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Abstract—The magnetic-field dependences of the critical current Ic and the pinning force Fp in single-crystal
semiconductor PbTe/PbS superlattices on KCl and YBa2Cu3O7 – δ films in magnetic fields oriented perpendic-
ular to the plane of the samples or parallel to the current were investigated. Oscillations of Ic and Fp were
observed for superlattices with a parallel orientation of the magnetic field and with two directions of the field
for the YBa2Cu3O7 – δ film. A model was proposed for the vortex structures which correspond to extrema of the
pinning force in superlattices. It was shown that the single points (extrema and points of inflection) of the field
dependences of Fp for superlattices and a YBa2Cu3O7 – δ film appear for critical values of the magnetic field equal

to Hcr = (p/q)H0, where p and q are integers, H0 = 838.37 Oe, and H0 = ch/2πe  is determined by the length

R0 = 88.607 nm, somewhat less than the reciprocal of the Rydberg constant R∞ = me4/4π"3c (  = 91.127 nm).
It was inferred on the basis of published data that the temperature and magnetic-field dependences of the properties
of superlattices and HTSC materials follow general laws. © 2000 MAIK “Nauka/Interperiodica”.

R0
2

R∞
1–
1. INTRODUCTION

It has been shown in the last few years that high-
temperature superconductors (HTSCs) belonging to
the bismuth and thallium families [1] and also, appar-
ently, YBa2Cu3O7 – δ [2] can be regarded as Josephson
superlattices, where stacks of two (or three) CuO2
planes in a unit cell, which are separated by an inter-
layer from the metal atoms, play the role of the super-
conducting layers. The Josephson coupling between
the stacks of CuO2 layers in neighboring unit cells is
manifested in specific behavior of the current–voltage
characteristics (IVCs) of samples when a current flows
perpendicular to the CuO2 planes (hysteresis, the exist-
ence of a set of branches of the IVC, and so on) as well
as in oscillations of the critical current when a magnetic
field is applied parallel to the layers [1, 2]. It was inferred
that the Josephson coupling in YBa2Cu3O7 – δ can exist
even between the nearest-neighbor CuO2 planes separated
by an yttrium layer [2]. In this connection it is of interest
to investigate the properties of artificial superlattices con-
sisting of alternating layers of materials with different
superconducting and electrophysical properties.

Only a relatively few of the many works on super-
lattices concern critical currents. The critical currents
and pinning force have been determined for superlat-
tices of the type S/S ' (Nb/Ta [3], Nb/NbTi [4], and
Nb/NbZr [5]), S/N (Nb/Cu [6], Nb/CuX (X = Ge, Mn) [7],
NbTi/Ti and Nb/Ti [4], Pb–Bi/Cr [8]), and S/I (Nb/Si [9],
Nb/NbOx [10], Nb/Al2O3 [4, 11], Nb/Al–AlOx/Nb [12],
1063-7761/00/9006- $20.00 © 21010
NbN/AlN [13], Pb/Ge [14]) as well as for superlattices
consisting of the alloy Pb–Bi with sinusoidal modulation
of the Bi concentration [15] and superlattices based on
HTSC materials (YBCO/PrBCO [16], EuBCO/PrBCO
[17] and Nd1.83Ce0.17CuOx/YBCO) [18]. The main result
of these works is the conclusion that the pinning force can
be substantially increased in superconductors by using
interlayers with weak superconducting properties. Joseph-
son effects have also been observed in superlattices of the
type S/N [6] and S/I [9, 12]).

In the present paper the behavior of the magnetic-
field dependences of the critical currents Ic and volume
pinning force Fp in semiconductor superlattices
PbTe/PbS [19] with regular networks of misfit disloca-
tions is examined. Such superlattices are physical and,
to a large extent, structural analogs of HTSCs [19– 23].
Oscillations of Ic(H) and Fp(H) for a magnetic field ori-
ented parallel to the current and monotonic decay of
Ic(H) in a magnetic field perpendicular to the layers of
the superlattices were observed. It is shown that the
field behavior of Ic and Fp in these superlattices and in
epitaxial YBa2Cu3O7 – δ films are similar, and certain
general characteristics of the oscillations of the pinning
force, which make it possible (on the basis of the data
from previous investigations) to talk about a similarity
of properties and mechanisms of superconductivity in
these superlattices and HTSCs, are found.
000 MAIK “Nauka/Interperiodica”
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2. SAMPLE PREPARATION
AND MEASUREMENT PROCEDURE

The samples were prepared in a vacuum chamber
with an oil-free pumping system (P ~ 10–4–10–5 Pa) by
thermal evaporation of lead chalcogenides from tung-
sten boats, followed by condensation on a (001) KCl at
520–570 K. The layer thicknesses and condensation
rates were monitored with a quartz resonator. The sam-
ples consisted of 10 PbTe–PbS bilayers (PbS is the
layer closest to the substrate). The investigations
showed [19] that the lead chalcogenide films grow on
each other in layer-by-layer mode according to the
Frank–van der Merwe mechanism, as a result of which
single crystal layers with a low density of growth dislo-
cations (107–108 cm–2) and mosaic blocks, repeating
the blocks of the KCl substrate (~100 µm) are formed.
Regular square networks of misfit dislocations, ori-
ented along the 〈110〉  directions with Burgers vector
(a/2) 〈110〉 and period 5.2 nm [19] form on the (001)
PbTe–PbS interfaces.

Analysis of X-ray diffraction curves on the basis of
the standard ϑ  – 2ϑ  scanning scheme showed that the
superlattices are periodic and possess sharp interfaces,
which is indicated by well-defined satellite reflections
around the Bragg reflections and alongside the primary
peak. The period of the superlattice and the thickness of
the layers were determined (to within an accuracy of
0.1 nm) from the distance between the satellites [24].

Previous investigations have shown that the super-
conducting properties of superlattices are determined
not only by the thicknesses of the layers but also sub-
stantially by their stoichiometry [21]. Only superlat-
tices obtained from the standard, nonoptimized, PbS
charge, giving for 500-nm thick single-layer PbS films
a Hall charge-carrier density nH ~ 1019 cm–3 and mobil-
ity µH ~ 102 cm2/(V s) (at 78 K), were used in the present
experiments. The composition of the PbTe charge was
optimized by repeated sublimation, which gave the best
stoichiometry for a given growth temperature [21].

Samples in the form of a double Hall cross, which
were obtained by condensing layers of lead chalco-
genides through a mask with an appropriate geometry,
were used to measure the IVCs and the critical currents
by the four-contact method. The samples were 10 mm
long and 1 mm wide, and the distance between the
potential contacts was 3 mm. The measurements were
performed in a helium cryostat (T ≥ 1.5 K) using dc cur-
rent and in a constant magnetic field H oriented perpen-
dicular or parallel to the layers in the direction of the
current (the deviation from the orientation parallel to
the layers did not exceed 0.1°). The magnetic field was
produced by superconducting solenoids and deter-
mined to within ~0.1%. The working currents fell
within the ohmic sections of the IVCs of the samples.
The temperature of the samples was maintained con-
stant to within 0.005 K. The critical current Ic was
determined from the IVC as the current at which the
voltage on the potential contacts reached 10 µV. The
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
character of the dependence Ic(H) remained the same
with an order of magnitude lower voltage level 1 µV as
the criterion.

The geometric and superconducting parameters of
the samples are indicated in table. It is evident from the
table that one of the samples (no. 4) had several PbTe
and PbS layers with thicknesses substantially different
from those of other similar layers.

3. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 1 shows the field dependences of the critical
currents for two samples in a magnetic field perpendic-
ular (H⊥ ) and parallel (H||) to the layers. Such depen-
dences are typical for the superlattices investigated at
temperatures quite far from the superconducting transi-
tion temperature Tc (in our case T < Tc/2, with the
exception of sample no. 4). They have two characteris-
tic features. First, a sharp drop of Ic(H) is seen for all
experimental superlattices even in fields of the order of
several or tens of oersteds (the discrepancy in Ic (H = 0)
in the same figure is due to the degradation of the sam-
ples heated up to room temperature in the interval
between measurements of Ic(H||) and Ic(H⊥ ) and with a
substantial time interval between these measurements).
Such a sharp drop in Ic(H) can be understood if it is
assumed that the lower critical fields Hc1⊥  and Hc1|| are
weak for superlattices and weak Josephson-type cou-
plings exist between mosaic blocks of superlattices,
which form as a result of the interaction of the lead
chalcogenide films with the atmosphere and the high
chemical activity of the block boundaries. This conjec-
ture was advanced previously in [25], where the
absorption of microwave radiation in PbTe/PbS super-
lattices was investigated in dc and ac magnetic fields,
and it also follows from the behavior of the amplitude
of the diamagnetic response of a stack of superlattices
as a function of the perpendicular magnetic field [26].
In the latter case the setup at the Physicotechnical Insti-
tute, the National Academy of Sciences of Ukraine
(Donetsk) was used to determine the magnetic suscep-
tibility of bulk superconductors according to the shift of
the frequency of a resonance loop when the experimen-
tal sample. In this case, a stack of eight superlattices on
KCl substrates with equal PbTe and PbS layer thick-
nesses (dPbTe = dPbS = 30 nm) oriented so that the super-
lattice layers were perpendicular to the coil axis was
inserted into the measuring coil. The measurements
were performed at a frequency of 67 Hz in a modula-
tion field h = 0.2–2.2 Oe. It was found that the diamag-
netic response amplitude L (the inductance of the mea-
suring loop) has the form L ∝  (h – hc2)t as L  0,
where the value of t is close to 1.7—the critical expo-
nent characteristic for power-law behavior of a number
of parameters of Josephson superconductors in the per-
colation state, specifically, granular and block HTSC
films [27]. The quantity hc2 can be identified as the sec-
ond critical field of films as Josephson media. It is at
least three orders of magnitude less than the value of
SICS      Vol. 90      No. 6      2000
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Basic Parameters of the Samples

Basic parameters
Sample no.

1 2 3 4

dPbS + dPbTe, nm 16 + 14.5 16 + 14.5 18 + 17 18 + 17

Tc , K 3.7 4.2 5.2 3

Measurement temperature, K 1.61 1.71 1.65 1.7

Jc (H = 0), A/cm2 1774 3117 923 816

 (exp.), Oe 210 420 1395 167

 (theor.), Oe 209.59 419.19 1397.28 167.67

/H0 1/4 1/2 5/3 1/5

, Oe 620 1700 4100 480

, dynes/cm3 2323 9640 8239 612

 (exp.), Oe 90 840 720 120

 (theor.), Oe 93.15 838.37 718.6 119.77

/H0 1/9 1 6/7 1/7

, dynes/cm3 18.2 56.9 13.27 6.2

L⊥ , nm 337.2 238.4 130.9 378.5

L||, nm 753.3 80.7 81.6 468.9

Note: The layer thicknesses in sample no. 4 (in order of deposition) were 18, 17, 18, 20, 17, 33.5, 17, 17 nm + 6 periods (18 nm PbS +
17 nm PbTe). The thickness of the first PbS layer in sample no. 3 was 20 nm. The highest values of  Jc (H = 0), taking into account

the aging of the samples, are presented;  the field corresponding to the maximum of the pinning force ;  the field of

the first maximum of ;  the pinning force at the first maximum;  the critical field in which  Jc  0; L⊥  the distance

between vortices in a triangular lattice with ; L|| in the plane of a superlattice with H|| =  for a structure of type a,

shown below in Fig. 6.
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Hc2⊥ for superlattices. Using the data obtained, the
upper and lower limits of the penetration depth λ|| for a
magnetic field parallel to the layers of the superlattices
can be roughly estimated. In Josephson-coupled media
hc2 is always less than Hc1 (the Josephson couplings are
destroyed when the field penetrates into the granules).
Consequently, Hc1⊥  = hc2 can be used to estimate the
upper limit of λ|| and Hc1⊥  = 40hc2 can be used to esti-
mate the lower limit (as in HTSCs). Using the well-
known relation

where ξ|| is the coherence length parallel to the super-
lattice layers, for temperature 2.4 K (Hc2⊥  = 4 kOe, ξ|| =
6 nm, hc2 = 2.82 Oe) we obtain Hc1⊥  ~ 3–100 Oe and
λ|| ~ 30–320 nm, which agrees with the characteristic
scale of the decay region of Ic(H).

Hc2⊥

Hc1⊥
-----------

2 λ|| ξ ||⁄( )2

λ|| ξ ||⁄( )ln
------------------------,=
JOURNAL OF EXPERIMENTAL
In addition, the critical current density Jc for
PbTe/PbS superlattices [20, 21] is small even at rela-
tively low temperatures: several orders of magnitude
lower than for the typical Nb/Ta-type superlattices [3]
and HTSC epitaxial films and of the same order of mag-
nitude as for polycrystalline HTSC samples. On the
other hand, estimates of Jc from point-contact measure-
ments [21] give Jc ≈ (1–7) × 107 A/cm2, corresponding
to the best film samples of HTSCs. This discrepancy
serves as an additional confirmation of the presence of
weak links between blocks in PbTe/PbS superlattices.

The second feature is the oscillatory behavior of the
derivatives dIc /dH with a magnetic field applied paral-
lel to the layers. In addition (just as for sample no. 1 in
Fig. 1a), at low temperatures, where superconductivity
is localized in the PbTe layers [20, 21], clear oscilla-
tions of Ic(H||) can sometimes be seen (for sample no. 4
with layer thickness errors, two maxima were observed).
 AND THEORETICAL PHYSICS      Vol. 90      No. 6      2000
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Fig. 1. Field dependences of the critical currents in longitudinal (H||) and transverse (H⊥ ) magnetic fields for samples: (a) no. 1,
T = 1.61 K; (b) no. 2, T = 1.71 K.
It should be kept in mind that the dependences Ic(H||)
were determined in a magnetic field parallel to the
direction of the measuring current (the so-called force-
free configuration). Formally, the current does not exert
a Lorentz force, proportional to J × B, on the vortices.
This force is a result of the curvature of the flux lines,
and the theory for this case is still far from completion
[28]. In addition, in layered superconductors with a
small deviation of the magnetic field from the plane of
the layers it is possible to have a situation where the
flux lines are rectilinear segments, lying in neighboring
layers and connected by step-like sections of the vorti-
ces (kinks) [29]; this gives rise to the appearance of a
Lorentz force. It has not been ruled out that such a pos-
sibility occurs in our measurements.

In what follows, we shall talk about the volume pin-
ning force Fp = (1/c)|Jc × B|, in calculating which the
magnetic field H will be used instead of the magnetic
induction B. This substitution is justified in fields much
greater than Hc1, since it has virtually no effect on the
result, and it is often used. For a magnetic field parallel
to the current, we shall use the quantity Fp =

(1/c)( H||) for the pinning force. 

Let us consider first the behavior of the pinning
force in a field H⊥ . It is well known that for type-II super-
conductors the density of the pinning force Fp far from Hc1
can often be described well by a scaling law [28]

(1)

where  is the maximum pinning force, h = H/ ,

and  is the upper critical field corresponding to
Jc  0; k and n are integers (or half-integers for k),
which depend on the pinning mechanism; and, A is a
normalization factor. The curve (1) has the typical bell
shape, and the position of its maximum on the h-axis is

Jc
||

f Fp Fp
max⁄ Ahk 1 h–( )n,= =

Fp
max Hc2

max

Hc2
max
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determined by the values of k and n, i.e., by the pinning
mechanism. Figure 2 shows the data for four samples in
the reduced coordinates f–h. It is evident from this figure
that for the present samples the dependences f(h) are close
to functions of the form (1). Curves with k = 1/2, n = 1 and
k = 1, n = 2 are represented by the solid lines 1 and 2 in
Fig. 2.

For three of our samples (nos. 1, 3, and 4) the max-

imum of  occurs almost at the value h = 1/3, while
for sample no. 2 the maximum occurs at h = 0.25. The

Fp
⊥

1.0

0.8
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0.4
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0 0.2 0.4 0.6 0.8 1.0

f

h

1

2

Fig. 2. The dependence of the reduced pinning force f on the
relative magnetic field h for samples no. 1 (n), no. 2 (d),
no. 3 (×), and no. 4 (s). The temperatures at which the mea-
surements were performed are indicated in table. Here f =

/ , h = H⊥ / . The solid lines 1 and 2 are,

respectively, the dependences h1/2(1 – h) and h(1 – h)2. The
dashed line passing into a solid line shows the section of the
curve h(1 – h)3 before the maximum in f(h).

Fp
⊥

Fp⊥
max

Hc2⊥
max
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Fig. 3. The pinning force  in the longitudinal magnetic field H|| for samples: (a) no. 1 (top curve), no. 4 (bottom curve) and (b)

no. 2 (top curve), no. 3 (bottom curve).

Fp
||
form of the dependence f(h) beyond the maximum is
the same for samples nos. 1, 3, and 4 (k = 1/2, n = 1); as
far as we know, such a dependence has not been
observed for other types of superlattices. Before the

maximum the behavior of  is described best by the
relation (1) with k = 1, n = 2 for samples nos. 3 and 4
and k = 1/2, n = 1 for samples nos. 1 and 2; but, for sam-
ple no. 2 the curve f(h) moves sharply upwards at h ≈
0.15, approaching the dependence (1) with k = 1, n = 3.
After the maximum the sample no. 2 showed a virtually

linear dependence for (h).

These facts show that the pinning mechanism prob-
ably changes after the maximum. It is known from [28]
that pinning on the grain boundaries corresponds to a
normalized curve Fp(h) with a maximum at h = 1/3 (k = 1,
n = 2; k = 1/2, n = 1), and a maximum at h = 0.2–0.85
corresponds to pinning on dislocations. Consequently,

the most likely mechanism in fields H⊥  >  for sam-
ples with a maximum at h = 1/3 is pinning on the
boundaries of ~200–300 nm regions of coherent scat-
tering (CS) of X-rays. Estimates of the distances
between vortices in fields corresponding to the maxi-

mum of (h) attest to this mechanism (see table).
These distances were found to be close to the sizes of
the blocks of the CS regions and much shorter than the
average distance between the growth dislocations
inside the blocks.

For sample no. 2, the maximum of the pinning force
at h = 0.25 could be due to the fact that in this sample
the process of enlargement of the blocks of CS regions,
accompanied by a decomposition of dislocation clus-
ters at the boundaries of CS regions and emergence of
dislocations into the volume of the blocks, does not go
to completion at the growth stage of the film. Then one

Fp
⊥

Fp
⊥

H ⊥
max

Fp
⊥
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can talk about pinning on individual dislocations,

resulting in a maximum of  at h = 0.25. We also note

that for our samples the maximum of  is reached
even in fields of the order of several hundreds of oer-

steds, and the field , corresponding to Jc  0, is
appreciably less than Hc2. The small magnitude of the
pinning force is not surprising, considering the high
degree of perfection of the crystal structure of the

superlattices. The behavior of the curves  for a
collinear orientation of the external magnetic field H||

and the current was more unexpected. The correspond-
ing data are shown in Fig. 3. The dependences pre-
sented are oscillatory even for samples in which there
are no oscillations of Jc(H). This is easy to understand,
since the condition Jc + (dJc/dH)H = 0 is necessary in
order for extrema to appear in Fp(H); this condition can
be satisfied for several values of H with oscillatory
behavior of dJc/dH, as happens for our samples.

It should be noted that the appearance of maxima in

the field dependence  has been noted for dif-
ferent types of superlattice (here we do not have in

mind oscillations of  in Josephson superlattices
[6, 9, 12], which are of the same nature as for single
Josephson contacts in a longitudinal field). For a perpen-
dicular orientation of the magnetic field for superlattices

Nb/Ta [3] the peak in  for a sample with period
1.95 nm, which appeared at T/Tc ≤ 0.84 near h ≈ 0.7, was
explained by a two-dimensional collective pinning of
vortices, while for Pb/Ge superlattices [14] with weak
pinning of vortices the appearance of a maximum in

 can be equally explained either on the basis of

Fp
⊥

Fp
⊥

Hc2
max

Fp
|| H( )

Jc H( )

Jc H( )

Jc
⊥ H( )

Jc
⊥ H( )
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the model of “decoupling” of the superconducting lay-
ers or the model of melting of a vortex lattice. A single

peak in the dependence  was observed for Nb/Ta
[3], Nb/Zr [5], and Nb/NbOx [10] superlattices with the
field orientation along the layers. This peak seems to be
due to the commensurability of the vortex lattice and
the period of the superlattice. An explicit manifestation
of commensurability was found for superlattices con-
sisting of the alloy Pb–Bi with sinusoidal variation of
the Bi concentration [15]: three maxima were observed

in . Besides these structures, commensurability
effects in the form of two sharp kinks in the tempera-

ture dependences  have been observed in V/Ag
superlattices [30].

Analysis of the appearance of extrema in  for

our superlattices showed that if the field  of the
first maximum is used as the unit of measurement for
the magnetic field, then the singular points (extrema

and inflection points) in the curves  appear at

H/  equal to either integers or rational numbers.

The dependence  for sample no. 1 is shown sche-
matically in such coordinates at the top of Fig. 4. This

suggests that the singular points of the curves 
should correspond to definite configurations of vortex
lattices, each configuration being obtained by restruc-
turing of the preceding lattice formed in weaker fields.
Possible configurations of vortices for sample no. 1 are
shown in Fig. 4. Here a section of a film perpendicular
to its surface is shown schematically (the horizontal
lines represent the top and bottom boundaries of the
sample), and repeated fragments-cells of vortex struc-
tures (rectangular “boxes”) are singled out. The filled
dots represent the centers of the vortices (the axes of the
vortices are perpendicular to the plane of the figure).
The numbers on the left side of the rectangles-cells

indicate the magnetic field of the singularity of H/

in units of ; the numbers on the right indicate the
number of vortices per cell. The letters a, b, c, and d
represent four types of characteristic vortex structures
which were encountered in all of the experimental sam-
ples. We note that the horizontal dimensions b1, c2, and
d1 of the cells in Fig. 4 differ somewhat from the cell
size (a) (approximately by factors of 0.972, 1.083, and
0.938, respectively).

In Fig. 5, the axes of the vortices are tied to the
superlattice layers schematically (with a distortion of
the real scales). It was assumed that the vortices will be
located in PbS interlayers, since at sufficiently low tem-
peratures, as in our case, the order parameter will be
completely localized in the PbTe layers [20, 21] so that
the arrangement of the vortices in the PbS layers is
energetically favorable. Similar schemes of the config-

Jc H( )

Jc
|| H( )

Hc2
|| T( )

Fp
|| H( )

H1
max

Fp
|| H( )

H1
max

Fp
|| H( )

Fp
|| H( )

H1
max

Fp
|| H( )
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uration of vortices can also be presented for other sam-
ples. The distances Ln between the vortices in one of the
PbS layers in structures of the type a–d with n = 1, 2, 3,
and 5 rows of vortices are much larger than the charac-
teristic thicknesses of the layers of the superlattices

(see table). At singular points of  the length Ln =
nφ0/tH (t is the thickness of the sample, φ0 = ch/2e) are
either equal or differ from one another by less than a

factor of 2 (for Fig. 4 the ratios Ln/L1 = n /Hn are 1,
14/9, 8/9, 1, 39/45, 5/4, and 1). 

We took account of the following circumstances in
constructing the vortex lattices in Fig. 4. It has been
shown theoretically [31–33] and experimentally [32, 33]
that in a longitudinal field for film samples with thick-
ness t less than the penetration depth λ|| vortices will
interact strongly with the Meissner currents, and this
interaction aligns vortices along the center of the sam-
ple until their mutual repulsion induces a lateral dis-
placement of vortices and the instability of the one-
dimensional configuration, leading with increasing
field to the appearance of a two-dimensional collection
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Fig. 4. Schematic illustration of the dependence of the pin-

ning force  on the longitudinal magnetic field H||, taken
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of vortices in the form of two parallel rows of vortices
(the structure (b) in Fig. 4). Such an instability (onset of
a transition to a two-dimensional configuration) leads
to the appearance of a maximum for the pinning force
[31], expulsion of magnetic flux out of the sample [32],
and a perpendicular component of the magnetic moment
Mz of the sample with a small deviation of the magnetic
field from the plane of the sample [33]. The last two
effects have been confirmed experimentally on Nb/Cu
superlattices [32, 33]. The calculation and experimental
data [33] have shown that the distance between the rows
of vortices and from each row to the nearest surface of
the sample is t/3. As the field increases, the two-row
configuration of vortices in turn becomes unstable and
the restructuring of the vortex lattice continues, which
gives a configuration of vortices with distances t/n for a
(n – 1)-row vortex structure [33] (see also [34], where
numerical calculations of the deformation of such a
vortex structure under the action of a current perpendic-
ular to the magnetic field were performed). The max-
ima of the pinning force should correspond to the
moments when the corresponding configurations
become unstable. Since for our samples, apparently, t ~
λ||, the above remarks are also applicable to our case.
By analogy to the vanishing of the peaks in Mz(H) for
Nb/Cu superlattices [33], the number of maxima and

points of inflection in the curves  should
decrease as the temperature approaches Tc , but such
investigations have not yet been performed.

Fp
|| H( )

(a) (b)

(c) (d)

(001)KCl

Fig. 5. Schematic illustration of the transverse section of
samples by a plane perpendicular to the direction of the lon-
gitudinal magnetic field H||, and the arrangement of vortices
in the layers of superlattices. The dots represent the centers
of the vortices. The dark bands represent the PbTe layers.
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We note that in the construction of the vortex struc-
tures shown in Fig. 4 we immediately switched from a
three-row structure of the type c to a five-row structure
of the type d, omitting the four-row stage, which should
occur according to the theory of [33]. However, in this
theory a superlattice is treated simply as a uniform
anisotropic superconductor, neglecting the periodicity
of the pinning potential in it. In our case the four-row
configuration will not possess a plane of symmetry
(parallel to the surface) relative to the center of the sam-
ple (as happens for structures a, c, and d, if the PbS
layer closest to the KCl substrate is assumed to be a
continuation of the substrate), and in order to obtain it
the vortices in previously formed rows must be dis-
placed through the superconducting PbTe layers, which
is energetically unfavorable (the transitions b–c and c–d
can be realized without such displacements by intro-
ducing additional rows of vortices in the corresponding
PbS layers free of vortices; see Fig. 5). In addition, the
distance between vortices in a PbS layer in a four-row
structure will be 5/4 times shorter than in the corre-
sponding five-row structure, and therefore the electro-
magnetic interaction energy of the vortices will be much
higher in the four-row structure, since the interaction of
the vortices lying in the neighboring PbS layers will be
screened by the PbTe layers, where the order parameter
is mainly concentrated. Consequently, it seems to us that
the five-row configuration d is more likely. 

For sample nos. 2 and 3 (Fig. 3b) the curves 
have several step-like sections, each of which seems to
be strongly deformed and degenerated into a mini-
mum–maximum pair. Then the second plateau for these
samples evidently corresponds to a nine-row configura-
tion of a vortex lattice, since the same considerations
are applicable to the seven-row structure as to the four-
row structure. 

The variants presented in Fig. 4 of vortex structures
are not the only possible ones. For certain layered struc-
tures at sufficiently low temperatures so that the order
parameter is localized in layers of one type, motion of
vortices perpendicular to the layers can be blocked
[35]. In this case it can be expected that as the magnetic
field increases, the vortices located in one plane will not
be able to pass into neighboring planes, and conse-
quently restructuring from the structure a into the struc-
ture b will be impossible. Then, as new vortices are
introduced, the number of rows of vortices must
increase by at least 2 (for example, the transition a–c),
i.e., the maxima in Fig. 4 should correspond to struc-
tures with 1, 3, 5, and 9 rows of vortices, which form
ordered symmetric configurations. In this variant the
distance between the vortices in the PbS layers will
increase substantially with the number of rows of vor-
tices, and consequently when new rows appear, “rar-
efaction” of the vortices in previously formed rows
should occur and vortices should leave the sample. It is
difficult to indicate unequivocally which of the variants
considered above is realized in our case, though the first
variant seems to be more likely. 

Fp
|| H( )
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Fig. 6. Critical currents of a 1-µm thick and 0.1-mm wide YBa2Cu3P7 – δ epitaxial film (the c-axis is perpendicular to the surface)
versus the magnetic field at (a) T = 85 K and (b) 78 K. Inset: Initial section of the curve on an enlarged scale.
Oscillations of Jc(H) and Fp(H) are observed not
only in superlattices but also in HTSC materials, for
which, besides the extrema which sometimes appear in
relatively strong fields, the appearance of a maximum
(or several maxima) in Jc(H) in weak fields is character-
istic [36–38]. Our investigations of a 1-µm thick
YBa2Cu3O7 – δ epitaxial film (Tc = 88.4 K), obtained at
the Institute of Applied Physics (Nizhniœ Novgorod) by
laser evaporation, the results of which are presented in
Fig. 6, also attest to oscillatory behavior of Jc(H) and
Fp(H). In contrast to PbTe/PbS superlattices, oscilla-
tions of Jc(H) for YBa2Cu3O7 – δ films can be seen for
orientations of the magnetic field parallel (H ⊥  c) and
perpendicular (H || c) to the substrate [37].

Analysis of the field dependences of the pinning
force for PbTe/PbS superlattices and YBa2Cu3O7 – δ
films showed that the singular points of Fp(H) are
attained in fields Hcr = (p/q)H0, where p and q are inte-
gers and H0 = 838.37 Oe (see below). In Figs. 1, 3, 4,
and 6 the critical fields Hcr are marked by arrows with
numbers indicating the magnitude of Hcr in units of H0.
We note that in the general case the extrema of the func-
tion Ic(H) are slightly shifted from their positions cor-
responding to Hcr , since the extrema in Ic(H) and Fp(H)
do not coincide with one another. The maxima of the

pinning force  for superlattices also turned out to
be virtually coincident with Hcr (p/q = 1/4, 1/2, 5/3, and
1/5; see table). The values p/q = 1/9, 1/3, 1, and 2 for
positions of the extrema of Ic(H) for a YBa2Cu3O7 – δ
film (Fig. 6) are also encountered in Fig. 3 for
PbTe/PbS superlattices. In Fig. 3 of [37] the pinning
force for YBa2Cu3O7 – δ films in a field parallel to the c
axis possesses extrema for p/q = 2, 7/3, 6, 23/3 (bottom
curve) and 7/3, 11/3, 5, and 7 (top curve), while for a
Bi2Sr2CaCu2O8 single crystal [38] the first three
extrema of Jc with current flowing parallel to the c axis

Fp
⊥ H( )
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
(H ⊥  c) appeared in fields close to (3/7)H0, (6/7)H0, and
(12/7)H0. We note that the values p/q = 6/7, 2, and 5
coincide with the values which we obtained for super-
lattices and the YBa2Cu3O7 – δ film.

In addition, the previously observed magnetic-field
oscillations of the resistance R(H) and the derivative
dR/dH for samples of the single-crystal superlattice
Bi/Sb on mica with triangular networks of misfit dislo-
cations [39], whose appearance was attributed tenta-
tively to the Aharonov–Bohm effect, also fit very well
into the scheme of a discrete set of values of Hcr =
(p/q)H0. This follows from an analysis of hundreds of
oscillations of R(H) and dR/dH in fields up to 50 kOe
for samples with different thicknesses of the Bi and Sb
layers. Specifically, the first extrema of R(H) in Fig. 1
of [39] appear in a perpendicular magnetic field with
p/q = 2/7, 8/7, 2, and 15/7.

In analyzing the experimental data, the position of
the singular points of Fp(H) was determined more accu-
rately using well-known numerical methods. The mag-
netic fields obtained in this manner for the singular
points of Fp(H) differed from the corresponding values
of Hcr by an amount not exceeding ~0.2–0.4% of Hcr .
This discrepancy seems to be due to the error in the mea-
surement of the magnetic fields, the uncertainties intro-
duced by the numerical methods, and the replacement of
the magnetic induction by the magnetic field H in the pin-
ning force Fp. The latter force was probably the reason for

the appreciable (~3.4%) deviation of the field  for
sample no. 1 (see table) from the value (1/9)H0. 

The appearance of a discrete ordered set of the mag-
netic fields in which extrema of the electrophysical
characteristics of such diverse objects as a PbTe/PbS
and Bi/Sb superlattices and HTSC films are attained
shows that in these objects we are dealing with unusual
states which, in a certain sense, are universal. 

H1
max
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The value of a “quantum” of the magnetic field H0
was calculated (and then used to analyze the experi-
mental data) from the following considerations. Previ-
ously, it was established that the IVCs for island films
and tunneling barriers in which metallic island interlay-
ers are imprinted [40] possess singularities in the form
of current (or voltage) jumps at voltages on the sample
which are multiples of U0 = 16.25 mV, and a set of
inflection points was observed in the temperature
dependences of the resistance of metallic island films at
temperatures which are multiples of T0 = 5.238 K (kT0
= (1/36)eU0), and at such singular temperature points the
conductance of the samples and the slopes of the linear
sections of the IVCs are quantized in units of e2/h. The
unusual behavior of the temperature dependences of the
resistance with extrema and inflection points at T = nT0
(n is an integer) was then also observed for layered
compositions consisting of lead chalcogenides [22, 41].
For three-layer PbS–PbTe–PbS films on KCl [42],
besides a set of inflection points, giant oscillations of
the resistance with the distances between the extrema
being multiples of (1/7)T0 were also observed. The singu-
lar temperature points in the temperature dependences
R(T) appeared at temperatures (p/q)T0 (p and q are inte-
gers), specifically, at q = 1–5, 7. The resistance of such
10 × 1 mm sandwiches at the singular temperature
points was found to be equal to one of the quantized
values (m/n)(h/e2). Analysis of our data as well as the
published data showed that singular temperature points
of the type Tcr = (p/q)T0 are also characteristic for the
temperature dependences of the superconducting gap
[19, 21], the critical current, and the derivative
(1/Hc2)dHc2/dT of PbTe/PbS multilayers [20] and for dif-
ferent physical characteristics of HTSC materials [22].

We note that the critical temperature Tc for superlat-
tices is the same as one of the singular temperature
points Tcr [22, 42], if Tc is determined according to the
inflection point on the curve of the resistive supercon-
ducting transition. The values presented for Tc in the
table for superlattices nos. 1–4 (3.7, 4.2, 5.2, and 3 K)
were determined according to the point at the middle of
the resistive transitions. If the inflection point corre-
sponding to the curves R(T) is taken as the criterion Tc ,
then these values were essentially identical to the sin-
gular temperature points, equal to (in units of T0) 5/7
(3.742 K), 4/5 (4.191 K), 1 (5.238 K), and 4/7 (2.993 K). 

The published data on HTSC materials show that
the known values of Tc (according to the criterion of
zero resistance or center of a superconducting transi-
tion) for them also lie near temperatures which are mul-
tiples of T0. For example, the temperatures 89, 110, and
125 K are often encountered. There are reports of even
higher critical temperatures: 162 K (zero resistance)
[43] and 220 K [44]. These temperatures are close to,
respectively, nT0 with n = 17 (89.05 K), 21 (110 K),
24 (125.72 K), 31 (162.38 K), and 42 (220 K). The
deviation of Tc from nT0 (just as for PbTe/PbS superlat-
JOURNAL OF EXPERIMENTAL
tices) seems to be due to the fact that the center of the
resistive superconducting transition does not coincide
with the inflection point of the corresponding curve
R(T) near the transition. Nine peaks in the temperature
dependences of the real and imaginary parts of the
magnetic susceptibility have been observed in the sys-
tem TlBaCaCuO [45] at the temperatures of approxi-
mately 318, 304, 296, 284, 276, 260, 240, 200, and
130 K; these values are close to the values (in units of T0)

 (318.03 K), 58 (303.81 K),  (295.96 K), 

(283.91 K),  (275.89 K),  (260.16 K), 

(239.91 K),  (200.1 K), and  (129.91 K). Many

other examples of the manifestation of a series of singular
temperature points can be presented for various properties
of HTSCs, including the critical currents (see, for exam-
ple, the data in [46] for critical currents, parallel and per-
pendicular to the c axis, in Bi2Sr2CaCuO8 single crys-
tals).

The potential difference U0 can be represented in the
form [40] U0 = e/R0, where the length R0 = 88.607 nm
is somewhat less than (by 2.8%) the reciprocal of the

Rydberg constant R∞ = (me4/4π"3c) (  = 91.127 nm).

The “quantum” of the magnetic field H0 = φ0/π  (φ0 =
ch/2e is the magnetic flux quantum), whose value was
indicated above (838.37 Oe), can be calculated using
the length R0. It deemed it useful to present the com-
puted value of H0 with two significant digits (though
this exceeds the accuracy with which H0 can be deter-
mined, taking into account the measurement error in U0
[40]), since someday the value of H0 could be deter-
mined more accurately from measurements of the mag-
netic-field properties of PbTe/PbS superlattices and
other objects (for example, Bi/Sb superlattice) in strong
fields up to 50–100 kOe, for which the uncertainty in
the decimal places for H0 can lead to an appreciable dis-
crepancy between the experimental and computed val-
ues of the positions of the singular points in the corre-
sponding dependences.

We note that the singular points in the field depen-
dence of the pinning force at H = Hcr = (p/q)H0 corre-
sponds to “quantization” of the area of the sample

(q/p)π  per vortex. Thus, it can be inferred that in
PbTe/PbS superlattices and HTSC superconducting
films the position of the singular points in the curves
Fp(H) is determined by the characteristic properties of
the vortex lattice and not by the structural defects
present in the sample, though the details of the transi-
tion between the singular points should depend on the
defect structure of the samples. In polycrystalline
HTSC films, the large-angle grain boundaries and other
defects will probably play a decisive role in determin-
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ing the pinning force, thereby masking the effects
observed in the present work.

A different explanation is also possible, in principle,
for the appearance of extrema in the magnetic-field
dependences of the critical currents and pinning force
in HTSCs and PbTe/PbS superlattices. According to
this explanation, the maxima of Ic and Fp could be asso-
ciated with a transition of the system of vortices from
one structural and phase state into another, for example,
with melting of the vortex lattice, transition of the sys-
tem of vortices from a three-into a two-dimensional
state, and so on (see the review in [47]). For a
YBa2Cu3O7 – δ film and H || c at temperatures near Tc ,
the relation (5.5) from the review [47] can be used to
describe the melting curve Bm(T):

(2)

where βm ≈ 5.6, Gi is the Ginzburg number, cL ≈ 0.1–0.2
is the number appearing in the Lindeman criterion for
melting, and Hc2(0) is the upper critical field deter-
mined by linear extrapolation of the section of Hc2(T)
near Tc to zero temperature. For YBa2Cu3O7 – δ, for pur-
poses of estimation we can use Gi ~ 10–2, cL ≈ 0.2, and

then βm /Gi ~ 1 [47]. For the YBa2Cu3O7 – δ film pre-
pared at the Institute of Applied Physics by the same
method as our film, the slope of the upper critical field

near Tc was  = 11.3 kOe, if Tc is determined
according to the center of the resistive superconducting
transition [48]. Using this value for our film we obtain
Hc2(0) ≈ 106 Oe, which gives for Tc = 88.4 K the values
Bm(85 K) ≈ 0.148 T and Bm(78 K) ≈ 1.38 T. These fields
are higher than the fields for the last maxima in Fig. 6
by approximately factors of 2.35 and 3.3, respectively.
We note, however, that the published values of

 for YBa2Cu3O7 – δ single crystals are lower,
the lowest, apparently, being 0.46 T/K [49]. Even for
such a small slope only the last maximum in Fig. 6a
penetrates somewhat into the region beyond the melt-

ing curve Bm(T). Such a low value of  is
uncharacteristic for epitaxial YBa2Cu3O7 – δ films. Con-
sequently, melting of the vortex lattice is hardly possi-
ble in the range of fields where maxima of Ic(H)
appeared. According to the B–T phase diagram for lay-
ered structures (Fig. 39 in [47]), there are no singular
lines below the melting curve near Tc . Consequently, it

seems that the appearance of maxima of  in our
case cannot be explained by any known phase transi-
tions in a vortex structure.

In [50] an H–T diagram was constructed for a
YBa2Cu3O7 – δ single crystal for the case H || c. The

curves Hc2(T), , and Hm(T) as well as the mag-
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netic fields  in which a maximum of  was
attained were plotted in the diagram. It was found that

the ratio /Hm is essentially equal to 2 in the entire
temperature range of measurements (from Tc up to 70 K).
The curves f(h) in Fig. 4 in [50] for various tempera-
tures have the same characteristic feature as the curve

for sample no. 2 in Fig. 2, i.e., in fields above  a
rapid drop of the pinning force followed by emergence
on a plateau-like section, beyond which the rate of

decay of  increases sharply, was observed. The field
Hm lies approximately at the center of the plateau. We
note in this connection that the fields in which maxima
of Ic(H) were observed in Fig. 6 lie on the ascending

section of the curves (H), and they are appreciably

less than the field at the absolute maximum ; this
is an additional argument in favor of the absence of
melting of a vortex lattice in the range of fields which
are of interest to us. By analogy to the YBa2Cu3O7 – δ
film it can be inferred that this behavior of f(h) for
PbTe/PbS superlattices (Fig. 2) is also due to the melt-
ing of a vortex lattice. The change in the form of the
functions f(h) after the maximum for samples nos. 2, 3,
and 4 could also be due to melting processes.

If this hypothesis is adopted for PbTe/PbS superlat-
tices, then the fields at which vortex lattices melt in a
longitudinal magnetic field can be estimated using the
scaling relation (5.17) from [47]:

where  = ε2cos2θ + sin2θ, θ is the angle of inclination
of the magnetic field away from the plane of the layers,

and ε = ξ⊥ /ξ|| =  is the anisotropy parameter.
For our superlattices at T/Tc ≈ 0.5, we have 1/ε = 5–7 [21].
Using the data from the table and taking hm ≈ 0.3 for
superlattice no. 2 and hm ≈ 0.5 for all other superlat-
tices, we obtain for the minimum value 1/ε = 5 for fields

 the estimates 1.55, 2.55, 10.25, and 1.2 kOe for
superlattices nos. 1, 2, 3, and 4, respectively. These val-
ues are more than a factor of 2 greater than the fields of

the last features in the curves , marked by arrows
in Fig. 3; sample 2 is an exception. Although it is not
obvious that the scaling relation for Bm(T, θ) is applica-
ble in our case of a film with thickness less than or of
the order of the penetration depth λ|| of a magnetic field
under conditions of strong localization of the order
parameter in the PbTe layers (T/Tc ~ 0.5), it can proba-
bly be assumed that, just as in the case H || c for the

YBa2Cu3O7 – δ film, the features in the curves 

appear in fields below . Detailed investigations of
the magnetic-field dependences of the IVCs at various
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temperatures are required in order to clarify the mech-

anism leading to the formation of the extrema in 

and .

In connection with the quantization effects described
above, we note that in a number of works singularities in
the resistivity and anomalies in the dielectric response
along the c axis at critical values x = 4–n and 2 × 4–n (n = 1,
2, 3) have been observed for La2 – xSrxCuO4 films (see
[51] and the literature cited there). In the opinion of the
authors of [51] this attests to Wigner crystallization of
hole pairs in two-dimensional conducting layers with
macroscopic quantum features similar to the quantum
Hall effect. Similar ideas concerning pairing of free
carriers and the relation between Tc and their density
and the geometric characteristics of the crystal struc-
ture of HTSC materials and PbTe/PbS superlattices
have been advanced in [21, 22].

4. CONCLUSIONS

The results presented above attest to the fact that
certain universal laws governing the behavior of the
field and temperature dependences of various proper-
ties are manifested in HTSC materials and PbTe/PbS
superlattices. The appearance of quantization of the
potential difference, resistance, temperature, and mag-
netic field in objects with different composition and
structure, such as, metallic island films, Bi/Sb superlat-
tices, and layered compositions consisting of lead chal-
cogenides and HTSCs, shows that phenomena of this
kind can be observed in a wider class of objects and a
wider temperature range than the quantum Hall effect
and can hardly be explained on the basis of existing
models of the quantum Hall effect and high-tempera-
ture superconductivity. The fact that the length R0,
which determines the values of U0, T0, and H0, is close

to is probably not accidental. This circumstance
could be the key to the explanation of the phenomena
described. Careful analysis of the existing data on the
behavior of the temperature and field dependences of
various properties of HTSC materials from the stand-
point of the manifestation of quantization effects in
them is required in order to clarify the nature of these
effects and the mechanism of high-temperature super-
conductivity.

ACKNOWLEDGMENTS

We thank P.N. Mikheenko for measuring and inter-
preting the diamagnetic response of superlattices.

REFERENCES

1. R. Kleiner, F. Steinmeyer, G. Kunkel, and P. Müller,
Phys. Rev. Lett. 68, 2394 (1992); R. Kleiner and
P. Müller, Phys. Rev. B 49, 1327 (1994); R. Kleiner,

Fp
||

Fp
⊥

R∞
1–
JOURNAL OF EXPERIMENTAL 
P. Müller, H. Kohlstedt, et al., Phys. Rev. B 50, 3942
(1994).

2. D. C. Ling, G. Yong, J. T. Chen, and L. E. Wenger, Phys.
Rev. Lett. 75, 2011 (1995); J. T. Chen, D. C. Ling, and
L. E. Wenger, Czech. J. Phys. 46, Suppl., Part S3, 1257
(1996).

3. P. R. Broussard and H. T. Geballe, Phys. Rev. B 37, 68
(1988).

4. M. Ikebe, Y. Obi, H. Kujishiro, and H. Fujimori, Czech.
J. Phys. 46, Suppl., Part S2, 719 (1996).

5. Y. Kuwasawa, T. Yamaguchi, T. Tosaka, et al., Physica C
(Amsterdam) 169, 39 (1990); T. Nojima, M. Kinoshita,
and Y. Kuwasawa, Physica C (Amsterdam) 206, 387
(1993); Y. Kuwasawa and T. Nojima, Czech. J. Phys. 46,
Suppl., Part S2, 745 (1996).

6. V. M. Krasnov, V. A. Oboznov, V. V. Ryazanov, and
N. F. Pedersen, Phys. Rev. B 50, 1106 (1994); V. M. Kras-
nov, N. F. Pedersen, V. A. Oboznov, and V. V. Ryazanov,
Phys. Rev. B 49, 12969 (1994).

7. C. N. Hoff and J. A. Cowen, Czech. J. Phys. 46, Suppl.,
Part S2, 723 (1996).

8. W. E. Yetter, E. J. Kramer, and D. G. Ast, J. Low Temp.
Phys. 49, 227 (1982).

9. S. N. Song and J. B. Ketterson, Physica B (Amsterdam)
165/166, 479 (1990); P. Lobotka, I. Vavra, S. Gazi, and
J. Derer, Czech. J. Phys. 46, Suppl., Part S2, 701 (1996).

10. V. I. Dedyu, A. H. Lykov, and S. L. Prishchepa, Zh. Éksp.
Teor. Fiz. 97, 872 (1990) [Sov. Phys. JETP 70, 488
(1990)]; A. N. Lykov and V. I. Zdravkov, Pis’ma Zh.
Tekh. Fiz. 17 (8), 73 (1991) [Sov. Tech. Phys. Lett. 17,
306 (1991)].

11. Y. Obi, M. Ikebe, and H. Fujimori, Jpn. J. Appl. Phys. 31,
1334 (1992); M. Ikebe, Y. Obi, H. Fujishiro, and H. Fuji-
mori, Jpn. J. Appl. Phys. 32, 55 (1993).

12. I. P. Nevirkovets, H. Kohlstedt, G. Hallmans, and
C. Heiden, Supercond. Sci. Technol. 6, 146 (1993);
H. Kohlstedt, G. Hallmans, I. P. Nevirkovets, et al., IEEE
Trans. Appl. Supercond. 3, 2197 (1993).

13. J. M. Murduck, D. W. Capone, II, I. K. Schuller, et al.,
Appl. Phys. Lett. 52, 504 (1988); K. E. Gray, R. T. Kamp-
wirth, D. W. Capone, and J. M. Murduck, IEEE Trans.
Magn. 25, 2060 (1989).

14. D. Neerinck, K. Temst, M. Dhalle, et al., Physica B
(Amsterdam) 165/166, 473 (1990); D. Neerinck,
K. Temst, M. Baert, et al., Phys. Rev. Lett. 67, 2577
(1991).

15. H. Raffy, J. C. Renard, and E. Guyon, Solid State Commun.
11, 1679 (1972); H. Raffy, E. Guyon, and J. C. Renard,
Solid State Commun. 14, 427 (1974).

16. S. J. Pennycook, M. F. Chisholm, D. E. Jesson, et al.,
Phys. Rev. Lett. 67, 765 (1991); H. Obara, A. Sawa, and
S. Kosaka, Phys. Rev. B 49, 1224 (1994); H. Obara,
M. Anderson, L. Fabrega, et al., Phys. Rev. Lett. 74,
3041 (1995).

17. M. Vélez, E. M. González, J. I. Martín, and J. L. Vicent,
Phys. Rev. B 54, 101 (1996).

18. R. Gross, A. Gupta, E. Olsson, et al., Appl. Phys. Lett.
57, 203 (1990).

19. O. A. Mironov, B. A. Savitskiœ, A. Yu. Sipatov, et al.,
Pis’ma Zh. Éksp. Teor. Fiz. 48, 100 (1988) [JETP
Lett. 48, 106 (1988)]; I. K. Yanson, N. L. Bobrov,
AND THEORETICAL PHYSICS      Vol. 90      No. 6      2000



MAGNETIC-FIELD OSCILLATIONS 1021
L. F. Rybal’chenko, et al., Pis’ma Zh. Éksp. Teor. Fiz.
49, 293 (1989) [JETP Lett. 49, 335 (1989)].

20. O. A. Mironov, S. V. Chistyakov, I. F. Skrylev, et al.,
Pis’ma Zh. Éksp. Teor. Fiz. 50, 300 (1989) [JETP Lett.
50, 334 (1989)].

21. N. L. Bobrov, L. F. Rybal’chenko, V. V. Fisun, et al., Fiz.
Nizk. Temp. 16, 1531 (1990) [Sov. J. Low Temp. Phys.
16, 862 (1990)].

22. O. A. Mironov, V. V. Zorchenko, A. Yu. Sipatov, et al.,
Defect Diffus. Forum 103–105, 473 (1993).

23. I. M. Dmitrenko, N. Ya. Fogel’, V. G. Cherkasova, et al.,
Fiz. Nizk. Temp. 19, 747 (1993) [Low Temp. Phys. 19, 533
(1993)]; N. Ya. Fogel’, V. G. Cherkasova, A. Yu. Sipatov,
et al., Fiz. Nizk. Temp. 20, 1142 (1994) [Low Temp. Phys.
20, 897 (1994)].

24. S. S. Borisova, I. F. Mikhaœlov, and L. P. Shpakovskaya,
Kristallografiya 31, 651 (1986) [Sov. Phys. Crystallogr.
31, 384 (1986)].

25. I. M. Zaritskiœ, A. A. Konchits, S. P. Kolesnik, et al.,
Sverkhprovodimoct’: Fiz., Khim., Tekh. 4, 1400 (1991);
O. A. Mironov, S. V. Chistyakov, L. M. Zaritskiœ, et al.,
Physica C (Amsterdam) 180, 196 (1991).

26. P. N. Mikheenko, O. A. Mironov, S. V. Chistyakov, et al.,
in Proceedings of the XXVI All-USSR Conference on
Low Temperature Physics, Donetsk, 1990, Vol. 1, p. 289.

27. P. England, T. Venkatesan, X. D. Wu, and A. Inam, Phys.
Rev. B 38, 7125 (1988).

28. A. M. Campbell and J. E. Evetts, Critical Currents in
Superconductors (Taylor and Francis, London, 1972;
Mir, Moscow, 1975).

29. D. Feinberg and C. Villard, Phys. Rev. Lett. 65, 919
(1990); V. I. Ivlev, Yu. N. Ovchinnikov, and V. L. Pok-
rovsky, Mod. Phys. Lett. B 5, 73 (1991); L. N. Bulae-
vskii, M. Ledvij, and V. G. Kogan, Phys. Rev. B 46, 366
(1992).

30. K. Kanoda, H. Mazaki, T. Yamada, et al., Phys. Rev. B
33, 2052 (1986); K. Kanoda, H. Mazaki, N. Hosoito, and
T. Shinjo, Phys. Rev. B 35, 6736 (1987).

31. S. Takacs, Czech. J. Phys., Sect. B 38, 1050 (1988).
32. J. Guimpel, L. Civale, F. de la Cruz, et al., Phys. Rev. B

38, 2342 (1988).
33. S. H. Brongersma, E. Verweij, N. J. Koeman, et al., Phys.

Rev. Lett. 71, 2319 (1993).
34. G. Carneiro, Phys. Rev. B 57, 6077 (1998).
35. L. S. Levitov, Phys. Rev. Lett. 66, 224 (1991); D. I. Kara-

syov and V. L. Pokrovsky, J. Phys.: Condens. Matter 4,
L225 (1992); M. Tachiki, S. Takahashi, and K. Sunaga,
Phys. Rev. B 47, 6095 (1993).
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
36. J. R. Thompson, J. Brynestad, D. M. Kroeger, et al.,
Phys. Rev. B 39, 6652 (1989).

37. S. Y. Dong and H. S. Kwok, Phys. Rev. B 48, 6488
(1993).

38. K.-H. Yoo, D. H. Na, Y. K. Park, and J. C. Park, Phys.
Rev. B 49, 4399 (1994).

39. B. A. Aminov, S. Sh. Akhmedov, Do Thi Sham, et al.,
Fiz. Nizk. Temp. 16, 939 (1990) [Sov. J. Low Temp.
Phys. 16, 548 (1990)].

40. V. V. Zorchenko, V. P. Sapelkin, and A. A. Udovenko,
Fiz. Tverd. Tela (Leningrad) 30, 2349 (1988) [Sov. Phys.
Solid State 30, 1354 (1988)]; Fiz. Tverd. Tela (Lenin-
grad) 32, 905 (1990) [Sov. Phys. Solid State 32, 534
(1990)].

41. C. H. Grigorov, V. V. Zorchenko, D. A. Litvinov, and
V. P. Sapelkin, Ukr. Fiz. Zh. 35, 708 (1990); Vopr. At.
Nauki Tekh., Ser.: Yad.-Fiz. Issled. (Teor. Éksp.) 4 (12),
88 (1990).

42. A. I. Fedorenko, V. V. Zorchenko, A. Yu. Sipatov, et al.,
Fiz. Tverd. Tela (St. Petersburg) 41, 1693 (1999) [Phys.
Solid State 41, 1551 (1999)].

43. R. S. Liu, P. T. Wu, J. M. Liang, and L. J. Chen, Phys.
Rev. B 39, 2792 (1989).

44. H. D. Yostarndt, M. Galffy, A. Freimuth, and D. Wohlle-
ben, Solid State Commun. 69, 911 (1989).

45. Min-Guang Zhao and Li-Ming Cheng, in Proceedings of
the International Magn. Conference, Dig. INTERMAG’89,
Washington, DC, March 28–31, 1989, p. BQ2.

46. J. H. Wang, D. N. Zheng, G. H. Chen, et al., Mater. Sci.
Eng., B 1, 161 (1988); N. Mros, A. Yurgens, D. Winkler,
et al., Czech. J. Phys. 46, Suppl., Part S3, 1273 (1996).

47. G. Blatter, M. V. Feigel’man, V. V. Geshkenbein, et al.,
Rev. Mod. Phys. 66, 1125 (1994).

48. S. V. Gaponov, G. G. Kaminskiœ, E. B. Klyuenkov, et al.,
Zh. Éksp. Teor. Fiz. 95, 2191 (1989) [Sov. Phys. JETP
68, 1266 (1989)].

49. T. K. Worthington, W. J. Gallagher, and T. R. Dinger,
Phys. Rev. Lett. 59, 1160 (1987).

50. Yuuji Horie, Shun-ichi Kuroumaru, Bai-ru Zhao, et al.,
Physica C (Amsterdam) 170, 513 (1990).

51. M. Sugahara, Jpn. J. Appl. Phys. 31, L324 (1992);
M. Sugahara, X.-Y. Han, H.-F. Lu, et al., Czech. J. Phys.
46, Suppl., Part S2, 1165 (1996); Jpn. J. Appl. Phys. 35,
1221 (1996).

Translation was provided by AIP
SICS      Vol. 90      No. 6      2000



  

Journal of Experimental and Theoretical Physics, Vol. 90, No. 6, 2000, pp. 1022–1026.
Translated from Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 117, No. 6, 2000, pp. 1175–1180.
Original Russian Text Copyright © 2000 by Semenov.

                                             

SOLIDS
Electronic Properties
On the Effect of the Cubic Anharmonicity of the Interatomic 
Interaction on the Low-Temperature Phase of a Peierls System

A. L. Semenov
Ul’yanovsk State University, Ul’yanovsk, 432700 Russia

e-mail: semenov@quant.ulsu.ru
Received November 17, 1999

Abstract—The low-temperature phase of a Peierls system is studied theoretically taking into account the cubic
anharmonicity of the interatomic interaction. It is shown that at a transition into the semiconductor phase a uni-
form deformation of the system occurs simultaneously with the atoms approaching one another in pairs. The
cubic anharmonicity of the interatomic interaction (with a negative anharmonicity constant) produces a large
increase in the band gap in the electronic spectrum and the order parameters—the reduced amplitude of the
static phonon at the edge of the Brillouin zone and the relative uniform deformation of the atomic chain—of
the metal–semiconductor phase transition. An interpretation of the experimental data on the metal–semicon-
ductor phase transition in vanadium dioxide is given on the basis of the results obtained. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that a chain of equidistant interact-
ing atoms, each atom containing one outer electron, at
temperature T below a critical value T0 is unstable with
respect to the atoms approaching one another in pairs
and the formation of a band gap in the electronic spec-
trum at the Fermi level [1]. This instability, called in the
literature the Peierls instability, has been observed
experimentally in a variety of quasi-one-dimensional
materials: complexes of platinum with mixed valence
[1], TCNQ salts [1], TaS3 [2, 3], blue bronze K0.3MoO3
[2, 3], (NbSe4)10/3I [2, 3], NbSe3 [3], VO2 [4, 5], and
others [1–4].

In the theoretical analysis of the Peierls model, the
interatomic interaction is usually divided into two com-
ponents. The first component, which is of a covalent
nature, is due to the overlapping of the electronic wave
functions of neighboring atoms and is calculated on the
basis of a microscopic theory. The second component
includes the remaining interatomic interaction and is
described phenomenologically by a Taylor series
expansion in power of the displacements of the atoms
from their equidistant position, the thermodynamically
equilibrium state in the high-temperature metallic
phase. Ordinarily, quadratic terms are retained in the
expansion (harmonic approximation) [1–12]. At the
same time, if the displacements of the atoms at a
Peierls-type structural phase transition are sufficiently
large (for example, for vanadium dioxide the displace-
ments of the vanadium atoms are about 10% of the
interatomic distance [4]), the anharmonic terms of the
interatomic interaction start to play a substantial role
and they can increase the accuracy of the calculations
substantially and, in a number of cases, lead to funda-
mentally new physical results. 
1063-7761/00/9006- $20.00 © 1022
In the present work the low-temperature semicon-
ductor phase of a Peierls system is investigated taking
into account the cubic anharmonicity of the interatomic
interaction. It is shown that together with pairwise
approach of the atoms toward one another at a metal–
semiconductor phase transition, a uniform deformation
of the atomic chain (stretching or compression) also
occurs. In addition, on account of the cubic anharmo-
nicity of the interatomic interaction, the displacements
of the atoms and the band gap in the electronic spec-
trum can be much greater than (several-fold) the analo-
gous quantities calculated on the basis of the harmonic
approximation; this will give a more adequate descrip-
tion of the existing experimental results.

An interpretation of the experimental data on the
metal–semiconductor phase transition in vanadium diox-
ide is given on the basis of the theory developed [4]. 

2. ELECTRONIC SPECTRUM OF THE SYSTEM

Let us consider a chain of atoms, each atom contain-
ing a single outer electron. We write the Hamiltonian of
the electronic subsystem in the tight-binding approxi-
mation as [1]

(2.1)

where n is the number of the atom in the chain, Bn, n + 1
is the overlap integral of the wavefunctions of neigh-

boring atoms with the numbers n and n + 1, and  and
an are operators creating and annihilating an electron at
the nth atom.

H Bn n 1+, an
+an 1+ an 1+

+ an+( ),
n

∑=

an
+
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When the distance rn, n + 1 between neighboring
atoms is several times greater than the effective radius
R of the atomic wave function of an electron, the over-
lap integral Bn, n + 1 can be determined approximately by
the relation [13]

(2.2)

Having in mind a uniform deformation of the chain and
the possibility of pairwise approach of neighboring
atoms toward one another, we write the distance
between neighboring atoms as

(2.3)

where r0 is the interatomic distance in the metallic
phase, ζ is a parameter characterizing the change in the
length of the chain, and ξ is a parameter characterizing
the pairwise approach of the atoms in a chain toward
one another (the reduced amplitude of a static phonon
at the edge of the Brillouin zone). Substituting the rela-
tion (2.3), the overlap integral Bn, n + 1 becomes

(2.4)

where b is the overlap integral of the 3d wavefunctions
of an electron for nearest-neighbor atoms in the metal-
lic phase with ξ = ζ = 0. The phases of the atomic wave-
functions for the Hamiltonian (2.1) are chosen so that b
in the expression (2.4) is real and positive.

We shall diagonalize the Hamiltonian (2.1) using
Bogolyubov’s canonical-transformations method [14].
We switch to collective second-quantization Fermi

operators, ck and , using the formula

(2.5)

where N is the number of atoms in the chain, k = –π +
2πl/N, l = 1, …, N, and ck + 2π = ck. In the new operator
representation the Hamiltonian (2.1) becomes

(2.6)

We now perform in the Hamiltonian (2.6) another
canonical transformation to the Fermi operators αk and

 in accordance with the formula

(2.7)

The function ϕk in equation (2.7) is chosen so that in the

new variables αk and  the Hamiltonian is diagonal

(2.8)

Bn n 1+, rn n 1+, /R–( ).exp∝

rn n 1+, r0 Rζ 1–( )n 1+ Rξ ,+ +=

Bn n 1+, b ζ– 1–( )nξ+( ),exp=

ck
+

an
1

N
-------- cke

ikn,
k

∑=

H 2be ζ– c( k
+ck ξ kcoscosh

k

∑=

+ ick
+ck π– ξ ksinsinh ).

α k
+

ck

α k iϕkα k π–+

1 ϕk
2+

-------------------------------.=

α k
+

H εkα k
+α k.

k

∑=
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Substituting the expression (2.7) into the Hamilto-
nian (2.6) and equating the off-diagonal elements to 0,
we find ϕk and the dispersion law εk:

(2.9)

(2.10)

It is evident from the relation (2.10) that the spectrum
εk with ε ≠ 0 possesses two bands, the lower band being
completely filled and the upper band being empty
(semiconductor phase) in the ground state. For ξ = 0 the
spectrum (2.10) is a single half-filled band (metallic
phase).

3. EQUILIBRIUM EQUATIONS
We now represent the potential energy U for the

interatomic interaction of the chain of atoms as follows:

(3.1)

where

(3.2)

is the covalent component of the potential energy and is
due to overlapping of the electronic wavefunctions of
the neighboring atoms, µ is the chemical potential of
the electrons, kB is Boltzmann’s constant, and T is the
temperature. The summation over k in the expression (3.2)
extends over all possible single-electron states taking spin
degeneracy into account. The relation (3.2) is the free
energy Fe of the electronic subsystem and depends on the
relative arrangement of the atoms in the chain. 

We now write the first term on the right-hand side of
the expression (3.1), describing the total potential
energy of the interatomic interaction of a chain of
atoms minus the covalent component (3.2), phenome-
nologically in terms of a Taylor series expansion in the
displacements of the atoms in the chain from their equi-
distant positions:

(3.3)

where αi is the dimensionless expansion coefficient of
the ith term.

The thermodynamically equilibrium values of the
order parameters of the metal–semiconductor phase
transition—ξ and ζ—in the mean-field approximation
can be determined from the conditions for a minimum
of the potential energy U (3.1):

(3.4)

ϕk
ξ kcoscosh kcos( ) kcos

2 ξsinh
2

+sgn–
ξ ksinsinh

--------------------------------------------------------------------------------------------------,=

εk 2be ζ– kcos( ) kcos
2 ξsinh

2
+ .sgn=

U W rn n 1+,( ) Fe,+
n 1=

N 1–

∑=

Fe µN kBT 1
µ εk–
kBT

------------- 
 exp+ln

k

∑–=

W r( ) α1b
r r0–

R
------------

α2b
2

---------
r r0–

R
------------ 

 
2 α3b

6
---------

r r0–
R

------------ 
 

3

,+ +=

ξ∂
∂U 0, ζ∂

∂U
0.= =
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Substituting the expressions (3.1) and (3.2) into the
relation (3.4), we obtain the equations describing the
thermodynamic equilibrium of a Peierls system:

(3.5)

(3.6)

Here

(3.7)

is the Fermi–Dirac distribution. Substituting the rela-
tions (3.7) and (2.10) into equations (3.5) and (3.6) and

switching from summation over k to (E)dE, where

(3.8)

is the electron density of states corresponding to the
electronic spectrum (2.10), we find

(3.9)

(3.10)

For convenience, the following notation has been intro-
duced in equations (3.9) and (3.10):

(3.11)

(3.12)

We shall determine the constants α1 and α2 in the
expansion (3.3), which appear in the equations (3.9)
and (3.10) describing the thermodynamic equilibrium
of a Peierls system, on the basis of the following condi-
tions. From equation (3.10) and the condition

we have

(3.13)

b α2ξ α3ξζ+( ) 1
N
---- f k

∂εk

∂ξ
-------

k

∑+ 0,=

b α2 α2ζ
α3

2
----- ξ2 ζ2+( )+ +

1
N
---- f k

∂εk

∂ζ
-------

k

∑+ 0.=

f k 1
εk µ–
kBT

------------- 
 exp+

1–

=

ν∫
ν E( )

=  
2N E

π 4b2e 2ζ– ξcosh
2

E2–( ) E2 4b2e 2ζ– ξsinh
2

–( )
--------------------------------------------------------------------------------------------------------------

α2ξ α3ξζ 2GB
πb

-----------
E/2kBT( ) Edtanh

B2 E2–( ) E2 G2–( )
--------------------------------------------------

G

B

∫–+ 0,=

α1 α2ζ
α3

2
----- ξ2 ζ2+( )+ +

+
2

πb
------

E2 E/2kBT( ) Edtanh

B2 E2–( ) E2 G2–( )
--------------------------------------------------

G

B

∫ 0.=

G 2be ζ– ξ ,sinh≡

B 2be ζ– ξ .cosh≡

ξ T0( ) ζ T0( ) 0= =

α1
2

πb
------

E E/2kBT0( )tanh

4b2 E2–
-----------------------------------------

0

2b

∫– dE.= =
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Calculating the integral in equation (3.13), we obtain
approximately

(3.14)

The critical temperature T0 of a Peierls-type struc-
tural phase transition in the mean-field approximation
is found from the equation

(3.15)

Hence we obtain, using the relations (3.1)–(3.3) (see
also equation (3.9)), an expression for the constant α2:

(3.16)

Calculating the integral in equation (3.16), we obtain
approximately

(3.17)

Thus, we have obtained the equations (3.9) and
(3.10) describing the thermodynamic equilibrium
which form a closed system for determining the tem-
perature dependences of the order parameters ξ(T) and
ζ(T) of a Peierls system, taking into account the cubic
anharmonicity of the interatomic interaction. The con-
stants α1 and α2 in the expansion (3.3), appearing in the
equations of thermodynamic equilibrium (3.9) and
(3.10) of a Peierls system, are determined using equa-
tions (3.14) and (3.17).

4. THE ORDER PARAMETERS ξ AND ζ 
OF A METAL-SEMICONDUCTOR PHASE 

TRANSITION IN A PEIERLS SYSTEM 
AT LOW TEMPERATURES

We shall analyze the equations of thermodynamic
equilibrium (3.9) and (3.10) for the order parameters ξ
and ζ of a metal–semiconductor phase transition for
low temperatures, where

(4.1)

Then, we can set in equations (3.9) and (3.10)

(4.2)

Calculating the integrals in equations (3.9) and (3.10),
we obtain approximately

(4.3)

α1
4
π
--- 1

1
6
---

kBT0

b
----------- 

 
2

– .–=

∂2U

∂ξ2
---------

ξ ζ 0 T, T0= = =

0.=

α2
8b
π

------
E/2kBT0( )tanh

E 4 b2 E2–( )
------------------------------------- E.d

0

2b

∫=

α2
4
π
--- 2be

kBT0
-----------.ln=

kBT  ! be ζ– ξ .sinh

E
2kBT
------------  . 1.tanh

α2ξ α3ξζ 4e ζ– ξsinh
π

------------------------K
1

ξcosh
-------------- 

 –+ 0,=
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(4.4)

where K(x) and E(x) are, respectively, the complete
normal Legendre elliptic integrals of the first and sec-
ond kinds. Expanding the elliptic integrals K(x) and
E(x) in series near the point x = 1 [15], and  and

 in a Taylor series at the point ξ = 0, we find from
equations (4.2) and (4.3) in the approximation ξ < 1

(4.5)

(4.6)

Eliminating from equations (4.5) and (4.6) the
unknown coefficient α3, we obtain, specifically,

(4.7)

The formula (4.7) is a relation between the order
parameters ζ and ξ of a metal–semiconductor phase
transition at low temperatures T, satisfying the condi-
tion (4.1).

5. NUMERICAL ESTIMATES, COMPARISON 
WITH EXPERIMENT, AND DISCUSSION 

OF THE RESULTS

We shall compare with experiment for vanadium
dioxide, which possesses a one-dimensional electronic
conduction band. This band is formed as a result of the
overlapping of the 3d electronic wave functions of the
vanadium atoms arranged in chains parallel to the c
crystal axis [4]. In the high-temperature metallic phase
the width of the one-dimensional electronic conduction
band is E0 = 4b . 1.1 eV, and the distance between the
nearest-neighbor vanadium atoms along the chain is
r0 = 0.285 nm. A metal– semiconductor phase transi-
tion is observed in VO2 at the critical temperature T0 =
340 K. The band gap in the electronic spectrum in the
low-temperature phase is Eg . 0.6eV and the distances
between the nearest-neighbor vanadium atoms along
the chain alternate: r1 = 0.265 nm and r2 = 0.312 nm.
Since r1 + r2 > 2r0, the vanadium atoms are displaced

α1 α2ζ
α3

2
----- ξ2 ζ2+( )+ +

+
4e ζ– ξcosh

π
-------------------------E

1
ξcosh

-------------- 
  0,=

ξsinh
ξcosh

α2 α3ζ
4e ζ–

π
---------- 4

ξ
--- 

  1
2
3
---ξ2+ 

  ξ2

6
-----–ln–+ 0,=

α1 α2ζ
α3

2
----- ξ2 ζ2+( ) 4e ζ–

π
----------+ + +

× 1
ξ2

2
----- 4

ξ
--- 

 ln 1
2
---++

 
 
 

0.=

α1 α2ζ
4e ζ–

π
---------- 1

ξ2

2
----- 4

ξ
--- 

 ln 1
2
---++

 
 
  ξ2 ζ2+

2ζ
----------------+ + +

× 4e ζ–

π
---------- 4

ξ
--- 

 ln 1
2
3
---ξ2+ 

  ξ2

6
-----– α2–

 
 
 

0.=
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relative to the axis of the chain, and the chain itself has
a zig-zag shape.

We shall calculate the effective radius R of the
atomic 3d electronic wavefunction using the experi-
mental data. We obtain from the relations (2.3) and
(2.10)

(5.1)

Hence we find, using the experimental data for vana-
dium dioxide (T0 = 340 K, Eg = 0.6 eV, E0 = 4b = 1.1 eV,
r0 = 2.85 Å, r1 = 2.65 Å, r2 = 3.12 Å), the approximate
value R . 0.41 Å. This result agrees with the general
notion that the localization radius of the d and f wave-
functions of transition-metal compounds is small [4].

Using the relation (2.3) we calculate the experimen-
tal values of the order parameters ξ and ζ of the system
to be

(5.2)

(5.3)

Substituting in equations (3.14) and (3.17) the charac-
teristic numerical values of the parameters for VO2, we
find the dimensionless coefficients α1 and α2 in the
expansion (3.3) of the repulsive part of the potential
energy of the interatomic interaction in the Taylor
series in the displacements of the atoms from their
equidistant position in the chain:

(5.4)

Using the experimental value of ξ (5.2) and the values
of the parameters α1 and α2 (5.4) of the theory and
using equations (4.5)–(4.7) we obtain the theoretical
values of the order parameter ζ of the metal–semicon-
ductor phase transition and the cubic anharmonicity
coefficient α3:

(5.5)

Thus, the theoretical value of the parameter ζ (5.5)
characterizing the elongation of a chain of atoms is the
same as the experimental value (5.3) in order of magni-
tude. The difference seems to be due to the small num-
ber of terms in the expansion (3.3) of the repulsive part
of the interatomic interaction energy and the influence
of vanadium atoms from neighboring chains and the
nearby oxygen atoms on the chain of the vanadium
atoms in VO2. 

Substituting in equation (4.1) the numerical values
characteristic for vanadium dioxide, we find the condi-
tion of applicability of the approximation (4.2) used in
the derivation of equations (4.3)–(4.7):

Eg

E0
-----

r2 r1–
2R

--------------– 
 exp

r2 r1 2r0––
2R

---------------------------- 
  .sinh=

ξ
r2 r1–

2R
--------------  . 0.57,=

ζ
r2 r1 2r0–+

2R
----------------------------- . 0.09.=

α1 . 1.27, α2 . 5.02.–

ζ  . 0.38, α3 . 7.90.–

T  ! 1000 K.
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We note that the coefficients α2 and α3 in the expan-
sion (3.3) can be estimated independently using the for-
mula

(5.6)

where E is Young’s modulus of the crystal along the c
crystallographic axis, and the relation [16]

(5.7)

where αT is the linear thermal expansion coefficient of
the material along the c crystallographic axis.

Substituting in the expressions (5.6) and (5.7) the
characteristic numerical values E = 3 × 1012 din/cm2

and αT ≈ 10–5 we obtain the numerical values of the
coefficients: α2 . 5 and α3 . –10, which are close to the
corresponding values (5.4) and (5.5) calculated on the
basis of the theory examined in this paper.

CONCLUSIONS

In summary, in the present paper a one-dimensional
model, taking into account the cubic anharmonicity of
the interatomic interaction, was proposed for a Peierls-
type metal–semiconductor phase transition. It was
shown that at a phase transition into the semiconductor
state one-dimensional deformation (elongation or com-
pression) of the chain of atoms is also observed
together with the pairwise approach of the atoms in a
chain toward one another (dimerization).

An interpretation based on the results obtained was
given for an experiment on the metalsemiconductor
phase transition in vanadium dioxide [4]. The numeri-
cal values of the effective radius R of the atomic 3d
electronic wavefunction, the reduced parameter ζ char-
acterizing the elongation of the atomic chain, the
dimensionless coefficient of elasticity α2, and the cubic
anharmonicity constant α3, all calculated on the basis
of the proposed theory, agree with the experimental
data and with independent estimates.

We note that for most known quasi-one-dimensional
materials (TCNQ salts, TaS3, TaSe3, NbS3, NbSe3,
K0.3MoO3, (NbSe4)10/3I, (NbSe4)2I, and others [3]) the
experimentally measured value of the band gap Eg(T ! T0)
in the electronic spectrum is several-fold greater than
the value computed on the basis of the harmonic and
mean-field approximations [3]:

(6.1)

Taking into account the effect of fluctuations (which
goes beyond the scope of the mean-field approxima-
tion) improves the agreement between theory and
experiment [17]. But it seems that this does not com-
pletely solve the problem, since even a weak nonunifor-
mity of the system leads to a strong suppression of the
fluctuations [1]. In the present paper it was shown that

α2 . 
ER2r0

b
--------------,

α3

2αTr0α2
2b

kBR
------------------------,–≈

Eg T  ! T0( ) . 3.5kBT0.
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another important factor, which can increase Eg sev-
eral-fold compared with the value (6.1), is the cubic
anharmonicity of the interatomic interaction (going
beyond the scope of the harmonic approximation). 

Cubic anharmonicity of the interatomic interaction
also engenders a uniform elongation of a Peierls system
at a transition into the low-temperature semiconductor
phase. As a result, the unit cell of a three-dimensional
crystal, consisting of a collection of mutually parallel
Peierls atomic chains in a matrix consisting of atoms of
a different kind, undergoes substantial deformation,
specifically, rhombohedral [18] or monoclinic [4] dis-
tortion. In this case Peierls chains themselves can
assume a zig-zag shape [4]. 
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Abstract—Results are presented of a complex study of the magnetic and resistive properties, the Hall effect,
the thermal emf, and the longitudinal Nernst–Ettingshausen effect of an La0.8Ba0.2MnO3 single crystal at tem-
peratures between 77 and 400 K. A maximum was observed near the Curie temperature Tc on the temperature
dependences of the resistivity, the thermal emf, and the normal Hall coefficient. It was established that the
Hall mobility remains constant near Tc . It is shown that these anomalies in the kinetic properties are attribu-
table to a change in the position of the mobility edge relative to the Fermi level. A semiphenomenological
theory is put forward to quantitatively describe the temperature and magnetic-field dependences of the resis-
tivity and thermal emf of lanthanum manganites near the phase-transition temperature. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION 

Lanthanum manganites La1 – xDxMnO3, where
D = Ca, Sr, Ba, are attracting interest because of the
colossal magnetoresistance (CMR) effect, see the
reviews [1–4]. The initial oxide LaMnO3 is an antiferro-
magnetic insulator. Doping with divalent metals changes
the antiferromagnetic ordering to ferromagnetic and low-
ers the resistivity. At a certain concentration xc, which
depends on the type of divalent ion and the heat treatment,
a metal–insulator concentration transition takes place
with the result that at T < Tc (Tc is the Curie tempera-
ture) the conductivity becomes metallic. In the para-
magnetic phase however, the temperature dependence
of the resistivity ρ usually remains semiconducting
(with dρ/dT < 0) even for x > xc; in other words, a
metal–insulator temperature transition takes place near
Tc . Metallic conductivity at all temperatures has only
been observed in La1 – xSrxMnO3 single crystals for
0.3 ≤ x ≤ 0.4 [5]. 

In manganites having a divalent ion concentration
close to xc (both with x < xc and x ≥ xc) a sharp resistivity
peak is observed near Tc and which is reduced and
shifted toward higher temperatures on application of a
magnetic field. The temperature TR at which the resis-
tivity peak is observed is frequently considered to be
the metal–insulator transition temperature because at
T = TR “metallic” behavior (with dρ/dT > 0) is replaced
by semiconducting behavior. The magnetoresistance
∆ρ/ρ also has a sharp peak near Tc and may attain
extremely high (“colossal” values) if the magnetic field is
fairly strong. There are reports of similar singularities on
the temperature dependences of the thermal emf, see for
example [6, 7]. The nature of these anomalies has yet to be
1063-7761/00/9006- $20.00 © 21027
clarified despite numerous studies of CMR materials.
Following the publication of [8] the CMR effect is fre-
quently attributed to the existence of strong electron–
phonon interaction leading to the formation of small-
radius polarons. Many authors stress the inherent ten-
dency of manganites to form inhomogeneous states and
to undergo phase separation [1, 9–13]. Some studies
(for example, [14, 15]) draw attention to the existence
of strong disorder in manganites, both nonmagnetic
and magnetic, the latter increasing abruptly near the
Curie point. Existing data on the properties of CMR
manganites cannot be used to distinguish between the
different scenarios since only results of measurements
of the resistivity and magnetoresistance are given in
most cases and in only a few cases is the thermal emf
given. Data on the Hall effect [16–30] mainly refer to
thin-film samples [16–25] and in many cases, the
method of determining the normal Hall coefficient
from results of measurements of the Hall resistivity ρH
is of dubious validity In [26] the Hall effect was studied
in La1 – xSrxMnO3 single crystals with x > xc = 0.17 but
outside the range where CMR is observed. Studies of the
magnetic properties are confined to determining the Curie
temperature and in many cases the question of the interre-
lationship between the magnetic and kinetic characteris-
tics is not even addressed.

In the present paper we report results of a complex
study of the magnetic, electrical, galvanomagnetic, and
thermomagnetic properties of La0.8Ba0.2MnO3 single
crystals. This crystal was selected for the study because
of the lack of data on the properties of single crystals of
this type of manganite. The results suggest various con-
clusions which in our view are important for under-
000 MAIK “Nauka/Interperiodica”
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standing the transport processes in all manganites with
colossal magnetoresistance.

2. SAMPLES AND METHOD

Single crystals of La0.8Ba0.2MnO3 were grown by
the floating zone method described in [31]. Samples for
X-ray analyses and measurements of the magnetic and
kinetic properties were cut from the ingot. 

The crystal structure and composition were investi-
gated using a DRON-3 diffractometer using Cr Kα radi-
ation. The temperature dependence of the X-ray spectra
was studied in the range 80–300 K under heating. The
spectra obtained at room temperature were processed
using the FullProf code [32]. 

The resistivity ρ, magnetoresistance ∆ρ/ρ, thermal
emf coefficient S, magnetothermal emf (longitudinal
Nernst–Ettingshausen effect), and the Hall resistivity
ρH were measured using the same sample in the form of
an 8 × 3 × 0.6 mm wafer whose long side was cut par-
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χ, 10–5

Fig. 1. (a) Magnetization isotherms of an La0.8Ba0.2MnO3
single crystal at T = (1) 78 K, (2) 206 K, and (3) 231 K.
(b) Temperature dependence of the susceptibility of the
paraprocess.
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allel to the rhombohedral c-axis. The magnetization
curves were recorded using a vibrating magnetometer
in a magnetic field having the same direction as in the
measurements of the Hall effect. The resistivity of the
sample was measured by a standard four-contact
method. The thermal emf was measured at a tempera-
ture difference of around 3 K produced by a heater
positioned near one edge of the sample. The tempera-
tures of the sample ends were monitored using two cop-
per–constantan thermocouples. The thermal emf and the
Hall emf were measured by a potentiometric method. In
order to eliminate side effects the Hall emf was measured
for two directions of the magnetic field and the current in
the sample. In all cases, a magnetic field of up to
15 kOe was directed perpendicular to the plane of the
wafer. Indium contacts were deposited on the samples
using an ultrasonic soldering iron. 

The sample was cooled to the required temperature
without applying a magnetic field.

3. RESULTS OF MEASUREMENTS

At temperatures T < 185 K the diffraction patterns
of La0.8Ba0.2MnO3 only exhibited lines of the orthor-
hombic phase Pbnm, at T > 196 K only lines of the

rhombohedral phase R c were present, and at 185 K <
T < 196 K lines of both phases coexisted. Thus, in this
particular manganite a first-order structural phase tran-
sition takes place near T = 190 K. The magnetic and
kinetic properties exhibited hysteresis characteristics in
this range and these are analyzed in detail in [33]. How-
ever, the change in the crystal structure has no signifi-
cant influence on the general profile of the temperature
dependences of the magnetization and kinetic coeffi-
cients and consequently any changes associated with
the structural transition will subsequently be neglected.

The general form of the magnetization curves is typ-
ical of ferromagnets, see Fig. 1. The Curie tempera-
ture Tc determined by the method of thermodynamic
coefficients is 251 K. The paramagnetic temperature
determined from the curve giving the temperature
dependence of the reciprocal susceptibility in the para-
magnetic range was considerably higher: Θ = 260 K,
which indicates that this single crystal possesses mag-
netic inhomogeneity. 

The spontaneous magnetization Ms(T) and the sus-
ceptibility of the paraprocess χ(T) were determined by
linearly extrapolating the magnetization curve in the
range of fields between 7 and 15 kOe to H = 0. Treating
the temperature dependence Ms(T) as following the law
Ms(T) = Ms(0) – constT 3/2 yielded the estimate Ms(0) ≈
490 G which corresponds to the magnetic moment of
the manganese ion 3.3µB and is considerably lower than
the value of 3.8µB obtained from the doping level. The
temperature dependence χ(T) has a well-defined peak
at T = Θ. However, instead of a drop in the susceptibil-
ity with decreasing temperature typical of ferromag-

3
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nets, the curve χ(T) exhibits a continuous increase in
susceptibility in the range T < 200 K. Consequently, in
addition to ferromagnetic regions, the sample also con-
tains nonferromagnetic regions which determine the
temperature dependence of χ at T < 200 K. In order to
estimate the volume of these regions we plotted the
curves M(H–1) and found that the saturation magnetiza-
tion Msat is of the order of 560 G, i.e., 3.8µB per Mn ion.
Thus, the volume of the nonferromagnetic regions is
around 10% of the total sample volume. A similar esti-
mate was obtained previously (by a different method)
for an La0.9Sr0.1MnO3 single crystal [34]. 

Figure 2 gives temperature dependences of the resis-
tivity ρ(T) at H = 0 and H = 10 kOe. As the temperature
increases from 80 to 150 K, the resistivity decreases and
then acquires a metallic character (dρ/dT > 0). From
210 K the resistivity increases steeply and at TR = 260 K
reaches a maximum after which it becomes “semicon-
ducting” (dρ/dT < 0). The magnetic field lowers the
resistivity and shifts its peak toward higher temperatures. 

Figure 3 shows temperature dependences of the ther-
mal emf in zero field S(0) and in a field H = 10 kOe, S(H).
At low temperatures both coefficients are negative and
their modulus decreases with increasing temperature.
At T ≈ 210 K the coefficients S(0) and S(H) simulta-
neously change sign and begin to increase rapidly with
increasing temperature, where S(0) > S(H). The coeffi-
cient S(0) reaches a maximum at T ≈ 270 K and then
begins to decrease smoothly. 

Figure 4 gives field dependences of the Hall resistiv-
ity ρH = R0B + RsM for various temperatures, where R0
and Rs are the normal and anomalous (spontaneous)
Hall coefficients, B is the induction in the sample, and
M is the magnetization [35]. For this particular sample

ρ, mΩ cm
120

80

40

0

100 200 300 400
T, K

1

2
3

Fig. 2. Temperature dependences of the resistivity ρ of
an La0.8Ba0.2MnO3 single crystal at H = 0 (s) and H =
10 kOe (n). Curves 1–3 give the calculated values: (1) ρ(T)
for H = 0 neglecting the inhomogeneous distribution of the
magnetization; (2) and (3) ρ(T) for H = 0 and H = 10 kOe,
respectively allowing for the inhomogeneous distribution of
the magnetization.
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geometry the demagnetization factor is close to one so
that we can assume B = H. In the ferromagnetic region
in weak fields we observe an abrupt dependence of ρH

on H whereas for H > 6 kOe the dependence ρH(H) is
linear. Figure 5 gives temperature dependences of the
coefficients R0 and Rs calculated using the curves ρH(H)
and M(H) as in our earlier studies [27–30]. At low tem-
peratures the normal Hall coefficient is negative. At T =
200 K the coefficient R0 becomes positive, increases
rapidly with temperature, and reaches a maximum at
T = 261 K. The anomalous Hall coefficient is negative
at all temperatures; no extremum was observed on its
temperature dependence. 
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Fig. 3. Temperature dependences of the thermal emf coeffi-
cient S of an La0.8Ba0.2MnO3 single crystal at H = 0 (s) and
H = 10 kOe (n). Curves 1–3 give the calculated values:
(1) S(T) for H = 0 neglecting the inhomogeneous distribu-
tion of the magnetization; (2) and (3) S(T) for H = 0 and
H = 10 kOe, respectively allowing for the inhomogeneous
distribution of the magnetization.
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Fig. 4. Isotherms of the Hall resistivity ρΗ at T = (1) 96 K,
(2) 206 K, (3) 224 K, (4) 241 K, and (5) 279 K.
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4. THEORY 

We shall now propose a theoretical model. We shall
start from the assumption that any change in the kinetic
characteristics of manganites with x ~ xc may be
described as the result of a change in the position of the
hole mobility edge εc relative to the Fermi hole energy
εF . The value of εc is determined by the disorder in the
system which may be either magnetic, i.e., determined
by spin fluctuations or nonmagnetic caused by the pres-
ence of impurity atoms, vacancies, and so on. It was
shown in [14, 36] that in the narrow-gap s–d model,
which is now usually called the double exchange
model, the growth of fluctuations as the phase transi-
tion point is approached from the low-temperature
region leads to an appreciable shift of εc toward higher
hole energies. If the mobility edge intersects the Fermi
level, a metal–insulator transition takes place. 

A simple semiphenomenological theory was pro-
posed in [15, 37] to describe the change in the position
of the mobility edge near the Curie point. It is assumed
that near Tc when the relative magnetization m is low,
εc is a linear function of m2: εc = ∆0 – ∆1m2, where ∆0

R
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 c
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Fig. 5. Temperature dependences of the normal (R0) and
anomalous (Rs) Hall coefficients. The inset shows the depen-
dence of the normal Hall coefficient on the resistivity ρ.
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and ∆1 are constants to be determined experimentally.
Following [38], we write the conductivity σ in the form

(1)

where f(ε) is the Fermi function. It was noted in [39] that
if εc is close to εF, we can assume that σ(ε) ≈ σ(εc) = σm,
where σm is the minimum metallic conductivity so that
σ ≈ σm f (εc). Consequently, any change in the conduc-
tivity is caused by changes in the carrier concentration
in delocalized states. For the resistivity near Tc we
obtain

(2)

where ρ0 = , Eρ = εc – εF = ∆0 – εF – ∆1m2. If
∆0 − εF > 0 in the paramagnetic region for H = 0 the
resistivity has an activational character with the activa-

tion energy  = ∆0 – εF . If the magnetic field is non-
zero or the temperature drops below Tc , the activation
energy decreases causing a drop in the resistivity. If

 < ∆1, at a certain temperature TMI < Tc a metal–insu-
lator transition takes place and as the temperature T
drops further, the temperature dependence of the resis-
tivity is determined by the change in the carrier mobil-
ity rather than their concentration. The boundary between
these regimes can be taken to be the temperature at which
ρ = ρ0. 

We shall now consider the thermal emf. The formula
obtained by Mott [39] neglects the interaction of carriers
with other elementary excitations. Thus, Fritzsche [40]
proposed a more general expression for S which can be
conveniently written in the form

(3)

where kB is the Boltzmann constant and e is the modu-
lus of the electron charge. In the absence of drag effects
W ≥ 0; for W = 0 which corresponds to the case of elas-
tic scattering [41, 42], expression (3) yields the Mott
formula. For our purposes the integral containing the
function W can be estimated using the mean-value the-
orem which leads to the appearance of the term
(kB/e)( /T) in the expression for S where  = W( , T),

 > εc; if y = Eρ/T @ 1, then  = εc . Assuming in the
remaining integral σ(ε) = σ(εc), for the metal–insulator
transition region we obtain

(4)

where ES = Eρ – . 
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In manganites with colossal magnetoresistance, the
value of  in the paramagnetic region is usually

greater than zero and close to  which is usually inter-
preted as evidence of the existence of strong electron–
phonon coupling leading to the formation of small-
radius polarons [6, 43]. An analysis of our experimental
results made in the following section shows that the
magnetic rather than the phonon system plays the
major role in the formation of . At first glance, this
contradicts the idea that carriers activated at the mobil-
ity edge behave in many respects as free carriers. This
is because unlike amorphous materials, in manganites
the magnetic disorder determining the position of the
mobility edge is dynamic rather than static. Conse-
quently, the propagation of carriers having an energy of
the order εc is accompanied by a cloud of magnetic

excitations which results in a nonzero value of . As
the magnetic disorder decreases, i.e., as m increases,
the value of  should decrease. We shall assume that

 = W0 – W1m2, where W0 and W1 are positive con-
stants. It will be shown below that this assumption
agrees with the experiment. 

The concept of a cloud of perturbations accompany-
ing an electron is valid as long as the radius of the cloud
is substantially shorter than the distance between the
mobile carriers. On transition to the metallic region, the
distance between neighboring holes in manganites
undergoing a metal–insulator transition becomes of the
order of magnitude of the distance between neighboring
manganese ions, which should lead to destruction of the
cloud and an appreciable drop in . Then, the usual
relationship S ∝  T remains valid for the metallic region. 

It will be shown that the inequality y > 2 is satisfied
for the La0.8Ba0.2MnO3 single crystal under study. In this
case, we can assume that

(5)

and set (ey + 1)ln(1 + e–y) ≈ 1 in expression (4). Then,
carriers whose role in the conductivity is negligible
may make a significant contribution to the thermal emf.
For simplicity we shall assume that this contribution
does not depend on T in the temperature range of inter-
est, which yields the following expression:

(6)

where  =  – W0,  = ∆1 –W1. 

In the temperature range where activation predomi-
nates at the mobility edge the normal Hall coefficient
should be positive since the Aharonov–Bohm loop
includes four manganese ions and the Hall mobility µH

should be of the order of 0.1 cm2/(V s) [38].
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5. DISCUSSION OF RESULTS

We shall first consider the range T > 200 K where
peaks are observed for the resistivity, thermal emf, and
coefficient R0. The normal Hall coefficient and thermal
emf are positive in this range. As the temperature
increases from 210 to 250 K, the resistivity and R0
increase fivefold, the coefficient R0 being directly pro-
portional to ρ, see inset to Fig. 5. Consequently, the
Hall mobility remains the same at µH = 0.07 cm2/(V s).
We can conclude that at T > 210 K the kinetic effects
are determined by holes activated at the mobility edge. 

At T > 250 K the normal Hall coefficient ceases to be
proportional to the resistivity. In our view this may be
because R0 and Rs are determined with an appreciable
error in this range where ρ varies substantially on appli-
cation of a magnetic field, in our case when T > 250 K.
However, we note that the Hall mobility calculated for
T > 250 K is also close to 0.1 cm2/(V s). Hence the acti-
vation at the mobility edge near Tc plays a leading role
both below and above the phase transition point. 

In order to determine the parameters appearing in
formulas (5) and (6), we used data for T > 300 K. From
the temperature dependences of the resistivity and the
thermal emf at H = 0 we obtained: ρ0 = 1.5 mΩ cm,

 = 1120 K, S0 = –38 µV/K, and  = 190 K. In order

to find ∆1 and  we constructed dependences of ∆ρ =
ρ(0) – ρ(H) and ∆S = S(0) – S(H) on the square of the
magnetization at fixed temperatures. We can see from
Fig. 6 that ∆ρ and ∆S are proportional to M2 which is
consistent with the formulas in the preceding section.
Using the saturation magnetization Msat = 560 G we

obtained ∆1 = 1100 K and  = 180 K. 
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Fig. 6. Dependences of the differences between the resistiv-
ity ρ(0) – ρ (H = 10 kOe) and the thermal emf S(0) – S
(H = 10 kOe) on the square of the magnetization for T =
(s) 316 K and (d) 335 K.
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Temperature dependences of ∆ρ, ∆S, and ∆M2 =

M2(H) –  are plotted in Fig. 7 for H = 10 kOe. We
can see that near the resistivity peak the profiles of the
curves ∆ρ(T) and ∆S(T) are almost indistinguishable
and are similar to the curve of ∆M2(T) for T > 210 K,
i.e., where the ferromagnetic regions make the domi-
nant contribution to the susceptibility. This confirms
our assumption that the changes in the resistivity and
the thermal emf are determined by the change in the
square of the magnetization not only in the paramag-
netic region but also near the Curie point.

Using the values obtained for ρ0, , ∆1, , and

 and the experimental values of the spontaneous
magnetization, we calculated the temperature depen-
dence of the resistivity and the thermal emf for H = 0.
The results are given by the dot-dash curves in Figs. 2
and 3. The calculated curves 1 accurately reproduce the
profile of the peaks although they lie above the experi-
mental points in the ferromagnetic region. In our view,
this difference can be attributed to the magnetic and
electrical inhomogeneities of the sample. It has been
noted that approximately 10% of our sample volume is
occupied by nonferromagnetic inclusions. It follows
from the results of measurements of the resistivity of
La1 – xSrxMnO3 single crystals [5] that for samples with
x ~ xc the resistivity depends weakly on x in the far para-
magnetic region but depends very strongly on it when
T < Tc . Bearing in mind that the difference in the sus-
ceptibility is reduced when T > Tc , we can assume that
the sample is in comparatively homogeneous electric
and magnetic states if the temperature is considerably
higher than Tc . Thus, we determined all the parameters
from the results of measurements in the paramagnetic
region. On transition to the magnetically ordered phase,
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the material becomes magnetically and electrically
inhomogeneous. Since the current flows predominantly
in the ferromagnetic regions possessing low resistivity,
in formulas (5) and (6) we need to substitute the mag-
netization of these ferromagnetic regions rather than
the experimentally determined average over the sam-
ple. This circumstance can be taken into account most
easily by substituting into (5) and (6) values of the mag-
netization 10% higher than the experimental values. In
this case the role of inhomogeneity is exaggerated in
the paramagnetic region but this is unimportant since
the magnetization in this region is low at the magnetic
fields used. Results of calculations of ρ(T) and S(T)
allowing for this correction for H = 0 and H = 10 kOe
are given by the solid (2) and dashed (3) curves in Figs. 2
and 3. For the resistivity the theoretical and experimen-
tal curves are very similar whereas for the thermal emf
the agreement between theory and experiment is
slightly inferior although in this case, the peak profile
and its change on application of the magnetic field can
be reproduced quite satisfactorily. We stress that all the
parameters used in the calculations were obtained from
independent experiments and no additional fitting was
carried out.

It follows from this reasoning that the abrupt
decrease in the resistivity on transition to the magneti-
cally ordered state is caused by a reduction in the acti-
vation energy; in this case the material continues to be
in the dielectric state. This is consistent with the fact
that at all temperatures the resistivity of this single
crystal is several times higher than ρ0. 

We can see that the inhomogeneity of the material
must be taken into account for a quantitative comparison
between theory and experiment. Quite clearly, allowing
for this inhomogeneity by eliminating the nonferromag-
netic regions from the analysis while implicitly assuming
that the ferromagnetic regions are electrically homoge-
neous is a very rough approximation since in general
the ferromagnetic regions are also inhomogeneous. It
may well be that the difference (up to 10–20%)
between the experimental and theoretical curves for
250 K < T < 300 K (see Figs. 2, 3) arises because the
inhomogeneity must be taken into account more accu-
rately in this region. 

In the literature attention has repeatedly been drawn
to the fact that in lanthanum manganites there is a large
difference between the activation energies of the resis-
tivity and the thermal emf in the paramagnetic region
and this difference depends weakly on H. On this basis
it is concluded that for T > Tc interaction of carriers
with lattice vibrations predominates and charge trans-
port is achieved by hopping of small-radius polarons
(single-site polarons). However, the internal parameter
is not the magnetic field but the magnetization. In our
case we have  = Eρ – ES = (930–920m2) K. The

strong dependence of  on m indicates that magnetic
interactions play a dominant role while the weak
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dependence of  on H is caused by the weak magnetic
susceptibility in the paramagnetic range.

The strong dependence of  on the magnetization
implies that an electron in any Mn site also senses the spin
of neighboring sites. Consequently, in these materials an
electron excited to the mobility edge moves surrounded by
a “cloud” of magnetic excitations. The radius of this cloud
(in other words the characteristic radius of the carrier
wave function) is no less than the distance between the
nearest manganese ions so that the cloud covers many
lattice sites. This conclusion agrees with the results of
recent theoretical studies [44, 45].

We shall now consider temperatures T < 200 K. In
this range the normal Hall coefficient is negative which
suggests that three-site processes predominate [38].
Bearing in mind the substantial difference between the
calculated and experimental curves of ρ(T) and S(T),
the change in the dependence of the thermal emf on the
magnetic field (see Fig. 7), and the rapid increase in
resistivity at T < 120 K, we can conclude that at low
temperatures conduction is mainly achieved by hop-
ping between localized states and not by activation at
the mobility edge. This conclusion is completely con-
sistent with general reasoning on the role of various
conduction mechanisms in disordered materials [38]
and with data from optical experiments [46, 47] which
indicate that various types of localized states are
present in materials with colossal magnetoresistance.
A specific feature of manganites is that the parameters
describing the hopping conduction at T ! Tc should
depend on the magnetic state but differently from the
mobility edge near the Curie temperature. As far as the
authors are aware, no such calculations have yet been
made.

6. CONCLUSIONS

Near the Curie temperature single crystals of lantha-
num manganites close to the metal–insulator concentra-
tion transition exhibit the same singularities on curves
giving the temperature and magnetic-field dependences
of the resistivity. We can thus assume that the results
obtained from our study of an La0.8Ba0.2MnO3 single
crystal are general and reflect the physics of transport
processes in all lanthanum manganite single crystals
with x ~ xc regardless of the type of doping. We can
briefly formulate these as follows.

Near the Curie temperature the dominant conduction
mechanism is activation at the mobility edge. Colossal
magnetoresistance and other anomalies of the kinetic
coefficients are caused by shift of the mobility edge on
application of a magnetic field and/or a change in temper-
ature which lead to changes in the carrier concentration
in the delocalized states. The steep drop in the resistiv-
ity accompanying a transition to the magnetically
ordered state does not imply a transition to metallic
conductivity, as is usually assumed, but is caused by a
drop in the activation energy. From this it follows that

W

W
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the temperature at which the resistivity is highest can-
not generally be considered to be the metal–insulator
transition temperature.

Far from Tc hopping between localized states can make
a substantial contribution to the kinetic coefficients.

Carriers activated at the mobility edge move accom-
panied by a cloud of different excitations among which
magnetic excitations are the most important.

The inhomogeneity of the materials plays an important
role in forming the kinetic properties of these manganites,
in particular determining the temperature dependence of
the kinetic coefficients near the temperature of maxi-
mum resistivity.
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Abstract—Quantum-statistical calculations are presented for the anomalous Hall effect in a magnetic sand-
wich with a tunnel junction across a thin dielectric spacer. The tunneling current flows across the junction per-
pendicular to the plane of the layers while the Hall component of the current lies in this plane. The Kubo for-
malism and the Green’s functions are used to calculate the contribution of skew scattering to the Hall conduc-
tivity. The classical size effect in the Hall conductivity of this structure is studied and two new effects are
observed. One is associated with the dependence of the effective electric field in the magnet on the transparency
of the dielectric potential barrier for electrons when the current flows perpendicular to the layers of the structure
and may be called “geometric”. The other occurs as a result of the influence of the strong electric field in the
dielectric on the electron motion in the adjacent magnetic layers.
1. INTRODUCTION

Recently considerable attention has been paid to
studies of multilayer magnetic structures: sandwiches
and superlattices. It has been observed that these struc-
tures possess giant magnetoresistance [1–3] and this
effect has been extensively studied theoretically [4–6].
Models have been developed to calculate the anoma-
lous Hall effect in thin magnetic films [7, 8] and multi-
layer structures [9, 10]. It is generally assumed that the
Hall emf in ferromagnets has two components: normal
and anomalous. The constant of the anomalous Hall
effect may differ in order of magnitude from the constant
of the normal effect and may even have a different sign.
In [9] the side jump mechanism was studied for the
anomalous Hall effect and the authors concluded that the
Hall conductivity (associated with the off-diagonal com-
ponent of the electrical conductivity tensor) is propor-
tional to the ordinary conductivity (diagonal component)
with a coefficient determined by the average spin–orbit
interaction. Another mechanism responsible for the
anomalous Hall effect, skew scattering, involved allow-
ing for the three-point character of the conductivity
which resulted in the absence of a simple relationship
between the Hall conductivity and the ordinary conduc-
tivity [10]. A study of this mechanism for the anoma-
lous Hall effect showed that when the classical size
effect is taken into account, the Hall constant depends
nonlinearly on the thickness of the magnetic layers and
even in the limit of large layer thickness differs when
the primary current flows parallel and perpendicular to
the plane of the layers. This difference depends on
which type of electron, s or d, makes the main contribu-
tion to the anomalous Hall effect [10]. 

Interest is now being focused on studying multilayer
magnetic structures with a tunnel junction across a thin
1063-7761/00/9006- $20.00 © 1035
dielectric layer in which the electric current is produced
by electron tunneling through the potential barrier
formed as a result of a difference between the band struc-
tures of the metal and the dielectric [11–16]. In these
magnetic structures the potential profile for electrons
belonging to subbands with different directions of spin
varies as the relative orientation of the magnetizations of
neighboring ferromagnetic layers varies, which naturally
influences their electrical resistance. For this reason
these structures were called “magnetic valve” structures
and the effect similar to the giant magnetoresistance was
called tunneling magnetoresistance. Experimental stud-
ies of these structures were started some time ago [17]
but an appreciable tunneling magnetoresistance at room
temperature, which makes these compounds potentially
useful for applications in microelectronics, was only
observed comparatively recently [11, 13, 14]. 

The Slonszewski quantum-mechanical model [18]
neglecting electron scattering and a quantum-statistical
model using the Kubo formalism [19, 20] have been pro-
posed to describe this phenomenon. It has been shown
that the magnetoresistance of tunnel-junction magnetic
structures is mainly attributable to d-electrons, in con-
trast to structures with a paramagnetic metal spacer
where the more mobile s-electrons play the most impor-
tant role.

In the present paper we put forward calculations of the
anomalous Hall effect produced as a result of skew scat-
tering of spin-polarized d-electrons caused by spin–orbit
interaction in a magnetic sandwich with a tunnel junction.
As far as we are aware, these are the first calculations of
this type. The calculations are based on the Kubo for-
malism using the method of Green’s functions and a
model developed in [10] to describe the anomalous
2000 MAIK “Nauka/Interperiodica”
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Hall effect in magnetic sandwiches with a nonmagnetic
metal spacer.

2. MODEL

We shall consider a sandwich consisting of two fer-
romagnetic layers of thickness a1 and a3 separated by a
thin dielectric spacer of thickness a2. The spacer should
be sufficiently thin (of nanometer order) so that the tun-
neling current, which decreases exponentially with
increasing layer thickness, can be observed. The tun-
neling current flows perpendicular to the plane of the
layers (z-axis) under the action of an external electric
field Ez produced by a voltage applied to the two mag-
netic layers. The magnetization vectors lie in the plane
of the layers (we assume that one of these is directed
along the z-axis) and may change their relative orienta-
tion from parallel to antiparallel depending on the
external magnetic field. The Hall conductivity ρ is then
measured along the x-axis and the Hall field is denoted
by Ex .

Electrons from the s- and d-bands of the metal layers
contribute to the tunneling current. However, since skew
scattering as a result of spin–orbit interaction can be con-
sidered to be negligible for s-electrons, the d-electrons
make the dominant contribution to the formation of the
anomalous component of the Hall field. In addition, the
d-band has stronger spin splitting which results in a
large conductivity difference between the different spin
channels. This is taken into account by introducing the
values of the Fermi quasimomentum kF↑ and kF↓ for the
d-subband electrons with projections of the spin mag-
netic moment parallel and antiparallel to the magneti-
zation, respectively. Thus, we shall subsequently con-
sider a system of d-electrons using the model of an
electron gas inserted in a structure with a spin-depen-
dent potential profile in the z direction, allowing for
spin-dependent skew scattering in the bulk of the ferro-
magnetic layers.

The ferromagnetic layers are considered to be suffi-
ciently thick so that interference of electron waves
reflected from their external boundaries can be neglected,
i.e., the size effect associated with quantization of the
z-projection of the electron quasimomentum in the two
potential wells of the metal layers can be neglected.
Allowance for this quantum size effect is outside the
scope of our formulated problem.

The structure of the magnetic sandwich is spatially
inhomogeneous in the z direction perpendicular to its
plane but the configuration-averaged quantities are
translationally invariant in the xy plane. Thus, we use a
mixed coordinate-momentum k–z representation where
k is the projection of the quasimomentum in the xy
plane and z is the coordinate along the z-axis. The elec-
tron wave function is a plane wave with the damping
γα = "2kFα /mlα as a result of scattering in the magnetic
layers and decays exponentially inside the dielectric.
Here m is the effective mass of the d-band electrons,
JOURNAL OF EXPERIMENTAL
lα is the mean free path of an electron having the spin
projection α = ↑  or α = ↓ , and " is Planck’s constant.
The origin on the z-axis is located at the center of the
dielectric layer a2. Then taking into account the condi-
tions for continuity of the Green’s function and its
derivative at the layer interface and also the conditions
for suppression of spatial correlations at infinity, the
Green’s functions of this problem may be written in the
form

for –a1 – a2/2 ≤ z' < z ≤ –a2/2,

(1)

for –a1 – a2/2 ≤ z ≤ –a2/2 ≤ z' ≤ a2/2.

for 

In these expressions the z-projection of the electron
quasimomentum in the ferromagnetic layers a1 and a3 is
denoted as

and inside the dielectric layer this is an imaginary quan-
tity:

where "2Q2/2m is the height of the potential barrier
above the Fermi level, the subscripts 1 and 3 indicate
the ↑  or ↓  spin projection of electrons in the selected
spin channel on the direction of magnetization in the
particular ferromagnetic layer a1 or a3, respectively and
a0 is the crystal lattice constant. We neglected here
small terms with respect to exp(–qa2). 
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The diagonal components of the conductivity tensor
σzz(z, z') and σxx(z, z') are calculated using the Kubo for-
mula [19]. The average value σxx(z, z') of the diagonal
conductivity in the layer plane when the coordinates z
and z' belong to the same ferromagnetic layer is the
same of the conductivity of the bulk sample. If z and z'
lie in different layers of the tunnel junction structure,
the diagonal conductivity is exponentially small. 

The expression for the off-diagonal (Hall) conduc-
tivity is written as [10]

(2)

where k is the projection of the electron quasimomen-
tum on the xy layer plane,

are the components of the velocity operator in the k–z
representation, the arrows indicate that the derivative
with respect to the coordinate is taken of the function to

the left or right of the velocity operator; (z, z') and

(z, z') are the advanced and retarded Green’s func-
tions of the d-electrons in the presence of a random
potential VA(B) responsible for scattering. These func-
tions can be obtained from the Dyson equation in the
first approximation with respect to spin–orbit interac-

tion  which is much smaller than the Fermi energy:

(3)

where (z, z') are the Green’s functions of the system
neglecting scattering and Tα(z'') is the matrix of scatter-

ing at impurities (zeroth order with respect to )
which is calculated in the coherent potential approxi-
mation for the random potential VA(B). We shall con-
sider a binary ferromagnetic alloy AxB1 – x so that the
potential at each site has the value εA with the probabil-
ity x and εB with the probability 1 – x. Allowing for
spin–orbit interaction with the constants λA and λB the
scattering potential at each site may be written in the
form

where M = (0, M, 0) is the magnetization vector. Sub-

stituting the Green’s functions (z, z') (3) into the
expression for the conductivity (2) and averaging over
the random impurity distribution, we obtain an expres-
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sion for the three-point Hall conductivity allowing for
skew scattering as a result of spin–orbit interaction:

This contains the Green’s functions with allowance for
attenuation of the electron states as a result of scattering
by impurities (1). 

We introduce the notation δ = εA – εB. For the calcu-
lations we need to assume that skew scattering as a
result of spin–orbit interaction of electrons having differ-
ent spin projections on the magnetization axis (↑  and ↓)
takes place in different directions: λ↑ = –λ↓ = λA – λB.
For small δ and λα we can write in the second Born
approximation

We shall now analyze the motion of spin-polarized
electrons across the tunnel junction in the direction of
the z axis. 

The expression for the primary current is written in
the form

(4)

Here (z') and (z')are the accelerating and Hall
components of the effective electric field for electrons
of spin α. In this definition the effective field corre-
sponds to the electrochemical potential gradient. 

The second term on the right-hand side of expres-
sion (4) may be neglected because of the smallness of
the spin–orbit interaction responsible for the appear-
ance of the Hall component, compared with the z-com-
ponent of the current. Then, assuming that the main
drop in the voltage applied to the sandwich takes place
at the dielectric layer (since its resistance is much
higher than the metal layers), from the condition of cur-

rent continuity ∂ (z)/∂z = 0 we can find relationships
between the electric fields in the different layers
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neglecting interference effects, which do not depend on
the coordinate z:

where  and  are the components of the electric
field in the ferromagnetic layers, and E2z is the compo-
nent in the dielectric. The Hall component of the elec-
tric field is obtained from the condition that the current
in the direction of the x axis is zero in each of the ferro-
magnetic layers:

(5)

For example, for the current jx in the x direction in
the ferromagnetic layer a1 we have from equation (5)

The effective electric field Ex does not depend on the
spin since in this structure there is no chemical poten-
tial gradient along the x axis. Note that in a nonmag-
netic dielectric the Hall field E2x is negligible because
of the absence of free electrons. We shall also assume

that both the diagonal (z, z') and off-diagonal

(z, z'', z' components of the conductivity tensor are
exponentially small if the coordinates z, z', or z'' lie in
different ferromagnetic layers. The expression for the
Hall field in the magnetic layer a1 then has the form

(6)
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Here the second term in braces reflects the influence of
the strong electric field E2z in the dielectric spacer on
the Hall component of the field in the neighboring
metal layer. The Hall field in the other ferromagnetic
layer E3x is calculated by analogy with the field (6).

The value which can be measured experimentally is
the Hall resistivity averaged over the thickness of the
entire magnetic sandwich which is given in the form

where the “+” sign is taken for a parallel configuration
of metal layer magnetizations and the “–” sign is taken
for an antiparallel configuration because in this case the
Hall field in the ferromagnetic layers is in opposite
directions,

is the total primary current flowing along the axis per-
pendicular to the sandwich plane (4).

Thus, we obtained expressions for the Hall resistiv-
ity of a magnetic sandwich with a tunnel junction
across a dielectric spacer for both configurations of the
magnetization. These expressions are given in the
Appendix.

3. DISCUSSION OF RESULTS

For greater clarity of the results, the expressions for
the Hall resistivity of the magnetic sandwich are nor-
malized to the reduced magnetic moment and the Hall
resistivity of a bulk sample of the same ferromagnetic
material:

where B and D are constants, D = x(1 – x)(1 – 2x)δ2 ,
B = e2"3/8π2m. 

This made it possible to study different types of
effects associated with the introduction of a tunnel
junction into the magnetic structure. 

First, it should be noted that a tunnel junction across
a dielectric spacer creates a considerably greater obsta-
cle for the electron motion compared with scattering at
impurities and crystal-lattice defects inside the metal
layers since the coefficient of electron transmission
decreases exponentially with increasing dielectric
thickness. Thus, we can assume that if the potential dif-
ference applied to the two magnetic layers of the sand-
wich is constant, the main voltage drop takes place at
the dielectric spacer. This assumption holds as far as
very large metal thicknesses (of the order of meters for
a dielectric thickness of around 10 Å) when its resistiv-
ity is of the same order of magnitude of that of the tun-
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nel junction. If the thickness of the metal layers is not

so large, the accelerating component  of the effec-
tive field in each ferromagnetic layer does not depend
on its thickness but depends on the transmission coeffi-
cient of the potential barrier for electrons having the
spin projection α on the magnetization axis. This situa-
tion differs fundamentally from the case of a bulk sam-
ple where the field is simply equal to the ratio of the
potential difference to its thickness and is the same for
any direction of electron spin. 

If the current strength is fixed perpendicular to the
plane of the layers, the ratio of the resistivities of the
two current channels with a different direction of spin
for the entire sandwich will not be the same as that for
the homogeneous metal and thus, the ratio of the effec-
tive fields will differ. Consequently the distribution of
the effective electric field in a magnetic sandwich with
a tunnel junction where the current flows perpendicular
to the layers will differ fundamentally from the field in
a metal film or a bulk sample. This strongly influences
the Hall effect and in particular explains why the nor-
malized Hall resistivity does not tend to unity as the
thickness of the ferromagnetic layers increases, i.e., in
addition to various types of size effects, this structure
also exhibits another important field redistribution
effect as a result of the presence of a tunnel junction.
This may be called the “geometric size effect” because
it only appears in a geometry where the current flows
perpendicular to the layers of a sandwich with a tunnel
junction and does not appear when the current flows in
the plane of the layers. Hence, the Hall resistivity of
this structure cannot be calculated simply as the sum of
the resistivities of two independent ferromagnetic films
connected in series.

The geometric size effect is responsible for the fact
that when the thickness of the magnetic layers is fairly
large so that other size effects can be excluded but not
large enough for the resistivity of the metal sections to
be comparable with that of the dielectric, the reduced
Hall resistivity of a sandwich with antiparallel orienta-
tion of the layer magnetization tends to

whereas for parallel orientation it tends to

Here M0/Ms is the ratio of the magnetic moment of the
bulk sample to the magnetic moment of an antiparallel-
magnetized sandwich of the same material and
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 are integrals proportional to the transparency of
the potential barrier for electrons having spin ↑  and ↓ ,
respectively (see Appendix). This effect is stronger for
an antiparallel configuration. Reflecting the field redis-
tribution mechanism described, the relationships for
the Hall resistivity given in the Appendix also have a
structure in which we can identify three contributions
describing the influence on the Hall effect in a magnetic
sandwich with a dielectric spacer:

(1) Skew scattering in the bulk of the ferromagnetic
layers with a typical field distribution for this structure;

(2) A classical size effect associated with the geo-
metric dimensions of the ferromagnetic layers and pro-
portional to the ratio of the electron mean free path to
the layer thickness;

(3) An effect associated with the influence of the
strong field in the dielectric on the electron motion in
the adjacent magnetic layer (this is a new size effect
obtained by us). 

If the sandwich layers are parallel magnetized, the
second and third effects yield contributions to the size
effect of the same order of magnitude but of opposite
sign, which is thus not very well defined and depends
weakly on the d-band splitting. Only the average Hall
resistivity varies (Fig. 1). 

In contrast, for an antiparallel magnetization config-
uration (Fig. 2), the influence of the field in the dielec-
tric on the skew scattering of band electrons near the
insulating layer is strongest because whereas in a parallel
geometry the motion of electrons having spins ↑  and ↓
is completely independent and the accelerating field of
the dielectric is mainly related to the transmission coef-
ficient of the potential barrier for spin ↑  electrons, in an

I2
↑ ↓,

0 0.2 0.4 0.6 0.8 1.0
0.7

0.8

0.9

1.0

1.1

kF↓ , Å–1

ρ↑↑ /ρ0

Fig. 1. Dependence of the normalized Hall conductivity of
a magnetic sandwich with a tunnel junction and a parallel
configuration of layer magnetization on the Fermi wave
vector kF↓  of spin ↓  electrons. The thickness of the layers
is a1 = a3 = 20 Å, a2 = 10 Å, the mean free path is l↑  = l↓  =

60 Å, kF↑  = 1 Å–1, and Q = 1 Å–1. 
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antiparallel geometry an electron tunneling from one
magnetic layer to another is converted to a different
subband. Then the transmission coefficient for both
directions of spin is the same and is related to the den-
sity of states of spin ↑  electrons and to the density of
states of spin ↓  electrons, and thus depends more
strongly on kF↓ and has a lower value. In this case, the
effective field in the magnet differs more strongly from
the field in the dielectric layer since their ratio is propor-
tional to the transmission coefficient of the potential bar-
rier. This leads to an increase in the size effect. We can
postulate that the reasons for the appearance of an
extraordinarily high Hall resistivity in granular magnetic
alloys [21] are associated with the effects described.

It has thus been shown that in a multilayer magnetic
structure with a tunnel junction, the anomalous Hall
effect not only includes the classical size effect but
another two new effects: a geometric size effect associ-
ated with the distribution of the effective electric field
when the current flows perpendicular to the structure
layers and the influence of the strong field of the dielec-
tric layer. 

APPENDIX

The expression for the Hall resistivity of a sandwich
with antiparallel magnetized magnetic layers is given by 

ρ↑↓ D
4B
-------λ m

π2
"

2
----------- 1

a1 a3 a2+ +( ) l↑ kF↑
2 l↓ kF↓

2+( )
---------------------------------------------------------------------=

× a1 a3–( ) l↑ kF↑
3 l↓ kF↓

3–( ) 9
4
---

l↑
2

kF↑
4

------- J↑ a1( ) J↑ a3( )–( )+




1

2

0 50 100 150 200 250 300 350 400

5

10

15

20

a1, Å
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Fig. 2. Dependence of the normalized Hall conductivity of
a magnetic sandwich with a tunnel junction and an antipar-
allel configuration of layer magnetization on the magnetic
layer thickness a1 for values of the Fermi wave vector kF↓  =

0.1 Å–1 (curve 1), and kF↓  = 0.2 Å–1 (curve 2); kF↑  = 1 Å–1.
The thickness of the other layers is a2 = 10 Å, a3 = 15 Å,

mean free path l↑  = 100 Å, l↓  = 60 Å, and Q = 1 Å–1.
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The Hall resistivity for a parallel magnetization con-
figuration is given by:
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Abstract—We investigated the in-plane magnetoresistance and the Hall effect of high-quality Bi2Sr2CuOx sin-
gle crystals with Tc (midpoint) = 3.7–9.6 K in dc magnetic fields up to 23 T. For T < 10 K, the crystals show the
classical positive magnetoresistance. Starting at T ≈ 14 K, an anomalous negative magnetoresistance appears at
low magnetic fields; for T ≥ 40 K, the magnetoresistance is negative in the whole studied range of magnetic
fields. Temperature and magnetic field dependences of the negative-magnetoresistance single crystals are
qualitatively consistent with the electron interaction theory developed for simple semiconductors and disor-
dered metals. As is observed in other cuprate superconductors, the Hall resistivity is negative in the mixed state
and changes its sign with increasing field. The linear T-dependence of  for the Hall angle in the normal
state closely resembles that of the normal-state resistivity as expected for a Fermi liquid picture. © 2000 MAIK
“Nauka/Interperiodica”.

θHcot
1. INTRODUCTION

The magnetic properties of high-Tc superconductors
(HTSC), especially of the highly anisotropic Bi- and
Tl-layered superconductors, are characterized by anoma-
lous quasi-two-dimensional (2D) states, which have been
very extensively studied in recent years [1]. In theoretical
and experimental investigations of high-Tc supercon-
ductivity, great interest has been focused on the analy-
sis of normal-state properties, because there is a wide-
spread viewpoint that the knowledge of these properties
can help to understand the exotic superconducting and
magnetic properties of HTSC. However, the normal-
state properties of HTSC also have several unusual fea-
tures. One of these is the coexistence of the metallic in-
plane resistivity ρab and the “semiconducting” out-of-
plane resistivity ρc (see, e.g., [2, 3]). Recently, this
behavior of ρab and ρc was measured by Y. Ando et al.
[4] in La-doped Bi2Sr2CuOy (Tc . 13 K) down to tem-
peratures as low as T/Tc ~ 0.04. This implies a 2D con-
finement and is incompatible with Fermi liquid behav-
ior. The temperature dependence of the normal-state
Hall coefficient RH is too strong to be easily under-
stood. In addition, near Tc, there is a sign change of the
Hall effect as a function of the magnetic field or temper-
ature. Moreover, the normal-state properties of HTSC
essentially depend on the carrier concentration or dop-
ing, and an additional quantum critical point in the
HTSC phase diagram has been proposed to explain this
dependence. It should describe a transition between the
non-Fermi-liquid corresponding to hole doping around

¶This article was submitted by the authors in English.
1063-7761/00/9006- $20.00 © 21042
and below the optimal doping and the Fermi liquid in
the overdoped regime.

A number of theories have been suggested to describe
the unusual transport properties of HTSC. Anderson [5]
has suggested that anomalous features of magnetotrans-
port data can be explained by a spin-charge separation in
CuO2 planes resulting in two different relaxation rates,
the transport relaxation rate and the Hall relaxation
rate. The first gives the linear-T resistivity ρxx , while the
second gives the Hall angle dependence

The Hall coefficient

is to have a 1/T-dependence. The different temperature
dependences of ρxx and θH provide evidence for a non-
Fermi-liquid transport. Both the experimental evidence
and a deviation from this suggestion were found for
YBa2Cu3O7, La2 – xSrxCuO4, and Bi2Sr2CaCu2O8 for
different doping. There are more conventional models
that are based on an anisotropy of the Fermi surface and
the scattering rate. In the latter case, the magnitude and
temperature dependence of the scattering rate are dif-
ferent on different parts of the Fermi surface [6]. At
present, no single theory is able to account for all the
anomalies found in the normal-state properties of
HTSC and it is unclear whether these properties can be
described by the conventional Fermi liquid theory.
Although many experiments have been done with the
aim of understanding the normal-state properties, sev-

θHcot ρxx ρxy⁄ aT2.= =

RH ρxy B⁄=
000 MAIK “Nauka/Interperiodica”
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eral basic measurements, such as dc transport, are not
well understood. Previous studies of dc magnetotrans-
port in HTSC [7–11] also showed contradictory results.
The mechanism responsible for the anomalous Hall
effect and its temperature dependences are still unclear.

The low-Tc phase Bi2Sr2CuO6 (Bi2201) of Bi-based
HTSC is an ideal material for measuring the magne-
totransport properties in cuprates at low temperatures,
because it has a very low Tc, while its structure and prop-
erties are closely related to HTSC. At the same time, pure
Bi2201 single crystals are difficult objects for investiga-
tion, because they are nonstoichiometric and, as a rule,
imperfect. For this reason, the greater part of the mea-
surements of physical properties have been carried out
on La-doped Bi2201 samples. The introduction of La
allows one to obtain single-phase samples and modify
the hole concentration. Unfortunately, this doping dete-
riorates the crystal quality. Details of nondoped Bi2201
single crystals remain unexplored up to now. Recalling
the debate about normal-state properties of cuprates, a
study of magnetotransport in pure Bi2201 single crys-
tals is clearly desirable. In this paper, we present mag-
netotransport measurements in high-quality nondoped
Bi2201 single crystals in the normal and mixed states
under magnetic fields up to 23 T.

2. EXPERIMENTAL

Sr-deficient Bi2Sr2CuOx single crystals were grown
in a gaseous phase in big closed cavities of a KCl solu-
tion-melt [12]. The number of crystals reached several
tens in the cavity, and their size was around 0.5–2.5 mm ×
0.4–2 mm × 1.5–5 µm. These freely grown single crys-
tals are free of the appearance of strains during the
growth process and when cooling to room temperature.
Properties of the crystals grown inside the same cavity
were closely similar. The high quality of the crystals
was verified by measuring the dc resistance and ac sus-
ceptibility and by X-ray diffraction and scanning elec-
tron microscopy. The composition of the crystals was
studied using a Philips CM-30 electron microscope
with a Link analytical AN-95S energy dispersion X-ray
spectrometer at the Lebedev Institute and at the Labo-
ratory of Solid State Physics, University of Groningen,
The Netherlands. The half-width of the main reflections
in the X-ray rocking curves for single crystals consist-
ing of two or three blocks did not exceed 0.3°, whereas
for crystals consisting of one block only (with the
dimensions 0.3 × 0.3 mm), it was less than 0.1°. Because
this value is close to the resolution limit of the diffracto-
meter, we analyzed the crystal perfection using the
supercell parameters that are more sensitive to structural
imperfections. Crystals with higher Tc contain no low-
angle boundaries. Well-separated Kα1 – Kα2 lines of the
supercell reflections in the X-ray diffraction profiles
and very narrow rocking curves imply structural per-
fection of the crystals [12]. As far as we know, this is
the best among the HTSC cuprates. Our single crystals
have a linear relationship between the Tc value and the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
monoclinic superlattice angle value [12], which is
directly related to the concentration of the carriers. The
values of the lattice parameters were in the range a =
5.360–5.385 Å and c = 24.60–24.638 Å according to
the magnitude range of Tc [13]. Low-resistance con-
tacts were made on the samples using evaporated and
fired-on gold films. A six-probe contact configuration
with a symmetric position of contacts on the ab-surface
of the sample was used for measuring the in-plane (Rxx)
and Hall (Rxy) resistances. Measurements of Rxx and Rxy
on different pairs of voltage contacts were simulta-
neously performed by turning the crystal through 180°.
To transform the measured resistances into specific
resistivities ρxx and ρxy , the sample dimensions were
determined by a high-resolution optical microscope.

The investigated crystals had critical temperatures
Tc = 4–9.5 K (midpoint transitions) with ∆Tc = 0.7–1.5 K
(10–90% points of the transition). The Tc value of the
crystals formed by our free-growth method ranges up to
13 K, but the crystals with Tc ≤ 9.5 K have better struc-
tural perfection. It should be noted that the onset
temperature of superconducting transitions and the
transition widths for the dc resistance and the ac sus-
ceptibility were very close. In the dc method employed
for the resistance measurements, the current was about
50–100 µA. The crystals were studied with the mag-
netic field B applied parallel to the c-axis. A configuration
with the in-plane transport current J perpendicular to B
was used. High-magnetic-field measurements were car-
ried out in continuous magnets at the High Magnetic
Field Laboratory in Grenoble.

3. RESULTS AND DISCUSSION

3.1. Resistivity and Transverse Magnetoresistance

The zero-field temperature dependence of the in-
plane resistivity ρab of our Bi2201 single crystals with
Tc < 5 K and Tc = 8–9.5 K was described in consider-
able detail earlier in [14, 15], respectively. As an exam-
ple, we display in Fig. 1 the typical temperature depen-
dences of the in-plane (ρab) and out-of-plane (ρc) resis-
tivities for two single crystals with Tc (midpoint) = 4.6 K
(A) and 9 K (B) under zero magnetic field. The inset in
Fig. 1 shows an expanded scale of the low-temperature
ρab(T) data near Tc . The crystals with Tc = 8–9.5 K
(type B) showed a nearly linear temperature depen-
dence ρab(T), whereas the crystals with Tc = 4–6 K
(type A) had a linear ρab(T) at high temperatures that
saturated to a residual resistivity ρ0 below 20–40 K. The
slope ∆ρab/∆T of 0.5–1.5 µΩ cm/K was obtained at high
temperatures. In the present measurements, only the
crystals with the residual resistivities ρ0 = 50–140 µΩ cm
were investigated. In samples with higher Tc , smaller ρ0
and larger ∆ρab/∆T values were observed. As the Tc
value of the crystal decreases, the temperature depen-
dence of the resistivity changes from

ρ0 AT BT2+ +
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with the strong linear term for the type B crystals to

for the type A samples. Recently [16], it was also shown
for Tl2Ba2CuO6 + δ single crystals that as the doping
increases, the temperature dependence of ρab changes
from linear in the optimally doped samples to ρab(T)
with a considerably larger curvature in overdoped sam-
ples with reduced Tc . In our single crystals, there is a
linear relationship between the Tc value and a mono-
clinic superlattice angle value [12] that is directly

ρ0 AT BT2 CT3+ + +
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Fig. 1. Temperature dependences of the in-plane ρab and
out-of-plane ρc resistivities for two single crystals with Tc
(midpoint) = 4.6 (A) and 9 K (B) under zero magnetic field.
The inset shows an expanded scale of the low-temperature
ρab(T) data near Tc.
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Fig. 2. Main panel: the zero-field resistivity vs temperature
for one of the crystals (open circles). The stars show the
resistivity data at B = 20 T taken from the resistivity satura-
tion region. The inset shows an expanded scale of the low-
temperature data.
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related to the concentration of carriers [17]. The out-of-
plane resistivity ρc(T) of Bi2201 single crystals varies
as T–α with α = 0.7–1.6 over the temperature region T =
4–300 K. The largest anisotropy ratio ρc/ρab is 5.3 × 104

at T = 0.4 K.

In the two-dimensional model, from the effective
sheet resistance per CuO2 layer, the residual resistivity
ρ0, and the interlayer spacing (c/2), we determined the
disorder parameter values [18]

for two limiting values ρ0 = 50 and 140 µΩ cm, respec-
tively (kF and l represent the Fermi wave vector and the
elastic scattering length in the ab-plane). We measured
the normal-state Hall coefficient RH in the temperature
region 4.2–50 K (see below) and determined the carrier
density in our crystals n = (4.8–6.3) × 1021 cm–3. The
carrier density in the lower Tc samples was larger than
that in samples with Tc = 9 K. According to the data
obtained by Tsvetkov et al. [19], in optical experiments
with our Bi2201 single crystals, the value of the carrier
density equals n = 5.1 × 1021 cm–3 at 10 K and the effective
mass in the ab-plane is m* = 3m0. Based on the Fermi liq-
uid theory and the assumption of a cylindrically shaped
Fermi surface with a highly anisotropic dispersion rela-
tion, Kresin and Wolf [20] proposed a model to analyze
the normal-state properties of the cuprates. If we take the
Sommerfeld constant γ ≈ 9.2 mJ mol–1 K–2 from the heat-

capacity data for Bi2201 [21] and EF = (π2 /3)n/γ [20],
we obtain with the averaged value n ≈ 5.6 × 1021 cm–3, the

Fermi velocity  ≈ 1.7 × 107 cm/s,  = 0.45 Å–1, and
l ≈ 130–50 Å for (kFl)ab = 60–20. It should be noted that
ρab(0) and ∆ρab/∆T were obtained using the Montgom-
ery method. As shown in [22], however, they can be
twice the values obtained by means of the Van der Pauw
4-probe methods. It is known that this discrepancy is
due to a strong anisotropy of the layered cuprates. It has
been shown [23] that in YBa2Cu3O7 with ρc @ ρab, the
absolute value of ρab measured by the contacts on one
side of the single crystal is roughly two times greater
than that obtained with the current and voltage contacts
on opposite sides of the sample. A similar phenomenon
was also observed in our specimens [15]. This uncer-
tainty may far exceed the 10% error that is due to mea-
surements of the crystal thickness.

Some of the superconducting properties and the
magnetic phase diagram of our Bi2201 crystals were
described in detail earlier [15]. In the study of the
superconducting resistive transition of the crystals in
magnetic fields, we observed that all transition curves
in the magnetic field saturated at temperatures down to
0.4 K. In Fig. 2 (main panel), the zero-field resistivity
is plotted as a function of the temperature (open circles)
for one of the studied crystals. The stars represent the
data points for ρab(T) measured in the magnetic field

kFl( )ab c 2⁄( )h e2ρ0 60–20≈⁄=

kB
2

v F kF
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B = 20 T. At temperatures T < Tc , the resistivity data
were determined from the resistive transition as a func-
tion of the magnetic field in the saturated portion of the
ρab(B) curves. This presented no special problems,
because the resistive transitions in the normal state for
a given sample are completed at 20 T and all the ρab(B)
curves saturate to the same value, even at the lowest
experimental temperature (see Fig. 5). The inset in Fig. 2
shows an expanded scale of the low-temperature data.
The high-magnetic-field measurements testify that the
ab-plane resistivity in the normal state shows the ordi-
nary behavior for a metal down to 0.4 K. Analogous
results were obtained on the low-Tc phases of Tl2201
[24] and La-doped Bi2201 [4]. The question of the coex-
istence of metallic in-plane resistivity with “semiconduct-
ing” out-of-plane resistivity down to low temperatures has
been attracting much attention recently, and several
models have been proposed to explain it.

In Fig. 3, we have plotted the magnetoresistance
data

for four samples at various temperatures that were
extracted from the experimental curves ρab vs. B. The
zero-field transition temperature regions are equal to
3–4.5 K, 3.8–4.3 K, 6–7.5 K, and 6.8–8 K for the
respective samples nos. 8, 3, 10, and 11. At relatively
low temperatures just above Tc, we observed a positive
magnetoresistance with a quadratic dependence up to
about 8 T. At higher fields, the magnetoresistance satu-
rates (for lower Tc samples) or goes over to a linear
dependence (for higher Tc samples, Fig. 3). The magne-
toresistance magnitude in the low-Tc samples with
larger ρ0 was nearly three times greater than that in the
samples with Tc = 8–9 K and lower ρ0. A simple esti-
mate shows that the weak-field regime is realized in
magnetic fields up to 20 T even at low temperatures.
Considering the quadratic dependence of ∆ρ/ρ(0), it
can then be believed that in the ab-plane at low temper-
atures in the magnetic fields B || c, Bi2201 behaves like
a conventional many-band metal with closed electron
trajectories in k space. “Saturation” of the magnetore-
sistance in low-Tc samples is most likely caused by a
magnetic breakdown between semiclassical trajectories
closely disposed in k space. On the other hand, it is quite
possible that for the low-Tc samples, the intermediate-
magnetic-field regime is realized and the magnetoresis-
tance in Fig. 3 actually saturates in accordance with the
models based on the anisotropy of the Fermi surface,
the effective mass, and the scattering rate [6]. The phys-
ical origin of the weak- and intermediate-field magne-
toresistance in HTSC has been studied in detail in
Tl2Ba2CuO6 + δ single crystals [25]. Our results obtained
for the lower Tc samples are in qualitative agreement
with these experiments. The obvious source of the posi-
tive magnetoresistance at low temperatures is the ordi-
nary suppression of superconducting fluctuations. How-
ever, this effect is probably very insignificant, because the

∆ρ ρ 0( )⁄ ρ B( ) ρ 0( )–[ ] ρ 0( )⁄=
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magnetoresistance shown in Fig. 3 continues to increase
under magnetic fields that are larger than the upper critical
fields of Bi2201 [15].

At T < 40 K, the magnetoresistance decreases rap-
idly with increasing temperature in all the crystals stud-
ied. Starting at T ≈ 14 K (Fig. 3), an anomalous negative
magnetoresistance appears at low magnetic fields; for
T ≥ 40 K, the magnetoresistance is negative in the
whole studied range of magnetic fields. The absolute
magnitude of the magnetoresistance increases with
temperature but decreases again at higher temperatures
(≥100 K). In the temperature range 40–135 K, the neg-
ative magnetoresistance varies as B2 for low fields, is

proportional to  at intermediate fields, and is better
described by the lnB-dependence for high fields. At
very high magnetic fields, the magnetoresistance tends
gradually towards saturation.

Converse results were obtained in earlier measure-
ments of the transverse magnetoresistance in nonsuper-
conducting Bi2Sr2CuO6 crystals with the field normal
to the ab-plane [26]. In [26], at magnetic fields of 0–8 T,
the magnetoresistance was negative in the temperature
range 0.5–20 K and became positive with increasing
temperature above 20 K. To account for these results,
the authors invoked the localization theory [18], which
describes the low-temperature negative magnetoresis-
tance in conventional metals in a weak-localization
regime. Since all wave functions are localized in disor-
dered electron systems, the zero-field conductivity
decreases with decreasing temperature and vanishes at
zero temperature. The negative magnetoresistance
resulted from magnetic field suppression of localiza-
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tion effects. The zero-field temperature dependence of
the ab-plane resistivity in the studied samples [26] had
a “semiconducting” form at T below 20 K, and localiza-
tion effects should be very important, especially at low
temperatures. In our crystals in the zero magnetic field,
on the other hand, we observed a nearly linear temper-
ature dependence ρab(T) (samples with Tc = 8–9.5 K) or
a weak departure from it at low temperatures (samples
with Tc = 4–6 K). In fact, localization theory [18] pre-

dicts a linear relationship between ∆σ and  at rela-
tively high fields, with the temperature-independent

slope σ-vs- . The ∆σ data are shown in Fig. 4a as a

function of  for various temperatures. One can see

that in the region where the -dependence of ∆σ is

close to linear, the ∆σ-vs-  slope is different at dif-
ferent temperatures. In addition, a simple estimation
shows that the values of ∆σ are much larger than those
predicted by the theory [18]. It might be assumed,
therefore, that localization effects play a minor role in
the conductivity of our samples.

On the other hand, an effort can be made to explain,
at least qualitatively, the behavior of the negative mag-
netoresistance in our samples at high fields for T > 15 K
on the basis of the interaction effects [18]. Altshuler et al.
[27] considered the Coulomb electron–electron interac-
tion effect on the magnetic field dependence of the con-
ductivity in disordered systems. Electron interaction
theories, as well as the theory related to localization,
lead to similar B-dependences of the magnetoresis-
tance. In the three-dimensional (3D) case, the conduc-
tivity change with the magnetic field is expected to be

linearly related to B2 for low fields and to  for high

fields. In the 2D case, the -dependence is replaced
by the lnB-dependence. Recalling that we are dealing
with a quasi-two-dimensional system, we can explain
the observed lnB-dependence of the magnetoresis-
tance. Localization leads to a negative magnetoresis-
tance, whereas the electron gas interaction due to spin
splitting and orbital effects leads to a positive magne-
toresistance [18]. The sign of the interaction magne-
toresistance caused by the influence of the magnetic
field on the kinetic coefficients is determined by the
interaction constant sign, and negative magnetoresis-
tance indicates an attractive electron interaction [27].
This magnetoresistance is already essential at classical
small fields and can be observed even in relatively clean
metals at high temperatures such that "/τ @ kBT, where
τ is the electron relaxation time [27]. It follows from the

interaction theories that ∆σ is also proportional to 

but σ(B, T) has a -dependence at a sufficiently high
fixed field [18, 27]. The data in Fig. 4b show a clear-cut

linear -dependence of σ(B, T). The interaction the-
ory predicts that in high fields, the magnetoresistance

B

B

B

B

B

B

B

B

T

T

JOURNAL OF EXPERIMENTAL
depends on the electron–electron interaction constant
only and that it saturates at a B value such that

where ωc is the cyclotron frequency

that is, at

We determined the electron relaxation time

from the data for the carrier density n and resistivity ρab

in this sample (no. 11). Taking into account that

we next found that in the temperature region 35–100 K,
the saturation in the magnetoresistance is observed at

where B is measured in T and T in K. The values of B
estimated from this relation are 8, 13, 19, and 30 T at
the respective temperatures T = 38, 55, 72, and 102 K.
These are in good agreement with the observed experi-
mental values of ∆σ(B, T) in Fig. 4.

We cannot perform a quantitative analysis of the inter-
action correction to the conductivity ∆σint(T), because the
interaction theory [27] has been developed for simple
semiconductors and disordered metals, whereas Bi2201 is
a high-anisotropic layered compound. However, the qual-
itative behavior of negative-magnetoresistance Bi2201
single crystals is consistent with the attractive electron
interaction considered in [18, 27]. This is indicative of a
tendency to electron attraction in the temperature region
where the high-Tc superconducting phases Bi2212 and
Bi2223 exist, in spite of the lack of these phases in our
Bi2201 single crystals.

3.2. Mixed- and Normal-State Hall Effect

As pointed out above, previous experiments with
YBa2Cu3O7 [28, 29], Tl2Ba2CaCu2O8 + δ [30], and
HgBa2CaCu2O6 [31] have shown a sign-reversal anom-
aly of the Hall coefficient RH at T near Tc . A large num-
ber of models have been proposed to describe this phe-
nomenon, and a consensus regarding their origin has
evidently been attained. Dorsey and Kopnin et al. [32]
have found that a flux-flow Hall conductivity is the sum
of quasiparticle and vortex parts

with  having the same sign for any vortex direction

[32] and  being independent of the pinning. The sign
change during measurements of the Hall resistivity

ωcτ kBT EF,⁄≈

ωc eB m∗ ,⁄=

B 2kBT v F
2eτ .⁄≈

τ T( ) m∗ ne2ρab T( )⁄=

∆σ σ0 ∆ρ ρ0,⁄≈⁄

B 0.2–0.3( )T ,=

σH σH
n σH

f ,+=

σH
f
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We have measured the field dependence of the
mixed-state Hall effect on one of our Bi2201 single
crystals (no. 24) with Tc = 8.7–9.5 K at various temper-
atures down to 0.4 K. In Fig. 5, we report the resistive
transitions of this crystal in a magnetic field directed
perpendicular to the ab-plane at different temperatures.
In spite of a strong broadening of the magnetic transi-
tions, one can see that the resistive transitions in the
normal state are completed at 25 T, even at the lowest
experimental temperature. We find that the Hall resis-
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Fig. 5. Resistive transitions of crystal no. 24 in a magnetic
field B || c at different temperatures.
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tivity ρxy(B) at T < Tc is negative with a broad minimum
at low fields and is hole-like at high fields in the normal
state.

The theories developed for viscous flux motion
[32–34] have shown that the low-field Hall conductivity

(at ρxy ! ρxx) is negative in the mixed state and
inversely proportional to B, while the normal-state σxy

is positive and proportional to B. We converted ρxy into
the Hall conductivity, and as can be seen from Fig. 6
showing the upper parts of the σxy(B) curves, our results

σxy ρxy ρxx
2⁄=

Hσxy , T µΩ–1 cm–1

0

–0.005
0 4 8 12

B, T

σxy, µΩ–1 cm–1

B, T

T = 4.2 K

0.002

0

–0.002

–0.004

–0.006

no. 24    B || c    J || ab
×10

17 K

4.2 K
 1.44 K
0.82 K
0.47 K

0 5 10 15 20 25

Fig. 6. The Hall conductivity σxy vs. B || c at various temper-
atures below the zero field Tc (crystal no. 24). The inset
shows the magnetic field dependence of the product Bσxy at
T = 4.2 K along with a linear data extrapolation (crystal no. 24).
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are in agreement with the above-mentioned theories for
viscous flux flow. In the inset, the magnetic field depen-
dence of the product Bσxy at T = 4.2 K is shown along
with a linear extrapolation. These results are also in
complete agreement with similar experimental data
obtained in untwinned YBa2Cu3O7 crystals [29] and
Tl2Ba2CaCu2O8 + δ thin films [30].

Several features of the normal-state Hall effect were
already mentioned in the Introduction. To these must be
added a nonregular change of the temperature depen-
dence of the Hall coefficient RH(T) at different carrier
concentrations that leads to considerable difficulties in
interpreting the experimental data [16]. Anderson [5]
has shown that plotting  = ρxx/ρxy vs. T is a better
way to describe the transport properties of highly cor-
related systems. By separating relaxation rates of carri-
ers between their motion, Anderson’s theory predicts
that  can be expressed as

where a is independent of the doping level and b
depends on it. The evidence for this behavior has been
obtained in experiments with many cuprates. At the
same time, a significant deviation from the T 2-depen-
dence for  was observed at temperatures below
25 K in Tl2Ba2CuO6 + δ [16], below 100 K in overdoped
La2 – xSrxCuO4 [35], and in La-doped Bi2201 [36].

Figure 7a shows the temperature dependence of the
normal-state Hall constant RH = ρxy/B for single crystal
no. 46 (Tc = 8.7–10.5 K) at 20 T. At higher tempera-
tures, RH is nearly independent of the temperature in the
normal state, except for a slight broad maximum in the
region 25–100 K. In spite of a considerable body of the-
oretical works devoted to the temperature dependence

θHcot

θHcot

θHcot a bT2,+=

θHcot
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of RH in HTSC, the mechanism responsible for this
maximum, which is characteristic of cuprates [37],
remains to be explored. The decrease in RH with tem-
perature, which is in agreement with other reports, is
most likely caused by the proximity of the supercon-
ducting transition and superconducting fluctuations.
The magnitude and the temperature dependence of RH
obtained here agree closely with the experimental data
for La-doped Bi2201 [35] and nondoped Bi2201 [37]
single crystals.

In Fig. 7b, we report the temperature dependence of
the Hall angle  at 20 T showing the linear depen-
dence (dashed line), together with ρxx at 0 (solid line)
and 20 T (symbols). A linear temperature dependence
is found for ; it is the same as the temperature
dependence of the resistivity. This behavior is expected
for a metallic system in the low-field limit for uniform
scattering on the Fermi surface.

One can see that in optimally La-doped Bi2201
polycrystal samples [13] and films [38] with the maxi-
mum value Tc . 25 K for Bi2201, a carrier density near
n = 3 × 1021 cm–3 was obtained. Although the depen-
dence of Tc on the carrier density in nondoped Bi2201
is different from that in La-doped Bi2201, it should be
assumed that our crystals are overdoped because of a
significant excess of Bi. On the other hand, as reported
in [35], the carrier concentration in underdoped
Bi2Sr2 – xLaxCuO6 + δ single crystals with Tc = 13 K is
similar. Because the largest value of Tc in our pure
Bi2201 single crystals approximately equals 13 K, the
samples studied here with Tc = 8.7–10.5 K are most
likely to be near the optimal doping. Taking a relatively
large value of the elastic scattering length into account,
this assumption seems plausible. Moreover, the comple-
mentary measurements of our Bi2201 single crystal com-
position performed at the Material Science Center, Uni-

θHcot

θHcot
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versity of Groningen (The Netherlands) have shown that
our crystals are slightly underdoped by the oxygen
depletion. We presented here the Hall effect data from
two samples with the highest Tc , but all basic features
were also observed in other samples.

In summary, we have studied both the in-plane mag-
netoresistance and the Hall effect in several high-qual-
ity Bi2Sr2CuOx single crystals with the critical temper-
ature Tc (midpoint) = 3.7–9.6 K in dc magnetic fields up
to 23 T. We found that the crystals show the classical
positive magnetoresistance for temperatures T < 10 K.
Above 14 K, an anomalous negative magnetoresistance
appears that is qualitatively discussed in view of the
electron–electron interaction effects in charge transport.
As observed for other cuprate superconductors, the Hall
resistivity is negative in the mixed state and changes its
sign with increasing field. The linear T-dependence of

 for the Hall angle in the normal state closely
resembles that of the normal-state resistivity, as
expected for a Fermi liquid picture.
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Abstract—The electron thermal flux and electron thermal conductivity of the interface between a normal metal
and a high-temperature superconductor (HTSC) are calculated using quasiclassical equations. Calculations are
made for various values of the interface transparency and various orientations of the axes of a HTSC crystal. It
was shown that compared with an interface between a normal metal and an “ordinary” superconductor (s-type
symmetry, isotropic order parameter), the thermal conductivity of an HTSC–normal-metal interface is substan-
tially higher and has a nonactivation dependence. The thermal properties were calculated for various interface
models, including mirror and diffuse, and also for various potential barrier profiles. An analysis is made of the
possibility of using devices based on normal-metal–HTSC interfaces for bolometric and microrefrigerator
applications. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Recent interest in thermoelectric effects in struc-
tures containing interfaces between normal (N) and
superconducting (S) materials has been associated with
the development of a new type of electromagnetic radi-
ation detector, a hot electron bolometer with Andreev
reflection of electrons in superconducting banks,[1–12]
developed for the Russian segment of the International
Space Station [4]. This bolometer is a thin film of N
metal sandwiched between superconducting electrodes
which supply the signal current. The temperature of the
electron gas in the film is monitored by additional S–I–
N tunnel junctions positioned in the central part of the
N film. 

Two types of thermoelectronic effects are used in
this device. The first takes place at the S–I–N interface
and consists in the generation of a thermal flux induced
by the electric current flowing across the interface. We
shall subsequently take a positive thermal flux to imply
the direction which leads to cooling of the N metal and
a negative flux to imply a flux which results in heating.
This effect is used for preliminary cooling of the elec-
tron gas in the N film [1, 5, 13] and is similar [14] to the
Peltier effect in metal–semiconductor junctions. As a
result of the presence of an energy gap ∆ in supercon-
ductors, electrons having energies ε higher than the gap
are removed more effectively (for a corresponding bias
across the junction) from the N metal than electrons
having energies below the gap. This reduces the effec-
tive electron temperature in the N metal. However,
1063-7761/00/9006- $20.00 © 21050
unlike semiconducting structures, S–I–N junctions
have an additional channel for propagation of electrons
of energy |ε| < ∆ across the interface as a result of
coherent Andreev reflection [15]. The efficiency of
Andreev reflection is proportional to D2 where D is the
transparency of the interface. As D increases, the cool-
ing effect is rapidly suppressed until the sign of the
thermal flux changes, i.e., overheating of the electron
gas occurs for completely transparent interfaces. 

This second effect, involving substantial overheat-
ing of the electron gas in the N film of an S–N–S struc-
ture with transparent S–N interfaces, is used in the new
types of bolometers. The heat dissipated as a result of
the signal current flowing across the N film cannot be
transferred to the substrate because of the low effi-
ciency of the phonon mechanism of heat transfer in the
operating temperature range (T < 1 K) nor can it be
transferred to the electrons because of the low thermal
conductivity of the transmitting S–N interface. The
overheating is set by one of the S–I–N tunnel junctions
while the other S–I–N structures [5, 13] are used for
preliminary cooling of the electron gas in the N film. 

Electron heat transport in ordinary isotropic super-
conductors with s-type pairing was analyzed theoreti-
cally in [14, 15]. It was shown that in the tunnel limit
(D ! 1) the maximum cooling power is proportional to
∆ whereas the thermal conductivity of a pure S–N inter-
face is proportional to exp(–∆/T) where T is the operat-
ing temperature of the junction. Thus, both thermoelec-
000 MAIK “Nauka/Interperiodica”
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tronic effects become more significant as the supercon-
ductor energy gap increases.

The aim of the present study is to make a theoretical
analysis of these thermoelectronic effects in structures
with an HTSC electrode. The solution of this problem
is of both practical and fundamental interest. This is
because in HTSC materials the energy gap is not only
considerably greater than that in ordinary superconduc-
tors but is essentially anisotropic and has d-type sym-
metry. 

The existence of this anisotropy should lead to the
discovery of additional channels for heat transport
across the interface between a N metal and a d-type
superconductor (N–I–D and N–D interfaces) via sub-
gap [16, 17] and Andreev bound states [18]. In addition,
a reduction in the coefficient of specular reflection
accompanying electron scattering by the interface leads
to s-type nongap superconductivity being induced in its
vicinity [19] which should be accompanied by substan-
tial suppression of thermoelectric effects. 

It should also be noted that electron heat transport
across an N–I–D structure depends strongly on the pro-
file of the potential barrier at the interface. For “irregu-
lar” barriers comprising a large number of “punctures”
simulated by δ-functional scatterers of transparency D
in an almost nontransparent interface [20, 21], the ther-
mal effects should be strongly influenced by the differ-
ence between the order parameters in the directions
corresponding to the angles of electron incidence and
reflection [17]. However, for extended barriers satisfy-

ing the condition κ0d @ 1 (κ0 = , d is the
barrier half-width, V is its height, and µ is the chemical
potential), transport is only significant in the narrow
cone of angles normal to the interface. 

The aim of the present study is to analyze electron
thermal effects in N–I–D structures taking all these fac-
tors into account. 

2. MODEL OF AN N–I–D JUNCTION

We shall assume that an N–I–D junction has the
form of a constriction with geometric dimensions much
shorter than the coherence length of the superconductor
and also the elastic and inelastic electron scattering
lengths in the metal. This assumption allows us to
neglect any suppression of the order parameter in the
superconductor as a result of the closeness to the N
metal for any transparency of the N–D interface. We
shall also assume that the Fermi surface of the HTSC
material is cylindrical (we shall analyze transport in the
ab plane). We express the transport of quasiparticles
across the junction in the form of a sum of several
decoupled transverse modes. The current in each mode
is described by the probabilities of Andreev A(ε, θ+)

2m V µ–( )
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and normal B(ε, θ–) reflections from the surface of the
superconductor [14, 22]:

(1)

Here θ+ = θ is the angle of incidence of an electron on
the superconductor surface, θ– = π – θ corresponds to a
specularly reflected electron, and R = 1 – D is the elec-
tron reflection coefficient. The functions a±(ε) in (1) are
the coefficients of Andreev reflection from a pure inter-
face having the transparency D = 1, corresponding to
the angles θ±. The angular and energy dependence of
the coefficients a±(ε) is determined by the choice of
interface model and will be calculated below. 

Using the reflection coefficients (1), we can write
the balance equations for the distribution functions of
electrons moving away from and toward the interface at
an angle θ to the normal. For electrons moving from the
N metal toward the interface the distribution function is
the same as the Fermi distribution shifted by eV: f+(ε) =
f(ε – eV) where V is the voltage drop at the interface. 

Electrons moving away from the interface toward
the N metal at the angle θ occur as a result of three pro-
cesses [22]:

(1) Holes moving away from the N metal at the
angle θ undergo Andreev reflection to form electrons
with the probability A(ε, θ+):

(2) Electrons moving from the N metal at the
angle π – θ are specularly reflected with the probability
B(ε, θ–);

(3) Quasiparticles approaching the interface from
the superconductor enter the N metal with the probabil-
ity 1 – A(ε, θ+) – B(ε, θ–). 

Thus, the distribution function f–(ε, θ) of electrons
moving toward the N metal at the angle θ has the form

(2)

Then, following the method put forward in [14] and
bearing in mind the angular dependence of the distribu-
tion functions in (2) of fundamental importance for
HTSC, we obtain the thermal flux across the N–S inter-
face

(3)

where k0 is the absolute value of the wave vector at the
Fermi surface.

A ε θ+,( )
D2 a+ ε( ) 2

1 Ra+ ε( )a– ε( )– 2
--------------------------------------------,=

B ε θ–,( )
R 1 a+ ε( )a– ε( )– 2

1 Ra+ ε( )a– ε( )– 2
--------------------------------------------.=

f – ε θ,( ) A ε θ+,( ) 1 f + ε–( )–[ ] B ε θ–,( ) f + ε( )+=

+ 1 B ε θ–,( )– A ε θ+,( )–[ ] f ε( ).

j
k0

2π2
"

------------ ε ε eV–( )d∫=

× θ θ f + ε( ) f – ε θ,( )–[ ] ,cosd

π/2–

π/2

∫
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In addition to determining the thermal flux (cooling
power), for bolometric applications it is also interesting
to calculate the thermal conductivity κ = j/δT of an
ideal interface (having the transparency D = 1) where
δT is the small difference between the temperatures of
the N metal and the superconductor. The expression for
the thermal conductivity is obtained from (3)

(4)

and is the same as the expression for an ordinary aniso-
tropic superconductor since (4) only depends on a sin-
gle angle θ. A similar situation occurred in calculations
of the current–voltage dependence of a HTSC–normal-
metal junction having the interface transparency D = 1
[17].

Formulas (1)–(4) express the thermal flux and ther-
mal conductivity as a function of the voltage, tempera-
ture, angle of orientation α of the HTSC crystal, and
interface transparency D and reduce the problem of
finding them to determining the energy and angular
dependences of the coefficients of Andreev reflection
a±(ε, θ).

3. ANDREEV REFLECTION COEFFICIENTS

For the case of an atomically abrupt mirror N–D
interface the coefficients of Andreev reflection a±(ε)
depend on the angle of orientation α of one of the crys-
tal directions in the ab plane relative to the normal to
this plane. For α = 0 no suppression of the order param-
eter occurs near the N–D interface and the coefficients
a±(ε) have the normal form deduced from BCS theory
(see, for example [14, 17]):

(5)

where the order parameter should be taken to be the
values ∆± = ∆(θ±) = ∆0(T)cos[2 ] which allow
for its anisotropy.

For arbitrary α the coefficients a±(ε) were calculated
numerically in two stages [23, 24]. At the first stage by
solving the quasiclassical Eilenberger equations 

(6)

(7)

κ
k0kBT2

2π2
"

---------------- ε2eε εd

1 eε+[ ]2
-------------------- θ θ 1 a+ ε( ) 2–( )cosd

π/2–

π/2

∫∫=

a±

ε ε( )sgn ε2 ∆±
2––

∆±
---------------------------------------------------, ε ∆± ,>

ε i ∆±
2 ε2––

∆±
------------------------------------, ε ∆± ,<









=

θ α+−( )

ν θdp
dx
------cos 2ω ∆p+( ) p ∆–+ 0,=

ν θdq
dx
------cos   2ω ∆p+( )– p ∆+ 0,=
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(8)

where 〈…〉 = (1/2π) dθ', we determine the spa-

tial dependence of the order parameter ∆(x) for various
values of the angle of orientation α. The functions p and
q were introduced in [23] to parametrize the Eilen-
berger equations. They are related to the Eilenberger
functions f, f+, and g by

(9)

Equations (6)–(8) were closed by boundary conditions
determined from the condition for obtaining a spatially
homogeneous solution inside the superconductor:

(10)

The interface of the N–I–D structure was simulated by

a layer of thickness in which strong diffuse scattering
of electrons occurred. It was shown in [19] that at this
interface the functions p(0, θ) and q(0, θ) should be
related by 

(11)

where 

and l is the electron mean free path in the diffuse layer.
The first term in (11) describes the correlation between
an electron approaching the interface in the direction
characterized by the angle –θ and an electron reflected

from the interface in the direction θ. For   0 this
terms yields a boundary condition valid for completely
specular electron reflection:

(12)

The second term in (11) is responsible for the average
contribution to the electron flux moving away from the
interface in the direction θ made by particles approach-

ing the interface at all other angles. For  @ l the sec-
ond term in (11) is the determining factor since as a
result of strong multiple scattering in the diffuse layer,

∆ T
Tc

----- 2πT
∆
ω
---- 2 2 θ α–( )( )cos–

ω
∑+ln

× 2 2 θ' α–( )( ) p q+
1 pq+
----------------cos 0,=

…( )
0

2π∫

f
2 p

1 pq+
----------------, f

+
 = 

2q
1 pq+
----------------, g

1 pq–
1 pq+
----------------.= =

q ∞ θ,( ) p ∞ π θ+,( ) ω2 ∆2 ∞( )+ ω–
∆ ∞( )

------------------------------------------= = .

d̃

q 0 θ,( ) p 0 θ–,( )
1 F G–( ) k̃ d̃( )tanh+

F p 0 θ–,( ) G+[ ] k̃ d̃( ) 1+tanh
-----------------------------------------------------------------------,=

k̃
g〈 〉 2 f〈 〉 2+
l θcos

--------------------------------, F
f〈 〉

g〈 〉 2 f〈 〉 2+
--------------------------------,= =

G
g〈 〉

g〈 〉 2 f〈 〉 2+
--------------------------------,=

d̃

q 0 θ,( ) p 0 θ–,( ).=

d̃
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the incoming and outgoing electrons are completely
uncorrelated:

(13)

The numerical solution procedure involved first
integrating along the trajectory of equation (6) for p(0, –θ)
between the values determined by condition (10) and
the interface for a given initial approximation for ∆(x).
Then, the values of q(0, θ) were determined using (11)
and equation (7) was integrated along the trajectory
extending from the interface to infinity. The functions
q(x, θ) and p(x, θ) thus determined were then used to
refine the values of ∆(x) and the values of F and G
appearing in (11) at the next iteration step.

At the second stage the Eilenberger equations were
continued analytically by substituting ω  iε and this
system of equations was solved numerically using the
values of ∆(x) determined at the first stage. It is easy to
see that the boundary condition (10) is transformed as
a result of the analytic continuation to a form exactly
the same as the expression for the Andreev reflection
coefficient (5) apart from imaginary unity. Thus, the
values of –ip(0, θ, ε) give the coefficient of Andreev
reflection of electrons approaching the interface in the
direction of the angle θ to form holes. Similarly, the
functions iq(0, θ, ε) determine the coefficient of scat-
tering of hole excitations to form electrons at the inter-
face.

The energy dependence of the Andreev scattering
coefficient |a+(ε)| calculated numerically for the angle
of orientation α = 10° is plotted in Fig. 1. For a specular
interface and α = 0 the energy dependence of |a±(ε)|is
the same as that predicted by BCS theory with the order
parameter depending on the angle θ, ∆ ∝  cos2θ. For
angles α ≠ 0 the energy gap is suppressed near the inter-
face (see Fig. 1). This leads to the formation of Andreev
bound states [18] for quasiparticles trapped by the
potential well between the interface and the point having
the coordinate L determined by the equation ε = ∆(L),
where ε is the quasiparticle energy. The closer the angle
θ to π/2, the larger the width L of the potential well for
the same ∆ and the larger the number of Andreev bound
states. This is observed as an increase in the number of
peaks on the dependence |a+(ε)| with increasing θ and
can be seen clearly in Fig. 1. 

In the vicinity of a diffuse interface nongap super-
conductivity is induced which leads to a linear depen-
dence of the Andreev reflection coefficient |a+(ε)|αε at
low energies (Fig. 2). Note that in this case the maxi-
mum value of |a+(ε)| is substantially lower than the val-
ues obtained for a specular interface. 

q 0 θ,( ) F
G 1+
-------------.=
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4. N–I–D JUNCTION 
WITH SPECULAR INTERFACES

4.1. Thermal Flux across an N–I–D Junction 
with Specular Interfaces and δ-Functional Scatterers

The properties of an N–I–D junction with specular
interfaces depend strongly on the angle of orientation α
and also on the profile of the potential barrier. We shall
first consider the situation most commonly encountered
in practice comprising irregular barriers with numerous
“punctures” in an intermediate layer, simulated by
δ-functional scatterers [21]. In this case the coefficient
of electron transparency D in formula (1) is character-
ized by the parameter z = mH/"2k0:

(14)D
1

1 z2/ θcos
2

+
------------------------------.=

θ = 10°

89°

43°

1.0

0.8

0.6

0.4

0.2

0 0.5 1.0 1.5 2.0

|a+(ε)|

ε/∆

Fig. 1. Coefficients of Andreev reflection for a specular
N−D interface at temperature T = 0.1Tc for the angle of ori-
entation α = 10° and θ = 10°, 43°, 89°. The solid curves give
the results of self-consistent calculations and the dashed
curves give the results of BCS theory for an infinite super-
conductor.

0.3

0.2

0.1

0 0.4 0.8 1.2
ε/∆

|a+(ε)|

Fig. 2. Coefficients of Andreev reflection for a diffuse N–D
interface (T/Tc = 0.1).
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Here H is the coefficient of a δ-functional barrier at the
interface. Substituting into (1)–(3) the numerically cal-
culated values of a±(ε) and using (14), we made numer-
ical calculations of the thermal flux j as a function of the
voltage across the junction V for various temperatures T
for α = 0 and low (tunneling) transparency D = 10–4.
The results of the calculations are plotted in Fig. 3. It
can be seen that for each temperature there is an opti-
mum voltage at which the thermal flux has a maximum.
In this case, the highest value of the thermal flux is
achieved at temperature T/Tc ≈ 0.45. This temperature
is close to the similar optimum temperature of a super-
conductor junction with ordinary s-type symmetry
[14]. However, the amplitude of the thermal flux j for
superconductors with d-type symmetry is more than an
order of magnitude lower. This is because of the strong
anisotropy of HTSC materials.

An increase in the transparency D of the interface
suppresses the cooling power of the N–I–D junction
because of the appearance of a channel for coherent
Andreev current transport across the interface. A simi-
lar effect was also observed for a junction with an
s-type superconductor. Figure 4 shows how the cooling
power decreases with increasing transparency for an
optimum set of parameters α = 0, T/Tc = 0.45 for an
N−I–D junction. 

Figure 5 gives the dependence j(V) for various val-
ues of α and the optimum temperature T/Tc = 0.45 for a
low (tunneling) interface transparency. It can be seen
from Fig. 5 that an increase in the angle of orientation
α leads to suppression of the cooling power. This is
attributed to the possible appearance of coherent cur-
rent transport via subgap states [17, 18] and to suppres-
sion of the order parameter near the interface for α ≠ 0. 

T/Tc = 0.5 0.4

0.2

0.3

0.6

0.55

0.35
0.45

0.005

–0.005
0 0.1 0.2 0.3 0.4 0.5

jπh/Dk0∆2

eV/∆(0)

0

Fig. 3. Thermal flux j for an N–I–D junction with specular
interfaces and δ-functional scatterer as a function of junc-
tion voltage V calculated at various temperatures T for the
angle of inclination α = 0 and low (tunnel) transparency
D = 10–4. 
JOURNAL OF EXPERIMENTAL 
Figure 6 gives the maximum cooling power (the
maximum in terms of V in Fig. 4) of an N–I–D junction
as a function of the interface transparency D. For small
D the cooling power increases as a function of D as for
a junction with an isotropic s-type superconductor [14].
Then, as the transparency increases, the thermal flux
begins to decrease as a result of the increasing contri-
bution of coherent Andreev reflection to the current
transport. It is important to note that the maximum ther-
mal flux for a junction with a d-type superconductor is
more than two orders of magnitude lower than the sim-
ilar (normalized) value achieved for junctions with iso-
tropic s-type superconductors [14].

eV/∆(0)

jπh/Dk0∆2

0.002

0

–0.002

–0.004

0 0.1 0.2 0.3 0.4 0.5

D = 0.0001

0.01

0.03

Fig. 4. Thermal flux j for an N–I–D junction with specular
interfaces and δ-functional scatterer as a function of volt-
age V for interface transparencies D = 10–4 (tunnel limit),
0.01, and 0.03, optimum temperature T/Tc = 0.45, and angle
of orientation α = 0.

eV/∆(0)

jπh/Dk0∆2

0.002

0

–0.002

0 0.1 0.2 0.3 0.4

1

2

2

4

3

3
4

Fig. 5. Thermal flux j for an N–I–D junction with a specular
interface and δ-functional scatterer as a function of voltage
V for various angles of orientation: α = (1) 0°, (2) 5°,
(3) 20°, and (4) 45° for tunnel transparency of the interface
D = 10–4 and optimum temperature T/Tc = 0.45. The dashed
curves give values of the thermal flux calculated using for-
mula (3) neglecting suppression of the superconductor order
parameter near the interface.
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4.2. Thermal Flux across an N–I–D Junction 
with Specular Interfaces and a Regular Long Barrier

The electron transport of heat across an N–I–D
junction changes qualitatively when we assume that a
high-quality insulator layer (I layer) is formed at the
HTSC–normal-metal interface, simulated by a homo-
geneous rectangular barrier having the transparency

(15)

where k = , κ = , k⊥  is the wave vec-
tor perpendicular to the normal to the interface, and d is
the thickness of the I layer. For κ0d @ 1, when D ! 1
only small angles of electron incidence are significant

(16)

which ensures that the condition a+(ε, θ) . a–(ε, θ) =
a(ε, 0) is satisfied in formulas (1)–(3). In this case, for-
mula (3) for α = 0 reduces to 

(17)

where

is the transparency (15) of a long rectangular barrier
averaged over the angle θ. Using (1), (17), and the val-
ues of the Andreev reflection coefficients obtained in
Section 3, we can easily calculate the thermal flux j as
a function of the junction voltage V for various temper-
atures T. Results of the calculations for α = 0 are plotted
in Fig. 7. A comparison of the curves in Figs. 3 and 7
shows that the dependences j(V) in these figures are
qualitatively the same whereas the maximum of j(V) in
Fig. 7 is more than an order of magnitude greater than
that in Fig. 3 and is comparable (in relative units) to the
values obtained for s-type superconductors [14]. This is
because condition (16) is satisfied for angles of inci-
dence of quasiparticles on the interface so that the
strong anisotropy of the HTSC materials can be
neglected and also because no suppression of the order
parameter occurs for α = 0.

Figure 8 gives dependences j(V) for various values
of α and the optimum temperature T/Tc = 0.45 for a
long barrier κ0d @ 1. It can be seen that an increase in
the angle of orientation α leads to significant suppres-
sion of the cooling power. However, unlike similar
curves in Fig. 5 plotted for a δ-functional scatterer, sup-
pression of the thermal flux with increasing angle of

D D k κ,( ) 16k2κ2
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k0
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2 k ⊥
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θ . 
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jκ0d  @ 1
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2π2
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------------ D〈 〉 θ ε ε eV–( )d∫=

× 1 a 4–

1 a2–
2

------------------- f ε eV–( ) f ε( )–[ ] ,
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4

0 0.01 0.02 0.03 D

Fig. 6. Maximum values of the thermal flux j for an N–I–D
junction as a function of the transparency D for angle of ori-
entation α = 0 and temperature T = 0.45Tc.
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Fig. 7. Thermal flux j for an N–I–D junction with specular
interfaces and a long rectangular barrier as a function of the
junction voltage V calculated for various temperatures T and
angle of orientation α = 0.
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rectangular barrier and specular interface as a function of
voltage V for α = 0°, 5°, 20°, and 40° at temperature
T/Tc = 0.45.
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orientation α is observed from considerably higher val-
ues of the thermal flux for α = 0.

4.3. Thermal Conductivity of an N–D Junction
with Specular Interfaces

The thermal conductivity κ calculated using for-
mula (4) as a function of the ratio ∆/kBT for α = 0°, 20°,
and 45° is plotted in Fig. 9. It can be seen that the ther-
mal conductivity of the junction is not exponentially
small as for a junction based on an isotropic two-
dimensional s-type superconductor [5]:

(18)

Estimates made using formula (18) and results of
numerical calculations plotted in Fig. 9 show that for
any values of the angle of orientation α the thermal
conductivity of the N–D junction is more than two
orders of magnitude higher than that of an N–S junc-
tion. This is a consequence of the strong anisotropy of
d-type superconductors and the suppression of the
order parameter near the interface for nonzero values of
the angle of orientation. For α = 45° the order parame-
ter is suppressed to zero so that the thermal conductiv-
ity of this structure is the same as that of a two-dimen-
sional N–N structure:

(19)

For α ≠ 45° the suppression of the order parameter is
weaker. Nevertheless, it is possible to have an effective
leakage of heat because of the strong anisotropy of the
order parameter of d-type superconductors. Thus, the
thermal conductivity of an N–D junction forα ≠ 45° is

κ s
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----∆kB
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---------– 
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κ 4
k0kB
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2
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Fig. 9. Thermal conductivity of a pure N–D interface as a
function of ∆/kBT for various angles of orientation α.
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lower than that for α = 45° but substantially higher than
that for N–S junctions (18).

5. N–I–D JUNCTIONS 
WITH A DIFFUSE INTERFACE

In the model of N–I–D junctions proposed in [19]
the order parameter at the interface is similar to that
obtained in the case of isotropic nongap superconduc-
tivity. In this case, the coefficients of Andreev reflection
(Fig. 2) are substantially lower than those for specular
interfaces (Fig. 1).

Numerical calculations of the thermal flux across
this type of interface based on formulas (1)–(3) and the
values of the Andreev reflection coefficients plotted in
Fig. 2 yield negative values for any voltages and inter-
face transparencies. In this case, the numerical values
of the thermal flux are similar (to within a few percent)
to those for a similar N–I–N junction. The thermal con-
ductivity of an amorphous interface with transparency
D = 1 is also similar to the value given by expression (19)
for a two-dimensional N–N structure.

6. CONCLUSIONS

This analysis has shown that the cooling effect in
N−I–D junctions is most significant in junctions with
atomically abrupt specular interfaces and a high-qual-
ity insulator layer which can be simulated by a rectan-
gular potential barrier. For this we need to have a homo-
geneous HTSC crystal with angle of orientation α ≈ 0
when the suppression of the order parameter at the
interface is negligible. The most effective cooling takes
place at temperature T = 0.45Tc. The cooling power of
electronic refrigerators based on HTSC materials will
be approximately two orders of magnitude higher than
that of the best refrigerators using low-temperature
superconductors (at lower temperatures). However, in
the temperature range of practical interest for bolomet-
ric applications T = 100–300 mK the cooling power of
N–S refrigerators becomes negative for HTSC materi-
als because of their high order parameters which elim-
inates the possible application of these materials in
these low-temperature devices. 

The cooling effect in N–I–D junctions with specular
interfaces and an irregular barrier simulated in the form
of constrictions with δ-functional scatterers yields val-
ues of the cooling power approximately two orders of
magnitude lower [in a corresponding normalization,
see (2)] than those in N–I–S structures even for α = 0.
This implies that in this case, the advantage of high val-
ues of the order parameter in HTSC materials is can-
celed out by their strong pairing anisotropy.

The exponentially strong suppression of the thermal
conductivity characteristic of N–S structures does not
occur in N–D structures because of the strong anisot-
ropy of the order parameter and because of the suppres-
sion of the order parameter at the interface for nonzero
 AND THEORETICAL PHYSICS      Vol. 90      No. 6      2000
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values of the angle of orientation α. Thus, pure N–D
interfaces cannot be used for bolometric applications. 

For the case of a diffuse N–D interface the nongap
superconductivity generated at the interface leads to
extremely low values of the coefficients of Andreev
reflection (see Fig. 2) which makes these structures
similar (in the sense of the electronic thermal proper-
ties) to N–N structures in which no cooling and no sup-
pression of the thermal conductivity typical of N–I–S
structures occurs.
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Abstract—The influence of a magnetic field on the effective conductivity of a system with a chessboard struc-
ture is studied under conditions of the Hall effect. It is shown that in this case a new physical effect occurs,
involving an oscillatory dependence of the charge density at the interfaces on passage through the bifurcation
point. The system possesses considerable magnetoresistance. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION 

Although studies of the conductivity of multicom-
ponent systems with ordered or random distributions of
components have a fairly long history [1–3], this prob-
lem cannot be considered to be completely resolved.
Dykhne [1] showed that a two-component system in
which the conductivities of the components are σ1, 2 and
the components (1, 2) have a symmetric random distri-
bution, has the effective conductivity σeff = (σ1σ2)1/2. We
obtained an exact solution for the conductivity and
electric field distribution for a two-component ordered
system with a chessboard structure [4] and confirmed
the Dykhne hypothesis that σeff = (σ1σ2)1/2. It is inter-
esting to determine whether this simple expression for
σeff is related to the chessboard structure or whether it
also holds for other ordered systems. In addition, the
point σ2/σ1  0 is the bifurcation point for the equa-
tion for the scalar potential. The physical values of the
conductivity are limited to the range σ1, 2 > 0 and the
bifurcation point is unattainable. The existence of finite
Hall conductivity changes the situation.

An analysis will be made of the influence of the Hall
conductivity on an ordered two-component system
with a chessboard structure. In this case, the bifurcation
point is attainable and passage through this point leads
to oscillations of the charge density along the edges of
the cells. These results are valid for the two-dimen-
sional case and for samples formed from cylinders. It is
assumed that the cross section of the sample has the
structure indicated above.

2. CONDUCTIVITY OF A TWO-COMPONENT 
SYSTEM IN A MAGNETIC FIELD

We shall determine the effective conductivity of a
two-component system having a chessboard structure
under conditions when each component also possesses
Hall conductivity. We express the conductivity tensor
1063-7761/00/9006- $20.00 © 21058
 of each component in the form

(1)

where E = [H, E] is the Hall conductivity. The
condition for continuity of the current across the inter-
face may be written in the form

(2)
where n is the vector of the normal to the surface and E
is the electric field at the interface. Equation (2) can be
conveniently rewritten for the following analysis in the
form

(3)

where ϕ is the scalar potential. 
A jump in the normal component of the electric field

leads to the appearance of the charge density ρ at the
interface 

(4)
In order to find the tensor of the effective conductiv-

ity, it is sufficient to analyze the orientation of the elec-
tric field shown in the figure. 

We shall consider a periodic structure with unit cell

vectors (1, 0) and (0, 1). Thus, only the four
densities ρ shown in the figure can be independent. It is
easy to check that two relationships exist between them:

(5)
As before, the equation for the scalar potential ϕ is
given by

(6)
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Converting to the dimensionless variables

(7)

we rewrite the equation of continuity (3) in the form

(8)
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where

The integral ( ) in equations (8) and (9) indicates inte-

gration in the sense of the principal value. It follows
from the system of equations (8) and (9) that the func-
tions  are analytic doubly periodic functions of the
variable t with periods T1, 2 given by

(10)

The points (0, 1) and those equivalent to them are branch-
ing points of the functions .

Near zero, we find

(11)

where A1, 2 and κ are certain constants. Taking into
account the relationships 

(12)

we obtain correlations between the coefficients A1, 2
derived from the system of equations (8) and (9)
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0

∞

∫ π
2πκsin

------------------,=

td

1 t–( )t2κ----------------------

0

∞

∫° π 2πκ ,cot=

A2Z
πκsin

--------------– A1ZH πκtan– A1,=

A1Z
πκsin

--------------– A2ZH πκtan+ A2.=

E0

ρ2 ρ4

ρ3ρ1

x

Û

Two-component system with a chessboard structure.
SICS      Vol. 90      No. 6      2000



1060 OVCHINNIKOV
The condition for solubility of equations (13) deter-
mines the value of the parameter κ

(14)

Solving equation (14), we find

Equation (14) for the parameter κ differs qualita-
tively from the corresponding equation for zero Hall
conductivity. In equation (14), the bifurcation point lies
in the physical region and after this has been reached,
the value of κ becomes complex, resulting in oscilla-
tions of the charge density. 

Near the point t = 1, the functions ρ1, 2 have singu-
larities of the type

(15)

where the coefficients  are related by

(16)

The solution of the system of equations (8) and (9)
may be expressed in terms of the Weierstrass function
℘ (t) for which the parameters g2, 3 have the following
values:

(17)

This is simply related to the Jacobi elliptic function cn [5]:

(18)

where

(19)

Taking into account formulas (13) and (16), we find

(20)

1 ZH( )2 πκtan
2

–
Z2

πκsin
2

----------------.=

πκsin
2 1 Z2 1 Z2–( )2 4Z2 ZH( )2––+

1 ZH( )2
+

---------------------------------------------------------------------------.=

ρ1
Ã1

t2κ------, ρ2
Ã2

t2κ------,= =

Ã1 2,

Ã2 Ã1
Z

1 ZH πκtan+( ) πκsin
---------------------------------------------------.=

g3 0, g2 4K4 1/ 2( ).–= =

℘ t( ) K21 cn 2Kt 1/ 2,( )+

1 cn 2Kt 1/ 2,( )–
---------------------------------------------, K K

1

2
------- 

  ,≡=

cn 2Kt 1/ 2,( ) 2 2π
K 1/ 2( )
----------------------=

× e π n 1/2–( )–

1 e π 2n 1–( )–+
----------------------------- πt 2n 1–( )( ).cos

n 1=

∞

∑

ρ̃1 A
℘ t( )

K2 1/ 2( )
------------------------ 

  κ
B

℘ 1 t–( )
K2 1/ 2( )
------------------------ 

  κ
,+=

ρ̃2
AZ

1 ZH πκtan–( ) πκsin
--------------------------------------------------- ℘ t( )

K2 1/ 2( )
------------------------ 

  κ
–=

+
BZ

1 ZH πκtan+( ) πκsin
--------------------------------------------------- ℘ 1 t–( )

K2 1/ 2( )
------------------------ 

  κ
.
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We introduce the two functions G1, 2 using the relation-
ships

(21)

Both these functions were analyzed in an earlier study [4]
and we merely give their values here

(22)

Integrating the system of equations (8) and (9) with
respect to t ' over the interval (0, 1), we obtain allowing
for the formulas (21)

(23)

Solving the system of equations (23) yields the fol-
lowing value for the coefficients A and B:

G1 t
℘ t( )

K2 1/ 2( )
------------------------ 

  κ
,d

0

1

∫=

G2 t' t
℘ t( )

K2 1/ 2( )
------------------------ 

  κ π
2
--- t N+( ) 

 tan
N

∑d

0

1

∫d

0

1

∫=

× π
2
--- t' N+( ) 

  π
2
--- t' N+( ) 

 cosh
2

+sinh
2





× π
2
--- t N+( ) 

 




.tan
2

G1
1

4 πK 1/ 2( )
---------------------------------Γ 1

4
--- κ

2
---– 

  Γ 1
4
--- κ

2
---+ 

  ,=

G2 G1
πκ
2

------.tan=

Z
2π
------ 1

2
-------

2πG1Z
πκsin

----------------- πκ
2

------ 
  A

1 Z
H πκtan–

-------------------------------
tan+





+
B

1 ZH πκtan+
-------------------------------




 ZH

2 2π
--------------– G1 A B+( ),=

Z
2π
------ 1

2
------- 2πG1 A B–( ) πκ

2
------tan+

 
 
  ZH

2 2π
--------------+

=  
ZG1

πκsin
-------------- A

1 ZH πκtan–
------------------------------- B

1 ZH πκtan+
-------------------------------– 

  .

A B+
1

2 2πDG1

-------------------------=

× Z
πκsin

Z
-------------- Z

πκ
2

------tan ZH πκ πκ πκ
2

------tantansin+–



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(24)

where

(25)

The effective conductivity is related to the charge den-
sity ρ1, 2 by

(26)

Substituting into formula (26) the explicit expression (20)
for the charge densities ρ1, 2 and taking into account (24),
we obtain a relatively simple expression for the effec-
tive conductivity σeff in a magnetic field:

(27)

The effective Hall conductivity is expressed in
terms of the charge density and, consequently, in terms
of the coefficients A and B using 

(28)

+ ZH πκsin
Z

--------------– Z
πκ
2

------tan ZH πκ πκ πκ
2

------tantansin+ +




,

A B–
1

2 2πDG1

-------------------------=

× Z
ZH

Z
------ πκ πκ 1 πκ πκ

2
------tansin–+tansin–





+ ZH ZH

Z
------ πκ πκ 1 πκ πκ

2
------tansin–+tansin





,

D
1
Z
--- Z

πκ
2

------tan
2

+ 
  πκ 2Z

πκ
2

------.tan–sin=

σeff

4πσ1σ2

2 σ1 σ2–( )
----------------------------- t ρ1 t( ) ρ2 t( )–( ).d

0

1

∫=

σeff

2σ1σ2

σ1 σ2+
-----------------=

×
πκsin Z2 πκ

2
------tan ZH( )2 πκ πκ πκ

2
------tantansin+–

πκ 1 Z2 πκ
2

------tan
2

+ 
 sin 2Z2 πκ

2
------tan–

-------------------------------------------------------------------------------------------------------------.

Hσeff
H Hσ2

H 2πG1σ2

2
------------------- A B+( ) Z

πκsin
--------------–





–=

×   A 
1
 

Z
 

H
 

πκ
 

tan–
------------------------------- B 

1
 

Z
 

H
 

πκ
 

tan+
-------------------------------–  

  A B – ( ) -–

–
Z
πκsin

-------------- A

1 ZH πκtan–
------------------------------- B

1 ZH πκtan+
-------------------------------+ 

  πκ
2

------tan




.
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Using equation (24), expression (28) for the Hall con-
ductivity can be simplified substantially and reduced to
the form 

(29)

Substituting into formula (29) expressions (24) for
the coefficients A and B, we obtain the final expression
for the Hall component of the effective conductivity

(30)

Equation (14) contains a bifurcation point after
which the parameter κ becomes complex. The bifurca-
tion point is determined from the condition that the
derivative of κ with respect to the parameter (ZH)2 goes
to infinity. From this condition, we find the bifurcation
point

. (31)

On account of the linearity of the initial equations,
above the bifurcation point in equations (27) and (30)

for the effective conductivities σeff and  the real part
should be taken from the right-hand sides. The appear-
ance of an imaginary part of the parameter κ leads to
oscillations of the charge density at the interfaces. If the
Hall conductivities of components 1 and 2 differ, the
effective conductivity will have a high magnetoresis-
tance.

3. CONCLUSIONS

If the Hall conductivity of at least one of the components

is nonzero under the condition  ≠ , the effective
conductivity possesses strong magnetoresistance. In this
case, there is a bifurcation point above which the
charge density oscillates along the interfaces. For a
fixed value of the parameter Z = (σ1 – σ2)/(σ1 + σ2), the
bifurcation point is realized with increasing magnetic
field. This property of a two-component system is
promising from the point of view of experimental con-
firmation.

Hσeff
H H σ1σ2

H σ2σ1
H+( )

σ1 σ2+
-----------------------------------------

4πσ1σ2

2Z σ1 σ2+( )
----------------------------------–=

× G1 A B+( ) G1Z A B–( ) πκ
2

------tan Z

2 2π
-------------- ZH

2 2π
--------------+––

 
 
 

.

σeff
H σ1σ2

H σ2σ1
H+

σ1 σ2+
-------------------------------

2σ1σ2Z2 σ1
H σ2

H–( )
σ1

2 σ2
2–

---------------------------------------------–=

× πκ
2

------tan
2 πκ

2
------tan πκtan+ 

  πκ πκ
2

------tan–sin

× 1 Z2 πκ
2

------tan
2

+ 
  πκsin 2Z2 πκ

2
------tan–

1–

.

Z2 2 ZZH 1–+ 0=

σeff
H

σ1
H σ2

H
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Abstract—The kp method is used to analyze the problem of intervalley Γ–Xz interaction of conduction-band
states in the (001) lattice-matched III–V semiconductor heterostructures. A convenient basis for expansion of
the wave function is systematically selected and a multiband system of equations is derived for the envelope
functions which is then reduced to a system of three equations for three valleys (Γ1, X1, and X3) by using a uni-
tary transformation. Intervalley Γ–Xz mixing is described by short-range potentials localized at heterojunctions.
The expressions for the parameters determining the Γ–Xz mixing strength explicitly contain the chemical-com-
position profile of the structure since mixing is naturally stronger for abrupt heterojunctions than for structures
with a continuously varying chemical composition. It is shown that direct Γ1–X1 interaction of comparable
strength to the Γ1–X3 interaction exists. This must be taken into account when interpreting tunnel and optical
experiments since the X1 valley is substantially lower in energy than the X3 valley. © 2000 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

Heterostructures with quantum wells and barriers
using GaAs/AlGaAs are popular objects for studying
the physical processes accompanying resonant tunnel-
ing and optical transitions. These structures are partic-
ularly interesting because in GaAs the minimum of the
conduction band is situated at the center of the first
Brillouin zone (Γ1 symmetry) whereas the minimum of
the AlAs conduction band lies near the X point where
the bands having X1 and X3 symmetry are close
together, the X1 band being the principal one (the X3

band is 350 meV higher energy). On each cubic axis,
there is a pair of X valleys, one from the X1 band and
one from the X3 band. Layers with predominantly Ga
content act as barriers for X electrons while regions
with Al predominating act as barriers for Γ electrons.
Under certain conditions, resonant tunneling interac-
tion can take place between energetically close states of
the Γ and X valleys and this is even observed on the cur-
rent–voltage characteristics of single-barrier structures
(see, for example, [1, 2]) and also in optical experi-
ments [3, 4]. The conditions for the existence of this
interaction generally involve the presence of structural
defects, impurities, heterojunction roughness, and/or
interaction with short-wavelength phonons. However,
in the (001) heterostructures, interaction of a Γ valley
with Xz valleys (i.e., X valleys lying on the z axis
directed along the normal to the surface) is caused by
1063-7761/00/9006- $20.00 © 21063
the potential of the structure itself which leads to non-
conservation of the quasimomentum component kz per-
pendicular to the junction. As a result of size quantiza-
tion for fairly thin (less than 50 Å) AlGaAs layers,
Xz-valley states are situated below all X valleys so that an
analysis of Γ–Xz interaction at the heterojunction is impor-
tant for an accurate description of Γ–X junctions [5]. 

This type of intervalley mixing has been studied the-
oretically both phenomenologically [6] and using a
tight-binding model [7, 8], and also using a pseudopo-
tential method [9]. Nevertheless, our level of under-
standing of the processes leading to Γ–Xz mixing of
electronic states is far from satisfactory. For instance,
the results of [8, 9] indicate that direct Γ1–X1 interaction
is extremely weak and Γ–Xz mixing is merely attribut-
able to Γ1–X3 interaction, whereas, according to [7],
Γ1−X1 interaction is the determining factor (however,
the parameters of the tight-binding model used in [7]
are such that the X3 band is very high in terms of energy
and is in fact eliminated from the analysis). Studies [10,
11] in which the form of the Γ–Xz interaction potential
was determined by direct calculations of the matrix ele-
ments of the model heterointerface potential using the
complete wave functions of the states also give a con-
tradictory answer to the question of the strength of the
Γ1–X1 interaction. According to the results of [10], this
interaction is weak whereas the results of [11] suggest
the opposite: Γ1–X1 mixing can be comparable with
000 MAIK “Nauka/Interperiodica”
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Γ1−X3 mixing. The solution of this problem is impor-
tant for interpreting tunneling and optical experiments
since Γ1–X1 junctions are usually observed experimen-
tally. 

In the present study Γ–Xz interaction (mixing) is
analyzed using the method of envelope functions. This
is a fairly explicit technique which does not have the
disadvantage of the tight-binding model in which the
heterointerface is oversimplified, while calculations
using the empirical pseudopotential method are much
more cumbersome than those using the envelope func-
tion method. Note that so far attempts to derive a sys-
tem of equations for the envelope functions jointly
describing the Γ and X states have not produced satis-
factory results. This is mainly because an atomically
abrupt change in the crystal potential at the heterojunc-
tions produces Γ –Xz mixing [12] and correct allowance
for such abrupt changes in the potential is outside the
scope of the usual method of Luttinger–Kohn envelope
functions. In [10, 11] in which the problems were ana-
lyzed using the envelope function method, Γ–X interac-
tion was analyzed using perturbation theory but the
selected basis functions were a generally overfull set
corresponding to the set of Kohn–Luttinger functions
for the Γ and X states. An overfull (and nonorthogonal)
basis can, in principle, give an erroneous result. In addi-
tion, this approach cannot be applied directly to
describe the states of the continuous spectrum which is
important for the Γ–Xz tunneling problem. Neverthe-
less, the results of the present study agree qualitatively
with the conclusions of [11]. 

The essential features of the problem of adequately
describing intervalley mixing of states in heterostruc-
tures is similar to the intervalley splitting of impurity
states in multivalley semiconductors (for example, in Si
and Ge). We know [13] that allowance for the short-
range part of the impurity potential (“the correction to
the central cell”) not only yields a chemical shift of the
impurity-state energy but also lifts the valley degener-
acy. In [14], we proposed a fairly simple method of ana-
lyzing heterojunctions with an atomically abrupt
change in chemical composition. This method involves
isolating the “smooth” component of the heterostruc-
ture potential and the “abrupt” component which is
only nonzero near the heterojunction. The smooth com-
ponent is “processed” by a standard technique (the
Kohn–Luttinger method) while the abrupt component
is considered as a correction to the central cell. In [14],
we only considered states near the Γ point in the Bril-
louin zone and in the present study we develop the
method further to describe the interaction of states near
different points in k space. These results were first pre-
sented at the III All-Russia Conference on the Physics
of Semiconductors, see [15] and also [16].
JOURNAL OF EXPERIMENTAL
2. FORMALISM 
OF THE ENVELOPE FUNCTION METHOD

2.1. Formulation of the Problem

We shall consider the electron states in the (001)
III–V heterostructures formed from related lattice-
matched semiconductors having zinc blende symmetry.
By related structural materials we understand a fairly
small band offset so that in the energy range of interest
the conduction-band states near the point Γ can be
described using a single-band variant and the states
near the point X can be described using two-band (for
the X1 and X3 bands) variants of the envelope function
method. We shall also assume that the energy gap
between the states of interest to us in the Γ and X val-
leys is smaller than or of the order of the band offset.
This means that we can consider the direct interaction
of the Γ1, X1, and X3 states exactly and interaction via
all other bands can be taken into account using pertur-
bation theory. Since the desired Hamiltonian of the
equation for the envelope functions should depend
explicitly on the number of monoatomic layers of each
material forming the structure [7, 17], we shall consider
a structure with two symmetric heterojunctions as the
simplest case to obtain this dependence. For simplicity,
we shall neglect spin–orbit interaction and also external
smooth potentials. The single-electron Schrödinger
equation then has the following form:

(1)

Here, m0 is the free electron mass, p is the momentum
operator, and U ≡ U(r) is the crystal potential of the het-
erostructure. We shall first use the following model for
this potential (a more realistic situation will be dis-
cussed in Section 3):

(2)

and U1 ≡ U1(r) and U2 ≡ U2(r) are periodic (continued
to all space) potentials of the two heterostructure mate-
rials, the z-axis is perpendicular to the heterojunction
plane; the form factor P(z) of a heterostructure having
the heterointerfaces z = 0 and z = L is defined so that

(3)

The behavior of the function P(z) in the transition
regions (of width 2d near the heterointerfaces) may be
fairly arbitrary. Here, the symmetry of the structure
implies that P(z) = P(L – z), L > d. We shall assume that
a layer of width L contains an integer number of mono-
layers: L = 1a/2, where 1 is a natural number. 

p2

2m0
--------- U+ 

  Ψ r( ) eΨ r( ).=

U U1 P z( ) U2 U1–[ ]+= U1 P z( )δU ,+≡

P z( )

0, z d–<
1, d z L d–< <
0, z L d .+>

=
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2.2. Choice of Complete Orthonormalized Set 
of Basis Functions

As in [14], the potential P(z)δU is analyzed in terms
of perturbation theory and the complete and orthonor-
malized set of functions used to expand the complete
wave function Ψ(r) is constructed of Bloch functions of
the base semiconductor (having the crystal potential
U1). In our case, the most natural basis is a mixed basis
of Kohn–Luttinger functions for the points Γ and Xz. In
order to make this set complete and orthonormalized, it
should be constructed as follows. We first expand Ψ(r)
in terms of the Bloch functions unk(r)eik · r of the base
crystal which correspond to the energy eigenvalues enk,
where n and k are the band index and the quasiwave
vector, respectively:

(4)

Summation in (4) is performed over all bands and inte-
gration is performed over the region Λ0 of nonequiva-
lent k. In order not to consider two equivalent Xz points
having the coordinates (0, 0, 2π/a) and (0, 0, –2π/a) in
k space, we shall not operate in the first Brillouin zone
constructed as a Wigner–Seitz cell but we shall define a
region Λ0 such that points Γ and are contained in this
region, for example, q = (0, 0, 2π/a) with their vicini-
ties. Following [13, §7–3] we divide Λ0 into two subre-

gions ΛΓ and  containing the points Γ and Xz with their

vicinities where ΛΓ ∪   = Λ0 and ΛΓ ∩  = 0 (see
comments on this method of division in Section 2.4).
Now, following [18], we use series expansions of the
periodic function unk:

Then (4) can be rewritten in the following form:

(5)

We then define the functions 

(6)

(7)

Ψ r( ) !n' k'( )e
ik' r⋅

un'k'd
3k'.∫

n'

∑=

Λ̃X

Λ̃X Λ̃X

unk bm'n k( )um'0, unk

m'

∑ cm'n k( )um'q.
m'

∑= =

Ψ r( ) !n' k'( )bm'n' k'( )e
ik' r⋅

um'0d3k'

k' ΛΓ∈
∫

n' m',
∑=

+ !n' k' q+( )cm'n' k' q+( )e
ik' r⋅

e
iq r⋅

um'qd3k'.

k' q Λ̃X∈+

∫
n' m',
∑

^m'
Γ( )

k'( ) !n' k'( )bm'n' k'( ),
n'

∑=

^m'
X( )

k'( ) !n' k' q+( )cm'n' k' q+( ),
n'

∑=
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which will specifically comprise the envelopes of the
functions of the Γ and X states in the k representation
and we shall define the region ΛX such that the condi-
tion k ∈  ΛX (shift of the origin in k space) is satisfied

for all k + q ∈  . Now (5) can have the form of an
expansion of Ψ(r) in terms of a complete set of Kohn–
Luttinger functions near the points Γ and Xz:

(8)

where the Kohn–Luttinger functions are

Thus, the Fourier transforms of the envelope functions
constructed above only differ from the usual ones [18]
in terms of the domain of definition. In our case, these
are the regions ΛΓ (for states near the center of the Bril-
louin zone) and ΛX (for states near the Xz point) rather
than the complete first Brillouin zone.

We shall also assume that  are real. Taking the
following orthonormalization relationship for the
Bloch functions:

(9)

we obtain the required orthonormalization relationship
for the basis functions [18]:

(10)

2.3. Multiband System of kp Equations

In the basis specified above the procedure for
obtaining the kp system of equations is trivial, see [18].
Using the expansion (8) in (1), multiplying both sides

of the equation by , and integrating over all r
space, we obtain the following system of equations:

Λ̃X

Ψ r( ) ^m'
Γ( ) k'( )χm'k'

Γ( ) d3k' ^m'
X( )χm'k'

X( ) d3k'

ΛX

∫
m'

∑+

ΛΓ

∫
m'

∑=

=  ^m'
v '( ) k'( )χm'k'

v '( )d3k',

Λv '

∫
m'

∑
v ' Γ X,=

∑

χmk
Γ eik r⋅ um0 e

ik r⋅ φm
Γ( ),≡=

χmk
X( ) e

ik r⋅
eiq r⋅ umq e

ik r⋅ φm
X( ).≡=

φm
v( )

un'k'
* e

ik' r⋅–
unkeik r⋅ d3r

all
spase

∫ δnn'δ k k'–( ),=

χn'k'
v '( )( )*χnk

v( )d3r

all
spase

∫ δvv 'δnn'δ k k'–( ),=

χn'k'
v '( )( )*
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(11)

Here,  = em0 and  = emq, 

〈m, v |p|m', v'〉  = 0 for v ≠ v', Ω is the unit cell volume,
and 

The matrix elements (k, k') were analyzed in
[14]. It was shown that the contribution of the perturba-
tion potential can be divided into smooth and abrupt
components (the latter is exponentially small for
smooth perturbations on the scale a). The contribution
of the abrupt component is a correction to that of the
smooth component (for the case when the width of the
heterostructure layers is much greater than a) and it can
be written in the form of converging series in powers of
(kz – ). We shall use the effective-mass approxima-
tion with spatially independent effective-mass parame-
ters and we shall only allow for the abruptness of the
heterojunctions in the first order in terms of the param-
eter a  [14, 19], where  is the characteristic quasi-
momentum of the state. We shall consider the interval-

ley elements (k, k'), v ≠ v', in greater detail and

for (k, k'), following [14, 19], we obtain

(12)

Here we introduce the notation: 3(kz) is the Fourier
transform of the function P(z); the matrix element is

δ  = 〈m, v |δU|m', v〉; Kj = (4π/a)j, j is an integer;
P'(z) = dP(z)/dz, and k|| = (kx , ky , 0). We used the sym-

metry P(z) = P(L – z) and also the fact that  = 1.
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Here, we give all the matrix elements (12) required sub-
sequently. We assign the indices w, u, and v to the con-
duction-band states Γ1, X1, and X3, respectively, and
omit the valley indices since the band number in our
approximation now uniquely defines the state. Using
symmetry concepts we obtain

where s = w, u, v; and the parameters dss are determined
as follows:

The potential also makes a contribution to the direct
interaction of the X1 and X3 states:

where 

We shall now consider the most interesting intervalley

matrix elements , v ≠ v':

We shall analyze this matrix element using the same
method which yielded (12). We shall use an expansion
of the periodic function um0δUum'q as a Fourier series
which gives

(13)

where Kl ≡ (Kzl , K||l) are the vectors of the reciprocal
lattice, and

As was shown in [19], for the region where |kx | + |ky | <
π/a whose size is fairly large for our purposes [we obvi-
ously used this constraint in the derivation of (12)],
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only the vectors of the reciprocal lattice with K||l = 0
will contribute to (13):

(14)

We shall analyze the functions 3(kz –  + (2π/a)j)
contained in (14) in greater detail:

where we again used the property P(z) = P(L – z). We
now expand (kz –  + (2π/a)j)–1, exp(–i(kz – )z), and

exp(i(kz – )z) as series in powers of (kz – ) where
the convergence of the first series is ensured by the
property |kz – | < 2π/a since k ∈  ΛΓ and k' ∈  ΛX. We
only retain the first terms of the expansions. This gives
a good approximation for  ! 2π/a and  ! 1/(2d),

where  is the characteristic quasimomentum of the
state or the reciprocal characteristic length of variation
of the envelope functions (6) and (7) in the r represen-
tation (i.e., the envelope functions should vary continu-
ously on scales of order a and on scales of the order of
the widths of the interface regions). Now, bearing in
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mind that for all values of the summation index j in (14)
exp(–2πijL/a) = (–1)1, we obtain

Here, there is a dependence of the effective potential on
the number of monoatomic layers 1, which mixes the
valley states assigned to different points in k space. We
now write the matrix elements we require (we again
drop the valley index):

where

(15)

and

where 

(16)

It can be seen that the abrupt potential of the heteroint-
erfaces not only ensures Γ1–X3 interaction [8, 17, 10]
but also Γ1–X1 interaction [11]. 

We have obtained a multiband kp system of equa-
tions and explicit expressions for all the elements of
this system required subsequently. We shall now obtain
a system of 3 × 3 equations for the strongly interacting
states Γ1, X1, and X3. 

2.4. Elimination of Far-Field Zones and Transition
to r Space

In the effective-mass approximation with spatially
independent effective-mass parameters, the approxi-
mate unitary transformation procedure which elimi-
nates the influence of far-field zones in the required
order of perturbation theory is performed by a standard
method [18] and is not given here. We obtain an integral
system of equations in the k representation. The aim of
the present study is to simplify the final results as far as
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possible which may be achieved if the corresponding
equations are differential. The problem of the accuracy
of the envelope function method which occurs on tran-
sition from integral to differential equations and also
when the far-field zones are eliminated has already
been discussed in [14, 19]. We shall summarize the
constraints imposed on the accuracy of the envelope
function method for this case.

First, we need to determine the effective radius of
the region in k space for which the system of equations
for the envelope functions is correct (we shall call this
k region the fundamental region). Whereas the multi-
band system of equations (11) is valid for all k ∈  Λv

and k' ∈  Λv', the unitary transformation of this system
which eliminates the far-field zones can, in principle,
reduce the dimensions of the fundamental k regions.
This is easily understood from the following. The spec-

trum of states of a bulk semiconductor (k) near the
point k0 in a band numbered n may be represented as a
series in powers of k (for degenerate states the spec-
trum is determined by diagonalizing the matrix whose
elements are these series). The series has a finite radius
of convergence R0 which is determined by the strength
of the kp interaction with the far-field zones. This
radius can be estimated as R0 = m0 /2" , where 

and  are the characteristic values of the interband
energy at point k0 and the interband matrix element of
the momentum. States having quasimomenta which do
not belong to the fundamental region cannot be correctly
taken into account in the transformed equation and
should be neglected. We denote the corresponding radii

of the fundamental k regions as  and  for con-
duction-band states near the points Γ and X, respectively. 

Secondly, on changing from the k to the r represen-
tation, integration is performed over regions of k space
of finite dimensions which makes it difficult to obtain
differential equations directly in r space. The local
approximation formula involves replacing the finite
regions of k space by infinite ones. Since the hetero-
structure potential is not smooth and the envelope func-
tions obtained (or their derivatives) can vary apprecia-
bly on scales of the order of a, this procedure does not
give an exponentially small error as in the case of
smooth perturbations but an error which is only small
in terms of power (for this analysis it is convenient to
consider the limiting case of a mathematically abrupt
potential and then the envelope functions or their deriv-
atives obtained as a result of the local approximation
may have a discontinuity). Since the perturbation-the-
ory series used for the unitary transformation is a power
series, it is important to avoid the inclusion of extra-
accuracy terms. For the simple single-valley case
(Γ states) analyzed in detail in [19], the error of the

method is of the order of ( / )
M

 where 1/  is
the characteristic length of variation of the correspond-
ing envelope function and the exponent M is a measure

en
k0( )

Eg P Eg

P

R0
Γ( ) R0

X( )

kz
Γ( )

R0
Γ( ) kz

Γ( )
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of the smoothness of the latter (for an isolated hetero-
junction or a fairly wide quantum well M = 3). In this
case, we need to determine two characteristic quasimo-

menta  and  for the Γ and X states. In the zero-
order approximation which is acceptable for estimating
the accuracy of the method, the Γ and X states do not
interact and the constraint associated with the transition
to differential equations is determined by the error

( / )
3
 for the Γ states (we shall assume that the

layer width L is sufficiently large so that L * 1). For
X states, the situation is slightly more complex: the sys-
tem of equations for these contains both second deriva-
tives of the envelope functions with respect to z and first
derivatives as a result of kp interaction between the X1
and X3 bands, where the effect of this interaction may
be comparable with the contribution of terms which are
quadratic with respect to the momentum operator. This
means that in the “worst” case, the accuracy of the local
approximation for the X states is limited by the error

( / )
2
. All these factors allow us to consider the

corrections which appear as a result of the abruptness
of the change in the heterointerface potential which are

small with respect to the parameters a  and a .
We also note that splitting the region Λ0 into subregions

ΛΓ and  should be performed so that  and 
are not larger than the radii of the regions ΛΓ and ΛX,

respectively, and then  and , not the radii ΛΓ
and ΛX, appear in the expressions to estimate the accu-
racy of the local approximation (this was implied
above). 

As a result, the required system of differential equa-
tions for the transformed envelope functions (r),
where m = w, u, v, has the following form for the
strongly interacting Γ1, X1, and X3 states:

(17)

Here, T and V are the (3 × 3) matrices of the kinetic and
potential energies. The form of the matrix of the effec-
tive kinetic energy operator is known [20]:

where mw is the effective mass for the Γ conduction-
band states, ml || and ml ⊥  are the longitudinal and trans-
verse effective masses for the l band (l = u, v) at point X;
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and the bulk parameter γ, in particular, determines the
magnitude of the linear photogalvanic effect [20].
Before giving the form of the matrix of the potential
energy operator, we go over from the function P(z) to
the function Θ(z) – Θ(z – L) merely for reasons of con-
venience [19]:

(18)

where

P z( ) Θ z( ) Θ z L–( )– ρ0 δ z( ) δ z L–( )+( ),+≈

ρ0 P z( ) zd

d–

d

∫ d .–=
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Now the matrix of the effective potential energy opera-
tor V may be expressed as the sum of three matrices:
V1 + V2 + V3. The diagonal matrix V1 corresponds to
the standard (bulk) effective-mass approximation [18]:

As a result of the abruptness of the heterointerface
potential, the matrix V2 contains both intravalley con-
tributions and contributions which mix the X1 and X3

states (all the parameters dmm' are real):

V1( )ss' ess' δUss' Θ z( ) Θ z L–( )–[ ]+{ } δss' .=
V2

d̃ww δ z( ) δ z L–( )+( ) 0 0

0 d̃uu δ z( ) δ z L–( )+( ) duv δ z( ) δ z L–( )–( )

0 duv δ z( ) δ z L–( )–( ) d̃vv δ z( ) δ z L–( )+( ) 
 
 
 
 
 

.=
Here, the parameters  are related to dss as follows:

Finally, the matrix V3 contains contributions which
mix the Γ and Xz states (also as a result of the abrupt-
ness of the heterointerface potential). We give the non-
zero elements of V3:

(19)

(20)

In our approximation, the expression linking the
envelope functions and the complete wave function has
the usual form (we again drop the valley index):

For an arbitrary number of heterojunctions z = zj

numbered by the index j, the nonzero elements of V3
may be written in the following form:

where q is the distance in k space between the centers
of the valleys under consideration (in our case, q =

(0, 0, 2π/a)). Since the parameters  and  depend
not only on the heterojunction material but also on the
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j( )
microscopic structure of the interface, these must gen-
erally be determined for each interface separately. 

3. DISCUSSION 
OF RESULTS AND CONCLUSIONS

Using the kp formalism, we have constructed a gen-
eralization of the method of envelope functions suitable
to describe the interaction of the Γ and Xz states in the
(001) III–V nanostructures formed from similar lattice-
matched semiconductors. In the derived system of
equations (17), mixing of the states of different valleys
is determined by the heterosurface effective potentials
(19) and (20) similar to those introduced phenomeno-
logically in [6]. The system (17) contains information
on the number 1 of monoatomic layers of the structure.
An oscillatory dependence of the effective intervalley
mixing strength on 1 was obtained, in particular, in [7]
and was also introduced from symmetry concepts (in
terms of the boundary conditions for the envelope func-
tions) in [17]. However, in addition to this, there are
some difference between the results of the present
study and the results of other authors. The most impor-
tant of these is the appearance of direct interaction
between Γ1 and X1 states whose strength is determined
by the parameter dwu. This was predicted recently in
[11, 15, 16]. The strength of the Γ1–X1 interaction, i.e.,
the value of the constant dwu, depends strongly on the
structure of the heterointerface on atomic scales. In
simplified models, such as the simplest variants of the
tight-binding method, this interaction may be absent. It
is clear from (15) that in the hypothetical case of math-
ematically abrupt heterojunctions when P(z) = Θ(z) –
Θ(z – L), we in fact find dwu = 0. The conclusion
reached in [10] that dwu ! dwv was specifically a conse-
quence of the selected heterojunction model for which
SICS      Vol. 90      No. 6      2000
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the simplest case is a mathematically abrupt jump (see
also [11]). In general, there is no basis for assuming that
dwu differs substantially from dwv and since the X1 band
is lower in energy than the X3 band, the existence of
Γ1−X1 interaction may be very significant for interpret-
ing experiments.

In [19], we considered a more complex model of the
potential of an ideal heterostructure and, specifically,
took into account a periodic coordinate dependence of
the heterostructure form factor in the (001) plane. We
showed that this complication merely leads to renor-
malization of some parameters obtained using (2).
However, whereas it was found using the simple form
factor model that the mixing strength of heavy and light
holes at the center of the 2D Brillouin zone was higher
for abrupt heterojunctions than for structures with a
continuously varying composition, this conclusion was
not obtained using the more complex form-factor
model. We can merely conclude that the strength of the
lh–hh mixing depends on the structure of the transition
region of the heterointerfaces. Having made a similar
analysis for our case, we can easily show that the Γ–X
mixing strength in fact depends strongly on how
abruptly (on scales of the order a) the chemical compo-
sition at the heterojunction varies. This conclusion
which follows directly from expressions (15) and (16)
for the parameters dwu and dwv is quite natural since
junctions with such a large (of the order of the dimen-
sions of the Brillouin zone) change in the quasimomen-
tum kz can only be achieved by electron scattering at an
atomically abrupt heterointerface (in formal terms the
Fourier components of the heterointerface potential
with the wave vector kz = 2π/a are responsible for the
Γ–X junctions).
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Abstract—A generalization of the Sakai–Tateno–Pedersen model is proposed. This model is used to establish
the existence of a discrete eigenvalue spectrum of the free-motion velocities of a Josephson vortex, or 2π kink,
produced by the Cherenkov structure of extraordinary vortex-trapped Swihart waves having the spectrum (3.9).
The dependence of the current across the Josephson junction on the vortex velocity was obtained, and, at com-
paratively high velocities, this was characterized by equidistant dips attributable to the Cherenkov resonant
interaction of the vortex with Swihart waves. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A theory of multikink structures of Josephson vorti-
ces in a nondissipative long Josephson junction was
constructed in [1–3], and an effect involving Cheren-
kov trapping of Swihart waves by a moving Josephson
vortex was established theoretically. The coherent
structure formed as a result of this trapping corresponds
to the gluing of Josephson vortices by trapped waves to
form a multikink vortex. The coherence of the trapped
waves leads to a discrete difference in the family of 2πn
kinks. This discreteness is responsible, for example, for
a discrete number of trapped wavelengths. It is of prime
importance that, this new property is observed in the dis-
crete (“quantized”) velocity spectrum of the free motion
of Josephson vortices, or multikinks. The theory con-
structed in [1–3] is based on the Aubry–Volkov model
[4–7] (see also [8]). Although this model could
describe freely moving multivortex structures, the free
motion of an isolated vortex, or 2π kink, carrying a sin-
gle magnetic-flux quantum was forbidden in this
model. Apart from this result, the absence of any other
exact statements related to the free motion of 2π kinks
under conditions of possible Cherenkov interaction of
Josephson vortices with Swihart waves naturally raised
the question as to whether the exclusion of the free
motion of 2π kinks in the Aubry–Volkov model is
merely a property of this model or whether it is more
general. In this study, we answer this question on the
basis of an analytic description of Josephson vortices
using a generalized Sakai–Tateno–Pedersen model [9, 10].
Our generalization put forward in Section 2 involves
making additional allowance for the fourth spatial deriva-
tives in this model. This generalization is required at
Josephson vortex velocities close to the Swihart velocity.
At the same time, this generalization can describe the
Cherenkov interaction of Josephson vortices with Swi-
hart waves and is put forward in Section 3. Note that, in
1063-7761/00/9006- $20.00 © 21071
[11], allowance for the fourth derivatives in a generali-
zation of the ordinary sine-Gordon equation was used to
obtain a numerical description of a 4π kink. Using our
nondissipative generalization of the Sakai–Tateno–Peder-
sen model, we subsequently show that Cherenkov
interaction of a Josephson vortex with waves does not
generally forbid the free motion of a 2π kink. In other
words, the exclusion for the motion of a 2π kink as a
result of the Cherenkov effect in the Aubry–Volkov
model of Josephson vortices is a specific result of this
model. By allowing the free motion of an isolated
Josephson vortex in the Sakai–Tateno–Pedersen model,
we are able to establish, for the first time, the internal
coherent structure of a 2π kink produced by Swihart
waves Cherenkov-trapped by a moving Josephson vor-
tex. As in the case of multivortices in the Aubry–Volkov
model, our generalization of the Sakai–Tateno–Peder-
sen model allows us to predict theoretically for the first
time that the velocities of free motion of a 2π kink
(the simplest Josephson vortex) are discrete, and we
establish a law determining the eigenvalue spectrum of
these velocities. We stress that, here, we have a qualita-
tive difference between this family of Josephson vorti-
ces and the Josephson vortex having a continuous spec-
trum of free-motion velocities usually considered in the
sine-Gordon model [12]. The results of this theory
are presented in Section 4. In Section 5, we use a
generalized Sakai–Tateno–Pedersen model to take into
account current from an external source. This model
can be used to analyze the forced uniform motion of
Josephson vortices with an accompanying Cherenkov
field of trapped waves and a trail of Cherenkov radia-
tion following the vortex. In particular, we can obtain a
unique dependence of the current on the vortex velocity
which can be observed in the current–voltage characteris-
tic of Josephson junctions. This uniqueness is observed as
a oscillating dependence of the current–voltage charac-
teristic on the velocity of the Josephson vortex which
000 MAIK “Nauka/Interperiodica”
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corresponds to the appearance of a spectrum of charac-
teristic velocities of the freely moving Josephson vor-
tex and, hence, to a dependence of the current on the
voltage. This last result differs qualitatively from that
obtained in [13] in which the influence of Cherenkov
radiation on the current–voltage characteristic of a
Josephson junction was described. This qualitative dif-
ference is quite natural since the study [13] is based on
the assumption that the velocities of a 2π kink have a
continuous eigenvalue spectrum, whereas the discrete-
ness of the velocity spectrum of a 2π kink is established
for the first time in the present study. Finally, in Sec-
tion 6, we allow for ordinary dissipation, discuss the
results, and put forward the concept of Cherenkov glu-
ing of a Josephson vortex from elementary structures
comprising 1π kinks which correspond to half a mag-
netic-flux quantum. 

2. ORIGINAL MODEL

Instead of the usual model of sine nonlinearity of the
Josephson current, the authors of [9, 10] proposed a dif-
ferent model that can give a comparatively simple exact
analytic description under conditions when generaliza-
tions of the ordinary sine-Gordon equation do not allow
an exact description. In the Sakai–Tateno–Pedersen
model [9, 10] the following equation is proposed for the
phase difference ϕ of superconducting pairs on differ-
ent sides of the Josephson junction:

(2.1)

Here, ωj and λj are the Josephson frequency and length,
j is the current density of the external source, jc is the
critical Josephson current density, β characterizes the
dissipation of the junction material separating the
superconductors, and η characterizes the so-called sur-
face dissipation determined by the normal supercon-
ductor electrons. All the terms in equation (2.1), apart

1

ωj
2

------∂2ϕ
∂t2
--------- λ j

2∂2ϕ
∂z2
---------– F ϕ[ ]+

=  j
jc

----–
β
ωj

2
------∂ϕ

∂t
------–

ηλ j
2

ωj
2

--------- ∂3ϕ
∂t∂z2
-------------.+

–0.5 0.5 1 1.5 2

1

0.5

–1

–0.5

F

ϕ/π

Fig. 1. The function F[ϕ] corresponding to the nonlinearity
in the Sakai–Tateno–Pedersen model in accordance with
formula (2.2).
JOURNAL OF EXPERIMENTAL
from the last term on the left-hand side, are the same as
the usual ones for local Josephson electrodynamics,
which is based on generalizations of the sine-Gordon
equation. A unique characteristic of the Sakai–Tateno–
Pedersen model is that, instead of the ordinary nonlin-
earity F[ϕ] = sinϕ, it uses a different nonlinearity that,
to some extent, simulates sine nonlinearity. The nonlin-
earity of this model in the region –π/2 < ϕ < 2π suffi-
cient for studying the 2π kinks of interest to us has the
form

This dependence, illustrated in Fig. 1, is an approxima-
tion, which is qualitatively similar to a sine one and has
already yielded various important dependences charac-
terizing Josephson vortices [9, 10].

For comparison with the further analysis, we also
give the solution of equation (2.1) for the free motion
of a Josephson vortex when

(2.3)

and when the right-hand side of equation (2.1) is
neglected. In this case, we have

(2.4a)

(2.4b)

(2.4c)

Here, we have

(2.5)

where Vs = ωjlj is the Swihart velocity. Qualitatively, the
dependences (2.4) are similar to those obtained from the
sine-Gordon equation for the free motion of a Josephson
vortex [12]:

(2.6)

In the sine-Gordon model and in the Sakai–Tateno–
Pedersen model, the characteristic scale of the Joseph-
son-vortex dimension is reduced, becoming much smaller
than the Josephson length, as the vortex velocity
approaches the Swihart velocity. This reduction in the spa-
tial scale indicates that, in order to describe Josephson
vortices moving at velocities close to the Swihart veloc-
ity, appropriate a more equation than the ordinary sine-
Gordon equation or equation (2.1) of the Sakai–Tateno–

F ϕ[ ]
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Pedersen model should be used. In order to formulate
such an equation, in the general derivation [14] of the
corresponding nonlocal equation for the phase differ-
ence ϕ of superconducting pairs on different sides of
the Josephson junction, we allow for a small correction
term which corresponds to the influence of a small Lon-
don length and leads to the appearance of the fourth
spatial derivative. As a result, we obtain (see [11] in the
sine-nonlinearity model) 

(2.7)

The third term on the left-hand side of this equation dis-
tinguishes the differential operator obtained here from
the ordinary differential operator of the sine-Gordon
equation. Equation (2.7) corresponds to the generalized
Sakai–Tateno–Pedersen model used by us in the fol-
lowing analysis.

3. CHERENKOV RESONANCE CONDITIONS

We shall first discuss the wave perturbations
described by equations (2.2) and (2.7). In this section,
we shall completely neglect the terms on the right-hand
side of equation (2.7). Then in regions (2.2a) and (2.2c)
for small ϕ = δϕ and a small difference of ϕ from 2π,
respectively, i.e., (ϕ – 2π) = δϕ, we have the same equa-
tion:

(3.1)

For the wave dependence

, (3.2)

(3.1) yields the dispersion equation

(3.3)

corresponding to ordinary Swihart waves. If we now
write the Cherenkov condition for resonant interaction
of a source moving at velocity V with the wave pertur-
bation,

(3.4)

in accordance with formula (3.3) we obtain the follow-
ing expression for the resonant wave vector:

(3.5)
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where the following notation is used:

(3.6)

In addition to the purely real solution of equation
(3.4) described by formula (3.5), which corresponds to
a Cherenkov-excited wave perturbation, equation (3.4)
for the spectrum (3.3) also has a purely imaginary solu-
tion k = ike , where

(3.7)

A slightly different picture emerges for region (2.2b),
where, for a small phase difference from π, i.e., for
δϕ = ϕ – π, we have

(3.8)

For the wave perturbations (3.2), we then have the fol-
lowing dispersion equation:

(3.9)

This equation differs from (3.2) in respect of the sign of
the first term on the right-hand side. For small values of
the wave vector, the frequency corresponding to the
dispersion equation (3.9) is purely imaginary, which is
consistent with the usual property of the sine-Gordon
equation describing instability of the state near ϕ = π.
Perturbations having the spectrum (3.9) may also be
Cherenkov-excited in accordance with the resonance
condition (3.4). For the resonant wave vectors, in
accordance with (3.4) and (3.9) we then have

(3.10)

(3.11)

Usually the Cherenkov excitation of waves having the
spectrum (3.9) is of no interest. However, it might seem
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unexpected, but we shall see that waves having the
spectrum (3.9) will play a key role in our analysis. 

In accordance with relations (3.5), (3.8), (3.10), and
(3.11), the influence of the term containing the fourth
spatial derivative in equation (2.7) is significant, pro-
vided that

(3.12)

Moreover, when this inequality is not satisfied, it is sim-
ply not justified to confine ourselves to the term contain-
ing the fourth derivative and neglect higher terms
because, when inequality (3.12) is not satisfied, pertur-
bations having a spatial scale comparable with the Lon-
don length λ are Cherenkov-excited. However, because
of the smallness of the ratio

, (3.13)

in the Josephson junctions usually studied we can spec-
ify the velocity range

(3.14)

where ε2 ! 1 and where formulas (3.5), (3.7), (3.10),
and (3.11) take the following simple form:

(3.15)

(3.16)

The expressions (3.16) describe a comparatively smooth

spatial variation on the scale , which corresponds to
the spatial scale of variation of the 2π kinks in local
Josephson electrodynamics [12]. In contrast, formula
(3.15) describes small-scale perturbations of Cheren-
kov-excited Swihart waves of wavelength

(3.17)

It should be stressed that, if condition (3.14) is satisfied,
in accordance with (3.16) we have ke . k1; however, if,
k1 corresponds to an oscillating wave perturbation, ke

corresponds to an exponentially varying spatial varia-
tion δϕ. The relations given in this section and describ-
ing the laws governing Cherenkov excitation in Joseph-
son electrodynamics with the fourth spatial derivative
are used as the basis for our following analysis.

4. CHERENKOV TRAPPING OF WAVES
BY A 2π KINK AND EIGENVALUE SPECTRUM

OF VELOCITIES OF A MOVING 
JOSEPHSON VORTEX

We now apply equations (2.7) and (2.2) to the motion
of a vortex (2π kink) at constant velocity V when ϕ(z, t) =
ψ(z – Vt). As in the preceding section, we shall com-
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pletely neglect all terms on the right-hand side of equa-
tion (2.7). Then equation (2.7) gives

(4.1)

The fact that we are interested in a solution of equation
(4.1) in the form of a 2π kink implies that the real axis
of the variable s is divided into three regions. The first
region is s < –s0, where 0 < ψ < π/2 and where the solu-
tion of equation (4.1) has the form

(4.2)

The second region is –s0 < s < s0, where π/2 < ψ < 3π/2
and where the solution of equation (4.1) has the form

(4.3)

Finally, the third region is s0 < s, where 3π/2 < ψ < 2π
and where the solution of equation (4.1) has the form

(4.4)

Expressions (4.2) and (4.3) and expressions (4.3) and
(4.4) should be continuous at contiguous points of their
regions of application, and their first, second, and third
derivatives should also be continuous. The correspond-
ing conditions of continuity first yield expressions for
the coefficients of formula (4.3):

(4.5)

(4.6)

and second yield two key equations for the following
analysis:

(4.7)

(4.8)

A solution of equation (4.1) describing a moving 2π
kink is thus completely determined. We stress that the
system of equations (4.7) and (4.8) first determines the
width 2s0 of the region in which the phase changes from
π/2 to 3π/2 and second determines the velocity of a 2π
kink with allowance for formulas (3.7), (3.10), and
(3.11). We also stress that, according to these formulas,
the vortex velocity is lower than the Swihart velocity,

, (4.9)
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and, unlike the local theory which neglects the fourth
derivative in (4.1), cannot be extremely close to the
Swihart velocity. Of course, the width of this forbidden
region is extremely small since λ ! λj . To prevent the
analysis from becoming too cumbersome, we shall sub-
sequently confine ourselves to Josephson vortex veloc-
ities not too close to the Swihart velocity when condi-
tion (3.14) is satisfied (for the general case, see Appen-
dix 1). Then, using the small parameter

ε ! 1, (4.10)

we can write equations (4.7) and (4.8) in the following
approximate form:

(4.11)

(4.12)

Thus, for the coefficients (4.5) and (4.6) we have

(4.13)

(4.14)

In formulas (4.11) and (4.12), we use expression (2.5). 
If condition (4.10) is satisfied when

ke . k1 . kj, (4.15)

expression (2.5) describes an exponential change in the
phase difference in the external regions of the vortex:

(4.16)

On account of (4.19) (see below) these approximate
dependences are the same as those describing the spa-
tial variation of a 2π kink in local electrodynamics
(2.4a) and (2.4c). In the internal region of the 2π kink,
in the approximation (4.11) we can write:

(4.17)

One of the terms in (4.17) varies on the same scale as
expression (4.16). The last term varies on a substan-
tially smaller scale and corresponds to the wave vector
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characteristic velocities of the free motion of a 2π kink.
First we obtain from equation (4.12) 

. (4.19)

On the right-hand side of this formula, we could add
πm in accordance with (4.12). However, for m ≠ 0, the
condition π/2 < ϕ < 3π/2 is not satisfied in the internal
region of the kink. Thus, only the solution (4.19)
remains. It therefore follows from (4.19) that the size of
the internal region of the vortex, 2s0, has the same scale

 as the external, front and back regions. This size is
the same as the size of the middle region of the vortex
described by local Josephson electrodynamics in the
Sakai–Tateno–Pedersen model [see (2.4)]. This agree-
ment is quite natural because (4.19) corresponds to an
approximation in which the small parameter ε2 charac-
terizing the difference between our model and the
Sakai–Tateno–Pedersen model is negligible. Now going
over to equation (4.11), we note that a small right-hand
side of equation (4.11) is required to ensure that the solu-
tion (4.17) satisfies the matching conditions. At the same
time, in order to search for an approximate expression
for the velocity spectrum, the right-hand side of (3.16)
can be neglected. Then, allowing for (4.19), we obtain

(4.20)

The required discrete velocity spectrum for a Joseph-
son vortex then follows directly:

(4.21)

This equidistant velocity spectrum is obtained when

1 ! n ! (λj/λ). (4.22)

In accordance with (4.20) n is the number of lengths of
the trapped Swihart waves having the extraordinary
spectrum (3.9) in the internal region of the vortex 2s0.
With reference to the completeness of the description
of the velocity spectrum using formula (4.21), we note
that, for small mode numbers n, a description of the
spectrum is given in Appendix 1. For larger mode num-
bers n which do not satisfy the right-hand side of ine-
quality (4.22), it should be noted that, first, in this case
our differential generalization of the Sakai–Tateno–
Pedersen model is unsuitable. Second, an analysis of
the range of multikink velocities much lower than the
Swihart velocity reported in [1–3] indicates that the
velocity spectrum has a condensation point for V  0.
We can therefore assume that the denumerable set of
velocities of the free motion of Josephson vortices also
has a similar condensation point in our particular case
of 2π kinks.

k js0 π 4⁄   .  0.785 … =

k j
1–

2
ε
---k js0

π
2ε
----- πn.= =

V Vs 1
2λ

λ j π
------------n– 

  .=
SICS      Vol. 90      No. 6      2000



1076 SILIN, STUDENOV

                
5. FORCED MOTION OF JOSEPHSON VORTICES: 
CHERENKOV LOSS BALANCE

In this section, we consider the uniform motion of
Josephson vortices under the influence of a current j
that is established as a result of the balance between the
action of the current and the Cherenkov losses caused
by emission of waves by the vortex. In this formulation
of the problem, we retain the current j on the right-hand
side of equation (2.7) and drop the dissipative terms.
Below, we give an analytic description of a moving vor-
tex and establish a relation between its velocity and the
current density j. We shall assume that the “head” of the
vortex is situated in the region, s > sj , where 3π/2 < ψ <
2π. In this region, we have the equation

(5.1)

We determine the integration constants assuming that
no Cherenkov radiation field occurs ahead of the vortex
and from the condition ψ(sj) = 3π/2, and we obtain a
solution of equation (5.1) in the following form:

(5.2)

In the middle region of the Josephson vortex, –sj < s < sj,
where π/2 < ψ < 3π/2, we have

(5.3)

The solution of this equation has the form

(5.4)

Matching the solutions (5.2) and (5.4) and also their
first three derivatives, we obtain 

(5.5)

(5.6)

(5.7)

d ψ4

ds4
---------

2

λ2
----- 1 V2

Vs
2

------–
 
 
  d ψ2

ds2
---------+

–
4

πλ2λ j
2

-------------- ψ 2π–( ) 2 j

jcλ j
2λ2

---------------.=

ψ s( ) ψh s( ) 2π≡=

– πj
2 jc

-------
π
2
--- 1 j

jc

----– ke s s j–( )–[ ] .exp–

d ψ4

ds4
---------

2

λ2
----- 1 V2

Vs
2

------–
 
 
  d ψ2

ds2
---------+

–
4

πλ2λ j
2

-------------- ψ π–( ) 2 j

jcλ j
2λ2

---------------.=

ψ s( ) ψm s( ) π πj
2 jc

------- am k0scos+ +≡=

+ bm k0s cm k1s dm k1s.sin+cos+sin

am 1 j
jc

----– 
  B jM0 j 2k0s jsin

2 1 M0 j–( )
------------------------------------,–=

bm 1 j
jc

----– 
  B j 1 M0 j k2

0s jsin–( )
1 M0 j–

------------------------------------------------,=

cm 1 j
jc

----– 
  D jM1 j

2 1 M1 j–( )
-------------------------- 2k1s j,sin–=
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(5.8)

Here, Bj and Dj are determined by formulas (4.5) and
(4.6) with s0 replaced by sj , and the functions M0j and
M1j are determined by formulas (4.7) and (4.8) with the
same substitution. Obviously, in the limit j = 0 when the
functions M0 and M1 given by formulas (4.7) and (4.8)
go to zero, we obtain am = cm = 0, bm = B, and dm = D,
i.e., the solution (5.4) becomes (4.3)

Finally, in the tail region of the vortex, s < –sj , where
ψ < π/2, we have

(5.9)

whose solution has the form

(5.10)

The matching conditions of the solutions (5.4) and
(5.10) and also their three derivatives for s = –sj yield
the following four expressions:

(5.11)

(5.12)

(5.13)

(5.14)

where the following notation is used:

(5.15)

dm 1 j
jc

----– 
  D j 1 M0 j k2

1s jsin–( )
1 M1 j–

------------------------------------------------,=

d ψ4

ds4
---------

2

λ2
----- 1 V2

Vs
2

------–
 
 
  d ψ2

ds2
--------- 4

λ2λ j
2

-----------ψ–+
2 j

jcλ j
2λ 2

----------------,=

ψ s( ) ψt s( ) πj
2 jc

-------– at ke s s j+( )[ ]exp+≡=

+ bt kt s s j+( ) ct kt s s j+( ).cos+sin

at π 1 j
jc

----– 
 =

× 1
2
--- A0M0 j k2

0s jsin A1M1 j k2
1s jsin–+

 
 
 

,

at

2πkt
2

ke
2 kt

2+
---------------- j

jc

---- π
2
--- 1 j

jc

----– 
 +=

× 1
ke

k0
----A0M0 j 2k0s jsin

ke

k1
----A1M1 j 2k1s jsin–+

 
 
 

,

bt π 1 j
jc

----– 
  ke

kt

----=

× C M0 j k2
0s jsin M1 j k2

1s jsin–{ } ,

ct

2πkt
2

ke
2 kt

2+
---------------- j

jc

---- π
2
--- 1 j

jc

----– 
 +=

× C
ke

k0
----M0 j 2k0s jsin

ke

k1
----M1 j 2k1s jsin–

 
 
 

,

A0
kt

2 k0
2–( ) k1

2 ke
2+( )

k0
2 k1

2–( ) kt
2 ke

2+( )
----------------------------------------

1
2
--- 1

1 ε4–
----------------- 1– ,= =
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(5.16)

(5.17)

Equating expressions (5.11) and (5.12) gives

(5.18)

This equation relates three quantities: the current den-
sity j; the size of the middle (internal) region of the
Josephson vortex, 2sj; and the vortex velocity V. The
second equation for these quantities is obtained from
the condition ψm(–sj) = π/2 and has the following form:

(5.19)

These expressions are obtained under the condition j < jc,
which is satisfied over a wide range of manifestation of
the discrete spectrum of velocities of a Josephson
vortex. 

Quite clearly, in the limit j = 0, equations (5.18) and
(5.19) reduce to equations (4.7) and (4.8) characteriz-
ing the free motion of a Josephson vortex for discrete
values of the velocities of a 2π kink. This set corre-
sponds to the discrete points where the current density
goes to zero on the curve of j as a function of the vortex
velocity, as given by equations (4.7) and (4.8). At the
same time, expressions (5.13) and (5.14) go to zero for
these velocities. This implies that, at velocities corre-
sponding to the eigenvalues of the free-motion velocity
of a Josephson vortex, no Cherenkov radiation field
appears in the vortex tail corresponding to the oscillat-
ing term in formula (5.10).

We shall now describe some simple consequences
of this description, as in the preceding section, for the
case when the Josephson vortex velocities are not too
close to the Swihart velocity when condition (3.14) is
satisfied. The solution of equations (5.18) and (5.19) is
described in Appendix 2. According to formulas (A.2.3)
and (A.2.7), the size of the middle region of the Joseph-
son vortex can be accurately given by sj . s0, and we can
use the approximate relationship (4.19) corresponding
to the approximation of the local model. In addition, in

A1
kt

2 k1
2–( ) k0

2 ke
2+( )

k0
2 k1

2–( ) kt
2 ke

2+( )
----------------------------------------

1
2
--- 1

1 ε4–
----------------- 1+ ,= =

C
k0

2 ke
2+( ) k1

2 ke
2+( )

k0
2 k1

2–( ) kt
2 ke

2+( )
-----------------------------------------

ε2

2 1 ε4–
---------------------.= =

j
jc

---- 1 j
jc

----– 
  1

2 1 ε2– 1 ε4–+( )
--------------------------------------------------=

× 1 1 ε4––[ ] k0s j( )2 M0
2sin(

– 1 1 ε4–+[ ] k0s j( )2 M1
2sin ).

j
jc

----
1
4
--- 1 j

jc

----– 
  1 ε2+

1 ε2–
-------------- 1+

ke

k1
----M1 2k1s jsin





=

– 1 ε2+

1 ε2–
-------------- 1–

ke

k0
----M0 2k0s jsin





.
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accordance with formulas (A.2.6) and (A.2.8) we use
the following approximate relation for our discussions:

(5.20)

The right-hand side of formula (5.20) is a function of
velocity as given by (3.6), which characterizes the
dependence of ε on the velocity of a Josephson vortex.
Consequently, in the approximation used here, relation-
ship (5.20) characterizes the dependence of the current
density j on the vortex velocity. In the approximation
(3.14), we have

(5.21)

Thus, formulas (5.5)–(5.8) have the following simple
form:

(5.22)

The field of Cherenkov-trapped waves having the
extraordinary spectrum (3.9) is described in the solu-
tion (5.4) by terms having small coefficients am and bm .
These small expressions must be taken into account to
obtain the law (5.20). However, in the zeroth approxi-
mation with respect to the parameter ε, the solution
(5.4) has the form

(5.23)

which is consistent with the description of the free
motion of a Josephson vortex in the usual local approx-
imation of the Sakai–Tateno–Pedersen model (2.4b).

Also in the approximation (4.10), formulas (5.11),
(5.13), and (5.14) characterizing the tail of the Joseph-
son vortex may be written in the following simple form:

j
jc

----
ε4

8
---- π

2ε
-----sin

ε
2
--- π

2ε
-----cos– 

 
2

.=

D j  .  π 
2

-------, B j  .  πε
 

4

 
16
 

k
 

0
 

s
 

j
 
sin

-----------------------,–

M0 j   .  1 ε 
2
--- k 0 s j ,cot–

M1 j
ε3

2
---- π

2ε
-----

ε
2
--- π

2ε
-----cos–sin 

  π
2ε
-----.cos=

am  .  πε
 

3

 
8

-------- π
 

2
 ε -----sin ε

 
2
--- π

 
2

 ε -----cos–  
  ,

bm  .  πε
 

3

 
8

--------–  π
 

2
 

ε
 -----cos ε
 

2
--- π

 
2

 
ε

 -----cos+  
  , 

c

 

m  .  πε
 

3

 
4 2
---------- π
 

2
 ε -----sin ε

 
2
--- π

 
2

 ε -----cos–  
  π

 
2

 ε -----,cos–

dm  .  π 
2

-------.

ψm s( ) π π
2

------- k js,sin+=

at  .  π 
2
--- πε

 

3

 
4

-------- π
 

2
 

ε
 -----sin ε

 
2
--- π

 
2

 
ε

 -----cos– π
 

2
 ε -----,cos–
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(5.24)

The small coefficients bt and ct characterize the Cheren-
kov radiation field of waves having the ordinary spec-
trum (3.3) in the vortex tail. The coefficient at differs
from the corresponding solution for free motion by a
small correction of order ε3, which goes to zero for
those discrete values of the velocity that correspond to
the eigenvalues of the free-motion velocity of a Joseph-
son vortex. At these velocities, the coefficients bt and ct

also go to zero, which indicates that no Cherenkov radi-
ation field exists in the vortex tail at these velocities. In
Fig. 2, the dotted curve corresponds to the right-hand
side of equation (5.20). The zeroes in this curve corre-
spond to the eigenvalues of the velocity of a Josephson
vortex.

6. DISCUSSION

To gain deeper insight into the problem under con-
sideration, the dissipation should be taken into account
in the law linking the current and velocity of a Joseph-
son vortex. Since, according to formula (5.20), the cur-
rent density causing the motion of 2π kinks is low
compared with the critical Josephson value, the corre-
sponding dissipation contribution to the law generaliz-
ing formula (5.20) may be considered additive. This
means that the role of dissipation may be analyzed
directly in the Sakai–Tateno–Pedersen model. Here, we

bt   .  πε
 

3

 
4

-------- π
 

2
 ε -----sin ε

 
2
--- π

 
2

 ε -----cos– π
 

2
 ε -----,sin

ct   .  πε
 

3

 
4

-------- π 
2

 
ε

 -----sin ε
 

2
--- π 

2
 

ε
 -----cos– π

 
2

 ε -----.cos           

0

2

4

6

8

10

12

0.010.020.030.040.050.060.07
1 – V/VS

× 105 j/jc

Fig. 2. Dependence of the current density on the velocity of
a 2π kink near the Swihart velocity for β/ωj = 10–5, λ/λj =

5 × 10–3, and η = 0: (solid curve) equation (6.4), (dashed
curve) equation (6.3), and (dotted curve) equation (5.20);
the dot-and-dash vertical line defines the velocity region for
which our analysis using formula (4.9) is valid.
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indicate the form of the solution of equation (2.1) for a
uniformly moving Josephson vortex:

(6.1a)

(6.1b)

(6.1c)

Here, s0 = π/4kj , and the following notation is used

(6.2)

Formula (6.1) then yields the law

(6.3)

In the simplest case of low temperatures, when the con-
tribution of surface losses is negligible because of the
freezing of normal electrons, the dependence (6.3) is
given by the dashed curve in Fig. 2. 

The combined contribution of ordinary dissipation
and Cherenkov radiation losses yields the following
equation:

(6.4)

In order to reveal the manifestation of the Cheren-
kov effect more clearly, we write formula (6.4) in terms
of the variable ν that, for integer values, characterizes
resonant values of the velocity (4.21) and is given by
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2
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Then (6.4) has the following form:

The first term in this expression, which is determined
by normal dissipation describes a monotonic increase
in j as the Josephson vortex velocity approaches the
Swihart velocity. The second Cherenkov term on the
right-hand side of (6.4) represent pronounced oscillating
dependence. This dependence may be seen in the exper-
imental results [15]. Using the experimental parameters
given in [15], we can suppose that the observed equidis-
tance of the dips on the current–voltage characteristic in
the range of Josephson vortex velocities close to the Swi-
hart velocity may be associated with our law (6.4). Note
that the “descending” sections of the dependence of j
on V given by equation (6.4), which correspond to
“descending” sections on the current–voltage charac-
teristic are usually unstable, which is consistent with
their absence on the detailed curve of the current–volt-
age characteristic given in [15] for sample B.

To sum up, we can state that we have established for
the first time that the velocities of the free motion of the
simplest Josephson vortex carrying a single magnetic-
flux quantum, known as a 2π kink, are discrete (quan-
tized). Moreover, like the results of [1–3], we established
that this quantization of the characteristic velocities is pro-
duced by the number of wavelengths of those Swihart
waves trapped by a Josephson vortex as a result of reso-
nant interaction. A qualitative difference between the
results of [1–3], which use the Aubry–Volkov model
[4–6], is that, whereas, according to [1–3], Cherenkov
gluing of 2π kinks to form multikinks takes place as a
result of the trapping of ordinary Swihart waves having
the spectrum (3.3), in our case, waves having the extraor-
dinary spectrum (3.9) play the role of glue. This, is
because the Aubry–Volkov model does not allow these
extraordinary waves. Thus, our use of the Sakai–Tateno–
Pedersen model makes it possible to identify the gluing of
a 2π kink from its two halves. This suggests that the ele-
mentary constituents from which complex vortices may
be constructed are 1π kinks corresponding to half a mag-
netic-flux quantum and described by formula (4.2) [or the
corresponding formula (4.4)] and also by formula (4.3) in
the range –s0 < s < 0 (or 0 < s < s0, respectively). The
dependence of the current on the Josephson vortex veloc-
ity obtained using these concepts demonstrates that the
spectrum of velocities of a Cherenkov-glued 2π kink is
discrete. In addition to being of physical interest, the
results of the present study may well be of mathematical
interest, which will help to stimulate studies of local and
nonlocal generalizations of the sine-Gordon equation.

ACKNOWLEDGMENTS

This work was supported financially by the inter-
disciplinary project “Studies of Characteristics of High-

j
jc

----
π7/4V

16 2Vs

------------------- β
ωj

----- 4
π
--- 1+ 

  ηλ j

2 πλωjν
------------------------+

λ j

λν
------=

+
1

128ν4
-------------- πνsin

1
4ν
------ πνcos– 

 
2

.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Temperature and Other Superconductors with High
Critical Parameters”, section ”Study of the Nature and
Fundamental Properties of Superconductors” of the Sci-
entific Council on Superconductivity, the Russian Foun-
dation for Basic Research (project no. 00-02-16076),
and under the State Support for Leading Scientific
Schools.

APPENDIX 1

In this Appendix, we give results of a general descrip-
tion suitable for a Josephson vortex under conditions
where inequality (4.10) [or (4.22)] is not satisfied, i.e., for
a small number of modes n when the velocity of the
Josephson vortex is very close to the Swihart velocity.
In this general case, the solution of equation (4.1) may
be expressed in the form

s < –s0,

[A.1.1]

–s0 < s < s0,

s > s0,

where δ2 = 1 – ε2. Thus, the velocity eigenvalues are
given by

(A.1.2)

where the discrete values correspond to solutions of the
equation 

(A.1.3)
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π
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2⁄–( ) s0 λ⁄( )[ ]sin{ }
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ψ s( ) 2π=
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π
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2 1 2λ

λ j π 1 δ2–( )
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1 δ–
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P δ( )arctan
Q δ( ) πn+arctan
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where 

(A.1.4)

Here, we give the first three solutions of equation
(A.1.3): n = 1, δ1 = 0.901, and kj1s01 = 0.762; n = 2, δ2 =
0.971, and kj2s02 = 0.778; and n = 3, δ3 = 0.986, and
kj3s03 = 0.782, where kjn (n = 1, 2, 3, …) denote values
of k1 (3.11) for various values of δ. Quite clearly, the
approximation (4.19) is poorly satisfied even for the
third mode.

APPENDIX 2

We shall briefly give the solutions of equations
(5.18) and (5.19) for Josephson vortex velocities not
too close to but also not too far from the Swihart veloc-
ity when condition (3.14) is satisfied and when we can
use the small parameter ε. This allows us to write the
system (5.18) and (5.19) in the form

(A.2.1)

(A.2.2)

The method of solving this system of equations becomes
obvious after substituting into these equations

(A.2.3)

where ∆ = o(ε2). Equations (A.2.1) and (A.2.2) then
have the simple form
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(A.2.5)
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Now, it is easy to see that equation (A.2.4) yields the
following simple relationship:

(A.2.6)

and equation (A.2.5) gives

(A.2.7)

Formulas (A.2.3) and (A.2.7) distinguish s

 

j

 

 from the
approximate value of 

 

s

 

0

 

 used in Section 4 which is the
same as the result of the original Sakai–Tateno–Peder-
sen model. This difference is very small. However, if
this difference is neglected, it is not possible to obtain
the correct law (A.2.6) linking the current density 

 

j 

 

and
the Josephson vortex velocity. In this law, the zeroth
approximation (4.19) with respect to 

 

ε 

 

can be used as 

 

s

 

j

 

.
This gives

(A.2.8)

The approximate equation (5.20) used in the main text
corresponds to relation (A.2.6) in which (A.2.8) is
used.
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Abstract—An investigation is made of the temperature dependences of the resistivity in the range 4.2–300 K,
the Hall effect, and the Shubnikov–de Haas effect in magnetic fields up to 40 T in (Bi1 – xSbx)2Te3Agy single
crystals (0 ≤ x ≤ 0.75). Doping (Bi1 – xSbx)2Te3 crystals with silver showed that in Sb2Te3 and (Bi1 – xSbx)2Te3
crystals unlike Bi2Te3 silver exhibits acceptor properties. The angular and concentration dependences of the
Shubnikov–de Haas effect were studied in (Bi1 – xSbx)2Te3Agy. It was established that the anisotropy of the ellip-
soids of the upper valence band in Bi0.5Sb1.5Te3 remains unchanged as a result of silver doping. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Semiconductors of the Sb2Te3 type are layered crys-
tals having a rhombohedral structure and symmetry

space group R3m–  with the twofold and threefold
axes of symmetry C2 and C3. The crystal lattice is
formed by periodically ordered layers lying in the plane
perpendicular to the C3 symmetry axis. Each layer con-
sists of five atomic planes (quintets) forming the fol-
lowing sequence: Te1–Sb–Te2–Sb–Te1. Here Te1 and
Te2 denote Te atoms in various positions. In each indi-
vidual layer the atoms are similar and form a plane hex-
agonal lattice. The atoms of each successive layer are
positioned above the centers of the triangles formed by
atoms of the preceding layer (hexagonal close pack-
ing), i.e., the Te1 and Sb atoms occupy octahedral posi-
tions in a tetradymite structure. The chemical bond
within the quintets is covalent-ionic. Between the quin-
tets there is a comparatively large spacing and a weak
bond produced by van der Waals forces. This is respon-
sible for the anisotropy of the electrophysical proper-
ties of single crystals [1]. 

Crystals of Sb2Te3 have a very high concentration of
holes because of the presence of a large number of
charged point defects. Single crystals of Sb2Te3 typi-
cally have the following types of defects: Sb and Te
vacancies, atoms of these elements in interstitial sites,
antistructural SbTe (an Sb atom in a Te position) and
TeSb defects (a Te atom in an Sb position), impurity
antistructural defects, impurity atoms in interstitial
sites, and so on. Since antistructural defects are nega-
tively charged, Sb2Te3 grown under stoichiometric con-

D3d
5

1063-7761/00/9006- $20.00 © 1081
ditions always possesses p-type conductivity and has a
fairly high hole concentration. Similar defects may be
found in antimony telluride solid solutions.

Antistructural defects in Sb2Te3 semiconductors are
formed under the influence of the bond polarity. The
weak polarity of the Sb–Te bonds is conducive to the
formation of antistructural defects. A change in the
polarity of the bonds caused by doping or a shift of the
stoichiometry leads to a change in the concentration of
antistructural defects (see, for example, [2, 3]). Assum-
ing that the charge of the antistructural defects is com-
pensated by holes, any change in the concentration of
antistructural defects will correspond to a change in the
hole concentration. Dopants in layered crystals such as
antimony telluride have a strong influence on the con-
centration of point defects and therefore on the carrier
concentration. Consequently doping with elements in
particular groups of the periodic table may have a donor
or acceptor effect not depending on the number of the
group but as a result of the influence of the incorporated
element on the bond polarity. As an example we can
quote the Group III element indium which has a donor
effect in Sb2Te3 [4].

Mixed crystals, i.e., crystals of the type (Bi1 – xSbx)2Te3

or Sb2Te3 – ySey are of particular interest because the
highest thermoefficiencies Z are observed in these. Dif-
ferent combinations of the elements Bi, Sb, As and Te,
Se, S are possible. Despite intensive studies, very little
data are currently available on the influence of doping
with Group I elements on the energy spectrum of mixed
(Bi1 – xSbx)2Te3 crystals. 
2000 MAIK “Nauka/Interperiodica”
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The Shubnikov–de Haas effect is an effective
method of studying semiconductors since the parame-
ters of the energy spectrum can be determined directly,
i.e., the effective masses, Fermi surface cross sections,
carrier concentration, and so on. However, in antimony
telluride and mixed crystals such measurements are dif-
ficult since quantum oscillations of the magnetoresis-
tance are initiated in magnetic fields having an induc-
tion higher than 10 T because of the fairly low hole
mobility. 

In the present study we investigated the Shubnikov–de
Haas effect in magnetic fields up to 40 T which allowed us
to observe oscillations of the magnetoresistance in all the
samples studied. We also studied the influence of silver
doping on the galvanomagnetic properties and energy
spectrum of mixed (Bi1 – xSbx)2Te3 single crystals. 

2. SAMPLES AND METHOD OF MEASUREMENT

We investigated p-type single-crystal samples of sil-
ver-doped antimony telluride Sb2Te3 and mixed
(Bi1 − xSbx)2Te3 crystals grown by the Bridgman method
from polycrystalline materials. First we synthesized
polycrystalline samples from 99.999% pure elements
in stoichiometric ratio in a quartz ampoule. We then
added silver to the stoichiometric polycrystal for dop-
ing so that the sample compositions will subsequently
be given in the form Sb2Te3Agy and (Bi1 – xSbx)2Te3Agy.
After preparing a polycrystal of the required composi-
tion we grew the single crystals. The grown single crys-
tals were released from the quartz ampoule and cleaved
perpendicular to the C3 axis which, in the as-grown
ingots, was always perpendicular to the longitudinal
axis of the sample. The samples for the measurements,
in the form of a parallelepiped having average dimen-
sions of 1 × 1 × 5 mm3 with the long axis directed along
the C2 axis, were cut using an electric-arc machine.
Current and potential leads made of 30 µm diameter
copper wire were soldered using Bi + 4%Sb alloy.

The Ag content in the samples was determined by
atomic absorption spectroscopy (AAS) for the specific
sample used for all the electrophysical measurements.
Table 1 gives the silver content y determined by AAS
for the investigated samples and the experimentally

Table 1

Samples y determined by AAS c, 1019 atoms/cm3

Sb2Te3Agy 0.0035 2.2

0.0093 5.9

0.0100 6.2

0.0152 9.6

Bi0.5Sb1.5Te3Agy 0.0014 0.8

0.0030 1.9

0.0048 3.0
JOURNAL OF EXPERIMENTAL
determined silver concentration c in the measured sam-
ples. Attempts to obtain single crystals having an even
higher silver content resulted in its segregation.

The Hall effect was investigated at temperatures of
4.2 K, 77 K, and 300 K. The dc current was directed
along the C2 axis and the magnetic field induction vec-
tor B was directed along the C3 axis. The magnetic field
at 4.2 K was generated by two methods. For measure-
ments in fields not exceeding 11 T it was generated
using a superconducting solenoid immersed in liquid
helium. The measurements were made for two direc-
tions of the magnetic field induction vector and the Hall
voltage was taken as half the difference between these
values. In addition, the samples selected for the mea-
surements had symmetrically positioned Hall contacts,
i.e. in the absence of a magnetic field the potential from
the Hall contacts was zero. For measurements in strong
magnetic fields up to 40 T we used a pulsed magnetic
field. In one of the Bi0.5Sb1.5Te3Ag0.003 samples the
oscillations of the magnetoresistance were investigated
by rotating the magnetic field in the C3C1 plane (see
below).

3. RESULTS OF MEASUREMENTS

3.1. Galvanomagnetic Properties 
of (Bi1 – xSbx)2Te3Agy

Tables 2 and 3 give the resistivity ρ, Hall coeffi-
cients R, and Hall mobility µ of (Bi1 – xSbx)2Te3Agy

crystals at various temperatures. It should be noted that
R does not depend on the magnetic field for all samples.
Figure 1 gives the dependences ρ(T) for various sam-
ples. For all samples the value of ρ decreases with
decreasing temperature and saturates at low tempera-
tures. In the temperature range 77–300 K the resistivity
depends on temperature as ρ ∝  Tm where m ≈ 1.1 for
Sb2Te3Agy and for Bi0.5Sb1.5Te3Agy samples. The small
difference between this value of m and that of m = 1.5
typical of acoustic phonon scattering may be attributed
to the additional scattering on ionized impurities and a
possible temperature dependence of the effective mass
when the current is directed along the C2 axis. For a
magnetic field parallel to the C3 axis direct measure-
ments have established that the cyclotron mass does not
depend on temperature [5]. 

The Hall coefficients R are positive for all samples
and depend on temperature: as the temperature
decreases from room temperature to liquid-nitrogen
temperature, the value of R decreases slightly and then
remains almost constant (see Table 2 for Sb2Te3Agy and
Table 3 for Bi0.5Sb1.5Te3Agy . This R(T) dependence is
typical of Sb2Te3 single crystals and may be explained
quantitatively by the existence of two groups of holes
belonging to the upper and lower valence bands, having
different masses and probabilities (see, for example
[6]). In the silver-doped samples R decreases monoton-
ically with increasing Ag content, which indicates an
 AND THEORETICAL PHYSICS      Vol. 90      No. 6      2000
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Fig. 1. Temperature dependences of the resistivity ρ(T) for various Sb2Te3Agy samples (a): (1) Sb2Te3Ag0.0035; (2) Sb2Te3Ag0.015
and (Bi1 – xSbx)2Te3Agy (b): (1) (Bi1 – xSbx)2Te3, (2) (Bi1 – xSbx)2Te3Ag0.0014, (3) (Bi1 – xSbx)2Te3Ag0.0030.
increase in the hole concentration. The Hall coefficients
do not depend on the magnetic field for all samples.
The Hall mobility µ in the silver-doped samples
decreases with increasing silver content at all tempera-
tures, the decrease in µ being greater for
(Bi0.25Sb0.75)2Te3Agy than for Sb2Te3Agy, as is illus-
trated in Fig. 2. 

It can be seen from the doping results that the average
efficiency of silver in (Bi0.25Sb0.75)2Te3 crystals is lower
than that in Sb2Te3 crystals, i.e., the number of additional
holes per silver atom is lower in (Bi0.25Sb0.75)2Te3. This
result may be explained by the fact that in Sb2Te3 silver
mainly enters the Sb sublattice and forms negatively
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
charged substitutional point defects whereas in Bi2Te3

silver forms interstitial atoms. This is because the Bi–
Te atomic bonds in Bi2Te3 crystals are more ionic than
the Sb–Te bonds in Sb2Te3 crystals. The negative
charge of the Te1 and Te2 atoms in the Bi2Te3 lattice is
approximately an order of magnitude higher than the
negative charge of the same atoms in the Sb2Te3 lattice.
Similarly the positive charge of the Bi atoms in Bi2Te3

is an order of magnitude higher than the positive charge
of Sb in Sb2Te3. Thus, very few point defects where Bi
is substituted by Ag are formed in the Bi2Te3 lattice. At
the same time, the incorporation of Ag suppresses the
formation of antistructural negatively charged BiTe
Table 2.  Sb2Te3Agy

y ρ4.2, mΩ cm ρ77, mΩ cm ρ300, mΩ cm R4.2, cm3/C R77, cm3/C R300, cm3/C , m2/V s , m2/V s , m2/V s

0 0.031 – 0.250 0.059 – 0.086 0.190 – 0.034

0.0035 0.023 0.050 0.180 0.028 0.020 0.035 0.122 0.040 0.019

0.0093 0.021 0.044 0.149 0.022 0.021 0.030 0.105 0.048 0.020

0.010 0.027 0.042 0.146 0.012 0.016 0.020 0.044 0.038 0.014

0.015 0.026 0.038 0.145 0.009 0.012 0.013 0.035 0.031 0.009

µH
4.2 µH

77 µH
300

Table 3.  Bi0.5Sb1.5Te3Agy

y ρ4.2, mΩ cm ρ77, mΩ cm ρ300, mΩ cm R4.2, cm3/C R77, cm3/C R300, cm3/C , m2/V s , m2/V s , m2/V s

0 0.052 0.092 0.557 0.091 0.078 0.110 0.175 0.085 0.020

0.0014 0.047 0.077 0.366 0.037 0.030 0.050 0.079 0.039 0.014

0.0030 0.049 0.078 0.309 0.031 0.028 0.046 0.063 0.036 0.015

0.0048 0.044 0.073 0.333 0.016 0.025 0.044 0.036 0.034 0.013

µH
4.2 µH

77 µH
300
SICS      Vol. 90      No. 6      2000
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Fig. 2. Dependences of the Hall mobility µ at T = 4.2 K on
the silver content y in Sb2Te3Agy (open squares) and
(Bi1 − xSbx)2Te3Agy (filled squares).
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Fig. 3. Oscillations of the transverse magnetoresistivity ρxx
of Sb2Te3Agy samples at T = 4.2 K for samples having y
contents: (1) 0.0093; (2) 0.010; (3) 0.015. Curves 1 and 2 are
shifted upward.
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Fig. 4. Oscillations of the transverse magnetoresistivity ρxx and the Hall resistivity ρxy for (a) Bi0.5Sb1.5Te3Ag0.0014 and
(b) Bi0.5Sb1.5Te3Ag0.0048 samples at T = 4.2 K. The dependences ρxy(B) are measured from zero.
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Fig. 5. Angular dependences of oscillations of the transverse magnetoresistivity ρxx in a Bi0.5Sb1.5Te3Ag0.0003 crystal and their Fou-
rier spectra.
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defects. All this gives rise to a different type of defect
and ultimately to different behavior of Ag: in Sb2Te3
silver behaves as an acceptor whereas in Bi2Te3 silver
doping induces a donor effect [7]. It is then easy to
understand why the efficiency of silver as an acceptor
is lower in a mixed (Bi0.25Sb0.75)2Te3Agy crystal.

3.2. Shubnikov–de Haas Effect
in (Bi1 – xSbx)2Te3Agy Crystals

Shubnikov–de Haas oscillations in (Bi1 – xSbx)2Te3Agy

crystals were investigated at liquid helium temperature
with the magnetic field vector was directed along the C3
axis. For this orientation of the vector B the cross sec-
tions of all six ellipsoids of the upper valence band of
the Fermi surface are the same. Oscillations of the
transverse magnetoresistivity ρxx are shown in Fig. 3 for
some Sb2Te3Agy samples. A single oscillation fre-
quency is observed in these crystals although the lower
valence band is filled at this high hole concentration.
The absence of oscillations from the lower valence
band is attributable to the higher values of the effective
mass in this band and is normal for Sb2Te3 (see, for
example [4, 6]). 

Shubnikov–de Haas oscillations in (Bi1 – xSbx)2Te3Agy

samples are shown in Fig. 4. For Bi0.5Sb1.5Te3Ag0.003 the
Shubnikov–de Haas effect was also studied when the
magnetic field vector B was rotated in the plane C3C1,
see Fig. 5. The area of the extreme cross section SH of
the Fermi surface can be determined from the fre-
quency of the Shubnikov–de Haas oscillations F: SH =
2πe[F/"]. Values of the oscillation frequency F are
given in Tables 4 and 5. 

We now turn our attention to the oscillations of the
Hall resistivity ρxy as a function of the magnetic field
(see Fig. 4). When the temperature falls below 4.2 K,
these oscillations have the form of horizontal plateaus
as in the quantum Hall effect. The oscillations typical
exhibit phase singularities: the beginning of the down-
ward deflection of ρxy(B) corresponds to the resistivity
minimum. These oscillations are caused by the exist-
ence of a lower valence band having a high density of
states, which is filled in these samples, and by redistri-
bution of holes between the upper [from which the
oscillations of ρxx(B) are observed] and the lower
valence bands. This effect is discussed in further detail
in [8]. 

4. DISCUSSION OF RESULTS

The first Brillouin zone of Sb2Te3 is similar to the
Brillouin zone of an fcc lattice but is highly compressed
along the z-axis. The energy spectrum of the Sb2Te3
crystal has two valence bands: a light hole band or
upper valence band (UVB) and a heavy hole band or
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
lower valence band (LVB), see Fig. 6. As can be seen
from Fig. 6, there are also two conduction bands, an
upper (UCB) and a lower (LCB) conduction band. 

The Fermi surface of the upper valence band of
Sb2Te3 is described by the six-ellipsoid Drabble–Wolfe
model [9]. Both valence bands and the lower conduc-
tion band each have six Fermi-surface ellipsoids [5].
The six Fermi-surface ellipsoids are positioned as
shown in Fig. 7a. One of the axes of the ellipsoid cen-
tered in the xz plane is parallel to the y (C2)-axis. The
major axes of the ellipsoids are inclined in the mirror
plane xz(C1C3) with respect to the crystallographic axes
by the angle θ (Fig. 7b) which is determined as follows:

(1)

where αij = m0/mj are the components of the tensor of
the reciprocal effective masses which depend on energy

2θtan 2α23 α22 α33–( ),⁄=

Table 4.  Sb2Te3Agy

y F, T EF, meV pSdH, 1019 cm–3 1/eR, 1019 cm–3

0 52.0 98 2.20 10.5

0.0035 76.5 144 5.64 22.3

0.0093 78.0 147 5.80 28.4

0.0100 115.0 217 10.40 52.1

0.0152 120.8 228 11.20 69.4

Table 5.  Bi0.5Sb1.5Te3Agy

y F, T EF, meV pSdH, 1019 cm–3 1/eR, 1019 cm–3

0 56.8 100 3.28 6.9

0.0014 64.6 114 3.97 16.9

0.0030 82.6 146 5.76 20.2

0.0048 92.0 163 6.74 39.0

1

2

UCB
LCB

UVB

LVB
EF

Eg

3 4

Fig. 6. Band structure of antimony telluride: (1, 2) are the
two extrema of the conduction band; (3, 4) are the two
extrema of the valence band, Eg is the indirect band gap, and
EF are the Fermi levels in p-type samples.
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Fig. 7. Six-ellipsoid Fermi surface of the upper valence band of antimony telluride: (a) view in the xy plane perpendicular to the
C3-axis and (b) position of ellipsoids in the xz plane; C2 is the twofold axis, θ is the angle of inclination of the ellipsoids to the basal
plane, x', y', z' are the canonical coordinates of an ellipsoid having the semiaxes a, b, c. 
because of some nonparabolicity of the spectrum. The
angle θ in (Bi1 – xSbx)2Te3 crystals is only known as far
as x = 0.6 [10] and is approximately 42° for
(Bi0.4Sb0.6)2Te3. For the mixed Bi0.5Sb1.5Te3 crystals
studied here the angle θ ≈ 46° was determined by
extrapolation. 

In accordance with the ellipsoidal nonparabolic
model, the general form of the Fermi surface in the
upper valence band may be described by the following
expression:

(2)

where kx, y, z are the components of the wave vector, kx is
normal to the mirror plane in which the C2- and C3-axes
lie, ky is parallel to the C2-axis, and kz is parallel to the
C3-axis. In principle, the values of αij depend on energy
but the Fermi surface remains ellipsoidal. It is interest-
ing to study the dependence of the cross-sectional area
SH of each ellipsoid with its plane perpendicular to the
direction of the magnetic field vector on the angle of
inclination ϕ of this vector relative to the z-axis (C3). In
the experiments the direction of the field was varied in
the zx (C3C1 plane). In this case, the six ellipsoids can
be arbitrarily divided into two groups: two lying in
this plane (UVB1) and the other four positioned out-
side this plane and being symmetric to it (UVB2)
(Fig. 7a). By virtue of this symmetry, the ellipsoids in
each group are equivalent in the sense that their cross-
sectional areas SH are the same for any ϕ. For a non-

α11kx
2 α22ky

2 α33kz
2 α23kykz+ + + 2m0E "

2,⁄=
JOURNAL OF EXPERIMENTAL 
zero angle ϕ the cross sections of the ellipsoids in the
same group differ from those of the ellipsoids in the other
group. Thus, the ellipsoids in each group should be con-
sidered separately. 

We introduce the following notation: a, b, and c are
the principal axes of the ellipsoids; Smin, Smax, and Sint
are the extreme cross sections of the ellipsoid. By SH we
denote the ellipsoid cross section with its plane passing
through the center of the ellipsoid and perpendicular to
the magnetic field vector, which is directed along the z
(C3)-axis in Fig. 7b. One of the axes of each of the two
ellipsoids centered in the xz plane is parallel to the y
(C2) coordinate axis. The major axes of the ellipsoids
are inclined in the C1C3 planes by the angle θ with
respect to the crystallographic axes, which is deter-
mined by formula (1). The ellipsoid semiaxes may be
expressed as:

(3)

where

(4)

Using simple transformations, we obtain expressions
for the extreme cross sections of the ellipsoid:

a
1
"
---

2m0EF

α11'
----------------

 
 
  1/2

, b
1
"
---

2m0EF

α22'
----------------

 
 
  1/2

,= =

c
1
"
---

2m0EF

α33'
----------------

 
 
  1/2

,=

α22' α33'+ α22 α33,+=

α22' α33' α22α33 α23( )2.–=
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(5)

Simple transformations then yield the following depen-
dence of the extreme cross sections of the Fermi surface
for the two UVB1 ellipsoids:

(6)

where ϕ is the experimental value of the angle between
the direction of the magnetic field vector and the z axis,
and θ is the angle of inclination of the ellipsoid axes
with respect to the crystallographic axes.

For the four UVB2 ellipsoids we obtain

(7)

The hole concentration in the six ellipsoids is given by

(8)

where the volume of a single ellipsoid is V = 4πabc/3. 
Using the data obtained from a study of the Shubni-

kov–de Haas effect in (Bi1 – xSbx)2Te3Agy crystals, we
calculated the hole concentrations in the upper valence
band for the six-ellipsoid Fermi surface and the Fermi
energy and the results are given in Tables 4 and 5. We

used the following band parameters:  = 2.26,  =

32.5, and  = 11.6 [6].

Figure 8 gives theoretical (curves) and experimental
(symbols) dependences of the areas of the extreme
cross sections of the Fermi-surface ellipsoids on the
angle of inclination of the magnetic field vector relative
to the C3-axis in the C1C3 plane for UVB1 and UVB2
ellipsoids. The solid curves give the theoretical angular
dependences of the cross-sectional areas of ellipsoids
for which the anisotropy of the extreme cross sections
is Smax/Smin = 3.8. It can be seen that for this anisotropy
the experimental points are a good fit to the theoretical
curves. Also plotted are similar curves for ellipsoids with
different band parameters. The dotted curves refer to
ellipsoids with 1.4 times lower anisotropy (Smax/Smin =
2.8) and the dot-dash curves refer to ellipsoids having
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anisotropy 1.4 times higher than 3.8 (Smax/Smin = 5.4). It
can be seen that these curves differ from the experimen-
tal points (the size of the point approximately corre-
sponds to the error in determining the extreme cross
section of the Fermi surface) from which it follows that
values of Smax/Smin ≈ 3.8 may be considered suitable for
samples of this particular composition.

The hole concentrations pSdH in the upper valence
band calculated using the Shubnikov–de Haas effect
were compared with the corresponding Hall concentra-
tions 1/eR. All these values are given in Tables 4 and 5
which show that the values of pSdH are always lower
than the corresponding values of 1/eR, confirming that
the second lower valence band (LVB) is filled at these
high hole concentrations. 

Thus, a study of the resistivity, Hall effect at differ-
ent temperatures, and Shubnikov–de Haas effect in
(Bi1 – xSbx)2Te3Agy single crystals has shown that unlike
Bi2Te3, in Sb2Te3 and Bi0.5Sb1.5Te3 crystals silver exhib-
its acceptor properties: the hole concentration increases
with increasing silver content in the crystal. 

An investigation of the angular and concentration
dependences of the Shubnikov–de Haas effect with sil-
ver doping showed that the anisotropy of the upper
valence band ellipsoids for (Bi1 – xSbx)2Te3Agy remains
the same as (Bi1 – xSbx)2Te3. 
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Abstract—An analysis is made of the problem of the density distribution of a classical electron gas in a charged
capacitor whose electrodes are coated with dielectric films (liquid or solid). At high density the electrons form
thin layers at each of the capacitor electrodes. The electric field distribution is determined both inside and out-
side these layers. © 2000 MAIK “Nauka/Interperiodica”.
1. It was shown in [1, 2] that the surface of con-
densed media, such as liquid helium, can retain elec-
trons by means of electrostatic image forces. The pop-
ulation of the lower electron levels is low even at low
temperatures because electrons drift into the bulk above
the surface [3]. Hence, experiments to study the prop-
erties of a two-dimensional electron gas are carried out
in an electric field. A typical experiment is shown sche-
matically in the figure. The capacitor electrodes are
coated with insulator layers of thickness h and d having
permittivities εh and εd. An electron source is switched
on in the vacuum gap 0 < z < z0. A voltage V = V1 – V2
is applied to the capacitor electrodes, pressing the elec-
trons toward the lower dielectric layer on which an
electron layer forms. As the surface density ne
increases, the electrons can almost completely compen-
sate for the electric field in the bulk of the capacitor
and in [4] it was assumed that there is a maximum
electron density ns such that when ne > ns, electron
transport to the helium surface ceases. However, in a
recent study [5] qualitative reasoning was put forward
to suggest that a helium surface may be filled with
electrons at a density higher than ns since, in the same
experimental setup, electrons may form a two-dimen-
sional system on the upper capacitor plate coated with a
thin helium film.

2. In the present study, an exact solution of the prob-
lem of the electron distribution ne = ne(z) and the elec-
tric field distribution E = E(z) is given in the classical
limit for the capacitor shown schematically in the fig-
ure. At high temperatures, the mean field approxima-
tion can be used and the potential ϕ(z) acting on elec-
1063-7761/00/9006- $20.00 © 21089
trons of density ne(z) can be obtained from a solution of
the Laplace equation [4]

(1)

In dimensionless variables (1) has the form 

(2)

By substituting, we can confirm that solution (2) has
the form

(3)

ϕ'' z( ) 4πene z( ), ne z( ) n0 eϕ z( ) T⁄( ).exp= =

y'' x( ) λ2ey x( ), x
z
z0
----,≡=

y
eϕ
T

------, λ2 4πe2n0z0
2

T
----------------------.= =

y 2 C1eγx C2e γx–+( ), λ2ln– 8C1C2γ
2.–= =

z = z0 + d
z = z0

z = 0
z = –h

V = V2

V = V1

ε = εd

ε = 1

ε = εh1

2

The electrodes 1 and 2 have potentials V1 and V2. The insu-
lator layers have thicknesses h and d and permittivities εh
and εd . The vacuum gap 0 < z < z0 is accessible to the elec-
trons.
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It follows from the theory of linear differential equa-
tions [6] that (3) is a general solution of (2). Of the three
constants C1, C2, and γ, one is determined using the sur-
face electron density ne:

(4)

The other two constants are determined by the con-
straints for continuity of the potential ϕ(z) and the
induction D = εE at the dielectric–vacuum interfaces
where z = 0 and z = z0 (see figure)

(5)

The parameters h* and d* are the effective thicknesses

of the capacitor dielectric layers:

Since the physical effect gives the potential difference
V = V1 – V2 and not V1 and V2 separately, in (3) it is con-
venient to introduce new constants instead of C1 and C2:

(6)

From (4) and (5), we then obtain two relationships
to determine the two parameters γ and C–/C+, and C+ is
dropped from the expressions for the observable quan-
tities:

(7)

(8)

ne ne z( ) zd

0

z0

∫≡ n0z0 ey z( ) x,d

0

1

∫=

ne

z0n0

2γC1
------------ 1

C1 C2+
------------------ 1

C1e2γ C2+
-------------------------– .=

eV1

T
--------- 2γ

h* C1 C2–( )

z0 C1 C2+( )
---------------------------- 2 C1 C2+( ),ln–=

eV2

T
--------- 2γ

d* C1eγ C2e γ––( )

Z0 C1eγ C2e γ–+( )
-----------------------------------------– 2 C1eγ C2e γ–+( ).ln–=
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2

------------------, C2
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------------------,= =
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γcosh C– C+⁄( ) γsinh+
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+ γcosh
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  .ln
JOURNAL OF EXPERIMENTAL 
Relationships (7) and (8) are exact. Of physical interest
however is the limit of the high electron density ne

when the parameter C–/C+ is large. To achieve this it is
sufficient for one of the parameters A or B given by the
following expressions to be large:

(9)

Expressions (7)–(9) yield simple equations for the
two quantities C* and ϕ:

(10)

In (8), we neglected the last logarithmic term compared
with eV/T. From solution (10), we obtain final expres-
sions for y = y(x), C*, and ϕ(γ):

(11)

The electron density ns was determined in [4]:

or (12)

3. We shall now analyze solution (10) and (11). For
the electron density ne < ns, a solution with a real value
of γ exists. If ne > n, complex solution (11) is obtained
with γ = iδ, where the phase δ varies in the range
0 < δ < π:

(13)

For the electron density distribution n(x), we obtain
from (1) and (13)

(14)

The value δ = 0 corresponds to the solution obtained in
[4]. Since the parameter B determined in (9) is large,

A
2neπe2z0

T
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eVz0

2Th*
-------------.≡≡
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------γ, ϕ γ γ, Acoth≡≡
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2
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-----------------,=
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the phase δ rapidly approaches the value δ = π as the
density ne increases if

In this case, the electron density n(x) has two maxima:
one at x = 0 and the other at x = 1 which corresponds to
two thin electron layers at the lower and upper capaci-
tor plates:

(15)

The total electron density is ne = nh + nd , where nh and
nd are the densities of the electron layers near the lower
and upper capacitor plates:

. (16)

In the bulk of the capacitor outside the electron layers,
we can assume in (14) κ = 0, δ = π, and then

(17)

From the expression for y (13), we can also obtain the
electric field distribution E(x):

(18)

In the region outside the electron layers, we have

(19)

The electric field E(x) only goes to zero at a single point
x = 1/2 where it changes sign. Thus, complete screening
of the field never occurs in the bulk of the capacitor and
electrons can be transported to the dielectric layers for
any electron density ne . For liquid helium, the only con-
straint on ne is associated with loss of stability of its sur-
face (7). 
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4. We shall now consider the case of low density ns ,
i.e., a low value of the parameter B in (9) and (12) and
we identically rewrite (11) in the form

(20)

It follows from (20) that even for ns = 0 when the volt-
age applied to the capacitor electrodes is switched off, our
solutions (14) and (18) obtained for n(x) and E(x) still
hold if the electron density n

 

e

 

 is high and 

 

A

 

 

 

@

 

 1 [see (9)].
In this case, the electron layers are narrow: 
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1

 

, 

 

κ

 

2

 

 

 

!

 

 1
[see (15)]. If the total electron density 

 

n

 

e

 

 is fixed and the
voltage 

 

V

 

 varied, according to (9), (12), and (16), the
electron density will be redistributed between the lay-
ers on the capacitor dielectric films. This redistribution
takes the form of a tunneling current since the electron
potential energy 

 

ϑ

 

 = –

 

e

 

ϕ

 

 has a maximum at 

 

x 

 

= 1/2
[see (13)]:

(21)

The range of validity of the classical equation (1) for
helium was determined in [4]. The principal approxi-
mation involves a loss of discreteness of the electron
levels: their populations should be low. This is not the
case for a thin layer of helium on the upper electrode of
a capacitor [5]. However, the range of validity of the
“quantum” approach [5] involves neglecting the contri-
bution of the bulk electron levels. Even in a strong elec-
tric field, the quantization of the levels becomes insignif-
icant as they become filled with electrons. In cases where
the electric field is almost completely screened when 

 

n

 

e

 

approaches 

 

n

 

s

 

, the discrete electron levels are squeezed
into a continuous spectrum. An effect involving diver-
gence of the electron partition functions comes into play
[3] which inevitably leads to a reduction in the population
of the discrete levels and the range of validity of equation
(1) becomes broader. Interestingly, for densities 
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e

 

 ~
10
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 cm

 

2

 

 and temperatures 

 

T 

 

> 1 K, the classical equation
(1) can be applied for the lower electron layer on a thick
helium film [4], but, on the upper thin helium film, the
electrons fill a single surface level [5]. 

These results are also fully applicable to a capacitor
whose dielectric layers are solid hydrogen or neon. As
is seen from (16), for 

 

d

 

 

 

@

 

 

 

h 

 

(see figure) electron trans-
port mainly enriches the lower electron layer that sug-
gest the possible way for designing an experiment. The
tunneling current between the electron layers can be
measured using a well-developed technique for helium
[8]. The drift of “hot” electrons from the surface of
hydrogen or neon can be observed experimentally from
the cyclotron resonance [9].
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Abstract—Luminescence spectra of interwell excitons in GaAs/AlGaAs double quantum wells with electric-
field-tilted bands (n–i–n) structures were studied. In these structures the electron and the hole in the interwell
exciton are spatially separated between neighboring quantum wells by a narrow AlAs barrier. Under resonant
excitation by circularly polarized light the luminescence line of the interwell excitons exhibited appreciable
narrowing as their concentration increased and the degree of circular polarization of the photoluminescence
increased substantially. Under resonant excitation by linearly polarized light the alignment of the interwell exci-
tons increased as a threshold process with increasing optical pumping. By analyzing time-resolved spectra and
the kinetics of the photoluminescence intensity under pulsed excitation it was established that under these con-
ditions the rate of radiative recombination increases substantially. The observed effect occurs at below-critical
temperatures and is interpreted in terms of the collective behavior of the interwell excitons. Studies of the lumi-
nescence spectra in a magnetic field showed that the collective exciton phase is dielectric and in this phase the
interwell excitons retain their individual properties. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Quasi-two-dimensional systems, double quantum
wells, and superlattices are attracting interest in particular
because of the fundamental possibility of spatially sepa-
rating photoexcited electron and hole carriers between
neighboring quantum wells [1–15]. In double quantum
wells with an applied electric field which tilts the
bands, excitons can be excited whose electron and hole
are situated in different quantum wells separated by a
barrier transparent to tunneling. These excitons are
called spatially indirect (I) or interwell excitons in con-
trast to the direct intrawell excitons (D) where the elec-
tron and the hole in the exciton are located in the same
quantum wells. Interwell excitons are long-lived com-
pared with intrawell excitons so that they can easily build
up, and a gas consisting of these excitons can be cooled to
fairly low temperatures. As a result of destroyed inversion
symmetry, interwell excitons have a dipole moment even
in the ground state. The theory predicts various possible
scenarios for collective behavior in a fairly dense sys-
tem of spatially separated electrons and holes [1, 9–14].
It was shown in [14] that despite the dipole–dipole
repulsion of interwell excitons, for certain critical
parameters, i.e., the dipole moment of the interwell
excitons, their density, and temperature, the stable state
in the e–h system may be the liquid dielectric phase of
these excitons. In an earlier study [11] it was noted that
the condensed dielectric exciton phase can only occur
in the presence of lateral confinement (random or arti-
ficially produced) in the quantum-well plane. Under
these confinement conditions and the associated exter-
1063-7761/00/9006- $20.00 © 21093
nal compression, it is easier for excitons to build up to
high critical densities sufficient for the appearance of
collective exciton interaction effects.

It should be borne in mind that in real semiconduct-
ing-heterostructure tunnel-coupled quantum systems
there is always a random potential as a result of various
structural defects, i.e., residual impurities, charged and
neutral, fluctuations of the barrier width and the widths of
the quantum wells themselves, and so on. These fluctua-
tions create a random potential relief in the quantum-well
planes so that photoexcited electrons and holes spatially
separated between neighboring wells, and also interwell
excitons are highly localized at these fluctuations at fairly
low temperatures. This strong localization effect in cou-
pled quantum systems is manifest in particular in lateral
thermoactivated carrier tunneling and is observed in
experiments to study spectral narrowing of the lumines-
cence line with increasing temperature, which corre-
sponds to interwell radiative recombination [7]. 

In the present study we investigate the photolumi-
nescence of interwell excitons in double quantum wells
with a barrier containing four AlAs monolayers sepa-
rating the quantum wells. With such narrow barriers the
interwell excitons are fairly strongly coupled. Under
these conditions the interwell excitons are localized at
lateral fluctuations of the random potential without any
significant changes in their internal structure if the lin-
ear scales of the fluctuations are l > aB (Bohr radius of
an exciton aB ≤ 100 Å) and the fluctuation amplitudes
are ∆ > kT. We know that in structures with narrow
AlAs barriers the fluctuations of the barrier width are
000 MAIK “Nauka/Interperiodica”
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large-scale and consequently the corresponding fluctu-
ations of the lateral potential relief will also be large-scale.
It is naturally predicted that at fairly low temperatures
interwell excitons will be located in these large-scale ran-
dom lateral potential wells. It is interesting to know
whether a system of interwell excitons under conditions of
such random lateral confinement will demonstrate critical
behavior with increasing density and at fairly low tem-
peratures. In the present paper we attempt to answer
these questions.

The paper is constructed as follows. After describ-
ing the double-quantum-well heterostructures being
studied and the experimental technique in Section 2, in
Section 3 we describe the radiative recombination proper-
ties of localized and delocalized interwell excitons under
conditions of resonant excitation by circularly polarized
light when the pump power, electrical bias voltage, and
temperature are varied. The time evolution of the spectra
and the decay kinetics of the luminescence intensity of
interwell excitons under conditions of pulsed laser exci-
tation are discussed in Section 4. The diamagnetic
properties of interwell excitons, their Zeeman splitting,
and g-factor are presented in Section 5. In Section 6 we
describe experiments using interwell excitons which
accumulated in a lateral potential well of deformation ori-
gin far from the photoexcitation region. Finally in the con-
cluding section 7 various properties of interwell excitons
observed in their luminescence spectra and their critical
behavior as a function of the optical pumping and tem-
perature are interpreted in terms of collective exciton
behavior.

2. EXPERIMENTAL TECHNIQUE
AND STRUCTURES

We investigated GaAs/AlGaAs n–i–n heterostruc-
tures with a GaAs/AlAs/GaAs double quantum well and
narrow AlAs tunnel barrier (4 ML) between the wells (the
width of the GaAs quantum wells was approximately
120 Å and the AlAs barrier was approximately 11 Å). The
entire structure was grown by molecular beam epitaxy on
a (001)-oriented n-type doped GaAs substrate having an
Si dopant concentration of 1018 cm–3. First a 0.5 µm
thick Si-doped (1018 cm–3) GaAs buffer layer was grown
on the substrate, followed by a 0.15 µm AlGaAs isolating
layer (x = 0.33) and GaAs/AlAs/GaAs double quantum
wells.

The heterojunction of each GaAs quantum well with
the isolating AlGaAs layer was also separated by a nar-
row (4 ML) AlAs barrier. The narrow AlAs barriers
were grown using a stop growth regime. In this growth
technique the fluctuations of the AlAs barrier widths
are large-scale. The double quantum wells were fol-
lowed by a 0.15 µm thick isolating AlGaAs layer then
a 0.1 µm thick Si-doped (1018 cm–3) GaAs layer. Single
broad GaAs quantum wells (of width ≈300 Å) were
located in the isolating AlGaAs barriers near the doped
regions. The luminescence from these quantum wells
was used to assess the e–h excitations “percolating”
JOURNAL OF EXPERIMENTAL 
toward the contact, doped regions of the structure and
also to monitor qualitatively the density of interwell
excitons building up in the double quantum wells under
resonant excitation. The upper part of the structure was
covered with a 100 Å thick GaAs layer. Mesas having
dimensions of 1 × 1 mm were fabricated on the as-grown
structure by a lithographic technique. Metal contacts of
Au + Ge + Pt alloy were deposited as a frame on the upper
part of the mesa and also the doped buffer layer. 

The luminescence spectra were investigated under
conditions of cw resonant excitation of intrawell direct
heavy-hole excitons using a tunable Ti-sapphire laser.
Circularly polarized resonant excitation was used to
achieve optical orientation of the angular momentum in
the exciton. The luminescence signal was analyzed using
a circular analyzer. The time evolution of the lumines-
cence spectra and their intensity kinetics were studied
under pulsed excitation by a picosecond laser (wavelength
6200 Å, pulse duration 30 ps, repetition frequency
0.8 MHz). Pulsed measurements of the spectra and
luminescence kinetics were made using a time-corre-
lated photon counting system. 

In order to detect the luminescence spectra we pro-
jected the optical excitation spot on the mesa onto
crossed slits which were used to monitor the uniformity
of the excitation and to select suitable regions of the
structure for detection. Under cw excitation the lumi-
nescence spectra of the interwell excitons were also
studied in the presence of a magnetic field perpendicu-
lar to the quantum-well planes (Faraday geometry).
The diamagnetic shift of the excitons and their Zeeman
splitting (σ+, σ– components of the spectra) were ana-
lyzed under these conditions.

3. LUMINESCENCE SPECTRA
OF INTERWELL EXCITONS

UNDER RESONANT PHOTOEXCITATION

In this section we shall analyze the behavior of the
luminescence spectra of interwell excitons when intrawell
spatially direct heavy-hole excitons (1sHH excitons) are
resonantly excited by circularly polarized light. We are
interested in how these spectra behave (their profile,
intensity, and degree of circular polarization) when the
excitation power density, applied electric field, and
temperature vary.

3.1. Figure 1 shows luminescence spectra of
intrawell (D) and interwell (I) excitons measured under
resonant excitation and various applied electric fields.
The optical transitions studied are illustrated schemati-
cally in Fig. 2. In the intrawell luminescence range at
zero electric bias two lines can be identified, free,
1sHH, and bound excitons [15]. At low temperatures the
direct exciton (line D) is observed as a weak “shoulder” on
the violet wing of the exciton complex line. At negative
electric fields from –0.3 V an interwell radiative recombi-
nation line appears which shifts almost linearly toward
lower energies as the applied voltage increases in accor-
AND THEORETICAL PHYSICS      Vol. 90      No. 6      2000
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dance with the linear Stark shift of the size-quantization
levels in the quantum wells (see inset to Fig. 1). Then only
the line of the charged exciton complex remains signifi-
cant in the intrawell recombination spectrum [15]. At
higher negative fields U < –0.4 V under cw excitation
only the photoluminescence line of the interwell exci-
tons dominates in the spectra while the luminescence of
the direct intrawell excitons and exciton complexes is
of considerably lower intensity under these conditions. 

The intensity of the interwell exciton line behaves
nonmonotonically as a function of the applied bias. It
appears in the luminescence spectrum at voltages when
the Stark shift exceeds the difference between the bind-
ing energies of the intrawell and interwell excitons
eFz ≥ ED – EI . 

At U ~ –0.7 V the intensity of this line has a maxi-
mum and then decreases with increasing electric field
(see Fig. 1). This behavior is easily understood if we
bear in mind that as the field increases, the effective
dipole moment of the interwell exciton increases in the
growth direction of the structure (z-axis) and the over-
lap of the electron and hole wave functions in the exci-
ton decreases monotonically. 

3.2. At fairly low temperatures (T = 2 K) and low
pumping the luminescence line of the interwell exci-
tons has a large width (FWHM = 4–5 meV) and the line
profile itself is asymmetric with a fairly extended long-
wavelength tail and relatively steep violet edge (see
Figs. 1, 3). These characteristics of the photolumines-
cence line of the interwell excitons are a consequence
of their strong localization at fluctuations of the random
potential [6]. In this case the line width reflects the sta-
tistical distribution of the amplitudes of the random
potential. The pumping levels are so low that the aver-
age density of the spatially separated electrons and
holes is ne – h < 109 cm–2. At these concentrations the
average statistical filling of lateral random potential
wells having linear scales l < 1 µm by interwell exci-
tons is less than unity and the inhomogeneous width of
the photoluminescence spectrum of the interwell exci-
tons is fairly large (Fig. 1). 

The luminescence intensity, profile, and line width
of the interwell excitons varies substantially as the
power of the resonant excitation of direct intrawell
excitons 1sHH by circularly polarized light increases
(see Fig. 3). Line I narrows to 1.3 meV with increasing
pumping, i.e., it becomes almost four times narrower.
Its intensity at the maximum increases superlinearly
while the line profile becomes almost symmetric or
homogeneously broadened in contrast to the clearly
inhomogeneously broadened profile of the photolumi-
nescence spectrum of the interwell excitons at low
excitation densities. In the strongly narrowing region
the interwell exciton line is shifted by up to 1 meV
toward lower energies as the pumping increases. Only
at negligible pump powers P > 6 W/cm2 does this line
shift toward higher energies and become broader. A line
shift toward higher energies indicates that the applied
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
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Fig. 1. Behavior of the luminescence spectra of interwell
excitons as a function of applied voltage; T and D are the
intrawell luminescence lines of an exciton complex and a
direct 1sHH exciton at T = 2 K. The interwell exciton line
(I) is constructed as a linear function of the applied electric
field (see also inset to figure). The numbers to the left of the
measured spectra correspond to the applied electric field.
These photoluminescence spectra were measured at various
applied voltages between 0 and –1.05 V at intervals of 0.05 V.

I
D

Fig. 2. Schematic of optical transitions on application of an
electrical voltage which shifts the size-quantization levels in
the double quantum wells. The arrows show the optical tran-
sitions corresponding to the intrawell (direct) D and inter-
well (spatially indirect) I excitons.
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electric field is screened when the density of the inter-
well excitons becomes sufficiently high. Then, using
the Gauss formula we can obtain an upper estimate of
the interwell exciton density from the spectral shift.
This estimate gives n = 3 × 1010 cm–2 for the concentration
of interwell excitons when the line width becomes mini-
mal. We observed appreciable narrowing of the lumines-
cence line of the interwell excitons for various negative
bias voltages between –0.5 V and –1.2 V. At high nega-
tive voltages similar narrowing of the interwell-exciton
luminescence line occurred at significantly lower pump
powers. 

The strong narrowing of the interwell-exciton pho-
toluminescence line at low temperatures suggests that
at high excitation densities the lateral fluctuations of the
random potential begin to be significantly screened. As
a result of this screening of the random potential relief
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Fig. 3. Luminescence spectra and degree of circular polar-
ization of interwell excitons for various optical pump pow-
ers under conditions of resonant excitation of heavy-hole
intrawell excitons and T = 1.8 K: T and I are the lines of the
intrawell exciton complex and an interwell exciton, the solid
curves give the photoluminescence spectra measured for σ+

polarization and the dashed curves give the spectra for the
σ– polarization. The numbers on the left of the spectra give
the intensity scale factors and those on the right give the
excitation power densities. The inset gives the photolumi-
nescence intensity of line I (filled circles) and its degree of
circular polarization (open squares) as a function of the
power density. The dashed curve gives the linear approxi-
mation of the photoluminescence intensity of line I.
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at fairly high pumping levels the interwell excitons lie
above the percolation threshold (or the mobility threshold
associated with the strong localization effect) and are
delocalized. As the density of these delocalized interwell
excitons increases, the narrow photoluminescence line is
shifted toward lower energies (see Fig. 3). From this
observation it follows that the ground-state energy of the
interacting interwell excitons decreases as their density
increases despite dipole–dipole repulsion. This behavior is
typical of a dense system of Bose particles as their con-
centration increases at fairly low temperature.

3.3. The degree of circular polarization of the inter-
well-exciton luminescence line exhibits interesting
behavior in the region where its intensity increases
superlinearly with increasing resonant excitation power
(see Fig. 3). In our experiments using circularly polar-
ized exciting light, direct, completely spin-oriented
1sHH excitons were created for which the heavy-hole
angular momentum is Jh = +3/2 and the electron spin
Sz = –1/2. As a result of carrier tunneling and binding to
form interwell excitons, and also as a result of spin–lat-
tice relaxation and strong spin–orbit interaction for the
holes, the spin “memory” of the interwell excitons is
partially lost but still remains appreciable and is almost
5–10% at a low excitation density, although the inter-
well excitons are localized under these conditions and the
corresponding photoluminescence line is inhomoge-
neously broadened. At constant pumping the degree of cir-
cular polarization of the interwell-exciton photolumines-
cence decreases monotonically with increasing bias volt-
age. As the power density of the resonant photoexcitation
increases when the interwell-exciton photoluminescence
line exhibits substantial narrowing, the degree of circular
polarization of the corresponding line increases several-
fold as a threshold process. Assuming that the rate of spin
relaxation varies little with increasing pumping (most
likely it only increases), this increase in the degree of
circular polarization is naturally attributed to a reduc-
tion in the lifetime of the interwell excitons. This is
deduced from a simple kinetic expression linking the
degree of circular polarization with the lifetimes and
spin relaxation [16]:

where γ0 and γ are the degrees of polarization of the
intrawell and interwell excitons, and τd and τs are the radi-
ative recombination and spin relaxation times of the inter-
well excitons, respectively. Assuming that τs is barely sen-
sitive to the pumping, using this expression we can easily
conclude that the experimentally observed trebling of the
degree of circular polarization of the interwell excitons
with increasing excitation power is a consequence of an
at least fivefold increase in their rate of radiative anni-
hilation. In the next section (Section 4) we discuss the
lifetimes of interwell excitons determined directly
using pulsed measurements.

3.4. When direct 1sHH excitons (polarized parallel
to the layer plane) were excited resonantly by linearly

γ γ0/ 1 τd/τ s+( ),=
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polarized light, as the pump power increased we observed
a threshold increase in the linear polarization of the narrow
photoluminescence line (alignment of interwell excitons)
in the region of superlinearly increasing intensity. When
the excitation densities were low and the interwell exci-
tons were strongly localized at fluctuations of the random
potential, their spectrum remained weakly polarized
under the same conditions. The results of these experi-
ments are illustrated in Fig. 4 which clearly shows an
abrupt increase in the linear polarization of the inter-
well-exciton photoluminescence in a narrow range of
pumping. This alignment of the lateral dipole moment of
the interwell excitons reached a maximum and then
decreased as the power density of the resonant excitation
increased further, when screening of the applied electric
voltage became appreciable (the pump range in which
the photoluminescence line began to show appreciable
broadening and shift toward higher energies).

3.5. Thus, as the concentration of interwell excitons
increases, the intensity of the corresponding photolu-
minescence line increases superlinearly and the line
exhibits strong narrowing while its degree of polariza-
tion increases, which indirectly indicates that the life-
time of the interwell excitons is reduced. These effects
were very sensitive to temperature. We observed that
when the temperature increased above critical values at
high constant pump power, the line width of the inter-
well excitons increased abruptly and the degree of cir-
cular polarization dropped to its previous level. The
temperature behavior of the degree of circular polariza-
tion and the photoluminescence line width of the inter-
well excitons are illustrated in Fig. 5. It can be seen that
the critical temperature at which such dramatic spectral
changes occurred in this case is Tc ≤ 6 K (∆T = ±1 K).

4. KINETICS 
OF THE PHOTOLUMINESCENCE SPECTRA

In this section we shall discuss the time evolution of
the luminescence spectra of intrawell and interwell exci-
tons and also the kinetics of the intensities of the corre-
sponding photoluminescence spectra under conditions
of pulsed excitation using a picosecond laser.

Under these pulsed excitation conditions at the time
of action of the laser pulse hot photoexcited electrons
and holes are generated in each quantum well with
equal density and not spatially separated. The spatial
separation of the carriers between neighboring tunnel-
coupled quantum wells is the result of complex kinetic
processes involving intrawell relaxation and recombi-
nation of carriers and also carrier tunneling through the
interwell barrier. Figure 6 shows the time evolution of
the photoluminescence spectra under pulsed excitation
measured for different delays relative to the exciting
laser pulse at T = 1.8 K and applied voltage U = –0.7 V.
For zero delays and integration of the signal with 1 ns
time gates the spectra only reveal a region of direct
intrawell luminescence. The photoluminescence spec-
trum of the interwell excitons only begins to form at
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Fig. 4. Degree of linear polarization of interwell excitons
(open circles) and photoluminescence intensity (filled
squares) under resonant excitation of intrawell excitons by
linearly polarized light as a function of optical pumping at
T = 1.5 K.
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Fig. 5. Photoluminescence spectra of interwell excitons
under resonant excitation by circularly polarized light, mea-
sured at various temperatures (numbers on the right of the
spectra give the temperature) and optical pump power
3 W/cm2. The solid curves give the photoluminescence
spectra measured for the σ+ polarization and the dashed
curves give those for the σ– polarization. The temperature
dependences of the luminescence line width of the interwell
excitons Γ and the degree of circular polarization γ are
shown in the inset.
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time delays τ ≥ 2 ns. This delay is caused by carrier tun-
neling through the barrier (mainly electrons for which
the effective mass in the vertical direction is much
lower than the hole mass), accompanied by spatial sep-
aration of carriers between quantum wells, intrawell
energy relaxation (thermalization) and simultaneous
recombination. It can be seen from Fig. 6 that for small
delays (τ = 2–4 ns) the width of the interwell photolu-
minescence spectrum is large (3–4 meV). However, as
the time delay increases, a fairly narrow line begins to
form at the violet edge of the interwell photolumines-
cence spectrum. The width of this line is 1.5 meV for
an 8 ns delay, i.e., the width is reduced almost threefold
compared with that for the initial delays. The intensity
of this line decays far more rapidly with time than the
structureless interwell luminescence spectrum below it.
For delays greater than 20 ns this line can no longer be
resolved and merges with the structureless part of the
spectrum whose profile remains almost unchanged and
can be observed for delays greater than 50 ns. This
behavior can be seen very clearly in the intensity kinet-
ics measured directly at the spectral position of the nar-
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Fig. 6. Time evolution of the luminescence spectra of inter-
well excitons and intensity kinetics of the narrow line (see
inset) under conditions of pulsed excitation and T = 2 K at –
0.75 V. Spectrum 1 was measured with zero delay and an
integration time of 1 ns; spectra 2–9 were measured with
delays of 2, 3, 4, 5, 6, 7, 8, and 10 ns and an integration time
of 2 ns; spectra 10–13 correspond to delays of 12, 16, 25,
and 25 ns and integration times of 4, 4, 5, and 6 ns, respec-
tively; spectra 14 and 15 correspond to delays of 30 and
40 ns and integration times of 10 and 12 ns, respectively.
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row line and the structureless continuum below it (see
inset to Fig. 6). 

It is important to note that the narrow line of inter-
well-exciton photoluminescence characterized by
short-lived intensity decay kinetics under pulsed exci-
tation conditions is only observed at fairly low temper-
atures, as under cw excitation. For example, for a 12 ns
delay the narrow line begins to become broader with
increasing temperature and merges with the structure-
less background below it at T ≥ 6 K. For shorter delays
and therefore higher interwell exciton density this line
disappears in the spectrum at significantly higher tem-
peratures. For example, for a 7 ns delay the narrow line
disappears in the spectra at T ≥ 9 K. The interwell exci-
ton lifetime can be measured directly from the intensity
decay kinetics. In accordance with Fig. 6 (see inset), this
time measured for a narrow photoluminescence line of
delocalized interwell excitons at T = 1.8 K is 20 ns
whereas the decay time of the broad photoluminescence
band corresponding to localized exciton states is almost
three times greater at 70 ns. This explains at least qual-
itatively why the degree of circular polarization of the
narrow photoluminescence line of the delocalized exci-
tons increases. Direct measurements of the intensity
decay kinetics can be used to estimate the spin relax-
ation times in an interwell exciton. Using the formula
given above for the degree of circular polarization and
the measured lifetime of an interwell exciton at T = 1.8 K,
we obtain for the spin relaxation time τs ~ 2 × 10–8 s.
The intensity decay kinetics of the narrow photolumi-
nescence line are also sensitive to temperature and the
corresponding decay time increases monotonically
with decreasing temperature. For example, the decay
time is τ = 20 ns at T = 1.8 K whereas at T = 5 K we
have τ = 10 ns. The same qualitative behavior of the time-
resolved spectra and the interwell photoluminescence
kinetics was observed for applied voltages between –0.4 V
and –0.9 V.

5. LUMINESCENCE SPECTRA
OF INTERWELL EXCITONS 

IN A MAGNETIC FIELD

In this section we are interested in the diamagnetic
properties of interwell excitons and their Zeeman split-
ting. These investigations were carried out at low exci-
tation densities when the interwell excitons are strongly
localized and their spectrum inhomogeneously broad-
ened and at high pump densities when the photolumi-
nescence line of the interwell recombination is substan-
tially narrower. In these experiments we analyzed the
Zeeman components σ+ and σ– of the interwell photo-
luminescence spectrum measured in a magnetic field
perpendicular to the planes of the quantum wells (Fara-
day geometry).

Figure 7 shows the interwell photoluminescence
spectra (σ– component) measured when direct 1sHH
excitons were resonantly excited at high power density
in a magnetic field between 0 and 2 T at 0.1 T intervals.
 AND THEORETICAL PHYSICS      Vol. 90      No. 6      2000
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The figure clearly shows a superlinear shift of the nar-
row photoluminescence line in the region of weak mag-
netic fields as B increases. The inset gives the spectral
position of the maximum of the narrow interwell pho-
toluminescence line as a function of the square of the
magnetic field. The quadratic diamagnetic shift of this
line is clearly satisfied in fields B < 2 T whereas in
strong fields a linear contribution to the magnetic sus-
ceptibility begins to become significant [17]. Using a
correction quadratic in B to the ground-state energy of
an interwell exciton, we can estimate its Bohr radius in
the quantum-well plane using the well-known formula:

where 〈a〉2 = π  and µ is the reduced exciton mass
(me = 0.067m0 and mh = 0.2m0). The Bohr radius of an
interwell exciton thus determined was aB = 170 Å.
From this we can obtain a lower estimate of the binding
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Fig. 7. Photoluminescence spectra of interwell excitons in a
magnetic field perpendicular to the quantum-well plane and
T = 2 K. These spectra were measured in the range 0–2 T at
0.1 T intervals. The spectra were measured using the σ–

polarization and pump power density 3 W/cm2. The inset
shows the diamagnetic shift of the delocalized interwell
excitons.
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energy of an interwell exciton Eexc = e2/eaB which was
Eexc ≈ 3 meV. 

The narrow interwell-exciton line in a transverse
magnetic field is split into a doublet, as in the case of an
intrawell heavy-hole direct exciton. By way of example
Fig. 8 shows the Zeeman splitting (σ+ and σ– compo-
nents) of this line at B = 6.5 T. In this case unpolarized
light was used for excitation (see lower part of Fig. 8).
Figure 9 is a diagram of the allowed optical transitions
predicted in Faraday geometry. The Zeeman splitting,
which is 0.2 meV (B = 6.5 T) can be used to determine
the effective g-factor of an interwell exciton gexc = 0.53.
The magnitude of the Zeeman splitting and the related
effective exciton g-factor can also be determined using
the intensity ratio of the corresponding σ+ and σ– com-
ponents assuming that the spin states are uniformly
populated and the electron temperature given. The
independently determined exciton g-factor agreed to
within 10% with the value obtained directly from the
Zeeman splitting. We thus conclude that the distribution
between the split spin states is quasi-equilibrium and also
the temperature of the electron system is 0.2 K higher than
the temperature of the helium bath at T = 2 K and pump
power density 6 W/cm2. Hence the optical pumping
used experimentally does not strongly overheat the
electron (exciton) system relative to the helium bath
temperature and the lattice temperature. 

1.534 1.535 1.536 1.537

50

40

30

20

10

0
6420

Energy, eV

Ç, T

γ, %

Fig. 8. Zeeman splitting of the photoluminescence line of
delocalized interwell excitons at B = 6.5 T and T = 2 K. The
solid and dashed curves correspond to the σ– and σ+ circular
polarizations, respectively. The inset shows the intensity
ratio of the Zeeman components as a function of the mag-
netic field. 
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The photoluminescence spectra shown in the upper
part of Fig. 8 were measured under resonant excitation by
circularly polarized light (σ+ component). In this case, as
can be seen from Fig. 8, the degree of circular polariza-
tion between the split Zeeman components increased
more than 1.1 times compared with the photolumines-
cence spectra measured in the same magnetic field but
excited by resonant unpolarized light. This experimental
observation indicates that in a magnetic field under con-
ditions of resonant photoexcitation by circularly polar-
ized light the spin splitting in the exciton increases. In
particular in a magnetic field B = 6.5 T this splitting
increases 1.5 times and is 0.3 meV. The increase in the
spin splitting in this case is naturally attributed to
amplification of the effective electron g-factor:

where the effective amplified electron g-factor is  =

 + (∆g)eff, and  is the unperturbed (“bar”) electron
g-factor. The value thus determined in (∆g)eff = 0.27 and

the published value  = –0.44. We attribute the ampli-
fication of the effective electron g-factor to alignment
of the spins of the nuclear subsystem which occurs as a
result of contact interaction between spin-oriented
electrons excited by the circularly polarized light and
nuclei of the dominant heterostructure material (in par-
ticular Ga nuclei, see for example [16]). In the presence
of an external magnetic field this effect is significant
since the field defines the preferential orientation of the
nuclear spins. In the absence of an external magnetic
field the orientations of the nuclear spins are random
and the contributions of the various components com-
pensate for each other.

We also investigated the photoluminescence spectra
of interwell radiative recombination in a magnetic field
at low excitation density when the interwell excitons
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Fig. 9. Diagram of optical transitions under conditions of
Zeeman splitting of the ground state of an interwell exciton.
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are strongly localized at fluctuations of the random
potential and the corresponding line in the spectrum is
broad. In this case, the diamagnetic correction to the
ground-state energy was determined from the depen-
dence of the first moment M1 of the photoluminescence
spectrum of the interwell excitons on the square of the

magnetic field (M1 = I(E)dE/ (E)dE). It was found

that the diamagnetic correction to the energy for localized
excitons is approximately 1.5 times this correction for
delocalized excitons. The diamagnetic shift can be used to
estimate the linear scales of lateral confinement associated
with the random potential at which the interwell excitons
are localized at low densities and low temperatures. This
linear scale of localization was ~400 Å. The broad pho-
toluminescence line of the localized interwell excitons
in a magnetic field is also split into a Zeeman doublet.
The doublet splitting and the exciton g-factor were esti-
mated most accurately using the intensity ratio of the
σ+ and σ– components. The value obtained for the g-factor
was close to that for delocalized excitons. 

6. BUILDUP OF INTERWELL EXCITONS
IN A LATERAL POTENTIAL WELL FAR

FROM THE PHOTOEXCITATION REGION

In previous sections we have discussed the spectra
of interwell excitons measured under conditions where
the luminescence was detected directly in the region of
excitation on the mesa. In this section we discuss exper-
iments in which interwell excitons accumulated in a lat-
eral potential well far from the photoexcitation point.
The interwell excitons were located in this potential
well as a result of natural drift from the region of pho-
toexcitation under the action of forces associated with
the gradient of the strain potential. It was established
that a potential well of strain origin appears in the quan-
tum-well plane if a narrow (100 µm wide) metal (Au)
stripe around 1 µ thick is deposited on the mesa surface
of the structure. A substantial difference between the
coefficients of thermal expansion of the metal stripe
and the base material of the GaAs mesa gave rise to
strain forces, which at liquid helium temperatures lead to
nonuniform compression of the structure perpendicular to
the quantum well plane. The largest strain occurred
directly beneath the metal stripe and propagated inside the
mesa. This strain was observed in particular in the fact that
the luminescence line of the intrawell excitons measured
directly beneath the metal stripe was spectrally shifted
toward lower energies by around 1.5–2 meV as a result of
mechanical compressive strain.

Experiments taking this into account were carried
out as follows. An exciting laser spot smaller than 100 µm
was focused near one of the sides of the metal stripe on
the mesa surface. The mesa surface was projected onto
the plane of crossed slits which could be used to moni-
tor the “sampling” of the photoluminescence both
directly from the region of excitation and at the oppo-
site edge of the metal stripe, i.e., approximately 100 µ

E∫ I∫
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from the exciting spot [regions (1) and (2) in Fig. 10
which shows the photoexcitation and detection condi-
tions used experimentally]. These experiments were
carried out using a GaAs/AlGaAs heterostructure
(p−i−n structure) with a double quantum well (the
width of the quantum well was 80 Å and the width of the
AlGaAs barrier 40 Å). Figure 11 illustrates the behav-
ior of the luminescence spectra at various pump powers
when detected from region (2) some distance from the
region of excitation. The luminescence from region (2)
associated with interwell radiative recombination only
became appreciable at high optical pump powers when
the applied electric bias was strongly screened directly
in the excitation zone (1) Thus, it can be seen from
Fig. 11 that initially at low pump powers the interwell
exciton line is strongly inhomogeneously broadened (its
half-width is 4–5 meV) which is typical of low interwell
exciton densities when these are localized at fluctuations
of the random potential. With increasing pumping a nar-
row line begins to form at the violet edge of the photolu-
minescence spectrum. The intensity of this line increases
superlinearly with increasing excitation power (see
inset to Fig. 11) and the line itself narrows substan-
tially, to a minimum width of 1.3 meV. The maximum
of this narrow line is initially shifted toward lower ener-
gies (around 1–1.5 meV) and only at high pump powers
does this line begin to broaden and shift into the violet
as a result of screening of the applied electric field. This
narrowing of the narrow photoluminescence line of the
interwell excitons and superlinear increase in its inten-
sity is observed when detected from region (2) at various
applied bias voltages. Figure 12 illustrates the linear Stark
shift of this line when the electric field is varied, which
irrefutably indicates its interwell exciton nature. Direct
measurements of the decay kinetics of the photolumines-
cence intensity made under pulsed excitation at various
temperatures demonstrated (see Fig. 13) that the life-
time of delocalized interwell excitons at low tempera-
tures, T ≤ 6 K, i.e., when the corresponding photolumi-
nescence line is narrow, is several times shorter than the
lifetime of the localized interwell excitons (low pump
powers or temperatures T ≥ 6K).

These experiments have therefore demonstrated that
the strong narrowing of the interwell radiative recombi-
nation line as the interwell exciton density increases is
of a general nature in the presence of lateral confine-
ment, either random (as a result of fluctuations of the
random potential) or artificially created (accumulation
of interwell excitons in a strain potential well far from
the region of photoexcitation).

7. DISCUSSION OF EXPERIMENTAL RESULTS 
AND CONCLUSIONS

When we attempt to explain the complete set of
experimental results presented above in terms of a sim-
ple single-particle picture of radiative annihilation of
interwell excitons localized at fluctuations of the ran-
dom potential, we encounter major difficulties. If the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
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Fig. 10. Diagram of experiments to detect photolumines-
cence of interwell excitons far from the region of excitation.
(a) Top view, metal stripe on mesa shown hatched, width of
metal stripe 100 µm, (1) pump region, (2) region from
which photoluminescence detected. (b) Qualitative picture
of the deformation potential U(r) beneath metal frame. The
z direction is perpendicular to the quantum well plane (x, y).
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Fig. 11. Photoluminescence spectra of interwell I and
intrawell D and T excitons at various pump powers, detected
from region (2) on the mesa as shown in the experimental
setup in Fig. 10. The numbers on the right of the spectra give
the excitation power density and those on the left give the
scale factors for the intensities of the corresponding spectra
T = 2 K. The inset gives the intensity of the narrow inter-
well-exciton line as a function of the pump power density.
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appearance of a narrow line in the photoluminescence
spectra is attributed to interwell delocalized excitons,
which can appear above the percolation threshold as a
result of screening of the random potential, it is difficult
to explain why this effect is so temperature-critical and
does not occur when T > Tc . The threshold increase in
the degree of circular polarization and the alignment of
the interwell excitons as their concentration increases are
also completely unexplained. However, these results can
be explained at least qualitatively as a consequence of
the collective behavior of delocalized interwell excitons
when a critical concentration and temperature are reached.
It can be postulated these structures with narrow AlAs bar-
riers exhibit large-scale fluctuations of the potential
caused in particular by variations of the barrier width.
These potential fluctuations are poorly screened, unlike
the random potential, because of residual charge impuri-
ties which are also present in these structures. As a
result of large-scale fluctuations of the potential relief
in the quantum well plane photoexcited interwell exci-
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Energy, eV

Energy, eV

1.0 0.5 0 –0.5
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0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6
1.54 1.56 1.58 1.60

Fig. 12. Photoluminescence spectra of interwell excitons at
various voltages: I, D, and T are the photoluminescence
lines of the interwell excitons, direct intrawell excitons, and
exciton charged complexes, respectively. The spectral posi-
tion of the photoluminescence lines as a function of the elec-
tric field is illustrated in the inset top left.
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tons may accumulate in macroscopically extended
regions with lateral confinement as far as several tenths
of micron. In fact, variations of the effective lateral
potential U(r) = U(w(r)) may be linked to variations of
the quantum well width w(r). Under quasiequilibrium
conditions the lateral distribution of the exciton density
will be determined by the equality µ(n(r)) + U(r) = µ,
where µ is the chemical potential of the interwell exci-
tons, which is related to their average density in the
quantum wells, and µ(n) is the chemical potential of the
homogeneous dielectric exciton phase in the lateral
confinement region. Quite clearly |µ(r)| < |µ| since
µ(n) = –|Eexc| + |δU| (Eexc is the exciton binding energy)
and the exciton density in the lateral confinement
region may be substantially higher than the average den-
sity in the quantum well plane generated by the optical
pumping. These are the regions where the main events
associated with photoexcited interwell excitons take
place. These events may evolve according to different
scenarios but each is based on the assumption of collec-
tive interaction in a system of interwell excitons delo-
calized within macroscopically large lateral regions. In
one scenario it could be postulated that on reaching
critical densities and temperature the interwell excitons

τ = 65 ns

4 K
6

8

10

12

15

20

τ = 300 ns

0 100 200 300 400
Time, ns

Fig. 13. Photoluminescence kinetics of the narrow inter-
well-exciton line at various temperatures (numbers on the
right of the spectra).
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condense to form a metallic e–h liquid with spatially
separate electron–hole layers. If the narrow line in the
spectrum is related to the metallic liquid phase, an
upper estimate of its density can be obtained from the
line width which, in this case, should be not less than
the sum of the Fermi energies of the electrons and
holes. Thus, the estimated density is 3 × 1010 cm–2 and
the dimensionless parameter corresponding to this den-

sity is rs = 1/  = 4. Quite clearly the condensed
phase in this approach is too “friable” to consider the
Coulomb interaction in the interwell exciton com-
pletely screened. Hence at these concentrations exci-
tons should retain their individuality so that the con-
densed phase cannot be metallic. This conclusion is
also supported by studies of the photoluminescence
spectra in a magnetic field in Faraday geometry. It was
established (Section 5) that the narrow line, like a free
exciton, splits into a Zeeman doublet with the intensity
ratio of the σ+ and σ– components corresponding to the
temperature and spin splitting, i.e., the individual prop-
erties of the exciton are completely conserved in the
condensed phase. 

We shall assume that strong narrowing of the inter-
well-exciton photoluminescence line and the sensitiv-
ity of this effect to density and temperature may be
associated with the condensation of interwell excitons
to form a collective dielectric exciton phase. It was
shown in [14] that for specific values of the interwell-
exciton dipole moment a fairly dense system of inter-
well excitons may condense to form a dielectric liquid
despite the dipole–dipole repulsion between these exci-
tons. It was also shown in [11] that when critical condi-
tions are satisfied the collective phase of the interwell
excitons is most likely to occur in regions with lateral
confinement. According to our experiments using cw
excitation such condensation occurs at T < 5.5 K and an
average exciton concentration of 3 × 1010 cm–2. More-
over, the narrowing of the photoluminescence line of the
interwell excitons as their density increases at low temper-
ature is accompanied by a systematic shift of this line
toward lower energies (approximately by 1.5 meV). This
behavior may be demonstrated by a fairly dense system
of Bose quasiparticles having integer spin where
|µ|/kT  0. However, the possibility of Bose–Einstein
condensation of an exciton gas in systems of reduced
dimensions is a very delicate and difficult problem [18].
Nevertheless, these observations serve as an indepen-
dent argument in support of the assumption that in this
particular case, we are dealing with a fairly dense
dielectric collective phase in interwell excitons. 

The condensed component of the excitons should be
in phase within the coherence length. Spatial coherence
should occur at least on scales of the de Broglie wave-
length of an interwell exciton, λex which at T = 2 K is

λex = h/  = 1.5 × 103 Å and is more than an order
of magnitude greater than the exciton Bohr radius
(aB ~ 100 Å). The exciton density under these condi-

πnaB
2

πmkT
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tions corresponds to the dimensionless parameter r =

n  = 4. Increased spatial coherence in the condensed
phase is indicated by the observed threshold increase in
the alignment of interwell excitons under conditions of
resonant exciton by linearly polarized light. This align-
ment effect is directly related to the transverse relax-
ation and thus to the time of loss of phase coherence.
A substantial increase in the alignment of interwell exci-
tons which takes place as a threshold process may imply
that the resultant collective exciton state has fairly long
phase shift times (according to our estimates this time
is around 1 ns at T = 2 K). Then the radiative decay of
phase-correlated interwell excitons in the condensate
should have significantly higher radiative probabilities
compared with the photoluminescence of the uncon-
densed excitons. This conclusion also agrees with the
experiment. 

The assumption that interwell excitons condense to
form a dielectric collective phase is nevertheless based
on the unanswered important question concerning the
spatial coherence scales of this collective state. This
question may be answered using measurements of the
photoluminescence intensity correlations under condi-
tions when the postulated exciton condensation occurs. 
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Abstract—The example of Kadomtsev–Petviashvili equations with a random time-dependent force (stochastic
Kadomtsev–Petviashvili equations) is used to show that the theory of Brownian particle motion can be applied
to the theory of the stochastic behavior of solitons of model hydrodynamic equations which are completely inte-
grable in the absence of forces and interrelated by the generalized Galilean transformation. The Brownian
motion of two-dimensional algebraic solitons of the Kadomtsev–Petviashvili equations with positive dispersion
leads to their diffusion broadening similar to the broadening of one-dimensional solitons of other fully integra-
ble hydrodynamic equations. However, for longer times the rate of decay of algebraic solitons is higher because
of the degeneracy of the momentum integral for these solitons. The behavior of a periodic chain of algebraic
solitons is established under the action of a random force. Tilted plane solitons of the Kadomtsev–Petviashvili
equations with negative dispersion vary under the action of a random force similar to the solitons of the
Korteweg–de Vries equation. Several of these solitons interact via “virtual solitons” and generate new solitons
provided that resonance conditions are satisfied whose dimensions increase as a result of the influence of the
random force. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The incompleteness of our knowledge of physical
processes frequently compels us to make statistical
analyses. However, the difficulties involved in making
a detailed quantitative analysis are quite significant for
nonlinear systems having an infinite number of degrees
of freedom, typical of the approximation of a continu-
ous medium. Recent success in solving nonlinear par-
tial differential equations (integro-differential and dif-
ferential-difference) for various media and dynamical
processes has involved developing a representative
class of completely integrable nonlinear equations and
various methods of completely solving these (such as
the method of the inverse scattering problem) and for-
mulating the basic “soliton” concept. In some cases,
stochastic equations can also be solved exactly if they
are constructed using regular completely integrable
equations with the addition of terms having random
coefficient functions. 

Analyses of stochastic evolution equations with a
random force which depends only on a single time vari-
able have also proved successful. The addition of this
randomness to nonlinearity and dispersion is in fact
equivalent to allowing for a diffusion type of dissipa-
tiveness which has already been demonstrated for spa-
tially one-dimensional examples of the stochastic
Korteweg–de Vries (KdV) equation [1, 2], the stochas-
tic nonlinear Schrödinger equation [3], the stochastic
Benjamin–Ono equation [4, 5], and the stochastic sine-
Gordon equation [6]. In the present study, a similar
analysis is made of the stochastic spatially two-dimen-
sional Korteweg–de Vries equation, known as the
Kadomtsev–Petviashvili equation. This is just as uni-
1063-7761/00/9006- $20.00 © 1105
versal as the one-dimensional KdV equation. In cases
of positive dispersion, the solutions of the Kadomtsev–
Petviashvili equation in the form of plane solitons
(KdV solitons) are unstable [7–11] and ultimately
decay into a set of stable two-dimensionally localized
solitons exhibiting power-law spatial decay [11]. The
Brownian motion of these “algebraic solitons” and the
stochastic spreading of their periodic sets under the
influence of a random force will be discussed subse-
quently. In cases of negative dispersion, solutions of the
Kadomtsev–Petviashvili equation in the form of tilted
plane solitons whose interaction zone increases in size
under the action of a random force become stable. 

2. INHOMOGENEOUS 
KADOMTSEV–PETVIASHVILI EQUATIONS. 

PERTURBATION SPREADING 
UNDER THE ACTION OF RANDOM FORCES

When allowance is made for the action of an exter-
nal time-dependent force, the two-dimensional gener-
alizations of the Korteweg–de Vries equation are writ-
ten, as in the original study [7], in the form of the sys-
tem 

(2.1)

Using a simple change of variables which in fact
involves going over to a coordinate system accelerating
in the direction of the x-axis,

∂tu 2u∂xu ∂x
3u+ + ∂yϕ f t( ), ∂xϕ+ ∂yu,±= =

u u x y t, ,( ), ϕ ϕ x y t, ,( ).= =

x̃ x x0 t( ), ũ x̃ y t, ,( )– u x y t, ,( ) u0 t( ),–= =
2000 MAIK “Nauka/Interperiodica”
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the equations are reduced to homogeneous, i.e., ordi-
nary Kadomtsev–Petviashvili equations with positive
(KP1) or negative (KP2) dispersion for the correspond-
ing sign in the second equation. As we well know [12,
13], these equations are completely integrable and dif-
fer primarily in respect of the stability of their solu-
tions. The simplicity of this change of variables means
that by using two integrations we can make this trans-
formation explicitly for an arbitrary external force and,
in particular, for each separate realization of the ran-
dom process f(t) in the case of a stochastic problem. 

Thus, the problem of solving the stochastic
Kadomtsev–Petviashvili equations with a random force
which depends only on time can be divided into solving
(for example, an initial) the problem for the determin-
istic homogeneous Kadomtsev–Petviashvili equations
(the solution of the homogeneous equations will be
denoted by v) 

(2.2)

a nonlinear change of variables of a purely algebraic
nature which can also be conveniently written for the
following analysis in terms of the shift operator:

(2.3)

and a stochastic problem (Langevin problem) for ordi-
nary differential equations with a random force:

(2.4)

For simplicity here and subsequently, we shall confine
our analysis to Gaussian white noise with a zero aver-
age force. On account of the linearity of the relation-
ships of the random displacements x0(t) and velocity
u0(t) with the Gaussian random force function

(2.5)

these are also Gaussian random functions with zero
averages and the following simultaneous second
moments:

(2.6)

Higher moments can easily be expressed in terms of
these. For example, we have

ϕ̃ x̃ y t, ,( ) ϕ x y t, ,( ),=

∂tu0 t( ) f t( ), ∂t x0 t( ) 2u0 t( ),= =

∂tv 2v∂ x̃v ∂ x̃
3v+ + ∂yϕ , ∂ x̃ϕ ∂yv ,±= =

u x y t, ,( ) u0 t( ) v x x0 t( ) y t, ,–( )+=

=  u0 t( ) x0 t( )∂x–( )v x y t, ,( ),exp+

∂tu0 t( ) f t( ), ∂t x0 t( ) 2u0 t( ),= =

f t( )〈 〉 0, f t( ) f t'( )〈 〉 f 0
2δ t t'–( ).= =

u0 t( ) t' f t'( ), x0 t( )d

0

t

∫ 2 t' f t'( ) t t'–( ),d

0

t

∫= =

x0 t( )〈 〉 0, u0 t( )〈 〉 0, u0
2 t( )〈 〉 f 0

2t,= = =

u0 t( )x0 t( )〈 〉 f 0
2t2, x0

2 t( )〈 〉 4
3
--- f 0

2t3.= =

x0
n t( )〈 〉 2m 1–( )!! x0

2 t( )〈 〉 mδn 2m, .=
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By summing the results for these power expres-
sions, we obtain a formula for averaging the exponen-
tial function:

(2.7)

which can be used to find the characteristic function
(the generating function of the single-point moments)
of the random displacement process x0(t) simply by
substituting a = ik0 and using (2.6):

(2.8)

The most comprehensive information on a random
process is provided by its characteristic functional
[14, 15]. For a delta-correlated Gaussian random force
with zero mean value, this functional can easily be
obtained explicitly [the calculations are exactly the same
as those used to derive (2.7) and (2.8)]:

(2.9)

As a result of the simple linear relationship between the
force and the displacements (2.5), this can be used to
express the characteristic displacement functional:

(2.10)

Then by substituting k(t) = k0δ(τ – t), we obtain a formula
for the characteristic displacement functional (2.8).

In addition to the random displacements x0(t), the
random velocities u0(t) are also involved in the transfor-

ax0{ }exp〈 〉 an

n!
----- x0

n〈 〉
n 0=

∞

∑=

=  
2m 1–( )!!

2m!
------------------------- a2 x0

2〈 〉( )m

m 0=

∞

∑ a2m

2mm!
------------ x0

2〈 〉 m
,

m 0=

∞

∑=

ax0 t( ){ }exp〈 〉 1
2
---a2 x0

2
t( )〈 〉

 
 
 

,exp=

ϕ t
x( ) k0( ) ik0x0 t( ){ }exp〈 〉≡

=  
k0

2

2
----- x0

2 t( )〈 〉–
 
 
 

exp
2
3
--- f 0

2k0
2t3–

 
 
 

.exp=

Φ f( ) k t( )[ ] i tk t( ) f t( )d

0

∞

∫ 
 
 

exp≡

=  
f 0

2

2
----- tk2 t( )d

0

∞

∫–
 
 
 

.exp

Φ x( ) k t( )[ ] i tk t( )x0 t( )d

0

∞

∫ 
 
 

exp≡

=  Φ f( ) 2 τk τ( ) τ t–( )d

t

∞

∫

=  
2
3
--- f 0

2 t1d

0

∞

∫ t2k t1( )k t2( ) 3t1t2
2

t2
3–( )d

0

t1

∫–
 
 
 

.exp
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mation of the inhomogeneous equation into a homoge-
neous one using the substitution (2.3) and thus it is fre-
quently more convenient to use joint distributions. Fol-
lowing the reasoning put forward above, for the joint
characteristic function at a given time we find

For the joint characteristic functional, we have 

The two-time correlation functions of the displace-
ments and velocities 

(2.11)

correspond to the second variational derivatives of this
functional. 

We can then derive an equation for the probability
density of the joint distribution of the random quantities
x0(t) and u0(t), having taken the time derivative of the
random function

using (2.4), and then averaging over random forces.
This yields a coupling relationship between the two
types of averaged functions p(x0, u0, t) ≡ 〈π〉  and 〈f(t)π〉:

ϕ t k0 p0,( ) ik0x0 t( ) i p0u0 t( )+{ }exp〈 〉≡

=  f 0
2 2

3
---k0

2t3 k0 p0t2 1
2
--- p0

2
t+ + 

 –
 
 
 

.exp

Φ k t( ) p t( ),[ ] i t k t( )x0 t( ) p t( )u0 t( )+[ ]d

0

∞

∫ 
 
 

exp≡

=  f 0
2 t1 t2d

0

t1

∫d

0

∞

∫–




exp

× k t1( )k t2( )
2
3
--- 3t1t2

2
t2

3–( ) p t1( ) p t2( )t2+




× f 0
2 t1 t2d

0

t1

∫d

0

∞

∫–




exp

× k t1( ) p t2( )2t1t2
2

k t2( ) p t1( ) k t1( ) p t2( )–( )t2
2+[ ]





.

u0 t1( )u0 t2( )〈 〉 f 0
2 t1H t2 t1–( ) t2H t1 t2–( )+[ ] ,=

x0 t1( )u0 t2( )〈 〉

=  f 0
2 t1

2H t2 t1–( ) 2t1t2 t2
2–( )H t1 t2–( )+[ ] ,

x0 t1( )x0 t2( )〈 〉 2
3
--- f 0

2 3t2t1
2 t1

3–( )H t2 t1–( )[=

+ 3t1t2
2 t2

3–( )H t1 t2–( ) ]

π δ x0 x0 t( )–( )δ u0 u0 t( )–( ),≡

∂p
∂t
------ 2u0

∂p
∂x0
--------

u0∂
∂

f t( )π〈 〉+ + 0.=
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Then one of these can be expressed in terms of the other
using a formula valid for Gaussian random fields with
zero averages and proven by analogy with (2.7):

(2.12)

Taking this into account and the relationships

derived from (2.4), we finally have

We thus obtain a closed Fokker–Planck equation for the
probability density distribution of the random displace-
ments and velocities:

with a simple solution of the initial problem in the form
of the two-dimensional Gaussian distribution

(2.13)

whose Fourier transformation with respect to the first
two arguments is the characteristic function given ear-
lier. By integrating over u0 or x0, we can then obtain the
one-dimensional Gaussian distributions of the dis-
placements or velocities:

(2.14)

Averaging the relationship between the solutions of
the homogeneous and inhomogeneous equations (2.3)
using the formula for averaging the exponential func-

f t( ) w t( )exp〈 〉 f t( )w t( )〈 〉 w2 t( )〈 〉
2

-----------------exp=

=  f t( )w t( )〈 〉 w t( )exp〈 〉 .

f t( )x0 t( )〈 〉 0, f t( )u0 t( )〈 〉 f 0
2 2⁄ ,= =

f t( )π x0 u0 t, ,( )〈 〉

=  f t( ) –x0 t( )
x0∂
∂

u0 t( )
u0∂
∂

–
 
 
 

exp δ x0( )δ u0( )

=  
f 0

2

2
-----

u0∂
∂ π x0 u0 t, ,( )〈 〉 .–

∂p
∂t
------ 2u0

∂p
∂x0
--------

f 0
2

2
-----∂2 p

∂u0
2

--------–+ 0,=

p x0 u0 t, ,( ) t 0= δ x0( )δ u0( ),=

p x0 u0 t, ,( )

=  
3

2πf 0
2t2

----------------
3x0

2 6x0u0t 4u0
2t2+–

2 f 0
2t3

-------------------------------------------------–
 
 
 

,exp

p x0 t,( ) 3

8πf 0
2t3

----------------
3x0

2

8 f 0
2t3

-------------–
 
 
 

,exp=

p u0 t,( ) 1

2πf 0
2t

--------------
u0

2

2 f 0
2
t

-----------–
 
 
 

.exp=
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tion (2.7) yields an important relation for the average
flow rate of the medium:

(2.15)

in which the time variations associated with the regular
and stochastic evolutions are separated. Differentiating
this with respect to time, we obtain

(2.16)

which clearly demonstrates the diffusion role of the
random forces. They give rise to diffusion spreading (as
a result of the Brownian motion of the “center of grav-
ity”) of initially regular distributions whose rate
increases with time as a result of the variability of the
diffusion coefficient. In the particular cases of steady-
state regular solutions of the homogeneous Kadom-
tsev–Petviashvili equations in the form of isolated or
periodic waves V(x', t '), apart from transport, only dif-
fusion spreading remains:

(2.17)

Here, in addition to the exponential operator expres-
sion, other convenient representations are also given for
the averaged solution in the form of a Fourier expan-
sion and an integral convolution of the steady-state
solution with the Green’s function of the thermal con-

ductivity operator ∂τ – . The self-similar time varia-
tion of the characteristic spatial scale in the Green’s
function leads to diffusion dispersal of the characteris-
tic points of the average distribution (extremum, inflec-
tion, and zero points) according to the law ∝ t3/2. 

We can then continue to make a similar derivation of
relations for the moment and correlation characteristics
of this stochastic flow field. On the basis of the expan-

u x y t, ,( )〈 〉 τ∂x
2( )v x y t, ,( ),exp=

τ
x0

2
t( )〈 〉

2
----------------≡ 2

3
--- f 0

2t3,=

∂t u x y t, ,( )〈 〉

=  D t( )∂x
2 u x y t, ,( )〈 〉 τ∂x

2( )∂tv x y t, ,( ),exp+

D t( ) ∂t x0
2 t( )〈 〉 2⁄≡ 2 f 0

2t2,=

∂t c ∇⋅+( ) u x y t, ,( )〈 〉 D∂x
2 u x y t, ,( )〈 〉 ,=

u x' y' t, ,( )〈 〉 t 0= V x' y',( ),=

u x y t, ,( )〈 〉 τ∂x
2( )V x' y',( )exp=

=  
1

2π
------ kṼ k y',( ) k2τ–( ) ikx'( )expexpd∫

=  sV s y',( )g x' s– τ,( ),d∫

x' x cxt, y' y cyt, g x τ,( )–≡–≡ x2 4τ⁄–( )exp

2 πτ
--------------------------------.=

∂x'
2
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sion (2.3) and using relation (2.7), we obtain for the dis-
persion (second-order moment) of the velocity field u

(2.18)

Consequently, the dispersion of the flow field is made
up of the dispersion of the background flow accelerated
by a random force proportional to the correlation
between the background velocity pulsations and the
random displacements, and the dispersion of the veloc-
ity field v caused by the displacement dispersion. This
last relationship is clearly illustrated by the formula for
the simultaneous two-point correlation [this formula is
obtained using (2.7):

which is even simpler in the single-point limit:

(2.19)

Here, by complete analogy with the relation for the
average velocity (2.15), the stochastic and regular vari-
ations are factorized and thus differential corollaries of
the type (2.16) and (2.17) are also valid. In the particu-
lar case of a regular solution of the Kadomtsev–Petvi-
ashvili equations in the form of a steady-state moving
distribution v(x, y, t) = V(x', y'), we arrive at the simple
problem of diffusion spreading of this quadratic char-
acteristic of the field v:

(2.20)

The behavior of the higher moment and correlation
characteristics can be estimated without any particular
difficulty. For example, again using (2.7) we transform
the multipoint correlation

Then, by going to the limit of the single-point moment
which in fact corresponds to using the Leibnitz differ-
entiation rule, we arrive at a simple generalization of

u x y t, ,( ) u x y t, ,( )〈 〉–( )2〈 〉 u0
2 t( )〈 〉=

– 2 x0 t( )u0 t( )〈 〉 ∂x u〈 〉

+ v x x0 t( )– y t, ,( ) v x x0 t( )– y t, ,( )〈 〉–( )2〈 〉

=  f 0
2t 2 f 0

2t2∂x u〈 〉– v 2 x x0 t( )– y t, ,( )〈 〉+

– v x x0 t( )– y t, ,( )〈 〉 2.

v x1 x0 t( )– y t, ,( )v x2 x0 t( )– y t, ,( )〈 〉

=  τ ∂x1
∂x2

+( )2[ ]v x1 y t, ,( )v x2 y t, ,( )exp

=  
2τ( )n

n!
------------

∂n u x1 y t, ,( )〈 〉
∂x1

n
---------------------------------

∂n u x2 y t, ,( )〈 〉
∂x2

n
---------------------------------,

n 0=

∞

∑

v 2 x x0 t( )– y t, ,( )〈 〉 τ∂x
2[ ]v 2 x y t, ,( ).exp=

∂τ ∂x'
2–( ) V2 x' x0 t( ) y',–( )〈 〉 0,=

V2 x' x0 t( )– y',( )〈 〉 τ 0= V2 x' y',( ).=

v x1 x0 t( )– y t, ,( )…v xn x0 t( )– y t, ,( )〈 〉

=  x0 t( ) ∂x1
… ∂xn

+ +( )–[ ]exp〈 〉 v x1 y t, ,( )…v xn y t, ,( )

=  τ ∂x1
… ∂xn

+ +( )2[ ]exp〈 〉 v x1 y t, ,( )…v xn y t, ,( ).
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the previous result on the diffusion behavior of the
moments:

(2.21)

In particular, for the higher moments, the relationship
with the diffusion problem (2.20) becomes obvious. 

3. ALGEBRAIC SOLITON UNDER THE ACTION 
OF A RANDOM FORCE

A stable algebraic soliton comprising a nonsingular
two-parameter solution of the homogeneous KP1 equa-
tion [12, 16–18] may be represented as follows:

(3.1)

Also given here is an expression for the Fourier trans-
formation with respect to the first argument. Important
characteristics of this soliton which distinguish it from
a plane soliton (KdV soliton) are the power-law decay
with respect to both spatial variables at infinity and, in
addition to a positive maximum, the existence of two
symmetrically positioned negative minima with inte-
gral compensation for the contributions of both signs
(in particular, asymptotically negative values in the lon-
gitudinal direction correspond to positive ones in the
transverse direction). In addition, if the algebraic soli-
ton is invariant with respect to reflection X  –X, the
maximum values are obtained at X = 0 and decay qua-
dratically in the transverse direction, remaining posi-
tive, and specifically 

(3.2)

Under the action of a random force, the algebraic
soliton begins to spread and after substituting the Fou-
rier transformation from (3.1) the average distribution
(2.17) is expressed in terms of the error function of the
complex variable

(3.3)

The same result may be obtained by using the probabil-
ity density function of the displacements (2.14) for the
statistical weighting of the expression for the algebraic
soliton (3.1) allowing for random longitudinal dis-

v n x x0 t( ) y t, ,–( )〈 〉 τ∂x
2[ ]v n x y t, ,( ).exp=

V x' y',( ) s X Y,( ) 6

Y iX+( )2
---------------------- c.c.,+≡=

s̃ k Y,( ) 12π k k Y–( ),exp=

X x' py', Y g2y'2 3

q2
-----+ ,≡+≡

cx p
2

q2, cy+ 2 p.–= =

x'V x' y',( )d∫ 0, s X 0 Y,=( ) 12

Y2
------.= =

u x y t, ,( )〈 〉 3
τ
--- 1 πzez

2

erfcz–( ) c.c.,+=

z
Y iX+

2 τ
---------------, erfcz

2

π
------- se s

2– .d

z

∞

∫≡≡
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placements of the type (2.3) caused by the action of a
random force:

Here, the transition to Fourier components using the char-
acteristic function (2.8) directly yields the result (3.3).

Long times for fixed spatial coordinates x' and y' corre-
spond to small z and using an expansion of the error func-
tion as a series [19], we find the law for degeneracy of
the average velocity field of an algebraic soliton:

(3.4)

For short times (and fixed spatial coordinates) in accor-
dance with the asymptotic behavior of the error func-
tion [19], we find the form of the small corrections to
the initial distribution for an algebraic soliton:

(3.5)

The longitudinal symmetry of an algebraic soliton
(invariance with respect to the substitution X  –X)
and the zero longitudinal integral contribution are con-
served with time under the action of a random force (for
a KdV soliton the conserved integral contribution is
nonzero) but the maximum values of the average veloc-
ity for a fixed transverse coordinate and the soliton peak
in particular are obtained for X = 0 since the result for
these reduces to the error function of the real variable:

(3.6)

This function is monotonically decreasing (∂〈u〉/∂ξ < 0)
since the soliton peak occurs at y' = 0:

For long times, it decreases rapidly as t–3 (compare with
the slower decrease ∝ t–3/2 for a soliton of the stochastic
KdV equation [2]).

If the average velocity distribution is analyzed for
fixed y' (thus, for Y = const), for long times Re z
becomes small. Generally, neglecting this small real
part, we can rewrite the basic formula for the average
(3.3) in terms of the Dawson integral:

(3.7)

Here, the zero of the average velocity corresponds to
the only maximum point of the Dawson integral η = ηm ≈
0.924 for η > 0 [19]. For lower values, the average
velocity is positive and for higher values it becomes
negative. For long times, the two symmetrically posi-

u〈 〉 x0s X x0– Y,( ) p x0 t,( )d∫ ks̃ k Y,( )ϕ t
x( ) k( ).d∫= =

u〈 〉 6
τ
--- 1

Y
2
--- π

τ
---– …+ 

  , τ  @  X 
2

 Y 
2

 .+ ≈

u〈 〉 6

Y iX+( )2
---------------------- 6

Y iX+( )4
----------------------– …+ 

  c.c.,+≈

τ   !  X 2 Y 
2 .+

u〈 〉 X 0=
6
τ
--- 1 πξeξ2

erfcξ–( ), ξ Y

2 τ
----------.≡=

ξ q 3 4τ( )⁄ .=

u〈 〉 6
τ
--- 1 2ηF η( )–( )≈ 6

τ
---dF

dη
-------, Y2  !  τ ,=  

z i

 

η i
X

2 τ
----------, F η( ) e η2– ses

2

.d

0

η

∫≡≡≈
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tioned zeroes of the average velocity distribution η =
±ηm will move away from the centrally positioned soli-
ton peak in accordance with 

(3.8)

The minimum points of the average velocity distribu-
tion corresponding to the point of inflection of the
Dawson integral η = ηn ≈ 1.5 behave similarly. For long
times, these minimum points move away from the ori-
gin (from the maximum point) and its value decreases:

(3.9)

Thus, under the action of a random force, an alge-
braic soliton undergoes diffusion spreading with
asymptotic dispersal of the characteristic points pro-
portionately as t3/2 and a decrease in the extreme values
proportionately as t–3. The main difference from a KdV
soliton is the rate of decrease in the peak values. Since
the final value of the integral momentum is conserved
(“the soliton area”), the soliton amplitude varies in
inverse proportion to its width (∝ t3/2), i.e., as t–3/2. For
an algebraic KdV soliton, no such relationship exists
because the conserved momentum integral goes to zero
in accordance with (3.2) and the alternating-sign nature
of the soliton is reflected in its faster degeneracy.

Among the moment characteristics of the flow field
created by a random force about a moving soliton, we
confine our analysis to the dispersion. For an algebraic
soliton, the mean square of the velocity

and the average velocity with its longitudinal gradient,
which appear in the general expression (2.18), can be
expressed by analogy with (3.3) in terms of the error
function:

For long times (t   ∞: τ  ∞) and fixed coordi-
nates X and Y, we will have z  0, and asymptotic
estimates yield the conclusion that the main contribu-
tions to the dispersion of the velocity field u are made
by the dispersion of the background flow and the veloc-
ity dispersion v = s(X – x0(t), Y) associated with the ran-
dom displacements of the soliton center of gravity:

(3.10)

X 2ηm τ   .  1.85 t 
3/2 .=

X 2ηn τ  .  3 t 3/2 , u 〈 〉 2 τ . ⁄ – ≈ =

v 2〈 〉 s2 X x0 t( )– Y,( )〈 〉 ,=

∂x s X x0 t( )– Y,( )〈 〉

=  
3
2
--- π

τ3
---- 1 2z2+( )ez

2

efrcz
2z

π
-------– 

 – c.c.,+

s2〈 〉 9

Y2τ
--------

3 z2 2+( )
τ2

---------------------+=

+ 3 π 3

Y3 τ
------------ 3z

Y2τ
--------–

z

τ2
---- z2 3

2
---+ 

 – 
  ez

2

erfcz c.c.+

u u〈 〉–( )2〈 〉 u0
2

t( )〈 〉≈

+ s2 X x0 t( )– Y,( )〈 〉 f 0
2t

9 6π
f 0Y3

--------------t 3/2– .+≈
JOURNAL OF EXPERIMENTAL
 

The term from (2.18) proportional to the correlation of
the background pulsations with the displacements is
asymptotically smaller than the terms retained in
(3.10). The increase in the background flow with time
saturates if the dissipative properties of the medium are
also taken into account, as is well known from the the-
ory of Brownian motion [20]. 

Like the average velocity and the dispersion, the
simultaneous two-point correlation functions can be
expressed in terms of the error functions of the complex
variable. For the longitudinal correlation function of
the soliton component of the random velocity field, we
have

For long times (and fixed other variables), this correla-
tion decays with time as 

 

t

 

–3

 

, i.e., by analogy with the
average velocity. The spatial decrease in this longitudi-
nal correlation is characterized by the asymptotic
expansion

 

X

 

1

 

  

 

∞

 

.

4. PERIODIC SOLUTIONS CONSTRUCTED 
FROM ALGEBRAIC SOLITONS

For a periodic chain of Kadomtsev–Petviashvili
solitons pulled in the longitudinal direction, the sum
result may lead to a periodic solution of the Kadomtsev–
Petviashvili equation expressed in the following gen-
eral form (

 

s

 

 denotes an isolated soliton and 

 

S

 

 denotes
the sum periodic solution):

(4.1)

s X1 x0 t( ) Y,–( )s X2 x0 t( ) Y,–( )〈 〉

=  τ ∂X1
∂X2

+( )2[ ]s X1 Y,( )s X2 Y,( )exp

=  18 π
τ
---∂X1

∂X2

×
ϕ z2( ) ϕ z1( )–

2Y i X1 X2–( )–
-------------------------------------- i

ϕ z2( ) ϕ z1( )–
X1 X2–

------------------------------+ 
  c.c.,+

ϕ z( ) z2( )erfcz, 2zn τ Y iXn.+≡exp≡

ss〈 〉 X1
2– 36

τ
------ πz2 z2

2( )erfcz2 1–exp( ) O X1
3–( ) c.c.,+ +≈

S X0 Y0,( ) s X0 nλ Y0,+( )
n

∑=

=  S X0 λ+ Y0,( )
1
λ
--- s̃ kn Y0,( )e

ikn X
0

,
n

∑=

S̃ k Y0,( )
2π
λ

------ s̃ kn Y0,( )δ k kn–( ),
n

∑=

kn
2π
λ

------n≡ k1n.=
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The spectrum of the periodic solution is discrete and
the coefficients of the expansion of this solution as a
Fourier series are proportional to the Fourier transform
of the single-soliton solution.

In order to ensure that this superposition of solitons
gives a solution of the KP1 equation for an algebraic
soliton similar to (3.1),

(4.2)

the velocity of their combined motion should differ
from that of a free soliton (C ≠ c) and their transverse
structure should be varied (Y0 ≠ Y and the power-law
asymptotic decay in the transverse direction is replaced
by exponential):

(4.3)

The result of summing the periodic series of these solitons
is expressed in terms of the elementary functions [21]:

(4.4)

Under the action of a random force, the operator
representation and the Fourier expansion for the aver-
age velocity (2.17) for this particular case of a steady-
state moving chain of algebraic solitons having the
Fourier spectrum (4.1) and (4.2) are given by

(4.5)

The structure and behavior of this last series is similar
to the structure and behavior of the Fourier series for
theta Jacobi functions with an appreciable speed of
convergence. For long times, the high-frequency Fou-
rier components degenerate very rapidly and the first
term of the series gives a fairly exact asymptotic esti-
mate:

(4.6)

s X0 Y0,( ) 6

Y0 iX0+( )2
--------------------------- c.c.,+=

s̃ k Y0,( ) 12π k k Y0–( ),exp=

X0 x Cxt– py' X ,≠+≡
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2, Cy– cy,= =

k1Y0 Arch α k1qy'( )coth{ } ,≡

α 1 3k1
2 q2⁄+ .=

S X0 Y0,( )
X0∂
∂ 6k1 k1X0( )sin

α k1qy'( ) k1X0( )cos–coth
---------------------------------------------------------------=

=  6k1
2 k1X0( ) k1Y0( ) 1–( )cothcos

k1Y0( )coth k1X0( )cos–( )2
------------------------------------------------------------------.

u〈 〉 τ∂X
2( )S X0 Y0,( )exp=

=  
1
λ
--- s̃ kn Y0,( ) iknX0( ) τkn

2–( )expexp
n

∑

=  12k1
2 n k1Y0n–( ) τk1

2n2–( ) k1X0n( ).cosexpexp
n 1=

∞

∑

u〈 〉 12k1
2 k1Y0–( ) τk1

2–( ) k1X0( ).cosexpexp≈
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In this approximation, the oscillations of the average
field, periodic in the longitudinal direction, are har-
monic, the amplitude decreases exponentially with

time [more accurately, as exp(–2 t3)], and they
decay exponentially in the transverse direction

5. PLANE SOLITONS UNDER THE ACTION 
OF A RANDOM FORCE

Solutions in the form of plane solitons are stable rel-
ative to small perturbations for KP2 equations, i.e., for
negative dispersion. Thus, only some modification of
these (without rapid damage) can be predicted under
the action of external noise.

Linearly extended soliton solutions of the regular
KP2 equations (in this case, there are no algebraic soli-
tons with a decaying dependence on coordinate in all
directions) can extend in different directions:

(5.1)

A similar three-parameter (kx, ky, η0) solution only
differs from the ordinary KdV soliton by the tilt (the
additional parameter ky). Thus, averaging in accordance
with (2.14) using the Gaussian probability density
function of the displacements over the x axis caused by
a Gaussian random force does not give any signifi-
cantly new result compared with that for the stochastic
KdV equation. For the average velocity for a random
force of the Gaussian white noise type, we obtain

(5.2)

This integral is slightly more complicated than that
obtained earlier for an algebraic soliton but has a sim-
ple asymptotic estimate for long times:

(5.3)

This reflects the fact that under the action of a random
force, a plane soliton undergoes diffusion spreading
according to the law ∝ t3/2 and its height decreases as t–3/2.
This correspondence of the asymptotic forms is
obtained because the integral of the average velocity
with respect to the longitudinal coordinate x conserves
its nonzero value. 

In the presence of several plane solitons, interaction
will take place in their zones of intersection, the
strength of this interaction depending on the angle of

f 0
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3
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2
---2 ,sech= =
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intersection. It should be noted that the angles cannot
be large because of the condition for derivation of the
Kadomtsev–Petviashvili equations which assumes slow
transverse variations (quasi-two-dimensionality) [7].

The two-soliton solution of the regular KP2 equa-
tions may be written in the form

(5.4)

The character of this exact solution changes substan-
tially as the parameters vary and in particular the phase
shift parameter lna. The general picture becomes par-
ticularly clear for the asymptotically simplified repre-
sentation of the solution [22–24]. If the angles between
the solitons (directions of their wave vectors) are rela-
tively large, to a first approximation the solution
reduces to a simple sum of two plane solitons with a
small modification in their zone of immediate intersec-
tion. As the angle decreases (and thus the phase shift
increases), the interaction zone increases and the pic-
ture can be represented asymptotically as the scattering
of free solitons with the phase shifts of these scattered
free solitons parallel to that of the initial ones and a
“virtual soliton” which links these in the interaction
zone. In this case, the intermediate virtual soliton is not
a true (free) soliton despite some similarity of its profile
because the dispersion equation P(k, ω) = 0 is not sat-
isfied for it.

In the limit of an infinite phase shift (a  ∞)
which corresponds to a small critical angle, the scat-
tered solitons are shifted to infinity and the infinite vir-
tual soliton becomes free in the sense that the following
resonance conditions [see (5.4)] are satisfied in this
limit:

(5.5)

Ultimately a soliton triad forms in which two initial
plane solitons form a third plane soliton also pulled in
the transverse direction. Formally, the Kadomtsev–
Petviashvili equations can also have a similar resonant
three-soliton solution with a longitudinally elongated
third soliton (for a  0 and opposite signs under res-
onance conditions). However, this contradicts the con-
dition of quasi-two-dimensionality and thus this solu-
tion should not be taken into account. Finally for angles
smaller than the critical angle, the solution is singular
and its interpretation is not completely clear [22–25]. 

The result of averaging the field of the liquid flow
velocities when a Gaussian white noise force acts on
the two-soliton solution (5.4) may be written in the
form of an integral similar to the single-soliton variant
(5.2). The answer becomes complex. However, since
the distributions undergo diffusion broadening (asymp-
totically ∝ t3/2) with this statistical Gaussian weighting,

v 6∂x
2 1 e

η1 e
η2 ae

η1 η2+
+ + +( ),ln=

η i ki r ωit, a–⋅≡
P k1 k2– ω1 ω2–,( )
P k1 k2+ ω1 ω2+,( )
----------------------------------------------,–=

P ki ωi,( ) kxi
4 kyi

2 ωikxi.–+≡

k k1 k2, ω+ ω1 ω2, P k ω,( )+ 0.= = =
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its influence on the asymptotic picture discussed above
can easily be estimated. Since the angle between the
intersecting plane solitons of the Kadomtsev–Petviash-
vili equations is small, their diffusion broadening leads
to mutual overlap and merging near the intersection
point, which increases in time and causes a rapid trans-
verse shift of the overlap zone in the direction of the ini-
tial solitons with increasing velocity (∝ t1/2). Ultimately
the size of the virtual soliton will increase. The ampli-
tudes of the wave perturbations will decrease accord-
ingly (∝ t–3/2). Similarly in the limiting resonant situa-
tion the increasing overlap of the two primary solitons
will resemble an increase in the dimensions of the res-
onant soliton.

6. CONCLUSIONS

Inhomogeneous hydrodynamic equations in which
external forces are taken into account possess general-
ized Galilean invariance. Specifically, on changing to a
coordinate system moving at arbitrary acceleration,
only the specific form of the external force changes in
the equations. This means that for external forces
which depend only on time the solutions of the prob-
lems for inhomogeneous and homogeneous equations
can be related and in particular, the solutions of sto-
chastic problems with a random force can be simpli-
fied. The two types of time variations (regular and sto-
chastic) can then easily be separated, and in the case of
completely integrable model homogeneous equations
the solution of the stochastic nonlinear problem
reduces to the solution of a set of linear problems. The
statistical problem then involves the Brownian motion
of randomly accelerated coordinate systems with linear
stochastic ordinary differential equations. This was
demonstrated above for the case of stochastic Kadom-
tsev–Petviashvili equations. Previously, these equa-
tions with positive dispersion had only been considered
in a single publication [26] in which there were several
errors which yielded incorrect asymptotic forms and
numerical results and an incorrect conclusion on the
strong oscillation of the average field.

In the hydrodynamic interpretation of the Kadom-
tsev–Petviashvili equations with positive dispersion,
the action of a random force on algebraic solitons and
periodic sets of these leads to the formation of a random
background flow and diffusion spreading of soliton for-
mations accompanied by Brownian motion of their
centers of gravity. The broadening of the average field
for Kadomtsev–Petviashvili solitons for long times
takes place at the same rate (∝ t3/2) as for KdV solitons
whereas the degeneracy (asymptotic decrease in ampli-
tude) of the Kadomtsev–Petviashvili solitons is faster
(∝ t–3 as opposed to ∝ t–3/2). This is because the con-
served momentum integral for algebraic Kadomtsev–
Petviashvili solitons goes to zero. The degeneracy of
the average field for periodic chains of algebraic soli-
tons is exponentially fast. The background pulsation
flows and interference of the background with the
 AND THEORETICAL PHYSICS      Vol. 90      No. 6      2000
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Brownian motion of the solitons will be reflected in
changes in their moment (and correlation) characteris-
tics. 

The action of a random force on single tilted plane
solitons of the Kadomtsev–Petviashvili equations with
negative dispersion is exactly the same as the action of
a random force on the solitons of the KdV equation. For
the case of several solitons asymptotic broadening of
the free soliton tails and a reduction in their amplitudes
is accompanied by an increase in the interaction zone
with increasing dimensions of virtual and resonant soli-
tons.

Several problems with parametric stochasticity can be
analyzed by analogy with the random force problems. For
example, a solution of the stochastic Kadomtsev–Petvi-
ashvili equations with the random coefficient α(t) 

using the simple change of variables [see (2.3) and
(2.4)] 

reduces to a solution of the regular Kadomtsev–Petvi-
ashvili equations with no variable coefficient and a sto-
chastic Langevin problem with an ordinary stochastic
differential equation for random displacements of the
center of gravity of the distributions of initially regular
flows.
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Abstract—An electrodiffusion model is used to analyze the behavior of an isolated spherical cell. It is shown
that under the influence of fluctuations of the membrane protein density instability may develop, leading to the
evolution of ion currents in the cell. Instability thresholds and characteristic harmonic frequencies are deter-
mined. General expressions are obtained for the instability thresholds for a system of two spherical cells and an
analysis is made of the case of fairly distant cells which allows fundamental qualitative conclusions to be drawn
on the nature of the ensuing instabilities. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The physical principles determining the behavior of
biological objects such as membranes, cells, and nerve
fibers have been studied intensively over many years. It
has been established that cell growth and division pro-
cesses, information transfer along nerve fibers, exchange
phenomena in living organisms, and many other proper-
ties of biological systems can be explained in terms of
physical models which more or less accurately describe
this range of phenomena. These processes are determined
by the elastic properties of the membranes forming the
biological objects and by their electrical properties. Tak-
ing into account all important factors simultaneously is
naturally extremely difficult, so that frequently fairly
approximate models which only take into account some of
these factors are considered. However, bearing in mind
the wide diversity of biological objects and also the
broad spread of characteristic parameters, it is to be
hoped that even very rough models can give a correct
qualitative description of observed phenomena.

Ion currents play an important role in the behavior
of biological objects and in many respects determine
processes such as cell growth and division. The exist-
ence of these currents has been observed experimen-
tally [1–4]. Various models have been proposed to explain
the appearance of ion current in cells, allowing in various
ways for the cell geometry, the elastic and electrical prop-
erties of the membranes forming the cell surface, chemi-
cal reactions, and other factors which influence the pro-
cesses being studied [5–8]. A common feature of all
models is that the ion currents are the result of dynam-
ical instability established when various external con-
trol parameters are varied.

Experiments [9] have shown that in some cases appre-
ciable ion currents occur at the early stages of instability
evolution (before the initial cell shape is deformed) which
allows us to consider models in which the cell can be rep-
resented as a fixed geometric surface. One of the classi-
1063-7761/00/9006- $20.00 © 21114
cal objects studied is the cell of the Fucus brown algae
whose initial shape is very close to spherical [10]. The
physical model to describe this cell is a sphere of radius
R ~ 10–3 cm whose surface is formed by a two-layer
lipid membrane of thickness d ~ 10–7 cm. Electrolyte is
present inside and outside the cell. The membrane itself
is impermeable to electrolyte ions but proteins are built
into the membrane plane and under the action of exter-
nal factors (such as the membrane potential, ion con-
centration, chemical processes, and so on) these can
actively (pumps) or passively (channels) transport elec-
trolyte ions through the membrane. The proteins can
migrate in the membrane plane both as a result of dif-
fusion and under the action of electric forces since they
have charged ends on the outside and inside of the
membrane. In the initial steady state, the proteins are
distributed uniformly over the cell surface and do not
transport ion currents. However, when fluctuations of
the protein density occur, a situation may arise where
proteins located in the fluctuation region begin to trans-
port ion currents which will then promote further fluc-
tuation of the protein density and therefore increase the
currents. As a result of this process, the system
becomes unstable.

2. ISOLATED SPHERICAL CELL

The following equations are used to describe the
electrodiffusion phenomena in the system.

(1) Nernst–Planck equation for an ion flux of spe-
cies j and concentration Cj:

(1)

where Dj is the diffusion coefficient, ezj is the ion
charge, and Φ is the electric potential.

J j D j ∇ C j C j

ez j

kT
-------∇Φ+ 

  ,–=
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(2) Equation of continuity:

(2)

(3) Poisson’s equation:

(3)

where ρ = ezjCj is the space charge, Na is
Avogadro’s number, and e is the dielectric constant of
the electrolyte.

(4) Equation of motion for the proteins:

(4)

where N is the surface density of the proteins assuming
a continuous distribution, eZi, e are their charges inside
and outside the membrane, Φi, e are the corresponding
potentials near the membrane, Dp is the protein diffu-
sion coefficient, and subscript S indicates the execution
of a mathematical operation in the membrane plane.

These equations, together with the boundary condi-
tions for the potentials and the ion concentrations and
also the conditions for transport of currents through the
membrane, in principle, completely describe the
model. For simplicity, we shall subsequently consider
the case of a two-component system of electrolyte ions.
We shall also assume that the diffusion coefficients for
both species of ions are the same and do not differ on
different sides of the membrane. (This approximation
naturally only corresponds to a qualitative description
of the phenomena taking place in the cell.)

The initial steady state is obtained subject to the
conditions N = const, Jj = 0. The condition for the
absence of ion currents gives

(5)

where  and  are the concentration and potential
at large distances from the membrane (at infinity outside
the cell and at the center of the cell). When ezj(Φi, e –

)/kT ! 1 (which is confirmed experimentally), the
concentration Cj may be represented in the form

and the charge density

(6)

where χ–1 = λD is the Debye length, 

divJ j–
C j∂
t∂

-------- D j ∆C j

ez j

kT
-------div C j∇ Φ( )+ .= =

∆Φ ρ
e
---,–=

Naj∑

N∂
t∂

------- Dp ∆SN
e

kT
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i e, C j0

i e, ez j

kT
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0–( )– ,exp=

C j0
i e, Φi e,

0

Φi e,
0

C j
i e, C j0

i e, 1
ez j

kT
------- Φi e, Φi e,

0–( )– ,=

ρi e, ρi e,
0

eχ i e,
2 Φi e, Φi e,

0–( ),–=

χ2 Nae2

ekT
----------- z j
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j

∑=
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The natural boundary conditions at infinity are  = 0

and the electroneutrality condition  = 0. As far as the
conditions inside the cell are concerned, unlike [5]
where the case of complete electroneutrality ρ ≡ 0 was
considered, a more general approach is presented in
[11] where only finite values of Φ and ρ inside the cell
are taken as boundary conditions. We shall subse-
quently adopt this model. Substituting into (3) expres-
sions (6) for ρ taking into account these boundary con-
ditions gives

(7)

(8)

The solutions of (6), (7), and (8) have the form

and the unknown constants may be obtained from the
matching conditions at the membrane boundaries
which are determined by the surface charge distribution
of the membrane. However, in any case it follows from
these solutions that under the condition χR @ 1 which
corresponds to most experimental situations, the main
changes in the potential and charge density take place
in a narrow (of the order of a few Debye lengths) region
near the membrane boundaries. We shall subsequently
assume χi = χe which negligibly influences the final
results.

In order to study the possible occurrence of instabil-
ity with respect to fluctuations of any physical variables
of the system in the linear approximation, we express
these in the following form:

The subscript st denotes the initial steady state. 
Substitution of these expressions into equations (1)–

(4) and linearization of resulting equations lead to the
following system of equations:

(9)

(10)

Φe
0

ρe
0

∆Φe χe
2Φe,=

∆Φi

ρi
0

e
-----– χ i

2 Φi Φi
0–( ).+=

Φe ae

χer–( )exp
χer

-------------------------,=

Φi Φi
0 ρi

0

eχ i
2

--------
χ ir( )sinh

χ ir
----------------------- 1– 

  ,–=

ρe aeeχe
2

χer( )exp
χer

----------------------, ρi– ρi
0

χ ir( )sinh
χ ir

-----------------------,= =

Cj C j
st c j, Φ+ Φst φ, N+ Nst np,+= = =

ρ ρst δρ, δρ+ Naez jc j.
j

∑= =

δρ∂
t∂

--------- D ∆δρ χ2δρ–( ),=

np∂
t∂

-------- Dp∆S np
eNst

kT
---------- Ziφi Zeφe+( )+ ,=
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(11)

(We use the Poisson’s equation since we are subse-
quently only interested in the initial stage of instability
development, i.e., the quasi-steady-state case.) In addi-
tion, here and subsequently we shall confine our analy-
sis to fluctuations having the characteristic wave vectors
k ! χ. The boundary conditions for δρ and φ far from
the membrane are the same as before and the boundary
conditions for the potential at the membrane, as shown
in [11], have the form

(12)

where ∇ n is the derivative with respect to the normal to
the surface, α = de/em, and em is the dielectric constant
of the membrane. All the quantities in (12) are taken at
r = R, i.e., the membrane is assumed to be infinitely
thin. The conditions for continuity of the ion currents
through the membrane should also be satisfied at the
membrane boundaries:

(13)

where

is the ion current in the electrolyte, and I = I0np/Nst is
the ion current via channels and pumps (to be specific
we shall only consider the dependence of this current
on the protein density in the membrane).

An analysis of equations (9)–(11) shows that the
main results obtained in [11] can be derived by a sim-
pler method. Since we are only interested in the region
near the instability threshold, i.e., ω ~ 0, and the char-
acteristic value Dχ2 ~ 1012–1013 s–1, it follows from
equation (9) that

Substituting this expression into (11) gives

(14)

where φ0 is the solution of the equation ∆φ0 = 0.

From the conditions at the boundary (12) and (13),
it follows that

(15)

and thus δρi = –δρe, and from (12)–(15) 

(16)

∆φ δρ
e

------.–=

φi φe– α∇ nφi, ∇ nφi– ∇ nφe,= =

jn i, jn e, I ,= =

j z jD j ∇ c j C j0
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kT
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φ φ0 δρ
eχ2
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0 φe
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αδρi

eχ
------------.+≈=
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This last expression was derived assuming that for typ-
ical membranes αχ  @ 1. Finally, condition (13) gives

(17)

Substituting (14) and the second equality (16) into (10)
taking into account that 

since α∇ n  ~ α /R ! αχ , ultimately yields 

(18)

Consequently, instead of solving the system of equa-
tions (9)–(11) with the boundary conditions (12) and
(13) at the membrane surface (12), (13), it is sufficient
to analyze the equation of motion of the membrane pro-
tein in the field generated by a potential satisfying the
Laplace equation and the boundary conditions (16) and
(17). Physically, this means that when fluctuations of
the membrane protein density occur, the change in the
charge density only takes place in a narrow ~λD region
near the membrane and in the remaining part of the
space δρ = 0. The change in potential is associated with
a change in the boundary conditions at the membrane.
The form of the boundary conditions (16) shows that
the membrane and its ~λD vicinity are effectively an
electric double layer with a varying dipole density.
These fluctuations generate the potential φ0. It should
be noted that in accordance with the definition (13), the
condition δρ = 0 far from the membrane by no means
implies that ion currents are absent.

The solution of the Laplace equation for an isolated
spherical cell is well known. Confining ourselves for
simplicity to the azimuthally symmetric case and using
the boundary condition (12), we have 

Substituting these expressions and (17) into equation (18),
we finally obtain

(19)

An analysis of this expression shows that for fixed Zi, e
the first harmonic is the most unstable (l = 0 would cor-
respond to a change in the total number of proteins in
the membrane). The main control parameters responsi-
ble for the occurrence of instability are the cell size R
and the conducting properties of the pumps and the
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channels which are determined by the value of I0. The
dependence of I0 on the state of the system and the
external parameters is fairly complex and requires special
study so that it is very difficult to check these results exper-
imentally. However, the direct proportionality of the insta-
bility threshold to the cell size (naturally assuming that the
other parameters are constant) may be checked qualita-
tively by means of simple observations. The available
experimental data suggest that large cells are most liable
to the formation of ion currents.

3. SYSTEM OF TWO CELLS

Naturally, in order to check the applicability of this
model (in view of some difficulties in the experimental
investigations) it would be useful to have other results
obtained using it which would allow qualitative conclu-
sions to be drawn. For this purpose, it is interesting to
study a system of identical cells in order to identify
their mutual influence on the possible occurrence of the
instability considered above. 

We shall consider two spherical cells spaced at some
finite distance and having the same characteristic
parameters. Quite clearly, the initial state of this system
will be determined by conditions of its formation. As
the cells slowly approach each other from infinity, obvi-
ously neither the potential distribution nor the surface
protein density of each cell will possess the spherical
symmetry assumed as the basis of the preceding analysis.
However, if we envisage a situation where one cell is posi-
tioned fairly rapidly in the vicinity of another (which can
be achieved experimentally), or some screening element
exists in a system of two cells in the initial state, the initial
steady state of each cell may be taken to be the same as in
the previous analysis. The subsequent state of the sys-
tem in the presence of fluctuations may be determined
by a mechanism which we shall now analyze.

In order to solve this problem, we shall use the
bispherical coordinates:

where a is a constant parameter, –∞ < η < ∞, 0 ≤ θ ≤ π,
0 ≤ ϕ ≤ 2π, and the surfaces η = ±η0 = const correspond
to two spheres of radii R = a/  having centers at

the points (x = 0, y = 0, z = ±R ).

The solutions of the Laplace equation in these coor-
dinates have the form

Confining ourselves for simplicity to the case m = 0,
i.e., solutions which are symmetric relative to rotation
about the z axis and taking into account the boundary

x
a θ ϕcossin

ηcosh θcos–
---------------------------------, y

a θsin ϕsin
ηcosh θcos–

---------------------------------,= =

z
a ηsinh

ηcosh θcos–
---------------------------------,=

η0sinh

η0cosh

φn m,
0 ηcosh θcos– n 1 2⁄+( )η±[ ]exp=

× Pn
m θcos( ) imϕ±( ).exp
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condition  = 0 for r  ∞ (cosθ,   1) and

the fact that  does not diverge inside the cells (i.e.,
η  ±∞ for any θ), we write the expressions for the
potential φ0 in three regions:

(20)

The surface of cell 1 corresponds to the coordinate
η = –η0 and the surface of cell 2 corresponds to the
coordinate η = η0. Using the expressions obtained for
the potentials, we write the equation of motion for the
membrane proteins (18) and the boundary conditions
for the potentials at the membrane. Condition (16) at

the surface of cell 1 ∇ n  = ∇ n  gives the expression

(21)

Equation (18) for cell 1 has the form

(22)
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1
2
---+ 

 –exp




n 1=

∞

∑
× 2n 1+( ) η0cosh η0sinh– 2n 1+( ) θcos–[ ]

– Dn η0 n
1
2
---+ 

  2n 1+( ) η0cosh[exp

---+ η0sinh 2n 1+( ) θcos– ]




Pn θcos( ).

2γa n n 1+( ) η0cosh θcos–( )2---




n 0=

∞

∑

–
1
4
--- 4 η0cosh θcos θcos

2
– 3–( ) Ziφi1

0 Zeφe1
0+( )

---+ φi1
0 W θ η0 n, ,( )





0.=
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Here, we have

We immediately note that because of the technical
complexity of the calculations, we merely confine our-
selves to finding the instability appearance threshold,
i.e., the case ω = 0. Equations for cell 2 are obtained
from formulas (21) and (22) by replacing A with B and
C  D. Expressions (21) and (22) contain products of
the powers cosθ and the Legendre polynomials and thus
are not true expansions in terms of orthogonal polynomi-
als so that such an expansion must be made. Multiplying
the left- and right-hand sides of (21) by Pm(cosθ) and
integrating with respect to cosθ, we obtain

(23)

The fact that this expression contains the coefficients A,
C, and D with different indices implies that different
harmonics may be excited simultaneously in the system
although their amplitudes and growth rates will be reg-
ulated by exponential factors which depend on η0.

Expanding equation (22) in terms of the Legendre
polynomials gives

γ
eI0

eχ2DkT
--------------------,=

W θ η0 n, ,( )
1
4
--- 4 η0cosh θcos θcos

2
– 3–( )=

× 2n 1+( ) η0cosh η0 2n 1+( ) θcos–sinh–[ ]

+ n 1+( ) η0cosh θcos–( )2 2n 1+( ) n 2+( ) θcos[
– n 2n 1+( ) η0cosh n η0sinh+ ]

– 2n 2n 1+( ) η0cosh θcos–( )2Pn 1– θcos( ) Pn⁄ θcos( ).

m Am Am 1––( ) η0 m 1+( ) Am Am 1+–( )+exp[

× η0–( )exp ] m
1
2
---+ 

  η0–exp

=  m Cm Cm 1––( ) η0exp[
+ m 1+( ) Cm Cm 1+–( ) η0–( )exp ]

× m
1
2
---+ 

  η0–exp m Dm Dm 1––( ) η0–( )exp[–

+ m 1+( ) Dm Dm 1+–( ) η0exp ] m
1
2
---+ 

  η0 .exp

Am 3– T 3– Am 2– T 2– Am 1– T 1– AmT0 Am 1+ T1+ + + +

+ Am 2+ T2 Am 3+ T3 γZia Am 2+ t2 2η0–( )exp[+ +

+ Am 1+ t1 η0–( )exp Amt0 Am 1– t 1– η0exp+ +

+ Am 2– t 2– 2η0( )exp ] γZea m
1
2
---+ 

  η0exp+

× t2 Cm 2+ m
5
2
---+ 

  η0–exp





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(24)

Expressions for the coefficients Tk and tk are given in
the Appendix. 

We shall first consider the symmetric case relative to
the axis η = 0 when A = B and C = D. Equation (24) has
the form

(25)

After simple calculations, formula (23) gives

(26)

+ Dm 2+ m
5
2
---+ 

  η0exp 
 t1 Cm 1+ m

3
2
---+ 

  η0–exp
+

+ Dm 1+ m
3
2
---+ 

  η0exp 


+ t0 Cm m
1
2
---+ 

  η0–exp


+ Dm m
1
2
---+ 

  η0exp 
 t 1– Cm 1– m

1
2
---– 

  η0–exp
+

+ Dm 1– m
1
2
---– 

  η0exp 


+ t 2– Cm 2– m
3
2
---– 

  η0–exp


+ Dm 2– m
3
2
---– 

  η0exp 






.

Am 3– T 3– Am 2– T 2– Am 1– T 1– AmT0+ + +

+ Am 1+ T1 Am 2+ T2 Am 3+ T3+ +

+ γZia Am 2+ t2 2η0–( )exp Am 1+ t1 η0–( )exp+[
+ Amt0 Am 1– t 1– η0exp Am 2– t 2– 2η0( )exp+ + ]

+ 2γZea m
1
2
---+ 

  η0 t2Cm 2+ m
5
2
---+ 

  η0cosh




exp

+ t1Cm 1+ m
3
2
---+ 

  η0cosh t0Cm m
1
2
---+ 

  η0cosh+

+ t 1– Cm 1– m
1
2
---– 

  η0cosh

+ t 2– Cm 2– m
3
2
---– 

  η0cosh




.

2 m 1+( ) Cm 1+ Cm–( ) m
3
2
---+ 

  η0sinh

=  m 1+( ) Am Am 1+–( ) m
3
2
---+ 

  η0–exp

+
η0sinh

m
1
2
---+ 

  η0sinh

----------------------------------------- A1 A0–( ) 2 A2 A1–( )+[

+ 3 A3 A2–( ) … m Am Am 1––( )+ + ] .
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Substitution of this expression into (25) results in the
elimination of the variables C with the result that (25)
is converted into a system of equations for Am with
known coefficients determined by the coefficients T and
t, exponential functions, and hyperbolic functions of η0.
The condition that the determinant of this system of
equations goes to zero gives a set of threshold values for
the onset of instability for different harmonics. The
determinant is an “almost triangular” matrix with three
diagonals above the principal diagonal. For any values of
η0, this matrix can, in principle, be reduced to a triangular
form. Then, the excitation thresholds of any harmonics
will be determined by its principal diagonal. The corre-
sponding analytic expressions are too cumbersome so
we shall not give them here. In order to make a qualita-
tive analysis of the results, we utilize the fact that for
distances between the cells of the order of twice their
diameters the value η0 ~ 2 is achieved so that to within
the second order the hyperbolic functions can be
replaced by corresponding exponential functions which
appreciably simplifies the expressions given above. In
this approximation the line in the system of equations
(25) corresponding to the index m has the following
form:

(27)

Here, we have retained the previous notation of Tk and
tk for the time being. Formula (27) can be used to write
the matrix of interest to us in a fairly simple form and
to analyze it. For this purpose it is convenient to intro-
duce the notation 

for the elements of the principal diagonal and the two
nearest above and below. It is deduced from the form of
the coefficients Tk and tk that M–2, M–1, M0 ~ exp(3η0)
whereas M1 ~ exp(η0) and M2 ~ exp(–η0). 

The procedure for reducing this matrix to triangular
form suggests that the elements of the principal diago-
nal have the form

(28)

and, consequently, the correction to M0 will be of the
order M0exp(–2η0). Hence, in the principal order, the

2 2η0( )Zeexp
2m 1–

--------------------------------Ak

k 0=

m 4–

∑ T 3–
2 2η0( )Zeexp

2m 1–
--------------------------------+ Am 3–+

+ Tk γatk kη0–( ) Zi
m k+

m k 1+ +
----------------------Ze– 

 exp+
k 2–=

2

∑
× Am k+ T3Am 3+ .+

Mk m( ) Tk m( ) γatk m( )e
kη0–

Zi
m k+

m k 1+ +
----------------------Ze– 

 +=

k 0 1± 2±, ,=( )

M0 m( ) M 1– m( )
M1 m 1–( )
M0 m 1–( )
-------------------------,–
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excitation thresholds of the corresponding harmonics
are determined by the diagonal elements

(29)

which for η0  ∞ and the corresponding representa-
tion of the coefficients T0 and t0 naturally yields (19).

It can be seen from the preceding analysis that addi-
tional information determining the influence of the sec-
ond cell on the onset of instability for η0 > 1 can only
be obtained allowing for the next correction to M0 in
terms of exp(–2η0). Naturally, the corrections in the
expansion of the coefficients Tk and tk and also the cor-
responding terms of the expansion of the hyperbolic
functions in (25) and (26) must be taken into account
accurately. We shall return to their calculation later but
we now consider another solution for the asymmetric
case. This solution is obtained as follows. We write equa-
tions (23) for both cells, subtract one from the other, and
introduce the variables U = A – B and K = C – D. In these
variables, we have

In this case, equation (24) gives

(30)

T0 γat0 Zi
m

m 1+
-------------Ze– 

 + 0,=

2 m 1+( ) Km Km 1+–( ) m
3
2
---+ 

  η0cosh

=  m 1+( ) Um Um 1+–( ) m
3
2
---+ 

  η0–exp

+
η0sinh

m
1
2
---+ 

  η0cosh

------------------------------------------ U1 U0–( ) 2 U2 U1–( )+[

+ 3 U3 U2–( ) … m Um Um 1––( )+ + ] .

Um 3– T 3– Um 2– T 2– Um 1– T 1– UmT0 Um 1+ T1+ + + +

+ Um 2+ T2 Um 3+ T3 γZia Um 2+ t2 2η0–( )exp[+ +

+ Um 1+ t1 η0–( )exp Umt0 Um 1– t 1– η0( )exp+ +

+ Um 2– t2 2η0( )exp ] 2γZea m
1
2
---+ 

  η0exp–

× Km 2+ t2 m
5
2
---+ 

  η0sinh




+ Km 1+ t1 m
3
2
---+ 

  η0 Kmt0 m
1
2
---+ 

  η0sinh+sinh

+ Km 1– t 1– m
1
2
---– 

  η0sinh

+ Km 2– t 2– m
3
2
---– 

  η0sinh




.
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The same procedure as in the symmetric case yields
expression (29), i.e., an equality in the principal order
of the harmonic excitation thresholds for both cases.
This is a natural result which merely implies that when
sufficiently far apart, the cells are almost independent.
We shall now calculate the next correction in terms of
the parameter exp(–2η0). We express the control
parameter γ in the form

(31)

where

is its value for η0  ∞, i.e., corresponding to expres-
sion (19). Substituting (31) into (25) and (26) where the
coefficients Tk and tk and the hyperbolic functions are
taken to within terms of the expansion of the order
exp(–2η0) and confining ourselves to the case m <
exp(2η0), we obtain the matrix elements of Mk with the
same accuracy. Substituting these elements into expres-
sion (28) and equating to zero, we obtain as a result

The plus and minus signs before the last term refer to
the symmetric and asymmetric cases, respectively. It
can be seen from this expression that the terms in
brackets are always positive for γ0Ze > 0 (which corre-
sponds to the experimental situation) and are the same
for both cases. This part of the correction reflects the
fact that the occurrence of protein density fluctuations
in one cell leads to a change in potential in all space and
consequently changes the protein-density of the second
cell. Naturally, this process requires a higher energy
compared to the case of an isolated cell, i.e., increases
the excitation threshold. The last term of the correction
introduces a difference between the symmetric and
asymmetric cases. Under these assumptions on the sign
of γ0Ze the asymmetric case is preferable. This conclu-
sion qualitatively explains the experimental observa-
tion [12] that in groups of cells (albeit those with
strongly developed ion currents), the most stable and
long-lived configurations are those corresponding to
the symmetric case. The reduction in the difference

γ γ0 1 δ+( ),=

γ0
m m 1+( )

R m 1+( )Zi mZe–[ ]
------------------------------------------------=

δ
2η0–( )exp

m
2

m 1+( )
-------------------------- γ0ZeR

1
2
--- 2m

10
3 m 1+( )
---------------------+ +=

+
1

12 2m 1–( )
--------------------------- 3

2m 1–( ) 2m 3+( )
-------------------------------------------+

+ m4

2
------ 6m3 10m2 11m

19
4
------

3
2 2m 1–( )
------------------------+ + + + +

+
1

4 2m 3+( )
------------------------- γ0ZeRm2 2m– 3+( )η0[ ]exp± .
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between the two states with increasing harmonic num-
ber has an obvious explanation since for higher har-
monics the protein density distribution over the cell
surface effectively becomes increasingly uniform.

We have therefore shown that despite being fairly arbi-
trary, the electrodiffusion model can, under certain condi-
tions, predict the possible appearance of instability against
the development of ion currents in spherical cells and can
also provide a qualitative description of the behavior of
a system of two such cells.
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APPENDIX

T 3–
m m 1–( ) m 2–( ) 2m 3–( )

2 2m 1–( )
-------------------------------------------------------------- 3η0( ),exp=

T3
m 1+( ) m 2+( ) m 3+( ) 2m 5+( )

2 2m 3+( )
------------------------------------------------------------------------------ 3η0–( ),exp=

T 2–
m m 1–( )

2m 1–
---------------------- 2η0( )exp–=

× 6m2 11m– 8+( ) η0cosh
2m 3–( )

2
--------------------- η0–( )exp+ ,

T2
m 1+( ) m 2+( )

2m 3+
------------------------------------- 2η0–( )exp–=

× 6m2 21m 20+ +( ) η0cosh
2m 5+( )

2
---------------------e

η0–
+ ,

T 1– m η0( ) 7
2
--- 3m m 1–( ) 1

2m 3–
----------------–+exp=

+
3 m2 2–( ) 2m 1+( )2

2 4m2 9–( )
----------------------------------------------- 6m3 7m2– 5m 2–+

2m 1–
------------------------------------------------+

× 2η0( )cosh
2m2 2m– 1+

2m 1–
-------------------------------- 2η0–( )exp+ ,

T1 m 1+( ) η0–( )exp=

× 3m2 7m 5
6m3 11m2 14m 10–+ +

2 2m 1–( )
---------------------------------------------------------+ + +

+
6m3 21m2 25m 10+ + +

2m 3+
---------------------------------------------------------- 2η0( )cosh

+
2m2 6m 5+ +

2m 3+
--------------------------------- 2η0–( )exp ,
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T0
1
2
--- η0sinh 2m 1+( ) η0cosh–[ ]=

× 4m m 1+( ) η0cosh
2

3+[ ]

+
2m2 2m 1–+

2 2m 1–( ) 2m 3+( )
---------------------------------------------- 2m 1+( ) η0sinh[

– 12m2 28m 21+ +( ) η0cosh ] ,

t0 2 2 m m 1+( ) 1 2 η0cosh
2

+( ) ---+=

+
1

2m 1–( ) 2m 3+( )
------------------------------------------- ,

t 1–
4m 2m2 2m– 1+( )

2m 1–
--------------------------------------------- η0,cosh–=

t1
4 m 1+( ) 2m2 6m 5+ +( )

2m 3+
------------------------------------------------------------ η0,cosh–=

t 2–
m m 1–( ) 2m 3–( )

2m 1–
--------------------------------------------,=
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Abstract—The Compton channels for the production of axions γe  ea and neutrinos γe   in a mag-
netic field are examined on the basis of a two-dimensionally covariant formalism developed in this paper.
Expressions are obtained for the cross sections of the processes as well as the power of the radiation per unit
volume in a degenerate and nondegenerate electron gas. It is shown that the axion luminosity of white dwarfs
on account of the Compton generation mechanism is at least four orders of magnitude less than the photon lumi-
nosity, and the axion luminosity for magnetic neutron stars approaches the neutrino luminosity in magnitude.
© 2000 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

An axion is a pseudo-Goldstone boson, a type of
particle that appears as a result of spontaneous breaking
of global symmetries (for an axion this is U(1)PQ sym-
metry, introduced by Peccei and Quinn [1]). The cou-
pling of these bosons with known particles is sup-
pressed by the large energy scale f for breaking of the
corresponding symmetry and has the form

(1)

where Jµ is the particle current in the standard model.
Specifically, the Lagrangian of the axion-electronic
interaction is [2]

(2a)

(ce is a model-dependent parameter of order 1), which
in the case considered in the present paper is equivalent
to a Lagrangian with pseudoscalar coupling

(2b)

(m is the electron mass).
The possible existence of an axion is extremely

important for a natural explanation of the exact CP
invariance of the strong interactions [1, 3] and for astro-
physics, since the small axion mass ma, which appears
as a result of mixing with π0, could be a substantial part
of the cold, dark matter [4]. This gives the lower limit
of the mass ma ≥ 10–5 eV; the upper limit ma ≤ 10–2 eV
is determined from the condition that the existing ideas
about the evolution of collapsed astrophysical objects
remain unchanged [2, 5, 6]. Specifically, a natural
requirement is that the axion luminosity should not

+
1
f
--- ∂φ

∂xµ--------Jµ,=

+ae

ce

2 f
------ ∂a

∂xµ-------- Ψγµγ5Ψ( )=

+ae ice
m
f
----a Ψγ5Ψ( )–=
1063-7761/00/9006- $20.00 © 20919
exceed the neutrino luminosity at the early stages of the
evolution of neutron stars and the surface photon lumi-
nosity of white dwarfs. The approximate “window” of
mass values

10–5 eV & ma
 & 10–2 eV (3)

determined in this manner also fixes the range of values
of the energy scale f by virtue of the relation between
them [2, 3]

ma . 0.6 × 10–3 eV × (1010 GeV/f ). (4)

Since the values of the axion parameters are based on
astrophysical estimates, any accompanying factor, such as
strong magnetic fields, which can radically change the
characteristics of processes involving axions and neutri-
nos and open up new reaction channels, must be taken
into account. Of the latter reactions, we note the neu-
trino and axion synchrotron radiation [7–9], which
could increase the upper limit of the mass ma [9], and a
new decay channel for the axion in a superstrong mag-
netic field a  3γ [10], whose probability is greater than
the probability of the two-photon channel a  2γ,
which is considered to be the main channel.

The Compton mechanism γe  ea( ) is one of
the main axion and neutrino production mechanisms.
The process γe  ea and its contribution to the axion
luminosity of stars have been studied in [11] on the
basis of the Primakov effect (where, according to the
scheme (1), the axion is coupled only with heavy fermi-
ons with the consequent effective (aγγ)-coupling by
means of the triangle anomaly) and as a result of direct
aee-coupling (2a). However, the results of these works
pertain to special configurations of the momenta and
the magnetic induction, while the field should have a
determining effect if the electrons occupy the ground
Landau level.

νν
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In this paper the Compton mechanism of axion pro-
duction in an external magnetic field is examined using
direct aee-coupling (diagram in Fig. 1a) and neutrino
production in the contact approximation according to
the “weak” vertex (diagram in Fig. 1b). A two-dimen-
sionally covariant method of calculating Feymann dia-
grams with electron lines is used. The foundations for
this method are laid in [12] (see also a further elabora-
tion of this method in [10] for diagrams with electron
loops). 

The exposition below is organized as follows. The
two-dimensionally covariant technique for diagrams
without excitation of the electron–positron vacuum is
presented in Section 2. An application of this technique
to the calculation of the matrix elements and the cross
sections for the processes γe  ea and γe  e  is
presented in Section 3. The intensity of the axion and
neutrino radiations from a unit volume in a degenerate
and nondegenerate electron gas is calculated in Section 4.
The astrophysical aspects of the results in application
to the luminosity of magnetic neutron stars and white
dwarfs are discussed in Section 5.

2. WAVEFUNCTION AND GREEN’S FUNCTION 
FOR THE DIRAC EQUATION IN A CONSTANT 

AND UNIFORM MAGNETIC FIELD

The solution of the Dirac equation

(5)

for an electron in a constant and uniform magnetic field
with induction B in the special gauge

(6)

has been known for a long time and is a generalization
of the corresponding solution obtained by Landau for
the Schrödinger equation (see, for example, [13]):

(7)

where the spinor un is expressed in terms of the Hermite
polynominals with the argument

(8)

Here L2 and L3 are normalization lengths, the quasimo-
mentum p2 gives the position of the center of the wave

νν

i∂̂ eÂ– m–( )Ψ 0=

Aα Bx1gα2=

Ψ γπ( )1/4

2 p0L2L3( )1/2
------------------------------

ξ x
2

2
-----– i p2x2 p3x3+( )+ un,exp=

ξ x x1 γ p2 γ, γ⁄+ eB .= =

(a) (b)

e

eeee

e
aγ γ

ν

ν

Fig. 1.
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packet along the 1-axis, and the possible values of the
energy are determined by the relation

(9)

where p3 is the momentum along the 3-axis, and the
quantum number n = 0, 1, 2, ….

In the ground Landau level n = 0 the electron spin is
oriented in a direction opposite to the field, and the
spinor u0 degenerates into a two-component spinor sat-
isfying the equations

(10)

In this connection, it is convenient to introduce two-
dimensional matrices  and  in the subspace (0, 3),
which can be chosen, for example, in the form

(11)

and the two-dimensional spinor v(p), p = (p0, p3),
which in the representation (11) has the form

(12)

Irrespective of the representation, v(p) satisfies the
equation

(13)

with the invariant, in (0, 3), normalization condition

(14a)

and density matrix

(14b)

We introduce the properties of the  matrices that
will be helpful below:

(15a)

(15b)

(15c)

Here  = (1, –1) is the metric tensor in the subspace
(0, 3), εαβ is an absolutely antisymmetric tensor (ε30 =

−ε03 = 1, ε00 = ε33 = 0),  =  is the analog of the

p0 m2 2γn p3
2+ +( )1/2

,=

p̂|| m–( )u0 0, p̂|| p0γ
0 p3γ

3,+= =

u0u0 2m,
1 iγ1γ2–

2
---------------------u0 u0,= =

u0u0

1 iγ1γ2–
2

--------------------- p̂|| m+( ).=

γ̃0 γ̃3

γ̃0 1 0

0 1– 
 
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matrix γ5 in four-dimensional space, and  = 1.
Using the relations

(16)

and the reduction formula (15c), the traces of any num-
ber of  matrices can be calculated in an elementary
way, for example,

(17a)

(17b)

and so on. 
The solution of the singular Dirac equation in a con-

stant and uniform magnetic field

(18)

under certain conditions likewise becomes effectively
two-dimensional in the subspace (0, 3). Let us take, for
example, the solution in the form obtained by squaring
equation (18) [14]:

(19)

where the value of ξx, y is determined by the formula
(8), Dn are the parabolic cylinder functions related with
the Hermite polynomials [15], and Gν(x – y) is the
Green’s function of the Klein–Gordon equation in the
subspace (0, 3)

(20)

and has the form

(21)

The causal Green’s function can be obtained from
equation (21) in accordance with the rule for handling

γ̃5( )
2
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γ̃

1
2
---Tr γ̃α γ̃βγ̃ργ̃σ( ) g̃αβg̃ρσ g̃ασg̃βρ g̃αρg̃βσ,–+=

1
2
---Tr γ̃5γ̃α γ̃βγ̃ργ̃σ( ) g̃αβερσ εαβg̃ρσ+=

i∂̂x e Â– m–( )G x y,( ) δ x y–( )=

G x y,( )
2γ( )1/2

2π( )3/2
---------------- i∂̂x e Â– m+( )=

× p2 i p2 x2 y2–( )( )expd

∞–

∞

∫

× 1
n!
-----Dn 2ξ x( )Dn 2ξ y( )

n 0=

∞

∑

×
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2
---------------------G2n x y–( )
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2

---------------------G2 n 1+( ) x y–( )+ ,
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2

--------– ∂2
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2
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 
 
 

Gν x y–( ) δ 0 3,( ) x y–( ),=
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2
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1
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2–
------------------e
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2
p3
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the poles p0 =  [16] and can be expressed in
terms of zero-order cylinder functions

(22)

where θ(x) is a step function.
For diagrams without excitation of the vacuum, the

value of  in equation (21) is fixed and can be
expressed in terms of the momenta of the external lines.
Then, provided that

, (23)

the ground Landau level n = 0 makes the main contri-
bution to the sum over n in the expression (19). In dia-
grams with electron loops the condition (23) holds
when the momentum integrals of the loop on the elec-
tron mass converge and with the additional restriction

(24)

The leading contribution of the n = 0 state can be
represented in the form

(25a)

(25b)

(25c)

Using equations (10), this actually decreases the
dimension of the space of the mathematical apparatus
to (0, 3), since vertex factors of the form

are different from zero only for α = 0, 3, and γ0γ3 plays
the role of the matrix γ5. After calculating the integrals
over the coordinates and the perpendicular momentum
p⊥ , the projection operator (1 – iγ1γ2)/2 in the matrix
element can be dropped, switching to two-dimensional
matrices and convolutions in the subspace (0, 3). Intro-
ducing the two-dimensional Green’s function

(26)

and using the formulas (13) and (14), the matrix ele-
ment acquires an explicitly two-dimensionally covari-
ant form.
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2 mν

2+±

Gν
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+
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γ
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2 p2
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G̃ p( )
p m+

p
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------------------, p2 p0
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2–= =

ˆ
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The expression (26) must be modified [17] taking
into account the influence of the medium and tempera-
ture effects. In studying the processes γe  ea and
γe  e  below, we shall be interested in the case of
a degenerate effectively-dimensional electron gas

(27a)

(27b)
where µ is the chemical potential, which is essentially

equal to the Fermi energy EF = , and the
Fermi momentum pF is given by the expression [18]

(28)

where ne is the density. Then the generalized form of 
can be obtained from equation (26) using the substitu-
tion (see, for example, [19])

However, in the cases considered in the present paper,
electrons in the intermediate state are off the mass shell,
and the last term makes no contribution in this expres-
sion. Thus, the medium changes only the phase volume
of the initial and final states (see Section 4).

3. GENERAL EXPRESSIONS
FOR THE MATRIX ELEMENTS

AND CROSS SECTIONS OF THE PROCESSES 
γe  ea AND γe  e

We shall determine the matrix element M of the pro-
cess γe  ea (diagram in Fig. 1a) in terms of the S
matrix element as follows:

(29)

where p and p' are the momenta of the initial and final
electrons and κ and k are the momenta of the photon
and axion. 

Using the “axion” Lagrangian (2a) and (2b) and the
Lagrangian of the electrodynamic interaction

(30)

we obtain for M, using the scheme presented in Section 2,
a two-dimensionally covariant expression in the sub-
space (0, 3)

(31)

νν

T   !  µ m ,–

µ2 m2 2γ,<–

pF
2 m2+

pF

2π2ne

γ
--------------,=

G̃

1

p2 m
2

–
------------------ 1

p2 m2–
----------------- 2πiδ p2 m

2
–( )θ p0( )θ EF p0–( ).+

νν

f S i〈 〉 i 2π( )3δ 0 2 3, ,( ) p κ p'– k–+( )=

× M

2 p02κ02 p0' 2k0( )1/2
L2L3V

--------------------------------------------------------------,

+e e ΨγαΨ( )Aα ,=

M
i 4πemce

f
-------------------------v p'( ) γ̃5G̃ p κ+( )e eG̃ p' κ–( )γ̃5+[ ]=

× v p( ) i
p2

γ
----- κ1 k1–( )– ,exp

ˆ ˆ
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where  is the two-dimensional electron propaga-
tor (26), the properties of the two-dimensional spinor
v(p) are given by equations (13), (14a), and (14b), and
e is the photon polarization vector. The phase factor in
the expression (31) has a symbolic significance; its role
will be clarified in Section 4.

The formula (31) holds under the condition (23),
which in the case at hand assumes the form

(32)

The matrix element is different from zero only for
photon polarization states with electric vector in the
momentum–field plane, given in the two-dimensionally
covariant notation by the expression

(33)

The state with orthogonal polarization is sterile.
Making some transformations, the squared matrix

element calculated using the properties of  matrices
(Section 2) and equations (14b), (16), and (33) can be
represented in the form

(34)

(34a)

The cross section for the process γe  ea can be
determined in the standard manner in terms of the S
matrix element and is

(35)

where the integration over  is trivial and the δ(2)

function vanishes. In the expression (35) we formally
averaged over the photon polarization states, which,
since the orthogonal polarization is sterile, reduces to
division by 2. Integrating over d3k, we obtain, using
|M|2 from equation (34), the distribution over 

(36)

with the two-dimensionally covariant region of integra-
tion

(37)

where ma is the axion mass.
We note that the matrix element M (with the excep-

tion of the formal phase factor) and the cross section do
not contain a field dependence; the role of the latter

G̃ p( )

pκ( ) κ2   !  γ . ,

eα εκ( )α κ2.⁄=

γ̃

M 2 16παmce
2

f 2
-----------------------k2 p

∆
--- p'

∆'
----+ 

  2

,=

∆ 2 pκ( ) κ2, ∆'+ 2 p'κ( )– κ 2.+= =

σa
1

8 pκ( ) 2π( )2
-----------------------------=

×
p3'd

2 p0'
--------∫ p2'd∫ k3d

2k0
--------δ 0 2 3, ,( ) p κ p'– k–+( ) M 2,∫

d p2'

p3'

σa

αm2ce
2

2 f 2 pκ( )
---------------------

p3'd

2 p0'
--------k2 p

∆
--- p'

∆'
----+ 

  2

Γ( )
∫=

Γ k
2

p κ p'–+( )2 ma
2≥={ } ,=
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reduces to “two-dimensionalization of the motion” of
an electron, which is a general property of diagrams
without excitation of the vacuum. 

For κ2 =  ≥ 4m2 the integrand in equation (36)
possesses in the region of integration a singularity
related with the possibility of e+e– pair production by a
photon and axion in a magnetic field [20]; in principle,
this can be eliminated by taking into account the finite
width relative to this “decay.” 

An analytic calculation can be performed for non-
relativistic electrons and for κ2 ! m2. In this approxi-
mation the cross section has the form

(38)

where and below the small axion mass is neglected. Sim-
ilar results can also be obtained for the photoproduction
of a neutrino pair γe  e  (diagram in Fig. 1b) on an
electron in the contact approximation of the Weinberg–
Salam model with the effective Lagrangian interaction

(39)

where

(θW is the Weinberg angle) for electronic neutrinos and
C(µ, τ) = C(e) – 1 for µ and τ neutrinos.

The matrix element M is determined in terms of the
S matrix element similarly to the formula (29) with the
substitutions

k  k + k', 2k0  2k02 , V  V3/2,

where k and k' are the neutrino and antineutrino momenta.
Once again we obtain

(40)

where the matrices in the neutrino bracket are, of
course, four-dimensional, and the phase factor plays
the same role as in equation (31).

κ⊥
2

σa

αce
2κ 2

15 f 2m
2

------------------,=

νν

+W
G

2
-------–=

× Ψeγµ CV CAγ5+( )Ψe( ) Ψνγµ 1 γ5+( )Ψν( ),

CV
e 1

2
--- θ2

W , CA
e( )sin+

1
2
---,= =

k0'

M 2π( )1/2eG uν k( )γα 1 γ5+( )uν k'–( )[ ]=

×
i p2

γ
------- κ1 k1– k1'–( )–exp

× v p'( ) γ̃α CV CAγ̃5+( )G̃ p κ+( )e[

+ eG̃ p' κ–( )γ̃α CV CAγ̃5+( ) ]v p( ),

ˆ

ˆ
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The cross section averaged over the photon polar-
ization states can be represented as a distribution over

 and has the form (mν = 0)

(41)

(42)

The result of the integration over the neutrino
momenta is

(42a)

This same quantity was calculated in [21] but without
using the two-dimensionally covariant separation with
respect to polarization states (33), and consequently it
has a very complicated form. 

Just as in the preceding case, an exact calculation of
the integral in the expression (41) is impossible, with
similar remarks. In the nonrelativistic approximation,
however, we have

(43)

4. RADIATION INTENSITY WITH AXION
AND NEUTRINO PHOTOPRODUCTION

ON A NONDEGENERATE 
AND A DEGENERATE ELECTRON GAS

The key question in astrophysical applications is the
neutrino and axion luminosity of stars. To this end we
shall find the intensity of the radiation from a unit vol-
ume on account of the axion and neutrino production
mechanisms considered above. 

For a nondegenerate electron gas, in the nonrelativ-
istic approximation the radiation intensity can be found
from the expression

(44)
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where ne is the electron density,

is the Bose–Einstein distribution function (T ! m).
Using equations (38) and (43) we obtain for the axion
and neutrino radiation intensities

(45a)

(45b)

To determine the radiation intensity for a degenerate
electron Fermi gas, we note first that when integrating
over the states of the initial electron, in accordance with
the form of the phase factor in the expression (31), there
appears an integral of the form

(46)

where L1 is the effective normalization length along the
1 axis. Formal integration gives

(46a)

Then the intensity of the axion radiation from a unit vol-
ume is independent of the normalization lengths and is

(47)

Here

is the Fermi velocity distribution function of the initial
electron and fF( ) is the same for the final electron;

the distribution of the cross section over is given by
the expression (36).

For what follows, we note that when

(48)
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the integral over  in equation (47) can be rewritten
in the form

(49)

where the substitution

(50)

is made when integrating over d  with the upper limit
of integration for x

(50a)

(εαβ is the antisymmetric tensor in (0, 3), introduced in
Section 2). The derivation of Ja also took account of the
fact that the substitutions p3  –p3 and (or) κ3  –κ3
do not change anything because of the subsequent inte-
gration over d3κ and dp3 in equation (47).

Next, we switch to the nonrelativistic limit, i.e., we
assume

(51)

together with the condition for applicability of our two-
dimensionally covariant method

(52)

Since in this case µ . EF, we find that the conditions (27)
hold automatically, and the restriction (48) is equiva-
lent to the inequality

(53)

which also follows from equation (51).

Thus, the applicability of the formulas obtained
below for the intensity of radiation in a degenerate elec-
tron gas is limited by the inequalities (51) and (52).
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tions in fF(p0) . fF( ), which in the region of overlap-
ping of the Fermi steps is

In consequence, the integrals over d3κ and dp3 in equa-
tion (47) factorize and likewise can be easily calcu-
lated. The final result for the intensity of the axion radi-
ation in a degenerate nonrelativistic electron gas has the
form

(54)

where the value of the Fermi momentum is presented in
equation (28). 

The intensity of the neutrino radiation Sν is deter-
mined by a formula of the form (47) with the cross sec-
tion taken from equations (41) and (42a), and the inte-
gral similar to the expression (49) in the approximation
(48) has the form

(55)

The radiation intensity with the inequalities (51) and
(52) is

(56)

5. DISCUSSION

For astrophysical applications it is convenient to repre-
sent the restrictions (51) and (52) (using equation (28)) for
our results for the axion and neutrino radiation intensities
in a degenerate, nonrelativistic, effectively two-dimen-
sional, electron gas in the following form:
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The surface photon luminosity of white dwarfs for
the dominant cooling mechanism per unit mass of the
star is [6]

(58)

The average density of white dwarfs is ρ . 106 g/cm3,
and the corresponding axion luminosity Sa/ρ can be
rewritten, using equation (54), in the form

(59)

For the average temperature T . 107 K and electron
density ne . 1029 cm–3 we assume that the induction in
the interior regions is B . 1013 G. Then our restric-
tions (57) hold approximately, and since there is no
synchrotron mechanism e  ea (all electrons are in
the ground Landau level) the Compton mechanism of
axion emission in principle can be the dominant mecha-
nism. From the condition that the existing notions con-
cerning the character of the evolution of white dwarfs
remain unchanged, the inequality
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This is two orders of magnitude less than the lower
limit on 
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, determined from equations (3) and (4), and is
equal in order of magnitude to the results obtained in
[9], where the synchrotron mechanism of axion emis-
sion in neutron stars was studied (equation (26) of [9]
contains an obvious error: GeV should appear instead
of eV). If the lower limit 
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from equations (3) and (4), is correct, then our result
indeed means that the axion luminosity of white dwarfs
under the conditions considered is at least four orders
of magnitude weaker than the photon luminosity. 

For the shells of magnetic neutron stars, the possible
ranges of the parameters are as follows: 
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stars at the early stages of their evolution is essentially
neutrino luminosity, the quantities 
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should be equal:
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It is interesting that this relation is the same for the
nondegenerate case determined by equations (45a) and
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(45b). We find from the condition Sa & Sν for the indi-
cated values of the parameters

(62)

This falls in the range of the possible values of f (3)
and (4), and therefore the axion luminosity of magnetic
neutron stars with a degenerate, effectively two-dimen-
sional, electron gas can approach the neutrino luminos-
ity of these stars.
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Abstract—The reaction e+e–  ωπ0 near a φ resonance was studied with a spherical neutral detector at
VEPP-2M e+e– collider. Both main modes of decay of a ω meson were investigated: ω  π+π–π0 and ω 
π0γ. The probability of decay φ  ωπ0 was obtained from the magnitude of the interference wave in the

cross section for the reaction e+e–  ωπ0  π+π–π0π0: B(φ  ωπ0) = (5. ± 0.3) × 10–5. The ratio
of the partial widths of the ω meson was obtained from the ratio of the cross sections for the two modes:
Γ(ω  π0γ)/Γ(ω  π+π–π0) = 0.0994 ± 0.0036 ± 0.0038. © 2000 MAIK “Nauka/Interperiodica”.

5 1.4–
+1.6
1. INTRODUCTION

Substantial progress has been made in the last few
years in the study of rare decays of the φ meson in
experiments at VEPP-2M collider with a spherical neu-
tral detector (SND) and CMD-2 detector. Among the
rare decays, the class of OZI suppressed and G-parity
breaking decays φ  X, where X = ωπ0 [1], π+π–π+π–

[2], and π+π– [2, 3], stands out. Due to the presence of
a relatively large amplitude for the corresponding non-
resonance processes e+e–  X, these decays are man-
ifested in the form of an interference pattern in the
energy dependence of the cross section near the φ reso-
nance. The Born cross section, taking account of inter-
ference, can be represented in the form

(1)

where σ0(E) is the cross section for the nonresonance
process, Z is a complex interference parameter that is
equal to the ratio of the decay amplitude to the ampli-
tude of the nonresonance process, mφ and Γφ are the

mass and width and Dφ =  – E2 – iEΓφ(E) is the
inverse propagator of the φ meson, and E is the energy
of e+e– in the center-of-mass system. In this parameter-
ization all energy dependences except the resonance
dependence are neglected in the second term. The rela-
tive probability of the decay φ  X is proportional to
the squared modulus of the interference parameter and

σ E( ) σ0 E( ) 1 Z
mφΓφ

Dφ
------------–

2

,=

mφ
2
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the magnitude of the nonresonance cross section at the
maximum of the φ resonance: 

(2)

Here 

is the cross section for the production of the φ meson in
e+e– collisions [15]. The imaginary and real parts of the
interference parameter can be determined by analyzing
the experimentally measured cross section, i.e., one can
measure not only the decay probability but also the rel-
ative phase of the resonance and nonresonance ampli-
tudes.

The simplest and most natural mechanism for
G-parity breaking in decays of the φ meson is the electro-
magnetic transition φ – γ – ρ, ρ'. This mechanism contrib-
utes only to the real part of the interference parameter and
is identical for all processes under discussion:

Re(Z)γ = 3B(φ  e+e–)/α = 0.123.

Other decay mechanisms contribute to the real and
imaginary parts of the parameter Z. The experimental
separation of the real and imaginary parts of the
amplitude makes it possible to clarify the question of
the contribution of various mechanisms to the decay. 

The present work is devoted to a study of the pro-
cess e+e–  ωπ0 near the φ resonance. The only previous
measurement of the decay φ  ωπ0 was made in an

B φ X( )
σ0 mφ( ) Z 2

σφ
--------------------------.=

σφ 12πB φ e+e–( )/mφ
2
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experiment at the VEPP-2M e+e– collider with the SND
detector while studying the reaction

e+e–  ωπ0  π+π–π0π0

(see [1]). The real and imaginary parts of the parameter
Z were measured and the following value was obtained
for the decay probability:

The neutral channel

e+e–  ωπ0  π0π0γ
has also been studied using an SND detector [4]. In this
channel, together with decay φ  ωπ0, the decay
φ  ρ0π0, ρ0  π0γ contributes to interference. In
[4] the interference in the reaction e+e–  ωπ0 
π0π0γ was observed at the level of three standard devia-
tions and its value was consistent with the sum of the
two contributions mentioned. Both analyses [1, 4] were
based on the data accumulated in 1996 by the SND
detector. In the present paper we present the results on
an analysis of the 1998 data to check the preceding
measurements and to improve the accuracy. 

2. DETECTOR, EXPERIMENT

The SND detector [5] is a universal nonmagnetic
detector, whose main part is a three-layer calorimeter
based on 1630 NaI(Tl) crystals. The energy resolution
of the calorimeter for photons is

σE/E = 4.2%/

and the angular resolution is about 1.5°. The solid angle
of the calorimeter is 90% of 4π. The angles of the
charged particles are measured by a system of two drift
chambers. The measurement accuracy is about 0.5° for
the azimuthal angle and about 2° for the polar angle.
The solid angle of the system of drift chambers is 95%
of 4π.

The data sample accumulated in 1998 at the
VEPP-2M e+e– collider was investigated in this analy-
sis. The experiment was performed by the method of
scanning of the energy interval E = 984–1060 MeV.
The data were collected with 16 values of the beam
energy. Two scans were made with a total integrated
luminosity of about 8 pb–1, corresponding to about
1.2 × 107 produced φ mesons. The luminosity was
measured by using the processes e+e–  e+e– and
e+e–  γγ. The systematic error of the normalization
to the luminosity was 2%. 

3. THE REACTION e+e–  ωπ0  π0π0γ
3.1. Selection of Events

The preliminary selection of events of the reaction

e+e–  ωπ0  π0π0γ (3)

4.8 1.7–
+1.9

0.8±( ) 10
5–
.×

E GeV[ ]4
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was made according to the following criteria:
(1) the number of photons is greater than or equal to

five and there are no tracks in the drift chamber;
(2) the energy deposition in the calorimeter is

greater than 0.7E;
(3) the total momentum in an event, measured using

the calorimeter, is less than 0.15E.
Besides the events corresponding to the reaction

under investigation, events of the following processes
also fall into the same class:

e+e–  φ  KSKL  neutrals, (4)

e+e–  φ  ηγ, η  3π0, (5)

e+e–  φ  π0π0γ. (6)

Even though the probability is low ~10–4 [6, 7], the
decay (6) is one of the main background processes,
since its final state is the same as for the process (3). To
simulate process (6), we used the model of the transi-
tion through the intermediate state f0γ, where f0 is a sca-
lar particle, and the recoil photon spectrum was taken
from [6]. Since the recoil photon in the process (6) is
predominantly soft, the interference between the pro-
cesses (6) and (3) is weak. 

A high beam background in the detector results in
the appearance of extra photons in some events. The
fraction of such events in the 1998 experiment was
about 8%. An additional background from the follow-
ing processes arose because of superpositions:

e+e–  2γ, 3γ. (7)

The angular and energy distributions of the spurious
photons were studied using special events with random
triggering from an external generator. These events were
admixed to the main flux of events during the experi-
ment. Analysis of these events showed that the energy of
the most spurious photons lies near the detecting thresh-
old 20 MeV and is concentrated near the edges of the cal-
orimeter at small angles with respect to the axis of the
beam. Information about the detector channels triggered
in events with triggering from the generator was used to
simulate the process under study and the background
processes in order to imitate the superpositions which
occur in a real experiment. 

The procedure of kinematic reconstruction was
applied to the events which satisfied the preliminary
selection conditions, i.e., the particle parameters (angles
and energies) for which the laws of conservation of
energy and momentum as well as the condition for the
presence of intermediate particles in an event are satis-
fied, were found by the maximum likelihood method.
The kinematic reconstruction was performed for two
hypotheses:

(1) an event refers to the process e+e–  3γ;
(2) an event refers to the process e+e–  π0π0γ.

In events in which the number of photons was greater
than the requirement for the hypothesis considered, the
extra photons were assumed to be spurious and were
 AND THEORETICAL PHYSICS      Vol. 90      No. 6      2000
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discarded. All possible combinations with the correct
number of photons were checked and the best combina-
tion, which minimized the value of the function χ2, was
chosen. As a result of the kinematic reconstruction, the
values χ3γ and χππγ of the χ2 functions for both hypoth-
eses and the recoil mass Mπγ of π0 closest to the mass of
the ω meson for the process e+e–  π0π0γ were calcu-
lated. The condition

χ3γ > 25

was used to suppress the background from the pro-
cesses (7). 

Subsequently, the events where the number of pho-
tons was equal to and greater than five were analyzed sep-
arately. The distributions over the parameter χππγ for the
experimental events and events simulating the processes
(3) and (5) with five photons are presented in Fig. 1. The
parameter χππγ was required to satisfy the restriction

χππγ < 40.

The criteria described above select events satisfying the
laws of conservation of energy and momentum. Conse-
quently, the selected events of the process (5), in which
there are seven photons in the final state, become part
of the class of five-photon events mostly because close
photons merge. This is also true of the process (4).
Events of this process, where the KL meson decayed
inside the calorimeter into three π0 mesons (the KS

meson decays into two π0 mesons inside the vacuum
chamber), are selected; the ten photons from π0 decays
with low probability can give a configuration similar to
a five-photon event. Additional suppression of the

χππγ

Number of events

400

300

200

100

0 10 20 30 40 50

Fig. 1. Distributions over the parameter χππγ for the experi-
mental events (points with error bars) and events from the
simulation of processes (3) (hatched region) and (5) (line).
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background from the processes (5) and (4) was
achieved by analyzing the transverse distributions of
the energy deposition in showers from the detected
photons. A logarithmic likelihood function for the
transverse distribution of the energy deposition was
constructed for each photon in an event [8]. The param-
eter χγ was the maximum value of the logarithmic like-
lihood function among five photons. The distributions
over this parameter for the experimental events and the
simulated events, which passed through the preceding
selections, are presented in Fig. 2. This parameter was
required to satisfy the stringent restriction

χγ < –4.

The agreement between experiment and the simulation
near the value χγ = –4 is not very good, and conse-
quently the class of events with χγ > –4 was also ana-
lyzed but with more stringent selection conditions with
respect to other parameters.

The distributions over the parameter Mπγ for the
experimental and simulated events are presented in Fig. 3.
It is evident that the agreement between the simulated and
experimental distributions is good both on the pedestal
and in the region of the peak. In calculating the distribu-
tion of background events, the distributions of all back-
ground processes described above were summed. At this
stage of selection the background is determined by the
processes (5) and (6) in approximately the same pro-
portion. Events satisfying the restriction

|Mω – 782| < 50

were used for subsequent analysis. 

χγ

Number of events

500

300

200

100

0
–10 0 10 20

400

Fig. 2. Distributions over the parameter χγ for the experi-
mental events (points with error bars) and events from the
simulation of processes (3) (hatched region) and (5) (line).
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Events with more than five photons were required to
satisfy the following conditions:

χππγ < 20, |Mω – 782| < 25.

The same restrictions were used for the five-photon
events with χγ > –4.

The detection efficiency of the events of process (3)
with the conditions

χππγ < 40, |Mω – 782| < 50 (8)

and with the number of photons greater than or equal to
five was calculated using simulation and was ε = 38%.
To estimate the systematic error in this value, events
with seven or more photons were analyzed with the
selection conditions close to (8). The restrictions were
imposed on the likelihood function and the recoil mass
of the photon, which were obtained in the kinematic
reconstruction using the hypothesis e+e–  3π0γ. The
measured value of the decay probability

B(φ  ηγ) = (1.26 ± 0.01)%

was found to be equal to the tabulated value 1.26 ±
0.06%. Consequently, we believe that the systematic
error in determining the detection efficiency for the
process (3) with the conditions (8) does not exceed the
total error of the measured and tabulated values of
B(φ  ηγ), which is equal to 5%. 

3.2. Analysis of the Data

The events selected according to the criteria
described above were divided into six classes:

Mπγ

Number of events

160

120

80

40

0
700 750 800 850

Fig. 3. Distribution over the parameter Mπγ for the experi-
mental events (points with error bars) and events from the
simulation of the background processes (hatched histo-
gram). The line is the sum of process (3) and the back-
ground.
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1. Nγ = 5, χγ < –4, χππγ < 20, |Mπγ – 782| < 25,
2. Nγ = 5, χγ < –4, χππγ < 20, |Mπγ – 782| > 25,
3. Nγ = 5, χγ < –4, χππγ > 20, |Mπγ – 782| < 25,
4. Nγ = 5, χγ < –4, χππγ > 20, |Mπγ – 782| > 25,
5. Nγ = 5, χγ > –4, χππγ < 20, |Mπγ – 782| < 25,
6. Nγ = 5, χππγ < 20, |Mπγ – 782| < 25.

Class number 1 contains about half the events selected
according to the condition (8). This class is used as the
main class for determining the parameters of the pro-
cess (3) under investigation. The number of events of
the process (3) is 10 times less in the class 2; this makes
it possible to determine from the experimental data the
magnitude of the resonance background. The back-
ground level in class 1 can be estimated using the ratio
of the levels of the resonance background in the classes
1 and 2, as calculated from the simulation. The value of
this ratio was found to be close to 1:

k12 = 0.97 ± 0.07

The error presented is determined by the statistics of
the simulation of the background processes. The sys-
tematic error was estimated by varying over wide limits
the restrictions on the parameters χππγ and χγ and did
not exceed 3%. Since quite stringent restrictions on the
parameters χππγ and χγ are used to select events in
classes 1 and 2, the probability that events for the pro-
cess under study fall into these classes, as determined
by the simulation, can contain a large systematic error.
The classes 3–6 were used to eliminate the influence of
this factor.

The cross section for detecting the experimental
events in each class was approximated by the following
formula:

where σωπ(E) is the Born cross section of the process
e+e–  ωπ0  π0π0γ, δωπ is the radiative correction
to this cross section [9], and σφi(E) is the cross section
for the resonance background in the ith class (the shape
of the excitation curve for the φ meson was described
by the energy dependence of the cross section of the
main background process e+e–  φ  ηγ taking
into account radiation corrections), ε is the detection
efficiency for events of the process (3) with the condi-
tions (8), and αi is the probability that events of the pro-
cess (3) which were selected according to the condi-
tions (8) fall into the ith class. The coefficients αi are
related with one another by the following relation:

(9)

The second cofactor in this relation compensates the
loss of events due to additional requirements as com-
pared with the selection (8):

Nγ = 5, χγ < –4.

σvis E( ) α iεσωπ E( ) 1 δωπ+( ) σφi E( ),+=

α1 α2 α3 α4+ + +( ) 1
α5 α6+

α1
------------------+ 

  1.=
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Table 1.  The results of the fit to the cross section for process (3)

σ0(mφ), nb A Re Z Im Z χ2/ND

Model 1 0.744 ± 0.021 –0.114 ± 0.07 0.01 ± 0.05 –0.19 ± 0.07 82.2/74

Model 2 0.745 ± 0.023 –0.150 ± 0.07 0.01 ± 0.05 –0.19 ± 0.07 83.5/74
The calculation of the correction by this method pre-
sumes that the distributions over the parameters Nγ and
χγ do not depend on the restrictions on χππγ and Mπγ. In
reality, this dependence is present, and taking it into
account by means of simulation changes the efficiency
ε by 2%. This value was also added to the systematic
error in the efficiency.

The formula (1) was used to describe the cross sec-
tion σωπ(E). In our preceding work [1], linear and qua-
dratic functions were used to parameterize the nonres-
onant cross section σ0(E). The dependence on the
choice of function describing the nonresonant cross
section gave the largest contribution to the systematic
error of the parameters of the decay φ  ωπ. Conse-
quently, in the present work we focused on the selection
of a model for σ0(E). It is known that the process
e+e−  ωπ0 in the energy range 1–2 GeV is described
by a sum of the contributions of ρ(770) and ρ' mesons
with relative phase 180° [10], so that its cross section
can be represented in the form

(10)

where α = 1/137, gρωπ is the constant for the transition
ρ  ωπ, fp is the coupling constant between the ρ
meson and photon and can be calculated from the width
of the decay ρ  e+e–:

mρ, mρ', Dρ, and Dρ' are, respectively, the masses and
inverse propagators for the ρ and ρ' mesons:

A is a negative real number, equal to the ratio of the
coupling constants of ρ and ρ' mesons,

The factor Pf (E) describes the energy dependence of
the phase volume of the final state. In the approxima-
tion of an infinitely narrow ω meson

where pω is the momentum of the ω meson, B(ω 
π0γ) is the relative probability of the decay ω  π0γ.
However, in the energy range which we studied, and
especially in the range near the threshold of the reaction
e+e–  ωπ0, more accurate formulas that take into

σ0 E( ) 4πα2

E3
------------

gρωπ

f ρ
---------- 

 
2 mρ

2

Dρ
------ A

mρ'
2

Dρ'
-------+

2

P f E( ),=

Γρee 4πmρα2/3 f ρ
2;=

Dρ mρ
2 E2– iEΓρ E( );–=

A
gρ'ωπ

gρωπ
-----------

f ρ

f ρ'
-----.=

P f E( ) 1/3( ) pω
3

B ω π0γ( ),=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
account the finite width of the ω meson must be used.
It should be noted that the energy behavior of the factor
Pf (E) is different for the two decay channels studied for
the decay of the ω meson because of the strong depen-
dence of the width of the decay ω  ρπ on the mass
of ω. The energy dependence of the factor Pf (E) for the
process e+e–  ωπ0  π0π0γ was calculated using
the formulas from [4].

The main parameters of a ρ' meson, such as, the
mass, width, and relative decay probabilities into vari-
ous final states, are known only very poorly [15]. This
is due to not only the lack of accurate experimental data
but also the model uncertainty in their description. For
example, the values obtained in the recent work [11] for
the mass and width of ρ' are substantially different from
the tabulated values, and the difference increases sub-
stantially when the mass dependence of the width of the
resonances is taken into account. We used two variants
for the parameters of a ρ' meson:

(1) mρ' = 1465 MeV, Γρ' = 310 MeV [15]; Γρ(E) =
Γρ(mρ)(mρ/E)(pπ(E)/pπ(mρ))3, where pπ(E) is the
momentum of the pion in the decay ρ  2π. The
energy dependence of Γρ' was neglected.

(2) mρ' = 1530 MeV, Γρ' = 430 MeV. The energy
dependence of Γρ and Γρ' was neglected.

The second model describes well the spectrum of
invariant masses of the state ωπ in the decay τ 
ωπντ in the range from 0.9 to 1.7 GeV [11]. Using two
models makes it possible to estimate the systematic
error associated with the choice of parameters in the
formula (10).

A fit to the detection cross section was obtained in
all six classes simultaneously. In each class the cross
section was measured at 16 energy points. In addition,
our preliminary data on the measurement of the cross
section e+e–  ωπ0  π0π0γ at 24 points in the
range 920–1400 MeV [12] were included in the
approximation. The free parameters of the approxima-
tion were σ0(mφ), A, ReZ, ImZ, αi, and σφi(mφ) with the
exception of α3 and σφ1(mφ). The value of σφ1(mφ) was
found from the relation

σφ1(mφ) = (0.97 ± 0.08)σφ2(mφ),

where α3 was obtained from equation (9). The detec-
tion efficiency ε and the coefficients αi were essentially
energy-independent in the range studied. A total of 14
parameters were determined in the fit. The values of the
four main parameters for both models are presented in
Table 1. Of all parameters of the fitting function, only A
depends on the model. The values obtained for the
SICS      Vol. 90      No. 6      2000
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resonance cross section σφi(mφ) agree statistically with
the simulation calculation. The agreement with the sim-
ulation is worse for the coefficients αi. The difference is
primarily due to the above-discussed inadequate accu-
racy in the simulation of the distribution with respect to
the parameter χγ. The experimental data and fitting
curves for the narrow energy range near the φ meson
and the complete interval from 920 to 1400 MeV are
presented in Figs. 4 and 5. The curves show the result of
the fit in the model 2. It is evident that in both cases the
fitting function describes the experimental data well.
The parts referring to class 1 and to the energy range
outside of the φ meson resonance can be extracted from
the total value of χ2: 9.6/12 and 20/22, respectively.
Here the calculation of the number of degrees of free-
dom took into account the fact that the class-1 data
determined primarily the values of four parameters:
ReZ, ImZ, σ0(mφ), and α1; the region outside of the res-
onance determines two parameters: σ0(mφ) and A.

We present as the result of the analysis the values of
the three basic parameters describing the cross section
of the process e+e–  ωπ0  π0π0γ near the
φ meson resonance:

σ0(mφ) = 0.74 ± 0.02 ± 0.04 nb,

ReZ = 0.01 ± 0.05, (11)

ImZ = –0.19 ± 0.07.

The first of the errors presented for σ0(mφ) is a statisti-
cal error; the second error is a systematic error, which
is determined by the error in the detection efficiency. In
the values obtained for the parameters Re(Z) and Im(Z),
the statistical error is larger than the systematic error. It
is evident from Fig. 4 that, despite the stringent condi-
tions for selection in class 1, the resonance background

980 1000 1020 1040 1060
0

0.05

0.10

0.15

0.20

0.25

E, MeV

Observed cross section, nb

Fig. 4. Energy dependence of the cross section for detecting
class-1 events and the fitted curve. The curve at the bottom
was obtained by fitting the cross section for the resonance
background.
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level is approximately half the amplitude of the inter-
ference pattern. The accuracy of its subtraction is deter-
mined by the statistical error in the magnitude of the
resonance background in the second class σφ2(mφ) =
0.013 ± 0.04 nb. The main source of systematic error in
the interference parameters—the uncertainty in the
coefficient k12—was taken into account in the fitting
and was included in the errors presented above for the
parameters ReZ and ImZ. 

4. THE REACTION e+e–  ωπ0  π+π–π0π0

4.1. Selection of Events

Events with two charged particles and four or five
photons were selected to study the reaction

e+e–  ωπ0  π+π–π0π0. (12)

The additional photons appear in the event because of,
in the first place, the nuclear interaction of the pions in
the calorimeter and, in the second place, the superposi-
tion of the beam background on the event. For the pro-
cess under study, the probability of finding an addi-
tional spurious photon in the event was about 20%. To
suppress beam background events, it was necessary
that the reconstructed point of emergence of the
charged particles be displaced from the encounter loca-
tion by not more than 0.3 cm in a plane perpendicular
to the axis of the beams and by not more than 7.5 cm
along the axis of the beams.

The main source of the background for the process
(12) were decays of a φ meson:

e+e–  φ  K+K–, (13)

0.9 1.0 1.1 1.2 1.3 1.4
0

0.4

0.8

1.2

1.6

E, GeV

Born cross section, nb

Fig. 5. Energy dependence of the Born cross section for the
reaction e+e–  ωπ0  π0π0γ and the fitted curve.
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e+e–  φ  KSKL, KS  π+π–, (14)

e+e–  φ  π+π–π0, (15)

e+e–  φ  ηγ, η  π+π–π0. (16)

To suppress the background from the reaction (13), in
which the charged K mesons are quite slow (β ≈ 0.25),
it was necessary that for both charged particles the
average ionization losses in the drift chamber not
exceed 4(dE/dx)min, where (dE/dx)min represents the
average ionization losses of a minimally ionizing parti-
cle. A substantial suppression of the background from
the process (14) was obtained by limiting the spatial
angle between the charged particles: ∆ψ < 140°. In the
process (14) the minimum angle between the charged
pions from the decay of a KS meson is about 150°. 

The kinematic reconstruction procedure was
applied to the event satisfying the conditions described
above. Three hypotheses were considered:

(1) an event refers to the process e+e–  π+π–π0;
(2) an event refers to the process e+e–  π+π–π0γ;
(3) an event refers to the process e+e–  π+π–π0π0. 

In checking the hypothesis e+e–  π+π–π0π0 photons
with energy less than 50 MeV, lying outside the polar
angle range 30° < ϑ  <150°, were dropped. This require-
ment decreased the probability of an incorrect recon-
struction and decreased the background from the pro-
cesses (15) and (16), which arises because of the super-
positions of the beam background on the events
corresponding to these processes. The values of the
functions χ2 for all three hypotheses were calculated as
the result of the kinematic reconstruction: χ3π, χ3πγ, and
χ4π, and the parameters Mrec and M3π—the recoil mass
of the photon in the reaction e+e–  π+π–π0γ and the
recoil mass of the π0 meson closest to the mass of ω for
the reaction e+e–  π+π–π0π0. These parameters were
required to satisfy the following restrictions:

(17)

The first two conditions select correctly reconstructed
events of the process e+e–  ωπ0, the third condition
is directed against the background from the process
(15), and the fourth condition suppresses events due to
the process (16). The distributions over the parameter
χ3π for the experimental events and the simulation
events for the processes (15) and (12) are presented in
Fig. 6. A peak with low values of χ3π, corresponding to
the contribution of the process (15), is clearly seen in
the experimental distribution. The total computed num-
ber of events for the process (15) agrees to within about
10% with experiment, but the forms of the distributions
are different, especially at the edge, for χ3π ~ 20. Con-
sequently, we do not assume that simulation can give
the correct estimate of the background with χ3π > 25.
The distributions over the parameter χ4π for the experi-
mental events and the modeling events for the process

χ4π 40, M3π 782– 100,< <
χ3π 25, Mrec 620.> >
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(12) are presented in Fig. 7. The distributions were
obtained using the energy points at the edges of the
range studied, where the resonance background is neg-
ligible. It is evident that the agreement between the
experimental data and the simulation is quite good.

The spectra of the recoil masses of the π0 meson for
the experimental and modeled events are presented in
Fig. 8. The hatched histogram shows the contribution
of background processes. The contribution of the fol-
lowing two nonresonance processes was taken into

χ3π

Number of events

2000

1500

1000

500

0 20 6040 80

Fig. 6. Distribution over the parameter χ3π for the experi-
mental events (points with error bars) and the events from
the simulation of process (15) (hatched histogram) and (12)
(line).

0 10 20 30 40 50

200

400

600

χ4π

Number of events

Fig. 7. Distribution over the parameter χ4π for the experi-
mental events (points with error bars) and the events from
the simulation of process (12) (line).
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account in the calculation of the background in addition
to the above-described decays of the φ meson:

e+e–  ωγ  π+π–π0γ, (18)

e+e–  π+π–π0π0. (19)

A model of the intermediate state α1(1260)π was used
to simulate the reaction (19). As shown in [13], this

M3π, MeV

Number of events

1200

800

400

0
700 750 800 850

Fig. 8. Spectra of the recoil masses of a π0 meson for exper-
imental and simulation events. The points with error bars are
experimental points, the hatched histogram represents the
simulation of the background processes, and the line is the
sum of the events of process (12) and the background.
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Fig. 9. Spectrum of the photon recoil masses Mrec for the

experimental events of the reaction e+e–  ηγ 
π+π–π0γ. The solid line is the result of a fit of the spectrum and
the dotted line is the contribution of background processes.
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state dominates in the reaction e+e–  4π in the range
1.0–1.4 GeV. In the a1π model the cross section of the
reaction (19) is uniquely related with the cross section
of the reaction e+e–  π+π–π+π–, which was measured
in the energy range of interest to us [2]. There is virtu-
ally no interference between the processes (19) and
(12). According to our estimate, made assuming a a1π
model for the reaction (19), the interference contribu-
tion does not exceed 0.2% of the cross section of the
reaction (12).

Approximately 85% of the 1.2 × 104 discarded
events refer to the process (12); the resonance back-
ground makes a contribution of 6.5%; and, the pro-
cesses (19) and (18) contribute 6.5 and 1.7%, respec-
tively. The resonance background level calculated
according to the simulation was found to be 1.8 ±
0.2 times less than the value determined from the
experimental data with a fit of the cross section. Conse-
quently, the resonance background in the distributions
presented in Fig. 8 is included with a factor of 1.8.

Just as in the analysis of the neutral channel, the
decay φ  ηγ was studied in order to estimate the
systematic error in the efficiency. Events with two
charged particles and three or four photons with the
same preliminary conditions as the events for the pro-
cess (12) were selected. A kinematic reconstruction in
the hypotheses e+e–  3πγ and e+e–  3π was per-
formed for them. The background from the decay
φ  3π was suppressed using the restriction χ3π > 25.
The parameter χ3πγ was required to satisfy the restric-
tion χ3πγ < 35. The spectrum of photon recoil masses
Mrec for the event selected in this manner is presented in
Fig. 9. There are about 104 events in the interval
520 < Mrec < 580, and 95% of these events are events
due to the process φ  ηγ. The background level was
determined by fitting the recoil mass spectrum of the
photon. The probability of the decay φ  ηγ, obtained
taking into account the detection efficiency calculated
according to the simulation, was (1.25 ± 0.02)%. The error
presented is determined mainly by the inaccuracy in
the subtraction of the background; the statistical error
is about 1%. The tabulated value of the probability is
(1.26 ± 0.06)%. Since the conditions for selecting the
events for the decay φ  ηγ were close to those used
to select the events of the reaction (12) under study, we
introduced into the detection efficiency obtained by
simulation of the process (12) the correction 0.99 ±
0.05. Taking this correction into account, the detection
efficiency for the process (12) was ε = 0.21 ± 0.01.  

4.2. Data Analysis

The analysis of the charged mode e+e–  ωπ0 
π+π–π0π0 is similar to the above- described analysis of
the neutral mode e+e–  ωπ0  π0π0γ. The selected
events were divided into four classes:

1. χ4π < 20, |M3π – 782| < 35,
 AND THEORETICAL PHYSICS      Vol. 90      No. 6      2000
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Table 2.  The results of the fit to the cross section for process (12)

σ0(mφ), nb A Re Z Im Z χ2/ND

Model 1 7.34 ± 0.14 –0.08 ± 0.07 0.112 ± 0.019 –0.129 ± 0.025 38.1/54

7.32 ± 0.14 –0.114 ± 0.007 0.110 ± 0.019 –0.127 ± 0.025 38.4/55

Model 2 7.34 ± 0.14 –0.11 ± 0.08 0.113 ± 0.019 –0.129 ± 0.025 38.1/54

7.32 ± 0.14 –0.150 ± 0.007 0.110 ± 0.019 –0.127 ± 0.025 38.4/55
2. χ4π < 20, |M3π – 782| > 35,

3. χ4π > 20, |M3π – 782| < 35,

4. χ4π > 20, |M3π – 782| > 35.

The class 1 contains about 80% of the events due to
the reaction (12), which were selected according to the
conditions (17). This is the main class for determining
the interference parameters. The difference in the ratios
of the levels of the nonresonant cross sections in classes
1 and 2 from the ratio expected for the process (12)
makes it possible to estimate the contribution of the
background process (19). Fitting the cross section in
the classes 2–4 permits determining the total cross sec-
tions for the background resonance processes: σφ2, σφ3,
and σφ4. The cross section for the resonance back-
ground in the first class was estimated using the for-
mula

σφ1 = σφ2(σφ3/σφ4).

This method employs the natural assumption that the
distributions over the parameters χ4π and M3π are inde-
pendent for the background from the decays (13)–(16)
and is model-independent. The validity of the formula
used was checked on the simulation events and spe-
cially selected experimental events for background pro-
cesses with a statistical accuracy of about 15%.

The cross section for detecting experimental events
in each class was approximated by the formula

where σωπ(E) and σ4π(E) are the Born cross sections of
the processes (12) and (19), σφi(E) is the cross section
for the resonance background in class i, σωγi(E) is the
visible cross section of the process (18) in class i, cal-
culated by simulation, ε and ε4π are the detection effi-
ciencies for the processes (12) and (19) with the condi-
tions (17), and δωπ and δ4π are radiation corrections.
The coefficients αi and βi are the probabilities that
events due to the processes (12) and (19) fall into ith

class  = 1, . The cross section σωπ(E)

was approximated by the formulas (1) and (10). The
energy dependence of the factor Pf(E) for the process
e+e–  ωπ0  π+π–π0π0 was calculated using the
formulas from [14]. The Born cross section of the pro-
cess (19) was also represented in the form (1). It was

σvis E( ) α iεσωπ E( ) 1 δωπ+( )=

+ R4πβiε4πσ4π E( ) 1 δ4π+( ) σωγi E( ) σφi E( ),+ +

α i∑ βi∑ 1= 

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obtained by multiplying the cross section of the process
e+e–  π+π–π+π– by the factor 0.4, calculated assum-
ing a1π dominance in the reaction e+e–  4π [13].
The parameters for the nonresonance cross section and
the values of ReZ and ImZ for the process e+e– 
π+π–π+π– were taken from [2]. The parameter R4π shows
the difference between the values of the cross section
for the process (19) obtained by fitting the experimental
data and the computed cross section.

The fit was made in all four classes simultaneously.
The free parameters were σ0(mφ), A, ReZ, ImZ, R4π, α1,
α3, and σφi(mφ) with the exception of σφ1. The parame-
ters α2, β1, β2, and β3 were calculated from the relations

α2 = 0.06α1, β2 = 1.13β1,

β3/β1 = β4/β2 = (α3 + α4)/(α1 + α2).

The first two relations were obtained from the simula-
tion. The third relation is based on the natural assump-
tions that the distribution over the parameter χ4π is iden-
tical for the processes (19) and (12) and that for the pro-
cess (19) the distribution over the parameter χ4π does
not depend on M3π. The validity of these assumptions
was checked on the simulated events with a statistical
accuracy of better than 5%. The coefficients αi and βi

are essentially energy-independent; their energy depen-
dences were calculated by simulation and fits were
made using linear functions. 

A fit to the cross section was made in the same two
models which were used to describe the data in the neu-
tral channel of the reaction e+e–  ωπ. The results are
presented in Table 2. The second and fourth rows in the
table correspond to the cases where the values of the
parameter A were fixed at the values obtained in the
analysis of the neutral mode. All parameters except A
are essentially model-independent. The values obtained
for α1 and α3 in the fit agree well with the calculation
based on the simulation. The cross sections for the reso-
nance background in the classes 2–4, as already men-
tioned, were approximately two times greater than the
estimates obtained with simulation. The background level
from the process (19) agreed with the calculations:

R4π = 1.0 ± 0.2.

The visible cross section of the experimental events in
class 1 and the fitting curve obtained in the second
model with A = –0.150 ± 0.007 are presented in Fig. 10.
The value of χ2/ND for this curve is 8.7/11. For E = mφ
SICS      Vol. 90      No. 6      2000
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the resonance background level in the first class is 5%
of the cross section of the process (12) under study; the
background level from the process (19) corresponds to
2.3%, and the background level from the process (18)
is about 1%. We present at the result the values of the
three basic parameters:

σ0(mφ) = 7.32 ± 0.14 ± 0.38 nb,

ReZ = 0.110 ± 0.019 ± 0.003, (20)

ImZ = –0.127 ± 0.025 ± 0.005.

The first of the errors presented is statistical, while the
second is systematic. The main source of the systematic
error in the nonresonance cross section σ0(mφ) is the
error in determining the detection efficiency 5%. The
next, in magnitude, factor is the uncertainty in the cross
section for detecting the background process e+e– 

980 1000 1020 1040 1060
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E, MeV

Observed cross section, nb

Fig. 10. Energy dependence of the cross section for detect-
ing class-1 events and the fitted curve. The curve at the bot-
tom was obtained by fitting the cross section for the reso-
nance background.
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ωγ. When this quantity is varied by a factor of 2, the
nonresonance cross section changes by 1%. The model
dependence, the uncertainty in the calculation of the
cross section for e+e–  ωγ, and the possible inaccu-
racy in the estimate of the resonance background in
class 1 are included in the systematic errors for ReZ and
ImZ.

5. DISCUSSION

The main results of the analysis performed in this
work and the result of previous measurements [1, 4] are
presented in Table 3. A comparison shows that all
parameters for the two experiments agree well with one
another. The approach used with normalization to the
process φ  ηγ made it possible to decrease substan-
tially the systematic error in the measurements of the
nonresonance cross section. The accuracy in measuring
ReZ and ImZ for the charged mode was improved. Even
though the luminosity integral in the 1998 experiment
is larger, the interference parameters measured in the
neutral channel are less accurate than the result of the
previous experiment. This is because in the present
analysis the resonance background could not be sup-
pressed to the level obtained in the analysis of the 1996
data.

Since a substantial fraction of the systematic error in
the nonresonance cross sections in the charged and neu-
tral modes is a general error and is related with the
accuracy of the tabulated value of B(φ  ηγ), it is
interesting to present the measured ratio of these cross
sections:

(21)

The computed value of this quantity 0.098 ± 0.006 is
1.023 times greater than the ratio of the widths

Γ(ω  π0γ)/Γ(ω  π+π–π0) = 0.096 ± 0.006

σ0
π0π0γ mφ( )

σ0
π+π–π0π0

mφ( )
------------------------------- 0.1017 0.0037 0.0039.±±=
Table 3.  The values of the main parameters for the process e+e–  ωπ0. The results of the present analysis, the results of
our previous measurements, and the average values over two measurements are presented

e+e–  ωπ0  π+π–π0π0

σ0(mφ), nb Re Z Im Z

1998 7.32 ± 0.14 ± 0.38 0.110 ± 0.019 ± 0.003 –0.129 ± 0.025 ± 0.005

1996 [1] 7.28 ± 0.18 ± 0.80 0.104 ± 0.028 ± 0.006 –0.118 ± 0.030 ± 0.009

1996 + 1998 0.108 ± 0.016 –0.125 ± 0.02

e+e–  ωπ0  π0π0γ

σ0(mφ), nb Re Z Im Z

1998 0.74 ± 0.02 ± 0.04 0.01 ± 0.05 –0.19 ± 0.07

1996 [4] 0.64 ± 0.08 0.04 ± 0.05 –0.19 ± 0.06

1996 + 1998 0.025 ± 0.035 –0.19 ± 0.05
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(see [15]). This difference is due to the difference in the
behavior of the phase volumes for the decays ω  π0γ
and ω  π+π–π0 as a function of the mass of the ω
meson. Taking into account the factor of 1.023, the
ratio of the widths can be obtained from the ratio of the
cross sections:

(22)

which is the most accurate current measurement of this
quantity. The total nonresonant cross section for
e+e−  ωπ0 with E = mφ is

σ0(mφ)ωπ = 8.25 ± 0.14 ± 0.43 nb. (23)

This value was obtained as a sum of the measured cross
sections in the charged and neutral modes taking into
account the contribution of other decay modes of the
ω meson: (2.3 ± 0.3)%. The result for the interference
parameter in the charged channel can be presented in
the different form Z = |Z|eiψ:

|Z| = 0.168 ± 0.022 ± 0.004,

ψ = –49° ± 7° ± 1°.

The decay probability can be calculated from the value
of |Z| and the value of the nonresonant cross section
(23) using equation (2):

B(φ  ωπ) = (5.  ± 0.3) × 10–5. (24)

The result of the previous measurement [1] is

B(φ  ωπ) = (4.  ± 0.8) × 10–5.

Since the decay probabilities in the two experiments are
the same, we can present an average value obtained
over all data collected with the SND detector near the φ
resonance:

B(φ  ωπ) = (5. ) × 10–5. (25)

The average values of the interference parameters over
the two experiments are presented in Table 3.

As already mentioned in the introduction, the decay
φ  ρπ0  π0π0γ contributes to the interference in
the neutral channel. A calculation of this contribution in
the vector dominance model was made in [4]:

ReZ = –0.079, ImZ = –0.053.

The sum of these quantities with the interference
parameters measured in the charged mode (20) is

ReZ = 0.032 ± 0.016, ImZ = –0.180 ± 0.020

and agrees well with the measurement in the neutral
mode. 

The main diagrams for the decay φ  ωπ, which
were studied in the theoretical works [16–18], are
shown in Fig. 11. The diagram in Fig. 11a describes the
φ–ρ transition. Aside from the single-photon mecha-
nism, the successive φ–ω–ρ transition was taken into
account for this diagram. Substantial discrepancies

Γ ω π0γ( )
Γ ω π+π–π0( )
------------------------------------------ 0.0994 0.0036 0.0038,±±=

5 1.4–
+1.6

8 1.7–
+1.9

2 1.1–
+1.3
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exist between the theoretical works under discussion
here. The value gρωπ = 14.3 GeV–1, calculated from the
decay ω  3π, was used in [16, 18] to calculate the
nonresonant cross section for the process ρ  ωπ.
The nonresonance cross section ~5 nb obtained in the
process is much smaller than the measured value (23).
The value gρωπ = 16.5 GeV–1 was used in [17]. Our
value of gρωπ, obtained in the model 2, which describes
the cross section for e+e–  ωπ well in a wide range
of energies, is 15.5 GeV–1, and the contribution of ρ' to
the cross section in the region of the φ meson is about
25%. The contribution of the ρ' meson was neglected in
all of the works [16–18]. Large discrepancies also exist
in the calculation of the contributions of the diagrams
in Figs. 11b–11d. They are mainly due to the different
treatment of the φ–ω mixing and the different manner
in which the mass dependence of the widths of the reso-
nances was taken into account. The probabilities obtained
in [16, 17] for the decay φ  ωπ are (8–9) × 10–5 and
exceed the measured value. In [18] a combined analysis
of the decays φ  ωπ and φ  π+π– is given and
predictions are made for the parameters ReZ and ImZ.
None of the proposed sets of parameters agree with our
measurement. The use of a large value for the nonreso-
nance cross section can substantially increase the con-
tribution of the diagram in Fig. 11a in [16, 18] and change
the predictions. Another conclusion can be drawn on the
basis of the theoretical works. According to [16–18],
the contributions of the diagrams in Figs. 11b–11d and
of the φ–ω–ρ transition should increase the value of
ReZ = 0.123, obtained taking into account only the
single- photon mechanism. To explain the small experi-
mental value ReZ = 0.108 ± 0.016, in our view, either the
presence of an additional contribution to the φ–ρ transi-
tion, comparable to the single-photon contribution, or the
existence of the direct decay φ  ωπ is required.

6. CONCLUSIONS

In conclusion, we shall list the basic results obtained
in this work. In the energy range near the φ resonance
the cross section for the process e+e–  ωπ was mea-
sured for two decay modes of the ω meson: ω  π0γ

φ

ω

ρ

η

(a) (b)

(c) (d)

φ

φφ

ρ
π π

ππ

ω

ω
ω

ω η
φ

Fig. 11. Diagrams describing the contributions to the ampli-
tude of the decay φ  ωπ.
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and ω  π+π–π0. The parameters of the interference
pattern associated with the decay φ  ωπ were mea-
sured for both cross sections. The probability of this
decay was obtained from the magnitude of the interfer-
ence pattern in the cross section for the process e+e– 
ωπ  π+π–π0π0:

B(φ  ωπ) = (5.  ± 0.3) × 10–5.

This value agrees with our first measurement [1] but it
is more accurate. The small real part of the measured
interference parameter indicates either the presence of
an additional contribution to the φ–ρ transition, compa-
rable in magnitude to the single-photon contribution, or
the existence of a direct decay φ  ωπ. The ratio of
the partial widths of the two main decay modes of the ω
meson was obtained from the ratio of the cross sections
in the charged and neutral modes:

Γ(ω  π0γ)/Γ(ω  π+π–π0)

= 0.0994 ± 0.0036 ± 0.0038.

At the present time this is the most accurate measure-
ment of this quantity.
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Abstract—The purpose of this work was to investigate the plastic properties of Ca- or Eu-doped NaCl and KCl
single crystals in crossed constant and microwave magnetic waves under paramagnetic resonance conditions.
It was found that when the photon energy of the microwave field equals the Zeeman splitting of the electronic
spin sublevels, resonance softening of the crystals, manifested as an increase in the free path of individual dis-
locations and the macroplastic flow velocity as well as a decrease of the microhardness of the crystals, is
observed. It was established that metastable Ca- and Eu-impurity complexes, which are also sensitive to the
constant magnetic field in the absence of the microwave field, as well as complexes formed by dislocations and
point defects are responsible for resonance softening. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The traditional approach to describing the macroplas-
tic properties of real crystals is limited, as a rule, to the
analysis of mesoscopic-scale processes which occur in the
structural-defect subsystem (dislocations, twins, crowdi-
ons, and so on). Sometimes the behavior of individual
atomic clusters (inflections and steps on dislocations,
point defects, and others) is analyzed. At the same time,
a variety of data indicate that only an analysis of defects
at the electronic level can give an adequate description of
many observed effects in plasticity. For example, defor-
mation luminescence [1], exoemission [2], changes in
the luminescence spectra of point centers during plastic
deformation [3], photoconductivity [4], and EPR [5] and
NMR [6] signals as well as the wide spectrum of exper-
imental data on the effect of light on the plasticity of
wide-gap crystals [7] and the magnetic field and current
on the mechanical properties of metals [8] attest to the
diverse manifestations of the electronic subsystem of a
crystal in the formation of their plastic properties.

The recent observation of a number of paradoxical,
from the standpoint of equilibrium thermodynamics,
effects, which include the influence of a magnetic field
with induction ~1 T on the plasticity of dielectric ionic
crystals [9–32], polymers [33–36], semiconductors
[37], molecular crystals [38], and diamagnetic metals
[39–43] at temperatures close to room temperature, makes
it necessary to seek new approaches for developing the
physics of plasticity at the electronic level of analysis.
With respect to the magnetoplastic effects listed above, it
is now believed that these are spin-dependent processes,
i.e., they require not only an analysis of the coordinate part
of the wave function of the elections (transitions between
bands and localized states, Coulomb interaction of
1063-7761/00/9006- $20.00 © 20939
defects, and so on) but also an investigation of the influ-
ence of the spin degrees of freedom on the formation of
plasticity [10–15, 44–46]. This, initially hypothetical,
point of view has been confirmed experimentally very
recently [47]. This has led to a new class of problems
which require analysis at an even deeper level—the
spin level.

However, the not entirely clear relation between the
various hierarchical levels of the analysis of plasticity
(macro-, meso-, dislocation, atomic, electron-spin) raises
a number of fundamental questions. How can a weak,
from the energy standpoint, magnetic field compete with
thermal fluctuations at high temperatures? How do spin
transitions in structural defects influence the atomic state
of the defects and the mobility of dislocations? What are
magnetically sensitive defects in crystals and how can
they be produced? Why are the standard experimental
methods too insensitive to observe these defects while
the plastic properties are sensitive to their presence in a
crystal?

Similar problems arose several decades ago in the
chemistry of magnetically sensitive radical reactions,
where they were solved using new methods of spectros-
copy, one of which is RYDMR (reaction yield detected
magnetic resonance)—paramagnetic resonance detected
not by the absorption of an electromagnetic wave but by
the “yield” of a chemical reaction, i.e., according to the
change in the rate and equilibrium constants [48], the
change in the fluorescence intensity [49], and the change
in the photoconductivity [50] and other macroproperties
of crystals. This method makes it possible to detect and
investigate at room temperature less than 103 pairs of
intermediate short-lived paramagnetic particles, present
000 MAIK “Nauka/Interperiodica”
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in a sample simultaneously and entering together into
different spin-dependent reactions [51, 52].

In [53] it was shown, theoretically, for the first time
that resonance softening of crystals is possible if the
frequency ν of the ac field satisfies the paramagnetic
resonance condition hν = gµB0 in a radical pair formed
by an impurity center on a dislocation and on a local
stop (h is Planck’s constant, g is the spectroscopic split-
ting factor, µ is the Bohr magneton, and B0 is the con-
stant magnetic induction). The first experimental obser-
vation of resonance softening of ionic crystals is
described in [47]. Our objective in the present work was
to investigate in greater detail the mobility of individual
edge dislocations, macroplastic flow, and the microhard-
ness of ionic crystals under conditions where a constant
magnetic field and a high-frequency magnetic field
crossed with it act simultaneously, i.e., to endeavor to
transfer the ideology and approaches of the RYDMR
spectroscopy to plasticity physics, where the change in
any plastic characteristic of a crystal can serve as a
response to resonance, i.e., the yield.

2. EXPERIMENTAL PROCEDURE

Three standard procedures were used to investigate the
plasticity of crystals in external magnetic fields: (1) mea-
surement of the free paths L of individual edge disloca-
tions by the method of double selective etching,
(2) detection of the change in the macrodeformation
diagram of crystals in a constant magnetic field at the
moment when the microwave field is switched on, and
(3) measurement of the Vickers microhardness H of
crystals after the crystals are exposed to a magnetic
field (0.2 N load on the indenter; 20 s load duration).
The experiments were performed on 3 × 3 × 5 mm Ca-
of Eu-doped NaCl and Ca-doped KCl single crystals
annealed at 700 K and cooled to 293 K in 10 h. The
mass fraction of the impurity was ~0.1% for investiga-
tion of macroplasticity and microhardness and ~0.01%
for determining the free path of individual dislocations.
The samples were positioned at a node of the magnetic
field of a H102 standing wave in a cavity, connected with
a ~0.1 W klystron, which operated at the frequency ν =
9.5 GHz. The cavity was placed between the poles of an
electromagnet, which produced a constant magnetic
field with induction B0 ranging from 0 to 0.8 T in the
region of the crystal. In all experiments the vector B0
was directed along the [001] crystallographic direction.

3. RESULTS

The effect of combined constant and microwave
magnetic fields on the mobility of individual edge dis-
locations was investigated in the first series of experi-
ments. After fresh dislocations were introduced and the
first etching, which revealed the initial positions of the
dislocations, the NaCl : Ca crystals were placed inside
a cavity where they were exposed to crossed magnetic
fields for 15 min. Next, the crystal was removed from
JOURNAL OF EXPERIMENTAL
the cavity and a second etching revealed the new posi-
tions of the dislocations. The double etching procedure
in the absence of a magnetic field itself led to an iden-
tical, in all experiments, displacement of the disloca-
tions under the action of internal stresses by an average
distance L0 = 12 ± 1 µm. The exposure of crystals
simultaneously to a constant magnetic field and a
microwave field (in the configuration B1 ⊥  B0, where B1
is the induction of the magnetic microwave field)
increased L with B0 = Bres1 = 0.32 ± 0.03 T, B0 = Bres2 =
0.18 ± 0.02 T, and B0 = Bres3 = 0.12 ± 0.02 T (Fig. 1).
These values correspond to magnetic fields B0 = hν/µg,
(ν = 9.5 GHz)in which resonance transitions between
the electronic sublevels split in a constant magnetic
field occur. The corresponding effective g factors are
g1 = 2.1 ± 0.2, g2 = 3.8 ± 0.3, and g3 = 5.7 ± 0.7. Mea-
surements near the peaks were performed especially
carefully: the smallest step in B0 and a larger statistically
sample (up to 500 measurements of the free path at each
point) were used. When the constant and microwave
fields were applied in the configuration B1 || B0, the
peaks vanished (Fig. 1). In the absence of a microwave
field, the constant magnetic field with B0 > 0.35 T also
gave rise to dislocation displacements which were
greater than the background free paths L0, caused by
etching in the absence of a magnetic field, but the field
dependence L(B0) was monotonic in this case, i.e., there
were no peaks (Fig. 1).

It was established that in crossed magnetic fields,
under resonance conditions, the individual dislocations
are, on the average over the crystal, equally likely to

move in the crystallographic directions [ 10], [1 0],

[ 0], and [110] over identical average distances on
all faces of a sample. Therefore, in our experiments the
role of the external fields reduced to depinning of dis-
locations from stops, while dislocation motion
occurred under the action of random internal mechani-
cal stresses. Investigation of NaCl : Ca crystals in a
standard EPR spectrometer did not show any peaks of
resonance absorption of the electromagnetic wave at
the values of Bres mentioned above.

In [17] it was established experimentally that ionic
crystals contain metastable complexes of point defects,
whose decomposition can be stimulated by a constant
magnetic field in the absence of a microwave field.
Similar data on the possibility of initiating the decom-
position of impurity complexes by an external magnetic
field were obtained in [54–57] by independent methods.
Resonance plastification could also be caused by a change
in the probability of detachment of dislocations (D) from
paramagnetic point defects (P) [10–16, 44–46]. Reso-
nance can arise in pairs of spin carriers, which are
present in one impurity complex P…P, in the first case
and in the pairs P…D, which are formed by paramag-
netic centers localized in a point stop and a dislocation
nucleus, in the second case. It is obvious that these pos-
sibilities can be distinguished if before a crystal con-

1 1

1 1
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Fig. 1. Mean free path L of edge dislocations in NaCl : Ca crystals versus the induction of a constant magnetic field B0 applied for
15 min: (s) no microwave field (ν = 9.5 GHz), (d) simultaneous application of microwave and constant magnetic fields in the con-
figuration B1 ⊥  B0, where B1 is the induction of the microwave magnetic field, (m) simultaneous application of microwave and con-
stant magnetic fields in the configuration B1 || B0. The dashed line shows the dislocation free path L0 due to the action of an etchant
in the absence of external magnetic fields. Inset: Sequence of procedures: (arrow) introduction of dislocations, (asterisk) etching,
(rectangle) exposure of crystals in a magnetic field.
taining dislocations is placed inside a cavity the mag-
netically sensitive complexes of point defects are
“removed” from the crystal by transforming them into
complexes which are insensitive to a magnetic field.
Then the appearance of resonance will be possible only
in the pairs P…D. 

To produce such an experimental situation, the crys-
tals were exposed to several pulses of a magnetic field
with amplitude B0 = 7 T and duration 10–2 s (in the
absence of a microwave field) before dislocations are
introduced. As shown in [17], these pulses irreversibly
remove the sensitivity of point-defect complexes to
subsequent magnetic-field pulses. Next, fresh edge dis-
locations were introduced into the crystals and the crys-
tals were placed inside a cavity. It was found that the
peaks at B0 = Bres2 = 0.18 ± 0.02 T and at B0 = Bres3 =
0.12 ± 0.02 T vanish completely, and the peak at B0 =
Bres1 = 0.32 ± 0.03 T decreases by a factor of 2 (Fig. 2a).
Therefore, resonance in the pairs P…P leads to the
appearance of three softening peaks at Bres1 , Bres2 , and
Bres3 , and resonance in the pairs P…D, apparently,
gives one peak at Bres1 . Another method for “remov-
ing” metastable point defects which are sensitive to a
magnetic field is to anneal the crystals at a high temper-
ature or prolonged “aging” of the crystals at T = 293 K
[17]. Investigation of the displacement of dislocations in
crystals, which were “aged” for two years, under condi-
tions of paramagnetic resonance at frequency ~152 MHz
revealed a single peak at B = 5 mT, which corresponds
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
to an effective g factor g ≈ 2 (Fig. 2b). Just as in previ-
ous experiments, the increase in the free path caused by
resonance magnetic fields depended on the angle ϕ
between the vectors B1 and B0. At ϕ = 0 the peak van-
ished (see inset in Fig. 2b). We note that in these exper-
iments the magnetoplastic effect appeared at record low
magnetic fields (~10–3 T). 

Thus, a large part of the observed resonance soften-
ing of crystals is due to paramagnetic resonance in pre-
viously observed point-defect complexes which are
sensitive to a constant magnetic field, i.e., in the pairs
P…P. Another part, to which the peak at g ≈ 2 attests,
which cannot be removed by a quasistationary mag-
netic field pulse, is probably due to resonance in D…P
pairs.

The combined effect of a constant magnetic field
and a microwave field with frequency ν = 9.5 GHz,
which are applied in the configuration B1 ⊥  B0, on the
rate of macroplastic flow of NaCl : Ca crystals was inves-
tigated in a second series of experiments. The macro-
plastic deformation of the crystals was conducted in a
“soft” machine with quartz rods. This machine gave a
mechanical compression stress increasing linearly with
time: σ = qt, where q = const [18]. The length of the
sample was measured continuously with an induction
sensor to within ±0.1 µm; this made it possible to con-
struct a load diagram on an X–Y plotter, i.e., the depen-
dence of the relative strain ε on σ or on the running time
t, elapsed from the onset of load application (Fig. 3a).
SICS      Vol. 90      No. 6      2000
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The application of a microwave field in the absence
of a constant magnetic field did not result in any
changes in the strain rate dε/dt. This made it possible to
assume that any changes which a microwave field could
introduce in the deformation diagrams under condi-
tions of a continually acting constant magnetic field can
be interpreted as being due to the combined effect of
the constant and microwave magnetic fields. Subse-
quently, each sample was deformed for 10–15 min in
the presence of a continually acting constant magnetic
field up to a relative strain ε = 0.5%. The microwave
field was applied for 20 s several times during the

(a)
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Fig. 2. Mean free path L of edge dislocations versus the
induction B0 of a constant magnetic field applied for 15 min
together with a microwave field in the configuration B1 ⊥  B0:
(a) for freshly quenched from 700 K NaCl : Ca crystals sub-
jected to a quasistationary magnetic field (three pulses with
amplitude B0 = 7 T and duration 10 ms) before the samples
were placed in a cavity and exposed in crossed magnetic fields
(ν = 9.5 GHz); (b) for NaCl : Ca crystals (ν = 0.152 GHz)
“aged,” after quenching, for two years. Inset in Fig. 2b:
Dependence of the dislocation free path L on the angle ϕ
between the vectors B1 and B0 under resonance conditions.

L, µm

B0, T
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deformation process. This ruled out possible softening
of the crystals under the action of only the constant
magnetic field [17], and it also made it possible to avoid
artifacts associated with mechanical oscillations of the
setup at the moment the electromagnetic is switched
on. To decrease the variance in the data, the combined
action of the fields on the macroplasticity was investi-
gated in a comparatively narrow range of strains
(0.1% < ε < 0.5%) at the easy-slip stage. 

It was established that switching on a microwave
field far below the yield point σY did not change the ε(t)
diagram, while near the yield point a magnetic field

B0,
B1

ε

B1

B0

σ

σ 2

2
1

3

σ = qt

ε(t)
εf
. ε0

.

σy

t

t
t = 15 s B1 ⊥ B0εf/ε0

. .

2.0

1.5

1.0

0 0.1 0.2 0.3 0.4
B0, í

g ≈ 6

g ≈ 4

g ≈ 2

σ
(a)

(b)

Fig. 3. (a) Typical dependences of the relative strain ε and
mechanical stresses σ on the deformation time t are shown
schematically at the moments when the microwave field B1
(ν = 9.5 GHz) is switched on and off. A constant magnetic
field with induction B0 was applied throughout the entire
deformation process (σy is the yield point). Inset in Fig. 3a:
Diagram of the experimental technique: (1) sample, (2) quartz
rods, (3) cavity. (b) Dependence of the softening of NaCl : Ca
crystals (ratio of the plastic flow rate after a microwave field
is switched on (dε/dt)f to the plastic flow rate before the
microwave field is switched on (dε/dt)0) on the induction B0
of the constant magnetic field in which deformation is con-
ducted: (m) before passage of the yield point with relative
strains ε < 0.03%, (d) after passage of the yield point in the
range of relative strains 0.1% < ε < 0.5% (ν = 9.5 GHz).

B0 
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decreased σY by 15–20%. Adding a microwave field to
a constant magnetic field for σ > σY increased dε/dt
(Fig. 3a). The ratio of the rate (dε/dt)f of plastic flow of
crystals after a microwave field is switched on to the
rate (dε/dt)0 of plastic flow before the microwave field
is switched on, i.e., γ = (dε/dt)f /(dε/dt)0, was chosen as
the quantitative characteristic of softening. The maxi-
mum softening was attained with B0 = Bres1 and B0 =
Bres2 (Fig. 3b). Switching off the magnetic field, as a
rule, restored the rate of plastic flow (Fig. 3b). Thus, the
combined effect of microwave and constant magnetic
fields on macroplastic flow is also of a resonance char-
acter, and the positions of the softening maxima are
close to the positions observed in the investigation of
the free paths of individual dislocations. This means
that even with macroplastic deformation the softening
of crystals occurs as a result of resonance in P…P and
P…D pairs.

In the third series of experiments the microhardness
H of Eu- and Ca-doped NaCl crystals was measured
after the crystals were exposed in crossed magnetic
fields. Since fresh dislocations appeared under indenta-
tion only after exposure of a crystal in a magnetic field,
the magnetic field could not have affected the processes
in D…P pairs. Therefore the results obtained in this
series of experiments refer to processes in P…P pairs.

It was observed that several resonance softening
peaks can be observed in NaCl crystals with both types
of impurities (Fig. 4). There were eight peaks in
Eu-doped crystals and three peaks in Ca-doped crystals
(Fig. 4), and in the latter case the number and position
of the peaks are the same as those revealed by chemical
etching (Fig. 1) or by a change in the macrodeformation
diagram (Fig. 3), and they also agree with the spectrum
obtained for KCl : Ca crystals. Thus, measurements of
various characteristics of plasticity of crystals permit
recording a spectrum of electronic transitions in a sub-
system of structural defects that depends on the type of
the main impurity. Therefore Ca and Eu ions are
present in P…P pairs, and the evolution of the com-
plexes investigated depends on the spin state of these
ions. This shows that the complexes can possess a dif-
ferent structure, depending on the type of the main
impurity in the crystal; this advances the investigation
in the direction of identifying point defects sensitive to
a magnetic field.

The change in microhardness H under resonance
conditions with B0 = 0.32 T as compared with the
change in H0 for crystals exposed in crossed magnetic
field depended on the exposure duration t (Fig. 5). At
T = 293 K the deviation of H from the control value H0

reached a maximum value in t ≈ 103 s. For t > 103 s the
dependence H(t) saturated. Therefore, the accumula-
tion of a definite number of events initiated by a mag-
netic field is required in order to change the plasticity
of crystals under paramagnetic resonance conditions.
This explains partially why our attempt to record para-
magnetic resonance spectra in NaCl : Ca crystals using
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
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ular microwave field, modulated by square pulses, versus
the pulse duration ti for different temperatures T of exposure
in a magnetic field: (1) T = 170 K, (2) T = 490 K. The fre-
quency of the microwave field is ν = 9.5 GHz, the constant
magnetic induction B0 = 0.32 T, the total duration of appli-

cation of the microwave field  = 2 × 103 s is the same in

all experiments. The dashed line shows the microhardness
H0 of crystals which have not been exposed to magnetic
fields. Inset: Threshold duration  of microwave packets

versus the reciprocal of the temperature in semilogarithmic
coordinates.
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the standard method (absorption of an electromagnetic
wave) was unsuccessful: to detect a spectrum, 1012–
1013 paramagnetic particles must appear in the sample
simultaneously in the microwave spectrometer, while
in our experiments the appearance of these particles
could be distributed over the time interval ~103 s.

A fourth series of experiments was performed to
check this conjecture and to measure the expectation
time of elementary events occurring in magnetically
sensitive complexes. The effect of amplitude modula-
tion of the microfield by square pulses on the rate of
macroplastic flow of NaCl : Eu crystals and the micro-
hardness of NaCl : Ca crystals under paramagnetic res-
onance conditions with B0 = 0.32 T, i.e., at a softening
maximum corresponding to g ≈ 2 (see Figs. 3, 4b), was
investigated. Thus, in this series of experiments the res-
onance softening of the crystals in a constant magnetic
field was stimulated by microwave packets with differ-
ent duration ti , comparable to the duration of possible
electronic and atomic processes in complexes of point
defects (see inset in Fig. 6). 

It was found that at T = 293 K in a wide range,
10−5 s < ti < 103 s, under otherwise equal conditions,
the same softening of the crystals is attained under
resonance conditions. For ti < 10–5 s the effect of
microwave and constant magnetic fields on the rate of
microplastic flow of NaCl : Eu crystals is weaker than in
the case of continual microwave generation. At ti < 10–7 s
the softening of crystals in crossed magnetic fields is no
longer observed, i.e., the ratio γ = (dε/dt)f /(dε/dt)0 of the
rate of plastic flow after the action of a microwave field
(dε/dt)f to the rate of strain (dε/dt)0 before the action of
the field becomes close to 1 (Fig. 6). It was specially
checked that varying the pause duration tp between
pulses from 10–3 to 10–7 s with constant ti does not
change the dependence γ(ti) to within the experimental
error (Fig. 6). This means that the decrease in the soft-
ening effect of a magnetic field ti < 10–5 s is due to the
fact that the duration of the microwave packets
becomes inadequate for appearance of an elementary
transformation of structural defects.

Similar results were obtained in the measurement of
the H microhardness of NaCl : Ca crystals exposed in
crossed amplitude-modulated microwave and constant
magnetic fields with induction B0 = 0.32 T, i.e., under
resonance conditions. The total exposure duration of
crystals in the microwave field in these experiments
was maintained constant  = 2 × 103 s; this corre-
sponded to saturation of softening with respect to the
residence time in crossed magnetic fields at T = 170 K
and higher temperatures (see Fig. 5). When ti decreased
to 10–4 s, the softening ∆H decreased and vanished at
ti = 10–6 s, if the exposure in crossed magnetic fields
occurred at T = 170 K (Fig. 7). Increasing the tempera-
ture at which the crystals are exposed in crossed mag-
netic fields from 170 to 490 K decreased by a factor of

ti∑
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~100 the critical value  in which the dependences
H(ti) assumed a value at the center of the descending
section (Fig. 7). Increasing the temperature greatly
accelerates the change in the microhardness in a con-
stant magnetic field in the absence of a microwave field
(Fig. 8). The results of this series of experiments attest
to the fact that as the temperature increases, events
which are favorable for changes to occur in the com-
plexes of points defects under the action of a magnetic
field occur more often.

4. DISCUSSION

It follows from what we have said above that the
results obtained are similar to the observations made in
EPR spectroscopy, with the exception that the response
was not the absorption of an electromagnetic wave but
rather a change in the characteristics of the plasticity of
a crystal. The correspondence between the values of
Bres found experimentally and the standard values of the
effective g factors of electrons localized on defects in
crystals as well as the vanishing of the softening of
crystals for a parallel orientation of the vectors B1 and
B0 unequivocally attest to the fact that electron spin res-
onance is responsible for the plastification of the crys-
tals. We shall discuss the change occurring in the prop-
erties of metastable complexes of point defects P…P in
crossed magnetic fields, and we shall not discuss the
reasons for the possible appearance of a resonance in
D…P pairs.

The sensitivity of the detected spectra to the type of
main impurity convincingly shows that impurity ions
are constituents of the magnetically sensitive defect
complexes which were investigated. The three reso-
nance maxima in NaCl : Ca crystals (Figs. 1, 3, 4) could
correspond to “allowed” and “forbidden” transitions
between 2s + 1 states in a complex of particles with
total spin s = 3/2. In this case the maximum at g ≈ 2
corresponds to allowed and the maxima at g ≈ 4 and g ≈
6 corresponds to forbidden transitions. The complexes
investigated can be formed by Ca+ ions and (or) neutral
atoms Ca0, since the total spin of the Ca++ ion is zero.
Since the complexes are sensitive to an electric field
[20], Ca+ ions are the correct choice. In Eu-doped crys-
tals the spectrum of electronic transitions is even richer,
as usually happens for rare-earth elements. Comparing
the positions of the lines in a standard EPR spectrome-
ter, measured in strongly doped quenched NaCl : Eu
crystals [58], with the position of the maxima obtained
in our experiments on measuring the microhardness
(Fig. 4) reveals that the spectra are qualitatively the
same. 

We shall now discuss the possible reasons for the
appearance of a threshold modulation frequency of the
microwave field (Figs. 6, 7). In the most general case
the sequence of events can be represented in terms of
the following chain of processes: (1) events preceding
the spin stage (excitation of a complex by fluctuations

ti*
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or mechanical stresses, encounter of paramagnetic par-
ticles, and so on); (2) a spin stage, which could consist
of a change in the multiplet structure of the nonequilib-
rium pair, which in itself is insufficient for atomic rear-
rangement of complex; (3) electronic rearrangement of
a complex, being a consequence of a change in the mul-
tiplet structure in a pair of particles; and, (4) a change
in the atomic configuration of a complex (dissociation,
reorientation, reconnection, and change in the length of
a covalent bond, and so on). A constant magnetic field
or the combined effect of a constant magnetic field and
a microwave magnetic field can change something only
at the second stage of this chain.

Generally speaking, any of the four stages enumer-
ated above can be the limiting stage. However, it is nec-
essary to take account of the fact that the duration τS–T

of the intercombination transition cannot depend on the
temperature, in contrast to the times  obtained in our
experiments (see Fig. 7). Therefore, the presence of a
threshold in the dependence H(ti) cannot be attributed
to the delay of intercombination transitions, and the
limiting stage in the evolution of complexes seems to
precede the spent stage or appears after this stage is
completed.

Assuming an Arrhenius temperature dependence for
 (see inset in Fig. 7), the activation energy can be

estimated as Efl = 0.15 ± 0.05 eV, which characterizes
the height of the potential barrier that must be over-
come in order to excite a complex into a magnetically
sensitive state. Thermal activation analysis of the relax-
ation kinetics of complexes, followed according to the
change in the microhardness (Fig. 8) or free path of
individual dislocations [23] in only a constant magnetic
field in the absence of a microwave field, yields the
same value of Efl . The value of Efl is of the same order
of magnitude as the experimentally determined value [59]

ti*

ti*

H, åP‡

90

88

86
0 20 40 60

t, s

H0

1

2
3

Fig. 8. Microhardness of KCl : Ca crystals versus their
exposure time t in a constant magnetic field with induction
B0 = 2.3 T in the absence of a microwave field at various
temperatures: (1) T = 233 K, (2) T = 388 K, (3) T = 523 K.
The dashed line shows the microhardness H0 in crystals not
exposed to magnetic fields.
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and the theoretically computed values [60] of the binding
energy of complexes consisting of 2–4 impurity-vacancy
dipoles. This also agrees with the conclusions drawn
above that the ions of the main impurity are constitu-
ents of the complexes investigated.

To explain the role of magnetic fields in the change in
the spin states of defects, the basic assumptions of thermo-
dynamics and the theory of spin-dependent magnetically
sensitive chemical reactions must be taken into account
[50, 51, 61]:

(1) a magnetic field can change the multiplet struc-
ture of a pair of defects only if the energy difference
between its triplet and singlet states—ET – ES—is com-
parable to the energy Ue ≈ µBg which the field transfers
to the magnetic moment of the electron, i.e., for a weak-
ened covalent bond;

(2) in statistics, a constant magnetic field can influ-
ence the multiplet structure only of spin-correlated
pairs of paramagnetic defects, i.e., occupying predom-
inantly the singlet S or triplet T states, since for an
equally probably outcome of the filling of S and T lev-
els the frequency of S–T and T–S transitions will be the
same and the resulting distribution of pairs over levels
will not change in the magnetic field (to within the Zee-
man splitting, which can explain only a part ~µgB0/kT ~
10–3 of the total effect observed);

(3) in order for a weak constant magnetic field,
imparting energy less than kT by two–three orders of
magnitude to the spins, to be able to change the macro-
properties of crystals by tens and hundreds of percent,
the lifetime τex of the magnetically sensitive state must
satisfy the inequalities τS – T < τex < τr , where τS – T is the
duration of the intercombination transition and τr is the
spin relaxation time. In our experiments it follows from
the half-width of the peaks that τex ~ h/µg∆B ~ 10–8 s,
which can easily be less than τr at room temperature.
On the other hand, for B0 ~ 1 T and ∆g ~ 10–2 in the
absence of a magnetic field τS – T ~ h/µ∆gB0 ~ 10–8 s,
i.e., the transition can easily occur. Thus, only the satis-
faction of the inequalities mentioned above gives isola-
tion of the spin system from thermal fluctuations and
opens up the possibility for a weak magnetic field to
interfere in the spin evolution of the subsystem of defects
which are far from thermodynamic equilibrium.

Two, at first glance contradictory, requirements fol-
low from the conditions enumerated above. On the one
hand, it is necessary to explain the nature of the mag-
netic sensitivity of P…P complexes, which is observed
over a period of several months and years, which is
incomparably longer than any reasonable duration of a
spin-lattice relaxation. On the other hand, the magneti-
cally sensitive states must be short-lived and must be
produced in a spin-polarized state.

In our view, these requirements can be reconciled if
it is assumed that the complexes P…P are present in a
crystal in a dynamical equilibrium between (at least)
two electronic states. In one state the spins form a sta-
JOURNAL OF EXPERIMENTAL 
ble covalent bond whose energy is much greater than
kT and therefore “preserves” the spin polarization. In
this state, neither a “weak” magnetic field nor thermal
fluctuations can change the multiplet structure of the
complexes. In the other, magnetically sensitive, state
the complexes P…P must have a weakened (almost
broken) bond, for which the energy difference of the
singlet S and triplet T states is comparable to Ue = µgB,
so that even a “weak” magnetic field can lead to S–T
transitions. The second state must have a short enough
lifetime so that during the life of the state spin-lattice
relaxation does not change the total spin of a pair in the
absence of a magnetic field. In other words, magneti-
cally sensitive states of P…P complexes seem to be
“scintillating.” We note that other point defects which
behave similarly are also now known. They include, for
example, metastable Vk centers, in which the covalent
bond between the parts is spontaneously broken by
thermal fluctuations and is restored once again, so that
the defect is a pair of “flickering” spins [62].

In our experiments the absence of a source generat-
ing magnetically sensitive short-lived states P…P dur-
ing exposure of crystals in a magnetic field attests to the
existence of internal factors which are responsible for
the transitions of complexes between “preserved” and
magnetically sensitive states. The increase in the rate of
magnetically stimulated relaxation of complexes with
increasing temperature (Figs. 7, 8) shows that these
transitions are generated by thermal fluctuations. If the
thermal fluctuations did not play any role in the
observed processes, the only result of increasing the
temperature would be a decrease in the spin-lattice
relaxation time, which would only degrade the condi-
tions for a magnetic field to influence a complex and
would decrease the magnetoplastic effect. At the same
time, it is obvious from Fig. 8 that an increase in tem-
perature not only does not decrease the efficiency of
magnetically stimulated relaxation of complexes, but it
even increases the rate of such relaxation.

The results obtained makes it possible to choose the
state (S or T) that is predominantly populated at the
moment the short-lived states of complexes are created.
A microwave field can initiate transitions only between
states with nonzero total spin: for example, in a pair of
two particles with spin 1/2 a microwave field mixes the
states T+ and T– (with projections of the total spin in the
direction B0 equal to +1 and –1, respectively) and the
state T0 (with zero projection of the spin on B0) [50, 51].
Therefore, the role of the microwave field is to “pump”
electrons from the T0 state and indirectly initiate S–T0
transitions in the case when S states are predominantly
filled and their transitions are retarded in the case when
the T states are overfilled. A constant magnetic field can
only increase the rate of S–T0 transitions, assuming a
∆g mixing mechanism, which best corresponds to our
situation and takes into account the difference of the g
factors of the paramagnetic parts of the complex, ∆g.
According to the experimental data, a constant mag-
netic field increases the free path of dislocations. The
AND THEORETICAL PHYSICS      Vol. 90      No. 6      2000



SOFTENING OF IONIC CRYSTALS 947
same effect is observed under the combined action of
constant and microwave magnetic fields. This shows
that the S state is predominantly filled at the moment
the magnetically sensitive states are created.

The experimental data and theoretical consider-
ations enumerated above taken together make it possi-
ble to represent schematically a possible mechanism by
which magnetic fields influence the evolution of meta-
stable complexes (Fig. 9). Thermal fluctuations with
frequency ν1 excite a complex, for example, by stretch-
ing the covalent bond (or by changing other configura-
tion coordinates r, for example, the valence angles)
from the initial state S into the excited state S*. In the
absence of a magnetic field, the elastic forces exerted
by the crystal lattice return the complex into the initial
S state by virtue of the fact that a change in the total spin
is forbidden, so that the complex is in a dynamical equi-
librium established between the S and S* states. 

A magnetic field partially lifts the forbiddenness
and a complex, whose multiplet structure has changed,
with frequency ν2 = µeB∆g/h (for the ∆g mechanism of
mixing of the states which is most likely under our con-
ditions [61, 63]) is transferred into a new electronic
state T*. Next, the elastic forces exerted by the crystal
lattice cause a return motion of the nuclei (the parts
P…P). The equilibrium state between them, RT, is
larger than in the singlet state, RS, since the negative
value of the exchange integral j causes parts of the com-
plex to repel one another. Thus, a relatively long-lived
T state, in which the total binding energy of the parts of
a complex is ∆E = 0.1–1 eV less than in the S state, is
formed with frequency ν3. The complexes which are
“opened” in this manner are less stable than the initial
complexes, and the random motions of nuclei can cause
them to decay with frequency ν4, which is accompanied
by the system leaving a local energy minimum and fur-
ther relaxing or returning with frequency ν5 into the ini-
tial S state. 

The products of decay of complexes with free
energy less than that of the initial complexes differ
from the latter also by the dilatation properties and there-
fore the efficiency of the interaction with dislocations. As
a rule, the decay of complexes of point defects results in
the formation of weaker stops for dislocations [64]; this
agrees with the experimental data with respect to the
softening effect of the exposure of ionic crystals in
magnetic fields before fresh dislocations are introduced
into the crystals.

The ideas developed above could be universal, since
for a definite choice of the frequencies ν1, ν2, ν3, ν4, and
ν5 they can be used to describe magnetically stimulated
relaxation of complexes of various kinds in diverse
materials [17–30, 37, 38, 54–57]. Of course, the real num-
ber of stages of the above-described spin-dependent relax-
ation process can be much larger than the number consid-
ered, and further detailing of their sequence is certainly
of interest. Some post-spin stages are investigated in
detail in [17, 20, 21].
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We note that considerations similar to those devel-
oped above could be applicable for discussing the
effect of a magnetic field on the multiplet structure of
D…P type pairs. In so doing, it is necessary to take
account of the fact that besides thermal fluctuations
internal mechanical stresses, stretching the covalent
bond between a dislocation and a paramagnetic center
in the bulk, operate on them. This factor turns out to be
~d/a times stronger for D…P pairs than for P…P pairs
(d is the distance between the pinning points of disloca-
tions and a is the lattice parameter). For lightly doped
crystals, in which magnetoplastic effects are observed,
d/a ~ 102–103, which can render the contribution to the
thermal activation in the depinning of a dislocation
from a stop in a magnetic field negligible and the mag-
nitude of the magnetoplastic effect essentially temper-
ature-independent, as shown experimentally in [10].

5. CONCLUSIONS

In summary, softening of crystals under the conditions
of electron paramagnetic resonance was observed. It was
established experimentally that in ionic crystals spin-
dependent magnetically sensitive reactions in the sub-
system consisting of paramagnetic structural defects make
an appreciable contribution to their plastic properties, a
weak constant magnetic field can be used to regulate
the kinetics of these reactions effectively, and the com-

S*–T*

transitions

kT

S* T*

T

∆E ~ (0.1–1) eV

ν2

ν1 ν3

ν5
ν4

kT

j > 0j < 0

RS RT

E

Fig. 9. Schematic diagram of the sequence of processes
occurring in complex point defects in a magnetic field on the
scale of the energies E of the complex. (S) 0long-lived metasta-
ble singlet state of the complex, (S*) intermediate singlet state
of a complex excited by thermal fluctuations, (T*) intermediate
excited triplet state, into which a transition is allowed only in
the presence of a magnetic field, (T) long-lived metastable
triplet state. The local minimum characterizes the profile of
the elastic interaction between the parts of a complex in a
metastable state. The solid and wavy lines connecting parts
of a complex represent a covalent bond, respectively, in
equilibrium and excited states; (kT) thermally stimulated
process, (j) exchange integral, (∆E) difference of exchange
energies in S and T states of a complex, (νi ) frequencies of
transitions between states.
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bined use of a constant magnetic field together with a
microwave field can be used to do this even more effec-
tively. Record-breaking short stages of plastic flow of
ionic crystals (~10–9–10–6 s), which play a decisive role
in controlling the mechanical properties via a change in
the spin states of structural defects, were identified. 

It was shown that the plasticity parameters of crys-
tals can be used as indicators for the spin resonance in
nonthermalized short-lived complexes of paramagnetic
defects. The results obtained can serve as a basis for a
new high-frequency method for investigating paramag-
netic structural defects in crystals that makes it possible
to establish directly the relationship between their plas-
tic properties and the electronic state of defects. The
proposed method of investigation can be extended to a
wide range of materials in which spin-dependent reac-
tions between defects accompany the process of plastic
deformation.

We note that the facilitation of depinning of disloca-
tions from stops under the action of a magnetic field can
lead to, besides magnetoelastic effects, “magnetoelas-
tic” effects which are not associated with lattice mag-
netostriction. Indeed, it is known from investigations of
the internal friction under a sign-alternating load that
an increase of the dislocation damping decrement is
always associated with a corresponding decrease in the
modulus of elasticity: the “defect of the modulus.”
A change in Young’s modulus in ionic crystals in a con-
stant magnetic field with induction 0.3 T was observed
in [31, 32]. Evidently, the possibility of effects of this
kind must be taken into account in the operation of pre-
cision physical apparatus (vibrational systems, pendu-
lum suspensions, gravity antennas, and so on), which
weak magnetic fields (for example, the earth’s mag-
netic field or technogenic magnetic fields) can influ-
ence, even if the deformations achieved are far from the
limit of macroscopic elasticity.
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Abstract—The density functional method is used to show that the description of molecular transport in subna-
nometer channels reduces to the description of diffusion in a one-dimensional system where strong density fluc-
tuations with a finite cluster lifetime. A new diffusion mechanism is proposed; it makes it possible to explain
the transition from activated diffusion of single particles in a channel at a low filling factor to fast barrier-free
diffusion, which consists of the propagation of density disturbances at high filling factor. It is shown that as the
filling factor increases, the attraction between the molecules (the effective attraction of molecules—hard
spheres) causes the energy barrier for diffusion along the channel axis to vanish. Another consequence of the
“effective” attraction between the molecules is the formation of molecular clusters in the channel, which pos-
sess a finite lifetime because of the one-dimensionality of the system. The size and lifetime of the clusters
increase with the filling factor of the channel. The diffusion of particles in clusters is a barrier-free process of
propagation of density disturbances. The dependences obtained for the diffusion coefficient on the pressure,
temperature, and filling factor make it possible to describe, even in the hard-sphere model, all experimental data
known to the authors. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Molecular transport in nanometer channels in
porous bodies is currently drawing a great deal of interest
from the standpoint of fundamental science [1–5] and
because of the many applications of membrane and nano-
technologies in various fields ranging from nuclear power
to ecology [6, 7]. Polycrystalline ceramic membranes con-
sisting of complex oxides (zeolites), possessing subna-
nometer channels ranging in diameter from 0.3 to
1.4 nm, have been synthesized recently [6]. On account
of the high selectivity of molecular transport in zeolite
membranes, as compared with the well-known poly-
meric membranes [7–9], new technologies for separa-
tion, reprocessing, and utilization of materials are being
intensively developed on the basis of zeolite mem-
branes [7–9].

When the channel diameters in membranes decrease
to the nanometer scale, molecular transport is deter-
mined by Knudsen flow in the central zone of the chan-
nel, free of interaction of molecules with walls, and
particle diffusion in the surface force field [5]. In sub-
nanometer channels the interaction potentials between
molecules and the opposite walls overlap and molecu-
lar transport occurs under conditions of a constant
interaction of molecules with a solid. Consequently, the
diffusion coefficient in the limit of small filling num-
bers of a channel is determined by the relaxation of par-
ticles on phonons and surface defects [3]. For mole-
cules, with the exception of light particles (H, He), the
channel walls are impenetrable, and consequently
molecular transport is possible only along the channel
axes. In this sense it is different from diffusion in solids
1063-7761/00/9006- $20.00 © 0950
and may be assumed to be one-dimensional. In contrast
to surface diffusion in channels with diameter d > 1
nm, a fundamentally new property of molecular trans-
port should appear in subnanometer channels. As the
filling factor of a channel or the diameter (σ) of mole-
cules increases, so that d < 2σ, each molecule can block
the motion of two molecules. Consequently, it can be
expected that as the diameter of the molecules or the
external gas pressure increases, the molecular flux in
membranes with subnanometer channels should
decrease. However, experiments have shown that the
diffusion flux of a number of molecules (CH4, C2H6,
and others) in a ZSM-5 zeolite membrane with channel
diameters 0.54–0.57 nm does not decrease but rather
increases as the external gas pressure increases [9]. It
has also been established that the diffusion coefficient
for these gases increases by more than an order of mag-
nitude as the filling factor of the channels with mole-
cules increases. It has been found that for a number of
gases the temperature dependence of the flux possesses
a maximum and a minimum. A microscopic theory
explaining these laws is not available in the literature.

In the present paper transport of a single-component
molecular gas in subnanometer-diameter channels is
investigated theoretically. The analysis of the experi-
mental data, performed in Section 4, showed that for
most gases investigated the sorption and transport can
be treated as a process in a one-dimensional (1D) sys-
tem. In statistical physics the theoretical models of 1D
systems are classical examples of exactly solvable
models [10]. It is well known [11, 12] that in 1D sys-
tems a phase transition (condensation) does not occur
2000 MAIK “Nauka/Interperiodica”
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as density increases. This means that, specifically, no
critical nuclei are present in the system and stable
nuclei of a new phase with macroscopically long life-
times do not appear in the system. At the same time, the
system of 1D channels in zeolite membranes consists
of channels of finite length, where for a sufficiently
high filling factor clusters with sizes comparable to the
channel length can form. Thus, the description of
molecular transport in zeolite membranes reduces to
describing transport in a 1D system, where there are
strong density fluctuations with a finite lifetime of clus-
ters. The density functional method [4] makes it possi-
ble to calculate the spectrum of density fluctuations and
the diffusion coefficient for particles with arbitrary den-
sity and arbitrary laws of interaction with one another
and with the channel walls. Since the flux measured in
the experiments performed in [7] is determined by the
diffusion coefficient and the filling factor of the chan-
nels in the membrane, the sorption isotherm of a one-
component molecular gas is calculated separately in
Section 2. For the one-dimensional channels consid-
ered in the present paper, this problem is solved exactly
for an arbitrary intermolecular interaction potential.
A new feature here is an analysis of the dependence of
the lifetime and size of the 1D clusters on the degree
of filling of the channel with particles. A description of
molecular transport for an arbitrary filling factor (θ) of
a channel is given in Section 3. It was found that as the
filling factor of a channel approaches 1, so that block-
ing of the relative motion of the particles becomes sub-
stantial, the diffusion coefficient increases. A new dif-
fusion mechanism is proposed. It makes it possible to
explain the transition from activated diffusion of single
particles in a channel with a low filling factor to collec-
tive fast barrier-free diffusion, which consists of the
propagation of density disturbances for large values of
θ. As shown below, in the hard-sphere approximation,
as θ increases, the well-known [12] effective attraction
of the molecules—hard spheres—results in vanishing
of the energy barrier for diffusion along the channel
axis. Another consequence of the effective attraction of
molecules is the formation of molecular clusters in the
channel, which have a finite lifetime because of the
one-dimensionality of the system. The size and lifetime
of the clusters increase as θ increases. The diffusion of
particles in clusters is described as a barrier-free pro-
cess of propagation of density disturbances. The pres-
sure, temperature, and filling factor dependences of the
flux of molecules make it possible, even in the high-
sphere model, to describe the experimental data cur-
rently known to the authors (Section 4).

2. SORPTION ISOTHERM IN A 1D CHANNEL

Let us consider a surface in contact with an ideal
single-component gas with temperature T and pres-
sure P. Let us assume that particles located on the sur-
face do not interact with one another. We shall also
assume that the energy of the gas molecules on the sur-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
face is ε0. Let there be N adsorption centers on the sur-

face. Then the average number of particles adsorbed
on the surface as a function of the gas pressure and tem-
perature has the form (Langmuir isotherm)

(2.1)

where m is the mass of a gas molecule, " is Planck’s
constant, and β = T–1 is the reciprocal of the tempera-
ture.

The method used to derive the Langmuir isotherms
(2.1) admits wide extensions. Specifically, this method
can be used to solve the problem of the filling factor of
a cylindrical channel with diameter d taking into
account the interparticle interaction in the channel. Let
the channel diameter be comparable to the maximum
diameter of a gas molecule. Let us consider the equilib-
rium of the gas with the surface on which k of the chan-
nels described above emerge. Let ε1 be the binding
energy of a particle at the entrance to the channel. If the
energy ε1 is negative, then it is energetically favorable
for the gas molecule to enter the channel. Let q be the
total number of particles in a channel of length L, n the
total number of particles in the channel and on the sur-
face, and N0 the number of settling locations in the
channel. Then the partition function for the grand
canonical ensemble, taking into account the interaction
of the gas particles in the channel, is

(2.2)

Here ε2 is the binding energy of the particles in the
channel and Zint(q) is the partition function, corre-
sponding to taking account of the interaction of the gas
particles in the channel. Since Zint depends on the num-
ber q of particles in the channel, it is impossible to cal-
culate the partition function (2.2) in the grand canonical
ensemble in the general case. However, in the problem
of filling of a channel the states for which the number
of particles in the channel q @ 1 should make the main
contribution to the partition function (2.2). Then the
quantity Zint(q) can be replaced by the partition function
of interacting particles in the channel, calculated with
the average number  of particles in the channel,

(2.3)

N1

N1

N
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P P0 T( )+
-----------------------,=

P0 T( ) T
"

2

2πmT
--------------- 

 
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N k–( )! βε0 N1 n–( )[ ]exp

N1 n–( )! N k– N1 n–( )–( )!
--------------------------------------------------------------------∑=

×
k! βε1 n q–( )[ ]exp
n q–( )! k n q–( )–( )!

---------------------------------------------------
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q! N0 q–( )!
----------------------------------- βµN1( )Z int q( ),exp

N1 q+ n.=

q
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SICS      Vol. 90      No. 6      2000



952 BORMAN et al.
The approximation (2.3) corresponds to the thermo-
dynamic limit (q @ 1) for gas molecules located in the
channel. Using the relation (2.3), the partition function
(2.2) can be easily calculated. Using the condition for
equilibrium between the gas and the surface, we obtain
for the average number  of particles in the channel

(2.4)

Here Fint( , T ) is the free energy of interaction per gas
particle in the channel. Instead of the number N0 of set-
tling locations in the channel, it is convenient to intro-
duce the average distance between settling locations in
the channel (η = L/N0) and to replace  by the filling
factor θ ≡ σ/L of particles in the channel. Then, we
obtain from equation (2.4) an equation determining the
pressure and temperature dependences of the filling
factor θ of the channel:

(2.5)

The relations (2.4) show that the problem of obtaining
the equation for the adsorption θ(p, T), determining the
filling factor of a channel at various pressures and tem-
peratures of the gas above the surface, reduces to calcu-
lating the quantity Fint(θ, T) ≡ –TlnZint(θ, T), determin-
ing the “correction” to the pressure as a result of the
interaction of the particles in the channel.

Thus, to obtain the adsorption isotherms in the sys-
tem under study it is necessary to calculate the total free
energy of the particles in a subnanometer channel tak-
ing into account their interaction with the channel wall
and with one another. For this, we shall consider N par-
ticles in a channel whose size is comparable to the aver-
age particle diameter. In the general case the total
potential energy of such a system can be written as

(2.6)

Here V(ri – rj) is the potential energy of the pair inter-
action of the particles located at points with coordinates
ri and rj; U(ri) is the interaction energy between a par-
ticle located at the point ri and the channel walls. We
shall transform the expression for the pair interaction
potential of the particles using the fact that the channel
diameter is comparable to the particle diameter. Then
the interaction potential depends only on the particle

q

q
N0
------

p
p p̃ T q,( )+
--------------------------, p̃ q T,( )

βε q T,( )–[ ]exp
α T( )

--------------------------------------,= =

α T( )( ) 1– T
"

2

2mπT
--------------- 

 
3/2–

, ε ε1 Fint q T,( ),–= =

Fint q T,( ) T Z int q T,( ).ln–≡

q

q
q

ηθ
σ

-------
p

p p̃ T θ,( )+
--------------------------.=

E r1 … rN, ,( ) V ri r j–( )
i j, 1=

N

∑ U ri( ).
i 1=

N

∑+=
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coordinates along the channel r. We write the expres-
sion for V(ri – rj) in the form

(2.7)

This relation holds when the channel diameter is com-
parable to the particle diameter and the pair interaction
potential V(ri – rj) of the particles is not a long-range
potential. It is convenient to represent the interaction
energy between a particle and the channel walls in the
form

(2.8)

Here  is a dimensionless two-dimensional radius vec-
tor in a plane perpendicular to the channel. It is conve-
nient to write the partition function of such a system in
the form

(2.9)

Here

.

The integration over the particle coordinates in a plane
perpendicular to the channel can be performed exactly

(2.10)

Here Ψ(ri) is the effective potential in which a particle
moves in the channel as a result of the interaction of the
particle with the walls:

(2.11)

Let us assume that the energy of a gas molecule inter-
acting with the channel surface is constant and equal to
ε1 = Ψ(rmin) = Ψ(0). Then

(2.12)

The energy ε1 physically corresponds to the binding
energy of a particle in the surface potential Ψ(r). Thus,
under the assumptions made above, the gas in the chan-
nel can be assumed to be one-dimensional (the channel
diameter is comparable to the maximum diameter of a

V ri r j–( ) V xi x j– yi y j– ri r j–, ,( )≡
≈ V ri r j– 0 0, ,( ) Φ ri r j–( ).≡
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N

∑–expdd∫
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∑– .exp≡expd∫×
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gas molecule). It is well known [10, 13] that the parti-
tion function of a one-dimensional gas with an arbitrary
interaction potential can be calculated exactly under cer-
tain assumptions, which are formulated below. Indeed, let
us consider an equilibrium system of N particles in a chan-
nel, which possess only one degree of freedom per parti-
cle and are located in the segment [0, L] of the r axis.
The total partition function of the system has the form

(2.13)

where

(2.14)

(2.15)

Here Φ(r) is the pair interaction potential of the parti-
cles in the channel. To calculate Fint the cofactor
responsible for the partition function of an ideal gas
must be eliminated from the partition function (2.13).
In our problem the cofactor corresponding to a gas of par-
ticles in a channel without a pair interaction potential
between the particles is already included in the expression
(2.2). Thus, since the partition function of a one-dimen-
sional gas without an interaction has the form

(2.16)

we obtain from equation (2.2)

(2.17)

Thus, the problem has been reduced to calculating the
configuration integral

(2.18)

In studying the configuration space of a system of par-
ticles in a one-dimensional channel, it should be kept in
mind that the quantities ξi are not independent. They
are related as

(2.19)

where L is the total length of the channel. Physically,
this relation corresponds to the impossibility of particles
penetrating one another and the condition of “blocking”
of particles with diameter σ in a channel whose diameter
d < 2σ. An explicit expression for the configuration

Z̃N
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integral can be obtained if the explicit form of the pair
interaction potential of the particles is known. We shall
consider a simple but nontrivial case: a system of hard
spheres with diameter σ. The expression for the inter-
atomic interaction energy in this case is

(2.20)

We obtain for Fint in the hard-sphere approximation

(2.21)

Thus, in the hard-sphere approximation the adsorption
isotherm for a gas in a subnanometer channel has the
form

(2.22)

The relation (2.22) makes it possible to construct the
dependence of the filling factor of a channel on the gas
pressure for various molecules. It should be kept in
mind that the sign of the energy ε1 determines the pos-
sibility or impossibility of a particle entering a channel:
for ε1 > 0 it is energetically favorable for a gas particle
to enter the channel for any external pressure greater
than p0. For ε1 < 0 the particles must overcome a poten-
tial barrier to enter the channel.

The configuration integral can be calculated exactly
for an arbitrary interaction between the particles in the
channels [13]. This makes it possible to obtain an equa-
tion of state of a 1D gas for an arbitrary interaction.
Thus, for an interparticle interaction potential of the
form

(2.23)

where R is the effective radius of attraction, the equa-
tion of state of a one-dimensional gas is

(2.24)

In the limits ε  0 and R  0, this equation
becomes the equation of state of a system of hard
spheres. The isotherms calculated numerically starting
from equation (2.24) are presented in Fig. 1. It is also
evident in this figure that at high temperatures the gas
behaves almost as an ideal gas ( p1D ∝  θ). At low tem-
peratures the isotherms seem to consist of two parts.
For high density θ ≈ const, which is typical for a con-
densed phase, whereas at pressure less than a character-
istic value a gas-like phase for which p1D ∝  θ appears.
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It can be shown that at a transition from one regime to
another the free energy of the system has no singulari-
ties. For this reason, there is no exact analogy with
phase transitions. This assertion agrees completely
with the Landau–van Hove theorem [10], according to
which any one-dimensional model of a gas with a finite
interaction radius does not undergo phase transitions.
On the other hand, it should be expected that for suffi-
ciently low temperatures, as the filling factor θ
increases, the gas in the channel tends to form clusters
whose size increases with the filling factor. The number
and size of the clusters grow with the total number of
particles in the system in a manner so as to ensure the
existence of such clusters in the thermodynamic limit,
where N  ∞, L  ∞, and N/L = const. This agrees
completely with the formation of nuclei of a new phase
in three-dimensional systems with first-order phase
transitions [11, 12]. On the other hand, in our one-
dimensional system, in contrast to three-dimensional
systems, a continuous behavior of thermodynamic
quantities determined as derivatives of the free energy
of the system with respect to the temperature, pressure,
and filling factor, should be expected in the entire range
of variation of the thermodynamic parameters. For
example, the specific heat calculated using the relation
(2.24) will possess a maximum at the “critical” point.
This fact has been observed experimentally [1], which
attests to the applicability of the one-dimensional
model employed above.

3. TRANSPORT IN A DENSE 1D SYSTEM

The gas flux through a membrane is the main exper-
imentally measurable parameter (Section 4). Particle
transport is usually described using a relation between
the outgoing particle flux and the parameters of the

5

4

3

2

1

0 0.2 0.4 0.6 0.8 1.0

p1D

θ

t = 6.5

1.5

0.8

0.4

0.1

Fig. 1. Reduced “pressure” ( p1D) (2.24) of a one-dimen-
sional gas in a channel versus the filling factor (θ) of the
channel at various temperatures t = T/T0.
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problem, such as, for example, the difference of the gas
pressures on different sides of the membrane. This
description is based on Fick’s relation between the gas
flux density J, the gradient of the gas concentration,
and the diffusion coefficient , using the conservation
law for the number of particles:

(3.1)

(3.2)

In the relations (3.1) and (3.2) J is the flux,  is the dif-
fusion coefficient, and ∇ n is the gradient of the particle
concentration. The relation (3.1) is actually a definition

of the diffusion coefficient . Thus, the problem of
determining the particle flux through a channel reduces
to calculating the diffusion coefficient. A more general
method of describing transport is to calculate the char-
acteristic relaxation time of density fluctuations arising
or specially created in the system under study [14]. For-
mally, the problem of determining this time reduces to
calculating the characteristic frequency or spectrum
ω(k) for the system under study. Thus, when the parti-
cle density is low and there is no interparticle interac-
tion, an explicit expression for the spectrum ω(k) can
be easily obtained from the relation (3.1). Indeed, let n0
be the average particle concentration in the system. From
equation (3.1) we obtain an equation determining the
dynamics of the density fluctuations δn(r, t) = n – n0:

Switching to a Fourier representation of the density
fluctuations

we obtain an expression determining the reciprocal of
the relaxation time of the density fluctuations δn in the
case at hand:

It is obvious that a spectrum of this type is characteris-
tic for systems where relaxation to equilibrium occurs
by diffusion. Let us consider a system of interacting
particles with arbitrary density. Assume that we have
been able to calculate the characteristic relaxation time
ω–1 of density fluctuations in the system. If the spec-
trum of relaxation times in such a system has the form

(3.3)

then it is natural to consider the quantity D(k, n0) to be
the diffusion coefficient in the system, provided that in
the limit of low densities n0 the quantity D(k, n0)

D̃
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∂n ∂t⁄ divJ+ 0.=

D̃

D̃

∂ δn( ) ∂t⁄ D̃∆ δn( ).=

δn r t,( )
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2π( )4
------------- kd ω ik r iωt–⋅–( )δn k ω,( ),expd∫=
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becomes the diffusion coefficient for a low-density sys-
tem of particles:

This definition of the diffusion coefficient means that
the system possesses a diffusion characteristic mode.
Proceeding from the definition (3.3), to calculate the
diffusion coefficient D(k, n0) it is necessary to know the
characteristic modes of a weakly nonequilibrium sys-
tem. If these characteristic modes have the form (3.3),
then D(k, n0) will be the diffusion coefficient of the sys-
tem. It is obvious that the diffusion coefficient in the
general case is nonlocal and is a functional of the den-
sity of the diffusing particles. The expression for the
flux of diffusing particles will have a form generalizing
equation (3.1):

(3.4)

The equation, obtained using this relation, for the par-
ticle number density in the system is in general a non-
linear integrodifferential equation. When studying the
diffusion of a single-component gas in subnanometer
channels, it should be kept in mind that the pair interac-
tion potential between the particles is short-range and
no phase transitions occur in the system of particles in
the channel (see preceding section). In this case it can
be assumed that the diffusion coefficient D(r, r', n(r, t))
is local:

(3.5)

The corresponding expression for the flux of diffusing
particles and the equation for their density become

(3.6)

For low densities the relation (3.6) becomes equation
(3.1), which is the first term in the expansion of the flux
in odd powers of the density gradient.

Thus, for systems where the relaxation spectrum of
the fluctuations is of the form (3.3), the diffusion coef-
ficient can be determined starting from the explicit
form of this spectrum. The expression obtained for the
diffusion coefficient in this case is a generalization of
the expressions obtained for the diffusion coefficient in
various models, specifically, in the Maxwell–Stefan
model [9].

It is convenient to calculate the relaxation spectrum
of the fluctuations using the density functional formal-
ism [4]. We shall present the basic assumptions of the
density functional formalism following [4]. Let us
assume that a state that can be characterized by the
moments of the multiparticle distribution function has
been established in the system. Let us assume that the
state of the system can be described by giving the sin-
gle-particle distribution function F1(x, t), where x ≡ (r, p)
and r and p are, respectively, the coordinates and

D k n0,( )
n0 0→
lim D̃.=

J r'D r r' n r' t,( ), ,( )∇ n r' t,( ).d∫–=

D r r' n r' t,( ), ,( ) D n r t,( )( )δ r r'–( ).=

J D n( )∇ n,–=

∂n ∂t⁄ ∇ D n( )∇ n( ).=
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momentum of a particle. In [4] such systems are called
gas-like. Let the gas in the channel be such a system.
Then it can be assumed that the distribution function is
a product of the longitudinal ( f1(x, t), where x = (r, p),
r, and p are the coordinate and momentum of the parti-
cle along the channel) and transverse single-particle
distribution functions. The distribution function in the
transverse direction relaxes in phonon times t ≈ τph [3]
and therefore for t @ τph it is an equilibrium system.
Under these conditions (t @ τph) the state of the system
of particles in the channel can be described by giving
the longitudinal single-particle distribution function
f1(x, t). Here the variable x is a one-dimensional coordi-
nate along the channel and the momentum in the direc-
tion of this coordinate. Let us consider the relaxation of
weakly nonequilibrium states of such a system. Weakly
nonequilibrium states are states for which local equilib-
rium has been established with respect to the momen-
tum. Then the free energy F(t), which is a functional of
the distribution function f1(x, t) of the system [4], can be
introduced:

(3.7)

Here f2 is a binary distribution function. The time
dependence of the functional F(g, t) is determined com-
pletely by the time dependence of the distribution func-
tion f1(x, t). According to [4], for example, states for
which the distribution function f1(x, t) is a functional of
its first moments are considered to be weakly equilib-
rium states. Then, the description of relaxation to equi-
librium based on the functional (3.7) is valid only at the
final stage of the evolution of the system. We now intro-
duce the average value of the free energy of a nonequi-
librium system:

(3.8)

The limit in the relation (3.8) corresponds to a descrip-
tion of the relaxation kinetics of the system over times
much longer than the characteristic local equilibration
time. The functional (3.8) is an extremal for an equilib-
rium ( f1 = f EQ) state of the system with a variable num-
ber of particles:

(3.9)

If the number of particles is fixed, then it is convenient
to introduce instead of equation (3.8) the functional

(3.10)

where µ is a Lagrange multiplier, whose significance is
similar to that of the chemical potential of an equilib-

F g t,( ) F0 f 1[ ] 1
2
--- x1 x2 f 2 λ x1 x2, ,( )V λ .d

0

g

∫dd∫+=

∆̃g f 1[ ] τ 1– F g t,( ) t.d

0

τ

∫τ ∞→
lim=

δ∆̃g

δf
---------

f f
EQ=

0.=

∆g f 1[ ] τ 1–

τ ∞→
lim F g t,( ) td

0

τ

∫ µ f 1 xd td

0

τ

∫– ,=
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rium system. The functional (3.10) is extremal for an
equilibrium system with a fixed number of particles
δ∆g/δf1 = 0.

The functionals (3.7)–(3.10) make it possible to
determine the generalized susceptibility of the system
under study. Let us place the system into a weak, vari-
able, external field eVext(x, t) (e is the effective charge),
and let the characteristic times of variation of the field
be such that the condition of weak nonequilibrium of
the system is satisfied. We shall define the response
function χ of the system as

(3.11)

If f0 = f0(t), which corresponds to a locally equilibrium
state of the system, the response function χ depends on
the temporal arguments t and t ' and not only on their
difference. It is convenient to represent this dependence
in the form

where the dependence of the response function on the
second argument is determined only by the time depen-
dence of the single- particle distribution function f1(x, t),
whose functional form is χ. In the presence of an exter-
nal field eVext(x, t) the functional Fe(g, t) which is the free
energy of a nonequilibrium state in the limit e  0, is
determined by the equation

(3.12)

Then the functional  has the form

(3.13)

Varying  with respect to the distribution function f1

and using the condition (3.9) for the functional to be an
extremal with the equilibrium value f1 = f0, we obtain an
equation for the response function χg of a nonequilib-

rium system described by the functional :

(3.14)

(3.15)

and χ0 is the response function of a system of noninter-
acting particles. The pair distribution function can be

δ f x t,( ) χ x x' t t', ,,( )eVext x' t',( ) x'd t'.d∫=

χ x x' t t', , ,( ) χ x x' t t' t,–, ,( ),=

Fe g t,( ) F g t,( ) eV ext f 1 x.d∫+=

∆g
e

∆g
e τ 1– Fe g t,( ) td

0

τ

∫ µ f 1 xd td

0

τ

∫–
τ ∞→
lim .=

∆g
e

∆g
e

χ g y y', ,( ) χ0 y y',( )=

+ y y'χ0 y y1,( )R g y1 y2, ,( )χ g y2 y', ,( ),dd∫

R g( )
δ2

2δ f 1
2

------------ τ λV f 2 λ x1 x2, ,( )d x1d x2,d

0

g

∫d

0

∞

∫≡

χ g( ) δ2∆g δ f 1
2⁄( ) 1–

, y x t,( ),≡–≡
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related with the response function via the fluctuation–
dissipation theorem [12]:

(3.16)

The fluctuation–dissipation theorem in its thermody-
namic variant (3.16) is valid only for states near thermal
equilibrium, where the locally equilibrium momentum
distribution of the particles has been established. The
relaxation of the system in this case proceeds via the
spatial variation of a macroscopic characteristics of the
system. In the relation (3.16) the pair distribution func-
tion f2 and the response function χ depend on the time t
via the single-particle distribution function f1(x, t), of
which they are functionals. Using equations (3.15) and
(3.16), we find finally

(3.17)

We now switch from the response function χ to the den-
sity response function β(r, r', t, t'). The response func-
tion β(r, r', t, t'), determining the change δn(r, t) in the
density of the system when a weak external field eVext(r, t)
is switched on, can be determined from the relation

(3.18)

The response function β(r, r', t, t') is related with the
response function, as

(3.19)

Here ϕ( p, t) is the locally equilibrium momentum dis-
tribution function normalized to 1:

(3.20)

We note that in this case, when the momentum distribu-
tion along the channel has been established, the response
function β(r, r', t, t') can be obtained by directly varying
the average value of the free energy (3.7) which is a
functional of the density n(r, t) [4]:

(3.21)
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R g( ) gV r r'–( )δ t t'–( )=
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δ2∆g
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 
1–

,–=

∆g
F f 1[ ] τ 1– F g t,( ) t,d

0

τ

∫τ ∞→
lim=

F g t,( ) F0 n[ ] 1
2
--- r1 r2 λVg2 λ n,[ ] ,d

0

g

∫dd∫+=
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where g2 is the pair correlation function. Substituting
the expression (3.19) into equations (3.14) and (3.17)
and integrating over the momenta we obtain for a one-
dimensional channel

(3.22)

Here β0(r, r', t, t') is the response function of a system
of noninteracting particles, which will be calculated
below. To obtain a closed equation we shall use a local
approximation [4], which in the present case, for an
arbitrary functional Φ[x1, n(x)] has the form

(3.23)

Using equation (3.23) we find closed equations for the
response function:

(3.24)

Assuming the characteristics of the ground state of the
system, such as the temperature and average particle
number density, to be time-independent, it is conve-
nient to switch from equations (3.24) to the equations
for the Fourier components of the response function:

(3.25)

The equations (3.25) make it possible to determine the
response function β(g) of a weakly nonequilibrium sys-
tem of particles in a channel with an arbitrary interac-
tion by “dressing” the noninteracting particles using the
pair interaction potential V(r – r') of the molecules [4].
In accordance with [4], the relaxation spectrum ω(k) of
the system is determined by the relation

(3.26)
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–
T
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∫
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× R g r1 r2 t1 t2, , , ,( )β g r2 r' t2 t', , , ,( )

R g r r' t t', , , ,( ) gV r r'–( )δ t t'–( )
T
2
--- d2

dn2
-------- λVβ λ( ).d
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∫–=

β g k ω, ,( ) β0 k ω,( ) β0 k ω,( )R g k ω, ,( )β g k ω, ,( ),+=
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We shall use the density functional formalism to calcu-
late the response function and the diffusion coefficient
of a dense gas in a subnanometer channel. We shall cal-
culate first the response function β0(k, ω) and the relax-
ation spectrum of such a gas when there is no interac-
tion between the particles. We write the diffusion equa-
tion for the filling factor θ of the channel with
molecules in the presence of a weak perturbing external
field eVext(r, t) in the form

(3.27)

Here D0 is the diffusion coefficient for noninteracting
particles. Let θ0 be the equilibrium filling factor of the
channel. We shall seek the solution of equation (3.27)
in the form

(3.28)

Then, we obtain from equation (3.27), assuming the
external field eVext to be weak, an equation for δθ(r, t):

(3.29)

In deriving equation (3.29), only first-order infinitesi-
mals in δθ and eVext were retained in all terms. We shall
seek the solution of equation (3.29) in the form of a
Fourier integral

(3.30)

Substituting the expressions (3.30) into equation (3.29)
and solving the resulting linear equation for δθ(k, ω),
we obtain

(3.31)

Here

, (3.32)

is the response function of a gas of noninteracting dif-
fusing particles. Indeed, as ω  0, the function β0(k, ω)
reduces to the well-known response function of an ideal
equilibrium gas with density θ0 at temperature T [14, 4]:

(3.33)

The relaxation spectrum of such a gas is determined
from the relation (3.26) and has the form

(3.34)

In accordance with the definition (3.2) the quantity D0
is the diffusion coefficient. The relations obtained make

∂θ
∂t
------ D0∇ ∇ θ θ

T
--- ∇ eVext+ 

  , ∇
r∂

∂
.≡=

θ θ0 δθ r t,( ).+=

∂δθ
∂t
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D0θ0∆eV ext

T
----------------------------.+=
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1

2π( )2
------------- eik r⋅ eiωtδθ k ω,( ) kd ω,d∫=

eV ext r t,( )
1

2π( )2
------------- eik r⋅ eiωteV ext k ω,( ) kd ω.d∫=

δθ k ω,( ) β0 k ω,( )eV ext k ω,( ).=
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θ0k2D0
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---------------------------------–=
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ω0 k( ) iD0k2.–=
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it possible to calculate the relaxation spectrum ω(k) by
solving equations (3.25). Thus, we find for the response
function of a one-dimensional system

(3.35)

Using the relations (3.32) and (3.35), we obtain an
equation determining the relaxation spectrum of the
system under study:

(3.36)

Equation (3.36) can be solved in a general form in the
quasistatic case ω  0. Indeed, in this case we find
from equation (3.36)

(3.37)

(3.38)

It is convenient to rewrite the relation (3.38), introduc-

ing the pair distribution function n2(r – r') = [1 +
ν(r – r')]. We employ a relation, following from equa-
tion (3.16), between the response function in the static
limit ω = 0 and the pair distribution function:

(3.39)

Then we obtain from the first of equations (3.25) and
the relation (3.32)

(3.40)

Substituting the expression (3.40) into equation (3.38)
gives a relation determining the relaxation spectrum of
a dense gas in a one-dimensional channel:

(3.41)

We shall now calculate the diffusion coefficient of a gas
in a one-dimensional channel taking into account the
interaction between hard-sphere particles. In this case,

the correlation function n2(r) = [1 + ν(r)] has been
calculated exactly [13] with an arbitrary filling factor of
the channel:

(3.42)
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Using the relations (3.41) and (3.42), we find

(3.43)

The relations (3.43) can be obtained by a shorter
method. From the definition (3.21) follows a relation
between the response function and the free energy of
the system [4]:

(3.44)

Here the functional ∆F is determined by the relation
(3.21). The free energy of the gas in a channel can be
calculated in the hard-sphere approximation using the
methods described in Section 2, and it has the form

(3.45)

Here F0 is the free energy of a gas of interacting parti-
cles, N is the total number of particles in the channel,
and L is the length of the channel. Using the relations
(3.44) and (3.45) we obtain for the response function of
a gas of hard spheres in a channel

(3.46)

The derivation of equation (3.46) used the equality

The relations (3.43) can be obtained by equating the
expression (3.46) to zero and calculating the spectrum
ω(k). It follows from equation (3.43) that the general
equation describing particle transport in a dense 1D
system, in accordance with equation (3.6), has the form

(3.47)

This equation can be obtained from equation (3.43) if
the characteristic local equilibration times in a dense sys-
tem of particles in a channel are short compared with the
characteristic propagation times of disturbances along
such a system. For the cases considered below this
assumption obviously holds. We shall consider solutions
of equation (3.47) in the case where complete equilib-
rium has been established in the channel and the filling
factor of the channel θ = θ0(p, T), the function θ0(p, T)
being determined by the relation (2.23). Transport in a
channel in this case will be determined by the dynamics
of the motion of disturbances of the filling factor of the
channel. The solution of equation (3.47) in this case
should be sought in the form θ = θ0(p, T) + δθ(x, t). It
follows from equation (3.47) that the relaxation spec-
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trum of disturbances in this case has the form (3.43),
where θ0 = θ0(p, T). Thus, taking account of the inter-
action of hard-sphere particles in a channel does not
change the character of the relaxation of its weakly
nonequilibrium state: the relaxation spectrum (3.43)
remains a diffusion spectrum with diffusion coefficient
D(θ0). However, it is important to underscore that trans-
port in the channel in this case is a collective effect and
proceeds via transport of disturbances of the equilib-
rium density θ0(p, t). The diffusion coefficient D(θ0) in
this case is the diffusion coefficient of disturbances of
the equilibrium density. It is convenient to rewrite the
relation (3.43) for the diffusion coefficient in a different
form. Using the Arrhenius character of the diffusion
coefficient for noninteracting particles,

(3.48)

(  is proportional to the product of the squared lattice
constant of the wall material of the channel and the
relaxation frequency of particles in a channel on defects
and lattice phonons and is calculated in [3], E ≈ Ψ(rmax)
(2.12) is the activation energy of diffusing of noninter-
acting particles in the channel), we shall rewrite equa-
tion (3.43) in the form

(3.49)

This way of writing the diffusion coefficient for a gas
of interacting particles in a channel makes it possible to
give a physical interpretation for the change in the dif-
fusion coefficient accompanying a change in the filling
factor θ0 of the channel. The relation (3.49) shows that
the interaction of particles in a channel decreases the
activation energy E of the motion of particles, even in
the hard-sphere model. For an interaction between
hard-sphere particles such that there is no direct attrac-
tion between the particles, the diffusion activation
energy decreases with increasing filling factor θ0 of the
channel as a result of the effective interaction (see
below). Physically, this corresponds to a change,
because of the presence of another particle in a neigh-
boring potential well, in the parameters of the potential
in which a gas particle moves. Since the gas particles
are assumed to be indistinguishable, diffusion with the
filling factor of the channel θ0 ~ 1 (when the effective

diffusion activation energy  becomes comparable
to the temperature of the system) can be interpreted as
a transfer of “excitation” of the density along a chain of
close gas particles. It is obvious that the motion of such
an “excitation” will occur with substantial velocities.
This leads to a large increase in the diffusion coefficient
when θ0 ~ 1. For E = 0 the possibility of such a diffusion

D0 D̃0 E T⁄–( )exp=

D̃0

D θ0( ) D̃0
Ẽ θ0( )

T
-------------– 

  ,exp=

Ẽ θ0( ) E T 1
θ0

2

1 θ0–( )2
---------------------+ .ln–≡

Ẽ θ0( )
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mechanism is played out in [2]. We note that for all
gases investigated the barrier E is different from 0. This
is indicated by the presence of a maximum in the tem-
perature dependence of the flux in a zeolite membrane
[9]. It can be assumed that the increase in the diffusion
coefficient in a channel observed with degrees of filling
θ0 ≥ 0.5 is related with the formation of clusters in the
channel whose sizes increase with the filling factor. The
transport of gas in the channel containing such clusters
is determined by the motion of “excitation” in a finite-
size cluster. The formation of clusters in a gas consist-
ing of particles with a hard-sphere pair interaction
potential is related with the well-known [12] appear-
ance of an effective attraction between such particles.
This effect is manifested in the appearance of a maxi-
mum in the correlation function n2(r), describing the
probability of finding the “first” particle at a distance r
from the “second” particle.

The relaxation spectra of the system for an arbitrary
wave vector k can be found from equations (3.41) and
(3.42). It is found that the spectrum ω(k) contains a real
part, which corresponds to transport of an “excitation”
in the system. The imaginary part of the spectrum
obtained has a minimum at a definite value of the wave
vector k = kmin, which depends on the filling factor of
the channel θ0. It is natural to interpret the value R =
2π/kmin(θ0) as the characteristic size of a cluster with a
given filling factor and the value τ =Imω–1(kmin(θ0)) as
its characteristic lifetime. As the filling factor of the
channel increases, the value of the effective attraction
between the particles increases [12]; this could lead to
the appearance of clusters consisting of two or more
particles. However, it is found that as a result of the
one-dimensionality of the channel, the lifetime of the
clusters that are formed is finite, which corresponds to
the absence, as noted above, of a phase transition in
such systems. The dependences of the lifetime and size
of the clusters formed on the filling factor θ0 are pre-
sented in Fig. 2. It is evident in the figure that increasing
the filling factor of the channel increases the lifetime
and the size of the clusters formed. In finite-size chan-
nels, for a definite value of the filling factor θ0 = θc a
cluster equal in size to the length of the channel is
formed. It is obvious that the diffusion coefficient in

(a) (b)
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Fig. 2. (a) Size (r = R/σ) and (b) lifetime (τ/τ0, τ0 = σ2/D0)
of clusters versus the filling factor of the channel.
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such a channel increases without bound as θ0  θc,
even though the lifetime of such a cluster is finite. We
note that the density functional method can be used to
take into account the interaction of particles in a chan-
nel for a potential that is different from a hard-spheres
interaction, similarly to the way this was done above.
Analysis of the experimental data showed that for high
filling factor of the channel θ0 ~ 1 the dependence of the
diffusion coefficient D(θ0), calculated from the relation
(3.43), leads to a discrepancy between theory and
experiment (Section 4). This discrepancy could be due,
in our opinion, to the above-described influence of a
finite channel length, the asphericity of the gas mole-
cules, and the possible breakdown of one-dimensional-
ity of the problem. These effects lead to the following
dependence of the diffusion coefficient on the filling
factor of the channel:

(3.50)

Here ζ is a coefficient that takes into account the finite
size of the channel, the possible deviation of the chan-
nel from one-dimensionality, and the asphericity of the
molecules. The relations (3.43), (3.50), and (2.23)
make it possible to describe transport in a subnanome-
ter channel for different values of parameters such as
the gas pressure and the pressure difference outside the
membrane, the temperature of the membrane, and the
type of gas molecules. As an example, we present the
dependence, calculated according to equations (3.43),
(3.50), and (2.23), of the diffusion coefficient in a sub-
nanometer channel on the relative temperature T/T0 for
various relative pressures p/p0 (Fig. 3). It is evident in
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Fig. 3. Theoretical curves of the relative diffusion coeffi-
cient D/D0 versus the relative temperature T/T0 for various
values of the relative pressure p/p0: (1) 3, (2) 2, (3) 1, (4) 0.1.
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the figure that the character of the temperature depen-
dence of the relative diffusion coefficient in subnanome-
ter channels is substantially different at different pres-
sures p. For example, if the pressure is high (p/p0 > 1),
the dependence of D/D0 on T/T0 has a pronounced max-
imum at temperatures T ~ 0.5T0 (curve 1). As pressure
decreases, the magnitude of this maximum decreases
and the maximum itself shifts into the region of lower
temperatures (curves 2, 3). A further decrease of pres-
sure to values p/p0 < 1 results in the appearance of a
minimum in the dependence of D/D0 on T/T0 in the
temperature range T ~ 0.5T0. The maximum occurs at
T ~ 0.3T0. Since for p/p0 < 0.1 the flux depends on p and
the average distance between particles in the channel is
much greater than the diameter of the particles, the
increase in the diffusion coefficient for T > 0.5T0 is due
to the temperature dependence of the diffusion coeffi-
cient D0 of individual molecules in the channel. At high
temperatures all curves saturate at a value correspond-
ing to D/D0 = 1. In the next section, the theoretical laws
obtained above will be compared with the experimental
data.

4. ANALYSIS OF THE EXPERIMENTAL DATA. 
COMPARISON OF THEORY WITH EXPERIMENT

Quite extensive experimental investigations of the
sorption and transport properties of a series of organic
molecules (CH4, C2H6, n-C4H8, i-C4H8, and others) and
the inert gases Ar, Ne, and Kr in ZSM-5 zeolite mem-
branes (MFI, silicate-1) have now been performed. The
results are presented in [8, 15, 16]. According to [17],
ZSM-5 zeolite membranes have a complicated chemi-
cal and crystalline structure. The chemical structure of
zeolite membranes is given by the formula

Nan[Si96 – nAlnO192] · 16H2O, n ≤ 8.

For small values of n zeolite membranes of this type are
called Silicate-1 membranes. The crystalline structure
of ZSM-5 membranes has been studied quite well. It
consists of a 3D structure, consisting of sinusoidal
channels with a circular cross section (0.54 ± 0.02 nm)
parallel to the a-axis [100], which intersect straight
channels with an elliptical cross section (0.57–0.58) ×
(0.51–0.52) nm2, parallel to the b-axis [010] [15, 18].
Cavities ~0.9 nm in size form at the intersection of the
channels. The sorption capacity of ZSM-5 zeolite is
determined by the number of sorbed (entering the chan-
nels) molecules per cell of a crystal. According to
[15, 19], the cell parameters are: a = 2.007 nm, b =
1.992 nm, c = 1.342 nm. A single cell is a structure con-
sisting of four segments of 0.46 nm linear channels,
four segments of 0.66 nm sinusoidal channels, and four
0.54 nm intersections. Depending on the structure of a
molecule, sorption of one or two molecules per inter-
section is possible. In [15] the sorption capacity of
ZSM-5 was measured for a number of molecules. It
was concluded that the molecules CH4, C3H8, and
 AND THEORETICAL PHYSICS      Vol. 90      No. 6      2000
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n-C4H10 are sorbed with one molecule per intersection,
while nitrogen, n-hexane, and p-xylene are sorbed with
two molecules per intersection. Thus, for gases of the
type CH4, n-C3H8, and C4H10 channels in the crystal
structure of ZSM-5 can be treated as one-dimensional.
For nitrogen-type molecules two molecules can be
arranged at an intersection and therefore molecules can
change places at an intersection (absence of blocking).
Nonetheless, since there are significantly more nitrogen
molecules in a channel (24 molecules per unit cell [15]),
the one-dimensional model can also be used for this gas.

Analysis of the experimental data presented [9, 19–22]
shows that all gases investigated can be conditionally
divided into two groups. The first group of gases, con-
taining, specifically, Ar, Kr, Ne, and CH4, is character-
ized by a linear pressure dependence of the filling fac-
tor θ, i.e., Henry’s law holds for them [9]. For these
gases, the pressure dependence of the flux is nearly lin-
ear, and the diffusion coefficient is essentially indepen-
dent of the filling factor [19]. The temperature depen-
dence of the flux is characterized by the presence of a
minimum at temperatures T ~ 400 K (for example, for
Ar and Kr), while a maximum is not observed in the
diffusion coefficient [21, 22]. Here neon, whose diffu-
sion coefficient increases with temperature [22], is an
exception. The second group of gases, containing, spe-
cifically, i-C4H10, C2H4, C2H6, and C4H8, is character-
ized by a dependence of the filling factor θ on the pres-
sure p in the form of a curve that saturates [9]. For these
gases the pressure dependence of the flux is likewise
characterized by a curve that emerges at a value that is
pressure-independent [19]. For this group of gases the
diffusion coefficient depends strongly on the filling fac-
tor [20]. The temperature dependence of the flux is
characterized by the existence of a maximum and min-
imum at high (T > 500 K) temperature [21].

The model, constructed in this paper, of the sorption
and transport properties makes it possible to describe
these dependences of transport in one-dimensional
channels on the basis of general assumptions. Figure 4
shows the dependence of the diffusion coefficient D on
the filling factor θ (solid line), calculated using equa-
tion (3.50), and the experimental data obtained in [21]
for various gases. We note that the dependence (3.50)
presented in Fig. 4 takes into account the asphericity of
the molecules, equal to ζ = 0.86. For inert gases and meth-
ane (first group of gases) the diffusion coefficient mea-
sured in the range of filling factor θ0 < 0.5 depends
weakly on θ0. A large increase in the diffusion coeffi-
cient at θ0 ~ 1 is observed for gases of the type C2H6 and
n-C4H8 (second group of gases). This behavior of the dif-
fusion coefficient D(θ) can be satisfactorily described on
the basis of the model proposed, which takes account of
the pair interaction of particles with a very simple form
of the interaction potential for hard spheres. It is obvi-
ous that this coefficient is different for different mole-
cules. The physical mechanism leading to an increase
of the diffusion coefficient consists in a decrease of the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
activation barriers for diffusion, which is due to an
interaction of the particles for high filling factor.
Indeed, it follows from the relation (3.49) for the effec-

tive diffusion activation energy  that in this case,
when the filling factor of a channel is low, θ0 ! 1, gas
diffusion in the channel can be studied in the single-
particle approximation neglecting the pair interaction
of the gas particles with one another. As the filling fac-
tor increases, the diffusion activation energy decreases
as a result of the effective attraction of the gas particles
to one another. This can be interpreted as the formation
of widely separated clusters. Diffusion in each cluster
can be treated as a transfer of “excitation” along a chain
of close gas particles. A further increase of the filling
factor increases the cluster lifetime and decreases the
average intercluster distance and, in consequence,
increases the diffusion coefficient. For θ0 ~ 1 the diffu-
sion process can be regarded as a motion of this “exci-
tation” along the entire channel, when the arrival of a
particle at the channel entrance results in the end-most
particle leaving the channel. 

Figure 5a shows the temperature dependences of the
gas flux through a membrane for ethane and argon, calcu-
lated using the formulas (2.5) and (3.50) and a relation fol-
lowing from equation (3.6): J ∝  D(θ0(T, p))θ0(T, p).
These dependences were compared with the experi-
mental values obtained in [8]. It is evident that the the-
oretical and experimental results agree satisfactorily
with one another. The temperature dependence can also
be understood on the basis of the model developed in
the present work. Indeed, it follows from the relation
(2.5) that at low temperatures (T  0) the filling fac-
tor of the channel θ0 ~ 1. The effective diffusion activa-

tion energy  is E0 at zero temperature (3.27). The
diffusion coefficient of the gas particles in the channel
(3.50) approaches zero as a result of the “freezing out”

Ẽ θ0( )

Ẽ θ0( )
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Fig. 4. Relative diffusion coefficient versus the filling factor
of the channel. Solid curve—theoretical dependence (3.50)
with ζ = 0.86; dots—experimental data from [21].
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Fig. 5. Relative flux versus the relative temperature T/T0, T0 = 296 K. Solid lines—theoretical curves calculated using equations
(2.5), (3.6), and (3.50); dots—experimental data (a) for ethane [8] and (b) argon [22].
of the thermal motion of the particles in the potential
field of the channel surface. Increasing the temperature

decreases  without appreciably changing the fill-

ing factor of the channel. The value of  reaches a
minimum at a certain temperature T0. It is obvious that
the diffusion coefficient reaches its maximum value
precisely at this temperature. It follows from equations
(2.5) and (3.49) that a further increase of temperature
decreases the filling factor of the channel θ0, and this is
accompanied by an increase in the effective diffusion acti-
vation energy right up to the value E0 which is attained for
θ0(P, T) ≈ θ0 ! 1 at some temperature T = T1(p). The tem-
perature T1 corresponds to a minimum in the function
D(T). A further increase of the diffusion coefficient
with increasing temperature corresponds to the varia-
tion of the coefficient according to the Arrhenius law
D ∝  exp(–E0/T ). Figure 5b shows the temperature
dependence of the flux for argon, calculated using
equation (3.50) and the data from [21]. We note that the
theory developed in the present paper predicts that the
presence of a minimum at T ~ 400 K should be accom-
panied by the appearance of a maximum at T ~ 200 K.
In this connection, for further elaboration of the theory
it is of interest to make an experimental search for a
maximum in the temperature dependence of the flux for
argon near T ~ 200 K.

Thus, two types of behavior of particles in a chan-
nel, which have different diffusion mechanisms, can be
distinguished in the pressure and temperature ranges
investigated. For the first group this is the diffusion of
single particles in a channel, and for the second group
it is diffusion as a result of a collective interaction of
particles in a completely filled channel. Such behavior
of single-component gases is a direct consequence of
the real one-dimensionality of subnanometer channels,
where molecules cannot change places with one
another. The proposed model is based on two basic

Ẽ θ0( )
Ẽ θ0( )
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assumptions: (1) The pair interaction between gas par-
ticles plays the decisive role in the description of the
state and transport phenomena in a one-component gas
in subnanometer channels and (2) as a result of the fact
that the channel diameter is comparable to the diameter
of the gas molecules, such channels can be assumed to
be one-dimensional.

The one-dimensionality of the system studied is
actually due to the fact that the gas molecules do not
have classical transverse degrees of freedom. This dif-
ference from the conventional systems plays a funda-
mental role in the analysis of all phenomena described
above.

We note that equation (3.47) derived above possesses,
besides the solution described in the text, strongly nonuni-
form nonstationary soliton-like solutions. It should be
expected that an experimental consequence of the exist-
ence of such solutions will be the appearance of sub-
stantial fluctuations of the gas flux through a mem-
brane.

The proposed model satisfactorily describes the
equilibrium properties of a gas in a channel (specifically,
the filling factor) and the weakly nonequilibrium proper-
ties of the gas, such as the diffusion coefficient and flux. It
should be noted that a satisfactory description of the equi-
librium properties, for example, the adsorption isotherm,
has been obtained previously on the basis of a number of
phenomenological models [8]. A qualitative analysis of
the maximum (but not minimum) in the temperature
dependence of the relative diffusion coefficient is pre-
sented in [9]. A model describing the dependence of the
diffusion coefficient on the filling factor on the basis of a
one-particle approximation by introducing into the diffu-
sion rate jumps of individual particles a phenomenolog-
ical correction factor χ = (1 – θ0)–1, has been proposed
in [2]. However, even though each of the phenomena
indicated above can be described on the basis of indi-
vidual models, the approximations used in so doing
 AND THEORETICAL PHYSICS      Vol. 90      No. 6      2000
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either are not physically substantiated or completely
contradict one another.
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Abstract—The behavior of the magnetic susceptibility of a two-dimensional Ising model with nonmagnetic
impurities is investigated numerically. A new method for determining the critical amplitudes and critical tem-
perature is developed. The results of a numerical investigation of the ratio of the critical amplitudes of the mag-
netic susceptibility are presented. It is shown that the ratio of the critical amplitudes is universal right up to
impurity concentrations q ≤ 0.25 (the percolation point of a square lattice is qc = 0.407254). The behavior of
the effective critical exponent γ(q) of the magnetic susceptibility is discussed. Apparently, a transition from
Ising-type universal behavior to percolation behavior should occur in a quite narrow concentration range near
the percolation point of the lattice. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The effect of impurities on the critical behavior of
magnetic systems is one of the most important subjects
in the theory of phase transitions [1–3]. The Harris cri-
terion [4] answered the fundamental question of the
change occurring in the critical behavior when a small
quantity of stationary (“frozen-in”) impurities is intro-
duced. According to this criterion, if dν > 2, where d is
the dimension of the system and ν is the critical exponent
of the correlation length, then impurities do not change
the critical exponents.1 The Harris criterion is inapplica-
ble to the two-dimensional Ising model because for this
model dν = 2, i.e., it is a boundary case.

The problem of the critical behavior of the specific
heat in the two-dimensional Ising model in which a low
concentration q of impurity bonds is introduced was
solved by the Dotsenko brothers [5]. They discovered
that as long as the correlation length ξ does not exceed
the characteristic distance between impurities li .
exp(const/q), the behavior of the specific heat is identi-
cal to the case of a pure Ising model, i.e., the specific
heat C(τ) diverges logarithmically: C(τ) . ln(1/|τ|),
where τ = (T – Tc)/Tc is the reduced temperature. How-
ever, for values of the temperature closer to the critical
temperature, so that the correlation length ξ is much
greater than the impurity length li , the critical behavior
of the specific heat changes to a double logarithmic
behavior: C(τ) . lnln(1/|τ|). The correlation length

acquires the logarithmic factor ξ . /|τ|. The critical
behavior of the magnetic susceptibility χ(τ) . ξ(τ)–7/4 .

1 Systems that undergo first-order phase transitions in the absence
of impurities are not considered in this paper.

τln
1063-7761/00/9006- $20.00 © 20964
|τ|–7/4(ln|τ|)7/8 was also subsequently clarified indepen-
dently by Shalaev, Shankar, and Lüdwig (see the
review [6]).

These results were confirmed numerically in the
works of many authors for the model of random weak-
ened bonds (see the review [2]). The theoretical results
presented above (the Dotsenko– Dotsenko–Shlaev–
Shankar–Lüdwig theory [5, 6]) have been definitely
checked for the model of random ferromagnetic bonds
and for the model of impurity nonmagnetic sites and
low impurity concentrations.

The results obtained by different authors on the
basis of numerical simulation for finite concentrations
of nonmagnetic impurities occupying sites in a square
lattice are not so unequivocal. The result presented
above that the critical exponents of the magnetization
and susceptibility are independent of the degree of disor-
der is confirmed in [7, 8]. At the same time, other authors
assert that the susceptibility exponent depends on the
degree of disorder and a “weak universality”—indepen-
dence of the ratio γ/ν of the susceptibility and correlation
length exponents from impurities—is observed [9–11].

It is well known that the universality class is charac-
terized not only by the critical exponents by also by
numerous combinations of critical amplitudes (see the
review [12]). The difference between the values of the
critical exponents for various universality classes is
often small, while the ratios of the amplitudes can differ
substantially.

In the present work we posed the problem of deter-
mining numerically the ratio of the critical amplitudes
of the magnetic susceptibility for the Ising model with
impurities in order to check the question of whether or
000 MAIK “Nauka/Interperiodica”
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not the universality class changes from Ising-type (with
impurity concentration q = 0) to percolation-type (with
q = qc).

We have developed a numerical method for deter-
mining simultaneously the effective critical exponent γ
of the susceptibility, the critical amplitudes Γ and Γ ' of
the susceptibility, and the “critical temperature” of a
sample of finite size. We used two methods to deter-
mine the quantities of interest. In the first method the
values obtained for the amplitudes were averaged over
realizations of the impurity distribution in the samples.
In the second method we first averaged the magnetic
susceptibility over the impurity distribution and then
determined the critical amplitudes. Both methods lead
to the same results.

Analysis of the numerical data shows that the ratio
of the critical amplitudes of the susceptibility remains
unchanged in a quite wide range of impurity concentra-
tions investigated 0 ≤ q ≤ 0.25, while the amplitude val-
ues themselves undergo a several-fold change. At the
same time, the effective critical exponent γ for the sus-
ceptibility varies continuously, reaching a maximum at
the concentration of nonmagnetic sites q ≈ 0.2. This
result can apparently be explained by the fact that in the
indicated impurity concentration range the system pos-
sesses an Ising-type universality. The change in the sus-
ceptibility exponent can be attributed to the corrections,
which are unknown to us, to the scaling behavior.
Nonetheless, a numerical investigation of the critical
exponents and amplitudes close to the percolation point
of the lattice is required in order to obtain a more reli-
able answer. 

This paper is organized as follows. The model and
the parameters for which the numerical simulation was
performed are described in Section 2. A new method
for determining the critical amplitudes, which makes it
possible to investigate the ratio of the critical ampli-
tudes for strongly diluted systems, is presented in Sec-
tion 3. This method also makes it possible to determine
the critical temperature. The computational results are
presented in Section 4, and these results are discussed
in Section 5.

2. MODEL AND NUMERICAL METHOD
Spins σi , assuming the values σi = +1 and –1, and

nonmagnetic impurities (σi ≡ 0) occupy the sites i of an
L × L square lattice with periodic boundary conditions.
The nonmagnetic impurities are stationary (quenched
disorder). In what follows we shall call a lattice with a
fixed distribution of nonmagnetic impurities the sam-
ple. The bond energy between two sites is 0 if a non-
magnetic impurity occupies at least one site and J if
magnetic spins occupy both sites. The Hamiltonian of
such a system can be written in the form

(1)H J σiσ j

i j,
∑–=
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(in what follows we assume J = 1 and we work with the
dimensionless temperature). The concentration of mag-
netic spins is determined by summing the absolute
value of the spin at all lattice sites:

(2)

Then the value p = 1 corresponds to a pure Ising model
and p = 0 corresponds to an empty, nonmagnetic lattice.
Evidently, p = 1 – q.

As the concentration of magnetic sites decreases,
there exists a critical impurity concentration qc down to
which a cluster of magnetic sites touching the sample
boundaries is always present in the system [13]. In this
case, a phase transition can occur in the system at a
finite temperature into a phase with nonzero total mag-
netic moment of the system. The phase diagram is shown
schematically in Fig. 1. The vertical asymptote passes
through the percolation point qc = 0.407254 [14]. The
straight line is the asymptote of the phase curve for low
impurity concentrations, Tc(q) = Tc(0)(1 – 1.565q) [1].

For a concentration of magnetic sites below the crit-
ical value, p < pc, the lattice separates into finite clusters
with characteristic size of the order of the percolation

correlation length ξp ∝  (p – , where νp is the crit-
ical exponent of the percolation length (in the two-
dimensional case νp = 4/3) [13]. Since the magnetic
moments of individual clusters are uncorrelated, the
total magnetic moment will be 0 and a phase transition
at p < pc is impossible [1].

When the sample is produced, unbound geometric
clusters of magnetic sites arise in the lattice. Far from
the critical point, for p > pc, a cluster of magnetic sites
extending from edge to edge and ns clusters containing
a relatively small number of sites s are always present

in a sufficiently large lattice L @ ξp ∝  (p – :

(3)

p
1

L2
----- σi .

i 1=

L
2

∑=

pc )
ν p–

pc )
ν p–

ns p pc–( )2 s p pc–( )–[ ] .exp∼

2.5

2.0

1.5

1.0
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q

Fig. 1. Phase diagram of the two-dimensional Ising model with
nonmagnetic impurities: Tc is the critical temperature and q is
the concentration of nonmagnetic impurities.
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In the limit of an infinite lattice, only correlated mag-
netic moments of an infinite, passing cluster will make
a singular contribution to the magnetic susceptibility
and the specific heat. Consequently, when calculating
the critical characteristics it is reasonable to neglect the
contribution from sites which have no bonds with the
passing cluster. In this manner, the “noise” from mag-
netic moments of finite-size clusters can be decreased.

The practical details for implementing the algorithm
are as follows.

When the sample is produced, frozen-in nonmag-
netic impurities occupy sites in an L × L lattice. The coor-
dinates of the impurities are a sequence of pseudorandom
numbers, which were obtained using a shift-register type
generator [15] with 9689 and 471 cycle lengths [16].
Generators with such a large length decrease the sys-
tematic error arising as a result of the use of pseudoran-
dom number generators in Monte Carlo cluster algo-
rithms [17, 18]. Using the expression obtained in [17]
to estimate the maximum error δE for the energy E

δE < L–0.84p–0.52,

we obtain for L ≥ 10 that the expected systematic error
in determining the energy is δE < 0.00005, which is less
than the statistical error obtained in our calculations. In
other words, the systematic error introduced by the
pseudorandom number generator in our case is indistin-
guishable against the background due to the statistical
error.

Monte Carlo calculations show that small clusters
make a very small contribution to the thermodynamic
quantities and do not exhibit singular behavior at the
critical point. For this reason, to investigate the singular
behavior of the susceptibility all spin clusters except an
“infinite” cluster were replaced by nonmagnetic impu-
rities. In what follows, the thermodynamic characteris-
tics of only a cluster of maximum size were simulated.

800

600

400

200

0

0.6 1.0 1.4 1.8

χ

T

Fig. 2. Susceptibility χ of the maximum cluster (squares and
solid line) and of the entire sample (circles) as a function of
temperature T. The impurity concentration q = 25%.
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In the first place, this decreased the computational time
and, in the second place, it made it possible to filter
immediately the “noise,” introduced into the susceptibil-
ity by many small clusters. Technically, this was done as
follows. A fixed number of nonmagnetic impurities,
equal to the integer part of L2(1 – p), were distributed
on the lattice. The coordinates of the impurities were
chosen using the pseudorandom number generator.
Next, using the Hoshen–Kopelman algorithm [19], the
sample obtained was divided into clusters of uncoupled
spins. Then, all clusters, with the exception of the larg-
est cluster, were replaced by nonmagnetic impurities.
Figure 2 shows the susceptibility of one sample with
p = 0.75 and the susceptibility of the largest cluster for
the same sample. It is evident that removing the very
small clusters has no effect on the critical behavior.

A cluster algorithm for the Ising model was pro-
posed in [20]. A more efficient variant of the algorithm
is proposed in [21]. The spin variables σi, j , assuming
the values σi, j = ±1, are distributed at the sites of an L × L
square lattice. Let any initial configuration of the spins
Ξ = {σi, j}, i, j = 1, …, L, be given. We introduce a set of
variables on the bonds Ω = {ωi, j}, i, j = 1, …, L. Each vari-
able can assume the values ωi, j = 0 (broken bond) and
ωi, j = 1 (closed bond). The collection of spins, bound
with one another by closed bonds (ωi, j = 1), is called a
spin cluster.

We shall now consider the process of producing a
configuration of variables on bonds Ω in a spin config-
uration Ξ. If two spins are antiparallel, then the bond
between them is always broken. If the spins are parallel,
then the bond between them is closed with probability
1 – exp(–2β) and broken with probability exp(–2β).
This process of correlated percolation along bonds [20]
divides the lattice into so-called “physical” clusters (in
contrast to the procedures where bonds between paral-
lel spins are always closed, in which case “geometric”
clusters are generated). If we now assign to the spins of
each physical cluster the values ±1 with probability 1/2,
then we obtain a new spin configuration Ξ'. This proce-
dure is the Swendsen–Wang algorithm.

The Wolf method differs by the fact that a spin is
chosen arbitrarily in the lattice, a physical cluster to
which the spin belongs is constructed, and then the
entire constructed cluster is flipped. A substantiation of
cluster algorithms is proposed in [22].

Here we present the Wolf variant of a Monte Carlo
algorithm in the form which we employed.

(1) Two random numbers fix the coordinates (i, j) of
a lattice site. If a nonmagnetic impurity occupies this
site, then new random numbers are generated and they
will continue to be generated until the coordinates of the
“present” spin, which we shall call the central spin, are
generated. The central spin is flipped—its value is
reversed.

(2) The nearest “neighbors” of the central spin are
examined. If a magnetic spin, which is parallel to the
 AND THEORETICAL PHYSICS      Vol. 90      No. 6      2000
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unflipped central spin, occupies a neighboring site, then
this spin also flips with probability 1 – exp(–2β), where
β = J/kT, and its coordinates are stored in a stack.

(3) After all neighboring sites have been checked (and,
if necessary, neighboring spins have been flipped), the
spin whose coordinates were stored in the stack last
becomes the “central” spin and the operation 2 is
repeated).

(4) The procedure of flipping the spins is terminated
when the stack is empty. This process is called flipping
of a “cluster,” and all flipped spins are said to belong to the
“cluster” (Wolf). We note that when a cluster is flipped,
using the procedure described above, the same spin can be
checked several times, but it can be flipped only once.

This algorithm implements a Markov process, and
spin configurations are generated with the correspond-
ing probability. The energy and magnetization of a
given spin configuration n are calculating using the for-
mulas

(4)

To decrease the correlations, the energy e and the
magnetization m of the spin configuration were calcu-
lated every three flips of a Wolf cluster—we call this
one Monte Carlo step. At the outset of the calculations
all spins are parallel (so-called “cold start”—this corre-
sponds to the state of the system at T = 0). To obtain a
spin configuration characteristic for a given temperature,
a certain number of clusters must be flipped. This pro-
cess is called thermalization. In our calculations thermal-
ization constituted 104 Monte Carlo clusters. Then, the
thermodynamic characteristics for a given sample were
calculated by averaging over N = 105 configurations
using the formulas

(5)

where n is the number of a given spin configuration and
〈…〉  is the thermodynamic average over the spin config-
urations.
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3. DATA PROCESSING METHOD

3.1. Analysis of Existing Methods

We recall that our problem is to calculate the ratio
R = Γ/Γ' of the critical amplitudes Γ and Γ' of the sus-
ceptibility. To determine the critical amplitudes we must
know the critical temperature, and using this temperature
we must interpolate the numerical data in order to deter-
mine the critical amplitudes and critical exponents.

We shall now analyze the possibility of such an analy-
sis for the example of an impurity-free two-dimensional
Ising model, for which an analytic solution is known.

For the Ising model, smoothing [23] of the singulari-
ties of the susceptibility in a certain range [–τr(L), τr(L)] of
the reduced temperature τ = (T – Tc(q))/T occurs on a
finite-size lattice. Here and below we shall use a defini-
tion of the reduced temperature where the denominator
contains not Tc but rather T, which is generally accepted
for analysis of the behavior of the susceptibility [24].
The “smoothing” radius τr(L) of the singularities of the
susceptibility is inversely proportional to the size of the
system: τr(L) . 1/L. This is because for |τ| ~ τr(L) the
correlation length ξ(τ) . τ–ν (ν = 1) reaches the lattice
size L. Correspondingly, the values of the thermodynamic
quantities within the smoothing radius, |τ| < τr(L), are
bounded and differ from their values for an infinite
sample. The smoothing effect has been demonstrated
numerically in [25].

For the Ising model without impurities (Tc(0) =

2/ln(  + 1)) = 2.269185314…), the dependence of
the susceptibility χ(τ) near the critical point for |τ| ! 1
is known [24]:

(6)

where γ = γ' = 7/4, Γ = 0.9625817322…, Γ' =
0.0255369719…, eχ = 0.07790315…. It is easy to see
that, despite the smallness of the coefficient eχ, the cor-
rection eχτ to the scaling dependence χs(τ) . |τ|–γ can
become substantial for comparatively small values of
the reduced temperature τ and reaches 1% even for τa .
0.13.

Thus, the critical behavior of the magnetic suscepti-
bility, τr(L) < |τ| < τa, can be observed in the tempera-
ture ranges χ(τ) . χs(τ). The existence of the critical
region can be proved by constructing plots of the ratio
of the susceptibility to its singular part χs . τ–γ [26]. An
example is shown in Fig. 3 for a system with linear size
L = 256. It is evident from the figure that in the critical
region 0.01 ≤ τ ≤ 0.1 there exists a “plateau”—a section
where the ratio of the numerical data obtained for the sus-
ceptibility χ to χs . τ–γ is quite close to the theoretical
value of the critical amplitudes (see expression (6)).

The plot of the susceptibility with concentration p of
magnetic sites on a lattice with a finite linear size L

2

Tχ τ( )
Γ τ( ) γ– 1 eχτ+( ) …, τ 0,>+

Γ ' τ–( ) γ'– 1 eχτ+( ) …, τ 0,<+



=
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possesses a maximum at a certain value of the temper-
ature Tmax(p; L); see [7]. As the impurity concentration q
increases, the critical temperature Tc(q) decreases mono-
tonically to 0 [1] when the critical impurity concentra-
tion qc = 1 – pc is reached, as shown in the phase dia-
gram in Fig. 1.

Thus, to determine the critical amplitudes we must
first calculate the values of the susceptibility χcomp(T, p)
for a fixed impurity concentration q = 1 – p for several
values of the temperature T in the low- and high-tem-
perature critical regions. Next, we must know the criti-
cal temperature Tc(p) for each fixed value of the con-
centration p of the magnetic sites. It is necessary to
know Tc(p) in order to calculate the reduced tempera-
ture τ = (T – Tc(p))/T and then fit the numerical data for
the susceptibility χcomp(T, p). The fit in turn is necessary
in order to determine the critical amplitudes of the sus-
ceptibility, Γ(p; L) and Γ'(p; L), and the critical expo-
nents γ(p; L) and γ'(p; L) assuming

(7)

The Monte Carlo calculation yields a set of numeri-
cal values of the susceptibility χ(T, p; L, i), where i is
the number of the sample, i = 1, NL, and NL is the num-
ber of samples in the simulation of a system of size L.
The realization of disorder, i.e., the difference in the
distribution of the impurities over the sites of an L × L
square lattice, distinguishes the samples i.

The values of the critical temperature Tc(p) for the
Ising model in the presence of impurities are not known
analytically. We need a method to determine Tc(p) from

Tχcomp τ p,( ) . 
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γ
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
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É = 0.9625…

É ' = 0.02554…
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0.1
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0.01 0.1 1

χ/χs

τ

Fig. 3. Ratio of the computed susceptibility χ(|τ|) to the sin-
gular part of the susceptibility χs(|τ|)in the critical region of
the pure Ising model. The exact value of the critical temper-
ature Tc = 2.26918… was used to calculate τ. The solid lines
show the theoretical values of the critical amplitudes for an
infinite lattice.
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the experimental numerical data. The following meth-
ods are most commonly used:

The first method is Binder’s cumulant method [3]

To determine Tc it is necessary to calculate the cumulant
UL(T, p) = [UL(T, p; i)], averaged over i = 1, …, NL sam-
ples, for several lattice sizes (L1, 
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, …, 
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n

 

). The critical
temperature 
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 is determined as the temperature at which
the average value of the cumulant is independent of the
lattice size (
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In [27] the calculation of Binder’s cumulant by the
transfer- matrix method was checked for a two-dimen-
sional Ising model with random bonds 

 

J

 

ij

 

 on a strip of
finite width for the special case of a self-dual model.
For this model the analysis simplifies substantially
because the critical temperature is known exactly. It
was found that the value of Binder’s cumulant seems to
be universal. At the same time it was found that the
accuracy of determination is inadequate to establish
universality reliably. Our preliminary Monte Carlo calcu-
lations showed that even for our case of a model with
impurities at the sites the computational accuracy is inad-
equate to establish reliably the universality of Binder’s
cumulant.

The second method uses the maximum susceptibil-
ity. For a fixed lattice size 
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taken as “critical.” In this case it is difficult to determine
for a specific sample the position of the maximum with
an error much less than the smoothing radius 
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different for realizations of samples 
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 with different
impurity distributions. The average temperature 
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can be determined from these realizations by two meth-
ods. These approaches are equivalent when self-averag-
ing of the computed quantity occurs [28]. We note that
the question of self-averaging of the temperature has
not been adequately studied for a system with nonmag-
netic impurities [29], especially near the percolation
point.

In the first averaging method, the magnetic suscep-
tibility can first be averaged over samples:

and then 
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mum of the average susceptibility 
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Table 1.  Two variants of a fit to the critical amplitudes of the susceptibility for the Ising model on a square lattice with linear
size L = 256 without impurities (p = 1) and a comparison with exact values

Variant βc Γ' Γ γ = γ' Γ/Γ'

Exact theory 0.440687 0.02554 0.9625 1.75 37.685

Fit of the amplitudes 0.440687* 0.024730(27) 0.9667(30) 1.75* 39.09(15)

Method of the present paper 0.440831(14) 0.02388(8) 0.9596(53) 1.7567(11) 40.19(23)

*The value of the parameter is fixed and does not change in the course of the fit. The value in parentheses is the statistical error to the last
significant figures of average quantities, calculated as the standard deviation when averaging over samples.
                
The second approach consists of finding the critical
point T*(p; L, i) for a given sample i and averaging over
samples:

Simulation of large lattices (L ~ 256) requires a
large volume of computer calculations for each sample.
Consequently, the number of samples is often not very
large. It would be attractive to have a method for ana-
lyzing computational results that would make it possi-
ble to process data for an individual sample. To deter-
mine the critical temperature according to the data for
an individual configuration of impurities, we proposed
the following method for analyzing the data.

3.2. New Method

Our method is based on a single assumption about
the critical behavior of the susceptibility. We assume
that the critical exponents γ and γ' are the same on both
sides of the transition point and that the analytical cor-
rections to the singular part of the susceptibility are of
the same nature. This actually reduces to equality of the
“effective” exponents γ and γ', since we do not know
the corrections to scaling in the presence of impurities.
In the approximation using equations (7), we obtained
a value of the temperature for each sample T*(p; L, i)
in a manner so as to make the effective exponents γ and
γ' equal to one another. In so doing, we have two param-
eters, for each exponent, for fitting the experimental
numerical data in each phase. In the high-temperature
phase we have the exponent γ and the amplitude Γ; in
the low temperature phase we have γ' and Γ'.

The results of an application of this method to the
pure Ising model (p = 1) and a comparison of this
method with the known exact values are presented in
Table 1. The exact numerical values of the critical
amplitudes Γ and Γ' [24] and the reciprocal of the crit-
ical temperature βc = 1/Tc for an infinite system are
given in the first row. The second row gives the values
of the critical amplitudes obtained by approximating
the numerical data for a finite lattice L = 256 using
equations (7), where we used the exact values βc =

ln(  + 1)/2 and γ = 7/4. Finally, the third row gives

T∗ p  L;( ) T∗ p  L i,;( )[ ] 1
NL

------ T∗ p; L i,( ).
i

NL

∑≡=

2
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the results of our method for analyzing the same
numerical data. The difference of the value found for
the reciprocal of the critical temperature from the exact
value is less than the roundoff interval of the singularity
τr ≈ 1/L ≈ 0.004. The difference in the ratios of the crit-
ical amplitudes in the second and third rows on five
standard deviations can be attributed to the systematic
error of the method employed. This is due to the diffi-
culty of performing calculations of the critical ampli-
tude Γ', which is small in magnitude, in the ordered
phase. As one can see from Table 1, the accuracy of the
calculation of the critical amplitude Γ is much higher
and is identical, to within the statistical error, to the
exact value for an infinite lattice and with the approxi-
mate value presented in the second row in Table 1.

In the critical region the plot of the susceptibility
(multiplied by T) should be identical to Γτ–1.75 for τ > 0
and Γ'(–τ)–1.75 for τ < 0, and in double logarithmic coor-
dinates it should follow two straight lines with the tan-
gents of the slope angles γ = γ' = 1.75. The singular part
of the susceptibility χs(τ) in double logarithmic coordi-
nates is represented by two straight lines:

(8)

The numerical data agree well with the known behavior
of the singular part of the susceptibility, χs . |τ|–1.75. The
difference of the critical amplitudes from the exact val-
ues is explained by the finiteness of the lattice—the
exact value equal to γ = 1.75 and the critical exponents γ
and γ' assume values on an infinite lattice, where the
dependence (6) is valid as a whole.

The values presented in Table 1 were obtained by ana-
lyzing the numerical data from a sequence of 1.5 ×
106 Monte Carlo steps divided into five segments. To
decrease the correlation between the values at succes-
sive steps, the values of the energy and magnetization
(4) calculated every three Monte Carlo steps were used
to perform the averaging. The first 104 Monte Carlo
steps were used for relaxation of the system from the
initial state and were not used for averaging.

The error of the method described above is dis-
cussed in [30]. The numerical values presented for the
critical exponents and the preexponential completely
correspond to the known values for the pure model. The

χsln Γln γ τ ,ln–=

χsln Γ ' γ' τ–( ).ln–ln=
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Table 2.  Number of samples NL in the simulation of the Ising model with magnetic site concentration p

p 1.0 0.97 0.93 0.90 0.85 0.82 0.80 0.78 0.75

NL 5 10 13 12 20 13 21 15 18

Table 3.  The results of a fit to the critical behavior of the magnetic susceptibility by the method of this paper (Section 3.2)

p p – pc Γ ' Γ γ β T Γ/Γ '

1.00 0.407 0.02388(8) 0.9596(53) 1.7567(11) 0.440831(14) 2.26844(7) 40.19(23)

0.97 0.377 0.02366(15) 0.9456(82) 1.8144(26) 0.462742(36) 2.16103(7) 39.96(19)

0.93 0.337 0.023919(42) 0.955(16) 1.8846(67) 0.496368(63) 2.01463(2) 39.98(38)

0.90 0.307 0.02526(95) 0.999(31) 1.927(13) 0.52544(13) 1.9032(5) 39.65(58)

0.85 0.257 0.03240(98) 1.266(33) 1.954(11) 0.58488(15) 1.7098(5) 39.25(56)

0.82 0.227 0.0369(21) 1.423(64) 1.985(21) 0.62872(29) 1.5905(1) 38.92(85)

0.80 0.207 0.0427(13) 1.703(48) 1.969(13) 0.66214(19) 1.5103(4) 39.98(58)

0.78 0.187 0.0518(26) 1.991(84) 1.959(17) 0.70130(59) 1.4259(1) 39.08(1.4)

0.75 0.157 0.0678(49) 2.611(93) 1.952(21) 0.77060(98) 1.2977(17) 40.55(20)
estimates made in [30] show that the temperature
T(p; L, i) depends relatively weakly on the accuracy
with which the critical exponents γ and γ' are deter-
mined. Conversely, the ratio Γ/Γ' of the critical ampli-
tudes depends very strongly on the accuracy with
which the critical exponents γ and γ' are determined and
on the accuracy with which the temperature T(p; L, i) is
determined.

4. SIMULATION RESULTS

The method proposed in Section 3 was used to pro-
cess the numerical data which we obtained by simulat-
ing a two-dimensional Ising model with random non-
magnetic impurities occupying sites of a square lattice
with linear size L = 256. We employed periodic bound-
ary conditions, for which, as is well known, the effect
of the boundaries is weaker than in other methods
[23, 25]. The number of samples for each concentration
p of Ising spins from p = 1 to p = 0.75 is indicated in
Table 2. The samples were produced by randomly
selecting the coordinates of the nonmagnetic sites,
which was done in order to achieve the required con-
centration of nonmagnetic sites q = 1 – p. To this end, a
shift register type random number generator was used
(see, for example, [15] and the brief discussion of the
quality of random numbers in [31]). In the simulation
the initial sequence of 104 Monte Carlo steps was used
for relaxation from the initial ordered state. The energy
en and magnetization mn (see equation (4)) as well as

the squared magnetization  and the fourth power of

the magnetization  were calculated for N = 105 states
of the system; another 2 × 105 intermediate states were
omitted. This guaranteed that there would be no corre-

mn
2

mn
4
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lations between successive values of the magnetization
and its moments; the autocorrelation time for a system
of size L = 256 is about three Monte Carlo steps for a
pure Ising model [21]. In our case, the correlation time
for an impurity concentration of less than 30% does not
change much.

The susceptibility χ(T; L, i) was calculated using the
expressions (5) in the critical region 0.009 < |τ| < 0.11
for magnetic site concentration p = 1, in the region
0.01 < |τ| < 0.1 for p = 0.97, and in the region 0.03 <
|τ| < 0.1 for all other concentrations presented in Table 2.
The simulation for each sample was performed with
44 values of the temperature in each temperature range.
Thus, the data analyzed below were obtained by ana-
lyzing a total of approximately 5 × 108 configurations of a
system of 65526 spin in the equilibrium state. The remain-
ing approximately 109 configurations were dropped dur-
ing averaging.

The functions Γτ –γ in the disordered phase and
Γ '(–τ)–γ' in the ordered phase, using double logarithmic
coordinates (see equation (8)), were fit to the numerical
data for each sample. The value of the “critical” tem-
perature T*(p; L, i) for each sample was determined
from the condition that the critical exponents are equal
to one another: γ(i) = γ'(i). We recall that the reduced
temperature τ depends on T*(p; L, i). The values
obtained in this manner for the temperature T*(p; L, i),
the critical exponents γ(i), and the critical amplitudes
Γ(i) and Γ'(i) were averaged over different realizations
of samples with a fixed impurity concentration q. These
values are presented in Table 3. It is evident that the
critical amplitudes Γ and Γ' vary very strongly, approx-
imately by a factor of 3, as the concentration of mag-
netic sites varies from p = 1 to p = 0.75, while the ratio
Γ/Γ' of the critical amplitudes remains unchanged to
AND THEORETICAL PHYSICS      Vol. 90      No. 6      2000
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Fig. 4. (a) Critical amplitudes of the susceptibility Γ and Γ', (b) their ratio Γ/Γ', and (c) the effective critical exponent γ as a function
of the concentration of the Ising spins. The solid straight lines represent the exact values for the “pure” Ising model; dotted line rep-
resents the average value of the amplitude ratio. The filled squares and circles with error bars show the data from Table 3; the open
circles show the data from Table 4.
within the statistical error. Table 1 also gives the values ∆p
of the distances up to the percolation point pc = 0.592746
[14]. As an illustration, the dependences of the critical
amplitudes Γ and Γ' are constructed in Fig. 4a, and the
dependence of their ratio Γ/Γ' is constructed in Fig. 4b.
The conclusion that the critical amplitude ratio Γ/Γ' is
independent, which can be drawn from the data pre-
sented, is the main physical result of this paper. 

We note that while the ratio Γ/Γ' of the critical
amplitudes of the susceptibility remains unchanged in a
quite wide range of impurity concentrations, the effec-
tive critical exponent γ of the susceptibility varies quite
appreciably. It is evident from Fig. 4c that the value of
this exponent increases continuously, and it assumes its
maximum value at an impurity concentration of approxi-
mately 20%, after which it decreases. This variation of the
effective critical exponent γ agrees qualitatively with
the variation noted in [9–11].
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To monitor the accuracy we also performed a some-
what different analysis of the same numerical data.
Specifically, first we averaged the numerical data for
the susceptibility over the samples:

(9)

The functions Γτ–γ and Γ'(–τ)–γ' were then fit to these
values. The values obtained in this manner for the crit-
ical exponents γ and the critical amplitudes Γ and Γ' are
presented in Table 4. The values are identical to those
presented in Table 3. This indicates that the fitting pro-
cedure is stable and the results of the analysis of the
numerical data are reliable. Moreover, the agreement
between the results of the two methods of averaging is an
indirect indication of the fact that the susceptibility in the
indicated parameter range is a self-averaging quantity.

χ T  L;( )
1

NL

------ χ T  L i,;( ).
i 1=

NL

∑=
Table 4.  The result of a fit to the average susceptibility χ(T; L) (see the definition (9))

p p – pc Γ ' Γ γ β Tc Γ/Γ '

1.00 0.407 0.02388 0.959880 1.7567 0.44083 2.26845 40.20

0.97 0.377 0.02364 0.944944 1.8146 0.46274 2.16104 39.97

0.93 0.337 0.02386 0.953161 1.8850 0.49637 2.01463 39.95

0.90 0.307 0.02482 0.984451 1.9323 0.52551 1.90291 39.66

0.85 0.257 0.03202 1.257918 1.9551 0.58492 1.70964 39.28

0.82 0.227 0.03538 1.371543 1.9947 0.62873 1.59051 38.76

0.80 0.207 0.04064 1.653404 1.9796 0.66224 1.51003 40.69

0.78 0.187 0.05037 1.908872 1.9688 0.70111 1.42631 37.90

0.75 0.157 0.06197 2.418006 1.9808 0.77073 1.29747 39.02
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5. CONCLUSIONS

We have presented the results of a numerical inves-
tigation of the behavior of the magnetic susceptibility
in the critical region of the two-dimensional Ising
model with nonmagnetic impurities. Our data are based
on an analysis of the temperature dependences of ther-
modynamic quantities. These are the dependences that
make it possible to determine the critical amplitudes.

In virtually all previous works (with the exception
of [26]) the critical exponents were extracted from an
analysis of the dependences of the thermodynamic
quantities on the dimensions of the system at the criti-
cal point (see the review in [2]). To demonstrate the
quality of our numerical data and the possibility of mak-
ing a direct comparison with the results obtained by
other authors, we also performed a similar finite-dimen-
sional analysis. 

We shall now investigate the dependence of the sus-
ceptibility on the lattice size for the critical point. Our
method makes it possible to determine the critical point
for each sample. Consequently, the susceptibility can
be calculated for each sample i and then averaged over
NL samples:

where NL is the number of samples. The variance βi is
small compared with the radius of “smoothing” of the
susceptibility at the critical point, τr < 1/L . 0.004 for
L ≤ 256. Consequently, we can determine

m2[ ]av 1 L( )
1

NL

------ mi
2 βi L,( ),

i 1=

NL

∑=

βc[ ] 1
NL

------ βi,
i 1=

NL

∑=

1

0.1
10 100 L

[m2]c

Fig. 5. [m2]c versus the lattice size L at the critical point with
sing spin concentrations p = 1.0 (filled squares) and 0.85
(filled circles). The dotted lines show the result of a fit with
he obtained values of the critical exponent ratio γ/ν =
1.7505(6) and 1.747(1), respectively.
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and then find

For L = 256 we obtained

i.e., both approaches give consistent values within the
limits of error.

For lattices sizes L < 128 it is impossible to determine
the critical temperature for each sample by the above-
described method because the critical region where a
power-law fit of the susceptibility is possible vanishes.
Consequently, we used the second method for calculat-
ing the susceptibility at the critical point: [m2]c(L) =
[m2]av2(L). Figure 5 shows the dependence of [m2]c(L)
for concentrations p = 1.0 and p = 0.85. The numerical
values of the effective exponents are identical to those pre-
sented by other authors (compare, for example, [10]).

Thus, the results of this paper can be divided into
two parts. 

The first part is methodological. We developed and
successfully applied a new method for analyzing the criti-
cal behavior. This method makes it possible to extract
simultaneously from the numerical data the values of the
critical temperature, the critical exponents, and the ampli-
tudes. Our determination of the “critical” temperature of a
finite-size sample has a definite meaning. Specifically, this
is the temperature which determines the equality of the
critical exponents of susceptibility in the low- and high-
temperature regions. It is obvious that such a condi-
tional determination of the critical temperature is con-
sistent with the well-known fact that a phase transition
is impossible in a finite- size sample.

The second part of the results is associated with the
investigation of the critical behavior of the Ising model
with nonmagnetic impurities. The basic result of this
paper is a numerical determination of the fact that the
ratio of the critical amplitudes of the susceptibility is
independent for concentrations of nonmagnetic impuri-
ties q ranging from 0 to 0.25. Hence it can be concluded
that in the indicated range of impurities the critical
behavior of our system once again lies in the Ising univer-
sality class. The variation of the effective critical exponent
of the susceptibility, which we observed and confirmed in
our investigation, can be attributed to the impurity concen-
tration dependence of corrections, which are unknown
to us, to the scaling. At least, this is so for a sufficiently
low concentration of impurities, when the Dotsenko–
Dotsenko–Shalaev–Shankar–Lüdwig theory is applica-
ble [5, 6]. Specifically, when the known logarithmic
behavior is included in the fitting procedure, the critical
exponent γ remains equal to the “pure” value 7/4. For
large values of the concentrations, a fit of this kind

m2[ ]av 2 L( )
1

NL

------ mi
2 βc[ ] L,( ).

i 1=

NL

∑=

m2[ ]av 1 547 22( ),=

m2[ ]av 2 563 16( ),=
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becomes unstable. This indicates the appearance of new
correction terms of a form which is unknown to us.

A very attractive feature of our method is that, as we
found, the ratio of the critical amplitudes of the mag-
netic susceptibility can be calculated to a higher degree
of accuracy than, for example, the other ratio of the crit-
ical amplitudes: Binder’s cumulants [27]. It is of inter-
est to determine the ratio of the critical amplitudes near
the percolation point of the lattice. In so doing, it could
be possible to investigate a transition from the Ising
universality class to the percolation class.
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Abstract—Resonance scattering of a transverse sound wave by a planar defect in an elastic isotropic medium
is studied in a wide range of values of the ratio of the damping length and the size of the region of localization
of longitudinal oscillations. The transition between two limiting cases is described. The character of the transi-
tion is demonstrated by typical plots of the dependence of the reflection and transmission coefficients on the
parameter relating the wavelength of the incident wave and the strength of the defect. It is shown that renormali-
zation of total reflection into conventional dissipative passage occurs for values of this parameter below a cer-
tain critical value. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In the last few years peculiarities of the resonance
reflection of particles or waves by defects has been
found in scattering theory for cases where the disper-
sion law possesses more than one branch of stationary
states or, in other words, the Green’s function of the
corresponding equations has at least two components.
Examples are the resonance interaction of the trans-
verse and longitudinal components of an acoustic wave
at a planar defect in the theory of elasticity [1–4] or in
the simplest vector model of a crystal lattice [5], the
scattering of waves described by a scalar equation tak-
ing into account the highest-order dispersion (i.e.,
including fourth-order spatial derivatives) [6], two-
channel scattering by a point defect [7], and finally,
oscillations in waveguide systems, where transverse
quantization gives rise to a system of branches in the
dispersion law for one-dimensional motion [8]. In all of
these examples the same particle energy (or wave fre-
quency) can correspond to two stationary states of a
different nature: one state being a wave propagating in
all space (or only in one half-space) and the other state
being localized at a defect. In the presence of a defect
the independent modes of an ideal system interact, and
the traveling wave can undergo resonance scattering by
a localized oscillation similar to scattering by an inter-
nal dynamic mode of a defect.

One feature of resonance reflection, which will be
analyzed below, is the predicted total reflection of a
wave by a passive defect (a defect with no internal
dynamical degrees of freedom) for a certain value of
the wave frequency. Specifically, scattering of a trans-
1063-7761/00/9006- $20.00 © 0974
verse sound wave by a planar defect in an elastic isotro-
pic medium is studied. It is assumed that the phase
velocity c of the wave along the defect falls between the
transverse ct and longitudinal cl sound velocities in the
bulk. It has been shown [1] that in the limit cl – c ! cl
the reflection coefficient for such a wave is exactly 1
along the curve

(1)

in the (c, k) plane, where H is the effective thickness of
the defect layer, defined taking into account the
strength η of the defect: H = ηh, where h is the thick-
ness of the defect layer. A relation determining this
curve in a wide range of values of c and k has been
found in [2]. It is interesting that although the values of
c and k for which the reflection coefficient is 1 and
hence the total reflection curve depends on the strength
and thickness of the defect, the fact of total reflection
itself remains unchanged for arbitrarily small thick-
nesses of the defect layer.

In [4] it is asserted and confirmed by a calculation
that total reflection of a wave by a planar defect with
infinitesimal thickness is unphysical or, at least, unsta-
ble with respect to the processes that are ordinarily
neglected in an idealized theory. One such process is
any weak damping of sound waves, which is usually
neglected in the theory of elasticity.

The basic idea is as follows. Let τ be the relaxation
time determining the damping of a sound wave. It is
related with the viscosity ν by the well-known relation
τ–1 = ν(ω/c)2, where ω is the wave frequency. The

cl c–
cl

------------ const kH( )2, kH  ! 1=
2000 MAIK “Nauka/Interperiodica”
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damping of a sound wave is assumed to be weak, the
criterion for which is ωτ @ 1. To first order in the small
parameter (ωτ)–1 the velocity dispersion is determined
by the relation

(2)

Consequently, the damping length l0 of a sound
wave is approximately

(3)

As noted above, the resonance interaction of trans-
verse sound with a planar defect is due to the interac-
tion of an incident transverse wave with localized lon-
gitudinal oscillation. The resonance properties of such
an interaction can be manifested in full measure only if
the damping length l0 is much greater than the size of
the region of localization of longitudinal oscillations:

(4)

where κl is a constant that determines the spatial expo-
nential decay of the amplitude of longitudinal oscilla-
tions. By definition

(5)

Consequently, using the estimate (1), which was
obtained neglecting damping, the condition (4) assumes
the form

(6)

It follows from equation (6) that for ηhk ! 1 the
possibility of describing the resonance properties of a
planar defect neglecting damping of sound is limited, at
least, to the region (6). It will be shown below that a
systematic calculation will give more stringent limita-
tions than the stronger inequality (6), so that the latter
can be interpreted as a necessary condition for neglecting
dissipative effects when analyzing resonance scattering. 

In the opposite limit there should be no resonance scat-
tering. Systematic analytic calculations have confirmed
that resonance vanishes in the limit kH  0 [4].

In the present work resonance scattering by a planar
defect is studied in a wide range of values of the param-
eter l0κl and the transition between different limiting
cases is described. The character of the transition is
demonstrated by typical plots of the dependence of the
reflection and transmission coefficients on the parame-
ter Hk.

2. RESONANCE SCATTERING 
WITH DISSIPATION

We shall use the simple model proposed in [3] for a
planar defect to study the qualitative physical phenomena
associated with the problem under discussion. In [3] the

sl cl 1 i
2ωτ
----------– 

  .=

l0 cτ∼ c3/νω2.=

l0 @ 1/κ l,

κ l k 1 c/cl( )2– .=

ηhk @ 
1

cτk
-------- νω

c2
-------.=
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problem of the scattering of a transverse Rayleigh-
polarized sound wave

by a flat isotope-defect (Z = 0 plane) in an isotropic
medium was solved. This model is a particular case of
the model examined in [4], if in the latter the coeffi-
cients associated with capillary effects (the surface ten-
sion and the surface elastic moduli),1 are set equal to 0
and only the mass defect is taken into account. Such a
defect and, hence, the boundary conditions do not fun-
damentally change the character of the phenomena.
The boundary conditions presuppose that the elastic
displacements are continuous at the plane of the defect
and the jump in the normal components of the stress
tensor, which is determined by the defect strength
parameter2 η = (M – m)/m, where m is the mass of the
atoms of the medium and M is the mass of the isotopes
in the defect layer.

The solution u(z) is assume to be a sum of a volume
transverse wave and a longitudinal wave localized at
the defect. Application of the boundary conditions
yields expressions for the reflection coefficient R = |A|2
and transmission coefficient T = |B|2, where A and B are,
respectively, the amplitudes of the reflected and trans-
mitted waves [3]:

(7)

(8)

(9)

where κ0 = κl (see equation (5)) and q = k
is the z component of the wave vector of the transverse
wave.

Analysis of these expressions permits writing the
obvious conditions for resonance scattering.

The condition for total reflection (R = 1, T = 0) is

(10)

and the condition of total transmission (R = 0, T = 1) is

(11)

1  The coefficients g1 and h11 in equations (6) and (10) in [4].
2  In [3] this parameter was determined with the opposite sign.

u x z,( ) ux 0 uz, ,( ) u z( ) ikx iωt–( )exp= =

A
ηh
∆

------=

× 2κ0cl
2 ηhω2–( ) k2 q2–( ) ηhk2cl

2 κ0
2 q2+( )–[ ] ,

B
2iq
∆

-------- 2κ0cl
2 ηhω2–( ),=

∆ ηh 2κ 0cl
2 ηhω2–( )ω

2

ct
2

------ ηhk2cl
2 q2 κ0

2–( )+=

+ 2iq 2κ0cl
2 ηhω2–( ) ηhk( )2κ0cl

2–[ ] ,

c/ct( )2 1–

2κ0cl
2 ηhω2,=

2κ0cl
2 ηhω2  

k
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The curves of the resonance scattering frequencies
(10) and (11), neglecting damping, in the (k, c) plane are
displayed in Fig. 1.

Introducing the viscosity into the dynamical equa-
tion by taking viscosity into account in the dispersion
of the sound velocity (2) does not change the form of
the equation itself. This means that to discuss the effect
of damping on the effects under consideration it is suf-
ficient to replace in equations (5), (10), and (11) cl by sl
(and κ0 by κ).3

For convenience, we now introduce the notation ξ =

νω/2 , which by virtue of equation (4) presupposes
that ξ ! 1. Then, we obtain the following expression
for κ [4] in the leading approximation in ξ:

The old formulas (10) and (11) can be used to obtain an
expression for κ0 near resonance scattering and trans-
mission. Consequently, under resonance conditions
where c  cl (ηhk ! 1) the formula for κ2 acquires
the form

(12)

where γ = 1/2 for resonance reflection and γ = (  +

 – c2)/2(2  – c2) for resonance transmission. Since
γ is of the order of 1, sound damping in the relation (12)
can be neglected only if 

(13)

which is a stronger condition than equation (6) (see [4]). 

The condition (13) includes almost the entire veloc-
ity range under study, ct < c < cl , except for small neigh-
borhoods near the limits, precisely where the damping
is observed. 

3 Since (see the Introduction) the effects under consideration
appear in the limit c  cl, the dispersion of the velocity of
transverse oscillations can be neglected.

cl
2

κ2 κ0
2 2iξ ω/cl( )2.–=

κ2 k2 γ2 ηhk( )2 2iξ–[ ] ,=

cl
2

ct
2 ct

2

ηhk( )2
 @ ξ ,

|B|2 = 0|A|2 = 0

cl

c

ct
0 ηhk~ 1

Fig. 1. Curves of the resonance dispersion laws (10) and (11).
JOURNAL OF EXPERIMENTAL 
                                      

Substituting the expressions (2) and (12) into the
expressions (7) and (8) we obtain the coefficients R and
T as functions of the phase velocity c and the strength
of the defect (the parameter ηhk) on the curves of the
frequencies of the “old” resonances (10) and (11):

(14)

(15)

(16)

where w = c/ct , σ = / , and λ =

. 
We considered it useful to present the relations

(14)–(16) here even though they are extremely compli-
cated. They make it possible to calculate the scattering
parameters of a wave with any phase velocity in the
range studied (i.e., for arbitrary γ) for a defect of arbi-
trary strength in a slightly viscous medium. 

Analysis of equations (14) and (15) shows that, as
noted in [4], damping at frequencies of total transmission
is weak and conditions stronger than the inequality (6) are
not needed to preserve total transmission. Conversely, at
the frequencies of total reflection (see Fig. 2) substantial
renormalization of the effect occurs at a definite frequency
(or for defects with a definite strength), and total reflec-
tion gradually vanishes.

The process leading to this qualitative transforma-
tion is examined in detail below.

3. APPROXIMATE DESCRIPTION
OF THE SCATTERING COEFFICIENTS

IN LIMITING CASES

The degree to which damping influences resonance,
i.e., the form of the expressions for R and T, is largely
determined by the ratio of the real and imaginary parts

R
ηhk( )2

D
----------------- 2 w2–( ) λ 1+ 1

2γ
----------– 

  1 σ–

2γσ
-------------–

 
 
  2

=

+ 2 w2–( ) λ 1– 2ξ
γ

----------–
 
 
 

2

,

T
4 w2 1–( )

D
----------------------- λ 1+ 1

2γ
----------– 

  2
λ 1–+ ,=

D ηhk w2 λ 1+ 1

2γ
----------– 

  1

2γ
---------- 1 σ+

σ
------------ 2

w2σ
----------– 

 +
 
 
 

=

1-----




+ w2 1–( ) λ 1–( ) 2 ηhk( )2–( )
2

+ ηhk
2ξ
γ

---------- w2 λ 1–– 
  w2 1–( )+

× λ 1+ 2 ηhk( )2–( ) 2
γ

-------– 
 

2

,

ct
2 cl

2

1 2ξσw2/ 1 σw2–( )( )2
+
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in equation (12). The final results are different in the
following ranges of values of the parameter ηhk.

1) (ηhk)2 @ ξ, the case where the influence of damp-
ing is extremely weak (13) (region a in Figs. 2 and 3). 

In this case, for the old curve of the frequencies of
total reflection (γ = 1/2 in equation (12)) the equality

(17)

can be used to a first approximation, and the required
substitutions yield approximate expressions for the res-
onance coefficients (14) and (15), which, naturally, dif-
fer from Rr = 1 and Tr = 0:

(18)

(19)

The formulas (18) and (19) are completely identical
to the analogous formulas in [4], provided that the anal-
ysis is limited only to an isotope-defect layer. 

The fraction of the absorbed sound energy (neglecting
other losses) is obtained from equations (18) and (19):

(20)

It is evident that for (ηhk)3 = 8ξ/(w2 – 1)1/2 an inflec-
tion appears (the region b in Figs. 2 and 3): half the
energy (Ed = 1/2) arriving at the defect is absorbed, and
the coefficients Rr and Tr become Rr = Tr = 1/4 (Fig. 2).
In [4] this phenomenon is called anomalous absorption. 

Thus, the form of the denominators in equations
(18) and (19) determines a more stringent condition
than the condition (13) for the a description neglecting
damping (equations (7) and (8)) to be valid, specifi-
cally,

(21)

which, as noted in [4], is quite difficult to produce using
real materials.

Gradually weakening, the inequality (13) (and, of
course, the inequality (21)), i.e., moving along the fre-
quency curves toward longer wavelengths and weaker
defects, we obtain the condition (ηhk)2 ~ ξ ! 1 and,
consequently,

2) the region of strong damping (section c in Figs. 2
and 3), where

(22)

In this case, a simplification of equation (12) leads
to the relation

(23)

κ k
ηhk

2
---------- 2iξ

ηhk
----------–=

Rr
ηhk( )6 w2 1–( )

ηhk( )3 w2 1– 8ξ+{ }
2

---------------------------------------------------------,=

Tr
64ξ2

ηhk( )3 w2 1– 8ξ+{ }
2

---------------------------------------------------------.=

Ed 1 Rr Tr––
16ξ ηhk( )3 w2 1–

ηhk( )3 w2 1– 8ξ+{ }
2

---------------------------------------------------------.= =

ηhk( )3
 @ ξ ,

ηhk( )2
 ! ξ  ! 1.

κ k 1 i–( ) ξ ,=
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which makes it possible to simplify the expressions
(14) and (15) for the resonance parameters (for w ~ 1):

(24)

(25)

The total dissipation in this case is negligible:

(26)

It is interesting that equations (24), (25), and (26) do
not explicitly contain the viscosity coefficient. The viscos-
ity influences the result indirectly via the condition (22). 

In the indicated wavelength range, determined by
the requirement (ηhk)2 ! ξ ! 1, the interaction of a
wave with a defect is not a resonance interaction, and
the strength of the interaction is proportional to (ηhk)2

at any frequency. It follows from equations (24) and
(25) that a defect is virtually transparent for such
waves. 

In summary, our analysis shows that the resonance
interaction of acoustic waves with planar defects is
extremely sensitive to dissipative losses. Total resonance
reflection, which is obtained in a calculation neglecting
dissipation processes, is replaced by the transmission of

R
ηhk( )2 2 w2–( )2

4 w2 1–( )
--------------------------------------- ! 1,=

T 1
ηhk( )2w4

4 w2 1–( )
-----------------------.–=

Ed ηhk( )2
 ! 1.=

1.00

0.75

0.50

0.25

0

c
b

a

Rr

Tr

ηhk~ ξ3~ ξ

Fig. 2. Reflection R and transmission T coefficients versus
the parameter ηhk at total-reflection frequencies (10).

ηhk

c b a

0.50

0.25

0

Ed

~ ξ3~ ξ

Fig. 3. Dissipation losses versus the parameter ηhk at total-
reflection frequencies (10).
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almost all of the elastic wave through a thin planar defect.
The indicated role of dissipation processes agrees with
the theoretical and experimental investigations of the
Kapitsa jump [9–11], which demonstrate that acoustic
absorption increases the transmission coefficient for
phonons through a boundary in an elastic medium.
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Magnetic Phase Diagram of the Intermetallic Compounds 
Gd1 – xLaxMn2Ge2 and the Effect of a Field on Transitions 

of the Mn Subsystem from the Antiferromagnetic
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Abstract—The magnetic properties of the intermetallic compounds Gd1 – xLaxMn2Ge2 (layered tetragonal
crystal structure of the type ThCr2Si2), investigated in the present work and in [1] A. Sokolov, et al., Sol. State
Commun. 105, 289 (1998), are discussed. It is shown that the basic characteristics of the magnetic ordering of
these compounds—magnetic phase transitions from the ferrimagnetic into the antiferromagnetic state and vice
versa—observed with increasing temperature in compositions with x < 0.1, the effect of a magnetic field on
these transitions, the temperature dependences of the magnetization of these intermetallic compounds, as well
as their magnetic T–x diagram can be described quantitatively in the Yafet–Kittel model for ferrimagnets with
a negative exchange interaction in one of the sublattices using parameters determined in [2] A. Yu. Sokolov
et al., JETP 89, 723 (1999) from investigations of the system Gd1 – xYxMn2Ge2, taking into account the depen-
dence of the interplanar exchange interaction Mn–Mn on the crystal lattice parameter a. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The magnetic properties of intermetallic rare-earth
compounds RMn2Ge2 (tetragonal layered crystal struc-
ture of the type ThCr2Si2, space group I4/mmm) are
determined by two interacting magnetic subsystems—
rare-earth and manganese, which are formed by alter-
nating layers which are perpendicular to the tetragonal
axis [3]. Numerous investigations (see, for example, the
review [3]) have shown that the positive Mn–Mn
exchange interaction in a layer is the strongest interac-
tion. The Mn–Mn and R–Mn interplanar exchange
interactions are an order of magnitude weaker. The
exchange between the rare earths is another order of
magnitude weaker. An important feature is that the
interplanar Mn–Mn exchange interaction depends
strongly on the distance d between the manganese
atoms in a layer (in other words, on the lattice parame-
ter a) and changes sign from negative to positive as the
parameter a increases to a critical value acr . Since the
parameters of the crystal structure of the intermetallic
compounds RMn2Ge2 decrease with increasing number
of the rare-earth element because of the lanthanide
compression effect, the intrinsic magnetic ordering of
the manganese subsystem is ferromagnetic in most of
these intermetallic compounds with light rare earths,
since for them a > acr , and antiferromagnetic in the
intermetallic compounds with heavy rare earths, since
in these compounds a < acr . Since exchange between
1063-7761/00/9006- $20.00 © 20979
the heavy rare earth and manganese is also negative,
intermetallic compounds with heavy rare earths can be
treated as two-sublattice ferrimagnets with a negative
exchange interaction in the manganese sublattice.

The effect of the interatomic distances on the mag-
netic properties of intermetallic compounds of the type
RMn2Ge2 can be clearly seen by comparing the mag-
netic properties of the system Gd1 – xYxMn2Ge2, which
we studied in [2], with those of the mixed intermetallic
compounds Gd1 – xLaxMn2Ge2, for which a magnetic T–x
diagram was constructed in [1] with small (x < 0.1)
substitutions of lanthanum for gadolinium. Even though
in both systems the magnetic gadolinium is replaced by
a nonmagnetic element (yttrium or lanthanum), the mag-
netic properties of the mixed compounds are strongly
different. 

This seems to be explained by the different depen-
dence of the crystal structure parameter a with substi-
tution of yttrium or lanthanum for gadolinium. Since
the atomic radius of yttrium is close to that of gadolin-
ium, in the intermetallic compounds Gd1 – xYxMn2Ge2, to
a first approximation, the dependence of the interplanar
Mn–Mn exchange interaction on the yttrium concen-
tration x can be neglected. At the same time, in the
system Gd1 – xLaxMn2Ge2 this effect is very strong, since
the atomic radius of lanthanum is much larger than that of
gadolinium, and when lanthanum is substituted for gado-
000 MAIK “Nauka/Interperiodica”
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Fig. 1. (a, b) Theoretical and (c, d) experimental temperature dependences of the magnetization of the intermetallic compounds
Gd1 − xLaxMn2Ge2 for x = (1) 0.04, (2) 0.05, (3) 0.06, (4) 0.07, (5) 0.08, (6) 0.09, (7) 0.15, (8) 0.2, (9) 0.3, (10) 0.4, (11) 0.6, and
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linium the sign of the interplanar Mn–Mn exchange
interaction changes.

In [2] we showed that the spontaneous and field-
induced magnetic phase transitions and other low-tem-
perature magnetic properties of the intermetallic com-
pounds Gd1 – xYxMn2Ge2 can be adequately explained
by the Yafet–Kittel model [4], modified so as to take
account of magnetic anisotropy, for a two-sublattice ferri-
magnet with negative exchange in one of the sublattices.
In the Yafet–Kittel model it is assumed that this sublattice
is divided into two sublattices, whose magnetic
moments, depending on the effective field acting on
this sublattice, are oriented either parallel or at an
angle or antiparallel to one another (see [2] for a
detailed description of the possible magnetic struc-
tures and magnetic phase transitions in the Yafet–Kit-
tel model). The values of the parameters describing
the exchange interactions and the magnetic anisotropy
of the compounds Gd1 – xYxMn2Ge2 were determined
from the experimental data obtained.

The objective of the present work was to determine
how the experimental data, obtained in [1], for the sys-
tem of mixed intermetallide Gd1 – xLaxMn2Ge2 as well
JOURNAL OF EXPERIMENTAL 
as certain experimental results of the present work can
be described in the Yafet–Kittel model with parameters
determined from investigations of the intermetallic
compounds Gd1 – xYxMn2Ge2 (taking account of the
above-noted dependence of the interlayer Mn–Mn
exchange interaction on the lattice parameter a).

2. SAMPLES AND MEASUREMENT 
PROCEDURE

In the present work polycrystalline samples of the
system Gd1 – xLaxMn2Ge2, on some of which the mea-
surements were performed in [1], were used. They were
prepared for initial components on a cold hearth in an
arc furnace. The samples were homogenized in the
course of a week at temperature 800°C in a dynamic
vacuum. X-ray diffraction showed that the samples had
a single-phase structure.

The magnetic susceptibility of the samples in weak
(down to 10–3 T) ac magnetic fields was measured. The
magnetization of the samples was investigated with a
vibrating sample magnetometer in fields up to 0.8 T and in
pulsed magnetic fields up to 25 T by the induction method.
AND THEORETICAL PHYSICS      Vol. 90      No. 6      2000
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3. EXPERIMENTAL RESULTS

Figure 1 displays the temperature dependences of
the magnetization of the intermetallic compounds
Gd1 – xLaxMn2Ge2 in a 0.8 T field (the data for x < 0.1
were taken from [1]). As one can see from the figure,
the temperature dependences of the magnetization of
the intermetallic compounds with lanthanum content
greater than x = 0.1 are characteristic for ferrimagnets:
the magnetic compensation temperature is observed in
most of them, and in compositions with lanthanum con-
tent x = 0.6 and 0.8 the low- temperature magnetization
increases with temperature. A different behavior was
observed in [1] in compositions with low quantities lan-
thanum (x < 0.1). At low temperatures they are also ferri-
magnets, but their magnetization decreases sharply as
temperature increases: a first-order transition into an anti-
ferromagnetic state is observed [1]. This transition is sim-
ilar to the one repeatedly discussed in previous work for
pure GdMn2Ge2 (see, for example, the review [3]) and
attributed to a transition of the manganese subsystem
from the ferromagnetic into the antiferromagnetic state
and magnetic disordering of the gadolinium subsystem.
The temperature of this transition increases with the
lanthanum concentration. In compositions with x >
0.04 a sharp increase of magnetization is observed with
a further increase in temperature: a reentrant first-order
transition into the ferrimagnetic state occurs as a result
of a sign change of the interlayer Mn–Mn exchange
AL OF EXPERIMENTAL AND THEORETICAL PHY
interaction [1]. The temperature of this transition
decreases as x increases, so that the antiferromagnetic
phase does not arise in compositions with x > 0.08. 

Figure 2 shows the magnetization curves of the
intermetallic compounds Gd1 – xLaxMn2Ge2. It is evi-
dent that in this temperature range, where according to
[1] the samples are antiferromagnetic, there is no spon-
taneous magnetization and a metamagnetic transition is
observed in a field. A similar transition was found pre-
viously in the single crystal GdMn2Ge2 with the field
oriented along the tetragonal axis [5] and it was inter-
preted as a transition of the manganese subsystem from
the antiferromagnetic into the ferromagnetic state.

The temperature dependences of the fields of the
transition from the antiferromagnetic into the ferro-
magnetic state are presented in Fig. 3. It is evident that
the field of the metamagnetic transition for composi-
tions with x = 0.04 and 0.05 increases monotonically
with decreasing temperature, and in compositions with
high lanthanum concentration (x = 0.06 and 0.07) the
magnitude of this field passes through a maximum at a
certain temperature.

The complete magnetic T–x phase diagram of the
system Gd1 – xLaxMn2Ge2 is constructed in Fig. 4.
A part of the magnetic phase diagram for low lantha-
num concentrations (x < 0.1), which was obtained in [1]
in a 0.8 T field, is presented in the inset.
SICS      Vol. 90      No. 6      2000
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4. DISCUSSION 
OF THE EXPERIMENTAL RESULTS

Comparing the magnetic T–x phase diagram of the
system Gd1 – xLaxMn2Ge2 with the phase diagram of the
system Gd1 – xYxMn2Ge2, presented in Fig. 3 of [2], shows
that they are different. In the system Gd1 – xLaxMn2Ge2, a
ferrimagnetic state occurs for all x at low temperatures,
whereas in the system with yttrium the transition from
the ferrimagnetic into the antiferromagnetic phase
through triangular phases is observed as the yttrium
concentration increases. As the temperature in the sys-
tem with lanthanum increases with low lanthanum con-
centrations, transitions occur from the ferrimagnetic
into antiferromagnetic state and vice versa, while com-
pounds with a low yttrium content transform with
increasing temperature from the ferrimagnetic into the
triangular phase and then into the antiferromagnetic
phase. As already mentioned above, these differences
are due to the fact that in a system with yttrium the crys-
tal lattice parameter a is essentially independent of the
concentration x, and therefore it can be assumed, to a
first approximation, that the interlayer Mn–Mn
JOURNAL OF EXPERIMENTAL 
exchange interaction does not change when yttrium is
substituted for gadolinium, while in a system with lan-
thanum the dependence of this exchange on the lantha-
num concentration must be taken into account, since
the lattice parameter a increases strongly with the lan-
thanum content.

We showed in [2] that the magnetic properties of the
intermetallic compounds Gd1 – xYxMn2Ge2 can be ade-
quately described in a Yafet–Kittel model, modified so as
to take account of the magnetic anisotropy, for a two sub-
lattice ferrimagnet with an antiferromagnetic exchange
interaction in one of the sublattices. In what follows we
shall consider the possibility of describing in this model
the magnetic properties of the system Gd1 – xLaxMn2Ge2.

We shall view these intermetallic compounds as
two-sublattice ferrimagnets, one sublattice of which is
formed by the rare-earth atoms and the other by the
manganese atoms.

In accordance with the Yafet–Kittel model, we shall
assume that the manganese sublattice divides into two

sublattices with moments  and  with the sameM2' M2''
AND THEORETICAL PHYSICS      Vol. 90      No. 6      2000
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magnitude (  =  = M2), which can either be collinear
to one another and to the magnetic moment (1 – x)M1 of
the gadolinium subsystem or be oriented at an angle
with respect to one another and to the magnetic
moment of the gadolinium sublattice (triangular mag-
netic structure). In addition, depending on the magni-
tude of the magnetic anisotropy, the magnetic moments
can be oriented differently relative to the c axis of the
crystal.

In the Yafet–Kittel model the magnetic energy of the
intermetallic compounds Gd1 – xLaxMn2Ge2 can be writ-
ten in the form

(1)

Here the first term describes the exchange interaction of
the gadolinium and manganese subsystems (λ12 < 0),
the second term describes the Mn–Mn exchange in the
layer (  > 0), the third term describes exchange
between the layers of manganese (λ22 < 0 for a < acr ,
λ22 > 0 for a > acr), the fourth term describes the
exchange interaction in the gadolinium subsystem,
the fifth term described the magnetic anisotropy of the
manganese subsystem (M2c is the component of the
magnetization of manganese along the tetragonal axis;
κ < 0 is related with the uniaxial anisotropy constant K

of the manganese subsystem as K = –2κ ), and the
last term describes the Zeeman energy. We note that in
equation (1), in contrast to the expression presented in
[2], we have taken into account the Mn–Mn exchange
interaction in a layer, since in the present work we are
interested in the high-temperature properties; in this
case the temperature dependence of the moment of
manganese cannot be neglected.

As shown in [2], for λ22 < 0 four different magnetic
phases are possible in our system in a zero external
field.

In the first phase the magnetic moments of the two
manganese sublattices are parallel to one another and
antiparallel to the magnetic moment of the gadolinium
sublattice, so that a collinear ferrimagnetic structure
with orientation of the resulting magnetization parallel
to the tetragonal axis (Fi phase) is formed. In the two
other phases the magnetic moments of the manganese
sublattices make angles with one another and with the
magnetic moment of the gadolinium sublattice, so that
triangular magnetic ordering arises. These phases (in
[2] they are designated as T and T ') differ by the orien-
tation of the magnetic moment of the gadolinium sub-
lattice relative to the crystallographic axes: they are
parallel to the c axis of the crystal in the first phase and
perpendicular in the second phase. Finally, the fourth

M2' M2''

E λ12 1 x–( )M1 M2' M2''+( )– λ22' M2
2–=

– λ22M2' M2'' 1/2( )λ11 1 x–( )
2M1

2
–

+ κ M2c'2 M2c''2+( ) H 1 x–( )M1 M2' M2''+ +[ ] .–

λ22'

M2
2
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phase (AF) corresponds to antiferromagnetic ordering
in the manganese subsystem. The energies of these
phases depend on the magnitudes of the exchange inter-
actions of the subsystems and the magnetic anisotropy
energy.

The conditions for the existence of various mag-
netic phases and phase transitions between them at 0 K
are presented in [2]. The magnetic parameters
describing the behavior of this system in the Yafet–
Kittel model were also determined in [2] from an anal-
ysis of the magnetic properties of the intermetallic
compounds Gd1 – xYxMn2Ge2:

λ12 = –7.7T/µB f. u.,

λ22 = –10.9T/µB f. u.,

λ11 = 2.2T/µB f. u.,

K = 15.8µB T/f. u.

We determined the quantity  = 245T/µB formula
units from the Néel temperature of GdMn2Ge2. The
magnetic moment of gadolinium was assumed to be
equal to the moment of the trivalent ion (7µB); the value

λ22'

T, K

1

2

3

4

500

400

300

200

100

0 0.2 0.4 0.6 0.8 1.0
x

400

200

0

T, K

0.04 0.08 x

3

2

1

Mn

P

Mn

Mn
AF Fi

Gd

Fi Mn
Gd

Fig. 4. T–x magnetic phase diagram of the intermetallic
compounds Gd1 – xLaxMn2Ge2 in a 0.8 T field. The symbols
are the experimental data; the lines show the theoretically
computed dependences: d, (1) first-order phase transition
from the ferrimagnetic (Fi) state into the antiferromagnetic
(AF) state; j, (2) magnetic compensation temperature;
(3) second-order transition into the paramagnetic (P) state
(Néel temperature TN); m, r—temperature at which ferri-
magnetic ordering is destroyed (Curie temperature TC);
(4) line showing the variation of the sign of the Mn–Mn
interlayer exchange interaction; +, e—the temperatures TN
and TC from [6]. Inset: Experimental part of the phase dia-
gram for x < 0.1 from [1] compared with the computational
results.
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of the magnetic moment of manganese (1.8µB) was
determined from the data for the single crystal [7].

As already noted above, in calculating the magnetic
properties of the system Gd1 – xLaxMn2Ge2 it is neces-
sary to take into account the dependence of the inter-
layer Mn–Mn exchange interaction on the crystal lat-
tice parameter a and therefore on the temperature and
concentration. Assuming that this dependence is linear,
we can write for the parameter λ22

(2)

According to the Kittel exchange inversion model [8],
part of the energy due to the Mn–Mn exchange interac-
tion, taking into account the dependence on the lattice
parameter a, can be represented in the form

(3)

Here the first term describes the elastic energy, N
describes the corresponding elastic modulus, aT is the
lattice parameter at a given temperature without a mag-
netoelastic contribution (for  ⊥  ), and the sec-
ond term describes the Mn–Mn exchange interaction. 

We can find the equilibrium value of the lattice
parameter a, taking into account the magnetoelastic
energy, from the condition for a minimum of the energy:

(4)

Substituting this value into the formula for the energy,
we find the equilibrium energy of the interplanar Mn–Mn
exchange interaction:

(5)

Thus, taking into account the lattice parameter depen-
dence of the exchange interaction leads to the appear-
ance of an additional contribution that is biquadratic in
the magnetic moments (biquadratic exchange) in the
expression for the exchange energy. We note that, as the
estimates showed, in intermetallide systems Cd–La
biquadratic exchange is weak (it is about 1 or 2% of the
ordinary exchange which is quadratic in the magnetic
moments). Moreover, at a phase transition of the man-
ganese subsystem from the ferromagnetic into the anti-
ferromagnetic state, which we are discussing, the
biquadratic exchange energy does not change. Conse-
quently, we shall neglect the biquadratic exchange in
the calculations below.

To calculate λ22 = ρ(aT – acr) it is necessary to known
the critical lattice parameter acr , the lattice parameter aT
at a given temperature, neglecting the magnetoelastic
contribution from the Mn–Mn exchange interaction,
and the parameter ρ. 

λ22 ρ a acr–( ).=

EMn–Mn
1
2
---

N a aT–( )2

aT
2

------------------------ ρ a acr–( )M2' M2''.–=

M2' M2''

a aT

ρaT
2

N
---------M2' M2'' .+=

EMn–Mn ρ aT acr–( )M2' M2''
ρ2aT

2

2N
----------- M2' M2''( )2

.––=
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We used the value of the critical lattice parameter
acr = 4.045 Å, determined in [6] from an analysis of the
magnetic properties of the intermetallic compounds
Y1 – xLaxMn2Ge2.

The values of aT in the magnetically order state were
found from our measurements of the lattice parameters
of the intermetallic compounds LaMn2Ge2 and
GdMn2Ge2 [9] by extrapolation using the Debye law
for the phonon contribution to the thermal expansion
from the paramagnetic temperature range. The Debye
temperature 415 K was determined by analyzing our
experimental data for the temperature dependences of
the parameters of the crystal structure of the nonmag-
netic intermetallide YCo2Ge2. The values of aT for the
mixed intermetallic compounds Gd–La were calculated
from the following formula using the data for pure
GdMn2Ge2 and LaMn2Ge2 assuming Vegard’s law to
hold:

(6)

Knowing the parameter aT for GdMn2Ge2 and the value
of acr , we found using equation (2) and the value of the
parameter λ22 = –10.9T/µB formula units for this com-
pound at low temperatures that ρ = 310T/µB Å formula
units.

We shall analyze first the properties at low tempera-
tures, where the field dependence of the magnetic
moments of the gadolinium and manganese subsystems
can be neglected. Analytic expressions for this case
were obtained in [2] for the conditions of existence of
various magnetic phases. Using these conditions it is
possible to explain why, in contrast to the system
Gd1 – xLaxMn2Ge2, triangular magnetic phases do not
arise in the system Gd1 – xYxMn2Ge2.

It is shown in [2] that triangular phases in ferrimag-
nets with negative intrasublattice exchange are possible
only if the anisotropy is small compared with this
exchange:

(7)

and when this condition is not satisfied, they become
energetically unfavorable and only ferrimagnetic (Fi)
and antiferromagnetic (AF) phases are possible in the
system, i.e., the system becomes an Ising system. Since
the quantity λ22 in the intermetallic compounds
Gd1 − xLaxMn2Ge2 decreases in absolute magnitude as
the lanthanum content increases (see equation (2)), the
condition (7) for the appearance of triangular phases in
the system holds only for small values of x.

On the other hand, it is shown in [2] that noncol-
linear phases appear because of the decrease in the
intersublattice exchange interaction with substitutions
when

(8)

A combined analysis of equations (7) and (8), taking
into account the dependences of the Mn–Mn interlayer

aT x( ) 1 x–( )aT
Gd xaT

La.+=

K 2λ22M2
2
,–<

1 x–( )λ12M1 2λ22M2 K M2.⁄+<
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exchange interaction on the interatomic distances (see
equations (3), (4), and (5)), shows that the triangular
phase cannot arise in gadolinium–lanthanum interme-
tallic compounds at low temperatures, since with sub-
stitutions the system becomes an Ising system before
the condition (8) for the appearance of triangular
phases is satisfied.

To construct the temperature and field dependences
of the magnetization of the intermetallic compounds
Gd1 – xLaxMn2Ge2 and the magnetic phase diagram of
this system it is necessary to calculate the equilibrium
free energies of various phases taking into account the
field and temperature dependences of the magnetizations
of the magnetic subsystems and to determine, by com-
paring them, the magnetic phase with the lowest energy.
Such a numerical calculation was performed in the
molecular-field approximation using the scheme exam-
ined in detail in [7, 10] and briefly described in [2]. The
regions of existence of various magnetic phases, the tem-
peratures of magnetic phase transitions, and other char-
acteristics of Gd1 – xLaxMn2Ge2 were calculated as a
function of the magnetic field and the lanthanum con-
centration. The computational results were compared
with the experimental data.

We note that approximate analytical formulas can
be obtained for the temperatures and fields of a transi-
tion of the manganese subsystem from the antiferro-
magnetic into the ferromagnetic state, if it is assumed
that the gadolinium subsystem is paramagnetic and its
magnetization is a linear function of the effective field
and the magnetic susceptibility of the manganese sub-
system is neglected (as estimates show, this approxima-
tion “works” in the compound studied in the tempera-
ture range 100–250 K). In this case the intrinsic energy of
the gadolinium subsystem (fourth term in equation (1))
can be expressed as

(9)

where the intrinsic susceptibility χ1 of the gadolinium
subsystem can be described by the Curie–Weiss law:

(10)

We obtain for the transition field in this approximation

(11)

We note that the calculation performed using the
approximate formulas gives qualitatively the same result
as an exact computer calculation, though the transition
fields and temperatures differ somewhat in magnitude.

We compared the results of the computer calcula-
tion with the experimental data. The results of this com-
parison are displayed in Figs. 1, 3, and 4.

As follows from Fig. 1, satisfactory agreement is
observed between the computed dependences M(T)
and the experimental data: the computed dependences
describe well the transitions Fi AF Fi observed

E1 1 x–( )M1
2 2χ1,⁄=

χ1 C T Θ–( )⁄ .=

Hcr λ12– M2

χ1λ12 λ22 λ12⁄+
χ1λ12 1+

--------------------------------------.=
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in compositions with x < 0.1, the values of the magnetic
compensation temperatures, and the character of the
temperature dependences of the magnetization in com-
positions with a high lanthanum content. The some-
what lower experimental values of the magnetization as
compared with the computed values can be explained
by the fact that the measurements were performed on
polycrystalline samples in a 0.8 T field, which is inad-
equate for technical saturation.

The theoretical dependences of the critical fields of the
transitions of the manganese subsystem from the antifer-
romagnetic into the ferromagnetic state describe qualita-
tively the experimentally observed results, though the
experimental and theoretical values of the transition fields
are different in a number of cases (Fig. 3).1 

In Fig. 4 the experimental T–x phase diagram of the
system Gd1 – xLaxMn2Ge2 is compared with the theoret-
ically computed diagram. It is evident that the transi-
tions Fi AF Fi are described well on the basis of
the theoretical ideas developed above.

5. CONCLUSIONS

In summary, the magnetic state does not change in the
system of intermetallic compounds Gd1 – xLaxMn2Ge2 at
low temperatures as the gadolinium concentration
decreases: ferrimagnetic ordering occurs in all mixed
compounds. This behavior is substantially different from
the magnetic behavior of the intermetallic compounds
Gd1 – xYxMn2Ge2, whereas x increases, the ferrimagnetic
(Fi) phase transforms into a phase with triangular mag-
netic ordering (the phase T '). The magnetic phase tran-
sitions observed in both systems with increasing tem-
perature are also different. In contrast to the system
Gd1 – xYxMn2Ge2, where the phase transitions Fi AF
(for x < 0.3), Fi T T ' AF (for 0.3 < x < 0.5),
and T ' AF (for x > 0.5) are observed with increas-
ing temperature, the sequence of phase transitions
Fi AF Fi is observed in the intermetallic com-
pounds Gd1 – xLaxMn2Ge2 with x < 0.09, as mentioned
above, while intermetallic compounds with a high lan-
thanum content are ordinarily ferrimagnets.

These differences are all observed in a model of a
ferrimagnet with a negative exchange interaction in
one of the sublattices, if the fact that the parameter λ22,
describing the Mn–Mn interplanar exchange interac-
tion, in the system Gd1 – xLaxMn2Ge2 depends on the
concentration (while for comparatively low tempera-
tures it also depends on temperature) because of the
change in the lattice parameter a. The line a(T) = acr ,
separating regions with λ22 < 0 and λ22 > 0 (Fig. 4), is
shown in the T–x phase diagram of Gd1 – xLaxMn2Ge2.
It is evident that Mn–Mn exchange is negative only for
small values of x, and even for lanthanum concentra-
tions greater than approximately x = 0.22 these inter-

1 We note that the agreement between the experimental and theo-
retical dependences Hcr(T) can be substantially improved by
making small variations in the values of the critical parameter acr.
SICS      Vol. 90      No. 6      2000
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metallic compounds are normal two-sublattice ferri-
magnets. At the same time λ22 < 0 in the entire magnet-
ically ordered region in the system Gd1 – xYxMn2Ge2
where the lattice parameter a is essentially concentra-
tion-independent.

We note that, as one can see from Fig. 4, the transi-
tion AF Fi at a given temperature occurs at concen-
trations less than the critical value for which the lattice
parameter a = acr . Physically, this is due to the fact that,
in addition to manganese, the intermetallic compounds
studied contain a second—gadolinium—magnetic sub-
system, the interaction with which stabilizes the ferri-
magnetic phase Fi, since in this phase the gadolinium
subsystem is ferromagnetically ordered, while in the
AF phase it is paramagnetic. It is also easy to explain,
as shown above, that triangular phases, which are
observed in the yttrium-substituted intermetallic com-
pounds, are absent in a system with lanthanum. 

In summary, using values of the parameters deter-
mined from the experimental investigations of the sys-
tem Gd1 − xYxMn2Ge2, it has been shown that the
Yafet–Kittel model for ferrimagnets with negative
intrasublattice exchange describes well the transi-
tions Fi AF Fi, the magnetic compensation
point, and other characteristic magnetic properties of
the intermetallic compounds Gd1 – xLaxMn2Ge2, if it is
assumed that the Mn–Mn interlayer exchange interac-
tion depends on the lattice parameter a.

We note that this simple model, however, does not
permit describing quantitatively the temperatures at
which the ferrimagnetic ordering TC is destroyed in
these compounds. As one can see from Fig. 4, the
experimental values of TC are much lower than the val-
ues computed on the basis of the model described
above. This seems to be explained by the fact that in the
intermetallic compounds Gd1 – xLaxMn2Ge2 with a high
lanthanum content the transition at the point TC is the
transition Fi AF, and the transition into the para-
magnetic state occurs at a higher temperature TN. This
behavior was recently observed in LaMn2Ge2 and other
intermetallic compounds RMn2Ge2 with light rare
earths [10]. To describe this behavior it is necessary to
take into account, together with the ferromagnetic, anti-
ferromagnetic Mn–Mn exchange interactions in a layer
JOURNAL OF EXPERIMENTAL
[6]. We note that we observed in the compounds inves-
tigated small features in the temperature dependences
of the magnetization at temperatures of about 420–430
K, close to TN for LaMn2Ge2 [6]. It is possible that these
features are due to the destruction of the antiferromag-
netic ordering in Gd1 – xLaxMn2Ge2, but it has not been
ruled out that they are due to the presence of trace
impurities of other phases. This question requires addi-
tional study.
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Abstract—Magnetic anisotropy and orientational variance as well as shape diversity of granules largely deter-
mine the magnetic properties of granular ferromagnetic metals. The model of magnetically anisotropic ellipsoi-
dal granules explains the glassy nature of the magnetic state of such systems. The relaxation of the magnetiza-
tion and the magnetoresistance of granular ferromagnetic metals is examined on the basis of this model. © 2000
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The model of single-domain superparamagnetic
(and not interacting with one another) granules is ordi-
narily used to describe the properties of granular ferro-
magnets (see, for example, [1]). It is shown in [2] that
the strong geometric magnetic anisotropy of granules
makes this model inapplicable. In the present paper we
examine a simple model in which the magnetic anisot-
ropy of the granules is due to their aspherical shape and
the orientation and shape distributions of the granules
in real systems are taken into account statistically. Such
a model leads naturally to an explanation of the glassy
behavior of granular ferromagnetic metals and, specif-
ically, to a description of the relaxation characteristics
of their magnetization.

It is well known that the electric resistance R of
nanocomposite materials is determined by intergranu-
lar tunneling of electrons. For ferromagnetic granules
this probability depends strongly on the magnetic field
(the so-called giant magnetoresistance). The relative
change in the resistance is found to be related with the
average magnetization m of the system by the simple
relation [1] ∆R/R ∝ m2. Hence it follows that the relax-
ation of the magnetization of such a system is always
accompanied by a relaxation of its resistance. Conse-
quently, an experimental study of the relaxation pro-
cesses can be based on magnetic as well as galvano-
magnetic measurements. For definiteness, in what fol-
lows we shall be concerned with magnetization
relaxation.

The most diverse types of glasses can be described,
as a rule, on the basis of the so-called two-level systems
models—multiple microscopic subsystems with two
energy states separated by a barrier [3]. Transitions
(tunneling or activation) between these states occur in a
subsystem. Often, the specific “arrangement” of two-
level systems is unknown (or it is attributed to lattice
defects whose origin is unclear), but it is assumed that
1063-7761/00/9006- $20.00 © 20987
the corresponding transition times are distributed ran-
domly over exponentially wide limits. A consequence
of this assumption is that the relaxation time of the cor-
responding physical parameter (specific heat, magneti-
zation, and others) is quite long, falling within a quite
wide range described by a logarithmic time-depen-
dence of this parameter. The model considered in the
present work is, essentially, a model of two-level sys-
tems, whose well-known nature makes it possible to
describe the properties of individual two-level systems,
to determine the statistical properties of their set as a
whole, and as a result to calculate the relaxation char-
acteristics of the system.

The present work is a continuation of the analysis
initiated in [2, 4] of the magnetic properties of nano-
composite materials with ferromagnetic granules.

2. RELAXATION OF THE MAGNETIC MOMENT
OF AN INDIVIDUAL ASPHERICAL 

FERROMAGNETIC GRANULE

The typical sizes of ferromagnetic granules in nano-
composite materials are very small (10–100 Å). This
makes it possible to assume such materials to consist of
a single domain. In the absence of an external magnetic
field the spontaneous magnetic moment of an aspheri-
cal granule (the moment being produced by the intra-
granular exchange interaction and equal to VIs, where V
is the granule volume and Is is the saturation magneti-
zation) is always directed parallel to its “easy” magne-
tization axis. When an external magnetic field is
switched on (the direction of the field, generally speak-
ing, is different from that of this axis) the magnetic
moment strives to turn and an energy barrier, whose
magnitude depends on the relative orientation of the
magnetic moment, the external magnetic field, and the
“easy” axis, impedes this rotation.
000 MAIK “Nauka/Interperiodica”
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We shall assume in what follows that the granules are
prolate ellipsoids of revolution with semiaxes a > b = c.
Then the “easy” magnetization axis of a granule is
aligned along the major axis of the ellipsoid. The mag-
netic energy W of such a granule in an external field H
is determined by the relation [2]

(1)

where γ is the angle between the magnetic moment of a
granule in the magnetic field, β is the angle between the
magnetic field and the major axis of the ellipsoid, and
ν = Nb – Na , where Nb and Na are the demagnetization
factors of an ellipsoid along the corresponding axes.

The ground state of the system, obviously, corre-
sponds to the minimum energy W. A calculation shows
(and simple analytic calculations confirm) that for an
arbitrary orientation of the granules relative to the
direction of the external magnetic field the angular
dependence W(γ) of the energy of a granule in a strong
magnetic field (hν > 2) always possesses one minimum
(irrespective of the angle β). However, in a weak mag-
netic field (more accurately, for hν < 2) this dependence
has either two minima—γ1 and γ2—separated by an
energy barrier of height ∆(hν , β) or one minimum. This
is illustrated in the inset in Fig. 1. Correspondingly, the
ground state of the system can evolve according to two
qualitatively different scenarios (see Fig. 1):

1) If β < π/2 (the initial spontaneous magnetic
moment of a granule makes an acute angle with the

W
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Fig. 1. Field dependences of the equilibrium angles of incli-
nation γ of the magnetic moment of ellipsoidal granules.
Inset: Magnetic energy of a granule versus the angle γ
between its magnetic moment and the external magnetic
field for various values of the latter (the dashed lines γ1 and
γ2 correspond to the equilibrium state).
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“future” magnetic field), then as the magnetic field
increases, the angle γ = γ2 decreases monotonically.

2) If π/2 < β < π, then in a certain critical magnetic

field (β) the barrier between the minima vanishes

(∆( , β) = 0) and an abrupt change in angle γ1  γ2
occurs (orientational magnetic phase transition), after
which the equilibrium angle will decrease monotoni-
cally as the field increases.

At finite temperature the orientational transition

starts in a field below the critical field (hν < , when
∆( , β) > 0) and will be manifested as temporal relax-
ation of the magnetic moment of a granule with a charac-
teristic time τν. The field range where such relaxation can
be observed is determined, obviously, by the condition
τexp > τν, where τexp is the duration of the experiment. 

The characteristic relaxation time of the magnetic
moment τν ~ τν0exp[∆(hν, β)/kT], where τν0 ~ mc/eH is
the precession period of the magnetic moment, depends
on the height of the barrier between the two minima of
the energy W [5] (the initial minimum lies above the
final minimum). The magnetic moment of an individual
granule (with angle β > π/2) can assume two values:
mν1 = VIscosγ1 (initial moment) and mν2 = VIscosγ2

(final moment).1 The collection of a large number of
identical granules (with the same shape, volume, and
orientation) can be characterized by a single magnetic
moment mν(t) = p1(t)mν1 + p2(t)mν2, where p1(t) and
p2(t) = 1 – p1(t) are instantaneous (nonequilibrium)
probabilities of finding a granule in the initial (p1) or
final (p2) state, respectively. 

In a constant magnetic field H, the temporal varia-
tion of these probabilities is described by the simple
equations

(2)

where (H) is the corresponding equilibrium proba-
bility in a field H.

Let us consider one possible process leading to the
relaxation of the average magnetic moment mν of such
a system accompanying an abrupt change (at the time
t = 0) of the magnetic field from H = H1 to H = H2,
assuming that for t < 0 the system was in a thermody-
namic equilibrium where p2(0) = (H1). Then the
solution of equations (2) has the form

(3)

1 On account of thermal excitation the energy of the system is
determined only to within kT, so that the magnetic moment is
“smeared.” However, this effect can be neglected, since the depth
of the lower minimum of the energy is much greater than kT.
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This relation can be used to describe the experimen-
tal results on the magnetic relaxation only if the initial
state of the system is definitely an equilibrium state. As
a rule, such an equilibrium state must be specially “pre-
pared.” In our case there are apparently only two simple
ways to do this: 1) increase the temperature of the sys-
tem to a value at which the system “instantaneously”
relaxes into the ground state (in practice, room temper-
ature and H1 = 0 are sufficient for this) and 2) apply
such a strong magnetic field that the condition hν > 2
obtains even for the most prolate granules (νmax ~ 10)
(for this, a field H1 * H∞ = νmaxIs ~ 10 kOe is sufficient
at any temperature). Consequently, it is reasonable to
examine the following two regimes for studying mag-
netic relaxation: (1) heating the system up to room tem-
perature with H1 = 0 and then cooling the system to a
prescribed temperature in zero field and switching on
the required field H2 (zero field cooling (ZFC) regime);
(2) placing the system at a fixed temperature into an
“infinite” magnetic field H1 > +H∞ and then switching
the field, changing its orientation at the same time, to
the required value H = –H2 (infinite field (IF) regime).

In an equilibrium initial state of the ZFC regime, half
the granules occupy one energy minimum and half occupy

the other, i.e., (0) = (0) = 1/2. In an equilibrium
final state all granules occupy the bottom minimum:

(H2) = 1. Therefore it follows from equation (3) that

(4)

When a field is switched on, the magnetic moments
of half the granules (with β < π/2) “instantaneously”
reach the values mν2(H2) and the average magnetic
moment of the remaining granules (with β > π/2) like-
wise “instantaneously” reaches the value mν1(H2) and
then relaxes to mν2(H2) according to the law (4). Conse-
quently, the relaxation of the average magnetic moment
of all granules of the system is determined by the
dependence

(5)

where the first term refers to granules with β < π/2 and
the second refers to granules with β > π/2.

If the final field is sufficiently strong (so that 2H2/Iν >

(β)), then in the final state there is no barrier ∆
between the two energy minima and, consequently, the
relaxation time is short compared with the switching
time of the field. The magnetic moment of the system
changes almost instantaneously. Long-time (on the
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order of the characteristic time of the experiment)
relaxation of the magnetic moment can be expected
only in weak fields. However, to observe such relax-
ation the characteristic time τν(H) still cannot be too
long, i.e., the barrier height ∆ should not be very large.
As shown in the inset in Fig. 2, this condition holds

only in a narrow range of fields near (β) ~0.1. For
Is ~ 103 G and ν ~1, this corresponds to magnetic fields
H ~ 0.1Isν ~100 Oe.

A different picture of magnetization relaxation
should be observed when the field is switched off (from
H1 to H2 = 0). In this case the magnetic moments of half
the granules (with β < π/2) “instantaneously” reach the
value mν2(0), and the magnetic moments of the remain-
ing granules (with β > π/2) become “frozen,” since the
corresponding energy barrier remains high throughout
the entire process of switching-off the field. It vanishes
only in the process of switching the direction of the
field.

In an equilibrium initial state of the IF regime, all
granules occupy the same (bottom) energy minimum,

i.e., (0) = 1 and (0) = 0. In the equilibrium final

state all granules occupy the other minimum: (H2) =

1 – (H2) = 0. Consequently, from equation (3) fol-
lows

(6)
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Fig. 2. Distributions f∆(∆) of the barrier heights in a system
of randomly oriented ellipsoidal granules with the same
shape and volume in various magnetic fields. Inset: Field
dependences of the barrier height for individual granules
with different orientation (π/2 < β < π, angles π–, (π/2)+ infi-
nitely close to the boundaries of this range).
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When the field is removed, the magnetic moments of
all granules “instantaneously” reach the value mν1(H2).
Then the relaxation of the average magnetic moment of
the granules in the system is determined by the depen-
dence

(7)

which differs from the dependence (5) only by the
absence of the factor 1/2.

3. RELAXATION OF THE MAGNETIC MOMENT
OF AN ENSEMBLE OF FERROMAGNETIC 
GRANULES WITH DIFFERENT SHAPES

AND ORIENTATIONS

Real nanocomposite materials consist of granules
with different sizes, shapes, and orientations. Since the
individual relaxation times τν are exponential functions
of the height of the corresponding energy barrier, even
a relatively small variance of the parameters leads to an
exponentially strong variance of these times. As a rule,
relaxation experiments in systems of this type demon-
strate a logarithmic relaxation of the magnetic moment
(m(t) ∝ const – lnt).2 

2 The origin of this logarithmic dependence is associated with the
variance of the heights ∆ of the energy barriers. Their distribution
function f∆(∆) determines the distribution function of the relax-
ation times fτ(τ) = f∆[∆(τ)](∂τ/∂∆)–1 = kTf∆[∆(τ)]dτ/τ, where
∆(τ) = kTln(τ/τ0). Then, we obtain instead of the exponential in
equations (5) and (7),

where τmin and τmax are the minimum and maximum relaxation
times. If f∆ = const in the integration range, then

where

(C . 0.5772 is Euler’s constant). It is easy to see that if τmin ! t !
τmax, then G(t) ∝  const – ln(t/τmax). If f∆ ≠ const, then the func-
tion G(t) is no longer logarithmic in the entire exponentially wide
range τmin < t < τmax, but it is often close to logarithmic in the
actual (experimentally achieved) range of times.
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Thus, a simple exponential relaxation of the type (5),
which is characteristic for individual granules, does not
occur. In order to take into account the above-men-
tioned diversity of granule parameters, the relaxation
processes must be averaged in an ensemble of granules:

(8)

where m is the ensemble-averaged magnetic moment of
the granules and f(V, ν, β) is the distribution function of
the corresponding geometric parameters of granules in
a nanocomposite material.

At present there are no experimental data that would
make it possible to establish the form of this function,
and there are no indications of the existence of any cor-
relations between these parameters. There are only a
few works in which the granule size distribution fa(a),
where a is the granule size, is found in an indisputable
manner (for example, using an electron microscope).
Here the size is any quantity obtained by intuitive aver-
aging for an aspherical granule. It is assumed below
that all geometric parameters are statistically indepen-
dent, i.e., the relation f(V, β, ν) = fV(V)fβ(β)fν(ν), where
the corresponding partial distribution functions appear
on the right-hand side, is valid.

We shall start the averaging over the function (5) by
taking into account the variance of the granule orienta-
tions determined by the angle β. For simplicity, we
shall assume that these angles are distributed uniformly
in the range 0 < β < π, i.e., fβ(β) = 1/π. In this case even
granules with the same shape and volume can possess
extremely different activation energies ∆; this is what
leads to the exponentially strong variance of the relax-
ation times. This is illustrated in Fig. 2, which displays
the results of a numerical calculation of the distribution
f∆(∆) of the barrier heights in the system under study in
various magnetic fields. It is evident that magnetic
fields hν ~ 1 not only decrease the barriers, as is indi-
cated by the displacement of the right-hand boundary
and center of gravity of the distribution f∆(∆) leftward,
but also produce a strong variance of the barrier height
(the relative width of the distribution function increases
substantially).3 

In accordance with the expression (8), the relaxation
of the magnetic moment of the system of granules

3  It can be shown that as the magnetic field increases, the maxi-
mum barrier height ∆max (corresponding to the angles β = (π/2)+, π–)

decreases as ∆max = (1 – hν /2)2 and vanishes for hν ≥ 2, while
the minimum height ∆min (corresponding to the angle β = 3π/4)

decreases more rapidly: ∆min = 1 – (hν/2)[(8 + hν)1/2 – hν] and
vanishes for hν ≥ 1. Consequently, for 1 < hν < 2 the distribution
function f∆(∆) is different from zero in the entire range 0 < ∆ < ∆max.

m t( ) mνt ) f V ν β, ,( ) Vd νd β,d

β
∫

ν
∫

V

∫=
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(after an abrupt change in the field from 0 to hν) is
described by the relation

(9)

Figure 3 shows a typical relaxation dependence,
obtained using the relation (9), of the magnetic moment
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--- γ1 hν( ) γ2 hν( ) γ1 hν( )cos–cos[ ]+( )-----cos





π/2

π

∫

× 1
∆ hν β,( )

kT
--------------------–

t
tν0
------exp–

 
 
 

exp–




dβ.
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Fig. 3. Relaxation of the magnetization of a system of ran-
domly oriented ellipsoidal granules with the same shapes
and volumes.
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of a system of randomly oriented granules. For ellipsoi-
dal Fe granules (Is = 1700 G) with volume V1 = 6 ×
10–20 cm3 (diameter 50 Å) and ν = 1, the parameter values

used in the calculation hν = 0.9 and Tν = kT/(0.5 νV) =
0.0015 correspond to a magnetic field H ≈ 800 Oe and
temperature T ≈ 4 K. It is evident that a logarithmic func-
tion cannot describe the initial, relatively rapid, change in
the magnetic moment (in the actual time interval t/τ0 ~
1010–1015; see below). A logarithmic dependence appears
only at a subsequent stage of relaxation.

The next step is to take account of the shape vari-
ance of the granules, determined by the parameter ν. It
leads to the appearance of a logarithmic relaxation even
at the initial stage of relaxation. We shall assume that
the values of this parameter are uniformly distributed in
the range νmin < ν < νmax, where νmin = 0.5 and νmax = 2
(this corresponds to ellipsoidal granules with the ratio
of the axes ranging from 1.1 to 1.55), i.e., fν(ν) =
1/(νmax – νmin). Then, we have instead of (7)

(10)

The relaxation dependence of the magnetic moment of
the system of granules under study with shape variance

Is
2

m t( )
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-----------
1

π νmax νmin–( )
--------------------------------- νd γ2 hν( )cos βd

0

π/2

∫
νmin

νmax

∫






=

+ ν γ1 hν( ) γ2 hν( ) γ1 hν( )cos–cos[ ] -----+cos




π/2

π

∫d

νmin

νmax

∫

∫ × 1
∆ hν β,( )

kT
--------------------–

t
τν0
-------exp–exp–





dβ






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Fig. 4. Relaxation of the magnetization of a system of randomly oriented ellipsoidal granules with the same volume and a random
demagnetization factor at various (a) temperatures and (b) fields.
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(calculated using equation (10) with the previous values of
the parameters V1, hν, and Tν) is presented in Fig. 4a. The
logarithmic character of the relaxation is now clearly
visible. As expected, its rate S = dm/dlnt increases with
temperature. Figure 5 shows that the function S(T) is
linear. At the same time, Fig. 4b demonstrates that the
logarithmic relaxation rate S in a wide range of fields is
independent of the magnitude of the magnetic field.

To use the data presented in Figs. 4a and 4b to assess
the situation in a specific experiment, it is necessary to
switch to the real time scale. In this connection we note
that, for example, for α-Fe granules, τ0 ≈ 10–10 s [6]. In

10–3 10–2 10–1

10–3

10–2

T1

d (m/V1Is)/dlnt

h1 = 0.5

Fig. 5. Temperature dependence of the logarithmic relax-
ation rate (for the case corresponding to Fig. 4a).
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m(t)/VIs

Fig. 6. Relaxation of the magnetization of a system of ran-
domly oriented ellipsoidal granules with a random demagneti-
zation factor and a random volume at various temperatures. 
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this case, as one can see in Fig. 4a, logarithmic relax-
ation of the magnetization, lasting for less than 102–103 s,
can be observed only at relatively low temperatures
(T1 ≤ 0.05 for h1 = 0.5, i.e., T < 130 K for V =
6 × 10−20 cm3).

Finally, we add the variance of the granule volumes
to the orientational and shape variances of the granules
which were taken into account above. Figure 6 shows
the relaxation dependences of the magnetization, which
differ from those shown in Fig. 4a in that the correspond-
ing calculation was performed assuming a uniform distri-
bution of granule volumes in the range [Vmin, Vmax], where
Vmin = 0.5V and Vmax = 2V. It is evident that there are no
qualitative changes here, and the quantitative changes
are small. 

It is easy, in principle, to calculate on the basis of the
model examined above any magnetic properties of a nano-
composite material, specifically, the often employed char-
acteristics such as the hysteresis curves, the tempera-
ture dependences of the magnetization in the ZFC and
FC regimes, and others. 

In conclusion, we remind the reader that everywhere
above it was assumed that the magnetic field inside an
experimental sample is identical to the external mag-
netic field. The samples of the ferromagnetic nanocom-
posite materials that are usually studied are thin films
(thickness 10–5–10–4 cm). Consequently, the external
field must be directed along the normal to the plane of
the sample. More accurately, the angle α between this
normal and the direction of the field must be quite
small: α ! α0 ~ H/2πIs. For H ~ 100 Oe this means that
α ! 1°.
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Abstract—The effect of static fluctuations in the phase of the order parameter on the normal and superconduct-
ing properties of a 2D system with attractive four-fermion interaction is studied. Analytic expressions for the
fermion Green’s function, its spectral density, and the density of states are derived in the approximation where
the coupling between the spin and charge degrees of freedom is neglected. The resulting single-particle Green’s
function clearly demonstrates a non-Fermi-liquid behavior. The results show that as the temperature increases
through the 2D critical temperature, the widths of the quasiparticle peaks broaden significantly. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

One of the most convincing manifestations of the
difference between the BCS scenario and superconduc-
tivity in the cuprates is the pseudogap, or the depletion
of a single-particle spectral weight around the Fermi
level [1]. This is observed mainly in underdoped
cuprates where the pseudogap opens in the normal state
as the temperature T decreases below the crossover
temperature T* and extends over a wide range of T.

Due to the complex nature of cuprate systems, there
are a number of theoretical explanations for the
pseudogap behavior. One of them is based on the model
of a nearly antiferromagnetic Fermi liquid [2]. Another
possible explanation relates the pseudogap to spin-
and/or charge-density waves [3]. A third direction,
which we take in this paper, argues that precursor
superconducting fluctuations may be responsible for
the pseudogap phenomena. Indeed, an incoherent pair
tunneling experiment [4] proposed recently may allow
one to determine whether superconducting fluctuations
are really responsible for the pseudogap behavior. Fur-
thermore, one cannot exclude the possibility that the
pseudogap is the result of a combination of various
mechanisms, e.g., both spin and superconducting fluc-
tuations.

Precursor superconducting fluctuations have recently
been extensively studied using different approaches. In
most cases, the attractive 2D or 3D Hubbard model was
considered. In particular, this model has been studied,

¶This article was submitted by authors in English.
1063-7761/00/9006- $20.00 © 20993
both analytically [5–7] and numerically [8–11], in the
conserving T-matrix approximation that is “Φ-deriv-
able” in the sense of Baym [12]. The non-“Φ-deriv-
able” T-matrix approximation was considered in [13].
In this approach, the pseudogap is related to the reso-
nant pair scattering of correlated electrons above Tc.
The pseudogap was also studied in [14] for d-wave
pairing (for a review, see [15]), and Monte Carlo simu-
lations for the 2D attractive Hubbard model were per-
formed in [16].

It is known, however, that while the T-matrix
approximation provides an adequate description of 3D
systems at all temperatures, including the supercon-
ducting state with a long-range order, it fails (see, for
example, [9]) to describe the Berezinskii–Kosterlitz–
Thouless (BKT) transition into the state with an alge-
braic order, which is only possible in 2D systems. This
is why, in most of the papers cited above, the T-matrix
approximation was used to study either 3D systems [5,
6, 10, 13] or 2D systems above Tc [8, 9, 14, 15] in order
to avoid the BKT transition, even though it is generally
accepted that 2D models are more relevant to the
description of cuprates. The effect of interaction between
the layers has recently been experimentally studied by
intercalating an organic compound into bismuth-based
cuprates. Even though the distance between the layers
increased remarkably, the value of Tc was nearly the
same as that for pristine material (see [17]).

Of course, the superconducting transition itself is
not of the BKT type, because even a weak interplanar
coupling produces a transition in the d = 3 XY univer-
000 MAIK “Nauka/Interperiodica”



 

994

        

GUSYNIN 

 

et al

 

.

                                                                                                                                                       
sality class, sufficiently close to the transition tempera-
ture. Outside the transition region, however, the low-
energy physics is governed by vortex fluctuations [18]
and one can expect the 2D model to be especially rele-
vant to the description of the pseudogap phase. This
was confirmed for the quasi-2D model [19] (see also
[20]).

Regarding the pseudogap, it is sufficient to consider
the case where T > Tc. However, one definitely needs a
different approach from the T-matrix if one wants to
study the 2D theory for the entire temperature range
and wants to connect the pseudogap to the supercon-
ducting gap. An alternative approach, which overcomes
the above difficulty, was proposed in [21–23]. For a 2D
system, one should rewrite the complex order field Φ(x)
in terms of its modulus ρ(x) and its phase θ(x) as Φ(x) =
ρ(x)exp[iθ(x)], which was originally suggested by Wit-
ten in the context of 2D quantum field theory [24]. It is
impossible to obtain Φ ≡ 〈Φ(x)〉  ≠ 0 at finite T, because
this would correspond to the formation of symmetry-
breaking homogeneous long-range order, which is for-
bidden by the Coleman–Mermin–Wagner–Hohenberg
(CMWH) theorem [25]. However, it is possible to
obtain ρ ≡ 〈ρ(x)〉  ≠ 0 with Φ = ρ〈exp[iθ(x)]〉  = 0 at the
same time because of random fluctuations of the phase
θ(x) (i.e., because of transverse fluctuations of the order
field originating in the modulus conservation principle
[26]). We stress that ρ ≠ 0 does not imply any long-
range superconducting order (which is destroyed by
phase fluctuations) and, therefore, does not contradict
the above-mentioned theorem.

For the simple model studied in [21, 22], there are
three regions in the 2D phase diagram. The first one is
the superconducting (here, BKT) phase with ρ ≠ 0 at
T < TBKT, where TBKT is the BKT transition tempera-
ture, which plays the role of Tc in pure 2D supercon-
ducting systems. In this region, there is an algebraic
order or a power-law decay of the 〈Φ*Φ〉 correlations.
The second region corresponds to the so-called
pseudogap phase (TBKT < T < Tρ), where Tρ is the tem-
perature at which ρ is supposed to become zero. In this
phase, ρ is still nonzero, but the above correlations decay
exponentially. The third is the normal (Fermi-liquid)
phase at T > Tρ, where ρ = 0. Note that Φ and all the sym-
metry-violating correlation functions like 〈Φ(x)Φ(0)〉
vanish everywhere.

The proposed description of the phase fluctuations
and the BKT transition is very similar to that given by
Emery and Kivelson [27]. However, the field ρ(x) does
not appear in the phenomenological approach of [27],
whereas in the present microscopic approach, it occurs
naturally. We also mention here the application of sim-
ilar ideas to the 3D case [28], where instead of the 2D
temperature TBKT, one has the phase-transition temper-

ature in the 3D XY-model, .

The main quantity of interest in the present paper is
the one-fermion Green’s function and the associated
spectral function A(ω, k) = –(1/π)ImG(ω + i0, k).

Tc
XY
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The second quantity, being proportional to the intensity
of the angle-resolved photoemission spectrum (ARPES)
[29], encodes information about the pseudogap and
quasiparticles. Following the approach of [21–23], the
Green’s function for charged (physical) fermions is
given by the convolution (in momentum space) of the
propagator for neutral fermions (which has a gap ρ ≠ 0)
and the Fourier transform of the phase correlation func-
tion 〈exp(iτ3θ(x)/2)exp(–iτ3θ(0)/2)〉 .

Thus, the approximation employed here assumes
the absence of coupling between spin and charge
degrees of freedom; this can be taken into account at
the next stage of approximation. We demonstrate that
the quasiparticle spectral function broadens consider-
ably when passing from the superconducting to the nor-
mal state, as was observed experimentally [29]. More
importantly, the phase fluctuations result in a non-
Fermi-liquid behavior of the system both below and
above TBKT .

We note that the effect of classical phase fluctua-
tions of the order field on the spectral properties of
underdoped cuprates has also been analyzed by Franz
and Millis [30]. Being experimentally motivated, they
were able to show that the corresponding photoemis-
sion and tunneling data are well accounted for by a sim-
ple model where d-wave charge excitations are coupled
to supercurrent fluctuations.

A brief overview of the paper is as follows: In Sec-
tion 2, we present the modulus–phase formalism for the
fermion Green’s function and explain why it is so
important to use this formalism to describe 2D models.
In Section 3, we obtain and discuss the Green’s func-
tion of phase fluctuations both below and above TBKT.
This expression is then used in Section 4 to derive the
temperature and retarded fermion Green’s functions.
We show that this Green’s function exhibits a non-
Fermi-liquid behavior. In Section 5, we obtain an ana-
lytic expression for the spectral density of the fermion
Green’s function and discuss this result in detail. The
density of states (DOS) is considered in Section 6.
Appendix A contains technical details on the calcula-
tion of the long-distance asymptotic behavior of the
phase correlation function. Appendix B contains the
derivation of an alternative representation for the fer-
mion Green’s function which is useful in calculating
the spectral density. The integrals for the DOS are given
in Appendix C.

2. THE MODULUS–PHASE REPRESENTATION 
FOR THE FERMION GREEN’S FUNCTION

Our starting point is a continuum version of the two-
dimensional attractive Hubbard model defined by the
Hamiltonian density [21–23]

(2.1)
* ψσ

† x( ) ∇ 2

2m
-------– µ– 

  ψσ x( )=

– Vψ↑
† x( )ψ↓

† x( )ψ↓ x( )ψ↑ x( ),
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where x = r, τ denotes the space and imaginary time
variables, ψσ(x) is a fermion field with the spin σ = ↑ , ↓ ,
m is the effective fermion mass, µ is the chemical
potential, and V is an effective local attraction constant;
we take " = kB = 1. The model with the Hamiltonian
density (2.1) is equivalent to the model with an auxil-
iary BCS-like pairing field, which can be written as

(2.2)

in terms of Nambu variables

(2.3)

where τ± = (τ1 ± iτ1)/2 and τ3 are the Pauli matrices and
Φ(x) = V Ψ†(x)τ–Ψ(x) = Vψ↓ψ↑  is the complex order
field.

We consider the full fermion Green’s function in the
Matsubara finite-temperature formalism

(2.4)

For the 3D case of the BCS theory, the frequency–
momentum representation for (2.4) in the mean-field
approximation is known to be [31]

(2.5)

where ωn = (2n + 1)πT is the odd (fermion) Matsubara
frequency, ξ(k) is the dispersion law of electrons eval-
uated from the chemical potential µ, and Φ ≡ 〈Φ(x)〉  is
the complex order parameter.

A problem arises when one tries to apply equation
(2.5) directly to 2D systems, since it has been proved
(see [25]) that nonzero Φ values are forbidden. Never-
theless, one can assume that the modulus of the order
parameter ρ = |Φ| has a nonzero value, while its phase
θ(x), defined by

(2.6)

is a random quantity. To be consistent with (2.6), one
should also introduce the spin–charge variables for the
Nambu spinors

(2.7)

where ϒ is the neutral fermion-field operator. The strat-
egy of treating charge and spin (neutral) degrees of
freedom as independent seems to be quite useful and, at

* Ψ† x( )=

× τ3
∇ 2

2m
-------– µ– 

  τ+ Φ( )– τ–Φ∗ x( )– Ψ x( ) Φ x( ) 2

V
----------------+

Ψ x( )
ψ↑ x( )

ψ↓
† x( ) 

  ,=

Ψ† x( ) ψ↑
† x( )ψ↓ x( )( ),=

G x( ) Ψ x( )Ψ† 0( )〈 〉 .=

G iωn k,( )
iωn Î τ3ξ k( ) τ+Φ– τ–Φ∗–+

ωn
2 ξ2 k( ) Φ 2+ +

-------------------------------------------------------------------,–=

Φ x( ) ρ x( ) iθ x( )[ ]exp=

Ψ x( ) ϒ x( )
iτ3θ x( )

2
----------------- ,exp=

Ψ† x( ) ϒ† x( )
iτ3θ x( )

2
-----------------– ,exp=
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the same time, a very general feature of 2D systems
[24, 32].

Applying (2.7), we thus split the Green’s function
(2.4) into spin and charge parts

(2.8)

where

(2.9)

is the Green’s function for neutral fermions. Introduc-

ing the projectors P± = (1/2)(  ± τ3), we obtain

(2.10)

so that (2.8) can be rewritten as

(2.11)

where α = β and α = –β correspond to the diagonal and
nondiagonal parts of the Green’s function, respectively.

For the frequency–momentum representation of
(2.11), we have

(2.12)

where

(2.13)

and

(2.14)

is the correlation function of phase fluctuations with
even (boson) frequencies Ωn = 2πnT.

There is a good reason to believe (see [22]) that for
T close to TBKT, the fluctuations of the order-parameter
modulus ρ (the so-called longitudinal fluctuations,

Gαβ x( )

=  &α'β' x( ) e
iτ3θ x( ) 2⁄

( )αα' e
iτ3θ 0( ) 2⁄–

( )β'β ,
α' β',
∑

&αβ x( ) ϒα x( )ϒβ
† 0( )〈 〉=

Î

e
iτ3θ 2⁄

P+eiθ 2⁄ P–e iθ 2⁄– ,+=

e
i– τ3θ 2⁄

P–eiθ 2⁄ P+e iθ 2⁄– ,+=

G x( )

=  Pα& x( )Pβ
iαθ x( )

2
----------------exp iβθ 0( )

2
---------------–exp ,

α β, ±=

∑

G iωn k,( ) T
p2d

2π( )2
-------------∫

m ∞–=

∞

∑=

× Pα& iωm p,( )PβDαβ iωn iωm– k p–,( ),
α β, ±=

∑

& iωm k,( )

=  τd

0

1 T⁄

∫ r2 & τ r,( ) iωmτ ik r⋅–[ ]expd∫

Dαβ iΩn q,( ) τd

0

1 T⁄

∫ r2 iΩnτ iq r⋅–( )expd∫=

× iαθ τ r,( )
2

---------------------exp iβθ 0( )
2

---------------–exp
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which in fact correspond to carrier-density fluctuations
and undoubtedly must be taken into account in the very
underdoped region)1 are irrelevant and one can safely
use the Green’s function (2.13) of neutral fermions in
the mean-field approximation [compare with (2.5)]

(2.15)

Here, ξ(k) = k2/2m – µ, with k being a 2D vector and
ρ ≡ 〈ρ(x)〉 . Note that in [21, 22], ρ(x) was treated only
in the mean-field approximation, which means that
fluctuations in both ρ(x) and θ(x) were neglected, and
therefore a second-order phase transition was obtained
at Tρ. However, as stressed in the Introduction, experi-
mentally, the formation of the pseudogap phase does
not display any sharp transition and the temperature T*
observed in various experiments is to be considered as
a characteristic energy scale rather than as a tempera-
ture where the pseudogap is reduced to zero [33]. We
believe that taking the ρ(x) fluctuations into account
may resolve the discrepancy between the experimental
behavior of T* and the temperature Tρ introduced in the
theory.

3. THE CORRELATION FUNCTION 
FOR THE PHASE FLUCTUATIONS

As stated above, we expect the phase fluctuations to
be responsible for the difference between properties of
the charged and neutral fermions defined above. The
latter are described by the Green’s function (2.15),
which coincides with the BCS Green’s function (2.5)
only under the assumption that the phase θ of the order
parameter Φ = ρexp(iθ) is a constant and can be chosen
to vanish. This is not the case for the 2D model, where
there is a decay of the phase correlations and the
Green’s functions of charged and neutral fermions are
nontrivially related via equation (2.12). To establish
their relationship, one must know the correlation func-
tion for the phase fluctuations. Its calculation is quite
straightforward for T < TBKT, while for T > TBKT one
can apply the results of the BKT transition theory [34].

3A. The Correlation Function for T < TBKT

In the superconducting phase, the free vortex excita-
tions are absent and the exponential correlation func-
tion is easily expressed in terms of the Green’s function

(3.1)

(here, as above, x ≡ τ, r) via the Gaussian functional
integral

1  This in turn means that the approximation used proves to be justi-
fied not far from optimal doping.

& iωn k,( )
iωn Î τ3ξ k( ) τ1ρ–+

ωn
2 ξ2 k( ) ρ2+ +

----------------------------------------------.–=

Dθ x( ) θ x( )θ 0( )〈 〉=
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(3.2)

with the source

(3.3)

The Green’s function

(3.4)

for this model was found in [22]. Note that, here, the
superfluid stiffness J and compressibility K are func-
tions of µ, T, and ρ and also that the Green’s function
(3.4) includes only the lowest derivatives of the phase
θ. The higher terms are also present in the expansion,
but we neglect them. In the simplest case, J(µ, T, ρ) ~
nf, the density of carriers, and K(µ, T, ρ) ~ const [22].

Substituting (3.4) into (3.2), we obtain

(3.5)

It is easy to see that for zero frequency Ωn = 0, the inte-
gral in equation (3.5) is divergent at q = 0 unless α = β,
and therefore only two terms survive in the sum over α
and β in equation (2.12), namely

(3.6)

It is important that the terms like P±&(iωn, k) , which
are proportional to τ1 and thus violate the gauge sym-
metry, do not contribute to equation (2.12) due to van-
ishing of the corresponding D+– and D–+ correlation func-
tions standing after them. This explicitly demonstrates that
the nondiagonal part of the 2D Green’s function vanishes
at all finite temperatures. Thus, making use of the
Gor’kov equations to calculate its diagonal part and the

Dαβ x( ) $θ x( ) τ1d

0

1 T⁄

∫– r2d∫



exp∫=

× 1
2
---θ x1( )Dθ

1– x1( )θ x1( ) I x1( )θ x1( )+




=  
1
2
--- τ1d

0

1 T⁄

∫ τ2d

0

1 T⁄

∫ r2
1d∫ r2

2d∫–exp

× I τ1 r1,( )Dθ τ1 τ2– r1 r2–,( )I τ2 r2,( ) ,

I x1( ) i
α
2
---δ τ1 τ–( )δ r1 r–( )– i

β
2
---δ τ1( )δ r1( ),+=

α β, .±=

Dθ
1– x( ) J µ T ρ, ,( )∇ r

2– K µ T ρ, ,( ) ∂τ( )2
–=

Dαβ x( )

=  
T
4
--- q2d

2π( )2
-------------

1 αβ q r⋅ Ωnτ–( )cos–

Jq2 KΩn
2

+
--------------------------------------------------------∫

n ∞–=

∞

∑– .exp

P–& iωn k,( )P– P+& iωn k,( )P++

=  
iωn Î τ3ξ k( )+

ωn
2 ξ2 k( ) ρ2+ +

------------------------------------.–

P+−
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gap function is questionable. For nonzero correlation
functions, we have

(3.7)

In what follows, we consider in detail only the static
case τ = 0. The restriction to this case is one of the few
main assumptions we use throughout the paper.

The summation over n and the integration with
respect to ϕ in (3.7) can readily be done, yielding the
following exponent of (3.7):

(3.8)

where we introduced the scale

(3.9)

which is a function of the variables used (in the sim-

plest case, r0 ~ /T). In (3.8), we introduced the cut-
off Λ by means of the exponential function. This cutoff
represents the maximum possible momentum in the
theory, i.e., the Brillouin momentum.

One can derive from (3.8) (see Appendix A) the fol-
lowing asymptotic expressions:

(3.10)

This long-distance behavior governs the physics of θ
fluctuations that we intend to study in what follows.

We now discuss the meaning of the value r0. Again
using the phase stiffness J(T = 0) and compressibility K

from [22], we readily obtain r0 = 2 , which is
the single-particle thermal de Broglie wavelength (eF =
πnf /m is the Fermi energy). Then, assuming that T ~
TBKT and taking TBKT . eF/8 [21, 22], we can estimate

(3.11)

where kF is the Fermi momentum. The value of kF for
cuprates is less than the Brillouin momentum Λ, which
is why the first case in (3.10) seems to be more relevant.

There is another way to estimate r0: we can use the
value 2∆/Tc; and hence,

(3.12)

D x( ) D++ x( )≡ D–– x( )=

=  
T
4
--- q q ϕdd

2π( )2
----------------

1 qr ϕcos( ) Ωnτcoscos–

Jq2 KΩn
2+

------------------------------------------------------------∫
n ∞–=

∞

∑– .exp

1

16π JK
--------------------- qe q Λ⁄– 1 J0 qr( )–[ ]

qr0

4
-------,tanhd

0

∞

∫–

r0
2
T
--- J

K
----,=

n f

D 0 r,( )

r
r0
---- 

  T– 8πJ⁄
, r  @  r 0  @  Λ 1– , 

Λ

 

r

 

2
------

 

 
 

 

T

 

8

 

π

 

J

 

⁄–

, r  @  Λ 1–
  @  r 0 . 

∼

eF m⁄ T⁄

r0
16

eFm
-------------∼ 16 2

kF
-------------,=

r0 2π2∆
Tc

-------ξ0,∼
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where 

 

ξ

 

0

 

 = 

 

v

 

F

 

/(

 

π

 

∆

 

) is the BCS coherence length. This
shows that 

 

r

 

0

 

 has the meaning of a coherence length,
which appears to be rather natural, since the minimum
size of the phase coherence region should be of the
order of 

 

ξ

 

0

 

. Since the coherence length in cuprates is
larger than the lattice spacing 

 

Λ

 

–1

 

, the first case in
(3.10) is applicable. Therefore, for 

 

T

 

 < 

 

T

 

BKT

 

 and for
static fluctuations, we have

(3.13)

where 

 

r

 

0

 

 = 16/ .

 

3B. The Correlation Function for T > T

 

BKT

 

For 

 

T 

 

> 

 

T

 

BKT

 

, the expression for the static correla-
tion function (3.13) can be generalized using the well-
known results of the BKT transition theory [34, 35]:

(3.14)

where

(3.15)

is the BKT coherence length and 

 

C

 

 is a constant whose
value is discussed later. One can consider equation
(3.14) as a general representation for 

 

D

 

(

 

r

 

) for both 

 

T 

 

>

 

T

 

BKT

 

 and 

 

T

 

 < 

 

T

 

BKT

 

 if the coherence length 

 

ξ

 

+

 

(

 

T

 

) is con-
sidered to be infinite for 

 

T

 

 < 

 

T

 

BKT

 

. The prefactor in
equation (3.14) is related to the longitudinal (spin-
wave) phase fluctuations, while the exponent is respon-
sible for the transverse (vortex) excitations, which are
present only above 

 
T

 

BKT

 
. The prefactor appears to be

important for the non-Fermi-liquid behavior discussed
in what follows. Note, however, that the longitudinal
phase fluctuations can be suppressed by the Coulomb
interaction [30], which is not included in the present
simple model. One further comment is that, while the
approximation used to study the vortex fluctuations in
[30] is good for

 

 T 

 

well above 

 

T

 

BKT

 

, the form of the cor-
relation function 

 

D 

 

is appropriate for 

 

T 

 

close to 

 

T

 

BKT

 

.

The constant 

 

C

 

 can be estimated from the condition
that 

 

ξ

 

+

 

(

 

T

 

) cannot be much less than the parameter 

 

r

 

0

 

,
which is a natural cutoff in the theory, and we thus take

 

C

 

 = 

 

r

 

0

 

/4 in our numerical calculations. In any case, for
T * TBKT, where (3.15) is valid, the value ξ+(T) is large
and not very sensitive to the initial value of C.

There also exists a dynamical generalization of
(3.14) proposed from phenomenological backgrounds
in [36]:

(3.16)

D r( )
r
r0
---- 

  T– 8πJ⁄
,=

eFm

D r( )
r
r0
---- 

  T– 8πJ⁄ r
ξ+ T( )
------------– 

  ,exp=

ξ+ T( ) C
Tρ T–

T TBKT–
---------------------exp=

D t r,( ) γt–( ) r
r0
---- 

  T– 8πJ⁄ r
ξ+ T( )
------------– 

  .expexp=
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Note that t is the real time and γ is the decay constant,
and therefore (3.16) is the retarded Green’s function.
We hope to consider the more general case of dynami-
cal phase fluctuations (3.16) elsewhere.

3C. The Fourier Transform of D(r)

For the Fourier transform (2.14) of (3.14), we have

(3.17)

The integral (3.17) can be calculated (see, for example,
[37]) with the result

(3.18)

The hypergeometric function F(a, b; c; z) can be
well approximated by a constant, since it is slowly
varying at all values of q. We can take the value of the
hypergeometric function at q = ∞ for this constant.
Thus, we have 

(3.19)

where

(3.20)

It should be stressed that for T > TBKT, the parameter a
quickly deviates from unity as eF decreases; in other
words, the underdoped region has to reveal highly non-
standard properties in comparison with the overdoped
one.

Note that for  = 0 (T < TBKT), equation (3.19) is
an exact Fourier transform of the correlation function
(3.13).

One should take into account that even for T < TBKT,
propagator (3.19) does not have the canonical behavior
1/q2, which is typical, for example, for the Bogolyubov
mode in dimensions d > 2. In 2D, the modes with a
propagator 1/q2 would lead to severe infrared singular-
ities [25]; to avoid them, these modes transform into
softer ones (1/q2α, α < 1).

D iΩn q,( ) τ r2 iΩnτ iq r⋅–( )expd∫d
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× r
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  .expd
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T
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× F2 1 α –α 1
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------------------------------+  ,
 
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 

 .

D iΩn q,( )
δn 0,

T
--------A q2 1

ξ+
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  2

+
α–

,=

A
4πΓ α( )
Γ 1 α–( )
-------------------- 2

r0
---- 

  2 α 1–( )

, α 1
T

16πJ
------------.–≡≡

ξ+
1–
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Finally, substituting (3.6) and (3.19) in (2.12), we
obtain

(3.21)

The coincidence of the Matsubara frequency on the
left- and right-hand sides of equation (3.21) is evidently
related to the static approximation used in this paper.
As we will see in the next sections, the Green’s function
(3.21), spectral density, and the density of states can be
evaluated exactly.

4. THE DERIVATION 
OF THE FERMION GREEN’S FUNCTION

The fermion Green’s function can be calculated ana-
lytically if we split the fermion part of (3.21) as

(4.1)

where

(4.2)

Using the representations

(4.3)

(4.4)

and taking (4.1) into account, we can rewrite (3.21) as

(4.5)
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----------------------------------------
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1
2
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Γ α( )
----------- ttα 1– e ct–d

0

∞

∫=

G iωn k,( )
iA

Γ α( )
----------- sd
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Note that the special form of the integral representation
(4.3) [compare with representation (4.4)] guarantees
that the Gaussian integral with respect to q is well
defined independently of the sign of ξ(q) = q2/2m – µ.
Now the Gaussian integration with respect to momenta
q in (4.5) can be done explicitly:

(4.6)

Changing the variables as s  2ms and further as
t  st, we can integrate with respect to s with the
result

(4.7)

In the general case where  ≠ 0, the denominator
of (4.7) is quadratic in t and some further transforma-
tions are needed. Replacing t  –iu and expanding
the quadratic polynomial in the denominator, we have

(4.8)

where

(4.9)
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u ũ1+( ) u ũ2+( )[ ]α----------------------------------------------d

0

i∞–

∫ 



,

u1 mξ+
2 k2ξ+

2 1+

2mξ+
2

------------------- µ– i ωn
2 ρ2+ D+ +

 
 
 

,=

u2 mξ+
2 k2ξ+

2 1+

2mξ+
2

------------------- µ– i ωn
2 ρ2+ D–+

 
 
 

,=
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with

(4.10)

and

(4.11)

We can verify from (4.9) that Reui > 0 for µ < 0, and
therefore we can rotate the integration contour to the
real axis:

(4.12)

The integral representation (4.12) can then be ana-
lytically continued to µ > 0. The change of the variable
z = u/(u + 1) allows equation (4.12) to be expressed in
terms of Appell’s function [38]

(4.13)

and hence,

(4.14)

For T < TBKT, the BKT coherence length is infinite

(  = 0), which means (u1 – 1)/u = 1 in the first argu-
ment of the Appell’s function. This allows us to apply
the reduction formula [38]
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and express the result via the hypergeometric function
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(4.16)

where we inserted the value of A from (3.20).
This completes our derivation of the temperature-

dependent fermion Green’s function.

4A. The Retarded Fermion Green’s Function

To obtain the spectral density, we need to obtain the
retarded real-time Green’s function from the tempera-
ture-dependent Green’s function by means of analytic

continuation iωn  ω + i0, and where  

i . This results in the following rules (compare
with (4.2), (4 9), and (4.10)):

(4.17)

(4.18)

with

(4.19)

and

(4.20)
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For the retarded Green’s function, we thus have

(4.21)

It is easy to see that

(4.22)

We now discuss the condition under which the
imaginary part of G(ω + i0, k) is nonvanishing.

For |ω| < ρ, we can see that  = ,  = , and
therefore G(ω, k) is real and ImG(ω + i0, k) = 0. The
case where |ω| > ρ is more complicated. It follows from
the Appel function transformation property [38]

(4.23)

that for real x and y, the function F1 becomes complex
if x > 1 or/and y > 1. This implies that G(ω, k) has an
imaginary part if v1 < 0 or/and v2 < 0. Looking at the
expressions (4.18) for v1 and v2, we can see that v1 is
always positive, whereas v2 may be negative. This
means that G(ω, k) has a nonvanishing imaginary part
if v1v2 < 0. Using (4.22), the condition for the existence
of a nonzero imaginary part of G(ω, k) can then be writ-

ten as µ +  > 0.

4B. The Branch Cut Structure of G(ω, k) 
and a Non-Fermi-Liquid Behavior

We now consider the retarded fermion Green’s func-
tion (4.16) for T < TBKT. Applying the analytic contin-
uation rules from the previous subsection to equation
(4.16), we obtain

(4.24)

Near the quasiparticle peaks where ω . ±E(k), the
arguments of the hypergeometric function in (4.24) are
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close to 1. One can consider, for instance, the first
hypergeometric function; then

(4.25)

Using the relation between the hypergeometric func-
tions [38]

(4.26)

we obtain that, near z1 . 1,

(4.27)

It can be seen that the expression for this Green’s func-
tion is evidently a nonstandard one: besides containing
a branch cut, it clearly displays its nonpole character.
The latter in turn corresponds to non-Fermi-liquid
behavior of the system as a whole. It must be stressed
that non-Fermi-liquid peculiarities are tightly related to
the charge (i.e., observable) fermions only, because the
Green’s function (2.15) of neutral fermions has a typi-
cal (pole-type) BCS form. In addition, it follows from
(4.27) that new properties appear as a consequence of
the θ-particle presence (leading to α ≠ 1); and because
the parameter α is a function of T [see (3.20)], the non-
Fermi-liquid behavior is developed with increasing
temperature and is preserved until ρ vanishes.

It is interesting that in Anderson’s theory [39], it was
postulated that the Fermi liquid theory is broken down
in the normal state as a result of strong correlations.
Here, we started from the Fermi liquid theory and
found that it is broken down due to strong phase fluctu-
ations. As suggested in [39], the non-Fermi-liquid
behavior may lead to suppression of the coherent tun-
neling between layers, which in turn confines carriers
in the layers and leads to strong phase fluctuations. In
contrast to [39], however, our model predicts the resto-
ration of the Fermi liquid behavior as T decreases, since
α  1 as T  0 (see the discussion in Section 5C,
item 4).

The T = 0 limit can also be obtained as follows.
Strictly speaking, one cannot estimate the value of r0 as
T  0 in (4.24) via equation (3.11), because the sub-
stitution of TBKT . eF/8 in (3.9) is not valid in this case.
However, this is not essential, because T/8πJ  0, so
that correlation function (3.13), D(r)  1, which evi-
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dently means the formation of a long-range order in the
system. Furthermore, the value of α in (3.20) goes to
unity as T  0 and the hypergeometric function in
(4.24) reduces to the geometrical series

(4.28)

Therefore, inserting (4.28) in (4.24), we obtain the
standard BCS expression

(4.29)

for the diagonal component G11(ω, k) of the Nambu–
Gor’kov Green’s function G(ω, k).

Evidently, equation (4.29) results in the standard
BCS spectral density [31] with two δ-function peaks

(4.30)

where E(k) = . To recover the nondiagonal
components of G, one has to restore the correlation
functions D−+(r) and D+–(r) that were omitted in Sec-
tion 3A.

5. THE SPECTRAL DENSITY 
OF THE FERMION GREEN’S FUNCTION

As is well known, [31], the spectral features of any
system are entirely controlled by its spectral density

(5.1)

which, for example, for cuprates is measured in ARPES
experiments (see [29]). This function defines the spec-
trum anisotropy, the presence of a gap, the DOS, etc. In
what follows, we calculate A(ω, k) for the Green’s func-
tion obtained above.

5A. Analytic Expression for the Spectral Density

For v1 > 0 and v2 < 0, the retarded fermion Green’s
function (4.21) can be rewritten (see Appendix B) as

(5.2)

F2 1 1 1; 1; z,( )
1

1 z–
-----------.=
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+
1
2
--- 1 ξ k( )

E k( )
-----------– δ ω E k( )+( ),

ξ2 k( ) ρ2+

A ω k,( )
1
π
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Then, according to (5.1) the spectral density for the
Green’s function (5.2) has the form

(5.3)

Using the quadratic transformation for the hypergeo-
metric function [38]

(5.4)

the expression (3.20) for A, and equations (4.18) and
(4.19), we finally obtain

(5.5)

where the chemical potential µ can be, in principle,
determined from the equation that fixes the carrier den-
sity [22]. Here, however, we assume that the carrier
density is sufficiently high and µ = eF.

In the BCS theory, A(ω, k) given by equation (4.30)
consists of two pieces that are the spectral weights of
adding and removing a fermion from the system,
respectively. Note that our splitting of A(ω, k) is differ-
ent, since each term in (5.5) corresponds to both the
addition and the removal of a fermion.

In the next subsections, we verify the sum rule for
(5.5), plot it for different temperatures, and discuss the
results.

5B. The Sum Rule for the Spectral Density

It is well known that for the exact Green’s function
G(ω, k), the spectral function (5.1) must satisfy the sum
rule

(5.6)

The Green’s function calculated in (4.21) is, of course,
approximate. This is related to the use of the long-dis-
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∞
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tance asymptotic behavior (3.10) of the phase correla-
tion function (3.7). This means that its Fourier trans-
form (3.19) is, strictly speaking, valid for small k only,
whereas we have integrated our expressions to infinity.
Another approximation that we have made is the
restriction to static phase fluctuations. Thus, it is impor-
tant to check whether the sum rule (5.6) is satisfied with
sufficient accuracy.

It is remarkable that for (5.5), the sum rule (5.6) can
be tested analytically with the help of the techniques
used in calculating N(ω) in Appendix C. We obtain

(5.7)

The numerical value of the integral at the tempera-
tures of interest can be estimated as follows. Taking the
phase stiffness J = 2/πTBKT at T = TBKT, the value α
from (3.20) is given by

(5.8)

for T close to TBKT. In particular, α(T = TBKT) = 31/32
gives the following estimate for the right-hand side of
(5.7): Γ(α)/Γ(2 – α) . 1.037. This shows that for T ~
TBKT, the spectral density (5.5) is reasonably good at
the temperatures of interest.

The parameter α can, however, differ strongly from
unity at T > TBKT and in the underdoped regime.

5C. Results for the Spectral Density

The plots of the spectral density A(ω, k) given by
(5.5) at temperatures below and above TBKT are pre-
sented in Figs. 1–3. To draw these plots, we used the
value of α from equation (5.8) and the mean-field value
of ρ obtained from the corresponding equation in [21, 22].
From these figures and our analytic expressions, we can
infer the following results:

(1) For T < TBKT (the case presented in Fig. 1), there
are two highly pronounced quasiparticle peaks at ω =
±E(k). They are simply related to the contribution of
zeros of $ [see equation (4.19)] to A(ω, k).

(2) We also observe two peaks at ω = ±ρ when k ≠ kF
(for k = kF, the value E(kF) = ρ, so that the two sets of
peaks coincide). One can check that the divergence at
these points is weaker than at the former peaks at ω =
±E(k). In fact, these peaks are the result of the static and
noninteracting approximation for the phase fluctua-
tions used here. They are essential to satisfy the sum
rule (5.6).

If the dynamical fluctuations are taken into account,
it is clear that the “external” frequency ω in A(ω, k) is
different from the “internal” frequency in !1 and !2
[see the discussion after equation (3.21) and compare it
with equation (2.12)]. We believe that this additional
summation over the “internal” frequency (which is

ωA ω k,( )d

∞–

∞

∫ Γ α( )
Γ 2 α–( )
--------------------.=

α  . 1
1
32
------ T

TBKT
------------, T TBKT∼–
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Fig. 1. Spectral function A(ω, k) versus ω in units of the zero-temperature gap ∆ for k < kF , k = kF , and k > kF  at T = 0.99TBKT.
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Fig. 2. Spectral function A(ω, k) versus ω in units of the zero-temperature gap ∆ for k < kF , k = kF , and k > kF  at
T = 1.043TBKT.
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Fig. 3. Spectral function A(ω, k) versus ω in units of the zero-temperature gap ∆ for k < kF , k = kF , and k > kF  at
T = 1.088TBKT.
present if the dynamical fluctuations are considered)
would considerably smear these peaks, moving the
excess spectral weight inside the gap. This assumption
is supported by the results of [36] (see item 3 below).
The same effect can also be reached when the interac-
tion between the charge and spin degrees of freedom is
taken into account [30]. Note also that full cancellation
of these peaks occurs in the T = 0 case given by equa-
tion (4.29).

(3) For ω < |ρ|, we have A(ω, k) = 0 and a gap exists
at all T (including T > TBKT). This result is also a conse-
quence of the static approximation used above. The
dynamical fluctuations should fill the empty region, result-
ing in pseudogap formation in the normal state. Indeed,
filling of the gap was obtained in a related calculation [36],
where the correlation function 〈exp(iθ(r, t))exp(–iθ(0))〉
(which differs from (3.16) only by the factor 1/2 multi-
plying the phase), which includes the dynamical phase
fluctuations, was used in the numerical calculation of
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
the self-energy of fermions and in the subsequent
extraction of the spectral function from the fermion
Green’s function.

In the approximation used in the present paper, the
spin and charge degrees of freedom are decoupled [see
(2.8)]. However, this coupling can be included at the
next stage of the approximation and also leads to
pseudogap filling. Indeed, using the special form of the
scattering rate proposed in [40]. It was obtained in [30]
that A(ω, k) ≠ 0, even for ω < |ρ|. On the other hand, as
stated above, there are also indications [36] that filling
of the gap can be obtained by considering the dynami-
cal phase fluctuations only. At present, it is not clear
which of these gap-filling mechanisms plays the main
role; this is the subject of our current investigations.

(4) The main peaks at ω = ±E(k) have a finite tem-
perature-dependent width which is, of course, related
to the spin-wave (longitudinal) phase fluctuations.
As T  0, the width goes to zero, but this limit cannot
SICS      Vol. 90      No. 6      2000
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be correctly derived from (5.5), because this is an ordi-
nary function, while the BCS spectral density (4.30) is
a distribution. The correct limit can, however, be
obtained for the integral of A(ω, k) (see Section 6,
where the density of states is discussed). This sharpen-
ing of the peaks with decreasing T in the superconduct-
ing state was experimentally observed [29] and repre-
sents a striking difference from the BCS “pileup”
(4.30) which is present for all T < Tc .

It was pointed out in [30] that the broadening of the
spectral function caused by these fluctuations can be
greater than the experimental data permit. This leads
[30] to the conclusion that the spin-wave phase fluctu-
ations are probably suppressed by the Coulomb interac-
tion.

(5) For T > TBKT (see Figs. 2, 3), one can see that the
quasiparticle peaks at ω . ±E(k) are less pronounced as
the temperature increases. Indeed, the value of A(ω, k)
at ω = ±E(k) is, in contrast to the case where T < TBKT,
already finite. This is caused by the fact that $ ≠ 0,
since ξ+ is already finite due to the influence of the vor-
tex fluctuations. As the temperature is increased further,
ξ+ decreases, so that the quasiparticle peaks disappear
(cf. Figs. 2, 3). This behavior qualitatively reproduces
the ARPES studies of cuprates for the antinode direc-
tion [29] (see also [41]), which show that the quasipar-
ticle spectral function broadens dramatically when
passing from the superconducting to the normal state.

(6) It is important to stress that due to a very smooth

dependence of  on T [see (3.15)] as the temperature
varies from T < TBKT to T > TBKT, there is no sharp tran-
sition at the point T = TBKT. There is a smooth evolution
of the superconducting (excitation) gap ∆SC = ρ into the
gap ∆PG, which is also equal to ρ and in fact can be
called a pseudogap, because the system is not super-
conducting at T > TBKT. This qualitatively fits the exper-
iment [29, 33, 41] and appears to be completely differ-
ent from the BCS theory [31], where the gap vanishes
at T = Tc . As was already mentioned, the gap obtained
at T > TBKT occurs in the static approximation only and
begins to be filled after dynamical fluctuations are
taken into account (see, for example, [36]).

(7) Again, for T > TBKT, one has A(ω, k) = 0 when
|ω| < ρ and we expect the gapped region to be filled by
the dynamical phase fluctuations [36]. We predict,
however, an essential difference between filling of the
gap at T > TBKT and T < TBKT. Indeed, due to the pres-
ence of the vortices above TBKT, the value of the decay
constant γ in equation (3.16) should be much larger

than for T < TBKT. This and a nonzero value of 
above TBKT may explain the break at T = Tc in the scat-
tering rate Γ1 introduced in [40]. In general, it is inter-
esting to establish a correspondence between the phe-
nomenological parameters Γ1 and Γ0 introduced in [40]
and the vortex parameters ξ+ and γ used here. Note,

ξ+
1–

ξ+
1–
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however, that this correspondence cannot be simple
because of the nonpole character of the Green’s func-
tion derived here.

As mentioned above (see item 3), filling of the gap
due to dynamical phase fluctuations is not the only pos-
sible mechanism for filling and the presence of vortices
above TBKT can be taken into account via coupling the
spin and charge degrees of freedom [30]. It could also
be that both these mechanisms are physically equiva-
lent, since they relate gap filling to the presence of vor-
tices in the system.

(8) Since we used the mean-field dependence ρ(T),
it is clear that the distance between the quasiparticle
peaks (which is approximately equal to 2ρ) diminishes
as T increases. This process of pseudogap closing is
accompanied by the destruction of the quasiparticle peaks.
It is also evident that for ρ = 0, the normal Fermi liquid
behavior is immediately restored, because J(ρ = 0) = 0
[21, 22]. Recall, however, that the description proposed
here cannot be applied when ρ is rather small, because,
as already mentioned, the fluctuations of ρ(x) also have
to be taken into account in this region.

6. THE DENSITY OF STATES
The density of states can be found from the formula

(6.1)

where N0 ≡ m/2π is the density of 2D states in the nor-
mal state (W is the bandwidth).

This integral can be calculated analytically (see
Appendix C), which gives

(6.2)

Again, for T = 0 and large µ @ ρ, equation (6.2)
reduces to the BCS result [31]

(6.3)

The plots for the DOS (6.2) are presented in Fig. 4
(T < TBKT) and Figs. 5 and 6 for T > TBKT, respectively.
If one does not pay attention to a small difference in the
curves shown in these figures, it is clearly seen that the
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form of the DOS does not differ qualitatively from stan-
dard BCS curves. Moreover, similarly to the spectral
function, the DOS in the static approximation has a gap
both above and below TBKT and does not reveal any
change when the temperature crosses the phase-transi-
tion point. This confirms once more the crossover char-
acter of the latter, although, as was already pointed out,
a 2D system is superconducting below TBKT only.
According to generally accepted views, the existence of
an empty gap above the critical temperature is impossi-
ble. The reasons for its persistence were discussed in
the previous section. Recall only that dynamical fluctu-
ations or fluctuations of the modulus ρ undoubtedly
result in gap filling above TBKT. One must also take the
dependence of the decay constant γ into account [see
(3.16)], which for T > TBKT, can be considerably greater
than in the region T < TBKT due to the presence of the
vortices.

From the physical point of view, the filling of a gap
(transforming it into a pseudogap) above TBKT (or Tc in
the quasi-2D case) has to continue up to T* (or Tρ if
there is a point where ρ = 0). However, taking ρ-fluctu-
ations into account (i.e., ρ(x)  ρ + ∆ρ) will cause the
appearance of the self-energy, in addition to ρ2, in the
denominator of the mean-field Green’s function (2.15);
it is proportional to the quantity 〈∆ρ(x)∆ρ(0)〉 , whose
contribution could persist at all T. In this case, the
beginning of the pseudogap opening will be defined by
the experimental technique sensitivity of the spectral
function or DOS measurements.

7. CONCLUSION

To summarize, we have derived analytic expressions
for the fermion Green’s function, its spectral density,
and the density of states in the modulus–phase repre-
sentation for the simplest 2D attractive Hubbard model
with the s-wave nonretarded attractive interaction.

While there is still no generally accepted micro-
scopic theory of HTSC compounds and their basic fea-
tures (including the pairing mechanism), it seems that
this approach, although in a sense phenomenological, is
of great interest, since it enables one to propose a rea-
sonable interpretation for the pseudogap phenomena
related to vortex fluctuations. The results presented
here are entirely analytic, which allows a deeper under-
standing than in the case of a numerical investigation.
In particular, the analytic investigation of the Green’s
function structure revealed that the phase fluctuations
lead to a non-Fermi-liquid behavior below and above
TBKT.

Evidently, there are a number of important open
questions. The main question is whether the pseudogap
is related to some kind of superconducting (in our case,
phase) fluctuations. Hopefully, the experiment pro-
posed in [4] may answer this question. It seems plausi-
ble from the theoretical point of view that supercon-
ducting fluctuations should contribute to the pseudogap
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
(see, however, [11]). Nevertheless, one cannot exclude
the possibility that the superconducting contribution
may be neither the only, nor the main, contribution.

Another open question is which approach allows
one to obtain the pseudogap from the attractive Hub-
bard model. The schemes used in [30] and in our paper
are very different from those of [13]. In particular, our
approach allowed us to establish a direct relationship
between the superconducting fluctuations and the non-
Fermi-liquid behavior in a very natural and transparent
way. Also, it relates the pseudogap to the “soup” of
fluctuating vortices (see also [30, 42]), while [13]
emphasizes the existence of metastable pairs above Tc.
It is possible that both these pictures capture some of
the physics, but in different temperature regions. When
T is high and close to T*, the value of ρ is small, so that
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Fig. 4. The density of states N(ω)/N0 at T = 0.99 TBKT.
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Fig. 5. The density of states N(ω)/N0 at T = 1.043 TBKT.
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Fig. 6. The density of states N(ω)/N0 at T = 1.088 TBKT.
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ρ-fluctuations or metastable pairs dominate. Then, as
the temperature approaches TBKT, the values of ρ and
the phase stiffness J are growing larger, so that the vor-
tex excitations dominate and ρ-fluctuations become
less important. We stress once more that the vortex
excitations cannot be adequately described within the
T-matrix approximation [9].

Recently, the last part of this picture was supported
experimentally [43] by measurements of the screening
and dissipation of a high-frequency electromagnetic
field in bismuth cuprate films. These measurements
provide evidence for a phase-fluctuation-driven transi-
tion from the superconducting to normal state.

Finally, there remains the problem of a more com-
plete treatment of the pseudogap in the modulus–phase
variables. In particular, the effects of dynamical phase
fluctuations and the fluctuations of the order-field mod-
ulus must be considered. The latter are especially
important for a d-wave superconductor, since the mod-
ulus can be arbitrarily small in the nodal directions. In
this case, it will again be important to check the com-
plete structure of the Green’s function, especially its
nonpole structure. Another important question that has
to be addressed is which factor is more important for
gap filling, the spin–charge coupling proposed in [30]
or dynamical phase fluctuations, which, as was shown
in [36], also result in filling.
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APPENDIX

A. The Asymptotic Behavior 
of the Phase Correlation Function

To calculate the integral in equation (3.8), we first
write it as

(A.1)

I e q– Λ⁄ 1 J0 qr( )–[ ] aqcoth

0

∞

∫≡

=  
1
a
--- te t– Λa⁄ tcoth 1

t
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  1 J0
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∫
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The following formulas are used when calculating I:

(A.2)

Hence, we obtain

(A.3)

Now, depending on the relationship between Λ and r0,
we obtain

(A.4)

which gives equation (3.10).

B. Another Representation 
for the Retarded Green’s Function

Here, we obtain another representation for the
retarded fermion Green’s function that is more conve-
nient for the derivation of the spectral density. Recall
that when the imaginary part of G(ω, k) is nonzero, µ +

 > 0 and v1 > 0, v2 < 0. This allows one to
transform the analytically continued [by means of
equation (4.18)] integral

(B.1)

from equation (4.14) as (for α < 1)
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(B.2)

The first Appel function in (B.2) can be reduced to the
hypergeometric function using the identity [38] that is
valid for γ = β + β':

(B.3)

Thus, one obtains

(B.4)

This completes the derivation of equation (5.2).

C. The Calculation of the Density 
of States

Introducing

(C.1)

and substituting (5.5) in (6.1), we can write

(C.2)
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u v 1+( ) u v 2–( )[ ]α---------------------------------------------------d

v 2

∞

∫ 1–( )α

u1
α-------------Γ α( )=

× Γ 1 α–( )F1 α α 1 α ; 1; 
v 2

v 1
------ u2,–, , 

 

+
1
v 2
--------- Γ 1 α–( )

Γ 1 α–( )
---------------------F1 1 α 1 α ; 2– α ; 

v 1

v 2
------ 1

v 2
------,–, , 

  .

F1 α β β' β β'; x y,+, , ,( )

=  1 y–( )α F2 1 α β; β β'; 
x y–
1 y–
-----------+, 

  .

L
1–( )αΓ α( )Γ 1 α–( )

u1 1 u2–( )[ ]α---------------------------------------------- F2 1 α α ; 1; 
u2 1 u1–( )
u1 1 u2–( )
------------------------, 

 =

+
1
u2
--------Γ 1 α–( )

Γ 2 α–( )
--------------------F1 1 α 1 α ; 2– α ; 

u1

u2
----- 1

u2
-----,–, , 

  ;

u2 1 u1–( )
u1 1 u2–( )
------------------------ 1,

u1

u2
----- 0,

1
u2
----- 0.<<<

y
k2 2m⁄

µ ω2 ρ2–+
-------------------------------, b

1

2mξ+
2

------------- 1

µ ω2 ρ2–+
-------------------------------,= =

y0
W

µ ω2 ρ2–+
-------------------------------,=

N ω( ) N0
Γ α( )

Γ 1 α–( )
--------------------- 2

mr0
2

--------- 
  α 1–

ωθ ω2 ρ2–( )sgn=

× !1( )11 µ ω2 ρ2–+( )
1 α– yd

y b 1–+( )2 4b+[ ]α 2⁄----------------------------------------------------

0

y0

∫

× F2 1
α
2
--- 1 α–

2
------------; 1; 4y

y b 1–+( )2 4b+
-----------------------------------------–, 

 

× θ µ ω2 ρ2–+( ) ω2 ρ2– ω2 ρ2––( )– .
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We now consider the integral from (C.2),

(C.3)

Using the relation [38]

(C.4)

the integral can then be rewritten as

(C.5)

Replacing x =  in (C.5), we obtain

(C.6)

Integral (C.5) diverges at the lower limit as x0  0,
or equivalently, as y0  ∞. To handle this, we can
write

(C.7)

I
yd

y b 1–+( )2
4b+[ ]

α 2⁄----------------------------------------------------

0

y0

∫=

× F2 1
α
2
--- 1 α–

2
------------; 1; 4y

y b 1–+( )2 4b+
----------------------------------------–, 

  .

F2 1 a b; c; z,( ) = 1 z–( ) a– F2 1 a c b; c; 
z

z 1–
-----------–, 

  ,

I
yd

y b 1+ +( )α----------------------------

0

y0

∫=

× F2 1
α
2
--- 1 α+

2
-------------; 1; 

4y

y b 1+ +( )2
----------------------------, 

  .

b 1+
y b 1+ +
---------------------

I b 1+( )1 α– xxα 2–d

x0

1

∫=

× F2 1
α
2
--- 1 α+

2
-------------; 1; 

4x 1 x–( )
b 1+

----------------------, 
  ,

x0
b 1+

y0 b 1+ +
-----------------------.=

I b 1+( )1 α– xxα 2–d

x0

1

∫=

× F2 1
α
2
---, 

1 α+
2

-------------; 1; 
4x 1 x–( )

b 1+
---------------------- 

  1– 1+

=  b 1+( )1 α– 1 x0
α 1––

α 1–
--------------------





+ xxα 2– F2 1
α
2
--- 1 α+

2
-------------; 1; 

4x 1 x–( )
b 1+

----------------------, 
  1–d

x0

1

∫ 



.
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To calculate the last integral in (C.7), we rewrite it as

(C.8)

For γ > 0, we can compute the integral with the help of
the formula (2.21.29) [44],

(C.9)

so that

(C.10)

Thus, for integral (C.3), we find

(C.11)

Now substituting (C.11) into (C.2), we obtain

(C.12)

E xxγ 1–d

0

1

∫γ α 1–→
lim=

× F2 1
α
2
--- 1 α+

2
-------------; 1; 

4x 1 x–( )
b 1+

----------------------, 
  1– .

xα 1– y x–( )β 1– F2 1 a b; c; ωx y x–( ),( ) xd

0

y

∫
=  yα β 1–+ B α β,( )

× F4 3 a b α β; c
α β+

2
------------- α β 1+ +

2
----------------------; 

ωy4

4
---------, ,, , , 

  ,

E B γ 1,( )




γ α 1–→
lim=

× F4 3
α
2
--- 1 α+

2
------------- γ 1; 1

γ 1+
2

------------ γ 2+
2

------------; 
1

b 1+
------------, ,, , , 

  1
γ
---–





=  B α 1– 1,( )

× F4 3
α
2
--- 1 α+

2
------------- α 1– 1; 1

α
2
--- 1 α+

2
-------------; 

1
b 1+
------------, ,, , , 

 

–
1

α 1–
------------ 1

α 1–
------------ F1 0 α 1; 

1
b 1+
------------– 

  1
α 1–
------------–=

=  
1

1 α–
------------ 1

b
b 1+
------------ 

 
1 α–

– 0.>

I
1

1 α–
------------ y0 b 1+ +( )1 α– b1 α––[ ] .=

N ω( ) N0
Γ α( )

Γ 2 α–( )
-------------------- 2

mr0
2

--------- 
  α 1–

ωθ ω2 ρ2–( )sgn=

× !1( )11 µ ω2 ρ2–+( )
1 α–





× y0 b 1+ +( )1 α– b1 α–– θ µ ω2 ρ2–+( )

– ω2 ρ2– ω2 ρ2––( )




.
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Finally, replacing y0 and b in (C.12) by expressions
from (C.1), we arrive at equation (6.2).
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