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Original Russian Text Copyright c© 2002 by Holovatyy, Melekh.
The Chemical Composition of HII Regions
in Blue Compact Dwarf Galaxies

V. V. Holovatyy1 and B. Ya. Melekh2*

1Chair of Astrophysics, Ivan Franko National University of Lviv, Kyryla and Mephodia str. 8,
Lviv, 79005 Ukraine

2Astronomical Observatory, Ivan Franko National University of Lviv, Kyryla and Mephodia str. 8,
Lviv, 79005 Ukraine

Received December 3, 2001; in final form, May 23, 2002

Abstract—A set of empirical relationships for the ionization correction factors used by various authors
to determine the chemical compositions of the gas in nebular objects is tested. New expressions for the
ionization correction factors are used to find the nebular-gas compositions in HII regions in blue compact
dwarf galaxies. The abundances of He, N, O, Ne, S, and Ar in 41 HII regions are determined. The derived
elemental abundances are compared with the results of other studies. The Y –O/H, Y –N/H, and Y –Z
dependences are analyzed in detail. The primordial helium abundance Yp and its enrichment dY/dZ are
also determined. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Blue compact dwarf galaxies (BCD galaxies) are
characterized by active star-formation processes,
with giant HII regions observed around the sites of
star formation. These galaxies have low metallicities,
and evolve from material that has not yet been pro-
cessed by stellar evolution. Therefore, BCD galaxies
are important objects for studies of the primordial
helium abundance Yp and the rate of its enrichment
dY/dZ during the chemical evolution of matter in our
Metagalaxy.

The determination of accurate elemental abun-
dances in HII regions in BCD galaxies is a large task.
Only a small number of ion lines of a single element
are observed in real nebulae, so that the numbers
of ions in most ionization stages cannot be derived
directly from observations. So-called ionization cor-
rection factors (ICFs) are usually used to determine
the abundance of an element based on its ion abun-
dance. Some of these factors (which are empirical
expressions) are based only on the proximity of the
ionization potentials of the corresponding ions and
do not take into account differences in their effective
ionization cross sections. Others are based on calcu-
lations using grids of photoionization models (PhM)
for HII regions (see, for example, [1]). However, cal-
culated total relative ion abundances are usually used
to find ICFs. It is obvious that using ICFs derived
from PhM is a more accurate method for determining
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heavy-element abundances. However, we believe that
ion abundances obtained from diagnostics of inte-
grated PhM spectra should be used when searching
for expressions for ICFs. The relative ion abundances
in real objects are determined using precisely this
method. New expressions for ICFs obtained taking
this into account are presented in [2].

The most comprehensive study of the chemical
compositions of HII regions in BCD galaxies is that
discussed in the recent papers of Izotov et al. [3–5],
Izotov and Thuan [6]. However, they use expressions
for ICFs based on either empirical relationships (to
determine the O, N, Ne abundances) or calculations
using the grid of PhM for HII regions of Stasińska [1]
(to determine the He, S, Ar abundances).

In the current paper, we present and discuss new
estimates of the chemical compositions of HII regions
in BCD galaxies. We have adopted the spectra of
Izotov et al. [3–5], Izotov and Thuan [6] as an ob-
servational basis for this study.

2. TESTING EXPRESSIONS
FOR DETERMINING ICFs

Before turning to our derivation of the chemical
compositions of HII regions in BCD galaxies using
the new ICFs [2], it is of interest to test the ICF
expressions used for this purpose by various authors.

The main expressions used most frequently to de-
termine the compositions of HII regions and plan-
etary nebulae are listed in Table 1. Our analysis of
these expressions will enable us to test the suitability
2002 MAIK “Nauka/Interperiodica”
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Table 1. Empirical expressions for determining the compositions of nebular gas and values of
(

(A/H)calc

(A/H)mod

)
for HII

regions in BCD galaxies

No. Reference Expression
(A/H)calc

(A/H)mod

T1 [16, 17] He/H = [He+ + He++]/H+ 0.87

T2 [18] He/H = (He+/H+)[1 − 0.25 (O+/O)]−1 0.95

T3 [19] C/H = (C+ + C2+ + C3+)/H+ 0.71

T4 [20] C/H = ((He+ + He++)/He+)1/3(C+ + C2+ + C3+)/H+ 0.71

T5 [21] N/O = N+/O+ 0.88

T6 [3–5, 17] N/H = (O/O+)(N+/H+) 0.87

T7 [15, 17, 18] O/H = [(He++ + He+)/He+][(O+ + O++)/H+] 1.02

T8 [3–5, 22] O/H = (O+ + O++)/H+ 1.01

T9 [20] O/H = [1/[1 − 0.95N4+/(N+ + N++ + N3+ + N4+)]]×
×(O+ + O++ + O3+)/H+ 1.01

T10 [20] O/H = [(He+ + He++)/He+]2/3(O+ + O++)/H+ 1.01

T11 [3–5, 18] Ne/H = (Ne++/H+)(O/O++) 1.27

T12 [21] Ne/O = Ne++/O++ 0.87

T13 [3–5] S/H = [0.013 + x(5.10 + x[−12.78 + x(14.77 − 6.11x)])]−1×
×(S+ + S++)/H+, where x = O+/O 1.49

T14 [22] Ar/H = [(Ar++ + Ar3+ + Ar4+)/H+][(S+ + S++)/S++] 1.03

T15 [20, 21] Ar/H = 1.87Ar++/H+ 0.86

T16 [3–5] Ar/H = (0.99 + x[0.091 + x(−1.14 + 0.077x)])−1×
×(Ar2+ + Ar3+)/H+, where x = O+/O 1.10

T17 [3–5] Ar/H = [0.15 + x(2.39 − 2.64x)]−1(Ar2+/H+),

where x = O+/O 1.09
of each for estimating the compositions of HII regions
in BCD galaxies. We used calculated values obtained
using the PhM grid of [2] for this purpose. One feature
distinguishing our approach is that, in our models, the
ionizing radiation field is represented by the energy
distribution beyond λ ≤ 912 Å instead of by the effec-
tive temperature of a star (or stars); in addition, we
used relative ion abundances derived from analyses
of nebular PhM spectra to determine the chemical
compositions.

Our testing method was as follows. We specified
a chemical composition (A/H)mod in each PhM. We
first found the relative ion abundances via an analy-
sis of the integrated spectrum for each of the PhM,
which were then used to calculate the compositions
(A/H)calc using each of the analytical expressions
listed in Table 1 (labeled T1–T17). A comparison of
the corresponding compositions (A/H)mod and the
calculated values (A/H)calc provided the test crite-
rion: the closer these two values, the more accurate
the expression. Note that some of the expressions
in Table 1 used to determine the abundance of a
particular element depend on the abundance of some
other element. If the expressions for both elements are
given in the corresponding reference, we tested that
formula; otherwise we eliminated it from the analysis.
We also excluded expressions for which the method
for analyzing nebular gas implemented in the DIAGN
code [7] could not be used to determine the corre-
sponding ion abundance.

Table 1 lists the results of our tests for those ICF
expressions that can reproduce the elemental abun-
dances to accuracies ≤ 50%. Note that the expres-
sions T6, T7, T8, T11, T13, T16, T17 in Table 1
ASTRONOMY REPORTS Vol. 46 No. 10 2002
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Table 2. Composition of HII regions in BCD galaxies, found by us using the ICFs listed in Table 1

B72 Sm96 N
H

× 106 O
H

× 105 Ne
H

× 106 S
H

× 106 Ar
H

× 107

He
H

× 102

No. HII region T1 T2 T1 T2 T6 T7 T8 T9 T10 T11 T13 T14 T16 T17

1 0723+692A 9.69 9.76 11.6 11.7 2.06 6.13 6.09 6.09 6.12 8.83 2.52 1.76 1.61 3.50

2 0749+568 7.84 8.08 9.51 9.84 1.50 4.25 4.18 4.18 4.23 7.92 1.43 1.49 1.16 2.12

3 0749+582 10.5 10.9 12.7 13.1 4.07 12.3 12.3 12.3 12.3 25.1 2.89 1.66 1.36 3.16

4 0907+543 10.1 10.1 12.2 1.22 1.95 8.15 7.98 7.98 8.09 16.2 2.24 2.36 2.12 4.19

5 0917+527 8.78 9.04 10.6 1.10 1.67 5.84 5.73 5.73 5.80 12.0 1.23 1.27 0.98 1.77

6 0926+606 8.43 – 10.0 – 1.40 7.85 7.74 7.74 7.81 – – – – –
7 0930+554 7.47 7.46 8.86 8.89 0.35 1.25 1.22 1.22 1.24 1.82 0.32 0.25 0.20 0.48

8 0943+561A 7.27 7.54 8.40 8.71 – 4.40 4.40 – 4.40 8.77 1.80 1.53 1.18 2.67

9 1030+583 8.68 – 10.2 – 0.85 6.09 5.96 5.96 6.04 – – – – –
10 1054+365 9.02 9.31 10.9 11.3 2.67 8.57 8.57 8.57 8.57 14.2 3.13 2.59 2.42 4.55

11 1116+583B 7.68 7.63 9.26 9.25 1.04 3.45 3.37 3.37 3.42 5.28 1.38 0.94 0.77 2.13

12 1128+573 7.10 7.29 8.74 8.97 1.30 4.59 – 4.59 4.59 6.84 0.24 – 0.60 1.61

13 1205+557 8.15 8.59 9.96 10.5 2.16 6.59 6.49 6.49 6.56 1.09 1.46 1.30 1.11 1.67

14 1222+614 8.65 8.76 10.4 10.6 2.22 7.75 7.64 7.64 7.71 1.29 2.43 2.09 1.85 3.64

15 1223+487 9.03 9.10 10.7 10.8 1.91 4.98 4.93 4.93 4.97 7.61 2.16 1.54 1.40 3.18

16 1256+351 9.30 9.52 11.1 11.4 2.51 8.60 8.53 8.53 8.58 13.3 2.65 2.39 2.17 4.37

17 1319+579A 9.63 9.85 11.4 11.6 3.00 10.4 10.4 10.4 10.4 16.1 2.80 2.16 1.95 3.14

18 1319+579B 8.31 9.01 10.1 11.0 3.30 7.14 – 7.04 7.10 10.9 0.91 – – –
19 1319+579C 8.53 9.34 10.4 11.4 4.39 13.0 12.9 12.9 12.9 25.4 2.99 2.58 2.36 2.92

20 1358+576 7.86 8.14 9.23 9.58 3.75 6.60 6.52 6.52 6.57 11.2 1.65 1.82 1.51 2.41

21 1441+294 9.45 9.78 10.8 11.2 3.15 8.74 – 8.61 8.70 12.3 0.46 – 2.23 3.30

22 1533+574A 8.28 8.93 9.98 10.8 2.84 5.88 5.88 5.88 5.88 10.6 1.92 2.24 1.76 2.61

23 1533+574B 9.60 10.1 11.5 12.1 3.05 11.6 11.5 11.5 11.6 19.3 2.80 3.38 3.06 3.95

24 1535+554 7.90 8.51 9.27 9.99 2.96 10.4 10.4 10.4 10.4 17.8 3.13 2.37 2.19 3.26

25 0832+699 8.26 8.61 10.1 10.5 0.86 2.66 2.66 2.66 2.66 4.17 0.95 0.73 0.63 1.30

26 0940+544N 8.65 8.82 10.3 10.5 0.57 1.51 1.51 1.51 1.51 2.86 0.64 0.59 0.52 1.05

27 0946+558 9.47 9.73 11.4 11.8 2.75 8.79 8.68 8.68 8.75 15.3 3.23 2.56 2.39 3.95

28 0948+532 9.51 10.2 11.4 12.3 0.60 0.97 0.97 0.97 0.97 4.28 0.47 0.99 0.87 1.21

29 1135+581 9.25 9.53 11.1 11.4 3.19 8.46 8.34 8.34 8.42 16.6 2.17 2.93 2.61 4.22

30 1152+579 9.65 9.76 11.5 11.7 2.51 5.15 5.10 5.10 5.13 8.88 1.81 1.48 1.31 2.65

31 1159+545 8.15 8.31 9.80 10.0 1.66 2.15 2.14 2.14 2.14 3.67 0.83 0.80 0.71 1.51

32 1211+540 8.40 8.32 10.0 9.97 1.18 3.67 3.58 3.58 3.64 5.66 1.75 0.83 0.76 1.86

33 1249+493 9.07 9.29 10.7 11.0 1.09 4.04 3.99 3.99 4.02 6.92 1.25 0.74 0.66 1.22

34 1331+493N 8.26 8.48 10.0 10.3 1.42 5.00 5.00 5.00 5.00 8.53 1.68 0.94 0.87 1.76

35 1331+493S 7.52 8.19 8.81 9.59 2.30 5.87 – 5.87 5.87 10.8 0.57 – – –
36 1437+370 8.68 8.69 10.5 10.5 3.29 7.04 6.87 6.87 6.98 12.3 2.70 2.82 2.43 5.02

37 1415+437 8.72 8.96 10.1 10.5 0.69 2.39 2.34 2.34 2.37 – 0.68 0.88 0.71 1.06

38 1420+544 11.6 11.7 13.4 13.5 1.30 4.50 4.48 4.48 4.49 – 1.42 1.45 1.34 2.30

39 1533+469 9.18 9.75 11.1 11.8 6.93 8.45 8.38 8.38 8.42 12.8 2.06 3.18 2.14 3.28

40 IZw18(NW) 7.14 6.98 8.41 8.28 0.36 1.19 1.15 1.15 1.18 1.69 0.46 0.26 0.23 0.65

41 IZw18(SE) 9.04 9.42 10.8 11.2 0.69 2.21 2.20 2.20 2.21 3.63 0.55 0.42 0.36 0.69
ASTRONOMY REPORTS Vol. 46 No. 10 2002
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Fig. 1. Dependence of (He/H)calc/(He/H)mod on
He+/H+ according to the PhM grid calculations,
constructed using the ICF G12.
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Fig. 2. Dependence of ICF(He) on the parameter η =

(O+/S+)(S++/O++) according to the PhM grid calcu-
lations.

were used by Izotov et al. [3–5] to derive the A/H
abundances in the same HII regions. The table shows
that not all of these expressions (especially T13) are
sufficiently accurate to be used to determine A/H
ratios in these objects, supposing that an accuracy
≤ 10% is necessary for this purpose. Note also that
the abundance ratios (A/H)calc/(A/H)mod in Table 1
were derived by averaging over the number of corre-
sponding points on the PhM grid. The compositions
found for 41 HII regions in BCD galaxies using these
expressions are presented in Table 2.
3. THE CHEMICAL COMPOSITIONS OF HII
REGIONS IN BCD GALAXIES

3.1. Determination of the Helium Abundance

To derive the He/H ratios in the BCD galaxy
HII regions we are studying, we must know the
relative ion abundances He+/H+, He++/H+ and
an appropriate ICF expression. The abundances
He+/H+ and He++/H+ are determined from the
intensity ratios of the recombination lines HeI/Hβ

and HeII/Hβ and are given by Izotov et al. [4]. We
adopted the values for these quantities from [4], which
were derived from the recombination coefficients
of Brocklehurst (B72) [8] and Smits (Sm96) [9]
in various combinations with the collision rates of
Kingdon and Ferland [10]. The ICF expressions we
have calculated with the PE model grid (designated
G1–G32) are presented in [2]. However, for various
reasons, we have not used them here to determine
the He/H ratios, since they are not entirely accurate.
Figure 1 shows (He/H)calc/(He/H)mod as a function
of (He+/H+)mod, derived from the data of [2] using
the ICF expression G12 [2, Table 3]. The results
of Izotov et al. [3, 4] suggest that, for most of the
objects considered, the values of He+/H+ found
from observations are in the range 0.072–0.090.
However, as we can see from Fig. 1, there is a wide
scatter of (He/H)calc/(He/H)mod in this range of
He+/H+. A similar conclusion can be drawn using
the expressions G1 and G23 from [2, Table 3].

Note that the ICF for He in [3, 4] was derived
from calculations for the PhM grid of Stasińska [1],
and the corresponding ICF(He) − η relationship is
shown in Fig. 6 of [3] [formula (30)], where η =
(O+/S+)(S++/O++). The PhM grid of Stasińska
shows that ICF(He) ≥ 1. This means that the H+

region is larger than the region of ionized helium.
However, as shown by Armour et al. [11] and Bal-
lantyne et al. [12], in low-metallicity HII regions, a
situation can arise when, on the contrary, the region
of ionized hydrogen is smaller than that of ionized
helium. Figure 2 shows the ICF(He) values as a func-
tion of the parameter η, calculated using our PhM
grid. We can see that ICF(He) has values close to
unity for log η ≤ −0.9, whereas log η ≤ −0.2 for most
HII regions of [3, 4]. The situation for the interval
−0.9 ≤ log η ≤ −0.2 remains unclear, since we could
not find a clear dependence of the scatter of the points
on any parameter of the PhM grid. In this interval,
ICF(He) < 1, implying that the ionized-hydrogen re-
gion is smaller than the ionized-helium region. This
means that the approximation for ICF(He) used by
Izotov et al. [3, 4] is inaccurate, and a new relation-
ship must be determined.
ASTRONOMY REPORTS Vol. 46 No. 10 2002
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Table 3. Composition of HII regions in BCD galaxies, found by us with ICFs from the PhM

No.
HII

region
B72 Sm96

(
O
H
,∆

O
H

)
× 105

(
N
H
,∆

N
H

)
× 106

(
Ne
H
,∆

Ne
H

)
× 10(

He
H
,∆

He
H

)
× 102

1 0723+692A 6.80 0.18 8.00 0.20 4.89 0.28 – – 8.42 0.00

2 0749+568 6.98 0.32 7.98 0.61 3.56 0.26 1.64 0.25 – –

3 0749+582 – – – – 10.1 0.78 4.43 0.75 – –

4 0907+543 7.36 0.45 8.25 0.55 6.46 0.35 2.05 0.37 14.8 0.12

5 0917+527 7.66 0.24 8.16 0.24 4.88 0.35 1.83 0.28 – –

6 0926+606 7.09 0.24 7.87 0.31 6.80 0.37 1.58 0.20 12.3 0.49

7 0930+554 4.98 0.16 6.02 0.17 1.00 0.08 0.37 0.06 – –

8 0943+561A – – – – 3.63 0.28 – – – –

9 1030+583 7.00 0.19 7.80 0.20 4.83 0.25 0.92 0.14 7.19 0.08

10 1054+365 – – – – 7.01 0.37 2.90 0.50 13.2 0.19

11 1116+583B 6.87 0.52 7.86 0.62 2.71 0.22 1.09 0.20 – –

12 1128+573 – – – – 3.71 0.30 1.40 0.25 – –

13 1205+557 7.63 0.40 7.53 0.44 5.74 0.39 2.41 0.33 – –

14 1222+614 7.34 0.25 7.94 0.26 6.28 0.34 2.37 0.41 12.0 0.19

15 1223+487 7.10 0.19 8.00 0.20 4.01 0.22 0.00 – 7.21 0.07

16 1256+351 – – – – 7.19 0.39 2.70 0.46 13.0 0.32

17 1319+579A 7.26 0.25 8.05 0.26 8.30 0.45 3.23 0.56 14.4 0.02

18 1319+579B 6.79 0.79 7.07 0.79 6.44 0.43 3.75 0.46 – –

19 1319+579C 7.42 0.21 7.61 0.21 11.9 0.79 5.01 0.59 – –

20 1358+576 7.69 0.29 7.98 0.30 5.47 0.28 4.11 0.64 10.1 0.24
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Table 3. (Contd.)

No.
HII

region
B72 Sm96

(
O
H
,∆

O
H

)
× 105

(
N
H
,∆

N
H

)
× 106

(
Ne
H
,∆

Ne
H

)
× 106(

He
H
,∆

He
H

)
× 102

21 1441+294 7.70 0.90 8.09 0.64 7.09 0.36 3.44 0.53 10.4 0.19

22 1533+574A – – – – 5.21 0.36 3.22 0.44 – –

23 1533+574B 6.97 0.28 7.66 0.30 9.39 0.48 3.39 0.49 15.3 0.23

24 1535+554 – – – – 9.23 6.35 3.35 0.46 – –

25 0832+699 – – – – 2.22 1.67 0.95 0.15 – –

26 0940+544N – – – – 1.21 0.07 – – 2.69 0.00

27 0946+558 7.38 0.23 8.07 0.25 7.16 0.37 2.99 0.48 13.6 0.25

28 0948+532 7.50 0.19 8.20 0.27 0.87 0.59 0.67 0.09 – –

29 1135+581 7.58 0.24 8.06 0.25 6.96 0.36 3.47 0.55 14.8 0.34

30 1152+579 6.90 0.19 8.10 0.20 4.12 0.23 – – 8.25 0.05

31 1159+545 6.67 0.25 7.84 0.26 1.75 0.96 1.78 0.32 3.47 0.05

32 1211+540 6.97 0.19 8.17 0.26 2.93 0.17 – – 5.38 0.07

33 1249+493 – – – – 3.36 0.18 1.18 0.20 6.57 0.17

34 1331+493N – – – – 4.07 0.22 1.53 0.27 8.01 0.09

35 1331+493S – – – – 5.27 0.36 2.62 0.34 – –

36 1437+370 7.09 0.23 7.55 0.24 5.76 0.31 3.48 0.60 11.7 0.27

37 1415+437 – – – – 1.93 0.10 0.75 0.12 – –

38 1420+544 – – – – 3.55 0.21 – – – –

39 1533+469 – – – – 7.36 0.51 7.78 1.09 – –

40 IZw18(NW) – – – – 0.92 0.08 0.38 0.07 – –

41 IZw18(SE) – – – – 1.85 0.14 0.76 0.12 – –
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For this purpose, we considered the dependence of
ICF(He) on the relative intensity of the
[OIII]5007 Å/Hβ lines (Fig. 3a), calculated using
our PhM grid. We excluded from the analysis the
results of grid calculations with anomalously low
numbers of photons beyond λ < 228 Å (model E1
in [2]), since the absence of the HeII λ4686 line in
the observed spectra of an HII region introduces
uncertainty in the magnitude of the jump beyond
λ < 228 Å (see the procedure for optimizing the Lc

energy spectrum for λ < 228 Å presented in [2]). Re-
lationships labeled with different symbols correspond
to different metallicities M , which correspond to
the relative atomic-number abundance of heavy el-
ements adopted in the PhM grid calculations: 1M
(H : He : O : C : N : Ne : Si : S : Ar : Fe = 1 : 8.01 ×
10−2 : 7.27× 10−5 : 1.71× 10−5 : 2.46 ×10−6 :1.39 ×
10−5 : 2.41× 10−6 : 2.00× 10−6 : 4.00× 10−7 : 1.45×
10−6), 0.5M(H : He : O : C : N : Ne : Si : S : Ar :
Fe = 1 : 8.01 × 10−2 : 3.64 × 10−5 : 8.55 × 10−6 :
1.23×10−6 :6.95× 10−6 : 1.21× 10−6 : 1.00× 10−6 :
ASTRONOMY REPORTS Vol. 46 No. 10 2002
2.00 × 10−7 : 7.25 × 10−7), and 2M(H :He :O :C :
N : Ne : Si : S : Ar : Fe = 1 : 8.01× 10−2 : 1.45 ×
10−4 :2.42×10−5 :4.92 × 10−6 : 2.78× 10−5 : 4.82 ×
10−6 : 4.00 × 10−6 : 8.00 × 10−7 : 2.90 × 10−6). We
can see that the scatter of the points in this depen-
dence is due to the different metallicities. Figures 3b–
3d show the same dependences separately for each
metallicity, together with the corresponding approxi-
mation curves

for 0.5M :

ICF(He)=0.563223+1.495963x−3.558336x2 (1)

+ 4.892831x3 − 3.965862x4 + 1.961679x5

− 0.5981941x6 + 0.1096308x7 − 0.01106230x8

+ 4.71976904 × 10−4x9,

for 1M :

ICF(He) = 0.64165 + 0.49213x − 0.48428x2 (2)

+ 0.26694x3 − 0.081291x4 + 0.0137274x5

− 0.0012049x6 + 4.2861026 × 10−5x7,
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and for 2M :

ICF(He)= 0.730985+0.244846x−0.12993x2 (3)

+ 0.03771x3 − 0.005835 ∗ x4 + 4.5410−4x5

− 1.39759 × 10−5x6,
where x = Iλ[OIII] 5007Å/Iλ(Hβ). The large num-
ber of significant digits in these expressions is due to
the approximation using polynomials with coefficients
with alternating signs. Then

He
H

= ICF(He)
He+ + He++

H+ . (4)

Figure 3a shows that there is no clear division
of the dependences for different metallicities. This
enables us to omit any interpolation between metal-
licities when choosing the approximation expression.
Thus, the process of calculating the ICF(He) values
was reduced to the following. We determined the O/H
abundance using the expressions for ICF(O/H) we
found in [2]. We then chose the appropriate expression
from (1)–(3) and calculated ICF(He).

The values of He/H and their standard deviations
∆(He/H) we found for the HII regions studied are
listed in columns 3–6 of Table 2. Values of He/H
were not determined for objects in whose spectra
the HeII λ4686 line was absent or which were not
considered by Izotov et al. [4].

Figures 4a, 4b compare our values, (He/H)our,
with those of Izotov et al. [4], (He/H)ITL97. Fig-
ure 4a shows the values of He/H calculated using
the He+/H+ and He++/H+ values from [4] and the
recombination coefficients of Brocklehurst [8] (B72);
Fig. 4b shows the same data derived using the coeffi-
cients of Smits [9] for HeI (Sm96). In both cases, we
used the collision rates of Kingdon and Ferland [10].
Straight lines corresponding to identical values of
He/H are also drawn. We can see that, for most of
the objects, the (He/H)ITL97 values are, on average,
higher than our values (He/H)our, though they are
consistent within the errors. Exceptions are the ob-
jects 0930+554 (IZw18) and 0749+568, in which the
(He/H)ITL97 abundance is obviously overestimated.

3.2. Determination of the Heavy-Element
Abundances

To determine the heavy-element abundances A/H
in the HII regions, we used the new ICF expressions
presented in [2] and adopted the observed forbidden-
line intensity ratios of [3–6]. The values of ne, Te, and
the ion abundances A+i/H+ were determined using
the usual diagnostic methods for nebular gas [7].
We used the DIAGN code for this purpose, but with
atomic data for different ions identical to those in
the Cloudy 94 code [13, 14], which was used in the
calculation of the PhM grid.

Table 3 presents the abundances A/H for 41 HII
regions in BCD galaxies, calculated with our expres-
sions for the ICFs. The standard deviations of the
ASTRONOMY REPORTS Vol. 46 No. 10 2002
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abundances obtained by averaging the results found
with the ICF expressions of [2] are also given. We
used expressions G3, G4, and G26 from Table 3 in
[2] to find O/H, G6 to find N/H, G29 to find Ne/H,
G30 to find S/H, and G10, G11, G31, and G32
to find Ar/H. These expressions were chosen based
on the requirement that the corresponding standard
deviations for the A/H values not exceed 10%. Fig-
ure 5 compares our values (A/H)our with the values
(A/H)ITL of Izotov et al. [3–5], Izotov and Thuan
[6]. A straight line corresponding to identical values
ofA/H is also drawn. We can see that, for most of the
objects, (A/H)ITL is greater than (A/H)our.

3.3. Determination of the Primordial Helium
Abundance Yp and its Enrichment dY/dZ

We used a Y –Z relationship to determine Yp and
dY/dZ, where Y and Z are the atomic-mass abun-
dances of helium and heavy elements, respectively:

Y =
4He/H(1 − Z)

1 + 4He/H
, Z =

Za

1 + 4He/H + Za
, (5)

Za= 14N/H+16O/H+20Ne/H+32S/H+40Ar/H.

Extrapolating this dependence to Z = 0 yields Yp,
and its slope corresponds to the value of dY/dZ.
When finding Z, we have not used other elements
whose lines are absent from the spectra of HII regions
in BCD galaxies. We have likewise not used Fe ions,
since they are not included in the DIAGN code. When
finding Yp, we eliminated objects whose spectra do
not display the HeII λ4686 line, since uncertainty in
its intensity introduces uncertainty in the magnitude
of the jump at λ228 Å [2]. For the same reasons as
in [4], we have also omitted the low-metallicity object
IZw18NW, which has an anomalously low helium
abundance. The abundances of all these heavy ele-
ments are required to find Z [formula (5)]; therefore,
the number of HII regions for the analysis decreases,
since we could not find Ne/H and S/H abundances
for some of them (Table 3). To take these into account,
we plotted O/H−Z dependences using the appropri-
ate data found with the B72 and Sm96 recombination
coefficients (Figs. 6a, 6c). We see that this depen-
dence is linear, and Z for the BCD galaxy HII regions
can be estimated using the following approximations:

for B72:

Z = 16.07O/H + 2.30 × 10−5 (6)

and for Sm96:

Z = 15.75O/H + 2.16 × 10−5. (7)

As a result, we derived Y –Z dependences for
the B72 and Sm96 cases (Figs. 6b and 6d, respec-
tively). Linear approximations to these dependences
weighted with the corresponding standard deviations
are

for B72:

Y = 0.2201(±0.0040) + 2.90(±4.48)Z, (8)

for Sm96:

Y = 0.2440(±0.0024) − 4.02(±2.46)Z. (9)

Some authors have used O/H and/or N/H instead
of Z to determine Yp. Using formulas (5)–(9), we
constructed Y –O/H and Y –N/H relationships for
ASTRONOMY REPORTS Vol. 46 No. 10 2002
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the B72 and Sm96 cases (Figs. 7a–7d). For the Y –
O/H dependence, the value of Y was found by replac-
ing Z in (5) with the corresponding relationships (6)
and (7), and, for the Y –N/H dependence, the value
of Y was determined using (5). The following ap-
proximation relationship between N/H and O/H is
suitable for most of the objects (Fig. 7):

N/H = 1.6 × 10−7 + 0.032O/H + 68(O/H)2, (10)

which we also used to determination the N/H abun-
dance.

In this case, as we can see from Figs. 7a, 7b for
the recombination coefficients from B72, the value of
Yp and the slopes dY/d(O/H) and dY/d(N/H) found
via a linear approximation with weighting based on
the corresponding standard deviations can be written
as

Y = 0.2202(±0.0039) + 50(±72)O/H, (11)

Y = 0.2218(±0.0041) + 1227(±1616)N/H.

Similarly, using the data from Sm96, we obtain
(Figs. 7c, 7d):

Y = 0.2439(±0.0024) − 60(±39)O/H, (12)

Y = 0.2454(±0.0027) − 1902(±1007)N/H.

Our analysis suggests that the Yp values coincide
with the corresponding values from Izotov et al. [4,
15] within the 1σ errors. However, note that the val-
ues of dY/dZ, dY/d(O/H), and dY/d(N/H) become
negative if the recombination coefficients of Smits [9]
are used. The same conclusion follows from the work
of Ballantyne et al. [12].

4. CONCLUSIONS

We used new approximation relationships for the
ionization correction factors ICF based on the cal-
culated grid of PhM for HII regions in BCD galax-
ies of [2] to derive the chemical compositions of the
nebular gas. When deriving the ICF expressions,
we used for the first time ion abundances found by
performing diagnostics of the integrated spectra for
the PE model, (A+i/H+)diagn, instead of the total
ion abundances (A+i/H+)mod. We tested the ICF
expressions for their ability to reproduce the compo-
sition (A/H)mod specified in the PhM. In most cases,
these ICFs are able to reproduce the compositions of
the nebular gas with accuracies ≤ 10%. We tested
the ICF expressions used by a number of authors
to find the compositions of nebular gas in similar
ways (Table 1). For some expressions (e.g., T1, T3–
T6, T11–T13, T15), the resulting composition accu-
racies are ≥ 10%; i.e., they are considerably poorer
than for the new expressions [2]. Accordingly, we
ASTRONOMY REPORTS Vol. 46 No. 10 2002
used the chemical compositions found using our own
ICFs to derive Y–Z, Y –O/H, and Y –N/H rela-
tionships (Table 3). We analyzed these relationships
in detail to determine Yp and dY/dZ for the B72
and Sm96 recombination coefficients. We performed
calculations using these recombination coefficients
in order to verify the systematic difference of the Yp

values obtained in [4]. The corresponding helium ion
abundances were taken from [4], but we used our
ICF(He) expressions (1)–(3) to calculate the total
helium abundance. This yielded for the B72 coef-
ficients Yp = 0.2201 ± 0.0040 and dY/dZ = 2.90 ±
4.48, and for the Sm96 coefficients Yp = 0.2440 ±
0.0024 and dY/dZ = −4.02 ± 2.46. Hence, we ob-
tained in both cases Yp values close to those of [4].
However, the slope of dY/dZ for the Sm96 case
is negative. This contradicts the standard theory of
chemical evolution, according to which the helium
abundance must increase with time. The origin of this
negative slope is unclear. We plan in the future to
improve these chemical compositions using an alter-
native and more accurate method—the construction
of optimized PhM for HII regions in BCD galaxies.
The results of this study should enable us to refine the
primordial helium content Yp, and to reject or confirm
the negative dY/dZ slope.
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Abstract—The nature of stellar complexeswith peculiar populations andmorphologies is investigated. The
existence in the LMC of complexes made up of isolated stars, on the one hand, and consisting exclusively
of clusters, on the other hand, could be due to different turbulence patterns in the initial gaseous medium.
Arc-shaped stellar complexes are unlikely to be the result of star formation in a gaseous shell swept up
by a central source of pressure, and instead probably reflect the shape of a bow shock that develops when
a sufficiently dense cloud is subject to dynamical pressure. A peculiar arc-shaped complex in NGC 6946,
which contains a young, massive cluster, may be the result of an oblique infall of a high-velocity cloud
onto a region of the gaseous disk of the Galaxy with a strong, regular magnetic field; the properties of this
complex can be explained as the result of a collision of the resulting shocks. The arc-shaped complexes
in the LMC were also probably produced by high-velocity clouds moving obliquely through the more
tenuous gas of the LMC disk. A similar complex in NGC 300 may owe its origin to the effect produced
on a dense cloud by the shock from an extremely powerful external explosion, whose stellar remnant may
have survived as an X-ray source now located along the line of symmetry of the arc of the complex. The
rareness of such structures can be explained by the narrow range of conditions under which they can
develop. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Stellar complexes constitute the highest elements
in the hierarchical structuring of young stellar group-
ings and contain about 90% of all stellar associations
and young clusters [1–3]. Most stellar complexes
owe their origin to common and inevitable processes
occurring in the gaseous disks of galaxies on all
scales, first and foremost, to large-scale gravitational
instability, which produces most rapidly large clouds
that give birth to stellar complexes [4]. These are often
called star-forming regions (or complexes), although
star formation usually continues only in a small vol-
ume of the complex, and the age of its oldest stars
can reach 100 Myr. In only 1% of all complexes does
star formation occur throughout their entire volume
(at least in Local Group galaxies); these are known
as superassociations. The origins of the synchronous
star formation in such complexes may differ from
object to object. In any case, superassociations are
peculiar complexes and do not represent an early
stage in the development of ordinary complexes. See
[5] for a brief analysis of this problem.

Complexes in irregular galaxies are distributed
chaotically, whereas, in spiral galaxies, they are ar-
ranged in chains along the spiral arms and correspond
to the long-known stellar clouds (which, however,
were considered before our work to be random con-
glomerates of stars and clouds [6] and not physical
1063-7729/02/4610-0791$22.00 c©
groupings united by a common origin for their con-
stituent objects). Complexes in spiral arms form un-
der the action of gravitational instability that develops
along the arm [7] or due to the Parker instability [8].
Both theories can explain the regular arrangement—
with a spacing of 1–3 kpc—of star–gas complexes
along the spiral arms observed in many galaxies,
including our Milky Way [9]. The small amount of
available data on the character of magnetic fields in
galaxies with different spiral-arm structures suggest
that the Parker instability plays the most important
role.
The origin of isolated complexes lying outside spi-

ral arms or at the peripheries of irregular galaxies
may be associated with local effects. Data for com-
plexes with characteristic arc-like shapes are pre-
sented in our previous paper [10], hereafter Paper I.
Some complexes are distinguished by peculiarities in
their compositions—they contain either clusters or
stars exclusively. The current paper is concerned with
possible mechanisms for the formation of complexes
with peculiar shapes or compositions. Unfortunately,
the observational data required by this type of study
are currently available for only a small number of such
complexes.

2. COMPLEXES OF CLUSTERS
AND OF STARS

Our Galaxy and the LMC contain complexes in
which there are unusually small or large numbers
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. A group of massive clusters around NGC 2164 in the LMC. Cepheids are shown by crosses. 1◦ corresponds to 900 pc.
of clusters relative to the number of isolated stars
of the same age [1]. An especially striking example
is a group of coeval clusters around NGC 2164 in
the LMC that contains only three Cepheids (plus a
few more inside clusters), although the age of this
complex is optimal for it to contain Cepheids and the
density of the region is not crowded (Fig. 1).

An objective comparison of the distributions of
Cepheids and clusters of the same age in the LMC
yielded three more groups of clusters; only one of
the four groups of clusters coincided with a concen-
tration of Cepheids [11]. The results of the OGLE
program show that this group, which is located near
the eastern tip of the bar around the massive clusters
NGC 2058 and NGC 2064, contains about twenty
smaller clusters and about 150 Cepheids, of which
20 are cluster members. Immediately to the southeast
of this complex is a dense group of ∼180 Cepheids
of about the same size (about 200 × 300 pc), which,
however, contains no conspicuous clusters (Fig. 2).
ASTRONOMY REPORTS Vol. 46 No. 10 2002



PECULIAR STELLAR COMPLEXES 793

 

84.00°84.50°85.00°

70.40°

70.30°

70.20°

70.10°

Fig. 2.Groups of clusters and Cepheids in the LMC. At the top right of the chart is a complex of Cepheids and clusters (circles)
around NGC 2058 and NGC 2064, and at the bottom left is a complex consisting exclusively of Cepheids (crosses). The map
is based on the results of the OGLE program.
The central ∼ 0.1 kpc of this group of Cepheids is
devoid of clusters, whereas the density of Cepheids is
about 900 kpc−2; i.e., two orders of magnitude higher
than in the solar neighborhood. The periods (and,
consequently, ages) of most of these Cepheids are
contained within a narrow interval (3–5 days). It fol-
ASTRONOMY REPORTS Vol. 46 No. 10 2002
lows that this complex to the southeast of NGC 2058
is a relic of an unusual burst of star formation that
failed to yield large, gravitationally bound clusters. A
detailed analysis of this entire region of the LMC is
critically important for our understanding of the fac-
tors determining whether both clusters and isolated
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stars or exclusively isolated stars form. Note that the
region located almost symmetrically with respect to
this group of Cepheids relative to the bar axis contains
the region of ongoing star formation 30 Dor, showing
that this location is favorable for intense star forma-
tion.
Young, compact clusters resembling the rich,

young clusters in the LMC and, in particular, the
NGC 2164 group, are now known in many irregular
and spiral galaxies. The discovery of such clusters in
the latter galaxies is due, first and foremost, to the
systematic search performed by Larsen and Richtler
[12] in 21 spiral galaxies. The number of such clusters
normalized to the luminosity of the galaxy varies over
a wide range but is correlated with the star-formation
rate of the galaxy. Larsen and Richtler [13] concluded
that the formation of numerous compact clusters in
interacting and starburst galaxies can be explained if
the same mechanisms occurring in normal galaxies
are operating, but under extreme conditions. Whit-
more [14] supported this conclusion, and found that
the relation between the star-formation rate and the
number of young, massive clusters found in [13] can
be extended to these galaxies.
However, this is not always the case, at least

locally, as indicated by the existence of complexes
of clusters that do not coincide with high densities
of isolated stars. More substantial deviations from
this relation are also known. For example, the cluster
formation rate in the irregular Local Group galaxy
IC 1613 normalized to the star-formation rate is a
factor of 600 lower than in the LMC, which is a galaxy
of the same type [15]. Similar discrepancies are found,
not only for different locations, but also for different
times in a single galaxy. The prolonged break in the
formation of (at least massive) clusters in the LMC
4–14 Gyr ago was not accompanied by a decrease in
the star-formation rate [16].
It appears that this situation can be understood

in terms of the theory of star formation in turbulent
media, which, in contrast to standard theories of star
formation, ascribes the main role to the balance be-
tween gravity and turbulence and considers the role
of magnetic fields to be negligible. In this theory,
star formation is a rapid process that occurs over a
time comparable to one crossing time of the initial
molecular cloud, as is suggested by a number of ob-
servational facts. In particular, the age range inside a
star-forming region increases as the square root of its
size, pointing to turbulence as the determining factor
in star formation [17–19, 20].
According to this theory, the rapid free collapse of

a molecular cloud is prevented not by the magnetic
field, but by turbulence, whose characteristics deter-
mine whether clusters or isolated stars predominantly
form. The presence of gravitation alone results in the
rapid formation of clusters. This can also occur in the
presence of decaying or long-wavelength turbulence,
whereas only isolated field stars form under the action
of short-wavelength turbulence [20, 21].
This last circumstance is very important, since it

may provide the best explanation for the existence
of stellar complexes without clusters (without, how-
ever, explaining their high density), as well as the
existence of isolated, young, massive stars in general.
This has been conclusively demonstrated by Massey
et al. [22, 23], who investigated high-luminosity stars
in the field and associations of the LMC and found
that half of these stars were field objects. Given their
young age, this cannot be explained by their escape
to great distances from their probable birth places in
associations. The number of such stars also appears
to be too large for them to have been ejected as a
result of dynamical interactions of stars in the cores
of dense young clusters. It is important that the mass
function for field stars has a significantly steeper slope
(indicative of a larger fraction of lower-mass stars)
than the mass function for stars in associations [22].
A steep slope for massive stars was also obtained
for the case of short-wavelength turbulence, which
corresponds to isolated star formation [24].
Thus, the question arises of why the turbulence

characteristics differ in different places and at different
times. This may become a key problem in star forma-
tion. If our hypothesis is correct, the data on stellar
complexes in the LMC imply that regions with differ-
ent turbulence parameters have characteristic scales
of several hundred parsecs. This is close to the sizes
of gaseous filaments, voids, and clumps observed in
the LMC [25]. The distribution of high-luminosity
stars in the LMC does indeed resemble the network
of gaseous filaments observed in HI, especially if we
ignore star clusters.
The conclusions of Klessen et al. [21] and Massey

et al. [22] obviously imply that, in the absence of
support from turbulence, the collapse of a gaseous
protocluster and the star formation in it are so rapid
that the cluster remains gravitationally bound even if
it contains a large number of massive stars. Klessen
et al. [21] find that, at high densities, gas collapses
into dense cores over several free-fall times, and the
star-formation efficiency exceeds 50%, so that differ-
ences in the magnitude and pattern of turbulence may
be sufficient to explain the preferential formation of
either isolated stars or stars in clusters.
It is quite possible that currently observed old,

classical globular clusters also formed in the absence
of support due to turbulence in the initial cloud. Phin-
ney [26] concluded that the large number of neutron
stars and massive white dwarfs (i.e., remnants of
massive stars) in globular clusters indicates that most
of the gas in the protocluster produced essentially all
ASTRONOMY REPORTS Vol. 46 No. 10 2002
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the massive stars very rapidly—over a single crossing
time—before even one percent of the massive stars
began to affect the surrounding gas as supernovas
or O stars. This means that the formation time for
massive, compact clusters is, indeed, short, close to
the free-fall time, which is equal to 1 Myr for half
the globular-cluster radius. Arguments in favor of the
rapid formation of stars in clusters and a small role for
magnetic fields can also be found in [27].
It is thus possible that not only the high external

pressure but also the very rapid collapse of a proto-
cluster in the absence of turbulence can explain the
formation of massive, gravitationally bound clusters.
This implies that turbulence can sometimes be absent
from fairly large regions; 300 × 300 pc for the cluster
of clusters around NGC 2164. The theory of rapid star
formation determined by the turbulence conditions
does not require the regeneration of turbulence to
prevent the collapse of molecular clouds, which can
be transient formations [19].

There is apparently no need to look for any special
origins of the existence of regions without turbulent
flows; the existence of alternating patterns of cells
with laminar and turbulent flows is a well-known
phenomenon, and Chernin [28] recently suggested
that this stochastic phenomenon may explain the
small dispersion of galaxy velocities in the Hubble
expansion of the Universe. It is important to try to
elucidate the scale lengths and time scales expected
for this phenomenon in the gaseous disks of galaxies.
We conclude that the stellar complexes outside spiral
arms may correspond to the largest cells of such
turbulence patterns in the interstellar gas (see also
[17]).

3. THE FORMATION OF ARCLIKE
COMPLEXES FROM GASEOUS

SUPERSHELLS

We now turn from complexes with peculiar com-
positions to those with peculiar shapes, considered
in Paper I. The characteristic shape of arclike stel-
lar complexes immediately suggested that they were
formed by the action of some central source of pres-
sure that produced an expanding shell of swept-up
gas. Many authors (see, e.g., [29]) have investigated
the possibility that a supershell of gas swept up by a
central source of pressure from a fairly dense medium
fragmented into clouds that gave birth to star clus-
ters. This possibility was considered by Vader and
Chaboyer [30] and Efremov and Elmegreen [31] for
a giant arc of clusters in NGC 1620 and two arcs
in the northeastern part of the LMC, respectively.
Thus, the formation of giant arcs of stars and clusters
appeared to be a special case of the origin of HI
ASTRONOMY REPORTS Vol. 46 No. 10 2002
supershells. Precisely this approach was adopted by
Tenorio-Tagle [32].
The energy of a central source of pressure capable

of producing a supershell of swept-up gas with a
size of about 1 kpc is greater than the energy of a
single supernova by a factor of several tens or even
hundreds. One proposed source of such energies is
successive supernova explosions in a sufficiently rich
cluster. However, in most cases, the supershell con-
tains no central cluster. In some cases, this can be
explained by the fact that the supershell is located in a
region with a low degree of differentiality of the galac-
tic rotation and/or a large thickness of the gaseous
disk. In this case, the supershell has a long lifetime,
and its age may be so large that the old central pro-
genitor cluster has become inconspicuous [31, 33].
However, it is difficult to determine the parameters of
a possible progenitor cluster from the age and size of
the supershell in order to test this “standard” model
for the formation of supershells.
In fact, such a verification was performed just

recently. Rhode et al. [34] carried out a careful search
for clusters inside HI supershells in the irregular
galaxy Ho II. They found that only 6 of 44 supershells
contained clusters with numbers of stars and ages
consistent with the hypothesis that they, at one time,
contained massive stars in numbers sufficient to
produce the supershells. There are no clusters inside
the largest supershells in Ho II, which, in addition
(like the supershells in our Galaxy), are located at the
periphery of the galaxy, where young massive stars
are absent or very rare.
In the absence of central clusters, it has been

proposed that expanding supershells formed as a re-
sult of the impact of a high-velocity gaseous cloud
into the galactic plane. This hypothesis was initially
suggested to explain stellar “super rings” in the LMC
[32]. However, it also faces certain problems; for ex-
ample, many galaxies with HI supershells have no
such clouds in their vicinity. Other possibilities have
also been considered. One idea that is worth investi-
gating is that a supershell with subsequent triggered
star formation could form around the region of inter-
section of a gaseous galactic plane and a sufficiently
massive (globular), high-velocity cluster [35].
One has the impression that, near the center of a

stellar arc, there is either a very massive cluster or no
clusters at all. It is possible that only in very mas-
sive (of the order of 106 M�) clusters are supernova
explosions frequent enough for supershells to form.
Efremov et al. [36 ] point out that the mean rate of
energy input from 1000 supernovas over 2 × 107 yr
implies a fairly low rate of heating of the interstellar
medium, close to the rate at which it is cooled at nor-
mal pressures, so that the formation of a supershell,
indeed, requires very massive clusters.
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Such massive, and rather young, clusters are in-
deed observed. The molecular hydrogen supershell
found near the center of М82 has a radius of 450 pc,
kinetic energy of about 1055 erg, and age of (1–2) ×
106 yr. Its formation may have required 103–104 su-
pernova explosions over this time, implying a central
cluster mass of 2× 106 M�, in agreement with obser-
vational estimates of the number of red supergiants
in this cluster [37]. Several supershells around giant
young clusters in NGC 5253 were studied in [38]. An
older large cluster can be found in a giant arc of young
clusters (3 kpc in diameter) in NGC 1620 [30]; no
neutral hydrogen data are available for this galaxy. An
HI supershell is strikingly absent around a cluster of
mass 106 M� with an age of 12 Myr in NGC 6946
(see Section 5).
The largest HI void in the irregular galaxy IC 2574

coincides with a complex made up of about ten young
clusters, with an older cluster with a mass of 1.4 ×
105 M� located near its center [33]. This is the only
known case where the available observations, includ-
ing those suggesting the presence of hot gas inside
the supershell, agree quite well with the theory that
the formation of the HI supershell and then of new
clusters was driven by the energy of stars of an older
cluster. The ages of the central cluster and of the
supershell are also in agreement. However, the energy
required to create the swept-up shell (2.6 × 1053 erg)
is an order of magnitude higher than that provided
by the supernovas and stellar wind of the central
cluster, leading Stewart and Walter [33] to conclude
that this model overestimates the energy required for
the formation of the supershell. Indeed, the model of
Ehlerova and Palous [40] yields an energy an order of
magnitude lower for this shell.
However, it is possible that the energy provided by

stars was, in fact, higher than follows directly from es-
timates of the mass and age of the cluster assuming a
normal luminosity function. Rich clusters should also
contain extremely massive stars, which can explode
as hypernovas, releasing energies an order of mag-
nitude higher than provided by ordinary supernovas.
Very massive and rapidly rotating stars can also form
as a result of mergers of stars in dense cores during
a short but recurrent stage of gravothermal core col-
lapse, even in clusters that are not very massive (see
[41] and references therein).
Finally, if a galaxy moves through a sufficiently

dense intergalactic medium, initially small cavities in
its gaseous disk could grow as a result of ram pres-
sure. This idea was suggested to explain the existence
of numerous cavities in the galaxy Ho II, whose outer
density contours are bounded on one side by a regu-
lar circular arc, indicating that the galaxy is moving
through the intergalactic gas of the M81 group [42].
If supershells form due to the action of a large
number of supernovas and hot O stars on the in-
terstellar medium, why are no supershells observed
aound many clusters that have undoubtedly con-
tained such objects, judging by the number of stars
now observed in these clusters and the ages of these
stars? This could be explained by the presence of a
very high density of neutral and/or molecular hydro-
gen around such clusters, which is unlikely in most
cases. It is most likely that the energy required to
produce a supershell in a medium of normal (and
especially of high) density can be provided only by su-
pernova explosions that are so frequent and numerous
that they could occur only in the most massive clus-
ters. However, hypernovas (which may be associated
with gamma-ray bursts) can occasionally appear in
almost any cluster. It is very important also to address
the inverse problem—to search not for clusters inside
supershells, but for supershells around clusters and,
based on the masses and ages of the clusters and the
parameters of the ambient medium, to try to explain
the absence of HI voids around many clusters that
could have produced them in the framework of the
standard model.
The problem of the origin of supershells has a

long history. Heiles [43], who was the first to discover
about a dozen supershells in our Galaxy, pointed out
that they could have been produced by a large number
of type-II supernovas exploding in OB associations,
though “their [the supershells’] lack of association
with extreme Population I objects argues strongly
against this possibility.” He even assumed that “...it
is extremely improbable that we have ever directly
observed the agent responsible for their [the super-
shells’] existence. The agent may be itself a new
unknown kind of astronomical object” [43, p. 544].
Heiles may have well been right. Gamma-ray bursts
were suggested to be such objects, capable of provid-
ing the interstellar medium with energies sufficient to
produce supershells.

4. STELLAR ARCS IN THE LMC
AND GAMMA-RAY BURSTS

The very existence of a multiple system of giant
stellar arcs in the LMC (Fig. 3) means that they could
not have formed in a supershell swept up by super-
novas and O stars that existed in central clusters [31].
We can suppose that these original clusters are now
barely discernible, but why are all arcs in the LMC
located within 1 kpc of each other? The possibility
that these arcs were formed as a result of events asso-
ciated with gamma-ray bursts whose progenitors had
a common origin somewhere nearby cannot be ruled
out. This supposes that gamma-ray bursts are pro-
duced during mergers of binary systems consisting of
ASTRONOMY REPORTS Vol. 46 No. 10 2002
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compact objects, which form primarily as a result of
dynamical interactions between compact objects and
stars in the dense cores of star clusters (see [47] and
references therein).

The number of binary systems made up of com-
pact objects formed during stellar encounters in dense
clusters may bemuch higher than previously believed.
Taking into account the unequal masses of stars in
clusters and the presence of initial binary systems, it
turns out that the dynamical interaction of stars in
clusters is much more efficient than thought earlier.
It is due to this incorrect notion of the low probability
of this mechanism that it has largely been neglected
when estimating the time between the formation of a
pair and the subsequent merger of its components, as
well as the rate of these events. On the contrary, the
preservation of an initial binary after both the primary
and secondary components explode as supernovas,
resulting in the formation of a pair of compact ob-
jects, is a fairly artificial situation, requiring special
assumptions about the character of the explosions.
The known spatial velocities for three of the four
binary neutron stars in the Galaxy are significantly
lower than the velocities of single pulsars, which are
believed to have acquired relatively high velocities as
a result of asymmetric explosions of their progenitor
supernovas (see references in [47]).

Recent results of numerical computations support
the old analytical conclusion that compact-object
pairs formed in a cluster become closer as a result of
subsequent stellar encounters, acquiring increasingly
higher velocities in the process, and are eventually
ejected from the cluster. Such systems escape from
the cluster when they are already quite close, and
can merge during a gamma-ray burst much more
rapidly than can initial systems of compact objects;
this merging time is only a fewmillion years for black-
hole binaries escaping from themost massive clusters
(of the order of 106 M�) (see references in [47]).

A pair of compact objects that have escaped from
a cluster can have a wide range of velocities, depend-
ing on the parameters for its last encounter, but are
mostly close to the minimum escape velocity (i.e.,
they exceed the velocity dispersion V in the cluster
by a factor of a few). Dokuchaev et al. [48] derived for
the velocity Vej for the ejection of a superelastic binary
from a cluster the formula Vej = 724(V/100) km/s,
which, for globular clusters, yields velocities of about
20–70 km/s. These velocities and merging times
mean that a gamma-ray burst accompanied by the
release of energy exceeding that characteristic of su-
pernovas by one to three orders of magnitude can
be observed several kiloparsecs from the cluster from
which its parent pair of compact objects escaped.
ASTRONOMY REPORTS Vol. 46 No. 10 2002
This is precisely how we explained the presence
in the LMC of several giant stellar arcs at distances
of up to 1 kpc from the massive cluster NGC 1978
but not around it ([47] and references therein).
The fact that objects related to the progenitors of
gamma-ray bursts are concentrated in this cluster
provides further evidence suggesting that this very
massive cluster could had been a source of gamma-
ray burst progenitors. The only soft gamma-ray
repeater identified with an object outside the Galaxy
(the supernova remnant N49)—SGR 0526–66—
is located eighteen arcmin from the cluster; this is
also a region where there is a concentration of X-ray
binaries, which could be relatives of the progenitors
of gamma-ray bursts [49] or the stellar remnants of
powerful supernovas.
The shapes and sizes of stellar arcs may be due

to the protracted action on the interstellar medium of
multiple precessing jets (as for the HI shell surround-
ing SS 433) or a bow shock from narrow jets whose
working surfaces have been increased by various in-
stabilities [41, 47, 50].
If giant stellar arcs are produced by energy re-

leases associated with gamma-ray bursts, this has
important implications concerning the nature of these
bursts. Data suggesting that these bursts occur in
star-forming regions are believed to be incompatible
with the hypothesis that the progenitors of gamma-
ray bursts are systems of compact objects, since some
time must pass before the initial pairs merge, during
which they must move several tens of parsecs away
from their birth places [51].
However, this problem does not arise if the pairs

of compact objects that produce gamma-ray bursts
are born during close encounters of stars in the dense
cores of clusters. Recurrent gamma-ray bursts can
occur in the vicinity of the parent cluster, and are
capable of producing star-forming regions near which
subsequent bursts occur. Recently, some observa-
tional evidence supporting this scenario has been
found. The nearest gamma-ray burst, GRB 980425,
occurred in a star cluster inside a star-forming re-
gion and near which there is an arc-shaped fea-
ture whose center of curvature is situated near the
cluster [52]. This is the only gamma-ray burst close
enough to the Earth to enable such features to be
detected. Similarly, stellar arcs are observed nearby
SGR 0526–66—the only known extragalactic object
of this class—in the same region of the LMC.
Recently, Tsvetkov et al. [53] found that, contrary

to the conclusions of Bloom et al. [51], the distribu-
tion of galactocentric distances of gamma-ray bursts
does not resemble the distributions of either star-
forming regions or supernova remnants. In our view,
it resembles the distribution of classical, old globular
clusters, and exhibits a well-defined concentration
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Fig. 3.Giant arcs of young stars and clusters in the LMC. The Quadrant (at the center) and Sextant (bottom right) have radii
of curvature of about 300 pc and 200 pc, respectively.
toward the center of the “combined” galaxy [41]. It
is also consistent with the birth of gamma-ray burst
progenitors in dense galactic nuclei [48], if these nu-
clei eject pairs of compact objects that are already
close. However, gamma-ray bursts are also observed
in irregular galaxies without nuclei, implying that this
scenario is by no means the only one possible.

Curiously, the distribution of gamma-ray burst
redshifts indicates that most observed bursts oc-
curred 8–12 billion years ago, when classical globular
clusters had ages close to that of NGC 1978, which is
about 2 Gyr old. This may imply that massive clusters
become efficient sources of the objects that produce
gamma-ray bursts at about this age [41]. This stage
is not, however, very long, since present-day classical
globular clusters (with ages of 12–14 Gyr) are not
obviously associated with gamma-ray bursts.

5. HODGE’S COMPLEX IN NGC 6946
The history of the discovery of Hodge’s complex

and its main properties are described in Paper I. HST
observations revealed this complex to have a high
density of high-luminosity stars and to contain about
20 rich young clusters, suggesting it should be con-
sidered a relic region of violent star formation [46].
The unique feature of this complex is its sharp western
boundary, which spans a 130-degree arc of a wonder-
fully regular circle (Fig. 4). The complex also contains
ASTRONOMY REPORTS Vol. 46 No. 10 2002
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a giant cluster with an age of 12–15 Myr, which
has a mass of 106M� and is gravitationally bound (if
we assume a normal luminosity function) [54]. The
galaxy, and especially its western half, contains many
high-velocity clouds and HI voids. Such objects can
also be found in the vicinity of Hodge’s complex, but
the failure of the complex to coincide with any of the
HI voids is striking. NGC 6946 is surrounded by a
group of eight late-type dwarf galaxies, essentially all
of which were detected in the HI line [39], so that
they could be sources of gaseous clouds if there are
appreciable tidal interactions with the main galaxy.
This already suggests the impact of a gaseous cloud
into the plane of the galaxy as a likely origin for the
complex.

Long-slit Нα spectroscopy performed at the 6-m
telescope of the Special Astrophysical Observatory
and the Keck-I telescope showed that the radial ve-
locity of the main cluster of the complex is 150 km/s,
which is 20–30 km/s higher than the local velocity of
rotation measured from HII observations [55]. Since
the plane of the galaxy makes an angle of 34◦ to the
plane of the sky, this difference appears to imply for the
cluster a velocity deviation from the circular rotation
velocity that is unacceptably large for young objects.
This may suggest that the cluster and surrounding
complex are bodies foreign to NGC 6946.

The cross sections of the complex and its sur-
roundings made at three slit positions reveal velocity-
field perturbations that are especially large east of the
complex. Some of these perturbations can be inter-
preted as rapidly expanding shells of ionized gas (see
Fig. 7 in [55]). The data also exhibit some evidence
for a velocity gradient, consistent with the possible
rotation of the complex about an axis in the plane of
the galaxy.

The galaxy NGC 6946 possesses a magnetic field
that is regular outside the bright spiral arms (see [56]
and references therein). Santillan et al. [57] simulated
the impact of a high-velocity cloud with a galaxy pos-
sessing such a field. According to this study, at cer-
tain angles between the cloud trajectory, the galactic
plane, and the force lines of the magnetic field, the
field prevents the falling cloud from penetrating into
the galactic disk, possibly explaining the absence of
(at least a large) HI void. An oblique impact produces
a complex pattern of magnetohydrodynamical waves,
resulting in the development of a peculiar structure
for the complex. Chernin et al. [58] showed that the
interaction between shocks can produce a gas and
dust lane at the collision front, a collimated wave
propagating in the direction of decreasing density,
and the presence of two generations of stars whose
ages are separated by 20–30 Myr. All these features
ASTRONOMY REPORTS Vol. 46 No. 10 2002
Fig. 4. The peculiar stellar complex in the galaxy
NGC 6946 discovered by Hodge in 1967. Its diameter is
about 600 pc. The top panel shows an image obtained by
S. Larsen at the NOT telescope. North is to the top and
west to the right. The centers of the two concentric circles
coincide with the centers of the concentration of older
stars and of the arc of young stars (see Fig. 9 in [46]). The
outer circle outlines the western boundary of the complex,
and its center (shown by the small circle) is shifted to
the northwest. The arc of young clusters and HII regions
located outside the complex and to the southeast may
be part of the same structure. The lower panel shows an
HST image. North is to the upper left and east to the
bottom right. The complex is parted in the middle by two
extended dark clouds. The bright object right of the border
of the figure is a Milky Way star or a very compact cluster
in NGC 6946. There is also a weak X-ray source nearby.

are, indeed, observed in Hodge’s complex (see [46],
Fig. 4).
Moreover, the oblique-cloud impacts computed by

Bloom et al. [51] predict the development of a bow
shock and vortex motions in the oscillating tail of
the cloud, followed by the development of the Parker
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instability. The sharp arc-shaped western edge of the
complex (Figs. 4, 5) leads us to conclude that the
cloud moved along a slanted trajectory from east to
west, and that this might be why the most con-
spicuous radial-velocity perturbations are observed to
the east of the complex. The Parker instability could
be responsible for the formation of the young, giant,
gravitationally bound cluster. However, this cluster
could also be another result of collisions between
shock waves.
Note that Chernin et al. [58] analyzed only a col-

lision of two shocks, whereas the impact of a cloud
into a magnetized gaseous disk obviously should pro-
duce a much more complicated pattern. A more de-
tailed analysis of the spatial, temporal, and kinematic
structure of the complex should make it possible to
reconstruct the characteristics of the parent event.

6. WHY DO STELLAR SUPERARCS HAVE
THE SHAPES OF REGULAR CIRCULAR

FRAGMENTS?

The most striking feature of the arc-shaped stellar
complexes in the LMC and NGC 6946 is that they
themselves or large portions of their boundaries form
fragments of regular circles (Fig. 5). We believe this
to be the key property for understanding the origin of
these structures. The most simple explanation would
be that the circular shapes of these objects seen in
projection reflect the fact that these structures are
actually segments of spherical layers (in the case of
the Quadrant and Sextant in the LMC) or a segment
of a filled sphere (in the case of Hodge’s complex in
NGC 6946) seen from the side. Figure 3 in Paper I
shows how this model fits the arc of the Quadrant.
The inclinations to the plane of the sky of both the
LMC and NGC 6946 are close to about 30◦, so that
circles lying in the planes of these galaxies would be
projected into ellipses easily distinguishable from the
observed circular arcs.
In a model with an initial expanding swept-up

gaseous shell, the spherical boundary of the resulting
stellar complex obviously implies that the star forma-
tion had mostly ended before the shell broke out of the
gaseous disk of the galaxy (i.e., when its radius was
less than half its thickness), after which the stellar
sphere continued to expand with the velocity it had
at the time of the star formation. Assuming equal
expansion velocities for the stellar arcs of the Quad-
rant and Sextant (this assumption has recently been
theoretically justified for star formation in a swept-
up shell [40]), we found this velocity to be 12 km/s
(Paper I), implying that the stellar shell 300 pc in
radius and 15 Myr old (the Quadrant) had a radius
of 120 pc at the time of star formation (130 pc for the
Sextant). This value is close to the half-thickness of
the gaseous disk of the LMC (see Paper I).
One way or another, only two clear cases are

known where there is an older cluster near the center
of a complex of clusters forming an HI supershell that
could have been responsible for the formation of the
entire structure. It is also important that the young
clusters in the complex IC 2574 are arranged in an ir-
regular way, and its shape corresponds to the elliptical
shape of the HI void, which, unlike our stellar arcs,
corresponds to a circle in the plane of the galactic
disk, taking into account its inclination to the plane of
the sky. The giant arc in NGC 1620, which, judging
from images of the galaxy, may even be a spiral-arm
fragment, also has an irregular shape. Both these
features have little in common with the regular arcs of
the Quadrant and Sextant in the LMC or the western
edge of Hodge’s complex in NGC 6946.
If the source of energy for the central pressure

forming the swept-up shell was stars of a hypothetical
central cluster or the impact of a dense cloud, only a
very specific local density distribution would allow the
resulting shell to acquire the shape of a regular circu-
lar segment. A segment of a spherical surface could
also form if it was produced as a result of an explosion
outside the plane, which suggests the explosion of an
object associated with a gamma-ray burst; however,
the orientation of the arcs of the Quadrant and Sex-
tant is inconsistent with this picture [44].
The regular circular shapes of Hodge’s complex

and of the arc-shaped complexes in the LMC can
also be understood if these complexes are flat circular
disks inclined to the plane of the galaxy, with the
inclination of the complex exactly compensating the
inclination of the galaxy to the plane of the sky, so
that the projection of the complex is transformed from
an ellipse back into a circle. This seems artificial;
however, the plane of the Gould belt is inclined to
the plane of the Galaxy (by 18◦), and the possible
trajectories of the inclined impacts of the clouds into
the disks of NGC 6946 and the LMC are consistent
with this suggestion, if the planes of these complexes
are rotated about an axis whose orientation is close
to that of the cloud’s trajectory. In this case, the
filled interior of Hodge’s complex may a result of the
magnetic field in the disk of NGC 6946.

7. DYNAMICAL PRESSURE
AND STAR FORMATION

There is another, apparently more likely, explana-
tion for the regular and circular projected boundaries
of these complexes. It is well known that the gaseous
corona of a galaxymoving through a sufficiently dense
medium is subject to dynamical pressure and acquires
ASTRONOMY REPORTS Vol. 46 No. 10 2002
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Fig. 5. Images of the Quadrant (top, left), the Sextant (top, right), Hodge’s complex in NGC 6946 (bottom, left), and galaxy
Ho II with HI-density contours [42] superimposed (bottom, right). Also shown in all images are circular shells. The centers of
curvature for Hodge’s complex and the Sextant are shown by small circles.
a characteristic comet-like shape with a sharp half-
circular boundary at its leading side. For example, the
outer HI-density contours of the galaxies Ho II [43]
and NGC 7421 [46] have a parabolic shape on one
side, which coincides over ∼ 100◦ with a circular arc
(Fig. 5), in what appears to be an evident signature of
a bow shock that has developed due to the galaxy’s
motion through the dense intergalactic gas of the
corresponding group of galaxies.
The regular circular arc that bounds the stellar

disk on one side of DDO 165 (Paper I) obviously
owes its existence to the fact that the star formation in
this galaxy was to a significant degree determined by
the dynamical pressure of the intergalactic gas. The
sharp, bright, half-circular western edges of the stel-
lar disks of the galaxies NGC 7421 and NGC 2276
are also clearly due to bow-shock triggered star for-
mation. In the case of the NGC 2276, this is fur-
ther confirmed by the characteristic size of its disk,
which is outlined by ionized hydrogen [59]. Moreover,
the western edge of NGC 7421 is outlined by three
ASTRONOMY REPORTS Vol. 46 No. 10 2002
straight intervals inscribed into a half circle. The same
appears to be true of Hodge’s complex, although with
less certainty. This morphology is clear evidence for
the action of a shock wave [60].
Thus, as we already suspected [61], the direct ob-

servational data lead us to conclude that arc-shaped
or circular-arc-bounded stellar complexes may be
products of star formation triggered by the action of
a one-sided external pressure on the initial gaseous
cloud. The hypothesis of dynamical pressure acting
on a cloud arising when the cloud moves through a
lower-density medium can be used to explain both
the Quadrant and Sextant arcs, as well as the western
boundary of Hodge’s complex. In all three cases, the
initial cloud moves through the gaseous disk of the
galaxy at a small angle to the disk plane, and we view
the resulting complex from the side. The concentra-
tion of stellar arcs in the northeastern part of the LMC
may reflect the fact that this is the leading side of the
galaxy in terms of its orbital motion. The orientation
of the Quadrant and Sextant arcs is consistent with
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Fig. 6. The arc-shaped complex AS 102 in NGC 300 (NOT image taken by S. Larsen) and X-ray flux contours from [64]
indicating the position of the P42 X-ray binary.
this possibility [61]. Note also that, at least in the case
of the Quadrant, the dense leading arc is followed by
a tail of lower stellar density, and the entire structure
is bounded by a parabola (see Fig. 1 in Paper I), as
should be the case for structures formed under the
action of dynamical pressure.

Note also that star formation in a bow shock can
explain the regular shapes of arc-like complexes,
whereas a complex of clusters formed in a swept-
up gaseous shell will have an irregular shape, as
observed in IC 2574. Moreover, only the formation
of arcs as a result of external pressure on a dense
cloud can explain why all such complexes have
approximately the same opening angle (about 100◦;
see Fig. 5). The available theoretical data show that
only a narrow range of conditions leads to triggered
star formation in a collision of clouds [62], especially if
we require that the resulting complex shouldmaintain
the shape of the bow shock, naturally explaining the
rarity of arc-shaped stellar complexes. The presence
of a magnetic field may constitute one such con-
dition [63], as is clearly relevant for the complex in
NGC 6946.

A physically similar situation arises when a suffi-
ciently dense cloud is subjected to a shock produced
by a nearby and powerful explosion propagating in the
more tenuous gas of the galactic disk. Obviously, the
convex side of the interaction front between the shock
and cloud must be oriented toward the explosion,
and the resulting arc-shaped stellar complex must be
symmetric with respect to the direction toward the
source of the shock. In one case, this interpretation
appears to be natural. In NGC 300, an arc of bright
stars with a chord size of about 45′′ (∼ 400 pc) is
located near the most intense X-ray point source in
that galaxy, with its convex side pointed toward this
source (Fig. 6). This is the object P42 = H13, which
is classified as an X-ray binary with a black hole (with
a mass of about 5 M�) and is the only such object in
NGC 300 [64]. It may well be the stellar remnant of a
hypernova.

This arc is listed in a catalog of OB associations
and complexes in NGC 300 as AS102 [65]; it is clas-
sified as a stellar complex, because, as is evident from
Fig. 6, it consists of four subgroups. The age of this
complex is about 5 Myr [66], and it is immersed in a
bright HII region, like the Sextant arc. Over this time,
the optical or radio gaseous remnant of the supernova
has disappeared, but the stellar remnant—black hole
accreting matter from the secondary—could, under
certain conditions, be detected as an X-ray source.

Figure 6, which presents a NOT image obtained
by S. Larsen with an X-ray map [64] superimposed,
shows that this unique X-ray source in NGC 300 is
located not only near the complex, but exactly on its
symmetry axis. Unfortunately, the available HI data
for NGC 300 have a resolution too low to enable
identification of HI features in this region. If our hy-
pothesis is correct, there should be no gas between
the complex and the object P42. The rareness of such
ASTRONOMY REPORTS Vol. 46 No. 10 2002
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structures may be due to the fact that their formation
requires a rather large and dense cloud, as well as the
appropriate orientation.

8. CONCLUSIONS

The available data on stellar complexes with pecu-
liar compositions agree with the idea that turbulence
plays the decisive role in the process of star formation.
It is possible that the complexes containing only star
clusters formed under conditions of no turbulence
or disruptive turbulence and that the sizes of stellar
complexes identified outside the spiral arms of galax-
ies are determined by the characteristic sizes of cells
with the same turbulence pattern.
We have considered regular circular arcs bounding

several stellar complexes and analyzed evidence for
the past existence of a source of pressure at their
centers, whose presence would suggest that these
clusters formed from a gaseous shell swept up by
this pressure. However, they are more likely to have
formed as a result of oblique impacts of intergalactic
clouds, in which case they reflect the shape of the bow
shock that develops due to the dynamical pressure as
the clouds move through the more tenuous medium
of the gaseous disk of the galaxy.
It appears that only a rare combination of condi-

tions (velocity and angle of incidence, pressure ra-
tio, the presence of a magnetic field) leads to star
formation in the bow shock near the leading sur-
face of the moving cloud. This is precisely what the
theory predicts [62, 63], and this may also explain
the rarity of such structures. The large and similar
opening angles at the centers of all these arcs also
support the idea that they formed as a result of a bow
shock that developed in the presence of speeds and
densities close to those observed in gaseous clouds
and galactic disks. Hodge’s complex in NGC 6946
is distinguished by a high density of both individual
stars and clusters, as well as its complex structure,
with signatures of several shells of stars and gas.
This structure is probably the result of a collision of
shocks produced by the oblique impact of a gaseous
cloud onto the magnetized gas of the galactic disk.
The interaction of shocks may also have produced
high pressures in the gas, favoring the formation of
a massive, gravitationally bound cluster.
A physically similar situation may also develop

when a dense cloud is subject to a shock produced by
a fairly nearby and powerful explosion, whose stellar
remnant is still visible in the case of the arc-shaped
complex in NGC 300. However, we cannot rule out
the possibility that the Quadrant and Sextant arcs in
the LMC formed as a result of explosions of objects
associated with gamma-ray bursts, which would not
ASTRONOMY REPORTS Vol. 46 No. 10 2002
necessarily have been located at the center of curva-
ture of these arcs. Studies of peculiarly shaped stellar
complexes and of complexes containing either clus-
ters or stars exclusively appears to be a very efficient
tool for comparing theories of the formation of clus-
ters and isolated stars with observations.
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Abstract—The results of long-term photometric observations of R CrB in the UBV JHKLM bands are
presented. The temporal and color characteristics of the emission of the star itself and of its extended dust
envelope are analyzed in detail. No stable harmonic has been found in the semiregular variations of the
optical brightness of R CrB. Two harmonics with periods P ≈ 3.3 and 11.3 yrs have been detected in the
brightness variations of the dust envelope; the minima of these variations coincided in 1999, resulting in
a record decrease in the LM brightness of the envelope. This by chance coincided in time with a deep
minimum of the visual brightness of the star, resulting in a unique decrease in the total brightness of the
star and dust envelope. This enabled estimation of the bolometric flux of the hot dust clouds, whichmade up
only a few per cent of the bolometric flux of the dust envelope. The brightness variations of the dust envelope
are not accompanied by appreciable color changes and are associated with variations of its optical depth
τ(V ) in the range 0.2–0.4. The dust envelope forms at a large and fairly constant distance from the star
(rin ≈ 110R∗, Tgr ≈ 860K), frommaterial in its stellar wind, whose intensity (Ṁgas ≈ 2.1× 10−7M�/year)
obeys a Reimers law. No variations synchronous with those of the optical depth of the dust envelope, in
particular, with the period P ≈ 3.3 yrs, have been found in the optical emission of R CrB, suggesting that
the stellar wind is not spherically symmetric. The dust envelope consists of small grains (agr ≤ 0.01 µm),
while the clouds screening the star from the observer are made up of large grains (agr ≈ 0.1 µm). The
activity of R CrB, whose nature is unclear, is reflected in variations of the stellar-wind intensity and the
appearance of dust clouds in the line of sight: these variations are repeated by corresponding changes in the
optical depth of the dust envelope with a delay of∼4 years (the time for a particle moving at Venv ≈ 45 km/s
to move from the star to the boundary of the dust envelope). c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

R CrB is the prototype of a small group of pecu-
liar supergiants with characteristic light curves and
spectra (see [1] and references therein). The visual
brightness of the star can suddenly, i.e., unexpectedly,
decrease by several magnitudes over a few weeks, re-
turning several months later to its previous level. The
carbon lines in the spectrum are anomalously strong,
while hydrogen lines are very weak or completely
absent. The abrupt decreases in the visual brightness
are associated with the condensation of dust clouds
in the stellar envelope, which screen the star from the
observer when they lie in the line of sight. The peculiar
character of the spectrum is due to the unusual chem-
ical composition of the stellar atmosphere, which is
very strongly depleted in hydrogen and appreciably
enriched in carbon.
In the deepest minima, the visual brightness of

R CrB decreases by ∼ 8m. A statistical analysis of
the time intervals between consecutive minima has
1063-7729/02/4610-0805$22.00 c©
shown that these intervals are purely random; i.e.,
there is no regularity in the appearance of deep min-
ima in the light curve of the star (see [2] and references
therein). In addition to the deep minima associated
with the condensation of dust clouds, semiregular
cyclic variations with an amplitude of ≤ 0m. 25 can
be noted in the visual light curve of R CrB, and are
probably due to stellar pulsations [3].
A periodogram analysis of the light curve of R CrB

revealed three harmonics with the periods ∼52, ∼44,
and ∼33 d, whose predominance varies from year to
year (see [4] and references therein). At some epochs,
a harmonic becomes obvious in the light curve, while
at other epochs, no cyclic variations are visible. At
the same time, analysis of the radial-velocity curve
(149 estimates from 1949 to 1995) indicated only one
dominant period, ∼42.7 d [5], with the amplitude of
the corresponding harmonic being ∼4 km/s.
The very first observations of R CrB in the near

infrared showed an IR excess for the stellar radiation
2002 MAIK “Nauka/Interperiodica”



806 SHENAVRIN et al.
with a color temperature of ∼900 K [6], which is
formed by an extended (∼ 100R∗) dust envelope. The
presence of such envelopes is characteristic of R CrB
stars. IRAS observations of R CrB have shown that
the object is extended at 60 and 100 µm [7]. This
represents a relic dust envelope, whose size exceeds
that of the dust envelope corresponding to the present
stage of evolution of the star by a factor of ∼ 104.
From an evolutionary point of view, R CrB stars are
born-again red giants (born-again AGB stars) such
as FG Sge and V4334 Sgr (Sakurai’s object), while
the relic dust envelope represents a remnant of the
planetary nebula produced when the star passed the
postasymptotic (post-AGB) track for the first time.

It now seems reasonably clear that the deep min-
ima are connected with the condensation of dust
clouds, not of a dust envelope that entirely covers the
star [1]. However, it remains unknown at what dis-
tance from the star they condense and to what extent
they participate in the formation of the extended dust
envelope. Most of the observational facts suggest that
the dust-cloud condensation occurs near the star, and
it has been supposed a priori that the extended dust
envelope forms directly from these clouds [1]. How-
ever, both of these statements require observational
confirmation.
Observations of R CrB in the L band have shown

semiregular fluctuations in the brightness of the star
with a period of ∼1260 d (see [8] and references
therein). Since the main contribution to the radiation
of R CrB at these wavelengths comes from its dust
envelope, the L brightness variations imply that the
dust envelope is not in a stationary state. If this is
the case, we wish to elucidate what changes in the
dust envelope lead to the observed variations of its
brightness, within what limits they vary, and to what
extent their changes are reflected in the visual bright-
ness of the star. This information can help shed light
on the structure of the extended dust envelope and its
formation, and indicate the origin of the nonstationary
behavior of this dust envelope.

In this paper, we present the first UBV obser-
vations of R CrB in 1994–1999 and JHKLM ob-
servations in 1983–2001, as well as complete tables
of our photometric observations of R CrB. We use
these data to analyze in detail various parameters of
the star’s radiation in the optical and IR, estimate the
parameters of the extended dust envelope at different
brightness levels, study the character of dust forma-
tion in the envelope, and ultimately derive answers to
the questions formulated above. The unique dip in the
dust envelope’s brightness, combined with the deep
minimum of the visual brightness of R CrB in 1999,
can be used to isolate the direct emission of the dust
clouds.
2. OBSERVATIONS

The UBV photometric observations of R CrB in
1994–1999 were carried out on the 0.25-meter tele-
scope of the Faiborn Observatory (Arizona, USA),
which is used for automatic photoelectric obser-
vations [9]. These supplement similar observations
of R CrB obtained in 1985–1993 (see [4] and ref-
erences therein) and are presented together with
these in the first electronic table (ET1) on the site
http://infra.sai.msu.ru/ftp/rcrb. ET1 contains 1170
brightness estimates with accuracy no worse than
0m. 02. HD 141352 (V = 7.476, B − V = 0.439, U −
B = −0.003) was used as the standard star.
Photometric JHKLM observations of R CrB

were carried out on the 1.25-m telescope of the
Crimean Observatory of the Sternberg Astronom-
ical Institute in 1983–2001 using the photome-
ter described in [10]. These supplement observa-
tions of R CrB obtained in 1976–1979 [11] and
are presented together with these on the same site
http://infra.sai.msu.ru/ftp/rcrb, in the second elec-
tronic table (ET2). ET2 contains 252 brightness
estimates with accuracy no worse than 0m. 03. The
standard star was BS 5947 (J = 2.09, H = 1.60,
K = 1.30, L = 1.12,M = 1.35).
Figure 1 shows the brightness variations of R CrB

in the V JKLM bands in 1983–2001. We have
added to our observations V observations obtained by
amateur astronomers of the Variable Star Observers
League of Japan (VSOLJ, http://www.kusastro.
kyoto-u.ac.jp/vsnet) and the J and L observations of
Feast et al. [8]. During this time interval, several deep
minima were observed in the visual light curve, with
a temporary quiescence in their appearance in 1989–
1995. This gives the impression of packet grouping of
the minima, in other words, of a cyclicity in the rate of
their appearance.
An unusually deep minimum was observed in the

L and M light curves of R CrB in 1999, following a
smooth decline of the brightness from its maximum in
1994. We can see from Fig. 1 that the duration of the
smooth decline of the LM brightness approximately
coincides with the duration of the temporary quies-
cence in the appearance of deep minima. To match
these two intervals, the L and M light curves bands
must be shifted back in time by∼4 years.

3. PHOTOMETRIC CHARACTERISTICS
OF R CrB IN ITS BRIGHT STATE

We define the bright state of R CrB by the two
conditions V ≤ 6.05 (ET1) and J ≤ 5.25 (ET2). The
maximum recorded brightnesses are V ≈ 5.69 and
J ≈ 4.89. Themeanmagnitudes of RCrB in its bright
ASTRONOMY REPORTS Vol. 46 No. 10 2002
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Fig. 1.Brightness variations of RCrB in the V JKLM bands. The dots show our own observations, while the crosses show the
VSOLJ observations (http://www.kusastro.kyoto-u.ac.jp/vsnet) in the (JD, V ) plot and the data of Feast et al. [8] in the (JD,
J) and (JD, L) plots. The vertical bars in the (JD, L) and (JD, M) plots mark the dates of LM brightness minima calculated
using (15) and (16), respectively.
state (mean brightness of the star) are given in the ta-
ble. These were calculated in the UBV JHKLM and
RI bands using the data of ET1, ET2, and [12, 13].

A periodogram analysis of the complete (1985–
1999) visual light curve of R CrB in its bright state
yields no pronounced harmonics in the spectrum of
the stellar pulsations. Formally, the harmonic with
P ≈ 39.8 d has the greatest total amplitude ∼ 0m. 07
(Fig. 2). The corresponding harmonic in the spectrum
ASTRONOMY REPORTS Vol. 46 No. 10 2002
of the B–V color-index curve has a total amplitude
of ∼ 0m. 025. Its minimum (the bluest color) leads the
minimum of the visual light curve harmonic (maxi-
mum brightness) by ≤3 d. In our view, this provides
evidence of in-phase variations of the brightness and
color of R CrB; this same effect has been found for
RY Sgr, whose pulsation period and amplitude are
stable in time [1].

If the light curve is expanded in a Fourier series,
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Mean magnitudes of R CrB in its bright state and maxi-
mum and minimum of the L brightness

Photometric
band

Bright state Maximum L Minimum L

U 6.55 6.38 6.82

B 6.49 6.35 6.70

V 5.91 5.81 6.08

R 5.49 5.40 5.62

I 5.31 5.23 5.40

J 5.08 5.01 5.11

H 4.91 4.76 5.08

K 4.13 3.74 4.56

L 2.38 1.79 3.12

M 1.70 0.97 2.48

a large number of harmonics with total amplitudes
∼ 0m. 05 appear in its spectrum, concentrated mainly
in the range P = 35–40 d. At the same time, some
segments of the light curve have an obviously cyclic
appearance [4]. Note also the absence of a trend in the
visual brightness of the star or its (B–V ) color.
The same can be said about the J light curve of

R CrB. The three main harmonics with P ≈ 43.7,
33.2, and 28.1 d have total amplitudes of ∼ 0m. 08.
The difference in the periods of the first harmonics
for the visual and IR brightnesses of the star may
be due to the non-simultaneity of the visual and IR
observations, combined with the lack of stability in
the brightness pulsations of R CrB over long time
intervals. At the same time, Rao et al. [5] suggest that
the radial-velocity curve (149 measurements from
1942 to 1995) has a cyclic character, with a pulsation
period of ∼42.7 d. There may be no contradiction
here, since the brightness of the star can vary not
only due to its own pulsations, but also in association
with active phenomena on its surface, such as the
formation of dark spots [1].
Figure 3 shows the spectral energy distribu-

tion (SED) of R CrB corresponding to its mean
brightness, after correcting the observed magnitudes
for interstellar reddening using the color excess
E(B–V ) = 0.05 [14]. The 0.23-µm and 0.25-µm
fluxes were estimated from an IUE spectrum of RCrB
obtained on May 31, 1991, when the optical and IR
brightnesses of the star were close to their mean
levels.
IRAS photometric observations of R CrB were

carried out on September 12 and 13, 1983 [15], when
our estimates indicate theL brightness to be≈ 2m. 63.
The mean magnitude of R CrB in this filter at this
time was ∼ 2m. 38 (table), so that ∆L ≈ 0.25. It fol-
lows from [16] that the amplitude of the brightness
variations at 11 µm is a factor of ∼3 smaller than
at 3.5 µm (the L band). Therefore, we increased the
IRAS fluxes at 12, 25, 60, and 100 µm by 8% to
calibrate them relative to the mean brightness level
of the star. Note that the 60 and 100 µm fluxes do
not include a contribution from the spatially extended
relic envelope [7].
The bolometric flux of R CrB corresponding

to its mean brightness is Fbol, mean ≈ 1.55 ×
10−7 erg cm−2 s−1. The wavelength ranges λ ≤
0.36 µm, λ ≥ 5 µm, and λ ≥ 12 µm contain ∼4%,
∼10%, and ∼3% of the bolometric flux, respectively.
In other words, ∼85% of the bolometric flux is con-
centrated in the spectral range of our photometric ob-
servations, and possible inaccuracies (for example, in
the correction of the IRAS fluxes in accordance with
the Lmagnitude of R CrB), leave the bolometric-flux
estimates virtually unaffected.
To estimate the IR excess (bolometric flux of the

dust envelope), we must reconstruct the SED of the
star after its passage through the circumstellar dust
layer in the line of sight. We will denote the star’s own
radiation flux as F∗0(λ), and the flux that emerges
through the dust envelope (i.e., the observed flux) as
F∗(λ). We will call this simply the stellar radiation.
Furthermore, for the sake of brevity, we will call the
star + dust envelope combination the “object.” The
IR excess is FIR = Fbol − F∗bol.
We can derive an upper limit for the dust enve-

lope’s contribution to the J band when its L bright-
ness is close to its mean value directly from the 1996
observations of R CrB (Fig. 1). In the deep minimum
of 1996, the J brightness fell to J ≈ 8m. 62 (ET2). If
the J radiation at that time was due only to the dust
envelope, the envelope’s contribution to the object’s
radiation was ∼4%. However, our photometric ob-
servations were not carried out at the very minimum
of the optical brightness, but when the star was re-
covering from a minimum, and was already ∼ 0m. 6
brighter. Moreover, it turns out that the contribution
of the star to the J brightness remains appreciable in
the brightness minimum (see below). As a result, we
conclude that the contribution of the dust envelope to
the object’s radiation is≤2%. Thus, the desired SED
F∗(λ) coincides with the observed energy distribution
at wavelengths λ ≤ 1.25 µm (i.e., downward from the
J band).
Figure 4 presents (U–B, V ), (B–V , V ), (V –

R, V ), (V –I, V ) and (V –J , V ) diagrams, which
show the color variations of the star that occur as its
brightness changes. The brightness estimates were
taken from tables ET1, ET2 and from [12, 13]. The
ASTRONOMY REPORTS Vol. 46 No. 10 2002
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Fig. 2. Convolution of the (a) V light curve with the
period 39.82 d and the L light curve with the periods (b)
1206 d and (c) 4342 d. The corresponding harmonics in
the spectra are shown by the curves.

(V –J , J) diagram was plotted using data from these
tables for observations carried out on the same night.
Furthermore, we have used only data for dates when
the L brightness of R CrB was below its mean level,
and have taken into account the 2% contribution
ASTRONOMY REPORTS Vol. 46 No. 10 2002
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Fig. 3. Spectral energy distribution of R CrB for its mean
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curves show the SEDs for the star and dust envelope,
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of the dust envelope’s radiation in the J band. We
derived the following linear approximations to these
relationships:

U–B = 0.402V − 2.31, (1)

B–V = 0.280V − 1.08, (2)

V – = 0.301V − 1.36, (3)

V –I = 0.430V − 1.94, (4)

V –J = 0.418V − 1.62, (5)

where 5.79 ≤ V ≤ 6.05. We can see that the star
reddens over the entire wavelength range considered
as the star’s brightness decreases.
During the minimum of 1999, the J andH bright-

nesses of R CrB fell to record low values: J ≈ 9.76
and H ≈ 8.01 (see Table ET2). Accordingly, the dust
envelope’s contribution to the object’s radiation in
these bands in the bright state did not exceed 1% and
6%. At that time, the L brightness of the star was
minimum (Fig. 1). Plotting a (H , J) diagram for the
case when R CrB was in its bright state and the L
brightness was minimum (L ≥ 3.06) using the data
of ET2 and deriving a linear approximation for these
data, we obtain the following relationship between the
star’s J andH brightnesses:

H = 0.90J + 0.44. (6)

We have taken into account the 5% contribution
of the dust envelope to the object’s radiation in the
second term. Using (5), we obtain the relationship

V –H = 0.474V − 1.95. (7)
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This can be used to estimate the star’sH-band radi-
ation.
To extend the SED to 1.62–4.8-µm (theHKLM

bands), we use calculated colors of supergiants
whose parameters are typical of R CrB stars, in-
cluding their atmospheric chemical compositions [14,
17]. These colors have been computed as functions
of the effective temperature and surface gravity of
the star. We adopt for R CrB the following val-
ues, which correspond to its mean brightness level:
Teff = 6750 K, Lbol = 104L�, log g = 0.5 [14, 18].
Accordingly, R∗ ≈ 73.4R�, M∗ ≈ 0.62M�, Vesc ≈
57 km/s, D ≈ 1.44 kpc, Mbol ≈ −5.3. The star’s
intrinsic colors are (H–K)0 = 0.07, (K–L)0 = 0.06,
(L–M )0 = 0.03 [17]. At wavelengths λ ≥ 4.8 µm,
we set the SED equal to that of a blackbody with a
temperature of 6750 K.
These intrinsic colors of the stars must also be

corrected for interstellar and circumstellar reddening.
However, since both corrections are very small (the
dust envelope of R CrB is optically thin, τ(V ) ≈ 0.3
and τ(K) ≈ 0.05), they will leave the the bolometric
flux of the star virtually unchanged (the estimated
bolometric flux increases by only ∼0.3%). Figure 3
shows the total SED F∗(λ), derived as described
above.
Thus, the bolometric flux of the star at its mean

brightness level is F∗bol ≈ 1.17 × 10−7 erg cm−2 s−1,
and the IR excess is FIR,mean ≈ 3.8 ×
10−8 erg cm−2 s−1. Thus, the dust envelope cor-
responding to the mean IR brightness of R CrB
absorbs ∼24% of the star’s radiation. If the envelope
is spherically symmetric, its optical depth averaged
over the spectral energy distribution is τeff,mean ≈
0.28. Note that, for a yellow star with an effective
temperature of 6500–7000 K and amorphous carbon
grains, τeff differs from the optical depth at 0.55 µm
(τ(V )) by only a few per cent.

4. THE DUST ENVELOPE

4.1. Model of the Dust Envelope at the Mean
Brightness of R CrB

Figure 3 shows the calculated SED of a star
surrounded with a spherically symmetric dust en-
velope containing amorphous carbon grains with
radius agr = 0.01 µm. The index of refraction of the
grains was taken from [19] (see sample cel1000 in
[19]), and the efficiency factors for absorption and
scattering were calculated in the framework of Mie
theory for spherical particles. It is obvious that the
optical brightness of the dust envelope cannot exceed
the brightness of R CrB in the deepest minima, when
the direct stellar radiation is blocked by a dust cloud.
Accordingly, the albedo of the particles must be fairly
small, and they should have fairly small sizes [20] not
exceeding 0.01 µm in the case of R CrB.
The input parameters for the model calculations,

which use the CSDUST3 code [21], are described in
[22]. In particular, the input parameters include the
SED of the intrinsic stellar radiation F∗0(λ), which is
not known. Therefore, after specifying the dust enve-
lope’s optical depth at 0.55 µm (input parameter), we
calculated this distribution as F∗0(λ) = F∗(λ)eτ(λ).
ASTRONOMY REPORTS Vol. 46 No. 10 2002
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In this approach, the calculated SED will automat-
ically match the observed SED down to the I band.
However, this does not play a crucial role if we are
interested in deriving the dust envelope’s parameters
from its radiation, which is predominantly in the IR.
The dust envelope is estimated to have optical

depths at 0.55 and 2.2 µm τ(V ) ≈ 0.32 and τ(K) ≈
0.05, inner radius rin ≈ 111R∗, grain temperature and
density at the inner radius Tgr ≈ 860 K and ρdust ≈
1.1 × 10−20 g/cm3, radial density dependence ρ(r) ∝
r−2, and grain-production rate at the inner boundary
Ṁdust ≈ 3.1 × 10−9M�/year. If we assume that all
carbon is bound in grains, then, in accordance with
the atmospheric chemical composition of R CrB [18],
the gas density at the inner radius of the dust envelope
will be ρgas ≈ 7.3 × 10−19g/cm3. The mean mass-
loss rate of R CrB is Ṁgas ≈ 2.1 × 10−7M�/year for
an envelope expansion velocity of Venv ≈ 45 km/s (the
choice of this value will be justified below). However,
some of the carbon in the stellar envelope can also
be bound in CO, which, by virtue of its chemical
inertness, does not stick to grain surfaces. In this
case, only some of the carbon participates in dust-
grain production. If we assume that all the oxygen in
the gas envelope of R CrB is bound in CO and take
its abundance from [18], the estimated gas density
and mass-loss rate should be increased by a factor of
∼2.5. For the adopted expansion velocity, the time for
the gas lost by the star to reach rin is∼4 years.
The visual brightness of the dust envelope is V ≈

14.6, and its color indices areU–B ≈ −0.65,B–V ≈
−0.28, V –R ≈ −0.41, and R–I ≈ 1.47. The SED
of the envelope is presented in Fig. 3. Since the
grain size is much smaller than optical wavelengths,
the grains scatter optical light in accordance with a
Rayleigh law (σsca ∝ λ−4), which gives a blue color
to the envelope in the UBV R bands. In the I band,
the thermal radiation of the grains already dominates
over scattering, and the envelope’s color reddens.
In the deepest minima, the visual magnitude of

RCrB reaches∼ 14m. Themodel dust envelopemade
up of grains with sizes∼0.01 µm has V ≈ 14.6. If we
increase the grain radius to, e.g., agr = 0.025 µm, the
visual brightness of the dust envelope will increase by
a factor of∼15 (∆V ≈ 3) at the expense of a sharp in-
crease in the grain albedo, and will appreciably exceed
the brightness of R CrB in deep minima.
As a rule, the star becomes bluer in the final stages

of the brightness decrease; i.e., the U–B and B–V
color indices decrease, reaching their minima at the
visual-brightness minimum. However, several days
later, at the same visual brightness, this blue color
disappears, and the star appreciably reddens. For ex-
ample, in the minimum of 1999, the colors changed
ASTRONOMY REPORTS Vol. 46 No. 10 2002
from blue (B − V ≈ 0.3, V ≈ 13.7) to red (B − V ≈
1.1, V ≈ 13.7) in only two days [23] (see also ET1,
ET2). Such rapid color variations rule out the dust
envelope as the source of radiation responsible for
this effect. Currently, the blue color is attributed to
the chromospheric emission of atoms and molecules,
which is most clearly visible when the dust cloud
completely blocks the stellar disk but not the higher-
lying chromospheric layers [24, 25].
Since the dust-formation rate at the inner bound-

ary of the dust envelope varies with time (see below for
details), a power-law distribution for the dust density
in the model envelope is only an approximation. We
have approximated the actual density distribution
with the relationship ρ(r) ∼ r−2, as is quite natural.
The density of every individual dust layer obeys this
law as it expands. The fluctuation timescale and
corresponding spatial scale are ∆t < 4 years and
∆r < rin.
As long as the envelope is optically thin in the IR,

its color characteristics are virtually independent of
the optical depth. Therefore, from the point of view
of model calculations, we can replace the spherically
symmetric dust envelope by an envelope in the form of
a continuous cloud blanket with light and dark areas,
while maintaining its spectral energy distribution. In
addition, in order to preserve the brightness, the op-
tical depth of the continuous cloud blanket averaged
over a sphere should be equal to the optical depth of
the spherically symmetric envelope.
The spherical symmetry can be replaced with ax-

ial symmetry by increasing the optical depth of a
bipolar dust envelope in accordance with the part of
the sphere it blocks, so that its bolometric flux is
equal to the bolometric flux of the IR excess. In this
model, it is possible that the dust envelope does not
screen the star from the observer at all. In this case,
F∗0(λ) = F∗(λ). Note that preserving the IR excess
also preserves the dust envelope’s optical brightness.
However, such theoretically possible forms of the

dust envelope’s shape assume that its inner radius re-
mains unchanged or varies only insignificantly. Con-
siderable changes in the inner radius would result
in appreciable variations of the color characteristics
of the dust envelope. For example, if this radius is
decreased by 10%, theH–K and K–L color indices
of the envelope will increase by ∼ 0m. 1. Thus, the
extended dust envelope cannot be made up of dust
clouds if these condense at much smaller distances
from the star than its inner radius [1]. It is most likely
that the clouds and envelope form separately from
each other.
The extended dust envelope forms at a consider-

able and fairly constant distance from the star and,
from this point of view, is analogous to the dust
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envelopes of, say, red giants. Moreover, the optical
depths of the dust envelopes in Miras vary with the
brightness phase. In other words, the smooth decline
of the dust-envelope density due to its expansion
is overlaid with semiregular fluctuations, associated
with changes in the dust-formation rate at its inner
boundary. Of course, we cannot exclude the possi-
bility that the dust clouds reach the inner boundary
of the dust envelope without evaporating on the way.
However, such clouds do not contribute appreciably
to the IR excess.
The mass-loss rate of a yellow supergiant can be

estimated using the well-known formula of Reimers
[26]

Ṁ = 4 × 10−13ηLR/M M�/year, (8)

where 0.3 ≤ η ≤ 3, and the parameters of the star are
expressed in solar units. If we substitute the values of
L∗, R∗, and M∗ we have adopted for R CrB, it turns
out that, for η ≈ 0.5, the mass-loss rate estimated
by this formula coincides with that obtained from
themodel calculations of the dust-envelope structure.
Thus, a superwind is not required to explain the dust
envelope’s formation.
Note also that the estimated stellar-wind density

at a distance, for example, r ≈ 2R∗, which is equal
to ρgas ≈ 2.6 × 10−15 g/cm3 (ρ(r) ∝ r−2), falls in
the interval 6 × 10−16–6 × 10−15 g/cm3 in which the
gas temperature behind a shock propagating at a
velocity of ≥20 km/s can decrease to ∼1500 K [27].
This creates the conditions required for the forma-
tion of complex carbon molecules, from which dust
grains could condense. However, this would also re-
quire that the lower-temperature region be apprecia-
bly screened from the direct stellar radiation, since, in
contrast to complex molecules, whose temperature is
determined by the gas kinetic temperature, the tem-
perature of the dust grains is determined by the stellar
radiation field. If the grains condense at a distance of
∼ 2R∗, the direct radiation must be attenuated by two
orders of magnitude.
It was shown in [3] that, in the atmosphere of

a pulsating star, the gas density at a distance of
∼ 4R∗ is∼ 10−12 g/cm3, which considerably exceeds
the gas density at such distances obtained from our
calculations. In this case, either only a small fraction
of the extended atmosphere of RCrB is lost by the star
or not all the carbon in the stellar wind condenses into
grains.

4.2. The Dust Envelope at Its Maximum
and Minimum Optical Depth

The table lists the stellar magnitudes of R CrB
at its maximum and minimum L brightness in 1994
and 1999, respectively (Fig. 1), obtained by averaging
optical and IR observations carried out on the same
dates in April–May 1994 and May–June 1999 (ET1,
ET2). The R and I magnitudes were estimated using
(3) and (4). The fluxes at 12, 25, 60, and 100 µm
were estimated from the L brightness of R CrB (as
explained earlier). To estimate the fluxes at 0.23 and
0.25 µmbased on their values for themean brightness
level, we assumed equal amplitudes for the brightness
variations in the UV and in theU band. Asmentioned
above, the probable errors in the estimated fluxes in
the UV, mid-IR and far-IR do not appreciably affect
the estimated bolometric flux of the star.
The bolometric fluxes of R CrB at its maxi-

mum and minimum L brightness are Fbol,max ≈
1.90 × 10−7 erg cm−2 s−1 and Fbol,min ≈ 1.24 ×
10−7 erg cm−2 s−1. Accordingly, the IR excesses
and effective optical depths are FIR,max ≈ 6.1 ×
10−8 erg cm−2 s−1, τeff,max ≈ 0.39 and FIR,min ≈
2.1 × 10−8 erg cm−2 s−1, τeff,min ≈ 0.19. Thus, the
range of optical-depth variations of the dust envelope
of R CrB in the visual is ∆τeff ≈ 0.2. At the same
time, theK–L color index of the IR excess associated
with the dust envelope’s radiation at its maximum
and minimum optical depths turned out to be the
same, ∼ 2m. 35. Consequently, the inner radius of the
dust envelope does not vary appreciably with changes
in its optical depth. In other words, although the
grain-condensation rate varies with time, the grain
condensation takes place at approximately the same
distance from the star.
In the case of a spherically symmetric dust en-

velope, the change in the observed bolometric flux
(object’s flux) is equal to the change in the bolometric
luminosity of the star: ∆mbol = ∆m∗0,bol. Correcting
the estimated visual magnitude of R CrB for absorp-
tion in the circumstellar envelope at its maximum and
minimum optical depths, we find ∆V0 ≈ ∆mbol ≈
0.49. Since∆m∗0,bol ≈ ∆V0 for yellow F supergiants,
we find ∆mbol = ∆m∗0,bol. Hence, the assumption
that the dust envelope is spherical withstands this
test. At the same time, we cannot reject a bipolar
model for the dust envelope in which there is no dusty
material in the line of sight based on such a test. In
this case, F∗0(λ) = F∗(λ); i.e., ∆m∗0,bol = ∆m∗,bol,
∆V0 = ∆V , and we must have ∆V ≈ ∆m∗,bol. We
can see from the table that ∆V ≈ 0.27, and the es-
timated value of∆m∗,bol is 0m. 24.

4.3. Color Characteristics of the Dust Envelope and
an Estimate of Its Optical Depth

from the L Brightness of the Star

Figure 5 presents (HIR, LIR), (KIR, LIR), and
(MIR, LIR) plots for variations in the dust envelope’s
ASTRONOMY REPORTS Vol. 46 No. 10 2002
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HKM magnitudes as a function of its Lmagnitudes.
These were calculated individually for each date of IR
observations of R CrB in its bright state assuming
that the J radiation of R CrB is due entirely to the
star. We estimated the brightness of the star in the
HKLM bands in accordance with the rules described
above. We then subtracted the stellar radiation from
the total radiation of R CrB and found themagnitudes
corresponding to the IR excess. Linear approxima-
tions of the above plots yield the relationships

HIR = 1.22LIR + 4.22, (9)

KIR = 0.97LIR + 2.35, (10)

MIR = 0.98LIR − 0.66. (11)

An approximation using a quadratic polynomial
virtually coincides with the linear approximation.
We can see from the above relationships that, on
average, changes in the dust envelope’s brightness
due to changes in its optical depth take place without
appreciable changes in its color characteristics. Thus,
we again come to the conclusion that the inner radius
of the extended dust envelope is constant, in contrast
to the dust-formation rate. The mean L brightness of
the dust envelope is LIR,mean ≈ 2.49, and its colors
are (H − L)IR,mean = 4.76 ± 0.4, (K − L)IR,mean =
2.28 ± 0.15, and (L−M)IR,mean = 0.70 ± 0.12.
Knowing the mean H magnitudes of the dust en-

velope and object, we can estimate the H brightness
of the star itself. Using (6), we estimate the J bright-
ness of the star and then of the dust envelope, which
is ≈ 10.16; the corresponding J −H color index is
≈ 2.95. The calculated values of these parameters in
the model for the star at its mean brightness (Fig. 3)
nearly coincide with these values. However, since the
contribution of the dust envelope’s radiation in the J
band is only a few per cent, and the actual dust grains
may differ from the model grains, this coincidence
should not be assigned too much importance. The
color temperature corresponding to the above J −H
color index is∼870 K.
Since the color characteristics of the dust envelope

are fairly stable, its bolometric magnitude (mIR,bol)
should vary in direct proportion to, e.g., its L mag-
nitude (LIR). Such a relation is, indeed, observed
between the estimates of these parameters at the
mean brightness of R CrB (FIR,mean), as well as at its
maximum and minimum L brightnesses (FIR,max and
FIR,min):

mIR,bol ≈ LIR + 4.55. (12)

At the mean brightness, the L magnitude of the dust
envelope is LIR ≈ 2.49.
Taking into account the fact that FIR = Fbol(1 −

exp(−τeff)), we can calculate the dependence τeff =
ASTRONOMY REPORTS Vol. 46 No. 10 2002
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the radiation of the dust envelope of R CrB. The lines
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f(mIR,bol), and, accordingly, τeff = f(LIR). Approxi-
mating the relationship LIR = f(L) derived for all the
dates of the IR observations with a quadratic poly-
nomial and substituting it into (12) and the function
τeff = f(LIR), we can estimate the bolometric mag-
nitude of the dust envelope and its optical depth from
theLmagnitude of RCrBwhen the star is in its bright
state:

mIR,bol ≈ 0.046L2 + 0.88L + 4.68, (13)

τeff ≈ 0.21L2 − 1.34L + 2.26. (14)
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near its deepest brightnessminimum in 1999. The dashed
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4.4. Characteristics of the Dust-Envelope Variability

Figure 6 shows the time dependence of the optical
depth of the dust envelope near the deepest mini-
mum in September 1999 calculated using (14). The
sharp transition from the decrease to the increase
of the optical depth and the nearly linear growth to
its maximum value in 2001 cannot be reproduced
in a model in which the dust-formation rate at the
inner boundary of the dust envelope varies smoothly,
e.g., according to a power law. This requires that the
dust-formation rate initially increase stepwise near
the minimum of the optical depth.
The solid line in Fig. 6 shows the calculated de-

pendence for the growth of the optical depth of the
dust envelope when the dust-formation rate at its
minimum increases stepwise by a factor of 4.3 and
then increases according to a power law ∝ t1.3 over
∼560 days, almost until the maximum of the optical
depth. The grain-condensation rate depends directly
on the gas density, i.e., on the stellar-wind inten-
sity. However, the changes of the stellar-wind inten-
sity had begun four years before the corresponding
changes in the grain-condensation rate. Recall that
four years is the time of flight of a grain from the star to
the inner boundary of the dust envelope at the stellar
wind velocity of ∼45 km/s; i.e., this is the time delay
between such phenomena as changes of the stellar-
wind intensity and of the dust-formation rate.
For such a delay, the stellar-wind enhancement

coincides in time with the beginning of a new phase
of activity of R CrB in the production of dust clouds,
initiated at the end of September 1995 by a very
deep and prolonged minimum in the visual light curve
(Fig. 1). The same time delay is observed between the
termination of the previous activity phase in 1989 (a
successive packet of deep minima in the visual light
curve) and the maximum of the LM brightness in
1994 (Fig. 1).
In other words, if we shift theL andM light curves

of R CrB back by ∼4 years, the LM minimum of
1999 will coincide with the termination of the phase of
quiescence in the production of dust clouds in 1995.
At the same time, themaximum of theLM brightness
will coincide with the termination of the phase of ac-
tivity in the production of dust clouds in 1989, and the
interval of temporary quiescence in their production
in 1989–1994 will coincide with the period of the
smooth decrease of the LM brightness of the star.
In fact, we initially estimated the time interval

needed to superpose these events to be ∼4 years.
Estimating the radius of the dust envelope from the
model calculations, we determined the stellar-wind
velocity to be ∼45 km/s. Note that the nebulae de-
tected around the stars FG Sge and V4334 Sgr,
which probably also have the evolutionary status of
born-again red giants, are expanding with approxi-
mately the same velocity.
Based on all these considerations, we conclude

that the active phenomena on the surface of R CrB
that stimulate the formation of clouds also stimulate
an enhancement of the stellar wind, which is reflected
in an increase in the optical depth of the extended
dust envelope ∼4 years later. In turn, the delay we
have found between these phenomena confirms that
the dust clouds form near the star.
We supplemented our L light curve of R CrB

with brightness estimates obtained by Strecker [28]
in 1968–1974 (35 points) and Feast et al. [8] in
1983–1991 (24 points), eliminated times of reduced
visual brightness of the star, and carried out a peri-
odogram analysis using the software of Yu.K. Kol-
pakov (http//infra.sai.msu.ru/prog/kolpakov). The
first harmonic of the semiregular cyclic changes in
the brightness of the dust envelope has a period
of ∼1206.6 d (∼3.3 years) and a total amplitude
for the brightness variations ∆L ≈ 0.8, while the
second harmonic has ∼4342 d (∼11.9 years) and
∆L ≈ 0.6. Figure 2 shows convolutions of the L light
curve of R CrB with these periods together with the
corresponding harmonics. The dates of their minima
are

MinL = 2442986 + 1206d.6E, (15)

MinL = 2442860 + 4342dE. (16)

In Fig. 1, the dates of minima are marked by
vertical bars above theL andM light curves. In 1999,
the minima of both harmonics coincided, and a very
deep minimum was observed in the L and M light
ASTRONOMY REPORTS Vol. 46 No. 10 2002
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curves of the star. Note that the estimated periods
of the harmonics depend fairly substantially on the
size of the series of observations being processed. In
particular, if we restrict the L brightness curve to our
own observations, the fundamental period becomes
∼ 1166d, and the calculated minimum of this har-
monic in 1999 occurs ∼2 months earlier than for the
harmonic with P ≈ 1206 d.
At the same time, if we process the entire series

of observations without omitting times of reduced
visual brightness of R CrB, the period of the first
harmonic decreases by only∼2.6 d (∼0.2%), becom-
ing ∼1204 d. The period of the 11-year harmonic
becomes ∼4251 d; i.e., it diminishes by only ∼2%.
Note that the average time interval between deep dips
in the visual brightness of R CrB is ∼1100 d [29].
Furthermore, the characteristic time interval between
groups of deep minima—i.e., between intervals of fre-
quent and infrequent appearances of such minima—
is ∼4400 d [30]. Note also that the colors of the
first harmonic in the JHKLM bands approximately
coincide with the average colors of the dust envelope.
In the optical, where the dust envelope is man-

ifest through its absorption of the star’s radiation,
the object’s brightness should vary in antiphase with
variations in the dust envelope’s brightness associ-
ated with changes in its optical depth. Using (15)
and substituting the average L brightness of R CrB,
we find that ∆τeff ≈ −0.34∆L. As already noted, τeff
differs from τ(V ) by only a few per cent for stars with
effective temperatures of 6500–7000 K and amor-
phous carbon grains, with τeff ≤ τ(V ). In addition, for
the small grains that make up the extended envelope,
τ(U) ≈ 1.8τ(V ).
Thus, if the dust envelope is spherically symmetric,

there should be a harmonic in the V and U brightness
variations of R CrB with a period of P ≈ 1206 d
and total amplitudes of ∆V ≈ 0.3, ∆U ≈ 0.5, which
should be in antiphase with the corresponding har-
monic of the dust envelope’s brightness variations,
whose amplitude is ∆L ≈ 0.8. However, a spectral
analysis of the V and U light curves of R CrB does not
reveal such a harmonic. As usual, times of reduced
visual brightness of R CrB were omitted from the
analyzed series of observations. This result was rather
unexpected for us. It turns out that the stellar wind
of R CrB is not spherically symmetric, and is less
intense along the line of sight.
Thus, the activity of R CrB, whose nature remains

unclear, is reflected in variations of the stellar-wind
intensity and, with a time delay, of the optical depth
of the dust envelope. The formation of dust clouds is
apparently also connected with this activity. However,
in order for a deep minimum to appear in the visual
light curve, a cloud must not only condense, but
ASTRONOMY REPORTS Vol. 46 No. 10 2002
condense in the line of sight; therefore, the sequence
of deep minima does not display obvious signs of
cyclicity. Nevertheless, during each activity period,
there appears, on average, one cloud in the line of
sight. This coincidence probably reflects the spatial
structure of active phenomena on the surface of the
star.

5. DUST CLOUDS

The appearance of dust clouds in the line of sight
results in a strong dip of the visual brightness of
the star. At the same time, the thermal radiation of
the clouds has not been detected [8, 11]. There is
no pronounced component with a color temperature
that appreciably exceeds the color temperature of the
extended dust envelope in the IR excess. Of course,
there should not be any such component if the dust
clouds condense far from the star.
It is obvious that the “hot” component must be

searched for when the background radiation of the
star and extended envelope is much decreased. Pre-
cisely such a unique case occurred in 1999, during
a deep minimum of the visual brightness of the star
superimposed on a record deep minimum of the dust-
envelope emission (Fig. 1). It is also obvious that
signs of the hot component should be searched for in
the J andH bands.
We have BV RI [23] and JHKLM (ET2) ob-

servations of R CrB for two dates during the 1999
minimum (JD 2451423 and 2451435). The estimated
brightness decreases of the star on these dates are
∆R ≈ 8.03 and 4.73,∆I ≈ 7.08 and 4.12,∆J ≈ 4.71
and 3.33, and ∆H ≈ 2.99 and 2.49, respectively. The
ratio A(JD 2451423)/A(JD 2451435) in the RIJH
bands is ∼1.70, ∼1.72, ∼1.41, and ∼1.20, respec-
tively.
It is natural to relate the drop in this ratio in the

JH bands to the background radiation of the dust
material, which begins to be significant in these bands
during the brightness minimum. To preserve the ratio
in the J band, the radiation of the dusty material (dust
envelope + dust clouds) must make up ∼76% of the
object’s radiation at the time of minimum brightness
of R CrB (JD 2451423): Jtotal ≈ 9.8, Jdust ≈ 10.1,
and J∗ ≈ 11.3. All estimates of the hot component’s
parameters given below refer precisely to this time.
Using the estimate of the mean J brightness of

the dust envelope obtained earlier and the fact that
the dust-envelope colors do not change significantly
with changes in its optical depth, we can estimate
the J brightness of the dust envelope, which corre-
sponds to its observed L brightness at the time of
minimum: J ≈ 11.35. We obtain the same value if we
assume that the dust envelope contributes ∼90% to
the object’s flux in theK band at the time of minimum
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brightness of R CrB, and that its colors are the same
as for the mean brightness.
Accordingly, the J magnitude of the hot compo-

nent of the IR excess is Jhot ≈ 10.5. In our view, this
is the maximum brightness that we can assign to the
dust clouds. In the J band, the clouds are the bright-
est component at the time of minimum brightness of
the star and dust envelope, and contribute ∼70% of
the object’s radiation.
Performing the same analysis with the H bright-

ness of the star, we obtain Htot ≈ 8.0, Hdust ≈
8.1, H∗ ≈ 8.10, Hhot ≈ 9.5, and, accordingly, (J −
H)hot ≈ 1.0. The color temperature corresponding
to this color index is ∼2000 K. In the K band, the
hot component contributes only ∼8% of the object’s
radiation.
If the cloud is optically thick and, accordingly, ra-

diates as a blackbody with the above temperature, its
bolometricfluxisFbol,hot≈4.4×10−14 erg cm−2 s−1 Å,
which comprises ∼1% of the mean bolometric flux
of the dust envelope and ∼0.3% of the mean flux of
R CrB. The size of the cloud is Rhot ≈ 0.5R∗. If it is
behind the star and its heated side is observed, it is a
distance r ≈ 10R∗ from the star.
Recall that we are considering the deep minimum

of the optical brightness of RCrB in 1999. Thismeans
that at least one dust cloud was certainly present in
the dust envelope. However, because of its consider-
able optical depth, its outer side was most likely cool,
so that its contribution to the total radiation of the
dust material was negligible. Of course, estimates of
parameters of the hot component should be treated
with a healthy scepticism, since it is difficult to isolate
the properties of this component owing to its low
brightness. We can be sure only that its bolometric
flux does not exceed a few per cent of the bolometric
flux of the dust envelope.
Isolation of the hot component in the IR excess of

RCrB is hindered by the considerable background ra-
diation of the always present extended dust envelope.
At the same time, the appearance of IR excesses in
the spectral energy distributions of the stars FG Sge
and V4334 Sgr—i.e., the appearance of dusty ma-
terial in their envelopes—has been directly observed
in 1992 and 1997. Without going into details, it is
reasonable to say that the color temperature of the
IR excess in the emission of both objects has been
∼1000 K since the time of its appearance [22, 31]. In
other words, the dust envelopes of these stars formed
from dust clouds that had condensed near the surface
of the star, since we have found no obvious signs of a
hot component in the IR excess from the very onset of
the dust formation.
Figure 3 clearly illustrates that the 0.7–0.9-µm

wavelength range is optimal for analyses of the optical
behavior of grains in dust clouds blocking the emis-
sion of the star, since the contribution of the dust en-
velope to the emission of the object is minimum there.
The contribution from emission lines of the gas enve-
lope is also minimum. In other words, the emission of
the star attenuated by the dust cloud dominates. This
is confirmed by the absence of appreciable changes
in the R− I color index during the star’s transition
from a blue to a redder color; i.e., during appreciable
changes of the B–V color index, which, as a rule,
accompany deep dips in the brightness of R CrB
[23, 25]. This dominance will be maximum when the
optical depth of the dust envelope is minimum, i.e.,
when its brightness is minimum. Therefore, the min-
imum of 1999 provided optimal conditions, not only
for searches for the clouds via their direct emission,
but also for analyses of their optical properties.
We used the BV RI observations of R CrB in

this minimum [23] to plot a (I, R− I) diagram. A
quadratic approximation to these data yields the re-
lationship I ≈ −10.6(R − I)2 + 28.3(R − I) − 6.34,
and, accordingly, AI/(AR −AI) ≈ −21.2(R − I) +
28.3. At the minimum brightness, R− I = 1.11 ±
0.07, and AI/(AR −AI) ≈ 5. For amorphous car-
bon grains with radius ≤0.1 µm, AI/(AR −AI) <
4 (∼2.5 for agr ≈ 0.01 µm), independent of whether
this ratio is calculated for the extinction or absorption
coefficient.
For grains ∼ 0.2 µm in size, absorption and scat-

tering at 0.7–1-µm already becomes neutral, so that
the value of AI/(AR-AI) tends to infinity. Thus, in
contrast to the small grains constituting the dust
envelope, the grains in the dust cloud must be large,
in order to provide sufficiently neutral absorption of
the stellar radiation up to the near infrared. We arrived
at the same conclusion from an analysis of the first
deep minimum in the light curve of Sakurai’s object
in 1998, if this minimum was associated with the
formation of a dust cloud in the line of sight [32].

6. CONCLUSION

Stellar winds are an essential characteristic of
supergiants, and create extended gaseous, and, if
the wind is sufficiently intense, gas–dust envelopes.
However, this term is rarely used for R CrB stars, and
it is not used at all when referring to dust envelopes.
Most attention has been concentrated on the forma-
tion of dust clouds, which, once they have formed,
make up the dust envelope of the star. At least we
are not aware of any papers in which dust clouds and
the extended dust envelope of R CrB are treated as
independent structural elements of the circumstellar
envelope from the point of view of their formation.
Nevertheless, it seems that they are, in fact, inde-

pendent structural elements. The extended envelope
ASTRONOMY REPORTS Vol. 46 No. 10 2002
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of R CrB forms from the usual supergiant stellar
wind, at a considerable (∼ 100R∗) and fairly constant
distance from the star, so that its color characteristics
do not change appreciably. In other words, it is a full
analog of the envelopes of supergiants, perhaps with
the one exception that the grain-condensation rate
at the inner boundary of the dust envelope can vary
appreciably. In turn, the clouds may form closer to
the star, possibly from gas clouds. Existing models
estimate this distance to be from∼ 2R∗ [1] to∼ 20R∗
[33].

The variations of the grain-condensation rate are
obviously connected to variations in the stellar-wind
intensity. In contrast to Miras, which display consid-
erable radial pulsations, the changes in the stellar-
wind intensity of R CrB must be related to activity on
the stellar surface, which may resemble phenomena
taking place on the solar surface. As is known, the
solar activity has an 11-year cycle; this is probably
a coincidence, but the same cycle is detected for the
stellar-wind variations of R CrB.

Solar activity is manifest in variations of the num-
ber of dark spots and flares. The structure of dark
magnetic spots in the atmospheres of R CrB stars
was investigated in [34]. There is no doubt of the
presence of spots on the solar surface; they are visible
with the unaided eye. We do not know whether spots
exist on R CrB stars. Soker and Clayton [34] studied
the structures of such spots supposing they do exist,
but their existence has not been proved. There has
been no dicussion of flares.

The cyclic variations in the stellar-wind intensity
of R CrB may provide indirect evidence for surface
activity, possibly somewhat different from that of the
Sun. These phenomena could initiate the formation of
dust clouds. Such phenomena could include outflows
of material during flares, as occur at the solar surface
above sunspot groups. The ejected clump of mate-
rial could be optically thick at visible wavelengths,
so that it blocks the direct stellar radiation, creating
conditions for grain condensation near the star. On
the other hand, such gas clouds could be the centers
of dust formation when they have moved to consider-
able distances from the star (r ≥ 10R∗), where grain
condensation becomes thermodynamically possible
without screening of the direct stellar light.
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Abstract—We used high-resolution spectra to compute model atmospheres to derive the atmospheric
abundances of moderate barium stars. Comparing our results with analogous data for normal red giants,
we find that the moderate barium stars appear to not differ systematically from normal red giants. Their
chemical abundance anomalies show the same patterns and can be interpreted in terms of evolutionary
effects: the evolutionary stage, mass, luminosity, and metallicity of the objects. c© 2002 MAIK “Nau-
ka/Interperiodica”.
1. INTRODUCTION

Red giants represent a heterogeneous group of
stars. Stars that have reached the giant stage in their
evolution generally move along the giant branch of
the Hertzsprung–Russell diagram, forming loops in
the diagram due to the activation of different nuclear
sources. The result is that, in contrast to the main
sequence, where each point region corresponds to a
concentration of stars with similar masses and ages,
a region of the giant branch can be populated by stars
with rather different masses and ages and, conse-
quently, with different chemical abundances in their
atmospheres.

In our paper [1], we studied the chemical abun-
dances of red giants in the young Hyades cluster,
and found the abundances of heavy elements (s-
process elements) to be solar. On the other hand,
similar studies of normal field red giants (with no
spectral peculiarities), which are presumably much
older than the Hyades, reveal appreciable excesses of
s-process elements in their atmospheres compared to
the Sun [2]. In the current paper, we study several field
giants that differ from normal giants in the presence of
stronger barium lines in their spectra.

Barium stars were first recognized as a special
class by Bidelman and Keenan in 1951 [3] in their
development of a two-dimensional spectral classi-
fication system. Their analysis of G–K stars using
low-dispersion spectrograms (76 Å per mm in the
photographic range) revealed objects with an abnor-
mally strong (compared to other stars of the same
spectral type) λ 4554 Å ionized barium line, whose
intensity was comparable to that in the spectra of S
stars. In addition, the SrII (λλ 4077, 4215 Å) lines
1063-7729/02/4610-0819$22.00 c©
and CH, C2, and CN molecular bands of these ob-
jects are strong and have intensities characteristic of
carbon stars rather than G–K giants. Bidelman and
Keenan [3] concluded that the spectral properties of
these objects did not fit the sequence of spectral types
and luminosity classes for normal stars and assigned
them to a special group—BaII stars, or barium stars.

The first high-dispersion spectroscopic observa-
tions of barium stars provided interesting information
on the abundances of various elements in their at-
mospheres. For example, it turned out [4, 5] that, in
addition to strong resonance BaII and SrII lines, the
spectra of barium stars also display lines of heavier
rare-earth elements, which are generally weaker than
BaII and SrII lines in the spectra of late-type stars,
so that they could not be detected in low-dispersion
spectrograms.

It was also noted that the lines of moderate-
atomic-weight elements (from Ca to the iron-group
elements) correspond to “normal” spectra that can
be described in terms of the MK-system standard
temperature sequence. The spectral classifications
of 20 barium stars were presented in [6] based on
the above two properties. Each star was assigned
a spectral type according to the MK criteria using
the line intensity ratios for elements with moderate
atomic weights, and a “barium degree,” i.e., the
degree of enhancement of lines of BaII and heavier
elements, with the Ba-line intensity given on a scale
from one to five.

Later, analyses of low-dispersion (∼ 80 Å per mm)
spectrograms identified stars with moderately strong
BaII lines, intermediate between those for normal
giants and BaII stars. In the spectral classification of
Morgan and Keenam [7], such objects are assigned
the designation Ba0 stars and are called moderate
2002 MAIK “Nauka/Interperiodica”
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barium stars, in contrast to the classical barium stars
(BaII stars). For such stars, the degree of BaII en-
hancement is assigned using a scale from zero to one.
Thus barium stars are considered to form two groups:
classical and moderate barium stars.

Considerable attention has been paid to these
objects, and numerous studies aimed at investi-
gating their nature have provided many interesting
results. The number of known barium stars has
also increased: whereas only five such objects were
presented in [3], a recent list of classical and moderate
barium stars [8] contains about 400 objects. However,
the number ratio of barium stars to normal cool giants
remains low, only 0.5–1% [9].

Quantitative, high-resolution spectroscopic stud-
ies have shown (see, for instance, [10, 11]) that, com-
pared to normal G and K giants, the atmospheres
of classical barium stars demonstrate a moderate
excess of carbon (by approximately 0.3 dex), ap-
proximately normal nitrogen and oxygen abundances,
and anomalously high abundances of heavy elements
(heavier than Fe) formed in the s process. Such abun-
dance anomalies are expected for stars on the asymp-
totic giant branch (AGB), when hydrogen and helium
burn in shell sources and the third deep dredge-up
occurs. However, the problem is that the luminosities
of classical barium stars are lower than expected for
AGB stars during this phase of their evolution [14],
so that the observed abundance anomalies cannot be
associated with this stage.

The discovery of binarity in barium stars became
key to understanding their nature. Many-year radial-
velocity observations have shown that virtually all
stars with barium degrees above Ba1 according to [6]
display radial-velocity variations and form wide pairs
[12–15]. According to current theories of stellar evo-
lution, the primary stars in binaries on the AGB ex-
perience intense mass loss and contaminate their
companion’s atmosphere with the products of helium
burning and the s-process; as a result, the companion
acquires the properties of a barium star, while the
evolved star loses its envelope and becomes a white
dwarf. It follows from mass-function estimates that,
if the mass of the new primary that has accreted
matter of the ejected envelope is 1.5 M�, its com-
panion’s mass should be 0.2–0.6 M� [8], so that
the companions should indeed be a white dwarfs.
These white dwarfs should be observable in the ul-
traviolet (UV), where they are brighter than the more
massive new primaries. In fact, searches for UV ra-
diation exceeding the contribution of the red giant
have been successful, demonstrating the presence
of white-dwarf companions associated with several
barium stars [16–18].
Studies of atmospheric abundances for moderate
barium stars are not as numerous as those for clas-
sical barium stars, but have resulted in several firm
conclusions:

(1) in contrast to classical barium stars, which
display overabundances of carbon, the C abundances
for moderate barium stars do not differ from those for
normal red giants [19, 20];

(2) the abundances of s-process elements are
higher than those for normal giants but lower than
those for classical barium stars [21, 22].

It is interesting that, according to [12], the issue of
binarity is not as clear for moderate barium stars as
it is for classical barium stars; many show no radial-
velocity variations. It is also claimed that the percent-
age of binaries among stars showing no enhancement
of s-process elements does not differ from the value
for normal G and K giants.

We included moderate and classical barium stars
in our studies of atmospheric abundances of red
giants belonging to different subgroups with specific
spectroscopic properties. These studies are based on
homogeneous, high-quality spectroscopic material
and the use of a single technique for determining the
abundances. Our hope is that comparative analyses
of data for different spectral subgroups will provide
trustworthy information on the effects of stellar evo-
lution in various phases. The current paper is devoted
to our results for moderate barium stars.

2. OBSERVATIONS AND REDUCTION

A list of our program stars is presented in Ta-
ble 1. We selected five moderate barium stars for
our study, as well as two normal red giants (ε Vir
and κ Oph) as comparison stars. The spectral types
for each of the stars are taken from [23]. Our spec-
troscopic observations were acquired in 1996–2001
with the 2.6-m Shain telescope of the Crimean As-
trophysical Observatory. The light detector was a
CCD camera installed in the first compartment of
the diffraction spectrograph, at the Coudé focus. The
dispersion was 3 Å per mm, the spectral resolution
was 0.05 Å per pixel, and all the spectrograms have
signal-to-noise ratios S/N > 100. The data reduc-
tion was performed using software developed at the
Crimean Astrophysical Observatory. The technique
used to measure the equivalent widths and derive
atmospheric parameters is discussed in detail in [2].
The measured equivalent widths can be found at our
web site, www.inasan.rssi.ru.

Our spectral analysis employed stellar model-
atmosphere grids computed with the ATLAS9 code
[24]. The Sun was chosen as the comparison star;
when computing relative chemical abundances, we
ASTRONOMY REPORTS Vol. 46 No. 10 2002
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Fig. 1. Chemical abundances derived from spectra of (a) moderate barium stars and (b) normal red giants, relative to the solar
abundances. The circles and asterisks show abundances derived from lines of neutral atoms and ions, respectively. Error bars
derived from the dispersion of values for individual lines are shown. If there is no error bar, the corresponding abundance was
derived from a single line.
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Table 1. Program stars and their adopted atmospheric parameters

No. HD Star Spectrum Teff, K log g ξ, km/s

Moderate barium stars

1 49293 18Mon K0+IIIa Ba0.2 4717 2.45 1.42

2 83618 ιHya K2.5III-IIIb Ba0.3 4355 1.95 1.47

3 133208 β Boo G8IIIa Ba0.3 Fe-0.5 5075 2.68 1.54

4 158899 λHer K3.5III Ba0.1 4180 1.57 1.34

5 176411 ε Aql K1-III CN0.5 Ba0.2 4691 2.35 1.39

Normal red giants

6 113226 ε Vir G8IIIab 5187 3.20 1.41

7 153210 κOph K2III 4593 2.52 1.14
used solar abundances for the same lines computed
for a Kurucz model with Teff = 5887 K, log g =
4.57, and Vt = 0.80 km/s, which was demonstrated
in [25] to provide the best representation of the solar
spectrum. The derived atmospheric parameters for
the program stars are collected in Table 1, and our
estimates of the abundances of 22 elements computed
using the corresponding model atmospheres are
presented in Table 2 and Fig. 1. Table 2 indicates
that the program stars have different metallicities.
Figure 1 shows the abundances of various elements
relative to the metallicity, i.e., the [El/M] values.
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Fig. 2. Excess sodium-to-iron abundance ratios in the
atmospheres of red giants compared to the solar values.
The circles and squares show data for normal giants and
moderate barium stars. The stars are numbered according
to Table 1.
3. ANALYSIS OF THE RESULTS

First, note that our technique for deriving the stel-
lar atmospheric parameters is based on the analysis of
absorption lines of iron-group elements [2]. Accord-
ing to [6], the relative abundances of these elements
in the spectra of barium stars do not differ from the
solar values, so that our estimates of the atmospheric
parameters should provide a good description of the
stellar line spectra, making our further analysis of the
atmospheric abundances reliable.

It follows from Table 2 and Fig. 1 that the program
stars exhibit different overabundances of Na, Al, and
Si. A similar result was earlier obtained for normal
red giants, as discussed in [2]. It was demonstrated
that the abundance excess for each of these elements
increased with the luminosity of the star and that, in
the case of Na, giants obeyed a relation similar to
that derived earlier for F supergiants [26–28]. This
suggested that the Na overabundances in supergiants
and giants had the same origin. Figures 2–4 dis-
play the relationships between the overabundances
[Na/Fe], [Al/Fe], and [Si/Fe] and the surface gravi-
ties from [2] for normal giants and supergiants (with-
out spectral peculiarities). The abundances of these
elements in the atmospheres of our moderate barium
stars are also plotted (the numbers refer to the num-
bering of the stars in Table 1), along with values for
three stars of this type studied by us earlier [2]. All
three figures demonstrate that the moderate barium
stars follow the same relations between overabun-
dance and surface gravity as the normal red giants.

Figure 1 also demonstrates that the abundances of
s-process elements in the atmospheres of moderate
barium stars are, on average, somewhat higher than
in the solar atmosphere, despite considerable star-
to-star variations. In our earlier abundance analysis
for s-process elements in red giants belonging to
ASTRONOMY REPORTS Vol. 46 No. 10 2002
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Table 2. Elemental abundances in the atmospheres of the program stars relative to the solar abundances

Moderate barium red giants Normal red giants

Element 18 Mon ιHya βBoo λHer ε Aql ε Vir κOph

n [El/H] n [El/H] n [El/H] n [El/H] n [El/H] n [El/H] n [El/H]

Na I 2 0.44 2 0.24 2 0.30 2 0.37 2 0.31 2 0.38 2 0.29

Mg I 4 0.27 1 0.19 2 0.21 2 0.43 2 0.19 2 0.25 2 0.40

Al I 2 0.25 2 0.04 2 0.19 1 0.14 1 0.36 2 0.31 1 0.32

Si I 11 0.17 10 0.06 14 0.14 7 0.22 6 0.13 20 0.24 14 0.21

Ca I 4 0.15 3 0.17 1 −0.08 2 −0.11 6 −0.08 5 0.27 3 0.12

Sc II 5 0.14 6 −0.07 6 0.08 6 −0.01 5 0.00 9 0.26 8 0.11

Ti I 28 0.01 25 −0.06 16 0.04 15 −0.11 17 −0.03 36 0.22 29 0.10

V I 6 0.10 7 −0.00 13 0.02 4 −0.08 6 −0.03 24 0.23 7 0.15

Cr I 20 0.04 16 −0.05 11 0.04 8 −0.09 5 −0.08 32 0.29 16 0.08

Cr II 4 0.09 3 0.02 6 0.02 1 −0.06 3 −0.04 8 0.28 3 0.14

Mn I 3 0.10 3 0.07 2 −0.12 2 −0.12 1 −0.01 4 0.26 – –

Fe I 67 0.08 69 −0.06 40 0.07 43 0.00 52 −0.05 111 0.24 125 0.15

Fe II 6 0.05 8 −0.05 6 0.05 2 −0.11 6 −0.07 12 0.23 6 0.09

Co I 17 0.20 20 0.02 6 0.07 6 0.08 1 −0.01 22 0.27 11 0.18

Ni I 18 0.13 13 −0.09 17 0.05 16 −0.01 16 −0.05 38 0.19 25 0.16

Y II 6 0.29 3 −0.00 3 0.15 3 0.08 2 −0.14 5 0.32 4 −0.11

Zr II 2 0.30 – – 1 0.45 1 0.10 – – 2 0.44 1 0.62?

Ba II 2 0.55 2 0.22 – – 3 0.28 2 −0.01 2 0.26 3 0.21

La II 2 0.31 2 0.28 1 0.43 2 0.36 2 −0.13 2 0.23 3 0.13

Ce II 4 0.23 3 0.22 3 0.21 2 0.15 2 0.13 4 0.38 4 −0.02

Pr II 1 0.30 2 0.37 2 0.22 2 0.12 1 0.04 2 0.30 3 0.09

Nd II 7 0.27 5 0.17 4 0.22 4 0.23 3 0.09 7 0.32 9 0.01

EuII 2 0.29 2 0.12 2 0.16 1 0.17 2 0.06 2 0.27 2 0.21

[M/H]∗ +0.09 ± 0.06 −0.03± 0.04 +0.04 ± 0.02 −0.06± 0.06 −0.04 ± 0.02 +0.24± 0.03 +0.13 ± 0.03
∗ The mean metallicity is defined as the mean abundance of iron-group elements.
different subgroups [2], we found that slight anoma-
lies of these elements were characteristic not only
of moderate barium stars, but also of a number of
normal field red giants. A comparison of the s-process
element abundances for stars of the two subgroups
demonstrated that these abundances were somewhat
higher for barium stars than for normal red giants
[2, Fig. 5]. Only three moderate barium stars were
analyzed in [2]. Accordingly, we have carried out a
similar comparison based on all the stars studied here
and in [2]. In Fig. 5, similar to Fig. 5 in [2], we plot the
average abundances of these elements for 12 normal
ASTRONOMY REPORTS Vol. 46 No. 10 2002
red giants and 8 moderate barium stars. This figure
shows that the abundances of s-process elements
are somewhat higher for moderate barium stars than
for normal giants, in agreement with the conclusions
of [2]; note, however, that the difference between the
values formally does not exceed the observational er-
rors (0.10–0.13 dex).

Thus, it follows from Table 2 and Figs. 1–5 that
the chemical abundances of the studied moderate
barium stars show no significant differences from the
abundances of normal red giants.

Let us consider the positions of the studied stars
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12 normal giants and 8 moderate barium stars.

in the Hertzsprung–Russell diagram, as shown in
Fig. 6. We have plotted evolutionary tracks in accor-
dance with [29], and chosen log g and log Teff for the
coordinates. For each star, the dots show the posi-
tions (i) corresponding to the log g and Teff derived
from our spectral analysis (Table 1) and (ii) corre-
sponding to coordinates computed from photometric
and parallax measurements (the intersections of the
two error bars); in both cases, the size of the bars
corresponds to the accuracy of the data. The two
positions for each star are connected with a straight
line, and the star’s number in Table 1 is indicated.
Let us consider the computation of a star’s co-
ordinates in the Hertzsprung–Russell diagram us-
ing the second technique in more detail. We em-
ployed the parallax data obtained by the HIPPAR-
COS satellite [30], the apparent magnitudes from
the Bright Star Catalogue [23], and the bolometric
corrections from [31]. Each star’s temperature was
derived from the 13-color photometry of [32] as fol-
lows. We first plotted a number of color–temperature
calibration curves. The calibration was based on da-
ta for field stars whose effective temperatures were
derived accurately from observations of their infrared
fluxes. To do this, we selected 42 stars from those
listed in [31] with atmospheric parameters charac-
teristic of the red giants studied, namely, 4000 <
Teff < 6000, 1.5 < log g < 3.0, and mean metallicity
[M] = −0.07± 0.17. Using the values of Teff from [31]
and the color indices from [32], we plotted a total of
12 color–Teff relations; Fig. 7 shows the С(52–99)–
Teff calibration relation as an example. Each of the
relations was approximated with a third-order poly-
nomial. The mean temperature error for the approx-
imation was about 50 K. The polynomial coefficients
are collected in Table 3. A star’s effective temperature
can be calculated using the formula

Teff = A0 +A1C +A2C
2 +A3C

3, (1)

where Ñ is the value of a color index from [32] and A1

are the corresponding approximation coefficients from
Table 3. We determined the effective temperatures of
our program stars using all 12 calibration curves. The
resulting temperatures for a given color index along
with its average value and the scatter for each of the
stars are given in Table 4.

Figure 6 shows that, as a rule, a star’s position
according to its spectroscopic coordinates is to the
left of its photometric position. This means that the
effective temperature derived spectroscopically is al-
most always somewhat higher than the photometric
estimate. We came to a similar conclusion about the
Sun in [33], where we also noted that a single ef-
fective temperature could not represent equally well
the solar continuum energy distribution and solar line
spectrum, possibly due to imperfections in the model
atmospheres (some factors not taken into account in
their computation). Thus, it appears that this con-
clusion is also relevant for red giants. Figure 6 also
shows that the spectroscopic log g values are lower
than the corresponding parallax values. This has been
known for a long time, and has been extensively dis-
cussed in the literature (see, for example, [34] and
references therein). The origin for this behavior could
likewise be imperfections in the model atmospheres.

Note, however, that slight deviations of a star’s
position in the Hertzsprung–Russell diagram when
ASTRONOMY REPORTS Vol. 46 No. 10 2002
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Table 3. Coefficients of the color index–temperature approximations based on the 13-color photometry of [32]

Color
index

A0 A1 A2 A3

33–52 7005.9 −2369.4 810.59 −113.84

35–52 6752.9 −2368.9 922.06 −152.58

37–52 6997.1 −2550.4 965.23 −154.24

40–52 9198.8 −6404.2 3081.1 −561.11

45–52 19832 −76291 130760 −77990

52–58 12461 −34928 53440 −29022

52–63 12615 −21427 19698 −6531.8

52–72 13685 −19217 13948 −3588.9

52–80 13921 −15798 9135.5 −1872.5

52–86 13180 −13215 6950.9 −1305.7

52–99 12169 −10293 4798.5 −807.07

52–110 11310 −7835.3 3124.5 −457.97

Table 4. Temperatures derived using the color indices of [32] and Eq. (1)

Color index 18Mon ιHya β Boo λHer ε Aql ε Vir κOph

33–52 4611 4338 4897 4139 4631 4944 4550

35–52 4607 4353 4894 4141 4627 4930 4527

37–52 4630 4342 4950 4140 4648 4948 4539

40–52 4596 4321 4919 4147 4670 4968 4551

45–52 4555 4330 4849 4220 4747 4975 4644

52–58 4679 4374 5000 4208 4691 4966 4553

52–63 4690 4298 4977 4167 4656 5007 4558

52–72 4673 4342 4990 4197 4726 4972 4550

52–80 4675 4333 4960 4208 4773 4991 4571

52–86 4685 4324 4956 4200 4750 5007 4567

52–99 4674 4325 4968 4193 4744 5026 4585

52 -110 4634 4288 5036 4188 4743 5024 4616

Teff, K 4642 4331 4950 4179 4700 4980 4567

σTeff, K 41 21 49 29 50 30 31
using atmospheric parameters obtained using differ-
ent techniques does not impede qualitative compar-
isons of star-to-star chemical abundances. Table 2
indicates that the largest excesses of s-process ele-
ments are found for ι Hya and λ Her (Stars 2, 4 in
Table 1), which, according to Fig. 6, are in a later
stage of evolution than the remaining the stars. A
ASTRONOMY REPORTS Vol. 46 No. 10 2002
comparison of the abundances of β Boo, 18 Mon,
and λ Her (stars 3, 1, and 4, respectively), which
have approximately the same mass (about 3 M�),
also shows that the excess of s-process elements
increases toward later stages of evolution. In [35], our
comparison of the abundances of s-process elements
for four stars with approximately equal temperatures
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Table 5.Metallicities and abundances of CNO-cycle elements in normal red giants and moderate barium stars according
to [36–46].

[Fe/H] 12C/13C [C/Fe] C/N

Normal giants (53 stars) −0.10± 0.21 17.2 ± 8 −0.19 ± 0.15 1.72 ± 0.8

Our 12 stars −0.00± 0.13 17.0 ± 6 −0.22 ± 0.14 1.62 ± 0.6

Moderate barium stars (20 stars) −0.09± 0.15 18.7 ± 9 −0.30 ± 0.20 1.10 ± 0.5

Our 7 stars −0.02± 0.15 19.0 ± 4 −0.37 ± 0.23 0.91 ± 0.5
but different masses indicated that the overabun-
dance of s-process elements increased with mass.
The origin of this tendency is probably that the con-
vection responsible for the dredge-up of products of
nuclear reactions in the stellar interiors to the star’s
atmosphere is stronger in higher-mass stars, and can
reach deeper layers. We reach a similar conclusion
based on a comparison of the s-process abundances
in the atmospheres of stars with similar temperatures
(Table 1, Fig. 6): β Boo, whose mass exceeds that
of ε Vir, also displays a higher excess of s-process
elements.

Thus, we conclude that the overabundances of s-
process elements in the studied stars are probably
influenced by several parameters: the star’s evolution-
ary stage (age), mass, and, possibly, metallicity [33].

We can derive information about the evolutionary
stage of the stars from their atmospheric abundances
of light elements: C, N, and O. For example, a star’s
ascent to the giant branch is characterized by the
development of a convective envelope and the dredge-
up of products of theCNO-cycle to the stellar surface,
accompanied by a decrease of the carbon abundance
and increase in the nitrogen abundance in the star’s
atmosphere (compared to the solar value). Thus, the
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Fig. 6. Hertzsprung–Russell diagram for the studied
stars (see text for details).
C/N abundance ratio is sensitive to this process (it
decreases). The later evolutionary stage of shell burn-
ing of helium and hydrogen is also accompanied by
convective mixing and the dredge-up of the products
of helium burning to the atmosphere, so that this
phase is characterized by an increased abundance of
carbon, compared to red giants undergoing the first
stage of convective mixing. This is observed for M
and S giants on the AGB and for classical barium
stars: in the binary hypothesis, this is explained by
the addition to the giants’ atmospheres of matter from
the envelope ejected by their companions, which have
evolved into white dwarfs and are thus enriched in
the products of helium burning. Different amounts of
added material will result in different strengths of the
“barium features” characterizing the barium subtype.

Determination of the C, N, and O abundances
is beyond the scope of our present study. Therefore,
we attempted to compare the abundances of these
elements in moderate barium stars and normal red
giants using data from the literature. We found such
data for 53 normal giants (including the 12 stars
studied by us previously) and 20 moderate barium
stars (7 of them our program stars) in [19, 20, 36–
44]. Table 5 presents mean abundance ratios and
metallicities calculated using the data of [19, 20, 36–
44], separately for all stars of a given subgroup and
for the stars considered in this paper and in [2]. The
similarity of the metallicities for all the stars testifies
that all of them belong to the same Galactic pop-
ulation, namely the thin disk. It also follows from
Table 5 that, within the errors, the abundances for
our program stars coincide with those for all stars
of the corresponding subgroup; i.e., the stars stud-
ied here are typical of their subgroups. In addition,
the atmospheric carbon abundance in the moderate
carbon stars is not enhanced compared to the value
for normal giants, in contrast to the case of classical
barium stars, which exhibit carbon excesses. This is
in agreement with the results obtained for the same
stars in [19, 20]. Note also that although the [C/Fe]
abundances for themoderate barium stars and normal
red giants coincide within the errors, this abundance
ratio is still somewhat lower for the barium stars. We
ASTRONOMY REPORTS Vol. 46 No. 10 2002
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can explain this fact, as well as their simultaneously
somewhat lower C/N ratios, if we assume that mod-
erate barium stars experience deeper convective mix-
ing and, consequently, a larger dredge-up of CNO-
cycle products compared to normal red giants. The
agreement of the carbon isotope ratios, 12C/13C, for
normal red giants and moderate barium stars is con-
sistent with the hypothesis that the latter stars ex-
perience more developed convection. Detailed studies
of the red giant phase show that this carbon isotope
ratio decreases sharply as soon as the convective
envelope reaches the layer enriched in 13C and trans-
ports this material to the stellar surface but remains
virtually unchanged during the remainder of the red
giant phase, as the convection reaches deeper layers
[45]. Thus, the abundances of CNO-cycle elements
in the atmospheres of moderate barium stars provide
evidence that this cycle occurs in the interiors of these
stars, and do not support the binary hypothesis for
moderate barium stars.

Finally, let us make the following remark. The
classification of barium stars is based primarily on the
intensity of the BaII λ 4554 Å line. Moderate bar-
ium stars are defined as those intermediate between
normal giants and classical barium stars, and display
only slightly enhanced intensities of this barium line.
Note that the line originates from the ground level and
is very strong, so that appreciable non-LTE effects
are expected. In addition, since ion lines in the spectra
of red giants are sensitive to the value of log g, this
line’s intensity can differ somewhat for stars with
different surface gravities. This is probably the main
reason why a star’s classification as a moderate bar-
ium star is not unambiguous, so that different authors
ASTRONOMY REPORTS Vol. 46 No. 10 2002
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have sometimes classified the same stars as normal
red giants or moderate barium stars. For example, the
list of barium stars in [8], which includes both clas-
sical and moderate barium stars, contains more than
four hundred stars; however, it does not include about
a dozen fairly bright stars in the catalog [23] described
as moderate barium stars with barium degrees from
0.2 to 0.4. In this context, it is also interesting to com-
pare the two versions of the Bright Star Catalog, [23]
and [46]: some moderate barium stars in the earlier
version are not indicated as having enhanced barium
lines in the later version [46], whereas several stars are
classified as moderate barium stars in [46], although
they were considered normal red giants in [23]. We
conclude that some red giants have been assigned to
the class of moderate barium stars when the intensity
of their BaII λ 4554 Å line was somewhat above the
mean value, possibly because of their higher lumi-
nosity (or lower log g) due to their more advanced
evolutionary stage (associated with either their ages
or a higher rate of evolution for more massive stars).

Since normal red giants and moderate barium
stars both display overabundances of s-process el-
ements, it is of interest to consider the positions in
the Hertzsprung–Russell diagram of both groups of
stars, whose atmospheres have different s-process
element excesses. We carried out such a compari-
son for the stars studied here and in [2]; thus, we
considered only stars whose atmospheric abundances
were determined using the same technique and uni-
form spectroscopic material, so that the compari-
son should yield trustworthy results. Figure 8 shows
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a Hertzsprung–Russell diagram plotted in accor-
dance with the computations of [29]. The positions of
stars are based on their parallaxes and photometric
measurements (see above). We subdivided the stars
into three groups based on the overabundances of s-
process elements we derived (see the figure captions).
The moderate barium stars are plotted as squares.
This figure shows that normal red giants and mod-
erate barium stars occupy the same region of the
diagram. Stars with higher excesses of s-process
elements tend to occupy positions near tracks cor-
responding to higher masses or to be located higher
on the red giant branch, providing evidence for an
evolutionary origin of the anomalous abundances of
s-process elements in their atmospheres.

Thuswe conclude that moderate barium stars with
barium degrees from 0.1 to 0.8 probably do not differ
systematically from normal red giants. The abun-
dance anomalies for these two types of star follow
the same relations, and can be explained in terms
of evolutionary effects (the stage of evolution, mass,
luminosity, and metallicity of the object in question),
so that the binary model invoked for classical barium
stars is not needed. Both the normal red giants and
the moderate barium stars occupy the same region
of the Hertsprung–Russell diagram. For some stars,
the effects of evolution have made their s-process
element abundances higher, and such stars have been
described as barium stars with moderate “barium
degrees” in various earlier works on spectral classi-
fication.
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Abstract—The spectrum of cyclotron radiation produced by electrons with a strongly anisotropic velocity
distribution is calculated taking into account higher harmonics. The motion of the electrons is assumed to
be ultrarelativistic along the magnetic field and nonrelativistic across the field. One characteristic feature of
the resulting spectrum is that harmonics of various orders are not equally spaced. The physical properties
and observed spectra of four X-ray pulsars displaying higher cyclotron harmonics are analyzed. It was
shown that at least in one of them, the cyclotron feature can apparently be only an emission line. Moreover,
the observed harmonics are not equidistant, and display certain other properties characteristic of emission
by strongly anisotropic ultrarelativistic electrons. In addition, there are indirect theoretical arguments
that the electrons giving rise to cyclotron features in the spectra of X-ray pulsars are ultrarelativistic
and characterized by strongly anisotropic distributions. As a result, estimates of the magnetic fields of
X-ray pulsars (which are usually derived from the energies of cyclotron lines) and certain other physical
parameters require substantial revision. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A cyclotron line in the spectrum of an X-ray
pulsar was first identified for the object Her X-1 in
1977 [1]. Reports of observations of higher cyclotron
harmonics in the spectra of several X-ray pulsars
in binary systems (X0115+63 [2], Vela X-1 [3, 4],
4U1907+09 [5, 6], and A0535+26 [7]) were pub-
lished later.1 Two cyclotron harmonics were also
observed in the spectrum of 1E 2259+586 [8]; how-
ever, the nature of this object remains unknown and
will not be discussed here. At least three harmonics
have been detected in the spectrum of X0115+63
[9, 10]. The presence of higher cyclotron harmonics
seems to be established most firmly for this source.
Unfortunately, the situation for the other objects is
less clear, since only weak second harmonics have
been detected in their spectra. Nevertheless, even
these first observations are very interesting, since they
can be used to address many theoretical problems
connected with the radiation of X-ray pulsars. The
aim of the present paper is to consider the physical
conditions for the formation of higher cyclotron
harmonics in pulsar spectra. We find that a number
of problems related to the structure of the emitting
region of these sources that have remained poorly
understood can be easily solved. Here is a list of

1Only references to the first publications for each source are
given here.
1063-7729/02/4610-0830$22.00 c© 2
such problems, which will be discussed in more detail
below.

First, it remains unknown if the cyclotron features
in the spectra of many X-ray pulsars are absorption
or emission lines. As we show below, at least in one
of them (in X0115+63), the lines are most likely
emission lines.

Second, the velocity distribution of the electrons
emitting the cyclotron lines is not entirely clear.
We can reasonably assume that the velocity of their
motion across the magnetic field is fairly low, i.e.,
weakly relativistic (or even nonrelativistic). Other-
wise, the cyclotron line would have the characteristic
synchrotron shape, with a large number of harmonics
forming a quasi-continuum. In fact, we can usually
see only one (the fundamental) harmonic. A few
exceptions are listed above, but these sources also
possess moderate transverse velocities. The electron
velocities along the magnetic field are unclear. It
is usually assumed that these velocity are small,
considerably less than c. Nevertheless, it is possible
that the electron-velocity distributions are strongly
anisotropic, so that the electron velocities are weakly
relativistic across the magnetic field and ultrarela-
tivistic along the field. As was shown in the analysis
of the spectrum of the X-ray pulsar Her X-1 in
[11], there are strong arguments suggesting that the
electrons forming the cyclotron line are ultrarela-
tivistic, and that their velocities are characterized by
002 MAIK “Nauka/Interperiodica”



CYCLOTRON SPECTRUM 831
very strong anisotropy.2 Unfortunately, if only one
cyclotron harmonic is observed (as for Her X-1), full
verification of this possibility purely through spectral
analyses is not possible, so that some additional con-
siderations (the dependence of the spectrum on the
phase of the pulsar, and so on) must be used. The sit-
uation is completely different if several harmonics are
observed. As will be shown below, cyclotron radiation
by ultrarelativistic, anisotropic electrons displays very
specific features. In particular, harmonics of various
orders are not equally spaced. Therefore, by analyzing
the spectrum, we can determine unambiguously if
the motion of the emitting electrons along the field
is ultrarelativistic or not.

We will use the following model for the emitting
region (“hot spot”) of an X-ray pulsar, put forward in
[11]. When the accretion flow approaches the surface
of the neutron star, a shock wave is formed at some
distance from this surface, and a turbulent region with
temperature Te forms below the shock. The heated
surface of the neutron star, characterized by the tem-
perature Ts, is located below the turbulent region. The
ultrarelativistic electrons emitting the cyclotron line
are produced at the shock front; their optical depth is
assumed to be negligible.

2. CALCULATION OF THE RADIATION
SPECTRUM IN A COMOVING COORDINATE

FRAME
Let us calculate the magnetobremsstrahlung ra-

diation from electrons located in a constant magnetic
field and possessing a strongly anisotropic distribu-
tion. We assume that the electron velocities along the
magnetic-field direction (denoted V ) are all equal and
that the motion of the electrons along the magnetic
field is ultrarelativistic. (The situation for the trans-
verse distribution will be specified below.) Let us use
a reference frame moving along the magnetic field
with a constant velocity V . Although this coordinate
system is not fully associated with the electrons, we
will call it the comoving frame, while the initial fixed
reference frame will be called the laboratory frame.
The electrons have only a transverse velocity compo-
nent υ in the comoving frame. It is assumed in our
model that υ � c, and the velocity distribution is of
the form3

dn = Nexp
(
−meυ

2

2T

)
d

(
−meυ

2

2T

)
. (1)

2Here and below, a strongly anisotropic distribution will be
defined as a velocity distribution for electrons whose motion
along the magnetic field is ultrarelativistic and across the
field is nearly nonrelativistic. This subject will be discussed
in more detail below.

3We emphasize that, here and in (31), υ is the total velocity in
the comoving frame, not the velocity component perpendic-
ular to the magnetic field in the laboratory frame.
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In other words, this is a nonrelativistic, two-dimensional,
Maxwellian distribution with temperature T , where
T � mec

2. Let us first find the radiation field in the
comoving frame. Further, we will be able to derive
the distribution of radiation in the laboratory frame by
performing a Lorentz transformation.

According to [12], the emission of each harmonic
in the nonrelativistic case occurs at the fixed fre-
quency

ωn = nωH , (2)

where ωH = eH
mec is the Larmor frequency of an elec-

tron and the intensity of the radiation at the nth
harmonic emitted by a particle moving with velocity
υ � c across the magnetic field H is given by the
formula

F ′
n =

n2e4H2

2πm2
ec

2

(
1 − υ

2

c2

)
(3)

×
[
ctan2θ′J2

n

(
n
υ

c
sin θ′

)
+
υ2

c2
J̇2

n

(
n
υ

c
sin θ′

)]
,

where θ′ is the angle between the magnetic-field vec-
tor and the direction toward the observer, J and J̇ are
the corresponding Bessel function and its derivative,
and a prime denotes quantities measured in the co-
moving frame. Here and below, the intensity is defined
as the energy emitted by the system into unit solid
angle per unit time.

The Bessel function can be expanded in aMaclau-
rin series in the vicinity of zero, retaining only the

first term if the quantity n
υ

c
cos θ′ is not large. Using

the fact that
(
1 − υ2

c2

)
� 1, we obtain after simple

manipulation the asymptotic expansion

F ′
n =

3n2σT cH
2

16π2

1
n!

(nυ
2c

sin θ
)2n
(

2 − sin2 θ′

sin2 θ′

)
, (4)

where the Thomson scattering cross section σT =
8π
3

(
e2

mec2

)2

has been introduced. To obtain the total

intensity of the radiation emitted by N particles dis-
tributed in accordance with (1), we must integrate (4)
over the distribution:

I ′n =

∞∫
0

F ′
n d
meυ

2

2T
. (5)

After dividing this integral by N , we obtain the
average intensity of the radiation emitted by one par-
ticle:

I ′n =
3σT cH

2

16π2

n2n+2

n!
(sin θ′)2n (2− sin2 θ′)

sin2 θ′

(
T

2mec2

)n

.

(6)
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We can see that lim
n→∞

I ′n = ∞ when θ′ �= π
2 . Obvi-

ously, this is related to the limited applicability of the
asymptotic expansions of the Bessel function used
in (4). In fact, expression (6) represents a zeroth
approximation to the intensity. Taking into account
the following terms of the expansion, we find that the
condition for the applicability of (6) can be formulated

n(n+ 2)
(n+ 1)

T

mec2
� 0.3. (7)

Formula (6) yields substantially overestimated values
for large transverse temperatures, and is not applica-
ble at all when

n(n+ 2)
(n+ 1)

T

mec2
≈ 1. (8)

As noted above, the radiation intensities in the
laboratory and comoving frames are related by an or-
dinary Lorentz transformation. The comoving frame
moves with respect to the laboratory frame with the
velocity V . Let us introduce the notation4

γ =
1√

1 − V 2

c2

, µ =
1

1 − V
c cos θ

, (9)

µ̂ =
1

1 + V
c cos θ′

.

Using the results of [12], we can easily derive the
relations

ω = ω′

√
1 − V 2

c2

1 − V
c cos θ

= ω′µ

γ
, (10)

cos θ =
cos θ′ + V

c

1 + V
c cos θ′

= µ̂
(

cos θ′ +
V

c

)
. (11)

We also emphasize the important relation

µµ̂ = γ2. (12)

Uusing (9)–(12), we can easily obtain the relations

sin θ′ =
γ

µ̂
sin θ =

µ

γ
sin θdo′ =

µ2

γ2
do, (13)

where do and do′ are elements of solid angle in the
laboratory and comoving frames.

Next, according to [12], the transformation of the
intensity from the comoving to the laboratory frame
takes the form

I =
µ3

γ2
I ′. (14)

4As in the previous formulas, primed quantities refer to the
comoving frame, and unprimed quantities refer to the labo-
ratory frame or are frame independent.
Radiation at some specific nth harmonic in the co-
moving frame is monochromatic with frequency nωH .
In the laboratory frame, the frequency of the radiation
emitted by one particle is an single-valued function of
the observation angle θ (and, therefore, of θ′). Let us
find this function in explicit form. According to (10),

ω =
µ

γ
ω′. Substituting nωH instead of θ′ into this and

using (12), we obtain

ω =
µ

γ
nωH =

γ

µ̂
nωH =

(
1 +

V

c
cos θ′

)
γnωH . (15)

If V � c and the angles θ′ are not very close to π, we
have 5 (

1 +
V

c
cos θ′

)
≈ 1 + cos θ′. (16)

We obtain in the above approximation

sin θ′ = 1 −
(

ω

γnωH
− 1
)2

= 2
ω

γnωH
−
(

ω

γnωH

)2

.

(17)

We emphasize that (17) is valid only when ω̃ ∈
[0; 2nγωH ] (since θ′ ∈ [0;π], so that sin θ′ ∈ [0; 1]).

Since the frequency of the radiation is a single-
valued function of the angle, we can use this fre-
quency, instead of the angle, as the variable specify-
ing the direction. Substituting expression (6) for the
intensity I ′n into (14), replacing sin θ′ in accordance

with (17), and using the relation µ = γ
ω

nωH
[as fol-

lows from (10)], we finally obtain

In =
3γσT cH

2

16π2

n2n+2

n!
(
ω

nωH
)3 (18)

×
(

2
ω

γnωH
−
(

ω

γnωH

)2
)n−1

×
(

1 +
(

ω

γnωH
− 1
)2
)(

T

2mec2

)n

.

5The condition for smallness of the angle, when (16) is appli-
cable, can be written

(1 + cos θ′) − (1 + V
c

cos θ′)

(1 + V
c

cos θ′)
� 1.

If V
c
� 1, this condition is not valid only for angles θ′ such

that π − θ′ ≤ 1

γ
.We can see that the solid angle correspond-

ing to these plane angles is extremely small
(
∼ π

γ2

)
. Since

the intensities of all harmonics in the comoving frame have
no features when θ′ � π, the relative fraction of radiation
corresponding to this solid angle is obviously also very small(
∼ 1

4γ2

)
and can be neglected.
ASTRONOMY REPORTS Vol. 46 No. 10 2002
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This formula represents the intensity of the radi-
ation emitted by one particle at the nth harmonic,
where the directional dependence of the intensity is
expressed in terms of the frequency emitted in that
direction.

3. CALCULATION OF THE OBSERVEd
CYCLOTRON SPECTRUM

Let us now find the radiation spectrum detected
by an observer an infinite distance from the star.
It is known (see, for example, [13]) that magneto-
bremsstrahlung radiation by ultrarelativistic particles
is highly directional, and is nearly completely con-
centrated in a narrow cone (with an opening angle
of about � 1

γ ) along the direction of the particle’s
velocity (in the case under consideration, along the
magnetic field). Therefore, the radiation detected by
an observer at an infinite distance at any particular
time is produced by a very small part of the emitting
region, where the magnetic field is directed precisely
toward the observer. The linear size of this region is
on the order of R 1

γ , where R is the star’s radius.

Let us assume that the electrons are uniformly
distributed over this part of the emitting region with
surface density ρ, that their distribution function has
the form (1), and that the magnetic field is con-
stant and perpendicular to the stellar surface. Let
this surface be separated into bands of width Rdϕ,
which are symmetric with respect to the line from the
neutron-star center to the observer. Here, ϕ is the
angle between rays drawn from the stellar center to
the observer and a given point on the stellar surface
(i.e., the latitude of this point). Let us consider one of
these bands. Its area is 2πR2 sinϕdϕ, and the number
of emitting electrons in this band is

ρ2πR2 sinϕdϕ. (19)

Since we have assumed above that the magnetic field
is everywhere perpendicular to the stellar surface, the
angle between the normal to this surface and the
direction toward an observer is equal to the angle be-
tween the magnetic field and the direction toward the
observer. As follows from geometrical considerations,

ϕ = θ and dϕ = dθ. (20)

The frequency of the radiation emitted by the band is
given by (15), where θ can be replaced by ϕ:

ω =
µ

γ
nωH =

nωH

γ(1 − V
c cosϕ)

. (21)

The angle ϕ is not absolutely constant within the
band, and changes by an amount dϕ. As a result, the
radiation emitted by the band is not monochromatic,
ASTRONOMY REPORTS Vol. 46 No. 10 2002
and covers some frequency interval dω. Let us calcu-
late the width of this interval. Differentiating (21) with
respect to ϕ, we obtain for V

c ∼ 1

dω = nωH
µ2

γ
sinϕdϕ. (22)

Therefore, the band contributes to the total spec-
trum of the emitting region in the frequency interval
[ω − dω;ω], where ω and dω are given by (21) and
(22). Moreover, it can easily be deduced that the cor-
responding interval for the total spectrum is produced
only by electrons in this band.

As follows from (22),

sinϕdϕ = dω =
µ2

γ

dω

nωH
. (23)

Substituting (23) into (19), we obtain for the number
of particles dq emitting in the band

dq = 2πρR2 γ

µ2

dω

nωH
. (24)

Let do be the solid angle subtended by the observer
at the neutron-star surface. Then, the total energy
received by the observer from the band under consid-
eration during a time dt will be

dE = Idqdtdo,

where I is the intensity emitted by one particle. Sub-
stituting (24) for dq, using (10), and dividing both
sides of the equality by dωdodt, we obtain an expres-
sion for the spectral energy density from the star Pn;
i.e., for the amount of energy emitted by the star per
unit frequency interval into unit solid angle per unit
time:

Pn = I
2πρR2

γ

nωH

ω2
. (25)

Dividing this expression by �ω, we make the trans-
formation from the spectral energy density Pn to the
spectral particle-flux densityQn. Let us introduce the
dimensionless frequency

ω̃ =
ω

γωH
. (26)

Substituting formula (18) for the cyclotron intensity
emitted by one particle into (25) and using the relation

3cσTH
2

8π�ωH
2

=
e2

�c
= λ � 1

137
(where λ is the fine-structure constant), we finally
obtain

Qn =λρR2n
2n

n!

(
2
ω̃

n
−
(
ω̃

n

)2
)n−1

(27)

×
(

1 +
(
ω̃

n
− 1
)2
)(

T

2mec2

)n

.
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Fig. 1. Spectrum of cyclotron radiation emitted by an
X-ray pulsar containing four harmonics, calculated using
(27). The transverse temperature of the emitting electrons
is T = 20 keV. The dimensionless frequency is plotted on
a linear scale along the horizontal axis, and the number of
particles on a logarithmic scale along the vertical axis.

This formula determines the number of photons of the
nth harmonic emitted at some time by the star per
unit frequency interval into unit solid angle per unit
time (i.e., the instantaneous observed spectrum of the
pulsar). If the physical conditions are the same over
the entire surface of the spot, this spectrum coincides
with the time-averaged spectrum of the pulsar, with
a coefficient corresponding to the fraction of time the
hot spot is observed. Since the transformation (17) is
valid for ω̃ ∈ [0; 2n], formula (27) is valid when

0 ≤ ω̃ ≤ 2n. (28)

Physically, this inequality reflects the fact that, ac-
cording to (10), the photon frequency cannot increase
by more than the factor 2γ in the transformation from
the comoving to the laboratory frame, and all the pho-
tons have the frequency ωn = nωH in the comoving
frame. Therefore, there are no photons with frequen-
cies exceeding 2γnωH in the laboratory harmonic
spectrum. Precisely this restriction is responsible for
the sharp cut-off in the spectrum of the first harmonic.
 

1

 
Energy, keV

 
, (

 
keV

 
–1

 
 cm

 
–2

 
 s

 
–1

 
)

0 2 4 6 8

 

Dimensionless frequency

 

(

 

ω

 

/

 

γω

 

H

 

)

0.1

0.01

0.001

Fig. 2. Energy spectrum of cyclotron radiation by an
X-ray pulsar containing four harmonics. The transverse
temperature of the emitting electrons is T = 20 keV.
The dimensionless frequency is plotted on a linear scale
along the horizontal axis, and the emitted energy on a
logarithmic scale along the vertical axis.

We have neglected the gravitational redshift when
deriving (27) and in subsequent relations. When this
redshift is fairly small (the stellar radius R is far from
the gravitational radius rg), it can easily be taken into
account by substituting the quantity

Ω =
ω

γωH

√
1 − rg

R
(29)

in place of the frequency given by (26). Nevertheless,
we shall primarily use the previously derived formula
(27).

Combining harmonics of several orders (begin-
ning with the first) and using the constraint (28),
we obtain the resulting cyclotron spectrum. Here
and below, only the first four cyclotron harmonics
will be used to construct the spectra, while lines of
higher orders will be neglected. Let us assume that
the distance to the pulsar is r = 3.5 kpc, the radius
of the neutron star is R = 10 km (these correspond
approximately to the parameters of X0115+63), and
that the surface density of the radiating particles is
ASTRONOMY REPORTS Vol. 46 No. 10 2002
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∼ 1016 cm−2. The value of �γωH will be taken to
be 10 keV, which is also in reasonable agreement
with the energy of the first harmonic observed in the
spectrum of X0115+63 at∼ 20 keV.

The energy distribution of the photons that should
be detected by an observer on the Earth for a trans-
verse temperature of the emitting electrons T =
20 keV is presented in Fig. 1. We can see that these
harmonics are very broad and overlap each other. In
addition, they are clearly not equally spaced; in par-
ticular, the maximum of the second harmonic nearly
coincides with the maximum of the first harmonic.
The first harmonic possesses a second maximum
at ω � 0, which is somewhat weaker than the main
maximum, since higher harmonics are also added to
the main maximum.

It is usual to depict the frequency dependence of
the total photon energy rather than of the number
of photons. Figure 2 presents this dependence for
the same transverse temperature T = 20 keV. The
formula describing this spectrum can be obtained by
multiplying (27) by �ω. As a result, the maxima of
the harmonics will be shifted; in particular, the max-
imum of the second harmonic will not coincide with
the maximum of the first harmonic and will appear
distinct. In addition, the maximum at ω � 0 disap-
pears. However, as before, the spectral features are
not equidistant, and the harmonics are very broad and
overlap each other.

These effects have a simple qualitative explana-
tion. Let us consider the emission of photons in the
comoving frame. First, we must answer the question
of which photons will reach the distant observer. It
is obvious that these will be photons moving away
from the star in the laboratory frame, i.e., those for
which θ ≤ π

2 . According to (10), this corresponds to
the angles 0 ≤ θ′ ≤ π − 1

γ in the comoving frame.6

Therefore, the observer will detect nearly all the pho-
tons, apart from those emitted precisely toward the
star in the comoving frame.

As was noted above, the energy of all photons cor-
responding to a single harmonic is the same in the co-
moving frame. Nevertheless, the coefficient of trans-
formation of the photon frequency from the comoving
to the laboratory frame is not constant, and depends
strongly on the angle θ′. Using (10), we can easily
show that the frequency of photons emitted precisely
toward the observer (θ′ � 0) increases by the factor
2γ, the frequency of photons emitted perpendicular
to the direction toward the observer (θ′ � π/2 in the
comoving frame) increases by the factor γ, and the
frequency of photons emitted at the angle θ′ = π − 1

γ

6Here and below, we assume that the laboratory frame moves
ultrarelativistically with respect to the comoving frame.
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Fig. 3. Diagram of the directivity of the first (solid curve),
second (dashed curve), and tenth (dotted curve) cyclotron
harmonics. The scales are arbitrary. The direction of the
magnetic field is marked by the arrow.

decreases by the factor γ. This obviously leads to
considerable broadening of the lines. In addition, the
equidistant character of the lines will be disrupted.
This can be interpreted as follows. According to (6),
most photons associated with the first harmonic are
emitted at angles θ′ � 0. Therefore, their frequency
increases by the factor 2γ, and the maximum of the
first harmonic occurs at 2γωH . On the other hand,
most photons associated with the second and higher
harmonics are emitted perpendicular to the direction
toward the observer (θ′ � π/2), and particles with
θ′ � 0 are virtually absent (Fig. 3). The frequencies
of these photons increase only by the factor γ, so that
the maxima of higher harmonics are located at

ω = γωn = γnωH , n > 1. (30)

In particular, the maxima of the first and second har-
monics coincide. Since the harmonics overlap, their
maxima are shifted, and relation (30) is not precisely
satisfied. The resulting spectrum differs substantially
from a spectrum with equidistant features.

We have considered above only radiation by elec-
trons whose velocities along the field are exactly the
same. At the same time, a real ensemble of electrons
will certainly be characterized by some distribution of
the momentum component along the field. Therefore,
the total velocity distribution of the emitting electrons
can be written

dn = f(p‖)exp
(
−meυ

2

2T

)
dp‖d

(
meυ

2

2T

)
. (31)
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This distribution will considerably affect the observed
spectrum of an X-ray pulsar. In particular, the first
harmonic may be transformed from a sharp peak (as
in Fig. 2) to a broad line. Therefore, it is interesting
to answer the following question: can the distribution
f(p‖) in (31) be very broad for a real source, and can
it result in the transformation of separate harmonics
into a continuous spectrum?

As is noted above, ultrarelativistic particles can be
produced by collisionless shocks formed in the accre-
tion flow. They do not leave the shock, and oscillate at
the shock front. Let us suppose that such oscillations
are roughly harmonic. Then, the particle momentum
will vary as p = p0 cosαt, where α is the oscillation
frequency. Since the oscillations are ultrarelativistic,
the momenta of the particles are proportional to their
Lorentz factors γ (p ∼ γ), so that the γ values vary in
the same way:

γ = γ0 cosαt. (32)

The distribution of the corresponding ensemble of
particles along the field can be represented

dn =
N

πγ0

√
1 −

(
1 − γ

γ0

)2
dγ; γ ∈ [1; γ0]; (33)

i.e., the distribution is characterized by a sharp peak
with its maximum at γ � γ0. Of course, real distribu-
tions can differ considerably from (33); nevertheless,
they can be sufficiently narrow that the individual
cyclotron harmonics are not transformed into a con-
tinuous spectrum.

4. DISCUSSION

Among all the X-ray pulsars in which high cy-
clotron harmonics were found, of greatest interest
is the source X0115+63. Its spectrum exhibits har-
monics of at least three orders. Let us consider in
more detail the high-energy spectra of these sources,
since they contain the features of the most interest to
us. The spectrum in this region possesses a quasi-
power-law character with an exponential cut-off (if
cyclotron features are not taken into consideration),
as is very typical for X-ray pulsars. Spectra of this
form are supposed to be produced by Comptonization
of relatively cool radiation by hot electrons, consid-
ered in detail [15]. The resulting spectrum for energies
above the cut-off atEc is approximately aWien spec-
trum with the characteristic temperature Tc equal
to the temperature of the hot electrons Te [15]. It
is formed by photons that have undergone a large
number of collisions with the electrons, and have
therefore been heated to the temperature Te. On the
other hand, the photons forming the power-law part
of the spectrum have experienced only a few collisions
with hot electrons, and have not reached thermal
equilibrium. As a result, the power-law spectrum at
each specific frequency contains fewer photons than
a Planck spectrum with temperature Te.

To form an absorption line in such a spectrum,
the electrons must have a temperature below T . Even
if we assume that the electron-velocity distribution
differs considerably from Maxwellian, the situation is
unlikely to change fundamentally. In any case, the
characteristic energy of motion of the electrons across
the magnetic field should not exceed Te. According
to [6], the temperature Te for X0115+63 is 17.4. If
the electron temperature is unimportant (if it is much
lower than mec

2 ≈ 500), then the ratio of their opti-
cal depths for cyclotron radiation (absorption) at two
neighboring harmonics is7

τn+1

τn
=
n(n+ 2)
n+ 3

2

(
1 +

1
n

)2n+2( kT

2mec2

)
. (34)

Consequently, if the electron temperature satisfies the
condition

T < Te ∼ 20 keV, (35)

then their optical depth at the nth a harmonic should
decrease rapidly with increasing harmonic number.
In particular, the optical-depth ratio for the second
and first harmonics should not exceed 2

5 . Therefore,
the second harmonic must be formed closer (at any
rate, not farther) to the neutron-star surface than
the first harmonic (because the matter is much more
transparent to the radiation corresponding to the sec-
ond harmonic). In this case, the second harmonic is
formed in a region with a strong magnetic field and
must be shifted to the hard range from the first har-
monic. In other words, the energy ratio of the maxima
of the first and second harmonics must be no less than
2 (w2

w1
≥ 2). The authors of [9] actually reported that

the cyclotron lines in the spectrum of X0115+63 are
not equidistant (they considered the lines as absorp-
tion ones). However, the second harmonic is shifted to
the soft range (the w2

w1
ratio is 1.7). Therefore, the cy-

clotron feature observed in the spectrum of this object
is unlikely to be an absorption one. The experimental
spectrum of X0115+63 (see, e.g., [10]) shows that
even if the observed lines are assumed to be emission
ones, they are not equidistant.

In addition, the lines are very broad and overlap-
ping. All these characteristic features of the cyclotron

7The Kirchhoff law for radiation is used to generalized formula
(34) below to absorption. Strictly speaking, this law holds
only under local thermodynamic equilibrium. However, on
the one hand, our analysis is qualitative and, on the other
hand, the Kirchhoff law holds good for the problem under
consideration.
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spectrum are usually explained by the complex geom-
etry of the emitting region (a hot spot on the surface
of the neutron star). The broadening of the line and
its transformation to a broad band are thought to
be due to variations in the intensity of the magnetic
field within the emitting region,8 while the higher
harmonics are formed in parts of the hot spot where
the magnetic field is weaker than in the regions of for-
mation of themain harmonic, so that their frequencies
are shifted with respect to the fundamental frequency,
ωn < nω1.

Unfortunately, this explanation runs into serious
problems. It is not difficult to estimate the relative
broadening of lines due to the above mechanism.
First, we have

∆ω
ω

=
∆H
H
. (36)

Let us assume that a neutron star is characterized
by the standard radius (R = 10 km) and mass (M =
1.4M�), a dipolar magnetic field

Hr =
m
r3

cos θ, Hθ = − m
2r3

sin θ, (37)

and a temperature at the foot of the accretion column
Te ∼ 10 keV. Then, the height of the hot region is
approximately determined by the usual barometric
formula

∆r =
kTe

mHg
,

where k is the Boltzmann constant, mH the mass
of the hydrogen atom (the dominant component of
the accretion gas), and g the free-fall acceleration at
the neutron-star surface. Substituting the numerical
values, we obtain ∆r ∼ 0.7 m. The relative variation
in the magnetic field of the form (37) within this
distance from the neutron-star surface is

∆H
H

= 3
∆r
R

∼ 2 × 10−4.

Consequently,
∆ω
ω

∼ 2 × 10−4. Further, let us esti-

mate the variations in the magnetic field over the spot.
If the angular scale of the spot is χ, then, as obviously
follows from (37), the corresponding relative variation
in the magnetic field will be

∆H
H

=
3
8
χ2.

According to [16], the angular size of the spot is

χ � sinχ = 7.455 × 10−4H− 2
7L

1
7 ,

8In the nonrelativistic case, cyclotron radiation (absorption)
occurs at a single frequency, which depends only on the
magnetic-field intensity, in accordance with (2).
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Fig. 4. Energy spectrum of cyclotron radiation by an
X-ray pulsar containing four harmonics. The transverse
temperature of the emitting electrons is T = 20 keV. The
scales are logarithmic along both axes.

where L is the luminosity of the X-ray pulsar.
The luminosity of the pulsar X0115+63 is L�
1037 erg/s [2], while the magnetic field (derived from
the energy of the cyclotron line using the nonrela-
tivistic formula) would be at least 7 × 1011 G. Hence,

χ � 0.06, i.e.,
∆ω
ω

=
∆H
H

≈ 1.4 × 10−3.

Therefore, the broadening or shift of the cyclotron-

line frequency due to the source geometry is
∆ω
ω

≤
2 × 10−3. Of course, this is completely inadequate to

explain the observed width of the lines
(

∆ω
ω

∼ 0.2
)
.

Moreover, to reproduce the non-equal spacing of the
lines, it is necessary to suppose a complex (and,
therefore, quite artificial) temperature distribution
over the spot.

Thus, we cannot explain the observed width of the
cyclotron lines, their deviation from an equidistant
distribution, or their overlapping using only geomet-
rical considerations. The most probable and natural
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explanation of all these properties is that the electrons
giving rise to the cyclotron lines are ultrarelativistic,
and so have a very anisotropic distribution of the form
(31). Radiation produced by such particles possesses
precisely these features. Therefore, the presence of
several broad cyclotron lines separated by unequal
distances in an X-ray pulsar’s spectrum represents
a strong argument in favor of our mechanism for the
formation of the cyclotron features. The spectrum of
cyclotron radiation calculated using (25) is plotted in
Fig. 4 on a log–log scale for a transverse temperature
of 20 keV. There is an obvious similarity between
the observed spectrum of X0115+63 in [10] and the
calculated spectrum in Fig. 4. Although the first har-
monic in Fig. 4 represents a sharp peak, whereas it
is quite broad in the observed spectrum, this could
be explained as an effect of the velocity distribution
(31) of the emitting electrons along themagnetic field.
This same distribution should also result in additional
broadening of the cyclotron lines.

The calculated cyclotron spectrum displays an-
other very interesting feature: as we can see in Fig. 2,
the dips between neighboring harmonics are located
at nearly equal distances from each other. There-
fore, if these decreases in intensity in the observed
spectrum were interpreted as absorption lines, they
would appear to be equidistant. This is probably why
the cyclotron features in the spectra of X0115+63,
Vela X-1, 4U1907+09, and A0535+26 have been
interpreted as a set of equidistant absorption lines.
However, as is demonstrated above, they are more
likely to be emission rather than absorption lines.

We have already noted that ultrarelativistic, aniso-
tropic electrons can be produced by a collisionless
shock in the accretion flow. As is shown in [17, 18],
such shocks can indeed form, and the correspond-
ing electrons will have a strongly anisotropic velocity
distribution. This is due to the fact that the electrons
are accelerated primarily along the magnetic field. In
addition, the transverse component of their momenta
rapidly decreases due to radiative cooling, while the
component along the field changes relatively little.
The estimation of the electron temperature performed
in [17, 18] yielded values T ∼ 10 MeV, corresponding
to γ ∼ 20; i.e., the electrons are ultrarelativistic.

Note also that there is considerable indirect evi-
dence that the particles forming the cyclotron lines
in the spectra of X-ray pulsars are ultrarelativistic,
primarily associated with discrepancies in estimates
of the magnetic fields of these objects [11].

The pulsar Her X-1 was considered in detail in
[16]. In general, its rotation speeds up, but it expe-
riences deceleration in some intervals [19]. Conse-
quently, its period is close to the equilibrium period;
i.e., the angular velocity of rotation of the neutron star
together with its magnetosphere is close to Keplerian
at the Alfven radius. We can use this fact to estimate
the magnetic field of this pulsar, which turns out to
be relatively small, about H = 3 × 1011 G. In addi-
tion, radio pulsars in binary systems possess anoma-
lously weak magnetic fields, H � 108–1011 G [20].
Their formation as the result of the evolution of a
pair containing an X-ray pulsar could be naturally
explained if these pulsars had comparatively small
magnetic fields, H < 3 × 1011 G. Mihara et al. [21]
explained the observed 35-day cycle of Her X-1 as
the result of periodic eclipses of the emitting region
on the neutron-star surface by the accretion disk. For
this mechanism to operate, the disk must be located
at a sufficiently short distance from the surface; i.e.,
the field must beH < 1011 G.

At the same time, a cyclotron line at energy
35–56 keV is observed in the spectrum of Her X-1.
If the nonrelativistic formula (2) is applied, this
corresponds to a magnetic field of (3–5) × 1012 G.
This contradiction appears to be due to the fact that
the electrons emitting the cyclotron line are actually
ultrarelativistic. In this case, as is shown above, the
energy of the first (fundamental) harmonic increases
by the factor 2γ. Therefore, the nonrelativistic formula
gives a substantially (by a factor of 2γ) overestimated
value for the magnetic field. Thus, adopting the
hypothesis that the velocities of the electrons emitting
the cyclotron line are ultrarelativistic along the field
makes it possible to avoid contradictions between
estimates of the pulsar’s magnetic field given by
various methods; this represents weighty indirect
evidence in favor of our mechanism for the formation
of the cyclotron radiation.

Another argument supporting this mechanism is
the observation of correlated variations in the energies
of the cyclotron lines of some pulsars and in their
luminosities [22]. This correlation can be explain in
a natural way by our model. The luminosity of the
hot spot is comparable to the Eddington luminosity;
i.e., the radiation pressure appreciably affects the ac-
cretion rate. If the luminosity increases, the accretion
flow will be substantially slowed. As a result, the
intensity of the shock decreases, and the mean energy
of the ultrarelativistic particles produced by the shock
decreases. Consequently, the energy of the cyclotron
lines also decreases [11]. However, we emphasize that
it is recent observations of higher harmonics and their
deviations from an equidistant spectral distribution
that represent the first direct evidence that the elec-
trons emitting the cyclotron lines are ultrarelativistic
and have very anisotropic distributions of the form
(31).

In this mechanism for the formation of the cy-
clotron lines, we must know the electron Lorentz
factor γ to determine the pulsar’s magnetic field. In
ASTRONOMY REPORTS Vol. 46 No. 10 2002
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turn, this factor depends on the physical conditions
in the accretion flow, in particular, in the collisionless
shocks. It is possible that different types of X-ray pul-
sars have different shock structures, and, therefore,
different characteristic γ values.

Accretion in low-mass binary systems occurs via
the flow of material through the inner Lagrange point
when the donor star fills its Roche lobe, whereas
accretion in massive systems occurs via the capture
of material from the powerful stellar wind of the O–
B companion, which does not fill its Roche lobe. It
may not be a chance coincidence that all four sources
displaying several cyclotron harmonics are associated
with massive systems, so that the second type of
accretion is realized. In this case, the conditions at the
front of the collisionless shock may be more favorable
for the ultrarelativistic electrons to acquire greater
momentum transverse to the magnetic field, resulting
in the appearance of higher cyclotron harmonics in
the pulsar spectrum.

5. CONCLUSION
The presence of several cyclotron harmonics in the

spectra of X-ray pulsars provides important informa-
tion about their physical properties.

First, in several cases, it makes the interpretation
of the cyclotron feature as an absorption line doubt-
full.

Second, if the cyclotron emission lines are not
equidistant, this argues strongly that the electrons
emitting these lines are ultrarelativistic and have a
very anisotropic distribution. Emission by such elec-
trons displays characteristic properties that are not
typical of emission by nonrelativistic particles and
which are actually observed in the observed spectra of
X-ray pulsars. There is also other (indirect) evidence
supporting this mechanism for the cyclotron-line for-
mation.

Thus, the cyclotron radiation of X-ray pulsars
is most likely produced by anisotropic ultrarela-
tivistic electrons. As a result, the nonrelativistic
formula (2) considerably overestimates the pulsar
magnetic fields. Themagnitude of this overestimation
depends on the distribution function (31) of the
emitting electrons in the corresponding shocks. We
cannot rule out the possibility that this function may
be different for different types of X-ray pulsars. Sub-
sequent studies of the physical processes occurring
in the accretion flows of these objects may help shed
light on this problem.

Thus, investigations of the spectra of X-ray pul-
sars containing several cyclotron harmonics may en-
able us to refine estimates of their magnetic fields and
thereby to resolve questions concerning the structure
and evolution of these objects.
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Abstract—Cross sections for the excitation of transitions in the tantalum atom not related to the ground
state have been measured using extended crossed beams and optical spectroscopy. The total excitation
cross sections for 23 energy levels of TaI have been determined. The accuracy of known transition proba-
bilities that can be used to find branching ratios is analyzed. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
Atomic constants form the basis for solving a

large number of problems in modern astrophysics.
One subject of primary importance is, of course, the
probabilities of radiative transitions. However, as the
scope of investigations expands and the number of
objects studied increases, reference data on the cross
sections of electron–atom collisions also often be-
come important.

Unfortunately, neither the completeness nor the
accuracy of available data on atomic constants are
satisfactory. This is especially true with regard to
cross sections Q for the excitation of atoms via elec-
tron collisions [1]. While both experimental and theo-
retical results have been obtained by many groups for
inert gases and some low-temperature elements, data
of only one group are often available for many met-
als with moderate evaporation temperatures (1000–
2000 K). For elements with evaporation tempera-
tures of 2000–3000 K, there have been only a few
experimental studies carried out using the extended
crossed-beam method and several theoretical studies
by R.K. Peterkop, in which the cross sections were
calculated using the Born method. Finally, there are
no published results for higher-temperature elements
(T > 3000 K), in particular, for the tantalum atom,
which we consider here.

The radiative transition probabilities Aki have
been more thoroughly studied, since the necessary
experiments can be conducted using gas-discharge
radiation sources, while available methods for study-
ing electron–atom collisions are based on the use of
crossed beams. The intensity of optical radiation in
this latter case is usually several orders of magnitude
lower than in gas-discharge sources. The situation
becomes especially difficult when determining atomic
constants for high-temperature elements.

Extensive data on the transition probabilities of
the tantalum atom were obtained in [2] using pho-
tographic photometry. A modern method, based on
1063-7729/02/4610-0840$22.00 c©
a combination of photoelectric measurements of the
branching ratios (BR) and the radiative lifetimes τ ,
was used in the later work [3]. Reasonably accurate
values of τ were taken from earlier work by the same
group [4]. In this way, the probabilities of transitions
from 35 fairly low levels of TaI in the energy range
18 500–35 500 cm−1 were determined in [3].

Our present work deals with experimental deter-
minations of 73 excitation cross sections for tantalum
lines that do not originate from the ground level.

2. THE EXPERIMENTAL

We used an extended crossed-beam method in
which the optical emission by excited atoms from the
region of beam crossing is detected.

To form the atomic beam, tantalum was evapo-
rated from an autocrucible produced by melting tan-
talum rods by heating them with an electron beam.
The general design of the apparatus and a detailed
discussion of the extended crossed-beam method can
be found in [5, 6]. It is currently the only setup en-
abling studies of atomic excitation for any evaporation
temperature.

The action of the autocrucible is made possible by
the very high power loss via the surface emission of
the melted metal. The losses via heat transfer from the
metal to the graphite substrate were very small due
to the small contact area between the tantalum rods
and substrate. The absence of direct contact between
the melt and substrate enabled us to considerably
increase the lifetime of the substrate and ensured the
absence of carbides in the melt and atomic beam. The
density of atoms in the region where the electron and
atom beams intersected was 2.1 × 109 cm−3 at the
melt surface temperature of 3400 K.

When tantalum is evaporated, not only the ground
level 5d36s2a4F3/2, but also other low-lying levels
of the same term with J = 5/2, 7/2, and 9/2 are
2002 MAIK “Nauka/Interperiodica”
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populated. If the distribution of atoms in these levels
is assumed to be close to that for thermodynamic
equilibrium, we obtain the following estimates for the
populations as fractions of the total density of atoms
in the beam (where the numbers in parentheses repre-
sent the level energies in cm−1): 40.6% for a4F3/2(0),
26.1% for a4F5/2(2010), 15.3% for a4F7/2(3963),
and 9.5% for a4F9/2(5621). The total population of
the ground-term levels is 91.5% of the total number
of atoms in the beam; another 6.0% is associated with
the three quartet levels 5d36s2a4P1/2,3/2,5/2, located
above 6000 cm−1. Finally, the last 2.5% corresponds
to the total population of the five levels of the sextet
term 5d46sa6D (J = 1/2–9/2) with energies above
9700 cm−1. Since almost all real objects have sim-
ilar temperature distributions, using these results as
reference data when investigating specific problems
should not lead to appreciable errors.

The spectral resolution of our equipment is one
of the highest achieved in beam experiments, about
0.1 nm. The characteristic width of the electron en-
ergy distribution in the range 20–250 eV is below
1.0 eV (for 90% of the beam electrons). The current
density of the electron beam is below 1.0 mA/cm2.

When we work with high-temperature elements,
the presence of bright background radiation from the
surface of the melted metal is an important factor,
which considerably restricts the spectral range that
can be studied. The power of this emission in our
experiment was several kW. None of the diaphragms
can completely eliminate scattered radiation, espe-
cially when the electron and atom beams are consid-
erably extended (∼ 190 mm) along the line of sight of
the optical system. Due to this factor, measurements
with tantalum can be conducted only at λ < 370 nm.
However, the following two circumstances must also
be taken into consideration.

(1) Placing astronomical instruments beyond the
Earth’s atmosphere and constructing orbiting tele-
scopes removes certain previous restrictions on the
spectral ranges used in observational astronomy.

(2) Using reliable information on the branching
ratios makes it possible to find the excitation cross
sections for spectral lines in the visible and infrared
with satisfactory accuracy if the excitation cross sec-
tion for at least one transition in the ultraviolet was
measured for the corresponding upper level.

The errors in the relative values of the cross
sections are 10–25%. The absolute values of the
cross sections are determined with an accuracy of
±25 . . .±40%. More complete information on the
techniques and procedures associated with experi-
ments with extended crossed beams and a discussion
of various sources of errors are given in [5, 6].
ASTRONOMY REPORTS Vol. 46 No. 10 2002
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Fig. 1. Optical excitation functions of tantalum. The
curve numbers correspond to column no. 9 in Table 1.

3. EXCITATION CROSS SECTIONS
OF TaI: RESULTS AND DISCUSSION

Optical emission spectrum generated by inelastic
collisions between the beam of monoenergetic elec-
trons and the tantalum atoms was detected when
the energy of the exciting electrons was 50 eV. We
measured the dependence of the excitation cross sec-
tions on the energy of the colliding electrons (i.e.,
the optical excitation functions, OEF) for the most
intense lines at energies of 0–250 eV.

Over 100 excitation cross sections for TaI spec-
tral lines were obtained in the interval 230–370 nm,
none of which can be reliably identified with TaII.
Results for resonant transitions, as well as competing
nonresonant lines, are discussed in [7]. We describe
here our data for transitions from upper levels that are
not connected to the ground level via intense allowed
transitions in this spectral range.

The results of these measurements are presented
in Table 1, which contains the wavelength λ, type of
transition and inner quantum number J , energies of
the low Elow and upper Eup levels, cross sections for
an electron energy of 50 eVQ50 and at the maximum
of the OEF Qmax, and the position of this maximum
E(Qmax). The numbers in the OEF column corre-
spond to the notation in Fig. 1.

The exact wavelengths, types of transitions, J , and
level energies were taken primarily from [8, 9]. Only
the energies, J , and parities are known for most of
the upper levels, while the configurations and terms
are not established. We introduced some additions to
this classification using the data of [10, 11] on the
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Table 1. Excitation cross sections for spectral lines of the tantalum atom

λ, nm Transition J Elow,
cm−1

Eup,
cm−1

Q50,
10−18cm2

Qmax,
10−18cm2

E(Qmax),
eV

OEF Iλ/gA

1 2 3 4 5 6 7 8 9 10

238.000 5d36s2a4F– 9/2–7/2 5621 47625 19.7 –

239.630 5d36s2a4F– 9/2–11/2 5621 47339 15.5 12.0

243.991 5d36s2a4F– 5/2–5/2 2010 42982 20.8 0.465

244.394 5d36s2a4P– 3/2–3/2 6068 46974
}

43.7
–

244.413 5d46s a6D– 3/2 - 3/2 9975 50877 –

247.462 5d36s2a4F– 5/2 - 3/2 2010 42408 68.1 6.09

251.978 5d36s2a4P– 1/2 - 3/2 6049 45723 22.8 4.85

252.635 5d36s2a4F– 5d46p y6F ◦ 5/2–5/2 2010 41580 46.2 2.55

253.623 5d46sa6D– 5/2–5/2 11243 50660 30.4 –

255.505 5d36s2a4F– 7/2–9/2 3963 43090 23.1 4.12

255.771 5d36s2a2P– 1/2–3/2 11792 50877 42.2 –

256.210 5d36s2a4F– 7/2–5/2 3963 42982 60.8 4.50

257.778 5d36s2a4F– 9/2–9/2 5621 44402 52.4 3.09

258.561 5d36s2a2G– 7/2–5/2 9705 48369 19.5 1.19

259.308 5d36s2a4F– 9/2–9/2 5621 44173 46.1 4.42

259.526 5d36s2a4F– 9/2–11/2 5621 44141 64.0 1.18

260.863 5d36s2a4F– 5/2–7/2 2010 40333 212. 246. 17 3 34.0

261.566 5d36s2a4F– 5/2–3/2 2010 40230 43.4 6.23

263.667 5d36s2a4F– 7/2–5/2 3963 41879
}

124.
3.62

263.690 5d36s2 a4F– 9/2–7/2 5621 43533 1.76

265.327 5d36s2a4F– 5/2–5/2 2010 39688 286. 358. 20 2 –

266.134 5d36s2a4F– 9/2–11/2 5621 43185 159. 2.13

269.681 5d36s2a4P–5d46p y4P ◦ 5/2–5/2 9253 46323 26.5 3.51

270.669 5d36s2a2G– 9/2–7/2 10690 47625 42.3 0.521

271.718 5d36s2a4F– 7/2–7/2 3963 40755 25.9 13.6

272.076 5d36s2a4F– 5/2–5/2 2010 38753 32.1 0.124

272.778 5d36s2a2G– 9/2–11/2 10690 47339 28.7 2.48

274.878 5d36s2a4F– 7/2–7/2 3963 40333 142. 165. 17 3 12.5

275.831 5d36s2a4F– 5/2–7/2 2010 38253 80.0 13.1

280.207 5d36s2a4F– 7/2–7/2 3963 39641 86.7 36.5

281.512 5d36s2a4P–5d46p y6F ◦ 3/2–5/2 6068 41580 31.0 28.2

282.118 5d36s2a4P–5d46p y4P ◦ 5/2–3/2 9253 44689 10.7 –

282.718 5d36s2a4F– 9/2–7/2 5621 40981 34.1 65.7

283.364 5d46sa6D–5d46p x6D◦ 3/2–5/2 9975 45255 18.0 16.3

284.425 5d36s2a4P– 1/2–3/2 6049 41197 26.8 18.4

284.535 5d36s2a4F– 9/2–7/2 5621 40755 37.5 17.0

285.098 5d36s2a4F–5d36s6p y4G◦ 9/2–9/2 5621 40686 271. 319. 19 4 7.13

285.728 5d36s2a2G– 7/2–7/2 9705 44693 20.6 –

286.202 5d46sa6D–5d46p y4P ◦ 1/2–3/2 9758 44689 29.8 1.22
ASTRONOMY REPORTS Vol. 46 No. 10 2002
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Table 1. (Contd.)

1 2 3 4 5 6 7 8 9 10

286.865 5d36s2a4F–5d36s6p z4G◦ 7/2–9/2 3963 38813 40.2 48.7 19 1 28.7

288.002 5d36s2a4F– 9/2–7/2 5621 40333 60.3 70.0 17 3 14.9

290.036 5d36s2a2G– 7/2–9/2 9705 44173 40.0 14.9

291.549 5d36s2a4F– 7/2–7/2 3963 38253 37.2 33.6

291.712 5d36s2a4P–5d46p y6F ◦ 3/2–3/2 6068 40339 14.1 10.8

292.646 5d36s2a4P– 3/2–3/2 6068 40230 22.5 37.5

294.006 5d36s2a2G– 9/2–9/2 10690 44693 79.4 2.26

295.192 5d36s2a4F–5d36s6p z6S◦ 5/2–5/2 2010 35876 26.2 98.5

296.332 5d36s2a4F– 5/2–7/2 2010 35746 65.3 26.2

296.554 5d36s2a4F– 5/2–3/2 2010 35720 82.2 26.2

297.556 5d36s2a4F– 7/2–7/2 3963 37561 24.5 37.2

297.754 5d46sa6D– 3/2–5/2 9975 43550 34.4 –

298.119 5d36s2a2G– 7/2–5/2 9705 43239 29.8 4.07

298.858 5d36s2a2G– 9/2–11/2 10690 44141 20.8 2.72

301.188 5d36s2a4F–5d36s6p z4G◦ 9/2–9/2 5621 38813 133. 161. 19 1 23.2

301.909 5d36s2a4F–5d36s6p z4H◦ 7/2–9/2 3963 37076 14.9 –

302.751 5d46sa6D–5d46p x6D◦ 7/2–5/2 12234 45255 24.8 3.44

303.891 5d36s2a2P–5d46p y4P ◦ 1/2–3/2 11792 44689 9.0 –

304.596 5d46sa6D– 9/2–7/2 13351 46172 22.0 8.78

322.132 5d46sa6D– 3/2–5/2 9975 41010 15.2 25.4

328.984 5d36s2a4P– 5/2–7/2 9253 39641 17.4 –

331.116 5d36s2a4F– 9/2–11/2 5621 35813 34.9 33.1

331.884 5d36s2a4F–5d36s6p z4H◦ 5/2–7/2 2010 32132 31.5 61.1

335.151 5d46sa6D–5d46p y6F ◦ 1/2–3/2 9758 39587 11.2 5.49

336.164 5d46sa6D– 9/2–9/2 13351 43090 26.3 10.8

337.605 5d46sa6D–5d46p y6F ◦ 3/2–3/2 9975 39587 17.4 10.7

343.450 5d36s2a2G–5d36s6p z4G◦ 7/2–9/2 9705 38813 23.9 29.0 19 1 23.5

346.012 5d36s2a2F– 5/2–5/2 17224 46117 17.5 –

347.390 5d46sa6D– 3/2–5/2 9975 38753 9.6 11.2

349.785 5d36s2a4F–5d36s6p y4G◦ 5/2–7/2 2010 30590 22.0 94.1

350.498 5d36s2a4F–5d36s6p y6D◦ 7/2–5/2 3963 32486 10.4 164.

353.158 5d36s2a4P– 5/2–7/2 9253 37561 12.4 16.7

359.564 5d36s2a2D– 3/2–5/2 10950 38753 17.7 22.9

362.662 5d36s2a4F–5d36s6p y4G◦ 7/2–9/2 3963 31530 12.3 51.4

364.206 5d36s2a4F–5d36s6p y4G◦ 9/2–11/2 5621 33070 22.5 70.1

366.689 5d36s2a2P– 3/2–3/2 15903 43167 13.8 –

368.973 5d36s2a2G– 7/2–7/2 9705 36799 10.2 34.1

369.305 5d36s2a2D–5d36s6p z4G◦ 5/2–7/2 12865 39936 16.3 19.0
ASTRONOMY REPORTS Vol. 46 No. 10 2002
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Table 2. Total excitation cross sections of the energy levels
of the tantalum atom

λ, nm Eup,
cm−1

Q50,
10−18 cm2 BR[3] ΣQ50,

10−18 cm2

349.785 30590 22.0 0.676 32.5
362.662 31530 12.3 0.870 14.1
350.498 32486 10.4 0.164 63.5
364.206 33070 22.5 0.957 23.5
297.556 37561 24.5 36.9
353.158 12.4
257.831 38253 80.0 117.2
291.549 37.2
272.076 38753 32.1 59.4
347.790 9.6
359.564 17.7
286.865 38813 40.2 197.1
301.188 133.
343.450 23.9
335.151 39587 11.2 28.6
337.605 17.4
280.207 39641 86.7 104.1
328.984 17.4
261.566 40230 43.4 65.9
292.646 22.5
260.863 40333 212. 414.3
274.878 142.

2898.002 60.3
271.718 40755 25.9 63.4
284.535 37.5
252.635 41580 46.2 77.2
281.512 31.0
243.991 42982 20.8 81.6
256.210 60.8
255.505 43090 23.1 49.4
336.164 26.3
259.526 44141 64.0 84.8
298.858 20.8
259.308 44173 46.1 86.1
290.036 40.0
282.118 44689 10.7 49.5
286.202 29.8
303.891 9.0
285.728 44693 20.6 100.0
294.006 79.4
283.364 45255 18.0 42.8
302.751 24.8
239.630 47339 15.5 44.2
272.778 28.7
238.000 47625 19.7 62.0
270.669 42.3
hyperfine structure of TaI lines. Note that, although
the title of Table 1 from [10] states that the transitions
were taken from [8, 9], about one-third of the pre-
sented lines and corresponding transitions are absent
from these papers. The actual source of information
on these lines was probably [12] or later editions of
the same tables.

Each of [8, 9, 11] refutes the existence of some
levels found in previous studies. In addition, the ex-
istence of some levels has been confirmed but their
identifications changed. In some cases, the values
of J have also changed. The identified levels of TaI
are presented in [8, 9] in pure LS-coupling nota-
tion. There is undoubtedly a substantial mixing of
configurations in tantalum, whose electronic shell is
very complex. The presence of significant perturba-
tions was noted in [9], but there has been no more
adequate treatment of most of the TaI energy levels
until now. Only [13] presents a parametric calculation
of 40 even levels of TaI located below 27 200 cm−1

and associated with the 5d36s2 + 5d46s+ 5d5 config-
urations. This analysis was continued in [14], where
levels known previously were augmented by ten new
levels found experimentally. In addition, the positions
of a number of high-lying even levels that were not
detected experimentally were calculated theoretically.
A similar study of odd levels of TaI has not been
carried out.

The excitation cross sections of spectral lines Qki
can be derived directly from experiments in which
information on electron–atom collisions is obtained
by detecting optical signals emitted by the excited
atoms. The excitation cross sections of energy levels
qk are used as the basic quantities in both theoretical
studies of collisional processes and in most practical
experiments. These quantities are linked by the rela-
tion

Qki =

(
qk +

∑
l

Qlk

)
Aki∑

m
Akm

, (1)

where Aki and Akm are the transition probabilities
k → i and k → m. The sum in parentheses takes into
account the contribution of cascade transitions from
all upper levels l to the population of level k. The factor
following the parentheses represents the branching
ratio BRki, which specifies the contribution of the
transition k → i to the deactivation of level k via
spontaneous radiative transitions.

SinceAki/Akm = Qki/Qkm, (1) can be reduced to
the form

qk =
∑
m

Qkm −
∑

l

Qlk. (2)

The first sum represents the total excitation cross
section for level k, which takes into account both the
ASTRONOMY REPORTS Vol. 46 No. 10 2002
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Fig. 2. Iλ/gA as a function of λ for the data of [2, 12].
Resonant transitions are presented by dots and nonreso-
nant transitions by crosses.

direct population of this level by electron collisions
from the initial state and its population by cascade
processes. It follows from (2) that the excitation cross
section of the energy level qk can be determined by
measuring the excitation cross sections for spectral
lines, and no additional information is necessary. Un-
fortunately, the accuracy of the corresponding values
of qk depends on the completeness of experimental
information on the terms appearing in both sums (as
well as on the accuracy of measurements ofQki).

In general, obtaining information on the cross sec-
tions that is sufficiently complete for the application
of (2) requires measurements conducted over a wide
range of wavelengths and intensities. The largest dif-
ficulties are usually encountered in the infrared, where
detector sensitivities are lower and the influence of
the background is larger than in the visible and ul-
traviolet. The most favorable situation is in the vac-
uum ultraviolet: although the instruments must be
ASTRONOMY REPORTS Vol. 46 No. 10 2002
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Fig. 3. Same as Fig. 2 for Iλ/gA as a function of I .

installed in a vacuum, extremely high sensitivity can
be attained by counting individual photons.

However, there is the alternative of determining
qk by measuring the excitation cross section for only
one transition from level k. As follows from (1), we
can use the absolute, or even relative, transition
probabilities and the branching ratios obtained in
independent measurements. Aki or BRki are usu-
ally measured using gas discharges as sources of
radiation. As was noted above, the intensities of
gas-discharge sources are typically several orders
of magnitude higher than those of crossed-beam
sources. Therefore, gas-discharge experiments can
potentially provide substantially more extensive and
accurate information on branching ratios, covering
the maximum possible number of spectral lines.

A decisive factor limiting the measurable spec-
tral range in our experiments is the extremely in-
tense background radiation from the surface of the
melted metal. Another factor hampering measure-
ments at 306–320 nm is the radiation of intense hy-
droxyl bands, due to the dissociative excitation of OH
by e–H2O collisions [15]. Water vapor is inevitably
present in metallic vacuum systems, even after pro-
longed heating. The situation was especially difficult
in our case due to the small density of tantalum atoms
in the beam. Finally, measurements in the vacuum
ultraviolet are not interesting for tantalum, since the
threshold of our apparatus, 190 nm, corresponds to
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a resonant photon energy of 52 500 cm−1, and the
highest known tantalum energy level does not reach
this value [9].

Despite these restrictions, branching can be taken
into account for a number of the TaI levels studied
here using the measured cross sections for compet-
ing transitions, which are usually most intense for
upper TaI levels precisely in the spectral range under
investigation. Moreover, we can use the information
on branching ratios obtained in [3] for some levels.
Unfortunately, the contribution of cascade level pop-
ulation cannot be taken into account at this stage,
since all cascade transitions to the considered lev-
els of TaI are beyond the studied spectral range, in
the visible and infrared. Furthermore, even spectro-
scopic information on such transitions is very sparse:
only seven transitions whose lower levels are above
30 000 cm−1 were presented in [9], and there are no
such transitions in [8].

The total excitation cross sections of TaI energy
levels for an exciting-electron energy of 50 eV are
presented in Table 2. These cross sections are quite
large, and ΣQ50 ≥ 1.0 × 10−16 cm2 for the five levels.
Unfortunately, the overlap between the levels studied
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Fig. 5. Iλ/gA as a function of λ over a wide wave-
length range. Resonant lines are marked by asterisks.
The various plots show data for the following lines:
(a) 28 689 cm−1, (b) 29 343, (c) 30 591, (d) 31 428,
(e) 32 132, (f) 32 486, (g) 34 792, (h) 35 746, (k) 35 876,
(l) 37 145, (m) 37 523, (n) 37 630, (o) 39 587, (p) 39 936,
(q) 40 230, (r) 40 339, (s) 40 755, (t) 41 010, (u) 41 197,
(v) 42 982, (w) 43 090, (x) 45 255, (y) 46 172, (z) 47 625,
(7) 23 355, (2) 23 363, (3) 24 243, (4) 25 181, (5) 25 512,
and (6) 25 926. (All photon energies are given in cm−1.)

in [3] and in the present work is small. As a result, we
were able to use only four branching ratios from [3].

Considerably more extensive data on TaI transi-
tion probabilities are presented in [2]. These could be
used, in particular, to obtain the branching ratios for
upper levels for which we were able to detect only one
transition. Unfortunately, the transition probabilities
for atoms and singly-charged ions of many elements
obtained in [2] differ substantially from the data of
other authors. Nevertheless, the data in [2] are useful
when these are the only data available. This situation
occurs most frequently for fairly high-lying levels of
ASTRONOMY REPORTS Vol. 46 No. 10 2002
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atoms with complex electron shells. This is precisely
the case here, since information about the transition
probabilities or branching ratios for TaI levels with
energies above 35 500 cm−1 is completely absent.

4. TRANSITION PROBABILITIES
FOR THE TANTALUM ATOM

It is potentially useful to analyze the discrepan-
cies between the data of [2] and the results of other
authors. The only possibility to do this for high-lying
levels of tantalum is to compare with the data of [12],
which contains the relative intensities of almost all
known spectral lines of TaI. The intensities presented
in [8, 9] were taken from [12].

The radiation source used in [2] was a direct-
current arc discharge between copper electrodes.
These electrodes were produced by pressing copper
dust doped with the required element, in the ratio of
one atom of doping element per 1000 copper atoms.
The spectrum was detected using a photographic
apparatus with exposures of 1 s to 5 min. In addition,
a rotating four-step attenuator was used. The relative
intensities of the lines of the studied metal were
first compared with reference copper lines chosen in
various parts of the spectrum. Next, they were re-
duced to a true relative-intensity scale. This scale was
established using precision measurements of the true
relative intensities of approximately 200 copper lines
carried out with the standard method of multicolor
photographic photometry. A tungsten lamp with a
ribbon filament and a hydrogen lamp were used as
reference sources in various spectral intervals. At
short wavelengths λ < 250 nm, we used a reasonable
extrapolation of the transfer coefficients of [2, p. IX].
The errors in the obtained intensities were estimated
to be 25%.

The transition probabilities were calculated with
the formula

gAabs = 0.667 × 1016C
u

np
IλeE/kT , (3)

where g is the statistical weight of the upper level,
C is a normalization factor, u is the sum over the
states, n is the number density of atoms, p is the time
of localization of the studied atoms in the discharge
zone relative to the time of localization of the copper
atoms, I is the line intensity, E is the energy of the
upper level, k is the Boltzmann constant, and T is
the absolute temperature. We assumed a Boltzmann
distribution.

Since all transitions are grouped by their basic
characteristic—the common upper level—when de-
termining the branching ratios, the quantities C, u,
n, p, E, k, and T are constant for each such group.
Therefore,

Iλ/gA = const (4)
ASTRONOMY REPORTS Vol. 46 No. 10 2002
for all transitions with a common upper level.
Therefore, the dependences of Iλ/gA on the wave-
length and line intensity for each group of transitions
with a common upper level will form a horizontal
line, while the dependence on the level energy will
be given by a single point. There should be a set of
horizontal lines in the Iλ/gA = f(I, λ) dependences
for several levels with different energies. The only pro-
cess in the radiation source that can lead to deviation
from a linear dependence is reabsorption, which is
most efficient for resonant radiation. However, Corliss
and Bozeman [2] suggest that this factor can be
neglected, since the density of the studied atoms is
only 0.001 relative to the copper atoms, i.e., it is quite
small.

The relative intensities presented in the tables of
[12] were obtained in [16, 17] using a method and
apparatus very similar to those of [2], i.e., multicolor
photographic photometry. According to [18], the typ-
ical relative-intensity errors are 20–30%. The most
important factor affecting the differences in the line
intensities is the conditions for their excitation in
the source of radiation. Fortunately, these excitation
conditions are not important for the branching ratios,
since the lines are grouped according to their com-
mon upper level. Therefore, the ratio of Iλ (data from
[12]) to gA (data from [2]) should be the same for each
set of lines with a common upper level.

The values of this ratio for upper levels of TaI for
the transitions studied here and in [7] are presented
in the figures. We adopted the values of I from [8,
9], and λ is expressed in µm. Figures 2–4 show the
dependences of Iλ/gA on λ, I, and Eup. As is indi-
cated above, the first two of these dependences should
form sets of horizontal lines, each corresponding to
a particular level Eup. These lines should collapse to
points in the last dependence.

As we can see in Fig. 2, the Iλ/gA ratios do not
form any regular structure, and are located in a broad
sloping band. There is a clear tendency for the points
corresponding to resonant lines to occupy higher po-
sitions. The most likely origin for this behavior is the
presence of appreciable reabsorption of the resonant
lines under the conditions considered in [2].

The region filled with dots and crosses in Fig. 3
is more compact, but still shows no structure. Four
values located far from the center of this region stand
out. Two of these, in the bottom left-hand corner,
correspond to the extremely weak (according to [12])
266.862 nm and 272.076 nm lines, which have a rela-
tive intensity of unity. The most likely reason for their
anomalous locations is a trivial misprint in [12]: I = 1
was printed instead of I = 100. The cross that is close
to them (the 243.991 nm line) can be explained in the
same way: I = 4 was printed instead of I = 40 in [12].
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On the other hand, we could find no satisfactory ex-
planation for the behavior of the 348.462 nm resonant
line (the dot in the top left-hand corner of Fig. 3),
especially given its ordinary behavior in Figs. 2 and 4.

The distribution of crosses and dots in Fig. 4 is
more ordered than in Figs. 2 and 3. The only obvious
exception is the three points with very low intensities
discussed above. Unfortunately, the main feature that
should characterize the dependence of Iλ/gA on Eup

is not visible, namely, the collapse of the lines for each
ASTRONOMY REPORTS Vol. 46 No. 10 2002
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level to points. The vertical scatter of dots and crosses
for any value of Eup characterizes the errors in the
branching ratios. We can see in Fig. 4 that these
errors are large for most levels, reaching an order
of magnitude in some cases. Recall that Figs. 2–4
present only measurements for spectral lines studied
in the present work and in [7]; more extensive material
is considered in [2, 12].

Figure 5 presents the dependence of Iλ/gA on
λ for a larger number of lines. Most importantly,
this figure includes low-intensity transitions from the
same levels as in Figs. 2–4, as well as spectral lines
beyond the range for our work (λ < 370 nm), in the
visible, up to 900 nm. Transitions from common upper
levels are denoted by letters, and resonant transitions
are marked by asterisks. We considered only levels
from which at least four competing transitions origi-
nated. In addition, we added transitions from six low-
lying levels, enabling us to extend the dependence
to the red. Since the number 1 is very similar to
the letter l, we have replaced it with 7. The general
pattern confirms the less well defined behavior in
Fig. 2. At the same time, the individual notations for
transitions from common upper levels indicate that
the real scatter of Iλ/gA for transitions from all levels
MY REPORTS Vol. 46 No. 10 2002
is considerable (up to two orders of magnitude) when
the less intense transitions are included. Therefore,
the use of the data of [2] to find branching ratios and
total excitation cross sections of energy levels is not
advisable.

We can investigate the behavior of the branch-
ing ratios for low-lying TaI levels using the data of
[3], which presents individual errors for each branch-
ing ratio; the relative errors for most lines that are
not very weak do not exceed 10%. On the other
hand, the standard deviation of the relative oscilla-
tor strengths of transitions from low-lying levels in
[2] is ∆(log gf ik) = 0.14 [2, Table 10]. In this case,
the total error derived from the data of [2, 3] will
be ∆(log gf ik) ≈ 0.18, which corresponds to a factor
of 1.5.

Figures 6–8 show the dependences of BR[3]/BR[2]
on λ, BR[3], and Eup. Overall, these are analogous to
the relations in Figs. 2–4, although Fig. 7 presents
the dependence on the branching ratios from [3]
rather than the line intensity. All data from [3] were
used to construct these plots. Since the branching
ratios of the same transition are compared for each
BR[3]/BR[2], the individual properties of the levels
and transitions from them should not be important.
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This means that the plots in Figs. 6 and 7 should be
horizontal lines with BR[3]/BR[2] ≡ 1, and the plot
in Fig. 8 should form a set of points with this same
value. The vertical scatter of points in Figs. 6–8 is
appreciably less than in Figs. 2–4, probably associ-
ated with the fact that a considerable contribution
to the errors in Figs. 2–4 is made by the data of
[12]. In addition, the normalization

∑
i

BRki ≡ 1 for

each upper level k imposes constraints on the range
of errors in the branching ratios. Nevertheless, an
appreciable fraction of the points in Figs. 6–8 also
lie beyond the total error corridor for the results of [2,
3] indicated above. Figure 7 shows that this is due
primarily to low-intensity lines with BR < 0.2.

5. CONCLUSIONS

We have experimentally studied the excitation
cross sections of TaI transitions not connected to
the ground level for the first time and have deter-
mined the total excitation cross sections (includ-
ing the contribution of cascade level population)
for 23 levels of tantalum. Since branching ratios
are sometimes needed to calculate the total cross
sections or determine excitation cross sections that
cannot be measured experimentally, we analyzed
the accuracies of known probabilities of radiative
transitions in TaI that can be used to find the required
branching ratios. There is no doubt that photoelectric
recording of spectra is more accurate and reliable
than photographic recording, but photoelectric data
remain unavailable for many transitions in atoms with
complex electron shells. Our analysis indicates that
discrepancies between the data obtained by different
authors obtained using similarmethods can be appre-
ciably greater than the quoted total errors, even when
considering relative intensities. Therefore, the errors
in the abundances of metals in stellar atmospheres
may in some cases depend more strongly on errors in
the atomic constants used than on the errors in the
observational data.
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Abstract—We consider the three-dimensional motion of a star inside an inhomogeneous, rotating,
elliptical galaxy with a homothetic density distribution. The libration points inside a triaxial, rotating,
inhomogeneous, gravitating ellipsoid are determined and their stability studied. We determine zero-velocity
surfaces and regions of possible motion both inside and outside the galaxy. The motions are shown
to be stable in the sense given by Hill. The obtained zero-velocity surfaces enable the construction of
a Roche model for a galaxy in the form of either a triaxial ellipsoid or an oblate ellipsoid of rotation.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In [1], we considered the two-dimensional mo-
tion of a particle inside an inhomogeneous, rotating,
ellipsoidal body with a homothetic density distribu-
tion. We derived an expansion of the force function
to fourth order in the second eccentricities of the
ellipsoid, taken to be small parameters. An expres-
sion for the perturbing function was obtained and the
equations of the perturbed motion presented in terms
of canonical elements were solved.
In [1], we considered an inhomogeneous body T

constrained by the ellipsoidal surface

x2

a2
+
y2

b2
+
z2

c2
= 1, a ≥ b ≥ c (1)

and possessing a homothetic (ellipsoidal) density dis-
tribution. We took the density ρ of T to be a function
of a parameter p = p(x, y, z) and to vary continuously
from the center to the outer surface. Based on this, we
specified the density of T in the form of a converging
power series in the parameter p:

ρ = ρ(p) = ρ0 +
∞∑

n=1

ρnε
npn (2)

(0 < ε < 1, 0 ≤ p ≤ 1),

where ε is a small parameter describing the den-
sity distribution. In addition, the following conditions
were satisfied:

ρ(0) = ρ0 > 0, ρ(1) = ρf , ρn < 0 (3)

(n = 1, 2, . . . ).

Here, ρ0 and ρf are the density at the center of the
ellipsoidal body T and at its surface, respectively.
Let us consider a star to be a passively gravitating

particle P moving inside an elliptical galaxy, which
1063-7729/02/4610-0851$22.00 c©
we will approximate by a triaxial ellipsoidal body T
rotating with a constant and relatively small angular
velocity Ω about the z axis. The coordinates of the
star x, y, z are given in a Cartesian coordinate system
with the origin at the center of the galaxy and the
x, y, and z axes directed along the principal axes of
the ellipsoid (1). As follows from the definitions of the
second eccentricities λ and µ of the ellipsoid (1),

a2 = c2(1 + λ2), b2 = c2(1 + µ2) (µ2 ≤ λ2 < 1).
(4)

In the two-dimensional case [1], we derived the
total potential V in the form of a power series in the
coordinates. In the three-dimensional problem, this
potential has the form

V = V0 +R, V0 = V00−
1
2

(
V01x

2 +V02y
2 +V03z

2
)
,

R =
ε

4

(
R̄1x

4 + R̄2y
4 + R̄3z

4 + 2R̄4x
2y2 (5)

+ 2R̄5x
2z2 + 2R̄6y

2z2
)

+
ε2

6

(
S1x

6 + S2y
6

+ S3z
6 + 3S4x

2y4 + 3S5x
4y2 + 3S6x

2z4

+ 3S7x
4z2 + 6S8x

2y2z2 + 3S9y
4z2

+ 3S10y
2z4
)

+ . . . ,

where V0 is the gravitational potential in the case
of unperturbed motion, V00 = const is the potential
at the center of the ellipsoid, and R is the perturb-
ing function. All the positive coefficients V0i (i =
0, 1, 2, 3), R̄k (k = 1, 2, . . . , 6), Sj (j = 1, 2, . . . , 10)
are polynomials in the second eccentricities λ and µ,
and are presented in full form in the Appendix.
We will assume that λ and µ are small. Conse-

quently, the shape of the galaxy T will be close to
2002 MAIK “Nauka/Interperiodica”
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spherical, and we can retain only terms to λ2 and
µ2 inclusive in the expressions for the coefficients V0i

and R̄k. In this case, we have the following relations
between the coefficients R̄k:

R̄2 = α2R̄1, R̄3 = β2R̄1, R̄4 = αR̄1, (6)

R̄5 = βR̄1, R̄6 = αβR̄1, R̄2
4 = R̄1R̄2,

R̄2
5 = R̄1R̄3, R̄2

6 = R̄2R̄3,

where

α = 1 +
5
7
(λ2 − µ2), β = 1 +

5
7
λ2. (7)

The equations of motion of a star inside an inho-
mogeneous, gravitating galaxy in a coordinate sys-
tem xyz that rotates about the z axis with constant
angular velocity Ω can be presented in the form

d2x

dt2
− 2Ω

dy

dt
=
∂U

∂x
, (8)

d2y

dt2
+ 2Ω

dx

dt
=
∂U

∂y
,

d2z

dt2
=
∂U

∂z
.

Here, we have assumed

U = V +
Ω2

2
(x2 + y2), (9)

where the potential V is specified by (5).
In the general case, the Poincaré inequality, which

is a prerequisite for the equilibrium of a rotating ellip-
soid, has the form [2, 3]

Ω2 < 2πGρK, (10)

where K < 1 depends only on the shape of the ellip-
soid and G is the gravitational constant. Using the
potential (5), the inequality (10) can be rewritten in
the form [1]

Ω2 < g2 − εḡ2, (11)

where

g2=
Qρ0
6

[
1− 3

10
(λ2+µ2)+

3
56

(3λ4+2λ2µ2+3µ4)
]
,

ḡ2 =−Qρ1
20

[
1− 15

14
(λ2+µ2)+

5
24

(5λ4+6λ2µ2+5µ4)
]
.

Here, Q = 4πGab/c2 or, as follows from (4), Q =
4π ×G

√
(1 + λ2)(1 + µ2). If we set ε = 0 and re-

strict our consideration to zerоth-order terms in the
expression for g2, we will obtainK = ab/(3c2).
Also, as follows from (4),

Ω2 < g2 < V01 ≤ V02, (12)

V01 − Ω2 = g21 ≤ g22 = V02 − Ω2, g23 = V03.
Thus, the angular velocity of rotation Ω of the coordi-
nate system satisfies the inequalities (11) or (12).
In this formulation, the solutions of (8) depend on

four free parameters: λ, µ, Ω, and ρ1/ρ0. Further, we
will assume that these parameters are small, and all
subsequent operations will take this into account.

2. STEADY-STATE SOLUTIONS
FOR THE EQUATIONS OF MOTION

In order to find the steady-state solutions

x = x0 = const, y = y0 = const, (13)

z = z0 = const

we derive the following system of algebraic equations
from (8):

∂U

∂x
= x0

(
−g21 +R1x

2
0 +R4y

2
0 +R5z

2
0

)
= 0, (14)

∂U

∂y
= y0

(
−g22 +R4x

2
0 +R2y

2
0 +R6z

2
0

)
= 0,

∂U

∂z
= z0

(
−g23 +R5x

2
0 +R6y

2
0 +R3z

2
0

)
= 0,

where

Rk = εR̄k (k = 1, 2, . . . , 6). (15)

Let us consider all possible real solutions for the
system (14) specifying certain points in the space
xyz, usually called libration points. We will denote
these as Lk(x0, y0, z0) (k = 1, 2, . . . ).
(1) Libration point L1. This is the zero solution of

system (14). Thus, L1 = L1(0, 0, 0).
(2) Libration points L2 and L3. These points are

specified by system (14) for y0 = 0 and z0 = 0; i.e.,

L2 = L2

(
+
g1√
R1
, 0, 0

)
, L3 = L3

(
− g1√

R1
, 0, 0

)
.

(3) Libration points L4 and L5 are obtained
from (14) when x0 = 0 and z0 = 0:

L4 = L4

(
0,+

g2√
R2
, 0
)
, L5 = L5

(
0,− g2√

R2
, 0
)
.

(4) Libration points L6 and L7 are obtained from
(14) when x0 = 0 and y0 = 0:

L6 = L6

(
0, 0,+

g3√
R3

)
, L7 = L7

(
0, 0,− g3√

R3

)
.

Using the equalities (6), it can easily be shown
that the differential equations (8) admit only seven
steady-state solutions Lk, (k = 1, 2, . . . , 7). No other
steady-state solutions exist.
We can easily verify that all the libration points

except for L1 are located outside the ellipsoid (1).
ASTRONOMY REPORTS Vol. 46 No. 10 2002
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Indeed, as follows from (3), (11), and (12), for these
points,

x2
23 ≥ 5

3

(
1 − 4

35
λ2 +

2
35
µ2 − Ω2

χ0

)
a2 ≥ 13

12
a2,

(16)

y2
45 ≥ 5

3

(
1 +

2
35
λ2 − 4

35
µ2 − Ω2

χ0

)
b2 ≥ 13

12
b2, (17)

z267 ≥ 5
3

(
1 +

2
35
λ2 +

2
35
µ2
)
c2 ≥ 5

3
c2. (18)

Thus, the only physically meaningful libration point
L1 is inside the gravitating ellipsoid T .

3. STABILITY
OF THE LIBRATION POINTS L111

Let us consider the linearized system of the equa-
tions of motion in the vicinity of the libration points L1

d2x

dt2
− 2Ω

dy

dt
= −g21x (19)

d2y

dt2
+ 2Ω

dx

dt
= −g22y

d2z

dt2
= −g23z.

The characteristic equation of system (19) will be

(Λ4 + pΛ2 + q)(Λ2 + r) = 0, (20)

where
p = 4Ω2 + g21 + g22 , q = g21g

2
2 , r = g23 . (21)

The roots of (20) can be determined from the formula

Λ1,2,3,4 = ±
√
−p

2
±

√
∆, Λ5,6 = ±

√
−r, (22)

∆ =
p2

4
− q.

The necessary condition for stability in the sense
given by Lyapunov is that the following inequalities
be simultaneously satisfied:

∆ ≥ 0, p ≥ 0, q ≥ 0, r ≥ 0. (23)

The inequalities (23) guarantee that all roots of (20)
will be either purely imaginary or zero. Violation of
any of the inequalities (23) leads to instability, since
real or complex roots with a positive real part then
appear among the roots of the characteristic equation.
It is evident that p > 0, q > 0, and r > 0 for the

libration points L1, and

∆ =
1
4
(g21 − g22)2 + 2Ω2(2Ω2 + g21 + g22) > 0. (24)

Thus, the Lyapunov stability condition is satisfied,
and the libration point L1 will be stable in this sense
in a linear formulation.
ASTRONOMY REPORTS Vol. 46 No. 10 2002
To investigate the stability in a non-linear formu-
lation, we consider the Jakoby-type integral for (19):

1
2

(
ẋ2 + ẏ2 + ż2

)
= U + h, (25)

where h is the constant of integration. This integral
can be written in the form

ẋ2 + ẏ2 + ż2 + g21x
2 + g22y

2 + g23z
2 − 2R (26)

= 2h+ 2V00.

We can see from this last equation that there exists a
small but finite region near the origin of the coordinate
system where the left-hand side of the integral (26)
is a positively defined function. Taking this to be the
Lyapunov function, we will satisfy all requirements of
Theorem 1 of the direct method of Lyapunov. Based
on this theorem, we can assume that the libration
point L1 is stable in the sense given by Lyapunov.
The same result can be obtained using the La-

grange theorem, since the force function U has an
isolated maximum at the point L1.

4. THE ZERO-VELOCITY SURFACES

No clear-cut description of a method for the con-
struction of zero-velocity surfaces is available in the
literature on celestial mechanics and stellar dynam-
ics. Therefore, we will first consider a procedure for
constructing zero-velocity surfaces, called Hill sur-
faces in celestial mechanics and level surfaces in the
theory of gravitation.
The fact that the kinetic energy is non-negative

makes it possible to determine the region of possible
motion from the integral (25) by using the inequality

U ≥ −h. (27)

The zero-velocity surface is the boundary of the
region of possible motion

U = C, (28)

where C = −h is an arbitrary constant.
To properly construct the family of zero-velocity

surfaces (28), it is necessary to know the following:
– the singular points of the set of surfaces,
– the type of these singularities,
– the values for the constant C calculated at each

singular point, as well as the signs of the inequalities
between them, and

– the dependence of the force function at infinity
and at the centers of gravity.
Singular points of the family (28) are those at

which it is not possible to construct a single tangen-
tial plane. To determine such points, we will derive
a system of algebraic equations that exactly coin-
cides with the system (14). Therefore, the singular
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points are the libration points—rigorous, particular
solutions for the initial equations of motion. Note
that the infinitely remote libration points [4] must
also be known if we are to correctly construct the
surfaces (28).

Two types of singular points can exist (excluding
singular lines): conical and isolated. To determine the
type of a singular point, and with it the behavior of
zero-velocity surfaces in its vicinity, the function U
can be expanded in a Taylor series in the vicinity of
the libration point. Using (14), we obtain in this way

U − U0 =
∂2U(Lk)
∂x2

(x−x0)2+
∂2U(Lk)
∂y2

(y− y0)2

(29)

+
∂2U(Lk)
∂z2

(z − z0)2 + · · · = C − C0,

where x0, y0, and z0 are the coordinates of the libra-
tion point Lk and U0 = C0 is the potential U at this
point.

The expansion (29) is given for ε = 0; otherwise,
we must take into account the mixed derivatives for
U that will arise from R in (5).

When C = C0, we find from (29) the surface con-
taining the point Lk. Maintaining only up to second-
order terms, we can approximately represent this as
the second-order surface

∂2U(Lk)
∂x2

(X − x0)2 +
∂2U(Lk)
∂y2

(Y − y0)2 (30)

+
∂2U(Lk)
∂z2

(Z − z0)2 = 0,

where X, Y , and Z are the coordinates of the current
point of this surface. If the signs of the coefficients
in the last equality are different, the singular point
is conical. The X − x0, Y − y0, or Z − z0 axis cor-
responding to the term in (30) with the sign that
does not coincide with those of the other two terms is
the cone axis. When the coefficients in (30) have the
same sign, the singular point is isolated (an imaginary
cone).

Knowing the type of singular point, the behavior
of the zero-velocity surface for C 	= C0 can be de-
termined in the vicinity of this point. For a conical
singular point inside the cone, this surface is close to
a two-sheet hyperboloid, and the surface is close to a
one-sheet hyperboloid if the singular point is outside
the cone; in both cases, the cone is an asymptote for
the hyperboloids.

In the vicinity of an isolated singular point, the
zero-velocity surface for C < C0 is close to an ellip-
soid, while the surface does not exist for C > C0. The
signs of the inequality here may be opposite.
Knowing the coordinates for the singular points,
the constants C (or h) at each point can easily be cal-
culated and ranked in descending (ascending) order.
The libration points will appear in this order during
the construction of the family of surfaces (28) de-
creasing C from +∞ to the minimum values.

The behavior of the force function at infinity is
specified by the Ω2(x2 + y2)/2 term in (9); i.e., the
surface is close to a right circular cylinder with its
axis coincident with the z axis. The value for U at the
center of the ellipsoid is V00.

Such analyses indicate that the only libration point
L1 is situated inside the ellipsoid T . This is an iso-
lated singular point, at which the constant C is equal
to V00.

All the zero-velocity surfaces form ovals enclos-
ing the point L1. Therefore, the regions of possible
motion of a star inside an elliptical galaxy are always
restricted. The motions inside the galaxy are stable in
the sense given by Hill.

For simplicity, let us consider the construction of
zero-velocity surfaces in the space outside the ellip-
soid T when the ellipsoid is assumed to be homoge-
neous. A rigorous allowance for the homothetic mass
distribution only affects the locations of the singular
points and zero-velocity surfaces, while leaving all
qualitative conclusions unchanged.

Batrakov [5] showed that four libration points exist
in the outer region of a homogeneous, triaxial, rotat-
ing ellipsoid, located symmetrically about the center
of the ellipsoid on extensions of the major and minor
axes in the xy plane. The stability of these points
was later studied by Abalakin [6], Zhuravlev [7] and
others. The libration points L2 and L3, located on
the extension of the major axis of the ellipsoid, are
instable in the sense given by Lyapunov, while the
points L4 and L5 are stable to first approximation. A
non-linear analysis indicated that L4 and L5 are stable
for most initial conditions in terms of the Lebesgue
measure, with the exception of some resonant cases,
when instability occurs.

We are not aware of any studies of zero-velocity
surfaces and regions of possible motion for the prob-
lem at hand. The existence of libration points at infin-
ity and a fictitious (i.e., physically meaningless) point
at the center of the ellipsoid are not mentioned in
[5–7].

The differential equations for the motion of a body
outside a homogeneous, gravitating ellipsoid have the
same form as (8), while the potential V is

V = GM
(1
r

+ ε
α0x

2 + β0y
2 + γ0z2

r5
+ . . .

)
, (31)
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Fig. 1. Cross section of the zero-velocity surfaces in the xy plane. The cross section of the gravitating ellipsoid (the galaxy) is
shaded. Ci > Cj for i < j, C5 = C23, C7 = C45, C11 = V00, C1 > C11 > C2.
where

r =
√
x2 + y2 + z2, εα0 =

3
10
α′

a2
0

, (32)

εβ0 =
3
10
β′

a2
0

, εγ0 =
3
10
γ′

a2
0

,

a3
0 =

GM

Ω2
, α′ = a2 −R2,

β′ = b2 −R2, γ′ = c2 −R2,

and M is the mass of the body T . It is assumed that
ε is small and positive; i.e., the ellipsoid differs little
from a sphere with radius R.
In this formulation, the equations of motion allow

the existence of the following libration points:
L1 = L1(0, 0, 0), L2 = L2(1 + εα0, 0, 0), (33)

L3 = L3(−1 − εα0, 0, 0), L4 = L4(0, 1 + εβ0, 0),
L5 = L5(0,−1 − εβ0, 0), L±∞ = L±∞(0, 0,±∞).

Of course, the libration point L1 here is physically
meaningless. However, it coincides with the point
considered above, which does have physical meaning.
ASTRONOMY REPORTS Vol. 46 No. 10 2002
To construct the zero-velocity surfaces, all the
auxiliary calculations described abovemust be carried
out. The singular points Lk (k = 2, 3, 4, 5) prove to
be conical, while the infinitely remote points L±∞ are
isolated. Let the values for C at the corresponding
libration points be

C(L2) = C(L3) = C23, C(L4) = C(L5) = C45,

C(L±∞) = C±∞ = 0.

It is easy to establish inequalities relating these val-
ues:

C23 > C45 > C±∞. (34)

Figures 1 and 2 illustrate the zero-velocity surfaces
and regions of possible motion inside and outside the
gravitating ellipsoid, by presenting the cross sections
formed by the xy and yz planes, respectively.

We will consider variations of the surfaces and
regions of possible motion as C is decreased, starting
withC = ∞. We will use the potential (5) for surfaces
inside the ellipsoid and the potential (31) outside the
ellipsoid. The process begins with a surface that is
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Fig. 2. Cross section of the zero-velocity surfaces in the yz plane. The notation is as in Fig. 1.
close to a cylinder with a very large radius and its axis
coincident with the z axis (the curve C1 in Figs. 1, 2).
When C = V00, the point L1 appears at the center

of the ellipsoid, while some oval-shaped regions of
possible motion around L1 appear when C < V00 (the
curves C2 and C3 in Figs. 1 and 2). At some C, which
depends on the size of the ellipsoid T , the oval curves
around L1 exceed the boundaries of the ellipsoid (the
curve C4). If the size of the gravitating ellipsoid is
negligibly small, such ovals appear for very large C.
Further decreasing C to C23 results in the contact

(or, more precisely, in the self-intersection) of the
inner oval with the outer deformed cylinder. A “pas-
sage” is then formed through the cylinder, making
it possible for a moving body to move to an infinite
distance from the ellipsoid (the curves C5, C6 in
Figs. 1, 2).
Further, both “stems” of the cylinder in the

xy plane narrow to zero for C45 (the curve C7 in
Figs. 1, 2), after which the surface breaks into two
parts and does not intersect the xy plane (the curve
C8 in Fig. 2). Each part then constricts into one of
the infinitely remote libration points (the curve C9 in
Fig. 2).

If we consider an oblate ellipsoid of rotation (a =
b > c) instead of a triaxial ellipsoid, a circle with its
center at the coordinate origin will appear instead
of the four singular points Lk (k = 2, 3, 4, 5). In this
case, as C decreases, the zero-velocity surfaces will
intersect the inner oval simultaneously along the
entire singular circle for C = C23 = C45 and will then
similarly constrict to the infinitely remote points.
These surfaces can be represented schematically by
a rotation of the curves in Fig. 2 about the z axis.

Our analysis indicates that the motion of bodies
in the outer space is stable for C > C23 in the sense
given by Hill. In other words, when this inequality
is satisfied, the star will always be located in the
vicinity of the elliptical galaxy, inside the C = C23
ASTRONOMY REPORTS Vol. 46 No. 10 2002
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zero-velocity surfaces (the finite region restricted by
the curve C5 in Figs. 1, 2).
When C < C23, two “funnels” arise on the zero-

velocity surfaces near L2 and L3, through which the
star can escape to an infinite distance from the galaxy.
The C = C23 surface can be used as a Roche

model, while the two “funnels” around the libration
points L2 and L3 can explain the existence of pairs
of arms in spiral galaxies. If the shape of the galaxy
is represented by an oblate ellipsoid of rotation, the
entire circle becomes a “funnel,” and a disk can arise
around the galaxy instead of spiral arms.
Of course, we have assumed that the gravitating

galaxy entirely fills its Roche lobe (the region inside
the closed part of the curvesC5 in Figs. 1, 2), and that
the angular velocity of its rotation reaches its limiting
values in the Poincaré inequality.

5. CONCLUSION

We have considered the three-dimensional motion
of a star inside an inhomogeneous, rotating, elliptical
galaxy with a homothetic density distribution. We
have derived a fourth-order expansion of the force
function for this problem in the second eccentricities
of the ellipsoid, taken to be small parameters. The
coordinate expansion of the perturbing function in-
cluded up to sixth order terms.
The steady-state solutions for the equations of

motion (libration points) show that the libration point
at the center of the galaxy is stable in the sense
given by Lyapunov. We have determined the zero-
velocity surfaces and regions of possiblemotion inside
and outside the galaxy. The motion inside the galaxy
is stable in the sense given by Hill; i.e., it occurs
in some closed region. It is possible to construct a
Roche model for a galaxy having the shape of a triaxial
ellipsoid or oblate ellipsoid of rotation.
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APPENDIX

V00 =
c2

2

(
3χ0 −

5
2
εχ1c

2 − 7
3
ε2χ2c

4
)

×
[
1 − 1

6
(
λ2 + µ2

)]
,

V01 = χ0

[
1 − 3

10
(3λ2 + µ2)

]
,

V02 = χ0

[
1 − 3

10
(λ2 + 3µ2)

]
,

V03 = χ0

[
1 − 3

10
(λ2 + µ2)

]
,

R̄1 = χ1

[
1 − 5

14
(5λ2 + µ2)

]
,

R̄2 = χ1

[
1 − 5

14
(λ2 + 5µ2)

]
,

R̄3 = χ1

[
1 − 5

14
(λ2 + µ2)

]
,

R̄4 = χ1

[
1 − 15

14
(λ2 + µ2)

]
,

R̄5 = χ1

[
1 − 5

14
(3λ2 + µ2)

]
,

R̄6 = χ1

[
1 − 5

14
(λ2 + 3µ2)

]
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S1 = χ2

[
1 − 7

18
(7λ2 + µ2)

]
,

S2 = χ2

[
1 − 7

18
(λ2 + 7µ2)

]
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S3 = χ2

[
1 − 7

18
(λ2 + µ2)

]
,

S4 = χ2

[
1 − 7

18
(3λ2 + 5µ2)

]
,

S5 = χ2

[
1 − 7

18
(5λ2 + 3µ2)

]
,

S6 = χ2

[
1 − 7

18
(3λ2 + µ2)

]
,

S7 = χ2

[
1 − 7
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(5λ2 + µ2)

]
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[
1 − 7

6
(λ2 + µ2)

]
,

S9 = χ2
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1 − 7
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(λ2 + 5µ2)
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3
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7c4

Translated by K. Maslennikov



Astronomy Reports, Vol. 46, No. 10, 2002, pp. 858–865. Translated from Astronomicheskĭı Zhurnal, Vol. 79, No. 10, 2002, pp. 944–951.
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Abstract—A mathematical model for the complicated phenomenon of the polar oscillations of the de-
formable Earth that adequately describes the astrometric data of the International Earth Rotation Service
is constructed using celestial mechanics and asymptotic techniques. This model enables us to describe the
observed phenomena (free nutation, annual oscillations, and trends) simply and with statistical reliability.
The model contains a small number of parameters determined via a least-squares solution using well-
known basis functions. Interpolations of the polar trajectory for intervals of 6 and 12 yrs and forecasts for
1–3 yrs are obtained using the theoretical curve. The calculated coordinates demonstrate a higher accuracy
than those known earlier. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Numerous astrometric studies are based on dy-
namical theories of the Earth’s rotation with respect
to its center of mass [1–4]. Observations obtained
beginning at the end of the 19th century show that the
Earth’s rotational axis changes its orientation in the
course of time with respect to both fixed and inertial
coordinate systems. The determination of the position
of the instantaneous rotational axis and the motion
of the Earth’s center of mass is important for both
theoretical and applied purposes [1].

Both components of the motion are extremely
complicated for an exhaustive high-accuracy anal-
ysis because of the gravitational perturbations due
to the Sun, Moon, Jupiter, and other planets and
to various geophysical phenomena. Studies of the
rotation about the center of mass are hindered by the
difficulty in constructing high-accuracy dynamical
models of the deformable Earth. A number of firmly
detected and well determined components of the polar
motion (the latitude variations) cannot be described
using a model with a perfectly rigid Earth. Known
theories of rotation [2–4] use various models for the
internal structure of the planet taking into account
numerous geophysical perturbations. However, there
is no doubt that these theories do not adequately
describe the Earth’s rotation. There is no simple,
reliable model containing relatively few parameters
that can be determined observationally. It is well
known [1] that, as a rule, even short-term forecasts
(for about one hundred days) fail and require fre-
quent (weekly) corrections based on observations
1063-7729/02/4610-0858$22.00 c©
(http://hpiers.obspm.fr/eoppc/eop/eopc04/eopc04-
xy.gif).

We propose here a mathematical model that ad-
equately represents the astrometric data of the Inter-
national Earth Rotation Service (IERS) and suggests
a rational explanation for the observed properties of
the motion based on celestial mechanics. The model
makes it possible to obtain high-accuracy interpola-
tions of the polar trajectory for time intervals of 6–20
yrs and to perform forecasts for 1–3 yrs. The modified
model satisfactorily describes the complex Chandler
motion of the pole, which includes natural oscilla-
tions (free nutation) with a period T1 = 433 sidereal
days, annual oscillations (nutation forced by the solar
gravitational moment) with a period of Th = 365 side-
real days, and a slow, irregular drift (trend) of the
Earth’s figure axis at a rate of ∼ 0′′.005 per year in
the direction of North America (∼ 90◦ westward from
Greenwich). In addition to these main components
of the motion, the model admits future developments
and refinements to take into account less important
effects (both gravitational and geophysical). How-
ever, these developments may require more complex
measuring systems and computations that are not
currently justified.

2. FORMULATION OF THE PROBLEM.
COORDINATE SYSTEMS

In order to adequately describe the rotational mo-
tion of the deformable Earth and the Chandler wobble
of the pole, we use a simple mechanical model for a
viscoelastic, rigid body. We assume that the planet
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. Coordinate system for the two-body problem and
directions of vectors.

consists of a perfectly rigid (spherical) core and vis-
coelastic mantle [5, 6]. There is no motion of the
elastic medium at the inner boundary, while the outer
boundary is free. We assume that this medium can be
described using a linear theory of viscoelasticity, with
deformations being quasi-static. These assumptions
enable us to apply rigorous theorems of mechan-
ics and perturbation and averaging methods [7–10]
to construct a simple and reasonable model for the
Earth’s rotation.

In the initial stage of our investigation of the polar
motion and its evolution under the action of per-
turbing moments, we consider the spatial two-body
problem.We assume that a deformable planet (Earth)
and point satellite (Moon) undergo mutual progres-
sive and rotational motion about their center of mass
(barycenter). Let us briefly indicate the main geomet-
ric properties of this problem [5, 6].

We introduce a fixed coordinate system C12ξ1ξ2ξ3
with its origin at the barycenter C12. Let G be the
proper angular momentum of the Earth and Λ be the
orbital angular momentum of the centers of mass of
the Moon (C1) and Earth (C2). Then, the axis of the
total angular momentum of the entire system is sta-
tionaryK = G+Λ in an inertial space and coincides
with the C12ξ3 axis (Fig. 1), if external perturbations
are neglected. In the C12ξ1ξ2ξ3 coordinate system,
the radius vectors R1 and R2 of the points C1 and
C2 take the form

Rj = RjR0
j , Rj = c∗jR21, (1)

R0
2 = −R0

1, j = 1, 2,

R0
j = ±Γ3(h)Γ1(i)(cos ϑ, sinϑ, 0)T ,

c∗1 =
m2

m
, c∗2 =

m1

m
, m = m1 +m2,
ASTRONOMY REPORTS Vol. 46 No. 10 2002
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Fig. 2. Relative orientation of the coordinate system fixed
to the deformable Earth and the reference system and
Andoiyee variables.

Γ1(i) = diag(1,Π2(i)), Γ3(h) = diag(Π2(h), 1),

where Γ1,3 are block-diagonal matrices and Π2 is the
planar-rotation matrix. The angular variables are the
longitude of the ascending node, orbital inclination,
and true anomaly. The radius vector R21 connecting
the Earth’s and Moon’s centers of mass (i.e., C2 and
C1) takes the formR21 = R21R0

21, so thatR
0
21 = R0

1.

We rigidly fix the C2x1x2x3 Cartesian coordinate
system to the rigid core of the planet, with the axes
directed along themain axes of inertiaA,B, andC. In
this coordinate system, the R0

21 unit vector is defined
as follows:

S−1R0
21 = (γ1, γ2, γ3)T , (2)

S−1 = Γ−1
3 (ϕ1)Γ−1

1 (δ2)Γ
−1
3 (ϕ2)Γ−1

1 (δ1)Γ
−1
3 (ϕ3).

Here, the orthogonal matrix S = S(t) in (2) (S−1 =
ST ) specifies the transformation from the fixed to the
inertial axes, and is expressed in terms of the canon-
ical Andoiyee variables: the angular momenta L, G,
and Gξ3 and the angular variables ϕ1, ϕ2, and ϕ3.
The angles δ1 and δ2 are determined by the relations
(Fig. 2)

cos δ1 =
Gξ3

G
, cos δ2 =

L

G
, (3)

where G is the absolute value of the Earth’s angular
momentum and Gξ3 is its projection onto the ξ3 iner-
tial axis.

The mutual orbital motion of the centers of mass
C1 and C2 is described by the canonical Delone vari-
ables Λ, H , ϑ, and h, where H is the projection of Λ
onto the C12ξ3 axis; i.e., the axis of the total angular
momentum K. Λ and H are equal to Λ = |Λ| and
H = Λcos i.
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3. FREE NUTATION

To study free nutation (the Chandler component
of the polar motion), it is convenient to substitute the
Hamiltonian action-angle variables Ij and wj (j =
1, 2, 3) for the Andoiyee variables. The main dynami-
cal parameters κ and λ describe the Earth’s rotational
motions:

κ2 =
C∗(A∗ −B∗)
A∗(B∗ − C∗)

, λ2 = κ2 2EC
∗ − I2

2

I2
2 − 2EA∗ . (4)

Here, A∗, B∗, and C∗ are the effective main cen-
tral moments, taking into account deformations of
the “frozen” Earth due to the combined motion of
its proper rotation and the motion with respect to
the barycenter C12. The constant E has the physi-
cal meaning of the integral of the kinetic energy of
the intermediate motion (rotation) of the deformable
Earth, and I2 = G (see below). The relations between
the action-angle variables Ij , wj (j = 1, 2, 3) and the
canonical Andoiyee variables L, G, Gξ3, and ϕj are
expressed via elliptic integrals and Jacoby functions.
We obtain for the Earth’s rotation the relations [6]

I1 =
2I2
πκ

κ∗
χ
[χ2Π(

π

2
, κ2, λ)− λ2K(λ)], (5)

κ∗ =
√
1 + κ2, χ =

√
κ2 + λ2, 0 < λ < 1,

I2 = G, I3 = Gξ3,

w1 = ±π
2
F (ζ, λ)
K(λ)

, tanζ = −κ−1
∗ cotgϕ1,

w2=ϕ2 ±
κ∗χ

κ

[
Π(ζ, κ2, λ)−Π(π

2
, κ2, λ)

F (ζ, λ)
K(λ)

]
,

ζ = ±am(η, λ), η =
2
π
K(λ)w1, w3 = ϕ3.

Here, F (ζ, λ) and Π(ζ, κ2, λ) are elliptical integrals
of the first and third kind, respectively, and K(λ) and
Π(π/2, κ2, λ) are the corresponding complete ellipti-
cal integrals.

We can obtain the Routh functional for the in-
termediate model problem and construct trajectories
in the phase space Ij , wj using the action-angle
variables in accordance with (4) and (5). In particular,
we find

R0 =
1
2
I2
2

A∗

(
1− (C

∗ −A∗)
C∗

κ2

χ2

)
, (6)

Ii(t) = I0
i = const, w3(t) = w0

3,

w1,2(t) = n1,2t+ w0
1,2.

Here, the angles (phases) w1 and w2 describe the
Chandler wobble and diurnal rotation of the de-
formable Earth with the frequencies n1 and n2,
respectively; we obtain in accordance with (6) the
analytic expressions

n1 = −π
2
I2
C∗ −A∗

A∗C∗ κκ−1
∗ χ−1K−1(λ), (7)

n2 =
I2
C∗

(
1 +

(C∗ −A∗)
A∗ Π(

π

2
, κ2, λ)K−1(λ)

)
.

Note that the parameter λ for the Earth is very small:
λ2 ≈ 1.36×10−14, and we can simplify expressions
(4)–(7). The corresponding calculations yield the pe-
riod T1 = 2π/n1 ≈ 430 sidereal days, in good agree-
ment with observations [1].

Thus, the calculated frequencies of the Chandler
wobble n1 (7) and of the Earth’s diurnal rotation n2

agree well with the observed values. They are very
stable over time intervals on the order of the pre-
cessional period (∼ 26 thousand years). Apparently,
substantial changes in the frequencies n1 and n2 due
to the dissipative evolution of the dynamical charac-
teristics (energy and angular momentum) of the vis-
coelastic planet can occur only very slowly, over time
intervals considerably exceeding the precessional pe-
riod [11].

We define the polar motion as the angular dis-
placement of the rotational axis with respect to co-
ordinates fixed to the body of the planet. The com-
ponents of the angular-velocity vector are expressed
in terms of the phase w1 in the form of an expansion
in the small parameter ε = λκ−1 ∼ 10−6. With a rel-
ative error of O(ε4) ∼ 10−24, the components of the
angular velocity are

ω1 =λI2
cn(u, λ)
A∗χ

= ε
I2
A∗

(
cosw1 +

ε2

16
(8)

× [−(κ2 + 8) cosw1 + κ2 cos 3w1]
)
+O(ε5),

ω2 =λI2
κ∗sn(η, λ)
B∗χ

= ε
√
1 + κ2

I2
B∗

(
sinw1 +

ε2

16

× [(κ2 − 8) sinw1 + κ2 sin 3w1]
)
+O(ε5),

ω3 =
I2
C∗

κdn(u, λ)
χ

=
I2
C∗

×
(
1 +

ε2

4
[−2− κ2 + κ2 cos 2w1]

)
+O(ε4)],

u =
2
π
K(λ)w1, ε = 1.2× 10−6.

The angular coordinates describing the free nutation
(Chandler component xc, yc), corresponding to the
angle α between the rotational axis and the figure
axis, and the linear coordinates in a plane tangential
ASTRONOMY REPORTS Vol. 46 No. 10 2002



FORECASTING THE POLAR MOTIONS 861
to the geoid, are approximately equal to ([6, 11] and
see (8))

xñ =
ωx

ω
≈ ε

C∗

A∗ cosw1, yñ=−ε
√
1 + κ2

C∗

B∗ sinw1,

(9)

Xc = Rxc, Yc = Ryc;

cosα =
ω3

ω

≈ 1− ε

2

(
C∗2

A∗2 cos
2 w1 + (1 + κ2)

C∗2

B∗2 sin
2 w1

)
,

max|Xc|, |Yc| ≈ 7.5m, R = 6.38 × 106 m.
In a first approximation in ε, the polhode (free nuta-
tion) becomes an ellipse with a very small eccentricity
e ≈ 0.005. The theoretical estimates (8), (9) are in
agreement with the IERS data [1].

4. THEORETICAL MODEL FOR THE
EARTH’S ROTATION

The Chandler wobble (xc, yc) makes one of the
main contributions to the complex polar trajectory,
which resembles a spiral with a moving center. The
data detected and processed by the IERS in 1980–
2000 clearly detect oscillations with the annual period
Th = 365 sidereal days and amplitudes of the order of
0′′.07–0′′.08. There is also an irregular drift at a rate
of about 0′′.005 per year that has shifted the Earth’s
figure axis toward North America by approximately
15 m over the observation period of ∼ 110 yrs. These
components of the polar trajectory are also among
the most important, and, together with the Chandler
wobble, give rise to a rather chaotic pattern of irregu-
lar beating with a period about six years. Some doubts
have been expressed in the literature about prospects
for mathematical modeling and prediction of the polar
trajectory [1–4].

We propose a comparatively simple mathematical
model for the polar motion in terms of theoretical and
celestial mechanics. The model is based mainly on a
simplified analysis of the orbital motion of the Earth’s
center of mass (or the barycenter of the Earth and
Moon) and estimates of the quasi-static deformation
of the inertia tensor and diurnal tide in the Earth’s
mantle due to the gravitation forces of the Sun and
Moon. Neglecting irregularities in the Earth’s proper
rotation, we can conduct an asymptotic analysis of
the precession and nutation. For this, it is conve-
nient to use the Euler–Liouville equations and kine-
matic equations in orbital coordinates, taking into
account small additional perturbations in the inertia
tensor and the dynamical asymmetry of the Earth’s
“frozen” body. A spectral analysis of the oscillations
ASTRONOMY REPORTS Vol. 46 No. 10 2002
[1–3] demonstrates that the Chandler peak is fairly
extended, while the annual peak is narrow and cannot
be explained by seasonal phenomena.

The asymptotic methods of mechanics enable us
to establish that the Earth’s annual nutational oscil-
lations relative to the center of mass are due to the so-
lar gravitational moment, orbital motion of the rotat-
ing Earth, and diurnal tides in the mantle. Estimates
of the gravitational moment provide evidence for this
mechanism for perturbing the oscillations, since it
requires very small relative perturbations in the inertia
tensor (∼ 5× 10−5), which are approximately a factor
of 20 smaller than the “equatorial bulge” introduced
as a basis for the Chandler period. The amplitudes of
the semiannual and more rapid nutational oscillations
are considerably smaller (by a factor of 102–103). The
comparatively strong annual effect can be explained
by the closeness of the frequencies of the natural
and forced oscillations (Chandler and annual [2], see
below).

Monthly nutation oscillations are virtually absent,
and can be attributed to measurement errors. It is
important that the lunar gravitational moment is
stronger than the solar moment by a factor of two
to three. However, due to the substantial difference
between the natural and forced frequencies, the effect
of the Moon gives rise to monthly amplitudes that are
a factor of 15–20 smaller than the annual variations.
Measurements with an interval of ∆θ = 1 day indi-
cate that the amplitude of these oscillations is of the
order of 10−3 angular seconds.

Similarly to the precession (free nutation), the drift
of the Earth’s figure axis (trend) can be explained
by quasi-continuous changes in the inertia tensor. In
particular, the inertia tensor components Jpr and Jqr ,
which have amplitudes of the order of 10−8A∗, lead to
the observed trend of 0′′.5 along the y-axis (90◦ west-
ward from Greenwich). Since the relative errors in
the properties of the Earth’s inertia (mass and inertia
tensor) are considerably higher (10−6–10−5), we can
use the measured trend to refine the Earth’s inertia
tensor. Changes in the trend itself can be explained
by slow movements of the mantle on time scales of
the order of 103 yrs, as well as by variations in the
dynamical symmetry, which similarly gives rise to a
slow modulation of the Chandler oscillations.

In order to construct a simplified mathematical
model in a first approximation, we assume that small
deformations of the Earth are mainly radial. Then, the
equations governing the rotation relative to the center
of mass take the form of the classical Euler equations
with a variable inertia tensor J [2, 3]

Jω̇ +ω × Jω =M, ω = (p, q, r)T , (10)

J = J∗ + δJ, J∗ = const,
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J∗ = diag(A∗, B∗, C∗), δJ = δJ(t), ||δJ || � ||J∗||.
Here, ω is the angular velocity defined in some (ref-
erence) coordinate system fixed to the Earth and ap-
proximately coinciding with the main central inertia
axes J∗ of the “frozen” Earth, taking into account
the equatorial bulge [2–4]. It is thought that small
variations δJ of the inertia tensor can contain vari-
ous harmonic components due to the solar and lunar
diurnal tides, and possibly others as well (annual,
semiannual, monthly, semidiurnal, etc). We assume
that gravitational effects are the source of the main
perturbing external force moments M responsible for
the nutational oscillations. The possible presence of
a term of the form J̇ω does not give rise to any
improvement of the first-approximation model.

The kinematic Euler equations governing the ori-
entation of the fixed axes with respect to the orbital
coordinates take the form

θ̇ = p cosϕ− q sinϕ− ω0(ν) sinψ, (11)

ν̇ = ω0(ν) = ω∗(1 + e cos ν)2,

ψ̇=
p sinϕ+ q cosϕ

sin θ
−ω0(ν) ctg θ cosψ, e=0.0167,

ϕ̇ = r − (p sinϕ+ q cosϕ) ctg θ + ω0(ν)
cosψ
sin θ

.

Here, ν(t) is the true anomaly, e the orbital eccentric-
ity, and ω∗ a constant determined by the gravitational
and focal parameters. When solving Eqs. (10) and
(11) for the polar motion, terms proportional to ω0 in
(11) turn out to be considerably larger (by approx-
imately a factor of 300) than p and q, and become
the main terms for θ̇ and ϕ̇. This important property
has not been noted earlier in the literature, and these
terms were unjustifiably neglected.

The expressions for the components of the solar
gravitational force moment take the form

Mq = 3ω2[(A∗ + δA− (C∗ + δC))γrγp (12)

+ δJpqγrγq + δJpr(γ2
r − γ2

p)− δJrpγpγq],

ω = ω∗(1 + e cos ν)3/2, γp = sin θ sinϕ,
γq = sin θ cosϕ, γr = cos θ.

A cyclic permutation of the indices p, q, and r can be
used to computeMp,r. The annual component of the
polar oscillations can be ascribed to terms containing
products of the direction cosines γpγr and γqγr. For
their computation in a first approximation, we inte-
grate Eqs. (11):

r = r0, ϕ ≈ rt+ ϕ0, ν ≈ ω∗t+ ν0, (13)

cos θ(ν) = a(θ0, ψ0) cos ν, θ(0) = θ0 = 66◦33′,

0.4 ≤ a ≤ 1, 0 ≤ ψ0 ≤ 2π,
cos θ sin θ = b(θ0, ψ0) cos ν + d cos 3ν + . . . ,
0.4 ≤ b ≤ 4
3
π, |d| � 1.

The second and higher harmonics in ν give rise
to terms that are a factor of 102–103 smaller than
the main terms, and can be neglected. The quantity
B∗–A∗ is also considerably smaller than C∗–A∗ (by
approximately a factor of 160). After averaging over
the rapid phase ϕ, the estimates of the terms for p and
q in (10) simplify the model to the simple analytical
form

ṗ+Npq = κqr
2 + 3bω2

∗χp cos ν, (14)

Np,q ≈ N =
2π
T1

≈ 0.84ω∗,

q̇ −Nqp = −κpr
2 − 3bω2

∗χq cos ν,

p(0) = p0, q(0) = q0.

Here, κp and κq are the mean δJpr/B
∗ and δJqr/A

∗,
which can be slow functions. The quantitiesχp andχq

result from averaging the coefficients of cos ν (in the
components of the solar gravitational force moment)
over ϕ; as noted, they are due to diurnal tides. The
lunar gravitational force moments are neglected due
to their weak effect on the nutational oscillations.

The right-hand terms of (5) explicitly contain an
annual harmonic effect that explains the nutational
oscillations detected in the IERS observations. Al-
though the sensitivity of the coefficients κp,q exceeds
that of χp,q by five orders of magnitude, any explicit
annual (force-moment) effects with the required am-
plitude Mh ∼ 1020 kg m2 s−2 associated with inter-
nal geophysical phenomena appear implausible from
a mechanical point of view.

5. INTERPOLATING AND FORECASTING
THE POLAR MOTION

The approximate solution of the Euler–Liouville
and kinematic Euler equations yields expressions
comprising the basis of the approximate theoretical
model:
x(θ) =c0x+ c

1
xθ−ac

x cos 2πΩθ+a
s
x sin 2πΩθ (15)

− Ω
1− Ω2

dc
x cos 2πθ −

1
1− Ω2

ds
x sin 2πθ

− bcxθ cos 2πΩθ − bsxθ sin 2πΩθ,

y(θ) =c0y+ c
1
yθ+a

c
y cos 2πΩθ+a

s
y sin 2πΩθ

− Ω
1− Ω2

dc
y cos 2πθ +

1
1− Ω2

ds
y sin 2πθ

− bcyθ cos 2πΩθ + b
s
yθ sin 2πΩθ,

Ω = 0.840 − 0.845.
The secular terms in (15) are responsible for the
possible slow evolution of the Chandler period, i.e.,
ASTRONOMY REPORTS Vol. 46 No. 10 2002
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Fig. 3.Polar oscillationsxp and yp for 1994–2000 (theoretical curves) based on observations in 1994–1999 (dots); the forecast
for 2000.
Ω. The argument θ denotes the time in years. The
parameter Ω describes the ratio of the annual period
Th to the Chandler period T1. The constants a

c,s
x,y, c

0,1
x,y ,

dc,s
x,y, and b

c,s
x,y must be calculated in accordance with

the model (15) using the least squares method [12].
The eight parameters for the functions x and y can
be determined independently. Note that, theoretically,
the constructed first-approximation model obeys the
laws

ac
x = as

y, as
x = ac

y, dc
x = ds

y, (16)
ASTRONOMY REPORTS Vol. 46 No. 10 2002
ds
x = dc

y, bcx = bsy, bsx = bcy.

The vector (x, y) contains a total of ten independent
parameters. However, it is more convenient to de-
termine independently these eight parameters (six-
teen numbers) frommeasurements, then compare the
corresponding coefficients in accordance with (16) as
a verification of the model (15). Let us express the
variables x(θ) and y(θ) in the compact form
x(θ) = (ξ, f(θ)), y(θ) = (η, f(θ)), ξ = (ξ1, ξ2, . . . , ξ8)T , η = (η1, η2, . . . , η8)T , (17)

f(θ) = (1, θ, cos 2πΩθ, sin 2πΩθ, cos 2πθ, sin 2πθ, θ cos 2πΩθ, θ sin 2πΩθ)T .
There is an unambiguous correspondence between

the components of the vectors ξ, η (17), and themodel

coefficients (15). The quantities x and y are known at
discrete times θi [1]

xi = x(θi), yi = y(θi), θi =
i

20
, (18)

i = 0, 1, 2, . . . , N, N = 20Θ,
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Fig. 4.Polar oscillationsxp and yp for 1988–2001 (theoretical curves) based on observations in 1988–1999 (dots); the forecast
for 2000–2001.
where the quantity Θ corresponds to the number of
years. The best-fit coefficients ξ∗ and η∗ can be calcu-
lated and interpolated using the modified theoretical
model (17) and observational data. This provides the
ability to forecast beyond the interval used. We have
considered intervals of 6, 12, and 20 yrs.

We will present the results of our interpolation and
forecasting for two observational intervals: a com-
paratively short interval with Θ = 6 yrs (121 points)
and a longer interval with Θ = 12 yrs (241 points);
see (18). Expressions (17) for the first interval, corre-
sponding to the observational data of 1994–1999 [1],
take the form
x∗(θ) = −0.03221 − 0.00113θ (19)

− 0.01885 cos 2πΩθ − 0.22648 sin 2πΩθ
+ 0.030060 cos 2πθ + 0.07306 sin 2πθ
+ 0.0156θ cos 2πΩθ + 0.01952θ sin 2πΩθ,

y∗(θ) = 0.33763 − 0.000870θ
+ 0.22566 cos 2πΩθ − 0.24660 sin 2πΩθ
− 0.06904 cos 2πθ − 0.02544 sin 2πθ
− 0.191660θcos 2πΩθ+0.0033194θsin 2πΩθ.
Figure 3 shows the data (121 points) and theoretical
curves x∗(θ), y∗(θ) for the polar trajectory over the six
years indicated, together with the forecast for 2000.
The coefficients of (19) satisfy the conditions (16)
quite convincingly. The graphical data for 2000 pre-
sented by the IERS on their internet web site agree
well with the curves in Fig. 3.

For the longer interval withΘ = 12 yrs [1], expres-
sions (17) for 1988–1999 take the form
x(θ) = −0.03935 + 0.000075θ (20)

+ 0.03047 cos 2πΩθ − 0.20456 sin 2πΩθ
+ 0.030469 cos 2πθ + 0.06669 sin 2πθ
− 0.000496θ cos 2πΩθ + 0.004203θ sin 2πΩθ,

y(θ) =0.30798 + 0.002772θ
+ 0.19990 cos 2πΩθ + 0.02753 sin 2πΩθ
− 0.06302 cos 2πθ + 0.02766 sin 2πθ
− 0.003854θ cos 2πΩθ + 0.000133θ sin 2πΩθ.

Figure 4 presents the theoretical curves (20) and
data (241 points). They testify to the good accuracy
of the interpolation and a good agreement with con-
ditions (16). The forecast curves are also presented,
ASTRONOMY REPORTS Vol. 46 No. 10 2002
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and are in satisfactory agreement with the processed
digital IERS data.

6. CONCLUSIONS

The proposed model can also be applied to longer
(20-year) and shorter (2-year) interpolation intervals.
The IERS data [1] and least-squares results indicate
that the constructed mathematical model we have
derived using a celestial-mechanics approach can
adequately describe the complex oscillations of the
Earth’s pole over intervals of 20–30 yrs.
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