easily ionized alkali-metal impuritieswhich are always present in syn-
thetic fuel in one or another amount. An ordered arrangement of the particles of a condensed dispersed phase
in structures that form in a boundary region between the high-temperature and condensation zones was
observed for samples of aluminum-coated solid fuels with a low content of alkali-metal impurities. © 2000

MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The plasma of the combustion products of solid
fuelsis one of the least studied types of dusty plasma.
A dusty plasma, or a plasmawith macroscopic particles
(such aplasmais often said to be aerosol, heterogeneous
plasmaor a plasmawith a condensed dispersed phase), is
characterized by the fact that the particles (which can vary
in size from the hundredths of amicron up to several tens
of microns) effectively interact with electrons and ions
and therefore strongly influence the properties of the
plasma.

Gas-discharge and thermal plasmas have been stud-
ied in greatest detail thusfar. A thermal dusty plasmais
formed from a heated neutral gas (1700-3000 K) at
atmospheric pressure. The temperatures of the elec-
trons, ions, and neutral particles are equal to one
another, and the electron density lies in the range 10°—
10%2 cm3. When particles are introduced into or appear
in the plasma, for example, as aresult of condensation,
they can become charged as aresult of electron and ion
fluxes as well as thermal emission of electrons. Elec-
tron emission from particle surfaces can result in a pos-
itive electric charge, and the particles emitting elec-
trons can increase the electron density in and the elec-
tric conductivity of the gas phase. In the limiting case
of a nonionized gas, the presence of macroparticles
completely determinesthe electrophysical properties of
plasma. The conditions for the existence of a plasma
with macroparticles can vary substantially. On account

of the large charges which the particles can acquire (of
the order of 10°-10° elementary charges), the entire
range of plasma states from a Debye plasma up to a
strongly nonideal system of charged particles, depending
on the dendity and sizes of the particles and the eectron
work function, aswell asthe densities of the dectronsand
ions present can be redlized in plasma under typical con-
ditions (T, = 1700-3000 K, n, = 10°-10% cn3).

Theincreased interest shown in the last few yearsin
the properties of dusty plasmais due to practical prob-
lems (dusty plasmais aworking object in a number of
fields in technology, including power engineering,
rocket building, plasma sputtering, and fusion) and fun-
damental studies in the field of nonideal-plasma phys-
ics and the electrophysics and electrodynamics of the
combustion products of solid fuel. The discovery of
plasma-crystalline structures [1-4] has stimulated fur-
ther investigations of dusty plasma. A large part of
these studies concerns plasma-dust formations in vari-
ous types of discharges.

The thermodynamic properties of dusty plasma are
largely determined by the interparticle interaction
parameter, which is equal to the ratio of the interaction
potential energy to the average thermal kinetic energy
of the particles. Particle interactions are customarily
described using either the single-component plasma
model or a model with a screened (Debye) potential.
The latter model is also known as the Yukawa model.
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Solid fuel

Fig. 1. Methods for securing the fuel samples: pellet on a
stand (a); pellet in aholder (b).

In the single-component plasma model for a classi-
cal, quasi-neutral, spatially unbounded plasma the
interaction parameter has the form

_ (ze)?

KT, )

where Ze is the charge of a macroparticle, T is the

plasma temperature, = (4T|np/3)—1f3 is the average

interparticle distance, and n, is the particle density.
Screening of the charges of the macroparticles by

the electrons and ions in the exterior plasma is taken
into account in the Yukawamodel, where the parameter

Z’¢ O
GokT, PO AL @)

[ =

where Ap is the Debye radius, is used to analyze the
type of dust structure.

It is known from the single-component plasma
model that short-range order appears in the system for
y > 4, and a single-component plasma crystallizes for
y = 170 [5]. If screening effects play alarge rolein a
dusty plasma, then two parameters—y and k = [l ;—are
used to describe the structura transformation. Nonethe-
less, in anumber of works[6-8] asingle parameter, deter-
mined by the expression (2) and satisfactorily describing
the properties of plasma for small values of I, is used to
describe such asystem. Short-range order isestablished in
thesysemfor I > 1[9, 10].

Few experimentsto study ordered structuresin ther-
mal plasma have been performed. In the early works
the spatial distribution of the particles in the dispersed
phase was investigated using electron microscopy of
samples extracted by a probe introduced for a certain
period of time into a plasma flow. Such photomicro-
graphswere obtained in [11] in the flame of a synthetic
aluminum-coated fuel. The arrangement of the parti-
cles in the photographs attested to the presence of an
ordered structure of apolydispersed system of particles
on the surface of the sampling probe. On this basis the
authors concluded that structures of particles are
present in the plasma.
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In [12-14] the formation of ordered structures of
macroparticles was observed in aweakly ionized, lam-
inar, plasmaflow at atmospheric pressure and tempera
ture near 1700 K. The plasma consisted of positively
charged micron-size CeO, particles, electrons emitted
by the particles, and singly charged sodium ions. In
these experiments the dusty plasma was produced by
introducing particlesinto theinner flame of atwo-flame
Mekker-type burner; this gave anarrow range of varia-
tion of the plasma parameters and a relatively short
plasma lifetime (of the order of 10 ms). As a result,
crystallization could not be observed for a system of
particles of a condensed dispersed phase in a propane-
air flame.

The study of ordered structures of charged macro-
particlesin aplasmaof the combustion products of syn-
thetic solid fuels opens up greater possibilities. Thisis
because the range of values of the plasma parametersis
larger and the sizes and density of the particles of the
condensed dispersed phase can be varied over a wide
range. Our objective in the present work wasto perform
experimental investigations of the formation of ordered
structures of particles of a condensed dispersed phase
in the plasma of combustion products of synthetic solid
fuel.

2. EXPERIMENTAL SETUP

The investigations were performed with samples of
synthetic magnesium- and a uminum-coated solid fuel.
The fud samples were cylindrical with various lengths
and diameters. Pdlets whose size depended on the burn
rate of thefuel and whichwerechosen so asto givean ade-
guate time for performing the measurements (2040 s)
were fabricated to perform the measurements. Heaters
conssting of nichrome wire (200 pm in diameter, 6 A
heating current) were used for controlled and safe igni-
tion of the fuel. The experimental procedure was asfol-
lows. Synchronized measurements of the main plasma
parameters were started at the moment the fuel was
ignited and structural diagnostics of the system of par-
ticles of the condensed dispersed phase was performed.
The sampleswere secured using the schemes displayed
inFig. 1.

A diagnostics complex (see Fig. 2) which made it
possible to determine the following parameters of the
plasma formed by the combustion of solid fuel was
used for the measurements: the temperature T, of the
gas phase, the sizes D;, and density n, of the particles
of the dispersed phase, the density n, of the alkali-metal
atoms, and the ion density n;. A modified inversion
method [17] was used to determine the temperature T
in the high-temperature zone and a thermocouple was
used to determine the temperature in the condensation
zone thermocouple. The aperture transmittance [16]
and spectral transmittance [15] methods were used to
determine the particle sizes D5, and density n,, respec-
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Fig. 2. Experimental setup: TL—tungsten reference lamp;
M—modulator; HTM—half-transmitting mirror; Ol—Ilens
(F = 150 mm); O2-0O6—objectives, C1—single-fiber light
guide; C2—muiltifiber light guide; S—dlit diaphragm;
DG—diffraction grating; SA—spectral apparatus, |F—
interferencefilter; P—photomultiplier; SFP—solid fuel pel-
let; L1, L2—CCD arrays.

tively. The total absorption method was used to deter-
mine the density of alkali-metal atoms [17].

A single, continuously rotating, probe with a con-
stant voltage V, = —15 V was used to measure the ion
density n;. As the prabe passes through the plasma, an
ion current flows onto the probe. A current pulse with a
duration of about 2 ms correspondsto then, profile, and
the current at the center of the pulse correspondsto the
ion density in the measuring volume. Next, we deter-
mined n; in the combustion-products plasma using cal-
ibration functions of the form

fo(le) = 1o/ Nig,

where |, is the current measured in a plasma seeded
with an akali metal with potential V, and n;y istheion
density determined according to the saturation current.

The particle visualization method was used to
observe and analyze the structures of the particles of
the condensed dispersed phase in the solid fuel com-
bustion products plasma. Illumination in ahorizontal or
vertical planewith aprobe laser beam was used to visual-
ize the particles. A cylindrica lens formed the argon-ion
laser beam into a flat converging beam with a 100 um
thick and 3 mm wide waist in the combustion region.
The horizontal probe beam could be moved over the
height of the combustion zone, and the vertical probe
beam could be moved over the height and radius. The
light scattered by the particles was observed with a
CDD cameraat angles of 70° (in the case of a horizon-
tal beam) and 90° (in the case of avertical beam) with
respect to the plane of the waist. The output signal from
the video camera was recorded on a video tape recorder.
The video images of the particleswere digitally processed
using aspecialy developed program and abinary correla
tion function g(r) was constructed. Analysis of g(r) makes

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90

819

Al,O; particles

B(raggr}g?]ry Condensation
T,~2000K, T r~eg6|(§)(;] K,
n, = 103-10% cm™>, npz 10* cm™3,
T =340 "<
Fuel
Flame pellet
T,~3000K,
n,<10% cm™,
r<i

Fig. 3. Diagram of the main zones of the solid fuel combus-
tion products plasma.

it possibleto describethe spatial structureand interparticle
correlation of the particles.

3. MEASUREMENTS AND ANALY SIS
OF THE RESULTS

The measurements were performed using nine fuel
mixtures with different compositions (see Table 1). The
aluminum-coated fuel produces a 10-30 mm high
brownish-colored flame. A distinct condensation zone
can be seen above the flame. The magnesium-coated fuel
gives a strongly nonuniform combustion zone and
numerous sparks. For the aluminum-coated fuel, the
measurements were performed in characteristic regions
of the plasmaflame: in the high-temperature zone (in the
flame), in a boundary region, and in the condensation
zone (see Fig. 3); for the magnesium-coated fuel the
measurements were performed at different heights of

Table 1. Composition of solid fuels

Al (Mg for
sample| samplesiand?) Ny, 9| Binders, %

' % D, um
1 30 1-30
2 20 100
3 40 30 20 40
4 10 100 50 | P-2200-36, TMDN-4
5 20 30 40 | P-2200-32, TMDN-6
6 10 1-10 | 40 50
7 10 1-30 | 40 50
8 20 | 3090 | 36 |PI-44
9 10 40 40 50
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Table 2. Results of experimental measurements

Sample
no.

D, pm | n,, em= | T K | ng,em™= | n,cm®

2.72 x 10%2| 2.54 x 1010
9.27 x 10| 1.33 x 1010
8.2x 10| 6.2 x 10°
7.20 x 10| 1.20 x 10%0
3.0x 10| 1.2 x10°
45x 10 34x10°
6.1x 109| 4.7 x 10°

16 [35x10°
0.3-0.5/1.8 x 10°
<0.2 | 8x10*
<02 [1.2x10°
<0.2 [25x 10°
04 |6.8x10°
05 | 8x10°

2105
2095
2100
2125
1950
2090
2085

©O©oOo~NOOOLh~W

the plasma flow. The nonstationary nature of the com-
bustion and the strong nonuniformity of the plasma
region made it impossible to perform an accurate mea-
surement of the parameters of the combustion-products

(a)
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plasma and structural diagnostics for magnesium-
coated fuel. For this reason, experimental data are pre-
sented below only for auminum-coated fuel with dif-
ferent compositions (samples 3-9in Table 1).

The experimental measurements showed that the
charge composition of the solid fuel combustion-prod-
ucts plasma depends strongly on the easily ionized
alkali-metal impurities (Na and K), which are aways
present in one or another amount in the synthetic fuel
and end up in the combustion products. The density n,
of alkali-metal atoms, the gas temperature T = T, and
the work function W, of the thermal electrons from the
surfaces of the particles determine the electrophysical
properties of the thermal dusty plasmaand have alarge
effect on the magnitude and sign of the charge of the

Fig. 4. Video images of particles in the high-temperature zone: fuel no. 7, T = 1950 K (a); fuel no. 8, T = 2090 K (b); fuel no. 9,

T=2085K (C).

Fig. 5. Video images of particle structures in the condensation zone: fuel No. 7, h =45 mm (a); fuel no. 8, h =45 mm (b); fuel no. 9,
h =45 mm (c); fuel no. 7, h=35 mm (d); fuel no. 9, h =35 mm (€) (—height above the solid-fuel pellet). The scale for images (a)
(b) and (c) corresponds to 500 mm and for images (d) and (€) the scale is 100 mm.
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STRUCTURES OF THE PARTICLES OF THE CONDENSED DISPERSED PHASE

Fig. 6. Video images of particle structures in the boundary
region of the condensation zone: fuel no. 7 (the scale indi-
cated correspondsto 100 mm) (), fuel no. 9 (the scale indi-
cated corresponds to 300 mm) (b).

dust particles and therefore al'so on the formation con-
ditions of ordered structures.

We shall employ the results of [10] and the results of
diagnostics measurements (see Table 2) in order to ana-
lyze the value of the parameter I in acombustion-prod-
ucts plasma consisting of electrons, ions, and micron-
size particlesof acondensed dispersed phase. It isknown
that for given sizes and dengity of the particles of the
condensed dispersed phase the value of the parameter I
is determined by the screening of the particles by the
plasmacomponent formed asaresult of theionization of
the akali-metal impurity atoms. Numerical analysis

821

shows that for the characteristic sizes of the particles of
the condensed dispersed phase, which form in the com-
bustion products of the solid fuel (see Table 2), struc-
ture formation requires that

N = <108 3)
np

For this reason, a solid fuel with small, natural akali-
metal impurities (mass fraction < 0.01%) must be used
in order to observed ordered structures. This gives a
density of easily ionized atomsin the combustion-prod-
ucts plasma not exceeding 10° cm with the density of
the particles of the condensed dispersed phase in the
high-temperature zone greater than 10* cm=3. The data
in Table 2 show that in experiments with samples 3-6
n = 10°-107, and the condition (3) is not satisfied, i.e.,
the particles were strongly screened and could form
ordered structures. An estimate of the parameter I for
the combustion products of fuel no. 3 gives a value of
the order of 0.1, which shows that interparticle correla-
tion isimpossible in this system.

Figures 4—-7 show video images of the particles
obtained in experiments with fuels nos. 7-9. For these
samples the parameter n was of the order of 10*-10°.
For this reason it was of greatest interest to investigate
these fuel samples. Figures 4 and 5 display typical
video images of the particlesin aflame and in the con-
densation zone of the combustion products. The
extremely low densities (<102 cm3, which corresponds
to an optical density T < 0.01) of the particlesof thedis-

T T T T T
1.2k (a) (b) |
—~ 0.8f -
\clo B —
04 T
1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 0 1 2 3 4 5 6
r/0 r/iA0
3 T T T T T T T T T T

r/l2d

0 1 2 3 4 5 6
/0

Fig. 7. Binary correlation functions g(r) for the particle structures shown in Fig. 5d (a), Fig. 5e (b), Fig. 6a(c), and Fig. 6b (d).
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persed phase in the flame are interesting. According to
equation (2), under these conditions I will be close to
zero and it isdifficult to expect formation of ordered struc-
turesinthisregion. Chain structures can often be observed
in the video images (see Fig. 4b), but the nature of these
formations is gtill unclear. The particle dengity is much
higher in the condensation zone (10* cm®), but the tem-
perature of the medium is low—about 600 K (t > 0.1,
D ~ 0.4 um)—and therefore ' < 1. Dust formations
with different shapes, observed in the condensation
zone, can be seen in Fig. 5. Analysis of the correlation
functions did not show short-range order in the particle
arrangement (Figs. 7a, 7b). Gas-dynamic processes
probably determine the form and arrangement of the
observed formations of particles of the condensed dis-
persed phase.

Analysis of small (V < 10~ cm) structures of par-
ticles of the condensed dispersed phase, which formin
the boundary region where the temperature is still high
(T ~ 1500 K) and regions with high particle density
appear (see Fig. 6), shows a different picture. Short-
range order (see Figs. 7c, 7d) is observed in these
structures when the particle dengity is sufficiently high
(np ~ 10-10% cm3). The degree of correlation in the
arrangement of the particles depends on the value of the
parameter n. The highest correlation was observed in
experiments with fuelsnos. 7 and 9.

4. CONCLUSIONS

Experiments to determine the parameters of the
plasma of combustion products of synthetic solid fuel
with different compositions were performed. In most of
the experiments the parameters of the solid fuel com-
bustion-products plasma were such that the interparti-
cle interaction parameter ' was much less than 1.
Ordered structures of particles of the condensed dis-
persed phase were not observed. The main obstacle for
the formation of ordered structures was a large amount
of akali-metal impurities in the fuel samples and, in
consequence, high electron and ion densities in the
plasma. A low density of particles of the condensed dis-
persed phase in the high-temperature region was also an
inhibiting factor. Ordered structures of particles of the
condensed dispersed phase were also not observed in the
condensation zone, where the particle density is quite
high but the charge on the particlesislow on account of
the relatively low temperature of the medium.

An ordered arrangement of particles of the con-
densed dispersed phase in structures formed in the
boundary region between the flame and the condensation
zone was observed for samples of auminum-coated
solid fuel with alow akali-metal impurity content. An
estimate of the parameter I' based on diagnostics mea-
surements gives avalue from 10 to 30 for various fuels.
This correspondsto a*“plasmaliquid” type structure.

Our experiments show that formation of ordered
structures of charged particles of acondensed dispersed

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90
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phase is possible in a solid fuel combustion-products
plasma. The main difficulties in performing further
investigations on this object are a strong nonuniformity
of the plasma parameters and the short lifetime of the
structures formed. To overcome these difficulties, the
scheme of the combustion of the solid fuel must be sub-
stantialy updated and the existing diagnostics methods
must be modified.
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Abstract—SiO, surface films with different thicknesses (ranging from 20 to 630 A), grown on acrystal silicon
substrate, have been investigated by the method of reflection and scattering of ultrashoft X-rays. It is shown on
the basis of asimultaneous analysis of the SiL, 3 reflection spectraand the scattering indicatrix that the critical
angle . for total external reflection for SIO, at A = 57 A liesin the range 4.5°-5°. The angular dependence of
the thickness of the surface layer that forms the specular reflection is obtained. It is shown that the surface layer,
whose thickness correspondsto the penetration depth of the radiation into the material with glancing angle close
to thecritical value 6, playsalargerolein the formation of the anomal ous scattering peak (Yoneda peak).

© 2000 MAIK “ Nauka/Interperiodica” .

Ultrasoft X-ray spectroscopy is apromising experi-
mental method for investigating the atomic and elec-
tronic structure of matter [1]. The small penetration
depth of the radiation in matter (tens-hundreds of ang-
stroms) and the local character of the photon absorption
process in a specific atom in a multiatomic system
make this method surface-sensitive [2, 3].

The purpose of the present work is to determine the
depth of the near-surface layer of matter forming the
reflected and scattered radiation in a two-phase system
(surface layer + substrate) in the ultrasoft X-ray range.
The system S-SiO, with various thicknesses of the
SO, surface film, ranging from 20 to 630 A, was cho-
sen as such asystem. This choice is due not only to the
existence of details, differing in type and energy posi-
tion, of the fine structure of the SiL, 5 reflection spectra
for crystalline Si and SiO, but aso the well-known
importance of this system in the production of various
objects in the microelectronic industry.

All investigations were performed on an RSM-500
spectrometer-monochromator in a special camera
attachment [4] using the bremsstrahlung and character-
istic radiations from a tungsten anode. The energy res-
olution of the details of the spectrain the region of the
SiL, 5 ionization threshold was AE = 0.3 eV, and the
angular resolution of the scattering indicatrix was 1.2°.
The radiation was detected with aVEU-6 channel-type
secondary-€el ectron multiplier with a Csl photocathode.
Wafers of aKDB (111) 4° silicon single crystal, which
were 380 um thick and 30 mm in diameter and were
oxidized in a dry-oxygen atmosphere at T = 1050°C,
were investigated. The thickness of the surface SO,
films grown was monitored using €llipsometry on an
LEF-2 apparatus.

Figure 1 shows the experimental SiL, 5 reflection
spectra for various SiO, thicknesses on a silicon sub-

stratefor various glancing angles 8, of theradiation. All
systems were studied in a wide range of angles 4° <
B, < 16°, i.e, inside and outside the region of total
external reflection of X-rays. The spectra presented are
normalized to the maximum B (=108.9 eV), with the
exception of the spectrum for a system with a 20 A
thick surface film. We note that the fine structure of the
reflection spectrum of crystalline Si ischaracterized by the
presence of the details a—g (energy range 100-104 €V),
while the spectrum of crystalline SiO, is characterized
by the details A—C (105120 V). Thus, the presence of
only one group of details in the spectrum corresponds
to the case where the reflected radiation is formed by a
single-phase system. The manifestation of details of
both groups in the spectrum attests to reflection from a
substrate + surface layer system. The fact that the con-
tribution of the components of this system to the reflec-
tion is different should cause the corresponding group
of details in the spectrum to dominate. It is natural to
compare the thickness of the film for which details
characteristic for a silicon spectrum, specificaly, the
bands b and d—f, appear in the reflection spectrum with
the corresponding value of d—the penetration depth of
the radiation in the material. Thus, for an S—SiO, sys-
tem with different thicknesses of the surface film,
details characteristic of the substrate spectrum are
present in the spectrafor 6, = 4° right up to athickness
of 85 A, and for glancing angles 8, = 8°, 12°, and 16°
they are present up to thicknesses 140, 190, and 260 A,
respectively. We aso note the observed correlation of
the spectrafor different thicknesses of the surface layer
but for different glancing angles. For example, the rel-
ative intensity distribution for the spectrum for a 85 A
thick film for 8, = 4° isvirtually identical to that of the
spectrum obtained for a 260 A thick film for 8, = 16°.
This shows that the relative contributions of the surface

1063-7761/00/9005-0823%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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Fig. 1. SiL, 5 reflection spectrafor the system Si-SiO,: 6 = (a) 4°; (b) 8°; (c) 12°; (d) 16°; d isthickness of the surface SiO, film.
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Fig. 2. Scattering indicatrix for the system Si—-SiO, for A =
57 A for SiO, surfacefilmswith various thicknesses ((1) 20;
(2) 85; (3) 140; (4) 190; (5) 630 A): 8, = (a) 4°; (b) 8;

(c) 10°.

film and substrate to the reflected radiation are identical
in these spectra.

The angular distribution of the scattered radiation
(scattering indicatrix) from the surfaces of two-phase
systemswas a so studied in thiswork. It isknown [5, 6]
that for glancing angles less than the critical angle 6.,
i.e., intheregion of total external reflection, the scatter-
ing indicatrix carries information primarily about the
roughness of the surface. In the range of angles 6, > 6.,
the characteristic features of the atomic spectra of the
near-surface regions of materials can be judged from
the form of the scattering indicatrix. For the samples
investigated with different thicknesses of the surface
film, it was found that in the region of total external
reflection (6, = 4°) the forms of the phase functions are
essentially identical (Fig. 2a). Outside the region of
total externa reflection (6, = 8°, 10°) an anomalous
scattering peak appears in the scattering indicatrix
(Yoneda peak) (Figs. 2b, 2c). In the figures presented,
the detected radiation intensity was normalized to the
intensity of the specularly reflected radiation. As one
can see, the angular position of the'Yoneda peak liesin
the range 4.5°-5°, and the relative intensity is substan-
tidly different for different samples. The angular posi-
tion of the anomalous scattering peak corresponds to

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90 No.5 2000
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Fig. 3. Angular dependence of the formation depth of a
specularly reflected beam in SiO,: dots—calculation, trian-
gles—experiment.
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Fig. 4. Relative intensity of the anomalous scattering peak
for SiO, surfacefilms (A = 57 A) with different thicknesses:
60 = (1) 8°, (2) 10°.

the value of the critical angle 6, [5], so that the critical
angle for SIO, for A = 57 A can be assumed to fall
within the indicated limits.

The angular dependence of the thickness of the sur-
face layer forming the specularly reflected radiation in
silicon dioxide can be constructed on the basis of the
spectra obtained. This dependence is displayed in Fig. 3
together with the computed curve. The calculation was
performed using the formula[7]

G A
2./2m
-1/2
x [/(Sin’0, — sin’8,)° + y? + §n6,—sin’8,]

where y = (A/2my, for the following values of the
parameters; 8,=9°, A =117.4 A, and u = 105 cmr™. The
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value of the critical angle was chosen on the basis of the
fact that it is directly proportional to the wavelength of
the radiation [8]. It is obvious that the theoretical and
experimental curves agree well with one another in the
entire range of comparison.

Figure 4 displays the dependence of the relative
intensity of the Yoneda peak on the thickness of the
SO, film. As one can see, this dependenceis distinctly
nonmonotonic, and the maximum corresponds to a
layer thickness of 85 A. Asinferred in [5], the largest
relative intensity of the Yoneda peak can appear in
cases where the vacuum-material boundary possesses a
so-called transitiona layer, i.e., the spatia structure of
the material changes in a certain layer near the surface.
The fact that the intensity of the Yoneda peak is greatest
for d = 85 A indicates that the largest structural changes
occur in the layer forming this peak. On the other hand,
the penetration depth of the radiation in the material for
8, = 4°-5° isclosetod = 85 A. It can be asserted on this
basisthat primarily alayer whose thickness correspondsto
the penetration depth of the radiaion in the materia for
8, = 6, (in thiscase 8, = 4.5°-5°, d = 60-80 A) influences
the relative intensity of the anomal ous scattering pesk.

In summary, in the present work the thickness of the
surface layer forming the specularly reflected radiation
in silicon dioxide was determined for various glancing
angles 6, (4°-16°) on the basis of experimental SiL, 5
spectrafor the system Si—SiO,. The distinct nonmono-
tonic character established for the relative intensity of
the Yoneda peak in the scattering indicatrix as a func-
tion of the thickness of the SiIO, surface layer shows
that the layer of matter corresponding to the radiation
penetration depth in matter for 8, = 6, has the dominant
effect on the form of thispeak. This circumstance could
make it possible to extract additional information when
studying the characteristics of radiation scattered from
the surface of various substances.
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Abstract—We formulate a simple Landau type model describing macroscopic behavior recently discoveredin
new smectic phases composed of achiral bent-shaped molecules. Films of such smectics exhibit three types of
ordering related to dipole polarization, molecular tilt, and chirality. However, due to specific third-order cou-
pling of the order parameters, these three symmetry-breaking types are not independent and this fact leads to
specific domain structures that are observed in experiments. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

A variety of molecules form liquid crystalline
phases (see, e.g., [1]). Many mesogen molecules have
symmetries consistent with the formation of ferroelec-
tric phases and nonzero dipole moments. Ferroelectric
ordering is, however, extremely rare in positionaly-
disordered liquids or liquid crystals, and the surprising
discoveries of ferroelectric [2] and antiferroelectric [3]
behavior in liquid crystals are fundamental milestones
in condensed matter physics. Since the discovery of fer-
roelectric liquid crystals, it has been usually assumed
that ferroelectricity is possible only in the chiral smec-
tic-C* phase (formed by chiral molecules) that has the
polar symmetry group C,. In this case, polarization can
bewritten asP = Pn x ny, wheren isdirector [4] and n,

is the smectic layer normal. The necessary conditions
for the existence of nonzero polarization are afinite tilt
angle (i.e, n x ng# 0 or 8 # 0) and a molecular dipole
perpendicular to the long axis of molecules. In racemic
mixtures, which contain both enantiomers (that is, mol-
ecules that are mirror images of each other) in equal
amounts, the electric polarization vanishes. Obvioudly,
the electric polarization is directly connected to the
molecular chirdlity in the SmC* ferroelectric liquid
crystals.

However, there is no fundamental reason that non-
chira liquid crystals should not be ferroel ectrics, since
there is no unambiguous correspondence between the
chirality of molecules and the existence of macroscopic
ferroelectric properties or the structures they formed.
The attempts of observation of ferroelectricity in non-
chiral liquid crystals are, as arule, centered around the

This article was submitted by the authorsin English.

1Unlike non-polar nematic phases, where n and —n are equivalent,
in ferroelectric smectics, the symmetry requires that n — —n
simultaneously with n — —g give equivalent states.

synthesis and investigations of non-conventional liquid
crystalline structures [5]. Recently, ferroelectric phases
composed of achiral molecules were reported and
investigated [6-8, 10-12]. In these papers, it was dem-
onstrated that tilted smectic phases of achiral molecules
show ferroelectric switching, and specific chira
domain structures. In [9], the bulk macroscopic proper-
ties of the lowest possible symmetry smectic phase (tri-
clinic) were investigated and it was shown that such a
system (though formed from achiral molecules) may
possess ferroelectric and piezoelectric properties as
well as macroscopic chirality. Due to polarity within
smectic layers, such a smectic may have only integer
strength of point-like defectsin layers.

Note that in the above mentioned papers [6-8, 10-12]
investigated experimentally only relatively thin freely
suspended films (2-20 layers) and care must betakenin
drawing conclusions about the bulk properties of liquid
crystalsfrom the behavior of films, asthe surface layers
of the film may be in a phase with higher (or lower)
order than the bulk system. The surface phases cannot
even exist as bulk phases. Particularly in [6, 8] instead
of point-like defects predicted theoretically in [9] for
the bulk phase, domain walls, i.e., two-dimensional
defectsin smectic layers were observed.

In our paper, we present a simple theory describing
consistently experimental facts known for such low
symmetrical smectic filmsformed by bent-shaped mol-
ecules. Our justification for adding one more paper on
this topic is the fact that we alone seem to have taken
into account entropic (and therefore, universal by the
nature) third-order coupling between polarization, ori-
entation, and chirality, specific just for these kind of
systems. The organization of our paper isthefollowing.
In Section 2, we formul ate our model and introduce (in
the frame work of the Landau theory) the basic thermo-
dynamics necessary for our discussions. In Section 3,
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we discuss different types of domain structures which
may appear in smectics under consideration, and
inspected the role of external influences (electric or
magnetic fields and the concentration of chiral impuri-
ties). In Section 4, the analysis of how the coupling of
thelocal order parameters near domain walls modify its
structure is presented. Section 5 is devoted to a discus-
sion and summary of our main results.

2. THEORETICAL MODEL

According to experimental data presented in the lit-
erature (see [6, 8, 10-12]), new smectic structures
(labeled often in these papers as smectics B,), are
formed by polar but achiral molecules (“banana’-
shaped) having the symmetry group C,,, and macro-
scopic behavior of these structures is characterized by
three spontaneous symmetry-breaking leading to the
appearance of the following properties. molecular tilt,
ferroelectric polarization, and chirality. The maximal
macroscopic point symmetry group alowing these
three types of symmetry breaking is C,, where the sec-
ond order axis should be parallel to smectic planes.

Thetilt order parameter in any tilted smectic phases
can be characterized by the two-component order
parameter Y = Bexp(ig), where 8 isthe polar angle (tilt)
and @ is the azimuthal angle of the nematic director n.
Instead of Y one can use the so-called c-director, which
is the projection of the director n onto the layer plane.
The magnitude of the tilt order parameter |c| = sin6.
Theferroelectric polarization P isalso avectorial quan-
tity, and it isonly possible along the symmetry axis C,.

From the general point of view, the chirality of the
system is athird-order antisymmetric tensor which can
be reduced for the system under study to the pseudo-
scalar X. However, we have the only symmetry-break-
ing, namely C,, — C, and therefore, all three order
parameters should be interrelated, and the problem we
now faceisto find this relation. In fact, since the bend
of ¢ removes the ¢ — ny mirror symmetry plane, it pro-
duces alocal chiral symmetry breaking. This breaking
of chiral symmetry can occur on two distinct length
scales (microscopic or macroscopic). The distinction
between microscopic and macroscopic chiral symme-
try breaking is similar to the distinction between spon-
taneous and induced order parameters. From the mac-
roscopic symmetry point of view to describe chiral,
tilted, ferroelectric smectic films we have to introduce
three order parameters (X, ¢, P). Note that these three
order parameters are not independent ones, and con-
densation of any pair amid them inevitably induces the
non-zero value for the third one. Indeed, by the defini-
tion of c-director as the preferred direction (or projec-
tion of the director) in a smectic layer ¢ = n x n,, and
thusif we have not only thetilt but aswell non-zero fer-
roelectric polarization P, the system becomes macro-
scopically chiral, and as a measure of the chirality one
can chose naturally
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However, in this paper (unlike, e.g., [7]) we are inter-
ested in mainly microscopic causes of macroscopic
symmetry breaking.

From the microscopic viewpoint, the existence of a
tilt in smectic phases comes from the requirement of
the molecular packing, (i.e., steric forces). These
requirements fix for the polar molecules in our case
(thin free standing films) the azimuthal angle ¢ and the
module of the c-director, and therefore there are two
allowed values of molecular tilt +6. Thus, any molecule
in asmectic layer i can be framed by two state systems
labelled by indexes + according to the sign of itstilt. In
the same manner, the dipole moment P can be oriented
either parallel or anti-parallel to the second order sym-
metry axisand it gives two more states attached to each
molecular site. Therefore, each molecular siteis afour
dtate system: (+, +), (+, ), (= +), (— -), where thefirst
sign corresponds to the tilt, and the second one to the
dipole moment. If among the N' moleculesin a certain
smectic layer i, the number of molecules in each state
isNi(+, ), N'(+, -), N(=, +), Ni(=, -) then evidently

N'=N(+ +) + N ) +N(= +) +N(-).  (21)
Anaogoudly it is easy to see, that the tilt angle for the
layer i can be represented as.

N'®'=N(+, +) + N(+,-) =N(= ) -N(= ), (22
and the polarization is given by
NP =N+, +) + N ) =N+, ) =N ). (23)

It is important to note that, for each molecular site,
the product of PO represents the chirality of the given
molecule, independently of site and of layer i. We fol-
low here the idea and method developed recently for
solid racemic solutions [13]. However, though for each
individual molecular site x = P9, thisrelation generally
isnot valid for the local mean values for alayer i, i.e.,
O'P' # ¥'[] since anaogoudly to (2.2), (2.3) one can
write:

NX' =N+, #) + N ) =N 9 =N, (24)

In the spirit of the Bragg—Williams mean-field approx-
imation, we can compute the entropy of the layer i

S=1

N'l
n[Ni(+, +)IN'(+, 9I)IN'(= +)!N'(, -)!] 29

Solving the equations (2.1)—(2.4), introducing the
found expressions for Ni(+, *) in terms of the order

2 For the simplicity and according to the layer structure of smec-
tics, we suppose (unless the opposite will be said) that the order
parameters are uniform within smectic layers.
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parameters 0, P, X, and expanding of (2.5) for small val-
ues of the order parameters we obtain

S - _Ni[%(Pi2+9i2+Xi2)
+ %(PiZXiZ + Pizei2+xi29i2)

+1_12(Pi4+xi4+ei4)_eixipi]

It is important to notice (and this is one of the main
points of our investigation) the presence of the specific
third order term 6'P'. The free energy of the system
F=U — TS (where U is the internal energy associated
to intermolecular interactions) should have the same
structure as the entropy but with non-universa
(depending on detail of the interaction potentials) coef-
ficients, namely for the layer i:

i Az oz | Az i2 bl i2_i2 b2 i2Hi2
F 29 " 2 Pot 2X * 2 P X " 26 P

s _i2ni2 , Cipia, Co
LR L
The fact that the third order term necessarily figuresin
the free energy is related to the symmetry, since the
product of the three representations to which 6, x, and
P belong includes the identical representation. The
coefficients a, b;, ¢, and y can be considered as phe-
nomenological parameters and a, should become small
near the corresponding symmetry-breaking transitions.

Taking into account the pair interactions between
nearest neighboring layers, the total free energy can be
written in the following general form:

F = ZFi + zainin + zbijpin + zcijeiej'

i>] i>] i>]

pi 4 C_Z?,Xi4+yxieipi.

Note that only pair interactions do not produce third
order coupling found above. Therefore, in this approx-
imation, (i.e,, neglecting three-particle and further
interactions) the third order coupling has the universal
pure entropic origin, and y = —1. The natural estimation
for the entropic contribution is the temperature T (i.e.,
of the order of two-particle interactions responsible for
the liquid-crystalline ordering) and therefore, this cou-
pling can be larger than the three particle forces which
we neglected.

To say more requires further knowledge of all these
coefficients. Unfortunately, using only the data known
from the literature, we are not able to extract values of
all needed parameters. Therefore, we will not quantita-
tively compare our theory with available experimental
data, since with too many unknown parameters the the-
ory tends to become an exercise in curve fitting, which
loses predictive credibility. Instead of this, we will dis-
cuss, in the next section, qualitative features of the
model.
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3. MODULATED DOMAIN STRUCTURES

Let us consider some very general consequences of
the model. If we suppose to escape a conflict between
experiment and theory that al three order parameters
are uniform within smectic planes, thisthird order cou-
pling means that the modulations of the order parame-
ters x(qay), 6(q,), and P(gs) along the normal to smectic
layers should be matched to provide

g; + 0, + gz = 0(modqp),

where ¢, = 217d is the wave vector of smectic density
modulation (d is the interlayer distance). Thus, to sat-
isfy the matching, there are only two possibilities: (1)
one of the three wave vectorsis zero and two others are
anti-paralel; (2) al three wave vectors are zero.

In principle, in the continuous model, there are no
restrictions on the period of the modulation, except for
the requirement that it should be commensurate with g,
(see aso conclusion section of the paper). However, in
the discrete model we use (i.e., each layer isafour state
system), only wave vectors +(,/2 and £qy/4 are admis-
sible. Even more, since independently on the model the
chirality of the structure is aways equal 1, only the
wave vectors +qy/2 lead to distinguishable macroscop-
ically states for the smectic structures under consider-
ation.

L et us assume that one from the three coefficients a,
is much smaller than the two others. Therefore, in the
temperature region where this condition is fulfilled, we
have only one soft order parameter, and we may neglect
two others (hard in the region of parameters) degrees of
freedom.

Experimentally (see [6, 8, 10-12]) for the smectic
films which we consider, the main transition is associ-
ated with the condensation of thetilt 8. In this case, the
theory is reduced to the well-known Landau theory for
a scaar order parameter [14]. However, due to its
importance for the present context (and for conve-
nience), we repeat well-known results to apply them to
our concrete case (free standing films). Thisisjust the
case where it is easy and more useful to derive these
resultsfor the concrete system under consideration than
to try to find the suitable references, and to modify all
expressions to apply them to the case.

There aretwo effectsthat arerelated to the existence
of the surfacein free standing films. Thefirstisapurely
geometrical one (finite size effects). The surfaces break
the trandational and rotational invariance (because the
surface is a specific plane which breaks the tranda-
tional invariance, and the normal to the surfaceis a spe-
cific direction which breaks the rotational invariance).
Besides, certainly, there are physical modifications of
the system due to the existence of the surface (surface
effects). The surface can suppress the bulk ordering
(thiscaseistraditionally called the ordinary phase tran-
sition), the surface can enhance the bulk ordering (it is
called the extraordinary phase transition), or as a third
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possihility, the surface can experience itsintrinsic crit-
ical behavior. There is aso a so-called specia phase
transition which is intermediate between ordinary and
extraordinary transitions.

Both effects related to the existence of the surface
can betaken into consideration in the framework of the
Landau expansion. In our particular case (film geome-
try and a; << a,, &) it hasthe form

L

F= Idz%a192+ %c194+ %dl(D9)2%+ F, (31)
0

where we added to (2.6) the gradient term (with the
coefficient d,) to describe the tilt profile over the film
thickness L, and F is the surface energy which should
have the same form as the bulk energy (3.1):

Fo = 5070 +01) + GO0 +61L). @2)

Usually, it is supposed that a' = d;A %, where A is called
by extrapolation length and experimental data indicate
that (at least asit concernsto thetilt) we have A <0 and
it is traditionally called by extraordinary phase transi-
tion. From the microscopic viewpoint, the existence of
the extraordinary phase transitions necessarily imply
first- and second-layer interactionsfor the surface layer
(see [13]).

In this case, the surface enhances the ordering and
therefore, on the surface, one can expect the onset of
ordering before (i.e., at higher temperatures) it occurs
in the bulk. So one can expect, in this case, the surface
transition for temperatures T, > T, (by the definition the
bulk transition temperatureis determined from a,(T,) = 0).
However, at T, due to the onset of the bulk order, the
surface will experience some critical behavior as well.
Intheregime of T, < T < T, the bulk correlation length
&y isfiniteand the order parameter decaysfrom its max-
imum value at the surface. One can easily find the tran-
sition temperature for the surface layer:

Ts — dl -2
T, 1 Tc)\ .

To find the profile for the order parameter, we have to
solve the Euler—L agrange equation which follows from
(3.1) supplemented by the boundary condition, which
can befound from (3.2). We describe this rather routine
procedure in the Appendix, and present only the results
here. One can find that there are two types of configu-
rations providing the minimum of the bulk functional
(3.1) and simultaneously minimizing the surface
energy (3.2). The first natural solution is symmetrical
(wewill term this solution by synclinic structure):

S-configuration: 8(z=0) =6(z=L).

Weimply that &' = o'(T —Ty), where T, isthe surface
transition temperature (it can be extracted from experi-
mental data for very thin films, e.g., for two-layer
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films). Determining the surface transition temperature,
we can omit the third-order term in the equation for the
bulk, and the transition in the film with N-layers occurs
at Ty which can be found from the following equation

__ G 0 L O
g (T R Ty 0

The second solution (we will term it by anticlinic) is
antisymmetrical:

A-configuration: 6(z=0) = -8(z= L), and for this
case

Ty = Ts (3.3

4 o L g
e (T O BT

The solution of both transcendental equations can be
found very easily numerically and (asit should be) for
small film thicknesses L < §,(T,) synclinic configura-
tion has always the higher transition temperature while
for thick films with L > &,(T,) the anticlinic solution
can have the higher transition temperature. However,
the anticlinic state can be only metastable due to the
gradient energy (or in other words, due to the energy
penalty which one must pay for the domain wall
appearing inevitably for the anticlinic structure). How-
ever, the given above statement is valid only for the
case a; < a,, az, when we have to deal with one scalar
order parameter condensation. This is not the case
when we have two or three soft degrees of freedom
(condensed order parameters) due to third order cou-
pling between them.

Ty = Ts (3.4

4. ORDER PARAMETER COUPLING
AND DOMAIN WALLS

We have mentioned already that for smectics under
consideration, thefirst spontaneous symmetry breaking
leads to the appearance of the tilt (though it could be
only metastable pra-phase). When the temperature is
decreased further on, the two remaining order parame-
ters might be condensed as well. To study this scenario
in the spirit of the mean-field approximation, one hasto
insert the averagetilt @' Cinto the free energy expansion
(2.6). Theresult will be the free energy expansion with
two coupled-order parameters P and x. Diagonalization
of the free energy introduces two new order parameters
N1, N> Which are linear combinations of P and X. Since
parameters a,, a; depend on the temperature, the eigen-
vectors ensuring the diagonalization of the free energy
are not fixed by the symmetry.

In principle, three different situations can arise
according to the higher order terms:

(DN, #0;Nn,=0;
(2 nN:1=0;n,#20;
3 nN1#0;n,#0.

Cases (1) and (2) correspond to different ordered
phases with the same energy, while case (3) corre-
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sponds to a situation of different energy. Clearly, the
condition of lowest energy must prevail, and to find it,
we have to know all coefficients entering the Landau
expansion, which we do not have. However, aswe men-
tioned already, the specific third-order coupling of the
order parameters came mainly from the entropy of the
system, i.e., from the number of states corresponding to
smectic layersframed by four level systems. Therefore,
in the main approximation, (i.e., neglecting non-
entropic interactions) the coefficients a, = ag, and n, =
X — P, n, = X + P. Evidently in this case, the solutions
(1) or (2) should take place. Thus, below this second
phase transition, eight different domains can appear in
the system. They are characterized by +6, +n,, 1, =0
or £0, £n,, tn; = 0.

In the case when all three order parameters are con-
densed, the minimization of the third order coupling
energy leads to the following possible structures of
smectics under consideration

(i)

p _ %o

=50 XBJ“%D

where q, isthe wave vector of smectic modulation. This
structure correspondsto the synclinic, antiferroel ectric,
and racemic phases;

(i)

8(a=0),

ohi=25 P@=0). xRi=-25

i.e., anticlinic, ferroelectric, and racemic;
(iii)

_ YoJ _

o= 51 PHI=

i.e., anticlinic, antiferrodlectric, and homochiral;

(iv)

-8 x(@=0),

8(q=0), P(q=0), x(q=0),
i.e., synclinic, ferroelectric, and homochiral.

It isworth noting that all four types of the predicted
structures are really observed in experiments [6, 8].
Even more, it isclear that the application of the external
electric field should stimulate the ferroelectric ordering
of dipoles and therefore, only (ii) and (iv) structures
will be stable in a strong enough field. This is also
exactly what was observed in [6]. The same manner the
external field conjugated to the chirality should induce
(iii) and (iv) structures. As a physical realization of this
field, one can have in mind the concentration of homo-
chiral impurities. And the field conjugated to the tilt
angle must induce (i) and (iv) structures only. Physi-
cally, such afield can be provided by the anchoring or
magnetic field.

Note that for all structures (i)—(iv), the uniformly
condensed order parameter is not necessarily uniform
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over the whole smectic layer. In the case when we have
the condensation of two order parameters (there are
three types of such pairs), one can observe a very rich
behavior with many types of domain walls. For each
type of wall at the variation of the parameters a,, a,, as,
the wall transformations can be observed, which can be
understood as an Ising—Bloch phase transition with the
domain wall symmetry breaking (this type of transition
was predicted theoretically in the neighborhood of the
Curie point of a magnetic system in [18, 19]; here we
have analogous transitions in chiral, tilted, and polar
smectics under consideration).

For the illustration, we consider here one particular
case of such atransformation in the structure of domain
walls. As we mentioned already in the plausible sce-
nario, thefirst transition is associated with the conden-
sation of tilt 0. Let usimagine that in a certain smectic
plane we have two domains with opposite signs of the
tilt angle 6. Therefore, we get adomain wall in between
them. After further cooling of the system at a certain
temperature, the second order parameter will be con-
densed (let it will be the polarization P). However,
owing to specific third order coupling, any variation of
the order parameter X at a given 6 should lead to the
corresponding variation of the polarization P. Depend-
ing on the coupling constant, different types of walls
could exist. This corresponds to different trajectories
between stable points in the order parameter space (on
the plane x—P for the case). When the coefficients a,
and a; in the Landau expansion (2.6) are not very dif-
ferent (in the case when the entropic contribution into
the free energy is dominant a, = a5 (=a)), the main con-
tribution into the free energy (2.6) can be rewritten in
the form

S(n%+n) - Brni -n?), (4.1)

wheren, =[P + ]/.J/2. Therefore, in the domain of
positive [BL] one has the condensation of r,, while in
the domain of negative B[] the order parameter n_ will
be condensed first. Thus, we have four stable pointsin
the order-parameter space. All trajectorieslinking these
points correspond to different structures of Ising-like
domain walls (see Fig. 1 for theillustration).

Even between the same stable points depending on
parameters, different types of domain walls (trgjecto-
ries) can berealized. We schematically show three pos-
sible trajectoriesin Fig. 2.

Note that as it follows from (4.1), the anisotropy of
the domain wall structures leading to Ising-like behav-
ior of the walls is proportional to ML) and therefore,
strictly speaking, the Ising—Bloch phase transition,
accompanied by the symmetry breaking in domain
walls, can be reached only at [B[= 0.

As the wall thickness depends on both the uniform
terms and the gradient energy, it is clear that these two
components of thewall (namely x and P) have different
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X

Fig. 1. Schematical trajectories on x—P plane describing
Ising domain walls.

thicknesses. Following the arguments given in the
paper [20], we can relate the tragjectory to the chirality
of the wall. One can call the domain wall of the type
shown in Fig. 2, a double chiral one, since it can be
characterized by two different types of chirality. The
first one is the order parameter x which defines the
chirality of the system in areal coordinate space. Itisa
chira structure in the space of the order parameters x
and P aswell. The latter one can be defined viathe gra-
dient of the “angle” between two order parameters in
order parameter space. As a measure for this second
type of chirality, it is convenient to choose the Lifshits
type of invariant, since it is not zero only for chiral
domain walls:

P

where z-axis is taken in the direction perpendicular to
the wall and x, y are arbitrary axes in the plane of the
wall. Thiscontribution to the energy givesthe energy of
double chirality defects (x—P domain walls) for smec-
tics under considerations.

Unfortunately, we can find no guidance from exper-
imental or theoretical sourcesfor choosing al phenom-
enological coefficientsthat appear in these expressions.
Thus, the primary function of this section must be to
give a qualitative interpretation of our results and to
demonstrate the possibility of chiral and ferroelectric
ordering and domain ways in basically non-chiral sys-
tems, as opposed to proving exactly their existence.

dPXD

Py (4.2)

5. CONCLUSION

We formulated a simple Landau-type model
describing macroscopic behavior that recently discov-
ered new smectic phases composed of achiral bent-
shaped molecules. Films of such smectics exhibit three
types of ordering related to dipole polarization, molec-
ular tilt, and chirality. However, due to specific third
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Fig. 2. Schematical trajectories on x—P plane describing
Bloch domain walls.

order coupling of the order parameters, these three
types of symmetry-breaking are not independent, and
this fact leads to specific structures (i)—iv) actualy
observed in experiments. This inhomogeneous order-
ing physically means that, over alarge region of thick-
nesses of free standing films, they can be considered as
some effectiveinterfaces. It istypical for liquid crystals
[21] that the width of the interface of experimental
mesogenesis 40—100 timesthe length of molecules. We
observed the example of how the presence of an inter-
face may induce a type of ordering in the inhomoge-
neous region (for free standing films it may be the
whole thickness of the system) that does not occur in
the bulk phases. The analogous phenomena are aso
known for Langmuir monolayers where chiral symme-
try can be spontaneously broken [22], and it leads to a
chiral phase composed of non-chiral molecules. In fact,
for athick free-standing film, the top and bottom layers
are each equivalent to Langmuir monolayers. We have
seen the same type of structures for A-configuration
where thetilt arrangement is anticlinic; i.e., thetop and
the bottom of the film are tilted in opposite directions.
If it is anticlinic with the smectic periodicity, one can
get conventional antiferroelectric structures, as has
been recently found from ellipsometric studiesin [23].2

Physical mechanisms providing the polarization
properties of non-chiral and chiral-free standing films
are very different. For the non-chiral systems the polar
order is induced by the steric packing of anisotropic
(but non-chiral) molecules, whereas in the ordinary
(chiral) ferroelectric liquid crystalline phases, the polar
order is a consequence of the molecular chirality.
Owing to this fact, the value of spontaneous polariza-
tion for smectic constructed from achiral bent-shaped
molecules is rather large (according to [§] it is around

3 Note also the recent reflectivity and ellipsometric studies [24]
which are fitted for thick free standing films by a model of the
film consisting of surface anticlinic layers and an interior—azi-
muthal helix.

No. 5 2000



832

300nC/cm?) and, therefore, the systems (unlike classi-
cal smectic C* liquid crystals which are ferro-elastic
ones, or free standing films of achiral smectics C show-
ing piezoelectric polarization [7]), are genuine strong
ferroelectrics. Note aso that, as we have seen for such
smectics, the polarization is parallel to the smectic lay-
ers and therefore, the depolarization field (appearing
dueto finite lateral size of the system) is very small.

In the presence of an external electric field E align-
ing the order parameter P (i.e., polarization P = KE,
where K is the dipole polarizability of the system), the
quadratic part of the free energy expansion (2.6)
reduces to

%ale2 + %agx2 +yKEX®.

Excluding X, one can find the renormalization of the
main phase transition temperature (associated to the tilt
angle condensation) or, what isthe same, the renormal-
ization of the coefficient a,. The renormalized value of
a,is

y2K2E2
2a;

Asit should be, the externa field stimulates the phase
transition (independently on signs of the coupling con-
stants y and K). Thus, in the presence of the externa
electric field, the transition temperature into the smec-
tic Cfield (associated to thetilt ordering) increases pro-
portional to E2.

Since the low-temperature phase of our system pos-
sesses the chiral and polar ordering, it should be char-
acterized by non-zero Lifshitsinvariant of the type

X (ProtP). (5.0

This term, in the presence of electromagnetic waves,
leadsto the natural optical activity, (i.e., it exhibits dou-
ble circular refraction, and when a linearly polarized
wave is propagated in the system possessing such a
contribution into the energy, the plane of polarizationis
rotated and the angle of rotation per unit path length of
theray is proportional to wx(ProtP), where wisoptical
frequency).

Certainly, in ageneral case, (e.g., for thick films) we
have to include into the consideration the azimuthal
angle @ of the c-director, and the corresponding degree
of freedom for P as well. Due to third order coupling,
both azimuthal degrees of freedom are not independent
ones. In this case, we get two order parameters c and P
having the common one Goldstone degree of freedom
¢ for both of them. The contribution to the elastic
energy of the smectic, analogous to the Lifshits invari-
ant (5.1),

QR = A —

X (crotc), (5.2)

leadsto aspiral ordering of c-director astakes placefor
chiral smectics C* or cholesterics.
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APPENDIX
LANDAU THEORY FOR FILMS

Minimization of (3.1) and (3.2) gives the following
Euler—agrange equation

(A1)

which should be supplemented by the boundary condi-
tions

* %ﬂl +a(T-TYm(l) + Bm’(#l) = 0. (A.2)

Here we introduced the following notations:
z=x¢, 6 = ém,

where 8 isthe magnitude of the order parameter at T <
T, | = L/&,, and used the natural form of the Landau
coefficients

T
a, = 2a(T-T,), d, =2aTa’ ¢, = ZGEC,

_al T _4,_T
8, =961 T 1T=1 T

Let us consider first the case when we have the surface
transition, but the bulk phase is still not tilted (8, = 0).
Neglecting into the bulk equation m?, we find for the
symmetrical case (m = constcoshx) expression (3.3)
from the paper. The same manner for the antisymmetric
case m(x) = const sinhx and we get the expression (3.4)
from thetext. To find the magnitude of the order param-
eter induced by the surface phase transition, one should
explicitly take into account the nonlinear termsinto the
eguations.

The same manner near the bulk transition point we
should include the bulk non-linear terms. For S-config-
uration from (A.1), (A.2) follow two relations:

u

L _ dx
2a,/2 {{(x2—1>[2r+nﬁ(x2+1)]}“2

(A.3)
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and

2

u
2:;12)\—2 = (V=1)[21 + my(u® + 1)], (A.4)
where m, = m(L/2).

Transition point for a finite thickness of the film L
corresponds in the symmetrical case to my = 0. Thus,
the solution of both equations can be written in the
parametric form

L LA

stanhs = > ST oa

and the explicit solution for t.(L) which isin fact the

point where the surface order parameter appears (in the
limit of L < A):

(A.5)

2
- al
(L) = AL (A.6)
For A-configuration instead of (A.3), (A.4) weget a
system
2 _ 2aZD
u = %T—?D
and
ST g
2a J21
and againin the limit L < A we obtain
6
_al

Thus, expressions (3.3) and (3.4) from the text give
us the modification of the surface phase transition point
dueto theinteraction with the bulk, and (A.6) and (A.7)
express the bulk transition temperature dependences on
the thickness owing to the existence of the surface lay-
ers.
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Abstract—The rf magnetoresistance of Fe/Cr superlattices is studied for two orientations of the current: par-
allel and across the superlattice layers. A mutually single-valued correspondenceis established between therel-
ative magnetoresistance measured at dc current and the change in the transmission coefficient of electromag-
netic waves in the magnetic field. When rf currents flow across the layers, the relative change in the signa
amplitude is proportional to twice the change in the electrical resistance of the superlattice and is of opposite
sign. It is shown that the rf losses are determined by the surface resistance which is proportional to the super-
lattice thickness and inversely proportional to its conductivity. An equation is derived for the rf electric field
distribution in the superlattice. It is established that when the thickness of the superlattice is small compared
with the skin layer depth, field and current components which penetrate through the entire superlattice exist.

© 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Studies of the magnetic and electrical properties of
metal superlattices are one of the main trends in the
modern physics of nanostructures. Of particular inter-
est here is the giant magnetoresistance of metal multi-
layers[1]. Thiseffect is caused by achangeintherela
tive orientation of the magnetic moments of the ferro-
magnetic layers in the superlattice when an external
magnetic field is applied and depends strongly on the
nature of the exchange interaction between neighboring
layers separated by a thin “nonmagnetic” layer. This
effect is aso sengitive to e ectron scattering processes at
theinterface between the magnetic and nonmagnetic lay-
ers. Of particular interest is the situation when electric
current flows across the superlattice layers. In this case,
the giant magnetoresistance effect is most clearly
defined and has important features associated with the
phenomena of spin injection and electron accumulation.
It should be noted that, because of the extremely low
electrical resistance of the samples, it is difficult to carry
out experiments in a geometry where the current in the
superlattice flows across the layers. Fairly complex
methods of preparing samples for such measurements
are described in the literature. In particular, in order to
increase their transverse electrical resistance, the super-
lattices in these experiments were prepared in one case
by depositing atomic layers on specialy prepared
grooved substrates [2] and in another case by electro-
chemical deposition in small-diameter apertures and
the fabrication of so-called nanowires[3].

Promising methods of studying the giant magnetore-
sistance effect involve using microwave el ectromagnetic
oscillations and waves. By using different types of oscil-
lations and waves, it isfairly easy to achieve various ori-
entations of rf electric and magnetic fields and currents

relative to one another and to an external magnetic field.
In addition, therf technique can be used to answer the sep-
arate question: up to what frequencies can the giant mag-
netoresistance of superlattices be observed? The answer
to this contains information on the rf conductivity of
superlattices, which is relevant to predicting the practi-
cal application of metal superlattices in high-speed
devices.

Only afew publications have dealt with the rf prop-
erties of metal superlattices [4—6]. It was shown in [4]
that a direct relationship exists between the absorption of
rf electromagnetic waves and the giant magnetoresistance
effect. The eectromagnetic properties of superlattices in
the infrared were studied in [5]. One-to-one correlation
between the giant magnetoresistance effect and the
propagation of microwaves through the superlattice
was established in [6].

In the present paper we make a detailed study of the
rf magnetoresistance of superlattices. Particular atten-
tion ispaid to achieving different relative orientation of
the rf fields and currentsin the layers. The objects stud-
ied are Fe/Cr superlattices for which the magnetic
moments of the neighboring Fe layers exhibit noncol-
linear ordering [7]. The rf properties are studied in
comparison with the giant magnetoresistance effect.

The superlattice sample is positioned either in the
cross section of awaveguide or in an empty resonator.
In the second case, any change in the electrical resis-
tance of the sample in the magnetic field changes the
electromagnetic losses. The complex resistance Z near
the resonance at frequency wy, may be expressed as Z =
R(1 + 2iQAwWwy,), where R is the resistance of the cir-
cuit, Q isthe Q factor, and Aw is the detuning from res-
onance. The oscillation power inresonanceat Aw=0is
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proportional to 1/R?. The relative change in the power
T in the magnetic field H is given by

1/ R¥(H) - 1/R(0) _ o Ltr/2
1/ RY(0) (L+1)”

wherer = [R(H) — R(0)]/R(0) isthe relative magnetore-
sistance. For small r the relative change in the rf power
is T = —2r. When the negative magnetoresi stance of the
superlattice is high, T may appreciably exceed |r|. This
essentially describes the enhancement of the giant mag-
netoresistance of superlattices: the change in the rf
power isafactor of two or more greater than therelative
magnetoresistance measured at dc current.

2. EXPERIMENTAL CONDITIONS

The samples were Fe/Cr superlattices grown by
molecular beam epitaxy. The substrates were single-
crystal magnesium oxide (MgO) wafers cut along the
(100) plane. The wafers measured 30 x 30 x 0.5 mm.
The substrate temperature during deposition of the Fe
and Cr layers was 200°C. Details of the superlattice
fabrication technology are given in [8]. In the present
study we took into account several factors when select-
ing the samples. First, the superlattice samples must
have a fairly high magnetoresistance. Second, it is
desirablethat the field dependence of the magnetoresis-
tancein samples of different thickness should be differ-
ent. The characteristics of the superlattices used in this
study are given in the table. Sample 4 is not a superlat-
tice but an Fe film whose thicknessis of the order of the
total layer thickness in the superlattices. By comparing
the microwave properties of the thin Fe film and Fe/Cr
superlattices, we can identify the contribution made by
the multilayer structure of the superlattices.

All the measurementswere made at room temperature.
The relative magnetic resistance r = [R(H) — R(0)]/R(0)
was measured in magnetic fields H up to 32 kOe. The dc
electrical resistance was measured by a standard four-
contact method. In this case the magnetic field was ori-
ented parallel to the plane of the superlattice.

The microwave measurements were made by two
methods. In the first the sample was positioned in the
cross section of a rectangular waveguide operating in
the TE,; mode. The position of the sample in the
waveguideisshownin Fig. 1 which givesthe directions
of the external magnetic field H, the rf electric field E._,
and the wave vector q of the electromagnetic wave. The
vectors are mutually perpendicular: H OE_, E_q. In
this case, therf field E_ and the currents are parallel to
the superlattice layers. An experiment was carried out
using sample 1 in the frequency range between 5.4
and 11 GHz. We measured the relative changer,, in the
modulus of the transmission coefficient D: r,, = [D(H) —
D(0)]/D(0). The transmission coefficient was intro-
duced as the ratio of the transmitted power P, to the
input power P,
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& = =<
o |58 |w8 (22T za | B
g | B2< |Bz< E%({é €8 | 2
S2 @2 |cEs|os8| 38 | BE
1 205 | 10 70 | 12 | 436
2 21 17 70 | 12 | 56
3 145 9 70 | 30 | 775
4 | 710 - 85 1 | 795
5 8 10 80 | 40 | 800

In the second method the sample was positioned at
the maximum of the electric field of acoaxial resonator
(Fig. 2). The resonant frequency was varied by varying
the gap between the central rod and the bottom of the
resonator. This method used frequencies between 0.5
and 2.1 GHz. Eddy currents appear in the superlattice
and the Joule losses reduce the resonator Q factor. Any
change in the éectrical resistance in the magnetic field as
aresult of the giant magnetoresistance effect changes the
resonator losses and the Q factor. Since the dectric fied
E._ is oriented perpendicular to the layers, the rf current
flows in the same direction so that the magnetoresis-
tance can be measured fairly easily using the so-called
current-perpendicul ar-to-plane experimental geometry.
A method of measurement for this geometry was devel-
opedin[9].

A coaxial resonator was connected into a microwave
circuit asatransfer e ement. Aswe know, thetransmission
coefficient of a resonant transmisson eement can be
expressed in terms of the Q factor asfollows[10]:

o= 29 1
Q:Q21 + QP (Aw/ wy)?

(D)

V /

1
\\ /
2— 7 N

//
/
/
X _— |
H
E.
P

in

Fig. 1. Position of samplein waveguide: (1) electromagnet;
(2) superlattice.
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Fig. 2. Position of samplein resonator: (1) MgO; (2) super-
lattice.

1
0 10 20
H, kOe

Fig. 3. Magnetoresistancer (a) and transmission coefficient
I'm () at frequency f = 8.4 GHz.

where Q, is the loaded resonator Q factor, Q, and Q,
are the Q factors of the input and output coupling ele-
ments, and Aw is the detuning of the frequency w from
the resonant frequency wy,. The relative change T in the
transmission coefficient D inamagnetic field at theres-
onant frequency is given by

_ D(H)-D©) _ AH) _,

! D(0) QL)

)
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The stored oscillation energy of the resonator is given by

W = I@dv,

\%

where H_ is the amplitude of the rf magnetic field and
V isthe resonator volume. The power lossin the sampleis

1.
I:>Ioss = EJ"JZ' RSdSl
s

where| isthe surface density of therf current at the sur-
face Sof the sample and R, is the surface resistance. In
our case R; = d/oy where d is the total thickness of the
superlattice metal layer and o isthe effective conduc-
tivity. If Q. < Q ,, then bearing in minding the defini-
tion of theloaded Q factor, we obtain the following for-
mulafor the relative change T:

QLO)R(H) —RJ0)
Q) RO

where Qy(0) and Q, (0) are the intrinsic and loaded res-
onator Q factors without a magnetic field. Formula (3)
holds if the relative change in the surface resistance is
small. Thus, the value of T is directly related to the
change in the resistance in the magnetic field. Since the
magnetoresistance of superlatticesis negative, it ispre-
dicted that the change T in the magnetic field as given
by (3) will be positive. If the losses in a high-Q resona
tor are caused mainly by Joule losses in the superlat-
tice, we have Qy(0) = Q,(0). The changes in the coeffi-
cient T are then twice the modulus of the relative mag-
netoresi stance measured at dc current.

T=-2 3

3. MICROWAVE MAGNETORESISTANCE

These experiments show that a single-valued corre-
lation exists between the transmission coefficient of the
electromagnetic waves and the magnetoresistance of
the superlattices measured at dc current. We shall first
consider the waveguide measurement method. Figure 3
gives the results of measurements of the magnetoresis-
tance r of sample 1 and the dependence of the rf trans-
mission coefficient r,, on the static magnetic field. The rf
measurements were made at f = 8.4 GHz. These results
convincingly demondtrate the similarity between the
dependences r(H) and r(H) and the humerical values
contained in them. This confirms the correlation
between the rf transmission coefficient and the dc mag-
netoresistance. Figure 4 shows dependences of the coef-
ficient r,(H) measured at different frequencies. It can
be seen that these curves are identical.

The experiments have shown that the coefficient of
transmission of electromagnetic waves across the
superlattice is completely determined by the giant mag-
netoresi stance effect. The region of existence of the rf
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analog of the giant magnetoresistance effect is at least
tens of Gigahertz.

We shall now discuss the second method, where the
sampleis placed in a coaxial resonator. Figure 5 shows
the transmission coefficient T measured as afunction of
frequency f. The symbols give the experimental data
obtained for sample 5 for H = 0; the solid curve gives
the calculations using formula (1) for the loaded Q factor
Q. = 1089.

The correlation between the magnetoresistance r
measured for adc current flowing along the superl attice
layers and the changesin the rf losses T is not obvious
a priori since under these experimental conditions the
microwave currents flow across the layers. Neverthe-
less, a clear correlation can be identified. Figure 6 shows
the correspondence between the field dependences of r
(Fig. 6a) and T (Fig. 6b) for samples 2, 3, and 4. The
microwave measurements were made at f = 779 MHz.
Aswe can see, the dependences r(H) and T(H) aresim-
ilar. Sample 2 typicaly hasarelatively weak saturation
field, around 5 kOe. It can be seen from Fig. 6 that sat-
uration is observed for the magnetoresistance and for
the microwave coefficient T. Sample 3 does not reach
saturation in the magnetic fields used in the present
study and for this the dependences r(H) and T(H) are
closeto linear. Theiron film (sample 4) exhibits a very
low magnetoresistance, considerably lower than the
giant magnetoresistance of the superlattices, and the
change in the microwave coefficient T is also negligi-
ble.

Thus, the results obtained by the resonator method
indicate an undisputed correlation between the magne-
toresistance of superlattices measured at dc current and
the change in the rf losses. It will be shown in the fol-
lowing section that a current-perpendicular-to-plane
geometry is achieved for this orientation of the super-
|attice plane.

4. DISCUSSION OF RESULTS

Fairly weighty evidence indicates that a mutually
single-valued correlation exists between the change in
the electrical conductivity in the magnetic field and the
microwave absorption and propagation through the
superlattice. We shall first consider the change in the
coefficient of propagation of electromagnetic waves
through the superlattice. Let us assume that a plane
wave is incident normally on a thin metal object. For
the amplitudes of the incident E;, reflected E,, and
transmitted E, waves at the metal interface we can write
the system of equations

C
Ei+E = 4__.,.[[ZOO(Ei -E)-ZuEl],

c (4)
E = AF'[[ Zo(Ei —E) -Z,E].
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T %
0 -
4|
8t
1 1 1 1 1
0 10 20
H, kOe

Fig. 4. Dependence of the transmission coefficient on the
magnetic field at frequencies f = 6.85 (»), 8.15 (0), and
8.4 (¢) GHz.

T, arb. units
4L
2 -
1 1 1 1
886 887 888 889
f, MHz

Fig. 5. Frequency dependence of the transmission coefficient
of aresonator with a superlattice (sample 5), H = 0.

This system includes the elements Z; of the impedance

matrix. For a good conductor the inequality 6 < qgl is

satisfied, where 0 is the skin layer depth and qis the
wave number (g, = w/c). If this condition is satisfied,
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r, % T, %
(a) 3 20 (b)
0_
151
5t
! 101
_10 L
5 L
2
_15k ol
| | | | | | | | | | |
0 10 20 30 0 10 20 30
H.kOe H, kOe

Fig. 6. Correlation between the magnetoresistance (a) and the resonator transmission coefficient (b) when rf currents flow perpen-
dicular to the superlattice layers for various samples: (1) 2; (2) 3; (3) 4.

simple expressions are known [11] for the coefficients
of reflection R and transmission D:

C C
R = _1 + Z_F[Zoo, D = Z‘_,__[Zlo. (5)

The reflection coefficient R is close to —1. Under our
experimental conditionswe are dealing with asituation
where the total metal thickness d is much smaller than
the skin-layer depth (d < ) under conditions of the
normal skin effect. In this case, the transmission coeffi-
cient D is expressed simply in terms of the effective
electrical conductivity O :

2

%52 _ C

d = 2mogd

On the right-hand side of equation (6) only the electri-
cal conductivity oy depends on the magnetic field.
Expression (6) yields a mutually single-valued correla-
tion between the relative magnetoresistance r and the
relative changer,, in the transmission coefficient of the
microwave electromagnetic waves. The data plotted in
Fig. 3 convincingly demonstrate that such acorrelation
exists for Fe/Cr superlattices.

Incidentally, it should be noted that expression (6)
for the transmission coefficient was obtained for condi-
tions dlightly different from the experimental ones.
First, the electromagnetic wave in the waveguide
exhibits velocity dispersion. Thisfactor may prove sig-
nificant if the experiments are carried out near the
waveguide cutoff frequency. In the present study the
frequencies at which the measurements were made are
considerably higher than the cutoff frequency so that

(6)

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90

the influence of the wave velocity dispersion can be
neglected. Second, the real structure of the superlattice
was not taken into account in deriving equation (6). The
possibility of introducing the effective conductivity Oy
for a finely layered medium [12] arises because the
layer thicknessestg, and t, are small compared with the
skin layer depth 6 > tp,, to, .

Note that under these assumptions the transmission
coefficient D does not depend on the electromagnetic
wave frequency. This is also demonstrated by the
experimental results plotted in Fig. 4.

We shall now discuss the results obtained when the
sampleis placed in the electric field region of a coaxial
resonator. If the sample possessed infinitely high con-
ductivity, the boundary conditions would require the
vector of therf electric field E_ to be strictly perpendic-
ular to the sample plane. In area sample a tangential
component E; appears and we shall estimate this using
the Leontovich condition [13]. If H_ isthe amplitude of
the magnetic field at the metal surface, the tangential
component E; is given by [14]

E = %(1+i)q06H~. @)

Under our conditions of a quasisteady-state electro-
magnetic field (0 = 10%-102 cm, g, = 0.2 cm™) the
product is gy0 < 1. In addition, the value of H_ islow
in the region of strong electric field in the coaxial reso-
nator where the sample is located. Since the tangential
component of the electric field is small, we can assume
that the rf field enters the superlattice along the normal
toitssurface (along the zaxis). Bearing in mind that the
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metal thicknessd is small compared with the skin layer
depth &, we assume that the electric field inside the
superlattice only has a z-component E,. The subscript
“Z" will be omitted subsequently.

Aswe have noted, at these frequencies the superlat-
tice is a small-scale medium. The electrodynamics
equations written for the electric fields averaged over
the period of the superlattice

ZH i+t

J’ E(2)dz

E@@ =
( ) tFe"'tCr

are equivaent to the equations for a homogeneous thin
film having a certain effective conductivity [12]. Under
the experimental conditions, a normal skin effect is
achieved where the spatia dispersion can be neglected.
The possihility of introducing the effective conductiv-
ity tensor of the superlattice was analyzed in [15] where
it was shown that thisis determined by the matrices of the
€l ectron scattering frequencies and uniquely describesthe
motion inside the layer, reflection from the layer bound-
aries, and thetransition to aneighboring layer with change
of spin. The expression for the effective conductivity in
[15] wasobtained for the casewheretheelectricfield lies
inthe plane of the superlattice layers. The calculations of
thefield distribution given below refer to the current-per-
pendicul ar-to-plane geometry and allow for screening of
the field by the conductor. The aim of these quditative
calculationsisto demonstrate the existence and estimate
the magnitude of the current component flowing across
the entire thickness of the superlattice considerably
greater than the Debye length r.

Jointly solving the transport equation in the T-
approximation, the Maxwell equations for the diver-
gences, and the equation of continuity yields the fol-
lowing eguation:

WeE(D) —wiz?

20° E(Z) ~(w* +iwVv)EQ), (8)
7

where w, = Jatne’/m isthe plasma frequency, n and
m are the electron density and mass, E(0) isthe electric
field at the metal interface, and Z; is the screening
parameter, which will be determined subsequently.
A simplified derivation of equation (8) is given in the
Appendix. Equation (8) is the equation for the plasma
oscillations of the carriersin the metal. The oscillations
are induced by the electric field E(0) at the interface.
The presence of ameta boundary is reflected in (8) by
the second partial derivative with respect to the coordi-
nate z. In equation (8) the time dispersion of the carriers
is taken into account by replacing the square of the
wave frequency with w7 + iwv, where v isthe collision

frequency.
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The screening parameter

74
Zo = £

e —iw(V —iw)

is expressed simply in terms of the Debye screening
length rp = v/wy, where v isthe Fermi velocity:

2 0
rDm+—+|‘ﬂD 9)
0 ooo (.oOD

Formula (9) holds for w < wy and v < wy,.

The solution (8) consists of agenera solution of the
corresponding homogeneous equation and a particular
solution of the inhomogeneous equation (8). The inte-
gration constants are determined from the conditions at
the metal interface: (1) the conduction current is zero at
z=0; (2) theelectric field is E(0). The result of solving

(8) isthe distribution of the average electric field E(2)
conduction current density j(2) , and the volume charge
density p(2) :

B = ol DDZ ”DE(OH[ -5 DDZ}E(O)

i@ = & 5”32052 ~1EO). (19
— 100020 /7,
= = 0
P@ =z e EO:

Aswasto be expected, an increased charge density forms
near the superlattice surface, which decreases rapidly to a
depth of the order of Z,. Thisisadynamic analog of elec-
trogtatic screening [13]. In the present study we shdl not
investigate the detailed characteristics of screening [16],
snce we are mainly interested in the eectromagnetic
losses inside the metd. The firgt two expressions in the
system (10) deserve close attention. In addition to the
field and current components associated with screen-
ing, penetrating components also exist. The penetrating
component of the electric field is fairly small when w,

V < Wy,

EZ — ) = iE©0)2%,
Wy

(11)

but together with the penetrating current component, it
makes a contribution to the losses which must be taken
into account. It should be noted that the field and cur-
rent structure in (10) does not reflect the skin effect. We
recall the conditions required for the existence of the
distribution (10) and the penetrating component (11):
small metal thickness d compared with the skin layer
depth 8, quasi-steady-conditions, and high superlattice
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conductivity. Expressions (10) and (11) alow us to
introduce the effective conductivity

_lz—x) _ _né
EZ —w) MV-iw)
Under the conditions of weak time dispersion (wv < 1)

achieved experimentally at room temperature, 0 isthe
dc conductivity. Bearing in mind that the surface resis-

tance R, = do;flf is present in formula (3), we can con-
clude that the changes in the transmission coefficient T
in the magnetic field are attributable to the magnetore-
sistance of the superlattice in the current-perpendicu-
lar-to-plane geometry.

We shall now calculate the electromagnetic losses
and determine

Qloss = Ploss/S = RteEEdV,

which are the Joule losses per unit sample area. Under
the experimental conditions w, v < wy and

W R, 2
Qloss 8T[2

The electromagnetic losses (12) are caused by the pen-
etrating component of the electric field. The value of Ry
on the right-hand side ensures a correl ation between the
magnetoresistance and the electromagnetic losses of
the superlattice.

eff —

—E(0). (12)

5. CONCLUSIONS

We have studied the giant magnetoresistance of
Fe/Cr superlattices at microwave frequencies. We have
established that there isamutually single-valued corre-
lation between the microwave transmission coefficient
and the static magnetoresistance when current flowsin
the superlattice plane. This correlation is explained the-
oretically by solving the problem of the reflection and
transmission of an electromagnetic wave through athin
metal object. It isshown that at room temperature the rf
analog of the giant magnetoresistance effect is deter-
mined by the static conductivity at least up to frequen-
cies of tens of Gigahertz.

Experimental measurements were made of the rf
analog of giant magnetoresistance when an rf current
flows perpendicular to the plane of the layers. It has
been shown theoretically that a correlation exists
between the microwave losses and the static magne-
toresistance. The structure of the rf fields and currents
averaged over the period of the superlattice has been
calculated. It has been shown that penetrating compo-
nents exist which induce microwave losses.
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APPENDIX

We shall analyze an rf electricfield E(2) = E(2) ina
thin metal film under quasi-steady-state conditions,
W <€ 0/l Where L, is the maximum dimension of
the sample. We introduce the nonequilibrium correc-
tion ¢ = ¢(v, 2) to the electron distribution function. We
assume that ¢ depends on the coordinate z and electron
velocity v. We write the transport equation in the T
approximation:

a¢+v%¢+evf E = —v(b-0), (A1)

ot

where f, = ofy/oe, f, is the equilibrium distribution
function, v is the collision frequency, and ¢ = [¢(v) +
¢(—v)]/2. To simplify the calculations we make the
model assumption that the electron velocity is constant
a the Fermi surface |v| = vg. Writing eguation (A.1)
for electrons having the velocities v = v and v = —v¢
and taking into account the relations

2 1
2 f
BVe) +b(vy) = 2y,
(A.2)
Zmfy
O(v~9(vy) = T2,

where m and n are the electron mass and velocity, p is
the charge density, and j is the current density.

Taking into account the current continuity equation,
we can derive the following equation:

9j , ,20p _ne’

ot VFaz T m (A-3)

The conduction current at the metal interface should
vanish, j(0) = 0. We then obtain

iw[E(2 —E(0)] = 4mj(2). (A4
Substituting (A.4) into (A.3), we abtain
(v =i6);21EQ) ~ E(O)] + £ Fa OED 1€y -0

We introduce the notation: wy, is the plasma frequency,
Z isthe screening parameter,

0o = 4Tmne’/m,

Ve ) _ V_(F)[1+ ioo(vw—(z)ioo)}

e —iw(V—iw

Zy =
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assuming v << wy, w < wy,. Finaly the equation for the
electric field has the form
2 2_20°E _ 2.
WoE(2) —wpZ F = (W +iwv)E0). (A5
z

This determines the el ectromagnetic oscillations under
the action of the inducing field E(0).
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Abstract—An analysis is made of some characteristics of the low-temperature thermal conductivity of a bal-
listic quantum dot, attributed to the influence of long-range Coulomb interaction in the geometric capacitance
approximation. It is shown that at fairly low temperatures the thermal conductivity K exhibits Coulomb oscil-
lations as afunction of the electrostatic potent| al of the quantum dot. At the maximum of the Coulomb peak we
find K 0 T whereas at the minimum K [ T3, The dependence K(T) is essentially nonmonotonic at temperatures
corresponding to the characteristic spacing between the size-quantization levels in the quantum dot. © 2000

MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Electrostatic energy strongly influences charge
transport in mesoscopic systems connected by tunnel-
ing junctions with the surroundings (supply conduc-
tors) at low temperatures [1-4]. Electron tunneling
through a potential barrier is accompanied by a change
in the charge of the mesoscopic sample by 1e and a
changein the system energy by E, = €/(2C), whereeis
the electron charge and C is the electrostatic capaci-
tance of the sample. At temperatures T < E; charge
transport is generaly strongly suppressed (Coulomb
blockade effect) [5-10].1 However, for certain values
of the potentia difference V, between the sample and
the surroundings the electrostatic energy of the system
E = (g—eN)%(2C) (where qisthe charge of the sample;
N = CV,/e) is degenerate with respect to change in the
charge by 1le: g == q + e (this occurs for half-integer
valuesof N) [7, 11]. In this case, the Coulomb blockade
isbroken and thisis manifest as an appreciableincrease
in the conductance of the system.

A similar effect should be observed for other kinetic
coefficients, in particular for the thermal conductivity K
which is studied in the present paper. In a one-dimen-
sional system the nontrivial appearance of the Coulomb
blockade effect in the heat transport case consists in
(neutral) electron-hole pairs making a considerable
contribution to the heat transfer because of the follow-
ing circumstance. It was shown in [12] that for a quan-
tum dot (i.e., a phase-coherent mesoscopic sample con-
nected by two quantum point contacts to supply con-
ductors) in the strong tunneling regime, integration of
the charge fluctuations of the quantum dot at low tem-
peratures T < E; can reduce the praoblem of tunneling
of spinless Fermi electrons through a double barrier to

1 For mesoscopic samples the capacitance may reach C < 10715 F
which correspondsto E;. = 1 K.

the tunneling of a Luttinger liquid [13-16] withg = 1/2
(where g is the Haldane parameter) through an isolated
impurity [17]. Heat transfer in a Luttinger liquid with
an isolated impurity was considered in [18]. It was
shown that at low temperatures in addition to the elec-
tron (caused by electron tunneling) contribution to the
thermal conductivity K, 0 T%9-1 electron-hole pairs
[plasmons, i.e.,, small-amplitude fluctuations of the
boson (phase) field describing a Luttinger liquid] also
make asignificant contribution K, 0 T3. Inthe caseg =
1/2 these contributions are of the same order of magni-
tude. It should be noted that the important role of plas-
monsin heat transfer in a Luttinger liquid was noted in
[19-21].

Thus, heat transfer across a double potential barrier
(quantum dot) under conditions when the electrostatic
energy is substantial (i.e, when T < E,) is accom-
pllshed by electrons and by neutral particles (plas-
mons).2 At low temperatures both contributions are of
the same order of magnitude. Thisfactor can be used to
develop atheory of heat transport based on a self-con-
sistent harmonic approximation [22, 23]. This approxi-
mation in fact describes plasmon propagation. How-
ever, electron tunneling processes are also partly taken
into account by renormalizing the potential barrier
height.

It should be noted that studies of heat transport are
important first from the point of view of observing the
non-Fermi liquid behavior of an electron system [19-21].
Second, heating effects also influence the properties of

2The present study only takes into account the long-range Cou-
lomb interaction of electrons in the quantum dot described in the
approximation of the geometric capacitance C. Allowance for
short-range interelectron interaction (g # 1) like the spin will
modify the dependence K(T, V) and is not considered here. Note
that the spinless electron moddl can be used in the presence of a
strong magnetic field which polarizes the electron gas near the
guantum dot.

1063-7761/00/9005-0842%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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mesoscopic systems which exhibit a Coulomb block-
ade effect (single-electron transistors and so on) [24],
which requires a study of heat transfer processes in
these systems.

In the present study we calculate the thermal con-
ductivity K of a quantum dot as a function of tempera-
ture T and potential V. The dependence K(V,) contains
peaks corresponding to destruction of the Coulomb
blockade. The form of the Coulomb peak depends on
temperature. The dependence K(T) is essentially non-
monotonic at temperatures corresponding to the spac-
ing between the size-quantization levels in a quantum
dot.

2. FORMULATION
OF THE PROBLEM AND BASIC EQUATIONS

We shall consider a one-dimensional ballistic chan-
nel containing spinless noninteracting electrons as our
model. Two point potential barriers of height V; and V,
positioned at points x; = —d/2 and x, = d/2 simulate the
guantum dot. With respect to the rest of the channel, the
quantum dot has the potentia V, which can be varied
by using an additional metal electrode (gate). One-
dimensional conductors corresponding to x < x, and x >
X, connect the quantum dot to remote reservoirs having
the temperature T and chemical potential 1. We shall
neglect any inelastic processes in the system (quantum
dot plus supply conductors) and we shall consider the
guantum dot as a purely elastic scatterer. This holds at
fairly low temperatures when the phase coherence
length of the electrons L (T) is greater than the distance
between the electron reservoirs. Heat transport (like
chargetransport) isunderstood in the usual meaning for
mesoscopic physics [25, 26] as transport between
(remote) reservoirs where electron energy relaxation
takes place. In calculations of the thermal conductivity
inthelinear approximation we assume that the electron
reservoirs have the same chemical potentials p; = 4, =
p and their temperatures differ by the small amount
AT=[T;-T) <T.

Thishighly simplified model can nevertheless allow
for the influence of the el ectrostatic energy and the spa-
tial quantization in the quantum dot [27] on the electron
transport at low temperatures. Note that thismodel [28]
corresponds to the experimental situation where a bal-
listic quantum dot is connected to supply conductors
using single-mode quantum point contacts whose
transmission coefficient may vary between zero and
one.

As we know, in the one-dimensional case the elec-
trostatic energy (in the geometric capacitance approxi-
mation) can be taken into account exactly (beyond the
limits of perturbation theory) using the bosonization
method [14, 15]. In order to describe the low-energy
properties of the system (Ae < W) we can linearize the
electron spectrum near the Fermi energy W. Inthiscase,

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90

843

the Lagrangian density of the spinless electrons has the
form [17]

L = AvO1 98, )f 96, t)EfD (1)
0 ZgDVZD at O O ox DD

where v, g are the Haldane parameters [16]. In the
present case we confine our analysis to noninteracting
electrons. g = 1; v = v = Thpy/m*, where v is the
Fermi velocity, p, is the average electron density, and
m* is the effective electron mass. The boson (phase)
field B(x, t) determines the deviation dp of the electron
density from the average density and the electron cur-
rent j:

_ 106(x,1) _ e 08(x1t)
o2 oox I T

The presence of potential barriers is taken into
account by the following Lagrangian [17]:

L, = -V, cos(21120(x, t) — ked) (X + d/2)
—V,cos(21728(x, t) + ked)3(x — d/2),

where ke = TP, is the Fermi wave number. We shall
assume that in the energy range of interest to us Ae ~
T < |, the values of V; and V, do not depend on the
electron energy. Following [12], we can assume V; =
urttri/t; (i = 1, 2), wherer; and t; are the moduli of the
reflection coefficient and the transmission coefficient
for electrons having the Fermi energy, which character-
ize a point potential barrier at the point x,. Note that
according to the Landauer—Blttiker approach [29], the
conductance of an isolated barrier for the case of one-
dimensional spinless noninteracting electrons is G; =

Goti2 , Where G, = €/(2m) is the conductance quantum.

For interacting electrons (g # 1) this is not the case
which leads to a temperature dependence of the con-
ductance at low temperatures [17].

The electrostatic energy associated with the capaci-
tance C of the quantum dot is described by

- n %2
I Le(x, t)dx = —ECD op(x, t)dx—NJ. 3

O

e O

The partition function Z required to describe the
properties of the system may be expressed as a func-
tional integral:

g—%gbe. (4)

2000

Z:Iexp
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The Euclidean (calculated at imaginary time 1 = it)
actionis
© B
St = —[dx[dt(Ly+Ly+Le),
I

where 3 = A/T.

Since the nonquadratic part of the Lagrangian (L)
with respect to 8 only depends on the fields at two fixed
points, we can integrate over the fluctuations of the
field O at al points apart from x = x; and X = X,. As a
result, we obtain the effective Euclidean action [27]:

200,84
+ exp(—|w,|/Aw)

S0, ] = %z%

oo [0
2[1 - exp(—|w,|/Aw)]

O
0
U

B

+Idr{ Vlcos(nm[ze(T) —@(1)] —ked) 5)
0
+V,cos(T0[26(1) + @(T)] + ked)}
E g 2
+—TfI{ 1) —T°N} .
0

Here we introduce the following notation: w,, = 2/
isthe Matsubarafrequency (nisaninteger); Aw = vg/d;
B(1) = [B(x2, T) + B(xq, T)I/2; AT) = B(xx, T) — 6(Xy, T);
8,and @, are the coefficients of the Fourier series
expansion:

X(1) = égexp(—iwnr)xn 7,

(x =6, @; ¢, is the zeroth-order mode). Note that the
field @(t) determines the excess charge of the quantum

dot dq = et 2@ and the field 6(t) determines the trans-
mitted current:

| = E‘m

w2 0t
[17, 27].

We then obtain an approximate expression for Sy
which corresponds to small-amplitude oscillations of
the boson field 6(1). For thiswefirst assumethat V; and
V, are smdl (i.e, V,;, V, < [) and we integrate over

charge fluctuations of the quantum dot (over fluctua-
tions of the field ).

If the condition
T<E, (6)
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is satisfied, we obtain the effective action in the foll ow-
ing form:

_ ﬁ 2|wn| 2
Sl 0] = Bz 1+ exp(—|u)n|/Aw)Ienl
A (7)
+V J’dr cos(21%6(1)).
0
The value of V isdefined as
V _ [?VECD]JZ

x [V2+V2+ 2V, V,cos(21N + 2k.d)] 7,

wherey = €%, C = 0.5772 isthe Euler constant. We shall
subsequently only allow for small fluctuations of the
field © and set cos(2m¥20) = 1 — 2192 We then need to
renormalize the potential V — V* [22, 23] after inte-
grating over high-frequency fluctuations whaose energy
hwy, exceedsthe renormalized potential V*. Thisispos-
sible since these fluctuations are not sensitive to the
potential V* and may be considered as free-field fluctu-
ations. The final expression for the effective action in
the self-consistent harmonic approximation hasthe fol-
lowing form:

_hl 2|('°n| 2
Soul®] = 53 antian R

The value of w, is obtained from

hwy, = 2nVZ/Q, (20

where the Fermi energy p plays an rf cutoff role. We
shall usethisaction (9) to describe heat transport across
aquantum dot assuming that the resultswill bevalid for
any (and not only small) value of the scattering poten-
tials V; and V.. As was noted in the Introduction, this
approximation describes plasmon transport which in
this particular case yields the same temperature depen-
dence of the thermal conductivity asfor electron trans-
port (K OT3forV> Tand K O T for V=0).

We shall analyze hest transfer Q across a quantum
dot in the linear regime characterized by the thermal
conductivity K = —Q/AT, where AT =T, - T, < Tisthe
temperature difference between the electron reservoirs
to theleft (x < x;) and right (x > x,) of the quantum dot
(M1 =My, = W) [26]. It was shown in [18] that the thermal
conductivity is expressed in terms of the electrical con-
ductance G(wy):

3 © 2
K =1 [ WReG(W)
4e°T ! sinh“(fw/ (2T))
where ReG(w) isthe real part of G(w).

(11)
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In order to calculate the dependence G(w) in the
model (9), we use the Kubo formula [30, 31]:

B

Gw) = =~ lim IdTexp(loo 0@OIO)0  (12)

AW, - -iw

Substituting the formula for the current | expressed in
terms of B(T)we obtain

G(w) = eZ_T

> im w,P,,

(.Oa—l

where ®,, = [8,0_,L1Averaging
=1 _
d, = ZJ’ene_nexp( S./h)D86

can easily be performed if the following fictitious term
is added to the action

S =4 i
n

Then we have

_1Q 5z 0
A ijnéj—nqzol

Direct calculations using the effective action (9) give

o\ Ve

Finally the rf conductivity of the quantum dot in this
model is given by

2w,
1+ exp(—w,/Aw)

ReG(w)
w0
W %L + COS— A

2 W ] ) 2
+ cos—=+ — +
(»\,E'TL COS—m 2w, wsin 2W

6, (13

Expressions (13) and (11) determine the thermal con-
ductivity of the quantum dot allowing for the Coulomb
blockade effect in the self-consistent harmonic approx-
imation. The dependence K(T, w,) will be analyzed in
the following section.

It should be stated that the expression obtained for
G(w) describesthe plasmon contribution to the conduc-
tivity of adouble barrier (asimilar expression for asin-
gle barrier was given in [22]). In the limit w — O this
contribution vanishes since these plasmons (small-
amplitude oscillations of the boson field corresponding
to electron-hole pairs) are neutral particles and do not
carry charge [22]. In the formalism used, topological
excitations of the boson (phase) field [16] carry charge
which corresponds to an appreciable change in the
value of O (transport of asingle electron across the bar-
rier correspondsto achangein 6 by T/2[17]). Note that
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Fig. 1. Dependences of the normalized thermal conductivity
K = K/Kq (Kq = TtT/(6%)) on the quantum dot potential N =

CVy/e for low (fiwyy/T = 10, curve 1) and high (fiwg/T =
0. 1 curve 2) temperatures. The curves were plotted for a
symmetric quantum dot (V; = V) for T = Ag.

expression (13) was obtained assuming that the charac-
teristic energy scale (T or 2w) is much less than E (6).

3. THERMAL CONDUCTIVITY
OF A SYMMETRIC QUANTUM DOT

In this section we consider the case where the poten-
tial barriers separating the quantum dot from the supply
conductors have the same height: V, =V,, r; =1, =t
(i=1, 2). Inthis case we have

Wy = Wycos (TN + ked),

16VEc[[52
)

hon = (14)

It can be seen from this expression that for certain val-
ues of N(V,) the effective potential barrier disappears
(w, = 0) asaresult of the energy degeneracy of the sys-
tem with respect to a change in the number of particles
in the quantum dot by one (q === q+ 1) [7, 11] and cor-
responds to destruction of the Coulomb blockade. As a
result, the heat flux increases appreciably and this is
observed as a series of peaks on the dependence K(V)
(Fig. 1). This effect is exactly the same as the conduc-
tance oscillations [1-4].

For the case of an asymmetric quantum dot (V; # V,)
the value of V (8) does not vanish for any V, so that the
oscillations on the dependence K(V,) are weak.
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Fig. 2. Dependences of the normalized thermal conductivity
K on the potential barrier height for a symmetric quantum
dot. Thevalue of Aw,, is measured from the val ue of w,, cor-
responding to the position of the maximum. The curves cor-

respondto T<<T* (1); T=2T* (2); T>T* (3) (T* = AF/TIZ).

3.1. Shape of Coulomb Peak

The shape of the peak on the dependence K(V,)
depends strongly on temperature (see Fig. 2). A cross-
over takes place at T ~ T* where T* = A2, Ar =
Thv/d is the spacing between the spatial quantization
levels near the Fermi energy W in an isolated (V; , —
o) quantum dot. Near the maximum of the peak
(A, < T) the thermal conductivity is given by

K 3hwy

Doy <T<TO

K 1 >rT hwy, < T<TY (25)
K 1 3hwy

—_ = > D )

Ko~ 2 o T>TYH Awy (16)

Here K, = 1iT/(6%) isthe thermal conductivity of aone-
dimensional ballistic channel [32, 33]. Thus, as the
temperature increases, the thermal conductivity at the
peak maximum is halved. This is attributable to the
influence of the electrostatic energy (capacitance C)
which isresponsible for the frequency dispersion of the
conductance G(w) (13).2 At low temperatures (T < T*)
the main contribution to the thermal conductivity is
made by low-frequency (long-wavelength) plasmons
which do not “sense” the internal structure of the dou-
ble barrier. In this case, the thermal conductivity of the
system (at the peak maximum) is determined by the
thermal conductivity of the one-dimensional ballistic
channel. Asthe temperature increases, as aresult of the

31t should be stated that for E, = 0 and i, = O we obtained
G(w) = G(0).
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Fig. 3. Temperature dependences of the normalized thermal
conductivity for a symmetric quantum dot for w,, = 0 (1);

Ao T = 0.1 (2), 1(3), and 10 (4).

destructive interference of plasmon contributions at
different freguencies the thermal conductivity is
halved. This can effectively be considered to be the
result of theincoherent (at T > T*) propagation of plas-
mons through two barriers. In this case, at the peak
maximum (w,, = 0) we have two series-connected inco-
herent (classical) contacts (barriers having the trans-
mission coefficient t = 1) each characterized by the
thermal conductivity K,. In this case, the thermal con-
ductivity of the system will be K = Ky/2 (for similar rea-
soning on the electrical conductance see [12, 17]).
However, it should be stressed that the halving of the
thermal conductivity is caused by averaging over tem-
peraturein the phase-coherent system in the absence of
real inelastic processes (which take place far from the
system in the electron reservoirs). The destructiveinter-
ference effect with increasing temperature isfairly gen-
eral for the mesoscopic physics of ballistic structures.
The characteristic energy scale T* ~ Ap/T® was first
introduced in the persistent current problem [34]. This
energy scaleisalso important for describing the kinetic
properties of ballistic mesoscopic samples[35].

3.2. Temperature Dependence
of the Thermal Conductivity

Figure 3 shows temperature dependences of the
thermal conductivity for various values of the effective
potential barrier. It can be seen that for asmall barrier

fioo, OTO, (17)

the dependence K(T) is essentially nonmonotonic for
T ~ T* because of the relative influence of two effects.
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First the destructive interference of plasmon contribu-
tions at different energiesleadsto areduction in K with
increasing temperature. Second, an increase in the ther-
mal conductivity iscaused by an increasein the number
of above-barrier (ballistic) plasmons with increasing
temperature. Note that the condition (17) can only be
satisfied in the immediate vicinity of the maximum of
the K(V,) peak or for barriers having a low reflection
coefficient (r — O; t ~ 1) (strong tunneling). In this
last case, the dependence K(V,) only contains weakly
defined oscillations (see Fig. 1, curve 2).

Analytic expressions for the dependence K(T) can
be obtained for w, =0 and w, > T.

3.2.1. Thermal conductivity at the maximum of
the coulomb peak. Assuming that w, = 0, we obtain
from (13) and (11)

K [1 3(T/TEbtanh(T/TED 1}
Ko snh(T/TD)

(18)

where T* = A/T®. The dependence K(T) is plotted in
Fig. 3 (curve 1). Note that a similar crossover for the
conductance at the maximum of the Coulomb peak (at
g=1) wasobtained in [27].

3.2.2. Thermal conductivity far from the maxi-
mum of the coulomb peak. We shall now assume that
the following condition is satisfied

fiw, > T, T*. (19)
In this case the main heat transfer mechanism is plas-
mon tunneling. For T < T* expression (13) yields

ReG(w) = Gy(w/w,)?. Substituting into (11), we obtain

4TIZD T f

5 Crao,0) T<TU

K(T) = Ko— (20)

A similar expression wasfirst obtained in[18, 21] for a
single potential barrier.

At higher temperatures (T > T*) the thermal con-
ductivity is strongly influenced by an effect involving
the resonant tunneling of plasmons through the quan-
tum dot. Theimportance of allowing for this effect was
emphasized in [20, 21].

Resonant tunneling occurs for plasmons of fre-
quency w = wy, = W1 + 2A/(Thw,)], where fiw, =
Ar(2n+1),n=0, 1, .... Under condition (19) expres-

sion (13) may be represented as a sum of Breit—Wigner
resonances and a quadratic background in terms of fre-

quency:

ReG(w) = GODZ ﬁ LO90H (o)
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Fig. 4. Temperature dependence of the coefficient § in the
expression K/K = (41%/5)&(T)(T/Aw\)? for thethermal con-

ductivity of a symmetric quantum dot far from the maxi-
mum of the Coulomb peak.

where the resonance width is

28 pon f

M= (22)
Substituting (21) into (11), we obtain
Mren T F
K=K,
U5 Cha U
(23)
, 24TA [w,/(2T)]"

0
(T[ﬁoo\,) Z ,Sinh [w /(2T)]1 0O

(here we neglected the negligible difference between
w, and w, ). Inthelimit T > T* we can substitute

>

ZAF
which gives

8t T ?

K(T) = KO?%\/D’ T>TO

(24)

On comparing expressions (20) and (24) we can see
that in the plasmon tunneling regime, K ~ T2 is obtained
over the entire temperature range. However, the propor-
tionality factor is doubled for T ~ T* (see Fig. 4) as a
result of the resonant tunneling effect.
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Fig. 5. Dependence of the normalized thermal conductivity
K for a symmetric quantum dot in the strong cotunneling
regime (Ec = T = Ag; r — 0) on the ratio #iw\/T. The
thermal conductivity was calculated using the self-consis-
tent harmonic approximation (curve 1), the exact expression
for the conductance obtained in [12] (curve 2), and the self-
consistent harmonic approximation using arefined value of

therenormalized potential X, = 1.2wy (circlesoncurve?2).

4. DISCUSSION AND CONCLUSIONS

In the present study we have considered the thermal
conductivity of aquantum dot in the Coulomb blockade
regime at low temperaturesfor the case of spinlesselec-
trons. The therma conductivity was calculated using a
self-consistent harmonic approximation [22, 23] which
describes the plasmon heat conduction mechanism. It
was shown that the dependence of the thermal conduc-
tivity on the potential of the quantum dot contains
peaks caused by destruction of the Coulomb blockade.

At the maximum of the Coulomb peak, the thermal
conductivity islinear with respect to temperature K 1 T
as a result of the ballistic heat transfer regime. How-
ever, the proportionality factor is halved for T > T* (18)
because of atransition from coherent plasmon propaga
tion through atwo-barrier potential to incoherent prop-
agation through two series-connected barriers. Thisis
consistent with the behavior of the conductance at the
maximum of the Coulomb peak (for g = 1) [12, 27].

In the plasmon tunneling regime (w, > T) the ther-
mal conductivity isK 0 T3(20), (24). We shall compare
the plasmon contribution to the electron tunneling con-
tribution. At low temperatures in the Coulomb block-
ade regime the dominant electron transport mechanism
is elastic (T < Ag) and inelastic (T > Ag) cotunneling
[8, 9]. Both in the case of aweakly reflecting potential
(r — 0;t — 1) [12] and for a potential having the
transmission coefficient t — 0 [8, 9] inelastic cotun-
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neling processes lead to a quadratic dependence of the
conductance on temperature G O T? (for T < Aw,)
which corresponds to the electron contribution to the
thermal conductivity K, O T3. This temperature depen-
dence was obtained in our study (24). At lower temper-
atures (T < T*) when the dominant charge transport
mechanism is elastic electron cotunneling, the electri-
cal conductance does not depend on temperature G O
(AF/EY?. In this case the electron contribution to the
thermal conductivity exceeds the plasmon contribution
Ky O (T/E()? (20): KJK, ~ (A/T)?> 1. For T~ Ag (more
accurately T ~ T*) these contributions are comparable
and the nonmonotonicity caused by the resonant plas-
mon tunneling (see Fig. 4) may be observed in the total
thermal conductivity (K = K, + K,).

In the strong cotunneling limit (r — 0; E. > T >
Ap) the conductance of the quantum dot can be calcu-
lated exactly [12]. Substituting this expression into
(11), we obtain the thermal conductivity in the strong
cotunneling regime (SC):

2 ® 2
- 2Idco — &
167mT 0 sinh“(Zw/ (2T))

SC

(25
2

o 1 .. I O

XM+ -—[des——[fo(e +Aw) - f
%ﬂ' hw_.[o EEZ + r(z)[ O(€ ) O(E)] %

where fo(x) = [exp(Bx) + 1] is the Fermi function,

2yE
V2 €[5+ 15+ 2r,r,cos(2mN + 2ked)].
1

Mo =

We compare the coefficient (25) with the thermal con-
ductivity in the self-consi stent harmonic approximation
(11), (13) (it should be borne in mind that zw,, = 2I" ).
Figure 5 gives dependences of Kg- (curve 1) and K
(curve 2) on the ratio w,/T. It can be seen that these

curves show fairly good agreement. For example, for
T> ', we have

On comparing with (16) we can see that the deviation
from the ballistic value is described by the plasmon
approximation with arelative accuracy of around 15%.
At low temperatures A < T < I, the thermal conduc-
tivity is

3T [
10 07,0

and a comparison with (24) shows that the accuracy is
around 30%. The agreement between the plasmon
approximation and (25) can be improved by introduc-
ing the correction factor a = 1.2 in the definition of the

Ksc = Ko
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renormalized potential (10) Zwy = 2maV/p, which in
fact implies a negligible change in the rf cutoff. The
resulting dependence K (% wy, /T) isshown by thecircles
inFig. 5.
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Abstract—A systematic method of solving the problem of the conductivity of a two-dimensional model with
circular inclusions forming a square lattice is proposed. The complex potential outside the inclusions is
expressed in terms of the Welierstrass zeta function and its derivatives. For alow concentration of inclusions an
analytic expression is obtained for the effective conductivity o, whichisarapidly converging seriesin powers
of the concentration. A numerical analysis of general formulas is used to determine o, and tabulate this in
graphical form over the entire range of variation of the parameters appearing in the problem. The vicinity of the
metal—insulator phase transition point is studied and the corresponding critical indices are estimated with an
exact value being obtained for one of these. Four two-parameter functions contained in the expressions for the
effective Hall coefficient and the effective magnetoresi stance are al so determined and tabulated so that it is pos-
sible to give a complete description of the galvanomagnetic properties of this system in aweak magnetic field.

© 2000 MAIK “ Nauka/lInterperiodica” .

1. INTRODUCTION

A theoretical study of various physical properties
(in particular the electrical conductivity) of inhomoge-
neous media, especially disordered ones, encounters
well-known mathematical difficulties. Hence, very few
nontrivial analytic results are available in thisfield and
they mainly apply to the two-dimensional case. In par-
ticular, these include the reciprocity relation [1, 2], and
also the conductivity [2], galvanomagnetic [ 3] and ther-
moelectric [4, 5] characteristics of two-dimensional
systems of critical composition (having the concentra-
tion p = 1/2). It was also shown in [6, 7] that the results
of [3-5] can be applied to the case of arbitrary concen-
trations, for which it is sufficient to know the dimension-
less effective conductivity f(p, h) (where h is the conduc-
tivity ratio of the components) of the corresponding two-
dimensional two-component model. However, for ran-
domly inhomogeneous systemsthe function f(p, h) isonly
known as the result of numerical analyses over the entire
range of variation of the arguments p and h. A similar
numerical analysis is required for each macroscopi-
cally nonequivalent disordered system.

Periodic models, for which the problem is simpli-
fied considerably, being reduced to finding the potential
within a single unit cell, are more interesting. Various
exact results have been obtained for these structures, i.e.,
two-dimensiona systems with a regular distribution of
smilar inclusions (see, for example, [8, 9]). Various
models with didectric or ideally conducting inclusions
were analyzed in [8, 9] allowing the solution to be con-
fined to the external problem. A closed solution of a
considerably more complex problem for the case where
both components have finite (nonzero) conductivity is

only known for a single model, comprising a two-
dimensional system with a checkerboard structure [8].

An exact solution for a checkerboard-structure sys-
tem can be used to find various effective characteristics
(conductivity, galvanomagnetic and thermoelectric
properties, and so on) of this model as afunction of the
parameter h = 0,/a; (o; is the conductivity of the ith
component) for afixed concentration p = 1/2, the same
asthe critical concentration. This then makesit possible
to study the metal—insulator phase transition in the sys-
tem merely interms of one of two parameters (p or h). At
the same time, the effective conductivity of a two-
dimensional system with square inclusions (dielectric
or ideally conducting) distributed in a checkerboard
pattern was determined in [9] (seeaso[8]). Thiscan be
used to study the critical behavior of the electrical con-
ductivity asafunction of concentration for afixed argu-
ment h (h= 0 or h = ). Thus, the results of [8, 9] for a
checkerboard-structure model can be used to obtain some
representation (albeit incomplete) of the critical conduc-
tivity behavior of this system. However, the absence of a
unified approach to the anadysisof thevicinity of the phase
trangtion point, the impossibility of studying the entire
range of variation of the parametersp and h, and aso some
characteristics associated with the angularity of theinclu-
sions (see [9]) reduce the value of thismodd.

Of considerableinterest for thetheory of transport phe-
nomena in inhomogeneous media s a detailed study of a
two-dimensiona system with periodicaly distributed cir-
cular inclusions. Although this modd is one of the “sim-
plest” and has aready been studied by Rayleigh [10],
no closed exact solution exists for it. Also no suffi-
ciently comprehensive study of this system has been
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CONDUCTIVITY OF A TWO-DIMENSIONAL SYSTEM

made over the entire range of parameters p and h. How-
ever, acomprehensive study of thismodel isinteresting
for various reasons. First, it can be used to study a
metal-insulator phase transition in a regular structure
with smooth inclusions. Second, this model being the
simplest and most studied, serves as the “touchstone”
for various approximate methods. Finally, these struc-
tures are widely used in microelectronics so that their
study is necessary from the practical point of view.

In the present paper we propose a systematic
method of calculating the effective electrical character-
istics of atwo-dimensional system with a doubly peri-
odic distribution (at the apexes of a square lattice) of
circular inclusions. The method is based on expanding
the solution of the Laplace equation in terms of the for-
mally small parameter R/a, where Risthe radius of the
inclusion and 2a isthe size of the unit cell. Inthe lowest
approximation with respect to R/a, the potential outside
the circle is sought as the sum of the potentials from
dipoles induced by an external homogeneous electric
field at each inclusion. The corresponding sum has a
particularly simple form when a complex representa
tion is used: the dipole complex potential isin fact the
same as the Weierstrass zeta function {(2). In this rep-
resentation the algorithm to allow for multipolesof any (in
this case, odd) ordersin successive approximationsis aso
extremely smple since it reduces to an even number of
differentiations of thefunction {(2). In view of the proper-
ties of the Weierstrass functions (see [11-13)), the poten-
tial thus obtained automatically satisfies all the neces-
sary conditions at the boundaries of the unit cell.

The standard boundary conditionsfor r = Ryield an
infinite system of equations for the unknown coeffi-
cients contained in the general expression for the poten-
tial. For R/a < 1 this system can easily be solved itera-
tively, which gives rapidly converging expansions in
powers of the parameter R/a (or in powers of the con-
centrations ¢ = TiR?/(2a)>?) for the conductivity and other
effective characteristics of the model. For fairly large
R/a we used numerical methods; instead of an infinite
system we solved a subsystem of ten equations and
near the phase transition point (i.e., for Rla — 1) this
subsystem was increased to forty equations. As aresult
of this numerical analysis, the dimensionless effective
conductivity f(p, h), its derivative with respect to the
argument h, and various other characteristics of this
model were abtained with a high degree of accuracy
over the entire range of R (0 < R< a) for various values
of the parameter h. In particular, we investigated the
vicinity of the metal-insulator phase transition point
and estimated both critical indices. In addition, we
obtained an exact value for theindex t: t = 1/2.

In accordance with [6, 7], for two-dimensional two-
component isotropic systems a knowledge of the func-
tionf(p, h) over the entirerange of variation of the argu-
ments p and h is sufficient to describe the galvanomag-
netic (and aso thermogalvanomagnetic [14]) properties
of these systemsfor arbitrary magnetic fields. Neverthe-
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less, we make a separate analysis of the case of aweak
magnetic field H when the Hall coefficient and the
magnetoresistance are particularly simply related to the
dimensionless conductivity f(p, h) and its derivative
with respect to the argument h. For this model al the
functions (which depend on p and h) contained in the
expressions for the effective Hall coefficient and the
effective magnetoresistance were calculated and tabu-
lated in graphical form.

The model discussed is analyzed in terms of the
conductivity problem (using the corresponding termi-
nology). Solutions of similar problems involving ther-
mal conductivity, permittivity, steady-state diffusion,
and so on can be obtained by obvious changes in nota-
tion. We also note that the proposed method (for the
case of circular inclusions) can be generalized to struc-
tures of different symmetry and systems with a higher
number of components.

2. ELECTRIC FIELD IN THE MEDIUM

The model comprises a two-dimensional isotropic
matrix of conductivity g, with circular inclusions of
radius R and conductivity o,. The inclusions form a
regular structurewith their centerslocated at the apexes
of asquare lattice having the period 2a (seeFig. 1). The
effective conductivity of this system isisotropic so that
the direction of the average electric field (ECcan be
selected arbitrarily. We shall direct IE[CBlong the x axis.
In this case, in order to determine the electric field (and
current) in the entire plane, it is sufficient to analyze the
problem in the unit cell shown in Fig. 2. In the selected
geometry the éectric field strength E(X, y) possesses
specific symmetry:

Ex(—X, y) = Ex(xv _y) = Ex(xv y)v

_ _ 1
Ey(—X, y) - Ey(x’ _y) - _Ey(xv y)
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Fig. 2. Unit cell. Dashed lines are equipotential contours,
solid lines with arrows are flow lines.

In particular, the vertical boundaries of the unit cell
(and also the line x = 0) are equipotential contours on
which E, = 0 and the horizonta boundaries (and the line
y=0) arelines of flow on which E, = 0 isaso found.

The solutions of the two-dimensional Laplace equa-
tion in polar coordinates (r, 8) have the form r*<cosk®
and r*sinkd, where k = 0, 1, 2, .... Inside the circle
(r <R) alowing for the symmetry of the electric field
(D) we have

o) = Z A, 1" teos(2n + 1)6. 2
n=0

In the two-dimensional case, it is convenient to use the
complex potential ®(2) (where z= x + iy) whose deriv-
ative is expressed in terms of the strength components
of E asfollows:

() = —E,+iE,, 3)

where ¢(r) = Re®(2). For the complex potential inside
the circle (|7 < R) we obtain from (2) and (3)

o2 = § Ay 2 (4)
nZO

with the real (in the selected geometry) coefficients
A2n +1-

Outside the circle (r > R) it is permissible to have
solutions with both positive and negative exponents k =
2n + 1. From these solutions we need to construct an
analytic function possessing the required properties
(see above) at the boundaries of the unit cell. We shall
attempt to construct this function assuming that the
parameter R/ais formally small. In the absence of any
inclusions, the complex potential contains only one
(linear with respect to z) term which is responsible for
the external homogeneous electric field applied to the
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system. In the lowest approximation with respect to R/la
the existence of inclusions can be taken into account by
summing the fields from the dipole momentsinduced at
them, taking them as points. The potential created at
point z by adipole positioned at site z,, is proportional
to (z—2z,,)™. Summation over all | and mgivesthedipole
component ®4(2) of the complete potential. However, the
corresponding sum does not converge so it must be reg-
ularized. After this procedure the complex potential in
the dipole approximation for |z > R has the form

®4(2) = Bz+Bol(2), ©®)

_1 T 1 1 z
(@ = E+§[z—z|m+a+z,7m}’ ©

z, = 2la+i2ma.

Here {(2) isthe Welerstrass zetafunction [11-13]; sum-
mation in (6) is performed over al integer values of |
and mexcept | = m= 0. The coefficients 3 and B, in (5)
arered. It follows from (5) that

P42 = B—ByP(2), (7)

where P(2) = —'(2) is an dlliptic Weierstrass function
[11-13]. Sncefor z=iy,z=a+1iy,z=x,andz=x* ia,
we have Im%(2) = 0 (see[11, 13]) and E, = 0 on these
curves. Thus, the complex potential (5) satisfiesthe condi-
tions a the unit cell boundaries (and on their axes of sym-
metry) imposed by the selected formulation of the
problem.

In the next approximations with respect to R/a we
need to allow for higher-order odd multipoles. The cor-
responding contributions to the potential can be
obtained by differentiating the function (z) from (6) an
even number of times. As a result, for the complex
potential in the region outside an inclusion we obtain
the following expression for |2 > R:

9@ = pz+ § B, ("D (8)
n=0

with the real coefficients B and B,, (in the selected
geometry). In (8) {@"V(2) isa2nth order derivative of the
zeta function (6). On account of the properties of the
Weierstrass functions {(2) and %(2) (see [11-13]) the
potential ®©)(2) satisfiesthe same conditions at the unit
cell boundaries and on its axes of symmetry as its
dipole part (5).
In accordance with [11-13], the zeta function is
quasi-periodic:
((z+2w) = {(9+2n, n = {(w),
((z+2w) = () +2n", n' = {(w),

and the function %(2) and its derivatives are doubly
periodic having the periods 2w and 2w'. For the square

9)
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lattice studied (having the half-periods w = a, w' =ia,
known as the lemniscate case [11, 12]) we have

1 4 (10)
0. = ;[K(l/«/é)] , 03 =0,

where g, and g are invariants of the Welerstrass func-
tion[11-13], K(1//2) = 1.85407... isacomplete el lip-
ticintegral of thefirst kind with the modulusk =1/ J2.

The dectric potentids $© = Re®®@(z) and ¢O =
Red()(2) should satisfy standard conditions at theinclu-
sion boundary (r = R):

¢(e) — ¢(i)’
09 _ 09" | _ 0

or or’ o,

(11)

From (11) we obtain a system of equations for the
unknown coefficients Ay,.1 and B,, appearing in
expressions (2), (4), and (8). In this procedure we use
an expansion for the function {(z) which hasthefollow-

ing form in the lemniscate case [12]
_ 1 ° Cok _ak-1
k=1
where
_9 1
C, = g=—2f2)! Cy = égzﬂ
) (13)

c = 3 o= 5 4
67 3x139" T 3x13x179' "

with g, from (10). The coefficients c,, satisfy the recur-
rence formula[12]
k-1
Cox = S ComC
2k (4k+ 1)(2k_3) z 2mY2k —2m

m=1

(k=2),
which can be used to successively find the values of ¢y,
with increasing index k.
It follows from (6) that the coefficients ¢, are
expressed in terms of the double sums

4k—1
Cu = 4——F,,
(2a)

1c 1
Fo= 3y ——
© AL (1+im)™

I,m

(14)
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For k > 1 the following asymptotic expansion holds
for F,

k
Fk:1+ﬂ+i

22k 44k
+ (_1)k2003(2k;r::cos4/5) .o

which can be used to calculate the coefficients ¢, with
large indices.

Instead of the coefficients B,, we introduce the
“variables’ &,

1-—
+

>

B,, = §,R® (n=0,1,2,..);, &= (15)

[EY
=

The finite system of equations for &, derived from (11)
then has the form (see Appendix A)

S Bom* M) = B3, (16)
m=0

where

(2n+2m)!

Mpym = —(Zn)!(2n+1)!Cn+m+lR4n+26-

(17)

Thecoefficientsc, , . Withevenindices(n+ m+ 1=2K)
are determined in (12)—(14) and those with odd indices
are zero. Thus, the value of M,,,, is only nonzero when
the indices n and m have different parity. The coeffi-
cients A, . ; are expressed in terms of &, as follows:

2n)!
Agnsr = —2_(2n)

2
1+h R4n En (n:01 1, 2, )

(18)

The equations (16) and expressions (15) and (18)
provide the fundamental possibility of expressing al
the coefficients B,, and A, ; in terms of (3 which in
turn is related to the potentia difference U [see (20)].
Thus, expressions (4), (8), and (15)—(18) together with
(20) provide a complete formal solution of the formu-
lated problem.

3. EFFECTIVE CHARACTERISTICS

For the unit cell shownin Fig. 2, the potential differ-
ence U and the total current | are expressed in terms of
the complex potential ®(2) as follows:

U = —Re[P(a+iy) —D(-a+iy)],

| = oIm[ox+ia) - d(x—ia)]. )
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Subgtituting into (19) the expressions (8) alowing for (9)
and (10) gives

_ T [
U =-2aB+ Boggztr -

| = 20,2 B - 804 -0

For the dimensionl ess effective conductivity f = 6 /o, =
I/(c,U) we obtain from (20) (B, = £,R?d)

R R 7" B
f=p——000+—07, O =,

E] 4a° %] 4a° a €o

so that the function f can be determined if we know &,

(i.e., the coefficient By).

For R < a (low concentrations) the system (16) can
be solved iteratively by expanding in powers of the

matrix M . Asaresult, we find

(21)

0
n— BEﬁnO_MnO"' zManmO
) (22)

3T MMMt TS MaMgMiM o=
I m K T m 0

whence it follows that for n=0

g
&o = B%ﬂ’f %MOmMmO
(23)

+ Z IZ%MOKMlimMmo"' El

In (22) and (23) summation over each of theindicesis
performed between 0 and . In (23) allowance is made

for the property of the M matrix elements noted above:
M, = 0 if n and m have the same parity. Determining
&o/B from (23) with the required accuracy and substitut-
ing into (21), we obtain the function f with the same
accuracy.

However, it is more convenient to invert equality (23),
expressing 3 in terms of &, For n = 0, in accordance
with (16) we have

B=¢&+ Z Momém- (24)
m#0
Thus, for n £ 0 (16) yields the equality
En = _EOMnO_ z IvlnmE.m- (25)

m#0
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Solving equation (25) iteratively (expanding in powers
of M) and then substituting the expression obtained for
&, (for n £ 0) into (24), we obtain

a=

o = 1_%MOmMmO

(26)

zzz OkMkIMIm
k m
_Z'Z'Z‘z‘leokMklMlmanMnsMSO_
k I m n s

Here the prime after the summation sign indicates that
summation is performed between 1 and c. Note that

formula (26) only contains even powers of M.

Using the explicit form of the matrix M [see (17)],
from (26) we can obtain the value of a as an expansion
in powers of R/a. Thus, to within terms ~(R/a)?* inclu-
sive, we have

_q 1 a2 1 aaco
a=1 3(gR)6 63(gR)E‘)

5r2 4 4,62
2 T LgRY 8- ...,
9§ 5><11><13ZEkg )

where g = g,/20, g,was determined in (10), and 6 in
(15). The expansion (27) convergesrapidly for Rla < 1.
A comparison with the results of a numerical analysis
(see below) of the system (16) shows that expressions
(21) and (27) give the function f to within ~1% over the
entire range of concentration (i.e., for 0< R< a) for
[8] =< 0.7and for 0< R< 0.95afor |6|=1 (forh=0o0r
h = ). Such awiderange of validity of thisapproxima
tion is obtained because, as is deduced from (27), the
parameter of the virial expansion in this case is not the
inclusion concentration ¢ = TR%(2a)? but its fourth
power. For thisreason even for a = 1 formula(21) gives
the function f to within ~1% in therange 0 < R< 0.7a
(for |8]=1).

Note that in accordance with (26) [see also (27)] the
value of a does not depend on the sign of d sinceitisa
function of 8. Thus, making the substitution o, == o,
(i.e, h —= 1/A, 8 — -0) we have f —= 1/f. Conse-
quently,

(27)

f(p,h)f(p,1/h) = 1, (28)

so that for this model the reciprocity relation [1, 2] (see
also [4]) is satisfied automatically.

For arbitrary R/a the system (16) was solved by
numerical methods (intherange 0 < R< a). Inthis case
we analyzed a finite subsystem of N equations with N
unknowns&g, &4, ..., &y 1 Withthemaximum N =40 (in
the range R = a). Corresponding results for f as a func-
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tion of the concentration of the first component p for
three values of the argument h (0.5; 0,1; 10-°) are plot-
ted in Fig. 3. Using these data the function f(p, h) for
h > 1 can be determined from the reciprocity relation (28).

The mean-square characteristics of the electric field
are directly related to the effective conductivity o,

zﬁl) da,
90, (29)
e(r) = E(r)/| CE0.
Here [ELis the average over the volume (area in the
two-dimensional case) of the sampleV and [I..[® isthe

integral over the volume of the ith component divided
by V. For atwo-component medium we have [15]

g, = &0 = f-hf,
L - o 0f(h)
g, = @0 = f, f'= s

Itiseasy to seethat for thismodel [E,[= U/(2a) with

U from (20). Determining the value of [E2[? using (2)
and (4), we obtain

(30)

(31)

R s . z(2n+1)R“”(Azn+1)

or alowing for (18) and (20)
1 nR’
(1+h) E} R 6D (2a)

W, =

(32)

R4n QO

Calculating (32) to within (R/a)?* inclusive and com-
paring the expression obtained for Y, with the deriva-
tive of h from (21) with a from (27), we can confirm
that the relationship ), = f' is satisfied in this approxi-
mation. A proof of the validity of this relationship for
this particular model for arbitrary R/a is given in
Appendix B.

Results of a numerical analysis for ; and ), are
plotted in Figs. 4 and 5. In this case Y, was calcul ated
using formula (32) and ), from the relationship W, =
f—hy, [see (30)]. Thefunctionsy; and Y, for h> 1 can
be obtained from their values for h < 1 using the equal-
ities

- (2n)(2n+ D! fs s
ey

Wa(p, h)

Wy(p, 1/h) = >
[f(p. )]

wAp. 1/ = [ h)} Walp, ),

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90

855

f Pe
1.0 ,

0.8

04r

0.2

0 0.2 0.4 0.6 0.8 1.[(3

Fig. 3. Dimensionless effective conductivity f as afunction
of the concentration of thefirst component p for three values
of the argument h. Circles give results of model experiment
for h =0 (see Fig. 39 from [8]).

U
1.0

0.6

0.4

0 0.2 04 0.6 0.8 1.0
4

Fig. 4. Dependence of y; = @21 = f' — hf' on the concen-
tration p for three val ues of the argument h. The dotted curve
correspondsto the case h = 0.1.

which are obtained from the definitions (30) and (31)
and the reciprocity relation (28).

4. CRITICAL REGION
If the conductivity of the second component (inclu-
sions) is zero, for R — a the effective electrical con-
ductivity of the medium o, goesto zero since a metal—
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W,

0 0.2 0.4 0.6 0.8 1.0
14

Fig. 5. Dependenceof Y, = @2 on the concentration p for
three values of the argument h.

insulator phasetransition takes placein the system. The
corresponding critical concentration of the conducting
(first) componentisp, = (4—11/4=0.21460.... For ran-
domly inhomogeneous media the properties of o, (or
the function f) in the critical regionh < 1l or 1] < 1
(t=(p—po)/p. isthe similarity parameter at the transi-
tion point in terms of concentration) are described in
terms of the similarity hypothesis [16]. In a certain
sense this description is aso suitable for periodic sys-
tems, seefor example [9]. Below we confine our analy-
sistotheregion p = p, (i.e,, R< a) since the method pro-
posed in the present study cannot be applied for p < p,.
(R>a).

In accordance with [16] (see also, for example[15])
the function f(p, h) in the critical region hasthe foll ow-
ing expansions (1 > 0):

f=1 DA0+ A1 Rz AZHCE E )
for Ap<1<1,
f=r Da"+ At ""25135+ E (34)
for T <A,.
Here
A, = h™" (35)

is the size of the smearing region [16]. Corresponding
expansions for the functions {; and (), are obtained
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after substituting (33) and (34) into relations (30) and
(3D). Inparticular, forAp < T < 1

h

10 0
:—q'DA1+2A2-t-/—s+"'D (36)
0 T 0

where

g =--t. (37)

wnie—~

For randomly inhomogeneous media the value of ' is
the same as the critical index q characterizing the
behavior of the function f for T < 0[16].

For this particular model an investigation of the crit-
ical region encounters certain difficulties because of its
closeness to the limit of validity of the model used. For
R —= a the corresponding expansions (in powers of
R/a) convergefairly slowly which necessitates allowing
for a considerably larger number of terms of these
expansions. For example, using expression (27) for a
for h=0and R=agivesf(p., 0) = 0.044. Analyzing an
infinite system (16) of a subsystem of nine equations
we obtain f(p,, 0) = 0.013. Finaly, by enlarging this
subsystem to forty equations we obtain f(p,, 0) = 0.0037.

In thislast case we observed critical behavior of the
functionsf and f' of the type (33), (34), and (36) in the
concentration range p. < p < 0.217. An analysis of the
numerical resultsfor f intherange Ay < T < 1 gives

t=051, A,=0.18. (38)

Thus from the results for ), = f' in the same range of
concentrations we find

q =003 A =21. (39)
Finally from the dependences of f and f' on h for p = p,
(R=a) weobtain

s=095 a,~188. (40)

We note that relation (37) alowing for (38) and (40)
yieldsq' = 0.027. It isstill possiblethat the “true” value
isq = 0 (where s= 1) which corresponds to alogarith-
mic dependence of fon 1 for T <O0.

For R close to a the function f for h = 0 (or h = )
can be determined approximately by calculating the
resistance of the appropriate “ contact.” This problemis
solved in terms of bipolar coordinates[17]. Asaresult,
for dielectric inclusions we obtain

f(p, 0) = %ln[i‘-”—J—%T—Fiz]

For ideally conducting inclusions the effective conduc-
tivity may be determined from the reciprocity relation
(28). Note that the accuracy of formula (41) increases
astheratio R/a approaches one.

(41)
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For R — aweabtain from (41) (cf. [18])

le lzﬂ,
Tt a

which, when converted to concentration, gives

f = AoTllz,

A =2 2_1=0166..
TIN TT

which agrees with (38). Expression (41) describes the
results of numerical calculationsfor fintherange 0.216 <
p < 0.218 to within <1%.

Thisanalysis showsthat ascaling description can be
applied to this periodic model. However, compared
with “ordinary” disordered systems this case has vari-
ous differences. This particularly applies to the critical
index t. In accordance with the assumption put forward
in [9], the value of t is less than one. This then has the
result that 0f/dt — oo for T — +0 whereasin the ordi-
nary caset > 1 (for two-dimensional systemst = 1.3) and
of/ot — Ofor T — +0. Another important differenceis
the smallness of the smearing region (35) since for this
particular model s/t = 2 whereas for a randomly inho-
mogeneous two-dimensional system s/t = 0.4. Finally
attention is drawn to the extreme smallness of theindex
g (instead of the ordinary ' =t = 1.3) which indicates
that the dependence of f on T may be logarithmic for
1<0.

(42)

5. GALVANOMAGNETIC PROPERTIES
The problem of the galvanomagnetic properties of

two-dimensional two-component systems in a trans-
verse magnetic field H with the conductivity tensor

0=

oo™

Ox O,
o

OO

(43)
—04 Oy
has an exact solution for arbitrary H [6, 7]. In this case,
the components of the effective conductivity tensor G,
are expressed in terms of the galvanomagnetic charac-
terigtics of individual components and the function f(p, A)
obtained from the dimensionless effective electrica
conductivity (for H = 0) f(p, h) by substitutingh — A.
The parameter A isalso expressed in terms of the galva-
nomagnetic characteristics of the components and thus
depends on H. The relevant fairly cumbersome formu-
las for 6, and A are given in [6, 7]. We shall subse-
guently confine our analysis to the case of weak mag-
netic fields when the components of the tensor G, can

be expressed directly in terms of the electrical conduc-
tivity for H = 0, i.e, in terms of the function f(p, h).
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0.8F

0.4F

0.2F

Fig. 6. The function ¢ determined using formula (45).

In the linear approximation with respect to H the
Hall component of the tensor 6, for atwo-component
system has the form [15]

Oae = Oaz * (0a1—=042) (P, h), (44)

where ¢(p, h) is a certain function which depends on

the properties of the medium for H = 0. In the two-
dimensional case ¢(p, h) can be expressed in terms of

f(p, h) [15]:

f2_h?
h) = .
d(p, h) -

(45)

For the effective Hall coefficient R, = Ho,/ oﬁ we
obtain from (44) [15]

R, = W’R,f?+ (R, —h°R,)R,
R(p, h) = 2PN (46)

[f(p, h)]®

with ¢(p, h) from (45). For the model considered in the
present study the dependence of the function ¢ on the
concentration p is plotted in Fig. 6 for three values of
the argument h (h < 1). For h> 1 ¢ can be determined
from the equality

o(p. /) = R
[f(p. 1]

which is an obvious consequence of the reciprocity
relation (28).
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e
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1

0.4r

0.2r

Fig. 7. The function x determined using formula (49).

We express the diagonal components of the conduc-
tivity tensors G, and G; in aweak magnetic field in the
form

0-xe = o-e-l'ye’ O-xi = 0-i +Vi! (47)

where o, and ¢, are the conductivitiesfor H = 0, and y,
and y;, are quadratic with respect to H. In accordance
with [15] for y, we have

(Gal — O-az)zx

5 (48)

Ye = Vil tYoP, +

Here the functions {J; = Y,(p, h) and Y, = Y,(p, h) are
the same as in (30), (31). The function x(p, h) in the
two-dimensional case can be expressed in terms of

f(p, h) [15]:
X = (Y- fd)/(1-h?) (49)

with g, from (30) and ¢ from (45). For the model being
studied the dependence of x on the concentration p is
plotted in Fig. 7 for three values of theargument h (h< 1).
The following equality obtained from the definition
(49) and the reciprocity relation for the functionsf, ,,

and ¢
in_ _n DllJl(lo,h)
X%) 1- hE[f(p,h)]

can be used to determine x for h > 1.
For the magnetoresistance

“Me _ pxe(H) _pxe(o)
Pe Pxe(®

¢(p. )
[P 0]

]
0
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where p, = 6,/(0> + G2), in the quadratic approxima-
tion with respect to H we have

A 20
BPe _ e, Jae (50)
Pe [(Pe o. U

Here o, is the electrical conductivity for H = 0, O, iS
defined in (44) and (45), and y, in (48) and (49). Expres-
sion (50) can be used to describe the magnetoresistance
of atwo-dimensional two-component system over the
entire concentration range and in particular in the criti-
cal range.

6. CONCLUSIONS

We shall briefly discuss the main differences
between the results of the present study and those
obtained (for the two-dimensiona case) in [10]. An
advantage of the proposed approach compared with
that developed in [10] isfirst that the | attice structure of
the model istaken into account in the lowest dipole and
in each successive approximation. Thus, in all orders of
the virial expansion accurate allowance is made for the
symmetry of the electric field and in particular, the con-
ditions at the unit cell boundaries. (In [10] these condi-
tions were not discussed despite their importance.)
Then the potential outside the inclusions is in fact
expressed in terms of the same quantity, the Weierstrass
zetafunction, which has been fairly well studied. Using
the known properties of the zeta function significantly
simplifies the solution of the main problem of deter-
mining the potential, and simplifies the calculations of
the effective model characteristics. Another important
advantage is the establishment of an explicit form of
M, [see formulas (16) and (17)] which means that in
principle, numerical methods can be applied to find the
conductivity and other effective characteristics over a
wide range of parameters p and h with arbitrary accu-
racy. Thislast factor allowed usto study the vicinity of
the metal—insulator phase transition point. (In [10]
however only the first few terms of the corresponding
virial expansion were obtained so that it is not possible
to consider the critical region.) The existence of an
exact formal solution also allows us to study problems
of a general nature. For instance, relation (31) can be
proved by direct calculations (for arbitrary p and h)
which is a serious argument in support of the accuracy
of this solution. Finally, a considerably wider range of
physical problems was considered in the present study
compared with [10].

APPENDIX A
We write the expansion (12) in the form

0

(A.1)
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where the coefficients ¢, with odd indices are zero in
this lemniscate case (square lattice). Differentiating (A.1)
2n times gives

(2n) (2n)! (2n+2m)! 2m+1
Z ( ) - 2n+1 z (2m+ 1)| n+m+1Z . (A2)
We substitute (A.2) into (8), set z=rexp{i6}, and sep-
arate thereal part. Asaresult, for r > Rwe aobtain

2n)!
9(r) = Breoso + z DBZn(zm)l
(A.3)
(2n+ 2m)' 2n+1|:|
- z 2m (2n+ 1)| n+m+1r ECOS(2n+ 1)6

Substituting (2) and (A.3) into (11) yields the fol-
lowing system of equations

(2n)!

an + 2
R

Bno *+ Ban i3

Z _ (2n+2m)!
— Z B

2 Gn+ 1y Cneme = Agnsts
m=0 (A.4)

B3, — By L2l

an+ 2
R

z 2n+2m)!
B z 2m((2n+1)|) neme1 = NAgnay,
where §, isthe Kronecker symbol. Subtracting the sec-
ond term from thefirst in (A.4), wefind

2 (2n)!
mR4n+2 2n-

2n+1 —

(A.5)

Eliminating the coefficient Ay, , ; from (A.4), we obtain

(2n+2m)!

an+ 2
Ban* 1 + h Z E”2m(2n)' (2n+1)! R

n+m+1

(A.6)

1+ hBR 6nO

Substituting into (A.5) and (A.6) B,, = &,R?d with &
from (15), we arrive at formulas (16)—(18).

APPENDIX B

We shall show that expressions (21), (26), and (32)
identically satisfy relation (31).
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We introduce the matrix N which is related to M
from (17) asfollows:

[0, m=20
Nom = O (B.1)
Mym M#0.

Using N the solution of equation (25) may be written
in the form

£ = —&,((1+R) " M)y for n#0, (B.2)

so that for a = B/E, from (24) adlowing for (B.2) we
obtain

a = 1—(M(L+R) " M)o. (B.3)
Expressions (B.3) and (26) are equivalent since only
even powers of N make a nonzero contribution to o

Differentiating f from (21) with respect to h gives

2 2 5
of +T[R 5 a

of 4 TR B} R’
h™ (1+h)?a?d 422 D0 0370

=335 (B.4)

Thematrices M and N depend linearly on 3 so that for
the last factor from (B.4) alowing for (B.3) we obtain

oa

666 =1+ (M(1+N)" (1+ N)~ M)oo (B.5)
We write Y, from (32) in the form
R

> -2
+TRe0 3, B6)
(1+h) (2a) 4a

2d2)

Y, = (&

J=1+ Z (2)1(2n+ 1)! oy (B.7)

R4n QO
Substituting (B.2) into (B.7) gives
J=1+ Z (2n)|(2n+1)I
(B.8)
X ((1+ R) ™ M)ao((1 + R) ™ K)no.
Itiseasy to seethat fornz 0

R4n
(2n)!(2n+1)!
R4n
(2n)1(2n + 1)!

Thus, for n # 0 we have

(2WHED* D 4 Ry oo

R* (B.10)
= (M(1+R) on,

(NM)no = (MN)on,

(B.9)

(N*M)no = (MN)on, ...
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so that for J from (B.8) we obtain

J

=1+ 5 (M(L+ RN) on((L+ N) "M)no. (B.11)

n=1

It follows from the definition (B.1) that

(M(1+N) oo = 0.

Thus, summationin (B.11) can be extendedto all n= 0

and

we then finally obtain for J:

J=1+MA+N) 2+ M.  (B.12)

A comparison of (B.4) and (B.5) with (B.6) and (B.12)
yieldsrelation (31).

N P

w

e

5.
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Abstract—Higher-order perturbation-theory corrections to the superfluid transition temperature in a weakly
nonideal Fermi gas with repulsion are determined. This involves calculating the contribution of third- and
fourth-order diagramsin terms of the gas parameter ap to the effective interaction which determines the super-
fluid transition temperature and also alowing for effects associated with retardation and renormalization of the
polar part of the Green's function. The expressions obtained provide evidence in support of attraction in the
effective interaction in the second, third, and fourth orders of perturbation theory. It is shown that the critical tem-
perature is mainly determined by second- and third-order terms of perturbation theory. Calculations are made of
the superfluid transition temperature for a gas comprising neutral Fermi particles in a magnetic field. The limits
of validity of the theory are analyzed and the possibility of applying the resultsto dilute solutions of Hein *He
and neutral-particle Fermi gasesin magnetic trapsis discussed. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Nonphononic Cooper pairing mechanisms have
recently started to attract greater attention. This s pri-
marily attributable to the discovery of high-temperature
superconducting (HTSC) systems, superconductivity
in organic compounds and heavy-fermion compounds,
and also because of the search for superfluidity in solu-
tions of *He in “He and in atomic Fermi gases in traps.
Moreover, HTSC systems and heavy-fermion systems
belong to a class of strongly correlated systems whose
theoretical analysis requires the development of new
methods. At the same time, solutions of *He in “He and
atomic Fermi gases in traps can be described using the
model of aweakly nonideal Fermi gas. In this case the
interparticle interaction can be either attractive or
repulsive. In the attractive case normal singlet Cooper
pairing takes place where the orbital momentum of the
pair is| = 0 (according to the BCS type), for which the
critical temperature wasfirst cal culated by Gor’ kov and
Melik-Barkhudarov [1]. In systems with repulsive
interaction, the formation of | = 0 Cooper pairs is
clearly impossible and in order to investigate the exist-
ence of superfluidity, we need to study the possibility of
| # 0 Cooper pairing.

The possible existence of superfluidity in Fermi sys-
tems with repulsion was first indicated by Kohn and
Luttinger in 1965. In [2] they examined the contribu-
tion of collective effects to the scattering amplitude in
a particle-hole channel which lead to effective quasi-

particleinteraction at the Fermi surface viapolarization
of the Fermi background. A principal rolein the forma-
tion of attractive harmonics in the effective interaction
and consequently the superfluidity is played by the
Kohn singularity in the effective interaction. In the
three-dimensional case, this has the form

Far(@) O[(2pe) >~ 711n|(2pr) >~ 07| + M reg(@). (1)
In coordinate space the Kohn singularity leads to alter-
nating oscillating RKKY interaction between quasi par-
ticles:

~ sing

Mer (r) O %cos(z Per + ¢).
r

It should be noted that the singular part of the effective
interaction decreases over large distances more slowly
that the seed interaction Uy(r — r') and consequently
makes the main contribution to the scattering amplitude
in the limit of large momental. Integrating the singular

part Ierr(q) using Legendre polynomialsyieldsthefol-
lowing results [2]:

r D@.
A simple extrapolation made by the authors of [2]

yields extremely low estimates at superfluid transition
temperatures in the limit | — 2, 10 K and 10t K
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Fig. 1. Bethe-Salpeter equation for complete vertex I'.

for 3He and the el ectron subsystem in the metal, respec-
tively.

It was subsequently shown in [3, 4] that effective
attraction is also observed for the angular momentum
| = 1 which gives the following expression for the crit-
ical triplet-pairing temperature in the second order of
perturbation theory:

O
exph 51C eXDD—@ D(Z)
0 4(2In2-1)(apg)’ D 0 A°

where A = 2ap./Ttisthe effective gas parameter, aisthe

s-scattering length, pg is the Fermi momentum, and €
is the energy parameter, of the order of the Fermi energy,
which functions as a cutoff parameter a high energies.
Subgtituting rea values for *He in which triplet pairing
takes place gives good agreement with experiment; T, ~
102 K. (Obvioudly, the seed interaction in rea *Heis far
more complex than that in this modd).

Theaim of the present paper isto determinethe crit-
ical superfluid transition temperature of a weakly non-
ideal Fermi gas with repulsive interparticle interaction
to within the preexponential factor. For this purpose we
calculate the irreducible vertex in the Cooper channel
in the third and fourth orders of perturbation theory
with respect to the gas parameter A. We also allow for
renormalization of the polar parts of the Green's func-
tion (corrections associated with the Z factor and the
effective mass) in the Bethe-Sal peter equation (3) and
take into account retardation effects (the influence of
the frequency and pul se momentum dependences of the
irreducible vertex).

This article is constructed as follows. In Section 2
we derive and analyze an equation for the critical tran-
sition temperature in aweakly nonideal Fermi gas with
repulsion. In Section 3 we calculate theirreducible ver-
tex in the Cooper channel in the second, third, and
fourth orders of perturbation theory. In Section 4 we
examine the contribution of retardation effects. In Sec-
tions 5 and 6 we give the final formula for the critical
temperature and discuss the contribution of the seed
scattering in the p-channel. In Section 7 we note the
possibility of an abrupt increase of T, in an external
magnetic field. In Section 8 we discuss possible exper-
imental applications of these results. In particular, we
discuss the possibility of triplet Cooper pairing in solu-
tions of 3He in “He and in a neutral-particle Fermi gas
in magnetic traps at ultralow temperatures.

T.,0Ocex
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2. SUPERFLUID TRANSITION
IN A FERMI GAS WITH REPULSION

We shall consider a weakly nonideal Fermi gas
described by the Hamiltonian

A = Flo+ Flin
_ ot T At &
- Z(sp_“) g puapBap+qBap qar

ap afpp'q

where the indices a, B = 1, 2 number the system com-
ponents which we assume to have equal masses m and

concentrations ny , = p,3: /612, W is the chemical poten-

tial, and the constant g characterizes the interparticle
interaction which we shall assume to be point (here and
subsequently we assume # = 1). The specific physical
content of the concept of component depends on the
particular system. For example, for asolution of Hein
4He it corresponds to an “upward” and “downward”
projection of the spin, whereas in the case of an atomic
gas in a magnetic trap, it corresponds to a hyperfine-
structure component (or projection of the nuclear spin).
The interparticle interaction selected by us assumes
that only s-scattering takes place in the system, charac-
terized by the scattering length a. (In the principal order
of perturbation theory a = mg/4rt) The corresponding
small dimensionless parameter, the gas parameter A, is
given by

A = 2|a pe/ T

We subsequently show how the final result is modified
in the presence of scattering in channels with nonzero
orbital momenta.

Aswe well know, the appearance of superfluid pair-
ing is associated with the presence of apolein the com-
plete two-particle vertex function I" in the particle—par-
ticle channel (Cooper channel) for zero total momen-
tum and frequency [5]. Thisvertex function I" isasolution
of the Bethe-Salpeter integral equation (Fig. 1):

[(Py—Ps; P —P3) = T(P1, =P} Pa—Pa)
—Tnzz_w j F(Py, —Py; 0, —0) G(wy, Q) 3
< G, Q)T (G —; Py )2
(2m®

where I istheirreducible vertex in the Cooper channel
(having no singularities at zero total momentum and
frequency), G is the single-particle Green's function,
and the arguments of the vertex functions denote the
corresponding sets of Matsubara frequencies and
momenta: q = (W, q), P, = (W, p1), and so on. Note
that in formula (3) (and in the following formulas) we
do not give the explicit form of the indices distinguish-
ing the components of the Fermi gas (for example,
I should be taken to mean Iy,5 and so on). Writing
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these in explicit form does not present any difficulties.
We also note that the nonsymmetrized (in terms of the

component indices) irreducible vertex function [ s
used in equation (3).

Thevertex functions™ and I appearingin (3) arein
fact functions of the Matsubara frequencies, the moduli
of the incoming and outgoing momenta, and the angle
between them. For example, we have

F(P1 —P1; Pa—P3) = F(Wy, W3, P4, [P3, Cos(eplpg))'

Thus, expanding I' and [ asa seriesin terms of Leg-
endre polynomials

+o00

r(..., cos(8)) = Y@+ 1)F(...)P,(cos8),
e (4)

(..., cos(0)) = z (21 +2)r(...)P,(cos),
1=0
and integrating over angles, we easily obtain from (3)
the following equation for the polar part I of theIth
harmonic of the vertex function:

. +o00 d3
I_l( )(wlv W3, [P4], Pgl) = =T z J.(ZTgS

x T1(0dy, @y [Py, 19) G(@,, )

x G(—0y, =) T 2(00y, w3, 14, |P4)-

Asusual, the critical temperature corresponds to the
appearance of a nontrivial solution of this equation
which is associated with singular (logarithmic) behav-
ior of the Cooper loop near the Fermi surface. Thus, in
order to determine the critical temperature in the prin-
cipal order with respect to A in al the vertex functions
contained in (5), it is sufficient to set the frequenciesto
zero and the moduli of the momentato pr. Wethen have

(%)

%y _q)

ns

(6)

m_, €
—_— Z FInTCl,

where v = mpe/212 isthe density of states at the Fermi
surface, m* isthe effective mass, and Z istheresiduein
the polar part of the single-particle Green’sfunction. In

equation (6) € ~ & is the cutoff parameter which

depends on the behavior of [ at hi gh momentaand fre-
guencies. Now eguation (5) can berewrittenin theform

r® = rlzzmv In H@, 7
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where
F| = FI(pi = P, w; = 0),
M = r%(p = pe o = 0),

so that a nontrivial solution is only possible for r<o
and occurs at temperature T = Ty where
m D

Ta = sexpg_vph'deZ 0 ®

For the case of a Fermi gas with interparticle attrac-
tion we have

fo:4na/m<0,

and the system is unstable with respect to traditional
s-pairing (I = 0). The superconducting transition tem-
peraturein this case was obtained in [1] to within terms
O(A9) inclusive and is given by

CEZdB

T = € expD— L E
< EéD F 0 2lal pe
9
010 (
= 0.28£Fexp[1—1 0
0A0
where C=0.58... isthe Euler constant. Thisexpression

only differs from the normal expression for T, in BCS
theory in that the Debye frequency wy, isreplaced by €
in the expression for the preexponentia function. This
replacement means that in this particular case, the
entire Fermi sphere and not only itsvicinity of the order
of the Debye frequency, isinvolved in the pairing. Note
that in order to find the preexponential factor in [1] we

need to calculate ' ¢ to within terms of the second order
of perturbation theory inclusive.

For repulsive interaction, a > 0, equation (5) for | =
0 only hasatrivial solution and s-pairing isimpossible.
In this case, superfluid pairing will take place in the
channel having the orbital momentum | for which 'y is
negative and has the maximum absolute value. As we
well know [6], the scattering amplitude of slow parti-
cles having the orbital momentum | at the short-range
potential has the order of magnitude a(ap)?, wherepis
the particle momentum and a is the s-scattering length.
Thus, in our particular case the corresponding contribu-

tion to Iy from scattering at the seed interparticle
potential has a maximum for | = 1 and has the order

(aps)” OA°.
At the same time, many-particle effects associated with
polarization processes of the Fermi background in a
Fermi gas have the order A? and are consequently a
determining factor for | = 4 [4]. Corresponding dia-
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Fig. 2. Second-order diagrams in terms of gas parameter for irreducible interaction.

grams for [ in the second order with respect to A are
plotted in Fig. 2. For our particular case of point inter-

action the first three diagrams cancel out so that ris
completely determined by the last exchange diagram
and is given by (weassumed T = 0)

2
~ Ay
IM(wy, ws, Py, P3) = %%E M(0; + W3, P1 + P3),
where
n@.q = (e -~ SRCDECRUTRD

(10)
_ Op n(p+q)n(p) _
I(2n)39+a(p+q)—z(p)

In this expression n(p) isthe Fermi particle distribution
function for T=0, &(p) = p#2m—p, and B isthe angle
between p, and ps.

From formula (10) we can easily obtain an expres-
sion for the irreducible vertex at zero external frequen-
cies and momenta lying on the Fermi surface. In terms
of the angle 6 between p, and p; we have

\Y r(o 0, P1 = Pr, P3 = Pf, COSO) =

2
y %L [ ﬁ(l + cos8), ﬁ +.J/1- cose}
2 4./1— cosB ﬁ J1—cosB

As aresult of integrating using Legendre polynomias
we obtain
VFF]_ =

%)\2(1—2In2) <0. (1)

All the other partial components I withl > 1 also cor-

respond to attraction but are smaller than 'y and their
absolute value decreases rapidly with increasing | (see
[4]). Thus, we conclude that a weakly nonideal Fermi
gas with interparticle repulsion is unstable with respect
to triplet p-pairing. The corresponding critical temper-
ature in the principal order with respectto A is

o 1 O 0 5
T—sexg— 0= ceXpF-——m—=— g12
PEFIE P 2In2—1))2 (12)
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It can be seen from this formula that in order to
determine the preexponential factor € in equation (5)
we need to retain terms through order A%, (Thisfollows

from the fact that since T 1 begins from terms A?, in
order to obtain terms of the order A° in the argument of

the exponential function, we need to know I:l towithin
terms A% inclusive.)

Note that the contribution of triple collisions can be
neglected to within the selected accuracy since this has
the order A [5, 86].

3. CONTRIBUTION OF HIGHER ORDERS
OF PERTURBATION THEORY

The irreducible vertex I in the third and fourth
orders of perturbation theory is given by the diagrams
shown in Figs. 3 and 4, respectively. The points on
these diagrams correspond to antisymmetrized two-
particle interaction. In expanded notation when the
interaction is represented as a dashed line (asin Fig. 2)
these corresponds to two different methods of connect-
ing the incoming and outgoing lines.

Figures 3 and 4 only give skeletal diagrams
(neglecting the self-energy components) and Fig. 4
only gives “nonoriented” diagrams. The corresponding
Feynman diagrams are obtained by arranging the
arrows (taking into account the particle number conser-
vation law at the vertexes) and also the incoming and
outgoing momenta. Figure 5 shows an example of such
an arrangement.

Direct calculations of these diagrams using standard
rules of the diagram technique yield diverging expres-
sions obtained from integrating over large momentain
subdiagrams containing Cooper loops (loops formed
from two linesin the same direction). By way of exam-
ple we consider the first third-order diagram in Fig. 3
together with its corresponding diagram in which p. In
expanded form this corresponds to the sum of the dia-
grams in Fig. 6 where the dashed line corresponds to
interparticle interaction. It is easily established that for
our point potential the first three diagrams cancel out
leaving only the fourth diagram which contains a
diverging subdiagram at large momenta, corresponding
to a Cooper loop between two parallel dashed lines.
However, it is easy to see that this subdiagram is the
first correction of a ladder series to one of the dashed
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P3 P

Y E\m 4

—P3 —P1 -
Fig. 3. Skeleton diagrams of the third order of perturbation
theory for the irreducible vertex I ;.

B X

Fig. 5. Example of decoding “nonoriented” diagrams (first
diagramin Fig. 4).

lines on the fourth diagram in Fig. 2 which gives a con-

tribution to I in the second order with respect to A.
Quite clearly, the second diagram in Fig. 3 paired with
its corresponding diagram where the substitution p is
made in the sum is the correction to the dashed line in
Fig. 2.

These corrections only differ from the first term of
the Born series for the scattering amplitude in that they
contain the single-particle Green's functions in the
medium G and not in vacuum G©. However, at large
momenta the difference between G and G© disappears
so that the divergence in the diagram in Fig. 7 can be
eliminated by changing from the seed interaction g to
the scattering length a (renormalization procedure).
This length is determined by the scattering amplitude
of two particles in vacuum in the limit where the ener-
gies of the colliding particles tend to zero and may be
obtained from

dw, d’
=0+ 5 pggG“”(w PG~ —p) 12

(13)
4ma

=97 f(z )3g28(p)+|0 m
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B W H

Fig. 4. Skeleton “nonoriented” diagrams of the fourth order
of perturbation theory for the irreducible vertex I ; .

Py ----. P3 Pr.---_P3 P P3
+ - NS
P2 P4 P2 P4 P2 P4
(@) (b) (c)
P1 P3
+ L
/( i
P2 P4
()

Fig. 6. First third-order diagram from Fig. 3 showing dia-
gram corresponding to the substitution p3 < —3 in
expanded representation.

After integrating in diagram Fig. 6d over the inter-
mediate frequency of the Cooper loop w, we obtain the
expr on

1-6E)-6E) [
f5 2’ e (ZH)?»EQ (€% &) +16(syNE, + SE;)
) (14

idsgn&;)(Q —&,+idsgné,)’

X
(Q-&5+
where

1=EE3+

€3 =&(q-9), & =¢&(q+ys),

P = S+W, pP3 = S—W.

g+ wp -zl q+wg

The integral over the internal momentum p from the
expression in brackets diverges at the upper limit. As
we have noted, thisis becauseit isthe same asthe Born
correction to the scattering amplitude in this region.
This divergence can be eliminated in the second-order
diagramin Fig. 2d by going over from the seed interac-
tion constant g to the zero-energy particle scattering
amplitude a in the center-of-mass system.
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Fig. 7. Diagram of the third order of perturbation theory
containing a Cooper |oop as subdiagram.

To within the required accuracy the relationship
between g and a is obtained from (13) and has theform

d d
'° L6 (0, p) G (~w, —p)

(15)

(0)
g= +Dm D_[ 26 (@

- DJ-(Z )32£(p)+|5

where g(p) = p%2m. The renormalization procedure is
shown schematically as follows:

ve{ g’ + 2g°(GG)M}
— A1+ 20%[(GG) — (GG,

where (GG) corresponds to the first cofactor in formula
(14), N corresponds to the second cofactor,

(16)

G(O)G(O)) IZ G(O)((JJ p)G(O)((JJ -p)

-1

2¢(p) +id’
and the pair factor in the second term allows for the
contribution of the second diagram in Fig. 3. Aswe can
easily see, the expression for M, being integrated over
frequency, exactly gives the polarization operator I

which appearsin thefirst term in formula (14). The last
term in formula (14) has the explicit form

FGa _ o 2AD - d
Umpe Df(zm I(Zn)

SO . A5 N s
—(§1+ &) +i0(sgn&; + sgn&y) 2£(p)+i
idsgné,)’

1
(Q-E, +i0sgnE,)(Q L, +
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Fig. 8. Dependence of theirreducible vertex in the second and
third orders on the angle between the incoming and outgoing

momenta 8;_3: F@/\?>—solid curve, I'3/A\3—dashed curve.

This expression contains no divergences and can be
integrated numerically. It can be established that all the
order third-order diagrams contain no divergences and,
asaresult of numerical calculations, we obtain the final
result for the third-order contribution to the p-harmonic
of theirreducible vertex:

vl = —0.33A°%, (18)
It should be noted that formula (18) contains no contri-
bution from Hartree-Fock self-energy components in
the second-order diagrams since this contribution cor-
responds to renormalization of the chemical potential.
We also note that the appearance of a large numerical
coefficient 0.33 (compared with the coefficient of 0.077
for the second-order contribution) is associated with
the stronger angular dependence of the third-order dia-
grams (see Fig. 8). This dependence is mainly deter-
mined by the first two diagrams in Fig. 3 and can be
attributed to the existence of subdiagrams with Cooper
loops.

All divergences in the fourth-order diagrams are
eliminated in exactly the same way. For this purpose, in
the third-order diagrams we need to go over from g to
a in accordance with formula (15) and in the second-
order diagrams, renormalize in the expression for g in
terms of a allowing for the term ~a3, which can easily
be obtained from equation (13). (This term is required
to eliminate the divergences in the second diagram in
Fig. 4.) As aresult, the contribution of the fourth-order
diagramsin Fig. 4 is given by

vel$Y = —0.300°%.

(19

In order to calculate fl towithin A* we also need to
allow for the contribution of the self-energy compo-
nents of the second order in A in the second-order dia-

grams e , see Fig. 2. These contributions can no
longer be reduced to renormalization of the chemical
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potential. They also result in the appearance of a non-
trivial Z-factor and the effective mass m* [7]:

C1ting. ™ 14 2 712 12
Z =1-AIn2, — = 1+15(7In2 1A (20)
in the polar part of the single-particle Green’s function
which now also contains anonpolar part proportional to
A2. By means of direct numerical calculations of the

corresponding diagrams we can establish that the con-

tribution of the latter to I': is negligible. Thus, we
finally obtain the following expression with the
required accuracy in terms of A for the irreducible ver-
tex in a Cooper channel with orbital momentum | = 1;
2mik(2) R r(f)g

(21)

2mD

-
2 2T

Z——Fl—

= —0.077)\2—0.33)\ —0.260\".

4. ALLOWANCE
FOR RETARDATION EFFECTS

In order to determinethecritical temperaturein Sec-
tion 2, in equation (5) we replaced the irreducible ver-

tex "1, which isafunction of the incoming and outgo-

ing frequencies and moduli of momenta M (o, py), by
its value at zero frequencies and momentalying on the

Fermi surface Fl(oq =0, p; = pp)- In this section we
shall show that allowance for the difference between
M (w, p;) and M1 (0 =0, p; = pe) (retardation effects)
introduces a correction of the order of A* to the vertex

I"1. In other words, these effects influence the numeri-
cal coefficient in the preexponential factor.

Retardation effects are most conveniently taken into
account using a method proposed in [8, Chapter 2].
Omitting the appropriate procedures, which areatrivial
generalization of the derivation of [8] to the case of
p-pairing, we arrive at the following integral equation:

®,() = - j getn(&/2T) “"‘”“(E Z2DR E )0, E). (22)

i
for which the condition for existence of atrivial solu-
tion determinesthe critica temperature T,,. The unknown
function @, in (22) can berelated to the spectral density of
the anomalous Green’s function (or more accurately its
first harmonic in the expansion in terms of Legendre poly-
nomials), and the kerndl Ry(&, &') isgiven by
PE) + P&)

m qdq
2
4T[2 P (E) [PE) — p(&)l

 (9EO(E, m) p*E) +K(E) -
.!E+|E|+|E‘| KE)

Ri&, &) =
(23)
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where o(E, q) isrelated to r (W=w,— 05, q=p;—P3)
by

Ficon P) = d—EE oEp) (24)

and the factor ((p? + k? — g?)/2pk is precisely the cosine
of the angle between the incoming and outgoing
momenta which isolates the first harmonic in the
expansion (4) in terms of Legendre polynomials.
Dividing theregion of integration over &' in equation
(22) into three parts: [&'| < zep, € < &' <—ze, and &' >
zeg, where zis an arbitrary number satisfying the con-
dition T, << ze¢ < g, and integrating by parts (where
the dependence on &' in R(&, &) and ®,(&") can be
neglected in the first region and the hyperbolic tangent
in the second and third regions can be replaced by *1,
respectively), equation (22) can be reduced to the form

() = —InUZVSF%D QR 0

" ' (25)
o [ nBE0S (RE B®E).
(As was t:)Fbe expected, the arbitrary constant z was

dropped from this equation.) We introduce the new
variable

®,(8)
@,0)InoIe

which allows us to write the expr on for the critical
temperaturein the form

X&) = (26)

2e° O 1ng

T = —ﬁ_SFeXpD_)—((O_)D (27)
where the function x(§) satisfies
X(€) = Ry(&, 0)

(28)

1 eqndElnd (6
+ 3 [ dInE e (RuE EXE)).
_EF
Since the kernel R, contains the small parameter
(R~ A\?), equation (22) can be solved by an iterative
method. In the zeroth approximation we set:

X9(€) = Ry(E, 0).

The first correction x@ is given by the integral on the
right-hand side of (28) with x = x©:

Idz lndz'ﬂd HEREDRE D) @9

e
and, as can easily be seen, begins with terms of the
order A% The principal term with respect to A in X, is
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Fig. 9. Dependence of T.;/eg on the gas parameter A.

obtained if only the leading (~A?) terms are retained in
the kernel R, in formula (29). In this case, the spectral
function o(E, q) isthe same astheimaginary part of the
polarization operator

o(E, 0) = —ImMN(E, o)

d=dp, E=Emp;.

Direct calculations using formula (29) give x® >
0.004A*whichisequivalent to adding Al ; informula(8),

VEAT 1 = 0.004\*, (30)
Note that a similar estimate of the contributions of
retardation effects was made in [9] where the authors
used the step function approximation for the frequency
dependence of the polarization operator.

5. CRITICAL TEMPERATURE T,

Collecting these results together [formulas (21) and
(30)], we abtain the following expression for the criti-
cal temperature which is determined numericaly to
within two decimal places:

Tey = Tg[eC:eFexp{—(o.om2 +0.33\°+0.261%) "}

31)
g 4 (
A0 2eC.sFexpg—%J +%290 1907

m oA A O
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where the omitted terms have the order A. This last for-
mula assumes A < 0.23 since for A = 0.23 the second-
and third-order terms with respect to A in the exponen-
tial function in (31) are the same. For 0.23 < A < 1the
fourth-order term with respect to A in (31) is much
smaller than the first two so that (31) can accurately be
rewritten in the form

2 0 13.0 420 U
TCl = —eCEFeXpD— 2 + 2 D (32)
T 0 A%(1+43\) (L+43)N)°0

This formulamay be considered as an extrapolation of
the expression for the critical temperature fromA < 1
[formula (31)] to the region A < 1 [formula (32)]. A
graph of the dependence T, (A) is plotted in Fig. 9.

6. INFLUENCE OF SEED p-SCATTERING

So far we have only considered s-scattering between
particles, assuming that the interparticle potential is a
point. However, as we have already noted for the finite-
radius potential, the problem will always contain scat-
tering having an arbitrary orbital momentum | whose
amplitude for particles having momenta equal to the
Fermi momentum pe may be estimated as f; ~ a(apg)?
[6]. From thisit follows that with the required accuracy
we can confine our analysis to p-scattering (I = 1). In
this case, only two contributions will be important: a
contribution of the order A® from p-scattering at the
seed interparticle potential and a contribution of the
order A\* corresponding to the diagram in Fig. 2d where
one of the dashed lines corresponds to s-scattering and
the other to p-scattering. More precisely, if the ampli-
tude of p-scattering of two particles having momenta pg
iswritten in the form

r2aperf _

f, = aag—g = a,a\’, (33)

where a, isanumerical coefficient, the contribution of
triplet scattering to the irreducible vertex "1 has the
form

Vel1 = a,A%(1+0.008)).

We can see that the fourth-order contribution with
respect to A can be neglected and consequently the crit-
ical temperature is given by
2 c
T, = —e’¢
cl T F (3 4)
42.0 0

>U
[1+(43+0a,)A]" O

13.0
O M[1+(43+0,)A]

X ex

Nevertheless, we can specify a physical situation
when the contribution of p-scattering can be neglected.
This corresponds to the case when a shallow level hav-
ing the orbital momentum | = 0 (resonance scattering)
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exists in the potential. In this case, the p-scattering
amplitude is estimated as

fq Dro(rop,:)z,

whereristheradius of action of the potential whilethe
s-scattering amplitude (length) is given by

a = (12mlE)"* > r,,

where E isthe discrete level energy (we assumethat the
condition |E| > ¢ issatisfied so that ap: < 1). Then for
a, informula (1) we obtain the estimate

3
alﬂggo% <1,

and if the condition
o; <€A

is satisfied, the contribution of the p-harmonic of the
seed interparticle interaction can be neglected com-
pared with the fourth order of the effective interaction
which allows only for s-scattering.

7. CRITICAL TEMPERATURE
IN A MAGNETIC FIELD

In this section we study the influence of an external

magnetic field on the irreducible vertex I'1 and conse-
guently on the critical temperature T, to within terms
of the order A3. As was shown in [10], in the principal
approximation with respect to A in the model being
studied the critical p-pairing temperature may increase
appreciably if a static magnetic field is applied to the
system. Thisisbecause for conventional singlet pairing
the role of amagnetic field is always destructive due to
of the paramagnetic suppression of Cooper pairing
caused by the flipping of one of the pair spins. However
for triplet p-pairing no paramagnetic effect occurs so
that the role of the magnetic field was not clear apriori.

In this approach the mechanism for variation of T,
inamagnetic field isbased on the magnetic field depen-
dence of the many-particle effects which determine the
effective interaction. On the one hand, as a result of a
difference in the number of particles (and consequently
Fermi momenta) having spins directed parallel and
antiparallel to the field, the Kohn singularity increases

sharply, causing an increase in I"1. On the other hand,

the value vg, M1 decreases with increasing magnetic
field because of a monotonic decrease in the number of
particles with spin antiparallel to the field. (We recall
that s-scattering can only occur between Fermi parti-
cles having different spin projections.) Competition
between these two effects leads to an abruptly non-
monotonic dependence of the critical temperature on
the magnetic field (more accurately, on the degree of
polarization a = (n, — n,)/(n, + n,)) with an abrupt
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Fig. 10. Dependence of the second- and third-order contri-
butions to the irreducible vertex on the degree of polariza-

tion a: F@/A\2—dashed curve, F®/\3—solid curve.

increasein T for small a, amaximum at intermediate
a, and a decrease for a — 1. (In this case of a com-
pletely polarized Fermi gas seed p-scattering between
parallel spins can only take place between the parti-

cles.) The dependence of r on the polarization o to
within second-order terms was calculated in [10]:

~(2) _ 22In2—1l
@) = -A 5 5
s (35)
xD—2 O [ +—6_1 W}
0+ 530 3(2In2-1) "°J

where
Wy = (3+1)[10In(3 +1)—3°—3]

" 6%1(63+262+ 85+ 4)In21

51
NN (-3
5-1 2

5= Pe - i +ag®
Pr. M —al -

In the third order with respect to A the result can
only be abtained numerically. The corresponding con-
tribution is given by the diagrams in Fig. 3 where the
spins on the outer lines are directed parallel to the field
and those in the inner loops can be oriented either par-
alle or antiparallel to the field. The calculations
(including renormalization of the diverging diagrams)
are exactly the same as the case of no external magnetic
field and the result is plotted in Fig. 10 (solid curve)
which also gives the second-order contribution (35) for
comparison (dashed curve).

It can be seen that the maximum of f(f)(a) is
obtained at 0, = 48 whereas f(f)(a) decreases mono-
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tonically. Thus, the maximum of T is determined by
competition between increasing f(lz)(a) and decreas-

ing F(lg)(a). For typical A thisisin the region of 0.4.
Graphs of the critical temperature as a function of the
degree of polarization are plotted in Fig. 11 for typical
valuesof A. For A = 0.6 the value of T, a the maximum
is approximately six times the value in the absence of
the field. In this case the maximum is mainly deter-
mined by the second order and isreached at A ~ 0.45.

8. DISCUSSION OF RESULTS

The experimental search for nontrivial | # 0 pairing
in isotropic Fermi systems has recently been actively
pursued. Until recently the main candidate was a solu-
tion of *He in “He. So far superfluidity has not yet been
observed in this system although temperatures of the
order of 97 mK have been achieved experimentally
[11]. In the concentration range x < X, = 3% the scatter-
ing length corresponds to attraction so that singlet s-
pairing may be achieved. The critical temperature is
given by formula (9) alowing for

_ 13
Pe = ProX

where €., and pgy are the Fermi energy and momentum
of pure *He. According to estimates made in [12], we
have

23
€ = EpoX

maxT = Teo(1%) =107 K.

The authors of [13] predict an even lower critical tem-
perature:

maxTo, = Too(2%) =4 x 107°-10"° K.

Note that the value T, = 10° K was obtained in [13] as
afitting parameter to describe magnetostriction experi-

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90

EFREMOV et al.

T...K
1074F

10*5 —
10—6_

10—7 —

10—8 —

1079F °

1 1 1 1 1 1
0.04 0.05 0.06 0.07 0.08 0.09
X

Fig. 12. Dependence of T.; on the concentration x in asolu-

tion of He in “He for various degrees of polarization:
o = 0.2—solid curve, a = 0.1—dashed curve, and a =
0—dotted curve.

ments and T, = 4 x 10°° K was obtained in spin diffu-
sion experiments. It should be noted that for a given
concentration x the gas parameter of the theory apgyx¥3
dependsweakly on pressure. Hence the pressure cannot
be considered as an instrument to obtain optimum
parameters for s-pairing.

For high concentrations (X > X;) the scattering length
changes sign a > 0 and s-pairing becomes impossible.
Nevertheless, in this case the subsystem of 3He atoms
may become superfluid but because of the instability
with respect to p-pairing. The critical temperature is
given by formula (32) with A replaced by Ax¥3 and &
replaced by g-ox3. It has a maximum at P = 10 atm
when the maximum 3He concentration of 9.5% is
achieved. Figure 12 gives the dependence of T,0n the
concentration cal culated by using the extrapolation for-
mula (32). At maximum concentration x = 9.5% the
temperature T is of the order of 10°K. A further
increasein T, in solution may occur in strong magnetic
fields. For example, at x = 9.5% the maximum of T in
afield is more than six times that in the absence of a
field, leading us to experimentally measurable temper-
aturesof 6 x 10°K.

Recently the properties of Bose-condensed gases of
akali elements in traps (**Na, ‘Li, 8Rb) have been
studied intensively. A combination of laser and evapo-
rative cooling in magnetic traps can reach gas-phase
densities of the order of 10*2-10%* cm and tempera-
tures of 105108 K. In addition these elements have a
long scattering length a of quasi-resonant origin. For Rb
and Nathe scattering lengths are positive. It isaso found
that the scattering length may cover a broad spectrum of
values from negative to positive as a result of the Fesh-
bach effect. This effect was observed for 22Na[14].
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A logical continuation of studies of Bose condensa-
tionin gases of low-density alkali elementsin magnetic
traps would be to obtain Fermion superfluidity in low-
density Fermion systems in bounded geometry. The
case of anegative scattering length makesiit possible to
achieve s-pairing with a transition temperature deter-
mined by formula(9). For 6Li, for example, we havea =
—2.3x 103 A <0. Thus, for n ~ 10 cm3 the critical tem-
perature T, is of the order of magnitude of 10 K. Note
that because of the Pauli principle the wave function of
an | = 0 Cooper pair should be antisymmetric with
respect to the transposition of quantum numbers char-
acterizing the internal state of the atoms forming the
pair. These numbers are indices determining the mul-
tiplet component of the hyperfine interaction for the
case of zero (optical trap) or weak magnetic field, or
projections of the nuclear spin when the strong external
magnetic field of the trap destroys the hyperfine cou-
pling. Thus, | = 0 pairing can only take place between
atoms of different gas components. Thisimposesavery
stringent constraint on the closeness of their densities
from the experimental point of view:

[Ni—ny/(Ny+n,) ST/ < 1

In the opposite case the Cooper pair would have a
velocity higher than the critical velocity v, ~ Ty/pe It
may therefore prove difficult to achieve this type of
pairing experimentally.

For p-pairing, a Cooper pair may be formed by
atoms of the same component (an analog of the A2
phase in superfluid *He). Note that the superfluid tran-
sition temperature in the triplet case may be increased
substantially by using the existence of several compo-
nentsin thetrap. Thisincreaseis similar to theincrease
in T, in amagnetic field and is associated with the idea
of channel separation: Cooper pairing is achieved
between particles of one component as a result of the
polarization of the other components. In this case, it is
possible to obtain a superfluid p-pairing temperature of
the order of 107-10-° K, which is quite feasible exper-
imentally. By virtue of thisfact thistype of pairing may
be quite promising from the experimental point of view.
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Abstract—A method of measuring the phenomenological Landau—Ginzburg coefficientsin an expansion of the
free energy of ferroelectrics near the phase transition is proposed. This method is based on simultaneously
recording five Fourier components of the current response to asinusoidal voltage as a function of temperature.
An analysisis made of a specific application of the method to Langmuir—Blodgett ultrathin ferroelectric films.
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1. INTRODUCTION

A vast number of experimental methods are now
available for studying polar structures, including ferro-
electrics[1, 2]. In most cases, each method is generally
based on measuring a specific physical quantity (such
as the pyroelectric coefficient, polarization, dielectric
susceptibility, and so on). Studies of phase transitions
require temperature measurements. Since asingle mea-
surable quantity is generaly insufficient to gain acom-
plete understanding of the phase transition, investiga-
tions must be made by other methods which frequently
involves not only repeated temperature cycles but also
preparing new samples having suitable characteristics
for a particular method. All this undoubtedly leads to
additional errors caused by changes in the structure of
the sample as a result of temperature cycles and by the
characteristics of “new” samples prepared for a different
experiment. In the present study we consider a method
which, in the authors opinion, can fairly comprehen-
sively characterize ferroelectric phase trangitions and
which is based on measurementsin a single temperature
cycle. The method involves simultaneoudly recording
the linear and nonlinear dielectric properties of ferro-
electrics which are particularly clearly pronounced near
the phase transition. It should be noted that the idea of
studying the nonlinear dielectric propertiesin order to
obtain information on the phase transition parameters
such asthe Landau—Ginzburg coefficientsin the expan-
sion of the free energy is not a new one. For example,
in[1] (relevant literatureis cited there) we can familiar-
ize ourselves with several approaches to determining
the Landau-Ginzburg coefficients based on studying
the nonlinearity in the parael ectric phase. The most sig-
nificant development in methods of studying nonlinear
dielectric properties was clearly achieved in [3-5] in
which the first three harmonic components of the
response to a sinusoidal voltage were recorded. How-
ever, inthe view of the present authors, the methodol og-

ical approach presented in [3, 5] has some inaccuracies
which may substantially influence the interpretation of
the data. The authors [3-5] attribute the number of the
recorded harmonic solely to the magnitude of the
dielectric susceptibility of the corresponding order. For
example, the third-order dielectric susceptibility is
exclusively attributed to the third harmonic. This is
incorrect, even in the limit of very weak fields. Since
the nth-order dielectric susceptibility is by definition a
coefficient in the term proportional to the nth power of
the electric field in the expansion of the electric dis-
placement as a power series, evenif the third-order sus-
ceptibility is zero, a nonzero fifth-order susceptibility
will lead to the appearance of the third as well as the
fifth harmonic. In other words, the authors do not ana-
lyze possible intermodulation contributions caused by
the presence of higher-frequency spectral components
in the response. The intermodulation contributions may
exceed the fundamental contribution, which means that
al the harmonic components in the signal spectrum
must be measured so that they can be taken into account
in the interpretation of the results. There are also vari-
ous other important characteristics which, in our view,
have been omitted or not analyzed in the literature. For
example, data obtained in [3] for ferroelectric films of
75/25 vinylidene fluoride/trifluoroethylene copolymer
using nonlinear dielectric spectroscopy are at variance
with other results, even with regard to the order of the
phase transition, which is acknowledged by the authors
but the reasons for the contradictions are not clarified.
Thus, by developing a method of measuring nonlinear
dielectric properties, we can give aclear ideaof what is
specifically being measured experimentally and how
the measured quantities relate to the model parameters
of the theory. In the present study we demonstrate that
it is important to measure the first five harmonics to
adequately determine the Landau coefficients. Simulta-
neous measurements of the linear and nonlinear contri-
butionsresultin anew quality: not only can all the coef-
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ficients of the Landau—Ginzburg model be measured in
a single temperature cycle and the nature of the phase
transition thus determined but also information can be
obtained on various characteristics such as the sponta-
neous polarization and pyroel ectric coefficient.

The samples to which the method is applied are
Langmuir—Blodgett films of 70/30 vinylidene fluo-
rideftrifluoroethylene (PVDF-TFE) copolymer. First,
PVDF-TFE has been extensively studied, including
using nonlinear dielectric spectraoscopy [3, 5]. Second,
Langmuir—Blodgett ferroelectric films are fundamen-
tally new multilayer systems whose thickness can be
varied to within a single monomolecular layer [6, 8].
Thus, the experimental data obtained in the present
study are also of independent interest and importance.

2. EXPERIMENTAL METHOD

The apparatusis shown schematically in Fig. 1. The
sample temperature is varied between —20 and +120°C
in a thermostat using Peltier elements and a platinum
resistance as temperature sensor. The measuring systemis
a set of virtua devices (generator, synchronous detector,
digital oscilloscope, and so on) redized by the Physl_ab
program, developed for adifferent purposes[9].

The virtual generator synthesizes the sinusoidal
voltage applied to the sample and the amplitude and
phase relations of the harmonic components of the cur-
rent response are recorded using the virtual synchro-
nous detector. PhysLab can be used with a sinusoidal
voltage at frequencies between 10 Hz and 20 kHz and
amplitude between 1 and 2500 mV without an external
amplifier. Theload for the current measurementsis 100 Q.
The Physlab synchronous detector can simultaneously
record not only the real and imaginary components of
the current at the fundamental frequency but can also
record the corresponding components at different har-
monics. This possibility of simultaneously recording
the harmonics forms the basis of the proposed method
of studying the temperature behavior of the linear and
nonlinear components of the dielectric susceptibility
typical of ferroelectric phasetransitions. Thetotal coef-
ficient of the intrinsic nonlinear distortions of the gen-
erator and the PhysLab recording system is approxi-
mately 0.005% so that the nonlinear properties of our
samples can be studied up to the fifth harmonic with a
large margin.

In accordance with the equivalent circuit diagram of
the sample shown in Fig. 1, the current in the circuit is
given by

_ U, d(CuU)
| = lg+lc = R+ pra (D)
where I and | are the resistive and capacitive compo-
nents of the current, respectively, Risthe sampleresis-
tance, and U is the sample voltage. In (1) the sample
capacitance C cannot be removed from the derivative
operator because in nonlinear dielectricsitisafunction
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Fig. 1. Schematic of apparatus.

of voltage. Taking this into account, the capacitive cur-
rent component can be expressed in the form

du . .dC(U dcrdu

e = cuF +upEH) ( b+ U(t)dugi'jt
dcdu _ . du dcdu
VOG0 e - Ca TV e

where Cy = C(U = 0). In (2) we used the weak depen-
dence of the capacitance on thefield at low samplevolt-
ages, confining ourselves to two terms in the Taylor
series. An analysis shows that these constraints do not
significantly influence the accuracy. Allowance for the
next term in the expansion, which is proportional to the
second derivative of the capacitance, yieldsacorrection
at the third harmonic which, however, does not exceed
25% of the contribution aready taken into account.

If asinusoidal voltage U(t) = Uysin(wt) isapplied to
the sample, where U, is the amplitude and w is the
cyclic frequency, formula (1) alowing for (2) has the
form

U, .
| = Eosn(wt)+wU0COcos(wt)
dc ©)
+(oUOS|n(2wt)

It is easy to seethat by using phasesensitive detection
(which essentialy performs a Fourier analysis of the
signal) at the fundamental frequency, we can measure
the first two components, which are proportional to the
conductivity and capacitance of the sample. These
components can easily be separated by the synchronous
detector since they have a relative phase shift of 90°.
Thethird term reflects the nonlinear contribution and is
observed at higher harmonics. Here we consider the sit-
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uation where the resistive component of the conductiv-
ity is much smaller than the capacitive component so
that the nonlinear contribution from the conductivity
can be neglected. The nonlinear contribution from the
resistive component (conduction or dielectric losses), if
thisexists, isalso recorded by the synchronous detector
but with a phase shift of 90° and can be taken into
account if necessary.

3. THEORETICAL PRINCIPLES
OF THE METHOD AND RELATIONSHIP
BETWEEN MEASURED QUANTITIES
AND COEFFICIENTS
OF THE LANDAU-GINZBURG MODEL

In accordance with the phenomenological Landau—
Ginzburg modd [10], in the vicinity of a phase transition
the contribution to the free-energy dengity of theferroel ec-
tric caused by the polarization P can be expressed in the
form

1 2> 1,.4.1 6
= = + - + - -
F 2O(P 4[3P 6yP EP, @
o = dy(T-Ty),

where a,, 3, and y are the temperature-dependent Lan-
dau coefficients, T, is the Curie temperature, and E is
the external electric field. Notethat for 3 >0, y= O, for-
mula (4) describes a second-order phase transition and
for B <0, y>0it describes afirst-order one.

By minimizing the free energy (4) we can easily find
the equation of state in the electric field:

E = Plag(T-To) +BP?+yP]. (5)

In order to obtain the nonlinear contribution deter-
mined by the last term in (3), we need to find the deriv-
ative of the dielectric susceptibility x with respect to the
field which is determined from (5) by differentiating
with respect to the polarization:

X" = (a+3BP°+5yPYe,, (6)

where g, = 8.85 x 102 F/misthe dielectric constant of
vacuum.

The derivative of interest to usis obtained by repeated
differentiation of (6):

X = _xei(6BP + 20yP). ™
In (7) the polarization depends on the field in accordance
with the equation of gtate (5) dthough for week fields
(below the coercive field) corresponding to the experi-
ment, the polarization can be conveniently expressed in
the approximate form:

P = P, +gyXE, (8

where P, is the spontaneous polarization which is only
nonzero in the ferroel ectric phase.
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Substituting (7) into (3) allowing for (8), we obtain
the nonlinear contributions as far as the fifth harmonic:

I, = Soo%’(1+x)eocos(wt), 9.1
0 3 3
IZ(.o = _2%(80)() [SBPS+ 1prs]
(9.2)
2 0 7
+ 15(80)()5%—3—0% yP, %&QB%QE sin(2wt),
D 4 2
|3oo = 3%(50)() [B+ 1OYPS]
(9.3)
5 2 0 3
+ é(eox)6g§g Y E&g%g cos(3wt),
4
e 15(£ox)5yPSSw%%Esin(4wt), (9.4)
5 5
le, = _é(sox)GySwB%E cos(5wt), (9.5)

where Sisthe overlap area of the sampl e electrodes and
d isthe film thickness.

It is easy to seethat by measuring these current har-
monics, we can determine al the Landau coefficients.
In (9.1) we neglect the contribution of the conductivity
and also the contributions of the third and fifth harmon-
ics since these are much smaller than the fundamental
contribution at fairly low sample voltages. The second
termsin (9.2) and (9.3) reflect the intermodulation con-
tributions. These must be treated with caution: they can
be neglected if the fourth and fifth harmonicsinthe sig-
nal spectrum are negligible compared with the second
and third. This condition can sometimes be satisfied
experimentally by selecting a suitable sample voltage.
A very useful tool hereisthe signal spectrum analyzer,
which in PhysLab uses a fast Fourier transformation
algorithm, which alows us to observe al existing har-
monics of the current response and facilitates the correct
choice of experimental conditions. We subsequently con-
Sider the Situation when the intermodul ation contributions
to the first three harmonics are not significant. In this
case, it is convenient to use quantities defined in terms
of theratios of the Fourier components measured by the
synchronous detector as follows:

Az _ —,\/ZCsz 3%)

- U
2520, - wSOTOD

(wS)®, (101
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A, = /295, (ooS) (10.2)
3%\/§¢1y_w80 d
20
A, = [2%y, 0, ( wS)?!,  (10.3)
15%/§¢1y Weo— 1
As = ~2,/2®, (wS) (10.4)

ngéq)ly_weo d

where @, ®,,, @, , ®,,, and @5, are the effective val-
ues of the x and y Fourier components recorded by the
synchronous detector from the first to the fifth har-
monic, respectively. In caseswhen x > 1, which isusu-
ally the case near a phase transition, the term g,wU,Sd
in the denominator can be neglected. Note that the x
component corresponds to the signal in phase with the
reference signal [sin(kwt), where Kk is the harmonic
number] and the y-component has a phase shift of 90°
relative to the reference signal. Since abrupt changesin
the amplitudes and phases of the harmonics may occur
near the phase transition, simultaneous recording of the
kth and first harmonics is a necessary condition for
obtaining correct values of A,.

In the Landau—Ginzburg model the quantities A,

introduced in accordance with expressions (9.1)—<9.5)
arerelated to the Landau coefficients as follows:

A, = P(3B + 10yP?), (11.2)
A; = B+ 10yP?, (11.2)

= yP,, (11.3)

As = . (11.4)

It is easy to see that the measured values of A;and

A; in the paragl ectric phase (P§ =0) give usthe values
of the coefficients y and . With these values we can
easily obtain the temperature dependence of the spon-
taneous polarization. The value of the coefficient o, is
determined from measurements at the first harmonic
which are equivalent to measurements of the capaci-
tance[11].

The temperature behavior of A, depends on the
order of the phase transition. For afirst-order transition
we have 3 < 0, y > 0. Thus, at certain temperatures T,
and T; it is possible to have zero points [A,(T,) = 0 and
As(T5) = 0] and even achangein the sign of the signals.
This situation is achieved subject to the conditions:

3B+ 10y(P(T,)* = O, (12.1)

B+ 10y(P(T4))* = 0. (12.2)
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For these pointsit isalso easy to obtain relationships
to determine the Landau coefficients:

B = —:—2LA3(T2), (13.1)
As(T)f
y = Ag(Tz) D,j(Ts)D (13.2)
and the spontaneous polarization:
= AT
P(Ts) = AT, (14.1)
(P(T2)* = 3(P|(T))". (14.2)

In the temperature range (T,, Ty) it is easy to esti-
mate the pyroel ectric coefficient:

PS(TZ) — PS(T3) _ PS(T3) ('\/é — 1)
To-T,  T3-T,
Ay(T5)
As(T) (T3 -

At this point it is convenient to note that the model
proposed above refers to a homogeneous polarized fer-
roelectric. In practice, we need to deal with many-
domain samples. The measured values are the result of
averaging over the sample volume. If the sample is not
polarized, even harmonics may hot be observed (A, = 0)
because the contributions from various sections of the
sample are mutually compensated so that the average
polarization is zero. Odd harmonics are also observed
in an unpolarized sample since the average of the
square of the polarization is aways nonzero in the fer-
roelectric phase. In order to obtain the most compre-
hensive information, the sample must be polarized.

In formulas (4)—«7) the dielectric susceptibility x
corresponds to a state of thermodynamic equilibrium.
However, if afairly high-frequency alternating electric
field is applied to the sample, the vector of the induced
polarization may not have time to follow the direction
of the electric field, for example, as aresult of the pres-
ence of dielectric relaxation processes. If a sinusoidal
field is applied to the sample, the frequency dispersion
may be taken into account by using the following
expression in (7) instead of (8):

P(w) = Ps+ g0K(w)XE, (16)

where the frequency dependence of the induced polar-
ization is reflected using the complex transfer function

K(w) = [K(w)e*?, (17)

and |[K(w)| and @(w)determine the amplitude-frequency
and phase characteristics of the dielectric susceptibility.
Thus, an additional phase shift appears in relations
(9.2)—(9.5). The existence of this phase shift may
cause problems in determining the order of the phase
transition from the sign of the recorded components at

(15

(31,
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Fig. 2. Temperature dependences of the Fourier components
of the current response when avoltage U = Ugsin(2rit) (f =
1000 Hz, Uy = 1V) is applied to the sample. Curve 1 corre-
sponds to @4y, 2—®,,, and 3—®d3,.. The arrows indicate
the direction of change in temperature. The inset gives the
amplitude-frequency characteristic of the current response
1/2

at the third harmonic |l 3,)| = (qbgX + qbgy) normalized to
the frequency of the applied voltage (Ug =2V, T = 20°C).

harmonics higher than the second. It is easy to establish
that even when the intermodulation contributions are
small, the phase shift @ is present at the third harmonic
and increases threefold at the fifth harmonic. Hence, the
second harmonic may be a more reliable additiona cri-
terion for correctly determining the order of the phase
trangition using the sign of the corresponding Fourier
component. M easurements of the frequency dependence
of the corresponding harmonics may also be very useful
for determining the optimum operating frequency but
when the temperature varies, both the amplitudes of the
Fourier components and their phases must be recorded
simultaneously for subsequent use to obtain a correct
interpretation of the measured values of A,.

4. EXPERIMENTAL RESULTS
AND DISCUSSION

The samples for the investigations were Langmuir—
Blodgett films of 70/30VDF (TFE) copolymer consist-
ing of 20 monomolecular layers. The monomolecular
layers were transferred from the surface of water onto
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glass substrates with a deposited aluminum el ectrode at
room temperature (20-22°C) and 3 mN/m surface pres-
sure. At room temperature this pressure corresponds to
aclose-packed monolayer 5 A thick when the probabil -
ity of local collapse (the formation of a bimolecular
layer 10 A thick at various points on the water surface)
islow. Inthe present study, instead of the horizontal lift
method used in [6] when the substrate plane is parallel
to the water surface during transfer of the monolayer,
we used the classical Langmuir—Blodgett method and
the apparatus described in [12]. However, transfer was
made by pulling the substrate from the water (Z-type
transfer) so that the normal to the substrate surface was
oriented approximately at an angle of 45° to the water
surface, which helped to improve the homogeneity of
the films. A second aluminum electrode was deposited
on the polymer film from above. The total overlap area
of the electrodes was 0.01 + 0.0005 cm?. The thickness
of the polymer films calculated using the number of
transfers and the thickness of a single monomolecular
layer was 10 nm.

The measurements were made after polarizing the
film with asingle 15V pulse of 200 ps duration. Both
positive and negative pulses were used for polarization
and this was reflected in the sign of the recorded values
of ®,,.

Figure 2 gives temperature dependences of thefirst,
second, and third harmonics of the current response
Dy, By, and 0%y measured under conditions when the
amplitudes of the fourth and fifth harmonics are negli-
gible (corresponding to the noiselevel) so that the inter-
modulation contributions in (9.2) and (9.3) can be
neglected for the analysis. The first harmonic (curve 1)
gives the well-known temperature hysteresis of the
dielectric constant which can be attributed to the first
order of the phase transition [11]. The first order is also
confirmed by the changein the sign of thethird (curve 3)
and second (curve 2) harmonics. The sign of the sec-
ond-harmonic Fourier component corresponds to the
first order of the phase transition. In fact, curve 2 was
obtained after polarizing the film with a negative pulse
(without changing the sample switching geometry)
which corresponds to negative P;. In this case, accord-
ing to (9.2) in the temperature range T > T, [see also
(12.1)] the sign of the second-harmonic signal should
be determined by the sign of the coefficient 3. Thus, the
negative second-harmonic signal at temperatures above
90°C reflects the first order of the phase transition. The
temperature behavior of the phases of the second- and
third-harmonic signalsisan important factor, seeFig. 3. It
is easy to see that the second-harmonic signal corre-
sponds to the x-component. In fact, the phase shift over
the entire temperature range (except for the point where
the sign changes and the signal phase is not deter-
mined) is either zero or £180°. The third harmonic sig-
nal has an x-component aswell as adominant y compo-
nent. This contribution is particularly significant at
temperatures below 40°C where, according to various
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Fig. 3. Temperature dependences of the phase shifts of the
current response relative to a reference signal when a volt-
age U = Ugsin(2rtt) (f = 1000 Hz, Uy = 1V) is applied to
the sample; curve 1 corresponds to the third harmonic (ref-
erence signal Ocos(6rit)); 2—second harmonic (reference
signa Osin(4rdt)). The arrows indicate the direction of
change in temperature.

data [13-15], a “surface” phase transition takes place.
In the temperature range between +40 and +115°C the
phase shift corresponds to a dominant y-component.
The phase behavior of the third-harmonic signal very
clearly shows arange of temperature hysteresis corre-
sponding to a region where the ferroelectric and
parael ectric phases may coexist although the sign of the
signal, asin [3], does not correspond to the first order
of the phase transition. Bearing in mind that the domi-
nant contribution at the third harmonic corresponds to
the y-component and the second harmonic correctly
reflectsthe order of the phasetransition, the“sign” con-
tradiction may be attributed to a @ = 180° phase shift
[seeformulas (16) and (17) and their discussion above].
According to the model, this phase shift should also
have an influence at the fifth harmonic in the form of a
sign inversion since, being trebled, it remains equiva-
lent to 180°. Thus, we can see that the sign of @,, isa
more reliable criterion for directly determining the sign
of B than the sign of ®,.

The experimental values of A, and A; determined
above using formulas (10.1) and (10.2) respectively
and plotted in Fig. 4 are more informative. We stress
that the dependence of A; alows for a sign inversion
caused by the phase shift ¢ = 180° at the third harmonic
[the amplitude-frequency dependence of the third-har-
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Fig. 4. Temperature dependences of Az (curve 1) and A,
(curve 2). The dependence of Az allowsfor asigninversion
caused by a phase shift (see text).

monic signal (see inset to Fig. 2) is weak and was
neglected.] It is easy to see that the dependences of A,
and A; can have a very clear interpretation in terms of
the Landau—Ginzburg model and the relationships
(12.1) and (11.2) obtained by us for A, and A, respec-
tively. The zero conditions (12.1) and (12.2) are achieved
at temperatures T, = 89°C and T; = 102°C, respectively.
In this case we have A,(T;) = -5 x 10° J C23m?3 and
Aq(T,) = 3.9 x 102 JC* md. In accordance with (13.1),
we have B = -2 x 10'2 J C* m®>which is close to the
value B = -1.5 x 10* J C* m° obtained in [16]. How-
ever it isimportant to note at this point that the point T,
belongs to the region of temperature hysteresis where
the ferroelectric and paraelectric phases may coexist.
The existence of a certain fraction of the paraelectric
phase reduces the measured value of A; which in turn
corresponds to reduced absolute values of (3. For exam-
ple, in[11] thevalue of (3 calculated using the characteris-
tic temperature points of the transition and the determined
Curie-Weiss constant was —3.9 x 1012 J C* mP. At this
point attention should be drawn to another contradic-
tion. According to the model, in the paraelectric phase
where Ps = 0, A; should be independent of temperature.
In fact, during heating above the transition temperature
T = 110°C, this dependence of A; almost disappears
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Ay, 10°TC3m3

Fig. 5. Temperature dependences of A, obtained after polar-
izing the sample using pulses of different polarity. Curves 1
and 2 were obtained after polarization using single negative
and positive pulses, respectively. The amplitude of the sin-
glepulsesis 15V and the duration 200 ps.

(curve 1) becomes parallel to the abscissa). This prop-
erty is also conserved during cooling to T, = 70°C
which indicates that a small quantity of incipient polar
phase isformed. However, the value of A; whichin this
case, according to (11.2), should correspond to the
coefficient B is—6 x 10'? JC*m° whichisconsiderably
lower than the value obtained above in terms of abso-
lute value. All this could be explained by the fact that
even above the transition temperature, 110°C, “rema-
nent” polarization isfound and this depends weakly on
temperature. In the following analysis of the measured
temperature dependence of A, we can see that even
above the transition temperature T = 110°C nonzero
polarization exists.

In accordance with (15), an estimate of the pyro-
electric coefficient in the temperature range (T,, Ts)
gives 0.7 x 10* C m2 K1 which is approximately
1.5 times higher than the value obtained in this temper-
ature range by direct pyroelectric measurements [17].
Everything again looks as if the value of A4(T,) was
dightly too low.

Thetemperature behavior of A, (curve2inFig. 4) is
extremely interesting. According to the model, above
the upper transition temperature which, as can be seen
from the first-harmonic measurements, is 110°C the
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value of A, should abruptly go to zero, which would
correspond to zero spontaneous and therefore average
(remanent) polarization. The experiment gives a non-
zero value of A, above the transition temperature and
indicates that not only is the spontaneous polarization
nonzero but the average polarization (in our geometry
this corresponds to the component along the normal to
the plane of the film) also does not go to zero above the
upper transition temperature. The fact that we are deal-
ing with the polarization of a film and not some para-
sitic effect from the surface which produces a signal at
even harmonics is demonstrated by the sign inversion
of the temperature dependence of A, after the film has
been polarized by a pulse of opposite polarity, see Fig. 5.
Thus, we can see that the observed phase transition is
fairly complex. It follows from these data that only part
of the film volume is responsible for the transition in
therange T = 110°C. The remainder of the film (to be
specificwecall thisthe X-state) undergoes a phase tran-
sition at a higher temperature. The existence of the
X-state obviously distorts the picture determined by the
homogeneous L andau—Ginzburg model and introduces
additional error in the determination of the coefficients.
If the fraction of the film volume belonging to the
X-state were larger for some reason, it would be possi-
ble for us not to observe achangein sign of A, and As.
In this case, the influence of the X-state makes it diffi-
cult to estimate the coefficient y using formula (13.2)
since the values of A4(T,) and A,(T;) areraised to some
power, and even an acceptable error in determining
As(T,) and Ay(T;) separately has an unfavorable influ-
ence on the resultant error in the calculation of .
According to (11.4) an aternative method of determin-
ing the coefficient y involves recording the Fourier
y-component at the fifth harmonic. Figure 6 shows cor-
responding curves for the Fourier y and x components
at thefifth harmonic. It can be seen that in the low-tem-
perature range (up to +50°C) corresponding to a sur-
face phase transition, the active losses make a very
strong contribution to the x-component (curve 2 in
Fig. 6). Consequently this temperature range cannot be
used to determine the coefficient y and in addition it is
some distance from the phase transition of interest to
us. Only at temperatures above +100°C isthe x-compo-
nent fairly small. Figure 7 shows the temperature
dependence of A (asin the case of the third harmonic,
allowanceismadefor asigninversion caused by a180°
phase shift). Above +90°C the value of A; does not
depend on temperature to within measurement error
and it can be assumed that in this temperature range the
contribution of the surface phasetransitionisnegligible
and in accordance with (11.4) wehave A; =y = (5 £ 3) X
10* J C® m°. This last value agrees within measure-
ment error with the values of y = 8 x 10 JC% m° and
y =2 x10%* JC®m?° obtained for Langmuir-Blodgett
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Fig. 6. Temperature dependences of the Fourier y and x
components of the fifth-harmonic current response
(curves 1 and 2, respectively) when the voltage U =
Ugsin(2rtt) (f = 1000 Hz, Ug = 2 V) is gpplied to the sample.
The arrows indicate the direction of changein temperature.

and thick films of a similar polymer, respectively, in
[11] and [16].

The coefficient a,, (or the Curie-Weiss constant C' =
1/eya,) could be determined using the temperature
dependence of the linear dielectric susceptibility which
corresponds to the first-harmonic data (Fig. 2). How-
ever, problems arise first, because of the possible influ-
ence of the amorphous (nonferroel ectric) phase and the
oxide film at the €l ectrodes and second, an additional
assumption must be made on the “slow” formation of a
new phase in the temperature hysteresisregion. Details
of an approach to solve these problems may befoundin
[11]. Ancther method of determining o, based on non-
linear measurementsis also possible. Solving the equa
tion of state (5) in azerofield (E = 0) gives aregion of
temperature hysteresis determined by

AT = B/ 4ayy. (18)

This region of temperature hysteresis is clearly
expressed in the temperature dependence of the phase
at the third harmonic (Fig. 3, curve 1) giving AT = 35 K.
Using the values of 3 and y, from (18) we find o, =
(0.9 + 0.5) x 108 IJm C? K-° which corresponds to the
Curie-Weiss constant C' = (2 + 1) x 10°K.
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Abstract—The effective conductivity of the sample with achessboard structure isfound. The corner points are
singular for the electric field and charge density. The effective conductivity, charge density and electric potential
are expressed in terms of aWeierstrass elliptic function. The results are valid for films and for cylindrical sam-
pleswith the same cross-section structure. We confirm the conjecture of Dykhne about the val ue of the effective
conductivity for the chessboard structure. © 2000 MAIK “ Nauka/lInterperiodica” .

The conductivity of two or more component sys-
tems is an object of intensive study [1]. Probably the
first strong result of the effective conductivity of atwo
component system with conductivities g, , and for ran-
dom symmetric and isotropic distribution of both com-
ponents was obtained by Dykhne [1]. He found a very
simple expression for the effective conductivity O,
that is valid for the whole region of ratio o,/0,

Oer = (0,0,)". (1)

Expression (1) looks so simple, that hope arises that it
has an even larger region of application, that was sup-
ported by derivation. The conjecture that equation (1)
can be valid also for ordered systems was made in the
same paper of Dykhne [1]. If it istrue, then the simple
symmetry arguments can help to restore the effective
conductivity of a more complicated system [6].

To prove the conjecture of Dykhne, we solved the
problem of conductivity of the chessboard for arbitrary
values of the conductivities o, , of components. The

result is that the effective conductivity is given by the
expression

0,—-0;

127,52
= f(z Z =
Ot = (0,0,) (29, G, %0,

)

and the function ?(ZZ) isgiven by the ratio of two sin-
gle integrals. We prove that the ratio of these two inte-

gralsissuchthat f =1.
The in-plane conductivity tensor

Oett = Oup Ot 3

This article was submitted by the authorsin English.

where 9,4 isthe Kronecker symbol. For this reason, we
shall consider the orientation of external electric field
along the diagonals of cells, asgivenin Fig. 1.

The chesshoard possess trandational symmetry.
Elementary cell vectors are

J2a(1,0), 2a(0,1), 4
where aisthe size of acell.

Trandational symmetry and reflectional symmetry
over the y-axis reduce the number of independent
charge distribution functionsto two: p, ,. Wewill show
below, that

Pa(t) = (1) ()

Fig. 1. The chessboard structure of the sample.
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wheret is the distance along the edge of a cell counted
from the corner of the cell.

The scalar potential ¢ on the chessboard can be
taken in the form

¢ = Eoy—4njd2r16(r—r1)p(r1), (6)
where G is the two-dimensiona Green’s function
G(r—ry = iIn|r—r|. (7
2T !

On the edge of a cell we have also

EV-EY = amp,
n n p (8)

0,EY = 0,EY

where nisnormal vector to the edge of the cdll, E isthe
electric field, and p is the charge density per unit of
length. The equation system (6), (8) gives an integral
equation for the charge distribution on the edges of
cells. Simple proof shows that

p1(t) = —pA(1),

and hence, we obtain only one integral equation for the
quantity p;

zO1
232

i t+k+|

I T+k+D)+(F+k=1)

©
5@ 0= pE).
[l

k| =
In equation (9), we have used the new variables
p1 = Eop(t). (10)
The effective conductivity oy is connected with a
charge density p by asimple expression:

t = at,

4nﬁ0102

J'dt p(0). (11)

Ot =

Thechangett —» 1—t showsthat 0 isasymmetric
function of variables g, , and hasaform given by equa-
tion (2). For this reason, we will suppose below that

One sum over | in equation (9) can be taken in
explicit form. Asaresult, we have

z0O1 @t
—[—=+2n dt
2nE, 2 k:z_m'[ 2
% sin(Ti(t + k)) O .
cosh(Ti(t' + k)) — cos(1t(t + k)) p(t) E = p(t).
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From equation (12), we obtain that p(t) isan analytical
double periodic function of t with periods {1 £ i}. In
each cdll, it has two branch points

tym = {N+M;i(N-M)}.
thw = {1+N+M;i(N-M)}.

If 0, > 0,, we have near the branch points

~ 1 .
p) | —— |
[(t—tN,M)Z} (13)
B DLt —thum)]
Parameter K is the solution of equation
sn(TK) = Z. (14

With the help of eguations (13), (14) we obtain that

near the branch points the following expansion for p(t)
isvalid:

Bty = -21-{2 Cnti”}, t, = t—2k—2il,
’ (15)

p(ty) = tfk{z éntini|, t, = t—2k—1-2il,
n=0

Equations (14), (5) mean that function p(t) can be pre-
sented in the form

p(t) = BW(D) (16)

where W(t) is the dliptic function, and B is some con-
stant. Inside the unit cell, this function has only one
pole. The order of this pole cannot be higher than two.
Since the dlliptic function of the first order does not
exist, W(t) isthe Weierstrass elliptic function O [7]

() = BO. (17)

From equation (15), it is trivial to prove that the
solution (17) isunique. The value of the constant B will
be found below. First, we give the parameters of the
eliptic function [J (t)

gs = 0, g, = —4K*(U./2) = —47.26817928, (18)

where K is acomplete elliptic integral of the first kind.
Note, that the existence of the corner points on the
chessboard leads to the singular distribution of a elec-
tric charge, given by equation (17), because for small
values of the t Weierstrass function have a pole of the
second order:

0@ = 3+50+ .
t°

0 It| < 1.

(19)
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Near the point t = 1 the function O (t) is given by equa-
tion

D(t):—%?(1—t)2+..., -t <1  (20)

The complete Loran expansion of the function O (t) in
thecircle|t| < /2 is[8]

_ 1,92 954 C k-2
O = 2+20t +28t + Xth ,

k=4

(21)

wherefork=>4

k-2

_ 3
G = (2k + 1)(k—3) XZCka—m-
m=

In our case, the constant g; = 0, and thus, all odd coef-
ficients C,, , ; are equal to zero. Astheresult, the Loran
expansion of the function O (t) is given by the equation

1,02 a2
O() = t2+ t+ZCt (22)
~ 3 k-1
C = = CmCxk-m,
X (4k+1)(2k—3)mzl K (23)
k=2,

- % _ Lnlp_ _

0 K 0 [D 2.36340896.
The representation of Weierstrass function O (t) with
the help of Jacobi liptic function cniseven more con-
venient for use than equation (23)

2L+ en(2Kt, 1/./2)

= 24
10 1—cn(2Kt, 1/./2) (24
whereK = K(1//2) = 1.854074677 and
cn%Kt 1 D Zﬁn
(29)

o e—n(n—l/Z)
x ) —————cos(mt(2n—-1))
le + e—rr(2n—1)

isthe Jacobi eliptic function.
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For calculation of the quantity B, it is convenient to
introduce two functions G, ,. By the definition, we put

Gl - J’dt[D (;)H,

(26)

G, = {dt- {dt

sin(r(t +n)) aal()u)
Z cosh(mi(t' +n)) — cos(m(t + n)) k2 U~

From equations (26), we obtain symmetry properties of
functions G, ,

Gi(K) = Gy(—K), Gy(K) = —Gy(—K).

The expression (26) for quantity G, can be essentialy
simplified. We have

(27)

6, = (dt(d—SNEM) O
{tf tcoshZ(Trt')—cos(Trt)DKz &

J’dt(l 2t)[D o,

Integration of the equation (12) over t' leads to the fol-
lowing expression for B:

Z 1
B = . 28
212K %G1 — 26, (28)

Inserting this expression for the coefficient B into (11),
we obtain the final expression for the effective conduc-
tivity

20,0, G,
01 + OZGl - ZGZ

Ot = (29)

The point o;/a, —» 0 is bifurcation point of equa-
tion (12). In the vicinity of this point, we have

(30)

This point is singular for the quantity G;. In the main
approximation, we obtain from equations (23), (26)

T[Gl

G, = 4K

(31)
In this paoint, the quantity G, — zG, isfinite and equal to

cn(kt, 1/./2)
sn(kt, 1/./2)dn(kt, 1/./2)

1
G, ~2G, = 2[dt
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—1+i-J XJ, o 1+
D, D)

-1 0 1

—1—ie (&) fo 1—i

Fig. 2. The contour of integration for the quantity I.

1
_T (=1)"e i
= k.!)'dtt{cotmzm 4DZ T ey _Tmsm(nnt)%} (32)

I({2|n2+4

e—nn :|
= n(1+(-1)"e™)

sn, dn are also Jacobi elliptic function.

Inserting expressions (31), (32) into equation (29),
we obtain the value of effective conductivity near the
bifurcation point,

1/2T[

Ocit = (0,05)

- -1 (33)
><[an2+4z e __H.
n(1+(-1)"e™0O

The expression in figured brackets is equa to 172, and
thus, we obtain near the bifurcation point

Ot = (0,0)" (34)

Now we will find the value of o4 for al values of
the parameter z. First, we will find the value of quantity
G;. To do this, we use the substitution

= (35)
and relation
"D(t) 2 /A0/0 %) + K (36)
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with the help of equations (35), (36) we obtain

Nmm@
(37)

4ﬁr|< ‘“H_m 20

where I'(X) is the Euler I-function. Now we calculate
theintegral |, defined as

| = IdttED(t)m( -1

—4T[I K

édttd] OF (39

The integral over the contour between two branch points
(0, 1) can be transformed into the integral over the con-
tour, given in the Fig. 2.

Simple calculation leads to the answer

1+ cos(2mK) 2cos(TK) U
Sin(21K) sin(21K) g

= Gl[l

Hence, we obtain

20 = G,FL+
H (39)

5t

G2 = an X0 (40)

Inserting this expression for the quantity G,/G; into
equation (29) we aobtain

1/
O = (0,0,)"" (42)

for all values of the parameter z. And thus, we confirm
the Dykhne conjecture about the value of o for chess-
board structure.

Now we do not know whether the simple expression
(11) for the effective conductivity isalso valid for other
regular two component systems or it is the property
only of the chessboard structure.

Note, that the problem of the calculation of o4 was
reduced to the calculation of two singleintegrals, given
by equation (26). We have obtained the explicit expres-
sion for conductivity aswell asfor field and current dis-
tribution in samples with a chessboard structure.

It looks very plausible that effective conductivity of
more complicated many component periodic structures
can also be expressed in terms of dliptic functions, as
it is given by equations (17), (26), and (29) for the
chessboard sample.
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Abstract—The concept of strong interaction in the same unit cell is used to establish the possible existence of
ferromagnetism in hexagonal Co and manganese compounds: MnAs, MnSb, and MnBi. A phase diagram is
constructed for the existence of ferromagnetic ordering and it is established that the Curie temperature depends
on the occupancy of the transition-element 3d-shell. © 2000 MAIK “ Nauka/lInterperiodica” .

1. INTRODUCTION

Exchangeinteraction of free electrons, if considered
asaperturbation, invariably resultsin anegative energy
correction which correspondsto atendency of the elec-
trons toward ferromagnetism.

In studies of the excitations of localized s-electrons
strong Hubbard repulsion at low electron density aso
leads to a substantial increase in the spin component of
the paramagnetic susceptibility although no ferromag-
netism occurs (see, for example, [1]).

In order to explain the reasons for the appearance of
ferromagnetic ordering in a-iron, cobalt, and nickel,
the lowest-energy 3d states corresponding to a particu-
lar crystal lattice must be considered as the zeroth
approximation.

An analysis of the ferromagnetic states of manga-
nese having an NiAs structureis exactly the same asan
analysis of hexagonal cobalt whichat T< 723K hasan
almost ideal hcp structure.

The Hubbard energy for manganeseis 15.27 €V and
17.77 eV for cobalt so that in both cases, thisenergy is
the largest energy parameter and is subsequently con-
sidered to be infinite.

In hexagonal cobalt the fourfold degenerate X2 — y?,
2xy-shell is filled by holes. In order to calculate the
orbital magnetism it is convenient to diagonalize the
atomic Hamiltonian and consider the filling of the
(x £ iy)%-shell.

When studying the band-structure of the high-spin
manganese states, we need to consider all possible sin-
gle-particle transitions from three-electrons xz, yz, and
372 — r? states with spin S = 3/2 to the four-electron
states xz, yz, 322 —r?, (x + iy)?, for which the sign of the
projection of the orbital momentum differsand S= 2.

It follows from general reasoning, and will become
apparent from the following, that in zero magnetic

field, single-particle excitations only differ from single-
hole onesin terms of sign.

2. GENERAL EQUATIONS

In compounds having a '12 structure the crystal
field splits the atomic levels into levels for which the
projection of the orbital momentum is zero and which
are doubly degenerate with respect to the electron spin
projection, and fourfold degenerate levelsfor which the
momentum projection is nonzero and which are degen-
erate with respect to the sign of the momentum projec-
tion and with respect to the sign of the spin projection.

For 3d cations the levels are split into the lowest
fourfold degenerate xz, yz level, the doubly degenerate
3722 — r? level, and also the highest-energy quadruple
2xy, X2 —y? level.

We shall assume that hopping takes place between
neighboring atoms, each having a wave function pro-
portional to one of the components 2xy or x> — y2. In
order to study the magnetic properties associated with
orbital splitting we need to use those linear combina-
tions of atomic wave functions which diagonaize the
atomic Hamiltonian. This condition is satisfied by two
complex-conjugate wave functions (x + iy)?having dif-
ferent energies in a given magnetic field (£2H) where
the magnetic field is measured in energy units.

The matrix of hopping between nearest ions tp(r)

does not depend on the spin index o but depends
strongly on the orbital indices mand n.

Introducing the creation é{m, »(r) and annihilation

&m o)(r) operators of holes states in a cell having the
coordinates r, we write the interaction Hamiltonian in

1063-7761/00/9005-0886%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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terms of the matrix of transitions between neighboring
atoms:

H = Z tnm(r - r')éz—mY o)(r)é(n, 0)(r)
m,n,o,r,r' (1)
Y (u+oH —2mH) 8 o) (1) & (1) -
m=+,0,r

After diagonalizing the zeroth Hamiltonian corre-
sponding to nonoverlapping atomic states, the creation
and annihilation operations are expressed as an expan-

OJ 2i
2i(pD €

(=)
U _fv Ov B; gB

Hereweintroduce the external magnetic field H and the
chemical potential L

o = —H+Z(H)—2mH -oH,

(o.x) _ (i) (k)
fu(zk i) — nl\ll +nN 11

and 2m = £2 isthe projection of the orbital momentum.

The so-called end factors f5.) are equal to the sum of

the average occupation numbers of the N- and N — 1-
particle states, wherei, kis a set of indices characteriz-
ing the N- and N — 1-particle states corresponding to the
i — k transition.

The coefficients U and B are expressed in terms of
the integral of hopping to nearest neighbors (t) and the
angle of rotation of the angles of the unit cell ¢ = 173:

L, , /3

o O
U, = tocosp, + cos=p, + —=Pp
S S [(p™ " 2 ™0

il .3 00
+cosE2px+ > pYD%
(4)
B, —tgcospx+e cosEQpX “/épyD

DTSN B < I

+e” COSE Px— "5 pyDD

the same as in the hopping matrix for the strong cou-
pling approximation. In this case, the matrix elements
are calculated in terms of the atomic wave functions
assigned to the orbital momentum | = 2 and differing in
respect of the sign of its projection |, = +2.
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sion in terms of all possible transitions between N and
N + 1-particle states (see[2)]):

At L0 ~ oo B
a.(m, 0)(r) = z g;n cX?y a.(n’ 0—)(r) = z gg o-)(r . (2)
o B

Here the indices a and 3 correspond to the mutually
inverse transitionss — p, i.e., B(p, s) = —a(s, p). The
quantities gy ° are called genealogical coefficients and
are calculated below.

Assuming that the Hubbard energy is infinite, we
write the inverse matrix of the virtual Green’s function:

e—2i 0]

(+)
—a fa Bpgy (3)

o o |

(iw=e)3,, - 'g,U,g,0

The equations for the variations of the N-particle

states of the occupation numbers dny,, where s = 1,

2, ..., mare the numbers of the lowest-energy N-parti-
cle states, can be obtained from the general equation for
the averages of the T-products of the annihilation oper-

ator &, and the linear combination of m conjugate
X-operators with arbitrary coefficients 3

av Z XN 1N(s)’
()
Y 9By = TY 6By Gop e
s s, k w,p

Here g, are the given genealogical coefficients, d isan

infinitely small positive quantity, and GE;s(p) are the
Fourier components of the single-particle Green's
function which in the zero-loop approximation is
defined in terms of its inverse matrix (3).

In the particular case of transitions between high-
spin states, the indices s can be conveniently replaced
by the level numbers of the Zeeman multiplets S, split
under the influence of aweak magnetic field oH.

3. ZERO-LOOP APPROXIMATION

We note that the variations of the occupation num-
bers of the various multiplet components are interre-
lated by the extremely simple equation [3]:

5n'™ = 6B1Oexp %TAISZH% = V%'SzéH n®
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where
S, =-§5-S+1,...,S

We then obtain relationships which do not depend on
the gyromagnetic factor w nor on the “zero” occupation
numbers ny:

3’ = kdn°, o0 = *1, k= 0,+1,+2, ..., +S(6a)
for integer values of thetotal spin S
(k+12)0 _ a2
on = (2k+1)on", (6b)

0 =#1, k=02122 .., +S-12)

for half-integer values of the total spin S

We establish coupling relationships between varia-
tions of the various high-spin multiplets formed by par-
ticles whose number differs by one. We shall confine
our analysisto the zero-loop approximation (Hubbard |
approximation [2]) where al the self-energy compo-
nents . are assumed to be constant and are added to the
chemical potential.

We shall first assume that the coefficients 3 in equa-
tion (5) satisfy the orthogonality conditions: ZS feBs =

0. As a result of varying the occupation numbers
according to the magnitude of the external magnetic
field and going to the limit H — O, we obtain relation-
ships which do not depend explicitly on the applied
external field:

T n i
S aBdm = 5 S 9,0,65"(p)e
k=1 g snwp (7)
X ngBkaE = Kozngkaka-
K K

Here K, isthe average virtual Green’s function (3) cal-
culated for zero external magnetic field. In our case

Ko=3 3 e, ®)

pPA=t

and f'ﬁ, are the so-called end factors which are equal to

the sum of the occupation numbers corresponding to a
particular transition between various multiplets. Accord-
ingly, for N = 2Sand integer spin Swe have [3, 4]

o= S otz aireani, @

wherek=1-S52-95 ..., S Substituting this definition

into equation (7) and using expressions (6a) and (6b)

instead of the orthogonality condition, we obtain
(1-Kg)dny -5 = 2K05n(2’/32—1=N—1- (10)

Relations (6) and (10 can be used to express all the vari-
ations in terms of one another and substitute them into
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the equation of state which we obtain from the equation
of state (5) under the condition 3, = g

Y gon = TS .6y 3{GL (P fit e
s=1 s, k w,p (11)
= (Ko+g°f Dl)zgﬁaka —g*foDydH.

k

Here al the coefficients are calculated for zero mag-
netic fields and are expressed in terms of integrals of

the Fermi function ng(e) and its derivative ng(e) .

23 neE.

pA=2

A
o
I

(12)

O
=
I
NI

Y () MHEp).
p,A=+%
& = g'fep—p.
The chemical potential | is determined for H = 0 in
terms of the total number of ng and n, states defined in

terms of the condition of electroneutrality for each tran-
sition-group el ement:

Ng = [Ng] + fR+1Ko,

(13)

or hy = [hy] + fR[hd]+1Ko-
Here the brackets [ny] denote the integer part of the
average number of particles (ny) or holes (hy = 10 —ny)
in the incompletely filled d-shell. The end factors f for
zero field and all the coefficients are defined for each
integer-value range of the variables ny or hy and are

givenintable (2 = 322 -r?).

The final equation to determine the magnetic sus-
ceptibility can be obtained by substituting into equation
(11) all the variationsfor all possible values of the spin
projection from equation (6a) or (6b). Finally, the con-
dition for positive magnetic susceptibility has the sm-
plest form:

Ko(1—-Ko) >g*fDi(yq+ Ko). (14)
In this relationship the dimensionless quantity vy is
expressed in terms of the squares of the genealogical

coefficients gﬁ. For transitions between smaller (in

terms of number N and spin S) and larger-numbered
(N = 29) high-spin states we have

_2S-1 2 _ 1
yd - 3 ’ g - S+2 (15)
The specific values of g? and y, are given in table.
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Table
Particles f o? Sing] Ring +1 Ya High-spin states
1<ng<2 (2+ng)/12 3/2 1/2 3 1/3 6%, ze?
2<ng<3 | (6-ny/12 2 1 4 2/3 2?7670, 7
3<ng<4 | (14-3ny/20 5/2 312 10 1 2d?, 770, 7, g"20
4<ng<5 | (2ny—5)/30 3 2 6 4/3 2, ze7'%, 7, €49, g9
Holes f o? Sing] Ring +1 Ya High-spin states
4<hy<5 | (2hy—5)/30 3 2 6 4/3 20, &9, 7, 789, 770
3<hy<4 | (14-3hy/20 5/2 312 10 1 A0, g9, 7, 76410
2<hg<3 | (6-hy/12 2 1 4 2/3 A0, g2, 7
1<hg<2 | (2+hy/12 3/2 1/2 3 13 A9, g0

4. SINGLE-LOOP APPROXIMATION

Thefinal expression (14) in the previous section was
obtained in the smplest Hubbard | approximation
where the temperature and field dependences of the end
factors are taken into account. In this case, all the self-
energy components are assumed to be the same so that
their contribution reduces to an additive correction to
the chemical potential.

In the next single-loop approximation the self-
energy components %, do not depend on the frequency
or momentum although their dependence on the mag-
netic field differs substantially for different numbers (k)
of single-particle transitions.

In order to find the single-loop self-energy compo-
nents, it is sufficient to calculate the various loops and
then sum these taking into account commutation rules
which determine the nonzero vertex components of the
kinematic interaction, see Fig. 1 and also [3].

The equations for the single-loop self-energy com-
ponents can be expressed in terms of the product of the
hopping integralst« "(p) and the Fourier components of
the virtual Green’s function:

Ay = > ta2(P)Ga, 2, a(P).
SOEP (16)
By = > th 5 (P) Gay b, (D).
s w b, p
59 = KEAY+ LKA+ MEBZ + NEBL. (17)

Here summation is performed over the recurrent indi-

ces k and the coefficients KX, LY, MY, and Nf are

determined using perturbation theory in accordance
with the rules of the diagram technique for Hubbard
operators [3]. We can see from Fig. 1 that these coeffi-
cientsare 1.

Allowing for the symmetry conditions of the crystal
|attice, we can write: Ay, = By,.
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I'n each specific case we can show that for zero mag-
netic field the self-energy components do not depend
on the transition number a or the spin index o so that
their influence is reduced to renormalization of the
chemical potential.

After applying an infinitely weak magnetic field dH,
we have the following relationships: dA;, = 8By, =
-3A,) =3B, . Notethat each of thevaluesof A;, and
By, is proportional to the square of the corresponding
genealogical coefficient gi . Accordingly we determine
thematrix S corresponding to the right-hand side of the

system (17):
Suk = {Ka+ Lo —Mg—Ng} g (18)

Differentiating (16) and (17) alowing for the explicit
expression for the inverse single-particle Green's func-
tion (3), we aobtain the following equations for the vari-
ations:

539 = =8z = {F, -D{ 1820

@ (19)
+9°Dg0fn —0dHR,D;.

Here the matrices D" = D, U differ by the tempera-
ture factor and are proportional to the same matrix

z (p! m) (p’ m) _z (n! S) (S’ }’l)
pZm sZn
(n, m) (n, m) (n, m) (n, m)

Fig. 1. Single-loop self-energy components.

Vol. 90 No.5 2000



890

Uq, m Which is expressed in terms of the numerical val-

ues of the matrix ((AS)OLm constructed in accordance
with the definition of the self-energy matrix (17):

2

R = Y Sum gy = 2
" (20)

_1 A K A
Dy = 52(%) Ne(&p)-
p,A
The operator is E© = Q(u)W, where
0 =Y g
“ (21)
th,n =U n_Scx,n = %;Zsu,k_sa,n'
k

The matrix W has azero sum of elements of each row:

[Ne(€p) — Ne(—10)]
p)\z+ fg
[Ko_nF(_U)]

fg*

The equations for the variations of the end factors also
contain variations of the self-energy components:

QW) =
(22)

> gony = (Ko+ g 1Dy) Y g3t
- (23)
+fDoz 0:05) — g f,0DyOH.
k

Here the index k has all the same possible transition
numbers corresponding to agiven change in the projec-
tion of the momentum and spin as the index a.

Deficient equations are written using the auxiliary
guantities B, satisfying the orthogonality condition

Zk Bk =

S 9GBS = Koy aBdfi+ AW Y BgZk. (24)
k k

1

An=5 Y

pA=¢

Ne(Ep) — N W

(25)
&+ 1

Half of the variations of the N-particle states 6n'§, are
expressed in terms of each other: 3n¢ = —3n k. Al
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remaining independent variations of N-particle states
are expressed in terms of sums of the variations of the
end factors:

m-1
any’ = Zéfk, oniy = zaf‘k’,
=2
an§ = Ztka

so that equations (19), (23), (24), and (26) completely
determine the variations of all the occupation numbers.

The condition for solvability of this system of equa-
tions for zero magnetic field dH = 0 isthe condition for
formation of ferromagnetic instability.

(26)

5. FERROMAGNETISM OF COBALT

Zero-loop approximation. Experiments show that
the structure of hexagonal cobalt is very close to idea

close-packed: c/a = 1.62 instead of c/a = ./8/3 = 1.63
(see [5]). In accordance with the condition of electro-
neutrality, the difference between the number of holes
(n,) at the fourfold degenerate 2xy, x* — y? shell and the
number of electrons in the 4s-shell (ny) for cobalt is 1.
n, = ng + 1. According to different estimates, the
observed magnetic moment is 1.6-1.75ug [5] so that
l<n,<2

f(U t)

The end factors are expressed in terms of the

average occupation numbers of the two-hole n{®*?

and single-hole n{”*) states

f(c,i) (0, %)

. - + (-0, %)
1= mpEn :

%) = nj +n (27)
The matrix elements of the transition between layersin
an hcp-lattice are proportional to the fourth power of
the sine of the angle between the z axis and the vector
joining the nearest atoms between the layers. Thisvalue
is close to 1/9 so that for the wave functions used (x +
iy)? transitions between layers can be neglected and the
following analysis is made in the xy plane.

Dividing the equationsinto even and odd in terms of
spin index which gives odd and even solutionsin terms
of the sign of the orbital momentum projection, wefind
the conditionsfor solving these equationsin the follow-
ing general form:

Ko1-Ko) = DK o

Ko(1=Ko) = Qi(y + Kop).

Thefirst equation correspondsto the occurrence of spin
instability and is the same as (14).
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For T = 0 the condition for the occurrence of ferro-
magnetism is determined by the density of states at the
Fermi surface:

Ko(1-Kp) = —M%Z5(ES)%+KOE
AP (29)

- _H%pr(e =)+ K

for i = p/fy,. The condition for the occurrence of orbital
instability (28) which was obtained in a study by one of
the authors [6] contains the coefficient Q; whose abso-
lute value does not exceed one:

e (Ne(ES) —ne(EY >)>D
) D

E(E()
Q =
| %D

In our case, y; = —1 so that orbital instability does not
occur at these temperatures.

A study of spin instahility involves calculating two
densities of states:

p(i)(e) — 25(€—€éi))
p

= Y 8(e-U, ¥ JU;-3Vy).
p

For atriangular lattice the functions U, and V, have the
following form:

3
o = tz cosp, V, = t° z oS P, Cospy, (31)

k=1 k,n; k>n

(30)

where

:&(__py'\/é
) 2

For the case of hole filling, the integral of hopping to
nearest neighbors ist > 0 so that this can be set at
1 assuming that the temperature and chemical potential
are expressed in units of t. This value is known from
band calculations and for cobalt is (8/9) eV = 10* K.

In the range adjacent to n = 1 the system has afairly
high transition temperature =0.3|t|] which decreases
with increasing hole density (see Fig. 2a).

In the range 1.062 < n,, < 1.139 the transition tem-
perature goes to zero and then it has a small maximum.
This maximum is attributed to the logarithmic singular-
ity in the density of states at e = €* = —33/16 and may
be calculated with logarithmic accuracy:

« . Py/3
P = Py P2 = %"‘pyT-

~ Yltl e—]J/\
Tt
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where

11 13+ K(eD
nZJ_ZK(eE)(l K(eD)

13+ K(eD
K(eD(1-K(D)
Herelny = C = 0.577 isthe Euler constant,

(32)
=0.172

Ml<0.187,

K(eD) = 295—3—3—

A = 05887, T,=0567te V" =0.11t, (33)

2+K,

n, = 24—K0’

if K, = 0.187 then n, = 1.147.

The transition temperature goes to zero for ji =
—33/16 £ o =-33/16 + (TV2y) T, so that T, = 20uy/TT=
1.135p.

Single-loop approximation. In order to refine the
results of the previous section we calculate the single-
loop self-energy components.

It may be noted that the off-diagonal self-energy
componentsin terms of transition numbers (k, p=1, 2)
go to zero whereas the diagonal ones are determined in
terms of integrals of the Green’s functions with agiven
projection of the spin o (see Fig. 1):

a0 __ —0 g
2, =-A, +By,

3% = AT+ B+ A+ B,

b,o - o (34)
Zl' = _BZ +Al’

2% = =B+ A + B+ A).

It can be shown that quantities on the right do not
depend on the number (superscript a or b) of the atomic
state and for given o differ by a factor proportional to
the square of the corresponding genealogical coeffi-

cient: g5 =1and g5 = 1/2.

A =B =T > ts"Gg,* 0geC(0). (35)

n, w, p

In a zero magnetic field, the functions C(c) do not
depend on the spin projection so that after substituting
these into (34), we can observe that in this limit both
self-energy components reduce to a constant compo-
nent which gives a correction to the chemical potential
and is subsequently neglected.
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We obtain two equations for 8, using their differ-
ent definitions in terms of the Green's function:
83y = -3%,° = [F(O) Dy 325
+g’DA5f —aSHR,D;.
Here the matrices

(36)

D7 =2 Y &+ ()0

p A=z
differ by the temperature factor and are proportional to
the same matrix Un, m = R,g5/0? Which is expressed in

terms of numerical values of the matrix S constructed

in accordance with the definition of the self-energy
matrix (for A, = By):

5= Dgl 1, go=12
Dgl—l _92—_1/2

ARDETRE:

The matrix U is expressed in the form of the products

[l
|
I
H (37)

EiZZD

R A 0 O
Uen = =02 sothat 0 =0 & Y25 (39
g OvV3, 16 O
The operator is E© = Q(u)W where

Q) = 75 I1eE) ~ne(-40]
p

ZAITSEV, TEREKHINA

The matrix W has a zero sum of elementsin each row:
W=U0-5

—gi=0 Uy o—

O
|
2 ]
-0, =-2/3 U2,2+92 =237

Thus, it is convenient to use the first equation:

Y 9o

k=12

0z -D;
(40)

—D,g z 0:5fy = g°oBHD;.

k=12

Here we introduce the squares of the geneal ogical coef-
ficients: g> =1, g3 = 1/2, and ¢? = zkgﬁ =3/2.

Since the influence of the external field and also the
relation with the variation of the end factors are deter-
mined by the vector R, we can obtain general relation-
ships which depend only on the variations &%, . In order

to achieve this aim, we multiply both sides of equations
(36) by the components of the vector N = (-1/2, -3/2)
orthogond to the vector R. As a result, we obtain an
equation which does not depend on the external field or
the end factors fy:

05325 +35%) = (gf + Q) (321 - 82). (41)

The occurrence of ferromagnetic instability is deter-
mined by the condition that it isimpossible to solvethis
system of equations for dH = 0. In other words, the

= iz[ Ko—ne(—W]. determinant of the following matrix must be equated to
fg zero:
D 2 2 2 2 2 2 D
El—gl(Ko"' fg'D;) 1-02(Ko+ fg'D;) —fDogr  —fDo03 E
O 1-Ko 1+K, —A(W) AW 42)
O 2.2 2.2 2 2 O
O -D,g°0; -D,g°9; 1-D,01 -D.0; .
O O
0 0 0 %-0i-Qoi+%+Q[

The matrix thus written can be represented as a deter-
minant in asimple form where the only singular opera-
tor A(W) is multiplied by the operator D, which com-
pletely compensates for the logarithmic singularity of

A inthelimit p —» 0.
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For thefcc phase of cobalt, which exists at high tem-
peratures (723 < T < 1768 K), we have

U, = cosp,cosp, + cosp,cosp, + COSP,COSp,,

V, = cospxcospycospzz CoSp.
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In the temperaturerange T < 723 K where cobalt exists
in the hcp phase, the functions U, and V,, were deter-
mined in (31).

The logarithmic divergence appearing in the coeffi-
cient A(u) for u — O after calculating the determinant
(42) is compensated by the factor D.:

Ko(1—Ky)
_ 2l 0 2Ko(1 Ko)
b [ * K0D+ Q+ g g;) }
2¢ AW | ¢ 2PoD2= 1D1
2 g+ Y Qrd |%%¥+

The first term on the right-hand sde is the same as the
formulain the zero-loop approximation (28). The sec-
ond and third terms give a contribution of opposite sign
but their difference remains positive. As a result, it is
found that the transition temperature remains finite
over the entire range of hole concentrations between 1
and 1.17 and the height of the logarithmic maximum
increases substantially.

6. FERROMAGNETISM
OF MnAs COMPOUNDS

Zero-loop approximation. The experiment shows
that all manganese compounds having an NiAs struc-
ture: MnAs, MnSh, MnBi have an extremely high satu-
ration magnetic moment higher than 3.4 (see, for
example [7]).

Thus, the 3d eectrons of manganese in these com-
pounds resonate between states with spin 3/2 and a
state with spin 2. We therefore need to consider the sit-
uation where the system resonates between three-parti-
cle{(3z%>-r?), t(zx), t(y2)} and four-particle { (32> —r?),
t(2x), t(zy), { 2xy, X2 —y?} } states, each corresponding to
the lowest-energy states with the highest possible total
spin.

The integrals of hopping to nearest neighbors (t) for
single-particle electron transitions have a negative sign
so that t may be replaced by —1 and it can be assumed
that the temperature and chemical potential are

expressed in units of [t[:
& = fo'q -1, € = Uyt /Up-3V,,
f o 14—-3n
20 '’
g? = 5/2 isthe sum of the squares of all the genealogical
coefficients, 3<n<4.

The excitation spectrum &5 only depends on the

(44)

transverse quasi-momenta a = p,/2 + pyﬁlz, B =
P2 —py/3/2:
U, = —cosa —cosf — cos(a + f3),
V, = cosacosP + (cosa + cosP)cos(a + B).
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Fig. 2. (8) Dependence of the temperature of transition to
the ferromagnetic state on the number of holes calculated in
the zero-loop approximation for cobalt. (b) Dependence of
the temperature of transition to the ferromagnetic state on
the number of d-electrons calculated in the zero-loop
approximation for MnAs.

To these equations we need to add the equation of state
forH=0:

3+ 7K,

"= 2573k,

3<n<4.

(45)

The condition for the occurrence of ferromagnetic
instability in the zero-loop approximation has the same
general form as (14) in which the amplitudey, = 1 is
substituted.

Ko(1—-Ko) = fg°Dy(1+Ky),
o= 237K
47 T2+ 3K,

(46)

In the range adjacent to n = 3 the system has a fairly
high transition temperature =1.1Jt|] which decreases
with increasing electron density (see Fig. 2b).

The transition temperature goes to zero in the range
3.41 < ny < 3.56. With further increasing concentration
we observed asmall maximum (see Fig. 2b). This max-
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imum is associated with the presence of singular saddle
points(a =B =m); (a =0, B=1); (a =71 3 =0) which
leadsto alogarithmic singularity in the density of states
for € = —1. The maximum transition temperature is
determined from the same relationship asfor cobalt but
with a different constant A:

—1/A\
Tp=de™™,

where
A = 3 1+K(-1)
217 J7K(D (1-K(-1))
1+K(-1)
K(-1)(1-K(-1))

Here Iny = C is the Euler constant, 6[t| is the width of
the conduction band,

(47)
= 0.05745

K1) = %z O(1-¢)=0348
p, A

is the number of states within the Fermi surfacee = —1.
Inthis case, ny= 3.57,

A=0341, T,=0567|te™" =0.03]t.

As for cobalt the maximum transition temperature is
related to the energy range o in which the ferromag-
netic transition temperature has avery steep maximum.
This relationship has the very simple form: T, =
2y|dmt= 1.13|5p}

Single-loop approximation. We obtain four equa-
tionsfor 0, directly from (16) and (17) in terms of the
integrals of the Green’s function, the so-called single-
loop approximation (see Fig. 1):

Z7 = Bi+AS+B/,

35 =

55 = AF B+ BI-AY,

B+ As”+ By’ — A,
(48)
Te = A +B°—A+B;.

Taking into account the symmetry conditions, we can
write:

A, = Bp,
so that we obtain four equations for the variation 6%,
825, = —8Z, = —{Fin—Dpnld2;
200 560 im0 (49)
+9°Dy/h0f, —0dHR,D;.

Here the matrices D* = D, U differ by the temperature
factor and are proportional to the same matrix Up,m =
Rngfn/g2 which is expressed in terms of the numerical
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values of the matrix S constructed in accordance with
the definition of the self-energy matrix:

S
O 0
0 g=1 o 0 —Zgi=—§m
0 0
3 2 2 1
[l 2-2 _ = — == [
:E 0 g, 2 203 Ja 2 Er(50)
0 o 2= 2i=1 o O
0 0
Oog2=—0 =3 2_1 ¢
0 201 2 0, 2 0 04 20
1
Re =Y Sen = 5(1,0,-1,-2). (51)
n

The matrix U is represented as the products Uen =
R.gn/g? or

5 12 318 14 18
~_20 0 0 0 O
U=Eg 0

S5-1/2 -3/8 -1/4 -1/8

0 -1 —3/4-12-140

0
|
u (52)

The operator is F® = QU)W where W = U - §,

_ 1« [ne(€) —ne(w)]
p,A=%
_ [Ko=ne(=W)]
fg2
The matrix W has a zero sum of matrix elements in
each row:

5—4/5 3/20 1/10 11/20%
§-15 27/20 -11/10 -1/20 5

085 —21/20 -1/5 -7/200

Theinhomogeneous term is proportional to the vec-
tor quantity R =[1/2, 0, -1/2, -1].

Since the influence of the external field and a so the
relationship with the variation of the end factors is
determined by the vector R, we can obtain general rela
tionships containing only 62,.. To achieve thiswe multiply
both sides of equations (49) by the components of the vec-
tors N® orthogonal to the vector R, i.e., (RN®) =0, or

N® = (0,1, 0,0),
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N® = (1,0, 1,0),
N® = (1,0,-1, 1),

STy Ny = Q)N WS, (54)

Here A =1, 2, 3, and the third equation can be obtained
by multiplying by the vector M whose components sat-
isfy the condition for orthogonality of the result of

action of the operator W. Thus, for an arbitrary vector
Hk: MnWE Hk =0.

In our casewecan select M = (8, 9, 8, 5).

This possibility arises because the determinant of

the matrix Wis zero whereas none of its principal
minors goes to zero. As aresult, we obtain

Here the first row corresponds to the equation of state
(23) differentiated with respect to the external field.
The second, third, and fourth rows correspond to the
equations (24) written in terms of the variation of the
end factors of,. The fifth row corresponds to the linear
combination of equations (55) for the three self-energy
components thus summed to eliminate the action of the

linear operator F. The last three rows are written in
accordance with eguations (54).

The final equation to determine the ferromagnetic
instability temperature generalizes the corresponding
equation (46):

Ko(1-Ko)Q
6(Q + 2/3) }

2, (1+Kp)Q
6(Q + 2/3)’

Ko(1-Ko) = Dl[fgz(1+ Ko) —

5 A(K) D,
6 Q+2/3

(57)

g”f(D,Dp— D) Zrm—ors

where g% = 5/2, Q = (Ko — ne(—))/fg?.

For asmall number of excitationsn—3 < 1 wefind
Ky = 5Q/8 < 1 s0 that the left-hand side of equation
(57) vanishes whereas the right-hand side remains pos-
itive, which corresponds to ferromagnetic instability.
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55"M,-S,D,05”
= ¢°S,D,0f” —68H(M,R)D;.

Here we have

(55

1 1
= 5> @), S = MU
p.A

Inour case S, = —29; .

The occurrence of ferromagnetic instability is deter-
mined from the condition that this system of equations
can be solved for 6H = 0. In other words, we need to
equate to zero the determinant of the following matrix

(where K =K, + fg?D,):

H1-giK 32-g3K 32-g3K 1-g?K —fDyg}  —fDog  —fDog: —fDeg’ [
E 0 1 1-K, K, 0 0 —A(Y) A(L) E
E 1-K, Ko 0 1 —A(l) A(L) 0 0 E
01K, 3-K, 3+Ky 1+Ko AW AW A(H) AW O (s
gzozgzgi 2D,9°g; 2D,9°g; 2D,g°g; 8+2D,g; 9+2D,g; 8+2D,g; 5+2D,d, -
o o 0 0 0 0;  1+(34QW -QW  (UHQW 0
5 o 0 0 0 1+QW —(32)QW 1+QM —HV2)QW H
0 o 0 0 0 1-QW (94)QW) -1-Q(w) 1-(1/4)Q() O

The first term on the right-hand side is the same as
the right-hand side of the equation in the zero-loop
approximation (46) and in the low-temperature limit is
proportional to the product of the density of states and
the Fermi energy having the opposite sign.

As the number of excitations increases, the left-
hand side of equation (57) increases whereas the
increase of the right-hand side is slowed by the
increased contribution of the second and third terms,
each having a negative sign at negative Fermi energy.

Thus, allowancefor single-loop corrections changes
the condition of occurrence of ferromagnetism com-
pared with the zero-loop condition (46).

In the limit T = 0 when D,D, = D?, the concentra-
tion range of existence of ferromagnetism becomes
dlightly narrower and the small logarithmic region orig-
inating from the van Hove singularity completely dis-
appears.

Another two numbersaso exist, Q, = 1.457 and Q_=
—0.457, for which the determinant of the matrix (56)
goesto zero. Thefirst number should not be considered
since it is too large and corresponds to a nonphysical
value of K, > 1.
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The second number Q_ < 0 corresponds to positive
Fermi energy and for T = O corresponds to a concentra-
tion n = 3.95 close to four. It can be shown that in the
region u > 0 the amplitude of the scattering of excita-
tions with opposite spin projection is negative and thus
the system cannot be transferred to a state of ferromag-
netic ordering. Thus, the question of stability for 4 —n
requires specia analysis.

7. DISCUSSION OF RESULTS

For cobalt and for manganese compounds we have
therefore observed a ferromagnetic region adjacent to
the integer-value concentrations: ng, = 1 and ny, = 3.
Here the transition temperature is high and has the
order of the hopping integral.

As the concentration increases, the transition tem-
perature decreases rapidly to 0.1Jt] when it becomes
multivalued, corresponding to a first-order phase tran-
sition.

As the concentration increases further, a fairly nar-
row region of existence of ferromagnetism appears
whose existence is attributed to the presence of a van
Hove singularity in the density of states (Fig. 2).

In this range of concentrations the Curie tempera-
ture does not exceed 0.1t| and a difference is observed
between the ferromagnetism of cobalt and the high-
Spin states of manganese.

For hexagonal cabalt on going from the zero-loop to
the single-loop approximation the Curie temperature
increases so substantially that it remains finite over the
entire range of hole concentrations between 1 and
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1.174. The height of the Curie temperature maximum
attributed to the van Hove singularity is at least dou-
bled.

For high-spin manganese on going from the zero-
loop to the single-loop approximation the Curie tem-
perature decreases. The van Hove maximum disappears
and the transition temperature remains finite over the
range of d-electron concentrations between 3 and 3.6.
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Abstract—Numerical experiments on the structure of the chaotic component of motion under multiple-cross-
ing of the separatrix of a nonlinear resonance with a time-varying amplitude are described with the emphasis
on the ergodicity problem. The results clearly demonstrate nonergodicity of this motion due to the presence of
a regular component of a relatively small measure with a very complicated structure. A simple 2D-map per
crossing is constructed that qualitatively describes the main properties of both chaotic and regular components
of the motion. An empirical relation for the correlation-affected diffusion rateisfound including aclose vicinity
of the chaos border where evidence of the critical structure is observed. Some unsolved problems and open
questions are al so discussed. © 2000 MAIK “ Nauka/I nterperiodica” .

1. INTRODUCTION

The present work continues the studies of chaotic
motion under a low separatrix crossing. Thisis a par-
ticular case of adiabatic processesthat isvery important in
physics because of the adiabatic invariance, that is, of the
conservation of action variables (J) under adow paramet-
ric perturbation (even though this is only an approximate
invariance). The main problem here is the degree of accu-
racy or of violation of the adiabatic invariance. Separatrix
crossing produces the largest chaotic component in
phase space whose size does not depend on the adia
batic parameter e — 0 (which nevertheless affects the
detailed structure of the motion and itstime scale).

In our previous paper [1], the single separatrix
crossing for a particular model was described in detail.
Remarkably, a fairly simple relation, that we used for
the model of [2], turned out to be surprisingly accurate
within alarge part of the chaotic component.

In this paper, we describe the results of numerical
experiments on multiple separatrix crossing. We focus
on statistical properties of the motion, including the
structure and measure of the regular component dis-
seminated into the chaotic “sed’ in arather tricky way.
The existence of the regular component means noner-
godicity of the motion, the question which has
remained unclear for along time up until recently. To
our knowledge, the nonergodicity of motioninasimilar
model was first predicted theoretically and estimated
numerically in [3]. We have confirmed this result by
different methods and found many other characteristics
of the motion structure. The present work, aswell asthe
previous one [1], was stimulated by a very interesting
study of the corresponding quantum adiabaticity [4]. We
use the same classical model, which is briefly described,

This article was submitted by the authorsin English.

for the reader’s convenience, in the next section (for
details, see [1]).

2. THE MODEL AND TECHNIQUES
The model is determined by the Hamiltonian
2

H(x, p,t) = 92—+ A,sin(Qt) cosx, 2.1

which describes a single nonlinear resonance in the
pendulum approximation (see, e.g., [5, 6]) with atime-
varying amplitude

A) = Agsin(Qt). (2.2)

The dimensionless adiabaticity parameter is defined
in the usual way as the ratio of perturbation/oscillation
where the tilde denotes the quantities rescaled by the
frequencies,

(2.3)

where ,/A, isaconstant frequency of the small pendu-
lum oscillation for the maximal amplitude.

Two branches of the instant, or “frozen”, separatrix
at somet = const are given by the relation

pux: ) = =2, [ADIsin 5]

. _ DX A >0, 24

X Ex—n, A(t) <0.

Following previous studies of the separatrix crossing,
we restrict ourselves to this frozen approximation in

1063-7761/00/9005-0897$20.00 © 2000 MAIK “Nauka/Interperiodica’



898

Regular component under separatrix crossing

n € W, % 102 T x N Np
1 0.1 068+02 |2x10%%x1000 | 200
2 0.05 0.75+0.06 | 4x10°x200 | 500
3 0033 | 0.70+02 |4x10°x200 | 200
4 0033 | 0.81+0.08 |4x10°x150 | 500
5 0.02 0.60+0.05 | 2x10°x100 | 200
6 0.01 0.75+0.04 | 4x10°x100 | 200

Note: € is the adiabaticity parameter; p, is the total relative mea-
sure of regular component; T is the number of separatrix
crossingsfor each of the N, tragjectories; Ny, isthe number of
histogram binsin Fig. 1. nisthereference number for Fig. 1.

what follows. As shownin [1], the latter provides good
accuracy of rather simple theoretical relations.

In this approximation, the action variable is defined
in the standard way as

J= Zinfp(x)dx,

where the integral is taken over the whole period for x
rotation (off the resonance) and over a half of that for x
oscillation (inside the resonance). This distinction is
necessary to avoid the discontinuity of J at the separa
trix where the action is given by a simple expression

3= 340 = 2/A01 < = L/A

At Qt = 0 (mod ), the action is J = |p|, and the conju-
gated phaseis 8 = x. Note that unlike p, theactionJ>0
iS never negative.

In what follows, we set A, = 1, and introduce the
dimensionless action by the transformation J/J, 5 — J.
The crossing region swept by the separatrix is then the
unitinterval, and Jissimply related to the crossing time
t=ty by

(2.5)

(2.6)

|Alte)] = J°, 0<J<1,

while the adiabaticity parameter becomese = Q.

Numerical integration of the equations of motion for
Hamiltonian (2.1) was performed in (X, p) variables using
two algorithms. In most cases, it was the so-cdled bilat-
eral symplectic fourth-order Runge-Kutta agorithm asin
[1]. However, inafew long runs, we applied avery simple
first-order agorithm as in [2], which also is symplectic
and which actually amounts to the well-known stan-
dard map [5] with the time-varying parameter

(2.7)

P = p+Aisin(Qi)sinx, x=x+p,  (28)

where the tilde denotes the quantities rescaled by the
transformation

1o

T =« éz%, b= (2.9)

S
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Here, s is the scaling parameter and we remind the
reader that A, = 1. The primary goa of the rescaling

was to decrease the parameter Ao that controls the

computation accuracy. Usually, it was around Ao =0.1.

Asiswell known, the variation of Junder an adia-
batic perturbation consists of two qualitatively different
parts. (i) the average action, which is nearly constant
between the crossings up to an exponentially small correc-
tion, and which is of primary interest in our problem, and
(i) the rapid oscillation with the motion frequency. The

ratio of the two time scales is ~e/J/|A(t)] < 1, which
alows one to efficiently suppress the second unimpor-
tant part of the J variation by simply averaging J(t) over
along timeinterval ~1/e(see[1]).

3. ERGODICITY

The ergodicity is the weakest statistical property in
dynamical systems (see, e.g., [7]). Nevertheless, itisan
important characteristic of the motion, necessary in sta-
tistical theory (see, e.g., [8]).

The question of ergodicity of the motion under the
separatrix crossing remained open for a long time up
until recently. The upper bound for the measure (the
phase - space area) of a separate domain with the regu-
lar motion (a “stability islet”) was estimated in [9] as
M <e.

To our knowledge, the nonergodicity of motionin a
similar model wasfirst predicted theoretically and esti-
mated numerically in [3]. The authors directly calcu-
lated the number and positions of stable trajectories for
two different periods. Moreover, they were able to
locate some of these trgjectories in the computation,
thereby measuring their area in phase space (which
turned out to be surprisingly small).

Here, we use a different, statistical, approach. To
this end, we first obtain, from numerical experiments,
the steady-state distribution f(J) in the action. For the
ergodic motion, it must be constant. Examples of the
distribution are shown in Fig. 1 with the parameters
listed in the table. The striking feature of al the distri-
butions is a clear and rather specific inhomogeneity,
reminiscent of a burst of icicles hanging down from a
nearly “ergodic roof”. This directly demonstrates the
generic nonergodic character of motion under the sep-
aratrix crossing.

The histograms are normalized such that f(J) = 1 for
the ergodic motion, and the sum over al thebinsisalso
unity for any distribution. As a result, the dips in the
distribution (“icicles”), indicating the regular compo-
nent, are compensated by an increase in the ergodic
background. Thelatter isclearly seenin all the distribu-
tions, especialy for small J, and isameasure of thereg-
ular component. Namely, therelative measure (share) is
given by the approximate relation

Hr = Dfs(‘]) -1 J< ‘le (31)
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where J; isthe position of thefirst dip from the bottom.
The approximation comes from the border effects
around J = 1 for any finite e. Typically, at this theoreti-
cal border f(1) = 0.5, and dropsto zero within the inter-
val |J—1| ~ €. For thisreason, we also used other meth-
ods for measuring |.,. One of them was the direct cal-
culation of the area of dipsin Fig. 1. Scattering of the
values provides an estimate for the accuracy of mea-
surement of 4, which isalso given in the table.

If weareinterested in statistical dataonly, asinFig. 1,
the compuitation of the J value after each crossing is not
necessary, nor is the averaging of J(t) donein [1]. This
can be used to further speed up the computation by
applying asimple relation J = |p| at A(t) =0, that is, at
every second passage between crossings (see Section 2).
It is especially important for the simple code in equa-
tion (2.8) that was used, and in particular, for the long-
est runn=6inFig. 1. With the main standard code, this
also was used for calculating two different distribu-
tions, after odd and even passages. Both are shown in
Fig. 1 for n =1 and 5. The total regular areas for both
distributions are close to each other,. Yet the positions
of dips are different, sometimes significantly. Another
interesting peculiarity is the concentration of aregular
component near J = 0.9.

Even though the total regular area is very small
(~1%), itslocal share can be aslarge as 20%. In spite of
stability islets, the chaotic component remains con-
nected in the whole crossing region.

The dependence 1, (€) is weak, if any. Apparently,
the measured value already is close to the asymptotic
one ,(0) = [i1,[0= 0.0072 where the average is taken
over al six casesin the table.

All these peculiarities are further discussed in Sec-
tion 5.

4. DIFFUSION, INSTABILITY,
AND THE CRITICAL STRUCTURE

Thediffusionin J was studied for asimilar model in
[2]. The essential difference from our mode (2.1) was
the restriction of the separatrix oscillation in (2.2) by
the requirement that A(t) > 0. In this case, the diffusive
kinetics is valid in the whole crossing region. In our
model, the diffusive regime is restricted to the domain
J > €3, while the ballistic regime takes over for J < /3
with completely different kinetics (see [1] and below).

The diffusion rate in the random phase approxima-
tion (RPA) immediately follows from a simple expres-
sion for the change of J per separatrix crossing

J1-J*

JZ

AJ(J, @ €) = :g In|2sing, (4.1)
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Fig. 1. Histogram of the steady-state distribution for three
values of € (seethetable): (n=4) the upper curve shifted up
by 0.3; (n = 5) the middle curve; and (n = 6) the lower curve
shifted down by 0.3. Solid lines correspond to J values at
|A(t)] = 1, and the dotted ones are related to A(t) = 0 (see the
text).

where the sign coincides with that of A(t), and isgiven
by the relation

€nl 0

D, = OAJ) 0= rpars (4.2)

where the subscript zero indicates the RPA (see[2] and
[14] therein).

The simple relation in equation (4.1) was carefully
checked in [1], and proved to be surprisingly accurate
in the whole diffusive region J > €Y. However, as was
shown already in [2], the correlation-free diffusion rate
(4.2) isvalidfor few crossings only (seeaso[1]). After
that, the correlation in ¢ builds up, thereby decreasing
the diffusion rate D by a factor of 2. We present the
results of more systematic local diffusion rate measure-
ments than in the RPA theory (4.2). To this end, we
computed the correlation factor asthe ratio

(DO
D,

This was done as follows. The number of trgjectories
N, = 100 with initial value J = J, and random x were
run during T = 800 to 1600 separatrix crossings. The
empirical diffusion rate was then calculated in the stan-
dard way, as

R(0DD) =

(4.3)

[I(T) — Jo)°C
LDt

with averaging over al the trgjectories, while the RPA
theoretical rate [Dy] was computed by averaging

(DO=
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Fig. 2. Theratio of empiricd to theoreticd diffusion rate (the
correlation factor (4.3)) vs. the mean action (e = 0.001 (cir-
cles); e =0.003 (dots). Error bars show the spreading of tra-
jectories during diffusion. The dashed straight line is fit
(4.4) to four extreme left points (e = 0.001).
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Fig. 3. The Lyapunov exponent A per crossing vs. mean
action [J e = 0.001 (circles); € = 0.003 (dots). The dashed
straight lineisfit (4.6) to ten extreme left points (e = 0.001).

expression (4.1) over al N, x T crossings. Altogether,
23 groups of trajectories with different initia J, in the
whole range 0 < J, <1 (and with random x) were run
and related to the mean value [~ J, over all the cross-
ings. Actually, al the [Ovalues were found to lie out-
side the ballistic domain because the trajectory quickly
leaves the latter [1]. Nevertheless, for the initial value
J, > €3, the trgjectory spent some time within this
domain, and we needed a certain empirical relation for
the“diffusionrate’ to perform averaging DL Thiswas
obtained from the results of [1] in the form

D, = 0.16e”°, J<e™.
It depends on e but not on J.
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The results of these numerical experiments are pre-
sented in Fig. 2 in the log- og scale using the quantity
1 — [Crather than [J0as the argument. The reason for
this is our specia interest in the asymptotic regime
J — 1 at the chaos border in phase space on the edge
of the crossing region. Typically, one would expect a
very peculiar critical structure here (see, e.g., [8]). This
interesting question is discussed later in this section.

We show in Fig. 2, the fit of the four extreme left
points in the immediate vicinity of the chaos border to a
power law expected in the criticd structure. Theresultis

R(J) = 1.05(1-J)%”. (4.4)

It isinteresting that this simple relation also describes,
to a reasonable accuracy, the rest of points except the
five with the smallest [Jthat are affected by the ballis-
tic regime as explained in what follows. Some clear devi-
ations from the smooth relation (4.4) reveal a certain fine
structure of the diffusion of an unknown origin.

The factor Rin (4.3) is always less than one, which
means there is suppression of the diffusion by the cor-
relation. The minimal suppression (maximal R) occurs
at J=Jp = 5e3, whichismuch larger than the crossover
to the ballistic region at J = €'3. This is the answer to
the question about the width of the ballistic-affected
region put forward in the conclusion of our previous
publication [1]. For J < Jp, the correlation strongly sup-
presses the diffusion down to a very low rate, which is
apparently determined by fluctuations. These unusual
kinetics certainly deserve further study. In any event,
such a suppression explains a surprisingly long-motion
time required for a good steady-state distribution in
Fig. 1. The value of J, marks the diffusion crossover
fromabigtoasmall correlation (cf. Fig. 3). Inthe com-
plementary region J = Jp, the correlation factor also
decreases, athough very slowly, see (4.4). Within fluc-
tuations, which increase with e, the factor R does not
depend on € (for the explanation, see Section 5).

The diffusion rate itself is given by the empirical
relation

4 1/4 c
D(J):IT‘;ez(l‘J)J(}‘J) —»I—lzzez(l—.]) , (4.5)

where the latter expression represents the asymptotics
asJ — 1, and ¢y = 5/4 is the diffusion critical expo-
nent.

A power law in equation (4.5) suggeststhe existence
of acritical structure at the chaos border J = 1. Detailed
study of this structure is hampered by some additional
border effects as discussed in Section 3. Even for a
rather small e = 0.001, we managed to follow the
asymptotic behavior to 1 —J ~ 102 only (see Fig. 2).
Also, we are not able, as yet, to calculate the critical
exponent ¢, from the existing resonant theory of the
critical phenomena [8]. However, there is another way
to test our conjecture. Namely, besides the local diffu-
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sion rate, we might measure the asymptotic behavior of
the Lyapunov exponent A(J) In fact, we did both simul-
taneoudly in the same run.

A positive Lyapunov exponent (A > 0) is the main
condition for the strongest statistical properties in a
dynamical system, including the randomness of most
trajectories[10] (seeadso[11, 12]). The other condition
for chaos is the boundedness of motion in the phase
space. Thefirst measurement of A (for the same model)
was reported in [13], just as a criterion for chaos. For-
mally, the Lyapunov exponent is defined in the ergodic
theory of dynamical systemsinthelimit ast — oo [7]
(as is the diffusion rate, by the way). However, for
rather different time scales of motion, the local
Lyapunov exponent A(J) aso becomes a meaningful
and, moreover, a very important characteristic of the
motion. Roughly, theratio of time scalesisthat of error
barsto the corresponding J valuesin Fig. 2 provided the
number of crossings T per trgectory is sufficiently
large for A to saturate.

In Fig. 3, we present the results for A(J) measured,
as D(J), per one separatrix crossing, and for the same
parameters and initial conditions as in Fig. 2. A clear
crossover to asymptotic behavior isseen at [J= J, =0.8.
The latter was also fitted to the power law

AJ) = 0.98(1-J), (4.6)

with the critical exponent ¢, = 0.156. Infitting, we used
ten extreme | eft points besides the two at L= 0.95 that
represent some unknown fine structure (cf. Fig. 2).
Below the crossover (J > J,), the dependenceis approx-
imately linear,

A(J)=1.9-1.4J. 4.7)

The fluctuations are now much lessthan for D(J). In
both cases, the e-dependence, if any, is weak. Interest-
ingly, no effect of the ballistic region is seen for A(J)
(cf. Fig. 2).

The theory of critical phenomena [8] alows one to
calculate the ratio of the two exponents, irrespective of
other details of the critical structure. Theratio is

rth = — = y (4.8)

N

while the empirical value for this ratio from equations

(4.5) and (4.6) isre, = 8.01, asurprising agreement!
Toillustrate thisresult, we plot, in Fig. 4, the depen-

dence D(A\)/e? together with the expected asymptotic
relation

=A%, (4.9)

N )

This appealing result strongly suggests the existence of
acritical structure at the chaos border J = 1, and further
studies of thisinteresting problem are needed.
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Fig. 4. Diffusion rate vs. the Lyapunov exponent: € = 0.001
(circles); € = 0.003 (dots). The dashed straight line is the
theoretical prediction for the critical structure (4.9)

5. A SIMPLE MAP

Because the principal changein the adiabatic invari-
ant J occurs at the separatrix crossing, it is natural to
derive a2D-map per crossing. These sorts of mapswere
considered by many authors [2, 3, 14, 15]. All these
maps are rather complicated, at least for theoretical
analysis. For the model under consideration here, the
globa map (in J) has the form

/ 4
1-J In|2sing,

J? (5.1
0= @+ (),

wherethe sign coincideswith that of A(t) (seeeguation
(4.2)). The difficulty of constructing and using such a
map lies in the second equation. Note that both equa
tions are approximate and cannot be substitutes for the
exact equations of motion even in the smplest form of
another map (2.8).

To simplify the global map (5.1), we first transform
it to alocal one by the standard procedure, the linear-
ization of the second equation (see, e.g., [5, 6]):

-1z €
J—J+2

den
®(J) — mn + @0,
The new parameter J,, satisfies the equation ®(J,)) = ™
with any integer n, and AJ=J—J,. In our problem, this
approximation is rather accurate for sufficiently small
€ — 0. Inparticular, we can consider the discrete vari-
able J, as a continuous one (see below).

Typicaly, the derivative @' = dd/dJ is dtill very
complicated, and we assume another principal approx-
imation; calculating the change in ¢ between succes

AJ. (5.2)
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sive separatrix crossings, we use the limiting motion
freguencies neglecting the change of those near the sep-
aratrix. They are

W, = ?_'[J for phase rotation, 53

w, = ~A(t) for phase oscillation.

The rotation frequency (off the resonance) remains con-
stant between crossings, while the oscillation dowly var-
ies due to the separatrix motion. Now, the full period of
the phase @, which is equal to 11, corresponds to the full
period of the rotation, but only to a half of that for the
oscillation. Therefore, the speed of the o variation in
this approximation becomes

(o, 2

%?::DE_: ﬁJ’ J>AﬂQ6’ (5.4)
Foo = JAD, I<.JAD.

The latter inequalities determine the transition from

rotation to oscillation and back, which occurs at the

crossing timet =t where (see equation (2.7))

et,, = arcsin(J%). (5.5)

For the local map in question, we need only the

derivatives @', which are expressed in terms of elemen-
tary functions as

E%arcsin(fw T 85 3s /D

Tte 140 ’

() = 2 v1-d (5.6)
A i< /Ap.

€ /1—‘]4'

Since the most interesting part of the motion structure is
essentialy concentrated near sufficiently largeJ= 0.9 (see
Fig. 1), we can keep in the first equation (5.6) only the
second term with the coefficient 4/e from the second
equation. Infact, the difference between the two factors
islessthan it appearsjust because of the contribution of
the omitted term. However, the latter correction would
be certainly an excess in accuracy for our rather crude
map. Finally, we assume

2
v =32

€ /1—\]4.

The local map is now derived from equations (5.1),
(5.2), and (5.7) in the standard way (see, eg., [5, 6, 16]),
and has the form

(5.7)

P=PZ*KIn|2sing mod T,
(5.8)

¢=@FP+

N
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where the signs in both equations change simulta-
neously at each crossing, and where

o4 0
€J1-J,
isanew, loca, momentum, and the only parameter K = 2
issimply a constant in the approximation assumed. An
additional phase change by 174 comes from the shift of
the separatrix by 1Tin X each time it crosses zero (see
equation (2.4)). Literally, this change in ¢ is equal to
U4 + 174, but the aternating part smply shifts P by a
constant 174 and, thus, can be omitted.
The phase space of the local map (5.8) isa 2D-torus
TT % TU It approximately represents a narrow strip A, J X 1t
in the phase space of our main system (2.1), where

pg = Tedl=d
(3= el

4 Jﬁ

For the local map to be applicable, the following two
conditions are to be satisfied:

AJ mod Tt (5.9

(5.10)

A,J
=== <1, (5.11)
NN
and
A,d
£ -1 (5.12)
1_‘]n 1_‘]n

The latter condition excludes a very narrow domain

1-J, = €%, whichis practically impossible to observe,

while the former comprises the whole ballistic region.
The density of local strips (5.10) in J,,,

J2
dn _ 1 _4_ Jn (5.13)

dJ, 8 e [y

is rapidly increasing with J,,, which explains the con-
centration of the regular component near the chaos bor-
der (Fig. 1). Thisalso explains the shift dJ of the dips
between two different groups in Fig. 1. The largest
0J = 0.15 on the upper curve between the two extreme
left dips is close to the full width of the corresponding
local strip A;J = 0.16.

An interesting feature of the 4-step map in equation
(5.8) over a period of the adiabatic perturbation (four
Separatrix crossings) is a singularity at @ = 0 (mod T1).
The Fourier spectrum of this singularity

00

In|2singl = —Z cos(2ng)

: (5.14)

n=1
is similar to that of the function with a finite disconti-
nuity. Asiswell known (see, e.g., [8, 17] and references
therein), the chaotic component of such a motion is
always connected. This means that thereis no invariant
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Fig. 5. Comparison of local map (5.8) (circles connected by
lines to guide the eye) and the main system (2.1) (dashed
lines) with respect to: the relative measure |, of the regular
component (lower data), and the Lyapunov exponent A
(upper data). For the main system, the dashed lines give
M, =0.007 and A (J = 0.9) = 0.67 (see the text).

curve in the entire range 0 < @ < 71 that would cut
through and disconnect the chaotic component.

This confirms earlier conjectures on the universality
of chaos under the separatrix crossings (see, e.g., [13]).
The motion in such a system is typically nonergodic,
that is, it contains aregular component. For a particular
model under consideration, it wasfirst foundin[3], and
studied in detail in the present work (Section 3). Using
asimple map in equation (5.8), we are able to analyze
and understand particular features of this less-known
component of the motion.

To this end, we first measured the relative area , of
the regular component (stability islets) within the local
phase-gpace cdll (1t x 1) asafunction of the parameter K.
The result is shown in Fig. 5 (lower circles). In the
approximation of a constant parameter K, the relative
areaisthe samein each cell, and thus, is approximately
egual to the relative area in the whole range of Jin the
main system. The latter is also shown in Fig. 5 (the
lower dashed line). The agreement, within a factor of 2,
seems reasonable provided the local parameter isK < 0.8,
which is about half of the estimated value. Assuming
K = 0.8, we can further compare the Lyapunov expo-
nent in the local map (upper circlesin Fig. 5) with that
of the main system at J= 0.9, the latter being larger by
afactor of 2 (the upper dashed line).

Besides aqualitative description, therefore, asimple
local map (5.8) leads to quantitative estimates within a
factor of 2, which is not that bad for such a primitive
map.

Thelocal map isindependent of €, and so are dl the
dimensionless quantities of the variables and the
parameters of this map. These include the relative area
K, (cf. Fig. 1 and the table), the Lyapunov exponent A
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per separatrix crossing (or per perturbation period)
(Fig. 3), and the correlation factor R (Fig. 2) except for
small J closeto the ballistic region, where thelocal map
is not applicable.

6. CONCLUSION

We studied the structure and statistical properties of
the chaotic motion under the separatrix crossing in
numerical experiments with atypical model (2.1) used
in such studies. An interesting distinction from the pre-
vious studies (except [13]) isin that we allow the full
swing of the separatrix (—1 < A(t) < 1). Inthis case, the
chaos comprises the whole range (0 < J < 1), and there
isonly one chaos border at J = 1. Usually, the perturba
tion amplitude A(t) > O is strictly positive (or negative)
which impliestwo chaos borders with the chaotic com-
ponent between them (0 < J; < J < 1), but without an
interesting ballistic region.

We have qudlitatively confirmed the previous results
on the existence of the regular component (nonergodicity)
of motion [3] and the correlation in the chaotic compo-
nent suppressing the diffusion [2]; we have found many
other interesting details of the motion structure (Sec-
tions 3 and 4). For a physical interpretation and under-
standing of our empirical results, we have constructed
avery simple but meaningful local map per separatrix
crossing, which leads not merely to a qudlitative
description of the chaos structure, but also to a reason-
able quantitative estimates within a factor of 2.

InFig. 1, most of the regular component is seen near
the chaos border, at J = 0.9. We never observed any at
J=0, which is at variance with the prediction in [14]
based on approximating the equations of maotion by the
Mathieu equation at small e — 0. The resolution of
this apparent contradiction isthat the parametric pertur-
bation amplitude in the Mathieu equation increases as
Ue2 (see equation (2.9)), and therefore, stable periodic
solutions are only possible in special very narrow win-
dows of e. An interesting open question is the size of
the corresponding stability islets.

Another interesting problem is the expected critical
structure at the chaos border J = 1. The standard
method—statistics of the Poincare recurrences (see,
e.g., [8] and references therein)—is difficult to apply
here because of the confusion with many internal chaos
borders around stability islets of the regular compo-
nent. Instead, we measured the J —= 1 asymptatic
behavior of the two quantities, A(J) and R(J). Unfortu-
nately, we were not able to calculate from the existing
theory [8] the two critical exponents separately,
because of the singularity at J = 1 (see equation (5.6)).
However, we have found that their ratio (4.8) is inde-
pendent of the singularity and agrees surprisingly well
with the empirical result (Fig. 4). This is strong evi-
dence in favor of the critical structure, and it certainly
deserves further studies.

No. 5 2000



904

In the present work, as well as in the previous one
[1], we studied the crossing of asingle separatrix that is
one of the two separatrix branches of a nonlinear reso-
nance (see equation (2.1)). Asis well known, there is
another, related but not identical, process, the crossing
of the whole resonance with both of its branches. The
latter was studied even much earlier [18] (see aso
[19]). From the beginning, it was found that the change
in the adiabatic invariant per crossing, AJ ~ elne (in
dimensionless variables), differs from that for the sep-
aratrix crossing, caculated much later, by an additional
factor Ine, which dowly but indefinitely growsase — 0.
Theimportance of thisfactor for the regular component
of the motion was understood in [3]. Namely, it was
theoretically predicted that the stable trgjectories of the
two particular periods are destroyed, together with the
surrounding idlets, for sufficiently small €. An interest-
ing open question is whether the whole regular compo-
nent, containing infinitely many idets [8], also van-
ishes, and if so, then how fast.

In terms of our local map (5.8), the additional factor
would completely change al the underlying motion
structure because now the map parameter K ~ |Ine| —» o
does depend on the adiabaticity parameter, and more-
over, indefinitely grows ase — 0. Thisimplies the e-
dependence of all the dimensionless characteristics of
the motion, in particular, the measure of regular com-
ponent. We performed some preliminary numerical
experiments to estimate the dependence p,(K). Asymp-
totically, it looks like an exponential, which would
imply apower law for p,(e).

In the very conclusion, we would like to mention
that the latter particular interesting question is a part of
a very important and very difficult unsolved general
problem in the theory of dynamical systems, the prob-
lem of ergodicity in the case of analytic or even suffi-
ciently smooth equations of motion.
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Abstract—The physical idea of the natural origin of diseases and deaths has been presented. The fundamental
microscopical reason is the destruction of any metastable state by thermal activation of a nucleus of airre-
versible change. On the basis of this idea the quantitative theory of age dependence of the death probability
has been constructed. The obtained simple Death Laws are very accurately fulfilled almost for all known dis-

eases. © 2000 MAIK “ Nauka/Interperiodica” .

All of uswill die, aswell as al other living organ-
isms and plants. Each and every machine or construc-
tion will break. Mountains will fal down or earth-
quakes will happen.

Why? Physics givesthe general answer —all of these
systems are not in full equilibrium, but represent meta-
stable states. In other words: (1) they are stable against
small external influences, but (2) each of them, the
worst ones, as well as the best ones, has a finite proba-
bility to be spontaneously destroyed without any exter-
nal influence even in the ideal environment and at per-
fect conditions. According to Gibbs[1], the fundamen-
tal reason of the destruction of metastable equilibrium
isthethermal activation of acritical nucleusof irrevers-
ible change in the system.

Let us consider a simple example: a stretched ideal
monocrystal string. If we wait a sufficiently long time,
the temperature fluctuations will produce a critical
Griffith’s crack [2] at some place and the string will
break. It is possible that the critical crack will appear
earlier if there are some defects in the crystal. Such a
nucleation process occurs in different ways for differ-
ent cases (activation of point defects in the crystals,
condensation in a super saturated solution, nucleation
of anew phasein afirst order phasetransition) anditis
well studied in condensed matter physics.

The described phenomena can a so take placein any
living organism, even if the latter are much more com-
plicated. The thermal activation of a critical nucleusis
the last and unremovable killer. [Last—if we exclude
all other origins of diseases and deaths. Unremovable,
but, one can hope, not unanalyzable.]

| want to stress here that the known qualitative and
guantitative facts for the majority of diseases can be
understood from the point of view of theoretical phys-
icsin terms of metastability and the activation of acrit-

This article was submitted by the authorsin English.

ical nucleus. So, | think that the thermodynamic Killer
works, and that it is the main killer.

Gompertz [ 3] discovered that the probability D(X) to
die at the age x in the time interval dt exponentially
increases with age

D O exp % (D)

According to modern mortality statistics, Gompertz
law isvalid inthe age range from 30—70 years, while an
even stronger increase appears in older age groups. The
exponential age dependence of D, from my point of
view, isthe most crucial sign of the microorigin nature
of diseases leading to death.

| have no answer for many questions one can ask
about the details of the relationship between a given
disease and the proposed idea of their natural microor-
igin. Nonetheless, | believe that the age dependence of
the death rate can be interpreted in terms of the proba-
bility of formation of critical nuclel of irreversible
change that cause the collapse of metastable equilib-
rium states. In the following, | present a theory that
relatesthe probahility of the arising of acritical nucleus
to the age of the system in which it takes place.

Unremovable point defects on a molecular (and
macromolecular) scale can arise due to the process of
oxidation [4]. Thermal fluctuations can produce config-
urational transformations of individual molecules [5].
The same effect can be caused also by some externa
agents (photons, impurity atoms or molecules, el emen-
tary particles). If aconcentration of those point defects
is small, then the probability of the arising of new
defects does not depend upon the interaction between
them. It means that the concentration of point defects
should be simply proportiona to the age x. This linear
law is known in an absolutely analogous situation, the
Zeldovich stage of nucleationin | order phase transition
[6]. It is quite natura to assume that, at any age, the

1063-7761/00/9005-0905%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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Fig. 2. Malignant neoplasms of digestive organs and perito-
neum (150-159). Death rate.

dimensionless molecular concentration of the point
defectsremains small, so that thislaw isvalid at any age.

A growing concentration of the point defects gives
rise to small changes of the physical parameters of the
body structures on a macroscopic scale (membranes,
cells, aswell as higher level structures). One can imag-
ine that some functionally significant defects are ther-
mally activated on this scale (as, e.g., the arising of a
Griffith-like critical crack in a microcapillary, periodi-
cally stressed by oscillating blood pressure) or that
point defects will tend to precipitate into a condensed
state (as it is in supersaturated solutions), or even that
some type of a structural phase transition occurs at
some critical value of defect concentration. Some such
types of spontaneous changing in the body can have
serious functional consequences leading to diseases,
and death.

The probability W of such microdamages arising is
governed by the Gibbs law

wQd exp%—%% 2
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where U is the minimum energetic barrier of the irre-
versible change (critical nucleus), and T is the temper-
ature. Usually, it is possible to expand the energy of the
critical nucleus in the small concentration, or equiva-
lently in age: U = Uy + U'X, and if U' is negative, the
barrier diminisheswith the age, we obtain the exponen-
tia law, equation (1). If U' is positive, one has the
growth of the barrier, and the stability of the body
increases. It is possible that the decreasing age of infant
mortality is partly related to this circumstance.

The expansion of U in the concentration is impossi-
ble in the case of condensation in a supersaturated gas
with asmall concentration (aswell asin the vicinity of
| order phase transition). In atwo-dimensional conden-
sation of supersaturated gas, the energy of the critical
nucleus is inversely proportional to the concentration,
or in our case U [0 x%, corresponding to the second
exponential law

b
W O exp E‘;Er A3)

In a three-dimensional condensation, there should be
U O x?, and the third exponential law is

gco
wQd expD—X—ZD 4

Let us consider the US-97 death statistics specified
by selected causes [7]. If one plots In(D;) versus x, or

versus 1/x, and 1/¥?, it iseasy to find that almost all cases
have a clearly distinguishable age behavior: 20 cases of
Gompertz exponential law, equation (1); 14 cases of sec-
ond exponential law (3); 4 caseswith more complicated
behavior, but the laws (1) or (3) arevalid thereinawide
age range, and some strange Crossover occurs to some
other behavior; 24 cases are not related with aging.
Only in 3 cases statistics does not permit to make a def-
inite conclusion on the type of age dependence. Exam-
ples of the clearly detectable exponential age behavior
of the death rate are presented in Fig. 1.

The death rate hereisthe number of deaths per 100000
population of specified age groups 0-5, 5-14, ..., 75-84,
85 years and over in 1997. There are alot of intriguing
coincidences of the parameters (a, b) for different dis-
eases. This possibly means that a number of discussed
different microorigins is substantially smaller than a
number of diseases. Some of the diseases arise presum-
ably asacombined effect of two different microorigins.
Thisanalysisisin progress.

The characteristic magnitude of function D in cases
with Gompertz law (1) at x = 0 is exp(—13)...exp(-22)
per year, or exp(—30)...exp(—39) per second. Let us
compare thisvalue with equation (2). One should intro-
duce some preexponential value. Its simplest estimate
isthe characterigtic frequency of oscillations of atomsin
condensed matter w ~ kO/%, where © ~ 10° K is Debye
temperature; k, Boltzmann constant; #, Planck’s con-
stant. One should introduce an additional factor, an
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effective number N of possible places where the given
critical nucleus can arise. The temperature of the body
isT =273+ 36.6 = 310 K. The comparison gives area
sonable estimate of barriers U ~ (1.2-1.4) x 10* K +
TInN,orU~11-13eVifN~1 andonly U ~ 3 eV
even if N is equal to the total amount of the molecules
in the human body (this effective number is of course
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unrealistic). It is noteworthy to say here that the esti-
mated barrier values are comparable to those typically
encountered in condensed matter physics for the pro-
cesses mentioned in the previous pages.

In order to estimate the age change of barriers, one
does not need to know the preexponential factor in the
expression (2). Typical 90 yearsincreasing factor of D,
is exp(8). It corresponds to the diminishing of barriers
oU ~ 8T, thisvalueisaso reasonabledU ~ 0.2 eV < U.
Two parameters dU/U < 1 and U/T > 1 are the main
parameters of the theory.

In the framework of the presented picture, the small
differencein barriersof theorder of 0.02 eV for malesand
females corresponds to the known ratio D,/D; ~ 2, and
can bedirectly related to the difference 1/23 in chromo-
some compositions. The variation of the parameters
with time and specific groups of population, countries,
races, etc., should be of the same order of magnitude.
The situation is similar to the usua one in condensed
matter physics, where the experimental dataare observ-
ably dependent on the sampl e preparation conditions.

Note, that thereis no real contradiction between the
presented idea and the fact that there are a lot of dis-
eases caused by viruses and bacteria. The age depen-
dence of those diseases can be related to the microori-
gin of the destruction of the immune system.

Moreover, | think that the discussed thermal activa-
tion mechanism could play arole in the generation of
congenital anomalies.
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Abstract—Analytical expressions for the binding energy of electrons and positronsin dielectric clusters, ana-
lyzed in this work, neglect the elastic effects. Therefore, we present the density-functional theory for neutral
liquid clusters that experience the spontaneous deformation. Using the 1/R-expansion, R being the cluster
radius, the exact analytical expressions for the size corrections to the chemical potential, surface tension, and
atomic density are derived from the condition of mechanical equilibrium. The problem of calculating these cor-
rectionsisreduced to cal culating the quantitiesfor aliquid with aflat surface. The size compression and tension

of density occur in the 1/R and 1/R? orders respectively. The sizes of charged rigid and elastic critical clusters,
for which the electron or positron binding energy is close to zero, are calculated for Xey, Kry, Ary, Ney,

He,tl . The calculations show significant contribution of self-compression to the binding energy of the excess
electron in contrast to the positron. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Excess charged particles and polarization interac-
tions are of great importancein physical chemistry and
biology. The interaction of electronswith atoms, which
posses large polarizabilities, exhibits an attractive char-
acter. That iswhy their localization is possible in clus-
ters [1-3]. Electronic clusters (or negative cluster’s
ions) were discovered experimentally in a dense xenon
[4, 5]. In helium, which has a very small atomic polar-
izability, locdization of eectrons happensin avoid bub-
ble [6]. Recently, the eectronic bubbles were observed
even in the helium microdroplets [7]. The interaction of
the positrons with atoms, owing to the absence of the
exchange interaction, aways demonstrates their attrac-
tive character. Positron clusters were discovered in all
dense gases of rare atoms [8, 9]. The temperatures of
clusterization and the “optimal” sizes of clusters were
estimated in [2]. Such clusters contain hundreds of
atoms, and their density is closeto that of aliquid clus-
ter. On the other hand, the mass-spectrometry measure-
ments allowed to discover the existence of xenon clus-
terswhich contain near dozen of atoms and are charged
by only one electron [10]. They have a noticeable life-
time and are called “critical” clusters. The size depen-
dence of the electron affinity and critical size of xenon
solid clusters were examined by a continuum model
[11], and by taking full account for the atomic structure
[212]. In this work, we propose an improvement of ear-
lier theories.

This article was submitted by the authorsin English.

The main purpose of this paper is to discuss a true
asymptotic for binding energy of quantum particle
localized in alarge dielectric cluster. Subsequently, we
point out the importance of elastic effects in the deter-
mination of the cluster’s energetics. We develop a for-
mal density-functional theory for finite classical sys
temsin order to account for the self-deformation of the
clusters. For smallest clusters, the theory based on the
continuum model retains the simplicity of the method
developed for rigid clusters. Furthermore, critical sizes
of single-charged elastic clusters are calculated.

2. LARGE RIGID CLUSTER

The quantum particleslocalized in large clusters are
almost free. Their energy spectra are determined by the
character of scattering on cluster atoms and depend
upon the atomic density. In [13], the following expres-
sion for electron binding energy was discussed,

% (D

where Eg is the standard binding energy component
that contains the Born correction,

2
0 _ ee-1
Ey = —Vo—55—— e
where V, < 0 is the ground state energy of the electron
in a extended dielectric (Ar, Er, Xe); R = NY3 isthe
cluster radius; N isthe number of itsatoms,; and I isthe

1063-7761/00/9005-0908%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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average distance between the atoms of density p =

(4mtr® /3). The second term in (1) is the kinetic energy
of the electron localized inside cluster and my; is the
effective mass. Theradius of critical clustersR* may be
crudely estimated [11] directly from the condition

En(R) =0.
An alternative asymptotic expression for the bind-
ing energy of a charged particle has been derived in the

effective medium approach and pseudopotential theory
of scattering [15],

n2

E, = ES o (1-CO), 3)
and
3ae’ O[]
Ep =T+ 2r30%l = (4)

where T = ¥/°qf/2m. The sum of thefirst two termsin
(4) gives (V) and the last term gives —€?(€ — 1)/(2Re)

The dielectric constant € = 1 + 3a/(F° —a) wastakenin
the Clausius-Mossotti approximation. The second term
in (4) gives the shift of the energy due to the mean
polarization of infinite liquid. The minus and plus sign
appearing in T correspond to L > 0 and L < O, respec-
tively, whereL = L(T ) isthe scattering length of aquan-
tum particlein dielectric. o isthe atomic polarizability;
a isthe parameter of the Lennard—Jones potential; f =

1+ 2a r3)_1 is the Lorentz local-field correction; C =

2.86; and & = L/t isthesmall parameter. A ssmpleform
of step function was used for the pair-correlation func-
tion for atoms,

g(r) = 8(a-r), ()

where o corresponds to the mean closest interatomic
distancein the cluster. The solution of the Schrodi nger
equation in the Wigner—Seitz cell for the two princi-
pally different regimes of scattering [17], gives the fol-
lowing equation for qy:

tan[qof + 0y(do)] = Qof,
3, = —Lgy+O(q), for L>0,

tanh[qgor + 1md,y(igoe)] = o,
5, = —iLgy+O(—iqp), for L<O.

in [16, 17] the radial distribution function g(r) was used, which
reflected the real structure of simple liquids in coefficients I, |5,
I, appearing in the expressions for the phase shifts scattering
waves, Vg and mg; . The present version of g(r) corresponds to

|O=|2=|4=1.

(6)
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Here d,(X) is the phase shift of the charged part|cle Ss
wave scattered in cellular infinite medium [18].2

In principle, both expressions (1) and (3) follow
from the Bardeen theory [19] for the extended system.
They give, however, different size-dependence of bind-
ing energy. In this section, our consideration is
restricted to a special case of large clusters when both
the electron mean free path in extended liquid (whichis
of the order of hundreds of bohrs) and the electron
wave length in the cluster are close to cluster radius. In
this case, the binding energy should be calculated from
equation (3). Calculations using equation (1), assuming
the input of effective mass, are not correct because the
effective mass can be correctly calculated and entered
to (1) only if the mean free path is much smaller than
the cluster radius.

We describe the fluid number density p as of undis-
turbed fluid of uniform density up to spherical bound-
ary, i.e., asfor arigid cluster with zeroth compressibil-
ity, and we put p(r) = p 6(r — R). The values of V, and
my; for eectrons and positrons in considered media
were measured in awide range of densities[20-26]. We
calculated these values (Table 1), taking into account
the simple correlation function given by (5). The input
experimental values of L(F) for excess electrons are
taken from [4, 25, 26]. The input calculated values of
scattering lengths for positrons are used from [17].

In Fig. 1, the binding energies E,(N) calculated
from (1) and (3) are shown for Xey = Xey+ €, Kry =

Kry + €, and Ary, =Ary + e* clusters of densities cor-

responding to aliquid statein thetriple point. Asis seen
from Fig. 1, the two curves for E,(N) differ consider-

ably. The difference in the curves for Xey and Ary

originates from the effective masses my; and from the
sign of scattering length L. Equation (3) predicts a

smaller size “critical” cluster Xey and Kry (which
correspond to the condition E,(N*) = 0). These results
suggest that equation (3) is superior over (1) because it
predicts smaller sizes of critical electronic clusters. In
Section 4, we show that these sizes are determined by
the availability of surface states. The latter effect was
ignored in[14, 15].

Finally, putting aside the problem of availability of
surface states, we should add that formula (3) is for-
mally correct but exclusively for electronic clusters,
L > 0, with N > 100. This is confirmed by numerical
solution of elgenvalue problem for the potential well of

2t should be noted that #2q7 /2m appearing in (4) is not the kinetic

energy of the particle in the cell, as it seems to be. This term
describes only scattering inside a cell. The wave number qq is
obtained from (6) using the boundary conditions by means of the
scattering length which allow to account entirely for the repulsion
and partialy for the attraction, i.e., the scattering at the polariza-
tion potential profileinside cell.

No. 5 2000



910

Table 1. The calculated input values of V, and my, and used for the estimation of the binding energy Ep(N). The dates are

POGOSOV et al.

taken from [4, 17, 25, 26, 40, 41], a, is the Bohr radius

T, K fo,a | L(fo), 8 | Vo |dVydp,eva)| mMg/m | vo/Bg,a 4
Xey 161.4 4.855 0.70 —0.680 +1140 0.664 0.63 1.10
Kry, 115.7 4.544 0.60 —0.454 +676 0.678 0.57 1.02
Ary 83.8 4.225 1.10 -0.201 +1122 0.711 0.49 0.97
A r,+\] 83.8 4.225 -0.63 —0.986 -303 1.203 0.49 0.97
N eL 24.8 3.531 -0.027 —0.446 -17.8 1.099 0.46 0.93
H eL 4.2 4.404 -0.29 —-0.259 —-45.0 1.05 0.44 0.95

radius R and of depth Eg. The point is that the sum of
exact kinetic energy and the last term that contains weight
coefficient C = C(R) (see[15]) showsthe size dependence
similar to that for large clustersin equation (3).

However, in general, the cluster may be compressed
under the action of surface tension and tensed by a
localized quantum particle. We can neglect the pressure
P, of localized charge g = e in two cases: for alarge
and “bulk” cluster (P, has an order R, that is much
less then the Laplace pressure) and for acritical cluster
(Ep —= 0, Py — 0). In these cases, one can take into
consideration, in analytical form, the effect of self-
compression of cluster under the action of surface

Eb’ eV

0 0.1 0.2
N3

Fig. 1. The binding energy Ey,(N) calculated from equations

. . . +
(1) and (3) (dashed and solid line, respectively) for: (1) Ary;
(2) Xey; (3) Kry .
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forces upon the energetics of abound quantum particle.
For intermediate sizes of clusters, the self-consistent
solution of the problem of aparticlelocalized inthelig-
uid cluster isrequired.

The analytical sum-rule approach, developed for
neutral metallic clusters [27, 28], describes the influ-
ence of self-compression upon ionization potential
only in terms proportional to the first order in 1/R. As
will be shown, for a dielectric cluster, this approach is
more progressive, and the desired corrections propor-
tional to 1/R? are obtained. In the following section, we
briefly present the density-functional theory of a self-
deformed cluster.

3. DENSITY-FUNCTIONAL THEORY

Consider a classical, dense vapor at temperature T,
and of chemical potential , in abox of volume V. The
free energy of asystem of cluster-vapor, F = F[p(r, R)]
isafunctional of theinhomogeneous atomic concentra-
tion p(r, R), Risthe cluster radius. In the framework of
the square-gradient theory, the free energy can be writ-
ten in the form

F = jd3r(f +9(0p)?), @

where f = f[p(r, R)] is the energy density of the quasi-
homogeneous part of the functional, g = g[p(r, R)]
gives the first inhomogeneity term represented by the
first gradient term.

The grand free energy is found by minimizing the
functional

Qu[p] = Flp] -n[d'rp(n) + [d'r 2 0yl’

+ str Idsr'lw(r)IZV(r —r)p(r')

)
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with respect to variation of p(r) and Y(r) under the con-
ditions

Id3r|lp(r)|2 =1, Id?’rp(r) = N,.

Here, v(r) is the electron/positron-atom potential, and

N, denotes the total number of atomsin abox. By vary-

ing Qy[p] with respect to Y(r) while using a Lagrange

multiplier, one finds the following Schrédinger equa-
tion for Y(r):
ﬁ2

— 5 A0 +VINW(r) = EY(), )

where
V(r) = Idgr'v(r—r‘)p(r‘)

is the mean potential field, produced by atoms. For a
given p(r) we want the lowest-energy solution to equa-
tion (9). Let us denote the energy in this state by E[p].
For the equilibrium profile p(r, R), the functional
Q\[p(r, R)] = E + F — uN, has a minimum and equals
the Gibbs grand potential Q = —PV, where P isthe pres-
surein abox.

In this paper, we use V(r) in the form of the sum of
short range (see equation (4)) and long-range (polariza-
tion) components:

V(r) = T&(r) +Id3r'vp(r —r)p(r),

where 8(r) is the Dirac & function. For a dense cluster
in the delute vapor the last term in (11) has a standard
form of the interaction energy of a point charge with a
dielectric sphere [16, 29]. We consider the case of weak
perturbation of the atomic distribution p(r) by the
excess quantum particle (see the above discussion in
Section 2). However, the effect of the correction may be
estimated after the fact and such an estimate is made in
the end of the Section.

(10)

(11)

3.1. Neutral Elastic Cluster

Using (7), the Euler—L agrange equation can be writ-
tenintheform

_ _OF[p]
U—(r- R) - 6p(r R)
N (12)
%—%( )~ 20 + 2000

For the equilibrium concentration profile p(r, R) we
have u(r, R) = W(R). By definition, the surface free
energy per unit area, y and surface tension (stress, for a
solid) T [30] are given by

v = £[Flo(r, )]

~F[po]8(r —R) —F[po] 6(R-1)],

(13)

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90

911

dy
T_V+AdA (14

where A = 41R? is the area of “equimolecular surface”
of cluster, which is defined by the condition

00

4nfdrr2(p(r, R) —pge(r —R) —psB(R-T1)) = 0. (15)

Here p, is the atomic concentration in the uniform

condensed matter, p, the density of uniform vapor

beyond the surface, and 6(—x) the Heaviside step func-
tion. In the following, we employ the expansion of Y =
P, U, Y, T quantitiesin powers of the inverse radius 1/R,

Y
Y:—k
R

k=0

(16)

The zeroth-order terms in (16) are relevant to the sys-
tem with a planar boundary. Inserting this expansion
into (12) and (14), and using the series

RZ(l)DR D,

one can compile the terms having equal powers of 1/R,
getting a set of equations for p, and . The equations
for k=0, 1, 2 have the form

=l

af, 0
o = 320 =300 ~ 20800, (17)
Po
0°fo 08
My = a—pz 1= a = (Opop; + p1Apo)
° (18)
6 2 9o
> pl(DpO) —2go(Ap, + 200py),
dpo
1a °fo 2 o°f, _
+ + gradient terms, 19
He = 502 Pt 2Pt o (19)
j dX(Po— PoO(—X) —PeB(X)) = O, (20)
(21)

I dX(P1 = 2XPoB(-X) —2xpeB(x)) = O,

where we have changed the variable x = r — R, and we
have made use of the limit R —» o, p* = p(X = —0),
p~ = p(x = +). For brevity, we use the notation 0 =
d/dx and A = d%dx?. The liquid under consideration
occupies the half-space x < 0, and vapor isfor x> 0. It
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is convenient to introduce the useful definition of the
“average over aplanar surface”

[Py~ Po) = —I dxp(x) tpo, (22)

and “first average over spherical surface”

Mu(x) P, —py) = — f dxp(x) Op;. (23)

To transform in equation (13), we haveto carry out the
following procedure. Multiply equation (17) by B «X)
and then express the result in the form

D(fo—go(Dpo)z— HoPo) = O

which represents a microscopic analogue of the condi-
tion of mechanical equilibrium for cluster-vapor sys-
tem. Next, integrate equation (24) in the limits (—oo, X)
toyield

(24)

fo0) = fo+go(0P0)” + Ho(Po(¥) ~ HoPs,  (25)
where f; =f(p, ). Thismakesit possible to separate y,
and y; in the expression (13) for y(R). Using equations
(20)<22), after cumbersome transformations, one gets
the anal ogue of results obtained earlier, and in another
form, in the framework of theVan der Waalstheory (see
[31-33], where g, = constant was used)

00

Yo = 2 jdxgo(mpo)z, (26)

[

y. = 4 Idxxgo(mpof. (27)

A similar expression was derived earlier [31] in the
two-component plasma model and stabilized jellium
for a self-compressed metal cluster.

We conclude this section by deriving necessary
exact sum-rules. Using equations (17), (18), (22), (23),
and (26), (27) one can obtain the following expressions,

. L0°fg
o gt 0 28
M1 plapéz (28)
[, Po—Po) = 2Yo, (29)
and
.1 0% L0°f;
= sp2—04pt 0 30
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[1,Po — Po)
+2  + -2 —
1 0 (31)
+ L orbe s ot oy
0B, B; D

where 1" = (x = ), P~ = p(x = +w), and B; =

pel a2 f5 10ps° = pa’fg" isthe bulk modulus (inverse
compressibility) of liquid and vapor, respectively. In
particular, equation (29) defines the size correction to
the “aomic work function” or cohesive energy €.,+(R) =

€cono + ecohlle where €con1 = _ZVO/( pg - PS)

The equilibrium conditions, py , = 0, ,0=py, =
[, [ lead to cancellation of the second termin (31)

and, after trivial algebra, we derive the desired equali-
ties

+2
Po

Yo/———, (32)
Bo(Po—Po)

p; =2

P2 = P1(8-X), (33)
which will be used in further calculations. The “size”
coefficient & = y,/y, is defined by the dependence y(R) =
Vo(1+3(R)), and x = p1 fo" /25" . The quantities p;, p,
appearing in (32) and (33) can be calculated by solving
the problem for aflat surface. It should be noted that for
liquid rare gases the value yy/ By is close to one half of

the Bohr radius a, = #%/me?, thus giving some “funda-
mental” length by analogy with the liquid metals [34].

Expression (32) means that atomic concentration in
the bulk of the cluster increases by p; /R compared to

the p, case where R —» o. Thus, self-compression is

aresult of surface curvature that creates extra pressure,
2yy/R, in comparison to the planar case. It will be dem-

onstrated below that the second correction, p,/R2, has
a negative sign. This pointsto the size self-tension that
appearsin the term of order 1/R2.

Thesign of coefficient & in (32) may be derived intu-
itively in the following way. The response of the cluster
to the decreasing of its size corresponds to the well-
known Le Chatelier principle. Taking into account the
size dependence of surface energy, the extra pressure
inside the cluster is 2y(R)/R, where y(R) < y,. Conse-
quently, the decreasing of y(R)in comparison to Yy,
counteracts the increase in capillary pressure, caused
by the decreasing of cluster size. In order to make a
connection to [10], we will restrict our consideration to
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the cluster-vacuum system. It means that we need to set
Po =0in(32) and to make achangey(R) — t(R) [35].
Then, by definition of surface tension (14), we have

_ o[
I(R) = ToAL+ SR (39
Here, for smplicity, we assumethat 1, = y, (see discus-

sion in [36-38]). Following equation (34), the correc-
tion p, /R?, defined by (33), decreases by a factor of 2.

Let us discuss the influence of localized quantum
particle upon the atomic density in acluster. In general,
the corresponding component of pressure is defined by
the two last terms of equation (8). In the considered
system, theintrinsic pressure has aform

2 TR )R

The pressure P, stipulated by the excess particle is
defined by derivative dE/dV,, over the volume of cluster
Vg4, E =-E,. For alarge cluster,

P = (35)

R

Idr4nr2|lp(r)|2 )
0

E, corresponds to equations (2), (3), and this compo-
nent of pressure can be written as follows

O e s—l h2T
0 8nR* €  4m

P,

a (1 CE)D

(36)

Thus, we obtain an analogue of the Tompson equation
[39]. The “surplus’ pressure P, of the quantum particle
introduces the additional correction to atomic density
Apg = pqu/ BS (see Section 1). Simple calculations
demonstrate the weak effect of the tension of Xe clus-
ters, induced by aparticlein therangefor N > 100. With
decreasing N, its effect becomes somewhat noticeable.
However, for the smalles, i.e, the near-critica clusters,
this physical picture become smpler because the occupa-
tion probahility for the eectron (or positron) is close to
zero, and the pressure term P, disappears.

3.2. Small Clusters

Consider the ground state of the particlelocalized in
asmall cluster. Using (8), let uswrite the wave equation
for the radial wave function

d u(r) 2m
dr?

where u(r) = qu(r), Y(r) is the particle wave function
and the potential V(r) = V(R, r). The ground-state wave
function is symmetrical about the center of the cluster,

[E +V(n)]u(r) = 0, (37)
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so that the boundary conditions u(0) = 0, and u(e) =0,
have to be satisfied.

With cluster size decreasing, the near-surface region
occupies the considerable part of its volume and the
electron mainly can be found to be outside the formal
cluster boundary at the polarization tail of the potential
V(r > R). Itis stipulated by the electrostatic component
of V(r), which can be calculated exactly as the interac-
tion energy of a point charge e* with the dielectric
sphere of radius R. The behavior of the electrostatic
component of V(r) at the boundary has a nonphysical
singularity [29]. Therefore, the singularity at r = Ris
removed by a usua cut-off procedure and replaced by
a constant potential. The discontinuities of V(r) are an
artifact of thismodel and have only asmall influence on
V(r) and the binding energy [11]. On the other hand, the
short-range component of V(r) can be calculated only
whenr £ R[15] (see eguation (11)). Thus, we assume
that the one-particle“ pseudopotentia” in equation (37)
hasaform similar to the Heine-Abarenkov electron-ion
pseudopotential for ametal, i.e., it can bewritten asfol-
lows

FE), r<R,
V() = DV(R+1/2), R<r<R+i/2, (39
%\/p(r), r>R+7/2,

where for the polarization tail
R+ 1/2 isused, and

V,(r), the cut-off at r =

2 2 2
_ €(€-1)R[ R 1 or D
V() = -2 [ = E+1[Inq2

2(e+1)r?
1 ERE? (39)
Zk(ke+k+1) H

r>R.

The pseudopotential (38) has the right asymptotics:
V(r) —= V, for o/R —= 0, and V(r) — —Nae?/2r* for
r/R — 0. The binding energy E; results from a com-
petition of kinetic and polarization energies, and for a
critical cluster is close to zero. Thus, solving equation
(37), wefind V(R*, r), and consequently N* = (R*/r)3.

The potential in the center of alarge cluster can be
assumed as the nearest to the bottom V,, of the conduc-
tion-band in the infinite liquids. For solid state, V, is
closeto zero (especialy for Ar) [20], and by taking into
account the Born size correction and self-compression,
it becomes even positive (more incapable to retain an
electron). On the other hand, the polarization tail V(r),
in the region r > R, depends rather weakly upon the
cluster state (liquid or solid). Therefore it is clear, that
when the first bound state appears, the electron will
probably be localized outside the cluster, in a near-sur-
face state.
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0 0.1 0.2
N—1/3

Fig. 2. The binding energy E,,(N) for electron and positron
in rigid and elastic clusters (dashed and solid line, respec-

tively), calculated from equation (3): (1) Ar,J:,; (2) Xey;

(3) Kry; 4@ HeL. For Xey, the experiment gives N* =
5-8[10].

For the positron, in contrast to the electron, it is
more probable that it will be situated inside the cluster.
In alarge cluster Ary, the value V, is about —1 eV, that
is, in the center of the cluster, the positron feels a deep
potential well. The positron localizes on much smaller
clusters of Ar than the eectron. Thisis conditioned by the
comparative prevalence of attraction over repulsion in
the positron-atom interaction.

4. CALCULATIONS
4.1. Large Clusters

Firgt, let us define d = ¢, + ¢, for the calculation of

P, = (1/2)p; (d —X) (see equation (33) and comment
below equation (31)). From the semi-empirical rule
[38], derived from the vacancy formation energy and
the cohesive energy results ¢, = +0.5F,. The re-defini-
tion of “eguimolecular surface” for anicosahedral clus-
ter [36] gives ¢, = —1.32F, and thus 6 = -0.82r,. The
calculation of the third derivative of free energy with
respect to density is a difficult problem. On the other
hand, the third derivative in (33) can be expressed by
the first derivative of the (Bg/ps’) with respect to pg .
L et us use the well-known sum-rule for compressibility

_ PoksT (40)
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where S _ , is the structure factor of aliquid for zeroth
wave vector and for the constant temperature, T. For
bulk properties of liquids, the hard-sphere model gives
good results so we employed the Percus-Yevick fluid
structure factor, S,s = (1 — n)%(1 + 2n)2 Here, n =

TPy, /6 isthe packing fraction and d isthe hard-sphere
diameter. Then, we have

_ YoPo dy
By Y op;
where

_ kT _ Bo

SuPs Po’

Using the experimental magnitudes of S, - inthetriple
point [40] we determine d and then x. This allows
rewriting expression (33) with more reasonable accu-
racy in the following form

Pz = —LFoPl, (41)
where ( is the constant (see Table 1). Comparing the

values of p; and p, one can see that size tension isa

noticeable effect on the atomic density corresponding
to smallest clusters.

It should be noted that the compression of the clus-
ter leads to the rise/drop of the potential bottom V,, for
the electron/positron and to the growth of its kinetic
energy owing to the decrease of theradius. The position
of the bottom of the band shows strong dependence on
the density of atoms (see [17] and Table 1). In the fol-

lowing, for simplicity, in the calculation of the ES(N)

component in (3), for self-deformed clusters, we
employed linear approximation

dv,
Vdm==Vdmﬁ+;%%p—pd,

and

_ PPz

Ro Ry
where, R, = N¥3t,. To illustrate, Fig. 2 compares the
electron binding energy, calculated from equation (3),
for elastic and for rigid clusters. The differenceis much
greater than the energy ksT of thermal excitation. One
can see that the shrinkage of a Xe or Kr cluster leads to
a strong positive shift of the electron discrete energy
level. This effect was not revealed by the previous cal-
culations for critical solid clusters [11-13]. For the
positron in the Ary, clusters, the self-compression leads
to negative shift in energy. The positron in the Ary the

Eg term grows faster then the kinetic energy, therefore,

P—Po

No. 5 2000



TOWARD THE THEORY OF ELECTRON AND POSITRON STATES

915

Table 2. The number of atoms N* constituting the electron and positron critical cluster for different rare gases and two dif-
ferent binding potentials. The N’jpc values were determined from rule (42), which corresponds E,, = 0, using square potentials
barrier (I* = 1/8). The given values of E,, N* and Ny are determined quantum mechanically with the potential given by (38).

The values of Nt correspond to E, = kgT

Elastic Rigid

Nt E,, meV N* ijc Nt Ep,, meV N* ijc
Xey 9 0.37 5 6-7 7 0.008 4 45
Kry 17 0.019 9 13-14 14 0.13 8 9-10
Ary 52 0.00002 24 78-79 32 0.27 19 28-29
Ary, 6 4.33 5 6 312 5 4
Ney, 23 0.07 20 18 23 0.02 19 17
Hey, 22 0.0005 20 19 22 0.02 20 18-19

Eg is bigger for the self-compressed cluster than for
rigid one. For He,, this correlation breaksdown. Thisis

also reflected in the resultsfor the critical positron clus-
ters presented in Table 2.

4.2. Critical Clusters

The critical size of cluster, corresponding to the
number of atoms N*, may be semi-quantitatively calcu-
lated from the Jost-Pais-Calogero (JPC) rule, i.e., from
the condition for the appearance of the first bound state
in the potential V(r) <0, which is given by

=10 (42)

}drV(r)

m
%

For different potentials, usualy employed in the
nuclear physics, the value of I* changes from 12/8 to
1.6 [42]. Solving equation (42) with respect to R*, we
can calculate N* = (R*/r)3. It should be remembered
that condition (42) was formulated for zeroth binding
energy of the captured particle.

As arough estimation, we have calculated R* and
N* by (42) using the square potential well. The results
for rigid as well as for elastic clusters are presented in
Table 2. According to this simple estimation, the elec-

tronic stabilization must be observed forNj.c > 4, 9

and 28 atomsfor rigid and for N’jp¢ > 6, 13 and 78 atoms
for dadtic clusters of Xe, Kr, and Ar, respectively.

As mentioned above, the absence of the exchange
(repulsive) interaction creates more favorable condi-
tions for the localization of the positron. Positron in
critical Ary clusters feels a deep potential well. Our
estimations demonstrate the stabilization of positively
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charged clustersfor Nj‘pc > 4,18 and 19 for Ar, Neand

He, respectively. In these materials, asmall value of the
derivative, dVy/dp, causes the self-compression not to
significantly influence the binding energy of the anti-
particle. It is interesting to note the different influence
of this effect on Ar as compared to Ne and He. Self-
compressing leads to a positive shift of the positron
energy level in Ney and to a negative one for Ney and
Hey. This is determined by the competition between
the size dependences of the bottom of the potential
well, the polarization tail and the kinetic energy of anti-
particle. In critical Ney and Hey clusters, the polariz-
ability tail is very small and the positron encounters a
nearly square potential well. Thus, our estimation of N*
based on equation (42) and the square potential well is
closeto realistic values (Table 2).

In a second step, we determine the sizes of critical
clusters N* by the numerical solution of equation (37).
To simplify the calculations, we assume that V,(r) = 0
forr > R+ a[11]. Putting a = 7R, which is a good
approximation because |V,(R+ a)| < 0.1 meV, and owing
to the fact that wave function in theregionr > R+ a has
apurely exponential form, we can replace the boundary
condition outside the cluster fromr = tor =R + a.
The new boundary conditionputat r =R+ ais

d _|2ZmE,
aInu(r) =—| oz

We determine the critical N* by calculating the least
positive value of the binding energy. The results of cal-
culations for N* and E,(N*)are presented in Table 2.
The actual forms of the pseudopotential (38) and the
density r?|y(r)J? for electron in Xe and Ar and positron
inAr critical clusters are plotted in Figs. 3.
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Fig. 3. Pseudopotential V/(r) (curves 1, 2, 3) and radial density distribution I’2|L|J(I’)|2 (arbitrary units, curves 1', 2, 3" for: (@) critical
elastic Xeg (solidlines1, 1), critical rigid Xe, (dashed lines 2, 2') and “thermal” cluster Xey (solid lines 3, 3); (b) critical elastic

Ar,, (solidlines 1, 1') and critical elastic Ar; (dashed lines 2, 2').

It is interesting to compare the obtained values of
N* with the ones calculated from (42). As one can sur-

mise, for electronic clusters, N* < N’jpc . It is stipulated

by the fact that condition (42) was derived for V(r) <O.
However, in the dectronic clusters V(r) > 0 forr <R
and V(r) <Oforr > R; i.e., intheinterior of the cluster,
an electron encounters not potential well but a barrier
(seeFigs. 3). Therefore, the attractive and repulsive part
of V(r) compensate each other in equation (42). To ful-
fill the equality in equation (42) the “negative” region
of V(r) hasto beincreased, which is equivalent to afic-
titious increase of N*. The results of the numerical
solution of equation (37) confirm the role of self-defor-
mation. The magnitudes of N* for the rigid and elastic
clusters differ on 30%. Thisis caused by the significant
magnitude of the derivative dV/dp. In spite of that, in
the smallest clusters, the size self-compression is neu-
tralized by the size self-tension.

For positron clusters, the values of N* are higher
then N . Thisresult is clear too: despitethat V(r) <0

for arbitrary r (see Fig. 3), the using I* = T&/8 in (42)
corresponds to the use of a square potential well. This
is because positron states the account for the size

dependence of the polarization tail leadsto N* > Nipc.
Thus, for the fixed magnitudes of the density p,
and temperature T, the “optimal” clustersare: Xey s,

Krysos Alfnsos, Alnsoa, Alnson, HENs 2. Note that

these values of N* are underestimated, because they do
not take into account the possibility of thermal excita-
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tions, i.e., E, > KkgT. Inafinal step, we calculatethe sizes
of clusters Ny corresponding to the condition E, = kgT
(see Table 2).

Analyzing the results for elastic electronic clusters,

it is seen that the calculated critical number for Xey

agrees well with the experimentd result giving N* = 5-8
[10]. On the other hand, the agreement with another
theoretical result for solid Xe and Kr clusters (N* = 8
and 14) isquite good, but not for Ar (N* = 46) [13]. Our
results point on the noticeable influence of self-com-
pression, which has not been taken into account before.
Self- deformation leads to an increase of N by 30-50%.
Inview of thelatter fact, the accurate prediction of crit-
ica number N* by the authors of [11-13] must be
rather considered as fortuitous.

5. CONCLUSIONS

The estimation presented in this work demonstrate
that analytical equation (3) points on smaller sizes of
the electron critical cluster and thus gives better agree-
ment with measured values. The theory underlying this
formula does not use adjustable parameters and is
based on the information about el ectron/positron scat-
tering length, and the L ennard-Jones potential. We have
developed aformal density-functional theory of afinite
classical system which alows to account for the effect
of self-compression, originating from the curvature of
the cluster surface, and the effect of self-tension dueto
the reduction of the cluster’s size. The critical sizes of
clusters were determined quantum-mechanically by
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solving the Schrédinger equation and from the Jost-
Pais-Calogero criterion. The effects of self-compres-
sion and tension give a significant contribution to the
critical sizes of clusters charged by the electron and
should be taken into consideration in any comparison
of critical cluster’s sizes with the measured ones. For
positron charged clusters the elastic effects are negli-
gible.

Our model based on the continuum approximation
may not be used to describe the localization of elec-
tron/positron at a single atom having a large polariz-
ability. The appropriate methods for the solution of this
problem have been developed before [43, 44] (see dso
[45]). However, for the direct application of these
methods to the single “ion” Xe; + " one needs to be
aware of the radius of the short-range core of potential.

The behavior of the one-particle potential V(r) of
electronic clusters qualitatively resemble that for a
positron in ametal with a negative positron work func-
tion (Al, Mo, Fe, Ni) [46]. It suggests a possibility of
the application of our method to large metallic clusters
charged by a positron. The results of this investigation
may find application in positron diagnosticsin ultradis-
persed media and possibly in rare-gas atom nanotech-
nology.
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