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Abstract—The electron current tensor for the scattering of a heavy photon on a longitudinally polarized elec-
tron accompanied with an additional electron–positron pair is considered. The contribution of soft and hard col-
linear and quasi-collinear pairs is taken into account. The full analysis of the spin-independent and spin-depen-
dent parts of the electron current tensor is performed. The results allow us to calculate the corresponding con-
tribution into the second-order radiative correction to cross sections for different processes with the next-to-
leading accuracy. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The recent polarized experiments on deep inelastic
scattering [1, 2] cover the kinematic region of the
Bjorken variable y . 0.9, where the electromagnetic
corrections to the cross section are extremely large. The
corresponding first-order quantum-electrodynamics
(QED) correction due to one real and one virtual photon
emission was computed in [3, 4]. At large values of y,
this correction is of the order of the Born cross section
in this region. Therefore, the calculation of the second-
order QED correction becomes very important for
interpreting these experiments in terms of the hadron
structure functions.

In general, the cross section for the deep inelastic
scattering (DIS) can be represented as a contraction of
the electron current tensor Lµν (ECT) and the hadron
tensor Hµν [5]:

where q is the momentum transfer (by definition, the
ECT involves the phase space of the leptons accompa-
nying the scattered electron). The ECT is model-inde-
pendent and universal, while the hadron tensor depends
on the model used for the description of hadrons and
has its own specifications for different processes, event
selection, and so on. Therefore, it is very important to
calculate the universal quantity (the ECT) with the
maximum possible accuracy, since it can be applied to
many processes in scattering and annihilation channels.

The first steps in calculating the second-order QED
correction to the ECT for a longitudinally polarized
electron were done in [6, 7]. In [6], the one-loop cor-

¶ This article was submitted by the authors in English.
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rected Compton tensor with a heavy photon was calcu-
lated with singular and finite terms in the limit m  0,
where m is the electron mass. This approximation does
not take all contributions into account with the next-to-
leading accuracy in the case where the radiated photon
is not observed. The extension of the results of [6] to
this case was performed in [8]. In [7], the ECT due to
hard double-photon emission was derived keeping the
electron mass finite and taking the contributions of col-
linear and quasi-collinear kinematics into account. An
approximation of this type allows one to keep all the next-
to-leading terms in the case of unobserved photons.

Besides the additional contribution to the ECT due
to the virtual and real soft double-photon emission,
which can be obtained in the unpolarized case [9], there
is a contribution from the pair production. In this work,
we calculate it with the same accuracy as in [7] for the
hard double-photon emission. It is convenient to divide
the corresponding ECT into parts corresponding to the
contribution of virtual and real soft pairs as well as the
contribution from the hard pair. The first part can be
derived using the results for the unpolarized case [10], and
the main problem is the calculation of the second one.

In the Born approximation, the ECT with a longitu-
dinally polarized electron has the form

(1)

where p1 (p2) is the 4-momentum of the initial (final)
electron and λ is the doubled initial electron helicity [it
equals 1 (or –1) if the initial electron is polarized along
(against) its 3-momentum direction].

Lµν
B Qµν iλEµν,+=

Qµν –4 p1 p2( )gµν 4 p1 p2( )µν,+=

Eµν 4eµνρσ p1 p2σ,=

p1 p2( )µν p1µ p2ν p1ν p2µ,+=
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We consider corrections to  due to the pair pro-
duction in the scattering

(2)

or annihilation

processes under the condition |q2|, (p1p2) @ m2 in col-
linear and quasi-collinear kinematics. In the unpolar-
ized case, the corresponding calculations were per-
formed in part for DIS [11, 12] as well as for small- and
large-angle Bhabha scattering [13, 14] at the level of
cross sections. Some other aspects of QED corrections
due to pair production are also discussed in [15–18].
For definiteness, we investigate the scattering channel,
and to obtain the corresponding result for the annihila-
tion channel one must substitute –p2 instead of p2.

The paper is organized as follows. In Section 2, we
consider the contribution due to collinear kinematics.
There are two collinear kinematical regions: (a) where
the created pair is emitted along the initial electron
momentum direction (p+, p– || p1) and (b) where the cre-
ated pair moves along the final one (p+, p– || p2). In col-
linear regions, both the photon and the fermion propa-
gator denominators (PD) of the underlying Feynman
diagrams can be small. The corresponding contribution
to the ECT can be expressed in terms of the symmetric
tensor Qµν and the antisymmetric tensor Eµν in the same
manner as in [7] for the double-photon emission pro-
cess. In Section 2.1, we calculate the ECT in region a;
in Section 2.2, in region b. Our final result for the col-
linear regions is valid with the next-to-leading accu-

Lµν
B

e– p1( ) γ∗ q( ) e– p2( ) e+ p+( ) e– p–( )+ + +

e– p1( ) e+ p2( ) γ∗ q( ) e– p–( ) e+ p+( )+ + +

=

=

+

+

– –

(1, 2) (3, 4) (5, 6)

–p+ –p+

p1 p1

p1

p2 p–

p–p–

p2

p2

–p+

Fig. 1. The essential Feynman diagrams that contribute at
|q2|, |u| @ m2 in the collinear kinematics. Every set of dia-
grams is gauge-invariant relative to the heavy photon. The
signs before sets are defined by the Fermi statistics for per-
mutation of the final fermion states.
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racy, although the intermediate formulas are written
with next-next-to-leading accuracy.

In Section 3, we investigate the ECT in quasi-col-
linear kinematics. Only the photon PDs of Feynman
diagrams can be small in this case, and under the con-
ditions considered here there are three different quasi-
collinear regions [11]: p– || p1, p– || p+, and p+ || p2. The
corresponding contributions to the ECT are calculated
in Sections 3.1, 3.2, and 3.3, respectively. The structure
of the ECT in quasi-collinear regions is more compli-
cated than in the collinear ones. Nevertheless, the result
derived in Section 3 is valid with the next-next-to-lead-
ing accuracy. We demonstrate the elimination of the
angular auxiliary parameters used to define collinear
regions a and b in the sum of contributions of the col-
linear and quasi-collinear kinematics at the next-to-
leading accuracy level. The main results, together with
the virtual and soft pair contribution, are briefly formu-
lated in Conclusions. The starting points of our calcula-
tions are given in the Appendix.

Our calculations are based, in fact, on the quasi-real
electron method [19] and can be applied to processes
with an electron beam energy on the order of 1 GeV and
more.

2. INVESTIGATION
OF COLLINEAR KINEMATICS

As noted in the Introduction, both the photon and
the fermion PD of the underlying Feynman diagrams
can be small in the collinear region. Because of the
imposed restriction on the heavy photon mass (–q2 @ m2)
and the registration condition for the scattered electron
(–u = 2p1p2 @ m2), only six from the total of eight dia-
gram sets are essential. These diagrams are shown in
Fig. 1.

The amplitudes corresponding to each of the dia-
gram sets (1, 2), (3, 4), and (5, 6) in Fig. 1 are gauge
invariant, and it is therefore convenient to keep these
pairs together during the calculation. We refer to them
as the (1, 2) set and so on.

2.1. The Contribution of Region a

In region a, the (1, 2) and (5, 6) sets contribute. We
define the limiting angle θ0 in this region such that

(3)

where θ± =  and ε1 is the initial electron energy.

In calculating the ECT, we always neglect the terms
of the order θ0 and 1/z0 compared to unity. Thus, our

results include, in general, terms of the orders 

(best),  (next-to-leading), and 1 (next-next-to-
leading). In the collinear regions, we keep all the terms
that contribute with the next-next-to-leading accuracy
at the differential level, but we cannot perform the

θ+ θ– θ0, θ0 ! 1, ε1θ0 m⁄( )2≤, z0 @ 1,=

p1p±

〉

z2
0ln

z0ln
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CURRENT TENSOR WITH A HEAVY PHOTON FOR PAIR PRODUCTION 3
angular integration analytically with the same accu-
racy. This is why the final result derived in Section 2 is
written in only the next-to-leading approximation.

For the kinematical invariants corresponding to
small PD in the relevant Feynman diagrams, we intro-
duce the parameterization [11]

(4)

where ε+ (ε–) is the created positron (electron) energy
and n+, n– are two-dimensional vectors that are perpen-
dicular to the direction of the 3-momentum p1. To sep-
arate hard and soft pairs, we introduce an auxiliary
parameter D (D ! 1) and assume that x+ + x– ≥ ε1D for
the hard pair. We define the ECT as the product of the
created electron–positron pair phase space and the trace
tensor of the corresponding tensor diagram (TD) given
in Fig. 2,

(5)

where the starting points for the calculation of Tµν are
defined in the Appendix in terms of the corresponding
squared matrix element. In region a, the created pair
phase space can be written in terms of the variables
used in relations (4) as

(6)

where φ is the angle between n+ and n–.
When calculating tensor Tµν , we have to keep terms

with m4 in the denominator and neglect terms of the
order m–2. Such an approach allows us, in principle, to
compute the quantity Lµν with the power accuracy rela-

a
q±

2

m2
------

1
x+x–
---------- x+ x–+( )2 x+

2 x–
2 n+ n––( )2

+[ ] ,= =

a1
2 p1 p+( )

m2
-------------------

1
x+
----- 1 x+

2 x+
2n+

2+ +( ),= =

a2
2 p1 p–( )

m2
-------------------

1
x–
----- 1 x–

2 x–
2n–

2+ +( ),= =

∆
p1 p–– p+–( )2 m2–

m2
------------------------------------------------ a a1– a2,–= =

x+

ε+

ε1
-----, x–

ε–

ε1
----,= =

n+ –,
ε1θ+ –,

m
--------------, qa z p1 p2,–= =

z 1 x+– x–, q±– p+ p–,+= =

Lµν
α

4π2
-------- 

  2d3 p+d3 p–

ε+ε–
----------------------Tµν,=

d3 p+d3 p–

ε+ε–
---------------------- m4π2x+x–dx+dx–dz+dz–

dφ
2π
------,=

z+ –,
ε1

2θ+ –,
2

m2
--------------,=
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tive to the parameter z0, neglecting only terms of the

order O( ).

In region a, it is convenient to separate the contribu-
tions of the (1, 2) and (5, 6) sets and their interference:

The tensor  can be written as

(7)

We emphasize that the last term on the right-hand side
of Eq. (7) does not give a large logarithm when inte-
grated over the angular phase space of the created pair.
Therefore, within the best and next-to-leading accu-
racy, both tensor structures—Qµν and iλEµν—are

z0
1–

Tµν
a( ) 16

m4
------ Tµν

12( ) Tµν
56( ) Tµν

int( )+ +[ ] .=

Tµν
12( )

Tµν
12( ) 1

a2∆2
----------- 2z

1 z–( )2
------------------ x–a1 x+a2–( )2 4az+–





=

+ 2 1 z–( )∆
2x+x–

∆2 1 z–( )
2

----------------------- 1 z+
a∆ 1 z–( )
----------------------–

1

a∆2 1 z–( )
2

--------------------------–+

× z 1 z–( ) x+ x––( ) a1 a2–( )[

+ 2x+x– 1 z+( ) a1 a2+( ) ]




Qµν iλEµν+( )

–
iλ

a2∆2
----------- 2a 1 z–( )2 2x+x––( ) 4 1 z–( )2+[ ]Eµν.

–p+ –p+ –p+

p–p– p2

p2 p2p–

–p+p1

(1, 2) × (1, 2)† (3, 4) × (3, 4)† (5, 6) × (5, 6)†

p1
µµµ ννν

ρ
ρ ρ

ρ ρ
ρ

λ
λλ

λλ
λ

(1, 2) × (5, 6)† (1, 2) × (3, 4)†

p1 p1p– p–

p2 p2–p+ –p+

λ λ λλ

ρ

ρ ρ

ρ
ν

ν

µ µ

Fig. 2. Diagrams for the electron current tensor. Topological
class a is responsible for contributions of the (1, 2), (3, 4)
and (5, 6) sets that appear in both collinear and quasi-col-
linear kinematical regions. Topological class b describes the
interference between (1, 2) set and (3, 4) as well as (5, 6)
ones. The latter class contributes to the collinear kinematics
only within the chosen accuracy.
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multiplied by the same function. With this accuracy,
therefore, we can use the result of the corresponding
calculations for the unpolarized case [11, 12], where
only the Qµν structure is involved.

As concerns the tensor , its symmetric spin-
independent part can be obtained from the correspond-
ing part of Tµν by the rule

(8)

where the substitution operator  acts as

(9)

It is easy to verify that

The rule (9) reflects the obvious topological equiva-
lence of TD for the (1, 2) and (5, 6) sets in the unpolar-
ized case, as follows from Fig. 2 (see also [12]).

Unfortunately, we cannot use this rule to obtain the

antisymmetric spin-dependent part of . At the level
of the TD of Fig. 2, we can explain this fact because, for
the (1, 2) set, the polarized particle (the electron with the
4-momentum p1) enters the lower block, while for the
(5, 6) set it enters the upper one. It is obvious that con-
ditions for the polarized particle are different in the
lower and upper blocks.

Straightforward calculations lead to the expression

(10)

where

(11)

(12)

We see that in contrast with the (1, 2) set contribution,
where the structures Qµν and iλEµν are accompanied by
the same function up to the next-to-leading accuracy,
the quantities S(56) and A(56) on the right-hand side of

Tµν
56( )

sym Tµν
56( ){ } x+P̂sym Tµν

12( ){ } ,–=

P̂

P̂ x+ x– n+ n–, , ,( ) x+
x–

x+
-----– x+n+ x+ n+ n––( ), , , 

  .

P̂ a1 a a2, ,( ) a1 2 a2– 2 a–, ,( ).

Tµν
56( )

Tµν
56( ) S 56( )Qµν A 56( )iλEµν,+=

S 56( ) 2z

2 a2–( )2
---------------------

a1

∆
----- 1

1 x––
-------------+ 

  2

–=

–
1

∆ 2 a2–( )
--------------------- x+ z–

2 1 x+– x+
2+( )

1 x––
--------------------------------– 

 

– z

∆2
-----

2za1

∆2 2 a2–( )
-----------------------

2 1 x––( )

∆ 2 a2–( )2
-----------------------

4z

∆2 2 a2–( )
-----------------------,–+ +

A 56( ) –
1 x–– x– x+ z–( )+
∆ 2 a2–( ) 1 x––( )
------------------------------------------ z

∆2
-----+=

–
2za1

∆2 2 a2–( )
-----------------------

2 1 x––( ) x+ z–( )

∆ 2 a2–( )2
---------------------------------------–

–
2 2 1 x+–( ) 1 z–( ) 1 x––( )–[ ]

∆2 2 a2–( )
---------------------------------------------------------------------- 4 1 x–( )

∆2 2 a2–( )
2

--------------------------.–
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Eq. (10) are quite different. As we see in what follows,
this difference also affects the best approximation.

The interference of the (1, 2) and (5, 6) sets (see the
TD in Fig. 2) can be written as

(13)

(14)

(15)

The quantity S(int) is invariant under the same operation

that transforms the tensor  into ,

(16)

while A(int) is not invariant.
The last two lines on the right-hand side of Eq. (14),

as well as A(int), do not contribute within the logarithmic
accuracy framework.

The next step in our calculations is the integration of
the ECT over the angular phase space of the created
pair. We use parameterization (6) and integrate over z+
and z– from zero to z0 and over φ from zero to 2π. In
principle, the angular integration can be performed
with a power accuracy, but we restrict ourselves with
the next-to-leading accuracy in this paper. The method
of integration suitable for this approximation is
described in [20], and the table of the corresponding
integrals is given in [11, 14].

As noted above [see Eqs. (7) and (13)], with this
accuracy, the contribution to the ECT due to the (1, 2)
set and the interference of the (1, 2) and (5, 6) sets con-
tains the same function at the symmetric and antisym-

Tµν
int( ) S int( ) Qµν iλEµν+( ) A int( )iλEµν,+=

S int( ) 1
a∆
------- 2x– zx+ x––( ) 1

1 x––
------------- 1

1 z–
-----------+ 

 +–=

–
1

∆ 2 a2–( )
--------------------- 2x– z x+x––( ) 1

1 x––
------------- 1

1 z–
-----------+ 

 +

–
1

a 2 a2–( )
---------------------

2x+x–

1 x––( ) 1 z–( )
----------------------------------–

+ x– 1 x++( ) 1
1 x––
------------- 1

1 z–
-----------+ 

  2x––

–
2za1

∆2
----------- 1

a
--- 1

2 a2–
--------------+ 

  2 zx– x+–( )
∆a 2 a2–( )
------------------------- 1

1 x––
------------- 1

1 z–
-----------– 

 –

–
4z

∆2
----- 1

a
--- 1

2 a2–
--------------+ 

  8z

a∆2 2 a2–( )
----------------------------,+

A int( ) 2 1 z–( )
a∆ 2 a2–( )
------------------------- 2x+ x–– 3x–

2+( )–=

–
2

∆2 2 a2–( )
----------------------- x+ x–– 2x+

2 3x– 1 z–( )+ +( )

+
2 1 z–( )2

a∆2
-------------------- 3 4

2 a2–
--------------– 

  .

Tµν
12( ) Tµν

56( )

S int( ) x+P̂S int( ),–=
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metric structures at the differential level. Therefore, we
can write down the results of the angular integration in
region a as

(17)

where  absorbs the angular integration results on the
right-hand sides of Eqs. (7) and (14):

(18)

The corresponding symmetric pare of the contribution
of the (5, 6) set is defined by

(19)

and its antisymmetric part is defined by

(20)

It follows from (8) and (16) that the coefficient at the
Qµν structure on the right-hand side of Eq. (17) is invari-
ant under the substitution

Because the heavy photon 4-momentum qa in region a
depends on the sum of the created electron and positron
energy fractions [see (4)], we can carry out the model-
independent integration of the right side of Eq. (17)
over the electron (or positron) energy fraction x– (or x+)
at fixed x+ + x– = 1 – z. The result can be written as

(21)

Lµν
a( ) α2

π2
-----dx+dx– z0ln=

× Qµν iλEµν+( )S S 56( )Qµν iλ A 56( )Eµν+ +[ ] ,

S

S
1 z2+

1 z–( )4
------------------ 1

2
--- x+

2 x–
2+( )

z0x+
2 x–

2

z2
--------------- x+ x––( )2–ln=

+
8zx+x–

1 z2+
---------------- 2

x–
2 z2+

1 x––( ) 1 z–( )
----------------------------------

1 z–( ) 1 x––( )
zx–

----------------------------------ln–

+
x+x– z–

1 x––( )2
--------------------

zx+ x––

1 z–( )2
------------------+ .

S 56( ) x+
2 z2+

1 x––( )4
--------------------=

× 1
2
--- 1 x–

2+( )
z0x+

2 x–
2

z2
--------------- 1 x–+( )2–

8zx+x–

x+
2 z2+

----------------+ln ,

A 56( ) 1 x–+( ) z x+–( )

2 1 x––( )2
------------------------------------

z0x+
2 x–

2

z2
---------------ln=

– 3 4 6z+
1 x––
--------------

8z

1 x––( )2
--------------------.–+

x+ x– z0, ,( ) 1
x+
-----

x–

x+
-----– x+

2z0, , 
  .

L̃µν
a( ) α2

π2
-----dz z0ln=

× Qµν iλEµν+( )S̃ S̃
56( )

Qµν iλ Ã
56( )

Eµν+ +[ ] ,
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(22)

(23)

(24)

We draw the reader’s attention to the leading (double

logarithmic) contribution to the tensor  [the first terms
on the right-hand sides of Eqs. (22), (23), and (24)]. The
terms that enter Eqs. (22) and (23) are related with the
electron structure function due to the pair production [17].

The first term is responsible for a non-singlet chan-
nel contribution. It has an infrared singularity as z 
1 and can be obtained by inserting the effective electro-
magnetic coupling αeff(lnz0) (which is the integral of
the running constant) into the so-called θ-term of the
first-order electron structure function [17]

Thus, we see that in the non-singlet channel, the spin-
independent and the spin-dependent parts of the ECT
have the same behavior in the leading approximation.
This is true for the pair production as well as for the
photon emission [7] and is a consequence of the helic-
ity conservation in the non-singlet channel [21].

The second term describes the spin-independent
part of the ECT in the singlet channel. It has a specific
z–1 behavior at small values of z and tends to zero as
z  1. However, the corresponding spin-dependent

S̃
1 z2+

3 1 z–( )
------------------ z0 4 1 z+( ) z 1 z–( )lnln+ln=

–
2 3z2 1–( )

1 z–
-----------------------Li2 1 z–( )

2
1 z–
----------- z2ln–

+
8

3 1 z–( )
------------------ 1 z–( )ln

20
9 1 z–( )
------------------,–

S̃
56( ) 1 z–

6z
----------- 4 7z 4z2+ +( ) 1 z+( ) zln+ z0ln=

+
2
3
--- –4z2 5z– 1 4

z
---+ + 

  1 z–( )ln

+
1
3
--- 8z2 5z 7– 13

1 z–
-----------–+ 

  zln
2
3
---z2 136

9
---------z

107
9

---------–
4
3z
-----,–+–

Ã
56( ) 1

2
--- 5 1 z–( ) 2 1 z+( ) zln+[ ] z0ln=

+
2
3
--- 13 17z–( ) 1 z–( ) 1

3
--- 5z 19– 13

1 z–
-----------– 

  zln+ln

+
196
9

---------z
185
9

---------.–

L̃µν
a( )

P1θ z α eff,( )
α eff z0ln( )

2π
----------------------1 z2+

1 z–
-------------θ 1 z– D–( ),=

D 0, αeff z0ln( ) 3π 1
α z0ln

3π
--------------– 

  .ln–=
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6 KONCHATNIJ et al.
part of the ECT in Eq. (24) is described by a different
structure function

(25)

that also tends to zero as z  1 but behaves differently
at small z. Therefore, we conclude that in the singlet
channel, the spin-independent part of the ECT and the
spin-dependent one are different in the best approxima-
tion, especially at small z. This effect occurs if the cre-
ated pair is concentrated along the polarized electron
momentum direction; the effect is absent (as we see in
what follows) if the pair moves along the scattered elec-
tron momentum direction.

2.2. The Contribution of Region b

In considering the double-photon emission by a lon-
gitudinally polarized electron [7], we saw that in the
case where both photons are pressed to the final (unpo-
larized) electron momentum direction, the spin-inde-
pendent and spin-dependent parts of the ECT have the
same behavior with the power accuracy. The analysis
performed in this work clarified that a similar situation
occurs for pair production.

We can explain our results using the TD in Fig. 2.
In the collinear region b, the (1, 2) and (3, 4) sets con-
tribute. As before (in region a), the (1, 2) set describes
the non-singlet channel contribution into the ECT, but
the (3, 4) set now describes the corresponding singlet
channel contribution. As we can see from Fig. 2, TDs
for the (1, 2) and (3, 4) sets are mapped into each other
by the substitution

This substitution does not affect the polarized electron
with the 4-momentum p1. That is why the contribution
of both the spin-independent and spin-dependent parts
of the ECT for the (3, 4) set can be obtained (at the dif-
ferential level) from the corresponding contributions of
the (1, 2) set with the help of a certain rule similar to
Eqs. (8) and (9). Because both parts of the ECT have
the same behavior in the non-singlet channel, they are
the same in the singlet channel too. The interference of
the non-singlet and singlet channels, which contributes
with the next-to-leading and power accuracy, does not
change this conclusion. At this point, the principal dif-
ference appears between the kinematics a and b for the
pair production by polarized electron.

In region b, it is convenient to introduce the created
electron and positron energy fractions as well as the

ÃL
56( )

z( )
1
2
--- 5 1 z–( ) 2 1 z+( ) zln+[ ] z2

0,ln=

ÃL
56( )

z( ) zd

0

1

∫ 0=

p2 p+.–
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angles relative to the final electron energy and momen-
tum direction, respectively:

(26)

where ε2 is the scattered electron energy. The corre-
sponding phase space of the created pair in terms of
these variables reads

(27)

We define the collinear region b as a cone with the
opening angle 2  (  ! 1) along the scattered elec-
tron momentum direction; therefore, the maximum
value of  is

According to the above, we can write the tensor 
[see Eq. (5)] as

(28)

To derive the quantity I(b), we first have to find the quan-
tity I(a), which is the sum of all contributions accompa-
nied by the structure Qµν in the right-hand sides of
Eqs. (7), (10), and (14), and then use the rule

(29)

where

The result of the angular integration of the ECT in
region b can be written as [cf. Eqs. (17), (18), and (19)]

(30)

y+ –,
x+ –,

y0
---------, y0

ε2

ε1
----,= =

θ+ θ–( ) p+p2 p–p2( ),= 〉 〉

d3 p+d3 p–

ε+ε–
---------------------- π2m4y+y–dy+dy–dz+dz–

dφ
2π
------,=

z+ –, y0
2ε1

2θ+ –,
2

m2
--------------.=

θ0 θ0

z+ –,

z0

y0
2ε1

2θ0
2

m2
--------------- @ 1.=

Tµν
b( )

Tµν
b( ) 16

m4
------ I b( ) Qµν iλEµν+( ).=

I b( ) I a( ) x+ y– x– y+,–,–(=

a1 b2 a2 b1 a a ∆ d,,–,– ),

b2
1
y+
----- 1 y+

2 y+
2z++ +( ),=

b2
1
y–
---- 1 y–

2 y+
2z–+ +( ), d a b1 b2.+ += =

Lµν
b( ) a2

π2
-----dy+dy– z0 Qµν iλEµν+( )I b( ),ln=

I b( ) 1 η2+

η 1–( )4
------------------- 1

2
--- y+

2 y–
2+( )

z0y+
2 y–

2

η2
--------------- y+ y––( )2–ln=
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CURRENT TENSOR WITH A HEAVY PHOTON FOR PAIR PRODUCTION 7
where η = 1 + y+ + y–.

We can also integrate the right-hand side of Eq. (30)
with respect to y– or y+ at fixed values of η—y+ + y– =
η – 1—because in region b the 4-momentum of the
heavy photon depends on η: qb = p2η – p1. The corre-
sponding expression can be obtained using the sym-

metric part of  in Eq. (21) by the rule

(31)

and the result is given by

(32)

At this point, we note that, for processes in which
the entire energy of the initial electron transforms into
the energy of the electromagnetic jet along its momen-
tum direction (the energy is not transferred by a heavy
photon), the variable η is equal to 1/z because in this
case ε2 = ε1 – ε+ – ε–. This allows us to formulate the
substitution law (31) in terms of the same variables z
and z0. In fact, this approximation is valid for the
description of t-channel photon exchange processes
within the framework of the impact factor representa-
tion [22]. This law was used in calculations of QED
corrections to the small-angle Bhabha cross section at
LEP1 [14].

+
8ηy+y–

1 η2+
-----------------

y–
2 η2+

1 y++( )4
--------------------- 1

2
--- y+

2 1+( )
z0y+

2 y–
2

η2
---------------ln+

– y+ 1–( )2 8ηy+y–

y–
2 η2+

-----------------+ 2
y+

2 η2+
1 y++( ) 1 η–( )

-------------------------------------–+

×
η 1–( ) 1 y++( )

ηy+
-----------------------------------

y+y– η–

1 y++( )2
---------------------

y+ ηy––

1 η–( )2
--------------------+ +ln ,

L̃µν
a( )

L̃µν
b( ) η z0,( ) sym L̃µν

a( )
z η z0 z0,( ),{–=

L̃µν
b( )

 = 
α2

π2
-----dη z0 z0

1 η2+
3 η 1–( )
-------------------

η 1–
6η

------------ 4 7η 4η2+ +( )+ln




ln

– 1 η+( ) ηln 4 1 η+( ) η η 1–( ) 2
η 1–
------------ η2ln–lnln–

–
2 3η2 1–( )

η 1–
-------------------------Li2 1 η–( )

–
2
3
--- –4η2 5η– 1 4

η η 1–( )
--------------------–+ η 1–( )ln

–
1
3
--- 8η2 5η 7– 13

η 1–
------------+ + 

  η 2
3
---η2+ln

–
136
9

---------η 107
9

--------- 4
3η
------ 20

9 η 1–( )
-------------------–+ +





Qµν iλEµν+( ).
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
3. QUASI-COLLINEAR KINEMATICS

Inside the collinear regions, a and b (investigated
above both the photon and fermion PDs) can be small
compared with the heavy photon mass q2. In general,
the smallness of each PD gives a large logarithm in the
ECT after the corresponding angular integration.
Therefore, we have a double-logarithmic behavior of

the tensor . Besides double-logarithmic terms, the
contribution of collinear regions also contains a single
logarithm and constant relative to the variable z0.

Contributions of the last kind can also arise in kine-
matical regions when all the fermion PDs in the under-
lying Feynman diagrams have the same order as q2 and
only photon PDs remain small. Traditionally, we call
this the quasi-collinear kinematics.

It is easy to see that there are three quasi-collinear
regions in the process under consideration: p– || p1,
p– || p+, and p+ || p2. The corresponding contributions to
the cross sections for the unpolarized initial electron
were studied in part for the DIS [11] and small-angle
Bhabha [14] processes.

In what follows, we completely analyze these
regions for a longitudinally polarized initial electron at
the level of a universal quantity, the ECT. To simplify
the calculations, we extensively use the substitution
laws based on the topological equivalence of the rele-
vant TDs in every region. The final result has a compact
form, and we keep single logarithmic as well as power
contributions. In the next-to-leading accuracy, we dem-
onstrate the elimination of the angular auxiliary param-
eters θ0 and  in the case where the separation of col-
linear and quasi-collinear regions has no physical
sense.

3.1. Contribution of the p– || p1 Region 

In the quasi-collinear region p– || p1, only the (5, 6)
set of the TD contributes. In this case, the small photon
PD reads

(33)

and the phase space of the created electron with the
4-momentum p– is

(34)

where ϕ is the azimuth angle of the vector p– in the
coordinate system with the z-axis along the vector p1.

L̃µν

θ0

q–
2 p– p1–( )2 m2 2 a2–( )= =

=  x–m2 1 x––( )2

x–
2

-------------------- z–+ ,–

d p3
–

ε–
----------

1
2
---m2x–dx–dϕdz–,=
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In investigating the ECT in this region, it is conve-
nient to introduce the small 4-vector

(35)

that has the following components in the chosen coor-
dinate system:

We see that the longitudinal component of the 4-vector
p (the last term in this expression) is parametrically
smaller than the perpendicular ones and can be
neglected within the chosen accuracy.

When calculating the TD for the (5, 6) set, we have
to keep the terms of the types

(36)

in order to reach the adequate accuracy (including con-
stants relative z0). The 4-vector p enters the ECT via
scalar products and tensor structures [see in what fol-
lows Eqs. (40) and (41)].

In accordance with (36), we can write the ECT in
the considered region as

(37)

where the first term on the right side gives only a con-
stant (next-next-to-leading) contribution relative to z0
(when integrated over the created electron angular
phase space, see below) and reads

(38)

The second term inside the parentheses in Eq. (37)
leads to only a logarithmic (next-to-leading) contribu-
tion and is defined by the formula

(39)

Finally, the third term on the right side of Eq. (37) leads
to both the logarithmic and constant contributions:

p
1
x–
----- p– p1–=

0 ε1θ– ϕcos ε1θ– ϕsin
m2 1 x–

2–( )

2ε1x–
2

------------------------
ε1θ–

2

2
----------–, , ,

 
 
 

.

1

q–
4

----- m2 q–
2 p p,( ), ,( ),

Lµν
3.1( ) α2

2π4
--------

d2 p+

ε+
-----------x–dx–dϕdz–

m2

q–
4

------=

× m2Lµν
m q–

2

1 x––( )2
--------------------Lµν

q–( ) 2x–
2

1 x––( )2
--------------------Lµν

p( )+ + ,

Lµν
m 1

ut1
------- u t1+( )2g̃µν 4q2 p̃1µ p̃1ν 2iλEµν

m–+[ ] .=

Lµν
q–( ) 1 x–

2+( ) u2 t1
2+( )

2ut1
--------------------------------------- 2x–

q2

s1
-----+ + g̃µν=

–
2q2

ut1
-------- p̃+ p̃2( )µν 1 x–

2+( ) p̃1µ p̃1ν–[ ]
iλ 1 x–+( )

ut1
------------------------Eµν

m .–

Lµν
p( ) q2

2 1 x––( )2
-----------------------N2gµν– KZ( )µν,–=
JOURNAL OF EXPERIMENTAL
(40)

To describe the tensor , we introduced the
notation

(41)

The tensor  satisfies the condition: qν = 0.
Therefore, we could, in principle, write it in terms of
“tilde” quantities as defined in the last line of relations
(41). However, our strategy (as concerns this tensor) is
first to integrate it over the angular variables and then to
express it through quantities of this type.

In the region p– || p1, we can perform the model-

independent integration of  over the angular vari-
ables z– and ϕ. The integration of the first two terms on
the right side of Eq. (37) is trivial and can be done using
the formulas

(42)

In the third term in Eq. (37), we use the relation

(43)

where the perpendicular metric tensor  has only xx
and yy components in the chosen coordinate system. It
acts as

(44)

q p2 p+ 1 x––( ) p1, N–+ χ+ χ2,–= =

Kµ
N

1 x––
------------- p2µ χ2 p1µ pµ,+ +=

Zµ
N

1 x––
------------- p+µ χ+ p1µ pµ.+ +–=

Lµν
3.1( )

Eµν
m u t1–( )Eµν q p2,( )=

+ s1 1 x––( )t1+[ ]Eµν q p1,( ),

Eµν a b,( ) eµνλρaλbρ,=

s1 2 p2 p+, t1 2 p1 p+,–= =

χ+

2 p+ p
t1

------------, χ2

2 p2 p
u

------------,= =

ab( )µν aµbν aνbµ, ãµ+ aµ
aq

q2
------qµ,–= =

g̃µν gµν
qµqν

q2
-----------, ãq– 0.= =

Lµν
p( ) Lµν

p( )

Lµν
3.1( )

m4

q–
4

------ z–d( ) ϕd∫ 2π
1 x––( )2

--------------------,=

m2

q–
2

------ z–d( ) ϕd∫ 2π
x–
------

z0x2

1 x––( )2
--------------------.ln–=

m2

q–
4

------ z–d ϕ pµ pνd∫ π
x–

2
-----

z0x–
2

1 x––( )2
-------------------- 1–ln

 
 
 

gµν
⊥ ,–=

gµν
⊥

aµgµν
⊥ aν

⊥ , aµbνgµν
⊥ ab( )⊥ , gµν

⊥ p1ν 0.= = =
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It is convenient to write Eq. (43) in the symbolic
form as

(45)

and the meaning of symbol “ ” in Eq. (45) can be
understood by comparing Eqs. (43) and (45). Using this
symbol, we can write

(46)

In writing the last part of relation (46), we used the rep-
resentation of the metrical tensor

(47)

that is valid up to terms of the order m/ε1.
Looking at relations (46), one can see that the result

of the angular integration of the tensor  in the con-
sidered region can be written in a covariant form. Due
to gauge invariance, we can introduce the “tilde” quan-
tities and then use the equation

The result has the very simple form:

(48)

Using Eqs. (42) and (43) and Eqs. (45) and (46), we
can perform the angular integration on the right-hand
side of Eq. (37) and write the contribution of the quasi-
collinear region p– || p1 to the ECT as

(49)

pµ pν gµν
⊥ ,–

χ+N
2

ut1
------- s1 y0t1 x+u–+( ),

χ2N
2

ut1
------- –s1 y0t1 x+u–+( ),

N pµ
2

ut1
------- t1 p2µ u p+µ– x+u y0t1–( ) p1µ+[ ] ,

pµ pν χ2χ+ p1µ p1ν χ2 χ++( ) p1 p( )µν+ +

–gµν
2s1

ut1
------- p1µ p1ν–

u p+ t1 p2+ p1,( )µν

ut1
-------------------------------------------.–

gµν gµν
⊥ 1

ε1
2

---- p1µ p1ν
1
ε1
---- gµz p1ν gνz p1µ+( )+ +=

Lµν
p( )

p̃+ p̃2 1 x––( ) p̃1–+ 0.=

Lµν
p( ) 2

q2s1

1 x––( )2ut1

---------------------------- 1–
 
 
 

– g̃µν

+
4q2

1 x––( )2ut1

---------------------------- p̃2 p̃+( )µν,

q2 s1 1 x––( ) u t1+( ).+=

L̃µν
3.1( ) α2

π3
-----

d3 p+

ε+
-----------

x–d

1 x––( )2ut1

----------------------------=

× x–aµν bµν
z0x–

2

1 x––( )2
--------------------ln+ ,
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
where

(50)

(51)

In the situations where the created electron–positron
pair is not observed, we have to sum the contributions
of the collinear and quasi-collinear regions. In such
cases, the parameter θ0 that separates these regions has
no intrinsic physical meaning and must disappear in the
final expression for any observed physical quantity. In
the next-to-leading accuracy, this fact leads to the can-

cellation of all terms proportional to ln ln( /m2).
Let us show that this cancellation occurs in the contri-
bution of the (5, 6) set of the TD. To extract the corre-
sponding term in integrating the right side of Eq. (49)
over the created positron angular phase space

(52)

(where c+ = cosθ+ and ϕ+ is the positron azimuth
angle), it is convenient to write the tensor bµν on the
right side of Eq. (49) as

(53)

The upper integration limit over c+ is equal to cosθ0. On
the right-hand side of Eq. (49), only the pole-like term
proportional to bµν(1)/t1 gives the contribution that we
want to extract. Using

(54)

for bµν(1), we obtain the desired contribution in the form

(55)

It suffices to look at Eqs. (17), (19), and (20) to see

that all the terms containing  vanish
when we add the collinear and quasi-collinear contribu-
tions of the (5, 6) set of the TD. Usually, the contribu-
tion of the quasi-collinear regions added to the collinear

aµν cg̃µν
4q2

1 x––( )2
-------------------- p̃2µ p̃2ν p̃+µ p̃+ν+( ) 2iλEµν

m ,–+=

c u2 t1
2 2q2s1

1 x––( )2
--------------------,+ +=

bµν 1 x–
2+( ) c

2
--- g̃µν–=

–
2q2

1 x––( )2
-------------------- p̃2µ p̃2ν p̃+µ p̃+ν+( ) iλ 1 x–+( )Eµν

m .+

θ0
2 ε1

2

d3 p+

ε+
----------- ε1

2x+dx+dϕ+dc+=

bµν c+( ) bµν c+( ) bµν 1( )–[ ] bµν 1( ).+=

q2 zu, s1 x+u, z p̃1– p̃2,= = =

α2

π2
-----dx+dx– θ0

2 ε1
2

m2
------lnln–

×
1 x–

2+( ) z2 x+
2+( )

1 x––( )4
---------------------------------------Qµν iλ

z x+–( ) 1 x–+( )

1 x––( )2
------------------------------------Eµν+ .

θ0
2 ε1

2 m2⁄( )lnln
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one restores the argument of the leading logarithm such
that ln2z0 transforms into ln2(–u/m2) (see, for example,
[14]). This restoration is also connected with the contri-
bution of the lower integration limit of the pole-like term
that depends on specific physical applications. In what
follows, we do not concentrate on this point any more.

3.2. The Contribution of the p– || p+ Region

In the quasi-collinear region p– || p+, only the (1, 2)
set of the TD contributes. The small photon PD in this
region has the virtuality

(56)

where θ± =  is the angle between the created elec-
tron and positron momentum directions. Here, we use a

somewhat different parameterization for  than for
the collinear region a. The phase space of the created
electron can be parameterized as

(57)

where ϕ– is now the azimuth angle of the vector p– in
the system with z-axis along the direction of p+.

If we introduce the small 4-vector

(58)

we can write the ECT in the considered region in com-
plete similarity with Eq. (37) as

(59)

It follows from Fig. 2 that the (1, 2) set of the TD can
be obtained from the (5, 6) one by interchanging the
4-momenta p1 and –p+. This operation changes the con-
ditions of the polarized electron. This is why the corre-
sponding substitution law [see Eq. (9)]

(60)

q±
2 p+ p–+( )2 m2x+x–

1 z–( )2

x+
2 x–

2
------------------ z±+ ,= =

z±
ε1

2θ±
2

m
2

----------,=

p+p–

〉

q±
2

d3 p–

ε–
-----------

m2

2
------x–dx–dϕ–dz± ,=

h
x+

x–
----- p– p+,–=

Lµν
3.2( ) α2

2π4
--------

d3 p+

ε+
-----------x–dx–dϕ–dz±

m2

q±
4

------=

× m2Lµν
m q±

2 x+
2

1 z–( )2
------------------Lµν

q±( ) 2x–
2

1 z–( )2
------------------Lµν

h( )+ + .

P̂ p+ p1 x+ x– y0 z– p, , , ,( ),–=

1
x+
-----

x––
x+

--------
y0–

x+
-------- x+

2z± h–, , , , 
  ,
JOURNAL OF EXPERIMENTAL 
allows us to derive from Eq. (37) only the symmetric
spin-independent part of the ECT for the (1, 2) set,

(61)

The antisymmetric spin-dependent part of the ECT
requires independent calculations. The result can be
written as

(62)

(63)

(64)

The tensor  satisfies the condition Qν = 0
because of the gauge invariance. Obviously, we can

P̂ u s1 t1, ,( ) s1 u t1, ,( )

sym m2Lµν
m q±

2 x+
2

1 z–( )2
------------------Lµν

q±( ) 2x–
2

1 z–( )2
------------------Lµν

h( )+ +

=  P̂sym m2Lµν
m q–

2

1 x––( )2
--------------------Lµν

q–( ) 2x2

1 x––( )2
--------------------Lµν

p( )+ + .

Lµν
m 1

s1t1
-------- s1 t1+( )2g̃µν 4Q2 p̃+µ p̃+ν+[=

– 2iλ t1 s1–( )Eµν Q p+,( ) ] ,

Q p2 p1–
1 z–

x+
----------- p+, ãµ+ aµ

aQ

Q2
-------Qµ,–= =

Lµν
q±( ) 1

x+
2s1t1

--------------=

×
x+

2 x–
2+( ) s1

2 t1
2+( )

2
---------------------------------------- 2x+x–s1t1– x+

2Q2u+ g̃µν




+ 2Q2 x+
2 p̃1 p̃2( )µν x+

2 x–
2+( ) p̃+µ p̃+ν+[ ]

– iλ x+ x+u 1 z–( )t1+( )Eµν Q p1,( )[

+ x+u s1 1 z–( )+( )Eµν Q p2,( )

+ 2x– s1 t1–( )Eµν Q p+,( ) ]




,

Lµν
h( ) –

x+
2Q2

2 1 z–( )2
--------------------Nh

2gµν KhZh( )µν–=

+ iλ
Nhx+

2

1 z–( )2
------------------ χ1Eµν Q p2,( ) χ2

hEµν
1 z–

x+
-----------Eµν Q h,( )–+ ,

Nh χ1 χ2
h, χ1+

2 p1h
t1

------------, χ2
h 2 p2h

s1
------------,= = =

Kµ
h x+Nh

1 z–
------------ p2µ χ2

h p+µ hµ,–+=

Zµ
h x+Nh

1 z–
------------ p1µ χ1 p+µ– hµ.–=

Lµν
h( ) Lµν

h( )
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eliminate the structure Eµν(Q, p+) using the definition of
the 4-vector Q given in (62). However, the expressions
on the right sides of Eqs. (62) and (63) are more com-
pact in our opinion.

The angular integration of the tensor  can be
carried out with the help of the relations

(65)

where za = /m2 @ 1 and the perpendicular metric

tensor  has only the xx and yy components in the
chosen coordinate system (the z-axis along p+). In writ-
ing the last part of relation (65), similarly to Eq. (43),
only the perpendicular components of the 4-vector h in
this coordinate system was taken into account. We
introduced the parameter θa ! 1 that defines the quasi-col-
linear region p– || p+ such that θ± ≤ θa. Note that Eqs. (65)
can be derived from the corresponding Eqs. (42) and

(43) by the application of the operation (1/ ) .

Using the symbolic form of the last relation in (65),
we can write

(66)

and the meaning of the symbol “ ” in relations (66)
can be understood by comparing the last line in (65)
with its symbolic form

Lµν
3.2( )

m4

q±
4

------ z±d ϕ–d∫ 2π
1 z–( )2

------------------,=

m2

q±
2

------ z±d ϕ–d∫ 2π
x+x–
----------

zax+
2 x–

2

1 z–( )2
------------------,ln=

m2

q±
4

------ z±d ϕ–hµhνd∫ π
x–

2
-----

zax+
2 x–

2

1 z–( )2
------------------ 1–ln

 
 
 

gµν
⊥ ,–=

ε1
2θa

2

gµν
⊥

x+
2 P̂

χ2
hNh

2
x+s1t1
-------------- x+u s1 y0t1+ +( ),

χ1Nh
2

x+s1t1
-------------- x+u s1– y0t1–( ),

Nhhµ
2

s1t1
-------- t1 p2µ s1 p1µ

s1 y0t1+
x+

------------------- p+µ–+ 
  ,–

hµhν χ2
hχ1 p+µ p+ν– χ1 χ2

h–( ) p+h( )µν+

gµν–
2u
s1t1
-------- p+µ p+ν–

s1 p1 t1 p2– p+,( )µν

s1t1
--------------------------------------------,–

hµhν gµν
⊥ .–
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It is easy to see that Eqs. (66) follow from Eqs. (46)

after the operator  is applied to the latter. The metric
tensor in (66) is defined by analogy with (47),

(67)

From Eqs. (66), we derive

(68)

The general expression for the contribution of the
quasi-collinear region p– || p+ into the ECT can be writ-
ten as

(69)

where  is the right-hand side of Eq. (59) integrated
over the angular variables ϕ– and z± , and

(70)

(71)

The ECT in the p– || p+ region has a pole-like behav-
ior both for small t1 and small s1. One can verify that the

P̂

gµν gµν
⊥ 1

ε+
2

----- p+µ p+ν
1
ε+
----- gµz p+ν gνz p+µ+( ),+ +=

ε+ @ m.

Lµν
h( ) 2

x+
2Q2u

1 z–( )2s1t1

--------------------------- 1–
 
 
 

g̃µν–

–
4x+

2Q2

1 z–( )2s1t1

--------------------------- p̃1 p̃2( )µν 2iλ
x+

1 z–( )2s1t1

---------------------------+

× x+u 1 z–( )t1+( )Eµν Q p2,( )[
+ x+u 1 z–( )s1+( )Eµν Q p1,( ) ] .

L̃µν
3.2( ) α2

π3
-----

d3 p+

ε+
-----------

dx–

1 z–( )2s1t1

---------------------------=

× x–aµν
1( ) bµν

1( ) zax+
2 x–

2

1 z–( )2
------------------ln+ ,

L̃µν
3.2( )

aµν
1( ) c 1( )g̃µν

4x+
2Q2

1 z–( )2
------------------ p̃2µ p̃2ν p̃1µ p̃1ν+( )+=

– 2iλ
x+

1 z–( )2
------------------ ux+ 1 z–( )s1+( )Eµν Q p2,( )[

+ ux+ 1 z–( )t1+( )Eµν Q p1,( ) ] ,

bµν
1( ) x+

2 x–
2+( )

x+
--------------------- c 1( )

2
-------g̃µν

2x+
2Q2

1 z–( )2
------------------ p̃2µ p̃2ν p̃1µ p̃1ν+( )+





=

– iλ
x+

1 z–( )2
------------------ ux+ 1 z–( )t1+( )Eµν Q p1,( )[

+ ux+ 1 z–( )s1+( )Eµν Q p2,( ) ]




,

c 1( ) s1
2 t1

2 2x+
2

1 z–( )2
------------------uQ2.+ +=
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terms proportional to  are cancelled in
the sum of the contributions of the quasi-collinear
region p– || p+ at small t1 and collinear region a, while

the terms proportional to  are cancelled
with the contributions of region p– || p+ at small s1 and
collinear region b.

In the limiting case |t1| ! |u|, s1, |Q2|, we can extract
the corresponding terms using Eqs. (69) and (71) and
relations (54) in the same way as this was done in Sec-
tion 3.1, and the results give

(72)

Looking at Eqs. (17) and (18), we see that the corre-
sponding contribution of the (1, 2) set of the TD in the
collinear region a has the opposite sign as compared
with expression (72).

To compute the quantity  at  = 1 in another
limiting case s1 ! |u|, |t1|, |q2|, we have to use the rela-
tions

(73)

The result is

(74)

Expression (74) cancels the contribution containing

 from the (1, 2) set of the TD in col-
linear region b following from Eqs. (30) and (31).

3.3. Contribution of the p+ || p2 Region

In the quasi-collinear p+ || p2 region, only the (3, 4)
set of the TD contributes. As one can see from Fig. 2, the
TD of that set can be obtained from the (1, 2) one by
interchanging p2  p–. This substitution does not
affect any condition on the polarized electron with the
4-momentum p1. Therefore, both the spin-independent
and spin-dependent parts of the corresponding tensor

θ0
2 ε1

2 m2⁄( )lnln

θ0
2 ε1

2 m2⁄( )lnln

α2

π2
-----dx+dx– θ0

2 ε1
2

m2
------lnln–

×
x+

2 x–
2+( ) z2 1+( )

1 z–( )4
---------------------------------------- Qµν iλEµν+[ ] .

bµν
1( ) c+

t1 y+u, Q2 ηu, p̃+ y+ p̃2,= = =

s1 2ε1
2y+ 1 c+–( ), c+ θ+.cos= =

α 2

π2
-----dy+dy– θ0

2 ε1
2

m2
------lnln–

×
y+

2 y–
2+( ) η2 1+( )

1 η–( )4
----------------------------------------- Qµν iλEµν+[ ] .

θ0
2

ε1
2 m2⁄( )lnln
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 can be derived by a substitution law using the ten-

sor . If we write

(75)

the tensor Lµν on the right side of Eq. (75) can be writ-
ten using the right-hand side of Eq. (59) as

(76)

where the operator  is defined by

(77)

(For the notation used here, see Section 2.2.) The action

of  on the relevant invariants gives

(78)

We omit all intermediate calculations and only give the
final results for the ECT in the p+ || p2 region:

(79)

(80)

(81)

Lµν
3.3( )

Lµν
3.2( )

Lµν
3.3( ) α2

2π4
--------

d3 p–

ε–
-----------y+dy+

m2

q+
4

------dz+dϕ+Lµν,=

q+
2 p2 p++( )2,=

Lµν Q̂ m2Lµν
m( ) q±

2 x+
2

1 z–( )2
------------------Lµν

q±( ) 2x–
2

1 z–( )2
------------------Lµν

h( )+ + ,=

Ô

Ô m p2 p– p+ x– x+ h, , ,( ),[=

y+ p2 y0 y0y+ y+ f–,, ,( ) ] ,

f
1
y+
----- p+ p2.–=

Ô

Q̂ t1 s1 u q± Q, , , ,( ) y+u y+s2 t2 q+ Q, , ,,( ),=

s2 2 p2 p–, t2 2 p1 p–,–= =

Q p2 1 y++( ) p– p1.–+=

L̃µν
3.3( ) α2

π3
-----

d3 p–

ε–
-----------

dy+

1 y++( )2us2

-----------------------------=

× y+aµν
2( ) bµν

2( ) z0y+
2

1 y++( )2
---------------------ln+ ,

aµν
2( ) c 2( )g̃µν

4Q
2

1 y++( )2
--------------------- p̃ µ– p̃ ν– p̃1µ p̃1ν+( )+=

– 2iλ 1

1 y++( )2
--------------------- t2 1 y++( )s2+( )Eµν Q p–,( )[

+ t2 1 y++( )u+( )Eµν Q p1,( ) ] ,

bµν
2( ) 1 y+

2+( ) c 2( )

2
-------g̃µν

2Q
2

1 y++( )2
--------------------- p̃ µ– p̃ ν– p̃1µ p̃1ν+( )+





=

– iλ 1

1 y++( )2
--------------------- t2 1 y++( )u+( )Eµν Q p1,( )[

---+ t2 1 y++( )s2+( )Eµν Q p–,( ) ]
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To compute the quantity  at  = 1 and extract
[similarly to (55)] the term proportional to

 in the limiting case s2 ! |t2|, |u|, ,
we have to use the relations

(82)

The result is

(83)

Expression (83) cancels the corresponding contribution
of the collinear region b from the (3, 4) set of the TD
[see Eq. (30)].

4. CONCLUSIONS
For completeness, we must also add the contribution

of the virtual and soft (with the energy less than ε1D,
D ! 1) pair production to the ECT. It can be written in
the Born-like form [10]:

(84)

where L = ln(–u/m2). It is easy to show that the param-
eter D disappears in sum of the contributions of hard
(with the energy more than ε1D) collinear and quasi-
collinear pairs and virtual and soft ones. For this pur-
pose, it is enough to analyze the results of Section 2 in
the limits as z  1 – D and η  1 + D/y0, and to take
the observation made at the end of Section 3.1 into
account.

In this paper, we calculated the ECT for the elec-
tron–positron pair production process at the scattering
of a longitudinally polarized electron on a heavy pho-
ton. The work was stimulated by recent polarized
experiments on deep inelastic scattering [1, 2], but our
results can be used to compute the second-order radia-
tive correction due to pair production for a wide class
of the scattering and annihilation processes. The contribu-
tion of collinear and quasi-collinear kinematical regions of
hard pair are studied, and this allows us to find the corre-
sponding correction with the next-to-leading accuracy.
The cancellation of the angular auxiliary parameters θ0

and  for an unobserved created pair indicates that our

c 2( ) s2
2 u2 2t2Q

2

1 y++( )2
---------------------.+ +=

bµν
2( ) c–

θ0
2 ε1

2 m2⁄( )lnln Q
2

t2 y–u, Q
2 ηu,= =

s2 2ε2y– 1 c––( ), c– θ–.cos= =

α2

π2
-----dy+dy– θ0

2 ε1
2

m2
------lnln–

×
1 y+

2+( ) η2 y–
2+( )

1 y–+( )4
---------------------------------------- Qµν iλEµν+[ ] .

Lµν
S V+ 2α2

π2
--------- L2 2

3
--- Dln 1

2
---+ 

 =

+ L –
17
6
------ 4

3
--- D2 20

9
------ D

2π2

9
--------–ln–ln+ 

  Qµν iλEµν+( ),

θ0
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results for collinear regions are in accordance with the
quasi-collinear ones. In addition, we conclude that the
auxiliary infrared parameter also disappears in the final
result for the sum of the hard and soft pair contribu-
tions. We give both the spin-independent and spin-
dependent parts of the ECT to make polarization effects
more transparent at the level of theoretical formulas.

The spin-independent part of our ECT at the diffe-
rential level coincides with the corresponding results of
[10, 11] for both collinear and quasi-collinear kinema-
tics. However, the integration of the ECT in [11] was
performed with a few mistakes. The improvements due
to the collinear region contribution were found in [14].
Here, we conclude that formula (17) of [10] [which is
the analog of our formula (69) for the spin-independent
part of the ECT] is also incorrect.

We want to draw the reader’s attention to the fact that
in contrast to the purely photonic corrections, the leading
correction connected with hard pair production has differ-
ent forms for spin-dependent and spin-independent parts
of the ECT because of the singlet channel contribution.
This fact indicates that, for asymmetry-like quantities, the
full second-order correction will dominate just because of
the pair production via the singlet channel because the
whole leading non-singlet channel contribution is can-
celled in this case [6]. The latter includes all photonic
corrections and a non-singlet part of the corrections
related with the pair production.

In the present work, we considered the effects con-
nected with the electron–positron pair production. If
the beam energy is sufficiently large, the effects of µ+µ–

pair production must also be taken into account. For an
event selection with |u|, |q2| @ m2, µ2, only the diagrams
like the (1, 2) set will contribute, but the angular inte-
gration is more complicated in this case because within
the next-to-leading accuracy one must keep terms of

the order ,  and  (here
µ is the muon mass). This problem with two scales of
fermion masses is open at present. It is very important,
for example, for the high-precision description of
small-angle events with the e+e– pair production at the
future µ+µ– collider [23].

Thus, at present all the necessary ingredients exist to
compute the full model-independent second-order radi-
ative corrections (RC) to cross sections and polariza-
tion observables of different processes with the next-to-
leading accuracy. This RC can be incorporated via the
ECT as mentioned in the Introduction. The correspond-
ing two-loop photonic corrections have been found
in [6–9]; pair production corrections were found in
[10] and in this paper.
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APPENDIX

We outline the starting points for the calculation of
the tensor Tµν on the right side of Eq. (5). In the case
under consideration, the heavy photon virtuality modu-
lus |q2| and the invariant u = –2p1p2 that defines the reg-
istration conditions of the scattered electron are much
greater than m2. Therefore, only the diagrams in Fig. 1
contribute in collinear and quasi-collinear kinematics,
and the tensor Tµν can be written in general form

(A.1)

(A.2)

where we used the notation of Section 3.
In the collinear region a, the (3, 4) set does not con-

tribute and we have

(A.3)

The first term on the right-hand side of Eq. (A.3) corre-
sponds to the contribution of the (1, 2) set of the TD in
Fig. 2 that describes only the non-singlet channel. It
gives

(A.4)

where we defined the initial electron polarization 4-vector
aµ as [7, 21]

and used the relation

Note that the vector k vanishes in the final results
because in the chosen accuracy it contributes via the
scalar product (kp1) in the same way as for the double-

Tµν M 12( ) M 34( ) M56––( )µ=

× M 12( ) M 34( )– M 56( )–( )ν
+
,

Mµ
12( ) u p2( )Qµλ

12( )u p1( )
1

q±
2

-----u p–( )γλv p+( ),=

Mµ
34( ) ÔMµ

12( ), Mµ
56( ) P̂Mµ

12( ),= =

Qµν
12( ) γµ

p̂1 q̂± m+–

q±
2 2 p1q±–

---------------------------γλ γλ
p̂2 q̂± m+ +

q±
2 2 p2q±+

----------------------------γµ,+=

Tµν
a( ) Mµ

12( )Mν
12( )+ Mµ

56( )Mν
56( )++=

– Mµ
12( )Mν

56( )+ Mµ
56( )Mν

12( )++( ).

Mµ
12( )Mν

12( )+ 1

q±
4

----- –2q±
2 gλρ 4 p+ p–( )λρ+[ ]=

× Tr p̂2 m+( )Qµλ
12( ) p̂1 m+( )

× 1 λγ5 1 mk̂
p1k
--------+ 

 + 
  Qνρ

12( )+,

aµ
λ
m
---- p1

m2k
p1k
---------– 

  , k ε1 p1–,( )= =

p̂1 m+( ) 1
λ
m
----γ5 p̂1

m2k̂
p1k
---------– 

 –

=  p̂1 m+( ) 1 λγ5 1 mk̂
p1k
--------+ 

 + .
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photon emission [7]. The multiplier inside the right
brackets on the right-hand side of Eq. (A.4) describes
the upper block of the corresponding TD in Fig. 2a,
while the trace describes lower one. The part of trace
that contains the doubled initial electron helicity λ is
symmetric in the indices (λ, ρ) and asymmetric in the
(µ, ν) indices.

The second term on the right side of Eq. (A.3) is
responsible for the singlet channel contribution. It is
related with the (5, 6) set of the TD and can be written as

(A.5)

The polarized electron belongs to the upper TD
block, and we see that the corresponding expression
includes both symmetric and antisymmetric parts. To
derive the spin-dependent part of the (5, 6) set, we must
compute the part of the trace on the right side of Eq. (A.5)
that is asymmetric with respect to each pair of indices
(λ, ρ) and (µ, ν). Only the spin-independent parts on the
right side of Eqs. (A.4) and (A.5) are transformed into

one another by the operator  that implements the
replacement p1  –p+. The spin-dependent parts
must be calculated independently.

The third term in the parentheses on the right side of
Eq. (A.3) describes the interference of singlet and non-
singlet channels. It corresponds to another class of TD
(Fig. 2). If we represent it as a sum of symmetric and
antisymmetric parts, we have

where

(A.6)

Equations (A.4), (A.5), and (A.6) are the starting
points of the calculation in both the collinear and quasi-
collinear regions because the full contribution of the (3, 4)
set of the TD can be obtained from the (1, 2) one by the

operator  that changes p2  p–.

Mµ
56( )Mν

56( )+ 1

q–
4

----- 2q–
2gλρ 4 p1 p–( )λρ+[=

+ 4iλ Eλρ p1 p–,( )
m2

p1k
--------Eλρ p– p1– k,( )+ 

 

× Tr p̂2 m+( )Qµλ
56( ) p̂+ m–( )Qνρ

56( )+.

P̂
     

sym Mµ
12( )Mν

56( )+ Mµ
56( )Mν

12( )++{ }

=  Mµ
12( )Mν

56( )+ µ ν( ),+

asym Mµ
12( )Mν

56( )+ Mµ
56( )Mν

12( )++{ }

=  Mµ
12( )Mν

56( )+ µ ν( ),–

Mµ
12( )Mν

56( )+ 1

q–
2q±

2
----------- p̂2 m+( )Qµλ

12( ) p1 m+( )=

× 1 λγ5 1 mk̂
p1k
--------+ 

 + γρ p̂– m+( )γλ p̂+ m–( )Qνρ
56( )+.
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Abstract—Levitation of dust particles in the anode region of a dc glow discharge was observed for the first
time. A dust cloud of several tens of particles formed at a distance of several millimeters above the central part
of the anode. When the discharge parameters were varied, the shape of the cloud and its position above the
anode varied. An analysis of the experimental conditions revealed that these particles are positively charged in
contrast to other experiments on the levitation of dust particles in a gas-discharge plasma. An estimate of the
particle charge taking into account processes of electron emission from their surface is consistent with results
of measurements of the electric field strength. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION 

A characteristic feature of plasmas containing dis-
persed-phase macroparticles is that particles of micron
dimensions may acquire appreciable charges (of the
order of 103–105 electron charges) when introduced
into or formed in the plasma (for example, as a result of
condensation). Under certain conditions, this can com-
pensate for the influence of gravity and lead to levita-
tion of the particles. So far, levitating particles have
been observed in the plasma of a capacitive rf discharge
[1, 2], an inductive rf discharge [3], and a dc glow dis-
charge [4, 5]. We know that particle levitation and the
formation of dusty structures take place in a discharge
zone where the parameters exhibit significant inhomo-
geneity and there is a constant electric field component.
In a capacitive rf discharge, such a zone is formed near
the electrode, in an induction rf discharge it is formed
in the boundary region between the homogeneous
quasineutral plasma and the wall, and in a dc glow dis-
charge it is formed in the head of the striation or in an
artificially created electric double layer. In [6] Nitter
studied the theoretical possibility of the levitation of
negatively charged dust particles in the cathode layer of
a dc glow discharge. However, an analysis of these
results indicates that as a result of the substantial posi-
tive space charge in the electrode region at distances of
less than 10λD (λD is the Debye length) the charge of a
dust particle may be reduced substantially. For this rea-
son the theoretically feasible levitation of macroparti-
cles is difficult to achieve in practice. This conclusion
is also confirmed by the absence of any experimental
studies in which levitation of negatively charged parti-
cles was observed in the cathode layer of a dc glow dis-
charge.

One of the main mechanisms for the charging of
particles in a gas-discharge plasma is charging by
1063-7761/00/9101- $20.00 © 20106
fluxes of electrons and ions. As a result of the higher
temperature and the mobility of the electrons the charge
of the nonemitting particles in this plasma is negative.
The emission of electrons from the surface of a macro-
particle can provide conditions for its positive charging.
In this case, processes such as thermionic emission,
photoemission, and secondary electron emission may
play an appreciable role. Among the various well-
known studies of macroparticles charged by thermionic
emission and photoemission, mention should be made
of experiments to observe structures of positively
charged particles in a laminar jet of thermal plasma [7]
and experiments to observe the behavior of macroparti-
cles charged by photoemission under microgravity [8].
A common feature of these studies is the formation of
weakly correlated structures of macroparticles as these
move in a dynamic stream. Steady-state conditions
similar to the conditions existing in these experiments
in a gas-discharge plasma are required to form strictly
ordered structures of positively charged particles and to
study these. The absence of effective electrical traps
capable of achieving levitation of positively charged
particles has so far prevented any experimental data
from being obtained on the formation of stable struc-
tures by these particles. In the present study levitation
of positively charged macroparticles in the anode
region of a dc glow discharge was observed for the first
time. 

2. DESCRIPTION OF EXPERIMENT

The experiments were carried out using a cold-elec-
trode glow discharge in air. The discharge was ignited
in a vertical steel cylindrical chamber (see Fig. 1). The
chamber had an inner diameter of 300 mm, a height of
400 mm, and incorporated circular windows (d = 100 mm)
for illumination and observation. The distance between
000 MAIK “Nauka/Interperiodica”
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the electrodes was 46 mm. The cathode consisted of
two copper rods of length l = 55 mm (spacing between
rods ∆l = 58 mm), each interconnected by 150 µm
diameter copper wire. The anode was a disk of radius
Ra = 70 mm with edges made of wire wound onto rods
(edge height ha = 24 mm). Single and double probes
were also inserted in the chamber. The gas-discharge
chamber is shown schematically in Fig. 2. The dis-
charge current was varied between 1 and 15 mA and the
pressure between 0.2 and 2 Torr.

Thin-walled hollow spheres of borosilicate glass
10–30 µm in diameter were introduced into the plasma.
The wall thickness was approximately 2–3 µm and the
bulk particle density was close to 0.8 g/cm3. The
micron-size particles introduced into the plasma were
located in a cylindrical container positioned in the
upper part of the gas-discharge chamber. The bottom of
the container was made of a metal grid with a mesh size
of 40 µm. When the container was shaken, particles
entered the discharge. The particles were visualized by
illumination using a laser probe beam which could be
moved in the vertical and radial directions of the cham-
ber. The light scattered by the particles was observed
using a CCD camera whose output signal was recorded
using a video recorder.

In our experiments we observed the formation of a
cloud of several tens of particles at a distance of several
millimeters above the central part of the anode (see Fig. 3).
The cloud formation process was as follows: after shak-
ing the container, the particles went past the equilib-
rium position and were then reflected from the anode
and suspended at a certain point in space. When the dis-
charge parameters were varied, the shape of the cloud
and its position above the anode changed. For example,
when the discharge current was reduced, the particle
cloud rose and became elongated in the vertical direc-
tion. Figure 4a gives the dependence of the effective
cloud size

(h is the vertical dimension of the cloud and l is its hor-
izontal dimension) as a function of the discharge cur-
rent. Figure 4b shows how the distance H between the
lower edge of the cloud and the anode varies as a func-
tion of the discharge current. It should be noted that as
the current approaches a critical value, which depends
on pressure (for example, at 0.4 Torr Icr = 2.4 mA), the
value of H increases sharply and at I = Icr the cloud
“flies away.” At a discharge current of 10 mA we usu-
ally observed the formation of several clouds sus-
pended low above the electrode and these merged into
one as the discharge current decreased. 

3. ANALYSIS OF EXPERIMENTAL RESULTS

One of the key problems in any experiment using a
dusty plasma is determining the magnitude and polarity
of the macroparticle charge. In order to analyze the

L h2 l2+=
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experimental results we shall consider the possibility of
levitation of negatively charged particles in the anode
region of a glow discharge. In this case, either a nega-
tive potential drop in the anode region or any other
force directed away from the anode can compensate for
the gravitational force on the particle. Under our exper-
imental conditions it is impossible for a negative anode
potential drop to exist for various reasons considered in
[9]. The main reason is that a narrow film of anode glow
was observed experimentally near the anode. This sug-
gests that the electrons are accelerated in the anode
layer, acquiring an energy of ~15–30 eV which is suffi-

1

2 3

Fig. 1. Experimental apparatus: (1) discharge chamber,
(2) cathode, (3) probe.

Discharge
chamber

Particle
container

Cathode

Anode

Particle
cloud

Glow
region

DC

Fig. 2. Scheme of discharge chamber.
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(a)

(b)

Fig. 3. Video images of particle cloud at p = 0.3 Torr: Ip =
(a) 6.2 and (b) 3.8 mA. The scale in the figure corresponds
to 5 mm.

(‡)
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Fig. 4. Dependences of the cloud dimensions L = 
(h is the vertical dimension of the cloud and l is the horizon-
tal dimension) (a) and the particle height above the anode H
(b) on the discharge current.
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cient to excite air molecules. In addition, existing
experimental observations and numerical estimates
indicate that it is almost impossible for a negative
anode drop to occur in electronegative gases where the
discharge is controlled by attachment [9]. The accuracy
of the conclusions that a positive anode potential drop
occurs in our case was further confirmed by measure-
ments of the electric field using a double probe. The
measured field strength E varied between 35 V/cm near
the electrode and 3 V/cm in the plasma bulk. 

Thus, the assumption that the particles are nega-
tively charged necessitates the introduction of a force to
compensate for the total action of the electrostatic and
gravitational fields in the anode layer. The magnitude of
this force F should satisfy the condition

(md is the particle mass) for levitation of the smallest
particles used experimentally having the radius rp =
5 µm. As this compensating force we consider the ther-
mophoretic force and the ion drag force [6]. An esti-
mate of the thermophoretic force 

where T and m are the temperature and mass of a gas
molecule, κ is the thermal conductivity, gives Fth <
10−14 N since the temperature gradient ∂T/∂r in the
layer does not exceed 5 K/cm. The upper limit of the
ion drag force can be estimated using typical conditions
for the electrode layer of a glow discharge, from

where mi is the ion mass, ni ≈ 108 cm–3 is the concentra-
tion of positive ions, vi is the velocity of ions having the
energy ≈3 eV, and ϕs ≈ 2 eV is the surface potential of
the particles. This estimate gives Fi ~ 10–18 N for the ion
drag force and this neglects the fact that in an attach-
ment-controlled discharge, a counterpropagating flux
of negative ions having a concentration close to ni will
act on the dust particle in the opposite direction [10].

On the basis of this reasoning we can conclude that
under these conditions gravity will only be compen-
sated for a positively charged particle by the force of
the electric field F . ZeE in the region of positive anode
potential drop. Taking into account the measurements
of the electric field E = 3–35 V/cm and the gravitational
force Fg ≈ 5 × 10–12 N, a positive charge Zd on a levitat-
ing particle of radius rp = 5 µm should satisfy the con-
dition Zd > 3 × 103 elementary charges. 

4. ESTIMATE OF MACROPARTICLE CHARGE

In a gas-discharge plasma the particles can become
charged as a result of the absorption of plasma elec-

F Fg> mdg 5 10 12–  N×≈=

Fth
32
15
------ πm

8T
-------rp

2κ∂T
∂r
------,=

Fi πrp
2 nimiv i

2 1
eϕ s

miv i
2

------------– 
  2
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trons and ions, and also by photoelectron and second-
ary electron emission processes. In a normal glow dis-
charge secondary emission and photoemission pro-
cesses are insignificant and the main charging
mechanism is absorption of plasma electrons and ions
by the particle, as a result of which the dust particles
become negatively charged [11]. The discharge under
study has parameters similar to those of an anomalous
hollow-cathode glow discharge whose main character-
istics are a strong electric field in the cathode space and
cumulation of electrons at the discharge axis [12]. This
leads to an increase in the radiation intensity in the
ultraviolet part of the cathode dark space and a region
of negative glow mainly attributable to nitrogen reso-
nance radiation at 149.4 nm. Another characteristic of
this type of discharge is the essentially non-Maxwellian
electron energy distribution function and the presence
of a fairly high number of high-energy (ε > 50 eV) elec-
trons. These characteristics suggest the existence of an
effective mechanism of particle charging by photoe-
mission and secondary electron emission.

In the approximation of bounded orbital motion,
which is valid for a rarefied plasma where the electron
mean free path le before collisions with neutrals is
much greater than the particle radius (le @ rp), the dust
particle charging process is described by:

(1)

where  is the electron flux to the particle surface, 

is the flux of emitted electrons, and  and  are the
fluxes of positive and negative ions. The equilibrium
potential ϕs of the macroparticle is established as a
result of a balance between the electron flux to the par-
ticle surface, the flux of emitted electrons, and also the

ion fluxes  under the condition

The relationship between the charge and the potential is
given by

for particles of radius rp ! λD, where λD is the screen-
ing radius. The sign of the charge Zd corresponds to the
sign of the derivative dZd/dt (1) at zero time t = 0.

In electronegative gases in an attachment-controlled
discharge the concentrations of the positive and nega-
tive ions have similar values but the electron concentra-
tion may be one or two orders of magnitude lower than
the ion concentration [10]. Despite this factor, a large
difference between the ion and electron mass taking
into account the higher temperature of the latter cannot
lead to positive charging of the particle without taking
into account processes of electron emission from their

dZd

dt
--------- Ie

+ Ii
+ Ie

– Ii
–,––+=

Ie
– Ie

+

Ii
+ Ii

–

Ii
±

dZd

dt
--------- 0.=

Zd rpϕ s e⁄=
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surface. We shall analyze the conditions for positive
charging of macroparticles by secondary electron emis-
sion. The flux of secondary (emitted) electrons Ise is

related to the flux of primary electrons  by the coef-
ficient of secondary electron emission δ:

In general, the coefficient δ depends on the primary
electron energy and on the dust particle material. For a
monoenergetic electron beam the coefficient δ to a first
approximation, following [13], may be expressed in the
form

(2)

It is then assumed that the collision energy ε is related
to the electron beam energyε0 by

and εm is the energy at which δ(ε) = 1. For glasses we
have εm ~ 40 V [14]. 

Subject to the condition δ < 1 the particle charge
will be negative. In the presence of a flux Ie of low-
energy electrons with ε < 40 eV the condition for posi-
tive particle charging will be more stringent. Neglect-
ing the ion fluxes this condition may be written in the
form

(3)

In this case, in order to ensure that the flux of emit-
ted electrons completely compensates for the electrons
absorbed by the particle (ϕs = 0, Zd = 0) the following
relationship must be satisfied

(4)

where ne is the concentration of low-energy electrons

having the kinetic temperature Te and  is the concen-
tration of electrons having energies ε > 40 eV. Assum-
ing that Te = 2 eV, ε = 50 eV, and δ – 1 = 0.25, we find
that in order to completely compensate for the negative
charge at the particle surface it is sufficient for the elec-
tron flux to contain high-energy electrons having a con-

centration  an order of magnitude lower than the
concentration ne of thermal electrons. This assumption
is quite feasible under conditions of the anode layer of
a glow discharge in an electronegative gas. 

We shall estimate the photoemission charging of
particles by a monochromatic flux at λ0 . 149.4 nm,
which corresponds to the resonance radiation of nitro-

gen. Assuming compensated electron fluxes (Ie/  =
δ – 1), the value Zp of the particle photoemission charge
can be estimated from the condition that the surface
potential ϕs is equal to hν – W:

(5)

Ie
h

Ise δIe
h.=

δ ε( ) ε0 eϕ s+( ) εm.⁄≈

ε ε0 eϕ s,+=

Ie Ie
h⁄ δ 1.–<

neTe ne
hε⁄ δ 1,–=
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h
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h
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h
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where hν = 7.9 eV is the quantum energy which in our
case corresponds to the wavelength λ0 . 149.4 nm and
W = 5 eV is the photoemission work function of the
electrons (for glass of various types W = 4.5–6 eV). The
maximum charge of particles with rp = 5 µm is equal to
Zp ≈ 104 elementary charges. In order to compensate for
gravity, the electric field for a particle with this charge
should be ~10 V/cm, which is consistent with the val-
ues of the field in the anode region obtained from probe
measurements. A more accurate estimate of the equilib-
rium charge of a dust particle can be obtained from for-
mula (1), allowing for all the characteristics of the gas
discharge. However, with this approach the experimen-
tal error in the measurements of the concentrations and
velocities of the plasma electrons and ions, and also the
intensity of the negative luminescence may not lead to
the desired result and cannot give a more accurate esti-
mate of the macroparticle charge.

5. CONCLUSIONS

In the present study, levitation of charged particles
in the anode region of a dc glow discharge has been
observed experimentally for the first time. A dust cloud
consisting of several tens of particles formed above the
central part of the anode. By varying the discharge
parameters it was possible to change the shape of the
cloud and control its position above the anode.

An analysis of the experimental conditions shows
that the charge of the levitating particles is positive,
which significantly distinguishes this experiment from
normal glow discharge experiments where the dust par-
ticles are negatively charged. These estimates suggest
that under the conditions of a steady-state discharge
processes of electron emission from the particle surface
play a significant role, resulting in the dust particles
acquiring positive charge. An estimate of the charge
agrees with the results of measurements of the electric
field and ensures macroparticle levitation in the Earth’s
gravitational field. 
JOURNAL OF EXPERIMENTAL 
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Abstract—Soliton-type solutions of the complete unreduced system of transport equations describing the
plane-parallel motions of an isotropic collisionless quasineutral plasma in a magnetic field with constant ion
and electron temperatures are studied. The regions of the physical parameters for fast and slow magnetosonic
branches, where solitons and generalized solitary waves—nonlocal soliton structures in the form of a soliton
“core” with asymptotic behavior at infinity in the form of a periodic low-amplitude wave—exist, are deter-
mined. In the range of parameters where solitons are replaced by generalized solitary waves, soliton-like dis-
turbances are subjected to decay whose mechanisms are qualitatively different for slow and fast magnetosonic
waves. A specific feature of the decay of such disturbances for fast magnetosonic waves is that the energy of
the disturbance decreases primarily as a result of the quasistationary emission of a resonant periodic wave of
the same nature. Similar disturbances in the form of a soliton core of a slow magnetosonic generalized solitary
wave essentially do not emit resonant modes on the Alfvén branch but they lose energy quite rapidly because
of continuous emission of a slow magnetosonic wave. Possible types of shocks which are formed by two types
of existing soliton solutions (solitons and generalized solitary waves) are examined in the context of such solu-
tions. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A small number of works where the nonlinear
plane-parallel wave motions of an isotropic collision-
less quasineutral magnetized plasma are studied on the
basis of a hydrodynamic description using transport
equations has now been published. The first works in
this field are probably [1–6], where particular solutions
of the transport equations in the cold-plasma limit are
studied. Attempts to describe not individual solutions
but rather entire classes of solutions of the equations for
a cold plasma have been made along the conventional
path of further simplifying these equations (which are
still too complicated for general investigation) by the
many-scale method. Using a unified form of this
method [7], the authors of [8] derive the Korteweig–de
Vries (KdV) equation for long wavelength magneto-
sonic waves branching from the state of rest. As a
result, it was concluded that solitary waves—solitons—
in a cold plasma exist for two values of the angle 0 <
θ ≤ π/2 of inclination of the unperturbed magnetic field
with respect to the direction of propagation of the wave
(x-axis). For θ < θc , where θc is a critical value of the
angle θ, solitons correspond to a rarefaction wave,
while for θc < θ ≤ π/2 solitons correspond to a compres-
sion wave. However, investigations of the complete
system of equations [9, 10] have revealed that solitons
do not exist for θ < θc , but in this range of angles of
inclination they are replaced by generalized solitary
1063-7761/00/9101- $20.00 © 20111
waves—unlocalized solutions, which are products of a
nonlinear resonance of a solitary wave and a periodic
wave. In [11], where the complete system of equations
for a cold plasma is likewise analyzed, families of soli-
tons of envelopes, which are a bifurcation from a wave
number for which the phase velocity is equal to the
group velocity, are found.

Of the few works concerned with the transport equa-
tions for an isotropic collisionless quasineutral plasma
with isothermal pressure, i.e., with constant ion and
electron temperatures, we call attention first to [12, 13],
where particular solutions are sought for the system of
transport equations with hot electrons and cold ions.
In [14], a nonlinear Schrödinger-type equation was
obtained, in an investigation of a two-temperature iso-
tropic collisionless quasineutral plasma, for the slowly
varying amplitudes of Alfvén waves; this equation sup-
ports the modulation instability, i.e., it possesses soliton
solutions. Questions concerning the correspondence
between such a theoretical description and observations
of Alfvén soliton structures in the plasma of the Earth’s
magnetosphere are discussed.

The present paper is organized as follows. The
transport equations for plane-parallel motions of an iso-
tropic collisionless quasineutral plasma with constant
ion and electron temperatures are presented in Section 2.
Linear resonances of long- and short-wavelength waves
are studied in Section 3, and in Section 4 the dynamical
000 MAIK “Nauka/Interperiodica”
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system for traveling waves is obtained and the types of
bifurcations from the state of rest are described. Solu-
tions of the solitary wave type—soliton solutions,
which exist in an infinite region in the plane of physical
parameters—are studied in Section 5. In this region the
evolution of localized compressive disturbances results
in the formation of solitons, specifically, a disturbance
in the form of a soliton does not undergo distortions in
the course of evolution. Solitons occur only for the fast
magnetosonic branch of the dispersion relation. The exist-
ence of generalized solitary waves, which replace solitons
in a bounded region of the physical parameters for fast
magnetosonic waves and occur for all parameters for slow
magnetosonic waves, is established Section 6.

For a more complete analysis of all possible station-
ary solutions, in Section 7 shocks are also examined.
Solutions in which a section of oscillatory type—a
wave zone—separates two uniform states are encoun-
tered in nondissipative systems. In time the extent of
the wave zone increases and its envelope becomes self-
similar. For a plasma such a wave zone is called a non-
stationary structure of a collisionless shock wave [15].
For the simplest dispersion model—the KdV equa-
tion—a transition which does not expand with time (a
local transition) occurs at the boundary of the wave
zone between the uniform and periodic states (a
sequence of solitary waves) in the limit t  ∞. In the
description of the phenomenon using the averaged
equations for the envelope, this transition can be treated
as a shock. We shall treat shocks in nondissipative mod-
els as any local transitions between uniform, periodic,
and quasiperiodic states. A general approach, making it
possible to predict on the basis of the form of the dis-
persion curve the possible type of jump with a station-
ary structure, is developed in [16, 17]. This approach to
classification of possible shocks is also used in the
present paper.

A brief analysis and a discussion of the results are
presented in Section 8.

2. FORMULATION OF THE PROBLEM

An isotropic collisionless plasma with constant ion
and electron temperatures can be described on the basis
of a hydrodynamic model of two fluids—electronic and
ionic. In this model the basic equations have the form

(2.1)

rotB
1
c
---

t*∂
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–
4πe

c
--------- nivi neve–( ),=

rotE
1
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---
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+ 0,=
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divE 4πe ni ne–( ),=

t*∂
∂ni div nivi( )+ 0,=
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where

E and B are the electric and magnetic field intensities,
t* is the physical time, ve, i , ne, i , and me, i are the veloc-
ity, number density of the particles and the mass of the
electrons (e) and ions (i), pe, i is the pressure in the elec-
tronic and ionic liquids, c is the speed of light, and –e
is the electron charge.

Eliminating the electron velocity ve and the electric
field intensity E from Eqs. (2.1), using the quasineutral-
ity condition ne ≈ ni and neglecting the displacement
current,1 for plane waves propagating along the x-axis
[12, 14], we obtain

(2.2)

where

is the dimensionless effective speed of sound, Ve, i are
the thermal velocities of the electrons and ions,

1 The displacement current can be neglected if /c2 ! 1 [12].
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VA = |B0|/  is the Alfén velocity, Re, i =
ωe, i/ω0 are the dimensionless dispersion parameters,
ωe, i = e|B0|/me, ic are the electron and ion cyclotron
(Larmor) frequencies. The spatial and temporal vari-
ables (x, t), the ion or electron density n, and the com-
ponents of the magnetic field intensity (Bx , By , Bz) and
the ion velocity (u, v, w) are scaled to, respectively, the
characteristic length L, the frequency ω0, the density n0
of the unperturbed plasma, the modulus of the unper-
turbed magnetic field vector B0, and the Alfén velocity
VA. For one-dimensional motions the component Bx of
the magnetic field always remains a constant of the
motion. The variables n, u, v, w, Bx , By , and Bz in a state
of rest are, respectively, 1, 0, 0, 0, cosθ, sinθ, and 0.

3. LINEAR WAVE RESONANCES

For the analysis below we shall require certain prop-
erties of the dispersion relation, which will be enumer-
ated in the present section, for linear waves. A detailed
analysis of the propagation of linear waves in a magne-
tized plasma in the hydrodynamic approximation can
be found, for example, in [18].

The dispersion relation for the system of equations
(2.2) has the form

(3.1)

where

The system (2.2) is invariant under the transforma-
tion x  –x, t  –t. Consequently, the branches of
the dispersion relation ω = ω(k) are odd functions of the
wave number and symmetric with respect to the origin
of coordinates in the kω plane, so that it is sufficient to
study the case ω ≥ 0, k ≥ 0. For b ≠ 0 the dispersion rela-
tion possesses three branches: slow magnetosonic, ωs =
kVs(k); fast magnetosonic, ωf = kVf(k); and, Alfén ωA =
kVA(k). The relative arrangement of these branches is
shown in Fig. 1. For b = 0 we have a cold plasma and
the dispersion curve possesses two branches—Alfén
and magnetosonic. The determination of the explicit
functions ω = ω(k) from Eq. (3.1) involves complicated
calculations and is immaterial for the exposition below.
Only the following should be noted.

(1) It is evident from Eqs. (3.1) that for a fixed value
of the phase velocity V the straight line ω = kV on the
positive k semiaxis possesses no more than two points
in common with all branches of (3.1), since for fixed V
the relation (3.1) is a biquadratic equation for k.
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(2) The values of ω on the Alfén and slow branches
in the short-wavelength limit (k  ∞) are bounded in

modulus by the constants  = Recosθ and  =
Ricosθ, which do not depend on the parameter b, and

the straight lines ω =  are horizontal asymptotes of
the plots of these branches (Fig. 1).

(3) For b ≠ 0 the plot of the fast magnetosonic branch
lies everywhere above the inclined asymptote ω = bk.

(4) The phase velocities of infinitely long-wave-
length waves for Alfén, fast and slow branches are
given, respectively, by the expressions

(3.2)

(5) The curve in the parameter space b = bc(θ) (Fig. 2),

ωA
∞ ωs

∞

ωA s,
∞

V A 0( ) θ, V f 0( )cos V+, Vs 0( ) V –,= = =

V± 1 b2 1 b2+( )2
4 θb2cos

2
–±+[ ] /2,=

0 V– V A V+.< < <

bc θ( ) ρ 1– 1+( ) ρ 1+( ) θcos
2

1–[ ] ,=

3

4

2

1

q– k

ω∞
A

ω∞
s

ω

II

b = bc(θ)
I

b

θc π/2 θ

√ρ + 1

Fig. 1. Relative arrangement of the curves of the branches of
the dispersion relation ω = ω(k) of Eqs. (2.1) (the case b < bc).
Curve 1 corresponds to a slow magnetosonic branch, curve 2
corresponds to the Alfvén branch, and curve 3 corresponds
to a fast magnetosonic branch. A resonance between the
long-wavelength slow magnetosonic wave and an Alfvén
wave occurs: the straight line 4, tangent to 1, always inter-
sects 2 at k = q–.

Fig. 2. Position of the curve b = bc(θ) separating the
region of existence of generalized solitary waves (I) and
solitons (II).
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(a)
1

2

3

ω

k

(b) 1

2

3

ω

kq+

Fig. 3. Curve 2 is fast magnetosonic branch for (a) b < bc and (b) b > bc , approaching the asymptote (dashed line 3) as k  ∞. In
the case (b) we have a resonance of long- and short-wavelength magnetosonic waves: the straight line 1, tangent to 2 at 0, intersects 2
at k = q+. There is no resonance in the case (a).
is critical in the following sense. For b > bc(θ) (region II in
Fig. 2) the straight line ω = V+k tangent to the fast mag-
netosonic branch 0 no longer intersects the dispersion
curve (simple resonance, Fig. 3a). For b < bc (region I
in Fig. 2) there exist additional points of intersection
k = ±q+, q+ > 0, of this straight line with the magneto-
sonic branch of the dispersion curve (Fig. 3b); this cor-
responds to a linear resonance of the long- and short-
wavelength waves. We note that for b = bc the coeffi-
cient of the cubed wave number in the expansion of ω
for small k vanishes. This makes it necessary, specifi-
cally, to take into account the next terms in the long-
wavelength expansion of the frequency.

(6) The straight line ω = V–k tangent to the slow
branch always intersects the Alfén branch at a single
point (for k > 0). Thus there exists a linear resonance of
the long-wavelength slow magnetosonic wave and the
short-wavelength mode of the Alfén branch.

(7) For b < bc the fast magnetosonic branch pos-
sesses a point (kr , Vr) where the phase velocity is equal
to the group velocity. Geometrically, this means that the
straight line ω = Vrk and the curve of the fast magneto-
sonic branch are tangent at the point (kr , Vr) (so-called
1 : 1 resonance).

Thus, for the fast and slow magnetosonic branches
we have four types of resonances: a simple resonance,
a resonance of long- and short-wavelength fast magne-
tosonic waves, a resonance of a long-wavelength slow
magnetosonic and short-wavelength mode of the Alfén
branch, and a 1 : 1 resonance.

4. DYNAMICAL SYSTEM

The traveling wave solutions of the system of equa-
tions (2.2) are functions of ξ = x – Vt. In the present
paper we shall consider waves moving with velocity close
to one of the magnetosonic velocities. We shall write V =
V± + µ, where µ is a small parameter and V± is one of the
velocities (3.2). Traveling waves are described by a sys-
tem of equations obtained by a single integration from
JOURNAL OF EXPERIMENTAL 
(2.2). The density n and x component of the velocity
can be expressed in terms of other unknown functions
according to the formulas

where

The constants of integration are chosen so that the state
of rest satisfies equations for the traveling waves, and
the equations themselves have the form

(4.1)

Near V = V± the system (4.1) can be written in the
form

(4.2)

n 1– 1
2
--- 1 b2

V2
------ B

V2
------– 1 b2

V2
------– 

 sgn–+=

× 1 B

V2
------– b2

V2
------+ 

 
2

4
b2

V2
------– ,

u V 1 n 1––( ),=

B
1
2
--- by

2 2by θsin Bz
2+ +( ), by By θ.sin–= =

ξd
dv –RiBz

Ri θcos
V

-----------------nw,–=

ξd
dw Ri θcos

V
-----------------nv Riby Rin n 1– 1–( ) θ,sin+ +=

dby

dξ
-------- Renw nBz

Re θcos
V

------------------,+=

dBz

dξ
--------- –Renv

Re θcos
V

------------------nby.–=

ξd
dw

Aw F µ w,( ), w+ v w by Bz, , ,( )T,= =
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where

and the nonlinear vector function F = (F1, F2, F3, F4)T,
Fi = O(µw, |w|2), i = 1, 4, has the form

Invertibility of the system of equations (4.2) implies the
following equalities:

where R is a diagonal matrix and R = diag(1, –1, 1, –1).
These equalities mean that among the solutions of the
system (4.2) there are solutions with even v and by and
odd w and Bz.

The characteristic equation

where I is the unit matrix and A1(V) is obtained from A
by substituting V± for V, can be written in the form

(4.3)

The resonances at V = V± and V = Vr described in the
preceding section give rise to bifurcations from the zero
solution, which in the first case give solitary and gener-
alized solitary waves and in the second case magneto-

A

0
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V±-----------------– 0 Ri–

Ri θcos

V±----------------- 0 Ri 1 θsin
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Ri θcos
V
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Ri θcos
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Re θcos

V
------------------nBz

Re θcos
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F4 –Renv Rev
Re θcos
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------------------nby–

Re θcos

V±------------------by.+ +=

AR RA, F µ Rw,( )– RF µ w,( ),–= =

A1 V( ) λ I– 0,=

λ4 RiRe 2 θsin
2
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V
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2
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sonic envelope solitons, for which the velocities of the
envelope and the high-frequency fill are the same [11, 19].

The dynamics of the characteristic values in the
complex plane of the spectral parameter λ with µ pass-
ing through zero is depicted in Fig. 4: Fig. 4a illustrates
the situation V = V+ + µ and b > bc; Fig. 4b illustrates
V = V+ + µ, b < bc or V = V– + µ; and, Fig. 4c illustrates
V = Vr + µ. Only the first two cases will be considered
in the present paper.

For V = V± the characteristic equation (4.3) can be
represented in the form

(4.4)

The following roots of Eq. (4.4) lie on the imaginary
axis:

a) for V = V+ and b > bc, a second-order zero;

b) for V = V+ and b < bc or for V = V–, a second-order
zero and two nonzero values λ = ±iq±, q± > 0, where

(4.5)

5. SOLITARY WAVES

For V = V+ and b > bc we have a simple bifurcation,
for which the motion of the eigenvalues of the matrix A1
(roots of Eq. (4.3)), which move from the real to the
imaginary axis as µ passes through zero, is depicted in
Fig. 4a. Let w = w0 + w1, where w0 ∈  E0, w1 ∈  E1, and
E0 and E1 are, respectively, the central and hyperbolic
spaces of the zeroth eigenvalue. According to the cen-
tral manifold theorem [20], for sufficiently small µ and
w0 we have w1 = Φ(µ, w0), where the function Φ(µ, w0) =
O(µ|w0|, |w0|2). In what follows, we shall represent w0
in the form

(5.1)

where f0 and f1 are the eigenvector and the adjoint
vector of the matrix A (Af0 = 0, Af1 = f0), and are

λ2 λ2 ReRi

V±2
----------- V±2 θcos

2
–( ) ρ θcos

2
–[ ]–

 
 
 

0.=

q±2 ReRi

V±2
----------- V±2 θcos

2
– ρ θcos

2
–( ).–=

w0 a0f0 a1f1,+=

(a) (b) (c)

Fig. 4. Dynamics of resonance eigenvalues for a simple res-
onance (a), resonance of long- and short-wavelength
waves (b), and 1 : 1 resonance (c).
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given by the expressions

For sufficiently small µ and a = (a0, a1)T, in accordance
with the central manifold theorem the dynamical
fourth-order system (4.2) reduces to a second-order
system, which has the following form in the variables
a0 and a1:

(5.2)

where

The system (5.2) was obtained by scalar multiplication
of the expression (4.2) by the adjoint vector y0 and the
eigenvector y1 of the adjoint matrix AT: ATy1 = 0, ATy0 =
y1. We note that the vectors yi, i = 1, 2, are normalized
so that 〈fi , yj〉  = δij , i, j = 1, 2, δij is the Kronecker delta
function, and 〈 ·, ·〉  denotes the standard scalar product
in C4. In the leading approximation in µ, for µ > 0 the
system of equations (5.2) possesses the solution

(5.3)

Moreover, it turns out that for small µ the solution (5.3)
is exact for the complete system (5.2) (and hence for
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(4.2)), which is even and decreases exponentially at
both infinities.

We denote by a* = ( , )t the leading part with
respect to µ in (5.3). Then, for µ0 > 0 and sufficiently
small µ ∈  (0, µ0] there exists a family of soliton solu-
tions a = (a0, a1)T of the complete system (5.2). More-
over, the following estimate is valid:

(5.4)

where α0 depends only on µ0 and σ0 < 1. We shall prove
this assertion.

We make in (5.2) the following scale transforma-
tion:

Then Eqs. (5.2) become

(5.5)

where a prime denotes differentiation with respect to ζ.
The equation (5.5) possesses the solution

(5.6)

Next, let us assume that b0 =  + , where  is given

by Eq. (5.6) and  is a small nonlinear perturbation.
The equation (5.5) can be written in the form

(5.7)

where

and N(b0, µ) is an even function for even b0 (in accor-
dance with the property that the initial equations are
invertible) and N(b0, µ) ≤ c, where the constant c does
not depend on µ for µ ∈  (0, µ0).

In accordance with the implicit function theorem,
Eq. (5.7) possesses a unique solution with a quite low
amplitude, if the operator } is invertible in suitable
functional spaces.

We shall determine the space of exponentially

decreasing functions , j = 0, 1, 2, and σ < 1, as fol-
lows:
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Fig. 5. Evolution of the initial data of the fast magnetosonic solitary wave type for θ > θc, µ = 0.05, θ = 1.555, b2 = 0.5, t = 0 (fine
line) and t = 250 (heavy line). The coordinate system moves with velocity V+ + µ.
We introduce the notations X ⊂  and Y ⊂  for
Banach spaces of even functions with the norms ||·||X
and ||·||Y , respectively. We shall prove that the equation

(5.8)

where  ∈  X and f ∈  Y, possesses a unique bounded
solution. Equation (5.8) has the form

(5.9)

The homogeneous equation (5.9) does not have a fun-
damental system of solutions in the function space X:

v1 = c1  is an odd solution (c1 is determined from the
condition (0) = 1), and the linearly independent

solution v2 = c2v1 + c3v1  (with constants c2 and c3,

determined from the conditions v2(0) = 1 and (0) = 0)
is even but increasing as expζ at infinity. The absence
of a fundamental system of solutions in X signifies that
the solution (5.9) is unique if it exists. The existence of
a solution of the inhomogeneous equation (5.9) can be
verified directly: the solution is given by

(5.10)

Estimates for ||v ||X in terms of ||f ||Y , from which (5.4)
follows directly, can be easily obtained from the solu-
tion (5.10).

An expression for the principal part of the soliton
for physical variables can be restored using the for-
mula (5.1). Figure 5 shows the evolution of a symmet-
ric (density) and antisymmetric (Bz component of the
magnetic field) solitary waves corresponding to (5.3).

Cσ
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A solitary wave propagating without a change in shape
is formed; its profile is essentially identical to the initial
profile. The physical constants in this investigation cor-

respond to a hydrogen plasma,  = 0.02341352 (the
characteristic frequency was taken as the geometric-
mean of the Larmor frequencies).

6. FAST AND SLOW GENERALIZED
SOLITARY WAVES

In the present section we shall examine nonlocal
analogs of solitary waves—generalized solitary waves
which are formed as a result of bifurcations corre-
sponding to resonances of long- and short-wavelength
fast magnetosonic waves as well as a long-wavelength
slow magnetosonic and a short-wavelength mode of the
Alfén branch. In other words we shall study waves with
velocities near V+ for b < bc (a case in addition to the
one considered in the preceding section) and also near
V–. The diagram presented in Fig. 4b illustrates the
bifurcations leading to the appearance of the waves
considered here.

As already noted, in the cases considered all roots of
Eq. (4.4) are purely imaginary: a second-order zero
and ±iq±, q± > 0, where q± is given by Eq. (4.5). We
now make the following substitution of variables in
Eqs. (4.2):

(6.1)

where a– = , Af0 = 0, Af1 = f0, Af+ = iqf+, and Af– =
–iqf– (bar indicates complex conjugation). The eigen-

Re
1–

w a0 ξ( )f0 a1 ξ( )f1 a+ ξ( )f+ a– ξ( )f–,+ + +=

a+
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vectors and the adjoint vectors of the matrix A are given
by the formulas

The vector function a1 = (a0, a1, a+, a–)t satisfies the
equations

(6.2)

where
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(6.3)

and (a0, a1, a+, a–) and (a0, a1, a+, a–) are complex
nonlinear functions of the arguments, where f1(a0, 0, 0,

0) = O( ) and g1(a0, 0, 0, 0) = O( ).

Once again, Eqs. (6.2) were obtained by scalar mul-
tiplication of (4.2) by the eigenvectors and the adjoint
vector y0, y1, y+, and y– of the transposed matrix AT:
ATy1 = 0, ATy0 = y1, ATy+ = –iq±y+, and ATy− = iq±y–.
The normalization of these vectors is chosen from the
conditions

The adjoint basis vectors have the form
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The advantage of the substitution (6.1) lies in the fact
that the unknown vector function w decomposes into
the long-wavelength (a0, a1) and short-wavelength a+
parts. In this connection, it is natural to make the fol-
lowing scale transformation in (6.2)

In the new variables Eqs. (6.2) become

(6.4)

where a prime denotes differentiation with respect to ζ.
It follows from (6.2) that to lowest order in µ the system
of equations (6.2) has the solution

(6.5)

We note that in the present case ∆+ < 0,  < 0 and  < 0

in (6.3), and ∆– > 0,  < 0, and  > 0. Hence we have
that in (6.5) µ < 0 for fast magnetosonic and µ > 0 for
slow magnetosonic waves.

To determine the asymptotic behavior of (6.5) at
infinity, we shall examine the local structure of these
solutions in the spectral region. Dropping higher order
terms, we rewrite the last pair of equations in Eqs. (6.2)
in the form

(6.6)
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where f ±(y) = (µ y + y2), and  is identical to

(6.5). Applying the Fourier transform

we obtain from (6.6)

(6.7)

where

and c1 and c2 are constants. We shall seek the solutions
of the system (6.2), expressed by even functions, which
is compatible with the property of invertibility. Specif-
ically, the leading part of the solution under study is
(6.5) and its asymptotic behavior is the same at both
infinities. We have

(6.8)

where the integration contour Γ1 passes above the poles

 on the real axis, and the contour Γ2 passes below

these poles. The contours Γ1 and Γ2 contribute to the
asymptotic behavior at the plus and minus infinities,
respectively. It follows from (6.7) and (6.8) that to low-
est order in µ, as ξ  ±∞

(6.9)

where C is a constant. The exact value of the constant
C can be determined only by analyzing the complete
system (6.2). It turns out that the higher order infinites-
imals in the parameter µ make the same contribution, in
order of magnitude, to C. In other words, instead of a
polynomial, infinite series in powers of k appear in the

expression for . However, we are interested only in
the qualitative behavior of the solution (6.5). Conse-
quently, we shall not determine here the exact expres-
sions for the constants. The asymptotic behavior at
minus infinity is determined from the condition that the
solutions (6.5) are even.
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Fig. 6. Evolution of the initial data of the fast magnetosonic solitary wave type for θ < θc, µ = –0.05, θ = 1.535, b2 = 0.5, t = 0 (fine

line) and t = 250 (heavy line). The coordinate system moves with velocity V+ + µ.
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Fig. 7. Evolution of the initial data of the slow magnetosonic solitary wave type for µ = 0.0125, θ = 0.5, b2 = 0.5, t = 0 (fine line)
and t = 20000 (heavy line). The coordinate system moves with velocity V– + µ.
The expression (6.9) determines an exponentially
small oscillating “tail” of the solution corresponding to
(6.5). The transformation formula (6.1) gives

(6.10)

The exact value of the components of the constant vec-
tors D± can be calculated only taking into account the
terms of all orders in µ in (6.2). The solution, in the

w± +∞( ) D± π 1

c1
±µ

------------–
 
 
 

q±x( )sinexp=

+ O µ π 1

c1
±µ

------------–
 
 
 

exp .
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lowest order approximation in µ described by the
expression (6.5), with the asymptotic behavior (6.10) is
a generalized solitary wave.

Figure 6 shows the numerical solutions illustrating
the evolution of the initial data of the symmetric (den-
sity) and antisymmetric (Bz component of the magnetic
field) solitary wave type, corresponding to (6.5) for a
fast magnetosonic branch. The soliton decays slowly as
a result of the short-wavelength emission. The emission
process is quasistationary.

Figure 7 shows how the initial data of the slow mag-
netosonic wave soliton type evolve for a sufficiently
small value µ = 0.0125. The modes of the Alfén wave
are not seen; the wave number at the point of intersec-
AND THEORETICAL PHYSICS      Vol. 91      No. 1      2000
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tion of the straight line ω = (V– + µ)k and the dispersion
curve is approximately 63.9. The calculation does not
permit studying such short-wavelength waves. It is
obvious that the amplitude of the resonance mode of
the Alfén branch is extremely small here.

The soliton part of the solution decays exponentially
as x  ±∞. This corresponds to purely imaginary val-
ues of k with the simultaneous solution of the equa-
tions (3.1) and V = V– + µ. The maximum admissible
value of µ for which the purely imaginary value of k
still exists for given values of θ and b is approximately
0.1337; for larger values of µ the straight line ω = (V− +
µ)k simultaneously intersects the Alfén and fast magne-
tosonic branches. Consequently, all values of k are real.
As the critical value of µ is approached, the value k = q–

at the point of intersection with the Alfén branch
decreases and approaches a value approximately equal
to 0.82, and the absolute value of the purely imaginary
k approaches infinity. It is possible that in this case the
wavelength of the resonance mode of the Alfén branch
is comparable to the wavelength of the soliton “core” of
a generalized solitary wave with finite amplitude, if it
exists, but the formulas (6.5) used for the initial data do
not describe the soliton core near the critical value of µ,
as one can already see for µ = 0.1 (q– ≈ 55.6).

Qualitatively, the evolution of the initial data for
large and small values of µ is of the same type. The dif-
ference lies only in the character of the decay time and
the relative amplitude of the waves emitted. The decay
time increases as µ decreases, and the relative ampli-
tude decreases. At first, a fast magnetosonic wave mov-
ing leftward is emitted, after which a slow wave mov-
ing leftward is emitted, and then a fast wave moving
rightward is emitted. These waves move away from the
soliton. Essentially, this is a correction to the error in
the initial data, since the asymptotic formulas (6.5) of
first-order accuracy in µ are used to describe the soli-
tary wave. As a result, only a slow magnetosonic wave
remains to the left of the soliton. This is the wave
responsible for the subsequent decay of the soliton. We
note that the emission of a wave of this type is observed
in a similar calculation for a fast magnetosonic branch
as well as for a generalized KdV equation [21]. In the
calculations indicated, the wavelength at the point of
intersection of the straight line ω = Vk is comparable to
the length of the soliton, and consequently quasista-
tionary resonance radiation, which makes the dominant
contribution to soliton decay, is also observed.

7. SHOCKS FOR THE FAST MAGNETOSONIC 
BRANCH AND THEIR RELATION 

TO SOLITARY WAVES

In nondissipative systems, shocks of a more general
form than in dissipative systems can arise. The concept
of shock can include, aside from shocks between uni-
form states, shocks between periodic, quasiperiodic,
and stochastic states. Such shocks are realized as ele-
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ments of self-similar solutions in the problem of the
decay of an arbitrary discontinuity. The stationary solu-
tions studied above are treated as shock structures. The
general theory of such shocks is described in [16, 17].
In order to apply this theory the model must be
described by a symmetric, invertible, and conservative
system of equations. After this system is integrated
once, the system of ordinary differential equations for
stationary solutions (or solutions of the traveling-wave
type) can be represented as a dynamic system of the
form (4.2), w = {wq}, invariant under the transforma-
tions x  –x and wq  wq with q = 1, …, 2n – 1
(symmetric unknowns) and wq  –wq with q = 2, …, 2n
(antisymmetric unknowns).

According to this theory, a preliminary assessment
is made of the possibility of the existence of a station-
ary structure of a shock based on the properties of
invariant manifolds. Then, the satisfaction of the condi-
tion of evolution is analyzed for this structure: the num-
ber of boundary conditions at the shock should be one
greater than the number of outgoing characteristics.
The evolutionary nature signifies stability and therefore
observability of the shock in numerical and physical
experiments. A numerical experiment confirming the
existence of the type of shock under study completes
the investigation. The method is applicable for dynam-
ical systems of arbitrary order. The distortions intro-
duced by the numerical scheme are equivalent to
including higher order derivatives with respect to x in
the initial equations. Consequently, if a numerical
scheme preserving the properties of conservativeness
and symmetry is used, then the numerical method for
checking the existence of stationary solutions is not
critical with respect to approximation errors. A brief
description of the numerical method employed is pre-
sented in the Appendix.

The numerical experiment consists of the following.
Initial data are taken for v and By , proportional to the
principal eigenvector for magnetosonic waves, multi-
plied by a function of the type (x – x0)/δ) and the
initial data for w and Bz are taken to be zero. Aside from
a magnetosonic shock, different weaker shocks are also
found. A fragment of a solution with one magnetoshock
is singled out, and the computational region is extended
up to the required dimensions. Figure 8 shows the evo-
lution of different types of solutions as a function of θ
with fixed b. Solutions with all possible types of shocks
(Figs. 8a–8c) are found. The dashed rectangle shows
the section of the solution that is investigated for sta-
tionariness. Figure 9 shows schematically how the type
of solution depends on the amplitude of the global dis-
continuity ∆n = nx → –∞ – nx → +∞ and the parameter θ in
the region near the critical value θc(b).

The simplest type of shock is a shock between a
sequence of solitary waves (as t  ∞) and the uni-
form state, Fig. 8c (soliton-type shock). Shocks of this
type have been studied for the KdV equation in [15].
The conditions for the existence of such a shock are

tanh
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obvious from the above discussion. The necessary con-
dition for the existence of a low-amplitude soliton is the
absence of intersection of the straight line U = ω/k and
the dispersion curve in the region to the right of the
shock. For existence of single-hump solitons of finite
amplitude, and these are the solitary waves that form a
sequence in soliton-type shocks, it is also necessary to
require that the value of k in the simultaneous solution
of the equation U = ω/k and the equation for the disper-
sion curve be purely imaginary and not complex.

In the present model it is also possible to have a
shock between uniform and periodic states (shock with
radiation); Fig. 8b. We shall explain why and under
what conditions the structure of such a shock will exist.
Let us assume that the system of ordinary differential
equations for traveling waves has at least two stationary
points. We linearize the initial system with respect to

0 40 80 120
x

(a)

(b)

(c)

0.2

–0.2

0

0.2

–0.2

0

0

0.4

n – 1

Fig. 8. Various types of solutions with a fast magnetosonic
shock for θ = 1.52, 1.53, 1.55 from top to bottom, respec-
tively; b2 = 0.5 and t = 250.

a

b

c

∆n

θθc

Fig. 9. Diagram showing the arrangement of regions of var-
ious types of solutions with a fast magnetosonic shock near
the critical value θ = θc (b): (a) shocks with soliton struc-
ture; (b) shocks with radiation emission; (c) shocks with a
nonstationary structure.
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the uniform states near each of these points. We exam-
ine the corresponding dispersion curves ω = ω(k) and
the equations for the wavelengths of solutions of the
traveling-wave type R(U, k) = 0, where U is the velocity
of the shock. The equation R(U, k) = 0 possesses 2n
roots, and k2r = –k2r – 1, r = 1, …, n. The solution of the
linearized dynamical system depends on 2n parameters
cj and can be written in the form

Waves which grow as x  +∞ are associated with the
values Im(kj) < 0, and waves which grow as x  –∞
are associated with values Im(kj) > 0; waves associated
with real values of kj are purely periodic waves. In what
follows, it is assumed that these qualitative properties
are also preserved for nonlinear variants of systems
with the difference that the growing waves can be
growing only near the point of equilibrium and are
bounded away from it. Let us consider a subset of an
invariant subspace formed by the phase trajectories
{w(x), –∞ < x < +∞}, passing through an e neighbor-
hood of the point C at x = x0 and bounded or periodic at
+∞. We shall refer to such subspaces as S(C, e; |w| < M,
x  +∞) or S(C, e; w(x + T)  w(x), x  +∞).
The quantity x0 plays no role, since the solution is
determined to within a phase shift.

Let there be two points of equilibrium. The straight
line ω = kU for one of them (C1) does not intersect the
dispersion curve, and for the other (C2) it intersects
once. At the point of equilibrium C1 there are n roots
with Imk > 0 and n roots with Imk < 0; at the point C2
there are n – 1 roots with Imk > 0 and n – 1 roots with
Imk < 0 and two roots with Imk = 0. Therefore the
invariant manifolds S1 = S(C1, e1; w  C1, x  –∞)
and S2 = S(C2, e2; w(x + T)  w(x), x  +∞) pos-
sess, respectively, the dimensions n (number of
decreasing waves as t  –∞) and n + 1 (number of
periodic waves plus the number of decreasing waves as
t  +∞). Their total dimension is 2n + 1. In this case
the presence of lines of intersection is a case of the gen-
eral position. The lines of intersection correspond to a
shock with radiation emission. In this model such a
shock is possible for b < bc and for b > bc.

Numerical solutions of the problem of the decay of
an initial discontinuity for the generalized KdV and
Schrödinger equations show that for fourth-order
dynamical systems such a shock arises only if all values
of k are complex at the point C1. The numerical exper-
iments showed that in the case of a shock with an emit-
ted wave the roots are complex for the present model as
well. Spatially decaying oscillations in front of a shock
can be seen in Fig. 8b.

In [16] it is shown that shocks with radiation emis-
sion and shocks with a soliton structure are evolution-

Re c j ik jx( )exp
j 1=

2n

∑ .
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ary. They are indeed observed in the numerical experi-
ment.

One would assume that a shock in which there is a
sequence of generalized solitary waves is possible
when an intersection of the straight line U = ω/k and the
dispersion curve is present for the region to the right of
the shock. However, the numerical experiment shows
that such shocks are replaced by shocks with nonsta-
tionary structure (Fig. 8a). Apparently, such shocks are
nonevolutionary. For a fixed value θ < θc there exists a
critical value ∆nc(θ) for which a transition occurs from
shocks with stationary structure to shocks with radia-
tion emission. If ∆n ! ∆nc , then the solution in the
framed region is similar to a generalized solitary wave,
but the amplitudes of the soliton and periodic compo-
nents fluctuate slowly with time. As ∆n  0 the
amplitude of the periodic component approaches zero
and the solution becomes similar to a solution with a
soliton-type shock. Conversely, if ∆n is close to ∆nc ,
then the solution becomes chaotic.

Comparing the condition for the existence of soli-
tary waves with the conditions for the existence of
shock structures, it can be concluded that a soliton-type
shock corresponds to the existence of a solitary wave, a
shock with nonstationary structure corresponds to a
generalized solitary wave, and a shock with radiation
corresponds to the situation where there is no solitary
wave, i.e., the case of relatively large amplitudes.

8. DISCUSSION

As a result of resonances between long- and short-
wavelength waves, the equations of a isotropic colli-
sionless quasineutral plasma which are studied in the
present paper admit as solutions the following soliton-
like structures.

8.1. Fast Waves

(a) Simple resonance. For b > bc there exists a family
of solitons corresponding to compression waves (Fig. 5).
A perturbation in the form of a soliton propagates with-
out a change in shape. For example, for a hydrogen iso-
tropic collisionless plasma, which is one of the models
for the plasma in the Earth’s magnetosphere (see, for
example, [14]), in the absence of magnetic storms b . 0.1,
and solitons occur for cosθ < 1.01me/mi , i.e., for angles
θ in the range (88.68°, 90°]. It had been assumed (see,
for example, [8]) that soliton families branching from
the state of rest in a magnetized plasma exist for all
angles of inclination 0 < θ ≤ π/2 of the unperturbed
magnetic field with respect to the direction of propaga-
tion of the wave, since the motion of the plasma was
assumed to be described by the model KdV equation.
At the same time, the results presented in the present
paper show that solitons exist only for a very narrow
range of angles θ and moderate values of the parameter
b in a physically real plasma.
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(b) Resonance of short- and long-wavelength waves.
For b < bc the case of the general position is the absence
of solitons. They are replaced by soliton-like struc-
tures—generalized solitary waves, which are the result
of a superposition of a soliton “core” (6.5) and a peri-
odic resonant wave. For small amplitudes of the core
the amplitude of the periodic wave is exponentially
small. The generalized solitary waves are rarefaction
waves (Fig. 6).

The substitution of solitons by nonlocalized
objects—generalized solitary waves—has a large effect
on the character of the decay of localized disturbances.
In this case, just as in a cold plasma [22], the decay of
disturbances in the form of a soliton core, for example,
leads to quasistationary emission of a periodic wave
whose period is close to the period of the resonant peri-
odic wave. The radiation is all the more intense, the
larger the amplitude of the initial wave and the closer
the effective velocity of sound b to the value bc. In this
case the radiation carries off the main, and significant,
energy of the initial wave (see Fig. 6). Quasistationary
decay of solitary waves as a result of emission, associ-
ated with the substitution of soliton solutions by gener-
alized solitary waves, is typical for wave motions in a
number of other dispersive media (see, for example,
[21, 23, 24]).

8.2. Slow Waves

For all values of the physical parameters b and θ
there are no solitons, and generalized solitary waves,
formed as a result of a nonlinear resonance of a slow
soliton core and a periodic wave with wave numbers
and frequencies on the Alfén branch, occur. Just as in
the case of fast waves, for algebraically small core
amplitudes the amplitude of the resonant periodic com-
ponent is exponentially small. The resonant wave num-
ber q– in this case lies far from zero. Numerical calcu-
lations of the decay of a slow soliton core did not reveal
any emitted waves (their amplitude is very small; the
reason is that q– lies far from zero). As the core decays,
at first a fast magnetosonic wave moving leftward is
emitted; this is followed by a slow leftward moving
wave and then a fast rightward moving wave. In time
these waves travel away from the soliton core. As a
result, only a slow magnetosonic wave is constantly
emitted; this wave is responsible for the subsequent
decay of the soliton (Fig. 7). The indicated mechanism
of decay of soliton disturbances with the replacement
of soliton solutions by generalized solitary waves is
new and requires further investigation.
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APPENDIX

Numerical Scheme

Efficient numerical simulation of symmetric solu-
tions—solitons, generalized solitary waves, shocks
with radiation emission, and soliton-type shocks—
requires that the numerical solutions preserve the basic
properties of the initial model: conservativeness and
symmetry. In this connection it is desirable to put the
initial system into a conservative form and to approxi-
mate it by central differences:

However, it was found that problems associated with
the instability at the boundary arise in the approxima-
tion of this system. Consequently, it was transformed
into a form where each equation contained time deriv-
atives only of one unknown. This ensures stability and
simplifies the implementation of an algorithm for solv-
ing implicit discrete equations:
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A cross-type three-layer scheme with a second-order
approximation in time or a two-layer scheme with a
first-order approximation (control scheme) can be used.
The two-layer scheme makes it possible to include, if
so desired, dissipative terms in the initial equations.
Comparing the results obtained with these two schemes
did not show any substantial differences because of the
small time step, and the condition ∆t = c0∆x3, where c0
is a constant, was maintained in the calculations.

We shall use a superscript to denote the temporal
layers and a subscript to denote the number of nodes in
space. These equations are regularized: each equation
contains time derivatives only of one variable with the
exception of the variable n, which is determined explic-
itly. This makes it possible to solve four implicit differ-
ence equations for nv, nw, By , and Bz separately. The
method for approximating the first-order derivatives is
obvious:

To preserve in the numerical solution the symmetry
properties used in the theory presented above, central
differences must be used to approximate the x deriva-
tives. Templates for approximating the even and odd
conservative high-order derivatives are presented
below:
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Here f, g, and h are arbitrary unknowns. The purpose of
such complicated templates is to decrease the effect of
the dispersion due to the numerical scheme and to
ensure stability. The quantity ∆t was chosen as ~∆x3,
since four of the six equations of the simulated system
are similar to KdV equations.

An iteration method was used to solve the implicit
discrete equations:

f m + 1, 0 = fm – 1, f  nv, nw, By , Bz .

Here Ff is a finite-difference approximation of the cor-
responding equation and j is the number of the itera-
tion step. The iteration process was stopped when
|f m + 1, j + 1 – f m + 1, j| ≤ e, where e is a parameter deter-
mining the desired accuracy. The values of cf were
obtained in the course of the numerical experiment.
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Abstract—Measurements of the temperature dependence of the pyroelectric coefficients in cells with homeo-
tropic and planar boundary conditions were performed in order to study the surface polarization and determine
its nature in the isotropic phase of a nematic liquid crystal. Analysis of these data established that the ordering
polarization arising as a result of the nonuniformity of the order parameter in the near-boundary region of the
liquid crystal and the polar monolayer due to the bifilar properties of the molecules of the liquid crystal at the
boundary with the solid wall of the cell are responsible for the surface polarization in the isotropic phase of a
nematic liquid crystal. The values of the pyroelectric coefficients of monolayers and the coefficients of the
ordering polarization for planar and homeotropic orientations are estimated. © 2000 MAIK “Nauka/Interperi-
odica”.
1. INTRODUCTION

It is well known that the ordering of the molecules
of a nematic liquid crystal (NLC) at a boundary with a
solid substrate can differ substantially from the order-
ing in the interior volume not only quantitatively with
respect to the magnitude of the order parameter but also
qualitatively as a formation of a polar orientational
order at the interface. The macroscopic surface polar-
ization which arises influences the characteristics of the
electro-optic effects [1, 2], determines the preinclina-
tion angles as a result of the dipole contribution to the
bonding energy between the liquid-crystal molecules
and the surface [3], and creates the conditions for the
realization of surface orientational transitions [4, 5].
Thus, investigations of surface phenomena in NLC are
of interest from the applied standpoint as well as from
the standpoint of studying the fundamental properties
of the liquid-crystal state.

Molecular ordering at the boundary of a liquid crys-
tal has been studied by ellipsometry [6], X-ray spec-
troscopy [7], and nuclear magnetic resonance [8].
However, these methods cannot distinguish the polar
and nonpolar types of molecular ordering. One method
of investigating the surface properties of liquid crystals
which are sensitive to the polarity of the molecular
order is optical second-harmonic generation. In the
dipole approximation second harmonic generation is
forbidden in centrosymmetric media, and it can be
observed only in noncentrosymmetric media, i.e., polar
media. In [9] it was determined, using second-har-
monic generation, that polar ordering of cyanobiphenyl
molecules is absent at a free boundary of a NLC (at the
boundary with air), but it exists at a boundary with a
glass substrate. The surface polarization is localized in
a monomolecular layer at the interface, and the degree
1063-7761/00/9101- $20.00 © 20126
of polar ordering of the monolayer is independent of
temperature and remains constant in a wide range,
including both the nematic and isotropic phases of the
liquid crystal. Second-harmonic generation has been
observed at the boundary with glass substrates with
both homeotropic and planar orientations of the NLC
[10]. In [11, 12] surface polarization was investigated
using the method of modulation spectroscopy of elec-
troreflection from a NLC–semiconductor interface. The
polarization observed depended on the temperature and
was explained by the presence of boundary-induced
polar ordering of the liquid-crystal molecules.

In the present work the pyroelectric method was
used to study the surface polarization in the isotropic
phase of a NLC in thin layers with planar and homeo-
tropic boundary conditions. This method, just as the
second-harmonic generation method, makes it possible
to distinguish polar and nonpolar types of molecular
ordering. The most likely contributions to surface
polarization, which are due to the presence of a nonuni-
form orientational ordering of the molecules and the
bifilar nature of the liquid-crystal molecules, i.e., the
difference in the interaction of the different ends of
polar molecules with a solid surface [9, 10, 13], were
analyzed.

2. THEORETICAL FOUNDATIONS
OF THE METHOD

There are at least two possible mechanisms for the
appearance of surface polarization in the isotropic
phase of a NLC. One is the difference in the interaction
of different ends of the polar molecules of a NLC with
a solid surface; this difference could lead to the forma-
tion of a polar monolayer at the interface [11]. In [9, 10]
000 MAIK “Nauka/Interperiodica”
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it was established that such a monolayer exists on a
clean glass surface, on a surface treated with a surfac-
tant in order to obtain a homeotropic orientation, and
on a surface coated with a polyimide film, which usu-
ally used to obtain planar orientation. In all cases the
molecules of the experimental cyanobiphenyl liquid
crystal were bonded with the surface by a polar CN
group, i.e., the polarization vector of the monolayer
was directed along the normal to the surface inside the
liquid crystal. The angles of inclination θm of the liquid-
crystal molecules in the monolayers with respect to the
normal are different and equal to θm ~ 67° on a surfac-
tant film and θm ~ 80° on the polyimide film.

The second reason for the appearance of surface
polarization in the isotropic phase of a NLC, especially
near a nematic–isotropic liquid (N  I) phase transi-
tion, could be the difference between the surface-
induced scalar order parameter S0 and the volume order
parameter S. This leads to the appearance of the so-
called “ordering polarization” (order-electric polariza-
tion), predicted in [14]:

(1)

where r is the ordering polarization constant, which is
equal in order of magnitude to the flexoelectric coeffi-
cients e1 and e3 [15].

It is obvious from symmetry considerations that in
the isotropic phase of a NLC the surface-induced order
parameter depends only on the coordinate z. The Z-axis
is directed along the normal to the orienting surface and
therefore the gradient of the order parameter is parallel
to the normal. Then the expression for the normal com-
ponent of the ordering polarization can be written in the
form

(2)

The phenomenological Landau–de Gennes theory [8,
16, 17] is ordinarily used to describe the properties of
orientational ordering of a liquid crystal at a boundary
with a solid surface. According to this theory, the free-
energy density of a liquid crystal with uniform orienta-
tion of the director can be written as an expansion in
powers of the order parameter and its gradient [16]:

(3)

where f0 is the part of the free energy that is indepen-
dent of the order parameter, a, B, C, and L are the mate-
rial parameters, T* is the maximum temperature of
supercooling of the isotropic phase, fs is the surface
density of the free energy, the simplest expression for
which, according to [16], is fs = –GS0 (here G is the
interaction energy between the liquid crystal and the
surface and S0 is the order parameter at the surface of
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the liquid crystal). Minimizing the integral of the free-
energy density (3) gives an expression for the order
parameter of a liquid crystal near S(z) and at the inter-
face with the substrate S0. In the isotropic phase of the
liquid crystal, neglecting the terms ~S3 and ~S4 in the
expansion, the following expressions are obtained for
S(z) and S0 [8]:

(4)

where ξ = (L /aT*)1/2(T/ T* – 1)–1/2 is the correlation
length and S00 = G/(aLT*)1/2.

Averaging over the thickness of the cell the ordering
polarization 〈Pop〉 , induced by one bounding surface,
z = 0 (we assume that the order parameter S at the sec-
ond surface, z = d, corresponds to the bulk value (in the
isotropic phase S = 0)) can be expressed as

(5)

The total polarization on a single boundary surface
in the isotropic phase of the NLC averaged over the
thickness of the cell is equal to the sum of the polariza-
tion 〈Pm〉  of the surface layer and the ordering polariza-
tion 〈Pop〉 . Using the relations (4) the pyroelectric coef-
ficients for cells with planar and homeotropic boundary
conditions can be expressed as

(6)

where γj is the total pyroelectric coefficient, γmj is the
pyroelectric coefficient of the monolayer, γopj is the
pyroelectric coefficient due to the ordering polariza-
tion, and the index j corresponds to different types of
boundary conditions at the cell walls.

The total polarization of the cell 〈P〉  = 〈Pm〉  + 〈Pop〉
is determined by contributions from both boundary sur-
faces of the liquid crystal in the cell 〈P〉 (1) and 〈P〉 (2),
which under isothermal conditions are equal in modu-
lus and opposite in direction. Thus, under stationary
isothermal conditions the total polarization is zero.

The pyroelectric current arising with modulation of
the temperature of a liquid crystal in the cell is deter-
mined by the contributions of the polarization currents
from both cell boundaries, and if the temperature mod-

ulation amplitudes  and  at the boundaries
are different, then the pyroelectric current through the
cell is also different from zero. According to the condi-
tions of the experiment described below, where the
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temperature modulation in the liquid crystal layer is
achieved by modulating the power of the laser radia-
tion, its amplitude at the first boundary surface of the
cell, on which the laser radiation is incident, is much
greater than on the second surface because of the damping
of the light wave in the absorbing layer of the liquid
crystal. Consequently, it can be assumed that the exper-
imentally measured pyroelectric current ip is deter-
mined primarily by the polarization only at the first
boundary surface:

(7)

where γ is the pyroelectric coefficient, and ω = 2πF is
the circular frequency of the temperature modulation.

3. EXPERIMENT

A block diagram of the experimental setup for
investigating the pyroelectric properties of a liquid
crystal is shown in Fig. 1. Radiation from an FP-82/30
semiconductor laser 2 with wavelength λ = 820 nm and
power W0 = 30 mW in the continuous-wave regime is
incident on the sample 1. The power of the laser radia-
tion is modulated by a signal from the square-pulse
generator 3 with frequency F = 125 Hz and duty fac-
tor 2. The radiation is absorbed in a thin layer of the liq-
uid crystal, giving rise to temperature modulation in the
layer. The pyroelectric voltage from the resistance of
the load 4 is amplified by a preamplifier and a selective
nanovoltmeter 5 and fed into the input of the acoustic
chart in the computer 6.
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 Block diagram of the experimental setup for mea-
suring the polarization by the pyroelectric effect method:
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) load resistance,
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) preamplifier and selective voltmeter, (
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) computer,
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) thermally insulated chamber, (
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) platinum resistance
thermometer, (
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) multimeter, (
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) laser power supply.
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The measurement and processing of the pyroelectric
signal were performed using the PhysLab4.0 program
system and the multimedia resources of a personal
computer. The amplitude of the first harmonic of the
pyroelectric signal at the modulation frequency and the
phase of the pyroelectric signal relative to the reference
signal, fed into the second input of the acoustic chart of
the computer from the pulsed generator 3, are mea-
sured.

To measure the temperature dependences of the
pyroelectric signal the sample is placed in a thermally
insulated chamber 7, where the temperature is mea-
sured using a platinum resistance thermometer 8 and a
multimeter 9, which transmits the measurement results
to the serial port (COM2) of the computer.

The liquid-crystal cells were fabricated from glass
plates with a transparent current-conducting tin dioxide
(SnO2) layer on one side. Planar orientation of the liq-
uid crystal was obtained by rubbing a polyimide film
deposited on an electrode [17]. Homeotropic orienta-
tion of the NLC was obtained by cleaning the surface
of the glass with a polishing electrode. Two glass plates
prepared in this manner were used to assemble a flat
capacitor type cell in which the distance between the
electrodes was set by teflon interlayers with thickness
d = 10 µm.

The surface polarization was investigated in the liquid
crystal 4-pentyl-4'-cyanobiphenyl (5CB). To increase the
absorption of the laser radiation and thereby the pyroelec-
tric signal and to produce a temperature gradient in the
direction of the normal to the cell, vanadyl phthalocya-
nin dye, which has an absorption maximum at wave-
length λ = 805 nm, was dissolved in the liquid crystal.
The dye concentration in the liquid crystal was 1 wt %,
which gives optical density D = 1.05 at the wavelength
of the radiation from the semiconductor laser.

The procedure for calibrating a measurement sys-
tem using a ferroelectric liquid crystal with known
spontaneous polarization was used to calculate the
absolute value of the pyroelectric coefficient γ(T) from
the measured pyroelectric voltage Up = ipRL .

4. RESULTS AND DISCUSSION

Figure 2 shows the temperature dependences of the
pyroelectric voltage which were measured by cooling
samples with planar and homeotropic boundary condi-
tions. The vertical line in the figure marks the isotro-
pic–nematic phase transition temperature. One can see
in the figure that the pyroelectric signal is different
from zero in the nematic and in the isotropic phases of
the liquid crystal. Figure 3 shows the temperature depen-
dences, computed from the experimental results, of the
pyroelectric coefficients in the isotropic phase of 5CB
for cells with planar and homeotropic boundary condi-
tions. The figure also shows the results of an analysis of
the experimental data using the dependence (6). The cor-
responding parameters are presented in the table.
 AND THEORETICAL PHYSICS      Vol. 91      No. 1      2000
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 Pyroelectric coefficient 
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 versus temperature in the isotropic phase of 5CB for cells with planar (
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boundary conditions. The solid lines show the results of the analysis of the experimental data.

 

In the isotropic phase, far from the nematic–isotro-
pic liquid transition temperature, when transient pro-
cesses leading to orientational ordering of the liquid-
crystal molecules had still not appeared, the pyroelec-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
tric coefficients are essentially constant in magnitude.
This means that the corresponding surface polarization
varies linearly with temperature, as, for example, the
density of the liquid crystal.
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We shall determine the polarization of the surface
monolayer of the liquid crystal of thickness dm as the
ratio of its dipole moment to the volume of the mono-
layer Adm , where A is the area of the monolayer. If it is
assumed that all longitudinal dipoles in the monolayer
are oriented in the same direction at the angle θm, then
the normal component of the dipole moment of the
monolayer will be Dm = ∆Nmcosθm, where m is the
dipole moment of the molecule and ∆N is the number
of molecules in a monolayer. In this case the polariza-
tion Pm of the monolayer will be Dm/Adm =
(∆N /Adm)mcosθm . The number of liquid-crystal mole-
cules in the monolayer is ∆N = A/σ, where σ is the area
per molecule. Then the surface density of molecules in
the monolayer is Nm = 1/dmσ, and the polarization of the
monolayer, averaged over the cell thickness, is

Assuming m ~ 5 D = 1.6 × 10–27 C cm, dm ~ 2 nm, and
σ = 20 Å2 and θm = 10° under homeotropic boundary
conditions and σ = 60 Å2 and θm = 80° under planar
boundary conditions, we estimate the polarization of the
monolayer 〈Pmp〉 ~ 0.05 nC/cm2 for planar and 〈Pmh〉 ~
0.8 nC/cm2 for homeotropic boundary conditions. If the
temperature dependence of the surface polarization is
determined primarily by the temperature variation of
the density of liquid-crystal molecules in the mono-
layer and the temperature coefficient (1/Nm)(dNm/dT) is
of the same order of magnitude as for the density of mol-
ecules in the volume of the liquid crystal, i.e., ~4 × 10–4,
then the pyroelectric coefficient of the monolayer is γmp ~
0.2 × 10–4 nC/(cm2 K) and γmh ~ 3.2 × 10–4 nC/(cm2 K),
respectively, for the planar and homeotropic cases.
Thus the computed values of the pyroelectric coeffi-
cients for the surface monolayer agree in order of mag-
nitude with the experimental results (see table). The
best agreement is obtained for the homeotropic cell.

Near a nematic–isotropic liquid phase transition the
pyroelectric coefficient increases sharply with decreas-
ing temperature, especially in a homeotropic cell. As
follows from Eq. (6), this is due to the increase in the
ordering polarization as a result of an increase in the
surface order parameter S0 (4), induced by the interac-
tion of the liquid-crystal molecules with the orienting
surface. The fact that the pyroelectric coefficient has
the opposite sign shows that the ordering polarization
vectors are oppositely directed at the interface for pla-
nar and homeotropic orientations. This means, taking
account of Eq. (5), that the surface order parameter S0

Pm〈 〉 Nmm θmcos( )dm d .⁄=

Table

Type of cell γmj, nC/(cm2 K) γopj, nC/(cm2 K) T*, °C

Planar 1.3 × 10–4 4.6 × 10–4 32.7

Homeotropic –8.2 × 10–4 –1.5 × 10–3 32.8
JOURNAL OF EXPERIMENTAL 
                                                                   

relative to the direction of the normal to the surface for
planar and homeotropic orientations have opposite
signs. This result agrees with the results of ellipsomet-
ric measurements [18] of the surface order parameter in
the isotropic phase of a NLC for different types of ori-
enting substituents. As follows from Eqs. (4) and (6),
the signs and magnitudes of the surface order parameter
S0 and the pyroelectric coefficient of the ordering polar-
ization are determined by G, the interaction energy of
the liquid crystal with the surface. From the results of
the analysis of the experimental data presented in the
table, we obtain |Gh/Gp | ≈ 3 for the ratio of the moduli
of the interaction energy of a liquid crystal with the sur-
face for homeotropic and planar orientations.

The ordering polarization coefficient r in the isotro-
pic phase of 5CB can be estimated directly from the
results obtained. Assuming the interaction energy G of
the liquid crystal with the surface to be 4 × 10–5 J/m2

[19, 20], a = 2.2 × 105 J/(m3 K), and L = 4.5 × 10–12 J/m
[21] we obtain for the ordering polarization coefficient
r = 1.5 × 10–11 C/m or 4.5 × 10–4 CGSE for homeotropic
orientation and r = 0.5 × 10–11 C/m or 1.5 × 10–4 CGSE
for planar orientation. Thus, the ordering polarization
coefficient is estimated to be r = (1.0 ± 0.5) × 10–11 C/m
or (3.0 ± 1.5) × 10–4 CGSE, which is indeed comparable
to the flexoelectric coefficients (e1 + e3) ~ 5 × 10–11 C/m
[22].
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Abstract—The morphological stability of spherical and cylindrical crystals and an infinite plane growing from
a supersaturated solution is studied using the principle of maximum entropy production in the Mullins and
Sekerka approximation. In contrast to the first two geometries, the computational results for a plane agree com-
pletely with the results obtained on the basis of the classical linear perturbation theory. The concept of the bin-
odal of a morphological transition is introduced in order to interpret the results for the sphere and cylinder. The
boundaries of the metastable region are investigated. Morphological phase diagrams of stable–unstable growth
are presented in terms of the variables surface energy and supersaturation as well as the variables crystal size and
supersaturation. The physical nature of the appearance of metastability in this system is discussed. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Questions concerning structure formation during con-
tinuous growth of a crystal are attracting a great deal of
attention in connection with their theoretical and practical
importance. Even though great progress has been made in
this field after the publication of the classic works [1] and
[2], many problems remain unresolved. We note here
only two facts directly concerning the subject of the
present paper.

1. A complete understanding of the relation between
the conventional stability analysis (see, for example,
[2, 3]) and the general principles of nonequilibrium
thermodynamics is absent in the literature on crystalli-
zation. In most cases these approaches are either con-
trasted to one another or they are developed indepen-
dently. Indeed, according to the theoretical works [4, 5]
a fundamental principle in the development of a non-
equilibrium system is the principle of maximum pro-
duction of entropy. This principle can be formulated as
follows: an arbitrary nonequilibrium system evolves
toward a locally equilibrium state at an extremal rate
(with maximum entropy production). Since this princi-
ple is important for the exposition, we shall discuss it in
somewhat greater detail. The principle of the maximum
rate of entropy production is proposed in [4] as a basis
for the deductive construction of the thermodynamics
of nonequilibrium processes. In this differential princi-
ple the fluxes which for fixed thermodynamic forces
maximize entropy production are sought under quite
general assumptions concerning the relations between
the thermodynamic fluxes and forces. It is shown that
this principle makes it possible to obtain all of the basic
1063-7761/00/9101- $20.00 © 0132
equations and laws of nonequilibrium thermodynamics
and, specifically, other well-known variational formu-
lations—the principles of Onsager, Biot, and Prigogine
[4]. In [5] the apparatus of the phenomenological ther-
modynamics of irreversible processes is analyzed criti-
cally and another variational principle generalizing the
preceding principles is advanced on the basis of the
principle of local equilibrium. One consequence of the
approach proposed in [5] is the confirmation of the
extremal character of the rate of a transition of a
dynamical system to a locally equilibrium state.

The principle studied in the present paper reduces,
as will be shown below, in a particular case to the prin-
ciple of the maximum possible local rate of growth of a
crystal. However, the attitude of scientists concerned
with crystallization toward the principle of maximum
rate is extremely contradictory and changes with time.
This is due primarily to the fact that the works [4, 5]
have remained unnoticed, and this principle arose
purely intuitively in the theory of crystal growth. The
history of the application of the maximum-rate princi-
ple, specifically, with respect to the growth of a den-
drite, is briefly as follows. Temkin seems to have been
one of the first to use this principle in analytical calcu-
lations [6]. This principle was a criterion for selecting a
definite solution from an entire family of possible solu-
tions obtained in a phenomenological model. However,
the experimental work [7] showed a substantial differ-
ence from the result obtained in [6] and the theoretical
works [8, 9], based on a linear analysis of the stability
of a growing paraboloid assuming isotropic surface
tension, conversely, led to good agreement with exper-
2000 MAIK “Nauka/Interperiodica”
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iment. As a result the latest theory [8, 9], which has
been termed the theory of marginal stability, is con-
trasted with the principle of maximum rate of growth
and, in consequence, the attitude developed that this
principle is incorrect. However, in the opinion of the
authors the discrepancy between the theory based on a
maximality principle for selecting a definite solution
and experiment could indicate, first and foremost, the
coarseness of the model used in [6] as a basis for this
theory. Approximately eight years later there appeared
theoretical works indicating contradictions in the the-
ory of marginal stability itself, specifically, the absence
of a stationary solution corresponding to a needle-
shaped dendrite. This led to the development of an
improved theory in which weak anisotropy of surface
tension was introduced (see the reviews [10, 11]). The
new approach, known as the theory of microscopic
solvability, also employs stability analysis. One result
of this analysis was the assertion that a solution with the
maximum rate of growth is the only stable solution
from a discrete spectrum of stationary needle-like solu-
tions. As the theory of microscopic solvability contin-
ued to advance, the problems of dendritic growth
appeared to be largely solved. However, an experiment
performed in an anisotropic Hele-Shaw cell and theo-
retical calculations in a boundary-layer model revealed
a new problem: dendrites are not always observed in
the case of weak anisotropy with decreasing supercool-
ing/supersaturation [12–14]. As a result the tip of a den-
drite splits. In [12–14], in order to get out of this con-
tradiction, it is proposed that the criterion of solvability
must be replaced by a more general criterion: the
dynamically selected morphology is the most rapidly
growing morphology. In other words, if the existence of
more than one morphology is possible, only the most
rapidly growing morphology is nonlinearly stable and
therefore observable.

In summary, during the 30 years of study of the non-
equilibrium crystal growth two approaches to the prob-
lem of morphology selection competed with one
another: stability analysis and application of a maxi-
mality principle. Both principles are intuitively quite
plausible. Even though the stability analysis in many
cases leads to conclusions that the rate of growth is max-
imum, it seems obvious that in most cases each approach
will lead, if not to qualitative then to quantitative differ-
ences. In our opinion, the search for the more “correct”
approach is not promising; they should not be contrasted
to one another, but rather an attempt should be made to
find a logical relationship between them.

2. A large number of experimental and computer
simulation works show that there exist ranges of the
parameters where different morphologies can coexist
[12–26]. Thus, in [22] two different types of distur-
bances started to develop simultaneously during crys-
tallization of a melt of succinonitrile with additions of
acetone, in the presence of definite supercooling, on a
crystalline nucleus and coexistence of two forms of
growth was observed: dendrites growing in the 〈100〉
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and 〈111〉  directions. It is also remarked in the literature
that the transition from one morphology to another
accompanying a change in the parameters (for exam-
ple, the supersaturation) can occur both with a jump in
the rate or with a jump in its derivative [13–18]. On this
basis an analogy is often drawn between phase and
morphological diagrams and the concepts of first- and
second-order morphological transitions are introduced
[13–17, 27]. The most fundamental question arising in
this formulation of the problem is finding the principle for
selecting a possible morphology which would enable a
complete calculate of a morphological diagram (with
boundaries of metastable and labile regions). However,
this problem has not been solved. In the literature it is
hypothesized that far from equilibrium entropy produc-
tion determines morphological selection but no specific
calculations have been performed [13–15].

Thus, the goal of the present work can be formulated
on the basis of the forgoing analysis (paragraphs 1 and 2):
to study, using the principle of maximum entropy pro-
duction, the problem of morphological selection during
nonequilibrium growth of a crystal and to show, using
the concept of morphological diagrams, the relation-
ship between this approach and the stability analysis.
For clarity this analysis is performed for the simplest
problems: growth of a sphere, an infinite cylinder, and
an infinite plane from a solution in the classic Mullins–
Sekerka (MS) approximation [2].

2. PRINCIPLE
OF MAXIMUM ENTROPY PRODUCTION

IN CRYSTALLIZATION PROBLEMS

We shall study isothermal–isobaric crystallization as
the most typical case and we shall assume that the growing
crystal completely displaces the solvent. It is well known
[28] that local entropy production σ for the system
under study equals

(1)

where ∇µ  and I are, respectively, the gradient of the
chemical potential and the flux of the crystallizing
component. The expression (1) can be used for any ele-
ments of the volume under study and, specifically, for
the region near the surface of a growing crystal. In this
case

(2)

where C is the density of the crystal, Cint is the concen-
tration of the dissolved substance near a surface of arbi-
trary type, V is the local growth rate, and D is the diffu-
sion coefficient.

We note that the entropy production (1) and (2) is
proportional to the rate of increase of the mass of the
growing crystal or, specifically, the velocity of the
boundary. At the same time it contains an additional
factor equal to the gradient of the chemical potential.
Based on the investigations performed in [4, 5], the fol-

σ I∇ µ,=

I D ∇ C( )int C Cint–( )V ,= =
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lowing local principle (maximality principle) can be
formulated for the system studied in this work: when
disturbances with adequate amplitude are present in the
system, a state characterized by maximum local
entropy production is realized. We note that this asser-
tion generalizes the assertion, made in the crystalliza-
tion literature, that the crystal growth rate [12–14] and
the rate of mass increase [15] are maximum. We shall
make several important remarks concerning this princi-
ple.

1. The principle formulated seems, at first glance, to
contradict the well-known Prigogine principle of mini-
mum entropy production. However, the regions of appli-
cation of these principles are absolutely different. Thus,
the Prigogine principle is valid for weakly nonequilibrium
stationary processes occurring under fixed boundary con-
ditions [28], whereas the principle of maximum entropy
production concerns a nonequilibrium system moving
toward equilibrium or a stationary state; a self-develop-
ing nonequilibrium system is considered and not all
boundary conditions can be constant. Correspondingly,
these principles concern different types of variational
problems (in Prigogine’s formulation the fluxes at a
boundary are not varied), but, as shown in [4] for non-
linear processes, the Prigogine principle is a conse-
quence of the principle of maximum entropy produc-
tion.

2. The principle formulated above is local. It is obvi-
ous that when this principle is satisfied at each point of
the system the principle of maximum entropy produc-
tion will be valid even for the entire system studied. As
shown in [29], entropy production for an isothermal–
isobaric process is directly proportional to the change
in the Gibbs potential, taken with the opposite sign. It
is well known that the system under study, developing
spontaneously, moves toward a minimum of the Gibbs
potential, so that on the basis of the principle of maxi-
mum entropy production it can be concluded that this
occurs, when possible, at the maximum rate. Thus, the
maximum principle formulated generalizes the princi-
ples proposed in [30–32].

3. In the special literature devoted to crystal growth
it is asserted that a crystal growing in a stationary man-
ner is edged by the most slowly growing faces [33].
This is a consequence of the so-called wedging out of
the faces, where on account of this growth the most rap-
idly growing face becomes degenerate, and as a result
two neighboring faces remain slowly growing. This is not
a rejection of the general maximality principle, since the
principle talks about the manner in which a system moves
toward an equilibrium or a stationary state. The opposite
could signify rejection of this principle—the develop-
ment at each stage of growth only of the most slowly
growing faces in the presence of faces capable of more
rapid growth.

The consequences of the maximality principle will
be analyzed below for various crystal growth geome-
tries.
JOURNAL OF EXPERIMENTAL 
3. ENTROPY PRODUCTION
AND MORPHOLOGICAL SELECTION DURING

THE GROWTH OF A SPHERE

We shall study diffusion-controlled growth of a spher-
ical particle from a supersaturated solution with initial
concentration C∞ . In the MS approximation it is
assumed that local equilibrium exists near each element of
a phase boundary. The crystallographic factors are
neglected. It is assumed that the diffusion field is
described by the Laplace equation, i.e., the condition of
quasistationary diffusion is satisfied:

(3)

where C0 is the concentration of dissolved matter near
a flat boundary. The behavior of an infinitesimal distor-
tion of a sphere by a single spherical harmonic Ylm(θ, ϕ)
is investigated in this approximation. The equation of
the distorted surface of the sphere has the form

(4)

where R is the radius of the unperturbed particle, δ is
the amplitude of the disturbance, and t is the time. The
solution of the Laplace equation is constructed under
the assumption that the equilibrium concentration near
the surface of the crystal satisfies the equation

(5)

where Γ is the surface tension (proportional to the free
surface energy), and K is the average curvature. Using
a more general solution of the Laplace equation for a
weakly distorted particle and neglecting all powers of δ
above the first power gives [2]

(6)

(7)

where

It follows from (7) that disturbances will grow if
the radius of the crystal is greater than the critical

radius  [2]:

(8)

where  = 2ΓC0/(C∞ – C0) is the radius of the critical
nucleus (here and below the subscript “s” denotes the
sphere).

C∞ Cint–
C Cint–
---------------------

C∞ C0–
C C0–
-------------------  ! 1,≤

r θ ϕ t, ,( ) R t( ) δ t( )Ylm θ ϕ,( ), δ t( ) ! R t( ),+=

Cint C0 C0ΓK ,+=

V Ṙ δ̇Ylm,+=

δ̇ t( )
C0D l 1–( )

C CR–( )R2
---------------------------=

×
C∞ C0–

C0
-------------------

Γ
R
--- l 1+( ) l 2+( ) 2+[ ]–

 
 
 

δ,

CR C0 1 2Γ R⁄+( ), δ̇ dδ dt,⁄≡=

Ṙ dR dt⁄ l≡ 1 2 3 …, , ,=

Rs
s

Rs
s l 1+( ) l 2+( ) 2⁄ 1+[ ] Rs*,=

Rs*
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The formulas (7) and (8) obtained above completely
determine the stability of the growing spherical particle
with respect to an infinitesimal disturbance [2].

We shall now apply the thermodynamic approach to
the analysis of this problem. Using (1) and (2), we shall
find the difference between the entropy productions
between the growth of perturbed (Σsp) and unperturbed
(Σsn) spherical crystals; in so doing, we shall calculate
the local energy production per unit time for a volume
element with unit thickness and area cut out by the
solid angle dΩ near the crystal surface. For definite-
ness, we shall use the ideal-solution approximation,
i.e., ∇µ  ~ (∇ C)int /Cint . As a result we obtain

Using (3)–(7) and the fact that the rate of growth of the
unperturbed sphere is determined by the formula [2]

we obtain

(9)

Assuming the relative supersaturation to be small, the
expression (9) can be rewritten as

(10)

We now choose a direction (θ, ϕ) corresponding to the
maximum value of Ylm(θ, ϕ). The most dangerous
(from the standpoint of disruption of spherical growth)
state obtains for this direction. Using the expression (10)
it can be shown that for the direction under study in
the range of possible values of the radius of the sphere

[ , ] the function ∆Σs is positive for R > :

(11)

A plot of the function ∆Σs(R) for various perturbing
harmonics is presented in Fig. 1.

Thus, the difference between the entropy production
between the growth of perturbed and unperturbed

spherical crystals changes sign at the point , which

∆Σs Σsp Σsn–≡ σpr2 σnR2–( )dΩ=

∼
C Cint–( )2

Cint
-------------------------V2r2 C CR–( )2

CR

----------------------- Ṙ
2
R2– dΩ.

Ṙ
D C∞ CR–( )
R C CR–( )

----------------------------=

∆Σs l
l 1+( ) l 2+( ) 2+

2
----------------------------------------- l 1–( ) 1+

Rs*

R
-------–





∼

–
l 1–( ) l 2+( )

4
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CR
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Rs*

R
-------




δYlmdΩ.

∆Σs Rδ̇ δṘ+( )dΩ∼

∼ l
l l 1+( )2
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-------–

 
 
 

δYlmdΩ.

Rs* Rs
s Rs

b

Rs
b Rs*

l3 2l2 l 2–+ +
2l

----------------------------------.=

Rs
b
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is different from the point R =  obtained using the

Mullins–Sekerka theory. The difference (  < )
arose because the entropy production for the volume
element under study depends not only on the linear rate
of growth of the crystal but also on the change in the
area of the crystal (Fig. 2)—this reflects the second
term in (10), which is proportional to the amplitude δ of
the disturbance. In accordance with the Mullins–

Sekerka theory, for R =  the crystal becomes unsta-
ble with respect to an infinitesimal disturbance, and in
the terminology of equilibrium thermodynamics this

Rs
s

Rs
b Rs

s

Rs
s

l = 2

l = 3

l = 4

0

0 4 8 12 16

∆Σs

R/R*
s

Fig. 1. Plot of ∆Σs as a function of the relative size of the

sphere R/  for different perturbing harmonics, l = 2, 3, 4.Rs
*

R

R + δ

V + δ

V

Fig. 2. Schematic diagram of the perturbed surface of a
sphere (the central solid angle contains a convexity, and the
peripheral solid angles contain an unperturbed surface).
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point can be called the spinodal of a nonequilibrium
transition. According to the Mullins–Sekerka theory, in

the interval [ , ) the growing sphere is stable with
respect to infinitesimal perturbations. However, in this
interval entropy production in the volume element
under study is greater in the presence of the distur-
bance, and therefore growth of a distorted sphere is
preferable on the basis of the principle of maximum
entropy production. This contradiction vanishes if it is
assumed that the particle is metastable, unstable with
respect to certain small but finite disturbances. On this

basis we shall call the region [ , ) metastable and

the point  the binodal of a morphological transition.

As shown above the existence of metastable behav-
ior for a growing particle is a logical consequence of
the results of the simultaneous application of the prin-
ciple of maximum entropy production and linear stability
analysis. However, aside from this deductive approach,
the origin of metastability in this system can be explained
differently on the basis of an analysis of the tangential
fluxes of crystallizing component which arise near the
surface of the sphere. For this, we shall consider the dif-
ference between the increment to the mass of the crys-

Rs
b Rs

s

Rs
b Rs

s

Rs
b

0

R*
s RI

s Rs
sR

(dN/dt)p – (dN/dt)n

Fig. 3. Difference between the fluxes during growth of per-
turbed (containing a convexity, solid line, or dip, dashed
line) and unperturbed sections of a sphere versus the size of
the crystal.

R > RI
sR < RI

s

Fig. 4. Directions of tangential fluxes before and after the

critical radius .Rs
I
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tal (or, in other words, the flux of matter from the solu-
tion to the crystal surface) in the perturbed (dN/dt)p and
unperturbed (dN/dt)n cases. We shall calculate this
change per unit time for a volume element of unit thick-
ness with area cut out by the solid angle dΩ near the
crystal surface. A calculation similar to the one per-
formed in the preceding case gives

(12)

This difference is positive for R > :

(13)

We shall assume that the perturbed and unperturbed
surface elements belong not to different particles, as
assumed previously, but rather to the same particle and
a convexity (where the value of Ylm(θ, ϕ) is maximum)
is present on one of the solid angles dΩ ,  while a surface
close to the unperturbed surface is present on the other

(Fig. 2). Then, starting with the crystal size , the flux
of matter per solid angle containing the perturbed sec-
tion of the surface is greater than the analogous flux
toward the unperturbed section. It is evident that for
dips (where –|Ylm(θ, ϕ)| is minimum) the situation is
exactly opposite: the flux of matter toward dips will
exceed the flux to the unperturbed parts of the surface

for R <  and will be less than the flux for R > . All
this is illustrated in Fig. 3. In consequence, the tangen-
tial fluxes of the crystallizing component in the system

up to the point  are directed from convexities toward
dips and thereby decrease the disturbance, while at a

radius greater than  the tangential fluxes are, con-
versely, directed toward convexities and thereby cause
them to grow (see Fig. 4). This result is also confirmed
by direct differentiation with respect to the angle i = (ϕ,
θ) of the concentration field near the perturbed growing
spherical crystal, found in [2]:

It follows directly from this expression that the direc-
tion of the tangential fluxes first changes for a sphere of

size  away from dips toward peaks in the perturbed
surface.

Thus, when the radius of the sphere reaches  a
new destabilizing force—a tangential flux of matter—
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∼ 2Ṙδ Rδ̇+( )YlmdΩ

∼ l 1
Rs*l
2R
--------- l2 2l l+ +( )–+ δYlmdΩ.

Rs
I

Rs
I Rs*l l 1–( ) 2.⁄=

Rs
I

Rs
I Rs

I

Rs
I

Rs
I

∂c
∂i
-----

r R=

δ
C∞ C0–( )R C0Γ l l 1+( )–

R2
--------------------------------------------------------------

∂Ylm

∂i
-----------.–=

Rs
I

Rs
I

 AND THEORETICAL PHYSICS      Vol. 91      No. 1      2000



APPLICATION OF THE PRINCIPLE OF MAXIMUM ENTROPY PRODUCTION 137
capable of developing the disturbance appears near the
surface of the sphere. As follows from (12), this flux is
proportional to the amplitude of the perturbing har-
monic. It is also interesting to note that for R close to

 the expression (12) is formally different from zero
only for the harmonic amplitude approaching infinity.
These factors motivated the introduction of the concept
of a metastable region and a binodal of a morphological
transition. The behavior of fluxes of matter near the sur-
face of a perturbed crystal, which make the decisive
contribution in the calculation of the difference of the
entropy productions ∆Σs, was studied above. The point

 lies somewhat to the right of the point , since the
expression for entropy production contains an addi-
tional factor which somewhat damps the contribution
arising when only the matter fluxes are taken into

account. A closer position of  to the point of the

spinodal  (  <  < ) indicates that metastabil-
ity is due primarily to the appearance of tangential

fluxes. If the point  was located to the left of , then
this would indicate the existence of another thermody-
namic force, which was neglected and which is capable
of increasing the perturbation.

Figure 5 shows the dependence of entropy produc-
tion in the volume element under study on the size of
the crystal. As follows from (8) and (11), the metastable
region

exists for any physically possible parameters. The
width of this interval increases with the surface energy
and decreases with increasing relative supersaturation
(C∞ – C0)/C0.

Figure 6a shows the morphological phase diagram
of stable (spherical)–unstable (dendritic) growth in the
variables supersaturation and surface tension. The dia-
gram was constructed using (8) and (11) with a fixed
value of the radius. The supersaturation and surface
tension variables are independent of one another. The
advantage of this construction is that in real experiments
experimenters always work with a specific material and on
a specific spatial scale (“with a fixed magnification of a
microscope”). By varying the parameters (for example,
the supersaturation) they observe a particular morphol-
ogy (nonequilibrium phase) [20]. The diagram shows the
regions of existence and coexistence of various morphol-
ogies corresponding to stable growth and growth with
developing perturbations l = 2 and l = 3. We note that
metastable regions referring to different harmonics do not
intersect. Figure 6b shows the same morphological dia-
gram but in the variables crystal radius and supersatura-
tion. Diagrams of this type are convenient for analyzing
the temporal evolution of a surface (with increasing R)
under prescribed external conditions. The region of coex-

Rs
I

Rs
b Rs

I

Rs
b

Rs
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I

Rs
s Rs

b–
l2 3l 2+ +

2l
------------------------Rs*=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
istence of different morphological phases (stable and
unstable) can also be seen in the diagram.

4. ENTROPY PRODUCTION
AND MORPHOLOGICAL SELECTION

DURING GROWTH OF AN INFINITE CYLINDER

We shall now study the growth of an infinite cylin-
der in the Mullins–Sekerka approximation. A classic
linear stability analysis of this problem is given in [34].
In the present paper we investigate the behavior of an
infinitesimal distortion of the shape of a particle

where k is a positive integer and kz can assume any real
positive value. Just as in the preceding case, we shall give
a brief presentation of the results obtained in the present
work which are required for further calculations:

(14)

(15)

(16)

(17)

where CR = C0(1 + Γ/R),  = ΓC0/(C∞ – C0) is the
radius of the critical nucleus of the cylinder (here and
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Fig. 5. Local entropy production in a distinguished volume
element as a function of the radius R of the sphere. The
metastable region is denoted by the dashed line (n—unper-
turbed growth, p—perturbed growth on the section of the

surface of the sphere with a convexity, δ/  = 0.05).Rs
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Fig. 6. (a) Morphological phase diagram of stable–unstable growth of a sphere in the variables relative supersaturation and surface
tension for l = 2, 3. Solid lines—spinodals, dashed lines—binodals. The metastable region is hatched. Stable growth occurs above
the binodal and unstable growth occurs below the spinodal. The curves were constructed for  R = 10–5 cm. (b) Radii of the binodal

 (dashed lines) and spinodal  (solid lines) of a morphological transition as a function of the relative supersaturation ∆ =

(C∞ – C0)/C0 for Γ = 10–7 cm, l = 2, 3.

Rs
b

Rs
s

below the index “c” denotes the cylinder),  is the
radius at which the cylindrical crystal becomes unsta-
ble with respect to an infinitesimal disturbance of its
shape,

Kk(kz) is a modified Hankel function, Aλ = –0.5ln(η2λ2),
λ is found from the equation

and ln(η2) is the Euler constant.

Just as in the case of a sphere, we shall use the ideal-
solution approximation to calculate the difference
between the entropy production in cases of growth of
the perturbed (Σcp) and unperturbed (Σcn) cylinders (we
shall find the entropy production of an element of vol-
ume of unit thickness with area cut out by the angle dϕ
and element of length dz, near the crystal surface):

(18)
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2Kk kz( )
------------------ Kk 1– kz( ) Kk 1+ kz( )+[ ] ,= =
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Using (14)–(17) and assuming the relative supersatura-
tion to be small, the expression (18) can be written as

(19)

Just as in the preceding case, we shall choose the direc-
tion (ϕ, z), corresponding to the state that is most dan-
gerous from the standpoint of breakdown of cylindrical

growth. For this direction, in the range [ , ] of the
possible values of the radius of the cylinder, the func-

tion ∆Σc is greater than zero for R > :

(20)

Arguments completely similar to those presented in
Section 3 show that all conclusions concerning the bin-
odal and the metastable region for growth of a cylinder
are qualitatively similar to the results obtained for a
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growing sphere. Thus, for example, the analog of the

point , the point

also lies to the left of . The analogs of Figs. 1, 5, and 6
for a cylinder are, respectively, Figs. 7, 8, and 9. As one
can see by comparing Figs. 5 and 8, the curve of Σc in
the case of cylindrical growth passes through a maxi-
mum. This difference arose because the surface of a
cylinder increases in proportion to the radius, while the

Rs
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Fig. 7. Plot of ∆Σc as a function of the relative size of the

cylinder R/  for k = 1, kz = 1.1, 1.5 and k = 2, kz = 1.1, 1.5.Rc
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Fig. 8. Local entropy production for a distinguished volume
element as a function of the radius R of the cylinder. The
metastable interval is shown with dotted lines (n—unper-
turbed growth, p—perturbed growth on a section of the sur-

face of the cylinder with a convexity, δ/  = 0.1).Rc
*
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surface of the sphere increases in proportion to the
squared radius of the crystal. We also note that for most
cases (except k = 0, 1 < kz < 1.2, and k = 1, kz < 0.6) the

point  lies to the right of the extremum.

Another important difference of the cylindrical from
the spherical case is the possibility of intersection of
metastable regions corresponding to different perturb-
ing harmonics. This leads to the coexistence of a large
number of morphological phases. This feature can be
analyzed more clearly using Fig. 10. Figure 10 shows
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Fig. 9. (a) Morphological phase diagram of stable–unstable
growth of a cylinder in the variables relative supersaturation
and surface tension for kz = 10, k = 1, 2. Solid lines—spin-
odals, dashed lines—binodals. The metastable region is
hatched. Stable growth occurs above the binodal and unsta-
ble growth occurs below the spinodal. The curves were con-

structed for R = 5 × 10–4 cm. (b) Radii of the binodal 

(dashed lines) and spinodal  (solid lines) of a morpholog-

ical transition as a function of the relative supersaturation
∆ = (C∞ – C0)/C0 for Γ = 7.5 × 10–8 cm, kz = 10, k = 1, 2.
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the radii  and  in units of  as functions of kz

for k = 1, 2, and 3. It is evident from the figure that the
binodals and spinodals for various harmonics can inter-
sect. We shall use this plot to clarify the evolution of the
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Fig. 10. Radii of the binodal and spinodal in units of 
versus kz for k = 1, 2, 3, and Aλ = 2.8 (corresponds to ∆ =
0.05). Dashed lines—binodals, solid lines—spinodals.
Details are presented in the text.
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Fig. 11. Radii of the binodal and spinodal (in units of )
versus kz in cases of long-wavelength disturbances only in the
direction z (k = 0, kz ≤ 1). The symbols s, m, and u designate,
respectively, stable, metastable, and unstable cylindrical
growth. Dashed lines—binodals, solid lines—spinodals.
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system. Let us consider the growth of a crystal in the
presence of a definite perturbation along the z-axis (for
example, kz = 6.5) and the possibility of the appearance
of arbitrary disturbances along ϕ, i.e., the cylindrical
crystal develops along the line AC. This growth is sta-
ble up to the point A. Crystal growth becomes metasta-
ble with respect to disturbances with k = 1 if the radius
of the cylinder lies in the interval AB. In this interval
instability is possible only in the presence of a pertur-
bation with a large enough amplitude. If growth of sev-
eral cylindrical crystals occurs under these conditions,
some of them will continue cylindrical growth while
others will become unstable. It is obvious that the frac-
tion of stable cylindrical crystals decreases as R
increases. At the point B perturbations can develop with
k = 1 and k = 2. In this case, when several crystals grow
simultaneously, some of them (most) will become
unstable with the development of the k = 1 perturbation
while others will also become unstable but with respect
to the perturbation k = 2, and finally a minority will
remain cylindrical. We note that inside this interval
simultaneous development of perturbations with k = 1
and 2 is also possible on the same crystal. At the point C
all crystals with a cylindrical shape become unstable
with respect to an infinitesimal disturbance with k = 1.
If high-frequency perturbations are present along the
z-axis, then, as follows from (17) and (20), coexistence
of an unbounded number of morphological phases is
possible. Thus, for example, for kz = 700 the spinodals
with k = 1, 10, and 20 intersect 17, 11, and 7, respec-
tively, neighboring binodals; this can result in the coex-
istence of 18, 12, and 8 morphological phases. We
underscore that in the case of the growth of a sphere no
more than two different morphologies can coexist (sta-
ble spherical and with a developing perturbation, see
Fig. 6).

Following [34] and using (17) and (20) we shall
consider the case (Fig. 11) of long-wavelength pertur-
bations only in the direction z (k = 0, kz ≤ 1).

(1) If kz = 1, then  =  =  and the crystal is
unstable from the outset of growth.

(2) If 0.6 ≤ kz < 1, then  <  <  and the cylin-
drical surface is always unstable. This result is similar
to the result obtained using the theory of morphological
stability [34]. It is explained by the fact that the surface
energy and the concentration gradient favor the growth
of the perturbation.

(3) According to [34], the most specific case is kz < 0.6,
when the concentration gradient in (16) changes sign
and therefore leads to a decrease of the perturbations,
while the surface energy favors growth. As a result, for

kz < 0.6 a cylindrical surface is unstable for R <  and

stable for R > [34]. Our calculation in this case also
showed the presence of a metastable region separating

stable and unstable regions (  < R < ).
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For some perturbations of a special form (k = 1 and

kz < 1) the metastable interval [ , ] can contain the
maximum of the function ∆Σc . Therefore, as the crystal

grows from  to  instability at first increases and
then decreases, i.e., reentrant behavior occurs.

Another special perturbation is k = 0, kz @ 1. In this

case H(k, kz) . kz + 0.5 [34] and   , i.e., the
metastable region vanishes. The specific nature of this
perturbation makes the problem of the growth of an
infinite cylinder similar to the problem of the growth of
an infinite plane, which is considered below.

5. ENTROPY PRODUCTION
AND MORPHOLOGICAL SELECTION

DURING GROWTH OF AN INFINITE PLANE

We shall now consider the growth of a plane in the
Mullins–Sekerka approximation. This case is funda-
mentally different from the two preceding cases in that
the stationary approximation for a plane leads to a con-
stant velocity v of the plane (previously the velocity
was inversely proportional to the size of the crystal) and
conservation of the area of any distinguished surface
element in time (previously the surface area within a
certain solid angle increased).

For simplicity, here we shall discuss only the one-
dimensional problem (the solution for the two-dimen-
sional problem is similar but more complicated). An
example is crystallization from solution in a cell
between two plates separated by a quite small distance.
In [2, 9] a linear stability analysis is performed for a
growing plane with a superposed disturbance

(21)

where δ = eωt is the amplitude of the disturbance,

 ! 1, and k is the wave vector. A linearized solution
was found for the rate of growth ω(k) of the disturbance
determining the stability of the surface

(22)

in the approximation kL @ 1, where L = 2D/v is the dif-
fusion length and d0 is the capillary length, proportional
to the surface tension.

It follows from (22) that the flat crystallization front
is unstable with respect to infinitesimal disturbances
with wave vectors less than ks [2, 9]:

(23)

Just as in the two preceding cases, we shall find the
difference between the entropy productions in the cases

Rc
b Rc

s

Rc
b Rc

s

Rc
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b

ξ δ kx( )sin kx( )cos+[ ] ,=

ξ̂
ξ̂

ω k( ) vk 1 d0Lk2–( )=

ks 1/ d0L.=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
of growth of the perturbed Σip and unperturbed Σin sur-
faces for an element of length dx:

(24)

where

Using (22), the expression (24) can be written in the
form

By analogy to the preceding cases we shall choose a
point on the surface that corresponds to the most dan-
gerous (from the standpoint of the disruption of stable
growth of the plane) state. The behavior of the function
∆Σi(k) is qualitatively similar to the behavior of ω(k)
(see Fig. 12). It passes through zero at the points k = 0
and kb:

(25)

∆Σi Σip Σin–≡ σip 1 ξ x'( )2+ σin–( )dx=

∼ v ξ̇+( )
2

1 ξ x'( )2+
C Cint–( )2
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------------------------- v 2 C C0–( )2

C0
-----------------------– dx,
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t∂

∂ξ
, ξ x' x∂
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∆Σi v 2kξ 2
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Fig. 12. ∆Σi (solid line) and ω (dashed line) as a function of
the wave vector k. 
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Using (23), we find the ratio kb/ks:

Hence one can see that in the approximation employed
(kL @ 1) kb is equal to ks . Thus, the stability boundaries
found by the thermodynamic method and the perturba-
tion theory method are the same.

This result can also be obtained by a different
method employing the results of the calculations pre-
sented above for the sphere and the approach proposed
in [2]. As shown in [2], in the limit of high-frequency
perturbations (l @ 1) under certain restrictions the
results obtained for the sphere can be used to describe
the stability of an infinite plane, and the expression (7)
becomes

(26)

where ω1 = l/R and G = v(C – Cint)/D is the concentra-
tion gradient at the interface.

From the expressions (26) and (10) we obtain

Thus, ∆Σi changes sign at the same point as .
Therefore the metastable region is absent in the case of
the growth of an infinite plane. We note that this result
can also be obtained by analyzing a cylindrical surface.
As shown, for k = 0 and kz @ 1 the binodal and spinodal
points coincide.

6. CONCLUSIONS

In summary, in this paper a relation has been proposed,
on the basis of a study of the morphological stability of a
crystal growing from solution, between the thermody-
namic approach employing the principle of maximum
entropy production and a linear analysis for morphologi-
cal stability. The maximality principle appears here not as
an alternative but rather as a supplement to the conven-
tional perturbation theory and makes its own contribu-
tion to the solution of the problem of a morphological
transition.

It was shown in this paper that instability in the
growth of a sphere and an infinite cylinder from a
supersaturated solution is a first-order morphological
transition (the existence of a metastable region and an
abrupt increase in the production of entropy or, specif-
ically, rate of growth of the crystal mass for R > Rb).
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The calculation was performed in the Mullins–Sekerka
approximation for an ideal solution and small supersat-
urations. It is difficult to check experimentally the
boundary Rb found for stable growth because these val-
ues and also Rs, Rb, and Rs – Rb are of the order of R*
(i.e., about 1 µm). It follows from the explicit expres-
sions obtained for these boundaries that in such exper-
iments small supersaturations crystal–solution system
with large surface tension should be used and, if possi-
ble, low-frequency disturbances should be eliminated.
A full nonlinear analysis of the problems studied,
which is quite difficult and laborious, could serve as a
theoretical check. We note that a weakly nonlinear sta-
bility analysis performed in [35, 36] for a sphere and
cylinder made it possible to calculate the nonlinear crit-
ical radius, which was found to lie in the metastable
zone found in the present paper.

The possibility of the coexistence of a large number
of morphological phases is a distinguishing feature of
the problem with cylindrical symmetry as compared
with the spherical problem. However, it seems that this
result is not fundamental and follows from the approx-
imations employed; under different conditions (imper-
fection of the solution, arbitrary supersaturations) sev-
eral morphological phases can coexist during growth of
a sphere.

Instability during crystallization of an infinite plane
was also studied in this paper in the Mullins–Sekerka
approximation for kL @ 1, and it was shown that in this
case the thermodynamic approach and the perturbation
theory approach lead to the same result. In conse-
quence, there is no metastable region, and entropy pro-
duction accompanying a transition undergoes only a
kink with a change in wave vector. The difference aris-
ing, as compared with the growth of a sphere and cylin-
der, can be explained by the fact that in the present cal-
culations a quasistationary approximation was used in
which the plane, in contrast to the two other problems,
moves at a constant velocity and the surface area
remains unchanged.

In conclusion, we underscore the fact that the coex-
istence of different morphologies is described in many
works, but they all use either experiment or computer
simulation methods [13–26]. The advantage of the
approach proposed here is that it permits performing an
analytic calculation of morphological diagrams (with
stable, unstable, and metastable regions).
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Abstract—The behavior of the enthalpy and specific heat of normal C24 alkane in the bulk and in porous
glasses is investigated using an adiabatic scanning microcalorimeter. Enthalpy jumps, which precede a phase
transition in the entire volume of the pores, are found in porous glass with characteristic pore size 1000 Å at a
transition from the isotropic liquid into the rotator phase RII. The enthalpy jumps are interpreted as a layerwise
growth of a crystal phase on the surface of porous glass. It is also found that porous glass substantially changes
the phase behavior of alkanes. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The formation of layers of a crystal phase on an
interphase boundary at temperatures above the temper-
ature of a volume phase transition into an isotropic liq-
uid (precrystallization phenomenon) has been observed
in liquid crystals at a smectic A–isotropic liquid
(SmA–I) transition on a free surface [1] and on a solid
substrate [2, 3] treated with surfactants as well as on a
free surface in normal alkanes [4, 5]. However, the
observed processes leading to the formation of surface
layers in liquid crystals are substantially different from
those in normal alkanes. In liquid crystals the penetra-
tion depth of the crystal phase from the surface into the
interior volume increased as the temperature of the vol-
ume phase transition was approached (jumps were
observed in the intensity of the reflected X-rays),
whereas in normal alkanes only one monolayer crystal-
line phase, whose thickness and properties remained
unchanged as the temperature of the volume phase tran-
sition into the crystal phase was approached, arose.
These phenomena are of a different physical nature.

It has recently been shown on the basis of the Bra-
zovskiœ phenomenological theory of weak crystalliza-
tion [6] that in an isotropic phase of liquid crystals close
to the volume phase transition SmA–I conditions arise
for the appearance of a finite contact layer of the smec-
tic phase on the interphase boundary. For this, the value
of the surface-induced order parameter of the low-tem-
perature phase on an interphase boundary should be
greater than the order parameter arising with a volume
phase transition. The properties of the layer of the crys-
tal phase and the mechanism of the formation of the
layer do not depend on which interphase boundary, liq-
uid–gas or liquid–solid, it forms. As the temperature of
the volume phase transition is approached, the thick-
ness of the layer increases as the logarithm of the
dimensionless temperature.
1063-7761/00/9101- $20.00 © 20144
As shown in [7], the precrystallization on a free sur-
face of normal alkanes is associated with fluctuations of
the displacements δs of molecules in the surface layer
along their axes; these fluctuations are much greater
than the fluctuations of the displacements δb of mole-
cules in the bulk crystal phase. The proposed mecha-
nism of surface precrystallization assumes that the
ordered bulk phase possesses a high three-dimensional
positional ordering, while in liquid crystals the ordered
bulk phase (SmA) possesses weak crystalline order.
Precrystallization in alkanes differs from precrystalli-
zation in liquid crystals by the fact that only one mono-
layer forms on the free surface of alkanes, and this
occurs for a limited range of lengths of molecules with
the number of carbon atoms in the molecule ranging
from 14 to 50.

The basic condition δs/δb @ 1 in the model of [7],
determining the appearance of a monolayer of a crys-
talline phase on the free surface of normal alkanes, may
not be satisfied on a liquid–solid interphase boundary,
since the solid wall limits fluctuations of the displace-
ments in the surface layer. In this case precrystalliza-
tion, if it is possible, should differ from precrystalliza-
tion on a free surface.

To check this proposition the behavior of the
enthalpy and specific heat of normal C24 alkane was
investigated in two cases: in the bulk and on porous
glasses. In bulk C24 the following sequence of phases
is observed on heating: completely ordered crystalline
phase (Cr)–the rotor phase RII–isotropic liquid phase
(IL). On cooling from the isotropic liquid the sequence
of phases is: IL–RII–RI–RV–Cr. Two new metastable
rotor phases—RI and RV—arise in the region of the
supercooled state of the sample. All intermediate
phases RI, RII, and RV possess a highly ordered layered
structure [8]. In the RII phase the axes of the molecules
in a layer are perpendicular to the plane of the layer and
000 MAIK “Nauka/Interperiodica”
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form a hexagonal structure. The layers are packed so
that the arrangement of the molecules in a layer repeats
every three layers, forming the sequence ABCABC … .
In the RI phase the hexagonal structure of the mole-
cules in the layer is distorted and the arrangement of
molecules in the layer repeats every two layers forming
a sequence of layers ABAB … . The structure of the RV
phase is similar to that of the RI phase, but the axes of
the molecules are tilted with respect to the plane of the
layer.

Precrystallization of C24 on the interface between a
liquid and glass near an IL–RII phase transition should
be accompanied by a jump in the temperature depen-
dence of the enthalpy, just as at a first-order transition.
Porous glass was chosen in order to increase the total
heat effect, since the jump in enthalpy is proportional to
the surface of the interphase boundary.

A series of jumps at temperatures above the phase
transition IL–RII in the entire volume of the pores was
observed in the temperature dependence of the
enthalpy of C24 placed in porous glass with character-
istic pore size 1000 Å. The metastable phases RI and
RV vanished, while in the porous glass with 100 Å
pores the equilibrium phase RII also vanished and a sin-
gle transition from a crystal into an isotropic liquid
(Cr–IL) was observed.

2. EXPERIMENT

The measurements of the enthalpy and specific heat
of normal alkane C24 in the bulk and in porous glass
were performed using an adiabatic scanning microcal-
orimeter with maximum cell volume 0.29 cm3. The cell
was surrounded with two isothermal screens whose
temperature strictly “followed” the temperature of the
cell. A platinum resistance thermometer was placed on
the outer screen, whose temperature was maintained
equal to the temperature of the cell. The construction of
the calorimeter is described in greater detail in [9].

The measurement process was performed and mon-
itored with a computer system. The scanning measure-
ment regime was conducted with heating and cooling.
For heating a constant electric power p0 which was
measured during scanning, was supplied to the calo-
rimeter. In addition, the cell temperature T and the
amount of heat (enthalpy) H(T) supplied to the cell
from the onset of scanning were measured. The cooling
regime required preliminary adjustment and was con-
ducted as follows. The cell was heated with constant
power p0, and the temperature of the inner screen was
set ∆T(p0) below the temperature of the cell so that the
heat transfer between the cell and the inner screen
would compensate the heating power supplied to the
cell. During scanning the heating was switched off and
the temperature difference between the cell and the
inner screen was maintained constant. As a result the
calorimeter cooled down at a rate determined by the
heat-transfer power q0 = –p0.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
In a real experiment the measurement regime is qua-
siadiabatic, i.e., weak heat transfer, ordinarily not
exceeding 10–5 W, which results in temperature drift of
the cell (dT/dt)0, occurs between the cell and the inner
screen. During scanning only the electric power p0 sup-
plied to the cell (or removed during cooling) is mea-
sured and integrated. Consequently, the heat transfer,
which is not known beforehand, must be taken into
account when calculating the total amount of heat
acquired by the cell. Before scanning starts, at temper-
ature Ts, the heat-transfer power of the cell qs can be
calculated from the expression qs = Csum(dT/dt)0. Since
the total specific heat of the cell Csum is unknown, two
independent measurements must be performed in order
to determine the heat transfer: the temperature drift of
the cell (dT/dt)0 and the rate of change of the cell tem-
perature dT/dt with weak heating with power q. The
power q and the measurement time were chosen so that
the cell temperature would change very little and the
specific heat Csum could be taken as constant. The total
power q + qs acquired by the cell determines the rate of
change of the temperature:

The power of heat transfer between the cell and the sur-
rounding medium was calculated, using the following
expression, from the results of these measurements:

To take into account the temperature dependence of
heat transfer the heat-transfer power of the cell qf was
measured once again at temperature Tf when scanning
stopped and before scanning started. Finally, since the
heat transfer of the cell in the measurement temperature
interval [Ts , Tf] varies linearly, the following expression
for the power was used to calculate the temperature
dependence of the enthalpy H(T) (total amount of heat
flowing into the cell):

The total heat capacity of the cell Csum was calcu-
lated by numerically differentiating the enthaply H(T).
To determine the specific heat of the sample, the spe-
cific heat of an empty cell, which was measured before-
hand, was subtracted from the total specific heat.

Porous glasses which contained 1000 Å and 100 Å
pores and consisted of networks of channels connected
randomly with one another were used in the experi-
ment. Cylindrical matrices, 5 mm in diameter and
14 mm long, which were saturated with normal alkane
at a temperature above the temperature of a phase tran-
sition into an isotropic liquid were prepared from these
glasses and inserted into the cell. The surface of the
pores was not specially treated. The matrices were first

q qs+ Csum
dT
dt
------.=

qs
q

dT dt⁄( ) dT dt⁄( )0⁄ 1–
--------------------------------------------------------.=

p T( ) p0 q f qs–( )
T Ts–
T f Ts–
----------------- qs+ .+=
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Temperature and heat of phase transitions in normal alkane C24 in the bulk and in porous glasses

TCr–RII, °C ∆HCr–RII, J g–1 TRII–IL, °C ∆HRII–IL, J g–1 TCr–IL, °C ∆HCr–IL, J g–1

In the bulk

48.20 91.5 50.72 155.1 – –

±0.05 ±1 ±0.01 ±1 – –

In porous glass, 1000 Å

47.60 69.5 50.41* 153.6 – –

±0.05 ±0.8 ±0.01 ±2.5 – –

In porous glass, 100 Å

– – – – 46.90 106.5

– – – – ±0.05 ±2

* The temperature of the transition is determined according to the enthalpy jump ∆H3 in Fig. 4 (curve 2).
washed with a solvent and dried at a temperature near
200°C. At total saturation approximately 0.14 g of sam-
ple was placed in the matrix with 1000 Å pores, and
0.06 g was placed into a matrix with 100 Å pores. Nor-
mal alkanes, acquired from the Aldrich Chemical Com-
pany, without any additional purification were used in
the experiment.

3. EXPERIMENTAL RESULTS

Figure 1 (curve 1) shows the temperature depen-
dence of the enthalpy, obtained on heating a bulk C24
sample from the crystal state into an isotropic liquid.
The enthalpy jumps correspond to the transitions Cr–
RII and RII–IL. Both transitions are strong first-order
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T, °C
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2

RII IL
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Fig. 1. Temperature dependences of the enthalpy which
were obtained by heating (1) and cooling (2) C24 in the
bulk. For convenience in making comparisons, the curves are
displaced relative to one another by a constant amount ∆H.
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transitions with heat characteristic of melting of porous
liquids (see table).

The temperature dependence obtained for the
enthalpy on cooling is also presented in Fig. 1 (curve 2).
The section of H(T) with a negative derivative corre-
sponds to a transition from the supercooled state of the
sample into a crystal. The scale of the figure does not
permit distinguishing in the temperature dependence
H(T) weak variations of the enthalpy corresponding to
transitions into the metastable phases RI and RV1

against the background of large jumps in enthalpy,
which are accompanied by an IL–RII transition and a
transition into the crystalline phase. Figure 2 shows
separately the behavior of the specific heat of C24 in
the temperature range where the sample is in a super-
cooled state. It is evident that in this interval there are
two specific-heat peaks, at T = 44.55 and 47.19°C,
which correspond to transitions between the phases
RV–RI and RI–RII.

The phase behavior of C24 placed in a porous glass
changes substantially. The temperature dependence
obtained for the enthalpy on heating C24 in a porous
glass matrix with characteristic pore size 1000 Å is pre-
sented in Fig. 3 (curve 1). One can see that the phase-
transition temperatures (the table gives the transition
temperatures determined on heating of the sample)
shift in the direction of lower temperatures compared
with transition temperatures in the interior volume of
the sample (curve 2). The specific heat of the phase
transition from a crystal into the RII phase, ∆HCr–RII

(see table), also changes. In porous glass the quantity
∆HCr–RII is much smaller than the specific heat of the
transition in the bulk sample. This could be due to the

1 The RV–RI transition is a second-order transition. The RI–RII
transition, by virtue of the symmetry of the phases, should be a
first-order transition. However, the experimental data show that
there is no heat of transition or this heat is very small and does not
exceed 7 × 10–2 J g–1. The smallness of the transition heat is prob-
ably due to the closeness of the transition RI–RII in C24 to the tri-
critical point on the line of transitions RII–RI.
AND THEORETICAL PHYSICS      Vol. 91      No. 1      2000
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difference in the crystal structures formed by C24 in the
volume and in porous glass. At the same time the spe-
cific heat ∆HRII–IL of the transition from the phase RII
into the isotropic liquid remained, to within the limits
of the measurement error, the same as in bulk C24.

When a sample placed in porous glass with 1000 Å
pores is cooled, the temperature interval of the super-
cooled state remains practically unchanged. However,
the metastable phases RI and RV vanish and only the
equilibrium phase RII remains. Moreover, it was found
that in porous glass with 100 Å pores the equilibrium
phase RII also vanishes and a single transition is
observed out of the crystal into the isotropic phase
(curve 3 in Fig. 3). This behavior is quite obvious. The
porous medium destroys the layered structure of the
mesophases and for pore sizes comparable to the inter-
planar separation the layered structure is completely
destroyed. The specific heat ∆HCr–IL of the transition in
a matrix with 100 Å pores is much smaller than the total
heat of the transition out of the crystal into the isotropic
liquid in a bulk sample and in porous glass with 1000 Å
pores.

The porous glass also changes the character of the
transition from the RII phase into the isotropic liquid.
Figure 4 (curve 2) shows the temperature dependence
of the enthalpy near the RII–IL transition, obtained on
heating C24 placed in porous glass with 1000 Å pores.
In contrast to a transition in the bulk sample (curve 3),
the transition into an isotropic liquid is accompanied by
three enthalpy jumps in an interval of about 0.3 K for
the same value of the total enthalpy change ∆HRII–IL.
This effect is also qualitatively reproduced on cooling

350

300

250

200

150

43 44 45 46 47 48 49 50

Cp/R

T, °C

RV

RI RII

Fig. 2. Temperature dependence of the specific heat of C24
in units of the universal gas constant R near the transitions
RV–RI and RI–RII.
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(curve 1). The position of the enthalpy jump ∆H1 does
not depend on the direction of change of the tempera-
ture. The jumps ∆H2 and ∆H3 have hysteresis, and the
temperature interval between them changes but the
magnitude of the jumps remains the same as on heat-
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Fig. 3. Temperature dependences of the enthalpy which
were obtained by heating C24 placed in porous glasses with
1000 Å (1) and 100 Å (3) pores. For comparison, the tem-
perature dependence of the enthalpy of bulk C24 (2) with
the same scan rate as in porous glasses is presented. For con-
venience in making comparisons, the curves are displaced
relative to one another by a constant amount along the
H-axis.
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Fig. 4. Temperature dependences of the enthalpy near the
transition RII–IL in C24 placed in porous glass with 1000 Å
pores on heating (2) and cooling (1). The curve 3 corre-
sponds to a change in enthalpy on heating of the bulk sam-
ple. For comparison the curves are shifted relative to one
another along the H-axis. The scan rate is the same for all
cases.
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Fig. 5. Behavior of the enthalpy (a) and specific heat in units of R (b) on cooling of C24 placed in porous glass with 1000 Å pores
in the temperature range corresponding to the enthalpy jump ∆H2 in Fig. 4 (curve 1). The negative values of H in Fig. 5a mean that
the measurements were performed on cooling of the sample. The solid lines are drawn for better visual perception of the experimen-
tal points.
ing. This behavior of the enthalpy at a RII–IL transition
was reproduced repeatedly with different rates of heat-
ing and cooling of the sample.

The “fine structure” of the enthalpy jump ∆H2, con-
sisting of a series of eight weak jumps in an interval
<0.1 K, can be distinguished on an extended tempera-
ture scale. The fine structure (Fig. 5a) can be seen most
clearly with slow cooling of the sample (<0.4 K/h far
from a transition). On heating the jumps become dif-
fuse and indistinguishable. Each enthalpy jump corre-
sponds to a peak of the specific heat (Fig. 5b), similar
to the peak in the specific heat accompanying a diffuse
first-order phase transition.

4. DISCUSSION

It is natural to infer that the enthalpy jumps at an iso-
tropic liquid–RII phase transition in C24 placed in
porous glass with 1000 Å pores are associated with the
formation of monolayers of the phase RII on the surface
of the pores. The jump ∆H1 is related with the forma-
tion of the first monolayer. The jump ∆H2 corresponds
to the formation of the next eight monolayers on the
surface of the pores, and the final transition into the RII
phase in the remaining volume of the pores is accompa-
nied by the enthalpy jump ∆H3.

It is obvious that the magnitude of the enthalpy
jumps, corresponding to the formation of monolayers
on the surface of the pores, should be proportional to
the pore volumes. Treating the porous medium as a net-
work of randomly interconnected cylinders with radius
r0, the following relation can be written down between
the enthalpy jumps ∆H1 and ∆HRII–IL and the corre-
JOURNAL OF EXPERIMENTAL
sponding volumes V1 and V:

(1)

where V1 is the volume of the first monolayer, V is the
total volume of the pores in the matrix, δ is the thick-
ness of a monolayer, and r0 = 500 Å.

It follows from the experimental data that the ratio
of the enthalpy jumps is ∆H1/∆HRII–IL = 0.0387 ± 0.001.
Then we find from Eq. (1) the thickness of the mono-
layer δ = 9.8 Å. This value is almost three times less
than the thickness of the C24 monolayer formed on a
free surface [5], where the molecules are oriented per-
pendicular to the surface and form extended chains.
However, taking account of the complicated geometry
of the porous glass, it is difficult to expect that the long
C24 molecules in a monolayer on the surface of the
pores will be oriented in the same manner. More likely,
the molecules are deformed and their axes are tilted
with respect to the surface of the monolayer. Generally
speaking, this could cause the heat of the transition
RII–IL in the bulk to be different from the value in
porous glass. However, it follows from the experimen-
tal results that this difference falls within the measure-
ment error (see table).

A relation similar to Eq. (1) can also be written down
for the enthalpy jumps ∆H2, ∆H1 and volumes V2, V1:

(2)

where ∆H2 is the enthalpy jump corresponding to the
formation of eight monolayers on the surface of the

∆H1

∆HRII– IL

--------------------
V1

V
------ 1

r0 δ–( )2

r0
2

--------------------,–= =

∆H2

∆H1
----------

V2

V1
------,=
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pores, and V2 is the volume which they occupy. It fol-
lows from the experimental data that

Assuming the thicknesses of the monolayers to be the
same and equal to 9.8 Å, we find that the ratio of the
volumes is

Thus, the equality (2) in the approximations consid-
ered holds with good accuracy. Under the same
assumptions the equality ∆H3/∆HRII–IL = V3/V, where
∆H3/∆HRII–IL = 0.70 ± 0.02 and V3/V = 0.68, also holds
to within the measurement error in the heat of the tran-
sitions. All this confirms the assumption that the
enthalpy jumps ∆H1 and ∆H2 at the transition IL–RII in
C24 placed in porous glass with 1000 Å pores are
related with layerwise crystallization on the surface of
porous glass, preceding a transition in the entire vol-
ume of the pores.

The precrystallization process observed in C24 on
the surface of porous glass is different from the precrys-
tallization of normal alkanes on a free surface. In order
for a monolayer of a crystal phase to appear on a free
surface the fluctuations of the displacements of mole-
cules in the surface layer must be much greater than the
fluctuations of the displacement of the molecules in a
bulk crystal phase: δs @ δb [7]. At the very least the con-
dition ln(δs/δb) > 1 must be satisfied. On a solid–liquid
interphase boundary a solid wall limits the fluctuations
of the displacements of the molecules along their axes
in the surface layer and they are of the same order of
magnitude as in the bulk crystal phase. Consequently,
the necessary condition for the development of precrys-
tallization according to the scenario of [7] is not satis-
fied. In this case the situation is superficially similar to
precrystallization in liquid crystals.

The phenomenon of precrystallization on a solid
substrate depends to a large degree on the properties of
the surface. In all experiments with liquid crystals,
where the formation of smectic layers in an isotropic
phase preceding a volume phase transition was
observed, the solid surface was treated with surfactants,
which encouraged the formation of monolayers. Con-
sequently, the observed layerwise precrystallization of
C24 on the surface of porous glass whose surface was
not specially treated is unexpected.

The behavior of the enthalpy and specific heat was
also investigated in normal alkanes C22 and C28 in the

∆H2

∆H1
---------- 7.34 0.2.±=

V2

V1
------

1 1 8δ r0 δ–( )⁄–[ ]2–

r0 r0 δ–( )⁄[ ]2 1–
----------------------------------------------------- 7.28.= =
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bulk and in a porous glass matrix with 1000 Å pores.
Two intermediate phases RI and RII are present in C22.
Just as in C24, the phase RI is metastable. In C28 the
mesophases RIV and RIII, in which the molecules are
tilted with respect to the plane of the layer and form a
weakly perturbed hexagonal structure in the layer, are
observed [8]. The phase RIII is metastable. Precrystal-
lization at a transition into an isotropic liquid, similar to
the precrystallization observed in C24 placed in a
porous glass matrix with 1000 Å pores, was not
observed in these alkanes. This is probably explained
by the change in the properties of the surface of the
pores. However, coarser effects, such as displacement
of the temperatures of the phase transitions and vanish-
ing of the metastable phases in porous glass, have been
observed in all alkanes investigated.

It can be asserted on the basis of the results obtained
that precrystallization in normal alkanes at a liquid–
solid boundary—if it arises—occurs by a mechanism
that is different from the mechanism of precrystalliza-
tion on a free surface.
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Abstract—The twice-renormalized Rouse formalism, a refined version of Schweizer’s renormalized Rouse
treatment of chain dynamics in entangled polymers, is presented. The time scale of validity is extended to
include the terminal chain relaxation and center-of-mass diffusion. In clear contrast to the laws concluded from
other polymer dynamics concepts (such as the reptation (tube) model or the polymer mode–mode coupling for-
malism), the predictions perfectly coincide with all the results of recent spin-lattice relaxation dispersion and
diffusion experiments as well as with computer simulations. On the other hand, the twice-renormalized Rouse
formalism fails to explain the rubber–elastic plateau of stress relaxation. It is inferred that this is a consequence
of the single-chain nature of the present approach not accounting for the fact that viscoelasticity is largely
a manifestation of collective multichain modes. In the rigorous sense, no such multichain treatment has yet been
established to our knowledge. The necessity to consider interchain cooperativity in any real comprehensive
polymer dynamics theory is concluded from low-frequency spin-lattice relaxation data, which are shown to
reflect fluctuations of long-distance intermolecular dipole–dipole interactions. © 2000 MAIK “Nauka/Interpe-
riodica”.
¶ 1. INTRODUCTION

The term “chain entanglement” globally represents
the topological constraints and the excluded-volume
effect of a matrix consisting of polymer chains longer
than the critical length (Lc). The general challenge of
entangled polymer dynamics then is, how to reduce the
multichain problem to a tractable formalism. Basically,
two approaches are under discussion in the literature. In
the reptation (tube) model [1, 2], the entanglement
effect is intuitively thought to result in a tube in which
the tagged chain is confined on a time scale shorter than
the “disengagement time” (τd). This tube must be con-
sidered as a fictitious object, the diameter of which is a
parameter to be fitted to the experimental data. There
are no means to directly visualize or measure the tube
geometry. That is, irrespective of any successful
description of the experimental facts, the merit of this
model (or any of the numerous modifications of it) is
that an illustrative notion is provided.

Another approach is to generalize the equations of
motion so that the entanglement effect is represented by
a certain memory function term. Examples of such the-
ories are the renormalized Rouse (RR) formalism [3],
the polymer mode–mode coupling concept [4], and
others [5, 6].

¶ This article was submitted by the authors in English.
1063-7761/00/9101- $20.00 © 20150
A shortcoming to any approach is that it cannot be
derived rigorously from the fundamental principles. This
point is directly connected with the closure problem for an
infinite set of Bogolubov–Born–Green–Kirkwood–Yvon
equations: the so-called BBGKY hierarchy closure prob-
lem. Generally speaking, one cannot rigorously derive
a set of equations (which, as a rule, are of the integro-
differential type) for the quantities of interest. At any
step of derivation, one will get terms containing new,
unknown quantities.

The closure problem can be considered to be solv-
able only for a narrow class of problems that have
explicitly distinguishable small parameters reflecting
some small deviation from ideal, or weak interactions.
Well-known examples of systems, which belong to the
aforementioned class, are gases of real particles (atoms
or molecules) with a low concentration and quasiparti-
cles (phonons in solids at temperatures much lower
than melting point). With small parameters, a perturba-
tion theory can be established, which in principle can
provide the possibility for an approximate treatment
controlled by internal means of theory.

In the case of strong interactions, the closure proce-
dure in fact means the introduction of additional postu-
lates that are based on intuitive physical ideas or certain
analogies. These additional postulates or the respective
equations of motion should be considered as uncon-
000 MAIK “Nauka/Interperiodica”
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trolled approximations. What is really required here is
that

(1) the additional postulates must not contradict
physical principles and facts;

(2) the mathematical treatment must be consistent in
the chosen framework.

The final criterion for such an approach can only be
the comparison of the theoretical predictions with the
experimental data. This part of theoretical physics
essentially is the search for and investigation of all pos-
sible more or less successful approximations. Since we
cannot resolve the closure problem rigorously, it is
clear that no approximate theory or model exists that
can describe all experimental data. Consequently, one
should expect that different approaches are required to
describe different aspects of nature. Correspondence
between these approaches should therefore be consid-
ered mainly as a supplement rather than competition.

In the reptation model, dynamical confinement
inside the tube and the Rouse dynamics for curvilinear
motions are postulated in an illustrative but phenome-
nological way. On the other hand, treatments based on
different memory-function formalisms are closer to the
initial principles because their starting point is the exact
microscopic generalized Langevin equation that was
obtained with the aid of the Zwanzig–Mori projection
operator technique. The BBGKY hierarchy here appears
through the memory function, which contains multipar-
ticle correlation functions. Their behavior is deter-
mined by the so-called “projected” dynamics, which so
far cannot be illustrated in a simple way. Some addi-
tional postulates must be introduced at this stage of
“derivation” that are not as transparent as those in rep-
tation model. They are based on analytical intuition and
analogies coming from liquid-state physics rather than
on geometrical reasons.

The appealing feature of the memory function for-
malism is its analytical beauty and simplicity. For
example, the Rouse model, which is the simplest model
of polymer dynamics, can be derived from the general-
ized Langevin equation by assuming a diagonal form of
the memory matrix, an isotropic motion of polymer
segments, and fast (relative to the real segment motion)
projected dynamics. The comparison with experimen-
tal data shows that the Rouse model does not describe
chain dynamics in entangled polymer melts. This
means that at least one of the postulates is too far from
reality in this case. Therefore, one is proned to examine
more slowly decaying memory functions. Schweizer
preserves the assumption of isotropy of motion on any
time scale in his renormalized Rouse formalism and
postulates ordinary Rouse dynamics as an approxima-
tion for the projected dynamics that governs the decay
of the memory kerner. Some predictions achieved on
this basis represent experimental data very well, espe-
cially those that concern the short time dynamics [7].
However, they fail to provide the proper explanation for
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
the data referring to slow and chain-length-dependent
modes.

The objective of the present work is to find theoretical
descriptions of experimentally well established phe-
nomena specifically connected with single-chain corre-
lation functions. Other features such as viscoelasticity,
which appears to be largely based on collective multi-
chain modes, are not considered. In the class of dynamic
observables differentiated in this way, the entanglement
effect then reveals itself by modified modes of a single
“tagged” chain. Prominent examples of such single-
chain-mode-sensitive experiments are the spin-lattice
relaxation (e.g., [8]) and the segment (center-of-mass)
diffusion (not to speak of computer simulations (e.g.,
[9, 10])). With certain reservations, dielectric relax-
ation also falls into this category [11, 12]. No attempt
will be undertaken to account for mechanical stress
relaxation. Viscoelasticity probes feature another phys-
ical quality. It appears that there is no way to self-con-
sistently and comprehensively represent collective
multichain modes by modifications of single(tagged)-
chain correlations. As a matter of fact, no single-chain
mode formalism is known that consistently describes
the pronounced phenomena of spin-lattice relaxation
dispersion, anomalous segment diffusion, and stress
relaxation all at one time.

The outline of the paper is as follows. In Sections 2
and 3, we will review the basic theory of polymer
dynamics and the essentials of the renormalized
Rouse formalism in the full-mode-number-dependent
version [7]. Using the results for the mean squared seg-
ment displacement derived in Section 3, the twice-
renormalized Rouse formalism will be established in
Section 4. In Section 5, the theoretical predictions will
be compared with typical NMR experiments from var-
ious laboratories (including ours). In the final section,
the impact of collective multichain modes on polymer
dynamics will be sketched out as a perspective for a
comprehensive polymer-dynamics theory.

2. BASIC THEORY

2.1. The Equation of Motion

The generalized Langevin equation for a tagged
chain was first derived by Zwanzig and Bixon [13, 14]
in the frame of the Zwanzig–Mori projection operator
formalism (see, e.g., [15]). Following Schweizer’s
treatment based on the assumption of isotropy [3, 16],
the equation of motion of the nth Kuhn segment at a
position Rn(t) reads

(1)

ζ
∂Rn t( )

∂t
--------------- τ Γnm t τ–( )

∂Rm τ( )
∂τ

-----------------
m

∑d

0

t

∫+

=  
3kBT

b2
------------

∂2Rn t( )

∂n2
----------------- Fn

Q t( ),+
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where ζ is the “bare” friction coefficient of a Kuhn seg-
ment, kB is Boltzmann constant, T is the absolute tem-

perature, b is the Kuhn segment length, and  is the
stochastic force acting on the Kuhn segment number n
at time t. The upper index Q indicates that the time evo-
lution is governed by the so-called projected dynamics,
i.e., by the propagator eiQLt, where L is a Liouvillian
taking into account all interactions and determining the
real dynamics through the propagator eiLt. The operator
Q is given by Q = 1 – P, where P is a projection operator
on the most general N-body polymer field of the tagged
chain [3, 16].

The projection operator P acts on an arbitrary func-
tion which is defined in the phase space of the whole
system. It extracts the part lying in the phase space of
the tagged macromolecule by equilibrium averaging
over all coordinates and momenta of matrix chains,
preserving the variables of the tagged chain. Similarly,
the operator Q extracts the fluctuating part of a func-
tion, maintaining the variables of the tagged chain con-
stant.

The term

represents the intrachain entropic elastic force, where
the polymer is treated in the continuum limit [2]. The
memory matrix can be written as

(2)

It must be considered as the crucial constituent of (1).
Its existence follows directly from the exact set of
microscopic equations of motion for the whole system.
Γnm(t) describes dynamical correlations of the fluctuat-
ing part of intermolecular forces acting on segments
with numbers n and m at moments 0 and t. These forces
alone are the actual cause of entanglement effects in
polymer systems. The first term on the right side of (1)
describes the local friction effects on the dynamics of
the tagged chain. It can be included in the memory
matrix as well, where it would correspond to the fast
decaying diagonal part ζδ(t)δkm. The separation of the
local friction term from the long-living part Γnm(t) of
the whole memory matrix follows the historical con-
vention in context with the Rouse model.

The precise knowledge of the memory matrix would
in turn yield the exact single-chain equation of motion
accounting rigorously for all entanglement effects. How-
ever, because of the BBGKY problem mentioned in the
introduction, we do not have a straightforward way to
compute it. One can only construct models by anticipating
different assumptions.

In the Rouse model, no excluded volume of the
polymer chains is assumed; therefore, they can cross
each other. The local density fluctuations relax on the

Fn
Q t( )

3kBT

b2
------------

∂2Rn t( )

∂n2
-----------------

Γnm t( )
1

2kBTζ
--------------- Fn

Q 0( )Fm
Q t( )〈 〉 .=
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time scale of the segmental relaxation time. The Rouse
equations of motion can thus be obtained from (1) by
neglecting the long-living memory term. However,
experimental data indicate that the dynamic behavior of
polymer melts with a large molecular mass is different
from that predicted by the Rouse model. The reason is
that polymers cannot cross each other in reality. There-
fore, density fluctuations of matrix chains are long living
and generally nonlocal. This fact is reflected in (2) by cor-
relations between the forces with which the matrix
chains act on the segments of the tagged chain at times
0 and t.

The exact expression for the memory matrix [3, 16]
is not as simple as (2). It is based on a tensor product
instead of a scalar product of stochastic forces and is in
general a functional of the instantaneous conformation
of the tagged chain. By postulating an isotropic charac-
ter of the motions at all times, the memory kernel
adopts the form given in (2).

The force–force correlation functions on the right
side of (2) contain three-chain projected dynamical cor-
relation functions. Using the superposition approxima-
tion, it can be written as an integral over the k-space
[3, 16]:

(3)

where we have corrected a mistake in the numerical
factor given in Schweizer’s original treatment.

The quantity ρm is the segment number density, g(r)
is the radial intermolecular distribution function aver-
aged over all segments, and d is the hard-core segment
diameter. The intrachain projected dynamical structure
factor as a function of the wave number k and time t is
defined by

(4)

where  is the static intrachain structure factor.
Likewise, the projected collective correlation function
of the matrix density surrounding the tagged chain is
given by

(5)

The quantity  is the static collective structure fac-
tor. Here, we have assumed identical exponential func-
tions on the right-hand sides of (4) and (5).

Single chain  and collective  pro-
jected dynamical structure factors in (3) reflect the fact
that local density fluctuations around the tagged chain are
relaxed by the projected motions both of the tagged chain
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Q
k t,( ),d

0

b
1–

∫=

ω̂nm
Q k t,( ) ω̂nm k( )

k2

6
---- r2 t( )〈 〉 Q–

 
 
 

,exp=

ω̂nm k( )

Ŝ
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and the matrix chains. The projected nature of the
dynamics is hidden in Eqs. (4) and (5), namely, in the
projected mean squared displacement, which qualita-
tively describes typical distances over which elemen-
tary density fluctuations become dispersed around the
tagger chain during time t.

In the frame of this approach, the projected mean

squared segment displacement  is now a func-
tion representing the unknown features of the multipar-
ticle dynamics. Even worse, one could even expect dif-
ferent projected dynamics for intrachain and collective
chain dynamical structure factors. However, we will
neglect any potential differences for simplicity.

In order to further evaluate Eqs. (4) and (5), we now
postulate that the projected mean squared segment dis-
placement may be replaced by the “real” mean squared
segment displacement predicted by the Rouse model [2].
This is the essence of Schweizer’s renormalized Rouse
concept [3]. In the following section, Schweizer’s treat-
ment will be augmented by taking the full mode number
dependence of the memory kernel into account [7]. Fur-
thermore, in the approach of the present study, the pro-
jected mean squared displacements Eqs. (4) and (5) are
replaced by the real mean squared displacements, as sug-
gested by the renormalized Rouse concept. This intuitive
second iteration is the crucial assumption of the twice-
renormalized Rouse formalism to be described in the
following.

2.2. Normal-Coordinate Analysis

The generalized Langevin equation Eq. (1) is linear
in the segment coordinates. Therefore, a normal-coor-
dinate analysis as usual in Rouse-type theories suggests
itself. The pth normal coordinate of a chain consisting
of N Kuhn segments reads

(6)

where p = 0, 1, 2, …, N – 1. The inverse transformation is

(7)

In terms of normal coordinates, the generalized Lan-
gevin equation takes the form

(8)
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∑+=
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∂Xp
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---------- τd

0

t

∫+
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R
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The memory function with respect to the pth normal
coordinate is defined by

(9)

where we have neglected chain end effects (see, e.g.,
[17]) so that

(10)

with m = |n – k|. The so-called Rouse time, the longest
Rouse relaxation time applying to the mode for p = 1, 

(11)

is based on the relaxation time of a Kuhn segment

(12)

that is, the shortest Rouse relaxation time referring to
the mode for p = N – 1.

Combining Eqs. (3), (4), (5), (9), and (10) leads to

(13)

The intrachain static structure factor for a Gaussian coil
is given by [2]

(14)

The collective static structure factor may be
approached by

(15)

where κT is the isothermal compressibility. Further-
more, in the limit N @ 1, we may use the approximation

(16)
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That is, the memory function of the pth normal mode
obeys

(17)

where ψ = ρmd3(d/b)3g2(d)  is a dimensionless
parameter characterizing the strength of the entangle-
ment effect on the chain dynamics.

With the new dimensionless variable

, (18)

Eq. (17) becomes

(19)

Using the normal-coordinate autocorrelation func-
tion

(20)

Eq. (8) can be converted into

(21)

Converting this equation with the aid of the Fourier–
Laplace transform

(22)

leads to the solution

(23)

where Cp(0) = Nb2/(2π2p2) and  = eiωtdt [2].

The inverse transformation results in

(24)

where  = 2Re .
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2.3. General Expressions
for the Normal-Mode Relaxation Times

The relaxation time of normal mode number p is
defined as

(25)

In the limit of small entanglement effects, i.e.,  ! 1,
Rouse-like dynamics is expected with the mode relax-
ation times τp . τs(N/p)2. In the opposite case (when

the memory function term  on the right-hand side

of Eq. (25) dominates), we have τp . τs(N/p)2 .

The factor  slows the relaxation process down
due to the entanglement effect. The so-called terminal
relaxation time defined for the mode p = 1 is

(26)

2.4. General Expression
for the Segment Mean Squared Segment Displacement

The mean squared displacement of the nth Kuhn

segment, , can be expressed in nor-
mal coordinates with the aid of Eq. (7). The result is

(27)

Note that only autocorrelation functions of the normal
coordinates occur, whereas cross-correlations between
normal coordinates of different orders vanish. The first
contribution to Eq. (27) represents the mean squared
displacement of the center-of-mass, gcm(t); the second
term refers to displacements relative to the center-of-
mass. Averaging Eq. (27) gives

(28)

where grel(t) ≡ (1/N) .

2.5. General Expression
for the Center-of-Mass Mean Squared Displacement

On the time scale t * τmax ≡ τ1 (when the center-of-
mass vector X0(t) begins to vary perceptibly), the zero-
order memory function Γ0(t) is already approaching
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zero. The left-hand side of Eq. (8) for p = 0 may there-
fore be approximated in the so-called Markovian limit,
i.e., t @ τmax ≡ τ1, as

(29)

In this long time limit, the center-of-mass motion obvi-
ously follows the Rouse equation of motion if the seg-
ment friction coefficient is replaced by

(30)

The center-of-mass self-diffusion coefficient therefore
obeys

(31)

where the latter equality is reached in the limit of a

strong entanglement effect, that is,  @ 1.

It may be of interest to consider the product

(32)

For the original Rouse model, Γp(t) ≡ 0 applies so that

Eq. (32) takes the form DR  = Nb2/(3π2). An equiva-
lent expression is valid for the reptation model [1]:
Drepτd = Nb2/(3π2), where τd is the so-called tube disen-
gagement time. These relations are to be compared
with the result of the present treatment for the strong
entanglement limit,

(33)

where Rg is the radius of gyration of the polymer chain.

The above inequality is the consequence of  <

 [compare with Eq. (19)]. That is, the present for-
malism predicts a smaller mean squared displacement
in the terminal relaxation time τ1 than the Rouse and the
reptation models.

On a time scale short in comparison to the decay
time of the memory function Γ0(t), center-of-mass dif-
fusion becomes anomalous. The reasons for this may
be elucidated by considering the relation

(34)
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Rewriting Eq. (21) in the pseudo-Markovian approxi-
mation gives

(35)

As a formal solution, we may write

(36)

where

(37)

Substituting Cp(t) in Eq. (34) correspondingly leads to
the center-of-mass mean squared displacement

(38)

In the limit  ! 1, ordinary diffusion with the

Rouse diffusion coefficient results in

(39)

This limit may also be characterized by defining a sort
of entanglement time for the center-of-mass diffusion

( ) given by the equation  = 1. The condition

for Eq. (39) then reads t ! .

On the basis of Eq. (37), another characteristic time,

may be defined. Fort @ τcm, the mean squared displace-
ment by center-of-mass diffusion again becomes nor-
mal but with a diffusion coefficient determined by
Eq. (31):

(40)
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By contrast, in the intermediate range (  ! t ! τcm),
center-of-mass diffusion is expected to deviate from this
linear time dependence. This finding may be compared
with the anomalous center-of-mass diffusion behavior
predicted in the frame of the reptation model [2] in the

limit τe ! t ! , namely,  ∝  (b2Ne/N) ,
where τe and Ne represent the so-called entanglement
time and the number of Kuhn segments in the so-called
entanglement length.

2.6. General Expression 
for the Autocorrelation Function of the Tangent Vector

In our previous papers [7, 18], we showed that the
spin-lattice relaxation time (see, e.g., [8]) of polymers
in the limit t @ τs can be traced back to the autocorrela-
tion function of the Kuhn-segment tangent vector in the
continuum limit:

(41)

The autocorrelation function of the tangent vector thus
becomes

(42)

Averaging over all Kuhn segments in a chain leads to

(43)

3. RENORMALIZED ROUSE FORMALISM

All expressions derived so far more or less depend
directly on the memory function Γp(t), that is, on the pro-

jected mean squared segment displacement  via
Eq. (17). Schweizer, in his Renormalized Rouse (RR) For-

malism [3], suggested for the limit t !  that

(44)

where D0 = kBT/ζ = b2/(3π2τs) is the segmental diffusion
coefficient. That is, the projected mean squared seg-

ment displacement  is replaced by that
expected on the basis of the original Rouse model [2]:

.
The Renormalized Rouse Formalism [3] was

introduced by Schweizer et al. as a basic element for
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the Polymer Mode–Mode Coupling concept [4, 16].
In those papers, the mode-number-dependent term

(2πp /(nb2))2 in expressions corresponding to
Eq. (19) was neglected. However, in our previous
paper [7], we showed that this term is quite essential
for the normal-mode relaxation of entangled polymers.
The theoretically predicted mean squared segment dis-
placement takes a considerably modified form, and the
experimentally well established regions (I and II) of the
frequency dispersion of the entangled-polymer melts [19]
can only be explained on this basis [7, 20].

Equation (44) for the Rouse mean squared segment
displacement has the limits

(45)

(46)

Here, we have made use of the asymptotic expressions

(47)

(48)

In combination, Eqs. (45), (46) may be expressed as

(49)

Below, explicit evaluations of expressions for the
observables will be carried out in the frame of the high-
and low-number limits p > N/(6π) and p < N/(6π),
respectively.

3.1. High-Mode-Number Limit of the RR Formalism

The maximum value of the integration variable in

Eq. (19) is given by qmax = . The con-
dition that the q4 term in the denominator of the inte-
grand can safely be neglected therefore is
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This is the definition of a high-mode-number limit. The
maximum mode number possible is pmax = N – 1 . N,
so that the range N/(6π) < p < N is under consideration.
The range in the time or frequency domains in which
certain power laws show up in the experiments carried
out when the high-mode-number limit is relevant is
called “region I” [7, 20]. It will be defined below. Fur-
thermore, it will be shown that the region-I power laws
appear only if the parameter ψ complies to the condi-
tion given in Eq. (65).

For short times (t  0 or   0), the
memory function in the high-mode-number limit
asymptotically approaches the value

(51)

In the case of longer times (τs ! t ! ), the exponen-
tial function exp{–q2} in the integrand of the memory
function at Eq. (19) approaches zero before the upper
integration limit is reached. The upper integration limit
may therefore be replaced by ∞. Again, neglecting the
q4 term permits one to solve the integral analytically.
The resulting memory function for the high-mode-
number limit is

(52)

Replacing  by the Rouse mean squared seg-

ment displacement for τs ! t !  [see Eq. (45)] in
Eq. (52) gives

(53)

This result may be combined with the limiting expres-
sion Eq. (51) in the form
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For calculating the normal-mode relaxation times

[Eq. (25)], we need :

(55)

The normal-mode relaxation times consequently are

(56)

In the limit

(57)

the normal-mode relaxation times calculated on the
basis of the renormalized Rouse formalism are much
longer than those predicted by the original Rouse
model. As a rough scaling law, one may write

(58)

Equation (54) shows that the memory function 
decays rapidly in the high-mode-number limit. Therefore,

it is permissible to approximate  .  (com-
pare [7]). This is equivalent to writing for the normal-
mode correlation function

(59)

Using the formalism described in the appendix of [7],
the combination of Eqs. (28), (57), and (59) leads to the
mean squared segment displacement
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where the brackets represent all averages considered
above in this context. The autocorrelation function of
the segment tangent vector of the nth Kuhn segment
becomes

(61)

This power law was derived for the normal-mode-num-
ber range Eq. (57). For experimental purposes, it is of
interest to express this range in terms of frequency and
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time domains by recalling that the main contribution to the
integral in Eq. (24) arises from frequencies satisfying

(62)

[see Eq. (23)]. On this basis, the inequality given in
Eq. (57) can be converted into

(63)

or

(64)

This defines “region I” of the frequency or time
domains in the frame of the high-mode-number limit
[p > N/(6π)]. Note that the corresponding mode-num-
ber range [Eq. (57)] exists only for satisfactorily strong
entanglement effects, that is,

(65)

Region I shows up only in time or frequency domain
experiments if this condition is fulfilled.

3.2. Low-Mode-Number Limit of the RR Formalism

The low-mode-number limit, p ! N/(6π), univer-
sally leads to certain power laws in the time or fre-
quency domains in a range called “region II.” More
illustratively, this limit is defined by the condition that
the root mean squared segment displacements exceed
the Kuhn segment length b. The upper integration limit
in Eq. (19) can therefore be equated with ∞. Following the

renormalized Rouse approach and replacing 
with the Rouse expression given in Eq. (45) for the time

limit τs ! t !  gives

(66)

For the calculation of the normal-mode relaxation times
[Eq. (56)], we need the quantity

(67)

According to Eq. (56), this is the term representing the
entanglement effects in the normal-mode friction coef-
ficient. In the low-mode-number limit of the renormal-
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ized Rouse formalism, the normal-mode relaxation
times consequently obey

(68)

where the latter approximation holds for the case of
very strong entanglement effects.

In order to calculate the mean squared segment dis-
placement in the low-mode-number limit of the renor-
malized Rouse formalism, we need the normal-coordi-
nate correlation functions Cp(t) [see Eqs. (28) and (20)].
These are given in Eqs. (23) and (24). The decay time
scale of Cp(t) is determined by the normal-mode relax-

ation times . According to Eq. (66), the fast decay

of the memory functions  begins for t @ .

For large N, the inequality  @ , so that  .

 in Eq. (23). This is equivalent to use the expo-
nential approximation for Cp(t), i.e., Eq. (59), where the
normal-mode relaxation times are now given by Eq. (68).
In the limit N  ∞, this exponential approximation
asymptotically approaches the exact expression. For
finite N, the normal-coordinate correlation function
decays nonexponentially, as revealed by numerical evalu-
ations. This is even more true with a larger N/p ratio.
The detailed behavior Cp(t) will be investigated in a
forthcoming study.

Inserting Eq. (68) into the exponential function
given in Eq. (59) and this into Eq. (28) leads to

(69)

for t ! . With the accuracy of the numerical coeffi-
cients, this result coincides with Eq. (69) of our previ-
ous treatment [7] but is at variance with Schweizer’s orig-
inal prediction [3]. This discrepancy demonstrates that the
mode-number dependence, which was neglected in
Schweizer’s formalism, is quite crucial.

The correlation function of the segment tangent vec-
tor, Eq. (43), is analogously obtained with the aid of
exponential normal-coordinate correlation functions
Cp(t) [Eq. (59)] and the normal-mode relaxation times
Eq. (68) in the form

(70)

for t ! .
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3.3. RR Theoretical Mean Squared Displacement
for the Whole Time Scale

The mean squared segment displacement given in

Eq. (69) applies to the short time limit t ! . For the
twice-renormalized Rouse formalism to be described in
the subsequent section, we need an expression valid in
the whole time scale of the relevant range. In the long
time limit (t  ∞), the mean squared displacement
relative to the center of mass generally obeys

(71)

The long time limit of the mean squared center-of-mass
displacements can be derived from

(72)

where the center-of-mass diffusion coefficient is given
according to Eq. (31) as a function of the frequency-

domain memory kernel term . Taking Eq. (19)

for p = 0 and approximating  by the mean
squared displacement found in the frame of the ordi-
nary Rouse model [Eq. (49)] gives

(73)

so that the center-of-mass diffusion coefficient in the
Renormalized Rouse approach reads

(74)

Within the accuracy of the numerical coefficient, this
result coincides with that reported by Schweizer [3].
The anomalous part of center-of-mass diffusion can be
derived from Eq. (38) as

(75)

again in accordance with [3]. In total, the renormalized
Rouse formalism predicts the following regimes for the
mean squared center-of-mass diffusion:

(76)
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(77)

(78)

The anomalous part of the mean squared center-of-
mass displacements and diffusion in the high-mode-
number limit may be neglected in the following
because the mean squared displacement relative to the
center of mass, grel(t)—that is, the second term in
Eq. (79)—dominates when the anomalous segment dif-
fusion becomes perceptible. Thus, combining the limits
given in Eqs. (69), (71), and (74) in analogy to the der-
ivation of Eq. (49) then leads to the average mean
squared displacement in the frame of the renormalized
Rouse formalism

(79)

4. TWICE-RENORMALIZED ROUSE 
FORMALISM

The renormalized Rouse approach fails to describe
the chain dynamics at long times, that is, in the realm of
the longest Rouse mode relaxation times, when molec-
ular-weight dependences come into play. We therefore
try a second renormalization step. This twice-renormal-
ized Rouse (TRR) formalism is based on the general
memory function expression in Eq. (19). However, the
projected mean squared displacement in that function

 is now replaced by the result of the renormal-

ized Rouse formalism  given in Eq. (79)

instead of formula (44) for  derived on the basis
of the ordinary Rouse model. We again distinguish the
high- and low-number limits as before.

4.1. High-Mode-Number Limit 
of the TRR Formalism

Equation (51) for the limit t  0 is still valid
because it is independent of chain dynamics, which
becomes important only on the time scale t @ τs. That
is, the second renormalization only affects the time
dependence of the memory function given in Eq. (52).
This expression is now modified according to the mean
squared displacement of the renormalized Rouse the-
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ory, i.e., Eq. (79) [implying the result Eq. (69)]. Instead
of Eq. (53) we now have for t @ τs

(80)

Taking into account the short and long time limits,
Eqs. (51), (80) lead to the combined approach

(81)

Thus,

(82)

According to Eq. (95), the normal-mode relaxation
times thus become in the high-mode-number limit

(83)

Analogous to relations (60) and (61), the mean squared
segment displacement and the segment tangent vector
correlation function are described in the frame of the
twice-renormalized Rouse formalism by

(84)

and

(85)

respectively. Equations (83), (84), and (85) obviously
deviate from their renormalized Rouse theoretical coun-
terparts—Eqs. (56), (60) and (61), respectively—merely
by numerical factors. That is, the renormalized Rouse
approach already provides a good description of the phe-
nomena to be expected in the time/frequency domain
region I [7].

4.2. Low-Mode-Number Limit of the TRR Formalism

The memory function is obtained by inserting the
expression for the mean squared segment displacement
in the frame of the renormalized Rouse treatment in the
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low-mode-number limit—Eq. (69)—into Eq. (19). The
result is

(86)

where κ = (6/π)3/5Γ(3/5)/π2 . 0.23 is a numerical con-
stant. Thus,

(87)

where  = t/(ψτs). The integration gives

(88)

Combining this result with Eq. (25) leads to the nor-
mal-mode relaxation times

(89)

The dependence on the normal-mode number p here is
obviously much stronger than predicted by the renor-
malized Rouse treatment [see Eq. (68)]. It also differs
from what one would expect on the basis of the repta-

tion model [2],  ∝  n3/p2.

The terminal relaxation time predicted by the low-
mode-number limit of the TRR concept thus is

(90)

Remarkably, the chain length dependence is the same
as that expected on the basis of the reptation model [1, 2]
and the polymer mode coupling treatment [4].

In the long time limit (t @ (N2/(4π2κ2p2))5/4 =

0.4τsψ(N/p)2.5 . 0.2 ), the normal-mode autocorre-
lation function starts to decay substantially. Then, it is
justified to take the normal-mode relaxation times as
the time constants of exponential decays, i.e.,

(91)

on the time scale τsψ–4 ! t ! . Inserting this func-
tion into Eq. (28) and replacing the sum by an integral
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calculated in the Appendix of [7] leads to the mean
squared segment displacement in the low-mode-num-
ber limit of the TRR concept:

(92)

Likewise, inserting Eq. (91) into Eq. (43), we find the
expression

(93)

for the tangent vector autocorrelation function.

According to Eq. (31), we need the quantity (0)
in order to calculate the center-of-mass self-diffusion
coefficient. Inserting Eq. (79) into Eq. (19) for p = 0
gives

(94)

The substitution

leads to

(95)

Together with Eq. (31), we thus find for the center-of-
mass diffusion coefficient

(96)
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According to Eqs. (38) and (86) for p = 0, the center-of-
mass mean squared displacement obeys

(97)

5. COMPARISON WITH EXPERIMENTAL DATA

5.1. Field-Cycling NMR Relaxometry
1H and 2H field-cycling NMR relaxometry [8, 21, 22]

(in combination with conventional NMR methods) is a
technique suitable for probing chain dynamics on the
time scale 10–10 s < t < 10–3 s. In the case of 2H NMR,
the length scale of the underlying interactions (that is,
the extension of the fluctuating areas to be probed) is
local throughout (“intrasegmental”). The same applies
to high-frequency 1H NMR, whereas low-frequency 1H
NMR is indicative for fluctuating intersegment and
interchain nuclear dipole–dipole interactions as well. In
the high-frequency/low-temperature regime (typically
ν * 108 Hz; T < 300 K) intra-Kuhn-segment fluctua-
tions due mainly to rotational isomerism dominate
(“component A”) [20]. However, these motions are
intrinsically anisotropic according to the definition of a
Kuhn segment. That is, residual correlations of the dipolar
or quadrupolar interactions survive the intra-Kuhn-seg-
ment fluctuations. The further decay of these correlations
directly reflects chain modes (“component B”). The latter
relaxation phenomenon is of particular interest for
comparisons with the above formalism.

To what extent the whole range of normal modes
can be probed depends on the chain length of course. If
the largest normal-mode relaxation time falls on the
time scale of the technique, spin-lattice relaxation tends
to become molecular-weight-dependent at low fre-
quencies. However, in the context of this study, we are
interested in particularly long and strongly “entangled”
polymers so that the chain length does not affect the
modes relevant in the experimental time/frequency
window. Note that nuclear dipole–dipole interactions in
the experimental time/frequency window. Note that
nuclear dipole–dipole interactions which dominate 1H
spin-lattice relaxation are subject to fluctuations of the
dipole–dipole distance and the orientation relative to
the external magnetic field, whereas 2H spin-lattice
relaxation is governed solely by molecular reorienta-
tions.

The frequency dispersion of the spin-lattice relax-
ation time T1 in melts of entangled polymers is subdi-
vided into a number of regions in which specific power
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laws of a universal nature occur [19, 23]. At frequencies

ω ! , where  is the fluctuation rate within a
Kuhn segment, the following sequence of proton T1 dis-
persions have been found from high to low frequencies
(and low to high temperatures):

(98)

For molecular weights larger than the critical value
(Mw  @ Mc), no molecular weight dependence was
observed. The crossover frequencies are functions of
the polymer species and the temperature. The figure
shows the T1 frequency dispersion of a polybutadiene
melt as an example where all three regions appear in
our frequency window with the same sample, albeit at
different temperatures.

Region III was shown to be due to fluctuations of the
inter-Kuhn-segment nuclear dipole–dipole interaction
by comparing the proton data with the deuteron T1 dis-
persion observed in deuterated polymer melts of simi-
lar chain lengths [23]. In the deuteron case, the spin-lat-
tice relaxation is of an entirely local, intra-Kuhn-seg-
ment nature, so that region III does not appear in
contrast to the proton case.

τ s
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Frequency dependence of the proton spin-lattice relaxation
time of a linear-polybutadiene melt (Mw = 65500) at various
temperatures. Regions I, II and III of the proton spin-lattice
relaxation are indicated. The data above about 3 × 107 Hz
are influenced by fluctuations within the Kuhn segments.
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In our previous papers [7, 18], the spin-lattice relax-
ation rate induced by chain modes was shown to be
related to the segment tangent vector correlation func-
tion according to

(99)

Note that the segment tangent vector is indicative for
the orientation of the residual dipolar coupling tensor
(relevant for proton relaxation) as well as for the orienta-
tion of the residual electric-field gradient tensor (deter-
mining the coupling of nuclear quadrupole moments to
the electric field gradients in the molecules). Inserting the
expressions for 〈bn(t)bn(0)〉  in the high-mode-number
limit of the renormalized Rouse treatment [Eq. (61)] or
of the twice-renormalized Rouse concept [Eq. (85)]
into Eq. (99) leads to

(100)

in both approximations. The comparison with the
experimental high-frequency results [Eq. (98)] sug-
gests that region I of the spin-lattice relaxation disper-
sion manifests the high-mode-number limits of the
once- or twice-renormalized Rouse formalisms.

Likewise, combining Eqs. (70) and (93) based on
the low-number limit of the RR and TRR theories,
respectively, with Eq. (99) gives

(101)

The experimental proportionality indicated as region II
in Eq. (98) can thus be considered as a manifestation of
the low-mode-number limits of the once- or twice-renor-
malized Rouse theories. The low-frequency spin-lattice
relaxation dispersion found for deuterons (purely intra-
Kuhn-segment quadrupolar interactions) fits the pre-
diction of the TRR formalism better, whereas that for
protons (nuclear dipole–dipole interactions) favors the
RR result. Anyway, all power law exponents evaluated
from the region II T1 dispersions of at least seven differ-
ent polymer species turned out to be between the two
theoretical exponents derived for the RR and TRR for-
malisms in the low-mode-number limit. Region II thus
appears to represent just the crossover to the situation
when the second renormalization becomes relevant.

Numerical evaluations of the absolute values of the
spin-lattice relaxation time of polyisobutylene and poly-
dimethylsiloxane have been carried out by Fenchenko for
different frequencies within regions I and II [24]. The
coincidence with the experimental data is good.
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Region III of the proton spin-lattice relaxation dis-
persion appears when the fluctuations of intersegment
nuclear dipole–dipole coupling become relevant, i.e., at
very low frequencies. Fluctuations of this sort are a
consequence of translational displacements of the seg-
ments bearing the interacting dipoles. That is, the time
dependence of the mean squared segment displace-
ments begins. The intersegment contribution to the
spin-lattice relaxation rate is given by [23]

(102)

where ρs is the spin number density. Inserting the RR
and TRR low-mode number limit results—Eqs. (69)
and (92), respectively—into Eq. (102) gives

(103)

That is, the experimental finding represented by the
third power law in Eq. (98) is again just between the pre-
dictions of the two approaches. We conclude that
region III of the experimental proton T1 dispersion
reflects fluctuations of intersegment nuclear dipole–dipole
interactions in the low-mode-number limit of the RR
and TRR theories.

The power laws given in Eq. (103) have been
derived under the assumption that the displacements of
the segments on which the interacting nuclei are sitting
are independent of each other. That is, multichain cor-
relations of the displacement modes have been ignored.
However, the evaluation of absolute values of the relax-
ation rates indicates that the displacements of the inter-
acting nuclei are correlated. This leads to the important
conclusion that, on a microscopic length scale, collec-
tive multichain modes contribute.

The experimental T1 dispersions given in Eq. (98)
for regions I, II, and III follow from the TRR formalism
in quite a natural way. This is in contrast to the predic-
tion of the reptation model [1]

(104)

(105)

where τe and τd are the entanglement and disengagement
times, respectively. These combined molecular-weight
and frequency dependences were never observed in isotro-
pic polymer melts. However, preliminary results for poly-
mer chains confined in porous glasses with pore diam-
eters smaller than twice the radius of gyration indicate
some features of the reptation concept [25]. More
recently, the law given in Eq. (104) was verified with
polyethylene oxide chains confined in 10-nm channels
of a rigid polymer matrix [26].

There is no analytical formula predicting the spin-
lattice relaxation behavior based on the polymer mode–
mode coupling concept [4]. However, one can state that
the molecular-weight dependence generally suggested
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by this concept definitely contradicts the experimental
facts. It also appears that the absolute values of T1 esti-
mated with the polymer mode–mode coupling treat-
ment are too large.

5.2. Residual Dipolar Coupling NMR Effects

Fluctuations of residual dipolar couplings, i.e.,
dipole–dipole interactions not subject to motional aver-
aging by fast motions on the NMR time scale, have
been subjected to polymer studies using NMR spin-
echo methods for a while [27]. More recently, several
new methods have been suggested on this basis with the
aim to probe features specific to the diverse polymer
dynamics theories. For instance, the dipolar correlation
effect on the stimulated echo was shown to be sensitive
to the power-law dipolar functions, which are of inter-
est in this context [8, 28, 29]. Other labs have proposed
to employ two-pulse spin-echo sequences [27, 30, 31]
or multiple-quantum coherence selective NMR experi-
ments [32]. All these methods have the potential to
probe chain dynamics on a time scale extending that of
T1 dispersion experiments in a complementary manner.
The physical limit is determined in principle by spin-
lattice relaxation which, at a high enough magnetic
energy, takes place on a 1- to 10-s time scale. The pros-
pects are promising, but there are still some fundamen-
tal questions to be answered before evaluations can be
considered accurate enough for distinctions between
different models. The least important one is whether the
usual Anderson–Weiss approximation is applicable [8].

Ball et al. [30] have described their polydimethyl-
siloxane (PDMS) data using the residual second NMR
line moment and the tube disengagement time τd

defined in the tube/reptation model as fitting parame-
ters. For Mw = 540 000 and T = 300 K, a value of τd =
0.019 s came out. However, this value is much too
short, as judged on the basis of known experimental dif-
fusion data. For example, in PDMS 340000 at 305 K, the
diffusion coefficient was reported to be 2.7 × 10–15 m2/s
[34]. Using the reptation formalism, one calculates from
this the disengagement time for PDMS 540 000 at
300 K as τd = 0.1 s, which is more than five times as
long as the experimental data. The evaluation by Ball et al.
appears to reflect the character of the dipolar correlation
function 〈*d(t)*d(0)〉 so that any model predicting
〈*d(t)*d(0)〉 ∝  t–α with α . 0.5 should qualitatively
describe the data on the level reported.

An attempt to interpret the data by Graf et al. [32]
with the reptation concept leads to a molecular-weight
dependence unexpected according to this very concept.
Another point one must consider is the temperature/fre-
quency master curve superposition that these authors
used in order to increase the dynamic window of their
study. The basis for recalibrating the time axis is the
entanglement time (τe) data taken from viscoelasticity
studies. However, it is known from Ngai et al. [33] that
the apparent activation energies evaluated from stress
SICS      Vol. 91      No. 1      2000
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relaxation and diffusion data do not coincide (as they
intrinsically should, according to the reptation con-
cept). This discrepancy may be regarded as a direct hint
to the collective multichain dynamics responsible for
viscoelasticity.

C. Field-Gradient NMR Diffusometry

Mean squared segment displacements can directly
be evaluated from field-gradient NMR diffusometry
experiments [8, 35] after compensating potential influ-
ences of immaterial spin diffusion by spin flip-flop pro-
cesses [36, 37, 41]. Examples are given in [38, 39, 40,
42, 43].

In polyethylene oxide melts, for molecular weights
much greater than the critical value (Mw @ Mc), the
influence of spin diffusion by flip-flop processes
becomes negligible for diffusion times [37] t < 0.1 s. An
apparent (time dependent) diffusion coefficient may be
defined which obeys [38, 40, 42]

(106)

in the experimental range 0.01 s < t < 0.1 s. This com-
pares to the prediction of the twice-renormalized Rouse
formalism

(107)

where we have expressed the parameters of Eq. (99) by

the radius of gyration ( ) and the diffusion coeffi-

cient ( ) of some known reference polymer with the
molecular weight M(0) @ Mc . By contrast, the reptation
model suggests [2]

(108)

(109)

where the quantities a, τe, τd, and  are the segment
length of the primitive path, the entanglement time, the
disengagement time, and the Rouse relaxation time,
respectively.

These formulas may be evaluated for polyethylene
oxide (PEO) melts taking the data [44] for PEO12 300

( ,  = 3.1 × 10–13 m2 /s at T = 80°C,  =
10.5 nm, a = 4 nm, Mc = 3600) as a reference.

The values estimated for PEO melts (M = 5000000
and M = 438000) on the basis of the reptation formulas
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given in Eqs. (108) and (109) are at least a factor of
one-third below the experimental values for these
molecular weights on the indicated time scale [38, 42].
On the other hand, the values predicted on the basis of
the TRR formula given in Eq. (107) deviate only by
about 30% from the experimental data [42].

If the whole time scale including diffusion times
> 0.1 s is considered, when spin diffusion by flip-flop
processes must be taken into account, the discrepancy
between the reptation model, on the one hand, and the
TRR concept and the experimental data, on the other,
becomes quite dramatic: in order to describe the experi-

mental data with the reptation model, either a  two
orders of magnitude larger than measured must be
assumed, or the segment length of the primitive path
must be assumed to take an unrealistic value a = 40 nm.

The polymer mode–mode coupling approach [4] also
fails to describe the experimental findings. Although there
is no analytical prediction with numerical coefficients so
that quantitative estimations might be possible, one can
state that the molecular-mass dependence already pre-
dicted the time scale of the anomalous segment diffu-
sion regimes, while our experimental data do not dis-
play any such dependence.

6. DISCUSSION

The twice-renormalized Rouse formalism perfectly
describes the empirical power laws of regions I, II, and III
of the spin-lattice relaxation dispersion in melts of
entangled polymers. It also reproduces the segment diffu-
sion behavior as far as it can be probed by field-gradient
NMR diffusometry. The main predictions are also in
accordance with recent computer simulations [9, 10, 45],
which reveal the crossover from 〈r2(t)〉RR ∝  t2/5 [see
Eq. (69)] to 〈r2(t)〉TRR ∝  t1/3 [see Eq. (99)] with increas-
ing time on a scale beyond that of Rouse behavior. In
Shaffer’s computer simulation [10], the normal-mode
relaxation times were found to scale as τp ∝  (N/p)3 in
agreement with the TRR approach. By contrast, the
reptation model predicts τp ∝  N3/p2.

The anomalous center-of-mass diffusion was exam-
ined in a computer simulation by Smith [9]. With
increasing time, crossovers from gcm(t) ∝  t0.71 to
gcm(t) ∝  t0.61 and then to gcm(t) ∝  t were analyzed. These
findings can be interpreted as transitions from the RR
behavior given in Eq. (75) to the laws found in the
frame of the TRR concept, Eq. (97). This is contrasted

by the reptation prediction  ∝  t1/2/N for τe ! t ! .

The striking coincidence of the TRR treatment with
experimental findings and computer simulations in an
extremely wide dynamic range is contrasted by the fail-
ure to account for the viscoelastic plateau of polymer
melts, whereas the reptation model and the polymer
mode–mode coupling concept describe this plateau at
least qualitatively based on intrachain contributions to

Da
0( )

gcm
rep τ1

R
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the stress tensor. Comparisons to experimental data can
be found in [48–50]. Under the same assumptions, the
TRR treatment leads to a viscosity scaling according to
η ∝  N2, and no plateau is predicted. On the other hand,
as pointed out several times in the course of the text,
both the reptation model and the polymer mode–mode
coupling concept do not explain the T1 dispersion laws
and anomalous segment diffusion.

Despite the different nature of the reptation model
and the polymer mode–mode coupling concept, both
concepts have one common feature: in both cases, vis-
coelasticity is treated as a single-chain effect. Formally,
this means that all collective interchain contributions to
the stress tensor are neglected. So, the multibody behavior
of entangled polymers reveals itself merely by corre-
spondingly modified single-chain dynamics. This, how-
ever, is an anticipation which was never proved. On the
other hand, proton and deuteron T1 dispersion and NMR
field-gradient diffusometry for the detection of anomalous
segment displacements definitely probe the real single-
chain dynamics as expressed by time correlation func-
tions. In this respect, spin-lattice relaxometry and NMR
diffusometry are particularly suitable for testing any
single-chain theory.

Mechanical relaxation is of a more complicated nature.
One may suspect that it specifically reflects collective
multichain effects. That is, if the theory is “pressed” into a
single-chain “corset” to account for viscoelasticity, the
true single-chain dynamics, as probed by the experiments
mentioned before, may be lost. The proper description of
viscoelasticity appears to require a concept including cor-
related multichain dynamics. No such theory exists so far.
However, a number of phenomenological approaches
have been reported [33, 46, 47]. A review can be found
in [16]. One of these phenomenological concepts—the
lateral diffusion model by Herman [47]—interestingly
predicts anomalous segment displacements scaling as
〈r2(t)〉 ∝  t1/3 in coincidence with Eq. (92) of the TRR treat-
ment.

A statistical mechanical theory taking into account
multichain correlations in entangled polymer systems is
an extremely complex challenge waiting to be solved.
From the experimental point of view, field-cycling NMR
relaxometry [8] for studies of the low-frequency T1 disper-
sion and spin diffusion measurements [41] can show the
way to the right direction, because these methods probe
relative displacements of segments sitting on different
chains.
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Abstract—A theoretical analysis is made of the acoustic activity for interfering picosecond acoustic soliton-
like pulses of down to a single oscillation period. An analysis is made of the case where these pulses propagate
parallel to an external magnetic field and one of the acoustic axes in a cubic crystal containing paramagnetic
impurities having effective spin S = 1. Allowance is made for natural, magnetic (Faraday), and cross acoustic
activity. This cross activity is caused by the significant spatial nonlocality of the spin–phonon interaction for
such short pulses in crystals having no center of inversion in the presence of paramagnetic impurities. A system
of nonlinear equations is obtained for the transverse and longitudinal components of the strain in the form of a
coupling between the “differentiated” nonlinear Schrödinger equation (with nonlinearity after the derivative
sign) and the Korteweg–de Vries equation which generalizes the known systems of long–short-wavelength res-
onance to the case where the slowly varying envelope approximation is not valid. An approximate solution of
this system is used to study the structure of an elastic soliton-like pulse whose transverse component has a rotat-
ing plane of polarization, which propagates under conditions of nonlinear coupling with the longitudinal strain.
© 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Acoustic activity, being an analog of the corre-
sponding optical effect, is observed as the elliptic polar-
ization of transverse elasticity waves as they propagate
in a crystal [1]. Both natural and artificial acoustic
activity occurs. In the first case, the effect occurs when
the free crystal has no center of symmetry [1] and in the
second, artificial anisotropy may be created, for exam-
ple, by an external magnetic field in a crystal containing
paramagnetic impurities (acoustic Faraday effect) [2]. 

The development of laser optics and coherent phys-
ical acoustics has involved producing increasingly
shorter optical and acoustic pulses, down to a single
period of the corresponding vibrations (videopulses)
[3–5]. Typical durations of optical videopulses are τp ~
5–10 fs [6] and of acoustic pulses τp ~ 10 ps [4, 5]. 

Historically, it has been found that after a certain
time transient resonant optical effects have found
acoustic analogs in paramagnetic crystals. For exam-
ple, the effect of optical self-induced transparency [7]
stimulated the prediction and observation of a corre-
sponding acoustic effect [8, 9]. In many phenomena the
optical–acoustic analogies were so close that they have
led to the creation of various fields of physical science
such as magnetic quantum acoustics [10]. In this con-
text the appearance of theoretical studies on the interac-
tion of elastic videopulses with matter following corre-
sponding studies for optical videopulses is quite natu-
ral. In [11] the present author reported a theoretical
study of the effect of magnetooptic activity for laser
videopulses of femtosecond duration in a Faraday
geometry (direction of propagation of the signal paral-
1063-7761/00/9101- $20.00 © 20016
lel to the external magnetic field B0). Substantial differ-
ences were identified between this phenomenon and the
similar effect for weak monochromatic signals. In view
of this, it is interesting to study the nonlinear propaga-
tion of elastic videopulses in acoustically active media
and to identify distinguishing features compared with
the similar propagation of monochromatic acoustic sig-
nals and optical videopulses. The present paper reports
such a study and will take into account both natural and
magnetic acoustic activity.

We shall subsequently bear in mind the important
factor that in studies of the interaction of acoustic
videopulses with matter, as in femtosecond optics, the
approximation of slowly varying amplitudes and
phases [4] traditionally used for resonant nanosecond
acoustics [8–10] cannot be applied in the wave and
material equations. 

We note some characteristics which distinguish the
propagation of acoustic picosecond videopulses from
femtosecond optical pulses when these propagate in a
crystal.

(1) An optical pulse is transverse. However, in the
nonlinear regime interaction takes place between the
longitudinal and transverse components of the strain
tensor of an acoustic pulse, which leads to energy
exchange between these components.

(2) The characteristic spatial dimension of an optical
video signal is le ~ cτp, where c is the velocity of light.
Assuming that τp ~ 10–15 s we obtain le ~ 10–4 cm @ h,
where h is the crystal lattice constant in the direction of
propagation of the videopulse (h ~ 10–8–10–7 cm). As a
result of this last inequality, as a femtosecond optical
000 MAIK “Nauka/Interperiodica”
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pulse propagates in a crystal it “sees” it as a continuous
medium. The spatial scale ls of an elastic videopulse of
duration τp ~ 10 ps is of the order of 10–7–10–6 cm [12]
because of the smallness of the velocity of sound com-
pared with c. Thus, spatial dispersion effects caused by
the lattice structure become significant under these con-
ditions. If the crystal has no center of symmetry, the
natural acoustic activity for videopulses of this duration
may be very appreciable. The spatial dispersion should
also be manifested in the spin–phonon interaction as
the videopulse propagates in a paramagnetic crystal:
the discreteness of the lattice has the result that the
effective spin of the paramagnetic impurity “senses”
the strain not only at its location but also in a certain
vicinity thereof [13] (nonlocal spin–phonon coupling).

(3) The pressure Ps at the location of an acoustic
picosecond videopulse may reach 1 kbar [4] which cor-
responds to a relative strain % ~ Ps/ρa2 ~ 10–3 (ρ is the
average density of the medium and a is the velocity of
sound in it). For these strains the anharmonicity of the
vibrations of crystal lattice sites is a significant factor
(acoustic anharmonicity) [12, 13].

We shall now study the nonlinear propagation of an
acoustic videopulse in a crystal, generally having no
center of symmetry, containing impurity paramagnetic
centers and located in an external magnetic field. We
shall assume that the paramagnetic centers possess the
effective spin S = 1. Examples may be iron group ions,
Fe2+, Ni2+, etc. which exhibit strong dynamic coupling
with lattice vibrations [2].

2. NONLOCAL HAMILTONIAN 
AND SEMICLASSICAL EQUATIONS OF MOTION

We set ourselves the goal of deriving equations for
the picosecond physical acoustics of paramagnetic cen-
ters bearing in mind the three main observations made
above.

We first write the Hamiltonian of a system compris-
ing “paramagnetic centers + strain field” in the form

(1)

where , , and  are the Hamiltonians of the
paramagnetic spin system, the elastic (phonon) field,
and the interaction between the spin system and the
elastic field. In this case we have [1, 14]

(2)
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Ĥs Ĥph Ĥ int
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α
,

α 1=

N

∑

Hph
1
2
---

p̂i p̂i

ρ
--------- λ ijkl

∂Ûi

∂x j

---------
∂Ûk
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(3)

Here  is the magnetic moment created by the effec-

tive spin,  ≡ (rα) = ( , , ) are the spin oper-
ators of the α paramagnetic ion having the coordinates

of the position vector rα (where  = –µB (0)  is

the Bohr magneton, (0) is the Landé tensor in the
absence of a strain field, 

is the operator of the linear component of the strain ten-

sor,  and  are the operators of the ith component
of the displacement vector and the momentum density
of the medium, ρ is the average density of the medium,
N is the total number of paramagnetic ions, δpq is the
Kronecker symbol, λijkl and λijklpq are the tensors of the
second- and third-order elastic moduli, respectively
(the latter describes the elastic cubic anharmonicity);
the tensors ξijkls and νijklsm describe the spatial acoustic
dispersion. In this case ξijkls is antisymmetric with
respect to the two first pairs of indices [1]. This is
responsible for the natural acoustic activity [1] (for fur-
ther details see below). In crystals having a center of
symmetry we find ξijkls = 0. Note that in (3) and every-
where below, summation is implied over the recurrent
Latin indices and integration is performed over the
entire crystal volume. 

We shall clarify the form of the spin–phonon inter-
action Hamiltonian based on the semiphenomenologi-

cal “spin Hamiltonian” approach [2, 14]. Adding to 

an operator which commutes over all matrices  (i =
z, y, z; α = 1, …, N) does not change the state of the spin
subsystem. In the absence of an elastic field this opera-
tor can be any function f of the dimensions of energy of

the well-known Casimir operator  = S(S + 1)  (  is
the unit matrix) in SU(3) algebra. Then we have

(4)

where in the absence of a strain field (0) = . On
account of the homogeneity of the crystal the func-

tional dependence f( (0) ) is the same for all
spins.
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The presence of an elastic field leads to modulation

of the tensors  and , i.e., they become dependent on

the components of the strain tensor. Expanding  as a
Taylor series in terms of the components of the linear
relative strain and their spatial derivatives, we obtain

(5)

where the notation Ui, j = ∂Ui/∂xj, Ui, jk = ∂2Ui/∂xj∂xk,
Ui, jkl = ∂3Ui/∂xj∂xk∂xl is introduced, and the lower index
“0” after the parentheses indicates that the derivatives
are taken for zero arguments.

In (5) we neglected higher powers of the relative

strain ∂ /∂xj. The tensor  can be expanded simi-
larly. However, experience shows [2, 14] that for a sys-
tem of spins S > 1/2 the spin–phonon interaction caused

by modulation of the tensor  is two orders of magni-
tude stronger than the similar interaction as a result of
modulation of the Landé tensor. Thus, we shall subse-
quently neglect linear spin–phonon interaction with

respect to  [see (4)] which is significant for an S =
1/2 spin system [2, 14] and was studied in detail for
transverse acoustic pulses in [13]. 

Spin–phonon interaction is introduced in (4) by

replacing (0)  . We then obtain the expansion
for f

(6)

.

For the function f( ) it is sufficient to assume that
this can be expanded as a Taylor series. Then f is a mul-
tiple of the unit matrix. Substituting (6) into (4) taking

into account (0)  , omitting f( ) = f(S(S + 1)) ,
and going over to index notation, we find the Hamilto-
nian of the spin–phonon interaction

(7)
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∂3Ûi

∂x j∂xk∂xl

------------------------ …,+
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Ŝ
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Î
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 Ŝij

α
,
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where 

The components Gijkl of the local spin–phonon inter-
action tensor have been measured experimentally for
very many crystals [14], which cannot be said of the
components βijklm and σijklmp of the first- and second-
order spin–phonon nonlocality tensors introduced by
us. Quite clearly, in order of magnitude βijklm ~ hmGijkl,
σijklmp ~ hmhpGijkl, where hm is the distance between the
nearest paramagnetic centers along the xm-axis. The
second term in parentheses in (7) is invariant with
respect to spatial inversion. Thus, βijklm ≠ 0 is only
found in crystals possessing no center of symmetry in
the presence of paramagnetic impurities. Consequently
this tensor, like the tensor ξijkls in (3), makes a contribu-
tion to the acoustic activity which will be shown
directly below.

The reasoning put forward above can only arbi-

trarily be called a derivation of  since expression
(7) was obtained without using any specific spin–
phonon coupling mechanism. Hence nothing can be
said about the values of the parameters characterizing
this interaction. However, this reasoning shows that the
Hamiltonian (7) is the most general linear Hamiltonian
of the spin–phonon interaction for S ≥ 1 with respect to
the relative strain and its spatial derivatives. The most
commonly used mechanism for this interaction is the
Van Vleck mechanism [2, 10, 14] according to which
the acoustic wave modulates the intracrystalline field
near the paramagnetic ion. Interaction between the gra-
dient of this field and the quadrupole moment of the
effective spin induces quantum transitions between

Zeeman sublevels described by . Note that in the

case S = 1/2 we have  = 0 [2] because of the proper-
ties of Pauli operators. Thus, for S = 1/2 the Hamilto-

nian  is linear with respect to  (i = x, y, z) and is
attributed to modulation by the elastic field of the
Landé tensor [12, 13].

We shall use a semiclassical approach to obtain the
equations of motion describing the self-consistent
dynamics of the paramagnetic subsystem and the field
of elastic pulses. On account of the high power of the
acoustic pulses, the elastic field will be described clas-
sically. However, the spins of the paramagnetic ions,

Ŝij
α 1

2
--- Ŝi

α
Ŝ j

α
Ŝ j

α
Ŝi

α
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∂Uk lm,
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0

,=

σijklmp f ' S S 1+( )( )
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----------------- 

 
0

.=

Ĥ
int
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Ŝij
α

Ĥ int Ŝij
α
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being strictly quantum objects, should obey the laws of
quantum mechanics. From the formal point of view, the
essence of the semiclassical approach is as follows. The

operators  and  (k = x, y, z) in (3) and (7) are
replaced by the C-number functions Uk and pk, respec-
tively, which form the classical vectors U = (Ux , Uy ,
Uz), p = (px , py , pz), for which we write the classical
Hamiltonian equations

(8)

Here H is obtained from  by substituting

 is the density operator of the spin subsystem. Thus,
the quantum averaging of the spin and field variables is
performed independently, which corresponds to
neglecting the quantum correlations between these
variables. 

The dynamics of the spin subsystem can be
described by the equation for the density operator:

(9)

where

 =  + , (10)

and  is obtained from  by using the substitu-

tion   Uk. 

Using (1)–(3) and (7)–(10), we can write self-con-
sistent equations for the spin–elastic (S > 1/2) dynamics
in a crystal of arbitrary geometry when a picosecond
acoustic pulse propagates in this crystal.

The acoustic activity is expressed most clearly, and
can be observed most easily, when an acoustic signal
propagates along the symmetric acoustic axes [1]. In
these cases the effect is observed as rotation of the
plane of polarization of the transverse component of the
elastic strain. Let us assume that an elastic pulse prop-
agates along an external magnetic field B0 parallel to
one of the fourfold axes of a cubic crystal (z-axis). In
this case, the Landé tensor has a diagonal form and

(11)

where ω0 = µBgzzB0/" is the frequency spacing between
the neighboring levels of the Zeeman triplet and the

Ûk p̂k
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ˆ Ĥ int

Ûk
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α
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N

∑=
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spin operators may be represented by matrices of the
form [2]

(12)

We shall consider the one-dimensional case when all
the dynamic variables depend on z and t. Accordingly
we only retain derivatives with respect to the single spa-
tial variable z in (3) and (7). 

Rotations by 90° about the z-axis (x  y, y  −x,
z  z) and by 180° about the x-axis (x  x, y 
−y, z  –z) are symmetry transformations for a cubic
crystal, i.e., the coefficients in (3) and (7) remain con-
stant for these transformations. Applying a standard
procedure to find the nonzero components of the ten-
sors using crystal symmetry transformations (see, for
example [15–17]) we obtain from (3) for our case

(13)

+ 

Here we use the Voigt notation [1, 2]: xx  1, yy  2,
zz  3, yz  4, xz  5, xy  6.

We now write the interaction Hamiltonian (7) under
these assumptions. We first note that the spin operators
are transformed as follows as a result of successive
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∂Ûx

∂z
---------

∂2Ûx
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inversions of the coordinate axes: x  –x;   ;

  – ;   – ; y  –y;   – ;

  ;   – ; z  –z;   – ;

  ;   . It then follows that the operator

 only changes sign in these operations if the inverted
coordinate is the same as one of its indices.

The expression for (7) may be simplified because

the combination  +  +  = S(S + 1) is an inte-
gral of motion. Consequently, adding to (7) a term pro-
portional to this combination merely displaces all the
quantum levels of the paramagnetic system by the same
quantity and is thus unobservable. This provides a basis

for assuming Tr  = 0 [14, 18]. We then obtain the
relationships

(14)

the first of which was given in [14, 18]. Using (14) and
also the fact that because of the cubic symmetry G23 =
G13, σ233 = σ133, G33 = G22 = G11, σ333 = σ222 = σ111, we
rewrite (7) in the form

(15)

where n = (r – rα) is the concentration of para-
magnetic centers and δ(r – rα) is the Dirac delta func-
tion.

Ŝx Ŝx

Ŝy Ŝy Ŝz Ŝz Ŝx Ŝx
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  Ŝyz dr,

δα 1=
n∑

B0 = 0

B0 ≠ 0
3

2

1

1

0

–1

mNo.

Fig. 1. Diagram showing quantum spin–phonon transitions
(wavy arrows) when an acoustic wave propagates along an
external magnetic field B0 (Faraday geometry) in an S = 1
spin system; No. is the number of the quantum level mea-
sured from the ground state of the Zeeman triplet, m are the
magnetic quantum numbers of the Zeeman sublevels of a
paramagnetic ion which appear as the eigenvalues of the
operator Sz.
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Using (10), (12), and (15), we express the semiclas-

sical interaction Hamiltonian  as follows:

where the Hamiltonian of the interaction of an α spin
and the elastic field is

(16)

(17)

(18)

u = %zz, ψ = %xz + i%yz.
It follows from (16)–(18) that as the pulse propa-

gates in Faraday geometry, the transverse component of
the strain induces 1  2 and 2  3 quantum transi-
tions within the Zeeman triplet (Fig. 1). These transi-
tions respectively induce two circular polarizations
rotating in opposite directions. As a result of the differ-
ence between the equilibrium populations of levels 1
and 2 which are determined by the Boltzmann factors,
the phase velocities of these polarizations are different
which leads to the acoustic Faraday effect (rotation of
the plane of polarization of the transverse component of
the elastic field in the magnetic field). The longitudinal
component of the strain field changes the frequencies
of these transitions (acoustic dynamic Stark effect). 

Replacing in (13) and (15) all the field operators by
C-number functions and the spin operators by their
quantum averages following the semiclassical
approach, we obtain after using (8), (12), (15), and the
identity ρ11 + ρ22 + ρ33 = 1

(19)

(20)
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where a⊥  = , a|| =  are the velocities of
the transverse and longitudinal sound, respectively. 

Using (9)–(12) and (15), we supplement the wave
equations by constitutive equations for the elements of
the density matrix of the paramagnetic center:

(21)

(22)

(23)

(24)

(25)

The system of equations (19)–(25) describes the
self-consistent dynamics of the paramagnetic centers
and picosecond elastic pulses as the latter propagate
along one of the fourfold axes of a cubic crystal parallel
to the external magnetic field. In this case, the acoustic
activity effect has three mechanisms: (1) a natural
mechanism attributable to the spatial dispersion of the
crystal in the absence of paramagnetic impurities and
described by the tensor ξ54z [see the third term on the
left-hand side of (19)] which keeps this equation invari-
ant with respect to the operation z  –z; (2) a mag-
netic (Faraday) mechanism caused by the time disper-
sion for the 1  2 and 2  3 quantum transitions
[see second terms on the right-hand sides of (22) and
(24) and also the first term in parenthesis in (18) and the
right-hand side of (19)]; (3) a cross mechanism which
occurs as a result of the space–time nonlocality of the
spin–phonon coupling described by the tensor compo-
nent β54z [see (18), (19), (22), and (24)]. All three mech-
anisms contribute to the linear acoustic activity but in
the nonlinear pulse regime they are responsible for a
pulse structure where the plane of polarization of the
transverse component is rotated inside the pulse.

=  
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3. MODIFIED SYSTEM OF EQUATIONS 
FOR LONG–SHORT-WAVELENGTH 

RESONANCE

We shall analyze the system (19)–(25) in the wave
transparency approximation, i.e. when the spectrum of
the elastic pulse does not overlap the quantum transi-
tions within the Zeeman triplet. Formally, this approxi-
mation may be written as follows [19, 20]

(26)

where  is the characteristic minimum time scale of
the pulse.

In order to achieve fairly efficient interaction
between the paramagnetic centers and the elastic strain
field the Zeeman energy must exceed the energy of the
thermal motion, i.e., "ω0 > kBT, where kB is the Boltz-
mann constant. This inequality ensures an appreciable
thermodynamically equilibrium population difference
between the Zeeman sublevels of the paramagnetic ion
which leads to efficient absorption of acoustic waves by
the paramagnetic subsystem. These experiments are
usually carried out at liquid helium temperatures T . 4 K
[2, 8, 10, 14]. The last inequality then gives ω0 > 5 ×
1011 s–1. Magnetic fields which can give Zeeman split-
tings ω0 ~ 1012 s–1 have now been achieved in laborato-
ries. Condition (26) can then be satisfied by elastic
pulses of duration τp ~ 10 ps. 

Under condition (26) the pulse interacts weakly
with the medium, exciting it only negligibly [11, 19,
20]. Hence, the spin–phonon interaction energy is neg-
ligible compared with the intrinsic magnetic energy of
the paramagnetic center. Thus, we can supplement (26)
with

(27)

It can be seen that |V⊥ |/" plays the role of the character-
istic frequency of the quantum transitions (Rabi acous-

tic frequency) or the characteristic reciprocal time 
of the dynamic spin–elastic interaction process. It
therefore follows that conditions (26) and (27) show
good agreement.

Equations (22)–(24) can now be solved using the
method of successive approximations with respect to
the derivatives on the left-hand sides. In the zeroth
approximation the left-hand sides of these equations
can be neglected, and then taken into account in the
first, second, and so on, approximations. In the zeroth
approximation equations (22)–(24) yield a system of
algebraic linear equations for ρ32, ρ21, and ρ31. Solving
this and expanding in terms of the small dynamic

ω0τ p
min

 @ 1,

τ p
min

V || ! "ω0, V ⊥  ! "ω0.

τ p
1–
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parameters V||/"ω0 and V⊥ /"ω0 as far as powers no
higher than the third, we obtain 

(28)

(29)

where Wj (j = 1, 2, 3) is the initial population of the jth
level of the Zeeman triplet (it is assumed that the initial
density matrix only contains diagonal elements deter-
mining the populations of the corresponding quantum
levels) and the superscript (0) indicates the zeroth
approximation with respect to the time derivative.

In the second and third terms on the right-hand sides
of (28) and (29) we made the substitutions ρ33  W3,
ρ22  W2, ρ11  W1 because the diagonal elements

 are energy characteristics and thus their changes are
proportional to |V⊥ |2 (see below). Consequently, allow-
ing for these changes in the second and third terms
would generate fourth and higher powers of the strain
components which we shall neglect. 

Systematically substituting (28) and (29) into the
left-hand sides of equations (22) and (24), respectively,
in the first order of the approximation with respect to
the derivatives we find

(30)

(31)

Here for simplicity the index (1) corresponding to the
first approximation is omitted from ρ32 and ρ21.

A contribution to the corrections to the zeroth

approximations  and  was made by their first

terms linearized with respect to  in (28) and (29),
respectively. This circumstance is consistent with (26)
and (27) and as a result the nonlinearity and time non-
locality (dispersion) appear additively in (30) and (31).
This statement is general for wave packets propagating
in media under conditions of wave transparency [11,
19, 20]. Since in our case, the spatial nonlinearity also
appears as small corrections, in this section the nonlin-
earity and dispersion will be taken into account addi-
tively.

ρ32
0( ) V ⊥*

"ω0
--------- ρ33 ρ22–( )

V ||V ⊥*

"
2ω0

2
------------- W3 W2–( )–=

+
V ||

2V ⊥*

"
3ω0

3
------------- W3 W2–( )

V ⊥
2V ⊥*

2"
3ω0

3
------------------- W1 2W2– W3+( ),+

ρ21
0( ) V ⊥*

"ω0
---------– ρ22 ρ11–( )

V ||V ⊥*

"
2ω0

2
------------- W2 W1–( )–=

+
V ||

2V ⊥*

"
3ω0

3
------------- W2 W1–( )

V ⊥
2V ⊥*

2"
3ω0

3
------------------- W1 2W2– W3+( ),+

ρ̂

ρ32 ρ32
0( ) i

W3 W2–

"ω0
2

--------------------
∂V ⊥

*

∂t
----------,+=

ρ21 ρ21
0( ) i

W2 W1–

"ω0
2

--------------------
∂V ⊥

*

∂t
----------.–=

ρ32
0( ) ρ21

0( )

V ⊥*
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Substituting (30) and (31) into (21) and (25), respec-
tively, after integrating over t we find

(32)

Strictly speaking, an expansion as far as the second
order in ∂/∂t should be performed in (30) and (31)
because in (19) the spatial dispersion of the transverse
strain component is taken into account as far as the sec-
ond order in ∂/∂z. We shall subsequently only allow for
a minimal first-order spatial and temporal dispersion
since this order provides the main contribution to the
acoustic activity effect. We thus assume ν166 = σ443 = 0.
At the same time we retain the term ~∂4u/∂z4 in (20)
because this gives a minimal allowance for the disper-
sion of the longitudinal strain component. 

Taking this into account, from (28)–(32) and (17)–
(20) after using the approximation of unidirectional
propagation [11, 20] (frequently called the approxima-
tion of slowly varying profile in comoving coordinates
[21]), we obtain 

(33)

(34)

where ζ = z – a⊥ 0t,

(35)
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The system (33), (34) describes the nonlinear prop-
agation of a longitudinal–transverse acoustic pulse in a
cubic crystal parallel to an external magnetic field in
the wave transparency regime.

It can be seen from (35) that the velocity of the
transverse sound is renormalized as a result of the spin–
phonon interaction (in a medium at thermodynamic
equilibrium W1 > W3 this velocity decreases). If R ≡
n /(4ρ "ω0) > 1, at temperature T below a certain

critical level Tc we have  < 0 which corresponds to
an equilibrium phase transition accompanied by the
formation of static strains and magnetization [22]. In
the present study we shall not touch on this aspect,
assuming R < 1. Having taken the values G44 ~ 10–13 erg
[2, 14, 18], ρ . 5 g/cm3, a⊥  . 5 × 105 cm/s, ω0 ~ 1012 s–1

for Fe2+ ions in an MgO crystal matrix, we find that the
condition R < 1 can be satisfied for concentrations of
paramagnetic centers n ~ 1023 cm–3 which is four or five
orders of magnitude higher than the real concentrations
of Fe2+ ions. For real concentrations we have a⊥ 0 ≈ a⊥ .

The acoustic activity effect is contained in the coef-
ficient β0 in equation (33). In order to show this, we
shall first linearize the system (33), (34). Then substi-
tuting ψ = %xz + i%yz, after separating the real and imag-
inary parts we obtain

The corresponding dispersion equation in laboratory
coordinates has the form

Bearing in mind that the second term is only a correc-
tion, we approximately obtain

The different signs in this last expression correspond to
two natural modes rotating in opposite directions, hav-
ing different phase velocities v+ = ω/k+ and v– = ω/k–.
The angle of rotation of the plane of polarization per
unit length (instantaneous angle) for a linear mono-
chromatic wave is given by

(36)

This wave may be expressed in the form

(37)

where Ωl = κla⊥ 0.
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It follows from the expression for β0 [see (35)] that
all three acoustic activity mechanisms noted above
make additive contributions to this effect in the wave
transparency approximation.

Before studying characteristics of the pulsed nonlin-
ear acoustic activity using (33) and (34), we shall first
examine the degree of generality of this system. We
first note that for nanosecond pulses with rf filling the
following representation holds

where

Then, neglecting the derivatives with respect to χ in the
nonlinear terms, we arrive at one of the systems
describing long–short-wavelength resonance [23]:

(38)

(39)

Here we have ξ = ζ + 2β0kt, η0 = ηk, µ0 = µk, and α1 =
α0 + 2β0k. The role of the short-wavelength component
is played by the transverse component of the elastic
pulse and that of the long-wavelength component is
played by the longitudinal component.

The system (38), (39) is not integrable [24, 25].
The spatial scale of the nanosecond elastic pulse is
ls ~ 10–4 cm @ h. In this case, the term ∂3u/∂ξ3can be
neglected in (39). In addition, for some cubic crystals
the third-order elastic modulus λ166 is several times
higher than λ111 [15]. For germanium, for example, we
find λ166 ≈ 60 din/cm2, λ111 ≈ 12 din/cm2. In these cases
we can assume q = 0 with a high degree of accuracy in
(39). If the crystal contains no paramagnetic impurities,
then η0 = 0. The acoustic activity is then determined
only by the natural contribution and the dynamics of a
nanosecond elastic pulse with rf filling for the trans-
verse component is described by an integrable Yajima–
Oikawa system [23] which is a reduced variant of the
Zakharov system [26].

To sum up, we can say that the system (33) and (34)
modifies the well-known long–short-wavelength reso-
nance systems to the case when the slowly varying
envelope approximation does not hold for the short-
wavelength component. In this case, the component ψ
can sometimes only arbitrarily be considered to be
short-wave since the time and spatial scales of this
component may be comparable with the corresponding
scales of the long-wavelength component u. Subse-
quently equations (33) and (34) will sometimes be
called a modified long–short-wavelength resonance
system. We note that this is a coupled system compris-

ψ χ i Ωt kζ–( )–[ ] ,exp=

t∂
∂χ
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∂χ

 ! kχ , Ω β0k2.=
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ing a “differentiated” nonlinear Schrödinger equation
and the Korteweg–de Vries equation which can be inte-
grated using the inverse scattering method [27–30].

The system (33), (34) can be represented as the vari-

ational principle for the functional dζ, where the

“Lagrangian” density is

(40)

Here the “potentials” θ and Q are introduced using the
relationships ψ = ∂θ/∂ζ and u = ∂Q/∂ζ.

Knowing L, we can easily construct the density 

of the “effective Hamiltonian”

where Πθ, Πθ*, and ΠQ are canonical pulses given
respectively by

Then, turning from the “potentials” θ and Q to the
dynamic variables ψ and u, we write the system (33)
and (34) in the Hamiltonian representation:

(41)

where

(42)

is a conserved quantity. 
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It is easy to see that this system has at least another
three integrals of motion:

(43)

which clarify the dynamics of the acoustic pulse and
may make it slightly easier to study the system (33),
(34). The existence of the variational principle may
help us to find approximate solutions of the modified
long–short-wave resonance system using the Ritz–
Whitha “averaged Lagrangian” method [31].

4. STRUCTURE OF AN ELASTIC SOLITON 
IN AN ACOUSTICALLY ACTIVE MEDIUM

A general analysis of the system (33), (34) is
extremely complex. Without claiming to be general, we
shall attempt to find an approximate solution in the
form of a localized traveling pulse. We shall subse-
quently call this pulse a soliton, giving this concept a
generalized meaning, and not necessarily implying that
the elastic self-interaction with itself is similar. Accord-
ingly, we shall seek a solution in the form

(44)

Quite clearly the parameter v0 is related to the pulse
velocity v in the laboratory coordinates by v0 = v – a⊥ 0.
The meaning of the second free parameter Ωs will
become clear from the following. As a result of inte-
grating, equation (34) has the form 

(45)

where the prime denotes a derivative with respect to
ζ − v0t.

Substituting the second expression (44) into (33)
after separating the real and imaginary parts yields

(46)

(47)

Multiplying (46) by F and integrating, we find an
expression for Φ':

(48)

The system (45), (47), (48) is invariant with respect to
the transformations F  –F, u  u. We shall
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assume that there exists a functional dependence u =
u(F) and that this function can be expanded as a
Maclaurin series in powers of F. In accordance with
this invariance, the series will only contain even powers
of F:

(49)

where A and B are coefficients to be determined. Here
it is assumed that u = 0 if F = 0, i.e., no static longitu-
dinal strain is present.

Substituting (49) into (45), (48), and (47), we obtain

(50)

(51)

. (52)

The dots in (50) and (51) imply further expansion in
higher even powers of F and those in (52) in terms of
odd powers of F. 

The first integral (52) has the form

. (53)

Here the integration constant is assumed to be zero
because outside the pulse propagation region (for ζ –
v0t  ±∞) the strain with all its derivatives vanishes.

After substituting (53) into (52) and (50) and equat-
ing the coefficients of F2, F4, and so on, on the left- and
right-hand sides, we can find A and B. We give an
expression for A:

(54)

Note that for ν = 0 (54) yields the expression for A
obtained by direct integration of (34) when ν = q = 0,
u = u(ζ – v0t). The expression for B is fairly cumber-
some but contains the parameter q of the acoustic
anharmonicity of especially longitudinal strain. In this
context we note that the lowest power of F for which
the coefficient q appears in (53) is six. At the same time
the elastic moduli of the longitudinal–transverse anhar-
monicity contained in µ are to the fourth power relative
to the transverse strain of F in (50). Thus, the contribu-
tion of q to the nonlinear dynamics is of a higher order
of smallness than the contribution of µ. Below we shall
call the coefficients η and µ the constants of the trans-
verse and longitudinal–transverse nonlinearities,
respectively.
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Confining ourselves to the third power of F on the
right-hand side of (52) (a similar approach proved
fairly useful to analyze the nonlinear propagation of
ultrashort optical pulses [4]), after using (54), (44), and
(49), integrating, and converting to laboratory coordi-
nates, we find an approximate solution of the modified
long–short-wavelength resonance system:

(55)

(56)

(57)

(58)

(59)

(60)

(61)

The solution (59)–(61) is a two-parameter one. The
soliton spatial width ∆ and the wave number k were
taken as the free parameters. We shall subsequently
analyze this solution. From the condition that the radi-
cand in (57) is nonnegative we conclude that the solu-
tion (55)–(61) allows the existence of “supersonic”
(v > a⊥ 0) and “subsonic” (v < a⊥ 0) solitons. These
terms are slightly arbitrary and suggest that the soliton
velocity is only related to the velocity of the transverse
sound. However, the velocity of a supersonic soliton
may well be lower than the velocity of the longitudinal
sound. As a result of the approximation of slowly vary-
ing pulse profile in comoving coordinates used to
derive (33) and (34), we find 2|β0k| ! a⊥ 0 [see (59)] and
thus the soliton velocity cannot differ substantially
from a⊥ 0. The constraints imposed on the free parame-
ters k and ∆ in both cases may be written in the form

(62)
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Fig. 2. Regions of free parameters of a two-component soliton of the system (33), (34) on the half-plane (2 /∆ > 0) for various
relationships between the coefficients of this system (parameters of the medium). The upper quadrants (2 βk > 0) correspond to the
free parameters of a supersonic (v > a⊥ 0) soliton and the lower quadrants (2 βk < 0) correspond to the free parameters of a subsonic
(v < a⊥ 0) soliton.

ν

Here it is assumed that the absolute value of k cannot
exceed π/h (horizontal dashed line in Fig. 2) [32] (or the
length of an elastic wave λ < 2h). Quite clearly for the
case of a nonlinear wave (in particular, an acoustic
pulse) this constraint is approximate and possibly an
estimate. We shall subsequently assume that ν > 0 (in
particular, in cubic one-dimensional crystals  = 2a⊥ 0ν =

h2 /12 [33, 34]). In addition, during propagation
along symmetric acoustic axes in cubic crystals we usu-
ally find a|| > a⊥  [32] and thus α0 > 0. Since in a thermo-
dynamically equilibrium crystal W1 > W3 we find η > 0
[see (35)].

We note that

are the velocities of differentiated nonlinear
Schrödinger and Korteweg–de Vries solitons in the lab-
oratory coordinates. It can be seen from (57) and (61)
that ψm = 0 for v⊥  – v|| = α0 whereas um ≠ 0, i.e., at this
resonance all the energy of the transverse component is
transferred to the longitudinal one.

In Fig. 2 the regions of free parameters on the plane
(k, ∆–1) corresponding to supersonic (upper quadrants,
2βk > 0) and subsonic (lower quadrants, 2βk < 0) soli-
tons are shown hatched. In cases of strong transverse
nonlinearity when α0 > µ2/2η the values of |k| and ∆ for
a subsonic soliton may have arbitrary values (|k| < π/h)
whereas for a supersonic soliton the region of permissi-

ble values of k and ∆ on the plane (2β0k: 2 ∆–1) is a

ν̃
a||

2

v ⊥ a⊥ 0 2β0k and v ||+ a⊥ 0 4ν/∆2+= =

v
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strip of width µ2/2η along the vertical bounded by two
parabolas and the horizontal dashed curve 2β0k =
2π|β0|/h (Fig. 2a). As the coefficient µ2/2η increases,
the lower parabola moves downward parallel to the
abscissa and for µ2/2η > α0 falls partly within the lower
quadrant, decreasing the range of free parameters for
the subsonic soliton (Fig. 2b). In this case, the upper
parabola remains fixed. For µ2/2η  ∞ (η = 0) the
lower parabola is displaced in the lower quadrant
toward –∞, reducing to zero the region of free parame-
ters for the subsonic soliton (Fig. 2c). Thus, only super-
sonic solitons can form in the absence of spin–phonon
interaction (η = 0). If ν = 0, both parabolas straighten
out to form horizontal lines. In other respects the anal-
ysis is similar to that just made. In particular, for η = 0
and ν = 0 the region of free parameters of a supersonic
(v > a⊥ 0) soliton degenerates into a horizontal strip of
width α0 (Fig. 2d). It is important to note that for η =
ν = q = 0 and also for k∆ @ 1 the solution (55)–(61)
yields the solution of the Yajima–Oikawa system [see
(38), (39) for ν = q = 0]. It follows from Fig. 2d and (59)
and also from the expression for α0 that the velocity of
a nanosecond elastic soliton in a crystal containing no
paramagnetic impurities lies in the range a⊥ 0 < v <

(  – )/2a⊥ 0 + a⊥ 0. If µ = 0, the lower and upper
parabolas in Fig. 2a are the same, narrowing to zero the
permissible range of free parameters for supersonic
solitons, which as a result cannot form in the absence of
longitudinal–transverse nonlinearity. Thus, for η = 0,
µ ≠ 0 only supersonic solitons can form whereas for

a||
2 a⊥ 0

2
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µ = 0, η ≠ 0 only subsonic solitons form. In the general
case when µ ≠ 0, η ≠ 0 the regions of free parameters
of a two-component longitudinal–transverse soliton
comprise two nonintersecting subsonic and supersonic
zones separated by a forbidden zone (“gap”) where if

α0 < µ2/2η both zones touch at the point 2 ∆–1 =

 on the abscissa. In all cases, phase self-
modulation [see (56)] leads to more frequent oscilla-
tions from the soliton tails toward their center. 

It is easy to see from (62), (63), and (61) that both
for supersonic and subsonic solitons the sign of um is
the same as µ. Consequently, for µ < 0 the longitudinal
component comprises a local traveling compressive
strain whereas for µ > 0 it comprises a tensile strain. We
also note that as ∆ decreases, the amplitude of the trans-
verse strain ψm increases for v > a⊥ 0 and v < a⊥ 0. The
situation with the longitudinal strain is more complex:
for a supersonic soliton the value of um increases with
decreasing ∆ whereas for a subsonic soliton it
decreases.

It is important to determine the initial conditions for
which super- or subsonic two-component solitons can
form. In general, this question can be answered by solv-
ing the Cauchy problem for a modified long–short-
wavelength resonance system which is of separate
interest. 

The parameter Ωs has the meaning of the angle of
rotation of the plane of polarization of a soliton per unit
time. It follows from (58) that the direction of this rota-
tion is determined by the sign of β0. For practical pur-
poses the parameter κs which determines the angle of
rotation of the plane of polarization of a soliton per unit
length is more convenient. Quite clearly we have κs =
Ωs/v ≈ Ωs/a⊥ 0, k ≈ ω/a⊥ 0, and ∆ ≈ τpa⊥ 0. From (58) and
(36) and comparing (55), (56) with (37) we then obtain

(64)

Following [35] we call the dimensionless parameter
(k∆)–2 = (ωτp)–2 the video parameter since for (ωτp)–2 ! 1
we have an envelope soliton and for (ωτp)–2 ≥ 1 we have
a video soliton (i.e., a soliton which contains of the
order of a single wavelength of the oscillations of the
transverse component). The “minus” sign in front of κl

indicates that the direction of rotation of the plane of
polarization of an acoustic soliton is opposite to the
direction of rotation of a monochromatic linear wave.
The shorter the soliton for fixed ω, the larger the differ-
ence between κs and κl. For envelope solitons when
(ωτp)–2 ! 1 we have |κs| ≈ κl.

Expression (64) is also obtained in analyses of the
optical Faraday effect [11]. The soliton solution under
discussion together with expression (64) does not allow
a passage to the limit of solutions of linear equations
when η = µ = 0.  This can be explained by the fact that
solitons are essentially nonlinear structures whose

λ

µ2/2η α0–

κ s κ l 1 ωτ p( ) 2–+[ ] .–=
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amplitudes tend to infinity when the coefficients of the
nonlinear terms tend to zero. Quite clearly, when an ini-
tial strain pulse enters a medium, this pulse begins to
undergo a certain evolution as a result of which one or
more solitons may form together with “soliton tails”
comprising small-amplitude (linear) longitudinal and
transverse waves. This analysis suggests that longitudi-
nal linear waves should appear as precursors of two-
component solitons since v < a||. In addition, when
β0k > 0 (v > a⊥ 0) solitons should be recorded behind
longitudinal linear waves, followed by transverse
small-amplitude waves. In accordance with (64), the
direction of rotation of the plane of polarization of
these waves is predicted to be the opposite of this rota-
tion for solitons. If β0k (v < a⊥ 0) the soliton precursors
are initially longitudinal and then transverse small-
amplitude waves.

We shall now give some estimates. We shall take as
an example an MgO crystal containing Fe2+ paramag-
netic centers at liquid helium temperature T = 4 K. Let
us assume that the magnetic field creates Zeeman split-
ting ω0 = 1012 s–1. We then have b ≡ "ω0/kBT = 2, W1 =
eb/Z = 0.87, W2 = 1/Z = 0.12, W3 = e–b/Z = 0.01 (here Z ≡
1 + 2  is the partition function). In this case, con-
dition (26) can be satisfied, assuming τp ~ 10 ps. Then
taking [2, 10, 14, 15, 31, 36] G11 = 1.3 × 10–13 erg, G44 =
0.8 × 10–13 erg, n ~ 1019 cm–3, ρ . 3.5 g/cm3, h . 5 ×
10–8 cm, a⊥ 0 . 6 × 105 cm/s, a|| . 9 × 105 cm/s, λ166 .
−1012 din/cm2, λ44 . 5 × 1011 din/cm2, we find from
(35) η = 6.4 × 103 cm/s, µ = 2.5 × 105 cm/s, β0 = 4 ×
10−6 cm2/s, ν = 1.3 × 10–10 cm3/s, α0 = 3.9 × 105 cm/s,
and ∆ = 5 × 10–6 cm. Here we assumed that ξ54z = β54z = 0
for MgO : Fe2+. In this example, the main contribution
to the longitudinal–transverse nonlinearity (to the
parameter µ) is made by the acoustic anharmonicity
whereas the transverse nonlinearity (the parameter η) is
determined by the spin–phonon interaction. Substitut-
ing these values of the parameters into (59) and (60),
we conclude that in this particular case only supersonic
solitons can form with constraints for the wave number
0 < k < π/h = 6 × 107 cm–1. For k = ∆–1 = 2 × 105 cm–1

(videopulse) we obtain from (57), (61), (64), and (36)
ψm = 5 × 10–3, um . –7 × 10–6, and κs = 0.6 rad/cm.
Thus, the soliton deformation consists mainly of the
transverse component whereas the longitudinal compo-
nent is negligible. The pressure Ps inside this soliton

reaches Ps . ρ ψm . 6 kbar. The signal intensity is

I . ρ  . 2 × 106 W/cm2. If the magnetic field is
now reduced to ω0 . 1011 c–1 and the duration increased
to τp . 100 ps, a similar analysis shows that only sub-
sonic solitons with 0 < |k| < π/h can form in this case.
Then for k = ∆–1 = 2 × 104 cm–1 we have ψm ≈ 2 × 10–3,
um . 10–6, κs = 0.08 rad/cm, Ps . 0.1 kbar, and I . 3 ×
105 W/cm2. Note that in this case the acoustic anharmo-

bsinh

a⊥ 0
2

a⊥ 0
3 ψm

2

SICS      Vol. 91      No. 1      2000



28 SAZONOV
nicity and the spin–phonon interaction make compara-
ble contributions to the longitudinal–transverse nonlin-
earity. We again note that ψm @ um. This factor justifies
neglect of the longitudinal component in [13]. In both
examples the acoustic dispersion of the longitudinal
component plays a negligible role since 4ν/∆2 ! 2|β0k|,
α0, µ2/2η [see (57), (61)]. However, the situation
changes radically if a⊥ 0 = a|| (α0 = 0). This condition
is satisfied for elasto-isotropic ionic crystals with cen-
tral forces of interaction between the ions in the
absence of natural acoustic activity [31]. In this case,
the long–short-wavelength resonance condition is
strictly satisfied: the linear velocities of both compo-
nents are equal which ensures efficient energy
exchange between them. We shall illustrate this by
assuming a|| = a⊥ 0 = 6 × 105 cm–1 in the two examples
given above. For ω0 = 1012 c–1. τp = 10 ps only super-
sonic solitons can form with 0 < k < 106 cm–1. Taking
k = ∆–1 = 2 × 105 cm–1 we obtain ψm ≈ 2 × 10–5, um ≈
−0.6 × 10–5, κs = 0.64 rad/cm. Thus, for α0 = 0 the lon-
gitudinal and transverse strains of the two-component
soliton are of comparable order of magnitude. Here we
note the fundamental role of the acoustic dispersion of
the longitudinal component which determines the
upper limit of the wave number k [see (62)]. 

For ω0 = 1011 s–1, τp = 100 ps, α0 = 0 it is only pos-
sible to have supersonic solitons for which 0 < k <
0.08 cm–1. The minimum value of the videoparameter
is (kmax∆)–2 = 104. Thus, in this case only videosolitons
should be formed whereas envelope solitons are elimi-
nated. The very high value of the videoparameter sug-
gests that the transverse pulse component is a unipolar
videosoliton with a rotating plane of polarization (in all
cases the longitudinal component is unipolar). Calcula-
tions for k = 0.02 cm–1 give ψm = 2 × 10–5, um = –8 ×
10−4, κs = 0.04 rad/cm. Thus here we have |um| @ ψm.
Since (k∆)–2 @ 1, the value of κl for a plane linear wave
with k < 0.08 cm–1 is 104 times lower than the similar
value of κs for a videosoliton. As a result, the magnetic
rotation of the plane of polarization for a linear wave
with k < 0.08 cm–1 cannot be observed experimentally
whereas for a two-component videosoliton of dura-
tion τp ~ 100 ps this effect may be very appreciable:
up to several degrees per centimeter. On the basis of
these numerical examples we can also conclude that
for α0 = 0 the soliton amplitudes are 10–100 times
smaller than those obtained when the linear velocities
are mismatched. In addition, for α = 0 the longitudinal
strain component plays an increased role in the soliton
formation.

5. CONCLUSIONS

The wave transparency approximation (26) has been
used to obtain a system of nonlinear equations (33),
(34) for the coupled dynamics of the longitudinal and
JOURNAL OF EXPERIMENTAL
transverse components of an acoustic picosecond (τp ~
10 ps) pulse in a crystal possessing the property of
acoustic activity. On the basis of an approximate qua-
sisoliton solution of this system, it is concluded that the
plane of polarization of the transverse component of an
elastic soliton rotates in the opposite direction to the
rotation for a plane linear wave. Both cases are pro-
vided for by this system which generalizes the well-
known nonlinear long–short-wave resonance systems
to pulses containing down to a single period of the
vibrations when the standard approximation of a slowly
varying envelope ceases to hold. Strictly speaking this
resonance occurs when the linear velocities of the lon-
gitudinal and transverse sound are similar [α0 = 0, see
(34)]. The numerical estimates given here are consis-
tent with this statement: in this case energy exchange
between the two strain components has the highest
intensity. It is shown that for such short pulses the term
“long–short-wavelength resonance” is to a consider-
able extent arbitrary since the wavelength of the trans-
verse component may be comparable with its spatial
duration ∆ and with the duration of the longitudinal
component. A more appropriate term could well be
“longitudinal–transverse resonance”.

From the mathematical point of view the system
(33), (34) may be curious in that it contains two integra-
ble equations, the differentiated nonlinear Schrödinger
equation and the Korteweg–de Vries equation. Studies
of the deep mathematical structure of this system, in
particular its integrability, may well be of some value.
This interest may be partly stimulated by the fact that
this system has Lagrangian and Hamiltonian structures
and also nontrivial conservation laws [see (42), (43)].
The most far-reaching results may well be achieved by
numerical integration of a modified long–short-wave-
length resonance system. This will allow us to study the
stages of formation of isolated two-component solitons
for which the transverse component has a rotating plane
of polarization and also processes of intersoliton inter-
action.

At this point the question of the stability of these
approximate quasisoliton solutions with respect to
transverse perturbations arises (in particular, with
respect to self-focusing). For single-component soli-
tons this question can be solved reasonably well using
a qualitative analysis and the method of moments [37,
38]. In this case, it is sufficient to know the dependence
of the soliton velocity on its amplitude. For two-com-
ponent solitons this problem cannot be solved so easily
at least because in many cases qualitatively different
dependences of the soliton velocity on the amplitudes
of the longitudinal and transverse strains are observed. 

The spatial nonlocality of the spin–phonon interac-
tion is taken into account minimally here using the ten-
sor βijklm which is nonzero in crystals without a center
of symmetry in the presence of paramagnetic impuri-
ties (a pure crystal containing no such impurities can
 AND THEORETICAL PHYSICS      Vol. 91      No. 1      2000
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then have a center of symmetry). This nonlocality con-
tributes to the acoustic activity. As the duration of the
acoustic pulse decreases to τp ~ 1 ps allowance should
be made for higher terms of the expansion in terms of
the spatial derivatives of the crystal lattice site displace-
ments, containing the tensor σijklmp [see (7)]. In this
case, the terms ~∂2V⊥ /∂t2 must be added on the right-
hand sides of expressions (30) and (31). As a result for
pulses with τp ~ 1 ps the term ~∂3ψ/∂ζ3 must be added
to the left-hand side of (46).

It is interesting to study the magnetic acoustic activ-
ity effect over a wider frequency range, not only for
ω ! ω0. Of particular interest is the case where the
pulse spectrum overlaps the quantum transitions in the
subsystem: ω0τp ! 1 [11, 12, 19, 20]. This situation
may be achieved by reducing the external magnetic
field to levels when ω0 ~ 1011 s–1 for τp ~ 1–10 ps. Under
conditions of spectral overlap the excitation of para-
magnetic quantum impurities is considerably stronger
than that in the wave transparency regime (26) consid-
ered here.

For ω . ω0 a two-component elastic pulse can
propagate under conditions of self-induced transpar-
ency. In [8] self-induced transparency was studied for
longitudinal rf strain pulses propagating at a certain
angle to B0 in an S = 1 spin system. In [9] a similar
effect was studied for transverse pulses propagating
parallel to B0 in an S = 1/2 system. In this context it
may be interesting to study the characteristics of self-
induced transparency when the frequency ω of the
transverse pulse component is the same as ω0 and the
low-frequency longitudinal component propagates
with the transverse component in the long–short-wave
resonance regime.

The question of the acoustic activity effect over a
broad frequency range between ω ! ω0 and ω @ ω0
may be answered using the method of analytic contin-
uation of the dispersion parameters to the complex
plane proposed in [11]. 

There is thus reason to assume that on entering the
picosecond range of durations the traditional effects of
physical acoustics (including acoustic activity), which
are observed for envelope pulses and also for plane lin-
ear waves, will acquire significant characteristics.
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Abstract—The conditions for the existence of a spiral magnetic configuration are determined for a thin ferro-
magnetic film with biaxial anisotropy. © 2000 MAIK “Nauka/Interperiodica”.
The Landau–Lifshitz equations for magnetic sys-
tems can have a wide spectrum of solutions, which in
turn correspond to a local minimum of the energy. The
configurations corresponding to such solutions do not
arise spontaneously, but, being created artificially, they
remain stable.

Examples of such structures are a spiral magnetic
configuration, which is stable in a thin film with biaxial
anisotropy.

Let us consider a thin ferromagnetic film in the yx
plane with biaxial anisotropy. Let us assume that the
easy magnetization axis is directed along the z-axis
orthogonal to the plane of the film, while the orthor-
hombic anisotropy axis is directed along the x-axis.

We shall show that for a definite ratio of the mag-
netic parameters a spiral (helicoidal) configuration,
whose magnetization is modulated in the x direction
according to a periodic law, can be stable in such a sys-
tem.

To solve this problem we proceed from the energy
functional taking into account the basic types of mag-
netic interactions of the system:

(1)

where α and β are the exchange interaction and easy-
axis anisotropy constants, ρ is the orthorhombic anisot-
ropy constant, and M is the magnetization of the mate-
rial. The integration extends over the volume occupied
by the magnetic field, and W is the magnetic energy
density. The second term in the expression for the
energy density corresponds to the magnetostatic inter-
action, xi – x, y, z, Mi – Mx, My, Mz.

E vW M( ),d∫=

W M( )
α
2
--- ∇ M( )2 β

2
---Mz
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1
2
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∂2
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--------------- 1

r r'–
---------------,d∫
1063-7761/00/9101- $20.00 © 20167
We represent the magnetization vector in terms of
the angular variables in a spherical system with polar
axis x:

(2)

where θ and ϕ are polar and azimuthal angles, and M0
is the saturation magnetization of the film material.

It is shown in [1–3] that in thin magnetic films the
magnetization distribution can be treated as uniform
over the thickness. Adopting this assumption, we shall
determine one variant of a one-dimensional periodic
structure whose magnetization varies in the x direction.

To this end we make in Eq. (1) the substitution of
variables according to Eq. (2) and integrate it with
respect to y, y', z, z'. 

As a result of these transformations the energy of
the system assumes the form

(3)

where

Setting the variation of the energy functional (3) to
zero we obtain an equation for the angular variables of
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the magnetization field:

(4)

In Eqs. (4) the following notation is used for deter-
mining the characteristic magnetostatic fields of the
system:

(5)

It is easy to show that the system of equations (4)
can possess a particular solution that describes a heli-
coidal magnetic structure:

(6)

with the following relation between the wave number k
of the spiral and the anisotropy constant β:

(7)

where

is the amplitude of the magnetostatic field in the film in
relative units M0.
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Fig. 1. Distribution of the magnetization and the intrinsic
magnetostatic field in a ferromagnetic film.
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Figure 1 shows schematically the distribution of the
magnetic field in the film along the x axis:

and the components of the magnetization of the system.
It follows from the relation (7) that the solution (6)
exists if the anisotropy constant satisfies the condition
β < 4π.

The solution (6) of the variational equations (4)
determines a helicoidal configuration corresponding to
an extremum of the magnetic energy of a thin film with
biaxial anisotropy. Consequently, to answer the ques-
tion of the stability of the structure we shall consider a
second variation of the energy near the ground state (6):

(8)

To eliminate ambiguity in the Fourier expansion of the
variations, we shall confine the variations in the values
of the wave number q to the region [–k, k], which is
essentially the analog of the first Brillouin zone, and we
shall represent δϕ and δθ in the form

(9)

The summation in Eq. (9) extends over the admissible
values of the wave numbers q and the reciprocal lattice
sites n.

On the basis of the obvious condition

(10)

where δnm and δqq' are the Kronecker delta functions, it
is easy to show that the values of the expansion coeffi-
cients have the form

(11)

Substituting the expression (9) for the variations of
the magnetization field into the quadratic form (8) and
performing the integration, we obtain the following
result:
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(12)

where

The helicoidal structure described by the relations (6)
corresponds to a minimum of the energy and is stable if
the quadratic forms (9) are positive-definite. The qua-
dratic form E2(δθ) satisfies this requirement if

(13)

Thus, the relation (13) is the first necessary condi-
tion for stability of the spiral structure, which, as we
shall see below, can exist only in the presence of orthor-
hombic anisotropy in the system. The orthorhombic
anisotropy stabilizes the structure, preventing a change
in orientation of the magnetization vector parallel to the
plane of the film.

The quadratic form E2(δϕ) possesses a nondiagonal
form and is difficult to analyze precisely. However, the
condition for the quadratic form to be nonnegative and
for a range of parameters of the magnetic films for
which the spiral configuration is stable to exist is

(14)

We note first that the expression (14) is strictly zero for
q = 0 and n = 0. This obvious result is due to the invari-
ance of the system with respect to uniform translations.

The inequality (14) determines the limits of the
region of parameters of the system where the configu-
ration under study is reliably stable within the frame-
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work of the proposed model. Analysis of the relation (14)
shows that for fixed k and values of Λ/L below a certain
limit this inequality breaks down for n = 0, q = ±k. This
condition determines the limits of stability of the struc-
ture under study.

Figure 2 shows in the (β – L/Λ) plane the range of
parameters of magnetic films for which the stability
condition of a spiral configuration is satisfied. This
region is bounded above by the curve (1) and below by
one of the curves (2, 3, 4), each of which corresponds
to a definite value of the orthorhombic anisotropy con-
stant ρ and is determined by the solution of the inequal-
ity (13).

In summary, the results of these investigations have
shown that a stable spiral magnetic configuration can
exist in thin magnetic films for a definite ratio of the
magnetic parameters. Additional investigations also
show that this structure is stable with respect to bending
deformations.

REFERENCES
1. A. P. Malozemoff and J. C. Slonczewski, Magnetic

Domain Walls in Bubble Materials (Academic, New
York, 1979; Mir, Moscow, 1982).

2. Yu. I. Dzhezherya, Zh. Éksp. Teor. Fiz. 115, 1315 (1999)
[JETP 88, 726 (1999)].

3. V. G. Bar’yakhtar and Yu. I. Gorobets, Cylindrical Mag-
netic Domains and Their Lattices (Naukova Dumka,
Kiev, 1988).

Translation was provided by AIP

1

2
3
4

ρ = 0.5
ρ = 2

ρ = 10

2

1

0
7 8 9 10 11 12 4π

β

L/Λ

Fig. 2. Region of stable existence of a spiral magnetic struc-
ture.
SICS      Vol. 91      No. 1      2000



  

Journal of Experimental and Theoretical Physics, Vol. 91, No. 1, 2000, pp. 170–181.
Translated from Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 118, No. 1, 2000, pp. 193–206.
Original Russian Text Copyright © 2000 by Borman, Grekhov, Troyan.

             

SOLIDS
Structure
Investigation of the Percolation Transition 
in a Nonwetting Liquid–Nanoporous Medium System

V. D. Borman, A. M. Grekhov*, and V. I. Troyan
Moscow State Engineering Physics Institute, Moscow, 115409 Russia

*e-mail: a_grekhov@mail.ru
Received December 21, 1999

Abstract—The flows of liquid into and out of a nanoporous medium are studied as processes leading to the
fluctuation formation and the growth of fractal clusters of filled and empty pores, respectively. The conditions
for stable growth of such fluctuations are analyzed as a function of the interfacial energy between the liquid and
the porous medium and the surface energy of the liquid. Expressions are obtained for the pressure at which the
barrier for fluctuation filling and emptying of the pores vanishes. In general, it is shown for porous media with
a pore-size distribution that these processes can be interpreted as a percolation phase transition. The volume and
susceptibility of a liquid–porous medium system near the transition points with inflow and outflow of the liquid
are calculated. The phenomenon of nonoutflow of a nonwetting liquid from a porous medium and hysteresis of
the flow of liquid into and out of a porous medium are explained on the basis of the mechanism considered. The
results of an experimental investigation of these processes in the system liquid Wood’s alloy–silochrome 80 and
silochrome 120 are presented. The experimental data obtained can be described on the basis of the proposed
mechanism. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Despite the long history of investigations of the phe-
nomena associated with the properties of the interface
between a liquid and a solid, many questions remain
unclear. Examples are capillary phenomena in ultrathin
channels, the dynamics of the interphase interaction, and
the nonwettability (wettability) of porous media. The
transport of a nonwetting liquid in porous media with
nanometer pores, which is eliciting great interest from
the standpoint of fundamental science and on account of
the many applications of nanotechnologies and mem-
brane technology [1–9], is associated with these phe-
nomena.

The most suitable theory for describing the filling of
porous media with a nonwetting liquid is percolation
theory [10–13]. In percolation theory the filling of a
porous medium with a nonwetting liquid can be repre-
sented as a process of the formation and growth of frac-
tal clusters and the formation of an infinite cluster from
pores which are filled at the Laplace pressure. The exter-
nal pressure compensates the surface tension forces.
According to these ideas, as the pressure decreases
below the Laplace pressure, the state of a nonwetting liq-
uid in the pores should be unstable and liquid should
leave the pores in the matrix. However, the existing
experimental data [14–17] show that effects which can-
not be explained on the basis of these ideas without
assuming a special geometric structure for the pores are
observed in a nonwetting liquid—porous medium sys-
tem. Thus, the experiments of [14] on the filling of
porous glass, containing pores with 3.5 nm radii, with
liquid mercury showed that liquid mercury does not
1063-7761/00/9101- $20.00 © 20170
emerge from the pores at atmospheric pressure and
room temperature. The mass and properties of samples
of the porous medium with liquid mercury, which were
filled at a pressure of 5 × 103 atm, remained unchanged
for months under normal conditions.

The observed difference of the onset pressures for
filling and outflow of a nonwetting liquid (hysteresis) is
attributed [15–17] to the fact that the contact angles
when the liquid flows into and out of the pores are differ-
ent. These angles are empirical parameters. No physical
model explaining why the contact angles are different and
making it possible to calculate their values or associate
them qualitatively with the parameters of the liquid—
porous medium system has been published.

The present work is devoted to an investigation of
these phenomena. The results of an experimental inves-
tigation of the hysteresis and the phenomenon of non-
outflow of a nonwetting liquid in the system liquid
Wood’s alloy—silochrome are presented in Section 4.
A physical mechanism that makes it possible to explain
the experimental data is proposed in Sections 2 and 3.

A nonwetting liquid (liquid metal) filling a porous
medium containing nanometer size pores changes from
a bulk phase into a state which is characterized by a
large specific surface area of the interface between the
liquid and the porous medium (dispersed state). Esti-
mates show that the surface energy of the metal in a
nanopore in a dielectric matrix can be comparable to
the volume energy of a metal. Since pores are filled
only when a definite pressure is reached [5–9], the tran-
sition of a liquid from a bulk phase into a dispersed
state is a threshold phenomenon. Consequently, near
000 MAIK “Nauka/Interperiodica”
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threshold the fluctuations in the system [18, 19]
become decisive, and the questions concerning the pos-
sibility of the filling of a porous medium and the stabil-
ity of a nonwetting liquid in a porous medium can be
studied naturally on the basis of the theory of fluctua-
tions, analyzing at various pressures the probability of
the fill fluctuations increasing (Section 2). Since at a
pressure near the threshold pI the adiabatic formation
work δA of the fill fluctuations is close to the tempera-
ture, a transition of the system into a state with filled
pores under the action of thermal fluctuations is possi-
ble. Thus, the condition δA ~ T makes it possible to
determine only the pressure range p > pI where the for-
mation of pores accessible to a nonwetting liquid is
possible in a porous medium. At the same time it fol-
lows from percolation theory that the filling of a porous
medium should be determined by the fraction of pores
through which a nonwetting liquid can pass. Conse-
quently, there arises the question of whether or not the
condition δA ~ T is a condition for filling of a porous
medium or a condition for the formation of an infinite
cluster of filled pores.

The volume v(p) of pores filled at a given pressure
and the static susceptibility ε(p) of the system can be
calculated if the distribution function F(N) of clusters
over the number N of pores in them is found for a
bounded porous medium with a distribution of pores
over the pore radius R (Section 3). However, since fill-
ing occurs for |ϑ – ϑc| ! 1 (ϑ  is defined below in Sec-
tion 3) and the characteristic size (correlation length) of
a cluster is much greater than the radius, ξ @ R, in the
present work the distribution function F(N) for an infi-
nite medium, well-known in percolation theory, is used
to calculate v(p) and ε(p) [13, 20]. The dependence of
the filled volume v(p) near a percolation transition,
where the correlation length is limited by the size of the
porous medium, is calculated in order to describe the
experimental data.

The phenomenon of nonoutflow of a nonwetting liq-
uid and hysteresis of filling and emergence of liquid
can be explained at the same time on the basis of the
mechanism considered. It turned out that these phe-
nomena can be attributed to the different dependence of
the work δA with percolation transitions of filling and
emergence of a liquid on the ratio of the interfacial
energy between a liquid and a porous medium to the
surface energy of the liquid.

Hysteresis and nonoutflow of a nonwetting liquid
were investigated in the system Wood’s alloy (Tmelt =
340 K)—porous medium (silochromes S80 and S120)
with the same framework material (SiO2) but with dif-
ferent pore radii and relative width of the pore size dis-
tribution (Section 4). The well-known method of pre-
liminary heating of a porous medium, in which the
composition of the adsorbed layer changes [21], was
used to change the surface energy of the interface
between the liquid and the porous medium. It was
found that the experimentally obtained pressure depen-
dences of the volume of the system can be described by
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theoretical relations for the neighborhood of percola-
tion transition points. The pressures at these points
were determined according to the maximum of the
static susceptibility of the system in the processes of
filling with and emergence of the liquid. The measured
volume of the metal remaining in the pores and the
characteristic pressures agree, to within the limits of
error, with the computed values.

2. THRESHOLD FILLING AND EMERGENCE 
PRESSURES FOR A NONWETTING LIQUID

IN A POROUS MEDIUM

We shall calculate the threshold pressure at which
filling of a porous medium with metal is possible and
the pressure at which the metal can emerge from the
porous medium. The filling and stability of a nonwetting
liquid are studied below for porous media whose frame-
work consists of spheres which have grown together at
the points of contact [22]. The pores in this model are the
free space between the spheres. Examples of such
porous media are opals [8] and silochromes [23] with
pore diameter ~10 nm. For S120 and S80 silochromes
the fraction of the pore volume (porosity) is ϕ ≈ 0.65, and
there are ~1017 pores per gram of the porous medium.
For simplicity, we shall assume first that the pores are
spheres with the same radius R.

We shall assume that as a result of thermal fluctua-
tions at pressure p macroscopically small regions in the
form of clusters consisting of N metal-filled pores arise
near the filling threshold of a porous medium. Each
cluster starts at the boundary between the porous
medium and the metal and, on account of the limited
volume of the pores, grows by the attachment of other
filled pores to it. It can be assumed that at the onset of
growth each cluster consists of branched chains of filled
pores. We shall neglect the interaction between the clus-
ters. The external pressure performs work when the
porous medium is filled with metal. In the process, ener-
getically unfavorable meniscus surfaces of metal in the
pores and the interface between the metal and the porous
medium are formed. The elastic state of the porous
medium also changes. If the adiabatic work of the forma-
tion of fill fluctuations is δA(N) and energy dissipation
due to friction can be neglected (see below), then the
probability for fluctuations to appear is w = w0exp(δS)
[18], where δS = –δA/T is the entropy fluctuation. Con-
sequently, if δA (δA > 0) increases as the number N of
pores in a cluster increases, the probability of a fluctu-
ation decreases. This corresponds to thermodynamic
stability of the initial state of the system. If δA ~ T the
fill fluctuation can increase. Then the system becomes
unstable and liquid starts to fill the porous medium.

We shall calculate the components of the adiabatic
work δA(N) of formation of a fill fluctuation of N pores.
The work performed as the metal expands in a porous
medium can be written in the form

(1)δAex p
4
3
---πR3N .–=
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The work of formation of an interface between the
metal and the porous medium is

(2)

where δσ = σms – σsg, σms, and σsg are the surface energy
of the metal–porous medium interface and the porous
medium–gas interface, and η is the interconnectedness
constant of the pores, equal to the ratio of the meniscus
surfaces formed to the total surface area of the pores. In
each filled pore miniscuses of metal form at the bound-
ary with the pores. Assuming, for simplicity, the minis-
cuses to be flat, the expression for the work δAs2 of for-
mation of miniscuses can be written in the form

(3)

Here σm is the surface energy of the metal. Taking
account of the shape of the miniscuses only leads to the
appearance of a new coefficient in this expression and
does not affect the character of the dependence δA(N).

The change in the elastic energy of a porous
medium compressed by external pressure in the pres-
ence of fill fluctuations can be comparable to the sur-
face energy, since the compressibility of the porous
medium is several orders of magnitude greater than the
compressibility of the framework material [22]. Before
fill fluctuations appear the porous medium is com-
pressed by a pressure p and the pressure inside the
pores is zero (the pressure p is measured from the atmo-
spheric pressure). After fill fluctuations appear the elas-
tic energy partially relaxes, since the pressure inside the
filled pores becomes equal to the external pressure.
Consequently, the component of the work of formation
of fill fluctuations that is associated with the relaxation
of the elastic energy is a negative quantity (δAel < 0).
Using the linear relation between the elastic stress and
strain tensors for porous media and keeping in mind the
boundary conditions for the initial and final elastic

δAs1 δσ4πR2 1 η–( )N ,=

δAs2 σm4πR2ηN .=

A

pp0 pI

1

2

Fig. 1. Pressure dependence of the formation energies AI
and A0 of inflow and outflow fluctuations, respectively, of a
nonwetting liquid in a porous medium (curves 1 and 2,
respectively); pI and p0 are the onset pressures for inflow
and outflow of liquid.
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states, the following expression can be obtained, in
agreement with [24], for the change in the elastic
energy accompanying the formation of a fill fluctuation
of N pores:

(4)

where χ and χs are the compressibility values of the
porous medium and the framework material of the porous
medium. For porous media χ @ χs, according to [22], and
χ ~ (1 – ϕ)–α and α = 3.7. The derivation of the expres-
sion (4) assumed that the elastic properties are the same
over the entire volume of the porous medium.

Summing Eqs. (1)–(4), the expression for the work
δAI(N) of formation of fill fluctuations of N pores can
be written in the form

(5)

It follows from Eq. (5) that δAI(N) is a linear function
of the number N of filled pores. We note that the num-
ber N in Eq. (5) can be macroscopically large. The sign
of δAI(N) depends on the pressure (see Fig. 1). It also
follows from Eq. (5) that if w0 is independent of N, then
the probability of formation of a fluctuation consisting
of N pores is determined by the probability of each pore
being filled raised to the power N. Such a fluctuation
grows as a result of successive fluctuation filling of
individual pores. The function δAI(p) changes sign at
pressure

(6)

At pressures p < pI the quantity δA(N) is greater than zero
for any value of N and the probability of a fluctuation
decreases with increasing N. Consequently, it equals zero
for any macroscopically large number of pores. Fluctua-
tions of finite length arise, but filling of the porous
medium does not occur. For pressures near pI the work
δA is of the order of T and thermal fluctuations in the
system can lead to the formation of clusters consisting
of N pores. At pressures p > pI filling of individual pores
becomes energetically favorable, since δA(N) is nega-
tive. Since δA ~ N, for p > pI the probability w is
approximately one. The pressure difference p – pI gives
rise to motion of the liquid in the porous medium. Esti-
mates show that for characteristic values of the param-
eters of the porous medium and metal σm ~ δσ ≈ 0.5 J/m2,
R ~ 10 nm, χ ~ 10–4 atm–1, and η ≈ 0.7 with the pressure
deviating from pI by the amount δp = –10–2pI, the work
changes from δA ~ T to ~1 eV, and the probability of a
fill fluctuation at the temperature T = 400 K changes by
ten orders of magnitude. Consequently, for systems

δAel . χ χs–( )– p24
3
---πR3N ,

δAI N( ) AI p( )
4
3
---πR3N ,=

AI p( ) χ p2– p–
3δσ

R
---------- 1 η
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δσ
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R

------ 1 η
σm

δσ
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with such values of the characteristic parameters the
probability w/w0 changes abruptly from zero to one in
a narrow pressure range (δp/p ~ 10–2) near the pres-
sure pI. A temperature dependence of the filled volume
should be observed in this pressure range. It follows
from Eq. (6) that the threshold pressure increases as the
pore radius decreases. Consequently, in a porous
medium with a pore-radius distribution the state of the
liquid in pores with a large radius is energetically more
favorable at this pressure. As pressure increases, filling
of smaller pores becomes possible. Hence it follows
that filled pores should form fractal clusters, and subse-
quent flow of liquid and a change in the cluster shape
are energetically unfavorable.

If it is assumed that fractal clusters form from filled
pores, then the dependence of the work δAI on N will
once again be linear. In accordance with [13] if the size
of a fractal cluster is a, then for 3D systems the number
of pores in a cluster is N ~ a2.5. As this cluster increases
in size, miniscuses appear only in pores belonging to
the shell of the cluster. For 3D systems, because of the
multiconnectedness of the space, the dependence of the
number N0 of pores in the shell on the cluster size is the
same as for the number of pores in a cluster: N0 ~ a2.5.
Consequently, all components (1)–(3) and (5) of the
work of formation of a fill fluctuation are proportional
to N (~a2.5), and the fill onset pressure pI will differ
from the expression (6) only by a different value of the
coefficient η.

The filling of pores is accompanied by energy dissi-
pation due to friction forces. A nonwetting liquid above
the threshold pressure moves in a porous medium under
the action of the pressure difference δp = p – pI. Conse-
quently, the ratio of the dissipation energy to the energy
of the metal in pores can be estimated as δp/pI. The
quantity δp determines the pore filling time τ0, whose
upper bound can be estimated, in accordance with
[18, 20], as η1N/δp. For a liquid metal (mercury) the
viscosity is η1 ~ 10–3 Pa s and for N ~ 104 (the size of
the granules of the porous medium is L ~ 10–2 cm and
the radius is R ~ 10 nm) and δp = 104 Pa the pore filling
time is τ0 ~ 10–3 s. If the characteristic time of a pres-
sure variation in the experiment is t @ τ0, then the filling
can be interpreted as a process due to thermal fluctua-
tions and energy dissipation due to friction can be
neglected compared with the adiabatic work of filling
of the pores with metal (δp/pI ~ 10–3). In the experi-
ments described above the time is t ~ 1 s and the ine-
quality t @ τ0 holds for δp ! 10 atm.

We shall now investigate the stability of a nonwet-
ting liquid in a porous medium at pressure p. A cluster
consisting of N empty pores can form in a liquid-filled
porous medium as a result of fluctuations. The work
δA0(N) of formation of such a cluster can also be writ-
ten as a sum of expressions of the type (1)–(4). How-
ever, The signs of the terms in δA0(N) change. Only the
formation of an interface between a porous medium
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
and the gas in the empty pores (δAs1 < 0) is energeti-
cally favorable. The metal flowing out of the pores per-
forms work, and consequently δAex > 0. The work per-
formed when the elastic state of the system (δAel > 0)
changes and the work of formation of the miniscuses of
metal in pores located next to the empty pores formed
(δAs2 > 0) becomes positive. Ultimately, the expression
for the work of formation of a cluster of empty pores
can be written in the form

(7)

In accordance with Eqs. (7) the energy barrier for the
formation of a cluster consisting of N empty pores
either grows linearly or decreases as N increases (see
Fig. 1), depending on the sign of A0(p). The sign of the
function A0(p) changes at the pressure

(8)

For p < p0 the quantity δA0(N) is less than zero for any
N and the growth of clusters of empty pores becomes
energetically favorable. The relation δA0 ~ T is satisfied
at p = p0, and therefore the pressure p = p0 is the pres-
sure at which the nonwetting liquid starts to flow out of
the porous medium.

Comparing (6) and (8) shows that the filling pres-
sure is greater than the pressure at which the liquid
leaves the pores, and hysteresis of filling and outflow of
the liquid should be observed. The liquid can remain in
the porous medium if p0 < 0. In accordance with Eq. (8)
this should occur for sufficiently large values of the
ratio σm/δσ, when

(9)

It follows from the relation (9) that the opposite ine-
quality can be obtained by increasing δσ, for example,
through changing the composition of the adsorbed
layer on the surface of the porous medium. In this case,
the nonwetting liquid should flow out of the medium at
pressure p0 (8) with a definite value of the interconnect-
edness constant η of the pores.

3. VOLUME AND SUSCEPTIBILITY
OF A POROUS MEDIUM–NONWETTING

LIQUID SYSTEM

Let us consider the filling of a porous medium con-
taining pores of different size. The total number of
pores per unit volume of the porous medium that can be
filled in a fluctuation manner increases with pressure
and can reach the percolation threshold. This raises the
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question of whether or not the condition δA ~ T is the
condition for filling of the porous medium or the condi-
tion for the formation of an infinite cluster of filled
pores. In accordance with the estimate made above of
the change in the energy barrier for the system metal–
porous medium with R ~ 10 nm pores in the present
analysis, the exponential pressure dependence of the
probability of formation of a fill fluctuation (the depen-
dence w = w0exp[–δA(p)/T]) is replaced by a step func-
tion w = w0θ(p – pI). This means that the probability of
fluctuation filling of pores with radius R does not
depend on temperature and for t @ τ0 it is equal to zero
at pressures p < pI(R) and 1 at pressures p > pI(R). The
dependence of the work of fluctuation formation of a frac-
tal cluster of filled pores on the size of the cluster and the
pressure is analyzed below, after which the specific vol-
ume of the filled pores and the static susceptibility (com-
pressibility) of the liquid–porous medium system for pres-
sures near the percolation threshold are calculated.

We shall assume that the pores are spherical, the size
distribution of the pores f(R) is spatially uniform, and
the width of the distribution is small enough (∆R ! R)
so that percolation effects due to the strong variance of
the pore radii can be neglected [25]. If the interaction
between fluctuations is neglected once again, then the
adiabatic work of formation of a cluster of N filled
pores at pressure p can be written in the form

(10)

Here AI(p, RJ) is identical to the expression (5) with
RJ = R.

Since a cluster can form only by successive fluctua-
tion filling of connected pores, the condition

(11)

should be satisfied for each filled pore in Eq. (10). The
probability of fluctuation filling of pores with radius RJ

that do not satisfy the condition (11) is exponentially
small at pressures p < pI  and is assumed to be zero. In
accordance with the percolation theory, the number N
of filled pores in such a cluster in the expression (10) is
limited and is determined by the relative fraction (ϑ) of
pores for which δA ~ T, and consequently they can be
filled by the nonwetting liquid at pressure p (accessible
pores). If the pore-size distribution is normalized as

, where n is the number of pores per unit

volume (~1017 cm–3), then ϑ(p) at pressure p is

(12)

Here the lower limit of integration R(p) should be deter-
mined from the condition (11) at pressure p. Conse-
quently, the probability of fluctuation filling for all

δA N( ) AI p RJ,( )
4
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accessible pores is close to 1 (w/w0 ~ 1). The quantity ϑ(p)
determines the average probability of finding an acces-
sible pore at a given location in the porous medium. It
is analogous to the fraction of lattice sites, which deter-
mines percolation and is usually introduced in percola-
tion theory. In our case this is the fraction of lattice sites
which are occupied by accessible pores, which depends
on the external parameter—the pressure. It follows
from Eq. (12) that in accordance with Eq. (6), as pres-
sure increases, R(p) decreases and the fraction of acces-
sible pores ϑ(p) increases. Using this analogy, we can
introduce the critical fraction of accessible pores ϑc and
the critical pressure pc (ϑ(pc) = ϑc) for which an infinite
cluster consisting of accessible pores arises. It is conve-
nient to use the distribution function F(N) of clusters
over the number of pores in a cluster to describe the
possible values of the number N of pores in clusters and
the number of clusters containing N pores at a given
pressure and with a given value of ϑ(p). The function
F(N) can be normalized to the total number of clusters
per unit volume. The analogy noted above between the
fraction ϑ(p) of pores and the fraction of lattice sites
determining percolation makes it possible to use in the
problem being discussed the following well-known
[13, 20] mass distribution function of the clusters (in
our case the distribution over the number of pores N in
a cluster, since the mass is proportional to the number
of pores in it):

(13)

For 3D systems τ = 2.2, and c is a normalization factor.
The dependence (13) has been obtained in [13] from
scaling considerations for clusters containing a large
number of sites (N @ 1) (in our case a large number of
pores), and values of ϑ(p) close to the percolation
threshold, where |ϑ – ϑc| ! 1. The number of pores in
clusters in Eq. (13) is bounded from above by the value
of N(ξ) for a cluster whose geometric size is ξ:

(14)

Here σ = 0.44 and ν = 0.89 for 3D systems. The quan-
tity ξ in the percolation theory is called the correlation
length [13]. It determines the characteristic range of
possible values of N in the distribution (13). The num-
ber of clusters with N > N(ξ) near the percolation
threshold is exponentially small [20]. In accordance
with Eqs. (6), (12), and (14) the number of pores N(ξ)
in a cluster of size ξ and the correlation length increase
with pressure and diverge at pressure where the frac-
tion ϑ (p) of accessible pores reaches the value ϑc. The
value of ϑc according to [13] depends on the structure
of the porous medium (by analogy with the dependence
of the critical fraction of lattice sites on the number of
nearest neighbors). In 3D systems percolation arises when
the relative volume of accessible pores is ϑc = 0.16, and
the corresponding critical fraction ϑc of accessible pores
should be determined from Eq. (12). It follows from

F N( ) cN τ– .=

N ξ( ) ϑ ϑ c– 1 σ⁄– , ξ∼ R ϑ ϑ c– ν– .=
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Eqs. (13) and (14) that for ϑ(p) < ϑc the number of
pores in clusters is limited.

Filling of a porous medium submerged in a liquid as
pressure increases starts in a region with a thickness of
the order of ξ near the surface of the medium. Clusters
of filled pores consist of pores for which the condi-
tion (11) is satisfied. Analogously, pores that are acces-
sible but are located outside a near-surface region of
thickness ξ do not become filled with liquid.

The conversion of clusters of accessible pores into
clusters of filled pores can be interpreted as an interac-
tion of the clusters. A cluster consisting of n accessible
pores of radii R > R(p), which is located at the boundary
(shell) of a cluster consisting of m filled pores becomes
filled with liquid as pressure increases up to p, and a
new cluster consisting of n + m filled pores is formed.
For such an interaction of fractal clusters the preexpo-
nential factor w0 in the probability of fluctuation filling

will depend on the numbers n and m: w0 ~ . The
exponents q1 and q2 take account of the fraction of pores
on a fractal surface through which the liquid flows. As
an estimate, it can be assumed that the values of q1 and
q2 are close and, according to [20], are equal to 0.93.
The dependence w0(n, m) leads to a new estimate of the

characteristic pore filling time with τ ~ τ0 . For
this dependence of the time τ on the number of pores
contained in clusters, the kinetics of the formation of
the function F(N) for clusters of filled pores changes.
However, if the characteristic pressure variation time t
in an experiment is much greater than τ, the stationary
distribution functions of clusters of filled and accessi-
ble pores are the same and are described by the expres-
sion (13). In the experiments described below, this ine-
quality holds for a relative pressure excess δp/pI ! 10–3

above the threshold value and the time t is about 1 s.
Knowing cluster distribution function F(N), the rel-

ative volume ν(p)of all filled pores per unit volume of a
porous medium in a layer thickness ξ at pressure p can
be calculated as

(15)

Here  is the average radius of the pores in clusters at
pressure p. Assuming that the distribution function F(N)
of clusters of filled pores can be described by the
expressions (13) and (14), it can be shown that for ϑ
near the critical value ϑc the integral (15) has no singu-
larities. As pressure and ϑ(p) increase, the thickness ξ
of the filling region increases. For ϑ ∼ ϑ c a cluster of
filled pores with geometric size of the order of the size
of a porous medium (infinite cluster) forms, and a fur-
ther increase of the filled volume with increasing pres-
sure will be due to attachment of clusters and filled
pores to other clusters of filled pores and to an infinite
cluster.
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Differentiating the integrals (12) and (15) with
respect to the limits of integration and using the func-
tions (13), (14), and (6), the following expression can
be obtained for the susceptibility ε of a liquid–porous
medium system:

(16)

Using the well-known [13] dependences of the expo-
nents τ and σ on the basic critical exponents ν, β (τ =
(2νd – β)(νd – β))–1, σ = (νd − β)–1, d is the dimension
of the space), determining the dependence of the corre-
lation length and the formation probability of an infi-
nite cluster near the percolation threshold on |ϑ − ϑc|,
we obtain (τ − σ − 2)σ–1 = β – 1 and ε ~ |ϑ − ϑc|β – 1.
Hence it follows that the critical exponent of the sus-
ceptibility is determined only by the critical exponent
of the formation probability of an infinite cluster. For
3D systems the critical exponent of an infinite cluster is
β = 0.42 [13]. Consequently, as ϑ  ϑc the expres-
sion (16) diverges. This divergence is related with the
formation of an finite cluster of filled pores in a porous
medium at the pressure pc where ϑ(pc) . ϑc. It follows
from Eq. (16) that the maximum value of the pressure
derivative of the volume of the system should be
observed at a pressure where in accordance with
Eq. (12) ϑ  is close to ϑc. According to Eq. (16), the
value of this derivative will be greater for porous media
with a narrower size distribution of pores. It also fol-
lows from Eq. (16) that the condition for filling of a
porous medium is δAI ~ T for pores with radius such
that the fraction of accessible pores (12) is ϑc.

The results of percolation theory, which were used
here and were obtained on the basis of scaling, do not
depend on the type of lattice: the lattices can be arbi-
trary, including irregular, and there need not be a lattice
at all [13]. In the calculations performed, a cluster dis-
tribution function F(N) for a spatially unbounded uni-
form porous medium with pores of the same size was
used. At the same time, it is known [2] that the critical
exponents of the mass of a fractal cluster decrease at the
boundary of the medium. It can be assumed that for the
case at hand a uniform porous medium filling a half-
space and containing a narrow distribution of pores, the
macroscopic characteristics of the system determined by
an integral of the function F(N) can be described qualita-
tively correctly for the experimentally accessible region
ξ @ R in measurements of v(p), where ξ is comparable
to the size of the porous medium. In this case |ϑ − ϑc| ! 1
and distortions of the function F(N) in the near-surface
region of the porous medium can be neglected. We note
that for small values of ∆R/R the dependence of the per-
colation threshold on the concentration of large spheres
(pores) is weak [25]. On the other hand the fraction of
the filled volume of pores in the near-surface layer of
thickness ξ can be estimated from above as the fraction
of all accessible pores ϑ , since by virtue of the multi-
connectedness of 3D systems, for small ∆R/R all acces-
sible pores in a layer ξ will be filled with liquid (see
Section 4). This estimate leads to a different value of

ε
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∂
v p( ) ϑ ϑ c– τ σ– 2–( ) σ⁄ f R( ) dR
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Fig. 2. (a) Pore filling pressure versus the pore radius. The pressure pc corresponds to the appearance of an “infinite” cluster of filled
pores, when ϑ(pc) = ϑc. The hatched region corresponds to the critical fraction ϑc of accessible pores. (b) Pressure of liquid outflow
from pores versus the pore radius. The pressure pmax corresponds to the onset of liquid outflow from a porous medium. The hatched
region of radii [R1, R2] corresponds to the condition ϑ(pc); pores with R < Rn remain filled.
the critical exponent for the susceptibility of the system
without changing the qualitative results.

We shall now discuss in greater detail the pore-size
dependence of the pressure at which the energy barrier
for filling vanishes. As a simplification we shall assume
that the compressibility of the porous medium is small

and χδσ ! 1. Then the first term in the expression (5)
can be neglected. For a porous medium with a pore-size
distribution the coefficient η depends on the radius of
the pores, since for any two neighboring connected
pores with different radii the fraction of the meniscus
surfaces formed during filling with respect to the sur-
face of the pores (4πR2) is smaller for larger pores.
Hence it follows that the coefficient η can be written in
the form

η . q(ϕ) (17)

Here Rmin is the minimum observable pore size in a
porous medium, and the coefficient q(ϕ) (<1) depends on
the fraction ϕ of the volume of the pores in the porous
medium and can be estimated as ϕ2/3. Then η < 1. As the
exposition below will make clear, the results obtained
do not change qualitatively, if η ~  R–α, 0 < α < 2. Using
Eqs. (6) and (17) the condition for vanishing of the
energy barrier for filling of pores with radius R can be
written as

(18)

R
1–

Rmin

R
---------- 

 
2

pI
3δσ

R
---------- 1 q ϕ( )

Rmin

R
---------- 

 
2 σm

δσ
------ 1– 

 + .=
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It follows from Eq. (18) (see Fig. 2a) that the pressure pI

increases monotonically as the pore radius decreases.
When the susceptibility ε of the system reaches its max-
imum value, in accordance with the expression (18) the
value of the radius R of the pores in Eq. (16) should
equal R(pc) = Rc in Eq. (12) for which the fraction of
admissible pores is ϑ  = ϑ c. Then all pores with radii
R > Rc become accessible for filling.

We now return to the question of the stability of a
nonwetting liquid in a porous medium. The main effect
of the pore-size distribution is the possibility that part
of the nonwetting liquid will remain in the porous
medium. The work of formation of a cluster of N empty
pores can be written in the form of the expression (10)
where the function AI(p, Rj) must be replaced by A0(p, R)
(7). Repeating the arguments leading to the expres-
sion (18), we can obtain the condition under which the
energy barrier for liquid to flow out of pores with radius R
vanishes (A0(p, R) = 0):

(19)

It follows from Eq. (19) (see Fig. 2b) that the pressure p is
maximum (pmax = 2δσ/Rn) for pore radius

. (20)

For pressures p > pmax the energy barrier A0(p, R) is greater
than 0 for all pores and a nonwetting liquid should remain
in the porous medium. For pressures p < pmax the radii of
pores freed of liquid fall in the range [R1, R2] (see Fig. 2b).

p0
3δσ

R
---------- 1 q ϕ( )

Rmin

R
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2 σm

δσ
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Rn Rmin 3q ϕ( )
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The pressure p becomes negative for pores with radius
less than R0, which is equal to

(21)

This means that the energy barrier remains positive for
all pores with R < R0 at any pressure. Consequently,
growing clusters of empty pores cannot contain pores
with R < R0 at any pressure. Calculations similar to
those performed in the derivation of (16) yield the fol-
lowing expression for the susceptibility of a system
with a liquid flowing out of a prefilled porous medium:

(22)

Here f(R) is the pore distribution function for radii R1
and R2 for which p(R1) = p(R2). The fraction ϑ(p) of
pores which can become freed of liquid, i.e., for which
A0(p, R) ~ T, should be

(23)

According to Eq. (23), as the pressure decreases, the
range [R1, R2] and the fraction of pores ϑ  for which
A0(p, R) ~ T increase. Since (τ – σ – 2)/σ ~ 0.5, the
derivative of the expression (22) increases as ϑ   ϑc.
We note that just as Eq. (16) the expression (22)
becomes inapplicable for ϑ  > ϑc, since an infinite clus-
ter of empty pores is formed and the distribution func-
tion F(N) of clusters over the number of pores in a clus-
ter changes. According to the expression (22), the sus-
ceptibility ε is maximum when the fraction of pores
with radii such that p(R) < p(Rn) is ϑc. It follows from
Eq. (22) that the susceptibility will be maximum if the
value of Rn is close to the average value of the pore
radius for which the distribution function f(R) is maxi-
mum. In contrast to filling of a porous medium, when a
liquid flows out of the medium, clusters of empty pores
are formed not in a layer of thickness of the order of the
correlation length at the surface of the medium but
rather over the entire volume of the medium. Compar-
ing the expressions (18) and (19) shows that p0 < pI and
hysteresis should be observed for filling of and outflow
of a nonwetting liquid from a porous medium.

In accordance with Eq. (19), pores with small radii,
R < R0, can remain filled as pressure decreases to zero.
If R0 lies outside the range [Rmin, Rmax] of the pore-size
distribution and R0 < Rmin, then all of the liquid should
flow out of the porous medium. For R0 > Rmax the quan-
tities f(R1) and f(R2) in Eq. (22) are zero and the non-
wetting liquid should remain entirely in the porous
medium. The phenomenon of nonwetting mercury not
flowing out of porous glass was observed in [14]. In the
intermediate case part of a nonwetting liquid should
remain in the medium. We note that in accordance with

R0 Rmin q ϕ( )
σm

δσ
------ 1.+=

ε p( ) ϑ p( ) ϑ c– τ σ– 2–( )/σ–∼

× f R1 p( )( )
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n
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R1

R2
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Eq. (21) the ratio of R0 and Rmax, Rmin can be changed by
varying σm and δσ.

4. EXPERIMENT.
DISCUSSION OF RESULTS

Two types of porous media were used in the experi-
ments:1 silochrome 120 (S120) and silochrome 80
(S80), whose framework consists of silicon dioxide
SiO2. According to published data, the minimum Rmin
and maximum Rmax pore radii for S120 and S80 are,
respectively, 10 nm, 15 nm and 20 nm, 25 nm [19]. The
specific volume and the specific surface area Vp ≈
1.3 cm3/g, Sp = 120 m2/g for S120 and Vp = 1.3 cm2/g,
Sp = 80 m2/g for S80. Porous media consist of powders
with average granule size L ~ 10–4 m. Liquid Wood’s
alloy, whose melting temperature is T = 340 K, was
used as the nonwetting liquid. The experiments were
performed in the temperature range T > 400 K. To
change the composition of the layer adsorbed on the
surface of the silochromes, the silochromes were heated
in a special chamber up to temperature T < 500 K in 1.5 h.

Silochrome powder with mass 2.00 ± 0.05 g was
placed in a high-pressure chamber. The chamber was
filled with liquid Wood’s alloy. The construction of the
chamber made it possible to perform experiments up to
103 atm pressure. The excess pressure (above atmo-
spheric pressure) and the volume of the liquid–porous
medium system were measured to within 3% using a
strain-gauge pressure sensor and a displacement sensor.

 Figure 3 shows the experimental pressure depen-
dences of the change in the volume V of the system

1  A. A. Geidarov participated at the initial stage of the experimen-
tal investigations performed in this work.

4
3

2

1
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1'

1.0

0.5

0'

0 200 400

–V, cm3/g

p, atm

Fig. 3. Experimental dependence (for 1 g of silochrome) of
the change in volume of the system silochrome 80–Wood’s
alloy versus pressure: 0–3, decrease of volume with increas-
ing pressure; 3–0', increase of volume with decreasing pres-
sure after filling of a porous medium; 0'–3, decrease of vol-
ume with repeated increase of pressure.
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Table

Type of 
silochrome

p1, atm p2, atm p4, atm p5, atm V0

exp. theor. exp. theor. exp. theor. exp. theor. exp. theor.

S120 280 285 420 430 380 390 310 315 0.14 0.14

S80 200 220 240 265 240 240 180 170 0.22 0.23

Annealed S120 250 260 400 410 320 320 280 280 0.16 0.16

Annealed S80 150 150 210 270 235 220 150 140 0.55 0.56

Note: The annealing was performed at T = 473 K for t = 1.5 h.
Wood’s’s alloy–silochrome 80 (for 1 g of silochrome).
These dependences were corrected taking into account
the premeasured compressibility values of the chamber
and the liquid Wood’s alloy. Consequently, the change
in volume on the linear section from zero up to the point 1
is due to elastic deformation of an unfilled porous
medium with increasing pressure. The measured value

of the compressibility χ = ∂V/∂p (where Vs is the
volume of a sample of the porous medium) on this sec-
tion is χ ≈ 4 × 10–4 atm–1. For p > p1 a substantial
decrease in the volume of the system is observed at the
point 1 with increasing pressure. The section 1–3 cor-
responds to filling of the pores with liquid. The change
in the volume of the system due to elastic compression
of the porous medium accompanying an increase in
pressure from p1 to p3 is ≤3%. On the section 1–2 the
compressibility of the system increases monotonically
up to a maximum value at the point 2. This point is the
point of inflection in the function V(p). The volume of
the system remains unchanged in the pressure range
p > p3. This means that the liquid has filled all pores in
the sample and the compressibility of such a porous
medium does not exceed the measurement accuracy.
The specific volume of the pores, determined according
to the section 1–3 taking into account the compressibil-
ity of the porous medium, is Vp ≈ 1.3 ± 0.07 cm3/g and
agrees with the tabulated value for silochrome 80 [23].

As pressure decreases, the volume of the system
increases at the point 4. This increase corresponds to
the onset of flow of liquid out of the porous medium.
On the section 4–5 the compressibility increases, reach-
ing its highest value at the point 5 for flow of liquid out of
the pores. At the point 0' the pressure becomes zero. As
pressure is increased once again, the volume of the system
starts to decrease at the point 0', so that the volume deter-
mined by the segment 0–0' corresponds to the volume V0
of the liquid remaining in the pores with zero excess pres-
sure. Refilling of the pores with liquid starts at the pressure

 = 210 atm close to the pressure p1 = 200 atm. The
function V(p) does not change for repeated outflow of
the liquid. After a repeated “fill–outflow” cycle the vol-
ume of the liquid remaining in the porous medium like-
wise remains unchanged. Similar dependences have
been obtained for the system silochrome 120–Wood’s

Vs
1–

p1'
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alloy. The pressures for liquid to enter (p1) and leave
(p4) the medium and the pressures for which the maxi-
mum compressibility is reached with liquid flowing
into and out of the pores (p2 and p5)were determined
from the dependences V(p) obtained. These data are
presented in the table. The table also gives the values of
the relative volume of the metal remaining in the pores.

It follows from the data presented in the table that
the volume of the metal remaining in the pores with the
same state of the surface is greater for a porous medium
with a larger average pore radius (S80). All characteris-
tic pressures are higher for a porous medium with a
smaller average pore radius (S120). After the porous
medium is heated, the volume of the metal remaining in
the pores increases and the characteristic pressures
decrease.

We shall now compare the experimental data with
the theoretical results. We note that the measured val-
ues of the compressibility of an unfilled porous
medium (χ = 4 × 10–4 atm–1) and filling onset pressures
(p1 = 2 × 102 atm) are such that χp1 ~ 10–2 ! 1. Conse-
quently, the elastic compressibility of a porous medium
in the expressions (6) and (8) can be neglected.

According to the preceding section, the expression
for the specific volume V(p) of a metal flowing under
pressure p into the pores in the powder granules of a
porous medium can be written in the form of a product:

(24)

where ρ is the density of the porous medium, ρ =
ρ0(1 – ϕ), ρ0 is the density of the framework (SiO2) of
the porous medium, ϕ is the porosity, and v(p) is the
relative volume (determined by the expression (15)) of
a porous medium in the near-surface layer of the gran-
ules, the thickness of the layer being equal to the corre-
lation length ξ. The function Φ(ξ/L) describes the ξ
dependence of the ratio of the volume of the layer ξ to
the volume of a granule. Assuming that the granules are
spheres with radii L, the function Φ(ξ/L) can be written
in the form

(25)
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Here  is the average pore radius and ϑ(p) is the frac-
tion of pores (12) accessible at pressure p. In accor-
dance with the expressions (12), (18), (24), and (25),
ϑ(p) increases with pressure and at |ϑ(p) – ϑc| ! 1, i.e.,
near the threshold of a percolation transition the corre-
lation length ξ is much greater than  and increases on
a macroscopic scale L. For ξ = L a cluster whose geo-
metric size is equal to the size of a granule is formed.
Further filling of accessible pores with increasing pres-
sure should occur by attachment of other clusters and
individual filled pores over the entire volume of the
granules to this cluster. Consequently, for ξ > L we have
Φ(ξ/L) = 1. For ξ = L, in accordance with Eqs. (16),
(24), and (25), the susceptibility of the liquid–porous
medium system reaches its maximum value. Conse-
quently, the experimentally established pressure p2 can
be calculated from Eqs. (12) and (18) and the equation

(26)

It follows from Eq. (26) that for this pressure |ϑ – ϑc| =
( /L)1/ν, and for ν = 0.89 the quantity ϑ(p2) is equal to
ϑ c (1–10–4.5) for the sample S80 (R = 20 nm, L = 2 ×
10–2 cm).

The quantity V(p) in Eq. (24) is limited from above
by the value of the relative volume of all accessible (see
Eq. (12)) pores in the layer ξ. Their equality means that
all accessible pores become filled with liquid. At the
same time, in the layer ξ with |ϑ(p) – ϑc| ! 1 most of
the pores (but not all) belong to the cluster with the
maximum size N(ξ). Some of the pores which are not
connected with the surface of the granules via accessi-
ble pores cannot be filled. However, in accordance with
Eqs. (13) and (15) most of the filled pores should
belong to large clusters whose is size close to the thick-
ness of the layer ξ and which are connected with the
surface. Consequently, for a neighborhood of the per-
colation transition point and a layer of thickness ξ with
|ϑ(p) – ϑc| ! 1 we can write

(27)

Here the lower limit of integration is determined from
Eq. (18) for R(p) at pressure satisfying the equation
ϑ(pc) = ϑc.

For ϑ  < ϑc, far from the percolation transition point,
the geometric size of clusters of filled pores changes
with increasing pressure in the “microscale” of pore
radii and pores in the near-surface layer of thickness ~R
in the granules become filled, and the filled volume is
V ~ ϑ(R/L)(1/ρ). For the experimental S80 and S120

ξ R
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samples we have R/L ~ 10–4 and therefore the filled vol-
ume is small: V ~ 10–4ϑ /ρ.

For threshold sensitivity of volume measurements
in the experiment equal to 7 × 10–2 cm3/g, filling of a
porous medium is observed only near the percolation
transition point. Indeed, it follows from Eqs. (25), (26),
and (27) for small ξ/L that

and for V = 10–2 we have ξ/L = 10–2vcρ and ϑ  – ϑ c =
10–2.4. This last relation makes it possible to calculate
the measured value of the pressure p1 for onset of fill-
ing. We note that as pressure changes from p1 to p2 the
quantity |ϑc – ϑ| and the correlation length change by
two orders of magnitude.

The expressions (12) and (27) contain the distribu-
tion function of the pore radii f(R). Several methods of
determining the function f(R) are described in the liter-
ature [3]. One method is based on measuring the func-
tion V(p) with filling of a porous medium with a non-
wetting liquid (for example, mercury). The function f(R)
is obtained by differentiating the function V(p) assum-
ing that the change in volume of the system starts in
accordance with the Laplace pressure when pores of
maximum size are filled in the entire volume of the
porous medium and not under the condition ϑ  = ϑc. The
functions f(R) obtained by different methods differ
from one another [3]. Consequently, in what follows,
the Gaussian distribution with the average pore radius

 is used to analyze the experimental data; this radius
lies in the range between the tabulated values of Rmin

and Rmax. The quantity  and the variance δ of the radii
in the Gaussian distribution were treated as free param-
eters, whose values were determined by comparing
with the experimental data on the pressures p1, p2, p4,
and p5 and the volume of the liquid remaining in the
porous medium. The expression (18) for the pressure p
at which the energy threshold for filling vanishes con-
tains unknown parameters: δσ—the change in the sur-
face energy of a porous medium when the medium is
filled with liquid—and the coefficient q which deter-
mines the relative fraction of the surface area of the
miniscuses of the liquid. In the calculations it was
assumed that δσ is a free parameter and is the same for
silochromes S80 and S120 with the same surface prepara-
tion, since their framework material is the same. The coef-
ficient q was assumed to equal ϕ2/3 (ϕ is the fraction of the
pore volume, i.e., the porosity).

The volumes of the metal entering and remaining in
the pores also depend on these parameters. When the
condition (19) for the development of a pore-emptying
fluctuation to be energetically favorable is satisfied, liq-
uid can flow out of any pore into the volume of a pre-
filled porous medium. Consequently, the integral (15)
of the distribution function of clusters for the volume of

V p( ) . 
1
ρ
---v c p( )

ξ
L
---

R

R
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empty pores should be equal to the integral over pore
sizes (see Fig. 2b):

(28)

Here the radii R1(p) and R2(p) are solutions of Eq. (19)
for p < pmax. The maximum of the derivative of the
function V(p) in accordance with Eqs. (22) and (26)
should be observed for ξ = L.

According to Eqs. (19) and (21), liquid should
remain in pores with radii R < R0 under excess pressure
p = 0. The specific volume of such pores is

(29)

The dependences (24) and (28) were calculated for the
system silochrome 80–Wood’s alloy for the chosen val-
ues of the average radius R = 22 nm, variance δ/R = 0.1,
and q = 0.7 (ϕ = 0.6 for S80), and δσ = 0.15. The char-
acteristic points p1, 2, 4, 5 of the given dependence are
presented in the table. Within the limits of experimental
error, they should agree with the experimental results.
These same parameters were used to calculate the vol-
ume V0 of the metal remaining in the silochrome S80.

As one can see from the table, the computed values
agree with the experimentally obtained values within a
10% error range. Similar dependences for the system
S120–Wood’s alloy describe the experimental data
within the limits of error for the parameters R = 11 nm,
δ/R = 0.2, q = 0.7 (ϕ = 0.65 for S120), and δσ = 0.15.
The values of the characteristic pressures and the resid-
ual volume V0 (see table) also agree.

The observed decrease of the characteristic pres-
sures with preheating of silochromes can be explained
using the expressions (12), (18), (19), (24), (28), and
(29) by a decrease in the surface energy δσ. Then,
according to Eq. (21), the volume of the remaining
metal should increase as δσ decreases. This is in fact
observed in experiments with the silochromes S80 and
S120. The computed values of the pressures and the
volumes of the remaining metal V0 agree to within the
error limits with the experimentally established values
for both experimental systems after preliminary heat-
ing with the new value δσ = 0.14 (see table). We note
that in additional experiments with other values of the
heating temperature of silochromes and with sorption
of various molecules, substantial changes in V0 were
observed from V0 = 0 to V0 = 1/ρ and the corresponding
dependences (18) and (19) of the changes in the char-
acteristic pressures.

The phenomenon of nonoutflow of the nonwetting
liquid is attributed to the structure of the pores in a
porous medium [26]. It is assumed that large pores sur-
rounded by smaller pores exist in a porous medium.

V p( ) 1
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R1 p( )

R2 p( )

∫=

V0
1
ρ
--- f R( )

4
3
---× πR3 R.d

0

Rn

∫=
JOURNAL OF EXPERIMENTAL
Then they can be filled at the Laplace pressure for small
pores. As pressure subsequently decreases, first small
pores are freed of liquid, while liquid should remain in
the large pores. It is obvious that assuming such a pore
structure makes it impossible to explain the observed
strong change (from 0 to 1/ρ) in the volume of the metal
remaining in the porous medium accompanying a
change in the surface energy.

The dependences presented in Fig. 3 and the data in
the table were obtained at temperature T = 450 K. Addi-
tional experiments at temperature T = 400 K have
shown that the dependences V(p) are the same as those
obtained at T = 450 K. This corresponds to previous
estimates of the change in the energy barrier and prob-
ability of a fill (outflow) liquid for the metal–porous
medium system studied with pore size R ~ 10 nm. For
systems with δσ ~ 0.01 J/m2 and R ~ 10 nm, with a
pressure change δp/p ~ δ/R (δ is the variance of the pore
radii) the quantity δA is approximately 0.01 eV and is
comparable to the temperature. In this case the volume
of the system should depend on the temperature in the
range T = 100–1000 K.

As follows from Eqs. (7), (17), and (19), the work of
formation of a cluster of empty pores is positive for
pores with radius R < R0, since for pores with small
radius an increase of the fluctuation energy accompa-
nying the formation of miniscuses of liquid is not com-
pensated by a decrease in this energy when the interface
between the liquid and the porous medium vanishes.
This is why a nonwetting liquid does not flow out. The
pressure at which the conditions for percolation transi-
tions for filling and outflow of liquid are satisfied also
depends on the ratio between σm and δσ. However,
these dependences are different, since the work of for-
mation of a fill fluctuation is determined by the sum and
not the difference of the interfacial energy and the
energy of the miniscuses of liquid. Consequently, anal-
ysis of the work of formation of fluctuations without
any assumptions about the special geometric structure
of pores is sufficient to explain the hysteresis.

We note that although the above analysis of fluctua-
tions agrees with the conventional approach to the
description of the kinetics of a first-order phase transi-
tion, the nature of the hysteresis is fundamentally dif-
ferent. Hysteresis in a first-order phase transition is
attributed to the nonlinear dependence of δA on the
number of particles in a nucleus and the metastable
states which arise as a consequence of this. In the sys-
tem under study, because the pore space is limited, fill
fluctuations grow by attachment of other pores to a
cluster (fractal). This results in a linear dependence of
the work δA on N. The above analysis of the stability of
the fluctuations makes it possible to establish only the
critical pressure at which δA ~ T, and the hysteresis of
filling–outflow of the liquid is due to the different work
δA of formation of fluctuations in different initial states
of the system.
 AND THEORETICAL PHYSICS      Vol. 91      No. 1      2000



INVESTIGATION OF THE PERCOLATION TRANSITION 181
In summary, the experiments performed with
porous media with different pore sizes and surface
energy as a result of heat treatment have shown that the
proposed model of the inflow and outflow of a nonwet-
ting liquid satisfactorily describes all experimental data
obtained. Specifically, it is possible to describe in a
consistent manner the hysteresis of inflow and outflow
of liquid and the nonoutflow a nonwetting liquid. In
accordance with this model the instability of inflow and
outflow fluctuations of a nonwetting liquid in a porous
medium with a pore-size distribution is manifested
under conditions of a percolation transition, where the
size of clusters of filled pores is spatially limited by the
correlation length ξ, which approaches infinity as the
fraction of pores which are either accessible to the liq-
uid or can be freed of the liquid increases up to the crit-
ical value ϑc.
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Abstract—We prove that two kinds of coupled TM–TE focus wave modes can propagate in a biisotropic
medium, and we consider what happens when a TM or TE focus wave mode impinges from a vacuum on a
slab made of a biisotropic material. We get the amplitudes of the reflected and refracted waves in a chiral slab.
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1. INTRODUCTION

Some years ago, new solutions for Maxwell’s equa-
tions called focus wave modes (FWM) were discovered
[1, 2] with the property to be distortion-free. It was
expected that these waves, able in theory to carry elec-
tromagnetic energy at large distances, could replace
lasers or radars in some situations. However, at the
same time, new chiral materials were developed [3, 4]
that improved the furtivity of targets. Thus, a natural
question arises: what happens when an FWM impinges
on a chiral target? Part of the incident wave is reflected
and part is refracted inside the target, but in what pro-
portion?

To answer this question is a difficult task, and in this
work we assume that the incident field is a TM or TE
monochromatic FWM since in this case Maxwell’s
equations do not depend on one coordinate, making
calculations easier. In a vacuum, TM and TE fields
propagate separately; however, in a biisotropic
medium, one may expect that chirality will couple
these two components of the electromagnetic field. We
first need to discuss this point before looking for the
amplitudes of the reflected and refracted waves.

For an incident monochromatic field, one may
neglect the dependence of ε, µ, β, permittivity, perme-
ability, and chirality on frequency so that the constitu-
tive relations in a chiral medium are [5–7]

(1)

(1a)

Here, E, D, B, H are the usual components of the elec-
tromagnetic field.

D εE iβB+ qE iµβH, i+ 1– ,= = =

H µ 1– B iβE+ n 2– qB iµβD+( ),= =

n2 εµ, q ε µβ2.+= =

¶This article was submitted by the authors in English.
1063-7761/00/9101- $20.00 © 0182
2. COUPLED TM–TE FIELDS 
IN BIISOTROPIC MEDIA

TM and TE fields do not depend on one coordi-
nate (say y), and we can write Maxwell’s equations

(2a)

(2b)

with the additional divergence equations

(3)

We start with the harmonic plane wave solutions of
Eqs. (2) and (3).

2.1. Coupled TM–TE Plane Waves

Leaving aside the harmonic term exp(ikct) and sub-
stituting Eq. (1) into Eq. (2a) and (2b) give

(4a)

and

(4b)

∂zHy c 1– ∂tDx,–=

∂xHy c 1– ∂tDz,=

c 1– ∂tBy ∂xEz ∂zEx,–=

∂zEy c 1– ∂tBx,=

∂xEy = c 1– ∂tBx,–

c 1– ∂tDy ∂zHx ∂xHz–=

∂xDx ∂zDz+ 0, ∂xBx ∂zBz+ 0.= =

∂z Hy iβEy+( ) ik Dx iβBx–( )– ikεEx,–= =

∂x Hy iβEy+( ) ik Dz iβBz–( ) ikεEz,= =

ikµ Hy iβEy–( ) ∂xEz ∂zEx,–=

∂z qEy iµβHy–( ) = ik qBx iµDx+( ) = ikn2Hx,

∂x qEy iµβHy–( ) = ik qBz iµβDz+( )–  = ikn2Hz,–

ik qEy iµβHy+( ) = ∂zHx ∂xHz,–
2000 MAIK “Nauka/Interperiodica”



EXCITATION OF COUPLED TM–TE FOCUS WAVE MODES 183
while the divergence equations become

(5)

which implies

(5a)

From (4a) and (5a), we get for the component Ex two

equations in which ∆ =  + ,

(6)

Successively eliminating iβEy and Hy from these rela-
tions, we obtain

(7)

Similarly, we deduce from (4b) and (5a)

(8)

and the successive elimination of qEy and µβHy gives

(9)

Then, eliminating successively ∂zHy and ∂zEy from (7)
and (9), we get two equations:

(10)

Changing ∂z into ∂x and Ex, Hx into –Ex , eEz would sup-
ply similar relations for the pair (Ez, Hz) in relations
(6)–(10).

We now assume that Hx and Ex are the solutions to
the scalar Helmholtz equation in which m is to be deter-
mined

, (11)

and substituting (11) into (10) gives the homogeneous
system of equations

(12)

with a nontrivial solution if its determinant is zero,
which requires

(13)

q ∂xEx ∂zEz+( ) iµβ ∂xHx ∂zHz+( )+ 0,=

iµβ ∂xEx ∂zEz+( ) µ ∂xHx ∂zHz+( )– 0,=

∂xEx ∂zEz+ 0, ∂xHx ∂zHz+ 0.= =

∂x
2 ∂z

2

ikµ∂z Hy iβEy+( ) k2n2Ex,=

ikµ∂z Hy iβEy–( ) ∂x∂zEz ∂z
2Ex– ∆Ex.–= =

2ikµ∂zHy ∆ n2k2–( )Ex,–=

2kµβ∂zEy ∆ n2k2+( )Ex.–=

ik∂z qEy iµβHy–( ) k2n2Hx,–=

ik∂z qEy iµβHy+( ) ∂z
2Hx ∂x∂zHz– ∆Hx= =

2ikq∂zEy ∆ k2n2–( )Hx,=

2kµβ∂zHy ∆ k2n2+( )Hx.–=

∆ k2n2+( )Hx iβ ∆ n2k2–( )Ex+ 0,=

iµβ ∆ k2n2–( )Hx q ∆ n2k2+( )Ex– 0.=

∆ k2m2+( )Ex Hx, 0=

n2 m2–( )Hx iβ n2 m2+( )Ex– 0,=

iµβ n2 m2+( )Hx q n2 m2–( )Ex+ 0=

g n2 m2–( )
2 µβ2 n2 m2+( )2

– 0=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
or using the definition (1a) of q

(3a)

with the solutions

(14)

This implies, as expected [6], that two kinds of coupled
TM–TE harmonic plane waves can propagate in a
biisotropic medium.

We can derive explicitly the plane wave solutions of
Eqs. (4a) and (4b). One of the components Ex, z or
Hx, z (say Ex) is an arbitrary solution of the Helmholtz
equation (11) so that, for a harmonic plane wave with
amplitude A propagating in a direction making the
angle u with oz, Ex is

(15)

where m is one of the two solutions (14). The phase Ωp

satisfies the characteristic equation

(16)

Then, Hx is obtained from (12)

, (17)

while from the first equation of the systems (7) and (9)
we obtain

(18)

Finally, Ez and Hz are deduced from the divergence
equations (5a):

(18a)

The relations (15), (17), (18), and (18a) give the com-
ponents of the coupled TM–TE electromagnetic plane
waves in a biisotropic medium.

2.2. Coupled TM–TE Focus Wave Modes

With the subscript j taking the values 1, 2, 3 for the
respective coordinates x, y, z, the TM–TE FWMs have
the form [8]

(19)

ε n2 m2–( )
2

4µβ2n2m2– 0=

εm
2 ε 2µβ2+( )n2 2n2β µq( )1/2±=

or

m2 µβ µq( )1/2±[ ]2
.=

Ex A ikΩp( ),exp=

Ωp ct m x u z ucos+sin( ),–=

∂zΩp( )2 ∂zΩp( )2 m2c 2– ∂tΩp( )
2

–+ 0.=

Hx iβ n2 m2+( ) n2 m2–( ) 1–
Ex=

2µmHy ucos m2 n2+( )Ex,=

2qmEy ucos m2 n2+( )Hx.=

Ez Ex u, Hztan– Hx u.tan–= =

E j e j ikΩ( ), H jexp h j ikΩ( ),exp= =

Ω ct Z– gX2,–=
SICS      Vol. 91      No. 1      2000



184 HILLION
in which the amplitudes ej , hj depend on x, z, t, and

(19a)

where a is a pure imaginary parameter, while m is still
given by (14) since the phase Ω must be a solution [9]
to the characteristic equation (16). Simple calculation
gives

(20)

Substituting Eq. (20) into Eq. (16) proves the state-
ment.

We now assume the frequency kc in Eq. (19) is large
enough to make the derivatives of ej and hj negligible
with respect to the derivatives of kΩ (high-frequency
approximation). Then, using Eq. (20), we find that 

(21)

Substituting Eq. (19) into Eqs. (2) and (3); using
Eqs. (1) and (21); and deleting exp(ikQ), the Maxwell
equations become

(22a)

(22b)

while we obtain 

(23)

for the divergence equations, implying wxex + wzez = 0,
wxhx + wzhz = 0.

According to Eq. (15), the components of the wave
vector for plane waves are wx = –msinu and wz =
−mcosu with w0 = 1; then, Eqs. (22a), (22b) reduce to
Eqs. (4a), (4b) so that changing –msinu, –mcosu into
wx/w0, wz/w0 in the expressions of the TM–TE plane
waves supplies the coupled TM–TE FWMs. Thus, from
Eqs. (18), (18a), we find that 

(24a)

Z m x usin z ucos+( ),=

X m x u z usin–cos( ),=

g a ct Z+ +( ) 1– ,=

wx ∂xΩ≡ m 1 g2X2–( ) u 2mgX u,cos–sin–=

wz ∂zΩ≡ m 1 g2X2–( ) u 2mgX u,sin+cos–=

w0 c 1– ∂tΩ≡ 1 g2X2.+=

∂lE j ikwlE j, ∂lH j ikwlH j,= =

∂l ∂ ∂l, l⁄ 1 3,,= =

c 1– ∂tE j ikw0E j, c 1– ∂tH j ikw0H j.= =

wz hy iβey+( ) εw0ez,–=

wx hy iβey+( ) εw0ez,=

w0µ hy iβey–( ) wxez wzex,–=

wz qey iµβhy–( ) n2w0hx,=

wx qey iµβhy–( ) n2w0hz,–=

w0 qey iµβhy+( ) wzhx wxhz,–=

q wxex wzez+( ) iµβ wxhx wzhz+( )+ 0,=

iµβ wxex wzez+( ) µ wxhx wzhz+( )– 0=

Ez wxEx wz, Hz⁄– wxHx wz,⁄–= =
JOURNAL OF EXPERIMENTAL
(24b)

However, the arbitrary component Ex is now a solution
to the wave equation (that reduces to Eq. (11) for plane
waves)

, (25)

and we choose for Ex a scalar FWM that is [8]

(26)

in which the amplitude A is multiplied by g1/2 [where g
is the function (19a)]. Expression (17) for Hx is for-
mally unchanged, leading to

(26a)

Successively substituting the two solutions (14) m+ and
m– into Eqs. (24), (26), and (26a) gives the expressions
for the two kinds of coupled TM–TE FWMs propagat-
ing in a biisotropic medium.

3. EXCITATION 
OF COUPLED TM–TE FOCUS WAVE MODES

From now on, the index s (used as subscript or
superscript for convenience) takes the values 0 and 2
(for the incident and reflected fields in vacuum) and 1+
and 1–) for the refracted fields in the chiral medium, the
plus and minus signs corresponding to the two solu-
tions (14)).

We first have to give the expression of the incident
TM–TE FWMs. In a vacuum, these fields propagate
separately and for the TM field, assuming ε = µ = 1,
β = 0, the Maxwell equations (2a) become 

(27)

For , we take a scalar FWM with amplitude A0 and
angle of incidence u0

(28)

(28a)

Substituting Eq. (28) into (27) and using the high-fre-
quency approximation immediately gives

(29)

2µwzHy m2 n2+( )w0Ex,–=

2qwzEy m2 n2+( )w0Hx.=

∂x
2 ∂z

2 m2c2∂t
2–+( )Ex 0=

Ex Ag1/2 ikΩ( ),exp=

Hx iβ n2 m2+( ) n2 m2–( ) 1–
Ex=

=  iq n2 m2–( ) n2 m2+( ) 1–
Ex µβ.⁄

∂zHy
0 c 1– ∂tEx

0,–=

∂xHy
0 c 1– ∂tEz

0,=

c 1– ∂tHy
0 ∂xEz

0 ∂zEx
0.–=

Hy
0

Hy
0 A0g0

1/2 ik0Ω0( ), Ω0exp ct Z0– g0X0
2,–= =

Z0 x u0 z u0,cos+sin=

X0 x u0 z u0,sin–cos=

g0 a ct Z0+ +( ) 1– .=

Ex
0 wz

0Hy
0– w0

0, Ez
0⁄ wx

0Hy
0 w0

0⁄= =
 AND THEORETICAL PHYSICS      Vol. 91      No. 1      2000



EXCITATION OF COUPLED TM–TE FOCUS WAVE MODES 185
with

(29a)

Similarly, for a TE FWM with amplitude B0,

(30)

We now assume that one these two FWMs impinges
on the face of a chiral slab located in the z = 0 plane.
Our first task is to get the conditions for reflection and
refraction.

3.1. Conditions for Reflection and Refraction

The conditions for reflection and refraction are
obtained by imposing the continuity of the transverse
component kx = k∂xΩ of the wave vector [10]. Since the
parameter a in Ω is arbitrary, we make the calculations
easier by assuming a = 0 so that, according to Eqs. (19)
and (19a),

(31)

Simple calculation gives

(31a)

Let us now look at conditions for reflection: in a vac-
uum, m = 1 and, with the previous convention on the
index s, we have u = u0 and u = u2 for the incident and
reflected fields. In addition, we do not assume a priori
the equality of the frequencies k0c and k2c. Then, using
Eq. (31), the continuity of (k∂xΩ)z = 0 gives

(32)

implying the usual Descartes–Snell relations:

(32a)

The situation is somewhat different for refraction, and
we first shift the coordinate x to x' inside the slab. At this
point, it is not necessary to show a difference between
the two solutions m+ and m–, so we note k1c and u1 (the
frequency and the angle of refraction). Then, still using

wx
0 1 g0

2X0
2

–( ) u0 2g0X0 u0,cos–sin–=

wz
0 1 g0

2X0
2

–( ) u0 2g0X0 u0,sin+cos–=

w0
0 1 g0

2X0
2
.+=

Ey
0 B0g0

1/2 ik0Ω0( ),exp=

Hx
0 wz

0Ey
0 w0

0, Hz
0⁄ wx

0Ey
0 w0

0.⁄–= =

Ω ct Z– X2 ct Z+( )
1–

–=

=  c2t2 m2 x2 z2+( )–[ ] ct mx u mx ucos+sin+[ ] 1– .

∂xΩ( )z 0= 2xm2 ct mx usin+( ) 1––=

– m c2t2 m
2
x2–( ) ct mx usin+( ) 2– u.sin

2k0x ct x u0sin+( ) 1–

+ k0 c2t2 x2–( ) ct x u0sin+( ) 2– u0sin

=  2k2x ct x u2sin+( ) 1–

+ k2 c2t2 x2–( ) ct x u2sin+( ) 2– u2,sin

k2 k0, u2sin u0 u2 π u0–=( ).sin= =
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Eq. (31a), the continuity of (k∂xΩ)z = 0 supplies the rela-
tion

(33)

This relation seems very intricate, but one can easily
check that Eq. (33) yields conditions

(33a)

that are very different from the Descartes–Snell law: the
refracted FWM undergoes a jump frequency k0  k1
(a Göos–Hanken-like shift x  x'), but it propagates
in the direction of the incident FWM. Note that the
refractive index m generally depends on frequency, so
the jump condition may be written as ω0 = ω1m(ω1) and
total reflection happens when this equation has no solu-
tion. In theory, it would be possible to choose the fre-
quency of the incident field in a way that none, one, or
both of the FWMs can propagate in a chiral slab.

We need the expressions on the interface z = 0 of the
phase Ω, its derivatives, and the form of the attenuation
factor g. Using conditions (32a) and (33a) for reflection
and refraction and taking into account that the phase Ω1
is defined with respect to the x' coordinate, we easily
get 

(34)

from Eqs. (19) and (19a) with the parameters of the
incident field and restoring a

(34a)

Similarly, we get 

(35)

from Eq. (20a) with

(35a)

We have now all the elements to discuss the excitation
of coupled TM–TE FWMs in a chiral slab.

2k0x ct x u0sin+( ) 1–

+ k0 c2t2 x2–( ) ct x u0sin+( ) 2– u0sin

=  2k1m2x' ct mx' u1sin+( ) 1–

+ mk1 c2t2 m2x'2–( ) ct mx' u1sin+( ) 2– u1.sin

u1 u0, mk1 k0, mx' x–( )z 0= 0= = =

k0Ω0( )z 0= k2Ω2( )z 0= mk1Ω1( )z 0= Σ,= = =

g0 g2 g1= =( )z 0= G=

Σ k0 ct x u0 Gx2 u0cos–sin–( ),=

G a ct x u0sin+ +( ) 1– .=

wx
0( )z 0= wx

2( )z 0= wx
1( )z 0= V x,= = =

wz
0( )z 0= wz

2( )– z 0= wz
1( )z 0= Vz,= = =

w0
0( )z 0= w0

2( )z 0= w0
1( )z 0= V0= = =

V x 1 G2x2 u2
0cos–( ) u0 2Gx u2

0,cos–sin–=

Vz 1 G2x2 u2
0 2Gx u0sin+cos–( ) u0,cos–=

V0 1 G2x2 u0.cos+=
SICS      Vol. 91      No. 1      2000



186 HILLION
3.2. Excitation by an Incident TM Focus Wave Mode

The amplitudes of the reflected and refracted FWMs
(Fresnel coefficients) are obtained by imposing the
continuity of the tangential components of E and H on
the interface z = 0, that is, with the previous convention
on the index s:

(36)

For an incident TM FWM, these conditions become

(37a)

(37b)

(37c)

(37d)

So, an incident TM FWM generates TM- and
TE-reflected FWMs. Now, to satisfy Eq. (37), we need
the expressions of the tangential components of the
electromagnetic field on z = 0; for sake of simplicity,
we introduce the functions with Σ and G given by (34a)

(38)

in which m+ and m– are the two solutions (14) for m.
Then, taking into account Eqs. (34), (35), and (38)

for the incident and reflected fields, we get 

(39)

from Eqs. (28), (29), and (30).
Taking A = VzC/V0 as the amplitude in Eq. (26) and

still using Eqs. (34), (35), and (38), we get from (24),
(26), and (26a) 

(40)

with

(40a)

H0 H2 H
1+ H

1–––+( )x y,[ ] z 0= 0,=

E0 E2 H
1+ H

1–––+( )x y,[ ] z 0= 0.=

H0 H2 H
1+ H

1–––+( )y[ ] z 0= 0,=

H2 H
1+ H

1–––( )x[ ] z 0= 0,=

E2 E
1+ E

1–––( )y[ ] z 0= 0,=

E0 E2 E
1+ E

1–––+( )x[ ] z 0= 0.=

P G1/2 iΣ( ),exp=

Q± G1/2 iΣ m±( ) 1–[ ] ,exp=

Hy
s( )z 0= AsP, Ey

s( )z 0= BsP, s 0 2,,= = =

Ex
0( )z 0= VzA0P V0,⁄–=

Ex
2( )z 0= VzA2P V0,⁄=

Hx
0( )z 0= VzB0P V0,⁄=

Hx
2( )z 0= V– zB2P V0⁄=

2µ H
1+( )y[ ] z 0= n2 m+

2+( )C1+
Q+,–=

2µβ E
1+( )y[ ] z 0= i n2 m+

2–( )C1+
Q+,=

E
1+( )x[ ] z 0= VzC1+

Q+ V0,⁄=

µβ H
1+( )x[ ] z 0= iqr+VzC1+

Q+ V0⁄=

r+ n2 m+
2–( ) n2 m+

2
+( )

1–
.=
JOURNAL OF EXPERIMENTAL
Changing the plus sign into a minus sign in Eqs. (40)
and (40a) gives the expressions on the interface z = 0 of
the second refracted field. The relations (39) and (40)
depend on four unknown amplitudes (A2, B2, , ),
while A0 is the amplitude of the incident TM FWM and
B0 = 0. Substituting Eqs. (39) and (40) into (37) and
respecting the lexicographic order, we obtain

(41a)

(41b)

(41c)

(41d)

Summing and subtracting Eqs. (41a) and (41c) gives
(due to the fact that n2 = εµ)

(42a)

(42b)

substituting Eq. (41a) into (42a) gives

(43a)

while from Eqs. (41d) and (42b), we obtain

(43b)

finally, substituting Eq. (43b) into (41b) gives

(44)

From Eqs. (43) and (44), we get in terms of A0 the
amplitudes A2 and B2 of the reflected TM–TE FWMs; as
expected, they do not depend on the functions P or Q±.
Then, the amplitudes  and  of the refracted cou-
pled TM–TE FWMs are obtained from Eq. (43b) as
function of the phases P/Q±, that is, according to Eq. (38)
of exp[iΣ(1 – 1/m±)] with Σ given by Eq. (34). We refrain
from giving the rather intricate expressions of A2, B2, and

; however, it is clear that the Fresnel coefficients for

C1+
C1–

2µ A0 A2+( )P n2 m+
2+( )C1+

Q++

+ n2 m–
2+( )C1–

Q– 0,=

iµβq 1– B2P r+C1+
Q+– r–C1–

Q–– 0,=

2iµβB2P n2 m+
2–( )C1+

Q++

+ n2 m–
2

–( )C1–
Q– 0,=

A0 A2–( )P C1+
Q+ C1–

Q–+ + 0.=

A0 A2 iβB2+ +( )P ε C1+
Q+ C1–

Q–+( )+ 0,=

µ A0 A2 iβB2–+( )P m+
2C1+

Q+ m–
2C1–

Q–+ +  = 0;

A0 1 ε–( ) A2 1 ε+( ) iβB2+ + 0;=

m+
2 m–

2–( )C1–
Q–

=  A0 µ m+
2–( ) A2 µ m+

2+( ) iµβB2+ +[ ]P,

m–
2 m+

2–( )C1+
Q+

=  A0 µ m–
2–( ) A2 µ m–

2+( ) iµβB2+ +[ ]P;

iµβ r– r+– q 1– m–
2 m+

2–( )+[ ] B2

=  A0 r+ µ m–
2–( ) r– µ m+–( )2–[ ]

+ A2 r+ µ m–
2+( ) r– µ m++( )2–[ ] .

C1+
C1–

C1±
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the excitation of coupled TM–TE FWMs in a chiral
slab are amenable to analytical calculations.

Exchanging the previous results Hy and Ey; Hx, Hz

and –Ex, –Ez; A0, A2 and B0, B2 gives the reflected and
refracted TM–TE FWMs excited by an incident TE
FWM.

4. DISCUSSION

Some of the results obtained in this work for TM
and TE FWMs are easily extended to arbitrary electro-
magnetic FWMs, for instance, the propagation of two
kinds of FWMs in a biisotropic medium. Now, the phase
of FWMs is a nonlinear function of space and time. This
implies refraction conditions very different from Des-
cartes–Snell conditions making things easier since
FWMs undergo only a jump frequency and a lateral
shift with propagation in the direction of the incident
field; these properties hold for any incident FWM.

To get the amplitudes of the waves excited inside a
chiral medium by an incident FWM, we had to use the
high-frequency approximation so that Maxwell’s equa-
tions formally take the same aspect as that for harmonic
plane waves, except that now the wave vector is a func-
tion of space and time. The same approximation also
works for a general FWM, but the calculations are a bit
more intricate.

FWMs and plane waves share the same status: both
propagate in all space for –∞ < t < +∞, and stricto sensu
no physical FWM exists (no more than physical plane
waves). In both cases, one has to be satisfied with prac-
tical realizations giving a good approximation of these
mathematical solutions in some bounded region of
space–time. Many works have been devoted to the gener-
ation of approximate FWMs [11–15] with experimental
settings in acoustics [16, 17] (but apparently not in electro-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
magnetism yet) of beams having a less dispersion than
usual Gaussian beams [18]. The author believes that, in
the future, approximate electromagnetic FWMs will be
generated, leading to practical applications.
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Abstract—Using the effective transfer matrix for coupled elastic and spin waves, formulas are derived for the
amplitudes of reflection and transmission of right-hand polarized elastic waves incident, in a direction along the
normal, on a transversely magnetized ferromagnetic film with homogeneous conditions for pinning of the spins
on the surfaces of the film. It is shown that a series of lines with reflectance maxima appears, to the extent of
the magnetoelastic coupling, near the magnetoacoustic resonance. The shapes of the spectral line contours and
the effect of the thickness of the film and damping are analyzed. The possibility of a similar effect in other
polariton systems is discussed. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The resonance properties of thin magnetic films and
multilayer structures are substantially determined by the
boundary conditions for resonant fields at an interfacial
surface. The electrodynamic and exchange boundary con-
ditions, including surface anisotropy effects, determine
the magnetostatic spectrum and the spin-wave resonance
spectrum of films [1–3]. The mechanical conditions at the
surface are important for magnetoacoustic resonance
[1, 5].

The resonance properties of films are especially
striking in the reflection and transmission amplitude
spectra for different types of waves interacting with the
magnetic subsystem of a film. A theoretical calculation
of the reflection and transmission coefficients is diffi-
cult to perform in general because of many geometric and
structural factors, such as the angle of incidence, direction
and magnitude of the external magnetic field, the magne-
tization, the values of the anisotropy constants, the exist-
ence of several sublattices, different branches of the exci-
tation spectrum, dissipative processes and so on, each of
which leads to unique effects and is manifested individ-
ually most strongly only in a definite simplified situa-
tion.

Narrow—with respect to frequency, magnitude, and
orientation of the external magnetic field—lines of non-
dissipative tenfold reduction of the transmission ampli-
tude of longitudinal elastic waves through a plate of the
antiferromagnet KMnF3 in the nuclear magnetoacoustic
resonance frequency range have recently been observed
in [4, 5]. In [4, 5] this effect was attributed to the mutual
interference quenching of two characteristic magnetoa-
coustic waves, if their phase difference at the exit from
the plate is a multiple of π. The theory of resonance
between elastic and nuclear spin waves in two sublat-
tice antiferromagnets requires a complicated symmetry
1063-7761/00/9101- $20.00 © 20188
and quantitative analysis. In [4, 5] such an analysis was
performed only for one frequency of intersection of the
resonating branches.

On the other hand, in our view, the total nondissipa-
tive reflection under conditions where an externally
incident wave is coupled with the wave of characteristic
elementary excitations of the film is to some extent physi-
cally a general effect. Consequently, in the present paper a
simpler and well-studied [1, 3] related system will be
examined—the problem of the reflection of an elastic
circularly polarized wave, incident in a direction along
the normal on a ferromagnetic film magnetized in a
direction perpendicular to the surface, is presented.

In such a geometry the right- and left-hand spiral
circular variables separate in the equations of motion of
the magnetoelastic waves as well as in the boundary
conditions describing the partial or total surface pinning
of the spins. Depolarization phenomena such as the acous-
tic Faraday effect are absent. As a result, expressions for
the reflection and transmission coefficients will be
obtained analytically and analyzed numerically. We shall
show that a series of narrow total resonance reflection
lines, which become smeared when the damping of
waves in the film is taken into account, appears, to the
extent of the magnetoelastic coupling, near the magne-
toacoustic resonance. These lines are superposed on an
ordinary half-wave resonance transmission comb [6]. The
total-reflection resonance conditions include, besides the
obvious trigonometric factors, the parameters of coherent
coupling of partial waves, which depend strongly on
the frequency and other physical quantities, and they do
not reduce to a resonance condition presented in [4, 5].
This is because we take into account successively the
existence of reflected waves in the film and the condi-
tions of surface pinning of the spins on the incident and
transmitted wave sides. In our case all partial waves are
plane monochromatic waves. We shall discuss only
000 MAIK “Nauka/Interperiodica”
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briefly, and qualitatively, the effects which can appear
with the use of short pulses such as those used in the
experiment of [4, 5].

As will be clear from the derivation, the significance
of the results obtained is not limited by the specific
phonon-magnon system mentioned in the title. The for-
mulas derived below for the reflection and transmission
coefficients have a general physical meaning, and they
substantially generalize the well-known formulas for the
reflection of a wave, not necessarily of an elastic nature,
incident in a direction along the normal on a plate to the
case where polariton coupling of the externally incident
wave with a branch of characteristic wave oscillations
occurs in the plate under conditions of total or partial
pinning of the internal wave field on the surface of the
plate.

2. REFLECTION
AND TRANSMISSION COEFFICIENTS

Let us consider the standard one-dimensional scat-
tering problem. Let the x axis be perpendicular to a uni-
form plate, which occupies the region 0 ≤ x ≤ a. Inci-
dent and reflected monochromatic plane waves with
frequency ω and wave number k are present to the left
(x < 0) of the plate:

(1)

the time factor eiωt is omitted, and a transmitted wave

(2)

is present to the right of the plate (x > a).

For acoustic elastic waves u is the solution of the
wave equation from the theory of elasticity:

(3)

where v is the speed of sound in the medium outside
the plate, i.e., k = ω/v. The boundary conditions on the
plate surfaces x = 0 and x = a require continuity of u and
its derivative u' = du/dx. It is convenient to use the trans-
fer matrix (propagator) M to describe the procedure for
matching the solutions. This matrix relates the values of
the column vector of the state

at the boundaries of the layer [7–9]

(4)

The transmittance T = |t |2 and reflectance R = |r |2 can
be expressed in terms of the elements of an effective

u eκx re κx– , κ+ ik= =

u teκ x a–( )=

v 2

x2

2

d

d ω+ 
  u 0,=

Ψ x( ) u x( )
u' x( ) 

 =

Ψ a( ) MΨ 0( ).=
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two-dimensional matrix of a transition through the
plate:

(5)

using formulas for the amplitudes

(6)

If the incident wave arrives on the right-hand side from
the region x > a, then the amplitudes are given by the
expressions

(6a)

3. TRANSFER MATRIX

To obtain a two-dimensional transfer matrix M for
passage through the plate it is necessary to take account
of the fact that the propagation of the field u inside the
plate is described by a system of coupled wave equa-
tions which originate from the equations of motion of
the internal degrees of freedom (for a ferromagnetic
plate these are the equations of the theory of elasticity,
coupled with the Landau–Lifshitz equations [1, 3]).
The dimension of the transfer matrix in a plate is deter-
mined by the general order of the system of differential
equations and by the number of coupled partial waves.
However, for all additional internal degrees of freedom
pinning boundary conditions must be imposed at the
surfaces. They give relations between the partial ampli-
tudes and make it possible to construct a transfer matrix
of lower degree, sufficient for matching at the bound-
aries the solutions corresponding only to an external
scattered field. This technique was used in [7], which
concerned the propagation of elastic waves in a system
of piezoelectric crystal layers with surface pinning of
the electric or magnetic field. Here we shall also con-
sider the very simple case where an interaction of the
scattered wave with only one branch of the characteris-
tic oscillations is present in the plate, but in contrast to
[7] these oscillations propagate along the x axis and are
not surface waves. This situation can occur in a uniaxial
ferromagnetic plate magnetized in a direction perpen-
dicular to the surface. In this case the following system
of equations describes the propagation of right-hand
spiral circular monochromatic plane wave components

Meff L0
1– M 1– L0

Meff( )11 Meff( )12

Meff( )21 Meff( )22 
 
 

,≡=

L0
1 1

κ κ– 
 
 

=

t
1

Meff( )11

------------------, r
Meff( )22

Meff( )11

------------------.= =

tr

det Meff( )
Meff( )11

---------------------, rr

Meff( )12

Meff( )11

------------------.–= =
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Fig. 1. (a) Spectrum of magnetoacoustic waves near the bottom magnetoacoustic resonance point; (b) relative coherent coupling
parameter.
of the elasticity field u and magnetization m along the
X axis [1, 3]:

(7)

(8)

where vt is the speed of sound in the plate, ωH = gH0 is
the ferromagnetic resonance frequency, H0 is the mag-
netic field intensity, g is the magnetomechanical ratio,
η is the effective exchange constant, B is the magne-
toelastic coupling constant, M0 is the magnetization,
and ρ is the density of the plate. The homogeneous
exchange boundary conditions for surface pinning have
the form [1–3]

(9)

where m' = dm/dx, and h and  are the pinning param-
eters. The characteristic equation

(10)

gives four roots describing the repulsion of the branches
(Fig. 1a):

(11)

Z1 ∆1

∆2 Z2 
 
  u

m 
 
 

0,=

Z1 k( ) ω2 v t
2k2, ∆1 k( )– ik

B
ρM0
-----------,–= =

Z2 k( ) ω ωH ηk2+( ), ∆2 k( )– ikgB,= =

m hm'+( )x 0= 0, m h̃m'+( )x a= 0,= =

h̃

Z1Z2 ∆1∆2 k2 k10
2–( ) k2 k20

2–( ) k2b2–≡– 0,=

k10
2 ω ωH–

η
-----------------, k20

2 ω
v t

----- 
  2

, b2 gB2

ρM0ηv t
2

---------------------= = =

k1 2, 0.5B1 0.5B1( )2 B2–+−( )
1/2

,=

k3 4, k1 2, ,–=

B1 k10
2 k20

2 b2+ + k1
2 k2

2,+= =

B2 k10
2 k20

2 k1
2k2

2.= =
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The general solution of the system (7) has the form

(12)

where κj = ikj, Aj are partial amplitudes, and the coher-
ent coupling coefficients lj (j = 1, 2, 3, 4) of m and u
waves are

(13)

The state vector in the plate and the transfer matrix are
four-dimensional. It is convenient to work with two-
dimensional blocks:

(14)

where the transfer matrix in the diagonal representa-
tion is

(15)

u A je
κ j x, m

j 1=

4

∑ l j A je
κ j x,

j 1=

4

∑= =

l j λ j
1–≡

Z1 k j( )
∆1 k j( )
--------------–

∆2 k j( )
Z2 k j( )
--------------, l3 4, l1 2, .–=–= =

Ψ
Ψ' 

 
 

x

LMdiag x( )
A12

A34 
 
 

,=

Aij
Ai

A j 
 
 

, i j, 1 2 3 4,, , ,= =

Mdiag x( )
Md1 x( ) 0

0 Md2 x( ) 
 
 

,=

Mdj x( ) e
κ j x 0

0 e
κ j x–

 
 
 
 

, j 1 2,,= =
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and the diagonalization matrix L is the Van der Monde
matrix

(16)

It is also convenient to introduce the matrices Cj and
Sj = Mdj(a)Cj of the form

(17)

where gj = 1 + hκj,  = 1 – hκj, fj = 1 + κj  and  =

1 – κj . Substituting the expressions (12) into the
boundary conditions (9), we obtain pairwise coupling
of the partial amplitudes

(18)

Separating the block of the first row in Eq. (14), we
have

(19)

Hence, by definitions (4) and (5), we find the desired
effective two-dimensional transfer matrix

(20)

whose determinant is

(21)

L
L1 L2

κ1
2L1 κ2

2L2 
 
 
 

,=

L j
1 1

κ j κ j– 
 
 

, j 1 2.,= =

C j d j
f je

κ ja g j–

f je
κ ja g j– 

 
 
 

, S j d j
f j g je

κ ja–

f j g je
κ ja– 

 
 
 

,= =

d j
1– g j f je

κ ja–
g j f je

κ ja, j– 1 2,,= =

g j h̃ f j

h̃

A34 CA12, C
l1

l2
---C2C1

1– .–= =

Ψ x( ) L1Md1 x( ) L2Md2 x( )C+( )A12.=

Meff Γ cΓ s
1– ,=

Γ c λ1 L̃1C1 λ2 L̃2C2,–=

Γ s λ1 L̃1S1 λ2 L̃2S2,–=

L̃ j L0
1– L j

1
2
---

1 χ j+ 1 χ j–

1 χ j– 1 χ j+ 
 
 

,= =

χ j

κ j

κ
-----

k j

k
----, j 1 2,,= = =

det Meff( ) det M( )
δ̃
δ
--,= =

δ λ1d1 λ2d2–( ) λ1d1k1s1 λ2d2k2s2–( )=

+ h̃ λ1d1k1
2 λ2d2k2

2–( ) λ1d1c1 λ2d2c2–( ),
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where sj = sinkja – hkjcoskja, cj = coskja + hkjsinkja,

j = 1, 2;  is obtained from δ by the substitution h 

− . The transfer matrix is unimodular if  = –h (spe-

cifically, for complete pinning of spins h =  = 0) and
also with completely free spins, when h  ∞ and

  ∞ simultaneously.

4. SPECTRUM OF TRANSMISSION
AND REFLECTION AMPLITUDES

In the absence of coupling of u and m waves, i.e., if
B  0, the frequencies ω0 and wave vectors k0 of a
magnetoacoustic resonance are determined by the

equation  =  =  and are equal to

(22)

where  = /2η. Near the lower resonance point
(k0, ω0)1 the group velocity vm of spin waves is ordi-
narily low compared with the sound velocity: vm/vt .

2ηωH/  ! 1. Near the upper point (k0, ω0)2 they are
of the same order of magnitude, vm/vt . 2η(k0)2/vt ≤ 2.
Between the two resonance frequencies (ω0)1, 2 a sound
wave corresponds, according to Eq. (11), to the upper
branch of the roots k2 = k20(λ1  0, λ2  ∞); below
the bottom and above the upper resonance frequencies
the sound wave corresponds to the lower branch of the
roots k1 = k20(λ1  ∞, λ2  0), and Eqs. (20) and
(6) give well-known formulas for the transmission and
reflection amplitudes of a u wave with wave number k
for a plate

(23)

i.e., there is no reflection, if k = k20 or k20a = nπ (n is an
integer, half-wave plate).

In the presence of appreciable coupling between u
and m waves and for arbitrary values of the pinning

parameters h and  Eqs. (20) and (6) can be used to
obtain the following formulas, which generalize Eq. (23),
for t and r:

(24)

Without writing out the general, complicated expres-
sions for the factors τ and ρ, here we shall consider only

δ̃
h̃ h̃

h̃

h̃

k0
2 k10

2 k20
2

ω0( )1 2, ω 1 1 2ω ω⁄–+−( ),=

k0( )1 2, ω0( )1 2, v t,⁄=

ω v t
2

v t
2

t τ j, r iρ jτ j, j 1 2,,= = =

τ j
1– k ja i

1 χ j
2+

2χ j

-------------- k ja,sin–cos=

ρ j

1 χ j
2–

2χ j

-------------- k ja,sin=

h̃

t δτ , r iρτ .= =
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the important limiting cases (slightly overdetermining
δ in Eq. (21) on account of obvious cancellations):

(i) h =  = 0 (long-wavelength Kittel limit [1, 10] of
rigid pinning of spins on both boundaries):

(25)

(ii) h =  = ∞ (short-wavelength Ament–Rado limit
[1, 11], no pinning of spins on both surfaces)

(26)

(iii) h = 0,  = ∞ (on the left-hand boundary, on the
side of incidence of the u wave, rigid pinning; on the
right-hand boundary—total freedom of the m field):

(27)

(iv) h = ∞,  = 0 (on the left-hand boundary, on the
side of incidence of the u wave, complete freedom, on
the right-hand boundary—rigid pinning of the m field);
in this case τ–1 is given by the same expression and ρ is
given by the expression which is the complex-conju-
gate of Eq. (27), and

(28)

h̃

δ λ1χ1 λ2χ2–( ) λ1 k2a λ2 k1asin–sin( ),=

τ 1– λ1
2χ1τ1

1– k2a λ2
2χ2τ2

1– k1a λ1λ2Φ0,–sin+sin=

ρ λ1
2χ1ρ1 k2a λ2

2χ2ρ2 k1a λ1λ2F0,+sin–sin–=

Φ0 1 α1
*α2

*, F0 1=–
1
2
--- α1

*α2 α1α2
*+( ),–=

α j k ja iχ j k ja, jsin+cos 1 2;,= =

h̃

δ λ1χ1
1– λ2χ2

1––( ) λ1 k2asin λ2 k1asin–( ),=

τ 1– λ1
2χ1

1– τ1
1– k2a λ2

2χ2
1– τ2

1– k1a iλ1λ2Φ∞,+sin+ +sin=

ρ λ1
2χ1

1– ρ1 k2asin– λ2
2χ2

1– ρ2 k1asin λ1λ2F∞,––=

Φ∞ 1 β1
*β2

*, F∞– 1
1
2
--- β1β2

* β1
*β2+( ),–= =

β j k jacos iχ j
1– k ja, jsin+ 1 2;,= =

h̃

δ λ1χ2 λ2χ1–( ) λ1χ1 k2a λ2χ2 k1acos–cos( ),=

τ 1– χ1χ2 λ1
2τ1

1– k2a λ2
2τ2

1– k1acos+cos( ) 1
2
---λ1λ2Φ,–=

ρ χ1χ2 λ1
2ρ1 k2a λ2

2ρ2 k1acos+cos( )–=

+
i
2
---λ1λ2F,

Φ χ1
2 1 β1

*α2
*+( ) χ2

2 1 α1
*β2

*+( ),+=

F χ1
2 1 β1α2

*–( ) χ2
2 1 α1

*β2–( );+=

h̃

δ λ1χ1 λ2χ2–( )=

× λ1χ2 k2a λ2χ1 k1acos–cos( ).
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This difference in δ between Eqs. (27) and (28) is
explained by comparing the left-hand (6) and right-
hand (6a) amplitudes.

5. TOTAL REFLECTION

The transmission coefficient T vanishes in accor-
dance with Eq. (6) when (Meff)11 possesses poles. The
existence of poles in the matrix elements of Meff is due
to the vanishing of the determinant Γs and L0 = –2κ in
the denominators of the elements of the inverse matri-
ces in Eq. (20). It is evident from the expressions
(25)–(28) that in the absence of wave damping a
series of such poles (zeros of the parameter δ) exists
on the real axis ω.

In the absence of magnetoelastic coupling, B = 0,
the condition δ = 0 gives in addition to Eq. (23) the
well-known equation for the spin-wave resonance
spectrum of a plate [2]

(29)

For B ≠ 0, neglecting damping, the condition δ = 0 gives
a discrete spectrum of resonance frequencies of total
magnetoelastic reflection. This spectrum is, evidently,
different from the discrete magnetoelastic resonance
spectrum in a plate for boundary conditions with total
or partial pinning of the elastic field u on the surfaces.

For example, in the case (i) h =  = 0 of rigid pinning
of the field m it follows from Eq. (25) that total reflec-
tion occurs for

(30)

and the spectrum of standing magnetoelastic waves
under the condition of rigid clamping of the boundaries
of the plate u(0) = u(a) = 0 is given by the equation
M12 = 0, i.e.,

(31)

The other pinning conditions change the form but not
the structure of these equations.

The resonance lines of total magnetoelastic reflec-
tion are very narrow, and because of damping they are
localized in a narrow range near the magnetoelastic res-
onance frequencies ω0 [roots (22)]. The width of the
region of strong magnetoelastic reflection is deter-
mined by the ω width of a single maximum near ω0 of

k10atan
k h h̃–( )

1 k2hh̃+
--------------------.=

h̃

λ1k1 λ2k2–( ) λ1 k2a λ2 k1asin–sin( )τ 0,=

λ1
2 λ2

2+( ) k1a k2asinsin[

– 2λ1λ2 1 k1a k2acoscos–( ) ]δ 1– 0.=
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the parameter l of the relative coherent coupling of the
branches

(32)

Near magnetoacoustic resonance points (k0, ω0)1, 2
the parameter l ~ 1 for |(k1 – k0)(k2 – k0)| ≤ b2, and
away from these points for |(k1 – k0)(k2 – k0)| @ b2

(i.e., |k10 – k20| @ b) we have

(33)

This means that for k10 ~ k20 @ b

(34)

where ∆ω is the characteristic width of the curve l(ω),
estimated from the conditions |k1 – k10| ~ |k2 – k20| ~
|k10 – k20| ~ b/2. This is the width of the region near ω0
where the magnetoelastic coupling is strong enough so
that the corresponding terms in δ, τ, and ρ could com-
pete and the resonances of the reflection maxima could
appear. It is obvious that near the bottom resonance γ .
vm ! vt . Away from the bottom resonance point,
toward the left, where k10 ! k20 and ωH ≤ ω < ω0, we

have l . k10b2/  = α1b2  ! 1 (α1 =

(vt /ωH)3/ ) and to the right, where k10 @ k20 and ωH ≤
ω0 ! ω, we have l . k20b2/  = β1b2/  ! 1 (β1 =
η3/2/vt). Away from the upper resonance point, to the
left, where k10 . k20 and ωH ! ω ≤ ω0, we have the esti-
mate (34) and to the right, where k20 @ k10 and ωH !

ω0 ! ω, we have l . k10b2/  = β2b2/ω5/2 (β2 =

/ ). The qualitative curves l(ω), ε(ω), and ε–1(ω),
near the bottom magnetoacoustic resonance point are
shown in Fig. 1b.

The parameter l also determines the form of the con-
tour of individual spectral lines of reflection maxima,
since it appears in the coefficients in front of the trigo-
nometric functions in the expressions for T and R. Near
the upper magnetoacoustic resonance point these func-
tions have close periods of oscillations with respect to
frequency. Moreover, the upper resonance point can be
absent completely because of the downward bend of
the curve of the spectrum of short-wavelength magnons
in a crystal. The bottom magnetoacoustic resonance

l
ε, ε 1<

ε 1– , ε 1,>
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k10
2 k1

2–( ) k2
2 k20
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--------------------------------------------.= =

l
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2 k20
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--------------------------.=
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3 ω
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3

v t
3 η
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point can be easily observed, so that further estimates
and calculations will be presented only for it.

It follows even from Eq. (30) that if the unlikely
cases where k1 and k2 are comparable and also k1l2 = k2l1
are ignored, then because of the substantial difference
in the slopes of the branches ω = ω(k1) and ω = ω(k2)
small periods ∆ω10 . πvm/a (from k10a = nπ) of total
magnetoelastic reflection should be observed against
the background of large periods ∆ω20 . πvt/a (from
k20a = nπ, n is an integer) of the resonance acoustic
transparency near the bottom magnetoacoustic reso-
nance point ω0 in the frequency band ∆ω. Two of the
most interesting regimes can be singled out, depending
on the thickness a of the film.

(i) Thin film, ∆ω ≤ ∆ω10 ! ∆ω20. In the region ∆ω
the contour of the spectrum R is determined by individ-
ual lines of reflection maxima. The width of these max-
ima in terms of the wave number is δk10 . π/a near ω0
(where l ~ 1) and decreases sharply as δk10 . l(π/a)
away from ω0 (where l ! 1); the frequency width of the
line is δω ~ vmδk10 ~ vml/a, i.e., according to Eq. (34) it
is proportional to the magnetoelastic coupling constant
B2 and inversely proportional to (ω – ω0)2.

Figure 2a shows the computational results for the
spectrum of the reflection coefficient R of transverse
elastic waves for a thin film in the case of rigid pinning

of spins at the boundaries of the film h =  = 0. The
thickness of the film a = 2.295 × 10–4 cm; the remaining
parameters of the system are characteristic for yttrium
iron garnet [1] and are: B = 6.96 × 106 ergs/cm3, H0 =
870 Oe, M0 = 140 G, vt = 3.873 × 105 cm/s, η =
0.1 cm2/s, i.e., ω0 = 1.546 × 1010 s–1, k0 = 4.021 ×
104 cm–1, and k0a = 9.227.

The possibility of resolving spectroscopically the
resonance magnetoelastic reflection lines in an experi-
ment is evidently determined by the condition that their
spectral width be greater than the characteristic smear-
ing parameter associated with the dissipative damping of
magnetoelastic waves. The damping constant of elastic
waves is comparatively small, and the damping of spin
waves depends strongly on frequency and temperature
[1, 12]. Without going into the details of the physical
mechanisms leading to the dissipation of wave energy
[1], we shall take this into account, as usual, phenome-
nologically, adding to the quasispin wave and quasi-
sound wave numbers small positive imaginary parts
k10  k10 + iγ1 and k20  k20 + iγ2. This gives damp-
ing of the partial waves, a shift of the poles of the
matrix elements off the real axis ω, and smearing right
up to vanishing of the resonance reflection maxima, if
δk10 ≤ γ1.

Figure 2b shows the reflection spectrum for the
same values of the parameters as in Fig. 2a, but taking
into account the dissipative processes for characteristic

h̃
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ω/ωΗ

‡

b

R

Fig. 2. Spectrum of the reflection coefficient R for a thin film: (a) no damping (fine line), (b) taking account of damping (heavy line).
values of the damping coefficients for yttrium iron gar-
net [1]: γ1 = 100 cm–1 and γ2 = 2 cm–1.

(ii) Thick film, ∆ω10 ! ∆ω ~ ∆ω20. The region ∆ω
of magnetoelastic coupling contains very many extremely
narrow reflection resonances δk10 ~ lπ/a, which are
strongly smeared by dissipative damping of the spin
waves and the instrumental function of the apparatus.
However, since ∆ω is comparable to the acoustic trans-
mission period ∆ω20 near the magnetoelastic resonance
point, there arises a unique structure of the reflection
and transmission spectra which is strongly different
from the structure described by Eqs. (23).

Smoothing the dependence |δ|2, |ρ|2, and |τ–1|2 on the
high-frequency component 〈cos2k10a〉  = 〈sin2k10a〉  = 1/2

1.01 1.02 1.03 1.04 1.05 1.06

ω/ωΗ

ω/ωΗ

1.01 1.02 1.03 1.04 1.05 1.06

0.5
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1.0
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1.0
T

(a)

(b)

Fig. 3. a) Spectrum of the reflection coefficient R for a thick
film with no damping (fine line), taking account of smooth-
ing of the high-frequency component (heavy line); b) the
same for the transmission coefficient T.
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by averaging over a large number of periods of the
component (indicated by the brackets), it is easy to
obtain expressions for T and R that depend only on the
low-frequency component. For example, for rigid pin-

ning of spins h =  = 0, replacing the low-frequency
wave number k1, 2 by k20, we obtain

(35)

where ∆i (i = 1, …, 5) are smooth algebraic functions of
k1, k2, and k, consisting of terms which are proportional
to the powers ln (n = 1, …, 4), so that ∆i  0 as l  0.
It is evident that several spikes of T and R can occur
near ∆ω, where l ~ 1. Depending on the values of a and
k0, both a maximum close to 1 and a dip close to 0 can
appear near the center of the spectral line.

The fine line in Fig. 3a corresponds to the computa-
tional results for the spectrum of the reflection coeffi-
cient R, and the fine line in Fig. 3b corresponds to the
spectrum of the transmission coefficient T for trans-
verse elastic waves without damping (γ1 = γ2 = 0) for a
thick film (a = 5.29 × 10–3 cm, k0a = 212.7); all other
parameters are the same as in the case a. The heavy line
shows the smoothing effect of the measuring process.
A Gaussian function with spectral width ∆ωgaus = 1.4 ×
107 s–1 was taken as the instrumental function.

Figures 4a and 4b show the same spectra taking into
account the damping γ1 = 100 cm–1 and γ2 = 2 cm–1. It
is evident that near the magnetoacoustic resonance ω0,
in the band ∆ω, reflection is intensified and transmis-
sion T, conversely, decreases to very small values.
Away from ω0 all curves transform into a half-wave
sinusoid of 2k20a.

h̃

T
1 ∆1+( )2 1 ∆2 k20a( )2sin+( )

1 ∆3 ∆4 k20a( ) k20a( ) ∆6sin2 k20a( )+cossin+ +
---------------------------------------------------------------------------------------------------------------,=

∆6 ∆5

k20
2 k2–

4k20
2 k2

-----------------,+=
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All this refers to right-hand circularly polarized
waves. As is well known, the interaction of left-hand
circular components of elastic and spin waves in the
system under study has virtually no effect on their spec-
trum [1, 3]; this is ordinarily manifested in the Farady
rotation of the polarization plane for linearly polarized
elastic wave passing through a plate. However, it fol-
lows from our analysis that near total magnetoelastic
reflection lines at the exit we should obtain only a right-
hand circularly polarized wave.

6. OTHER SYSTEMS

Our approach can be applied with little modification to
other quasi-one-dimensional stationary scattering prob-
lems with participation of two or more pairs of coupled
waves of different physical nature.

The generalization for a more complicated experi-
mental geometry and more complex magnets, specifi-
cally, for antiferromagnets, can be done using an inter-
nal irreducible transfer matrix with dimension equal to
the order of the system of coupled wave equations in a
medium [8]. The required conditions for pinning of the
spins once again make it possible to obtain a two-
dimensional transfer matrix, whose poles will give the
lines of the reflection maxima.

It is obvious that this method can be used to solve
the system of equations in [5] for nuclear magnetoelas-
tic branches, engendered by monochromatic waves of
nuclear ferromagnetic and antiferromagnetic vectors in
KMnF3. If the frequencies of the points of intersection of
an elastic branch with two magnetic branches are substan-
tially different, as proposed in [5], then near each of them
formulas of the type presented above (thick-film regime)
can be used with an appropriate interpretation of the
parameters (see Eqs. (20)–(32) from [5] and the expres-
sions (7)–(9)).

We note that at the magnetoelastic resonance point
l1 = l2, but none of our formulas (21) and (25)–(28) for
δ = 0 with different pinning conditions gives the condi-
tion of nontransmission cos[(k1 – k2)a/2] = 0 presented
in [4, 5]. In addition, the change observed in [5] with
increasing magnetic field in the signal transmission
time through the sample can be explained by the non-
monochromaticity of this signal, since the duration of
the sound pulses formed by the generator in the exper-
iment of [5] is only two orders of magnitude greater
than the main period of the resonance oscillations. Usu-
ally, when the magnetic field intensity H increases, the
characteristic resonance frequencies increase, raising the
entire pattern (Fig. 1) together with the nontransmission
pole upwards in frequency. This means that as H
increases, the wave packet at the exit from the sample at
first becomes enriched with high-frequency quasielastic
components ~k20 of the branch k2 with a high group veloc-
ity and then, after passing through the region of the reso-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
nance nontransmission maximum, it becomes enriched
with low-frequency components ~k10 with a low group
velocity.

The possibility of these effects being manifested in
physical systems such as electric polaritons in piezo-
electric crystals with interaction of electromagnetic
waves with optical branches of elastic oscillations [13]
and so on requires a special investigation. Especially
tempting is the case of magnetic polaritons for right-hand
circularly polarized electromagnetic waves, incident in the
direction of the normal on a ferromagnetic plate, similar
to that studied in Section 3. The corresponding system
of equations, describing the interaction of the magnetic
field of an electromagnetic wave b and a right-hand
spin wave in a plate, is identical to the system (7),
where the elastic field u must be replaced by the high-
frequency magnetic field b, the speed of sound vt must
be replaced by the phase velocity of light vf in the
medium, and the coupling parameters do not depend on
the wave vector k and equal ∆1 = 4πω2 and ∆2 = γM0 [1, 3],
i.e., the magnetostatic coupling in such polaritons is
much stronger than in magnetoelastic waves. The char-
acteristic equation has the form

(36)

the coherent coupling coefficients (13) do not change
sign for reflected waves, i.e., l3, 4 = l1, 2. This means that
in the matrices (17) the sign of the elements in the bot-
tom rows must be changed, fj  –fj and gj  –gj.

k2 k10
2–( ) k2 k20

2–( ) k̃
4

– 0,=

k̃
4

4πω2γM0 ηv f
2 ,⁄=
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Fig. 4. (a) Same as in Fig. 3a taking account of damping of
the waves; (b) same as in Fig. 3b taking account of damping. 
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Ultimately, we obtain from Eqs. (18)–(21) for the
parameter δ in Eq. (21) the expression

(37)

which, just as in Eqs. (25)–(28), gives for different lim-
iting cases of surface pinning of the spins

(38)

However, in contrast to Eq. (33) the parameter increas-
ing monotonically with ω

(39)

is different from zero at the threshold of propagation of
waves of the upper branch k2 = 0 and ωn = ωH + ωM,
where ωM = 4πγM0, and assumes the value εmin =

ωM/η  and kH = ωH/vf . Unfortunately, ordinarily
εmin @ 1, and total reflection is noticeable for ε ≤ 1. To
reach this region the phase velocity vf of light in the
medium can be decreased using retardation systems,
the ratio M0/H0 can be decreased, or a material can be
chosen with strong spatial dispersion of magnons with
a large value of η. In any case, the effect should be more
noticeable for films with a resonance thickness a on the
branch k1, i.e., for (i) and (ii) near sink1a = 0 and for
(iii) and (iv) near cosk1a = 0.

7. CONCLUSIONS

We have derived formulas for the coefficients of
reflection and transmission for right-hand polarized
monochromatic elastic plane waves, incident in a nor-
mal direction on a transversely magnetized uniaxial
ferromagnetic film with uniform boundary conditions
for surface pinning of the spins. A nonunimodular
effective transfer matrix relating the elastic field in the
medium on both sides of the plate was obtained, and the
zeros and poles of this transfer matrix in the absence of
damping of the waves were studied. It was shown that
in addition to the half-wave maxima of the transmission

δ λ1d1k1 λ2d2k2–( )=

× λ1d1s1 λ2d2s2–( ) h̃ λ1d1k1c1 λ2d2k2c2–( )+[ ] ,

(i) δ λ1 λ2–( ) λ1k1 k2a λ2k2 k1asin–sin( ),=

h h̃– 0,=

(ii) δ λ1 λ2–( ) λ1k2 k2a λ2k1 k1asin–sin( ),=

h h̃ ∞,= =

(iii, iv) δ λ1 λ2–( ) λ1k2 k2a λ2k1 k1acos–cos( ),=

h 0, h̃ ∞.= =

ε l1

l2
---

k̃
4

k2
2 k20

2–
--------------------= =

kH
2
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coefficient of the film for elastic waves, a series of lines
with reflection coefficient maxima for hypersound,
whose position is close to the half-wave conditions for
spin waves, can appear, depending on the magnetoelas-
tic coupling constant, near the magnetoelastic resonance.
The width and number of potentially observable lines are
determined by the thickness of the film, the magnitude of
the magnetoelastic coupling, the damping parameters for
partial waves in a plate, and the frequency distance from
the magnetoelastic resonance point. A numerical analysis
of the results was performed for values of the parameters
close to the real values. The possibility of the existence
of a similar effect in other polariton systems is dis-
cussed.

It would be interesting to study a multilayer system
and follow the behavior of the reflection resonances of a
single layer with diffraction-grating Bragg resonances
superposed on them [7].
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Abstract—Quasiballistic electron transport in three-dimensional microconstrictions in a longitudinal magnetic
field is studied. The case where the quantization of the conductance is destroyed by an impurity located in the
microconstriction is investigated. The transmission coefficients and a formula for the conductance of such a
microconstriction are found. It is shown that the dependence of the conductance G(E) on the electron energy
has kinks at the threshold of the steps for which impurity scattering is strong. These kinks contain a pronounced
vertical segment of the curve G(E). © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
Electron transport in nanostructures of various dimen-

sions, such as two-dimensional quantum channels and
constrictions as well as three-dimensional quantum wires
and microconstrictions, is an object of intense theoreti-
cal [1–9] and experimental [10–12] study. This is due to
the discovery of the quantization of conductance
observed in such nanostructures in the ballistic trans-
port regime. In ballistic electron transport the electron
mean-free path is greater than the characteristic dimen-
sions of the nanostructure, so that scattering of propa-
gating electronic modes is due only to the geometry of
the samples (specifically, their length and the shape of the
transverse cross section). In such a transport regime a
characteristic step dependence of the conductance G on
the electron energy E arises in the propagating modes, i.e.,
the presence of a plateau between the thresholds of the
conductance quantization steps. The temperature of the
sample also plays an important role in transport, since
it changes the form of the curve G(E), specifically, it
smoothes the conductance quantization steps, decreas-
ing the plateau region [4, 9].

We note that a magnetic field applied to the nano-
structure influences the transport regime. This is due to
the fact that a magnetic field can intensify electronic
confinement in a nanostructure and lead to hybridiza-
tion of the dimensional and magnetic confinement as a
result of coupling of the motion of electrons parallel and
perpendicular to the magnetic field B [4, 9]. In addition, in
a strong magnetic field the dependence G(B) is oscilla-
tory (Shubnikov–de Haas and Aharonov–Bohm oscil-
lations) [4, 9].

Impurities present in the propagation path of elec-
tronic modes destroy ballistic transport regimes [13].
Even a single impurity present in a two-dimensional
1063-7761/00/9101- $20.00 © 20197
channel [14–17] or in a three-dimensional quantum
wire [13, 18] changes the transport regime from ballis-
tic to quasiballistic. In the process conductance quanti-
zation is restructured because of the appearance of peaks
near the threshold of the steps due to reflection of elec-
tronic modes from impurities [13]. When two impurities
are present in a wire an entire series of peaks appears near
the thresholds; several impurities have an even larger
effect because of the complicated character of the
reflection and transmission of electronic modes. Simi-
lar effects have also been observed in two-dimensional
constrictions [14–17].

The confinement potential, characterizing the extent of
the constriction, near a saddle point can be simulated by an
inverted harmonic oscillator potential [20]. Quantum
transport in two-dimensional microconstrictions was
investigated in [19, 20], and a relation was obtained
between the form of the conductance quantization steps
and the geometry of the constriction. The theoretical and
experimental result, obtained prior to 1991, on quantum
transport in two-dimensional microconstrictions are
contained in the review [21]. In a three-dimensional
microconstriction the characteristic frequency of an
inverted oscillator, as shown in [9], plays the same role
as temperature, i.e., it smoothes the thresholds of the
steps, increasing their slope and decreasing the size of
the plateau.

Our objective in the present work is to investigate
the quasiballistic regime of a three-dimensional quan-
tum constriction in a longitudinal magnetic field in the
presence of a single impurity in the microconstriction.
We note that the conductance of a three-dimensional
constriction in the ballistic transport regime has been
studied in [4, 9].
000 MAIK “Nauka/Interperiodica”



 

198

        

GALKIN 

 

et al

 

.

                                                                    
2. ELECTRONIC STATES
AND THE GREEN’S FUNCTION

OF THE UNPERTURBED HAMILTONIAN

Let us consider the state of an electron in a quantum
three-dimensional constriction which is not perturbed
by an impurity potential. We shall simulate the poten-
tial of the transverse section of such a constriction by a
two-dimensional harmonic oscillator potential [4, 9].
Then the Hamiltonian of the single-electron spinless
states in a longitudinal magnetic field B = Bz is

(1)

where A = (Bx, –By, 0)/2 and ωj are the frequencies of
the harmonic potential. We introduce the hybrid fre-
quencies according to the formula

(2)

and then the spectrum of the Hamiltonian (1) has the
form [9]

(3)

where n1, n2 ∈  N, and λ ∈  R. The eigenvalues of H0

correspond to the wave functions  =

. Here  is the eigenfunction of
the operator
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which correspond to the point of the continuous spec-

trum "ωzλ. The function  has the form

(4)

where E(λ, x) is a modified parabolic cylinder func-
tion [22].

The function  has a simple form when
the cross section of the constriction is circular (ωx =
ωy = ω0). In this important case it is convenient to
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switch to a different parameterization of the spectrum.

Specifically, let Ω =  and then the spectrum

 consists of the eigenvalues

where m ∈  Z and n ∈  N. It is convenient to write the
eigenfunction corresponding to Emn in polar coordi-
nates [18]

(5)

where

(6)

lΩ = , and  are generalized Laguerre
polynomials.

The normalization factor is

(7)

To find the Green’s function of the Hamiltonian H0

we shall write first an expression for the kernel of the
propagator of the operator exp(–itH0/"). Using the results
of [23, 24], after some transformations we obtain for the
kernel of the propagator K0(r, r'; t) the expression
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(9)

where Ω1 = , Ω2 = ,
and F2, 1(t) is obtained from F1, 2(t) by interchanging the
indices.

For a circular cross section (wx = wy) the propagator
(8) becomes

(10)

The resolvent (H0 – E)–1 can be written in terms of
the propagator as

(11)

As follows from Eq. (11), the kernel of the resol-
vent, i.e., the Green’s function G0(r, r'; E), is given by
the formula

(12)

M1 t( )
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---------------------------------------,–=

M5 t( )
2Ω1Ω2ωyF2 1, t( )

p2 t( ) q2 t( )–
---------------------------------------, M6 t( )–

2ωz

ωztsinh
------------------,–= =

M7 t( )
ωc

p2 t( ) q2 t( )–
----------------------------

ωy ωx–
ωx ωy+
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ωx ωy+
ωy ωx–
------------------q2 t( )– ,=

M8 t( )
ωcωxωy p t( )q t( )

p2 t( ) q2 t( )–[ ] ωx
2 ωy

2–( )
--------------------------------------------------------,=

ωx ωy+( )2 ωc
2+ ωx ωy–( )2 ωc
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1
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+
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.

H0 E–( ) 1– i
"
---=

× it H0 E iε+( )–[ ] "⁄–{ }exp t.d

0

∞

∫ε 0→
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G0 r r'; E,( ) i
"
---=

× K0 r r'; t,( ) i E iε+( )t "⁄{ }exp t.d

0

∞

∫ε 0→
lim
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
For a constriction with a circular cross section the
following expression can be obtained for G0(r, r'; E) in
the form of a series for Imζ > 0:

(13)

Here U(a, x) is a parabolic cylinder function [22].
For Imζ < 0 the Green’s function is the complex-con-

jugate of the expression (13), G0(r, r'; ζ) = .
On the real axis

From Eq. (13) we obtain

(14)

For  = (r, r'; E – iε) we have the

relation  = . We shall use the
expression (14) in the next section to find the states of
an electron scattered by an impurity.

3. GREEN’S FUNCTION AND STATES
OF THE HAMILTONIAN WITH AN IMPURITY

Let us consider the Hamiltonian of an electron per-
turbed by a single impurity located in a constriction.
We shall simulate the impurity potential by a point poten-
tial (zero-radius potential). The main difference of such a
potential from a more realistic one with a finite range, as
will be shown below, is that only states with magnetic
quantum number m = 0 (s states) are scattered by a point

G0 r r'; ζ,( )
eiπ 4⁄

2π"
---------- m∗

π"ωz

------------- 
 

1/2

=

× im ϕ ϕ'–( )[ ] Rmn ρ( )Rmn ρ'( )exp
n 0=

∞

∑
m ∞–=

∞

∑

× Γ 1
2
--- i

ζ Emn–
"ωz

-----------------– 
 

× U i
ζ Emn–

"ωz

-----------------– e iπ– 4⁄ 2m∗ ωz

"
---------------- 

 
1/2

max z z',( ), 
 

× U i
ζ Emn–

"ωz

-----------------– e iπ– 4⁄ 2m∗ ωz

"
---------------- 

 
1/2

min z z',( ), 
  .

G0 r' r; ζ,( )

G+
0 r r'; E,( ) G0 r r'; E iε+,( )

ε +0→
lim , E R.∈=

G+
0 r r'; E,( ) = 

1
4π"
---------- 2m∗

"ωz

---------- 
 

1/2

im ϕ ϕ'–( )[ ]exp
n 0=

∞

∑
m ∞–=

∞

∑

+
Rmn ρ( )Rmn ρ( )

1 2π Emn E–( ) "ωz⁄[ ]exp+{ } 1/2
-------------------------------------------------------------------------------

× E
Emn E–

"ωz

------------------
2m∗ ωz

"
---------------- 

 
1/2

max z z',( ), 
 

× E
Emn E–

"ωz
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"
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 –
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potential. The point perturbation potential V(r) can be
written correctly in the form of a pseudopotential [25] as

(15)

where (ax, ay , az) are the coordinates of the impurity.

The Green’s function of the operator H0 + V can be
found using the formula [26]

(16)

where Q(ζ, a) is the Crane function, determined from
the relation

(17)

The limit in Eq. (17) can be calculated conveniently
as follows. Let us consider the Green’s function
G1(r, r'; ζ) of the operator

(18)

with ωx = ωy ≡ ω0. This function has the form [18]

(19)

where

Then Q(ζ, a) = Q1(ζ, a) + Q2(ζ, a), where

(20)

and Q2(ζ, a) is determined by the expression

(21)

The function Q1(ζ, a) is used in [18]. To calculate
Q2(ζ, a) we shall confine our attention to the important
case where the impurity lies on the symmetry axis of a
nanostructure, i.e., when ax = ay = 0. It is obvious from
Eq. (6) that the wave function of an electron decreases

exponentially, ∝ exp(–ρ2/4 ), away from the symme-
try axis. Therefore only an impurity located virtually on
the symmetry axis scatters most efficiently. We note
that for m ≠ 0 we have Rmn(0) = 0, and for m = 0

V r( ) λδ r a–( ) 1 r a–( )∇+[ ] ,=
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lΩ
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"
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JOURNAL OF EXPERIMENTAL 
An expression for Q2(E, a) can be obtained from
Eqs. (19) and (20) in the form

(22)

where

The quantity Q1(E, a) is calculated in [18] and is
given by

(23)

where Z(s, x) is the generalized zeta function (the Hur-
witz function). Convergence of the series in Eq. (22)
can be proved by studying separately the real and imag-
inary parts of the series. For the real part the general
term in the series can be estimated as ~Cn–5/2, and for

the imaginary part as ~C , where C = const. There-
fore the series in Eq. (22) converges. Finally, we obtain
for the Q function

(24)

In the case a = 0 the real and imaginary parts can be
easily separated in the expression (24):

(25)

Next we analyze in detail the case where the point
impurity lies at the center of the cross section of the
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waist of the constriction (a = 0). As already mentioned
above, the role of scattering will be strongest for an
impurity located on the symmetry axis.

Let us consider a wave function of H0 of the form

(r, ϕ, z) = Ψmn(ρ, ϕ) , which corresponds to
energy

This value of the energy E corresponds to a wave func-
tion of the perturbed Hamiltonian H described by the
formula

(26)

where the parameter α is related with the scattering
length a0 by the formula α = m*/2π"a0.

As noted above, in the case at hand only states with
m = 0 are scattered by a point potential. As follows from
Eq. (26), m = 0 for the scattered mode also. Thus, for
the analysis below it is sufficient to study a transition
from the mode (0, n0) into the mode (0, n1).

4. TRANSMISSION COEFFICIENTS

To eliminate the ambiguity associated with the dif-

ference between  and , it is convenient to use
directly the formula (13) in the upper half-plane (Imζ ≥ 0),
writing it in the form

(27)

where λmn = (ζ – Emn)/"ωz. We take the eigenfunction

 in the form

(28)

Then the eigenfunction of the perturbed Hamilto-
nian is

(29)
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0± r ϕ z, ,( )=

+ Q E( ) α+[ ] 1– Ψmnλ
0± 0( )G+
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To find the transmission coefficient 
from the mode (0, n0) into the mode (0, n1) we write the
function (29) with m = 0 in the form

(30)

It follows from Eq. (30) that for z > 0

(31)

and for z < 0

(32)

where k = z/lz .

We note the asymptotic expansions, required for the
analysis below, of the parabolic cylinder function in the
limit z  +∞ [22]:
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Substituting the asymptotic expansions (33) into
Eqs. (31) and (32) we find the asymptotic expansion of

 in the limit z  ±∞. We note that the factor

exp(iz2/4 ) in  corresponds to a state in which

the current flows from the origin of the coordinates in

both directions, and the factor exp(–iz2/4 ) corre-
sponds to the state in which the current flows toward the
origin of coordinates, likewise from both directions.

Using the asymptotic expressions for  which

follow from Eq. (33), we find the coefficients of 

for z < 0, which represent a wave moving from left to
right:

(34)

Ψ0n0λ
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+
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The coefficient of  for z > 0 represents a wave mov-
ing in the same direction:

(35)

The transmission coefficient  has the
form

(36)

Substituting the expression (34) and (35) into Eq. (36)
and using [22]

(37)

we obtain for the transmission coefficient
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.

We note that  –  = Ω/ωz(n0 – n1) does not
depend on the particle energy E. The limit α  ∞ cor-
responds to the absence of an impurity. Then the
Hamiltonian H converts into H0. The expression (38) in
this limit becomes

(39)

The expression (39) is identical to the well-known
Büttiker formula for the transmission coefficient of a
mode with m = 0 in a three-dimensional constriction
[4]. As noted above, a point impurity does not scatter
states with m ≠ 0. Consequently, Büttiker’s formula is
valid for these states as well:

(40)

On this basis the general expression for the trans-
mission coefficient has the form
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5. CONDUCTANCE 
OF A QUANTUM CONSTRICTION

We now introduce the quantity γ according to the

formula γ = a0lz/2 . Then it is convenient to write
q(E) = Q(E)/αγ and the expression for the transmission
coefficient (41) in the form

(42)

where the ballistic part of the transmission coefficient is

(43)
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and the part of the transmission coefficient that is due
to scattering by the impurity and the geometry of the
constriction is

(44)

We shall now calculate the conductance of a con-
striction with an impurity at temperature T = 0 using the
Büttiker–Landauer formula:

(45)

In Eq. (45) it is convenient to single out the term that
is determined only by the geometry of the constriction
and does not depend on the scattering by the impurity
Ggeom = G1. Then G = G1 + G2, where G2 depends on the
scattering parameter γ. As follows from what has been
said above, we obtain for G1/G0 the expression

(46)

where G0 = 2e2/h is the conductance quantum.

The term G1(E)/G0 in the conductance has been
studied in detail in our preceding work [9]. The term
that depends on the scattering, G2(E)/G0, has the form,
in accordance with Eqs. (42) and (45),
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For nonzero temperature the expression for the con-
ductance can be written in the form

(48)

where f0 is the Fermi function and G(E) is given by the
expression (43). The temperature dependence of the
conductance of a constriction with no impurity was
investigated in detail in [9], where it was shown that an
increase of temperature results in smearing of the steps
and in a small inclination of the plateau in G1(E, T). The
effect of the temperature on the term G2(E, T) of the
conductance is somewhat weaker than on the term
G1(E, T). A plot of G(E) at different temperatures is
shown in Fig. 1.

6. DISCUSSION

As shown in the preceding section the conductance
of a constriction under conditions of a quasiballistic
transport regime can be represented as a sum of two
terms. The first one is due to the scattering processes
which depend on the geometric parameters of the three-
dimensional constriction and do not depend on the scat-
tering by an impurity. This term, Ggeom(E, T), is identi-
cal to the formula for the conductance in a ballistic
transport regime, as obtained in [9]. The dependences
of this term on the electron energy, magnetic field, and
temperature have been investigated in detail in [9]. We
note that this term makes the main contribution to the
conductance in the quasiballistic regime as well, since
G2 ! G1. Scattering by a point impurity increases the
resistance of the system and correspondingly results in
a small general downward displacement of the entire
conductance curve (see Fig. 2). Since only states with
m = 0 are scattered by an impurity located at the center

G E T,( )
G0

------------------ G E( )
∂ f 0

∂E
--------– 

  E,d

0

∞

∫=

A

B

14.8

14.3

2.47 2.52
13.8

2.3 2.4 2.5 2.6 2.7
11

13

15

17

E/"Ω

G, G0

Fig. 1. Plot of the conductance G (in units of G0) versus
energy: curve A—T = 0 K, curve B—T = 2 K; ωx = ωy =

1.61 × 1013 s–1, ωx /ωz = 13, B = 5 T.
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of the cross section of the waist of the constriction, the
corresponding conductance steps shift downwards by a
greater amount than the others (Fig. 2). Of greatest
interest is the nonmonotonic behavior of the conduc-
tance in a small neighborhood of the thresholds of the
steps. It is shown in the insets (Fig. 2) that at the points
where E/"Ω – 1/2 is an integer G2 changes abruptly to
zero. At this point the curve G(E) possesses a kink, and
a pronounced vertical segment of G(E) forms on the
threshold. This dependence of G(E) is due to the corre-
sponding behavior of G2(E), which in turn is due to the
behavior of the transmission coefficients T imp(E) near
the points where E/"Ω – 1/2 is equal to an integer N.
Plots of the energy dependences of the transmission

2.2 2.5 2.8 3.1 3.4 3.7

31

26

21

16

11

29

28

3.45 3.5 3.55

A

B

15

14

2.45 2.5 2.55

A

B

G, G0

E/"Ω

Fig. 2. Plot of the conductance versus energy at temperature
T = 0 K: curve A—constriction with no impurity, curve B—
constriction with an impurity; ωx = ωy = 1.61 × 1013 s–1,
ωx /ωz = 13, B = 5 T.
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Fig. 3. Plots of the transmission coefficients Timp(E) ≡
 versus energy at temperature T = 0 K: curve 1— ,

curve 2— , curve 3— , curve 4— ;

ωx = ωy = 1.61 × 1013 s–1, ωx /ωz = 13, B = 5 T.

Tn0n1

imp
E( ) T00

imp

T11
imp

T22
imp

Tnn
imp

n 0=
2∑
JOURNAL OF EXPERIMENTAL 
coefficients T imp(E), contributing to G2(E) near the point
where N = 2, are presented in Fig. 3. Numerical analysis
showed that the second term in T imp(E), containing γ2,
is much smaller in modulus than the negative first term,
containing γ. The sum of these terms is much smaller
than the transmission coefficient Tgeom(E). However,
there exists a small region where the first term in
T imp(E) is not too small. This is a neighborhood of the
point where 1 + γReq(E) ≈ 0. At this point the small
factors containing γ cancel in both terms due to the
geometry of the constriction and the presence of the
impurity. Consequently, the sum of both terms in
T imp(E) to the left of the point where E/"Ω – 1/2 = N
(see Fig. 3, for , n0 = n1 = 2) becomes a rela-
tively large negative quantity (approximately –0.4 in
Fig. 3). However, at the point where E/"Ω – 1/2 = N, the
function Z(1/2, 1/2 – E/"Ω) entering into q(E) takes
infinite value and, therefore, all impurity-induced terms
in the transmission coefficients vanish. For this reason,
the decrease of these terms is replaced by even sharper,
almost vertical, increase up to zero. Then, to the right
from the point E/"Ω – 1/2 = N, the terms considered
give a nonmonotonic dependence of the transmission
coefficients T imp(E) (Fig. 3). Since the negative first
term is larger in modulus than the second term, their
sum is once again negative to the right of the point
where E/"Ω – 1/2 = N. This is responsible for the stron-
ger decrease in the conductance G(E) than G1(E) at
these steps after the point where G2(E) vanishes. We
note that, as follows from the numerical analysis, only
the transmission coefficients from G2(E) for which
n0 = n1 = n ≤ N make an appreciable contribution to the
conductance; the transmission coefficient with n = N
makes the main contribution.

It is interesting to note that the situation is com-
pletely different for a three-dimensional wire with a cir-
cular cross section [18]. This is because only a positive
term ~γ2 appears in the expression for the transmission
coefficients T imp(E) of a wire, in contrast to the con-
striction studied here (there is no analog of the negative
term in Eq. (44) for the case of a wire). It is this term
that gives for a wire the narrow and large in magnitude
peaks at the thresholds of steps with m = 0, and outside
the region of the threshold the scattering by an impurity
is negligibly small.

Finally, we note that the resonance condition 1 +
γReq(E) ≈ 0 corresponds to the condition for the exist-
ence of a bound state Q(E) = –α. Hence it follows that
a bound state engenders the resonance shown in Figs. 1
and 2.
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Abstract—The statistics of rigid-chain polymer conformations is described on the basis of a model of directed
self-avoiding walks. The generating functions for the distribution function of a chain in one-, two-, and three-
dimensional spaces are constructed. It is shown that the statistics of the conformational states of chains with
finite interunit flexural stiffness can differ strongly from Gaussian statistics. If the chain length is comparable
to the Kuhn segment length, then the molecule is strongly anisotropic (almost rectilinear), but as the chain
length increases, the molecule starts to bend and ultimately coils up. However, since a coil contains extended,
almost rectilinear, chain sections, the coil is not truly Gaussian, even though the squared average size of the coil
is directly proportional to the chain length. It is shown that under certain conditions the existence of almost rec-
tilinear chain sections results in the appearance of orientational order in the system. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Many physical properties of polymer systems are
determined by the conformational properties of macro-
molecules, i.e., the set of their possible conformations
and their conformational mobility. The progress
achieved in the description of the statistics of the con-
formations of linear polymer chains is largely due to
the fact that the conformational properties of polymer
chains as a whole depend very little on the characteris-
tic features of their chemical structure, i.e., they reflect
certain general, fundamental properties of polymers. In
addition, the fact that the number n of links in a poly-
mer chain is large makes it possible to pass, when nec-
essary, to the asymptotic limit (N  ∞).

The simplest model that makes it possible to take
into account the conformational properties of long lin-
ear molecules is the model of an ideal (phantom) flexi-
ble polymer chain consisting of a chain of freely-
jointed weightless links. Even though the range of
applicability is relatively narrow (dilute solutions in θ
solvents and polymer melts, where the interaction of
the links of one chain is compensated by their interac-
tion with the environment), this model is extremely
helpful for understanding many features of polymer
systems [1, Chapter 1, Section 1.1; 2, Chapter 1, Sec-
tion 1; 3, Chapter 7, Sections 7.3–7.4].

The orientations of two neighboring links in an ideal
freely-jointed chain are independent of one another.
However, if the polymer molecule possesses some
interlink stiffness and the orientations of two neighbor-
ing units are correlated, then the concept of a Kuhn seg-
ment (or persistence length) [1, Introduction; 2, Chap-
ter 1, Section 3] is used to describe such a chain. A
1063-7761/00/9101- $20.00 © 20206
Kuhn segment is introduced as a chain section of length
∆l in which the memory of the orientation of its starting
section is completely lost, so that the orientations of
neighboring Kuhn segments are uncorrelated, making
it possible to describe the statistics of the conforma-
tional states of such a molecule using the description of
a freely-jointed chain with a link equal to the Kuhn seg-
ment. In more general (idealized) models a Kuhn seg-
ment is treated as a structureless object, since it is
assumed that if a large number of Kuhn segments fits
within the length of a molecule, then the structure of the
segments, as determined by the characteristic features
of the chemical structure of specific polymer mole-
cules, essentially has no effect on the conformational
properties of a long polymer chain as a whole. Thus, a
molecule with a certain interunit stiffness can be treated
as freely-jointed only if a large number of Kuhn seg-
ments fits within the length of the molecule.

If the stiffness of a polymer molecule is large, i.e.,
the number of Kuhn segments in the chain is small, the
asymptotic representation of a polymer molecule as a
freely-jointed chain is unsuitable and more compli-
cated models must be used to describe its statistical
properties. It is certainly of interest to study such rigid-
chain systems as well as systems consisting of chains of
limited length theoretically, since such a study will
make it possible to explain a number of experimentally
observed unusual properties of so-called oligomer sys-
tems, which fall between low- and high-molecular
chemical compounds.

But even if a polymer molecule contains a suffi-
ciently large number of Kuhn segments, in some cases
treating each Kuhn segment as a structureless (isotro-
pic) object is too coarse an approximation. Obviously,
000 MAIK “Nauka/Interperiodica”
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the structure of a Kuhn segment of a polymer chain is
determined by the characteristic features of its chemi-
cal structure, and at first glance it appears that taking
account of the internal structure of a Kuhn segment will
result in different consequences for different homolog-
ical series. However, for all types of linear polymers the
Kuhn segments possess a very important property in
common: since, by definition, a Kuhn segment is an
almost rectilinear section of a chain, it is, first and fore-
most, a strongly anisotropic object. This means that a
rigid-chain polymer consists of strongly anisotropic
elements, and it is this local anisotropy (the presence of
quite extended rectilinear sections) of a polymer mole-
cule that can result in the appearance of supramolecular
structures, influencing the macroscopic properties of
the polymer system and in some cases completely
determining its state. It turns out that the anisotropy of
Kuhn segments results in the appearance of a local
anisotropy of a rigid-chain polymer melt, and under
certain conditions it can lead to liquid-crystal ordering
of the entire system as a whole. For example, anomalies
in the rheological properties are observed in liquid oli-
gomeric systems [4], a liquid-crystal state arises in
melts of rigid-chain polymers (polyethylene type) [5],
and so on. Scaling analysis of the appearance of anisot-
ropy in a rigid-chain polymeric system for various
ratios of the lengths of a chain and its Kuhn segment is
presented in Appendix 1.

Thus, under certain conditions the properties of
rigid-chain polymers are determined by their small-
scale structure (on scales less than or the order of the
persistence length). It is obvious that when these scales
are taken into account the statistics of the conforma-
tional states of rigid-chain molecules is different from
that of long flexible polymer chains, and the asymptotic
description employed for the latter is inapplicable for
rigid-chain molecules, since it is too coarse.

One of the simplest methods for obtaining an ideal-
ized description of a freely-jointed phantom chain is to
represent it as a trajectory of random walks on a regular
periodic lattice [6] (see also [1, Chapter 1, Section 1.1;
2, Chapter 1, Section 6; 3, Chapter 7, Sections 7.3 and
7.4]). Here the theory of random processes [7–9, Chap-
ter 11, Sections 11.1–11.3], which is well-developed
for lattices and in the continuous case, is used. The tra-
jectory of a random walk describing a linear polymer
chain consisting of N links is a sequence of N steps. The
first step is taken from a point R0 and the last step
arrives at the point RN. At each step the next hop can
occur with equal probability in the direction of any of
the nearest lattice sites.

On this basis, to describe the statistics of the confor-
mational properties of an oligomeric molecule in terms
of random walks it is necessary to use a modification of
the random-walk model—a variant of directed self-
avoiding walks [10–12]. Apparently, the problem of
directed self-avoiding walks was first formulated by
Feynman [13, Chapter 2, Section 4] in a calculation of
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
the relativistic quantum-mechanical propagator in two-
dimensional space-time ((1+1) dimensions). Later this
problem was discussed in connection with an investiga-
tion of exactly solvable models in statistical physics,
such as the one-dimensional Ising model, the Potts
model in a magnetic field, and others. It should be noted
that the possibility of describing polymer chains with
finite interunit stiffness in terms of directed self-avoid-
ing walks was also studied in [14, 15]. However, these
works were concerned with only a one-parameter
model, in which the probabilities of various relative ori-
entations of two neighboring links assume only two
values. The more general situation where the probabil-
ities of various relative orientations of two neighboring
links are different from one another is not described in
the works mentioned. Moreover, the spatial distribution
function of a polymer chain was constructed only in a
one-dimensional space, where the problem reduces to a
one-dimensional Ising chain. In spaces with a larger
number of dimensions, the works [14, 15] were limited
to a calculation of only the average squared displace-
ment 〈R2〉 .

In the present paper some variants of the description
of the conformational statistics of oligomeric mole-
cules in the language of directed self-avoiding walks,
making it possible to take into account more fully all of
the above-enumerated features of the statistics of the
conformational states of oligomeric chains and to con-
struct the generating function for the spatial distribu-
tion function of a polymeric chain are proposed.

2. DIRECTED SELF-AVOIDING WALKS
ON REGULAR LATTICES AS A MODEL

OF A LINEAR CHAIN WITH FINITE STIFFNESS

We shall use the random-walk model to describe the
statistics of the conformations of chains possessing a
finite interunit bending stiffness. We shall consider ran-
dom walks of a particle on a regular lattice for which
the probability of the direction of each subsequent hop
depends on the direction of the hop at the preceding
step. We shall call such walks directed self-avoiding
and the trajectories of such a random walk correspond
to the conformations of a linear chain with finite stiff-
ness.

Let the vector e(n) correspond to an edge in the lat-
tice along which a hop occurs at the n step of the walks.
This same vector e(n) ≡ e(l) corresponds to the nth link
in the chain (l = l0n, l0 is the length of a lattice edge, cor-
responding to the length of one link in the chain). We
shall represent the vector connecting the beginning and
end of the chain using the vectors e(n) introduced:

(1)

The complete information about the state of a chain
is contained in the distribution function G(Rn, n), which

R N( ) l0 e n( ),
n

N

∑=
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gives the probability that the nth link of the chain (more
accurately, the end of the chain), which starts at the ori-
gin of the coordinates, falls at a lattice site with the
coordinates Rn ≡ {Rnx = l0mx, Rny = l0my, Rnz = l0mz}. For
n = N the distribution function G(RN, N) gives the prob-
ability that the end of the chain has moved relative to its
beginning by the vector RN.

In the random-walk model the probability of a wan-
dering particle reaching some point at a particular step
can depend only on the location of the particle at the
preceding steps and is completely independent of the
future location of the particle. Consequently, the distri-
bution function G(Rn, n), giving the probability that a
wandering particle has moved by the vector Rn in n
steps, does not depend on the total number of steps. For
a linear molecule this means that the distribution func-
tion G(Rn, n), determining, specifically, the probability
that the distance between the n links of a chain is Rn, does
not depend on the length of the molecule. Knowing the
distribution function G(Rn, n) gives us a complete picture
of the spatial distribution of the mass of a molecule.

In the walk of a particle (both random and directed
self-avoiding) (2d)N different trajectories can be real-
ized in N steps. Determining which fraction of these
trajectories corresponds to the displacement Rn, we
find the desired distribution function G(RN, N). There-
fore, singling out the corresponding trajectories, which
we give using the expression (1), and averaging over all
possible realizations of the walk of a particle, the distri-
bution function G(RN, N) can be written as

(2)

where the brackets signify averaging of all possible tra-
jectories and the analog of the Dirac delta function with
a vector argument is used—the Kronecker delta func-
tion with vector argument—δ(R) ≡ δ(mx)δ(my)δ(mz):
δ(m) ≡ δm, 0, δm, 0 = 0 if m ≠ 0 and δm, 0 = 1 if m = 0.

Since the vectors e(n) can possess components 1, 0,
or –1, the expression (2) can be written as

(3)

G RN N,( ) δ RN l0 e n( )
n

N

∑–
 
 
 

=

=  δ mNx ex n( )
n

N

∑–
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N

∑–
 
 
 

× δ mNz ez n( )
n

N

∑–
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G RN N,( ) δ mNx σn
x

n 1=

N
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=

× δ mNy σn
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n 1=
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δ mNz σn
z

n 1=
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,
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where the numbers , , and  assume the values
±1 or 0 and averaging is performed over all possible

values of , , and  satisfying the condition

 +  +  = 1.

In two-dimensional space this expression simplifies
somewhat:

(4)

where the numbers  and  assume the values ±1 or
0, and the averaging is performed over all possible val-

ues of  and  satisfying the condition  +

 = 1.

An even simpler expression is obtained in the one-
dimensional case:

(5)

where the averaging extends only over two values,
σn = ±1.

The construction of the distribution function G(RN, N)
in accordance with Eqs. (3)–(5) is a quite difficult prob-
lem to which we shall return below. We call attention
especially to the one-dimensional variant of the prob-
lem, which is of more than methodological interest.
Actually, the one-dimensional case is of little physical
interest for the problem of the conformations of a rigid
chain: it can describe only the folded structure of ori-
ented (i.e., possessing liquid-crystal ordering) chains
which are subjected to stretching. However, for describing
the diffusion of impurities in a condensed phase even the
one-dimensional variant of the problem of directed self-
avoiding walks has an important physical meaning [16].

3. RMS SIZE OF A MOLECULE 
WITH FINITE INTERLINK STIFFNESS

When it is difficult to find the complete distribution
function, the moments of the distribution function can
yield information about the properties of the system.
One of the most informative and consequently most
widely used is the second moment, which characterizes
the size of a molecule. It can be calculated quite simply
in terms of the distribution function:

(6)

However, in some cases it can also be determined from
other considerations. Indeed, using Eq. (1) we can write
the following expression for the squared size of a mol-

σn
x σn

y σn
z

σn
x σn

y σn
z

σn
x( )2 σn

y( )2 σn
z( )2

G RN N,( )

=  δ mNx σn
x

n 1=

N

∑–
 
 
 

δ mNy σn
y

n 1=

N

∑–
 
 
 

,

σn
x σn

y

σn
x σn

x σn
x( )2

σn
y( )2

G xN N,( ) δ mN σn

n 1=

N
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, xN l0mN ,= =

R2 N( )〈 〉 R2G R N,( ) R.d∫=
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ecule (the squared distance between the start and end of
the chain):

(7)

The expression (7) contains the correlation function

(8)

which takes into account the correlation of the orienta-
tions of the various links of a linear molecule, which is
due to the interlink flexural stiffness of the chain. The
calculation of the function g(∆l) is the main difficulty
arising in this problem.

We note that the length ∆l of a Kuhn segment for the
chain under consideration is ordinarily determined
from the condition g(∆l) ≈ 0.

3.1. Two-Dimensional Problem.
Square Lattice

We shall consider the simplest variant of the prob-
lem first: a random walk on a two-dimensional square
lattice. The stiffness of the chain (the probability of
choosing a direction of the walk at the next step in the
lattice as a function of the direction of the preceding
step) is taken into account as follows:

the probability that the motion is in the same direc-
tion is maximum and equals α+(T);

the probability that motion occurs in the perpendic-
ular direction is α⊥ (T);

the probability of a 180° turn is α–(T).

It is obvious that the probabilities αi introduced in
this manner satisfy α–(T) < α⊥ (T) < α+(T).

We shall enumerate the directions in the plane (Fig. 1)
and introduce the column vector of the distribution of
probabilities of the direction of motion at a step n:

(9)

These column vectors of the probability distribution at
steps n and n + 1 are related by a transition matrix:

(10)

R2 N( )〈 〉 l0
2 e n1( ) e n2( )⋅〈 〉

n1 n2,

N

∑=

=  l0
2 N 2 e n1( ) e n1 n2+( )⋅〈 〉

n2 1=

N n1–

∑
n1 1=

N

∑+
 
 
 

.

g ∆l( ) e l( ) e l ∆l+( )⋅〈 〉 e n( ) e n ∆n+( )⋅〈 〉 ,= =

∆l l0∆n,=

P n( )| 〉

P1 n( )

P2 n( )

P3 n( )

P4 n( ) 
 
 
 
 
 
 

.=

P n 1+( )| 〉 T2 P n( )| 〉 ,=
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where

After m steps the column vectors are related with one
another using the same transfer matrix:

(11)

Since the scalar product of the vectors e(n) and
e(n + m) can assume the values –1, 0, and 1, and taking
into account the spatial isotropy of the transfer matrix
T2, the desired correlation function can be expressed in
terms of the matrix elements of the mth power of these
matrices:

(12)

where a plus sign is used for odd i and a minus sign for
even i.

Averaging of all possible orientations the desired
correlation function can be written as

(13)

where Q2 is a block-diagonal matrix:

(14)

We note that T2 is also block matrix:

(15)

T2

α+ α– α⊥ α⊥

α– α+ α⊥ α⊥

α⊥ α⊥ α+ α–

α⊥ α⊥ α– α+ 
 
 
 
 
 
 

.=

|P n m+( )〉 T2
m P n( )| 〉 .=

g m( ) e n( ) e n m+( )⋅〈 〉 T2
m( )i i, T2

m( )i i 1±, ,–= =

g m( ) e n( ) e n m+( )⋅〈 〉 1
4
---Sp Q2T2

m( ),= =

Q2
s 0

0 s 
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A B
B A 
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2 1
x

Fig. 1. 
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where A and B are 2 × 2 square matrices:

and the matrices A and B commute with one another
and therefore can be diagonalized simultaneously:

(16)

Here O is an orthogonal matrix:

Successive diagonalization of the matrix T2 (taking
into account its block structure) gives

(17)

where

The following matrices will be required to calculate
the trace of the mth power of the matrix T2:

(18a)

A
α+ α–

α– α+ 
 
 

, B
α⊥ a⊥

α ⊥ a⊥ 
 
 

,= =

A O
α+ α–– 0

0 α+ α–+ 
 
 

O 1– ,=

B O 0 0

0 2α⊥ 
 
 

O 1– .=

O 1± 1 2⁄ 1 2⁄±

1 2⁄+− 1 2⁄ 
 
 
 

.=

T2

1

2
------- 1

2
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1–

2
------- 1

2
-------

 
 
 
 
 
 

A B– 0

0 A B+ 
 
 

1

2
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2
-------

1

2
------- 1

2
-------

 
 
 
 
 
 

=

=  

O

2
------- O

2
-------

O–

2
------- O

2
-------

 
 
 
 
 
 

d2– 0

0 d2+ 
 
 

O 1–

2
-------- –O 1–

2
------------

O 1–

2
-------- O 1–

2
--------

 
 
 
 
 
 
 

,

d2–
α+ α–– 0

0 α+ α– 2α⊥–– 
 
 

,=

d2+
α+ α–– 0

0 α+ α– 2α⊥+– 
 
 

.=

O 1– sO

1

2
------- 1–

2
-------

1

2
------- 1

2
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1 1–

1– 1 
 
 

1

2
------- 1

2
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1–

2
------- 1

2
-------

 
 
 
 
 
 

=

=  2 0

0 0 
 
 

,
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(18b)

Then, since the matrix Q2 is quasidiagonal, we obtain
finally that the desired correlation function depends on
the difference of the probability that the direction of
motion is preserved and the probability that the direc-
tion changes by the angle π:

(19)

3.2. Three-Dimensional Problem. 
Cubic Lattice

The problem of random walk in a cubic lattice can
also be solved completely in the three-dimensional
case.

We shall enumerate the direction in a three-dimen-
sional space (Fig. 2). As done for a two-dimensional
square lattice, we introduce the probability distribution
for the direction of motion at a step n

(20)

which are related at steps n and n + 1 by the transfer
matrix

(21)

where A and B are the 2 × 2 square matrices defined in
Eq. (15). Next, we have

(22)

(23)

where the matrix Q3 (similarly to the matrix Q2) has a
block-diagonal form:

(24)

O 1– sO d2–( )m 2 α+ α––( )m 0

0 0 
 
 

.=

g m( ) e n( )e n m+( )〈 〉=

=  
1
4
---Sp Q2T2

m( ) α+ α––( )m.=

P n( )| 〉

P1 n( )

P2 n( )

P3 n( )

P4 n( )

P5 n( )

P6 n( ) 
 
 
 
 
 
 
 
 
 

,=

P n 1+( )| 〉 T3 P n( )| 〉 , T3

A B B
B A B
B B A 

 
 
 
 

,==

P n m+( )| 〉 T3
m P n( )| 〉 ,=

g m( ) e n( )e n m+( )〈 〉 1
6
---Sp Q3T3

m( ),= =

Q3

s 0 0

0 s 0

0 0 s 
 
 
 
 

, s 1 1–

1– 1 
 
 

.= =
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The matrix T3 can be easily diagonalized:

(25)

Here d3– = d2–, and

Using the matrix (18a) and the matrix

(18c)

where θ = α+ – α–, we obtain the following expression
for the correlation function g(m) for a three-dimen-
sional cubic lattice:

(26)

It has turned out that the expressions for the correla-
tion functions (19) and (26) are the same in the two-
and three-dimensional cases. Therefore the rms size of
a molecule in the three-dimensional case will also be
described by the same expression (see Eq. (28) below).
The only difference between the two- and three-dimen-
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-------

0
1–

3
------- 1

3
-------
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=
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-------
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3
------- 2–

3
------- 1

3
-------

1

3
------- 1

3
------- 1

3
-------

 
 
 
 
 
 
 
 
 
  O

3
------- O

3
------- O

3
-------

0
O–

3
------- O

3
-------

O–

3
------- 0

O

3
-------

 
 
 
 
 
 
 
 
 
 

=

×
d3– 0 0

0 d3– 0

0 0 d3+ 
 
 
 
 

O 1–

3
-------- O 1–

3
-------- 2O– 1–

3
---------------

O 1–

3
-------- 2O– 1–

3
--------------- O 1–

3
--------

O– 1–

3
------------ O 1–

3
-------- O 1–

3
--------

 
 
 
 
 
 
 
 
 
 
 

.

d3+
α+ α–– 0

0 α+ α–– 4α⊥+ 
 
 

.=

O 1– sO d3±( )m O 1– sO d2–( )m 2θm 0

0 0 
 
 

,= =

g m( ) e n( )e n m+( )〈 〉=

=  
1
6
---Sp Q3T3

m( ) α+ α––( )m.=
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sional problems is the normalization condition for the
probabilities αi:

 in the two-dimensional case, (27a)

 in the three-dimensional case.(27b)

3.3. Size of an Oligomeric Chain 
as a Function of Its Length

Having determined the expression for the correlation
function, we can also calculate the rms size of a molecule:

(28)

Here the summation of the geometric progressions is
performed twice. The parameter θ depends on the tem-
perature (T) and the flexural stiffness of the chain (κ):
θ ≡ θ(T, κ) = θ(κ/T).

We shall consider two limiting cases: the flexural stiff-
ness of the chain is small, which corresponds to the restric-
tion θ ! 1, and the flexural stiffness of the chain is large,
which corresponds to the restriction 1 – θ ≡ ε ! 1.

For small θ (θ ! 1, i.e., κ/T ! 1) the dependence
obtained describes the Gaussian ball:

(29)

For θ close to 1 (1 – θ ≡ ε ! 1, i.e., κ/T @ 1) and not
very large N (N ≤ 1/ε) the dependence obtained
describes an essentially stiff rod:

(30)

However, even for θ close to 1 but quite large N (1 – θ =
ε ! 1, N @ 1/ε) the quadratic dependence of 〈R2〉  on N
becomes linear in the asymptotic limit, which corre-
sponds to a transition of the chain to the Gaussian ball.

α+ 2α⊥ α–+ + 1=

α+ 4α⊥ α–+ + 1=

R2 N( )〈 〉 l0
2 N 2 e n1( ) e n1 n2+( )⋅〈 〉

n2 1=

N n1–

∑
n1 1=

N

∑+
 
 
 

=

=  l0
2 1 θ+

1 θ–
------------N

2θ
1 θ–
------------1 θN–

1 θ–
---------------–

 
 
 

.

R2 N( )〈 〉 l0
2N 1 2θ 1 1 N⁄–( )+{ } .≈

R2 N( )〈 〉 l0
2N2 1 εN 3⁄–{ } .≈

z
5

2

34
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1
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x

Fig. 2.
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The curves of the expression (28) for 〈R2〉  versus N
are displayed in Fig. 3 for some values of the parameter
θ (θ = 0.1, 0.5, 0.9, 0.99). We note that the asymptotic
expression (29) is valid for the curves 1 and 2, and the
expression (30) is valid for the curves 3 and 4.

Having obtained the relation (19) g(m) = θm, the
number of links in a Kuhn segment can be estimated
formally from the condition that the condition g(m) is
exponentially small: nK = –1/lnθ. This gives nK ≈ 1 right
up to θ = 0.4 and nK ≈ 10 only for θ = 0.9. However, if
the scale on which the function 〈R2(N)〉  becomes linear
is chosen as the criterion, then it is found that nK ≈ 10
for θ = 0.1, nK ≈ 15 for θ = 0.25, nK ≈ 20 for θ = 0.5, and
nK > 100 for θ = 0.75 and 0.9.

This is clearly seen in Fig. 4, which shows the loga-
rithmic derivative (∂ln〈R2〉)/∂lnN of the average squared
size of a chain with respect to the logarithm of the chain
length. The second criterion gives much larger values
for the Kuhn segment than the first one. But it will be
preferable if the fact that it is related with the scale at

600

400

200

0 10 20 30

21

3

4

〈R2〉

N

Fig. 3. Average squared size of a chain 〈R2〉  versus the chain
length N for θ = (1) 0.1, (2) 0.5, (3) 0.9, and (4) 0.99.

2.0

1.5

1.0

0 10 20 30 40 50 60
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3
2

1

N

δln 〈R2〉/δln N

Fig. 4. Logarithmic derivative (∂ln〈R2〉)/∂lnN of the aver-
age squared size of a chain with respect to the logarithm of
the chain length, versus the chain length N for θ = (1) 0.1,
(2) 0.25, (3) 0.5, (4) 0.75, and (5) 0.9.
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which the statistics of the polymer chain first becomes
Gaussian is taken into account. This method for deter-
mining the Kuhn segment is close to the definition
l0nK = 〈R2〉/N presented in [2].

4. SPATIAL DISTRIBUTION 
OF THE LINKS IN A CHAIN

As already mentioned above, the computed depen-
dence of the average length of a chain on its length
yields information about the state of a linear molecule,
but this information is far from complete. Now, we can
return to the construction of the spatial distribution
function of the links of a chain as defined above (see the
expressions (2), (3), and (5)). This function contains
complete information about the state of a chain.

In the calculations below we shall use the integral
representation of the Kronecker delta function (more
accurately, its Fourier transform):

(31)

Substituting this representation of the Kronecker delta
function into the expression (3) we obtain

(32)

where the vectors mN = {mNx, mNy , mNz} and q = {qx, qy ,
qz} and the function K(q, N) is the Fourier transform of
the distribution function G(RN, N) and is given by the
expression 

(33)

where the brackets, just as in Section 1, signify averag-

ing, i.e., summation over all possible values of , ,

 = ±1, 0 satisfying the condition  +  +

 = 1.

Since the probability that the vector of the numbers
sn + 1 assumes a certain definite value depends on the
value which the vector of numbers sn assumes, the
averaging in the expression (33) will be performed
using the functions W(sn + 1, sn), giving the conditional
probabilities that the vector of numbers sn + 1 will
assume the corresponding value provided that the vec-
tor of numbers sn possesses a prescribed value:

(34)

δ m( )
1

2π
------ imq( )exp q.d

π–

π

∫=

G RN N,( )
1

2π( )3
------------- imN q⋅( )K q N,( )exp q,d∫=

K q N,( ) i σn
xqx σn

yqy σn
z qz+ +( )

n 1=

N

∑exp ,=

σn
x σn

y

σn
z σn

x( )2 σn
y( )2

σn
z( )2

K q N,( )

=  sn q⋅( )W sn; sn 1–( )exp{ } s1 q⋅( ),exp
n 2=

N

∏
σ{ }
∑
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where {s} means summation over all allowed sets of
sn with n = 1, 2, …, N.

Now, to each allowed vector of numbers sn we asso-
ciate a direction in a cubic lattice in accordance with
Fig. 2, i.e., the vector {1, 0, 0} is associated to the direc-
tion 1, the vector {–1, 0, 0} to the direction 2, the vector
{0, 1, 0} to the direction 3, the vector {0, –1, 0} to the
direction 4, the vector {0, 0, 1} to the direction 5, and
the vector {0, 0, –1} to the direction 6. Then the expres-
sion (34) can be written using the matrix T3, introduced
in Eq. (21), as

(35a)

Here  is a 6 × 6 diagonal matrix:

In the two-dimensional case the corresponding
expression has the form

(35b)

Here the matrix T2 is defined in Eq. (10), and  is a
4 × 4 diagonal matrix:

In the one-dimensional case we have an even sim-
pler expression:

(35c)

Here the matrix

K3 q N,( ) q̂3T3( )N 1– q̂3[ ] j k, .
j k,
∑=

q̂3

q̂3

q̂x 0 0

0 q̂y 0

0 0 q̂z 
 
 
 
 

,=

q̂x
e

iqx 0

0 e
i– qx 

 
 
 

, q̂y
e

iqy 0

0 e
i– qy 

 
 
 

,= =

q̂z
e

iqz 0

0 e
i– qz 

 
 
 

.=

K2 q N,( ) q̂2T2( )N 1– q̂2[ ] j k, .
j k,
∑=

q̂2

q̂2
q̂x 0

0 q̂y 
 
 

,=

q̂x
e

iqx 0

0 e
i– qx 

 
 
 

, q̂y
e

iqy 0

0 e
i– qy 

 
 
 

.= =

K1 q N,( ) q̂A( )N 1– q̂[ ] j k, .
j k,
∑=

A
α+ α–

α– α+ 
 
 

=
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was introduced in Eq. (15), and

Introducing the column vectors

the relations (35) can be written in the form

(36a)

(36b)

(36c)

where the column vectors |K(N)〉1, 2, 3 correspond to the
direction of the first step of the walk. Since the system
is isotropic, without loss of generality we can set

Taking the inverse Fourier transform in the expres-
sions (36), we obtain the spatial distribution function
G(RN, N) of the chain links in three- and one-dimen-
sional spaces.

4.1. One-Dimensional Distribution Function

In the one-dimensional case the problem reduces to
diagonalizing the 2 × 2 matrix  defined in Eq. (35c).

q̂ eiq 0

0 e i– q
 
 
 
 

.=

K N( )| 〉 3

K1
3( ) N( )

K2
3( ) N( )

K3
3( ) N( )

K4
3( ) N( )

K5
3( ) N( )

K6
3( ) N( ) 

 
 
 
 
 
 
 
 
 
 
 

,=

K N( )| 〉 2

K1
2( ) N( )

K2
2( ) N( )

K3
2( ) N( )

K4
2( ) N( ) 

 
 
 
 
 
 
 

, K N( )| 〉 1
K1

1( ) N( )

K2
1( ) N( ) 

 
 
 

,= =

K q N,( )| 〉 3 q̂3T3( )N 1– K 1( )| 〉 3,=

K3 q N,( ) K j
3( ) q N,( ),

j 1=

6

∑=

K q N,( )| 〉 2 q̂2T2( )N 1– K 1( )| 〉 2,=

K2 q N,( ) K j
2( ) q N,( ),

j 1=

4

∑=

K q N,( )| 〉 1 q̂1A( )N 1– K 1( )| 〉 1,=

K1 q N,( ) K j
1( ) q N,( ),

j 1=

2

∑=

K j
3 2,( ) 1( ) δj 1, iqx( ), K j

1( ) 1( )exp δj 1, iq( ).exp= =

q̂A
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Diagonalization, performed by the standard method,
gives

(37)

where

Substituting the expression (37) into Eqs. (36c), we
obtain

(38)

Fourier transforming the expression (38) we obtain
the desired distribution function in the one-dimensional
case:

(39)

where xN = l0mN. The explicit expression for the one-
dimensional distribution function (39) is too compli-
cated to present here.

We note that for isotropic walks, where α+ = α– =
0.5, the expression (38) becomes

(40)

which after averaging over the direction of the first step
becomes

(41)

The Fourier transform of the expression (41) gives a
binomial distribution, which in the large N limit
becomes a normal distribution, i.e., the ordinary Gaus-
sian distribution function is obtained from Eq. (38) in
the particular case of isotropic walks.

The expression (38) can be used to calculate the
generating function for the distribution function:

(42)

q̂A Ô
λ+ 0

0 λ– 
 
 

Ô
1–
,=

λ± α+ q
α–

α+
------ 

 
2

q2sin–±cos ,=

Ô
1

∆
-------

α– α0eiq

α0e iq–– α– 
 
 
 

,=

∆ α–
2 α0

2, α0+ α+ i qsin
α–

α+
------ 

 
2

q2sin–– .= =

K1 q N,( )
1
∆
--- α–

2λ+
N 1– α0

2λ–
N 1–+( )eiq[=

+ α0α– λ–
N 1– λ+

N 1––( ) ] .

G1 xN N,( )
1

2π∆
---------- e

imNq
α–

2λ+
N 1– α0

2λ–
N 1–+( )eiq[{

0

2π

∫=

+ α0α– λ–
N 1– λ+

N 1––( ) ]dq } ,

K1
isotr q N,( ) qcos( )N 1– eiq,=

K1
isotr

q N,( ) qcos( )N .=

Γ 1( ) xN ξ,( )
1

2π
------ e

imNq
Γ̃ 1( )

q ξ,( ) q,d∫=
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where

Averaging over the direction of the first step we obtain

(43)

which for α+ = α– = 0.5 is the same as the corresponding
expression for isotopic walks [3, Chapter 7, Section 7.8]:

(44)

Knowing , the moments of the distribution
function G1(x, N) can be easily calculated. Thus for q = 0
we obtain

i.e., all zero moments M0(N) are 1 in accordance with
the normalization condition.

In contrast to isotropic walks, in the case of orienta-
tionally correlated walks the first moment of the distri-
bution is different from zero and shows a displacement
of the walking particle in the direction of the first step:

(45)

Here the contour integral in the complex ξ plane was used;
the integration contour is a circle with radius R = 1 – 0
centered at the point ξ = 0.

The second moment can be calculated similarly:

(46)

which is identical to the expression (28).
Analysis of the expressions (39), (42), (43), and (46)

shows that for α+ ≠ α– the distribution function (39)
will be different from a Gaussian function even in the
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∞
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asymptotic limit for large N, though the dependence
〈x2(N)〉 for large N becomes linear.

In closing this section we note that the distribution
function can be expressed in terms of the partition func-
tion of a statistical system. Specifically, in the one-
dimensional case we arrive at the well-studied classic
Ising model in the one-dimensional variant:

(47)

where Z(q, N) is the partition function of a one-dimen-
sional Ising chain:

(48)

V = 0.5ln(α–/α+). The calculation of the partition func-
tion (48) presents no difficulties, as was demonstrated
above, similarly to, for example, [17].

4.2. Distribution Function in a Plane and in Space

To calculate the two-dimensional distribution func-
tion the Nth power of a 4 × 4 matrix must be calculated.
To diagonalize this matrix it is necessary to find the
roots of a quartic polynomial. In principle, the analytic
expressions required can be written out using the Car-
dano formulas. However, these expressions are so com-
plicated that it is essentially unrealistic to work with
them. Moreover, a 6 × 6 matrix has to be diagonalized
and the roots of a polynomial of degree six must be
found in order to construct the distribution function in
the three-dimensional case. In the general case this
problem has no analytic solution. Consequently, we
shall not use the diagonalization procedure to construct
the two-dimensional distribution function (more accu-
rately, its generating function).

The representation of the Fourier transform of the
distribution function in the form of the partition func-
tion of a one-dimensional system will suggest to us
how to calculate the N power of a matrix. Using the
block form of the matrices T2 and  we can write

(49)

where i, j = 1, …, 4; α, α', β, β' = 1, 2,

G1 xN N,( )
1

2π
------=

× imNq( ) Z q N,( )[ ]σ 1,

σ 1±=

∑exp q,d

0

2π

∫

Z q N,( )[ ]σ1σN

=  iq σn

n 1=

N

∑ V σnσn 1+

n 1=
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,exp
σ2 …, σN 1–, 1±=

∑

q̂2

T2( )ij T2( )αα'
ββ' ,=

q̂2( )ij q̂2( )αα'
ββ' δαα' q̂2( )α
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ββ' Aββ' ,= =
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JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Next, we represent the matrix elements of the matrices
T2 and  in the form

(50)

Here the indices ν, ν' = ±1 correspond to the indices α,
α' = 1, 2, and the indices σ, σ' = ±1 correspond to the
indices β, β' = 1, 2. Using the expression (50) and intro-
ducing the notation

K2(q, N) can be represented as a partition function of a
one-dimensional chain of two types of “spin-1/2” par-
ticles:

(51)

The structure of the expression obtained for the parti-
tion function is such that if the nearest neighbors are
different kinds of particles (νn ≠ νn + 1), then they do not
interact. This means that the chain consists of two types
of alternating noninteracting chains, and the calculation
of the partition function (51) reduces to averaging over

the lengths of these chains (  and ) and their num-
ber (m) under the condition that the total length of the

entire chain is fixed:  +  = N.

The partition of the entire chain into a collection of
two types of alternating noninteracting chains means,

in the language of walk trajectories, that first  steps

are taken in the direction x,  steps are taken in the

direction y,  steps are taken in the direction x, 
steps are taken in the direction y, and so on. The follow-
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ing terms correspond to each such trajectory in the par-
tition function (51):

(52a)

if the last steps were taken in the direction y, and

(52b)

if the last steps were taken in the direction x.

Summing the expressions (52) over all positive ,

, and m with the condition  +  = N, we
obtain the desired expression for K2(q, N):

(53)

Here 〈1, 1|, |1, 1〉  and |1, 0〉  are the row vector (11) and

the column vectors  and .

Using the integral representation for the δ function,
the expression (53) can be represented in the form

(54)

q̂yA( )
nm

y

q̂yB( ) q̂xA( )
nm

x 1–
q̂xB( )…





i 1 2,=

∑

× q̂yA( )
n1

y 1–
q̂yB( ) q̂xA( )

n1
x 1–

q̂x




i 1,

,

q̂xA( )
nm 1+

x 1–
q̂xB( ) q̂yA( )

nm
y 1–

q̂yB( ) q̂xA( )
nm

x 1–





i 1 2,=

∑

× q̂xB( )… q̂yA( )
n1

y 1–
q̂yB( ) q̂xA( )

n1
x 1–

q̂x




i 1,

,

n j
x

n j
ν n j

x∑ n j
x∑

K2 q N,( ) δ n j
x

j 1=

m

∑ n j
y

j 1=

m

∑ N–+
 
 
 





m 1≥
n j

x{ } n j
y{ }, 1≥

∑=

+ δ n j
x

j 1=

m 1+

∑ n j
y

j 1=

m

∑ N–+
 
 
 

1 1,〈 | q̂xA( )
nm 1+

x 1–
α⊥ q̂x 1 1,| 〉





× 1 1,〈 | q̂yA( )
nm

y 1–
α⊥ q̂y 1 1,| 〉

× 1 1,〈 | q̂xA( )
nm

x 1–
α⊥ q̂x 1 1,| 〉…

× 1 1,〈 | q̂yA( )
n1

y 1–
α⊥ q̂y 1 1,| 〉 1 1,〈 | q̂xA( )

n1
x 1–

q̂x 1 0,| 〉 .

1
1 

  1
0 

 

K2 q N,( ) 1 1 1,〈 |+




0

2π

∫
m n j

x{ } n j
y{ } 1≥, ,

∑=

× eiωq̂xA( )
nm 1+

x 1–
α⊥ eiωq̂x 1 1,| 〉

× 1 1,〈 | eiωq̂xA( )
nm

x 1–
α⊥ eiωq̂x 1 1,| 〉

× 1 1,〈 | eiωq̂yA( )
nm

y 1–
α⊥ eiωq̂y 1 1,| 〉…
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Going over in Eq. (54) from integration with respect
to the variable ω to a contour integral with respect to the
variable ξ = exp(iω) (the integration contour is a circle
with radius R = 1 – 0 centered at the point ξ = 0), we
obtain

(55)

Since in Eq. (55) the restriction on the summation
range in the expressions

is lifted, these sums can be found similarly to the way

that the generating functions  and 
were calculated [see Eqs. (42) and (43)]:

(56a)

(56b)
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Substituting the expressions (56) into Eq. (55) we
obtain

(57)

Here a summation over a geometric progression has
been performed.

The integrand in the expression (57) determines the
Fourier representation of the generating function for
the distribution function:

(58)

Averaging over the direction of the first step we obtain

(59)

For isotropic walks with α+ = α– = α⊥  = 1/4 this expres-
sion becomes

(60)

which is identical to the corresponding expression for
isotropic walks in a plane [3, Chapter 7, Section 7.8].

Just as in the one-dimensional case, it is easy to ver-
ify that

(61)

(i.e., the distribution function is normalized to 1),

(62a)

(62b)
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(i.e., the first moment in the direction of the first step is
different from zero),

(63)

(i.e., the dependence of the rms displacement is identi-
cal to the one-dimensional case; see Eq. (46)).

The construction of a generating function for the
distribution function in three-dimensional space is
entirely analogous. The only difference is that we shall
average over walk trajectories of the following type:

first  steps are taken in the one-dimensional subspace

x, then  steps in the plane yz, then  steps once

again in the one-dimensional subspace x, then  steps
once again in the plane yz, and so on.

Averaging over such trajectories we obtain that the

generating function  for the distribution func-
tion in three-dimensional space has a form similar to

the two-dimensional function :

(64)

where the propagator P(qx, qy , ξ) averaged over the
direction of the first step is

It is easy to check that the generating function (64)
in the three-dimensional space possesses the same
properties as the generating function (58) in the plane
and (42) in the one-dimensional space:
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(66)

R2 N( )〈 〉
l0
2

2πi
-------- ξd

ξN 1+
-----------

qx
2

2

∂
∂

qy
2

2

∂
∂+

 
 
 

Γ̃ 2( )
q ξ,( )

ξ 1=

∫°
q 0=

–=

=  
l0
2

2πi
--------

1 α+ α––( )ξ+[ ]dξ
ξN 1 ξ–( )2 1 α+ α––( )ξ–[ ]
-----------------------------------------------------------------

ξ 1=

∫°–

=  l0
2 1 θ+

1 θ–
------------N

2θ
1 θ–
------------1 θN–

1 θ–
---------------–

n1
x

n1
yz n2

x

n2
yz

Γ̃ 3( )
q ξ,( )

Γ̃ 2( )
q ξ,( )

Γ̃ 3( )
q ξ,( ) 1

1 P qy qz ξ, ,( )+[ ]P qx ξ,( )

1 P qx ξ,( )P qy qz ξ, ,( )–
-----------------------------------------------------------,+=

P qy qz ξ, ,( )
1 P qz ξ,( )+[ ]P qy ξ,( )

1 P qy ξ,( )P qz ξ,( )–
---------------------------------------------------=

+
1 P qy ξ,( )+[ ]P qz ξ,( )

1 P qy ξ,( )P qz ξ,( )–
---------------------------------------------------.

Γ̃ isotr
3( )

q ξ,( ) 1
ξ
6
--- qxcos qy qzcos+cos+( )–

1–

,=

Γ̃ 3( )
q ξ,( ) q 0= 1 ξ

1 ξ–
-----------+ 1

1 ξ–
----------- ξN ,

N 0=

∞

∑= = =
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(67a)

(67b)

(68)

5. ORIENTATIONAL SELF-ORGANIZATION 
OF A RIGID-CHAIN POLYMERIC MELT

As already mentioned above, the non-Gaussian char-
acter of the spatial distribution of chain links on small
scales (the existence of extended almost rectilinear sec-
tions) can result in the appearance of orientational
ordering in a concentrated rigid-chain polymeric sys-
tem—a melt. The variant, presented in the present
paper, of the model of orientationally correlated walks
makes it possible to describe similar effects. Without
giving an exhaustive description of this phenomenon,
we shall show as an example the conditions under
which a liquid-crystal state arises in a two-dimensional
rigid-chain polymeric system and how transitions occur
between ordered and disordered states.

Let us consider the statistics of the conformations of
a rigid chain in a polymeric melt taking account of the
influence of the environment in a two-dimensional
space. Since we shall study chains with finite flexural
stiffness, each chain can be divided, in accordance with
generally accepted ideas, into almost rectilinear sec-
tions—Kuhn segments, whose orientations are noncol-
linear. This means that the system under study consists
of anisotropic elements. If orientational ordering of
these anisotropic elements (Kuhn segments of chains)
is observed in a polymer melt, then for the packing of
the trial chain both the orientation of neighboring links
along the chain and the orientation of links of surround-
ing chains will influence the orientation of each link.
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The degree of orientational ordering of the system
can be characterized by an order parameter which we
shall define as the difference of the fraction of the links
nx = Nx /N oriented in the direction x and the fraction of
the links ny = Ny /N (N = Nx + Ny) oriented in the direc-
tion y:

(69)

If all links of polymer chains are oriented in the
direction x, then the order parameter η = 1; if they are
oriented in the direction y, then η = –1; and, if the sys-
tem is isotropic as a whole, then η = 0. We note that
with this definition of orientational ordering of a sys-
tem (when each link is not a vector but rather a direc-
tor), a high degree of ordering of the system could
mean complete rectification of the chains or formation
of a folded structure.

To describe the statistics of the conformations of the
trial chain, taking account of the orientational effect of
the environment, we introduce the transfer matrix
which relates the column vectors of the probability dis-
tribution of the orientations of the nth and (n + 1)st
links taking account of the orientation of the environ-
ment:

(70)

Here T2 is a block matrix, defined in Eq. (10), which
relates the column vectors of the probability distribu-
tion of the orientations of the nth and (n + 1)st links in
the absence of an orienting effect due to the environ-
ment,

α+, α⊥ , and α– are, respectively, the probabilities of the
orientation being preserved and of rotations by 90° and

180°, respectively; the block matrix  takes
account of the orienting effect of the environment,

δ+(η) and δ–(η) are, respectively, the changes in the
probability of the orientation being preserved and of a
rotation by 180° as a result of the orienting influence of

η η x η y–
Nx Ny–

N
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Nx Ny–
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A
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the environment in the case where a preceding link was
oriented in the positive x direction;

It is obvious that the functions  introduced
above should grow monotonically in the range (–1, 1),
and at the boundaries of this range and at η = 0 they
should satisfy the conditions

(71)

the first of which signifies impossibility of maintaining
an orientation in the direction x, if the entire environ-
ment is oriented in the direction y, and the latter means
impossibility of rotation by 90°, if the entire environ-
ment is oriented in the direction x. Since α± + δ±(η) is a
probability, the condition 0 ≤ α± + δ±(η) ≤ 1 is satisfied
for any η. Consequently, the parameter γ, determining
the relation between the rectilinear and folded confor-
mations of the chain in a highly oriented state, should
satisfy the inequality –(α+ + α⊥ ) ≤ γ ≤ α– + α⊥ . Further
calculations show that the parameter γ does not enter
in the equation for determining the degree of orienta-
tional ordering of a system. This is because these two
structures make the same contribution to the degree
of ordering of a system determined in the manner
chosen.

The transfer matrix  (70) can be used to find
the probability distribution for the orientation of all
chain links as a function of the orientational ordering of
the environment. The value of the order parameter η
(orientational ordering of the environment) can be cal-

culated using the same matrix . The result is a
relation that expresses the order parameter in terms of
the functions δ±(η), and the value of the order parame-
ter can be determined from this relation in the self-con-
sistent field approximation.

Indeed, since the environment of the trial chain con-
sists of similar chains, the orientational ordering of the
environment can be calculated by considering an infi-
nitely long chain whose links have orientations which
satisfy the same probability distribution as in the trial
chain. Then, assuming for definiteness that the first link
of an infinitely long chain corresponding to the envi-
ronment of the trial chain is directed along the positive
x direction, we obtain that the order parameter η can be

B1 η( )
δ+ η( ) δ– η( )+

2
------------------------------- 1 1

1 1 
 
 

.–=

δ± η( )

δ± η( )

α±– , η 1,–=

0, η 0,=

α⊥ γ, η± 1,=





=

T̂2 η( )

T̂2 η( )
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expressed in terms of the matrix elements of the matrix

 as follows:

(72)

To calculate the infinite sum in Eq. (72) it is neces-

sary to diagonalize the matrix . It turns out that
the required diagonalization can be performed for an
arbitrary value of the parameter η similarly to the way
this was done for the matrix T2:

(73)

where

are the diagonalizing matrices, ρ ≡ {2α⊥  – [β+(η) +
β+(–η)]/2}, and λ1 = α+ – α– + β–(η), λ2 = 1 – 4α⊥  +
β+(η) + β+(–η), λ3 = α+ – α– + β–(–η), and λ4 = α+ + α– +

2α⊥  = 1 are the eigenvalues of the matrix .

For diagonalization of the matrix  the calcula-
tion of the infinite system (72) reduces to summation of
geometric progressions with exponents which are

eigenvalues of the matrix . Since |λ1|, |λ2|, |λ3| < 1,
and λ4 = 1, taking the limit we obtain
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Simple calculations give the following self-consistency
condition for the order parameter η:

(74)

Here β+(η) = δ+(η) + δ–(η) is a monotonically increas-
ing function on the interval (–1, 1); at the ends of this
interval and at η = 0 the function β+(η) satisfies the con-
ditions

(75)

Since the explicit form of the function β+(η) cannot
be determined on the basis of the phenomenological
analysis performed above, we shall confine our atten-
tion to an expansion of the function in a power series
in η. In order that the even (in the denominator) and
odd (in the numerator) parts of the functions β+(η) have
the same order, we shall retain an even number of terms
in the expansion. It turned out that if the parameter α⊥
is not too small, the analysis can be limited to the min-
imum nontrivial number of terms in the expansion,
equal to four, i.e., the function β+(η) can be approxi-
mated by a quartic polynomial:

(76)

where the conditions (75) are taken into account.
The following can be stated concerning the possible

values of the parameters a and b. In the first place, for
small positive values of η the function β+(η) should
grow, and the maximum possible rate of growth is η/2,
so that the condition 0 < a < 1 is imposed on the param-
eter a. In the second place, the function β+(η) will be
nondecreasing in the interval (–1, 1), if for not very
small α⊥  the condition –1 < b– < b < b+ < 1 (b– < 0, b+ > 0)
is satisfied and the quantities b± depend on the values of
the parameter a and the parameter α⊥  (the explicit form
of these dependences is extremely complicated). Thus, the
parameter b can assume positive and negative values.

Using the expression (76), Eq. (74) becomes

(77)

It is easy to verify that η1 = 0 and η2, 3 = ±1 are solutions
of Eq. (77) for arbitrary values of the parameters a, b,
and α⊥ . If

η
β+ η( ) β+ η( )–

4α⊥ β+ η( ) β+ η–( )+[ ]–
--------------------------------------------------------.=

β+ η( )
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1
2
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+ aη3 1 4α⊥–( )bη4– ] ,

η η 1 a– aη2+( )

4α⊥ 1 4α⊥–( )η2 1 b– bη2+( )+
-----------------------------------------------------------------------------.=

0
a 4α⊥ 1–+
1 4α⊥–( )b

---------------------------- 1,< <
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then the biquadratic equation

equivalent to Eq. (77), possesses two more solutions in
the physical range (–1 ≤ η ≤ 1):

(78)

So, we have found that depending on the values of
the parameters a, b, and α⊥  Eq. (77) can possess from
three to five solutions lying in the physical range: the
solution η1 = 0, corresponding to the isotropic state of
the system; the solutions η2, 3 = ±1, corresponding to
completely orientationally ordered states; and, the solu-
tions η±, corresponding to partially ordered states. We
note that partially ordered states η± exist for positive
and negative values of the parameter b: for b > 0 if the
inequalities 1 – 4α⊥  < a < (1 – 4α⊥ )(1 + b) are satisfied
and for b < 0 if (1 – 4α⊥ )(1 + b) < a < 1 – 4α⊥ .

The stability of the states obtained can be deter-
mined according to the value of the derivative of the
right-hand side of Eq. (77) with respect to the variable
η: if the value of this derivative in front of η, equal to a
solution of Eq. (77), is greater than 1, then this solution
corresponds to an unstable state; if it is less than 1, then
it corresponds to a stable state.

A stability analysis of the solutions of Eq. (77)
showed that for b > 0 the states η± are unstable, the state
η1 = 0 is stable for a > 1 – 4α⊥ , and the states η2, 3 = ±1
are stable for a < (1 – 4α⊥ )(1 + b). This means that for
b > 0 and 1 – 4α⊥  < a < (1 – 4α⊥ )(1 + b) the isotropic
and completely ordered states are stable, and the unsta-
ble states η± separate them. In this range of values of
the parameters the transitions from an ordered into an
isotropic state and vice versa can occur only after a
threshold is overcome; outside this interval the state of
the system changes abruptly, and for a cyclic change of
the parameters hysteresis phenomena will be observed
in the system, i.e., the typical bistability situation
occurs (see Fig. 5a).

For b < 0 the picture is somewhat different: the
states η± are stable, the state η1 = 0 is stable for a > 1 –
4α⊥ , and the states η2, 3 = ±1 are stable for a < (1 –
4α⊥ )(1 + b). The regions where the ordered and disor-
dered states are stable do not overlap, and the degree of
ordering of the system in the transitional region varies
smoothly from minimum to maximum or, vice versa,
from maximum to minimum. This means that for b < 0
a transition from an ordered into a disordered state (and
vice versa) occurs smoothly with no jumps in a certain
finite range of values of the parameters, i.e., softly
(Fig. 5b).

The parameters α⊥  and a can depend on the external
conditions, specifically, the temperature of the system.

1 4α⊥–( )bη4 1 4α⊥–( ) 1 b–( ) a–[ ]η2+

+ 4α⊥ 1– a+ 0,=

η±
a 1 4α⊥–( )–

1 4α⊥–( )b
--------------------------------.±=
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Fig. 5. Bifurcation diagram for the order parameter, characterizing the orientational ordering of the system, for b = 0.3 (a), –0.3 (b),
and 0 (c). The order parameter is the dimensionless temperature τ = kT/Er . The stable states are marked by solid lines and the unsta-
ble states by dashed lines. Bistability is observed in the temperature range from τ1 to τ2.
Indeed, the effective stiffness of a chain (the parame-
ter α⊥ ) and the ordering action of the environment (the
parameter a) are functions of temperature. It is natural
to assume that α⊥ (T) varies from zero at T = 0 up to 1/4
in the limit T  ∞ according to the Arrhenius law
4α⊥ (T) = exp(–Er/kT), and a(T) follows the same law
but with a different activation energy: a(T) =
exp(−Eor/kT), where 1 – a(T) decreases from 1 to 0 as
temperature increases (Er is the bending energy of a
chain, Eor = Er/2). The corresponding bifurcation dia-
grams, on which the dimensionless temperature τ =
kT/Er is chosen as the ordering parameter and the
parameter b = ±0.3, are presented in Figs. 5a and 5b. If
the width of the transitional interval decreases to zero,
the state of the system changes abruptly (Fig. 5c).

Thus, we have been able to describe on the basis of
the model of orientationally correlated walks the pro-
cess of temperature orientational ordering of a poly-
meric melt: a system which is isotropic at high temper-
atures passes, as temperature decreases, into a highly
oriented state. The transition described, in contrast to a
standard transition, possesses a characteristic feature.
Ordinarily, as temperature decreases, a system consist-
ing of anisotropic components makes a transition into
an anisotropic state on account of the fact that the ten-
dency toward ordering resulting from steric constraints
and (or) orienting interaction of the anisotropic compo-
nents begins to predominate over the disordering
entropy factors, whereas in our case, as temperature
decreases, an additional ordering factor arises: the
anisotropy of the components of the system increases.
Indeed, the decrease of the parameter α⊥ (T) (4α⊥ (T) =
exp(–Er/kT)) with decreasing temperature, which cor-
responds to an increase in the effective stiffness of the
chain, results in an increase of the persistence length
(Kuhn segment) of the chain, i.e., an increase in the
length of the rectilinear sections of the chain and, ulti-
mately, rectification of the polymeric coil. It is the pres-
ence of such rectilinear sections that results in the
appearance of orientational order in the system (first
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
local and then global). Thus, given a system which is
completely anisotropic at high temperatures (including
locally), a liquid crystal system can be obtained by low-
ering the temperature of the system.

A different mechanism for the appearance of orien-
tational order is also possible: the orienting role of the
steric constraints increases when a system consisting of
anisotropic components is compressed. On the basis of
the formalism employed this corresponds to an increase
of 1 – a (decrease of the parameter a) with all other
parameters remaining fixed. The corresponding bifur-
cation diagrams for positive, negative, and zero values
of the parameter b have the same form as the tempera-
ture bifurcation diagrams presented in Fig. 5. This
means that three types of transitions from isotropic to
orientationally ordered states are possible when a sys-
tem undergoes compression as well as when the tem-
perature decreases: hard (for b > 0), soft (for b < 0), and
abrupt (for b = 0).

Unfortunately, it is impossible to determine on the
basis of the phenomenological model examined here
which of the possible transitions occur in a particular
system. For this it is necessary to determine the sign of
the parameter b on the basis of a microscopic analysis
of the interchain interaction; this falls outside the scope
of the problem considered here.

6. CONCLUSIONS

The analysis performed shows that the statistics of
the conformational states of chains possessing a finite
interlink flexural stiffness can differ strongly from
Gaussian statistics. If the length of a chain is compara-
ble to the length of a Kuhn segment, then the molecule
is strongly anisotropic (almost rectilinear), i.e., it is a
slightly curved rod. As its length increases, a molecule
starts to bend, its anisotropy decreases, and ultimately
the molecule coils up. However, this ball is not truly
Gaussian. This is because the ball contains almost rec-
tilinear chain segments. At the same time, the depen-
dence of the average size of such a coil is the same as
SICS      Vol. 91      No. 1      2000
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the size of the Gaussian coil: 〈R2〉  ~ N. This apparent
contradiction can be easily explained. Indeed, on the
smallest scales the spatial distribution function of the
mass of a molecule is different from a Gaussian distri-
bution. However, if this distribution is averaged over a
scale of the order of the length of “rectilinear” seg-
ments of the chain and it is assumed that the “elemen-
tary” link in the chain is a fragment with this scale, then
the spatial distribution of such elementary links will be
Gaussian. Therefore the length of a Kuhn segment
(nK ≈ 〈n〉) corresponds to the length of a “rectilinear”
chain section, whose size can be quite easily estimated
on the basis of the model of directed self-avoiding
walks.

Indeed, for directed self-avoiding walks the average
number of steps up to the first rotation (i.e., the length
of a Kuhn segment) is

(79)

Here we have summed a geometric progression.
Now, using the formula (79) it is easy to estimate the

number of chain links comprising a Kuhn segment for
fixed values of the parameters α+ and α– and to com-
pare this number to the Kuhn length obtained from
other considerations. Setting α+ + α– = 0.9 we obtain
that a Kuhn segment consists of 90 links. Assuming that
α+ @ α–, we can set θ = α+ – α– ~ α+ + α– = 0.9. Turning
to Fig. 4 we see that the dependence of 〈R2〉 on N
becomes linear approximately for this value of N, while
the estimate using the formula nK ≈ –1/lnθ gives an
order of magnitude smaller value (see remarks in the
text for Fig. 4 at the end of Section 3). It seems to us
that the proposed criterion for estimating the Kuhn
length (giving a value close to that obtained from the
formula l0nK = 〈R2〉/N [2]) is more suitable for the phys-
ical meaning of this concept than the ordinarily
employed criterion, which is associated with the expo-
nential smallness of the correlation function.

A nongaussian spatial distribution of the links of a
polymer chain can arise in two cases: if the resolution
of the instrument (characteristic scale of the interaction
of a probe with a polymer molecule) used to estimate
the state of a polymeric molecule is less than the Kuhn
length, introduced using the method proposed above,
and if the length of the chain is comparable or not much
greater than this scale. The latter case is more interest-
ing, because it is for such relatively short molecules
(called oligomers) that in our opinion the effects of a
nongaussian spatial distribution function of the chain
links should be strongest.

But, even for sufficiently long chains the nongauss-
ian spatial distribution of the chain links at small scales
should result in macroscopic effects. We are talking

n〈 〉 1 α+ α–+( ) 2 α+ α–+( )2 3 α+ α–+( )3 …+ + +=

=  α+ α–+( ) ξd
d ξn

n

∑
ξ α+ α–+=

α+ α–+

1 α+ α–––( )2
---------------------------------.=
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here about the orientational ordering, mentioned in the
introduction, of a rigid-chain polymeric melt. The anal-
ysis performed in the preceding section for a two-
dimensional rigid-chain concentrated system showed
that a highly ordered state (of the liquid-crystal type)
does indeed arise in such a system, and transitions
between ordered and disordered states can follow two
fundamentally different scenarios. A possible variant is
one where in some range of values of the control
parameter (this could be, for example, the temperature
or external pressure) the system can be in ordered and
disordered states, i.e., a typical bistability situation
occurs (see Fig. 5a). Hysteresis should be observed for
such systems. This is confirmed experimentally in a
number of investigations of oligomeric systems (see,
for example, [18]). According to a different possible
variant, the system passes smoothly from one state into
another (see Fig. 5b). Which of the above described
scenarios is realized in a particular polymeric system
seems to depend on the form of the interchain interac-
tions in the system and is determined by the character-
istic features of the chemical structure of the mono-
meric link of a polymer.

In summary, the proposed mathematical apparatus
makes it possible not only to describe the statistics of
conformations of polymers with finite stiffness but also
to investigate their macroscopic physical properties,
which are determined by the small-scale structure of
rigid macromolecules.
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APPENDIX

Small-Scale Structure
of a Rigid-Chain Polymeric Melt

It is well known that a single coiled polymer chain
is a loose formation in which the volume density of
matter is all the lower, the longer the chain. Indeed,
the volume occupied by a freely-jointed chain consist-
ing of N links of size a is of the order of Vch ~ a3N3ν

(1/3 < ν < 3/5), while the chain volume itself is a3N. If
a chain possesses some stiffness, then a persistence
length (Kuhn segment) is introduced, and the chain is
treated as freely-jointed but consisting of Kuhn seg-
ments instead of elementary links. The volume occu-
pied by such a chain will be even larger:

(A.1)

Here N is the number of links in the chain; lK = anK is
the length of a Kuhn segment containing nK links; a is

Vch lK( )3 N
nK

----- 
  3ν

∼

=  anK( )3 N
nK

----- 
  3ν

a3nK
3 1 ν–( )N3ν.=
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the length of a single link; for a globule ν = 1/3, for a
Gaussian ball ν = 1/2, and for a swelled ball ν = 3/5.

The density of matter in a single ball (here and
below the density is expressed in units of the excluded
volume) decreases as the length of a Kuhn segment and
the chain length increase:

(A.2)

Since the density of matter in the melt (we are studying
a polymeric melt) is of the order of Θ ~ 1 and is essen-
tially independent of the length of a Kuhn segment and
the chain length, not one but M chains, whose number
is determined by the relation

(A.3)

are present in the volume Vch occupied by the trial
chain.

A volume per Kuhn segment can be identified in the
volume occupied by the chain under study:

(A.4)

This volume per Kuhn segment of the trial chain (ellip-
soid with axes L1 ~ anK, L2, 3 = LK ∝  anK(N/nK)(3ν – 1)/2 =

a N(3ν – 1)/2 is filled with M rods of length lK = anK

and diameter a—the Kuhn segments of other chains.
The number density of such rods is

(A.5)

Since the Kuhn segments of different chains are sta-
tistically independent, the situation under study is
equivalent to the well-known model of rigid rods. Tak-
ing account of the excluded volume even in the sim-
plest Onsager model [19] leads to the fact that for such
a system there exists a critical concentration Ccr at
which orientational ordering appears in the system. The
value of this critical concentration is determined by the
length and diameter of the rods:

(A.6)

Since we are studying rigid polymeric chains, whose
Kuhn segments are long, the density of our system is
greater than the critical density, and the orientation of
the rods (Kuhn segments of different chains) in the
ellipsoid which we have singled out are correlated.

Let us draw a plane perpendicular to the direction of
a Kuhn segment in the trial chain. The section of an
ellipsoid corresponding to a Kuhn segment of the trial
chain by this plane forms a circle, and the intersection
of the rods (Kuhn segments of other chains) located in
the volume under study with this circle generates a sys-
tem of points whose concentration is of the order of

ρch
a3N
VK

--------- 1

nK
3 1 ν–( )N3ν 1–

------------------------------, 1 3ν 3.<<∼ ∼

M ΘnK
3 1 ν–( )N3ν 1– , 1 3ν 3<<∼

VK

V ch

N nK⁄
-------------- anK( )3 N

nK

----- 
  3ν 1–

∼=

=  a3nK
3 1 ν–( ) 1+ N3ν 1– .

nK
3 1 ν–( ) 2⁄

Cr M VK Θ a3nK .⁄∝⁄∝

Ccr 1 alK
2 1 a3nK

2 , Θcr 1 nK .⁄∝⁄∝⁄∝
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Cpoint ∝ Θ /a2, and separated by an average distance ∆ ~

a/ .

Let us single out in the circle a sector resting on an
arc of a circle of length ∆, and let us construct a chain
connecting the nearest points in this segment (Fig. 6).
If each point is associated to a unit vector, whose direc-
tion is the same as the direction of the rod to which the
point belongs, then an auxiliary chain is formed, whose
properties are similar to the properties of a rigid poly-
meric chain, since the orientations of the two neighbor-
ing rods and therefore links of the auxiliary chain are
correlated. The form of the correlation function of the
orientation of the links along such a chain is well
known (see, for example, [20, Section 127] or the
expression (26) of the present paper):

(A.7)

where n is the number of links in the chain or the num-
ber of rods between two rods singled out in a sector of
radius LK and the arc ∆, and Lcor is the distance from the
Kuhn segment of the trial chain in which the orientation
of the Kuhn segments of other chains is essentially
independent of the orientation of the Kuhn segment of
the trial chain. In what follows we shall be interested
precisely in this quantity.

For two neighboring “links” (rods) we have

(A.8)

Θ

g l( ) l
Lcor
---------– 

 exp∝

=  l ∆⁄( )∆
Lcor

------------------– 
 exp n∆

Lcor
---------– 

  ,exp=

g ∆( ) g 1( ) ∆
Lcor
---------– 

 exp∼=

=  a

ΘLcor

------------------– 
  1

a

ΘLcor

------------------.–≈exp

∆

Fig. 6. Section of an ellipsoid by a plane perpendicular to a
Kuhn segment of the trial chain. The points show the inter-
section of this plane with other Kuhn segments, located in a
sector resting on the arc of a circle of length ∆ (∆ is the aver-
age distance between the points of intersection of the Kuhn
segments and the intersecting plane).
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On the other hand this same correlation function can be
expressed in terms of the relative orientation angle
between two neighboring links [2, Section 2]:

(A.9)

The correlation of the orientation of two neighboring
rods is completely determined by their packing den-
sity Θ. The required dependence 〈cosθ(Θ)〉  can be
found by using the Onsager model mentioned above,
modified for the case of a high density of rods [21]:

(A.10)

Using Eqs. (A.8), (A.9), and (A.10), we find the
desired length showing the distance from the chosen
Kuhn segment at which the orientational effects are no
longer manifested:

(A.11)

The value obtained for the correlation length Lcor
must be compared with the characteristic scales in
the system under study: the characteristic size of the
region corresponding to a single Kuhn segment, LK ∝
anK(N/nK)(3ν – 1)/2 = a N(3ν – 1)/2, and the charac-
teristic size of the entire chain, Rch ∝  anK(N/nK)ν =

a Nν.

If Lcor < LK, i.e., the size of an ordered region does
not exceed the characteristic size of a region corre-
sponding to a single Kuhn segment, then on averaging
over a scale greater than this size local ordering effects
do not appear. This means that the local ordering of the
Kuhn segments of different chains, which, as shown
above, is characteristic of rigid-chain polymeric sys-
tems, has virtually no effect on the macroscopic prop-
erties of the entire polymeric system as a whole. In this
case the introduction of a persistence length (Kuhn seg-
ment) makes it possible to treat a polymeric chain as a
freely-jointed chain. Such a situation is possible if the
length of a Kuhn segment is quite small compared with
the length of the entire chain:

(A.12)

If LK < Lcor < Rch, i.e., the size of the ordered region
is greater than the characteristic size of the region cor-
responding to a single Kuhn segment, but does not
exceed the characteristic size of the entire chain, then
the local ordering of Kuhn segments of different chains
affects the conformational structure of the polymeric
chain on scales greater than the Kuhn segment, i.e., it
influences the macroscopic properties of the entire
polymeric system. This influence first appears when the

g ∆( ) g 1( ) θcos〈 〉 1
1
2
--- θ2〈 〉 .–≈= =

θ Θ( )cos〈 〉 1 1 Θ–( )ln nK[ ] 2– .–≈

Lcor
a

Θ
-------- 1 Θ–( )ln[ ]2nK

2 .∼

nK
3 1 ν–( ) 2⁄

nK
1 ν–

nK 1 Θ–( )ln 4 3ν 1+( )⁄– N1 2 3ν 1+( )⁄– .≤
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Kuhn length is not small but still remains appreciably
less than the length of the entire chain:

(A.13)

If Lcor > Rch, i.e., the size of the ordered region is
greater than the size of the polymeric coil, then the
local ordering of the Kuhn segments of different chains
results in a radical rearrangement of the structure of the
entire polymeric system. In the first place, orientational
ordering of the entire chain occurs: the effective stiff-
ness of the chain changes sharply and as a result the
chain rectifies. In the second place, since as a result of
rectification of chains a polymeric melt consists of vir-
tually rectilinear rods, whose density is higher than the
critical value, liquid-crystal ordering of the entire poly-
meric system as a whole occurs. These effects appear if
the Kuhn length is sufficiently large:

(A.14)

This analysis shows that the small-scale structure of
a linear polymeric molecule with finite stiffness to
some degree influences the properties of a polymeric
melt, and under certain conditions this influence could
be decisive.

REFERENCES

1. P. G. de Gennes, Scaling Concepts in the Physics of
Polymers (Cornell Univ. Press, Ithaca, 1979; Mir, Mos-
cow, 1982).

2. A. Yu. Grosberg and A. R. Khokhlov, Statistical Physics
of Macromolecules (Nauka, Moscow, 1989).

3. J. M. Ziman, Models of Disorder: the Theoretical Phys-
ics of Homogeneously Disordered Systems (Cambridge
Univ. Press, Cambridge, 1979; Mir, Moscow, 1982).

4. A. E. Arinstein and S. M. Mezikovskii, Polym. Eng. Sci.
37, 1339 (1997).

5. A. N. Semenov and P. R. Khokhlov, Usp. Fiz. Nauk 156,
417 (1988).

6. W. J. Orr, Trans. Faraday Soc. 43, 12 (1947).

7. F. Spitzer, Principles of Random Walk (Van Nostrand,
Princeton, 1964; Mir, Moscow, 1968).

8. Yu. A. Rozanov, Probability Theory, Stochastic Pro-
cesses, and Mathematical Statistics (Nauka, Moscow,
1989).

9. R. Balescu, Equilibrium and Nonequilibrium Statistical
Mechanics (Wiley, New York, 1975; Mir, Moscow,
1978), Vol. 2.

10. V. Privman and N. Svrakic,ˇ Directed Models of Poly-
mers, Interfaces and Clusters: Scaling and Finite-Size
Properties (Springer-Verlag, Berlin, 1989).

1 Θ–( )ln 4 3ν 1+( )⁄– N1 2 3ν 1+( )–

≤ nK 1 Θ–( )ln 2 ν 1+( )⁄– N1 1 ν 1+( )⁄– .≤

nK 1 Θ–( )ln 2 ν 1+( )⁄– N1 1 ν 1+( )⁄– .≥
 AND THEORETICAL PHYSICS      Vol. 91      No. 1      2000



DIRECTED SELF-AVOIDING WALKS AND STATISTICS 225
11. P. Devillard and E. Stanley, Phys. Rev. A 41, 2942
(1990).

12. B. Derrida, Physica A (Amsterdam) 20, 491 (1990).

13. R. P. Feynman and A. R. Hibbs, Quantum Mechanics
and Path Integrals (McGraw-Hill, New York, 1965; Mir,
Moscow, 1968).

14. A. L. Kholodenko, Ann. Phys. (N.Y.) 202, 186 (1990).

15. A. L. Kholodenko, J. Stat. Phys. 65, 291 (1991).

16. A. E. Arinshtein, Dokl. Akad. Nauk 358, 350 (1998).

17. R. P. Feynman, Statistical Mechanics: a Set of Lectures
(Benjamin, Reading, Mass., 1972; Mir, Moscow, 1975).
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
18. M. P. Berezin and G. V. Korolev, in Proceedings of 6th
International Conference on Chemistry and Physico-
chemistry of Oligomers, Kazan, 1997 (Chernogolovka,
1997), Vol. I, p. 69.

19. L. Onsager, Ann. N. Y. Acad. Sci. 51, 627 (1949).

20. L. D. Landau and E. M. Lifshitz, Statistical Physics
(Nauka, Moscow, 1995; Pergamon, Oxford, 1980),
Part 1.

21. A. R. Khokhlov and A. N. Semenov, J. Stat. Phys. 38,
161 (1985).

Translation was provided by AIP
SICS      Vol. 91      No. 1      2000



  

Journal of Experimental and Theoretical Physics, Vol. 91, No. 1, 2000, pp. 31–47.
Translated from Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 118, No. 1, 2000, pp. 36–55.
Original Russian Text Copyright © 2000 by Shevkunov.

      

ATOMS, SPECTRA,
RADIATION

           
Exchange Symmetry in a System of Nonrelativistic Spin-1/2 
Fermions in the Feynman Quantum Statistics Representation 

S. V. Shevkunov
St. Petersburg State Technical University, St. Petersburg, 195251 Russia

e-mail: root@shevk.hop.stu.neva.ru
Received November 29, 1999

Abstract—A compact representation is obtained for the quantum statistical sum of indistinguishable nonrela-
tivistic spin-1/2 fermions in the form of Feynman path integrals which can be used as the basis to develop a
fundamentally exact method of computer modeling for systems of strongly interacting electrons at nonzero
temperature. A basis of symmetrized wave functions is constructed using Young symmetry operators. An exact
permutation symmetrization procedure leads to an avalanche-like multiplication in the number of diagrams of
linked Feynman integrals of the order of N!. The partition function can be simplified without introducing any
approximations and this is performed numerically by computer by direct sorting of diagrams. The control tables
obtained, containing combinatorial weights of diagrams, direct the Markov random walk process in virtual tra-
jectory space which is achieved numerically by computer. The equilibrium characteristics of the quantum sys-
tem are calculated by averaging. This approach is an expansion of the Monte Carlo–Metropolis method to sys-
tems of quantum indistinguishable particles with spin. Demonstration numerical calculations using this method
were made for the simplest exchange systems, for a hydrogen molecule, a Be+ ion, and a Li atom. The ground
state of the hydrogen molecule is reproduced with a statistical error of 0.2%. Exchange-correlation effects lead
to nontrivial structural changes in the thermally excited electron shells of ions in a state of strong plasma com-
pression. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Numerical stochastic methods based on Markov
processes are successfully used for systems obeying
classical statistics [1–29]. The range of application of
these methods extends from the modeling of ion plas-
mas [5], interaction of the gas phase with ions and ionic
crystals [6–8, 11, 26], vapor condensation [13, 24], and
calculations of the equilibrium properties of the liquid
phase [17, 18, 21, 23, 29] to studies of metal clusters
[27, 28]. Using the same methods in quantum statistical
mechanics necessitates optimizing the choice of repre-
sentation in which the problem is solved. On the one
hand, the basis functions of the representation must be
easy to calculate numerically and on the other, there
should be a relatively simple formula for calculating
the diagonal elements of the density matrix in this rep-
resentation. The solution of the problem involves
extending the ideas of the method of significant sam-
pling to calculate these matrix elements so that summa-
tion over quantum states and calculations of the matrix
elements of these states can be included in a single
Markov process. Along these lines, all the difficulties of
working in a specific representation can be transferred
to the calculation of specific matrix elements and the
basis functions can be selected as simply as possible,
for example, the spectrum of eigenfunctions of the
coordinate operator. The matrix elements in the coordi-
nate representation may be written as Feynman path
integrals [30] and these can then be approximated by
1063-7761/00/9101- $20.00 © 0031
multidimensional broken-line integrals. These ideas are
implemented in the Monte Carlo method using path
integrals, which is a method for computer modeling of
systems of quantum particles under finite temperature
conditions. The first study of this type for two 4He
atoms was made by Fosdick and Jordan [31, 32]. In
addition to the method aimed at achieving a statistical
description of systems of quantum particles at finite
temperature, the eighties saw the development of sto-
chastic methods of computer modeling of pure quan-
tum states corresponding to zero temperature (T = 0).
The most well-known are the variational Monte Carlo
method [33–39] based on searching for the minimum
of the energy functional and the diffusion Monte Carlo
method based on the Green’s function of the evolution
operator [40–55]. The diffusion method is obtained by
writing the Schrödinger equation in imaginary time. In
imaginary time the Schrödinger equation has the form
of a diffusion equation with sources and sinks and the
time dependence of the steady states is converted into
an exponentially damped one. At fairly long times, the
state with the slowest damping survives, i.e., the
ground quantum state. The Schrödinger equation is not
solved in the ordinary meaning of this word. In addi-
tion, the diffusion random walk of the mapping point in
multidimensional configuration space is simulated
numerically. Assuming that the coordinate component
of the wave function is antisymmetric, the permutation
symmetry of the particles is represented as a system of
2000 MAIK “Nauka/Interperiodica”
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hypersurfaces (“nodes”) on which the wave function
changes sign and vanishes. The position of the nodes is
specially defined by a selected reference function.

The eighties also the parallel development of an
independent direction of quantum system modeling
using an occupation number representation, i.e. “node”
models [56–75] which are various modifications of the
Hubbard model [59, 60, 66, 69, 70]. In this method the
d-dimensional quantum problem is transformed into a
d + 1 dimensional classical problem. The additional
measurement is the imaginary time. The process of ran-
dom walking over nodes of a d + 1 dimensional lattice
with transition probabilities determined by the matrix
elements of the evolution operator is simulated numer-
ically. In [75] an original procedure is developed which
can avoid the error caused by the discrete imaginary
time scale. 

The exact description of the permutation symmetry
presents major difficulties along the way to developing
the method of path integrals. Despite considerable efforts
made over the last few years to develop this promising
approach, so far specific results have only been achieved
for systems of spin-zero particles [76–112].

Although the Hamilton operator of nonrelativistic
fermions does not act on the spin variables, the statisti-
cal behavior of the system depends fundamentally on
the particle spin since the type of permutation symme-
try of the coordinate component of the wave function is
the twin of the permutation symmetry of the spin com-
ponent of the wave function, provided that the complete
wave function is antisymmetric with respect to permu-
tations of the coordinate and spin variables simulta-
neously. The fermion system in various spin states cor-
responds to various types of permutation systems of the
coordinate component which determines the values of the
canonical averages. Neglecting the spin variable [76] is an
unsatisfactory approximation for the description of real
fermions since no spin-zero fermions exist in nature.

The quantum state of an isolated spin 1/2 fermion is
described by the function ψ(σ, η) of the spin variable
{σi} = ±1/2 and the variable η which depends on the
specific quantum-mechanical representation. The
quantum state of a system of N fermions is written in
the form of a multiparticle wave function

(1)

which from the point of view of the theory of end group
representations is a 2N rank tensor [113–115]. The
principle of fermion indistinguishability establishes
that only states described by the antisymmetric tensors
(1) exist. All tensors of the type (1) are a substratum of
the π' permutation group which is the direct product of
the πN group of all the permutations of N distinguish-
able elements with itself: π' = πN ⊗ π N. Each permuta-
tion of the arguments in (1) corresponds to a certain
transformation in the tensor space (1) and a linear trans-

ψ σ1 σ2 … σN; η1 η2 … ηN, , , , , ,( )
=  ψ σi{ } η i{ },( ),
JOURNAL OF EXPERIMENTAL
formation in the corresponding vector space VN [116].
All the matrices of these linear transformations form a
πN group representation [113] which is then broken
down into irreducible representations, i.e., sets of trans-
formations which do not derive the element of the vec-

tor space VN from the corresponding subspace .

The subspaces  correspond to the subspaces 
in N rank tensor space. The basis elements of these sub-
spaces are obtained by the action of Young operators on
an arbitrary nonsymmetrized tensor [117, 118]. A set of
Young operators with different permutations of the
arguments in the cells of its diagram generates a tensor

subspace  invariant relative to pair permutations. It
can be shown [116] that the space of these 2N rank anti-
symmetric tensors (1) is exhausted by the direct prod-

ucts  ⊗   of all the subspaces generated by
Young operators with mutually transposed (dual) dia-
grams. The antisymmetric tensor space thus con-
structed is complete. The completeness follows from
calculations of the space dimensions and the linear
independence of the basis functions [116].

The problem of constructing the basis for a system
of indistinguishable particles can be solved, in princi-
ple, by using Young operators although numerical cal-
culations along these lines using the traditional
Schrödinger formulation of quantum statistics encoun-
ter colossal computational difficulties. The linear com-
binations generated by the Young operators contain of
the order of N! terms which must be calculated at each
step of the quantum-system modeling procedure which
makes these calculations inconceivable even for sys-
tems with small numbers of particles. The present study
addresses the problem of formulating a procedure for
making exact allowance for exchange symmetry in the
path integral method and of obtaining a representation of
the partition function and the equilibrium averages in a
form suitable for numerical calculations of systems of
indistinguishable nonrelativistic spin 1/2 fermions. Com-
puter modeling of thermally excited quantum states using
the Feynman path integral method was performed for two-
and three-electron systems with exact allowance for
exchange and spin.

2. REDUCTION TO DUMMY GRAPHS
IN MATRIX FUNCTIONALS

Of particular interest for the calculation of quantum-
mechanical observables are the matrix functionals deter-

mined in the space of the permutation operators  hav-
ing the form

(2)

V N
k( )

V N
k( ) ΨN

k( )

ΨN
k( )

ΨN
i( ) ΨN

i tr,( )

P̂k

G P̂k( ) dNr dN x∫∫=

× f * ri{ } ; xi{ }( )F̂ f ri{ } ; P̂k xi{ }( ),
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where  is a symmetric operator with respect to per-
mutations in the sequence of spatial variables {xi},
f({ri}; {xi}) is the eigenfunction of the coordinate oper-
ator having the eigenvalues {ri}, dNr = dr1dr2 … drN,
and the asterisk denotes complex conjugation. The
result of calculating the matrix functional does not

depend on the number of the vertices of the  graph
(see Appendix), i.e., one for all elements of the same
class:

(3)

The reduction to dummy graphs considerably simpli-
fies the problem of calculating functionals of the type (3)
as is indicated by the data in Table 1.

The complete wave function has the property that
the spin variable permutations are complementary

(4)

and similarly for the coordinate variables. Here the sub-
script l indicates that positional permutation of the

arguments of  is performed in the cells of the Young
diagram of the spin functions:

(5)

Using the expansion (A.4) in the Appendix, we
determine N! spin functions:

(6)

It is easily shown that the complete wave function
may be written in the diagonal form:

(7)

where g(k) is the permutation parity of . For real spin
and coordinate functions the diagonal elements of the

operator , which is symmetric with respect to permu-

F̂

P̂k

dNr dN xf * ri{ } ; xi{ }( )F̂ f ri{ } ; P̂kP̂nP̂k
1–

xi{ }( )∫∫
dNr'∫ dN x' f * ri'{ } ; xr'{ }( )F̂ f ri'{ } ; P̂n xr'{ }( ).∫=

ψ S P̂l mi{ } ri{ } ; σi{ } xi{ }, , ,( )

=  ψl S mi{ } ri{ } ; P̂l
1– σi{ } xi{ }, , ,( ),

P̂l

χ j
l S mi{ } ; P̂l

1– σi{ },( )

=  1–( )c k( )χ mi{ } ; P̂l
1–
P̂kP̂l( )P̂l

1– σi{ }( )
k

∑

=  1–( )c k( )χ P̂l mi{ } ; P̂k σi{ }( )
k

∑

=  χJ S P̂l mi{ } ; σi{ },( ).

χ̃k σi{ }( ) cnkχ P̂n σi{ }( ),
n

∑=

χ̃ σi{ }( ) χ̃1 σi{ }( ).≡

ψ σi{ } xi{ },( ) 1–( )g k( )χ̃ P̂k σi{ }( ) f P̂k xi{ }( ),
k

∑=

P̂k

F̂
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tations of the coordinates, are written in terms of (6) in
the form

(8)

All terms in the sum over k in the last expression (8)
do not depend on k and may be combined. Using (7),
we rewrite (8) in the representation of nonsymmetrized
functions:

(9)

where we have introduced generalized weights (posi-
tive and negative) corresponding to the permutations

of ,

(10)

Quite clearly, WS( ) does not depend on {mi = ±1/2}.

Assuming in (9)  = 1, we obtain

(11)

S mi{ } ri{ } F̂ S mi{ } ri{ }, , , ,

=  dN x∫
σi 1/2±={ }
∑

k

∑ χ̃ S mi{ } ; σi{ },( ) f ri{ } ; xi{ }( )

× F̂ψ S mi{ } ri{ } ; σi{ } xi{ }, , ,( ).

S mi{ } ri{ } F̂ S mi{ } ri{ }, , , ,

=  N! WS P̂n
1–( ) ri{ } F̂ P̂n

1–
ri{ } ,

n

∑

P̂n

WS P̂n
1–( ) 1–( )g n( ) χ̃ S mi{ } ; σi{ },( )

σi 1/2±={ }
∑≡

× χ̃ S mi{ } ; P̂n σi{ },( ) WS P̂n( ).=

P̂n

F̂

1 N!WS P̂1
1–( ) ri{ } ri{ }〈 〉 N!WS P̂1

1–( ),= =

Table 1.  Result of reduction to dummy graphs in matrix
functionals

N Number of numbered 
graphs

Number of dummy 
graphs

1 1 1

2 2 2

3 6 3

4 24 5

5 120 7

6 720 11

7 5040 15

8 40320 22

9 362880 30

10 3628800 42

11 39916800 56

12 479001600 77
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in particular, for the identity permutation of 

(12)

The set of all possible functions of the type (A.4) (see
Appendix) with various {mi} and {ri}, being complete
in the space of permutationally antisymmetric pairs
(mi , ri) with a given total spin S is not orthogonal, the
orthogonality being impaired by the symmetrization
procedure. In fact, we write the scalar product of two
functions of the type (A.4):

(13)

For the pair of functions with { } = {mi} and

{ } = {ri} expression (13) has the form

(14)

From the group properties of the permutation opera-
tions it is clear that for any pair of indices n, k from the
first bilinear combination (14) we can find a pair of
indices l, m from the second bilinear combination (14)

such that  =  and  = , i.e., the corre-
sponding terms in the bilinear combinations are the
same apart from the factor.

We isolate the linearly independent functions from

the overfilled set (A.4). The spin operator  = i  +

j  + k , where i, j, and k are unit vectors and 2 ,

2 , and 2  are Pauli matrices, are uniquely related to
the operator of an infinitely small spatial rotation 1 +

(dj, ) through the angle δj [118]. The spin wave
function χ({σi}) can be conveniently represented as an
Nth rank spinor with a corresponding transformation
law for rotations of the coordinate system in spin space

P̂1

WS P̂1( ) 1/N!.=

dN x cnk* S( )clm S( )χ* mi{ } ; P̂n σi{ }( )
n k l m, , ,
∑∫

σi{ }
∑

× f * ri{ } ; P̂k xi{ }( )χ mi'{ } ; P̂l σi{ }( )

× f ri'{ } ; P̂m xi{ }( ).

mi' P̂r

ri' P̂t

dN x cnk* S( )clm S( )χ* P̂l
1–

mi{ } ; σi{ }( )
n k l m, , ,
∑∫

σi{ }
∑

× f * P̂k
1–

ri{ } ; xi{ }( )χ P̂l
1–
P̂r mi'{ } ; σi{ }( )

× f P̂m
1–
P̂t ri'{ } ; xi{ }( ).

P̂l
1–
P̂r P̂n

1–
P̂m

1–
P̂t P̂k

1–

Ŝ Ŝx

Ŝy Ŝz Ŝx

Ŝy Ŝz

Ŝ
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[117]. It follows from the linearity of the spin operator 
that the transformation law should be linear:

(15)

If the ith and jth indices-arguments of the spinor are in
the same column of the Young diagram, the spinor is
antisymmetric with respect to these indices and the
dependence of the spinor on these indices is expressed
by the determinant 

(16)

where

The determinant (16) is an invariant scalar with respect

to rotations and ad – bc = 1. The spin operator  does
not in fact act on these spinor components. The spin
state of the system is defined by a linear combination of
symmetric N1 – N2 rank spinors retained after discard-
ing all columns of the Young functions containing more
than one cell. As a result of (4), these spinors are also
symmetric with respect to mi , i.e., permutations of val-
ues in the {mi} sequence do not result in new spin
states—the spin state is uniquely determined by the

sum .

The antisymmetry of the function (A.4) implies that

if  = ,  =  or  = ,  = ,

then cnk(S) = ±cml(S) depending on the parity of .
Using the property (A.8), the bilinear combination
(A.4) may be rewritten in the form

(17)

The antisymmetry of (16) with respect to permutations

of the pairs (mi, ri) will occur if  = ,  =

 or  = ,  =  gives rise to

cnk(S) = ±cml(S) which, apart from replacing  by ,
whose parities are the same, is equivalent to the anti-

Ŝ

χ' σi +1/2=( )
χ' σi 1/2–=( ) 

 
  χ'1

χ'2 
 
 
 

≡

=  a b

c d

χ1

χ2
 
 
 
 

.

χ i'
1χk'

2 χ i'
2χk'

1– ad bc–( ) χ i
1χk

2 χ i
2χk

1–( ),=

χ i
1 χ σ1 … σi 1– +

1
2
--- … σN, , , , , 

  ,=

χ i
2 χ σ1 … σi 1–

1
2
---– … σN, , , , , 

  .=

Ŝ

mii∑

P̂n P̂mP̂ j P̂k P̂lP̂ j P̂m P̂nP̂ j P̂l P̂kP̂ j

P̂ j

ψ S mi{ } ri{ } ; σi{ } xi{ }, , ,( )

=  cnk S( )χ P̂n
1–

mi{ } ; σi{ }( ) f P̂k
1–

ri{ } ; xi{ }( ).
n k,
∑

P̂m
1–

P̂n
1–
P̂ j P̂l

1–

P̂k
1–
P̂ j P̂n

1–
P̂m

1–
P̂ j P̂k

1–
P̂l

1–
P̂ j

P̂i P̂i
1–
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symmetry conditions (A.4) for (σi , xi). Since simulta-
neous permutations in {mi} and {ri} do not lead to new
quantum states and this applies separately to {mi}, per-
mutations only in {ri} also do not lead to new quantum
states. Thus, the reduced set obtained from (A.4) by
selecting only functions with {mi} and {ri} not interre-
lated by independent permutations, remains complete
in function space with given spin S. It is easy to estab-
lish directly that this set will be orthogonal [see (16)].
Combining mutually orthogonal reduced sets with var-
ious S = (1/2)(0), …, N/2, i.e., all irreducible represen-
tations of the group of permutations, we obtain a com-
plete orthonormalized set in the space of antisymmetric
functions with respect to simultaneous permutations in
{σi} and {xi}. 

3. PARTITION FUNCTION

The Hamiltonian of a system of nonrelativistic par-
ticles does not act on the spin variables although the
partition function has a component which owes its ori-
gin to the permutation symmetry. In a degenerate quan-
tum system the exchange component of the partition
function represents dominant contributions.

Summation (9) over the eigenvalues {mi}, {ri},
S(S + 1) not related by permutations in {mi} and {ri}

for the density matrix  = exp(–β ) where β = 1/kT is
the reciprocal temperature, yields the following parti-
tion function of the system:

(18)

The factor 1/N! on transition from (9) to (18) compen-
sates for the N! fold recurrent contributions associated
with the permutations in {ri}. Summation over {mi} not
related by permutations is replaced in (18) by summa-
tion over m = . Since m is the same as the eigen-
value of the complete spin projection operator of the
system, its value for fixed S passes through 2S + 1 val-
ues in the range –S ≤ n ≤ +S which give the same con-
tributions to the sum (18) as a result of the indepen-

dence of WS( ) on m. 

Using (12), we isolate the diagonal component in (18):

(19)

F̂ Ĥ

Z 2S 1+( ) WS P̂n( )
n

∑
S

∑=

× dN x ri{ } βĤ–( )exp P̂n ri{ } .∫

mii∑

P̂n

Z
1
N!
------ 2S 1+( ) dNr ri{ } βĤ–( )exp ri{ }∫

S

∑=

+
1
N!
------ 2S 1+( )

WS P̂n( )
WS P̂1( )
------------------

n 2=

N!

∑
S

∑

× dNr ri βĤ–( )exp P̂n ri{ }{ } .∫
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The exchange is represented by the off-diagonal com-
ponent of the partition function.

Following Feynman [30], we write the matrix ele-

ments in (19) in the form of continuous path (t) in
3N-dimensional space connecting the points R(1) = {ri}

and R(n) = {ri}:

(20)

where Φ([ (t)]) is the functional of the action on the

path (t) apart from the formal replacement of the time t
with the imaginary reciprocal temperature: t  –i"β.

Each 3N-dimensional trajectory (t) uniquely corre-
sponds to N three-dimensional paths ri(t), i = 1, 2, …, N.

Since R and Rn are related by the permutation of , the
end of any three-dimensional path ri(t) is the beginning
of another path, forming a ring structure topologically

similar to the permutation graph of  (see Appendix).
The diagonal component of the partition function [first
term in (19)] only includes the identity permutation of

, i.e., all the path close onto themselves (Fig. 1). The
exchange component is obtained by integrating the set of
topologically different ring structures of linked paths.

Each topological structure has its own weight WS( ).
We shall use a definition of the continuous integral

in terms of the limiting multidimensional integral [119] 

R̃

P̂n

Z 2S 1+( ) R WS P̂n( )
n

∑d∫
S

∑=

× i
"
---Φ R̃ t( )[ ]( )

 
 
 

DR̃ t( ),exp

R
1( )

R
n( )

∫

R̃

R̃

R̃

P̂n

P̂n

P̂1

P̂n

R
i
"
---Φ R̃ t( )[ ]( )

 
 
 

DR̃ t( )exp

R
1( )

R
n( )

∫d∫

2

1

3
4

5
5

3

1
2

4

Fig. 1. Topological structure of Feynman paths comprising
diagonal (left) and exchange (right) components of the par-
tition function of indistinguishable quantum particles.
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(21)

where R(k) ≡ {ri(k)} = (kt/M), k = 1, 2, 3, …, M, and
the action Φ(R(1), R(2), …, R(M)) is calculated on the
broken line connecting the points R(1), R(2), …, R(M),
" is Planck’s constant, and m0 is the particle mass. 

The continuous integrals can be calculated numeri-
cally using the Monte Carlo method [120, 121]. A com-
puter is used to implement a Markov random walk pro-
cess in Feynman path space and all methods of linking
these. A random walk in path space with a fixed topo-

logical structure linking  is implemented with the
weighting function

(22)

A parallel random walk should be made in the topo-
logical structure space with the weighting function

(2S + 1)WS( ). It is meaningful to first sum (18) over
the graphs within classes, retaining summation over
classes instead of summation over n. According to (10)

and (6), the values of WS( ) then depend on the method
of constructing the bilinear combination (A.4) and
require a knowledge of all cnk(S). Summation within
classes eliminates this dependence.

In (8) we rewrite the complete wave function

ψ(S, {mi}, {ri}; {σi}, {xi}) on the right of the operator 

in the form of a bilinear combination of spin (S, {mi};

{σi}) and coordinate (S, {ri}; {xi}) wave functions
symmetrized by Young symmetrization operators with
mutually transposed dummy Young diagrams and various
n and k permutations of the arguments in the cells of the
Young diagrams. The integral (8) over {ri} is a linear com-
bination of matrix functionals with Young symmetrization

operators (S) having the same dummy Young diagrams
and different k-permutations of the arguments:

(23)

=  
Mm0

2πβ"
2

---------------- 
 

M ∞→
lim

3NM /2

R 1( )d R 2( )…d R M( )d∫

× i
"
---Φ R 1( ) … R M( ), ,( )

 
 
 

,exp

R̃

P̂n

~ ri j( ){ } βĤ
M

--------– 
 exp ri j 1+( ){ } ,

j 1=

M

∏
ri M 1+( ){ } P̂n ri 1( ){ } .=

P̂n

P̂n

F̂

χJ
n

f J
k

Ĵ
k

dNr S mi{ } ri{ } F̂ S mi{ } ri{ }, , , ,∫
=  N! χ̃ S mi{ } σi{ }, ,( )

σi 1/2±={ }
∑

× bnkχJ
n S mi{ } ; σi{ },( )

nk

∑

× dNr∫ dN xf ri{ } ; xi{ }( )F̂ f J
k S ri{ } ; xi{ },( ).∫
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As a result of the degeneracy of the matrix functional
with respect to permutations of the arguments in the
cells of the Young diagram [see (3)], the index k can be

removed from  in (23) and the matrix functional

G( (S)) can be removed from the summation sign over k.
Summing (23) over unrelated permutations of {mi} and
also over S and dividing the result by N! as in (18), we

obtain the trace of the operator  = exp(–β ), i.e., the
partition function of the system:

(24)

where

(25)

In (25)  does not depend on {mi} for the same rea-

sons as WS( ) in (10).

In order to obtain an explicit expression for  we
could calculate (25) allowing for the orthonormaliza-
tion of the spin functions. A simpler and faster method
involves comparing the high-temperature limits of for-
mula (24) and its equivalent notation (19). For β  0
only the contributions from the diagonal matrix ele-
ments survive in both expressions and in particular (24)
has the high-temperature asymptotic form

(26)

Equating (24) and (19) in this limit, we obtain

(27)

whence

(28)

f J
k

Ĵ

F̂ Ĥ

Z 2S 1+( ) χ̃ S mi{ } ; σi{ },( )
σi 1/2±={ }
∑




S

∑=

× bnkχJ
n S mi{ } ; σi{ },( )

nk

∑ 



G Ĵ S( )( )

=  2S 1+( )W̃SG Ĵ S( )( ),
S

∑

W̃S χ̃ S mi{ } ; σi{ },( )
σi 1/2±={ }
∑=

× bnkχJ
n S mi{ } ; σi{ },( ).

nk

∑

W̃S

P̂n

W̃S

G Ĵ S( )( ) 1±( )G P̂n( ) G P̂1( )
n

∑=

=  dNr ri{ } βĤ–( )exp ri{ } .∫

2S 1+( )W̃S dNr ri{ } βĤ–( )exp ri{ }∫
S

∑

=  
1
N!
------ 2S 1+( ) dNr ri{ } βĤ–( )exp ri{ } ,∫

S

∑

W̃S
1
N!
------ WS P̂1( ).= =
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Taking into account (28), the partition function has the
form

(29)

where the index S at the summation sign indicates that

summation is performed over all permutations of 
contained in the Young symmetrization operator corre-
sponding to the spin S, for which the permutation of the
arguments in the cells of the Young diagram is negligi-
ble. Thus, in order to obtain all topological structures of
linked trajectories in (29), it is sufficient to construct all

graphs of  obtained after removing the brackets in
the Young symmetrization operator

(30)

and to reorient these:   . The same result is
achieved by reversing the order of the pair symmetriza-
tion operators in (30),

(31)

or by replacing the number pair permutations by posi-
tion pair permutations,

(32)

Since the total number of graphs generated by the
Young symmetrization operators in (29) is of the order
of N!, numerical calculations of the partition function
and the equilibrium averages can only be made after
reducing these to dummy graphs. This reduction is
achieved numerically by computer: graphs from one

class with a representative graph of this class  are
grouped with a common factor ωS(k): 

(33)

where

is the sum over all spin states. The sum over k in (33) is
taken over classes of the group of permutations and
contains far fewer terms than (29) (see Table 1): for
N ~ 10 it is of the order of a few tens. Each class is rep-
resented by a dummy graph which is then uniquely
defined by dividing into dummy cycles: νi is the num-
ber of cycles from i vertices. Taking this factor into

Z
1
N!
------ 2S 1+( ) 1–( )c n( )

n

S

∑
S

∑=

× dNr ri{ } βĤ–( )exp P̂n ri{ } ,∫

P̂n

P̂n

Ĵ S( ) = 1 n̂w±( ) 1 n̂v±( )… 1 n̂c±( ) 1 n̂b±( ) 1 n̂a±( ),

N̂n N̂n
1–

Ĵ S( ) = 1 n̂a±( ) 1 n̂b±( )… 1 n̂s±( ) 1 n̂v±( ) 1 n̂w±( ),

Ĵ S( ) = 1 p̂w±( ) 1 p̂v±( )… 1 p̂c±( ) 1 p̂b±( ) 1 p̂a±( ).˙

Π̂k

Z
1
N!
------ 2S 1+( ) ωS k( )

k

∑
S

∑=

× dNr ri{ } βĤ–( )exp Π̂k ri{ }∫
=  

1
N!
------ ω k( ) dNr ri{ } βĤ–( )exp Π̂k ri{ } ,∫

k

∑

ω k( ) 2S 1+( )ωS k( )
S

∑=
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account, the notation (33) becomes clearer if k is
replaced by the multidimensional index {νi}:

(34)

Summation in (34) is performed over all divisions {νi}
satisfying the condition

Calculation of ω({νi}) involves constructing all per-
missible Young dummy diagrams of the coordinate
function and reducing the graphs of these diagrams to
dummy graphs. If it is necessary to distinguish between
states with different S for each {νi} we construct the
distribution normalized to unity

which reflects the contribution of the spin state S to this
topological structure of {νi}. The control tables

(S) and ω({νi}) are stored in the computer mem-
ory. An example of these data for N = 5 is given in
Table 2. It is only advisable to make direct calculations
of the control tables for a comparatively small number
of fermions in the system and we made such calcula-
tions by computer for N ≤ 10. As N increases, the num-
ber of arithmetic operations required increases as N!
and direct calculations of the control tables become
almost impracticable. For this case we developed a spe-
cial fundamentally exact method aimed at calculations
for large numbers of particles. This method is not
described in the present study.

On the basis of (34), the spin state distribution func-
tion has the form

(35)

4. NUMERICAL CALCULATIONS
OF PATH INTEGRALS FOR SYSTEMS

OF SPIN PARTICLES WITH EXCHANGE

In this section we present results of applying the
Monte Carlo path integral method to the modeling of a
hydrogen atom, a hydrogen molecule, a Be+ ion, and an
Li atom. The principal aim of the calculations was to
assess the possibilities of the method for application to
more complex systems. It is fundamentally important
to study those effects in the behavior of a multielectron
system at room temperature which are caused by the

Z
1
N!
------ ω ν i{ }( )

νi{ }
∑=

× dNr ri{ } βĤ–( )exp Π̂ νi{ } ri{ } .∫

iν i

i

∑ N .=

Γ νi{ } S( ) 2S 1+( )
ωS ν i{ }( )
ω ν i{ }( )
----------------------,=

Γ νi{ }

ρ S( ) 2S 1+
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--------------- ωS ν i{ }( )
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∑=

× dNr
Z
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Table 2.  Example of a control table for N = 5 spin 1/2 fermions containing relative combinatorial weights ω'({νi}) of all
methods of dividing unnumbered trajectories into cycles {νi}

{νi}
Γ{νi}(S)

ω'({νi})
S = 1/2 S = 3/2 S = 5/2

(0, 0, 0, 0, 1) 0 –0.2000000 1.2000000 10

(1, 0, 0, 1, 0) –0.0714285 0 1.0714285 –14

(0, 1, 1, 0, 0) 0.0740741 –0.1851852 1.1111111 –9

(2, 0, 1, 0, 0) –0.0606061 0.1515152 0.9090909 11

(1, 2, 0, 0, 0) 0.0625000 0 0.9375000 8

(3, 1, 0, 0, 0) 0.0476190 0.2380952 0.7142857 –7

(5, 0, 0, 0, 0) 0.1666666 0.3333333 0.5000000 1

Note: Γ{νi}(S) is the relative contribution of spin state S to ω'({νi}). The weights ω'({νi}) ~ ω({νi}) are normalized using the condition
ω'(N, 0, …, 0) = 1.
permutation symmetry. The Monte Carlo path integral
method can combine an explicit description of permu-
tation symmetry in spin systems with fundamentally
exact calculations of the mixed quantum state at non-
zero temperature. This level of detail is unique and mer-
its detailed testing.

4.1. Single-Electron System

In [122] the path-integral Monte Carlo method was
used to make test calculations of the ground quantum
state of a hydrogen atom in a spherical cavity. The pres-
ence of a confining cavity is required because of the fun-
damental instability of a free atom in vacuum at any non-
zero temperature. The calculations were made using a
weakly singular interaction functional [123, 124]. In this
study an analytic solution of the Schrödinger equation is
obtained for this system when the cavity radius is com-
parable with the Bohr radius (strong compression).
Excellent agreement is observed between the results of
the modeling and the analytic calculations. In the
Monte Carlo calculations the ground quantum state of
the atom is achieved by cooling the atom with simulta-
neous pushing up of excited states by compressing the
confining cavity. 

The analytic calculations (solution of the Schrödinger
equation) for the ground state of a hydrogen atom in a
spherical cavity of radius 2 Å give –13.05 eV whereas
Monte Carlo calculations using path integrals with a prin-
cipal kinetic energy estimator [91, 125] give –13.02 ±
0.20 eV. Using a virial kinetic energy estimator [92, 126,
127] strictly speaking requires the inclusion of addi-
tional terms to reflect the contributions from interaction
of the paths with the shell walls, which were neglected
in the virial estimator in [122]. However, even calcula-
tions using an incomplete virial estimator yielded real-
istic values of –12.7 ± 0.5 eV which indicates that the
neglected terms make relatively small contributions.
On the basis of these results it was concluded that there
were no systematic errors in the quantum statistics rep-
JOURNAL OF EXPERIMENTAL 
resentation in the form of prelimiting Feynman paths,
even in systems with a singular potential. It should be
noted that as yet no general confirmation of this state-
ment exists [119]. Our subsequent calculations using
more powerful computers and larger amounts of col-
lected statistics giving results with a smaller statistical
error confirmed this conclusion.

4.2. Two-Electron System

The nonsymmetrized two-particle eigenfunctions of
the coordinate and spin projection operators have the form 

(36)

Two irreducible representations of the group of permu-
tations exist, corresponding to the singlet S = 0 and trip-
let S = 1 spin states. Accordingly, the complete two-par-
ticle wave function may be antisymmetrized by two
methods:

(37)

The diagonal matrix elements have the following struc-
ture:

f r1 r2; x1 x2, ,( ) δ x1 r1–( )δ x2 r2–( ),=

χ m1 m2, ; σ1 σ2,( ) χ m1 σ1,( )χ m2 σ2,( ).=

ψ S 0

1 
 
 

m1 m2 r1 r2; σ1 σ2 x1 x2, , , , , , ,=
 
 
 

=  
1
2
--- χ m1 m2; σ1 σ2, ,( ) χ m1 m2; σ2 σ1, ,( )+−[ ]

× f r1 r2; x1 x2, ,( ) f r1 r2; x2 x1, ,( )±[ ]
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1
2
--- χ m1 m2; σ1 σ2, ,( ) χ m2 m1; σ1 σ2, ,( )+−[ ]

× f r1 r2; x1 x2, ,( ) f r2 r1; x1 x2, ,( )±[ ] .

S 0
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M r1 r2 βĤ–( )exp S 0
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M r1 r2, , ,=, , ,=
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(38)

The partition function has the form

(39)

= 

The matrix elements are written in the form of Feyn-
man continuous integrals:

(40)

where

(41)

U(r) is the operator of the electron interaction with an
external potential field, r(j) is the broken curve con-
necting the points on the path r(t) with fixed time inter-
val t. 

The measure in the functional integral (40) is deter-
mined from the condition that for a free particle the
density matrix in the coordinate representation

for β  0 becomes a δ function, ρ(r, r')  δ(r – r')
[30]:

(42)

The two-particle partition function has the following
structure:

(43)

The first, diagonal, term corresponds to the normalized
distribution over spin states Γ(2, 0)(0) = 1/4, Γ(2, 0)(1) =
3/4, while the second, off-diagonal, term corresponds
to Γ(0, 1)(0) = –1/2, Γ(0, 1)(1) = 3/2.

It can be seen from (43) that the linked trajectories
should be taken into account with negative weight which
makes it difficult to construct a standard Markov random
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walk which assumes the existence of a positive-definite
measure of microstates. The problem is solved by rede-
fining the measure with a corresponding compensating
redefinition of the estimators. Let us assume that in the
microstate space x 

(44)

and ω(x) changes sign. We determine the normalized
function Ω(x) ≥ 0:

(45)

Then in terms of Ω(x) (44) is rewritten in the form

(46)

where 〈…〉+ denotes averaging with a positive-definite
weighting function Ω(x). The relative variance of the
mean (46) calculated in a finite sample of Markov
microstates, is made up of the relative variance of
the numerator and denominator (46) where for
〈 ω(x))〉+  0 the latter diverges so that the pres-
ence of negative contributions in the partition function
(39) makes it difficult to calculate the canonical aver-
ages. As the temperature decreases the variance, and
with it the statistical error of the numerical value (46)
calculated in finite samples, increases which necessitates
generating longer Markov processes by computer and
thus requires more computer time. The presence of neg-
ative contributions in the partition function is required
to compensate for the contributions which do not sat-
isfy the conditions of permutation symmetry. The
expenditure of computer resources on the calculation of
these mutually compensating contributions in fact does
not increase the accumulated statistics and in this sense
this is lost effort. As the temperature decreases, the
fraction of this lost effort increases. The problem only
becomes really important for systems with more than
two electrons when T  0. For two electrons the sum
of the combinatorial weights in the partition functions
and the denominator in (46) are nonzero even in the
limiting case T = 0. It should be noted that the problem
for the Monte Carlo method with path integrals is not
to calculate the ground quantum state corresponding
to T = 0. The method was developed to solve temperature
problems belonging to the statisticomechanical category.
The power of the method specifically lies in the possibility
of making direct calculations of the statistical distribution
over steady quantum states, bypassing their individual
calculations. However, it is always interesting to
broaden the range of efficacy of the method, in this case
to lower temperatures. Our experience of using the
method shows that as the temperature decreases, there

F〈 〉 xF x( )ω x( )d∫=

Ω x( ) ω x( )
x ω x( )d∫

------------------------.=

F〈 〉
x ω x( )( )F x( )Ω x( )sgnd∫

x ω x( )( )Ω x( )sgnd∫
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=  
ω x( )( )F x( )sgn〈 〉 +

ω x( )( )sgn〈 〉 +
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(sgn
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comes a time when the denominator in (46) decreases
rapidly and calculations using the standard scheme
become almost impossible. Physically this implies a
transition to a highly degenerate electron component
regime. The specific temperature at which this occurs
depends strongly on the density of the system and the
configuration of the external field. For atomic systems
the critical boundary lies in the range 104–105 K. Expe-
rience shows that a value of the order of 〈 ω(x))〉+
≈ 0.01 should be taken as the permissible limit above
which calculations can still be made without using spe-
cial measures. However, in cases of quantum degener-
acy we can propose special modifications of the calcu-
lation algorithm which allow the temperature to be
reduced at least severalfold without introducing sys-
tematic error. The numerical results presented here
were obtained without using these special measures
since they were not necessary. The temperature of the
calculations for a three-electron system is fairly high
and no problems occurred with the divergence (46): the
value of 〈 ω(x))〉+ did not fall below 0.1. The special
case of strong degeneracy is outside the scope of this pub-
lication. A detailed analysis is planned for a future study
where a method of solving the problem of negative sign
will be developed and numerical results obtained with and
without using special algorithms to solve the problem will
be analyzed systematically.

An estimate of the statistical errors attributable to
the finiteness of the significant samples obtained by the
Monte Carlo method may be made using the same
scheme as for problems without exchange symmetry
and negative contributions since, from the formal point
of view, as a result of redefining the measure using for-
mula (46) and transferring the negative signs from the
measure to the averageable quantities, the process of
calculating the averages here does not differ in any
respect from the calculations of averages in systems obey-
ing classical statistics. In principle, the procedure remains
valid regardless of the sign of the quantity being averaged.
As a result of the statistical correlation of the configura-
tions obtained in the Markov random walk process, the
variance of the corresponding estimator cannot be used to
estimate the error. The standard scheme [120] for calcu-
lating the errors of the numerator and the denominator
(46) involves calculating the partial averages  along the
Markov path and then, considering these as statistically
independent quantities, estimating the absolute statisti-
cal error of the calculated average  using the formula

(47)

Formula (47) becomes absolutely exact in the absence
of correlations between the partial averages . This
condition is better satisfied, the larger the length of the
section of the Markov path L/n expended in calculating
each . The theoretically optimum value of the
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parameter n depends on the total length of the Markov
trajectory L although, if L is much greater than the char-
acteristic autocorrelation length along the trajectory (a
necessary condition for accuracy of the Monte Carlo
calculations) an increase in L/n causes ∆  (47) to reach
a saturation value which depends weakly on n. This
value should be considered to be an estimate of the sta-
tistical error. The characteristic autocorrelation length
is estimated by the control map method [120] using the
length of the nonsteady-state section of the Markov
chain. Generally, the calculations are considered to be
correct if this length does not exceed ~0.1% of the total
length of the Markov process and this value with a fac-
tor of ten margin is used in the estimates. Since the
error is estimated to one decimal place, it is meaning-
less to determine the optimum value of n with preci-
sion. Estimates are usually made for n ≈ 10. This value
was used in our calculations. The error was checked
independently by reproducing the calculations for the
same values of the parameters but from different initial
configurations. The initial section of the chain, 10–20%
of the length, no less than an order of magnitude shorter
than the autocorrelation length, was considered to be
nonsteady-state and was not used to calculate the aver-
ages. Some very effective measures to shorten the non-
steady-state section were used in the algorithm, but a
detailed discussion of these is outside the scope of the
present publication. 

Numerical test calculations were made for a hydro-
gen molecule in which the exchange “interaction” is
observed most clearly for the minimum number of elec-
trons. In (40) as for the case of a hydrogen atom we used
the weakly singular functional Φ(R(1), R(2), …, R(M))
[122] which contains no nonintegrable singularities at
sites of atomic nuclei. In order to avoid effects caused
by the motion of nuclei, these were fixed at an equilib-
rium distance a = 0.7416 Å. The calculations were
made for T = 2500 K and the number of vertices in each
trajectory was M = 640. The molecule was located in an
impermeable spherical cavity of radius 3 Å in order to
push the excited energy levels of the electron shell
upward and reduce their weight in the partition function
[128]. The energy and electron density distribution pat-
tern were calculated. Calculations using the virial estima-
tor [92, 126, 127] yielded the following results: kinetic
energy of electron subsystem 〈K〉 = 28.5 ± 0.1 eV, poten-
tial energy of electron subsystem 〈U〉  = –79.8 ± 0.1 eV,
total energy of electron subsystem 〈C〉  = –51.3 ± 0.1 eV,
total molecular energy without kinetic energy of nuclei
〈E〉  = –31.9 ± 0.1 eV. This last value is the total ground-
state energy of the molecule minus the energy of the
zero-point vibrations of the nuclei hνnucl /2 and may be
determined experimentally [129]:

F

E exp 2EH Edis
exp– 0.5hνnucl

exp–=

=  2 13.598 4.478– 0.5 4.1357 10 15–××–×–(

× 1.3181 1014 ) eV× 31.946 eV,–=
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where EH is the ground-state energy of the hydrogen

atom and  is the experimental dissociation energy
of the hydrogen molecule. Our calculations reproduce
to within 0.2% the experimentally determined value
and yield the dissociation work of the hydrogen mole-
cules Edis = 〈E 〉  – 2EH = 4.4 ± 0.1 eV which agrees with

the experimental value  = 4.478 eV.

The calculations showed that cooling the system
causes an abrupt decrease in the variance of the princi-
pal energy estimator [91, 125] obtained by direct differ-
entiation of the free energy with respect to the recipro-
cal temperature so that at T = 2500 K it also becomes
suitable for calculations in addition to the virial estima-
tor. The values obtained by averaging the principal esti-
mator were:

The partition function of the system includes two spin
states: S = 0 and S = 1. In our calculations the molecule
spent 98% of the effective Markov time in the S = 0
state. An analysis of the fluctuation behavior suggests
that an increase in the volume of the random sample
leads to a more accurate and also lower than 〈S〉  = 0.02
value of the average spin number.

4.3 Three-Electron System

We express the complete wave function of a system
of three nonrelativistic electrons in the form of a sym-
metrized bilinear combination of spin and coordinate
functions having 3! × 3! = 36 terms:

(48)

where χ({mi}; {σi}) = χ(m1; σ1)χ(m2; σ2)χ(m3; σ3) are
the eigenfunctions of the single-particle spin projection
operators, and f ({ri}; {xi}) = δ(x1 – r1)δ(x2 – r2)δ(x3 – r3)
are the eigenfunctions of the coordinate operator. At the
same time the complete wave function of a state with spin
S is a bilinear combination of spin χJ({mi}; {σi}) and
coordinate fJ({ri}; {xi}) functions symmetrized in
accordance with mutually transposed Young diagrams
from three cells with arguments as in Fig. 2. For exam-
ple, for S = 1/2 in Fig. 2 we have

(49)

The linearly independent functions obtained by var-
ious permutations of the arguments of the cells of the

Edis
exp

Edis
exp

K〈 〉 28.5 0.5 eV, C〈 〉± 51.3– 0.5 eV,±= =

E〈 〉 –31.9 1.0 eV.±=

ψ S mi{ } ri{ } ; σi{ } xi{ },, ,( ) cnk S( )
n k,
∑=

× χ mi{ } ; P̂n σi{ }( ) f ri{ } ; P̂k xi{ }( ),

f J ri{ } ; xi{ }( ) δ x1 r1–( )δ x2 r2–( )δ x3 r3–( )=

+ δ x2 r1–( )δ x1 r2–( )δ x3 r3–( )
– δ x3 r1–( )δ x2 r2–( )δ x1 r3–( )

– δ x2 r1–( )δ x3 r2–( )δ x1 r3–( ).
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Young diagram form the basis of an irreducible repre-
sentation of the permutation group corresponding to
spin S.

The diagonal matrix elements of the symmetrized
coordinate-spin representation are reduced to a linear
combination of off-diagonal elements of the nonsym-
metrized coordinate representation:

(50)

where the set of operators  appearing in (50) is a
Young symmetrization operator corresponding to spin
S = 1/2 or S = 3/2 with filled cells. Each of the six oper-

ators  in (50) corresponds to its numbered graph.
Since the matrix elements in (50) do not depend on the
numbering of the graph vertices, the summation over

six numbered graphs  in Fig. 3 reduces to summa-

tion over three graphs with unnumbered vertices  in
Fig. 4 with a corresponding redistribution of weights:

(51)

In accordance with Fig. 4 for S = 1/2 we have a1 = 1,
a2 = 1 – 1 = 0, a3 = –1, and for S = 3/2 we obtain a1 = 1,
a2 = –3, a3 = 2.

Since the complete set of Young symmetrization
operators generates a complete set of antisymmetric
wave functions and the functions unrelated by permu-
tations in m1, m2, m3, or in r1, r2, r3 are orthogonal, inte-
gration (51) over r1, r2, r3 yields a partition function

S m1 m2 m3 r1 r2 r3, , , , , ,〈 |e βĤ– S m1 m2 m3 r1 r2 r3, , , , , ,| 〉

=  an' r1 r2 r3, ,〈 | βĤ–( ) P̂n r1 r2 r3, ,( )| 〉 ,exp
n 1=

6

∑

P̂n

P̂n

P̂n

Π̂n

S m1 m2 m3 r1 r2 r3, , , , , ,〈 |e βĤ– S m1 m2 m3 r1 r2 r3, , , , , ,| 〉

=  an r1 r2 r3, ,〈 | βĤ–( ) Π̂n r1 r2 r3, ,( )| 〉 .exp
n 1=

3

∑

σ1

σ2

σ3

σ1 σ2 σ3

x1 x2

x3

x1

x2

x3

S = 1/2

S = 3/2 S = 3/2

S = 1/2

Fig. 2. Young diagrams of the spin and coordinate compo-
nents of the wave function of a system of three electrons in
two possible spin states which are eigenfunctions of the spin
square operator of the system.
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where the factor 2S + 1 replaces summation over m1,
m2, m3, and the divisor N! = 6 allows integration to be
extended to all values of r1, r2, r3 including those
related by permutations:

(52)

Z
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6
--- 2S 1+( ) an S( ) r1d r2d r3d∫

n 1=

3

∑
S 1/2 3/2,=
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× r1 r2 r3, ,〈 | βĤ–( ) Π̂n r1 r2 r3, ,( )| 〉exp

=  An r1d r2d r3d∫
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× r1 r2 r3, ,〈 | βĤ–( ) Π̂n r1 r2 r3, ,( )| 〉 ,exp

1

2

3 1

2 3

1 3

2

1 2

331

2

31

2

n = 1 n = 2 n = 3

n = 6n = 5n = 4

Fig. 3. Graphs representing all possible permutations con-
tained in the Young symmetry operators of three electrons.

S = 1/2 S = 3/2

+2

+1+1

–1
–3

Fig. 4. Result of summation within classes of permutations
in the Young symmetry operators of the coordinate part of
the wave function in two possible spin states of a system of
three electrons. The numbers denote the relative weights of
the corresponding dummy graphs within this spin state. The
negative weights indicate that the corresponding continuous
integrals appear in the partition function with a negative
sign.
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where

The relationship 

(53)

is an expression of the Pauli principle that it is impossi-
ble to place more than two electrons in a single quantum
state. A simple superposition of single-electron orbitals
neglecting the mutual correlations in the electron motion
inside the orbitals does not completely reflect the pat-
tern of exchange effects: the largest contributions to the
partition function are made by those relative positions of
the virtual trajectories for which the repelling “simulta-
neous” points of the trajectories are at the maximum
distances. The spatial separation of these points influ-
ences the dependence of the exponential weights on the
method of linking the trajectories. The multielectron
wave function of the mixed state of the system is a
result of a balance of these factors. A change in the
external field configuration influences the weight distri-
bution between the various methods of linking, prefer-
ence being given to those inscribed in the external field
geometry with the lowest values of the action calcu-
lated along them. Redistribution of the weights then
gives rise to a change in the spin state of the system.
Thus, the external field influences the resultant spin of
the system. 

Numerical calculations of equilibrium averages in
the form of continuous integrals were made using a uni-
fied program for Markov random walk of virtual elec-
tron trajectories in the electric field of a beryllium
nucleus. Each trajectory is represented by a broken line
with M = 40 links and a weakly singular potential [122].
An increase in temperature makes the most representative
trajectories shorter and reduces the constraint on the
degree of discretization of the trajectories M. Calculations
with smaller M are less cumbersome and the statistical
fluctuations of the principal energy estimator are
smaller. A temperature of 10–30 eV (the second ioniza-
tion potential of beryllium is 18.2 eV) corresponds to
strong thermal excitation of the electron shell.
Although the system was placed in a solid-walled
spherical cavity of radius L = 3.78 Å centered on the
nucleus to ensure equilibrium stability at this temperature,
in the thermally bound state the electron trajectories did
not have time to move more than 2 Å away from the
nucleus over the random walk time (106 steps). The
existence of walls only became important after the
detachment of an electron. In the first case, the system
was in a locally stable metastable bound Be+ state sep-
arated from the secondary ionization states by a high
surface barrier. After electron detachment the state
should be interpreted as Be++ against the background of
a dense electron component. Figure 5 shows the evolu-

An
1
6
--- 2S 1+( )an S( ),

S 1/2 3/2,=
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A1 1, A2 2, A3– 1.= = =
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tion of the radial distribution of the electron density
when the system is heated from T = 120 × 103 K to T =
144 × 103 K. At T = 120 × 103 K an electron density
maximum is observed at a distance of two Bohr radii
which, from the point of view of the single-electron
approximation, may be interpreted as the contribution
of 2s and 2p orbitals. As a result of comparatively weak
heating to T = 144 × 103 K this maximum is doubled
and a deep dip forms between the first high-density
region of the electron cloud located near the nucleus
and the second at a distance of two Bohr radii. The
areas below the maxima of the electron density are in
the ratio 1 : 2. The first maximum has the form of a
hydrogen-like orbital with the nuclear charge number
z = 4. It is interesting that the position of the second
maximum does not change with temperature. Quite
clearly, the second maximum forms mainly as a result
of the motion of two electrons simultaneously on the
outer 2s, 2p orbital. The n = 2 orbital is entropically
more favorable that the n = 1 orbital because of the
larger number of subshells. The position of the second
maximum is determined by the balance of two oppos-
ing tendencies. First, as the temperature increases,
higher quantum states should be included which would
shift the maximum to larger distances from the nucleus.
Second, the transition of a second electron from the n = 1
shell to n = 2 reduces the screening of the nuclear field
for the third, outer, electron since the second and third
electrons now participate in joint correlated motion in
the 2s, 2p subshells, which reduces the effective radius
of the second electron shell. As a result, the second
maximum remains where it is and the transition of the
second electron to a higher orbital intensifies the cou-
pling between the outer electron and the Be+ ion as a
result of exchange correlation effects.

Overcoming the metastable barrier, i.e., electron
detachment, occurred at T = 200 × 103 K. In this case
the second electron returned to the n = 1 inner orbital
and the mutual screening of the nuclear field by the first
and second electrons increased the radius of the inner
electron orbital to half the Bohr radius followed by con-
tinuous smearing of the radial distribution of the elec-
tron density with increasing temperature.

It can be seen from these data that exchange corre-
lation mechanisms lead to substantial layering of the
electron shell in the pre-ionization state. Emptying of
the inner orbital reduces the screening of the nuclear
field for the inner electron, i.e., the radius of the inner
orbital decreases and it becomes separated from the
outer one. Conditions may be established when the
outer electron orbitals are filled by emptying of inner
ones followed by an electron transition from the outer
orbital back to the inner one with increasing tempera-
ture. In principle, the radius of the outer electron shell
may decrease during heating as a result of reduced
screening of the nuclear field when inner electrons are
transferred to higher orbitals. This behavior should be
predicted primarily in systems with compensated
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
charge where the role of interelectron correlations at
outer orbitals is particularly important. 

We repeated our calculations for the electrically
neutral Li atom (Fig. 6). At T = 95 × 103 K a two-elec-
tron outer shell is clearly formed as a result of the tran-
sition of one of the inner electrons to an outer orbital
whose radius decreases to 1.3 Å instead of 1.65 Å for
the 2s orbital in the field of a nucleus screened by two
1s electrons in the Li ground state [129]. Figuratively

1
2

3

4

1.5

1.0

0.5

0 0.5 1.0 1.5 2.0
r, Å

〈ψ* ψ〉 c × 4πr2, Å–1

Fig. 5. Electron density distributions normalized to unity in
the mixed Be+ state at T = 120 × 103 K (1), T = 144 × 103 K (2)
and Be++ at T = 248 × 103 K (3), T = 299 × 103 K (4) calcu-
lated by the Monte Carlo method using path integrals. The
dashed curve gives the 1/3 normalized outer single-electron
orbital of Be+ in the quantum ground state using results of
quantum chemical calculations [109]. 

1

2

1.5

1.0

0.5

0 0.5 1.0 1.5 2.0
r, Å

〈ψ* ψ〉 c × 4πr2, Å–1

Fig. 6. Electron density distributions normalized to unity for
Li at T = 95 × 103 K (1) and Li at T = 104 × 103 K (2), cal-
culated by the Monte Carlo method using path integrals.
The dashed curve gives the 1/3 normalized outer single-
electron orbital of Li in the quantum ground state using
results of quantum chemical calculations [109]. 
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speaking the atom is “compressed” before the imminent
ionization jump. In the Li+ ionized state at T = 104 ×
103 K (Fig. 6) the second electron is returned to the n = 1
inner orbital, partially screening it from the nuclear
field. Thus, the observed irregularity in the electron
shell behavior under strong thermal excitation is not a
characteristic merely of Be+ and Li.

APPENDIX

Topological Representation of Symmetry Operators

Since the Hamiltonian  of a system of N nonrela-
tivistic fermions contains no spin variables {σi} =
(σ1, …, σN) and is symmetric with respect to permuta-
tions of the coordinate variables {xi} = (x1, …, xN), the
complete wave function may be expressed as a symme-
trized bilinear combination of spin χ and coordinate f
functions:

(A.1)

where  is the position permutation operator in the
sequence of arguments. The permutation of the argu-
ments may be interpreted as the transition to another

function f '({xi}) = f( {xi}) with the transition opera-
tor f '({xi}) = f({xi}). The composition law for the 
operators is clearly

(A.2)

In addition to the position pair permutations  = ,

number pair permutations  =  also exist, involving
the mutual permutation of two arguments having num-
bers i and j irrespective of their initial positions. It is
easily established directly that any pair permutation
operator  commutes with any pair permutation oper-

ator  and thus any number permutation operator 

commutes with any position operator  whence

(A.3)

It can be seen from (A.3) that the action of the oper-

ator  on the kth permutation in the sequence {xi}

reduces to the position permutations  which

implies that the operators  and  belong to the
same class [113, 114].

We shall construct a bilinear combination (A.1) of
the eigenfunctions χ({mi}, {σi}) of the single-particle
spin projection operators acting on the variables σ1,

Ĥ

ψ σi{ } xi{ },( )

=  cnkχ P̂n σi{ }( ) f P̂k xi{ }( ),
n k,
∑

P̂n

P̂k

π̂k π̂k

π̂kπ̂n f xi{ }( ) f P̂nP̂k xi{ }( ).=

p̂a p̂ij

n̂a n̂ij

n̂

p̂ N̂

P̂

N̂nP̂k xi{ } P̂k N̂n xi{ } P̂kP̂n xi{ }= =

=  P̂kP̂nP̂k
1–( )P̂k xi{ } .

N̂n

P̂kP̂nP̂k
1–

P̂n N̂n
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σ2, …, σN with the eigenvalues m1, m2, …, m3, respec-
tively, and the eigenfunctions f({ri}, {xi}) of the coor-
dinate operators acting on the variables x1, x2, …, xN

with the eigenvalues r1, r2, …, rN . Since the spin square
operator commutes with the spin projection operator
[117], the bilinear combination (A.1) may also be the
eigenfunction of the spin square operator:

(A.4)

The complete wave function of the state having the
total spin S is a bilinear combination of spin χJ({mi}; {σi})
and coordinate fJ({ri}; {xi}) functions symmetrized in
accordance with the mutually transposed Young dia-
grams [117, 118]. The spin function is initially symme-
trized along the rows and then antisymmetrized along the
columns. All linearly independent functions obtained by
various permutations of the arguments in the cells of the
Young diagram form the basis of the irreducible repre-
sentation of the permutation group corresponding to the
total spin S [116]. The Young symmetrization operator
is a linear combination of the number permutation
operators of the arguments. The coefficients cnk(S) are
the result of opening the brackets in the complete bilin-
ear combination

(A.5)

The index S after the sum implies that summation is
performed over all permutations contained in the Young
symmetrization operator corresponding to spin S, c(n)
is the number of pair permutations of the arguments
along the columns of the Young diagram contained in
the series

(A.6)

The pair permutation operators of the arguments along
the rows of the Young diagram are positioned at the end
of the sequence (A.6): …, ,  whereas those along

the columns are positioned at the beginning: , ,

, …, and for the  operators the converse holds. The

functions χJ({mi}; {σi}) in (A.1) being products of
single-particle functions are symmetric with respect to

the pair permutations (mi , ) where { } = {σi}:

(A.7)

ψ S mi{ } ri{ } ; σi{ } xi{ }, , ,( ) cnk S( )
n k,
∑=

× χ mi{ } ; P̂n σi{ }( ) f ri{ } ; P̂k xi{ }( ).

χJ S mi{ } ; σi{ },( ) 1–( )c n( )χ mi{ } ; N̂n σi{ }( )
n

S

∑=

=  1–( )c n( )χ mi{ } ; P̂n σi{ }( ).
n

S

∑

N̂n n̂wn̂v…n̂cn̂bn̂a.=

n̂b n̂a

n̂w n̂v
n̂s p̂

N̂n

σi' σi' N̂n

χ mi{ } ; N̂n σi{ }( ) χ P̂k mi{ } ; P̂k N̂n σi{ }( ),=
AND THEORETICAL PHYSICS      Vol. 91      No. 1      2000



EXCHANGE SYMMETRY 45
and in particular

(A.8)

It can be seen from (A.7) and (A.8) that the {mi} sym-
metry of the wave function is described by a group of
inverse permutations with respect to the {σi} symmetry
group. The same applies to the coordinate function.

Any permutation  uniquely corresponds to an ori-
ented graph constructed of N numbered vertices. The
directional couplings (arrows) in the graph connect the
old and new numbers of the positions of the permuted
arguments. An inverse permutation corresponds to a
reoriented graph (where the directions of all the cou-
plings are changed). In the sense of the permutation
operation, each vertex is both the beginning of one and
the end of another or the same arrow which yields the
ring structure of the graph. The set of rings in the graph
corresponds to an equivalent set of commuting cyclic
permutations. Each graph uniquely corresponds to a
spin or coordinate function with permutated arguments.
The structure of the function symmetrized in accor-
dance with the Young diagram is represented by a set of
graphs with coefficients (generalized weights) ±1. Per-
mutation of the arguments in the cells of the Young dia-
gram leads to renumbering of the vertices of all the
graphs so that any permutations of the arguments in the
cells of the Young diagram correspond to the same set
of graphs constructed using unnumbered vertices, i.e.,
dummy graphs. If the symmetry of the coordinate func-
tion with respect to the arguments is described by a cer-
tain set of graphs, the symmetry of the same function in
terms of the eigenvalues {ri} is described by a set of
reoriented graphs. Let us assume that 

(A.9)

is a coordinate function symmetrized by the Young
symmetrization operator with initial permutation of the
arguments in the cells of the Young diagram. Going
over to a different permutation of the arguments in the

cells using the permutation  implies renumbering
the vertices of all the graphs appearing in the linear
combination (A.9), i.e., going over to different graphs
from the same classes:

(A.10)

The specific Young diagram with empty cells is
characterized by a set of dummy graphs.

χ mi{ } ; N̂n σi{ }( ) χ mi{ } ; P̂n σi{ }( )=

=  χ P̂n
1–

mi{ } ; σi{ }( ).

P̂k

f J S ri{ } ; xi{ },( ) 1–( )c n( ) f ri{ } ; N̂n xi{ }( )
n

∑=

=  1–( )c n( ) f ri{ } ; P̂n xi{ }( )
n

∑

P̂m

f J
m S ri{ } ; xi{ },( )

=  1–( )c n( ) f ri{ } ; P̂mP̂nP̂m
1–

xi{ }( ).
n

∑
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Abstract—Calculations are made of the energy and angular distributions of photoelectrons during tunneling ion-
ization of an atom or an ion under the action of high-power laser radiation (for all values of the Keldysh param-
eter γ). Cases of linear, circular, and elliptic polarizations of the electromagnetic wave are considered. The proba-
bility of above-barrier ionization of hydrogen atoms in a low-frequency (γ ! 1) laser field is calculated. Formulas
are given for the momentum spectrum of the electrons when an atomic level is ionized by a general type of alter-
nating electric field (for the case of linear polarization). An analysis is made of tunneling interference in the energy
spectrum of the photoelectrons. Analytic approximations are discussed for the asymptotic coefficient Cκ of the
atomic wave function at infinity (for s-wave electrons). © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Numerous studies have been devoted to the ioniza-
tion of atoms as a result of interaction between high-
intensity laser radiation and matter. The theory of these
processes was first considered by Keldysh [1] who
showed that the tunneling effect and multiphoton ion-
ization are two extreme cases of a single nonlinear pho-
toionization process whose character depends on the
parameter γ. In [2–4] the authors developed a system-
atic quantum-mechanical theory of level ionization
associated with short-range forces for all values of the
optical frequency ω and electric field strength F satis-
fying the semiclassical conditions of validity:

(1.1)

where κ = , EI is the ionization potential of the
level, and γ = ωκ/F is the Keldysh parameter [1]. Cases
of linear and circular [2, 3] and elliptic [4] polarizations
of the electromagnetic wave have been considered.1

Allowance for Coulomb interaction between the outgo-
ing electron and the atomic core was considered in [5, 6].
The first numerical calculations of the multiphoton ion-
ization probability in high orders of perturbation theory
with respect to the field F were presented in [7] and ref-
erences to subsequent studies along these lines can be

1 We take this opportunity to note that the statement made in [3]
that for linearly polarized radiation the formulas obtained in [2]
and [3] differ twofold is based on a misunderstanding and arises
because the normalization condition adopted in [2] yields

 in the nonrelativistic limit. In fact the results of
[2, 3] are exactly the same. I am grateful to A.I. Nikishov and
V.I. Ritus for discussing this point.

ω ! κ2, F ! κ3,

0 γ ∞, " m e 1= = =( ),<≤

2EI

ψ2
d

3
r∫ 1 2⁄=
1063-7761/00/9101- $20.00 © 20048
found in [8–11]. Results of further studies in this field
are presented in [10, 11].2

Now, as a result of developments in laser technology it
has become possible to study not only the total ionization
probability but also finer details, in particular the energy
and angular distributions of the outgoing photoelectrons.
Research has been developed in the low-frequency range
and this has resulted in the appearance of numerous theo-
retical studies devoted to the special case γ ! 1 [see [11]).
The aim of the present study is to investigate the energy
and angular distributions of the photoelectrons for tunnel-
ing ionization over all values of the Keldysh parameter γ
and also to calculate the probability of above-barrier ion-
ization in the adiabatic (γ ! 1) range.

We shall briefly describe the contents of this study.
In Sections 2–5 we systematically analyze the cases of
linear, circular, and elliptic polarizations of the incident
radiation (in the tunneling ionization regime). We pay
particular attention to changes in the momentum,
energy, and angular distributions of the photoelectrons
with increasing γ. In Section 6 we calculate the proba-
bility of above-barrier ionization of hydrogen atoms in
a low-frequency field and compare these with results of
other authors. The formulas from Section 2 for the
momentum spectrum of the photoelectrons are general-
ized to the case of an arbitrary field F(t) (for linear
polarization see Section 7). The effect of tunneling
interference in the energy spectrum of the outgoing
photoelectrons is briefly discussed in Section 8. The
main conclusions and some observations are put for-
ward in Section 9. In the Appendix we give details of
the calculations and asymptotic forms, we discuss the
relationship between the static and adiabatic ionization
probabilities, and put forward additional formulas.

2 We must note that in [10, 11], as in other works by the authors of
these reviews, the history of the problem is distorted and the con-
tribution of [2–6] is described extremely subjectively (for further
details on this see [12]).
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This article uses atomic units, Fa = m2e5/"4 = 5.14 ×
109 V/cm is the atomic unit of the electric field strength,
e = F/κ3Fa is the “reduced” field (for the ground level
of a hydrogen atom κ = 1 and e ≡ F), and K0 = EI/ω is
the multiquantization parameter of the process. It is
subsequently assumed everywhere that e ! 1 and K0 @ 1.
By ci we denote the dimensionless coefficients (which
generally depend on γ). Some of the results presented
below were announced in [13, 14]. 

2. LINEAR POLARIZATION

The momentum spectrum of the photoelectrons has
the form3

(2.1)
where

(2.2)

c1(γ) =  – γ(1 + γ2)–1/2, c2(γ) = ,
γ = ω/ωt = ωκ/F, ω and F are the laser radiation fre-
quency and the electric field strength, F(t) = Fcosωt,
ωt = F/  is the tunneling frequency, and EI = κ2/2.
Expression (2.1) yields the angular momentum distri-
bution of the electrons

(2.3)

where θ is the angle between the direction of electron
emission and the axis of linear polarization of the radi-
ation. Formulas (2.1) and (2.3) barely require com-
ment. For γ ! 1 (adiabatic case, i.e., low frequency ω,
high field strength F) the angular distribution has an
abrupt maximum in the direction of the field. In this
case p⊥  ~  ! κ and the longitudinal momentum
p|| ~ γ–1p⊥  may exceed κ (the characteristic bound-state
momentum) since an electron may be accelerated along
the slowly varying field F(t). In the opposite case γ @ 1
(rapidly varying field ω @ ωt we have p|| ~ p⊥  ~

 ! κ. From (2.1) and (2.3) for the average
values of the transverse and longitudinal (with respect
to F) electron momenta we obtain:

(2.4)

3 See formula (53) in [3]. We note that the function g(γ) was first
calculated by Keldysh [1].
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and also

(2.5)

Here we have

n is the number of absorbed quanta,

is the photoionization threshold for the linearly polar-
ized wave, and 

is a known special function [15]. If γ ! 1 we find

n − ν & γ–3 [see (2.7) below], β ~ γ–2, and  ~ γ,
i.e., the angular distribution of the photoelectrons is
highly elongated along F. If γ @ 1, then β ≈ 2(n – ν) & 1
and the distribution approaches isotropic. 

The total probability (or rate of ionization) of the
level is

(2.6)

(n = p/p). Integration (2.1) over angles is performed
exactly [2, 3]. The probability of ionization of the lm
state is proportional to e|m|, i.e., decreases rapidly [2, 3]
with increasing |m| (here m is the projection of the
orbital angular momentum l on the direction of the
electric field). Finally, we obtain

(2.7)

where wn is the probability of n-photon ionization, and
Wl is the total probability of ionization of level l,
η = Z/κ, w(z) is the same function as in (2.5), and Cκl is

θ2sin〈 〉 1
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the asymptotic (r  ∞) coefficient of the atomic wave
function:4 

(2.8)

The distribution of wn (2.7) has a smooth maximum at
n = nmax where nmax – ν = 0.43γ–1 @ 1 and (nmax – ν)/ν =
0.855γ/K0 ! 1. For n – ν ~ γ–3 the probabilities wn begin
to decrease exponentially. Summing in (2.6) and (2.7)
over n, it is easy to confirm that there is a correct limit
for ω  0, i.e., a transition to well-known [16, 21–23]
formulas for a static field F allowing for adiabatic [1–3]
and Coulomb [5] corrections. 

If γ @ 1, to within logarithmic accuracy we have
c1 ≈ c2 and 

(2.9)

so that as n increases, the probabilities wn decrease rap-
idly, beginning from the threshold n = ν ≈ K0 [1].

We shall make another observation on the photo-
electron momentum p. After overcoming the barrier, an
electron moves along a classical trajectory along which
p⊥  = const (integral of motion) and 

This last integral has a unique meaning after the
field has been adiabatically switched off at t  +∞:
∆p|| = p||(∞) – p||(0) = 0, since 

(2.10)

Thus p = (p||, p⊥ ) in (2.1) is not only the electron
momentum at the instant of escaping from below the
barrier (t = 0) but is also the time-averaged (drift)
momentum in the alternating field F(t) which does not
vary when the time envelope of the field is switched off
adiabatically slowly and is recorded at infinity.5

4 These coefficients are frequently encountered in quantum
mechanics, atomic and nuclear physics [16–20]. Note that we
normalized twice compared with earlier studies [3–5]: for the
ground state of a hydrogen atom we now have Cκ = 1, and for the

three-dimensional δ-potential Cκ = 1/  (subsequently for con-
ciseness Cκ ≡ , l = 0).

5 This conclusion holds for short laser pulses when δ = α/ω ! 1
(we shall give an estimate: δ ~ vT/L ~ (v/c)(λ/L), where v is the
electron velocity, λ is the wavelength, T = 2π/ω, and L * λ is the
size of the laser radiation focusing region, L * λ. For long pulses
changes in the electron drift momentum under the action of the
gradient force are substantial [24–27]. In this case, in order to calcu-
late the electron distribution over finite kinetic energies we need to
analyze their motion in a spatially inhomogeneous field near the laser
focus and take into account ponderomotive acceleration. In simple
models this can be performed analytically [26], but for realistic field
profiles numerical analyses are required [11, 27]. The author would
like to thank S.P. Goreslavskiœ for clarifying this point.

2
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3. CIRCULAR POLARIZATION

In this case, the probability of n-photon ionization
of the s-level is [3]

(3.1)

where

(3.2)

n is replaced by the auxiliary variable t = (2νc /n) – 1 (–1 <
t < 1 at the threshold t = 1), νc = K0(1 + γ–2) is the pho-
toionization threshold for circularly polarized radia-
tion, Cκ ≡ Cκ0 is the asymptotic coefficient for l = 0, and
the preexponential factor R was also calculated in [3]
but is not required here.

The function ϕ(t, γ) has a minimum at the point
t = t0(γ) which corresponds to the maximum ionization
probability and is determined from the equation t = 1 –
u/ , where n = n0(γ) = 2νc(1 + t0). Near the
maximum the distribution over n, i.e., the electron
energy spectrum, has a Gaussian profile:

(3.3)

where (see also Fig. 1)

(3.4)

(3.4')

∆ = F3/2/ω  ~ γ–3/2  for γ ! 1, ∆ = /2lnγ
for γ @ 1. The most probable energy and momentum of
the photoelectrons are given by

(3.5)

where for γ ! 1
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and for γ @ 1 we have pmax = κ/  ! κ,

(3.6)

The most probable number of absorbed photons n0
for γ ! 1 is twice the photoionization threshold νc and
for γ @ 1 approaches this albeit logarithmically slowly
(see Fig. 1 in [13]). The coefficient c3 increases mono-
tonically with γ (curve 2 in Fig. 1). 

Since

(3.7)

the distribution over n has a comparatively narrow peak
[2, 3] (in units of νc or n0). It can be seen from Fig. 1
that for γ ! 1 the distribution of wn is considerably broader

than a Poisson distribution: ∆n ≈  @ 

whereas for γ @ 1 it is narrower (∆n ≈  for γ ≈ 0.468). 

In cases of circular polarization the distribution of
wn covers many values of n (unlike linear polarization
when this only holds for γ ! 1 [1–3]). Integrating (3.3)
over n, we obtain

(3.8)

where wmax corresponds to n = n0, and Wc is the total
probability of ionization of the s-wave level:

(3.9)

(3.9')

u0 = , and t0(γ) is determined
above. It then follows that

(3.10)

where for γ * 1 the coefficient c5 is almost independent
of γ and is numerically close to unity (Fig. 2). Expan-
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sions of these functions are given in Appendix A, see
also (A.5). 

The dependence of the probabilities Wc and wmax on
F and ω is primarily determined by the function gc(γ) in
Fig. 3 and the preexponential factor P(γ) is plotted in
Fig. 4. In the adiabatic limit we have

(3.11)

where N = 22η , η = Z/κ is the effective principal
quantum number6 and allowance is also made for the

6 Frequently also denoted [17–19] by n* (here Z is the charge of the
atomic core: Z = 1, 2, and 0 for ionization of neutral atoms and
singly charged positive and negative ions.) For the hydrogen atom
η = n = 1, 2, … is an integer.

Wc Nκ2
e

1 2η– 2
3e
------ 1

1
15
------γ2– 

 –
 
 
 

,exp=

γ ! 1,

Cκ
2

Fig. 1. Circularly polarized radiation. The ratio ∆n/

(curve 1) and the coefficient c3 (curve 2) are plotted as a
function of γ.

n0

Fig. 2. The coefficient c5(γ) from (3.10).
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Fig. 3. The functions g(γ) and gc(γ) in the exponential func-
tion for linear and circular polarizations.

Fig. 4. Circular polarization. Preexponential factor P versus γ.
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Fig. 5. The function s(ψ, γ) determining the angular distri-
bution of the photoelectrons. The curves correspond to the
following values: γ = 0, 0.5, 1.0, 1.5, and ∞.
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Coulomb correction in accordance with [5]. In this
case, we have 

(3.12)

c6 = (1 – ln2)/2 ≈ 0.153. Unlike (3.11) and (2.7), formu-
las (3.10) and (3.12) refer to the case η = 0, i.e., to ion-
ization of negative ions such as H–, Na–, and so on.

4. PHOTOELECTRON DISTRIBUTIONS

It is also interesting to study the photoelectron dis-
tribution over the angle ψ between their direction of
emission and the plane of polarization of the laser radi-
ation. This is determined by formula (64) from [3] in
which we need to substitute n = n0 and the momentum

p0 =  corresponding to the maximum ion-
ization probability:

(4.1)

where  is a Bessel function. Using the Langer
[28, 29] asymptotic form for this for n0 @ 1, we find

(4.2)

where

(4.2')

and the width of the angular distribution is 

(4.3)

Figure 5 shows that the function s(ψ, γ)varies fairly
sluggishly as the parameter γ increases. Thus, the change
in w(ψ) on transition from the adiabatic region to the
case γ * 1 is determined mainly by the change in n0(γ).
In particular this yields the scaling relationship (9.1).

It can be seen from formula (A.7) in Appendix A

that η =  in the range ψ, γ ! 1 and formula
(4.2) is simplified:

(4.4)

where χ = ψ/γ. For very small angles we obtain the
Gaussian distribution [30–33]:

(4.5)

Wc F ω,( ) N
ω
γln( )3/2

------------------=

× 2K0 γ γln( ) c6–( )ln[ ]–{ } ,exp

γ @ 1,

2ω n0 νc–( )

w ψ( ) Jn0
n0ζ( )[ ]2, ζ∝

1 t0
2–

1 γ2+
-------------- ψ,cos=

Jn0
z( )

w ψ( ) u0η
1– n0s ψ γ,( )–{ } w 0( ),exp=

s 2 η η– u0 u0–arctanh( )–arctanh[ ] ,=

η 1 ζ2– ,=

∆ψ
ω Fκ⁄ γ e, γ ! 1,=

1 K0, γ @ 1.⁄



∼

γ2 ψ2+

w ψ( ) 1 χ2+( ) 1/2– 2κ3

3F
-------- 1 χ2+( )

3/2
1–[ ]–

 
 
 

,exp=

w ψ( )
Fκ
ω2
-------ψ2– 

  , ψ ! γ ! 1,exp≈
 AND THEORETICAL PHYSICS      Vol. 91      No. 1      2000



TUNNELING AND ABOVE-BARRIER IONIZATION OF ATOMS 53
and then the number of electrons decreases more rapidly:

(4.6)

where most of the electrons are emitted near the plane
of polarization of the light:

(4.7)

[compare with (2.5) for linear polarization]. Using
(A.8), we find

(4.8)

For γ  ∞ we have w(ψ) ∝   although reach-
ing the limiting distribution is a fairly slow process.

For small angles and any value of γ we have

(4.9)

where c7 = /(1 + t0). If γ ! 1, then
c7 = 1 + (2/9)γ2 and formula (4.9) yields (4.5). How-
ever, for γ @ 1 the coefficient is c7 = γ/2 and w(ψ) ≈
exp(–K0ψ2). As γ increases, the angular distribution
becomes considerably broader but even for γ @ 1 it is

still fairly narrow: ∆ψ ~ 1/  ! 1.

Expressions (3.3) and (4.9) directly yield the photo-
electron distribution over the momentum components
p⊥  (in the plane of polarization) and pz(in the direction
of propagation of the electromagnetic wave):

(4.10)
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In the two limiting cases we obtain

(4.11)

(see also [11, 33]) and for γ  ∞ to within logarith-
mic accuracy we have

(4.12)

where Λ = ln(γ ) @ 1 and the momentum pmax =

 was determined in (3.5).

We note that the dependence on pz appears here in the

combination κ2 +  (see [4]). The average photoelectron
kinetic energy for γ ! 1 is the same as its vibrational
energy F2/2ω2 in the field of a circularly polarized wave
but for γ @ 1 is γ2/2lnγ times higher than this.

5. ELLIPTIC POLARIZATION

In the field of an electromagnetic wave

(5.1)

(ξ is the ellipticity of the light, which was denoted as ε
in [4]) the photoionization threshold is given by

(5.2)

and the momentum spectrum of the outgoing elec-
trons was calculated in [4] and has the form of the sum
of two anisotropic Gaussian distributions having cen-
ters at the points ±pmax. The most probable momentum
pmax is directed along the y-axis [the minor axis of the
field ellipse F(t)] where

(5.3)

Here τ0(γ, ξ) is determined from 

(5.4)

and has the simple physical meaning: τ0 = –iωt0, where
t0 is the initial (purely imaginary) time or the complete
“time” of subbarrier electron motion. Note that for γ & 10
the momentum pmax is almost proportional to the ellip-
ticity of the light (see Fig. 2 in [4]). In the two limiting
cases the formulas are simplified considerably.
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(a) If γ ! 1 (adiabatic region), the n-photon ioniza-
tion probability is given by 

(5.5)

(5.6)

(5.6')

Here we allowed for a correction of the order of γ2 in the
exponential function [4] and also a Coulomb correction
in accordance with [5]; Cκ ≡  is the asymptotic
coefficient [see (2.8) for l = 0], η = Z/κ ≡ n* [17, 18]. A
simple and fairly accurate approximation for these
coefficients was proposed by Hartree [34], see also Sec-
tion 9. 

It can be seen from (5.6) that ∆pz &  ! κ so
that electrons are emitted at a small angle ψ to the plane
of polarization: ψ ~ ∆pz/pmax ~ ξ1/ξ ! 1 if ξ @ ξ1 =

ω/  = γ . Then, we find ∆px/pmax ~ 
and ∆py/∆px ~ γ. Thus, under the condition

(5.7)

we have pmax @ ∆px @ ∆py = ∆pz. Assuming in (5.6)
px = p⊥ sinϕ, py = p⊥ cosϕ, and bearing in mind that
ϕ2 ! 1, we rewrite (5.6) in the form

(5.8)

which is asymptotically (e  0) equivalent to (5.6)
but is more convenient for the transition to circular
polarization. Here p⊥  is the component of the electron
momentum in the plane of polarization and ϕ is the azi-
muthal angle in this plane measured from the minor
axis of the field ellipse F(t). The anisotropy of the angu-
lar distribution in the tunneling regime depends
strongly on the ellipticity [35]. If inequality (5.7) is sat-
isfied, the distribution (5.8) is concentrated near the
angles ϕ = 0 and π. For 1 – ξ2 ~ e this distribution
begins to spread over the angle ϕ and for ξ  ±1 it is
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converted to (4.11) and all the directions of electron
emission in the plane of polarization become equally
justified [4] (this situation is similar to the appearance
of zero modes in quantum field theory).

The angular distribution of the electrons also

becomes broader for low ellipticity values |ξ| < ξ2 = 
and for even smaller |ξ| < ξ1 the electrons are emitted
mainly along the x axis. Here, however, formula (5.6) is
completely valid and for ξ = pmax = 0, i.e., for linear
polarization, it is converted into (2.1) if γ ! 1 is
assumed in this last formula. Note that the condition
(5.7) is satisfied for ξ2 & ξ & ξ3 = 1 – e, i.e., in the main
region of ellipticity values (since e = F/κ3 ! 1, then
ξ1 ! ξ2 ! 1, 1 – ξ3 ! 1).

The spectrum of values pn =  is almost
continuous in the region γ ! 1. Replacing summation
over n by integration in (2.6), we obtain the total prob-
ability wa (or the rate of ionization) of the s-level in a
low-frequency laser field. If the polarization of the light
is not too close to circular (and specifically 1 – ξ @ e),
it then follows that [4]

(5.9)

where κ = , η = Z , EH = 13.6 eV,
N is the same coefficient as in (3.11), corrections ~γ2 in
the preexponential function are neglected, and the
dimensions of the quantities appearing here are recon-
structed.

It can be shown (see [3] and Appendix B) that for
any ellipticity 

(5.10)

where the function a(x) is determined in (B.5) and we
again converted to atomic units. If 1 – ξ2 @ e, this for-
mula is the same as (5.9). In the narrow transition
region 1 – ξ2 ~ e ! 1, the dependence on the field F in
the preexponential function is not a simple power
dependence. Formula (B.6) gives the transition from a
static to an adiabatic level ionization probability in gen-
eral form. 

A detailed study (including numerical calculations)
of the momentum, angular, and energy distributions of
photoelectrons in an elliptically polarized strong low-
frequency laser field was made by Goreslavskiœ and
Popruzhenko [35]. Unfortunately, this study contained
some inaccuracies. 

(1) In [35] it is stated (page 1201) that the “formulas
for the tunneling regime from [4] … do not describe the
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transition to circular polarization.” However, this is not
the case: converting in (5.6) from the Cartesian compo-
nents of the electron momentum to the projections p⊥
and pz we obtain formula (5.8) which for ξ  ±1 is
the same as expression (4.11) for circular polarization.
For the total ionization probability this transition is
described by formula (5.10) which appears in [3].

(2) Equations (29) and (34) in [35] contain the func-
tion a(z) introduced in [3] which describes the transi-
tion region bordering on circular polarization. How-
ever, its argument z = ξ2(1 – ξ2)/3κ2e in [35] differs
from (5.10) by the factor 2ξ4/κ2. Consequently, when
equation (36) is derived from (34) a superfluous factor

κ/  appears, which may differ substantially from
unity particularly for states having low binding energy.
In addition, no passage to the limit occurs from (29),
(34) to the case of linear (ξ = 0) polarization since the
expressions for W and dW/dp from [35] for ξ  0 go

to zero and are only valid for ξ @ . We also note that
equation (36) from [35] also appears in [3] [see also
formulas (4) and (11) in which we need to set l = λ = 0

and  = 2, which corresponds to the δ-potential] and

a correction of the order of γ2 in the exponential func-
tion was also calculated in [4]. 

Note that the calculations in [3,4] and [35] were
made using different electromagnetic field gauges. 

(b) In the opposite case γ @ 1 we shall confine
ourselves to the logarithmic approximation Λ =

ln(2γ/  when [4]

(5.11)

(5.12)

where ν = K0(1 + δ), n0 = K0(1 + 2δ), where δ = ξ2/(1 –

ξ2)Λ2 ! 1. In addition ∆p/κ ~  ! 1 and the

ratio ∆p/pmax ~  is also small if the
ellipticity is not too close to 0 or ±1. Integrating over

2
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angles allowing for δ((p2 – )/2), which expresses the
energy conservation law, we find

(5.13)

(c10 @ 1 if 1 – ξ2 @ Λ–3). The width of this distribution is

∆n ~  and ∆n/(n0 – ν) ~ ∆p/pmax ~  ! 1
if γ ! exp(K0) which is satisfied almost everywhere
(K0 @ 1 is the multiquantization parameter). 

Numerical calculations show that the function g(γ, ξ)
for 0 < ξ2 < 1 has qualitatively the same form as for ξ = 0
and 1 and is “compressed” between the two curves in
Fig. 3. As the ellipticity |ξ| increases, the value of g
increases monotonically and the ionization probability
decreases. The decrease in g(γ, ξ) with increasing γ
leads to an abrupt increase in the ionization probability
on transition from the low-frequency region to the region
γ @ 1 (for the same value of the maximum field F). 

6. ABOVE-BARRIER IONIZATION

This process takes place in strong fields ^ ≡ n4F *

^cr . Here ^cr = n4Fcr is the “critical” value of ^ at
which the level energy touches the top of the potential
barrier (in the direction of electron emission). For
atomic hydrogen states the values of ^cr vary between
0.130 and 0.383 depending on the parabolic quantum
numbers (n1n2m), see [36–38].

We calculate the ionization probability (per unit
time) in a low-frequency field in the adiabatic approxi-
mation:

(6.1)

where φ = ωt is the phase of the field, and wst(F) is the
ionization probability (i.e., the Stark resonance width)
for a static electric field F. For the case of an elliptically
polarized wave (5.1) we have

Substituting this into (6.1) we can easily obtain wa(F, ξ)
numerically. For circular polarization we have F(φ) =
F = const so that wa = wst(F).

We used values of the static probability wst(F) for a
hydrogen atom obtained [39–42] using summation of
higher orders of perturbation theory with respect to the
field F and a 1/n expansion (in the range F & 0.2 these
calculations agree with results obtained by other
authors [43–50] and were recently confirmed by inde-
pendent calculations [49]). Results of calculations
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Table 1.  Parameters of intermediate asymptotic form (6.2) in the above-barrier region for a hydrogen atom

ξ k F0 σ, % F1 F2

Ground state

1 1.473 0.122 0.12 0.3 1.0

1 1.482 0.124 0.13 0.25 0.5

0.9 1.40 0.128 0.12 0.3 1.0

0.8 1.33 0.135 0.10 0.3 1.0

0.7 1.26 0.143 0.08 0.3 1.0

0.5 1.13 0.157 0.12 0.3 1.0

0.5 1.10 0.148 0.21 0.25 0.5

0.3 1.02 0.166 0.21 0.3 1.0

0 0.913 0.163 0.20 0.3 1.0

 Rydberg states

(0, 0, n – 1) 0.810 0.260 0.42 0.3 2.0

0.807 0.249 0.59 0.25 2.0

Note: The values of the parameters k and F0 were determined by least squares fitting and refer to the case of a low-frequency field where for
ξ = 1 the parameters are the same as those for a static field. Also given are the parameters for the (0, 0,  n – 1) states with n @ 1 in a
static field F [54].
using formula (6.1) are plotted in Fig. 6. As |ξ|
increases, the probability wa(F, ξ) increases since the
period-averaged field acting on the electron increases
(for fixed F). 

Figure 6 shows the field strength FBSI at which the
level energy is the same as the maximum of the effec-
tive potential and the atomic state can undergo above-
barrier decay according to classical mechanics (in [38]
this field was called “critical”). For Rydberg states
(0, 0, n – 1) with n @1 corresponding to circular elec-
tron orbits, we have ^cr = 0.208 which is significantly

FBSI

1.0

0.8

0.5

ξ = 0

0.8

0.6

0.4

0.2

0
0.1 0.2 0.3 0.4 0.5 F

wa

Fig. 6. Probability of above-barrier ionization of a hydrogen
atom (n = 1, ground state) in a low-frequency laser field. The
solid curves correspond to (from bottom to top) ellipticity
values ξ = 0, 0.5, 0.8, 0.9, 0.95, and 1.0. The dashed curve
gives the results of [58] for circular polarization. The values
of wa and F are given in atomic units.
JOURNAL OF EXPERIMENTAL 
higher than the value of ^cr = 1/16 for the one-dimen-
sional model of the Stark effect V(x) = –x–1 – Fx.
Above-barrier ionization takes place for F > Fcr .

It can be seen from Fig. 6 that in the above-barrier
region the dependence of the Stark resonance width on
the field F is surprisingly close to linear:7

(6.2)

where k and F0 are parameters which depend on the
ellipticity ξ and on the quantum numbers (n1n2m) and
are determined numerically. Their values for the
ground and Rydberg (n @ 1) states of the hydrogen
atom are given in Table 1 which also gives the fitting
interval F1 < F < F2 and the mean-square deviation σ
(in percent). The parameters k and F0 depend weakly on
the choice of fitting interval and on the number of fitting
points in it (see the values for ξ = 1 and 0.5 in Table 2). In
this case the linear dependence (6.2) is not satisfied for
weak fields F ! Fcr where w ∝  exp(–2/3F) or in the far
asymptotic form F  ∞, where w(F) ∝  (FlnF)2/3

[51]. At the same time, as can be seen from Fig. 6, this
dependence is well satisfied for Fcr < F & 1, i.e., is an
example of the so-called intermediate asymptotic
form.8 An explanation of this (approximate) linearity in

7 This fact was first noted in [40] for a static field F. Recent numer-
ical calculations [50] for a helium atom confirm the presence of a
linear regime for wst(F) in the above-barrier region F > FBSI.

8 An interesting discussion of the problem of the intermediate
asymptotic form in hydrodynamics and mathematical physics can
be found in [52, 53]. Concepts of dimensionality and similarity
play a decisive role in finding these asymptotic forms as in the
case of the 1/n expansion in quantum dynamics (for example, the
scaling E  n2E, F  n4F in the problem of the Stark effect
[40, 54]).

wa F ξ,( ) k F F0–( ), F F0 Fcr,∼>≈
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the theory of the Stark effect in a strong field was
obtained [54] using a 1/n expansion which in quantum
mechanics problems not only works well at high quan-
tum numbers but is fairly frequently “pulled” as far as
n ~ 1 (in this context see [55]). In the low-frequency
range for F  0 

(6.3)

(see [3] and Appendix B) where a(x) was determined in
(B.5), and wcl(F) is the probability of tunneling ioniza-
tion calculated using semiclassical formulas for a static
field: for example, wcl(F) = 4F–1exp(–2/3F) [16] for the
ground state of the hydrogen atom, wcl(F) = 1.255F–1 ×
exp(–1/12F) for the (100) state with n = 2, and for an
arbitrary state formulas for wcl(n1n2m) can be found, for
example, in [23].

We shall now analyze the ratio of the ionization
probability  calculated using formula (6.1) using
exact [39–41] values of wst(F) to the tunneling ioniza-
tion probability (6.3):

(6.4)

where q(F, ±1) = wst(F)/wcl(F) for circular polarization.
Figure 7 gives the dependence of q0 (ground state) on
F. It can be seen that the semiclassical formula wcl(F)
being asymptotically exact in the weak field limit
(q  0 for F  0) ceases to hold at a comparatively
early stage F ~ 0.01 [56, 57]. For F = 0.2–0.4, i.e., for
fields of the order of 109 V/cm, wcl(F) is several times
higher than the level ionization probability. Thus, the
tunneling formulas such as (6.3) do not continue into
the above-barrier region. It is interesting to note that
q0(F, ξ) is almost independent of the ellipticity of the
radiation (Fig. 7).

The dashed curves in Fig. 7 give the results of [33, 58].
In the range of fields between F ~ 0.05 and F ~ 0.4 these
approximations sharply contradict our calculations and
also the known [59] expansions of q0(F) in powers of F
(see Appendix C) and cannot be taken to be satisfactory.

For F * 0.2, the probability wa(F) reaches values
such that a hydrogen atom is ionized within one or two
electron revolutions about the nucleus. It is then neces-
sary to allow for a saturation effect: in the simplest case
of a field applied at time T, the probability of ionization
of an atom is not waT * 1 but 1 – exp(–waT) or (in gen-

eral) 1 – exp{– }. Problems associated with

the experimental observation of above-barrier ioniza-
tion are discussed in [11, 27, 32]. 

7. GENERALIZATION
FOR THE LINEAR POLARIZATION 

For linearly polarized radiation, formula (2.1) can
be generalized to the case of an arbitrary time depen-
dence of the electric field F(t). It is then assumed that

wa F ξ,( ) 1
ξ
-----a

1 ξ2–( )κ3

6ξ2F
------------------------ 

  wcl F( )=

wa

q F ξ,( ) wa F ξ,( ) wa F ξ,( ),⁄=

wa F t( )( ) td∫
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F(t) is an analytic function of t which can be continued
into the complex plane which is required to apply an
“imaginary time” method [4]. Omitting details of the
calculations, we give the final formulas.

Let us assume that F(t) is an alternating electric field
directed along the x axis:

(7.1)

F is its peak value where ϕ(–t) = ϕ(t) and |ϕ(t)| ≤ ϕ(0) = 1
(it is convenient to assume that t = 0 is the time of max-
imum field when the particle escapes from below the
barrier). The extreme subbarrier trajectory9 is obtained
from the equation of motion with the boundary condi-
tions:

(7.2)

where ξ = ωx/κ = γeκx,  = dξ/dτ, τ = –iωt is the imag-
inary “time” (in subbarrier motion) 0 < τ < τ0) and γ =
ωκ/F is the Keldysh parameter for the field (7.1). 

It follows from (7.2) that the initial time of subbar-
rier motion for the extreme trajectory is τ0 = τ(γ), where
τ is a function determined by the profile of the external
field:

(7.3)

9 I.e. the “classical” trajectory which minimizes the imaginary part
of the action function and determines the most probable path for
particle tunneling (for further details see [4, 60]).

F t( ) Fϕ ωt( ), ∞ t ∞,< <–=
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Fig. 7. The functions q0(F) from (6.4) for the ground state
of a hydrogen atom. Solid curves give our calculations for
ξ = 0 and 0.5, the dashed curve gives these calculations for
ξ = 1. The dash–dotted curves give the results of [33, 58].
The values of the ellipticity ξ are indicated on the curves.
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where h–1(u) here implies the function which is the
reciprocal of h(u).

We shall consider a pencil of classical subbarrier
trajectories (i.e., trajectories satisfying the classical
equations of motion but with an imaginary time) close
to the extreme trajectory. These differ in respect of the
transverse momentum p⊥  which is an integral of
motion. By calculating the imaginary part of the action
function along these trajectories, we find the electron
momentum spectrum:

(7.4)

where K0 = κ2/2ω @ 1,

(7.5)

and we have introduced the notation τ1(u) = uτ'(u).
These expressions can be conveniently used at fixed
laser frequency. In the adiabatic region and also for the
passage to the limit ω  0 it is more convenient to
rewrite (7.4) in a slightly different form:

(7.6)

where g(γ) = 3f(γ)/2γ and bi(γ) = γ–1ci(γ) where g(0) =
b2(0) = 1 and b1 ~ γ2 for γ  0.

Thus, all quantities are expressed in terms of a sin-
gle function τ(γ) which determines the position of the
saddle point in the complex plane. The closed analytic
expressions (7.3)–(7.6) reduce the calculation of the
ionization probability to quadratures. We shall confine
ourselves to a few examples.

(a) For a monochromatic laser field ϕ = cosωt we

have τ0 = , τ1 = γ/ , and equations (7.5)
rapidly yield (2.2).

(b) The momentum field ϕ = 1/  is similar to
the exactly solvable potential in quantum mechanics
[16]. In this case, τ0 = , τ1 = γ/(1 + γ2),

(7.7)
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From this it follows that for γ @ 1

(7.8)

which differs substantially from the behavior of the
probability of ionization by monochromatic radiation:

(7.9)

This difference has a simple explanation: the momen-
tum spectrum ϕ(ωt) contains not only the fundamental
frequency ω but also higher harmonics whose contribu-
tion, although decreasing exponentially, still “clogs up”
the multiphoton ionization as a result of the fre-

quency ω. For example, for ϕ = 1/  the ampli-
tude of the harmonic at frequency Ω is

(7.10)

and for Ω > EI the level can still be ionized by this har-
monic in the first order of perturbation theory. How-
ever, for laser light containing no higher harmonics,
only the multiphoton ionization mechanism remains
for γ @ 1.

(c) If γ ! 1, ionization takes place at times near the
electric field maximum. Assuming that at t  0

(7.11)

and using (7.3)–(7.6) we obtain the expansions 

(7.12)

which determine the adiabatic corrections to the ioniza-
tion probability and the momentum spectrum of the
electrons. We note the numerical smallness of the coef-
ficients in (7.12) as a result of which the adiabatic
approximation is not abruptly truncated at γ ~ 1 but is
“pulled” toward slightly higher values of the parameter
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γ (it is assumed that the coefficients a2, a4 … are of the
order of unity). 

8. TUNNELING INTERFERENCE

For linearly polarized laser radiation an interference
effect occurs in the energy spectrum of the photoelec-
trons, which was noted in [3]. The initial condition for
subbarrier motion p2(t) = –κ2 determines the saddle
points in the complex plane t. For a periodic field F(t) =
Fcosωt their position is given by 

(8.1)

(k = 0, ±1, ±2, …) whence for p ! κ we have

(8.2)

where

and so on. The amplitude Ak of an electron transition
from the bound state (E0 = –EI = –κ2/2) to states of the
continuous spectrum is determined by the action func-
tion calculated along the path from the point tk to the
real time axis. Summation of the amplitudes corre-
sponding to the two saddle points positioned within the
same period T = 2π/ω (for example, A0 and A1) gives an
interference factor in the photoelectron momentum
spectrum. For example, for ionization of the s-level

(8.3)

where  = 2ω(n – ν) is given by formula (2.1) and the
phase of the oscillations is10 

(8.4)

If γ @ 1, then p2/κ2 ~ 1/ln2γ so that the second term can
be neglected in (8.4). However, for γ ! 1 we have

10We take the opportunity to correct a misprint in [3]: in formula

(53) in this study in the interference phase φ,  should be

replaced by  – 1 as a result of which this expression is the
same as the first term in (8.4).
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and for values of γ &  ! 1 the contribution of the
second term is comparable with the first.

Oscillations in the momentum spectrum are
observed for p|| ≠ 0. This is because a real phase shift φ
occurs between the amplitudes Ak and Ak + 1, originating
from a displacement of the points tk and tk + 1 along the
real time axis. 

In the semiclassical case (i.e., when the conditions
e ! 1, ω ! κ2 are satisfied) the phase is φn @ 1and aver-
aging over angles [in accordance with (2.6)] leads to an
appreciable decrease in the amplitude of the oscilla-
tions in the probabilities wn, i.e., in the energy spectrum
of the photoelectrons. This agrees qualitatively with
[61, 62] in which manifestations of quantum interfer-
ence were observed experimentally in an elliptically
polarized field: the change in the momentum distribu-
tion of the photoelectrons with the ellipticity of the
radiation was investigated, see Figs. 1 and 2 in [61].

Near the photoionization threshold the phase is φn ∝

pn =   0, so that the threshold behavior
of the ionization probabilities noted by Nikishov and
Ritus [2] follows directly from (2.6) and (8.3): wn ∝

(n – ν)1/2 ∝   for even n and wn ∝  (n – ν)3/2 for odd

n. As for the sign factor (–1)n in (8.3) this difference
occurs because for p|| = 0 the transition amplitudes for
neighboring (every half-period) saddle points have dif-
ferent signs.

Formulas (8.3) and (8.4) can be generalized to the
case of an arbitrary field of the type (7.1) for which
F(t) = –F(t + T/2) = F(t + T). 

9. ASYMPTOTIC COEFFICIENTS Cκ

The probability of tunneling ionization is propor-
tional to the square of the asymptotic coefficient [see
(2.8)] of the wave function of the atomic level. The val-
ues of Cκ for atoms and ions are determined numeri-
cally by the Hartree–Fock method [17]. Analytic
approximations were also obtained by Hartree [34] (see
also [18, 19]) and in [6, 20]. The error of the Hartree
formula 

(9.1)

for the first s- and p-wave terms in the Rb atom is 2.5%
and 2%, respectively and is even lower for higher terms
[34]. The refinement (9.1) was obtained [20] using the
effective range expansion (ERE). For the factor N from

e

2ω n ν–( )

En

Cκ l
2η 1–

ηΓ η l 1+ +( )Γ η l–( )
-------------------------------------------------------, η l>=
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Table 2.  Comparison of various approximations for the coefficient N

Atom or ion EI, eV η
N

δ
H ERE HF

He (1s) 24.59 0.744 2.336 2.374 2.766 A
H (1s) 13.60 1.000 4.000 4.000 4.000 A
Au (6s) 9.226 1.215 5.88 5.90 6.55 A
Cu (4s) 7.726 1.326 7.03 7.06 7.33 A
U (7s) 6.194 1.482 8.83 8.87 9.15 A
Ca (4s) 6.113 1.492 8.96 8.99 8.81 C
Sr (5s) 5.695 1.546 9.63 9.67 9.37 C
Li (2s) 5.392 1.589 10.19 10.23 10.5 B
Na (3s) 5.139 1.627 10.69 10.72 10.3 B
K (4s) 4.341 1.770 12.7 12.7 10.5 C
Rb (5s) 4.177 1.805 13.2 13.2 10.7 C
Cs (6s) 3.894 1.869 14.1 14.1 11.4 C
Fr (7s) 4.0 1.84 13.7 13.7 – –
Li+ 75.64 0.848 2.94 2.96 3.38 C
Be+ 18.21 1.729 12.08 12.09 10.23 A
Mg+ 15.04 1.903 14.57 14.58 14.69 A
Ca+ 11.87 2.141 18.09 18.12 18.3 B
Sr+ 11.03 2.221 19.27 19.29 18.6 B

Note: N is the coefficient in formulas (3.11) and (5.9), η ≡ n* is the effective principal quantum number; η = (2EI)
–1/2 for neutral atoms,

η = (EI/2)–1/2 for singly charged positive ions. Notation used: H is the Hartree approximation [34], ERE is the effective range expan-
sion for rcs = 0 [20], HF are numerical calculations using the Hartree–Fock method [17] whose classes of accuracy (A, B, C, see text)
are given in the last column.
(3.11) in the commonly encountered case of s-states in
the Hartree (H) and ERE approximations we obtain

(9.2)

where ψ(η) is the logarithmic derivative of the gamma
function (tables of functions Γ(x) and ψ'(x) are readily
available, for example [29]). In this case we have
NERE ≥ NH.

Results of calculations for neutral atoms (including
atoms of all alkali metals for which a single valence
electron in the ns state is situated outside the filled
shells) and various positive ions are presented in Table 2
where the atoms are given in order of increasing param-
eter η. It can be seen that these approximations are very
similar and generally agree with the results of the Har-
tree–Fock calculations whose error δ (for the coeffi-
cients Cκ) is [17] δ < 1% (accuracy class A), δ = 1–3%
(B), and δ = 3–10% (C). The approximations (9.2) are
even more useful since, in many cases, the error of cal-
culations using the Hartree–Fock method is 30% [17].

NH
22η 1–

Γ η 1+( )
--------------------

2

,=

NERE NH 1
πηsin

πη
--------------- 

 
2

η2ψ' η( ) η 1
2
---+ 

 ––
 
 
 

1–

,=
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For excited s-wave states both approximations are
almost the same:

(9.3)

However, for negative ions the values of NH and NERE
differ by a factor of two:

(9.4)

(k1 = ln2 + (1/2)C = 0.982, k2 = 2k1 – 1 = 0.964, and
C = 0.5772… is the Euler constant) and only NERE
agrees with the limit of zero range of the forces in the
expansion

(9.5)

which is valid for shallow s-wave levels in the short-
range (η = 0) potential; here rs is the effective interac-
tion range [16]. 

NERA NH 1 πη2sin

6π2η3
-----------------+ 

  , η  @ 1.=

NH
1
4
--- k1η …,+ +=

NERE
1
2
--- k2η …, η 0+ +=

N Cκ
2 1

2
--- 1 κrs– O κrs( )3( )+[ ] 1–

,= =

κrs ! 1,
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In the presence of a Coulomb potential, rs should be
replaced by the so-called nuclear-Coulomb effective
radius rcs for which an accurate definition can be found,
for example, in [63–65]. The expansion (9.5) has the
form [20, 66]

(9.6)

where

From this it can be seen that the value of NERE (9.2) cor-
responds to the limit rcs  0 (note that this approxi-
mation has already been considered in calculations of
the ionization of systems coupled by short-range and
Coulomb forces [6] and also in the theory of the lightest
hadron atoms [20]). 

For a pure Coulomb field V(r) = –Z/r the parameter
is η = n = 1, 2, … and CH = CERE = 2n – 1/n! yields the
well-known formula [see (36.15) in [16]) and N =
(22n − 1/n!)2.

We stress that the expansions (9.5) and (9.6) contain
no quadratic terms with respect to the effective radius
[66] which extends their range of validity. However,
this occurs when the effective range corresponding to
the exact level energy E = –κ2/2 is taken as rs (respec-
tively, rcs). We shall illustrate this for the example of a
square well (of radius R, depth U0 = g2/2R2, g is the
dimensionless coupling constant), when [3, 64]

(9.7)

(9.8)

The bound state ns exists for g > gn = (n – 1/2)π, n =
1, 2, …. For a shallow (h = g – gn  0) level we find

(9.9)

N NH=

× 1
πηsin

πη
--------------- 

 
2

λ η( )
1
2
---κrcs O κr0( )3( )+ +–

 
 
 

1–

,

λ x( ) x2ψ' x( ) x–
1
2
---–=

=  

1
2
--- x–

π2

6
-----x2 …, x 0,+ +

1
6x
------ 1

30x3
-----------– …, x ∞.+

Cκ
2 1 κR( )2

g2
--------------–

e2κR

2 1 κR+( )
-----------------------, l 0,= =

rs R 1 1

g2ξ
-------- 1

3ξ2
--------–– 

  , ξ 1
gtan

g
-----------.–= =

κR
1
2
---h

1
8
--- 1 gn

2––( )h2– …,+=

Cκ
2– 2 1 κrs– 1

3
--- 1

2gn
2

--------– 
  κrs( )3 O κrs( )4( )+ + ,=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
where 

If  is taken as the expansion parameter where

 = R is the effective range at the level formation time,
then we have

(9.10)

i.e., a term proportional to  is already present. Expan-
sions similar to (9.9) and (9.10) for various other poten-
tials are given in [66].

To conclude this section, we make two observations.

(1) For an arbitrary attractive potential we have  > 0
(see [16, page 632]) so that it follows from (9.5) that the
asymptotic coefficient Cκ increases as the level
becomes deeper. Although this conclusion is obtained
for κrs ! 1, this tendency may be conserved [66] as far
as κrs ~ 1 when the level can no longer be called “shal-
low.”

(2) For a square well  does not depend on the level
number n. However, this is a specific sharp-edged finite
potential. For the case of smooth potentials having an
exponential (for r  ∞) “tail” the range  increases
logarithmically with n [66].

10. CONCLUSIONS 

Thus, we have analyzed the form of the energy and
angular distributions of the photoelectrons over the
range of variation of the Keldysh parameter 0 < γ < ∞
and we make some concluding remarks.

(1) Although the relative width of the energy distri-
bution increases with increasing γ, it still remains fairly

narrow: ∆/Emax ~  and 1/  for γ ! 1 and
γ @ 1, respectively, see (3.3) and (3.5). Slightly unex-
pectedly the function s(ψ, γ) in (4.2) is almost indepen-
dent of γ. Thus, the angular distribution of the photo-
electrons is mainly determined by the average number
of absorbed photons n0(γ) which yields the scaling rela-
tion (for circular polarization)

(10.1)

where the normalization w(0, γ) = 1 is assumed.
(2) The general case of elliptically polarized radia-

tion has been considered for γ ! 1 and γ @ 1. For arbi-
trary γ the calculations can be made using formulas
from [4] although the expressions obtained are fairly
cumbersome and require separate discussion.

rs R 1 κR

gn
2
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3
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2gn
2
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-----– 
  κR( )2 …+ + .=

κ r̃s
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2– 2 1 κR– gn

2– κR( )
2

+=

+ 2
3
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2– 2gn
4––– 

  κR( )3 …+ ,

r̃s
2

r̃s
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(3) The probability of above-barrier ionization of
hydrogen atoms has been calculated, It has been shown
that extrapolating the semiclassical (tunneling) formu-
las to the above-barrier region, in the same way as using
the formulas from [35, 58] strongly exaggerates the
ionization probability in this range.

(4) For linearly polarized radiation the formulas for
the photoelectron momentum spectrum have been gen-
eralized for an arbitrary time dependence of the electric
field.

(5) We have analyzed the properties of the asymp-
totic coefficients Cκ and we have shown that the Hartree
approximation (9.1) is highly accurate for neutral
atoms and positive ions.

Bates and Damgaard [18] note that the formula (9.1)
was not strictly substantiated in [34]. This substantia-
tion was obtained later using the quantum defect
method [8] and also from the effective radius expansion
[20, 66].

(6) The formulas obtained above refer to ionization
of the nondegenerate s-wave level (the case frequently
encountered in practice: in accordance with [17] for all
neutral atoms, from hydrogen to uranium, in 61 cases
the valence electron is located in the s-wave state and in
30 cases it is in the p-wave state and we only have l = 2
for the Pd atom). For l ≠ 0 in calculations of the com-
plex energy [which describes both the shift and the
level width Γ(F)] at short distances where the atomic
potential is spherically symmetric we need to allow for
mixing of lM states with various projections of the
orbital angular momentum l. This was performed
explicitly in [67] for the case of a p-wave level bound
by short-range forces in a circularly polarized wave
field. In this case states having a specific quasienergy cor-
respond to M = 0 and two superpositions of |±〉 states
with M = ±1, where M is the projection of the orbital
angular momentum on the direction of wave propaga-
tion. In the limit ω  0 the state |+〉  corresponds to the
projection m = 0 on the direction of the electric field F
and |–〉  corresponds to a superposition (with different
weights) of states with m = ±1. In a low-frequency field
(and specifically subject to the condition γ ! eκrc
where rc is the radius of the atomic core) the width
is Γ (+)(F) @ Γ (–)(F) since [2, 3] Γ lm ∝  e|m| + 1 and e =
F/κ3 ! 1. The highest ionization probability is obtained
for states with m = 0 for which the formulas are the same
as those for the s-wave level. For other states the mixing
effect leads to some changes in the preexponential
function [67] although the total ionization width of the
l-wave level remains the same. For linearly polarized
radiation the projection of m on the direction of the field
remains the same so the formulas from [2, 3] retain the
same form.
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APPENDIX A

We shall give expansions of the functions contained
in the formulas for the ionization probability.

(a) For γ  0 and linear polarization

(A.1)

and for circular polarization 

(A.2)

The numerical smallness of this last coefficient c
explains the “plateau” of the preexponential factor P(γ)
for γ & 1 which is clearly visible in Fig. 4.

(b) In the opposite case (γ  ∞) we have [see
(7.4)]

(A.3)

and in (3.9)

(A.4)

(c) The asymptotic forms for the coefficients in for-
mulas (3.8) and (3.10) are as follows:
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and 

It follows from (3.9), (3.10), and the preceding formu-
las that

(A.5)

Even in the case γ @ 1 the value of wmax is small com-
pared with the probability Wc. This corresponds to the
fact that in cases of circular polarization the distribution
of wn always covers many values of n and thus summa-
tion over n in (2.6) can be replaced by integration. 

(d) From (4.1) we have

(A.6)

From this it follows that for γ  0

(A.7)

and for γ  ∞

(A.8)

In the range of small angles for any γ 

(A.9)

which gives (4.9). For ψ = π/2 the function s(γ, ψ) has
a logarithmic singularity and the ionization probability
goes to zero, 

(e) The expansions (A.1) follow directly from (7.5)
if we assume that τ1(u) = u(1 + u2)–1/2. In order to obtain
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the formulas (A.2) it is convenient to write equation
(70) from [3] in the form

Inverting this series we find

(A.10)

where d1 = 1, d2 = –8/9, d3 = 304/405, d4 =
−78472/127575, and so on, whence

(A.11)

Finally for γ  ∞ we have

(A.12)

(f) The variables used in Section 3 are related to τ0
from (5.4) by 

(A.13)

where [see (3.9')]

(A.14)

where

Using these formulas we can easily obtain expansions
for gc, P, c3, c4, and other quantities.

APPENDIX B

We shall now give the derivation of formulas (5.8)–
(5.10).
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Writing the probability of level ionization by a static
electric field in the form wst(F) = w0e

–α exp(–2/3e),
where e = F/κ3 is the reduced field (e ! 1) and w0 and
α are various constants,11 for the case of elliptic polar-
ization (5.1) we have

(B.1)

Using the adiabatic approximation (6.1) and converting
from τ = ωt to the integration variable x = f 2(τ), we
obtain

(B.2)

If the polarization is not too close to circular, the inte-
gral is taken near the lower limit which gives the rela-
tionship between the adiabatic and static ionization
probabilities [3]:

(B.3)

This formula is also easily obtained directly from (6.1)
assuming that in this case ionization takes place at
times when the field is close to its maximum

we confine ourselves to the quadratic term in τ. If
1 − ξ2 & e ! 1 the quadratic approximation cannot be
applied and wst(F/f(t)) must be averaged over the entire
period T. We then have 1/ξ2  1; assuming every-
where in the integrand (B.2) that x ≈ 1 where this is per-
missible and taking into account the value of the inte-
gral

(B.4)

(B.5)

11For example, α = –1 for the short-range potential, α = 1 for the
ground state (n = 1), and α = n – n1 + n2 = 2n2 + |m| + 1 for
excited states (n1n2m) of the hydrogen atom.
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where p, q > 0 and I0(x) is a modified Bessel function,
we obtain 

(B.6)

which is essentially the same as the formula obtained in
[3]. If the polarization is not too close to circular, (B.6)
yields the simpler formula (B.3).

APPENDIX C

The ionization probabilities (or the widths of the
Stark resonances) for various states (n1n2m) of the
hydrogen atom

were obtained as far as n4F ~ 1 using numerical calcu-
lations.12 We shall confine ourselves to the ground state
κ = 1 and use the notation w0 ≡ w000(F); n1, n2, and m
are parabolic quantum numbers [16]). In [58] the
authors used an analytic approximation (subsequently

—see formula (25) in [58], which can be conve-
niently written in the form

(C.1)

(C.2)

having isolated the explicitly semiclassical factor
wcl(F) = 4F–1exp(–2/3F) which is asymptotically exact
in the weak field limit [16]. This expression refers to
circular polarization and contains no frequency ω so
that it should be the same as the ionization probability
w0 ≡ wst(F) in a static electric field. However, we shall
consider the expansion of  for F ! 1. Using the
well-known [29] asymptotic forms for the Airy func-
tions Ai(k) and Ai'(k) for k  ∞, we obtain from (C.2)

(C.3)

12This topic is dealt with extensively in the literature. Various com-
putational methods have been used (the Wehl method [43],
numerical solution of the Schrödinger equation after separation
of the variables [44], summation of diverging perturbation theory
series using the Borel method [45, 47] and using the Pade–Her-
mite approximant [39, 41], the 1/n expansion [40], nonstandard
perturbation theory [46], the method of complex rotations [50],
and so on) whose results in the range F < 0.2 show good agree-
ment. The values of w0(F) in the range between Fcr . 0.2 and
F = 1.5 were calculated in [39–41] and for F = 1 our result
agrees with that obtained in [45].
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whereas the exact expansion has the form [59]

. (C.4)

Thus, the first coefficients in (C.3) are far from the true
ones. It is therefore not surprising that the difference
between w0(F) and  becomes appreciable for F ~
0.05 (i.e., in the range of weak fields where the values
of w0(F) are established highly accurately [39–49]) and
in the range Fcr ~ 0.2 < F & 1 which corresponds to
above-barrier ionization, the Krainov–Shokri approxi-
mation [58] differs qualitatively from w0(F) and yields
an error of a factor of 3–5.

A similar observation may be made in relation to the
formulas for wa(F) proposed in [11, 33] for the case of
linear polarization (see the curves with ξ = 0 in Fig. 7).

The reason for this error is evidently the inadequate
allowance for Coulomb interaction between the outgo-
ing electron and the atomic nucleus. In this context we
note that in the case of a static field F the approximation
in which the exact wave function of the final state is
replaced by the Volkov function, although giving the
exponential factor exp(–2/3F) (first obtained by the
Oppenheimer method [68] for a hydrogen atom) does
not yield the correct preexponential factor [23].
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Abstract—An analysis is made of coherent population trapping as a result of resonant interaction of elliptically
polarized light with atoms whose energy levels are degenerate with respect to the projection of the angular
momentum and are coupled by a dipole transition. Explicit invariant expressions for dark states are obtained in
tensor form for all transitions where population trapping occurs. A correspondence is established between the
vector of the elliptic polarization and the pair of associated spinors. It is shown that all dark states can be con-
structed from these spinors by means of a multiple tensor product. For integer values of the angular momenta
of the transitions these constructions reduce to spherical functions of a complex variable. As applications ana-
lytic expressions are obtained for the dark magneto-optic and geometric potentials, and the change in their pro-
file with increasing angular momenta is analyzed. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Following its discovery in 1976 [1], the effect of
coherent population trapping (CPT) has become firmly
established in the arsenal of modern atomic and laser
physics. This effect has found important applications in
ultrahigh-resolution spectroscopy [2], lasing without
inversion [3], laser cooling [4], including dark optical
and magneto-optic lattices [5–8], and in atomic optics
and interferometry [9].

As we know, CPT is a nonlinear interference effect
whereby, under certain conditions, there is a coherent
superposition of atomic states which do not interact
with the field (so-called dark states or CPT states). For
example, if we have a bichromatic field which reso-
nantly couples different energy levels of the ground
state (these are usually components of the hyperfine
structure) with a single common excited level (Λ-sys-
tem), under conditions of two-photon resonance the
dark state will be a coherent superposition of the wave
functions of the two lower energy levels. Another
important example is the presence of dark states as a
result of the Zeeman degeneracy of the ground energy
level. For example, it was shown in [10] that for tran-
sitions of the type Jg = J  Je = J – 1 and Jg = J ' 
Je = J ' (where J ' is an integer, and Jg and Je are the angu-
lar momenta of the ground and excited energy levels,
respectively) under conditions of resonant interaction
with elliptically polarized radiation there are always
dark states comprising a coherent superposition of Zee-
man wave functions of the ground level g. These states
only depend on the elliptic polarization vector and do
not depend on the detuning or the light intensity. Con-
sequently the CPT effect for these transitions can be
observed not only in a monochromatic field but also in
fields having an arbitrary spectral composition (obvi-
ously when the resonance condition is satisfied).
1063-7761/00/9101- $20.00 © 20067
Recent experiments [11] directly confirmed the basic
assumptions of [10], i.e. that dark states exist for arbi-
trary elliptic polarization and they do not depend on the
intensity and frequency of the light.

However, it should be noted that for a detailed anal-
ysis of various phenomena it may be difficult to use the
results of [10] directly. This is because the explicit form
of the CPT states was determined in [10] for a particu-
lar choice of coordinates where the quantization axis is
orthogonal to the plane of the polarization ellipse.
Thus, in the general case of fields with a polarization
gradient (for example, laser cooling by CPT) it is nec-
essary to introduce a local coordinate system for which
the direction of the quantization axis changes from one
point to another depending on the orientation of the
local polarization ellipse and only then can the form of
the spatially nonuniform dark states be determined in
the laboratory coordinates by rotating the basis (the
angles of rotation are local). Quite clearly this proce-
dure is laborious, particularly for transitions having a
high angular momentum Jg .

In the present study we find the explicit invariant
form of all the dark states which appear as a result of
resonant interaction of elliptically polarized light with
the transitions Jg = J  Je = J – 1 and Jg = J ' 
Je = J ', where J ' is an integer (following [11], we shall
frequently use the term elliptic dark states). In addition,
we also demonstrate the existence of two associated
spinors for any elliptic vector which contain informa-
tion on the polarization of the light. In this case, all the
dark states are expressed in terms of these spinors using
a multiple tensor product. For the case of integer Jg

these constructions are reduced to a form similar to the
invariant form of spherical functions.

As applications of these results for all the transitions
specified above we determine analytic expressions for
000 MAIK “Nauka/Interperiodica”
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the dark magneto-optic potentials formed when a static
magnetic field is applied in cases where the condition
Ω ! V is satisfied ("Ω is the Zeeman splitting in the
ground state and V is the Rabi frequency) [8]. This
problem is important for the theory of laser cooling and
trapping of atoms, in particular for the theory of optical
gratings. Taking as an example the optical field config-
uration lin ⊥  lin we analyze the profile of the magneto-
optic potential and observe some interesting character-
istics as the angular momentum Jg increases. For exam-
ple, for Jg = J  Je = J – 1 transitions which have two
potentials, the curvature of these potentials at the mini-
mum increases with increasing Jg whereas for Jg =
J '  Je = J ' transitions (J ' is an integer) the profile of
the magneto-optic potential becomes close to stepped
as Jg increases. 

In addition, for Jg = J '  Je = J ' transitions (J ' is
an integer) analytic expressions are obtained for the
dark geometric potentials (the vector potential and the
scalar potential [12–14]).

2. CONDITION FOR COHERENT POPULATION 
TRAPPING IN INVARIANT TENSOR FORM

We shall consider a Jg  Je optical transition in
resonance with the field

(1)

where e is the unit complex vector of the elliptic polar-
ization, and eq are its covariant components in the

spherical basis {e0 = ez, e±1 = ex ± iey)/ }; f(t) is a
certain function of time (for example, exp{–iωt} which
determines the resonant nature of the interaction. 

As we know from [10], the elliptic dark states |Ψ(NC)〉
are obtained from the solution of the operator equation:

(2)

Since any dark state lies entirely on the lower energy
level g, it can be considered to be a tensor of rank Jg

which we shall subsequently denote by . The

covariant components  determine the expansion

of |Ψ(NC)〉  in terms of the Zeeman wave functions |Jg, µg〉
of the ground state: 

(3)

Then, using the Wigner–Eckart theorem, we write the
expression for the matrix element:

E t( ) ef t( ) c.c., e e*⋅( )+ 1,= =

e 1–( ) q– e q– eq,
q 0 1±,=

∑=

(+− 2

d̂ e⋅( ) Ψ NC( )| 〉 0.=

ΨJg

NC( )

ΨJgµg

NC( )

Ψ NC( )| 〉 1–( )
µg–

ΨJg µg–
NC( ) Jg µg,| 〉 .

µg

∑=

Je µe,〈 | d̂ e⋅( ) Ψ NC( )| 〉
Je d̂ Jg

2Je 1+
------------------------=
JOURNAL OF EXPERIMENTAL 
(4)

where |Je, µe〉  is the wave function of the magnetic sub-
level of the excited state. Here we used the following prop-
erties of the Clebsch–Gordan coefficients: µe = q + µg and

 = , along with the standard defini-
tion (see, for example, [15]) of the irreducible tensor

product{… ⊗ …}; 〈Je|| ||Jg〉  is the reduced matrix ele-
ment of the dipole moment.

On the basis of (4), equation (2) can now be rewrit-
ten in invariant form as a tensor product of rank Je,

(5)

with the normalization condition

Equation (5) is the basis for the following analysis.
Here and subsequently we shall frequently omit the
component indices for conciseness.

3. Jg = J  Je = J TRANSITIONS (INTEGER J)

For these transitions equation (5) has the form

(6)

In order to obtain the explicit invariant form  we
need to introduce the following tensor constructions
constructed only from the vector e [16]:

(7)

For the case of real e these constructions determine the
invariant form of the notation for the spherical func-
tions YLq(e) (see [15]):

(8)

However, it can be shown [16–18] that the main group
properties of spherical functions will also be satisfied if
e in expression (8) is an arbitrary complex vector. Then,
for example, from the well-known Clebsch–Gordan
expansion for the product of the spherical functions we

can obtain {{e}m ⊗  {e}n}l ~ {e}l. It follows
from the symmetry properties of the Clebsch–Gordan

coefficients that  = 0 if m + n – l is an odd num-
ber. Then, setting m = 1, n = l = J (i.e., m + n – l = 1)
and bearing in mind that {e}1 = e, we have

(9)

× CJgµg; 1q
Jeµe 1–( )

q– µg–
e q– ΨJg µg–

NC( )

q µg,
∑

=  
Je d̂ Jg

2Je 1+
------------------------ 1–( )

µe–
e ΨJg

NC( )⊗{ } Je µe– ,

CJgµg; 1q
Jeµe C1 q; Jg µg––

Je µe–

d̂

e ΨJg

NC( )⊗{ } Jg
0,=

ΨJg

NC( )* ΨJg

NC( )⋅( ) 1.=

e ΨJ
NC( )⊗{ } J 0.=

ΨJ
NC( )

e{ } L … e e⊗{ } 2 e⊗{ } 3… e⊗{ } L.=

YLq e( ) 2L 1+( )!!
4πL! e e⋅( )L
----------------------------- e{ } Lq.=

Cm0; n0
l0

Cm0; n0
l0

e e{ } J⊗{ } J 0.=
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Comparing this relationship with equation (6), we can
easily find

(10)

where the normalization constant A can be determined
from the equality [16]

(11)

which is derived from the summation theorem for
spherical harmonics for arbitrary a and b [17]. Here
PL(x) is a Legendre polynomial. Assuming in (11) a = e,
b = e*, we obtain the expression for A:

(12)

As was shown in [10], the solution (10) is unique.
It can be seen that the explicit invariant form (10) of

the elliptic dark states for Jg = J  Je = J (J is an inte-
ger) transitions is simple and convenient to analyze,
especially as the main symmetry and algebraic proper-
ties are similar to the properties of the spherical func-
tions YLq(e). We also note that for the Jg = 1  Je = 1
transition (10) automatically yields the well-known

result [19, 20]  = e which corresponds to the
expression

4. Jg = J  Je = J – 1 TRANSITIONS

In this case, the CPT condition (5) has the form

(13)

It was shown in [10] that for these transitions the dark
states form a two-dimensional linear subspace. In order
to express their general invariant form, we need to
introduce the coordinates defined in [5] which are
closely related to the polarization ellipse. We know that
any ellipse is a cross section of a certain cylinder on a
plane so that each vector of the elliptic polarization e
can be made to correspond to a cylinder (generally two)
whose cross section is the given ellipse. Then, if the
z-axis is directed along the axis of one of these cylin-
ders (Fig. 1), it follows from [5] that the elliptic polar-
ization e is a superposition of a linear and only one cir-
cular component. In particular, if the y axis is directed
along the minor semiaxis of the polarization ellipse, the
vector e can always be expressed as

(14)

ΨJ
NC( )

A e{ } J ,=

a{ } J b{ } J⋅( ) J!
2J 1–( )!!

------------------------=

× a a⋅( ) b b⋅( ) 
 

J

PJ
a b⋅( )

a a⋅( ) b b⋅( )
----------------------------------- 

  ,

A
J!

2J 1–( )!!
------------------------ e e⋅ JPJ

1
e e⋅
------------ 

 
1/2–

.=

Ψ1
NC( )

Ψ NC( )| 〉 1–( ) q– e q– Jg µg, q=| 〉 .
q 0 1±,=

∑=

e ΨJ
NC( )⊗{ } J 1– 0.=

e 2ε( )cos± e0 2 ee+1,sin–=
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where ε is the ellipticity parameter (  is the ratio
of the axes of the polarization ellipse) and the ± signs
refer to the two different cylinders in Fig. 1. Here we
impose no constraints on ε. 

In coordinates related to one of the cylinders, the
expansion (14) defines the selection rules for light-
induced transitions in terms of the projection of the
momentum µe – µg = 0, 1 which clearly reveals the
existence of a dark state coinciding with the outer Zee-
man sublevel |Jg , µg = J〉 . Another linearly independent
dark state is determined similarly in coordinates related
to the second cylinder. Quite clearly, in cases of integer
J the invariant form of these CPT states can be written
using the tensor construction (7) introduced above:

(15)

where each vector c(m) apart from the phase factor is the
same as the circular vector e+1 in the corresponding
coordinates related to the mth cylinder. The explicit
form of the dependence of c(m) on e is determined from
the invariant conditions:

(16)

This system has two solutions:

(17)

εtan

ΨJ
m( ) c m( ){ } J , m 1 2,,= =

c m( ) c m( )⋅( ) 0, c m( ) e⋅( ) 0,= =

c m( )* c m( )⋅( ) 1.=

c 1 2,( ) i e e⋅( ) e* e×[ ]± e e* e×[ ]×[ ]+

1 e e⋅+( ) 1 e e⋅–
-------------------------------------------------------------------------------------.=

x

e

θ

y

z

Fig. 1. System of coordinates related to the polarization
ellipse (“natural” basis) in which the quantization axis z is
directed along the axis of a cylinder constructed along the
polarization ellipse (the dashed lines show the profile of the
second cylinder). 
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The dark states  and  are generally linearly
independent but not orthogonal. From (11) we find the
scalar products:

(18)

Since the product (  · ) is real, we have the
following pair of dark orthonormalized tensors:

(19)

where exp{iβ±} are arbitrary phase factors. It should be
noted that the dark states (19) are related to the results
obtained earlier [10]. We recall that in [10] the dark
states were determined in coordinates in which the
quantization axis is orthogonal to the polarization
ellipse. In this basis the system of light-induced Jg =
J  Je = J – 1 transitions has the form of two Λ-chains:
the first begins with the extreme left sublevel |Jg, µg = –J〉
and the second with the penultimate left sublevel |Jg, µg =
–J + 1〉 . It was shown in [10] that each of these Λ-chains
corresponds to a single dark state. The dark states |Ψ(±)〉
determined using formulas (3) and (19) in the present
study are the same as those from [10]. Here the |Ψ(+)〉
state is associated with the first Λ-chain and the |Ψ(–)〉
state is associated with the second Λ-chain. 

We note that the states (19) are not the only possible
choice of orthogonal basis since any unitary transfor-
mation in the two-dimensional subspace of the dark

states converts  to another pair of orthonormalized
tensors. 

For half-integer J the invariant formula (15) for the

dark states  cannot be applied because of the half-
integer rank. However, there is a more general proce-
dure for constructing invariant formulas for CPT states
based on the correspondence between the circular vectors
and the spinors. This correspondence is established as fol-
lows: for an arbitrary circular vector c (i.e., (c · c) = 0)
there always exists a spinor ξ (a tensor of rank 1/2) such
that

Since this condition is quadratic, the spinor ξ is deter-
mined but not its sign. The inverse correspondence is
single-valued: for an arbitrary spinor ξ the tensor prod-
uct {ξ ⊗ ξ }1 is a circular vector, i.e.,

ΨJ
1( ) ΨJ

2( )

ΨJ
1( )* ΨJ

2( )⋅( ) c 1( )* c 2( )⋅( )
J 1 e e⋅–

1 e e⋅+
--------------------- 

 
J

,= =

ΨJ
m( )* ΨJ

m( )⋅( ) 1.=

ΨJ
1( )* ΨJ

2( )

ΨJ
±( ) ΨJ

1( ) ΨJ
2( )±

2 1 ΨJ
1( )* ΨJ

2( )⋅( )±( )
------------------------------------------------------e

iβ±,=

ΨJ
±( )* ΨJ

±( )⋅( ) 1, ΨJ
+( )* ΨJ

–( )⋅( ) 0,= =

ΨJ
±( )

ΨJ
m( )

ξ ξ⊗{ } 1 c.=

ξ ξ⊗{ } 1 ξ ξ⊗( )1⋅( ) 0.=
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Thus, having determined the two spinors ξ(1, 2) using the
formula 

(20)

the dark states  for arbitrary (integer and half-inte-
ger) J may be expressed in the form

(21)

where the tensor {ξ}J is constructed of 2J spinors ξ
similar to the construction (7):

(22)

The general procedure for orthogonalizing the dark
states is exactly the same as formulas (18) and (19), i.e.,
in these formulas J can have integer and half-integer
values. The main difference is that for half-integer J the

scalar product (  · ), although real, can have
both positive and negative values depending on the
choice of signs when determining ξ(m) from the qua-
dratic expressions (20). However, the modulus of the
scalar product will be determined by the right-hand
side of (18) as before.

It should be noted that for half-integer J the |Ψ(±)〉
states determined in accordance with (3) and (19), also
correspond to two different Λ-chains from [10] when
the quantization axis is orthogonal to the polarization
ellipse. However, this relationship is nonunique and
depends on the choice of positive direction of the z axis.
This is because when the direction of the quantization
axis is reversed for integer J these systems of coupled
sublevels remain the same after conversion, i.e., the
Λ-chain beginning from the left sublevel |Jg , µg = –J〉
(|Jg , µg = –J + 1〉) in the initial basis will also corre-
spond to the Λ-chain beginning with |Jg , µg = –J〉
(|Jg , µg = –J + 1〉) in the new basis. However, for half-
integer J when the positive direction of the quantization
axis is changed, the Λ-chains convert one to the other,
i.e., the Λ-chain which initially began with the extreme
left sublevel |Jg , µg = –J〉  will correspond to the Λ-chain
beginning from the penultimate left sublevel |Jg , µg =
−J + 1〉  in the new basis, and conversely. 

5. Jg = J  Je = J TRANSITIONS
(HALF-INTEGER J)

To complete the picture it makes sense to consider
this case. It was shown in [10] that for Jg = J  Je = J
transitions (where J is a half-integer) a dark state only
exists for a circularly polarized field, i.e., when (e · e) = 0.
For this polarization we have c1 = c2 = –e and conse-
quently only one spinor ξ = ξ(1) = ξ(2) which is defined
as {ξ ⊗ ξ }1 = –e. The dark state then has the invariant

form:  = {ξ}J. For dipole transitions of the type
Jg = J  Je = J + 1 no CPT effect occurs (see [10]).

ξ m( ) ξ m( )⊗{ } 1 c m( ), m 1 2,,= =

ΨJ
m( )

ΨJ
m( ) ξ m( ){ } J ,=

ξ{ } J … ξ ξ⊗{ } 1 ξ⊗{ } 3/2… ξ⊗{ } J .=

ΨJ
1( )* ΨJ

2( )

ΨJ
NC( )
 AND THEORETICAL PHYSICS      Vol. 91      No. 1      2000



ELLIPTIC DARK STATES: EXPLICIT INVARIANT FORM 71
6. ASSOCIATED SPINORS

It has been shown that by using the invariant formu-
las (17) and (20) each unit complex vector e can be
associated with a pair of unit spinors ξ(1, 2) which we
shall call associated spinors. An important property is
directly proven:

(23)

i.e., the vector e is constructed of spinors ξ(m). The inde-
terminacy in the signs (23) occurs as a result of the qua-
dratic nature of the formula (20) in terms of ξ(m). How-
ever, having fixed on one sign (for example, minus) in
(23), we thereby achieve a rigid coupling between ξ(1)

and ξ(2) when these are determined.
We can therefore talk of a correspondence between

the complex vector space and the set of all possible
pairs of spinors. This correspondence is achieved using
formulas (17), (20), and (23) and has the following geo-
metric meaning: each complex vector e corresponds to
a pair of cylinders (Fig. 1); each cylinder has a circular
vector (17) associated with it; according to formula (20)
these circular vectors c(m) (m = 1, 2) correspond to the
associated spinors ξ(m), and the vector e is constructed of
associated spinors according to formula (23). 

Determining the explicit form of this correspon-
dence is not only an important mathematical result but
can also lead to new group-theoretical and geometric
approaches to the analysis of polarization effects. For
example, the CPT state (10) for Jg = J  Je = J tran-
sitions (where J is an integer) may be expressed in a dif-
ferent form:

(24)

This is easily demonstrated by systematically changing
the coupling scheme (see [15]) of the spinors in expres-
sion (24) so that they are grouped in pairs {ξ(1) ⊗ ξ (2)}1.
Then using (23) we reconstruct the invariant form (10)

for  apart from the phase factor. Hence, the ellip-
tic dark states for all types of transitions can be explic-
itly expressed in terms of spinors ξ(m) using the con-
structions (22).

7. DARK GEOMETRIC
AND MAGNETO-OPTIC POTENTIALS

It follows from formulas (10), (20), and (21) that in
fields having spatially inhomogeneous polarization e(r)
the dark states also acquire a coordinate dependence.
As an application of these results, we consider the
potentials acting on an atom being in these states
|Ψ(NC)(r)〉 . 

ξ 1( ) ξ 2( )⊗{ } 1
e

1 e e⋅+
--------------------------,±=

ΨJ
NC( ) J!

2J 1–( )!!
------------------------ e e⋅ J

1 ee+( )J
------------------------PJ

1
e e⋅
------------ 

 
1/2–

=

× ξ 1( ){ } J /2 ξ 2( ){ } J /2⊗{ } J .

ΨJ
NC( )
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There are two types of potentials associated with the
spatial inhomogeneity of the dark states. The first are
geometric (or gauge) potentials [12–14] caused by the
translational motion of the atoms. We recall that under
certain conditions there is an overwhelming probability
of an atom being in a CPT state. In this case, its dynam-
ics on translational degrees of freedom are described by
the effective Hamiltonian:

(25)

Here A is the geometric vector potential whose Carte-
sian coordinates are defined as 

(26)

and W(r) is the geometric scalar potential:

(27)

Another type of potential occurs when static fields are
applied and is caused by spatial modulation of the mul-
tipole moments of the atom in the dark state. For exam-
ple, in a static magnetic field B, as a result of the inho-
mogeneity of the magnetic moment a dark magneto-
optic potential is formed [8]:

(28)

where  is the magnetic moment operator of the atom.

The results of the previous sections can be used to
obtain explicit analytic expressions for the dark poten-
tials (26), (27), and (28) for an arbitrary spatial depen-
dence e(r). Without limiting the generality (see, for
example, [21]) we shall subsequently assume every-
where that

(29)

For a spatially inhomogeneous monochromatic field
having the general form

(30)

the polarization unit vector e(r) satisfying (29) is
invariantly determined as follows:

(31)

We can then introduce the real ellipticity parameter ε(r)
which is an analytic function of the coordinates and sat-
isfies the condition

(32)

Ĥ
eff( ) p̂ A+( )2

2M
-------------------- W r( ).+=

Aj i" Ψ NC( ) r( )–=
x j∂
∂ Ψ NC( ) r( ) ,

W r( ) "
2

2M
--------=

×
x j∂
∂ Ψ NC( ) r( )

x j∂
∂ Ψ NC( ) r( ) A2

2M
--------.–

j

∑

U r( ) Ψ NC( ) r( )〈 | µ̂B( ) Ψ NC( ) r( )| 〉 ,–=

µ̂

Im e r( ) e r( )⋅( ) 0.=

E r t,( ) E r( )e iωt– c.c.+=

e r( ) E r( ) E r( )⋅( )*
E r( ) E r( )⋅( )

------------------------------------ 
 

1/4 E r( )
E r( )
--------------.=

2ε( )cos e r( ) e r( )⋅( ).=
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7.1. Dark Magneto-Optic Potentials

From procedural concepts we begin by determining
the magneto-optic potentials (28). Below we consider
each type of transition separately.

7.1.1. Jg = J  Je = J transitions (integer J). For
these transitions, substituting the expression for |Ψ(NC)(r)〉
from (10) and (28) and using the Wigner–Eckart theo-
rem, we have

(33)

Here  is the reduced matrix element of the
magnetic moment, n = B/|B| is the unit vector in the
direction of the magnetic field. In accordance with [16],
we can write

(34)

where ∇ e denotes the gradient along the vector e. Since
the conjugate vector e* is linearly independent in rela-
tion to e, any function of e* can be introduced after ∇ e.
At this point we need to bear in mind that ∇ e(e* · e) = e*
and use the normalization condition ((e* · e) = 1 after
calculating the derivative. Then, applying formula (11)
and expression (12) for the normalization constant A,
we obtain from (33) and (34) the final expression for
the potential:

(35)

We note that in formula (35) the direction of the mag-
netic field n and the Zeeman splitting "Ω (i.e., the mag-
netic field |B|) may also depend on the coordinates.

For the Jg = 1  Je = 1 transition the potential (35)
reduces to the well-known result [22]:

(36)

7.1.2. Jg = J  Je = J – 1 transitions. As we have
already noted, for these transitions the dark states form
a two-dimensional subspace. Consequently, the dark
magneto-optic potentials are determined by the 2 × 2

matrix  whose matrix elements in the basis (19) have
the form

(37)

Note that in the general case of spatially inhomoge-
neous polarization e(r) the dark states (19) are analytic
functions of the coordinates with a suitable choice of
spatial dependence of the phase factors exp{iβ±(r)}.

U r( ) A2 Jg µ̂ Jg〈 〉 B

2J 1+
------------------------------- e*{ } J e{ } J n⊗{ } J⋅( ).=

Jg µ̂ Jg〈 〉

e{ } J n⊗{ } J
i

J J 1+( )
------------------------ n e ∇ e×[ ]⋅( ) e{ } J ,–=

U r( ) "Ωi n e e*×[ ]⋅( )
2ε( )cos

---------------------------------- d
dw
------- PJ w( )ln

w 1/ 2ε( )cos=

.=

U r( ) "Ωi n e e*×[ ]⋅( ).=

Û

U± Ψ ±( )〈 | µ̂B( ) Ψ ±( )| 〉 ,–=

U+– U– +* Ψ +( )〈 | µ̂B( ) Ψ –( )| 〉 .–= =
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For these analytic states calculations yield the follow-
ing result:

(38)

(39)

The eigenvalues of the matrix  determine the adia-
batic potentials. In general, the motion of an atom is
bipotential similar to the motion of a two-level atom in
the field of a strong standing wave [23]. 

It follows from (39) that the off-diagonal elements
U+ – and U–+ are zero if the direction of the magnetic
field n is orthogonal to the polarization vector e. In this
case, comparing (35) and (38), we can see that the
potentials for the J  J (integer J) and Jg = J  Je =
J – 1 transitions have the same vector component
(n · [e × e*]) but different scalar components which only
depend on the local value of the parameter ε(see (32)). 

7.1.3. Magneto-optic potentials in an optical field
lin ^ lin. We shall analyze the change in the profile of
the dark magneto-optic potential with increasing angu-
lar momentum J for the well-known lin ⊥  lin field con-
figuration.

This configuration is a superposition of two counter-
propagating (along the z axis) traveling waves of the
same frequency and amplitude, having mutually
orthogonal (along ex and ey) linear polarizations. In this
case we direct the magnetic field B along the z axis, i.e.,
n = ez . 

In this configuration the spatially inhomogeneous
polarization vector (31) is defined as

(40)

We can easily find

from which we determine the analytic parameter in
accordance with (32)

For Jg = J  Je = J transitions (integer J) we then have
from (35)

(41)

U± "ΩJ
i n e e*×[ ]⋅( )

2
---------------------------------- εcos( )2J 2– εsin( )2J 2–±

εcos( )2J εsin( )2J±
----------------------------------------------------------,=

U+– U– +* "ΩJ
2

----------- n e⋅( ) n e*⋅( )+{ } εcos( )2J 2–[= =

– n e⋅( ) n e*⋅( )–{ } εsin( )2J 2– ]

× εsin
2( )

q
εcos

2( )
2J 1– q–

q 0=

2J 1–

∑
1/2–

.

Û

e z( )
exe

ikz eye
ikz–+

2
---------------------------------.=

e e⋅( ) 2kz( ), e e*×[ ]cos i 2kz( )ezsin= =

ε kz.=

U "Ω 2kz( ) d
dw
------- PJ w( )lntan

w 1/ 2kz( )cos=

.–=
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It can be seen from Fig. 2 that as J increases, the poten-
tial profile becomes close to stepped, as was noted in [6]
for the particular case J = 4. 

For Jg = J  Je = J – 1 transitions in this particular
case of an lin ⊥  lin optical configuration and a magnetic
field directed along the z axis, the off-diagonal ele-
ments U+ – and U–+ (39) are zero (since e ⊥  n) and the
expressions for the diagonal elements (38) reduce to:

(42)

Figure 3 shows the spatial dependence of the potential
U+ for several values of J (the behavior of U– is basi-
cally similar). It can be seen that as J increases, the cur-
vature of the potentials at the minimum increases. It is
easy to show that the second derivative increases pro-
portionately as 2J(J – 1) for U+ and 4J2/3 – 2J + 2/3 for
U–. Consequently, strong spatial localization of trapped
atoms can be obtained for high values of J. 

7.2. Dark Geometric Potentials

The method of calculating the geometric potentials
for Jg = J  Je = J – 1transitions (where J is an inte-
ger) is essentially similar to the method of determining
the dark magneto-optic potentials and reduces to differ-
entiating expressions (12) and (11) with respect to the
spatial coordinates {xj} where we need to set a = e*, b = e
and impose the normalization condition (e · e*) = 1 only
after the differentiation operation. Omitting cumber-

U± "ΩJ
2kz( )sin
2

--------------------- kzcos( )2J 2– kzsin( )2J 2–±
kzcos( )2J kzsin( )2J±

---------------------------------------------------------------.–=

10

5

0

–5

–10
0 0.5 1.0 1.5 2.0 2.5 3.0

U

kz

J = 10

J = 5

J = 1

Fig. 2. Dark magneto-optic potentials (in units of "Ω)
for Jg = J  Je = J transitions (J is an integer) for the
lin ⊥  lin field configuration.
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some intermediate procedures, we give the final results.
For the Cartesian components Aj of the vector poten-
tial (26) we have the expression

(43)

The scalar potential (27) is determined as follows:

(44)

For the Jg = 1  Je = 1 transition we obtain the well-
known result [12]:

(45)

As an example we now consider the one-dimensional
field configuration lin ⊥  lin (40). In this case no vector

A j "

i e*
∂

∂x j

-------e⋅ 
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Fig. 3. Dark magneto-optic potentials U+ (in units of "Ω)
for Jg = J  Je = J – 1 transitions (J is an integer) for the
lin ⊥  lin field configuration.
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potential is present (Aj = 0) and the scalar potential has
the form

(46)

and is given in Fig. 4 for several values of J.
The dark geometric potentials for Jg = J  Je =

J – 1 transitions can be determined similarly. At this
point we do not give the explicit form of these poten-
tials because of the cumbersome nature of the expres-
sions. We merely note that for this type of transition
because of the two-dimensional subspace of the dark

states, both the Cartesian components  of the vector

potential and the scalar potential  are square 2 × 2
matrices. These were determined in [14] for the partic-
ular lin ⊥  lin field configuration. 

8. CONCLUSIONS

The present study is a continuation in a series of
studies [10, 18, 24, 25] dealing with the fundamental
problem of the steady state of atoms in an elliptically
polarized field. Invariant analytic expressions were
obtained for all elliptic dark states, allowing their ten-
sor properties to be analyzed in detail. As well as being
of general theoretical value, the results of the present
study may also have important practical applications in
all problems involving coherent population trapping in
elliptically polarized fields, especially in those cases
where the polarization vector varies in a complex fash-

W
"

2k2

2M
----------=

× 1

2kz( )cos
3

------------------------ d
dw
------- 2kz( )sin

2

2kz( )cos
4

------------------------ d2

dw2
---------+

 
 
 

× PJ w( )ln
w 1/ 2kz( )cos=

Â j
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Fig. 4. Dark geometric scalar potentials W (in units of
"2k2/(2M)) for Jg = J  Je = J transitions (J is an integer)
for the lin ⊥  lin field configuration.
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ion in space and (or) time. For example, we determined
the explicit analytic form of the dark magneto-optic and
geometric potentials in an inhomogeneous monochro-
matic field for all transitions where the CPT effect
occurs. 

Other possible applications may include the kinetics
of atoms in nonuniformly polarized fields [26], adia-
batic transfer of momentum and populations [9], and so
on. In addition, the results of the present study may be
of procedural interest as a demonstration of the high
efficiency of the apparatus of irreducible tensors and
spherical functions in analyses of the interaction of
atoms with polarized radiation, and the geometric cor-
respondence observed between the complex vector
space and the set of all possible spinor pairs is, in our
opinion, an interesting mathematical result.
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Abstract—The density functional method for a system of electrons in an external field is applied to derive an
expression for the correction to the free energy for a small change in electron density. This expression is used
for a semiclassical description of shell effects in atomic clusters at both zero and finite temperatures. The spher-
ical “jelly” model is used to obtain a formula for the oscillating component of the free electron energy in
medium and large clusters in the form of an explicit sum of contributions from supershells having quantum
numbers 2nr + l, 3nr + l, 4nr + l, … or corresponding trajectories (linear, triangular, square, …) of the classical
motion of an electron whose energy is equal to the chemical potential in a self-consistent potential. The con-
ditions for the appearance of a new supershell and its relative contribution are analyzed for various sizes of
clusters, potential profile, and electron temperature. Specific calculations are made for sodium clusters with
two types of self-consistent potential: a “square well” and the Woods–Saxon potential. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION 

One topic in mesoscopic physics which has seen
rapid development over the last two decades is atomic
clusters, in particular metallic clusters (see the reviews
presented in [1, 2]). Studies of these complexes, whose
size ranges from a few particles to several tens of thou-
sands of atoms, provide a unique possibility for study-
ing the evolution of the properties of matter with
increasing scales from atomic to solid-state. A charac-
teristic feature of the experimental mass spectra of clus-
ters (dependences of the number of N-atomic clusters
on N) is the existence of “magic” numbers: there are
considerably more clusters with these numbers than
neighboring ones. As the number N increases, these
deviations decrease and then begin to increase again,
i.e., oscillations with beats are observed. As the temper-
ature increases, these effects are reduced appreciably. 

Theoretical analyses of metal clusters frequently
use the spherical “jelly” model in which the ions are
considered to be uniformly distributed over the volume

of a cluster of radius1 R = rs  (where rs is the
Wigner–Seitz electron radius of the condensed phase of
the element, Ne = wN is the number of electrons in an
N-atomic cluster, and w is the valence of the element).
Self-consistent calculations are made to describe inter-
acting valence electrons situated in the field of ions
(see, for example, [3] for sodium clusters which uses
the density functional method). One of the results of
these calculations is the reproduction of the experimen-
tally determined characteristic two types of periodicity
in the oscillating component of the electron energy δEsh

as a function of the cluster radius: small-period oscilla-
tions are accompanied by beats whose period is an

1 Atomic units are used in this article.
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order of magnitude larger. Similar results were obtained in
calculations [4] using the phenomenological Woods–
Saxon potential and in [5] for various metals having
potentials close to self-consistent.

For small clusters with N < 100, the numerical
results can be interpreted quite easily: cusps of energy
minima of the electron shell correspond to clusters in
which the shell having the maximum orbital angular
momentum l = lmax is completely filled. However, for
N > 100 this dependence breaks down and the nature of
the specific oscillations described has been discussed in
the literature over the last ten years.

In a fundamental study [6] for a spherical cavity
Balian and Bloch put forward a theory which explains
the beats in the electron level density as the superposi-
tion of contributions from closed periodic classical
electron trajectories and they show that it is sufficient to
use triangular and square orbits to obtain an approxi-
mate description of these effects. This theory was suc-
cessfully applied [7] in nuclear physics to describe the
shell structure of atomic nuclei.

Detailed numerical calculations [5] of clusters hav-
ing more complex potentials reproduce behavior very
similar to oscillations with beats in a spherical cavity. It
was noted that electron energy levels ε(nr , l) with high
angular momenta are grouped into supershells: ε(nr, l) .
ε(nr + 1, l – K) with pseudoquantum numbers Knr + l,
where nr is the radial quantum number, K = 2, 3, 4, … .

It seems that a correspondence can be established
between the quantum supershells and the classical tra-
jectories. In the classical treatment (see, for example
[8]) the integer K characterizing the supershell is equal
to the ratio of the frequencies of the radial and angular
motion for the corresponding closed orbit. For K = 2 the
pseudoquantum number is the same as the principal
000 MAIK “Nauka/Interperiodica”
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quantum number and characterizes the distribution of
the single-electron levels in small clusters. The corre-
sponding classical electron motion takes place along a
linear orbit passing through the point r = 0. As N
increases, supershells with K = 3 appear, followed by
K = 4, which correspond to triangular and square orbits. 

Thus, a scrupulous analysis of the results of labori-
ous calculations made in these studies suggests that
first, the expansion in terms of classical trajectories is
equivalent to the expansion in terms of supershells and
second, the result obtained in [6] for a spherical cavity
is also valid for a spherical cluster potential of a more
general nature. This last assumption was partially con-
firmed in a recent study [9] for the Woods–Saxon
potential by means of an expansion in terms of the
parameter a/R (a is the surface width) near the well-
known result [6].

It is interesting to obtain this expansion in terms of
trajectories analytically and to study the origin of
supershells and the laws governing their appearance for
a general type of potential. 

In the present study we show that this problem may
be solved by a semiclassical method of isolating shell
effects which was previously used successfully in
atomic physics [10, 11] and in plasma physics [12, 13]
on the basis of the Thomas–Fermi model.

Here the density functional method is used to derive
an expression for the correction to the free energy for a
small variation in electron density (Section 2). Then a
semiclassical theory of shell effects for a spherically
symmetric attractive potential is constructed using the
generalized Thomas–Fermi model taken as the zeroth
approximation (Section 3). These analytic expressions
are used to calculate the shell oscillations of the free
electron energy in sodium clusters for the “square well”
potential and the Woods–Saxon potential (Section 4).
The main results of this study are presented in the Con-
clusions (Section 5).

A brief description of the proposed method and
some preliminary results are published in [14]. 

2. CORRECTION TO THE FREE ENERGY
FOR A SMALL DENSITY VARIATION

We shall consider a system of Ne interacting elec-
trons in an external field Uext(r) at temperature T in a given
volume. In accordance with the Hohenberg–Kohn–Mer-
min theorem the electron density functional n(r) 

(1)

where K[n] and Fxc[n] are the functionals of the kinetic
and exchange correlation energy, reaches a minimum
equal to the free energy of the system Fe when its func-
tional argument ne(r) is the same as the true equilibrium

F n[ ] K n[ ] rn r( )Uext r( )d∫+=

+
1
2
--- rd r'

n r( )n r'( )
r r'–

-------------------- Fxc n[ ] ,+d∫
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electron density ne(r) in a given external field Uext(r).
The extremum condition of the functional F[n] if the
total number of particles is conserved yields the Euler–
Lagrange equation:

(2)

Here the Lagrange factor µ is the chemical potential of
the system. 

Since the exact form of the functionals K[n] and
Fxc[n] is unknown, various approximations are used for
these. The following statement is useful in this respect.

Let us assume that the solution n0(r), µ0,  of
the problem (1), (2) with the approximate functional
F0[n] is known and the small correction ∆n(r, µ, T) to
the electron density as a result of various effects
neglected in F0[n] is also known. Then, to within qua-
dratic terms in ∆n the corresponding correction ∆F to
the free energy F0[n0] has the form:2 

(3)

We shall now demonstrate this.
In accordance with equation (2) the functional K[n]

in (1) is the potential relative to η ≡ µ – . Convert-
ing to the new variable η instead of the density n, we
construct the functional 

(4)

which is the potential relative to n:

The density variation ∆n leads to a variation in the
potential Ψ by ∆Ψ where quite clearly

It follows from expression (2) that the density vari-
ation n  n(η) + ∆n leads to variations in the chemi-
cal and self-consistent potentials n  η + ∆η so that
the total correction to the density has the form ∆n +
(∂n/∂η)∆η. Considering the total variation in Ψ taking
this into account, we obtain from (4) the equal potential
variations: ∆F = ∆Ψ from which it follows that

2 The derivation of expression (3) presented below generalizes the
corresponding proof for the correction to the Thomas–Fermi
model presented in [10].
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Taking δη to be the variation of the chemical potential
and integrating over this, we obtain expression (3).

Isolating the explicit temperature dependence (see
[10]), we can rewrite expression (3) in the following
form:

(5)

where we use the operator  = –iT∂/∂µ and

is the correction to the number of states as a result of
this effect without the explicit dependence on tempera-
ture. Note that an implicit temperature dependence is con-

tained in (3) and (5) in terms of the values of µ0 and 
used to calculate the corrections ∆n(r) and ∆N.

Since the corresponding density variations are
assumed to be small, when allowance is made for the var-
ious effects, there is no interference between them and
each corresponds to a separate term in the correction to the
density and the free energy.

We stress that expressions (3) and (5) are of a most
general nature and can be used in the density functional
method for any type of functional in the zeroth approx-
imation, including in the single-particle Kohn–Sham
treatment.

3. SEMICLASSICAL SHELL CORRECTION
TO THE FREE ENERGY 

OF A SPHERICALLY SYMMETRIC CLUSTER

In order to describe a spherically symmetric system
containing bound states, we shall use the extended Tho-
mas–Fermi model as the zeroth approximation. This
model allows for the local exchange correlation term
Fxc[n] and the term K[n] includes second- and fourth-
order quantum gradient corrections in addition to the
kinetic energy of a homogenous gas. This model is the
best (in the sense of allowing for the largest number of
effects) known approximation for F0 other than the
Kohn–Sham model. In particular, the extended Tho-
mas–Fermi model very accurately describes the aver-
age (smooth) component of the density and the electron
binding energy as a function of the cluster size even for
small clusters [15]. Here shell effects associated with
the discreteness of the electron spectrum are neglected.

Below we propose a semiclassical method of describ-
ing shell effects for a spherically symmetric potential con-
structed using expression (5). This approach is the most
systematic in this case since the extended statistical Tho-
mas–Fermi model used as the zeroth approximation is
a set of several first terms of the expansion in terms of
the semiclassical behavior parameter. 

∆F µ πk̂µ

πk̂µ( )sinh
------------------------∆N µ 0,( ),d

∞–

µ0

∫–=

k̂µ

∆N µ 0,( ) r∆n r µ 0, ,( )d∫=

Ũ0 r( )
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We shall estimate the contribution to the free energy
in the form (5) of the shell correction to the density of
electron states ∆nsh or to the number of states having
energies lower than or equal to µ:

(6)

Here for filled shells we have

(7)

and the level energies  are determined from the
quantization condition

(8)

where Sεl ≡ Sελ and

pεl(r) =  ≡

 ≡ pελ 

are the classical radial action and the momentum of an
electron having energy ε and orbital angular momen-
tum λ, and the region of integration in the action inte-
gral is limited by the turning points. By means of sim-
ple procedures using the Poisson formula to replace the
sums over the quantum numbers nr, l with integrals, we
can rewrite expression (7) in the following form:

(9)

Here we introduce the notation νε(λ) = Sελ/π and λε
determines the boundary of the phase region of the
classically allowed motion of an electron of energy ε:
νε(λε) = 0. Thus, the values of λ and ν are the orbital
and radial quantum numbers shifted by 1/2 and consid-
ered as continuous parameters.

In formula (9) the term containing k = s = 0 corre-
sponds to a smooth nonoscillating dependence of N0 on µ.
It has already been taken into account in the zeroth
approximation of the model and satisfies the normal-
ization condition. Thus, the sum (9) minus this term in
accordance with formula (6) determines the required
quantity ∆Nsh(µ).

It follows from expression (9) that the shell oscilla-
tions are completely determined by the radial action
function Sµλ = πνµ(λ) for the motion of an electron hav-
ing energy µ = µ0 and orbital angular momentum λ in

∆N µ 0,( ) ∆Nsh µ( )=

=  r∆nsh r µ,( )d∫ N µ( ) N0 µ( ).–=

N µ( ) 2 2l 1+( )θ µ εnr l,–( ),
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1
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---+ 
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2
π
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k
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∫
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the spherically symmetric potential of the zeroth

approximation U(r) = .

In what follows, we shall confine our analysis to
attractive potentials U(r) finite at zero, which are typi-
cal of clusters.3 For all potentials U(r) of this type the
slope of the curve νµ(λ) at λ = 0 is the same [16]:

and the derivative for λ = λµ 

(10)

is determined by the potential profile. Semiclassical
calculations of λµ and  give (see Appendix)

(11)

where r0 is the maximum point of the function pµ(r)r.

Figure 1 demonstrates the characteristic behavior of
(a) the function νµ(λ) and (b) its derivative for the case
of sodium clusters with the Woods–Saxon potential for
various numbers of electrons.

The main contribution to the integral of the oscillat-
ing function in (9) is made by the limits of integration

and the steady-state phase points . These are deter-
mined from 

(12)

which isolates the principal terms in the sum over k:4

(13)

Figure 1b gives the horizontal lines ∂νµ(λ)/∂λ = –1/(2 + j),
j = 1, 2, …. The points of intersection of the derivative
curve with these lines in accordance with (13) deter-

mine the steady-state phase points .

In calculations of the integral in (9) terms with k = 2s
(j = 0) should be analyzed separately because in this

3 Corresponding results for attractive potentials having a Coulomb
singularity at zero are presented in [10–12].

4 Here we neglect very soft potentials (for example, in aluminum
clusters, see literature cited in [9]) for which terms with a differ-
ent ratio of s and k are the principal ones in a certain range of
electron numbers.
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case, the steady-state phase point is the same as the
lower limit of integration. As a result we obtain

(14)

Here we have

and the first two terms in braces are the contribution
from the steady-state phase point with j = 0.

By substituting expressions (14) into (5), the result
of the action of the “temperature” operator on ∆Nsh(µ')
can be estimated by differentiating only the rapidly
varying cosines. Then, integrating by parts and isolat-
ing the principal term with respect to the semiclassical
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 Dependences of (a) the radial action 
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and (b) its derivative ∂νµ(λ)/∂λ on the orbital angular
momentum λ = l + 1/2 for sodium clusters with the Woods–
Saxon potential (20) for various numbers of atoms N.
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behavior parameter, we obtain the formula for the shell
correction to the free energy of the cluster electrons:

(15)

where

(16)

In formula (16) we use the notation T0, Tµ, and Tj for the
characteristic temperatures which determine the damp-
ing of the corresponding oscillations as the electron
temperature increases:

(17)

The terms of the sum over j in formulas (14) and (15)
are the contributions of supershells having the quantum
numbers nj = Knr + l, K = 2 + j, where quantization is
significant at the energy level equal to the chemical
potential of the system µ.

In the classical treatment the index j in formulas
(14) and (15) numbers the type of electron orbit: the
index j = 0 (K = 2) corresponds to a linear orbit passing
through the point r = 0 and terms with j ≥ 1 (K ≥ 3) cor-
respond to plane regular polygons having the number
of vertices K. The index s is equal to the number of peri-
ods which include the trajectory (j, s) so that for each
j-orbit the sum over s is the expansion over the trajec-
tory lengths. 

At zero temperature the factors (16) are unity and
(15) gives the expression for the shell correction to the
electron energy. At temperatures higher than the char-
acteristic values (17) the contribution of the corre-
sponding shell becomes negligible.
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4. SHELL OSCILLATIONS
OF THE ELECTRON ENERGY

In this section we apply the general expressions
obtained above to analyze shell effects in sodium clus-
ters. We shall assume that the form of the self-consis-
tent potential of the zeroth approximation is known and
we shall approximate this by two types of model poten-
tials: the limiting hard potential of a “square well” and
the Woods–Saxon potential having parameters taken
from the self-consistent calculations. 

4.1. Square Well Potential

For a potential having the form 

(18)

all the necessary quantities contained in expression (15)
can be calculated analytically:

Since  = 0 for this potential, in a cluster of any
size there is an infinite number of steady-state phase
points although calculations show that only the first few
values with j ≤ 4 make any realistic contribution. Fig-
ures 2 and 3 give results of calculations of the shell
oscillations of the electron energy using formula (15) at
zero temperature for up to 8000 atoms per cluster
together with an analysis of the contribution of each jth
supershell (Fig. 2) and its relative role in the beat for-
mation (Fig. 3). It can be seen from this analysis that
the j = 0 shell makes an insignificant contribution with
the j = 1, 2 supershells playing the main role, while for
larger clusters terms with j = 3, 4 must also be taken
into account.

The dependence of the oscillation amplitude on the
cluster size is easily estimated and is proportional to

/(∂λµ/∂µ) ~ . 
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A comparison with the numerical calculations [5]
for the potential (18) shows that for Ne > 50 our analytic
results show good agreement in terms of oscillation fre-
quency, curve profile, and even fine-structure details.
We note that in [5] the shell correction was isolated not
from the total electron energy but from 

(19)

The role of the temperature in suppressing the oscil-
lations of the free energy is demonstrated in Fig. 4 in
which results of calculations using formula (15) for two
finite temperatures and for zero temperature are com-
pared. Since the ratio of the characteristic temperature
Tj to the Fermi energy is small, 

the degeneracy condition is known to be satisfied for
the medium and large clusters considered here at tem-

E µ( ) 2 2l 1+( )εnr l, θ µ εnr l,–( ).
nr l,
∑=

T j

µ
------ πλµ 2 j+( )

π
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 . 
1
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------------ ! 1,=
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j = 2
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0
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1
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–1
0 5 1510 20

N1/3

Fig. 2. Shell correction to the electron energy of a cluster
having the spherical square-well potential (18) in units of
the Fermi energy, calculated using formula (15) (lower
curve) and various contributions to this value from super-
shells with various j (upper curves) at zero temperature.

∆Esh/εF
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peratures T < 3Tj and the potential calculated at zero
temperature can be used.

4.2. Woods–Saxon Potential

We shall now consider the more realistic example of
the potential in the zeroth approximation, the Woods–
Saxon potential:

(20)

For sodium clusters the parameters in (20) have the values 

U r( ) V0 1 e r R–( ) a⁄+
1–

.–=

V0 0.22, a 1.4, rs 3.93,= = =

j = 0, 1

j = 0, 1 2

j = 0, 1, 2, 3

j = 0, 1, 2, 3, 4

50 10 15 20
–1

0

1

0

0

0

∆Esh/εF

N1/3

Fig. 3. Analysis of the relative role of supershells with vari-
ous j in the formation of beats at zero temperature. The
potential and the notation are the same as in Fig. 2. 

T = 600 K

T = 400 K

T = 0 K

20151050
–1

0

1

0

0

N1/3

∆Esh/εF

Fig. 4. Temperature damping of shell oscillations of the free
energy of clusters. The potential and notation are the same
as in Fig. 2. 
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and the chemical potential is µ = –0.1015.

Figure 5 gives the shell oscillations of the electron
energy as a function of the cluster size calculated using
formula (15) for sodium over a wide range of variation

of the number of electrons up to 8000. For  ≥ 7 our
curve shows very good agreement with the results of
the exact calculations [4] for the same potential and in
particular, the magic numbers Ne corresponding to the
position of the minima are calculated to the third deci-
mal place and the beat period, curve profile, and fine-
structure details are reproduced exactly. Note that in [4]
as in [5] the shell correction was isolated not from the
total electron energy but from (19).

When our results are compared with the self-consis-
tent calculations [3] for sodium, the amplitude of the
oscillations and the position of the local minima show
good agreement but in [3] the beat pattern is shifted
toward lower Ne . For Ne = 1000, it was shown in [5]
that our approximate potential (20) differs from the true
self-consistent value. The latter is characterized in partic-
ular by a larger effective cluster size which explains the
observed shift. This reaffirms the conclusion that the form

Ne
1/3

Na
2

0

–2

0 5 10 15 20
N1/3

∆Esh, eV

Fig. 5. Shell correction to the electron energy in sodium
clusters having the potential (20) as a function of the cluster
size at zero temperature.

Na
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j = 0

N1/3
2015105

1

0

2

3
1/Tj, 103

Fig. 6. Reciprocal characteristic temperatures (17) (in
atomic units) for various supershells as a function of the size
of a sodium cluster having the potential (20).
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of the beats is sensitive to the potential profile near the
cluster surface.

The damping of the oscillations of the free energy
with increasing temperature for the potential (20) is
qualitatively similar to that shown in Fig. 4. For a quan-
titative analysis more information can be obtained from
Fig. 6 which gives the reciprocal characteristic temper-
atures (17) as a function of the cluster size for various
supershells. To a high degree of accuracy, these are seg-
ments of straight lines with various slopes. Although
the slowest temperature damping corresponds to the
lowest j = 0 line, the contribution of the corresponding
shell is negligible and damping of the j = 1 supershell
for which the linear dependence has the form 1/T1 =
62.4 + 132.4N1/3plays the dominant role. From this it fol-
lows that the characteristic exponential factor determining
the dependences of the oscillation damping (in atomic
units) on temperature and cluster size is exp(–132.4TN1/3).
We note the difference between the characteristic tem-
perature T1 and the estimate T0 used in the literature by
analogy with a harmonic oscillator.

5. CONCLUSIONS

We have derived an expression for the first-order
correction to the free energy of a system of electrons in
an external field for a small variation in particle density.

This expression was used to make a semiclassical anal-
ysis of shell effects in atomic clusters at zero and finite
temperatures. The spherical jelly model was used to obtain
an analytic expression for the oscillating component of the
free electron energy for medium and large clusters as an
explicit sum of the contributions of closed trajectories
(linear, triangular, square, …, K-angle) of the classical
motion of an electron whose energy is equal to the
chemical potential in the self-consistent potential. We
showed that there is a correspondence between these K-
angle trajectories and supershells having pseudoquan-
tum numbers Knr + l which were observed earlier in
numerical calculations. 

We analyzed the dependence of the conditions of
supershell formation on the cluster size, potential pro-
file, and electron temperature and showed the relative
role of the various supershells in the formation of beat-
ing oscillations observed in the mass spectra of the
clusters. 

The free-energy oscillations of the cluster electrons
described by formula (15) introduced by us agree
exceptionally well with the results of laborious calcula-
tions using direct quantum-mechanical or self-consis-
tent methods. Our proposed approach is particularly
effective for large clusters, i.e., in the range where the
self-consistent calculations are the most laborious and
difficult to interpret.
AND THEORETICAL PHYSICS      Vol. 91      No. 1      2000
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APPENDIX

We shall show how λµ, ∂λµ/∂µ, and  can be
expressed in terms of the potential U(r). The value of λµ
is obtained from the condition

where r0 is the extremum point of the function 
which is determined from the equation

From this it follows that

where 
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Abstract—An analysis is made of the collective resonant generation of higher harmonics by a spatially
extended system of two-level molecules possessing an intrinsic electron dipole moment in the excited state. Fre-
quency and angular dependences of the scattered radiation are studied. It is shown that for moderately small
numbers of harmonics their intensity depends comparatively weakly on the number (plateau) and the intensity
of the emitted harmonics then falls sharply as the number increases. The angular distribution of the harmonics
is strongly anisotropic. It is also shown that collective effects significantly change the time profile of the gen-
erated harmonic pulse. In addition, as a result of cooperative effects harmonics of a certain parity are suppressed
in the low-frequency part of the radiation spectrum. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The generation of higher optical harmonics by
quantum systems is the subject of intensive theoretical
and experimental research [1–19]. In particular, fairly
detailed studies have been made of processes of reso-
nant generation of higher radiation harmonics by mol-
ecules having different intrinsic dipole moments in the
ground and excited states [15–19]. In this case, as was
predicted in [16] and confirmed experimentally in [17,
18], harmonics are effectively generated at relatively
low intensities of the exciting electromagnetic field. In
this context we note that very high-intensity electro-
magnetic fields, of the order of atomic, are required for
the effective generation of rf radiation by atoms. From
this point of view, the resonant generation of harmonics
by dipolar molecules has certain advantages compared
with the generation of higher optical harmonics by
atoms although it is inferior in terms of the possible
generation of rf radiation, such as soft X-rays. It should
be noted that the mechanisms for the generation of har-
monics by atoms and dipole molecules, and also the
corresponding parameters determining the characteris-
tics of the spectrum (the intensity of the emitted har-
monics, cutoff, and so on) differ. In particular, the gen-
eration of harmonics by atoms is accurately described
by the well-known Kulander–Corkum model [7, 8]
whereas the resonant generation of harmonics by
dipole molecules considered here is a resonant mul-
tiphoton scattering process in which a single rf quan-
tum is emitted as a result of the absorption of several
quanta of the applied electromagnetic field (Fig. 1). In
the first case, the cutoff in the harmonic emission spec-
trum is determined by the ponderomotive potential, i.e.,
it depends quadratically on the intensity of the exciting
electromagnetic field whereas in the second case, as
will be shown subsequently, it depends linearly on the
1063-7761/00/9101- $20.00 © 20084
field intensity and on the intrinsic electron dipole
moment of the excited state.

In the present study we investigate the collective
generation of higher harmonics by an extended system
consisting of a large number of dipolar molecules. (A
similar problem for a concentrated system of dipole
molecules, i.e., systems having linear dimensions much
shorter than the wavelength, was considered in an ear-
lier study [19].) It should be stressed that in a fairly
dense medium where there are a large number of emit-
ters at distances of the order of the wavelength, effects
caused by interaction of the emitters via the field of ree-
mitted photons have a substantial influence on the char-
acteristics of the harmonic generation process. This is
primarily because the radiation intensity is directly
related to the lifetime of the system in the excited state.
Collectivization of the emitters leads to a sharp drop in
the decay time of the system which in turn leads to a
substantial change in the time profile of the emitted
radiation pulse. This mechanism forms the basis of the

2 〉

1 〉

Fig. 1. Resonant multiphoton scattering process. The wavy
lines indicate spontaneously generated photons, the straight
lines denote photons of the applied electromagnetic field.
000 MAIK “Nauka/Interperiodica”
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well-known Dicke superradiance process (see, for
example, [20]). In processes involving the scattering of
an electromagnetic field by molecules an important role
is played by electronic–vibrational interactions which,
although reducing the molecular lifetime in the excited
state, also destroy the coherence of the system of emit-
ters and are thus a destructive factor. As the object of
the present investigation we consider macromolecules,
for which a characteristic property is the existence of
long-lived long-wavelength vibrations, for example, as
a result of conformational degrees of freedom [21]
which cause appreciable slowing of the vibrational
relaxation. Macromolecules are also characterized by
fairly high intrinsic electron dipole moments, for exam-
ple, for the gamma-globulin protein molecule these val-
ues are of the order of several hundreds of Debye. This
makes them interesting objects for nonlinear interac-
tion with an external electromagnetic field. We know
that the phase-matching conditions must be satisfied for
effective generation of multifrequency radiation in spa-
tially extended systems. In the model of two-level mol-
ecules considered below, phase-matching conditions
can be satisfied under exact multiphoton resonance
between the transition frequency of the system and the
frequency of the external field. Since the refractive
index tends to unity at the frequency of the external
field, as a result of a large difference between the tran-
sition frequency of the system and the frequency of the
higher harmonics, the system is optically transparent to
rf radiation, i.e., the refractive index at these frequen-
cies is also unity. In this case, the phase-matching con-
ditions can easily be satisfied.

2. BASIC EQUATIONS FOR THE INTENSITY 
OF RADIATION HARMONICS

We shall consider an extended system of N two-
level emitters (each having an intrinsic dipole moment
in the excited state) in the field of a strong classical
electromagnetic wave. The Hamiltonian of this system
has the form

(1)

Ĥ Ĥ0 V̂ t( ) Ŵ t( ) Ĥ int,+ + +=

Ĥ0 "ω21Rzj

j 1=

N

∑ "ωkak
+ak,

k

∑+=

V̂ t( ) E0 d22⋅( )Rzj ω0t k0 r j⋅–( ),cos
j 1=

N

∑=

Ŵ t( ) E0 d21⋅( ) R j
+ R j

–+( ) ω0t k0 r j⋅–( ),cos
j 1=

N

∑=

Ĥint i gk d21⋅( ) R j
+ R j

–+( )
j 1=

N

∑
k

∑=

× ak
+ ik r j⋅–( )exp ak ik r j⋅( )exp–( ).
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Here ω21 is the frequency of the transition between the
ground and excited states of the emitter, gk =

eλ, V is the quantization volume, eλ is the
polarization unit vector, ωk is the frequency of a photon

having the wave vector k, , and Rzj are the quasispin

operators of the jth emitter, (ak) are the Bose opera-
tors of the electromagnetic field satisfying ordinary
commutation rules:

E0 and ω0 are the amplitude and frequency of the exter-
nal electromagnetic field, respectively, d21 is the matrix
element of the dipole moment of the transition from the
ground to the excited state, and d22 is the intrinsic
dipole moment of the excited state. It is then assumed
that the matrix element |d22| is much larger than |d21|;
this situation is frequently obtained in dipolar mole-
cules. 

We shall assume that the transition frequency ω21 is
a multiple of the frequency of the applied electromag-
netic field ω0, so that

ω21 = n0ω0.

Multiphoton mixing of the ground and excited states

described by the term  in the Hamiltonian (1) will
be analyzed in the resonance approximation. The corre-
sponding constraint imposed on the field strength E0
and determining the limits of validity of the resonance
approximation has the form

Since it is assumed that |d22| @ |d21|, it is advisable
to allow exactly for the interaction between the intrinsic
dipole moment of the emitter excited states and the
applied electromagnetic field, without having recourse
to any approximations. For this purpose we perform a
canonical transformation using a unitary operator hav-
ing the following form:

In this case, the statistical operator and also the
dynamic variables of the system are transformed using
well-known rules:

where  and  are the statistical operators of
the molecular and photon subsystems, respectively, at

2π"ωk V⁄

R j
±

ak
+

Ri
+ R j

–,[ ] 2δijRzj, Rzi R j
±,[ ] δijR j

± ,±= =

ak1
ak2

+,[ ] δk1k2
, ak1

ak2
,[ ] 0,= =

Ŵ t( )

E0 d21⋅
"ω0

----------------- ! 1.

U t( )
i
"
--- τ V̂ τ( )d

0

t

∫–
 
 
 

.exp=

ρ t( ) U t( )ρ̂ 0( )U+ t( ), Q t( ) U+ t( )Q̂ t( )U t( ),= =

ρ̂ 0( ) ρ̂a 0( ) ρ̂ph 0( ),⊗=

ρ̂a 0( ) ρ̂ph 0( )
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time t = 0, and  is an arbitrary operator in the
Heisenberg representation. 

The transformed Hamiltonian has the form

(2)

(3)

(4)

(5)

where

It follows from expressions (4) and (5) that the inter-
action between the intrinsic dipole moment of the
excited state and the electromagnetic field makes a con-
tribution to the evolution of the system determined by
the parameter ρ.

It can be shown that neglecting any delay, the radia-
tion power scattered by the system is defined by 

where 〈…〉  = Sp(ρ(t)…) denotes averaging with the
total statistical operator of the system. We write the
equation of motion for the operators of the electromag-
netic field. In accordance with formulas (2)–(5), this
has the form

Using the Born–Markov approximation for qua-
sispin operators:

Q̂ t( )

H H0 W t( ) H int,+ +=

H0 "ω21Rzj

j 1=

N

∑ "ωkak
+ak,

k

∑+=

W t( ) E0 d21⋅( ) R j
+ iρ ω0t k0 r j⋅–( )sin( )exp(

j 1=

N

∑=

+ R j
– iρ ω0t k0 r j⋅–( )sin–( )exp ) ω0t k0 r j⋅–( ),cos

H int i gk d21⋅( ) R j
+ iρ ω0t k0 r j⋅–( )sin( )exp(

j 1=

N

∑
k

∑=

+ R j
– iρ ω0t k0 r j⋅–( )sin–( )exp )

× ak
+ ik r j⋅–( )exp ak ik r j⋅( )exp–( ),

ρ
E0 d22⋅

"ω0
-----------------.=

I "ωk td
d
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k

∑=

dak

dt
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N
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and also the well-known expansion of the exponential
functions in terms of Bessel functions of the real argu-
ment:

we can easily obtain the following solution of the equa-
tion of motion for the operators of the photon sub-
system:

(6)

(7)

(8)

At this point it should be noted that the validity of the
Born–Markov approximation imposes a constraint on
the photon residence time (lifetime) in the system. Spe-
cifically, the time taken for transit of a photon through
the system of emitters should be much shorter than the
characteristic times of the quantum transitions. 

Using these last equations, we easily obtain an
expression for the intensity of the radiation having the
wave vector k scattered per unit solid angle:

This last expression can be given in the form:

(9)

iρ ω0tsin( )exp Jm ρ( ) imω0t( ),exp
m ∞–=

∞

∑=

ak t( ) ak
e t( ) ak

s t( ),+=

ak
e t( ) ak

e 0( ) iωkt–( ),exp=

ak
s t( ) π

gk d21⋅
"

-----------------=
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+ i m n0+( )ω0t–( )exp(

j 1=

N

∑
m 1=

∞

∑
× i k m0k0–( ) r j⋅–( )J– m n0+( ) ρ( )exp

+ R j
– i m n0–( )ω0t–( )exp

× i k mk0–( ) r j⋅–( )Jm n0– ρ( )exp )δ ωk mω0–( ).
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-------------

1
4
--- "ωk
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2
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∑=
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2 ρ( ) Rl

+R j
–〈 〉 Jm n0+

2 ρ( ) Rl
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+〈 〉+(
l j, 1=

N

∑
+ Jm n0+ ρ( )Jn0 m– ρ( ) Rl

+R j
+〈 〉 Rl

–R j
–〈 〉+( ) )

× i k mk0–( ) rl r j–( )⋅( )δ ωk mω0–( ).exp

dI k( )
dΩk
-------------
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m 1=
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The quantity dI(km)/d  determines the intensity
of the scattered electromagnetic wave having the wave
vector km (|km| = mω0/c where c is the velocity of light
in vacuum) per unit solid angle. Here

is the probability of one-photon spontaneous decay of
the emitter excited state. 

In the derivation of these formulas we assumed that
at time t = 0 the photon subsystem is in the vacuum

state so that 〈… 〉  = 0 and thus only the source

components  of the electromagnetic field opera-
tors contribute to the radiation intensity. It is deduced
from this formula that the frequency distribution of the
radiation intensity is determined mainly by the func-
tional dependence of the Bessel functions on the num-
ber and argument. Since the Bessel function Jm(ρ)
depends comparatively weakly on ρ in the range ρ > m,
harmonics having numbers m < ρ + n0 form a plateau in
the radiation spectrum. From ρ ~ m the value of Jm(ρ)
decreases sharply (exponentially) so that m ~ ρ + n0
determines the cutoff in the radiation spectrum. The
numerical values of the harmonic intensities are deter-

mined by the correlation functions , ,
i, j = 1, 2, …, N. In order to find the time evolution of
these correlation functions we need to derive and solve

kinetic equations for the averages  and

. 

3. EQUATIONS OF MOTION
FOR THE AVERAGES OF THE OPERATORS 

OF THE EMITTER SYSTEM

We write the equation of motion for the average of a
certain operator of the system of emitters Q(t):

Having eliminated the electromagnetic field opera-
tors using formulas (6)–(8), after the ordinary transfor-
mations (see, for example [20–22]) we can obtain the
following kinetic equation for the averages:

× Rl
+R j

+〈 〉 Rl
–R j

–〈 〉+( ) ) i k mk0–( ) rl r j–( )⋅( ).exp

Ωkm

1
τ sp

------
4
3
---

ω21
3

"c3
-------- d21

2=

ak
e t( )

ak
e t( )

Ri
± R j

+−〈 〉 Ri
± R j

±〈 〉

Ri
± R j

+−〈 〉

Ri
± R j

±〈 〉

dQ
dt
------- i

"
--- H Q t( ),[ ]〈 〉 .=

dQ
dt
------- iΩn0

ρ( ) R j
+ R j

–+ Q,[ ]〈 〉
j 1=

N

∑=

+ am C jl
m R j

+ Q Rl
–,[ ]〈 〉 Clj

m Rl
+ Q,[ ] R j

–〈 〉+( )(
m 1=

∞

∑
l j, 1=

N

∑
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(10)

where the coefficients of the equation have the form

Here

are the diffraction factors which take into account the
spatial extent of the system.

The coefficients of equation (10) describe the fol-
lowing processes: the Rabi frequency  deter-
mines the n0 quantum nutation of the system, the coef-
ficients am, bm and dm determine the probabilities of dis-
sipative processes involving m quanta of the external
electromagnetic field (Fig. 1). For example, the coeffi-
cient am describes the rate of relaxation of the system
and bm describes its rate of excitation. We need to stress
the differences between the induced excitation which is
determined by the Rabi frequency  and is a
coherent process, and the excitation described by bm

which can be arbitrarily called spontaneously induced
excitation since a single spontaneously generated pho-
ton and several photons of the applied electromagnetic
field participate in this process (Fig. 1). Since the scat-
tering of the electromagnetic field is essentially a dissi-
pative process, the probability of harmonic generation
is directly related to the values of am, bm and dm. It
should be noted that processes caused by interaction of
electrons with the phonon subsystem (for example,
nonradiative transitions leading to an increase in the
rates of longitudinal and transverse relaxation of the
emitters) are not reflected in equation (10). Thus,
strictly speaking, this equation describes the evolution
of the system over times much shorter than the times
for nonradiative transitions Ts in the molecules:

(11)

– bm Clj
m Q Rl

–,[ ] R j
+〈 〉 C jl

m R j
– Rl

+ Q,[ ]〈 〉+( )

+ dm C jl
m R j

+ Q Rl
+,[ ]〈 〉 R j

– Q Rl
–,[ ]〈 〉+( )

+ Clj
m Rl

+ Q,[ ] R j
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– Q,[ ] R j
–〈 〉+( ) ),

Ωn0
ρ( ) ω21

E0 d21⋅
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ρ( ),=

am
1

2τ sp

--------- m
n0
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  3

Jm n0–
2 ρ( ),=

bm
1

2τ sp

--------- m
n0
----- 

  3

Jm n0+
2 ρ( ),=

dm
1

2τ sp

--------- m
n0
----- 

  3

Jm n0+ ρ( )Jn0 m– ρ( ).=

Clj
m i km r j rl–( )exp=

× imk0 r j rl–( )⋅–( ) i km r j rl–( ) 1–exp

Ωn0
ρ( )

Ωn0
ρ( )

t ! Ts.
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Using (10), we can obtain the following closed sys-
tem of equations for the averages:

(12)

(13)

(14)

(15)

For the derivation of equations (12)–(15) we used
the semiclassical decoupling of the correlation func-
tions [20]:

and we also neglected the noncommutativity of the

operators  and Rzj below the averaging sign. As we
know, this last factor leads to a loss of terms which
allow for noncollective effects such as spontaneous
emission, which only holds for short time intervals t !

, , . In this particular case, this is quite justi-
fied because in molecules, processes caused by interac-
tion with the phonon subsystem generally take place
over times much shorter than the times of the radiative
transitions, i.e., 

Ts ! , , .
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Thus, the condition for validity of equations (12)–(15)
[see formula (11)] is stronger which demonstrates the
validity of the approximation used. We also note that
neglecting the longitudinal and transverse relaxation in
the equations describing the collective evolution of the
system of emitters in an external electromagnetic field
imposes a lower constraint on its intensity. A correla-
tion between the emitters is induced during migration
of the system population. This is usually achieved as a
result of spontaneous decay and stimulated transitions
induced by the external electromagnetic field. In our
case collectivization of the system only occurs as a
result of stimulated transitions. In order for collectiv-
ization to occur, the probability of stimulated transi-
tions must be much higher than the probability of
destructive processes leading to a phase shift, in this
case processes associated with the phonon subsystem.
This condition is expressed by the inequality

We shall assume that the system of emitters occu-
pies a cylindrical region of space. The axis of the cylin-
der is directed along the wave vector of the external
electromagnetic field which is parallel to the z-axis. We
also assume that the linear dimensions of the system are
much greater than the wavelengths of the applied and
scattered electromagnetic fields:

(L and R0 are the length and radius of the cylinder,
respectively) and the average distance between the
emitters is much less than the wavelength λm. At the end
of the previous section we noted that the probability of
the generation of harmonics having numbers m > ρ + n0
is negligible. It is thus sufficient for the conditions
described above to be satisfied for harmonics having
numbers m ≤ ρ + n0. 

We subsequently require the explicit form of the
expression

In spherical coordinates this can be written as

(16)

Using equations (12) and (13) it is easy to show that
the system of equations (12)–(15) has two integrals of
motion:

Ωn0
ρ( ) ! Ts

1– .

λm/L λm/R0 ! 1, λm, 2πc/mω0, m 1 2 3…, ,= =

α km( )
1

4πN2
------------- i km mk0–( ) rl r j–( )⋅( ).exp

l j, 1=

N
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α km( )
1
π
---=

×
1 θcos–( ) km L 2⁄sin

1 θcos–( ) km L 2⁄
------------------------------------------------------ 

J1 km R0 θsin( )
km R0 θsin

-------------------------------------
2

.

td
d

i kn nk0–( ) rl r j–( )⋅( )exp
l j, 1=

N

∑
× Rl

–R j
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+R j
+〈 〉+( ) 0,=
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where l ≠ j. 

It follows from this last relationship that for times
shorter than the times of the noncollective transitions
(spontaneous transitions, transitions involving
phonons, and so on) the square of the Bloch vector is
conserved: 

We introduce the notation

The integrals of motion, and also the weak depen-
dence of the averages 〈Rzj〉  on the position of the atom,
which allows us to use approximate rules for summa-
tion of expressions of the type [20] 

means that the system (12)–(15) can be simplified sub-
stantially and reduced to the following form: 

(17)

(18)
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(19)

(20)

where

For large and small Fresnel numbers fm = π /λmL
the expression αm can be calculated analytically:

In the derivation of (19) and (20) we neglected small
terms of the order 1/N. Their role is only significant
near the point R = ±N/2, so that the formulas (19) and
(20) can be applied everywhere except for the small
vicinity of R = ±N/2. Note that the value of (2Γ)–1 deter-
mines the probability of collective spontaneous decay
of an inverted system of emitters. Collective processes
only take place in the system if, in addition to  @

, the condition Γ @  is also satisfied. We shall
assume that these conditions are satisfied. 

Taking into account expressions (9), (19) and (20)
we write the formula for the intensity of the emission at
frequency mω0 per unit solid angle in the compact
form:

(21)

Thus, the integrated intensity of he scattered radia-
tion at frequency mω0 has the form

(22)

We shall analyze these expressions. The intensity of
the collective emission increases as the correlations in
the system increase and reaches a maximum when the
system of emitters is completely correlated and the
population difference is zero. The directionality of the
harmonic emission is determined by the angular depen-
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dence of the function α(km)). In accordance with for-
mula (16), the angular distribution of the radiation
intensity has a narrow maximum at the point θ = 0. The
half-width of the distribution depends on the Fresnel
number and is determined by the relationships ∆θ ≤
2π/|km|L for fm ! 1 and ∆θ ≤ (|km|R0)–2 for fm @ 1. A
quadratic dependence of the radiation intensity on the
number of emitters N is only obtained in the range 0 ≤
θ < ∆θ. For θ @ ∆θ we have

In addition, it is easy to show that the integral inten-
sity of the mth harmonic is proportional to the square of
the density of emitters. It has been noted that the depen-
dence of the harmonic intensity on the number has a
characteristic form for this type of spectra [1–19, 23,
24]. For values of m < ρ the harmonic intensity depends
comparatively weakly on ρ (plateau), in the range 0 ≤
θ < ∆θ a slight increase in intensity is observed with
increasing m as a result of the factor m4 [see formula
(21)], and then from values of m ~ n0 + ρ onward the
intensity of the harmonic radiation drops rapidly. Note
that for ρ @ n0 in the range m < n0 there is also a
dependence on the parity of the harmonic number m.
Harmonics satisfying the conditions n0 – m = 2k, k =
1, 2, …, m < n0 are suppressed to a certain extent. From

dI km( )
dΩkm

----------------
"ω0N2

2π2n0
2 k0

4τ spL2R0
2

--------------------------------------------
N"ω0

τ sp

--------------.≤∼

(a)

(b)

(c)
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x

Fig. 2. The function x(τ) for various values of the parameter
Θ = 0.1 (a), 1.1 (b), and 5 (c). 
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the mathematical point of view, this is caused by the
presence of the third term after the summation sign in
formula (9). It is easy to see that if correlations between
the emitters are neglected, this term is zero. Thus, the
dependence of the harmonic intensity on the parity of
the number is a purely collective effect. 

In order to obtain a quantitative result we need to
solve equations (17) and (18). It is convenient to intro-
duce the new variables:

and then equations (17) and (18) have the form

(23)

(24)

The system of equations (23), (24) can be reduced to
a single equation for the population difference:

(25)

The solutions of equation (25) with the initial con-
ditions x(0) = ±1, y(0) = 0 corresponding to the initial
and ground states of the emitter system at the instant of
switching on an external electromagnetic field τ = 0
have the form

(26)

(27)

For Θ < 1 the motion of the level population is an
aperiodic function and with time the system reaches a
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steady state. This is because the probability of collec-
tive spontaneous decay is higher than the probability of
stimulated excitation of the system which means in par-
ticular that the applied electromagnetic field cannot
completely invert the system of emitters. For Θ > 1 the
probability of stimulated transitions is higher than the
probability of collective decay of the system and the
change in population is a periodic function so that in
this time interval the system has no steady state. The
value Θ = 1, separating the two qualitatively different
regimes of population migration and harmonic genera-
tion, aperiodic and periodic, can be considered to be the
critical point of a nonequilibrium phase transition
induced by the external electromagnetic field [25–28].
A comparison of (26), (27) with the expression describ-
ing population migration in two-level systems neglect-
ing collectivization shows that collective effects slow
the excitation of the emitter system and accelerate its
relaxation. For a weak external electromagnetic field
Θ ! 1 the case where the system is completely inverted
at time τ = 0, x(0) = 1, is of particular interest. At times
τ < Γ/  stimulated processes play a compara-
tively minor role in the population migration and col-
lective processes make the main contribution to the
population evolution. In accordance with (26), (21),
and (22) at time τ ~ τ01 the population changes abruptly
(Fig. 2a), accompanied by a multifrequency superradi-
ance pulse. In this case, since the conditions Θ ! 1 and
ρ @ n0 (which ensures effective generation of higher
harmonics) are independent, the superradiance pulse
also contains higher harmonics exceeding the transition
frequency of the emitter n0ω0. Thus, the external elec-
tromagnetic field leads to the generation of rf radiation
and an appreciable reduction in the pulse duration is
caused by collective processes in the system. For values
of the parameter Θ * 1 slow excitation of the system
ends in rapid relaxation (Fig. 2b) and the relatively slow
change in the intensity of the generated harmonics is
replaced by an abrupt increase. For the case of a very
strong field Θ @ 1, collective effects barely influence
the evolution of the system population (Fig. 2c) and
consequently the time dependence of the intensity of
the emitted harmonics. Thus, collective effects strongly
influence the generation of higher harmonics for values
of the parameter Θ ≤ 1. 

4. CONCLUSIONS

This analysis of the generation of higher optical har-
monics has shown that substantial collectivization of
emitters occurs, even in strong electromagnetic fields
for which the conventional resonance approximation
cannot be used. In this case, the concept of a strong
field is to a considerable extent determined not by the
individual characteristics of an isolated emitter but by
the collective parameters of the system as a whole, in
this case by the ratio of the Rabi frequency to the prob-

Ωn0
ρ( )
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ability of collective decay of the system. The collective
generation of higher harmonics can be achieved exper-
imentally by exposing a system of macromolecules
such as gamma globulin molecules for which ω21 ≈
4.8 × 1015 s–1, |d21| ≈ 1 D, |d22| ≈ 100 D [29] to short
electromagnetic field pulses of duration τf ( ,

Γ @  @ ). At an external field frequency ω0 ≈
1.6 × 1015 s–1 and strength |E0| ≈ 1.5 × 107 V/cm we
have ρ ≈ 7 and harmonics having numbers up to nmax ≈
10 are effectively generated.
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Abstract—Analytic and numerical methods are used to study the nonlinear dynamics of the resonant interac-
tion between a dense nonrelativistic electron beam and a plasma in a spatially bounded system. Regimes such
as collective (Raman) and single-particle (Thomson) Cherenkov effects are considered. It is shown that in the
first case, the motion of both the beam and plasma electrons exhibits significant nonlinearities. However,
because of the weak coupling between the beam and the plasma, the nonlinear dynamics of the instability can
be studied analytically and it can be strictly shown that saturation of instability is caused by a nonlinear shift of
the radiation frequency and loss of resonance. In the second case, the nonlinear instability dynamics can only
be studied numerically. In this regime, at low beam densities significant nonlinearity is only observed in the
motion of the beam electrons while the plasma remains linear and saturation of the instability is caused by trap-
ping of beam electrons in the field of the beam-excited plasma wave. © 2000 MAIK “Nauka/Interperiodica”.
1. In some early studies on the nonlinear theory of
resonant beam–plasma instabilities it was shown that
these are stabilized as a result of the trapping of beam
electrons by the beam-excited plasma wave [1, 2]. The
trapping is accompanied by bunching of the electron
beam and the formation of multiflux flows in these
electron bunches. Under certain simplifying assump-
tions (see below) this process is described by a system
of nonlinear integrodifferential equations containing no
small parameter and permitting no analytic solution.
An approximate solution of the problem of trapping of
beam electrons by a plasma wave was obtained in [3]
using conservation laws and methods of averages. We
specify that the above reasoning only applies to reso-
nant beam–plasma instability in the form of the single-
particle stimulated Cherenkov effect [4]. These simpli-
fications mainly involve assuming that the plasma is
linear and the amplitude of the plasma wave is slow. For
the single-particle Cherenkov effect these assumptions
are justified when the electron beam density is low
compared with the plasma density. At low beam and
plasma densities it is meaningless to talk of the single-
particle stimulated Cherenkov effect—in this case the
instability is called two-beam (two-flux) [5] and is stud-
ied numerically [6].

In addition to the single-particle regime there is
another resonant beam–plasma interaction regime, known
as the collective stimulated Cherenkov effect [4]. Unlike
the single-particle effect, the collective effect can only
occur in transversely inhomogeneous beam–plasma
systems at fairly high electron beam densities. The col-
lective stimulated Cherenkov effect began to be dis-
cussed in the literature some time after the appearance
1063-7761/00/9101- $20.00 © 20093
of the first studies on beam instability in a plasma. Non-
linear stabilization of instabilities caused by the collec-
tive stimulated Cherenkov effect takes place as a result
of a nonlinear frequency shift of the interacting beam
and plasma waves and may be described analytically.
As will become clear from the following, a similar ana-
lytic description is also suitable for beam–plasma sys-
tems with similar beam and plasma densities and thus
does not assume plasma linearity. In the present study
we consider various regimes of beam–plasma interac-
tion as a result of the collective stimulated Cherenkov
effect in nonlinear beams and plasma taking into
account the excitation and interaction of harmonics of
the beam and plasma waves. We use analytic methods
or significantly simplified computer models based on a
method of expanding the characteristics (trajectories)
of the transport equation with a self-consistent field
developed in an earlier study by the authors [7]. At the
end we discuss some characteristics observed in the
description of the single-particle stimulated Cherenkov
effect under conditions of linear dispersion of the
plasma waves.

2. We shall begin by formulating a fairly general
mathematical model of a beam–plasma system exhibit-
ing very substantial transverse instability. We shall con-
sider a cylindrical metal waveguide having an arbitrary
simply connected cross section containing an infinitely
thin in cross section (“needle-shaped”) nonrelativistic
electron beam and plasma. The waveguide is placed in
a longitudinal strong external magnetic field which
impedes transverse motion of the beam and plasma
electrons (the motion of heavy ions is completely
neglected). The beam and plasma are cold. 
000 MAIK “Nauka/Interperiodica”
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The potential (electrostatic) perturbations in this
system are described by the following equations:

(1)

Here ϕ is the scalar potential, α is the particle species,
(α = p are plasma electrons, α = b are beam electrons),
z is the coordinate in the longitudinal direction of the
waveguide, r⊥  is the coordinate in its cross section, ∆⊥
is the transverse component of the Laplace operator, v
is the velocity, e and m are the electron charge and
mass, nα is the density of particles of species α, fα is the
distribution function of particles of the corresponding
species, Sα is the cross-sectional area of the system of
species α particles, and rα is their average coordinate in
the waveguide cross section. We shall assume that ini-
tially the distribution functions satisfy the conditions

(2)

Here n0α are the unperturbed densities of particles of
species α,1 and v0α are their unperturbed velocities. In
our case, for a cold quiescent plasma we have v0p = 0
and for a moving monoenergetic beam we have v0b = u.
In (1) and (2) we use generalized Dirac δ functions. 

We know (see, for example, [8, 9]) that in general
the solution of the Vlasov equation for the distribution
function fα is expressed as the following integral over
the initial data of the characteristic system of the Vla-
sov equation: 

(3)

Here zα(t, z0, v0) and vα(t, z0, v0) are the solutions of the
characteristic system

(4)

supplemented with the initial conditions2

(5)

The validity of the solution (3) is easily confirmed by
directly substituting this into the Vlasov equation taking
into account the properties of the δ-function, the Liouville
theorem on the conservation of phase volume, and the
equations (4). Then, substituting (3) into (1) and inte-

1 They have the meaning of the product Sαn0α which are the instan-
taneous particle densities, i.e., the values measured experimen-
tally.

2 We write z0 and not z0α and similarly for the velocity since these
are simply variables of integration.
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grating over velocities, allowing for (2), we obtain the
following equations:

(6)

Here ϕ' = –eϕ/m and ωα =  are the Lang-
muir frequencies of particles of species α. A further
transformation of the system (6) reduces it to a more
convenient formulation for solving the nonlinear initial
problem.

We shall assume that the initial perturbation in this
case has a characteristic longitudinal dimension
(period) L. Then, all the perturbed quantities, including
the potential ϕ', can be expressed in the form

(7)

where k = 2π/L is the dominant longitudinal wave num-
ber. Substituting (7) into (6) and using the orthogonal-
ity of the functions exp(inkz), we obtain the following
equations for the expansion coefficients ϕn:

(8)

where ραn are functions determined by the formulas

(9)

We shall now assume that the eigenfunctions and
eigenvalues of the waveguide cross section are known,
i.e., the solutions of the following problem are known:

(10)

where φm is an eigenfunction,  is the corresponding
eigenvalue, m = 1, 2, …, and σ ≡ σ(r⊥ ) = 0 is the equa-
tion for the metal surface of the waveguide. Then using
the expansion

(11)

∆⊥
z2

2

∂
∂+ 

  ϕ' ωα
2 Sαδ r⊥ rα–( )

α
∑=

× z0δ z zα t z0 v 0α, ,( )–( ),d∫
dzα

dt
-------- v α ,

dv α

dt
---------- ∂ϕ'

∂z
-------- t zα rα, ,( ),= =

zα t 0= z0, v α t 0= v 0α
u, α b=

0, α p.=



= = =

4πe2n0α m⁄

ϕ'
1
2
--- ϕn r⊥ t,( ) inkz( ) c.c.+exp[ ] ,

n 1=

∑=

∆⊥ n2k2–( )ϕn ωα
2
Sαδ r⊥ rα–( )ραn,

α
∑=

ραn
1
π
--- inyα–( )exp y0, yαd

0

2π

∫ kzα .= =

∆⊥ φm k ⊥ m
2 φm,–=

φm σ 0= 0,=

k ⊥ m
2

ϕn ϕ̃n m, t( )φm r⊥( ),
m 1=

∞

∑=
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we obtain from (8) the following relations for :

(12)

We now need to collect together (7), (9), (11), and (12)
and substitute (7) into the equations of motion for the
plasma and beam electrons from the system (6). As a
result, we arrive at the following equations:

(13)

Here we use the notation:

(14)

(cm2 rad2 s–2) = Sα , α = p, b are quantities pro-
portional to the instantaneous densities of the beam and
plasma electrons, and the geometric parameters

(cm–2) and dimensionless coefficient  were intro-
duced in (14) for convenience of the notation in some

of the following formulas. The quantities  (rad/s)
are the frequencies of the natural oscillations in the
beam and the plasma at the wavelength λn = πn/L. They
do not simply reduce to the corresponding plasma fre-
quencies but also depend on the transverse geometry.

We obtain the first integrals of the equations (13).
We integrate each of the equations (13) over y0 between

zero and 2π, multiply the first equation by , the sec-

ond equation by , and add it to the first. As a result,
we obtain the momentum conservation law:

(15)

The first term in (15) is the momentum of the plasma
electrons, the second term is the momentum of the
beam electrons. 

ϕ̃n m,

ϕ̃n m,
1

φm
2 k ⊥ m

2 n2k2+( )
------------------------------------------- ωα

2 Sαφm rα( )ραn.
α
∑–=

d y2
p

dt2
----------

i
2
---–=

× 1
n
--- gpnρpn ω̃b

2qnρbn+( ) inyp( ) c.c.–exp[ ] ,
n

∑
d y2

b

dt2
----------

i
2
---–=

× 1
n
--- ω̃p

2 qnρpn gbnρbn+( ) inyb( ) c.c.–exp[ ] .
n

∑

gαn ω̃α
2 n2k2φm

2 rα( )

φm
2 k ⊥ m

2 n2k2+( )
-------------------------------------------

m 1=

∞

∑ ω̃α
2 g̃αn,= =

qn

n2k2φm rp( )φm rb( )

φm
2 k ⊥ m

2 n2k2+( )
-------------------------------------------

m 1=

∞

∑ q̃n g̃png̃bn,= =

ω̃α
2 ωα

2

g̃αn q̃n

gαn

ω̃p
2

ω̃b
2

ω̃p
2

π
------ ẏ p y0d

0

2π

∫
ω̃b

2

π
------ ẏb y0d

0

2π

∫+ const.=
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In order to obtain the energy conservation law, we

multiply the first equation in (13) by (2 /π)dyp/dt, the

second equation by (2 /π)dyb/dt, integrate with
respect to y0 between zero and 2π, and add these
together. As a result we obtain

(16)

Here the first term is the energy density of the perturba-
tions in the plasma (kinetic plus electrostatic), the sec-
ond term is the same in the beam, and the third term is
the energy density of the electrostatic plasma–beam
interaction.

The nonlinear equations (13) together with the for-
mulas (9) and (14) form the basis for the following
analysis.

3. We shall begin with a linear analysis of system (13).
To this end, taking into account the initial values of the
beam and plasma electron velocities, we express the
solutions of the characteristic Vlasov equations in the
form

(17)

and we linearize relations (13) and (9) with respect to
the values of . Since in the linear approximation
perturbations (spatial harmonics) with different num-
bers n do not interact, in the linearized equations it is
sufficient to allow only for a single harmonic with some
arbitrary number n. As a result of linearizing, we arrive
at the following system of equations:

(18)

Here the first equation describes the plasma oscillations
excited by the electron beam and the second describes
the beam oscillations “excited” by the plasma oscilla-
tions.

We seek a solution of system (18) in the form

(19)

ω̃p
2

ω̃b
2

ω̃p
2 1

π
--- ẏ p

2 y0d

0

2π

∫
gpn

n2
------- ρpn

2

n

∑+
 
 
 

+ ω̃b
2 1

π
--- ẏb

2 y0d

0

2π

∫
gbn

n2
------- ρbn

2

n

∑+
 
 
 

+ ω̃p
2ω̃b

2 qn ρpnρbn* ρbnρpn*+( )
n

∑ const.=

yp y0 ỹ p,+=

yb y0 kut ỹb+ +=

ỹ p b,

d2ρpn

dt2
------------- gpnρpn+ ω̃b

2qnρbne inkut– ,–=

d2ρbn

dt2
------------- gbnρbn+ ω̃p

2 qnρpneinkut.–=

ρpn cp iωnt–( ),exp=

ρbn cb iωnt– inkut+( ),exp=
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where cp and cb are constants and ωn is the frequency of
the nth spatial harmonic. Substituting (19) into (18) and
eliminating the constants, we obtain a dispersion equa-
tion to determine the complex frequency:

(20)

For  = 0 equation (20) breaks down into an equation
for the frequencies of the plasma oscillations and an
equation for the frequencies of the beam oscillations.
We shall write the spectrum of the plasma oscillations
in the form (we take the plus sign when extracting the
root)

(21)

For the beam oscillations we have one of the following
two expressions:

(22)

The second expression (22) in accordance with (21) is
the spectrum of the slow beam wave. Interaction between
this wave and the wave (21) leads to the appearance of the
resonant beam instabilities considered in this study.

Here we shall not study the spectra (21) and (22) in
detail. Only the following properties of gpn, gbn, and 
which are easily deduced from the expressions (14) are
important for the subsequent analysis:

(23)

where k⊥  is the reciprocal of the transverse dimension
of the waveguide. The quantity gbn has similar proper-
ties. The coefficients  satisfy the inequalities

(24)

The exact equality in (24) is only achieved for rb = rp,
i.e., when the position of the beam and the plasma coin-
cide in the waveguide cross section. As |rb – rp|
increases the coefficients  decrease rapidly, this
decrease being stronger the higher the number n. For

  0 the plasma and beam oscillations become
independent which was used to obtain the spectra (21)
and (22). 

We shall now solve equation (20) for  ≠ 0. We
express the frequency ωn in the form

(25)

where δωn is the growth rate of the resonant instability
at the nth spatial harmonic. Substituting (25) into (20)
and assuming that the following inequality is satisfied
(see below)

(26)

ωn
2 gpn–( ) ωn nku–( )2 gbn–[ ] gpngbnq̃n

2.=

q̃n

ωn gpn.=

ωn nku gbn, ωn+ nku gbn.–= =

q̃n

gpn

n2ω̃p
2 , n

2
k2

 ! k ⊥
2

ω̃p
2 , n2k2

 @ k ⊥
2 ,




≈

q̃n

0 q̃n 1.≤<

q̃n

q̃n

q̃n

ωn gpn δωn+ nku gbn– δωn,+= =

δωn  ! gpn,
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we obtain:

(27)

We shall consider two cases. We first assume that

(28)

It then follows from (27) that

(29)

Instability with this growth rate is caused by the single-
particle stimulated Cherenkov effect. The condition for
the existence of this effect is inequality (28) which
reduces to:

(30)

and inequality (26), on account of (24), is a conse-
quence of (30).

Let us now assume that an inequality opposite to (28)
is now satisfied:

(31)

From (27) we then obtain the following expression for
the growth rate:

(32)

Instability with this growth rate is called the collective
stimulated Cherenkov effect. Inequalities (26) and (31)
reduce to the constraint:

(33)

It follows from (33) that the collective Cherenkov
effect can only occur in systems with a small parameter

. Moreover, for  ! 1 the collective Cherenkov
effect occurs even for gbn of the order of gpn . Note that
for  ≈ 1 the single-particle Cherenkov effect can only
occur if gbn ! gpn . For similar gbn and gpn two-beam
instability develops which is difficult to assign to any
resonant stimulated process of the Cherenkov type.
Assuming that  ! 1 we concentrate for now on the
collective Cherenkov effect.

4. It follows from inequalities (26) and (31) that for
the collective stimulated Cherenkov effect the growth
rate is lower than the frequency of the plasma wave and
the frequency of the beam wave in coordinates moving
with the beam. Consequently, the collective effect is a
resonant interaction between the plasma and beam
waves. In the single-particle effect this is not the case
since we cannot generally talk of beam waves because
of inequality (28). For instabilities caused by resonant
wave interaction a mechanism of instability stabilization
such as a nonlinear frequency shift [10] may become the
determining factor. This is the situation with the collective

2 gpnδωn δωn( )2 2 gbnδωn–[ ] gpngbnq̃n
2.=

δωn  @ gbn.

δωn
–1 i 3+

2
---------------------

gbn

2gpn

----------q̃n
2

 
 

1/3

gpn.=

gbn gpn⁄  ! q̃n
4,

δωn  ! gbn.

δωn
i
2
--- gpngbnq̃n

2( )1/2 i
2
---

gbn

gpn

-------q̃n
2

 
 

1/2

gpn.= =

q̃n
4
 ! gbn gpn⁄  ! q̃n

4– .

q̃n q̃n

q̃n

q̃n
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Cherenkov effect which makes it possible to describe
its nonlinear stage using a method of expanding the tra-
jectories of the beam and plasma electrons [7, 9]. 

We express the coordinates of the plasma and beam
electrons in the form [see (17)]

(34)

where 

(35)

Here the functions wp, b(t) describe the changes in the
translational motion of the plasma electrons in labora-
tory coordinates and of the beam electrons in coordi-
nates moving at the velocity u. We can say that the
functions wp, b(t) are responsible for the nonlinear exci-
tation of zeroth spatial harmonics of the perturbations
in the plasma and the beam (nonlinear generation of the
constant component). In turn, the expansion coeffi-
cients apk and abk from (35) describe the nonzero spatial
harmonics of the perturbations in the plasma and the
beam. They are responsible for the wave interaction
and for the nonlinear excitation of high spatial harmon-
ics of the initial perturbation. To be specific, we shall
assume that in this particular system resonance of the
plasma and slow beam waves occurs at the first spatial
harmonic, i.e., the following equality is satisfied [see (21)
and (22)]

(36)

Under the conditions (33) we can then assume that the
coefficients apk and abk are quantities of the kth order of
smallness. The concept “order of smallness” will be
refined subsequently: it is found that this order is deter-
mined by the small parameter .

Substituting (34) and (35) into (9), to within terms
of the third order of smallness inclusive, we obtain

(37)

Similar formulas are used to determine ρbk but with the
index “p” replaced by “b” and wp replaced by wb + kut.
Then, substituting (34), (35), and (37) into equation
(13), we obtain the following equations for the expan-
sion coefficients apk, abk, k = 1, 2, 3, and the functions

yp y0 wp t( ) xp y0 t,( ),+ +=

yb y0 kut wb t( ) xb y0 t,( ),+ + +=

xp y0 t,( )
1
2
--- apk t( ) iky0( ) c.c.+exp( ),

k 1=

∞

∑=

xb y0 t,( )
1
2
--- abk t( ) iky0( ) c.c.+exp( ).

k 1=

∞

∑=

gp1 ku gb1.–=

q̃1

ρp1 –iap1
1
2
---ap1* ap2

i
8
--- ap1

2ap1+– 
  iwp–( ),exp=

ρp2 –2iap2 ap1
2 2i ap1

2ap2+–( ) 2iwp–( ),exp=

ρp3 –3iap3
9
2
---ap1ap2–

9
8
---iap1

3+ 
  3iwp–( ).exp=
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wp, wb, also given to within terms of the third order of
smallness (for conciseness we only give the equations
for apk and wp):

(38a)

(38b)

(38c)

(38d)

d2ap1

dt2
------------- –gp1ap1 i gp1 gp2–( )ap1* ap2+=

+
1
2
--- gp1 gp2–( ) ap1

2ap1

– ω̃b
2
q1 ab1

1
2
---iab1* ab2

1
8
--- ab1

2ab1–
1
4
--- ap1

2ab1–– 
 

× i wp wb– kut–( )[ ]exp

+
ω̃b

2q1

2
----------- iab1

* ap2
1
4
---ab1

* ap1
2+ 

  i wp wb– kut–( )–[ ]exp

– ω̃b
2q2 iab1

* ab2
1
2
---ap1* ab1

2+ 
  2i wp wb– kut–( )[ ] ,exp

d2ap2

dt2
------------- –gp2ap2

1
2
---i gp2 gp1–( )ap1

2+=

–
1
2
---iω̃b

2q1ab1ap1 i wp wb– kut–( )[ ]exp

– ω̃b
2q2 ab2

1
2
---iab1

2– 
  2i wp wb– kut–( )[ ] ,exp

d2ap3

dt2
------------- –gp3ap3 i

3
2
---gp3

1
2
---gp1– gp2– 

  ap1ap2+=

+
3
8
---gp3

1
8
---gp1

1
2
---gp2–+ 

  ap1
3

–
1
2
---iω̃b

2q1 ab1ap2
1
4
---iab1ap1

2+ 
  i wp wb– kut–( )[ ]exp

–
1
2
---iω̃b

2q2 2ab2ap1 iab1
2 ap1–( ) 2i wp wb– kut–( )[ ]exp

–
1
2
---iω̃b

2q3 –2iab3 3ab1ab2
3
4
---iab1

3+– 
 

× 3i wp wb– kut–( )[ ] ,exp

d2wp

dt2
------------

1
4
---i ω̃b

2q1 ab1ap1* 1
2
---iab1ap1ap2*+






–=

–
1
8
--- ap1

2ab1ap1* 1
2
---iap1* ab1* ab2–

1
8
--- ab1

2ab1ap1*– 


× i wp wb– kut–( )[ ]exp
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The equations for abk and wb are similar but with the
index “p” replaced by “b” and wp – wb – kut replaced by
–(wp – wb – kut). 

Comparing the right-hand sides of equation (38d)
and the similar equation for wp , it is easy to see that
these only differ in respect of the sign and the constant
factor. We can then easily obtain the following:

(39)

The functions wp and wb satisfy the same relationship.
However, equation (39) follows automatically from
expressions (34), (35), and the integral (15), i.e., is a
consequence of the conservation of momentum. Subse-
quent transformations of equations (38) are performed
differently for various particular cases. 

5. We shall begin with the case of nonresonant exci-
tation of multiple harmonics of the plasma and beam
density perturbations when gp2 ≠ 4gp1, gp3 ≠ 9gp1, gb2 ≠
4gb1, and gb3 ≠ 9gb1. Returning to the property (23) of
the coefficients gpn and gbn, nonresonant excitation of
multiple (second, third, and so on) harmonics can occur
in cases of nonlinear dispersion laws for the plasma and

beam waves which is found, for example, when k2 > 
(short-wavelength limit). 

Taking into account inequalities (26) and (31), we seek
a solution of equations (38) in the form [see also (19)]

(40)

where , , , and  are slowly varying
amplitudes. Using the resonance condition (36) and
bearing in mind that the equations for ap3 and ab3 are not
required to solve this problem with the given accuracy
(we shall now seek a solution to within the third order
of smallness), we obtain the following reduced equa-
tions from (38) and (40):

+ 
1
2
---ω̃b

2q2 4ab2ap2* 2iab2ap1*2
2iab1

2 ap2*– ab1
2 ap1*2

+ +( )

× 2i wp wb– kut–( )[ ] c.c.–exp




.

ω̃p
2 dwp

dt
--------- ω̃p

2 dwp

dt
---------+ 0.=

k ⊥
2

ap1 ãp1 i gp1t–( ),exp=

ap2 ãp2 2i gp1t–( ),exp=

ab1 ãb1 i gb1t( ),exp=

ab2 ãb2 2i gb1t( ),exp=

ãp1 ãp2 ãb1 ãb2

2i gp1

dãp1

dt
-----------– i gp1 gp2–( )ãp1* ãp2=

+
1
2
--- gp1 gp2–( ) ãp1

2ãp1 ω̃b
2q1ãb1 i wp wb–( )[ ]exp–
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(41)

We supplement the system (41) with the initial condi-
tions:

(42)

which correspond to the case of an electron beam mod-
ulated at the first harmonic in an unperturbed plasma.
The initial modulation of the beam is proportional to a0.

+ i
1
2
---ω̃b

2q1ãb1* ãp2 i wp wb–( )–[ ]exp

+ i
1
2
---ω̃b

2q1ãb1* ãb2 i wp wb–( )[ ] ,exp

4i gp1

dãp2

dt
-----------– 4gp1 gp2–( )ãp2

1
2
--- gp2 gp1–( )ãp1

2+=

–
1
2
---iω̃b

2q1ãb1ãp1 i wp wb–( )[ ] ,exp

d2wp

dt2
------------

1
4
---iω̃b

2q1–=

× ãb1ãp1* 1
2
---iãb1ãp1ãp2* 1

2
---iãp1* ãb1* ãb2–+ 

 

× i wp wb–( )[ ] c.c.–exp ,

2i gb1

dãb1

dt
---------- = i gb1 gb2–( )ãb1* ãb2

1
2
--- gb1 gb2–( ) ãb1

2ãb1+

– ω̃p
2 q1ãp1 i wb wp–( )[ ]exp

+ i
1
2
---ω̃p

2 q1ãp1* ãb2 i wp wb–( )[ ]exp

+ i
1
2
---ω̃p

2 q1ãp1* ãp2 i wb wp–( )[ ] ,exp

4i gb1

dãb2

dt
---------- 4gb1 gb2–( )ãb2

1
2
---i gb2 gb1–( )ãb1

2+=

–
1
2
---iωp

2 q1ãp1ãb1 i wb wp–( )[ ] ,exp

d2wb

dt2
-----------

1
4
---iω̃p

2 q1–=

× ãp1ãb1* 1
2
---iãp1ãb1ãb2* 1

2
---iãb1* ãp1* ãp2–+ 

 

× i wb wp–( )[ ] c.c.–exp .

ap1 0( ) 0, ap2 0( ) 0, ab1 0( ) a0,= = =

ab2 0( ) 0,
dwp

dτ
--------- 0( )

dwb

dτ
--------- 0( ) 0,= = =
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Bearing in mind the initial conditions (42), we find the
following first integrals of equations (41):

(43)

where the fourth integral is a consequence of the first
three. It reflects the energy conservation law (in terms
of slow amplitudes) and is a consequence of (16).

In cases of nonresonant excitation of charge-density
harmonics of the plasma and beam waves when gp2 ≠
4gp1 and gb2 ≠ 4gb1, derivatives of the slow amplitudes

 and  can be neglected in equations (41). Mak-
ing the additional change of variables

(44)

taking into account the integrals (43) and the initial
conditions (42), we transform system (41) to give

(45)

where 

(46)

The solutions of the system (45) are expressed in terms
of elliptic functions and are extremely cumbersome.
We only give the solutions for the case where the field
was switched on adiabatically in the infinite past when
|bp1, b1|  0 for τ  –∞:

(47)

dwp

dt
---------

1
2
--- gp1 ãp1

2 4 ãp2
2+( ),=

dwb

dt
---------

1
2
--- gb1 ãb1

2 4 ãb2
2 a0

2–+( ),–=

ω̃p

dwp

dt
--------- ω̃b

dwb

dt
---------+ 0,=

gp1 ãp1
2 4 ãp2

2+( ) gb1 ãb1
2 4 ãb2

2
a0

2–+( ),=

ãp2 ãb2

ãp1 bp1e
iwp, ãb1 bb1e

iwb,= =

2i gp1

dbp1

dt
-----------– gp1ãp bp1

2bp1– ω̃b
2q1bb1,–=

2i gb1

dbb1

dt
---------- gb1ãb bb1

2bb1–=

– ω̃p
2 q1bp1 gb1a0

2bb1,+

ãp 1
3
2
---

gp2 gp1–
gp2 4gp1–
------------------------, ãb– 1

3
2
---

gb2 gb1–
gb2 4gb1–
-----------------------.–= =

bb1
2 4q1ω̃p

2

ãbω̃p
2 ãpω̃b

2+
------------------------------

ω̃p
2ω̃b

2

gb1 gp1gb1( )1/2
-------------------------------t

 
 
 

1/2

=

×
q1ω̃pω̃b

gp1gb1( )1/4
------------------------- 

  ,arccosh

bp1
2 4q1ω̃b

2

ãbω̃p
2 ãpω̃b

2+
------------------------------

ω̃p
2ω̃b

2

gb1 gp1gb1( )1/2
-------------------------------

 
 
 

1/2

=

×
q1ω̃pω̃b

gp1gb1( )1/4
-------------------------t 

  .arccosh
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From (47) we obtain expressions for the maximum
amplitudes of the interacting first harmonics of the
beam and plasma waves. For simplicity we only give
these for the particular case k @ k⊥  [see (23)]:

(48)

The values (48) determine the percent density mod-
ulation of the beam and the plasma (in units corre-
sponding to n0b and n0p). It can be seen that the modu-
lation is deeper for the particle system for which  is
lower, i.e., the instantaneous density. The condition for
validity of this analysis is that the modulation of the
beam and the plasma should be weak, which implies
that the following inequality is satisfied

(49)

Satisfaction of both these inequalities simultaneously
for any relationship between the instantaneous densi-
ties requires the following condition to be satisfied:

(50)

which agrees with the condition (33) for the existence
of the collective stimulated Cherenkov effect. 

As can be seen from formula (47), the time taken for
the beam wave amplitude to increase, for example,
from b0 to bb1max (|b0| ! |bb1|max) is given by

(51)

The value (51) is the same as the reciprocal growth rate
(32) in the linear theory of the collective Cherenkov effect.
The mechanism for nonlinear saturation of this process is
a nonlinear frequency shift of the beam and plasma waves
described by cubic terms in the equations (45). 

6. We shall now analyze the resonant excitation of
second harmonics of the plasma and beam density per-
turbation. In this case we shall distinguish between the
following three cases:

(1) gb2 = 4gb1, but gp2 ≠ 4gp1;
(2) gp2 = 4gp1, but gb2 ≠ 4gb1;
(3) gp2 = 4gp1 and gb2 = 4gb1.
In all these cases the system (41) does not have a

sufficient number of first integrals and thus can only be
solved by numerical methods. However, some idea of
the behavior of the system may be obtained from the
qualitative reasoning put forward below. For this we
initially consider the case when no relationship exists
between the beam and plasma components and conse-
quently q1 = 0. From (41) for the case of resonant exci-
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tation of the second harmonic of the beam wave when
gb2 = 4gb1, we then have

(52)

Here τ = t is the dimensionless time. This system
of equations has the first integral:

(53)

Taking this integral into account, the solutions of the
system (52) may be written as follows:

(54)

where cn(z, p) and sn(z, p) are elliptic functions whose
argument and modulus are determined respectively by
the expressions z = (3/4)a0τ and p = 1 – a0. From this it
can be seen that the first harmonic of the beam wave
decays, its amplitude decreases, and by the dimension-
less time

(55)

it has a minimum given by

(56)

Since, if the initial modulation of the beam is weak, we
find

the decay of the first harmonic is very significant. It should
be noted that in cases of resonant excitation of the second
harmonic of the plasma wave when gp2 = 4gp1, the
solutions will be determined by formulas of the type
(54)–(56) in which a0 should be taken to be the initial
amplitude ap1.

Thus, in the absence of beam–plasma interaction,
energy is transferred [in accordance with formula (54)]
from the first harmonic of the beam wave to the second
and back. The same occurs in resonance between the
harmonics of the plasma wave. When interaction takes
place between the beam and the plasma but the har-
monics are not in resonance, the first harmonics of the
plasma and beam waves increase. Consequently, when
both factors are present (beam–plasma interaction and
harmonic resonance), both an increase in amplitude
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and transfer between harmonics should be observed.
Assuming that the characteristic value in (55) is of the
order of the first quantity (48) and equating the times
(51) and (55), we find that until the amplitude of the
first harmonic of the plasma wave saturates, multiple
energy exchange takes place between the first and sec-
ond harmonics of the beam wave. This is completely
confirmed by results of numerical calculations some of
which will now be analyzed. In order to reduce the num-
ber of free parameters in the calculations we assumed that
the positions of the plasma and the beam in the waveguide
are “symmetric” so that  = . We shall analyze the
cases of resonant excitation of the second harmonics of
the beam and plasma densities listed above.

Let us assume that gp2 = 4gp1 but gb2 ≠ 4gb1 (case 2).
From system (41), after changing the variables (44)
taking into account the integrals (43) and neglecting the
derivative of , we obtain

(57)

Here we introduce the dimensionless quantities:

(58)

τ is the dimensionless time, ν is a parameter equal to
the ratio of the instantaneous beam and plasma densi-
ties, and gb is a parameter characterizing the degree of
“nonresonance” of the beam wave harmonics (gb ≠ 4).

Figure 1 gives results of a numerical solution of the
system (57) for the following values of the parameters:
a0 = 0.01, q = 0.03, gb = 2, ν = 1 (a) and ν = 1/3 (b). It
can be seen from these values that Fig. 1a corresponds
to the case when the instantaneous beam and plasma
densities are the same and Fig. 1b corresponds to the
case when the beam density is three times lower than
the plasma density. The figures clearly show multiple
interaction of the plasma wave harmonics over the time
taken for the dominant beam instability to saturate. 
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Let us now assume gb2 = 4gb1 but gp2 ≠ 4gp1. Per-
forming transformations similar to the previous case,
we obtain from system (41)

(59)

Here the values of τ, ν, and q were determined in (58)
and have the same meaning, while the parameter

(60)

characterizes the degree of nonresonance of the plasma
wave harmonics (gp ≠ 4). 
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Fig. 1. Collective Cherenkov effect under conditions of res-
onance between the plasma wave harmonics: a0 = 0.01,
q = 0.03, gb = 2, the beam and plasma densities are the same
[(a) ν = 1] and the beam density is lower than the plasma
density [(b) ν = 1/3].
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Figure 2 gives results of a numerical solution of the
system (59) for the following values of the parameters:
a0 = 0.01, q = 0.03, gp = 2, ν = 1 (a) and ν = 1/3 (b). The
figures again clearly show the multiple interaction of
the beam wave harmonics.

Finally let us assume gp2 = 4gp1 and gb2 = 4gb1. As in
the previous cases we can obtain from system (41)

(61)
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Fig. 2. Collective Cherenkov effect under conditions of res-
onance between the beam wave harmonics: a0 = 0.01, q =
0.03, gp = 2, the beam and plasma densities are the same
[(a) ν = 1] and the beam density is lower than the plasma
density [(b) ν = 1/3].
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The values of ν, τ, and q were determined in (58) and
have the same meaning. Figures 3 and 4 give results of
a numerical solution of the system (61) for the follow-
ing values of the parameters: a0 = 0.01, q = 0.03, ν = 1
(Fig. 3), a0 = 0.01, q = 0.03, ν = 1/3 (Fig. 4). Figure 3
shows the dynamics of the first and second plasma
wave harmonics for the case of equal plasma and beam
densities. Since for ν = 1 the equations in the system (61)
are symmetric relative to the amplitudes of the beam

0.2

0.1

0 400 τ

|ap1|
|ap2|

800

Fig. 3. Collective Cherenkov effect under conditions of res-
onance between the plasma and beam wave harmonics. The
beam and plasma densities are the same (a0 = 0.01, q = 0.03,
ν = 1).

(b)
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(a)

0.2

0.1

0

|ab2|

|ab1|

τ

Fig. 4. Amplitudes of beam waves in the collective Cheren-
kov effect under conditions of resonance (a) between the
plasma and beam wave harmonics and (b) between the beam
wave harmonics. The beam density is lower than the plasma
density (a0 = 0.01, q = 0.03, ν = 1/3).
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and plasma wave harmonics, the dynamics of the first
and second harmonics of the beam wave will be given
by the same dependences as in Fig. 3 and are thus not
given here. Figure 4 gives the dynamics of the harmon-
ics of the beam (Fig. 4a) and plasma (Fig. 4b) oscilla-
tions for the case where the beam and plasma densities
differ. Here we observe a difference between the har-
monics of the plasma and beam waves, particularly at
the maximum amplitude. These figures broadly show
multiple transfer between the harmonics of the beam
and plasma waves over the time taken for the dominant
beam instability to evolve. 

7. We shall now consider the single-particle Cheren-
kov effect, which can only occur when the electron
beam density is low compared with the plasma density
[see inequality (30)]. The growth rate of this instability
is given by expression (29). We shall use this to calcu-
late the phase velocity of the nth harmonic of the
plasma wave excited in the system V(ph) = Reωn/nk .
Also taking into account (25) and inequality (26) we
have

(62)

It can be seen that the phase velocity of the beam-
excited plasma wave is slightly lower than the unper-
turbed beam velocity u, i.e., in the wave system the
beam has an excess energy which serves as an energy
source of instability in the single-particle Cherenkov
effect. 

It can be seen from (62) that the phase velocity of
the plasma wave is close to the velocity of the beam
electrons and far from that of the plasma electrons. We
can therefore postulate that nonlinear effects are partic-
ularly important when describing the motion of the
beam electrons whereas the plasma electrons can be
described in the linear approximation. The criterion for
plasma linearity can be expressed in the form

(63)

where ρpn are the amplitudes of the harmonics of the
plasma density perturbation (9). Assuming that ine-
quality (63) is satisfied, we shall describe the plasma
electrons in the linear approximation.

Linearizing in (13) the equations of motion of the
plasma electrons [as in the derivation of (18)] and leav-
ing the equations for the beam electrons unchanged, we
obtain the following equations:

(64)
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Note that in (64) the harmonics ρpn of the plasma wave
are not directly interrelated but they interact with ρbn .
The latter are associated with the beam nonlinearity.

For the following transformation of the equations (64)
we make the substitutions

(65)

The first of these is similar to the second expression in
(17) but linearization with respect to y(y0, t) is not
assumed. The second change in (65) is made to introduce

the amplitudes of the plasma wave harmonics . As a
result of inequality (26), these amplitudes are slow com-
pared with the exponential factor exp(–inkut), i.e., 

(66)

Calculations to within 1 + o ≈ 1 and (1 + o)–1 – 1 ≈ –o
have been called the slow amplitude method. By apply-
ing this method to transform the equations (64) and
substituting (65) in these equations to within this accu-
racy, we obtain

(67)

Here 

(68)

are the slow amplitudes of the beam wave harmonics
(as they were observed in the beam rest system).

We shall now assume that one of the plasma wave
harmonics, to be specific, say the first, is in exact Cher-
enkov resonance with the electron beam. For the other
harmonics we assume that no resonance occurs. This
implies that gp1 – k2u2 = 0 but gpn – (nku)2 ≠ 0 for n =
2, 3, …. Then to within the method of slow amplitudes

all  with n = 2, 3, … can be expressed from the cor-
responding equations and substituted into the equation
for y. As a result we obtain 

(69)
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where

(70)

It can be seen from (70) that allowance for higher har-
monics of the plasma wave merely yields numerical
corrections to the coefficients at the amplitudes of the
higher beam harmonics. In similar problems this situa-
tion is normal. We can now see that the higher harmon-
ics are generally insignificant. 

We can easily show that in the linear approxima-
tion (69) yields the growth rate (29). We shall use this
growth rate to transform the equations (69). We intro-
duce the dimensionless variables

(71)

where δω1 is given by formula (29) for n = 1. In terms
of the new variables the system of equations (69) is
written in the form

(72)

Here 5 denotes the sum contained in the second equa-
tion of the system (69). The term containing 5
describes part of the force from the electric field gen-
erated by the density modulation of the electron
beam. In microwave electronics this force is called the
rf space charge force of the beam. As a result of the
inequality (30), this force appears in the equation with
a small parameter. Thus, when describing the single-
particle Cherenkov effect we can neglect the rf space
charge of the beam so that (72) can be written in a uni-
versal form containing no individual parameters of the
plasma–beam system:

(73)

Equations of the type (73) were obtained in [1]. These
should be supplemented by the initial conditions 
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Here ε0 is the initial (seed) amplitude of the plasma
wave, b determines the percent initial seed density
modulation of the beam, and ϑ  is a certain constant.
The last condition (74) follows from (65) and implies
that at t = 0 all the beam electrons have the velocity u.
For completeness we give the well-known numerical
solutions of equations (73).

Figure 5 gives the dependences |ε(τ)| and |ρ(τ)|
obtained for ε0 = 0, b = 0.01, and ϑ  = 0. Initially both
values increase exponentially [in dimensionless vari-

ables as exp( ), see (29)]. This is followed by
nonlinear stabilization after which the amplitude |ε(τ)|
exhibits regular oscillations between the maximum and
minimum levels. This is caused by trapping of the elec-
tron beam by the plasma wave field. At each plasma
wavelength the beam electrons form a bunch which
oscillates between the humps of the plasma wave
potential, sometimes imparting energy to it, sometimes
extracting energy from it. Since the bunch collides
twice with the potential humps within a single oscilla-
tion (once with the front and once with the rear), the
oscillations of the amplitude |ρ(τ)| are twice as frequent
as the oscillations of |ε(τ)|. It can be seen that the max-
imum is |ε(τ)| ≈ 2.34, i.e., of the order of one. From the
definition of the dimensionless quantities (71) we then
have an estimate for the maximum amplitude of the
dimensionless harmonic of the plasma density:

(75)

In accordance with inequality (26), the value of (75) is
low and condition (63) is satisfied. Thus, the assump-
tion that the plasma is linear can be considered to be
justified although the question of nonlinear effects in
plasma can only be considered to be definitively solved
after making a detailed analysis of the complete nonlin-
ear problem. It can be seen from Fig. 5 that for the elec-
tron beam |ρ|max ≈ 1, i.e., the beam is completely mod-
ulated. 
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Fig. 5. Time dependences of the amplitudes of the plasma
density (|ε|) and beam density (|ρ|) waves in the single-par-
ticle Cherenkov effect.
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It follows from the expressions (23) that the situa-
tion when only the first harmonic of the plasma oscilla-
tions is in Cherenkov resonance with the beam and the
higher harmonics are not, is typical of the short-wave-

length region if k2 @ . In the opposite long-wave-

length limit as long as n2k2 <  all the harmonics are
in resonance with the beam and for all n we have gpn –
(nku)2 ≈ 0 (naturally if resonance is satisfied for at least
one harmonic). For this case, as can be seen from (70),
the equations (69) and all the following ones are unsuit-
able. We shall derive and study the equations for the
long-wavelength limit.

For all resonant harmonics of the plasma wave we
write equations (67) in the form

(76)

and we shall neglect all nonresonant harmonics and the
rf space charge of the beam, as before (the number of
resonant harmonics is not yet specified). In the first
equation (76) the differences gpn – (nku)2 are specially
retained because as a result of the nonlinear dispersion
law of the plasma waves all these differences cannot go
to zero simultaneously. Taking into account only the
single-frequency Cherenkov effect, we assume for sim-
plicity that the coefficients are  = 1 in equations (76)
and using the dimensionless variables [see (71)]

(77)

we transform (76) to give

(78)

where

(79)

are quantities characterizing the degree of departure
from Cherenkov resonance between the beam and the nth
harmonic of the plasma wave. In microwave electronics
these quantities are called detunings. In the derivation of
(78) we took into account the first of the properties (23) of
the coefficients gαn. In the linear approximation (78)
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gives (for ∆n  0) εn ≈ exp( nτ/2) which agrees

with the growth rate (29) in the limit n2k2 < . 

Figure 6 gives the dynamics of the amplitudes of the
plasma waves for the case when Cherenkov resonance
is only satisfied for the first three harmonics ε1, ε2, and
ε3 and no resonance occurs for higher harmonics. It can
be seen that the highest of the resonant harmonics
increases predominantly which can be explained by the
fact that this has the highest growth rate. Calculations
were made for initial amplitudes of all the plasma wave
harmonics of 0.01 and for detunings ∆1 = ∆2 = ∆3 = 0,
∆4 = 1. Although the choice of detunings is extremely
arbitrary, it accurately reflects the real dispersion prop-
erties of the plasma oscillations in a waveguide.

Hence, the dynamics of instability in the single-par-
ticle Cherenkov effect depends strongly on the part of
the plasma oscillation spectrum, long-wavelength or
short-wavelength, in which it develops. The harmonic
of the plasma oscillations near the maximum of the
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Fig. 6. Time dependences of the amplitudes of the first three
harmonics (ε1, ε2, ε3) of the plasma wave in Cherenkov res-
onance with the electron beam.
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instability growth rate grows rapidly. The beam elec-
trons are trapped by the plasma wave and it becomes
completely density modulated. The plasma electrons,
at least at the initial nonlinear stage, are described by
linear equations. In the collective Cherenkov effect the
determining factor for the nonlinear stabilization of the
instability is a nonlinear shift of the frequencies of
the interacting plasma and beam waves. In this case, the
beam and plasma instabilities are weak.
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