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Abstract—The responses (relative velocity variations ∆v /v of normal (symmetric or asymmetric) Lamb and
shear-horizontal modes of ST-cut quartz plates, whose thickness is comparable with the wavelength, is studied.
Since modes of different orders n belonging to these two families have different propagation velocities vn,
polarizations ui , and displacement distributions in depth H, they exhibit different responses to variations in the
parameters of the plate (density, elastic moduli, thickness, and temperature) and to the loading of its surface by
thin films (i.e., to surface adsorption). Results of numerical calculation of the responses to these parameters are
corroborated by experiments on the effect of the plate temperature variation and the effect of adsorption of
water vapor onto the plate surface. © 2004 MAIK “Nauka/Interperiodica”.
† INTRODUCTION

In recent years, an explosion has been observed in
research into external effects, processes, and media at
solid–gas and solid–liquid interfaces. These problems
have much in common with gas and liquid detection
and recognition problems. The interest in these studies
is caused by the necessity to develop new means for
environmental monitoring, biological shielding, analyt-
ical chemistry, biology, medicine, and other fields of
science and engineering.

Application of surface acoustic waves (SAW) for
these purposes has a number of advantages over meth-
ods based on other physical principles. Therefore, the
sensing properties of waves of different types propagat-
ing in various kinds of structures have been studied for
more than 15 years.

These studies were traditionally limited to the use of
Rayleigh waves [1, 2], surface waves [3], leaky surface
acoustic waves [4], and shear horizontal waves [5].
However, until now, the detection properties of normal
oscillatory modes of thin plates were only studied for
several lowest-order waves [6–8]. At the same time, it
would be natural to assume that, because modes of dif-
ferent orders n excited in plates differ in the propaga-
tion velocity v n, polarization ui, and displacement dis-
tribution over the depth H, they must exhibit different
responses to external actions.

This paper studies the differences in the responses
of Lamb and shear horizontal (SH) modes of different
orders n to the same variations in the parameters of the
plate and to the same external actions.
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PROPERTIES OF PLATE MODES 
VERSUS PLATE PARAMETERS

The sensing properties of the modes were studied
with the use of software [9] that solves wave equations
with appropriate boundary conditions by the numerical
method of multilayer matrices.

For quartz plates with relative thicknesses of H/λ =
0.6, 1.0, and 1.2755, where H is the plate thickness and
λ is the wavelength, the relative variation in the velocity
of the plate modes, ∆v n/v n, was calculated as a function
of the plate density ρ, elasticity cij, and thickness H/λ.
Each parameter was progressively varied within ±1%
near its nominal value (i.e., the value under normal con-
ditions) at nominal values of the remaining parameters,

and three velocities , , and  of each nth mode
were calculated for the parameter values, respectively,
1% greater than, equal to, and 1% lower than its nomi-
nal value. The value ∆vn/vn (response of the nth mode
to the change in the parameter) was defined as ∆vn/vn =

(  – )/ . As a result, we obtained the curves rep-
resenting ∆v n/v n versus n for various parameters and
mode types. Results of similar calculations for temper-
ature coefficients of delay (TCD) of SH modes are
reported in [10]. The corresponding results for Lamb
waves are presented below. As an example, Fig. 1
shows the data for Lamb waves in a plate with H/λ = 0.6
(at H/λ = 1.0 and 1.2755 the behavior is similar). The
symmetric and asymmetric modes are numbered
sequentially. The behavior of ∆v n/v n for Lamb waves
differs from that for SH waves: it depends nonmono-
tonically on the mode index n (the value of ∆v n/v n is
different for each subsequent mode), no tendency to
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saturation of ∆v n/v n at large n is observed, and the sen-
sitivity of Lamb modes to variations in the density of
the plate is the same and slowly varies when H/λ
decreases from 1.2755 to 0.6. Both Lamb and SH
modes exhibit the highest sensitivity to ρ, C11, C14 , and
C44. Accordingly, the velocity of Lamb modes
decreases (∆v n/v n < 0) with increasing density ρ and
increases (∆v n/v n > 0) with increasing C11 and C44.

These results show that both the Lamb and SH
modes of different orders n exhibit different sensitivi-
ties to the parameters of the plate, and, for some modes,
the difference occurs in both the magnitude and sign of
the response ∆v n/v n. For each mode type, there exist
elastic moduli of the plate whose variations cause no
velocity changes for any of the modes. For modes of
both types, there are parameters to which all modes of
the type exhibit a high, though different, sensitivity.
A 1% change in these parameters may cause a response
as high as 1%.

PROPERTIES OF PLATE MODES VERSUS 
TEMPERATURE

As is known, the temperature sensitivity of acoustic
waves of any type is characterized by the temperature
coefficient of delay (TCD). For thin plates, a change in
temperature T in general causes changes in all parame-
ters of the plate: thickness H, density ρ, and elasticity
Cij. Each of these parameters causes a particular change
in the velocity of a mode and its TCDn. We calculated
the TCDn for different Lamb modes in ST,X quartz near
room temperature by a technique similar to that used
earlier in [10]. This technique represents the TCD as a
total differential with respect to the variables x = ρ, cij,
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Fig. 1. Sensitivity of Lamb modes to individual parameters
of the ST,X quartz plate at H/λ = 0.6: (j) ∆ρ, (d) ∆C11 ,
(n) ∆C12 , (×) ∆C13 , (.) ∆C14 , (+) ∆C33 , (e) ∆C44 , and
(s) ∆H/λ.
and H/λ:

(1)

where αpl is the plate linear expansion coefficient in the
mode propagation direction. Representation (1) allows
one to analyze partial contributions to TCDn from each
plate parameter separately and find the values of TCDn

for various plate modes that propagate in the same
direction. The contributions of the dielectric and piezo-
electric moduli of quartz to TCDn are small and can be
neglected.

Figure 2 shows the TCD for the Lamb modes calcu-
lated at H/λ = 0.6. It can be seen that, unlike SH modes
[10], Lamb modes feature a nonmonotonic behavior of
all (1/v nÓ)(∆v n/∆x), and (dx/dt) functions versus the
mode index n (except for the density dependence),
because the partial contribution to TCDn is different for
almost each subsequent Lamb mode. No tendency to
saturation with increasing n can also be observed. The
sensitivity of Lamb modes to the plate density ρ is the
same as for SH modes and slowly varies with n for H/λ
decreasing from 1.2755 to 0.6. The contribution of the
temperature variation in H/λ to TCDn is negligible for
all modes, while the contributions of variations in other
parameters are nonzero: either positive (ρ), or negative
(C11, C33, C44), or they differ in sign for modes of dif-
ferent orders (C12, C13, C14).

Note that, although (as we found out above) the
effect of elastic moduli C12, C13, and C33 on the veloci-
ties v n of plate modes is small, the effect of the temper-
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Fig. 2. Partial contributions to the TCD of Lamb modes due
to the temperature variations in the parameters of the ST,X
quartz plate at H/λ = 0.6: (j) ∆ρ, (d) ∆C11 , (n) ∆C12 ,
(×) ∆C13 , (.) ∆C14 , (+) ∆C33 , (e) ∆C44 , and (s) ∆H/λ.
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SENSING PROPERTIES OF NORMAL OSCILLATORY MODES 117
ature variation in these moduli on the velocity and
TCDn is high and is comparable with that of other elas-
tic moduli. This result is associated with a rather strong
temperature dependence of the coefficients themselves.
In other words, modes can generally exhibit a widely
different sensitivity to the elastic moduli and their tem-
perature variations.

Next, we analyze the values of TCDn calculated as a
sum of contributions according to Eq. (1). As can be
seen from Fig. 3, for Lamb modes, the dependence of
TCDn on the mode index n is nonmonotonic. At the
same plate thickness and propagation direction, modes
exist whose TCDs are positive, negative, or zero. There
is no universal dependence of TCDn on the plate thick-
ness H/λ in the thickness range under study.

It should be particularly noted that, according to our
calculations, the temperature sensitivity of the plate
modes can vary over a wide range for the same propa-
gation direction and reach high values even for quartz,
which is usually regarded as a thermally stable mate-
rial. It therefore seems incorrect to apply the term “ther-
mally stable” to any material, because the thermal sta-
bility implied refers to a wave of a particular type alone
and only near a particular temperature. In the cases con-
sidered above, the temperature sensitivity of Lamb
modes at room temperature was in the range of –170 to
+250 × 10–6 /°C. For comparison, the highest sensitivity
of a Rayleigh wave ({100}, 〈110〉  Bi12GeO20 single
crystal) is +120 × 10–6 /°C [11].

PROPERTIES OF PLATE MODES 
IN THE PRESENCE OF SURFACE ADSORPTION

To study the sensitivity of Lamb modes and SH
modes to a surface load, we calculated the relative
changes in their velocities, ∆v /v n, which occurred as a
result of applying a thin film of another material to one
of the plate surfaces. In order to cover the maximum
possible number of film and plate material combina-
tions, we analyzed all materials listed in the data base
of program [9]. Similar to paper [12], in which the
acoustic properties of layered structures in the form of
a layer overlying a half-space were analyzed, I choose
film materials with Rayleigh and SH wave velocities
lower, approximately equal, or higher than those in
ST,X quartz and ST,X + 90° quartz. As in [12], I will
call these films slow-wave, neutral, or fast-wave films,
respectively. For SH-polarized modes propagating in
the X + 90° direction, the materials selected were gold
(Au), yttrium gallium garnet (Y3Ga5O12), and silicon
(Si); for Lamb modes propagating along the X axis of
ST-cut quartz, gold (Au), europium iron garnet
(Eu3Fe5O12), and diamond (C) were used. The short-
circuiting effect of metal films was eliminated by
appropriately choosing the operating conditions of the
program [9]. The relative film thicknesses h/λ (where
h is the film thickness) were varied over a range of
0.00–0.01. The plate thickness was H/λ = 0.6 and
ACOUSTICAL PHYSICS      Vol. 50      No. 2      2004
1.2755. For typical wavelengths of acoustic modes λ =
100–500 µm, the values of h were within 0.01–5.00 µm,
which corresponds to the typical biochemical mono-
layer thickness (0.1 µm [13]) and is therefore realistic
for modeling the process of surface adsorption.

Our calculations show that, for SH modes, the slow-
wave film expectedly reduces the velocities of all
modes, i.e., the responses ∆v n/v n are negative. The rel-
ative velocity variation ∆v n/v n versus mode index n
reaches its maximum at a certain n, which depends on
the film thickness, and exhibits saturation at large n.
Responses of all mode orders increase with the relative
thickness (mass) of the slow-wave film, h/λ. The mini-
mum response is exhibited by either the 0th-order mode
(h/λ = 0.0001–0.001) or the 1st-order mode (h/λ =
0.005–0.01). The neutral film (yttrium gallium garnet)
produces a similar effect on the SH modes.

The mass-elastic action of the fast-wave film leads
to a different behavior of the dependence of ∆v n/v n on
n and h/λ (Fig. 4). In this case, the responses of the 0th-
and 1st-order modes become positive (the mass-elastic
load increases the velocities of these modes), the
responses of the 2nd- and 3rd-order modes become
close to zero (these modes are almost insensitive to the
load), and the responses of higher-order modes are
again negative and almost equal to each other. In my
opinion, the fast-wave film reduces the velocities of
higher-order modes, because these velocities are high
and the film actually becomes a slow-wave structure for
them.

A common effect of the mass-elastic loading of the
plate surface by the slow-wave, neutral, and fast-wave
films is that the responses of SH modes ∆v n/v n depend
on the mode index n, they are approximately equal for
high-order modes and grow with increasing load. The
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Fig. 3. TCD of Lamb modes in an ST,X quartz plate with
H/λ = 0.6 at room temperature (TCD = 0 is the TCD of the
Rayleigh wave in ST,X quartz at the same temperature):
(j) experiment and (s) theory.
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ranges of responses for the minimal and maximal thick-
nesses of loading films are given in Table 1.

For the Lamb modes, the mass-elastic loading of the
plate surface leads to a more complex behavior. The
response ∆v n/v n changes for almost every subsequent
mode n, taking on negative values for the slow-wave
and neutral films and predominantly positive values for
the fast-wave film. An increase in the load (film thick-
ness h/λ) does not necessarily enhance the response of
the modes (2nd, 3rd, and 6th modes, Fig. 5). Such an
increase may even cause the acoustic response to
change its sign (3rd and 9th modes, Fig. 5). Because
∆v n/v n is a nonmonotonic function of n, the number of
modes that are insensitive to the mass-elastic load
increases. The fast-wave film increases the velocity of
the major part of the modes, including the higher-order
ones, although their velocities in the film material are
higher than the velocity of the Rayleigh wave. The
ranges of responses for Lamb modes at the minimal and
maximal thicknesses of the loading film are given in
Table 2.
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Fig. 4. SH modes in an ST,X + 90° quartz plate with H/λ =
1.2755 covered with a fast-wave 〈001〉 , 〈100〉  Si film of
thickness h = (j) 0.0001, (s) 0.0005, (n) 0.001, (.) 0.005,
and (×) 0.01.

Table 1.  Response ranges of SH modes in ST,X + 90° quartz
for the minimal and maximal thicknesses of the loading films

Velocity
Material

∆vn/vn, 10–6

(h/λ = 0.0001)
∆vn/vn, 10–6

(h/λ = 0.01)

Au (slow-wave) –277…–569 –2281…–123319

Y3Ga5O12 (neutral) –31…–164 –3776…–14292

Si (fast-wave) +18…–119 +1780…–6228
The above features of Lamb and SH modes in a
quartz plate with a relative thickness of H/λ = 1.2755
and with a mass-elastic load persist when the plate
thickness decreases. Thus, the effect produced by the
mass-elastic load on the velocity of normal oscillatory
modes of the quartz plate is different for different
modes.

EXPERIMENTAL

Parameters of the ST-cut quartz plates used in our
experimental study of the sensitivity of the plate modes
to temperature and gas adsorption are summarized in
Table 3. Samples 2 and 3 had one surface ground and
one surface polished, on which receiving and transmit-
ting 100-nm-thick transducers made of Al/Cr or Au/Cr
were positioned. Both surfaces of samples 1 and 4 were
optically polished. The Lamb modes were excited to
travel in the direction of the X crystallographic axis; the
SH modes, perpendicular to this axis, for which pur-
pose pairs of interdigital transducers were placed on the
samples at an angle of 90° to one another. The experi-

Table 2.  Response ranges of Lamb modes for the minimal
and maximal thicknesses of the loading films

Velocity
Material

∆vn/vn, 10–6

(h/λ = 0.0001)
∆vn/vn, 10–6

(h/λ = 0.01)

Au (slow-wave) –203…–788 –21744…–98695

Eu3Fe5O12 (neutral) +17…–169 –1469…–15891

C (diamond) (fast-wave) +1000…–84 +40733…–8211
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Fig. 5. Lamb modes in an ST,X quartz plate with H/λ
1.2755 covered with a fast-wave 〈001〉 , 〈100〉  diamond film
with h = (j) 0.0001, (s) 0.0005, (n) 0.001, (.) 0.005, and
(×) 0.01.
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SENSING PROPERTIES OF NORMAL OSCILLATORY MODES 119
mental technique and the procedures for the spatial
mode resolution and identification by the velocity and
by the electromechanical coupling coefficient are iden-
tical to those used in [10].

The experimental TCD values for the Lamb modes
are in good agreement with the theoretical values: the
magnitude and sign of the TCD practically change for
each subsequent mode n; the TCD of the 2nd-order
mode at a temperature of T = 20°C and a relative plate
thickness of H/λ = 0.6 reaches a high value of 180 ×
10−6/°C (Fig. 3). Thus, the plate modes demonstrate a
variety of temperature-dependent properties, which
include negative and zero TCD values, as well as record
high positive and negative values in the temperature
range of T = 2–92°C. To obtain a further increase in the
temperature sensitivity of acoustic oscillations while
keeping the TCD values stable over a wide temperature
range, one should search among the plate oscillatory
modes by simultaneously optimizing the material, crys-
tallographic cut, and thickness of the plate.

The sensitivity of the plate modes to gas adsorption
was studied in water vapor. Because gas adsorption on
a clean plate surface is generally accompanied by
changes in the mass, elasticity, conductivity, and tem-
perature of the boundary region, the resulting change in
the mode propagation velocity is caused by the com-
bined effect of the mass, elastic, electric, and thermal
loading of the surface. The samples were exposed to a
flow of humid air (with a relative humidity of 10 to
85%) in a chamber with a volume of 250 ml. The
response of the sample treated with a nitrogen flow was
used as a reference. The responses were measured by
an HP 8753A network analyzer operated in the phase
mode. The temperature and humidity in the chamber
were measured independently by a commercially avail-
able IVTM-7 probe, within ±0.1°C and ±0.1% of the
relative humidity, respectively. Other features of the
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Fig. 6. Relative phase change (response) of SH modes in an
ST,X + 90° quartz plate with H/λ = 1.4855, with water
vapor adsorbed on its clean surface at room temperature and
a relative air humidity of 80%.
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experiment are detailed in [10]. The experimental
results are shown in Figs. 6 and 7.

As can be seen from Fig. 6, the responses ∆ϕ/ϕ0 of
SH modes to the adsorption of gas with a constant rel-
ative humidity of 80% change with the mode number n.
For plates of thickness H/λ = 1.4855, the highest sensi-
tivity is observed for the 9th, 14th, 16th, 21st, and 22nd
modes; the lowest, for the 8th, 11th, and 15th modes.
Unlike the cases when the samples were subjected to
one type of the surface load, which we studied numeri-
cally, the combined action of the mass, elastic, electric,
and thermal surface loads leads to a more complex non-
monotonic behavior of ∆ϕ/ϕ0 versus n (Fig. 6).
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Fig. 7. Relative phase change (response) of Lamb modes in
an ST,X quartz plate with H/λ = 1.4855, with water vapor
adsorbed on its clean surface at room temperature and a rel-
ative air humidity of 80%.
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Fig. 8. Concentration curves of the 16th- and 44th-order
Lamb mode responses for an ST,X quartz plate with H/λ =
1.4855, with water vapor adsorbed on its surface at room
temperature: (dots) experiment, (lines) approximation
curves, (j) 16th-order mode, and (s) 44th-order mode.
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Table 3.  Parameters of experimental samples

Sample H, mm λ, µm H/λ N 2a, mm L, mm ϕ0, deg

1 0.3 500 0.6 20 20 30 21600

2 0.5 500 1.0 20 20 30 21600

3 0.5 392 1.2755 20 16 24.1 22130

4 0.3 202 1.4855 16 12 26.2 46693

Note: H is the plate thickness; λ, N, and 2a are the period, number of electrode pairs, and aperture of the transducers; and L and ϕ0 are the
distance and the total phase advance of the plate mode (initial phase of the mode) between the transducers.
The responses ∆ϕ/ϕ0 of Lamb modes to the adsorp-
tion of gas with a constant relative humidity of 80%
also change with the mode number n (Fig. 7). For plates
with H/λ = 1.4855, the highest sensitivity is observed
for the 28th, 30th, 36th, 44th, and 46th modes; the low-
est, for the 0th, 1st, and 29th modes. Under the com-
bined action of the mass, elastic, electric, and thermal
surface loads, ∆ϕ/ϕ0 exhibits complex and nonmono-
tonic behavior as a function of n, the same as under the
individual action of each of these loads.

For both SH modes and Lamb modes, the behavior
of ∆ϕ/ϕ0 versus the relative humidity (concentration
dependences) is different for modes of different orders
n. This is exemplified in Fig. 8 by the 16th- and 44th-
order Lamb modes. As can be seen, at the same number
of water molecules adsorbed by the plate surface (at the
same relative humidity), the concentration curves differ
in both magnitude and shape. Note that the response of
Rayleigh SAWs in quartz of the same cut to the adsorp-
tion of 80% water vapor is an order of magnitude
smaller, ∆ϕ/ϕ0 ~ 10 × 10–6 [14].

CONCLUSIONS

Our experimental studies corroborate the conclu-
sions drawn from numerical results: plate modes of dif-
ferent orders and types exhibit different responses to
external actions. In each mode family, there are both
highly sensitive and insensitive modes to a particular
action. For a uniform thermal action, modes are found
with a record-high sensitivity to temperature as well as
those insensitive to it over a wide temperature range.
When water molecules are adsorbed on a clean surface
of the quartz plate, the Lamb modes whose sensitivity
is an order of magnitude higher than that of Rayleigh
waves are found, as well as modes that are insensitive
to adsorption of these molecules. In my opinion, this
situation is typical of plate modes in general and will be
observed under any other external actions. The high
propagation velocity of the plate modes, which is an
order of magnitude higher than the velocity of Rayleigh
waves propagating in the same direction, makes it pos-
sible to achieve an order of magnitude higher operating
frequencies with the same period of interdigital trans-
ducers without using ultraviolet or electron lithography.
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Abstract—An experimental study of the shear parameters of viscoelastic liquids is carried out by the acoustic
resonance method based on the changes in the natural frequency and Q factor of a piezoelectric quartz resona-
tor. The liquid to be studied is placed between a stationary quartz strap and the piezoelectric quartz crystal
vibrating at the resonance frequency. For a set of drilling muds, the values of the real and imaginary shear mod-
uli are obtained at a frequency of 74 kHz. The measurements are performed with a liquid layer thickness much
smaller than the shear wavelength. It is shown that the shear modulus decreases with increasing strain ampli-
tude. A cluster model based on the Isakovich–Chaban nonlocal diffusion theory is proposed for explaining the
low-frequency viscoelastic relaxation process. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Many liquids are known to change their viscosity
and exhibit viscoelastic properties under an external
load. These are the so-called non-Newtonian liquids.
Viscoelastic materials with non-Newtonian behavior
have attracted the attention of researchers [1–3]. For
studying the mechanical properties of viscoelastic liq-
uids, different acoustic methods were developed. A
review of the acoustic methods used for measuring the
viscoelastic properties of materials can be found in [4].
Earlier, we performed experimental studies of the low-
frequency shear properties of viscoelastic liquids at a
constant strain by the acoustic resonance method with
the use of a piezoelectric quartz resonator [5].

In the present experiment, we use a method of mea-
suring the complex shear moduli of liquids to study the
shear properties of drilling muds depending on the
vibration amplitude of the resonator.

METHOD

An acoustic resonance method of measuring the
complex shear modulus of liquid was described in [6].
This method is basically identical to that proposed by
Mandel’shtam [7] and applied by Khaœkin [8] to study
the nature of interaction forces between two contacting
solid bodies. In a piezoelectric quartz crystal 1 shaped
as a rectangular bar (Fig. 1), length vibrations are
excited at the fundamental resonance frequency. On the
crystal, a second solid body 3 (a strap) is placed, and the
character of the interaction of these two bodies is stud-
ied by the changes in the parameters of the vibrations.
1063-7710/04/5002- $26.00 © 20121
Using this method, it was shown [8] that friction forces
are of an elastic nature when the vibration amplitudes
are small. In the resonance method of measuring vis-
coelastic properties of liquids, a thin layer 2 of the liq-
uid under investigation is placed between the quartz
crystal and the strap. The working surface of the piezo-
electric quartz crystal is its horizontal face perpendicu-
lar to the optical axis. When the quartz crystal vibrates,
the strap is practically at rest, because the coupling
through the liquid layer is weak and cannot transmit the
acceleration of the quartz crystal to the strap. The
piezoelectric quartz crystal is fixed by steel needles at
points lying on the nodal line. The voltage from the out-
put of an oscillator is supplied to the first pair of elec-
trodes positioned at one end of the quartz crystal on its
two lateral faces. Under the effect of the alternating
electric field, the quartz crystal performs forced vibra-
tions of the compression–extension type. The alternat-
ing emf arising due to the piezoelectric effect is applied

3

2

1

Fig. 1. (1) Piezoelectric quartz crystal with (2) a liquid layer
and (3) a quartz strap.
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to the second pair of electrodes symmetrically posi-
tioned at the other end of the lateral faces. Vibrations of
the quartz crystal are controlled by an oscilloscope. The
resonance frequency of the quartz crystal is determined
with an accuracy of ±1 Hz. By smoothly varying the
modulation frequency, it is possible to make one of the
side frequencies equal to the natural frequency of the
quartz crystal. In this case, the vibration amplitude of
the latter increases, reaching its maximum. Corre-
spondingly, the voltage supplied to a millivoltmeter
also increases. A voltmeter is used to measure the volt-
age across the quartz crystal, which usually does not
exceed several hundreds of millivolts. The resonance
frequency shift of the piezoelectric quartz crystal is
measured for different thicknesses of the liquid film.
The increase observed in the resonance frequency of
the vibratory system proves that the liquid layer exhib-
its not only viscous but also elastic properties. If only
dissipative forces are present, e.g., internal friction, the
resonance frequency can only decrease. The experi-
ments were performed with an 18.5° X-cut quartz crys-
tal whose Poisson ratio was zero. The dimensions of the
crystal were 36 × 12 × 5 mm3, and its resonance fre-
quency was 74 kHz. From the changes in the acoustic
parameters of the piezoelectric quartz crystal (the reso-
nance frequency and the width of the resonance curve),
the real G' and imaginary G'' shear moduli of the vis-
coelastic liquid were determined.

The measuring procedure was as follows. The liq-
uids under investigation and the surfaces of both the
quartz and the strap were carefully cleaned. Immedi-
ately after cleaning, the piezoelectric quartz crystal was
mounted on the sample holder and the liquid under
study was placed on the quartz surface and covered
with the strap. The film thickness was determined and
monitored by the interference method [6]. After this,
the resonance frequency of the vibratory system and the
width of the resonance curve were measured.

The theory of the resonance method [9] yields the
following formulas for the real and imaginary shear
moduli of the liquid layer:

(1)

(2)

where M is the mass of the piezoelectric quartz crystal,
∆f ' is the resonance frequency shift of the piezoelectric
quartz crystal, ∆f '' is the change in the half-width of the
resonance curve of the quartz crystal, f0 is its natural
resonance frequency, H is the thickness of the liquid
layer, and S is the area of the strap. Formulas (1) and (2)
are valid under the following conditions:

(3)

where m is the mass of the strap, λ is the wavelength of
the shear wave propagating in the liquid layer of thick-

G'
4π2M f 0∆f 'H

S
---------------------------------,=

G''
4π2M f 0∆ f ''H

S
-----------------------------------,=

m/M ! 1, H/λ  ! 1, f 1/ f 0 ! 1,
ness H under the effect of the quartz crystal vibrations,
and f1 is the natural frequency of the strap, which is
determined by the elastic coupling with the quartz sur-
face through the liquid layer. In the experiment, to sat-
isfy conditions (3), we used M = 7.04 g and m = 0.4 g.
The shear wavelength was of an order of 100 µm at the
given frequency, and the values of the film thickness H
were usually no greater than several microns [10]. The
behavior of a viscoelastic liquid at low frequencies of
external actions can be described by the simple Max-
well rheological model [11]. The shear viscosity η is
calculated by the formula

(4)

From Eqs. (1), (2), and (4), one can calculate the
main shear parameters of liquids.

EXPERIMENTAL RESULTS 
AND DISCUSSION

We studied the shear viscoelastic properties of a set
of drilling muds with different dynamic viscosities. The
drilling muds were chosen as liquids that exhibit a non-
Newtonian behavior under a shear external action. A
drilling mud is a water solution of silicates (clays).
Drilling muds with different dynamic viscosities were
given different numbers: 1, 2, 3, etc. For all the liquids
studied, linear dependences of the frequency shifts on
the inverse thickness of the liquid layer were obtained
at a constant vibration amplitude of the piezoelectric
quartz crystal. Figure 2 shows the dependences of the
real resonance frequency shift of the quartz crystal on
the thickness of the liquid layer for drilling muds 2 and
3. One can see that the dependences are linear in the
whole thickness range under study. From formulas (1),
(2), and (4), we determine the real and imaginary parts
of the complex shear modulus and the viscosity of the
liquids under investigation. The results of the measure-
ments are presented in the table. The last column shows
the values of dynamic viscosity ηd, which are given for
comparison.

Earlier, in [6] it was shown that the shear elasticity
of liquids is of a nonlinear character, i.e., depends on
the amplitude of the external action. We performed a
study of the drilling muds under increasing angles of
shear. Figure 3 presents the experimental dependences
of the real resonance frequency shift on the vibration
amplitude of the piezoelectric quartz crystal for several
drilling muds. The abscissa axis represents the ratio
A/H as a measure of the angle of shear, where A is the
vibration amplitude of the quartz crystal in microns.
The amplitude was determined by the method
described in [12]. One can see that, up to a certain value
of the angle of shear, the real frequency shift (and,
hence, the shear modulus) has a constant value; as the
angle of shear increases further, the real frequency shift
decreases. Based on this observation, we can assume

η G '2 G ''2+
2πf 0G ''

-----------------------.=
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that, in equilibrium, the liquid possesses some equilib-
rium structure, which is retained in the presence of
small strains; as the shear strain increases, the structure
is destroyed, which leads to a decrease in the real shear
modulus.

Thus, the study of drilling muds showed that they
possess a complex shear modulus. This means that, in
these liquids, a low-frequency viscoelastic process due
to the interactions of large groups of molecules, i.e.,
clusters, takes place.

According to the Isakovich–Chaban model [13], a
highly viscous liquid can be considered as a microinho-
mogeneous medium consisting of two dynamic compo-
nents: ordered microregions, i.e., clusters, in a loosely
packed disordered matrix. Under external actions, the
clusters are rearranged. We assume that such a dynamic
structural microinhomogeneity is a characteristic struc-
tural feature of all liquids. No fundamental qualitative
difference exists between highly viscous and slightly
viscous liquids. Only a quantitative difference can be
found between them, namely: the cluster lifetime in
ordinary liquids is much smaller than that in highly vis-
cous liquids. In terms of this model, the low-frequency
viscoelastic relaxation of liquids is caused by the decay
and recovery of such fluctuation clusters, i.e., dynamic
microinhomogeneities of the structure.

Let us assume that a cluster is a quasi-closed system
consisting of z identical kinetic units (atoms or groups
of atoms). The cluster lifetime is determined by the
equation [14]

τ = Bexp[(U – TS)/kT]. (5)

The thermodynamic probability W of the cluster pres-
ence in the Boltzmann equation S = klnW is higher the
greater the number of particles in the cluster is, W = cz.

40

0.5

∆ƒ', Hz

1/H, µm–1
1.00

80

1

2

Fig. 2. Dependences of the real frequency shift of the reso-
nator on the inverse thickness of the liquid layer for drilling
muds (1) 3 and (2) 2.
ACOUSTICAL PHYSICS      Vol. 50      No. 2      2004
Then, we have

τ = czBexp(U/kT). (6)

The proportionality coefficient c is equal to unity,
because at z = 1, when the cluster consists of one kinetic
unit, the quantity τ is determined from the known Fren-
kel formula [15]:

τ = Bexp(U/kT), (7)

where the pre-exponential factor B means the period of
particle oscillations about the equilibrium position τ0:

B ≈ τ0 ≈ 10–12 s. (8)

Therefore the equation for the relaxation time takes the
form

τ = Bλ exp(U/kT), (9)

where the pre-exponential factor Bλ for the low-fre-
quency relaxation process proves to be z times greater
than for the high-frequency relaxation process associ-
ated with the mobility of a single particle: Bλ  = zB.
Amorphous polymers [16] have a wide variety of
ordered microregions, which play the role of microvol-
ume physical λ-nodes. Therefore, in these materials, a

40

0.1
(A/H)1/2

0.20
20

60

80
∆ƒ', Hz

1

2

Fig. 3. Dependences of the real frequency shift of the reso-
nator on the vibration amplitude of piezoelectric quartz
crystal for drilling muds (1) 3 and (2) 2.

Shear viscoelastic properties of liquids

Liquids G' × 10–5,
Pa

G'' × 10–5, 
Pa

η,
Pa s

ηd,
Pa s

Drilling mud no. 1 1.353 0.271 1.528 0.0192

Drilling mud no. 2 0.334 0.072 0.353 0.0128

Drilling mud no. 3 0.201 0.063 0.153 0.0085

Drilling mud no. 4 0.442 0.099 0.451 0.0156
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group of λ-transitions arises with identical activation
energies but with different coefficients Bλ.

In the temperature dependence of the mechanical
loss tangent measured for petroleum jelly at a fre-
quency of ν1 = 40 kHz in the temperature interval
within 300–340 K, two peaks were observed at temper-
atures of 303 and 323 K. At another frequency ν2 =
74 kHz, in the temperature interval within 263–303 K,
one peak was observed at a temperature of about 283 K
[17]. Presumably, at this frequency, the second peak
should appear above 303 K. By analogy with polymers,
one can assume that, in petroleum jelly within 300–
340 K at ν1 = 40 kHz, two λ-relaxation processes, λ1
and λ2, corresponding to two different types of physical
nodes, i.e., clusters, take place.

We substitute the condition of maximal mechanical
loss [16], ωτ = 2πντ = c, into Eq. (9) to obtain the rela-
tion between frequency and temperature:

ν = ν0exp(–U/kT), (10)

(11)

Here the constant c for small-scale transitions is equal
to unity, c ≈ 1, which corresponds to the Debye equa-
tion for dielectric relaxation in liquids. For a number of
the relaxation transitions that occur in amorphous
organic polymers due to the mobility of macromolecule
segments, the quantity c is close to c ≈ 10 [16].

Writing formula (10) for the dependence ν(T) at fre-
quencies ν1 = 40 kHz and ν2 = 74 kHz and substituting
the λ1-transition temperatures T1 = 303 K and T2 =
283 K into it at these frequencies, we obtain the follow-
ing approximate estimate for the activation energy of
the low-frequency viscoelastic relaxation transition
(λ1-process) in petroleum jelly:

(12)

This estimate is close to the energy of the hydrogen
bond (U ≈ 5 kcal/mol).

Knowing U, we can estimate the pre-exponential
factor 

,

where the values c = 10 and ν0 = ν1exp(U/kT1) ≈ 7 ×
108 Hz are used. Assuming that B = 10–12 s for one par-
ticle, we estimate (in order of magnitude) the number of
particles in a cluster of petroleum jelly:

z = Bλ/B ≈ 103.

At c = 1, we have z = 102. For a SKMS-10 butadiene-
methylstyrene elastomer, the following estimate was
obtained [14, 16]:

z = Bλ/B ≈ 104–106.

ν0
c

2πBλ
-------------.=

U R
ν1

ν2
-----ln 

  1
T1
----- 1

T2
-----– 

  1–

21.6 
kJ

mol
---------.≈=

Bλ
c

2πν0
------------ 2 10–9×  s≈=
The segment volume is about V ≈ 10–21 cm3, which
yields a cluster volume of zV = 10–17–10–15 cm3. This
value corresponds to a linear size of l ≈ 10–6–10–5 cm,
which agrees well with the direct estimates of the size
of ordered microregions of the elastomer structure [16].
A close value was obtained for the cluster size in glyc-
erol by Isakovich and Chaban [13]:

l = (2Dτ)1/2 ≈ 10–7 cm,

where D is the self-diffusion coefficient and τ is the
relaxation time.

Thus, in terms of the proposed cluster model, the
low-frequency shear elasticity of liquids is caused by
the presence of relatively long-lived clusters of a fluc-
tuation nature: they arise and decay with time. Their
lifetime is long because of the great number of bound
molecules forming a cluster rather than because of the
large-size particles. The decay of a cluster occurs
through the bound molecule-to-free molecule transition,
which resembles the decay of a liquid drop due to the
evaporation of individual molecules. Such a multistep
process is characterized by a long relaxation time τ.

CONCLUSIONS

(i) By the acoustic resonance method with the use of
a piezoelectric quartz resonator, we obtained the values
of the real and imaginary shear moduli and mechanical
loss tangent of drilling muds at a constant vibration
amplitude of the quartz crystal. We showed that all liq-
uids studied possess measurable values of the complex
shear modulus.

(ii) The study of shear parameters under an increas-
ing vibration amplitude of the quartz crystal showed
that the shear modulus of the objects studied decreases
with increasing angle of shear.

(iii) We proposed a cluster model of liquids on the
basis of the Isakovich–Chaban nonlocal diffusion the-
ory. In the framework of the model, we estimated the
activation energy of the viscoelastic relaxation process.
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Abstract—The method of integral transformations is used to obtain a long-wave solution to the problem of tube
wave excitation by an external point source in an infinite fluid-filled borehole embedded in a transversely iso-
tropic formation. The external field that occurs in the formation gives rise to waves in the borehole fluid.The
waves generated in the borehole include the lowest mode of the Stoneley wave (tube wave), which is the bore-
hole eigenmode, and the qP- and qSV-waves. It is shown that the Stoneley wave is determined by the contribu-
tions of two poles in the complex plane of horizontal slowness. According to the asymptotic solution, the Stone-
ley wave can be described by one of three different waveforms depending on the relationship between the elastic
parameters of the surrounding anisotropic formation and the borehole fluid. An analysis of the results of calcu-
lations shows that the shape and polarity of the Stoneley wave strongly depend on the sign of the nonellipticity
parameter of the elastic medium, which offers a possibility of estimating the anisotropy of the borehole envi-
ronment from observations of the waveform of the Stoneley wave. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The excitation and propagation of tube waves gen-
erated in fluid-filled boreholes by both external and
internal seismic sources are the subject of numerous
publications [1–4], because the characteristics of the
borehole wave field carry valuable information about
the properties of the borehole environment. Some effi-
cient algorithms were designed to simulate the behavior
of tube waves in a borehole embedded in both isotropic
and anisotropic layered formations [3, 4]. A reasonably
complete theory of tube wave propagation was devel-
oped for boreholes embedded in isotropic elastic sur-
roundings. In the case of a pulsed source located within
a fluid-filled borehole, this theory may allow one to
obtain a solution to the problem of tube wave propaga-
tion for an arbitrary relationship between the wave-
length and the borehole radius. In the seismic frequency
range, the wavelength usually far exceeds the borehole
radius. For this reason, the advisable approach consists
in investigating the problem in the long-wave approxi-
mation, which considerably simplifies the formulation
and solution of the problem and the analysis of the gen-
erated wave field. In the case of tube wave excitation by
an external pulsed source, the analysis of the dynamic
field generated in the borehole becomes much more
complex even in the long-wave approximation. It is
well known [1] that plane elastic P- and SV-waves inci-
dent on a fluid-filled borehole generate only P- and SV-
waves in the borehole, but not the borehole eigenmode
(the Stoneley wave). The Stoneley wave is generated in
the borehole by an external dynamic action if the inci-
1063-7710/04/5002- $26.00 © 20126
dent wave front has a nonzero curvature. An expression
for the Stoneley wave excited in an infinite rectilinear
borehole embedded in an isotropic elastic formation by
an external isotropic point source was obtained only
recently [5].

Actual geological formations often show prominent
anisotropy. For this reason, much attention has been
paid by researchers to studying the dynamic character-
istics of tube waves in anisotropic formations and, in
particular, in formations with a vertical symmetry axis,
which are also called transversely isotropic formations
(see, e.g., [6, 7]). In the latter, an isotropic point source
excites both quasi-longitudinal qP-waves and quasi-
transverse qSV-waves [1]. They considerably compli-
cates the asymptotic analysis of the generated tube
wave field even in the long-wave approximation. In
addition, the geometric properties of wave fronts of the
quasi-longitudinal and quasi-transverse waves incident
on the borehole from the surrounding formation depend
on the parameters of anisotropy and can be rather com-
plex, which makes the complete investigation even
more difficult [8].

In this paper, an exact solution is obtained to the
problem of tube wave excitation by an external point
source in a fluid-filled borehole embedded in a trans-
versely isotropic formation. The solution is obtained
with the use of the method of integral transformations.
Asymptotically, the wave field excited in the borehole
fluid can be divided into quasi-longitudinal (qP) and
quasi-transverse (qSV) waves, whose waveforms coin-
cide with those of incident waves in the surrounding
004 MAIK “Nauka/Interperiodica”
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formation, and the Stoneley wave. The emphasis is on
investigating the dynamic characteristics of the Stone-
ley wave and their dependence on the anisotropy of the
surrounding formation.

TUBE WAVE PROPAGATION IN A BOREHOLE 
EMBEDDED IN A TRANSVERSELY ISOTROPIC 

MEDIUM

The statement of the problem under consideration is
as follows. An isotropic pulsed point source is located
at a distance r from a fluid-filled borehole embedded in
a transversely isotropic elastic formation whose sym-
metry axis coincides with the borehole axis. Figure 1
shows the geometry of the problem. We desire to find
the dynamic pressure field produced in the borehole
fluid under the action of seismic waves generated by the
source. The problem is solved in the long-wave approx-
imation, i.e., we assume that the characteristic wave-
length of the source far exceeds the borehole radius.
The field in the borehole must satisfy the Sommerfeld
radiation condition [9] for distant portions of the bore-
hole (z  ±∞).

A transversely isotropic medium has a distinguished
symmetry axis, and, in the plane perpendicular to this
axis, elastic properties are independent of direction.
Since the symmetry axis and the borehole axis coin-
cide, Hooke’s law for this medium has the following
form (in the cylindrical coordinate system) [1, 10]:

(1)

where σik is the stress tensor, εik is the strain tensor,
λ⊥  and µ⊥  are the Lamé coefficients along the symme-
try axis (z axis), λ|| and µ|| are the Lamé coefficients in
the plane perpendicular to the symmetry axis, and µ∗  is
the shear modulus independent of other elastic con-
stants. The components of the strain tensor are
expressed through the displacement components
according to the formulas

(2)

Below, it will be convenient to use the propagation
velocities of elastic waves instead of the Lamé coeffi-
cients. We denote the density of the elastic medium as
ρs and introduce the velocities of the corresponding

σrr λ|| 2µ||+( )εrr λ||εθθ λ⊥ εzz;+ +=

σθθ λ||εrr λ|| 2µ||+( )εθθ λ⊥ εzz;+ +=
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longitudinal and transverse waves according to [10]:

(3)

Here, α⊥  is the velocity of the longitudinal wave in the
direction of the symmetry axis, α|| is the velocity of the
longitudinal wave in the plane perpendicular to the
symmetry axis, β∗  is the velocity of the transverse wave
in any of these two mutually orthogonal directions, and
β|| is the velocity of transverse SH-waves in the plane
perpendicular to the symmetry axis.

According to the theory of excitation and propaga-
tion of tube waves, pressure at every point of the liquid
inside the borehole is formed by the combined contri-
butions of secondary sources distributed along the
borehole surface. Physically, these sources are formed
by the local compression of the borehole wall induced
by seismic waves propagating in the surrounding
medium. In the long-wave approximation, the follow-
ing wave equation describes the propagation of waves
in the fluid of a vertical straight borehole embedded in
a transversely isotropic medium with a vertical symme-
try axis [2]:

(4)

where P(z, t) is the dynamic pressure in the borehole;
ctw is the tube wave velocity; ρf is the fluid density; t is

the time; (r, z, t), (r, z, t), and (r, z, t) are
the dynamical stresses in the formation at the borehole
axis; Ez and Eh are the effective Young’s moduli in the
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Fig. 1. Geometry of the problem.
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vertical and horizontal directions; and νz is the effective
Poisson’s ratio for the vertical uniaxial stress state. One
can show that the effective elastic constants involved in
Eq. (4) are expressed in terms of parameters (3) accord-
ing to the formulas

(5)

It is well known [1] that the fundamental solutions
to the wave equation in a transversely isotropic medium
are quasi-longitudinal (qP) and quasi-transverse (qSV)
waves. Using the cylindrical coordinate system (r, θ, z),
we introduce the potentials φ(r, z, t) and ψ(r, z, t) of
elastic displacements in qP- and qSV-waves propagat-
ing in the formation, so that these potentials are related
to the displacement components by the formulas

(6)

where ∆r =  is the radial part of the Laplacian

∆ = ∆r + ∂2/∂z2 in the cylindrical coordinate system.
Expressing the components of strain tensor (2) of the
medium in terms of the elastic displacement potentials
(6), we obtain

(7)

Using Hooke’s law (1), we represent Eq. (4) in the form

(8)

Note that the radial coordinate r is a fixed parameter in
Eq. (8).

After a double Fourier transformation of Eq. (8)
with respect to time t and the vertical coordinate z, we
obtain a formal solution to Eq. (8) in the form of the
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Fourier integral

(9)

where ω is the angular frequency and k is the wave
number. In Eq. (9), we introduced differential operators

L1 ≡ ∆r – (  – 2 )k2 and L2 ≡ –ik[  –  +

2 ]∆r; the overbar means the Fourier transform with
respect to time.

Further calculation requires that the behavior of the
elastic displacement potentials in the formation along
the borehole axis be known as explicit functions of the
coordinates and time. Here, we assume that seismic
waves are generated by an isotropic point source.
Potentials φ and ψ of seismic waves generated by such
a source are determined in the Appendix in the form of
an integral with respect to the ray parameter (the hori-
zontal slowness) p.

Equation (9) depends on the Fourier transforms of
the potentials (r, k, ω) and (r, k, ω). Performing the
Fourier transformation of the potentials (A1) with
respect to z and changing the integration order, we
encounter the necessity of calculating the Fourier trans-
forms of the functions exp(–iωξj(p)|z|) and

exp(−ωp|z|) for the potential (r, k, ω) and the func-
tions exp(−iωξj(p)|z|) and exp(– iωp|z|)
for the potential (r, k, ω) (here, j = 1, 2).

To calculate the Fourier transform with respect to z,
we use the residue theorem. The contour integration is
performed as in [11] when obtaining the solutions for
the field potentials  and  in the formation. The cor-
rect choice of poles follows from the principle of ulti-
mate absorption and the condition at infinity (only out-
going waves are present at infinity) [9]. The calculation
of integrals with allowance for the principle of ultimate
absorption gives the following expressions for the Fou-
rier transforms of the potentials:

(10)

where the integration variable k was replaced according
to k = ωq. Substituting the Fourier transforms of poten-
tials (r, q, ω) and (r, q, ω) in Eq. (9), we obtain the
desired representation of the solution in the form of the
double integral with respect to p and q. The integral can
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be simplified by changing the integration order and
integrating with respect to the variable q.

The contributions of the first terms in potentials (10)
(with pole singularities at q = ±ip) to the pressure field
(9) in the borehole can be calculated by the residue
theorem:

(11)

where σ1 is a constant determined in the Appendix.

Substituting the remaining terms in the potentials
(10) (with pole singularities at q = ±ξj(p)) in Eq. (9) and
integrating with respect to the variable q, we obtain that
the dynamic pressure field in the borehole fluid is the

sum of two components: (z, ω) = (z, ω) + (z,

ω). The first term (z, ω) describes the Stoneley
wave propagating along the borehole with velocity ctw,

and the second term (z, ω) describes the contribu-
tion of the quasi-longitudinal qP- and quasi-transverse

qSV-waves. The terms (z, ω) and (z, ω) are
given by the formulas

(12‡)

(12b)

where σ3 =  – 2  and σ4 =  – σ3.

Now, we rearrange Eq. (12a) for the Stoneley wave.
As follows from Eq. (12a), the integrand has singular
points (as will be shown below, these are power singu-

larities) determined by the implicit equations p2 +  –

(p) = 0. Reducing the sum in braces in Eq. (12a) to
a common denominator and performing relatively cum-
bersome algebraic transformations, we obtain that the
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quantity (z, ω) can be represented as the sum of two

terms: the first term (z, ω) retains the aforemen-

tioned singularities and the second term (z, ω) is

free of them. The second term (z, ω) coincides to a

sign with the term (z, ω) given by Eq. (11), so that
their combined contribution to the field of the Stoneley
wave is zero. Hence, the total field of the Stoneley wave

is only determined by the term (z, ω):

(13)

where ∆α = [ (  – ) + (  – )(  – )].

Let us show that the poles determined by zeros of
the fourth-order polynomial Φ(p) contribute nothing to
the field of the Stoneley wave given by Eq. (13). Using
Eq. (A2) for the velocities of qP- and qSV-waves as
functions of parameter p, we rearrange the denominator
of Eq. (13) to the form

(14)

Here, p1 and p2 are the roots of biquadratic equation
with real coefficients

(15)

These roots are given by the formula
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where the minus sign (root ) corresponds to the qP-

wave and the plus sign (root ), to the qSV-wave.

Substituting expression (14) for the denominator in
Eq. (13), we obtain the Stoneley wave in the form

(17)

In this form, the integral can be easily calculated
with the use of the residue theorem. Before we repre-
sent the borehole pressure field in final form, let us ana-

lyze the possible values of the roots  and ,
because, as will be shown below, they may determine
different shapes and amplitudes of the Stoneley wave.
Since quadratic equation (15) has real coefficients, it
may have in the general case either two real roots (pos-
itive or negative), or one multiple real root, or two com-
plex conjugate roots.

Two real roots. A quadratic equation with real coef-
ficients may have two positive roots, two negative roots,
or one positive root and one negative root. In an isotro-

pic medium,   α–2 –  and   β–2 – 
(here, α and β are the velocities of longitudinal and
transverse waves in the isotropic medium, respec-
tively). It is known that, in the case of an isotropic

medium, the difference α–2 –  is almost always neg-
ative (an opposite case also may occur, but very seldom

[12]). Conversely, the difference β–2 –  can be both
positive (in low-velocity media for which the inequality

β < cf  holds) and negative (in high-velocity
media for which the inverse inequality holds).

In obtaining the final result, we assume that only
two situations can take place for transversely isotropic

media: the existence of either two negative roots ,

 or two roots of different signs. We supported this
assumption by multiple calculations for actual media,
whose elastic parameters were published in the litera-
ture.

Consider first the case of two negative roots and find
the expression for the Stoneley wave. With this goal in
mind, we calculate the integral with respect to the hor-
izontal slowness in Eq. (17). Using the relationship

J0(ωpr) = [ (ωpr) – (–ωpr)]/2 for the Bessel
function, we represent Eq. (17) in the form
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dpJ0(ωpr)F(p2) = dp (ωpr)F(p2). Here,

(ωpr) is a zero-order Hankel function of the sec-
ond kind and F(p2) denotes the expression in braces.
Consider this integral in the complex plane of variable
p. To calculate the integral, we use the closed contour
shown in Fig. 2 and the residue theorem. Because we

assume that the roots  and  are negative, the pole

positions p1, 2 = ±  appear to be purely imaginary
in this case. Figure 2 shows that, in the case under con-
sideration, we must use residues at the poles lying in the

lower half-plane, i.e., −i  and –i .

Using the definition of the zero-order Macdonald

function of a real argument K0(x) = –iπ (–ix)/2, we
represent the Stoneley wave in the following final form:

(18)

As follows from Eq. (18), in the case under consid-
eration, the Stoneley wave consists of two components,
the first of which can be interpreted as the Stoneley
wave excited by the qP-wave propagating in the forma-
tion and the second, by the qSV-wave. For an isotropic
medium, α⊥  = α|| = α∗  = α, β|| = β∗  = β, and ∆α  0,
so that only the first component remains nonzero in
Eq. (18) and this component coincides with the expres-
sion for the Stoneley wave in an isotropic medium [5].

Consider now the case with roots of different signs
and assume that root  is positive. This case is real-
ized in media in which the velocity of transverse waves
β|| is smaller than the velocity of tube waves, this situa-
tion being possible when the inequality β|| ,

cf  is satisfied. Under these conditions, the
argument of the Macdonald function in the second term
appears to be purely imaginary, so that a Hankel func-
tion of the second kind appears instead of it. In calcu-
lating the integral, the problem of choosing the rule of
bypassing the poles on the real axis arises. This rule fol-
lows from the asymptotic behavior of the solution at
r  ∞, where only the outgoing wave is present. Cor-
respondingly, we should encircle only the pole lying on
the positive half-axis. The first term in Eq. (18) related
to the Stoneley wave excitation by the qP-wave remains
intact. Regarding the second term in Eq. (18), this case
corresponds to a qualitatively different solution,
because it includes the Hankel function instead of the
Macdonald function. This fact noticeably changes both
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the shape of the Stoneley wave and its amplitude atten-
uation with distance. The Macdonald and Hankel func-
tions exhibit essentially different asymptotic behavior
for large arguments. The amplitude of the solution
described by the function K0(x) attenuates with the
borehole–source distance much faster that the ampli-
tude of the solution described by the function (x) .
Hence, one can expect that, in the latter case, the wave
will have a higher amplitude. In addition, the widths of
wave packets described by the first and second terms
can be different, because the characteristic width of the
wave described by the Macdonald function is deter-
mined by the argument, which results in a broadening
of the wave with increasing distance r between the
source and the borehole axis. Conversely, the wave
described by the Hankel function is characterized by
the width of about the characteristic wavelength of the
wave generated by the source.

Physically, the reason for the difference in the
behavior of the Stoneley waves excited by the qSV-
waves in these two cases follows from the relationship
between the propagation velocity of the external distur-
bance along the borehole and the velocity of the Stone-
ley wave [12]. In the first case, the propagation velocity
of the qSV-wave propagating in the formation along the
borehole always exceeds the velocity of the Stoneley
wave. In the second case, beginning from a certain
borehole–source distance, the velocity of the Stoneley
wave exceeds the apparent propagation velocity of the
external qSV-wave propagating in the formation, so that
the external action lags behind the Stoneley wave
excited by this very action. In this case, the Stoneley
wave is a conic wave (Mach wave) [12].

Complex conjugate roots. It can be shown that there
are some formations whose elastic parameters give rise
to complex conjugate roots of the quadratic equation. In
this case, we can use considerations similar to those
used in the derivation of the expression for the Stoneley
wave in the case of two negative roots. In the case of
complex conjugate roots, the expression for  coin-
cides with the above expression, in which the sign of

the roots p1, 2 = ±  is chosen according to the rule
of path tracing in such a way as to make the imaginary
part negative.

EFFECT OF THE ANISOTROPIC PARAMETERS 
OF THE FORMATION ON THE AMPLITUDE 

AND SHAPE OF THE STONELEY WAVE

Let us analyze the effect of the elastic parameters of
an anisotropic formation surrounding the borehole on
the amplitude and shape of the excited Stoneley wave.
An exhaustive analysis and a general interpretation (in
multidimensional space of parameters describing the
elastic properties of the borehole environment and
fluid) seem to be too difficult. In addition, such model-
ing requires the consideration for all possible restric-

H0
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tw
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tions imposed on the parameters of the elastic medium
and, in particular, the restrictions imposed by thermo-
dynamic conditions [8, 13]. For this reason, we per-
formed our calculations for actual transversely isotro-
pic media whose parameters are cited in the literature
[14, 15]. All calculation assumed that the borehole fluid
was water (with density ρf = 1.0 g/cm3, sound velocity
cf = 1500 m/s).

In the general case, five independent parameters are
sufficient to completely describe a transversely isotro-
pic medium. Currently, the parameters most commonly
used are referred to as the Thomsen notation, which
includes the velocities of longitudinal and transverse
waves along the symmetry axis, VP0 and VS0, and three
dimensionless parameters describing the deviation of
the medium from an isotropic one, ε, δ, and γ [15].
These parameters are related to the parameters used in
this paper by the formulas:

The velocity of transverse waves in the vertical direc-
tion VS0 is often replaced by another parameter, f,

defined by the formula f = 1 – /  = 1 – / .
Parameter γ characterizes the anisotropy of transverse
velocities in the transversely isotropic medium. For qP-
and qSV-waves polarized in the vertical plane that con-
tains the symmetry axis, this parameter does not appear
in the defining equations [11]. Nevertheless, the param-
eters of the Stoneley wave depend on all three anisot-
ropy parameters ε, δ, and γ, because the effective
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Young’s moduli and the effective Poisson’s ratio z (see
Eqs. (5)) of an anisotropic medium depend on βu.

Let us analyze the waveforms of the Stoneley wave
for actual transversely isotropic media from paper [14].
As was shown earlier, the shape and amplitude of the

Stoneley wave depends on the roots  in Eq. (18).
Among high-velocity media, one can select a group of

media for which roots  are negative and, hence, the
field of the Stoneley wave is described by the sum of
two terms with the Macdonald functions of real argu-
ment (see Eq. (18)). This group includes media with
(ε – δ) > 0. Other high-velocity media with (ε – δ) < 0

correspond to the case of complex conjugate roots .
As is known [13], the case ε = δ corresponds to trans-
versely isotropic media with an elliptic anisotropy,
when the wave front of the quasi-longitudinal qP-wave
has the shape of an ellipsoid of revolution. Thus, since
the nonellipticity parameter (ε – δ) describes the devia-
tion of the anisotropic properties of an elastic medium
from the elliptic anisotropy, we can assume that, in
high-velocity media, the type of solution (and, conse-
quently, the shape of the Stoneley wave) depends on the
sign of this parameter.

The low-velocity media that we have considered

were characterized by the roots  of different signs.
As will be shown below, the value of the parameter (ε – δ)
of the elastic medium also strongly affects the shape,
amplitude, and polarity of the Stoneley wave.

To justify the above statements, additional calcula-
tions were carried out for 44 transversely isotropic elas-
tic media whose parameters were taken from [15]. The
calculations showed that, for all anisotropic media
specified in [15], the type of solution determined in

accordance with the roots  is reduced to the cases
considered above.

In this paper, we present the calculated profiles of
the Stoneley waves for elastic media with transverse
isotropy specified in [14]. In the waveform calcula-
tions, we used the seismic source function ΨS(t) in the
form of the Berlague potential

where Ψ∞ is the statical value of the volume displaced
due to explosion, f0 is the characteristic frequency of the
source, B0 = Ω/(2πf0), and Θ(t) is the Heaviside step
function. For the source, we used the parameters: Ψ∞ =
3 × 10–4 m3, f0 = 50 Hz, and B0 = 0.5.

In the calculations, we assumed that the source is
positioned at the origin of the cylindrical coordinate
system (r, z, ϕ) and that a vertical borehole with a
receiver at a depth of z = 250 m is located at a horizontal
distance r = 80–120 m from the source.
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Figures 3 and 4 show the Stoneley wave profiles cal-
culated for low-velocity and high-velocity formations,
respectively. These results are typical of the media
under consideration, including the media from [15]. The
following inferences can be made from our analysis.

First, the Stoneley wave is characterized by a single-
peak profile, similar to that shown in Fig. 3a, for all
high-velocity media with a positive nonellipticity
parameter (ε – δ) > 0. Second, for low-velocity media
with (ε – δ) < 0, the Stoneley wave is also characterized
by a single-peak profile if the nonellipticity parameter
is small. As the absolute value of the nonellipticity
parameter increases, the wave slowly transforms to a
two-peak profile (Fig. 3b).

Third, in the case of low-velocity formations with a
sufficiently great nonellipticity parameter (ε – δ), the
polarity of the first arrival of the Stoneley wave coin-
cides with the sign of the nonellipticity parameter
(Fig. 4).

The dependence of the Stoneley wave profile on the
nonellipticity parameter obtained for actual formations
was tested by numerical simulation. The inference that
the nonellipticity parameter governs the Stoneley wave
profile (single-peak or two-peak) remains valid. Note
that variation of the magnitude and sign of the nonellip-
ticity parameter results in a continuous transformation
of the Stoneley wave profile from one type to another.

To verify the statement that the Stoneley wave
retains its shape when the source–borehole distance
varies, we performed special calculations, whose
results are shown in Fig. 5. The gray color marks the
results for which asymptotic approximation is formally
inapplicable. The analysis of calculated results shows
that, regardless of the fact that interference between
partial contributions of qP- and qSV-waves to the
Stoneley wave seemingly increases with increasing
horizontal distance, the duration of these contributions
decreases, which preserves the shape of the Stoneley
wave in the parameter range under consideration.

CONCLUSIONS

(1) In this paper, we obtained the long-wave solution
to the problem of tube wave excitation by an external
point source in an infinite fluid-filled borehole embed-
ded in a transversely isotropic formation with the help
of the method of integral transformations. Asymptoti-
cally, the wave field in the fluid can be separated into
the qP- and qSV-waves, which represent the local
response of the borehole fluid to the quasi-longitudinal
and quasi-transverse waves in the formation, and the
lowest borehole eigenmode, i.e., the Stoneley wave
(tube wave).

(2) The Stoneley wave is shown to be determined by
the contributions of two poles in the complex plane of
horizontal slowness. Depending on the anisotropy
parameters of the medium, these poles either lie on the
real axis or are complex conjugate. The expression
ACOUSTICAL PHYSICS      Vol. 50      No. 2      2004
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obtained for the Stoneley wave allows an asymptotic
analysis of the Stoneley wave characteristics for a high-
velocity medium, in which the apparent velocity of the
quasi-transverse qSV-wave propagating in the forma-
tion along the borehole exceeds the velocity of the
Stoneley wave, and for a low-velocity medium as well.
It is shown that the solutions for the Stoneley wave are
essentially different in these cases.

(3) Our investigation shows that certain correlation
exists between the shape and amplitude of the Stoneley
wave and the nonellipticity parameter (ε – δ) of the
borehole environment for both low-velocity and high-
velocity formations. In high-velocity formations, the
Stoneley wave behaves as a single-peak impulse for
(ε – δ) > 0, while for (ε – δ) < 0 it exhibits a two-peak
shape under the condition that the nonellipticity is con-
siderable. In low-velocity media, the polarity of the first
arrival of the Stoneley wave coincides with the sign of
the nonellipticity parameter when the latter is suffi-
ciently large. In addition, the Stoneley wave amplitude
strongly depends on the parameters ε and δ.

The results of this investigation offer a possibility of
estimating the anisotropy parameters of the borehole
environment from the amplitude and shape of the
excited Stoneley wave.

APPENDIX

The solution to the problem of radiation of a point
source in a transversely isotropic medium was consid-
ered in many papers. In the form convenient for our
analysis of the dynamic pressure field in the borehole
fluid, such a solution for elastic potentials is given, for
example, in [11]. In a compact notation, it can be writ-
ten as follows:

(A1)

where j = 1, 2,

φ r z ω, ,( )
ψ r z ω, ,( ) 

  A ω( )
iω–

sgn z( ) 
  p

pJ0 ωpr( )
Φ p( )

------------------------d

0

+∞

∫=

×
a0 p( )
b0 p( ) 

  ωp z–( )exp

+
a j p( )
b j p( ) 

 
j 1=

2

∑ iωξ j p( ) z–( )exp ,

a j p( )
1 β*

2 /c j
2 p( )– σ1 p2 1 p2c j

2 p( )–( )–

ξ j p( ) c2
2 p( ) c1

2 p( )–( )
----------------------------------------------------------------------------------,=

b j p( ) 1–( ) j 1+ σ1c j
2 p( )p2 σ2+

c2
2 p( ) c1

2 p( )–
-------------------------------------,=

a0 p( ) i p3σ1, b0 p( ) p2σ1,= =

σ1 α⊥
2 α||

2 2α*
2 , σ2–+ α*

2 α⊥
2 .–= =
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Here, (ω) = (ω) , where (ω) is the spectrum
of the seismic source function ΨS(t) (the spectrum of
the potential of elastic displacements at the source),
α0 is the normalizing constant with the dimension of
velocity, and J0(x) is the zero-order Bessel function.
The velocities of the quasi-longitudinal (qP) and quasi-
transverse (qSV) waves, c1(p) and c2(p) , are the roots of
the biquadratic dispersion equation [11]:

(A2)

whose coefficients are

The parameters ξ1, 2(p) =  correspond to
the vertical slowness of the qP- and qSV-waves.
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Abstract—Rotationally invariant theory is used to study the effect of magnetization relaxation on the spectrum
of magnetoacoustic waves propagating in a cubic ferromagnet with an induced uniaxial anisotropy along the
[011] direction. It is found that the inclusion of rotationally invariant terms leads to certain contributions to the
propagation velocity and rate of attenuation of magnetoelastic waves, thus increasing the degree of anisotropy
of these characteristics. Among different types of coupled waves, only quasi-sound modes exhibit a relaxation
nature in the region of magnetic phase stability loss. The introduction of dissipation and rotational invariance
affects the acoustic birefringence, while the latter gives rise to an additional term in the expression for the phase
shift. © 2004 MAIK “Nauka/Interperiodica”.
Many magnetoelastic (ME) effects are considerably
enhanced as a magnet approaches a spin-reorientation
phase transition (SRPT) [1, 2]. In particular, investiga-
tions have shown that, when dissipation processes in
the magnetic subsystem of a magnet are taken into
account, all types of ME waves, including quasi-mag-
non and quasi-phonon ones, are weakly attenuating. At
the same time, in the vicinity of the SRPT, they may
turn into purely relaxation waves [3]. To some extent,
this may explain the absence of experimental evidence
for the phenomenon of complete softening of quasi-
sound near the SRPT [4], which was predicted theoret-
ically in [1]. On the other hand, from a number of pub-
lications [2, 5], it follows that the presence of rotation-
ally invariant contributions leads to an additional man-
ifestation of ME coupling, and the latter, in turn, gives
rise to new magnetoacoustic effects. From this point of
view, it is of interest to consider the effect of ME wave
attenuation in the framework of the rotationally invari-
ant theory.

Let us consider the propagation of ME waves in a
cubic ferromagnet with an induced uniaxial anisotropy
when the easy axis of this anisotropy coincides with the
[011] direction (a (011) plate). Such a situation is rather
common and may occur in (011) epitaxial iron garnet
films [6, 7], in DyFe2-type intermetallic compound
films [8], etc. In the magnet under consideration, the
induced uniaxial anisotropy can be separated into two
components: a perpendicular component (Ku) and a
rhombic one (Kp), which complicates the SRPT pattern
[9]. In particular, from the orientational phase diagram
of a (011) plate, it follows that this plate may contain
nine magnetic phases: three symmetric (Φ[011], Φ[001],
1063-7710/04/5002- $26.00 © 20134
) and six disymmetric [10], five of the latter
being angular and the sixth being a general-type phase.
In this paper, we consider the magnet states corre-
sponding to symmetric phases.

(i) M0 || H || [011]. The stability condition for this
phase is determined by the relations [11]

(1)

where

(2)

The corresponding thermodynamic potential of the
problem with allowance for rotationally invariant terms
has the form [2]

(3)
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where H1 = –  + (Ku – 2π ) + Kp + MsH/2 + /C2,

H2 = (2  + K2)/4 + (Ku – 2π ) + MsH/2 +

/(2C44); A, Bi, and Cij are the exchange interaction
constant, the ME coupling constant, and the elastic con-
stant, respectively; K1 and K2 are the first and second
cubic anisotropy constants; mi are the components of
the unit magnetization vector m (m = M/Ms, where
Ms is the saturation magnetization); ç is the external
magnetic field; and Hdip is the demagnetizing field,
which is determined from the magnetostatic equations

(4)

Here,

(5)

are the strain tensor and the local rotation tensor. For a
homogeneous state of the magnet, the strain tensor
components take the form

(6)
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and  are the equilibrium values of the elastic con-
stants [2].

From the analysis of dispersion relations describing
coupled oscillations of the elastic and spin subsystems
[1], it follows that, in the long-wave approximation
when the wave vector is k || [011], we have

(7)

where ωl1 = sl1k, sl1 = , ωs = , ωs1 =
2γH1/Ms + ωk, ωs2 = 2γH2/Ms + ωk, ωk = 2γAk2/Ms,
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 = C5k2/ρ, ξ1 = γ[Hme1 – Bme1]2/(ρMs ωs1), ξ2 =

γ[Hme2 – Bme2]2/(ρMs ωs2), st1 = ωt1/k, st2 = ωt2/k,
γ is the gyromagnetic ratio, r is the dimensionless
damping parameter of the magnetic subsystem, and ρ is
the density of the crystal.

It should be noted that each solution corresponds to
two types of waves, which have identical frequencies
but propagate in opposite directions. As seen from the
relations derived above, longitudinal elastic vibrations
do not interact with spin waves, and only transverse
vibrations prove to be coupled. The velocities of these
waves are renormalized as a result of taking into
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account the rotational invariance in energy, in accor-
dance with [2]; here the frequencies ωl1, , and 
characterize longitudinal and transverse sound and are
independent of how close the system is to the point of
stability loss. The first solution (ω1) corresponds to a
longitudinal wave, the second (ω2) describes quasi-
magnon oscillations, and the third and fourth (ω3, 4)
describe quasi-phonon oscillations, where the imagi-
nary part is associated with the relaxation component of
frequency.

At the point of SRPT (ξ1, 2  1), ω2 corresponds
to damped oscillations of the magnetization vector and
the two other modes are quasi-elastic waves of a purely
relaxation nature and are described by the expressions

(8)

In the following calculations, we neglect the correc-
tions to elastic and ME constants of the order of B/C ≈
10–5–10–6 that appear because of the magnetostrictive
strain. This allows us to deal with the terms caused by
rotational invariance only. Then, the frequencies ωl1,

, and  will correspond to purely elastic vibra-

tions [12] and the frequencies  and  will repre-
sent the contribution of the rotationally invariant the-
ory. The latter two frequencies decrease as the system
approaches the SRPT point. Thus, the inclusion of rota-
tional invariance in the consideration leads to the
appearance of additional terms in the relaxation com-
ponent of frequency (Imω3, 4) of quasi-elastic modes,
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Fig. 1. Cross section of the velocity surface of quasi-elastic
waves in Sm3Fe5O12 [19] (a) away from the SRPT and
(b) at the SRPT point coinciding with the compensation
point; the solid line corresponds to the real part, and the
dashed line, to the imaginary part.
and these terms lead to an increase in the rate of atten-
uation of ME waves. In addition, the rotational invari-
ance makes a contribution to the ME coupling constant;
however, at the SRPT point, this contribution becomes
negligibly small (ξ1, 2  1).

The spectrum of ME waves propagating in the (011)
plane has the form

(9)

where  = (C11cos2α + [He3 + 2C8 +
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stI = ωtI /k, stII = ωtII /k, and α is the angle between vector
k and the [100] axis.

Here and below, the frequencies ω1, 2 correspond in
character to ME waves of a mixed type representing a
hybrid of longitudinal and transverse vibrations. Only
when the propagation occurs along a certain crystallo-
graphic axis do these waves fall into purely longitudinal
and purely transverse waves, which are independent of
the spin subsystem. The frequency ω3 corresponds to
the quasi-magnon mode for the case of M0 || H ||
k || [011] with the substitution ωs  , ωs1, 2 

, and ξ1, 2  . The solution ω4 is a soft
quasi-elastic mode by which the given SRPT occurs.

Figure 1 shows the dependence of the velocity of
ME waves on the direction of their propagation. One
can see that the velocity of quasi-phonons is anisotropic
due to the difference in the contributions of the elastic
and ME interactions in different crystallographic direc-
tions. The mode softening for the real and imaginary
parts (here, the imaginary part of velocity is interpreted
as the rate of attenuation of quasi-phonons) is maximal
in the direction of the [100] axis (Fig. 1a). As the line of

stability loss of the phase next to the angular phase 
[9] is approached, the degree of anisotropy increases
and, in the vicinity of the SRPT, the maximal softening
of quasi-sound occurs in the [100] direction. (In this
case, a complete softening of quasi-sound, i.e.,
Reω5, 6 = 0, as well as the greatest increase in attenua-
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tion (Fig. 1b) [13], will only be observed in magnets
whose SRPT point coincides with the compensation
point [15].) If a magnet is in other conditions, i.e., in the
vicinity of an SRPT between some other phases (in par-

ticular, Φ[011] and ), the softening of sound in the
[100] direction will be minimal while the symmetry of
the anisotropy of attenuation will remain invariable. In
this connection, it should be noted that the plots in
Fig. 1 were obtained for Sm3Fe5O12 under the afore-
mentioned specific conditions (the coincidence of the
compensation point with the SRPT line), which can be
satisfied in this material if we additionally assume that
the uniaxial anisotropy is induced by external elastic
stresses [16]. For plates of this type with an induced
uniaxial anisotropy falling into two components, the
anisotropy of attenuation in the film plane was revealed
experimentally by the angular dependence of the paral-
lel external magnetic field [7]. The broadening of the
ferromagnetic resonance line was determined by the
dependence of the attenuation parameter on the effec-
tive magnetic anisotropy field. Here, it is necessary to
mention the study of Mn–Zn spinel crystals with (011)
orientation [17]: it revealed a strong anisotropy of the
propagation velocity and attenuation of sound because
of the elastic and ME interactions. The difference
(~40%) in the velocities of quasi-transverse waves of
different polarization is explained by the strong elastic
anisotropy of the crystal. In other experiments [18, 19]
with the same materials, it was found that the maximal
attenuation of ultrasound is observed in the region of
the SRPT. In these experiments, the attenuation of lon-
gitudinal and transverse acoustic waves with frequen-
cies of 5–30 MHz was studied. In [18], temperature
dependences of the attenuation coefficient were
obtained and maximal sound attenuation was found to
occur along the [100] and [011] crystallographic direc-
tions. In [19], crystals of the same composition, but
grown by two different methods, were used to reveal a
sharp increase in the attenuation of longitudinal ultra-
sonic waves in the [100] and [111] directions.

In the case under consideration, the inclusion of
rotationally invariant terms in the thermodynamic
potential also leads to an anisotropy of ME wave prop-
agation in the magnet (Fig. 2). According to the calcu-
lations, the maximal manifestation of this effect occurs
in the direction of the [100] axis and the minimal, in the

direction of the [01 ] axis. At the same time, from
Fig. 2, one can see that, for yttrium iron garnet–type
magnets, the contribution of the rotational invariance is
small; it may be considerable only in materials with a
giant magnetostriction [20, 21].

In this situation, the following effect should also
take place: the effect related to the change of polariza-
tion of a transverse ME wave from linear to elliptic
when the wave is transmitted through a sample placed
in a magnetic field H oriented normally to the propaga-
tion direction and at an angle ϕ = πn/2 (n ∈  Z) to the

Φ<
III

1
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wave polarization plane; i.e., the effect of acoustic bire-
fringence [22]. In this case, a transverse elastic wave
can be represented as a sum of two components with
displacements along each of the two directions (perpen-
dicular and parallel to the field H). The wave polarized
along the [011] direction does not interact with the spin

mode, while the wave polarized along [01 ] is coupled
with the spin mode. This leads to a phase shift whose
value per unit length is determined by the formula

(10)

where ψ1 = ω( ) and ψ2 = .

Without considering the rotational invariance, we
have ψ1 = 0 and the expression for ψ coincides with that
given in [12]. If we assume that the attenuation is small,
i.e., r ! 1, the expression for ψ will coincide with the
results obtained in [23].

(ii) M0 || H || [100]. The stability condition for this
phase has the form [11]

(11)

The corresponding thermodynamic potential is
expressed as

1

ψ ψ1 ψ2,+=

st2
1– st1

1––
ωξ2
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Fig. 2. Contribution of the rotational invariance to the prop-
agation velocity and rate of attenuation of quasi-elastic
waves in Sm3Fe5O12 [19]; v0 is the velocity of quasi-sound
without considering rotationally invariant terms, and v, with
allowance for rotational invariance; the solid and dotted
lines represent the real and imaginary parts, respectively.
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(12)

where  = 2π  – Ku + MsH/2 +  + /(2C44),

 = Kp + MsH/2 +  + /(2C44),  =  –

B2(  – )/2,  =  – B2(  – )/2,  =

 – B2(  – ) + (  – )2/2,  =  –

B2(  – ) + (  – )2/2,  = [B2 –

(  – )][1 + (  + )/2].

For this case, in the ground state of the magnet, the
components of the strain tensor have the form

(13)

A study of the dispersion relation for the direction of
k || [100] shows that this situation is similar to the case
of M0 || H || [011] (k || [011]); i.e., ω1 = ωl2 and ω2, ω3 ,
and ω4 correspond to the solutions for the case of M0 ||
H || k || [011] with the substitution ωs  ,

ωs1, 2  , ξs1, 2  , ωt1  ωt3, ωt2 

ωt4, where ωl2 = ,  =  + ,  =

[  – 2 ]k2/(2ρ),  =  + ,  = [  –

2 ]k2/(2ρ),  = γ[  – Bme2]2/(ρMs ),  =

γ[  – Bme2]2/(ρMs ), st3 = ωt3/k, and st4 = ωt4/k.

From the relations obtained above, it follows that
the longitudinal mode is independent while the two
transverse modes are coupled. At the SRPT point,
quasi-elastic waves turn into purely relaxation waves.

When ME waves propagate in the (100) plane, the
spectrum is described by the following expressions:

(14)

and ω3 and ω4 correspond to the solutions for the case
of k ⊥ [011], M0 || H || [011] with the substitution

  ,   ,   , ωtI 

ωtIII, and ωtII  ωtIV, where  = [C2cos2α' +
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4πγMssinα',  = γ[  + ]2/(ρMs ),  =

γ[  + ]2/(ρMs ), stIII = ωtIII /k, stIV = ωtIV/k,

and α' is the angle between the vector k and the [01 ]
axis.

In this case, we also have a hybridization of longitu-
dinal and transverse vibrations not coupled with the
spin subsystem while the SRPT occurs by the other
coupled quasi-elastic branch. At the point of the phase
stability loss, a complete softening of quasi-sound and
the maximal increase in attenuation (under the specific
conditions considered in the previous case) will occur

in the [01 ] direction, but the birefringence will be
absent.

For the magnet under consideration in the 
phase, the spectrum of ME waves is similar to that in
the case of å0 || [011]. This is explained by the fact that
phases  and Φ[011] are identical, because they cor-
respond to the directions of å0 that coincide with the
axes of the induced uniaxial anisotropy. The latter axes

(i.e., [011] and [01 ]) are interchangeable from the
point of view of magnetic symmetry of the crystal [9].

Thus, taking into account the rotational invariance
because of the magnetic crystallographic anisotropy,
we obtain an additional term in the acoustic birefrin-
gence and a renormalization of the velocities of trans-
verse and longitudinal sound and the ME coupling con-
stant, which is in good agreement with the results
reported in [2, 5]. In addition, calculations show that
the rotationally invariant terms in the expression for
energy make a contribution to the relaxation compo-
nent of quasi-elastic waves. A specific feature of the sit-
uation under study is that, when attenuation is taken
into account, quasi-elastic waves are weakly attenuat-
ing away from the SRPT, while near the SRPT they
become relaxation waves, this effect being possible
only when k || M0 , which is in good agreement with [3].
However, unlike the cited publication [3] where the
appearance of relaxation quasi-magnon waves at the
SRPT point was predicted, no such modes were
revealed in the (011) plate. An anisotropy of the propa-
gation velocity and rate of attenuation of sound was
revealed, which qualitatively agrees with the experi-
ment.
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Abstract—Transformation of a plane longitudinal wave front at the surfaces of a transversely isotropic elastic
lens is considered. Nonlinear Snell equations are solved using an approach that combines Newton’s method and
the algorithm of solution continuation with respect to a parameter. The cases of focusing and divergence of rays
passing through a convex lens are investigated. Numerical examples are given for different relationships
between the parameters of the elastic medium. © 2004 MAIK “Nauka/Interperiodica”.
The investigation of singularities and rearrange-
ments of caustics and phase fronts in geometrical optics
is an example of using the theory of differentiable map-
pings in physics [1–4]. The singularities become
clearly apparent even in a simplest optical system that
consists of homogeneous media separated by a curvi-
linear boundary. The description of such a system
requires only two consequences of Fermat’s principle
of least time, namely: (i) for light incident on a reflect-
ing surface, the angle of incidence is equal to the angle
of reflection, and (ii) for light transmitted through an
interface, the angles of incidence and refraction obey
the refraction law. Since light rays are focused at the ray
envelope (caustic), the light field intensity along the
caustics becomes infinitely large (within the framework
of the geometrical optics) and singularities appear on
the phase front. In the course of the motion of the front,
these singularities glide along the caustics and, at cer-
tain instants related to the appearance of singularities
on caustics as well, become rearranged.

The types of caustics and phase front singularities
were studied and classified by Arnol’d [1–3]. Kravtsov
and Orlov [5] used these results to analyze physical phe-
nomena in optics, acoustics, and radio-wave physics.

The approaches developed in these studies appear to
be efficient for investigating the propagation of discon-
tinuous strain waves in elastic media. In this case, the
problems of primary interest are related to the geomet-
rical construction of moving surfaces of discontinuity
for the first derivatives of field functions (these surfaces
are often called shock waves) and to the calculation of
the magnitude of these discontinuities, which provide
the most important information about the wave front
and the intensity of the main portion of the momentum
carried by the wave at every point of the wave front. For
1063-7710/04/5002- $26.00 © 20140
formulating and solving such problems in the theory of
elasticity, the methods of geometrical optics are quite
important; in particular, the zero-order approximation
of the ray method proves to be sufficient for an ade-
quate quantitative description of many wave phenom-
ena of different physical natures [5, 6].

The ray method selects the function of the optical
path of a wave, which is also called eikonal, and uses
the eikonal equation to construct the system of rays and
fronts of a shock wave. This problem can be solved rel-
atively easily for isotropic media; however, even in this
case, some difficulties arise when the problem concerns
the interaction of a wave with an interface between
media with different mechanical properties (elastic
reflectors, lenses, etc.), because such an interaction
causes the formation of caustics at which energy is
focused and the field intensity grows without limit
(within the framework of the ideal theory of elasticity
and the ray method).

The physical pattern of dynamic phenomena
becomes much more complicated if the study concerns
the propagation of elastic waves in anisotropic media
[7–9]. In this case, the field function appears to be a
vector function and three wave types of different polar-
izations exist for every direction. The phase velocities of
waves depend on both wave polarization and propaga-
tion direction. In the general case, rays are not orthogo-
nal to the wave front surfaces, and the velocity of wave
propagation along the ray differs from the phase veloc-
ity. The phenomenon of wave diffraction by interfaces
between media also becomes more complicated,
because the corresponding Snell relationships appear to
be strongly nonlinear, which is a consequence of the
lack of preliminary information about the phase veloc-
ities of reflected and transmitted waves. For this reason,
004 MAIK “Nauka/Interperiodica”
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the determination of the directions of outgoing rays
from boundary surfaces requires solving nonlinear sys-
tems of equations. The possible nonuniqueness of their
solutions may be an additional reason for the appear-
ance of caustics even in the case of a regular shock
wave incident on a plane interface boundary [10], and
give rise to a variety of qualitatively different phenom-
ena in the reflection–refraction processes.

Commonly, problems on the interaction of an inci-
dent wave with a boundary between anisotropic media
are solved by constructing the curves of refraction vec-
tors [11, 12], which is, in essence, a graphic method. In
this paper, we solve the problem using the method of
solution continuation with respect to a parameter
[13−15], which is the simplest way of identifying bifur-
cation states.

Note that the solutions found below may be useful
in the problems of seismology and prospecting seis-
mology, as well as in designing explosive technologies.

RAY METHOD IN THE THEORY 
OF ELASIC WAVES

The dynamic equilibrium of particles of a trans-
versely isotropic medium in which an elastic nonsta-
tionary wave propagates is described by the following
equations in the Cartesian coordinate system x1, x2, x3:

(1)

where ρ is the density of the medium; u1, u2, and u3 are
elastic displacements; t is time; and cik, pq are the com-
ponents of the tensor of elastic parameters of the
medium. Due to the symmetry of this tensor with
respect to the Ox2 axis and the fact that it has only five
irreducible parameters, it can be reduced to a two-
dimensional form

(2)

where λ and µ are the Lamé coefficients and l, m, and
p are the anisotropy parameters, which distinguish the
medium under consideration from the isotropic one.

cik pq,

ρ
------------

∂2uq
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∂2ui

∂t2
---------–

k p q, , 1=

3

∑ 0, i 1 2 3,, ,= =

Cαβ
C1 0

0 C2
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λ l– λ 2µ p–+ λ l–
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We represent the solutions to system (1) in the form
of a plane monochromatic wave

(3)

with a phase number k and a phase velocity v. The
phase fronts of this wave will be surfaces of constant
phase n · r – v t = const locally perpendicular to unit
vector n and traveling with velocity v = v  · n.

The magnitude of the phase velocity v and the vec-
tor of wave polarization A are determined from the
homogeneous system of algebraic equations [10, 11]

(4)

as eigenvalues and eigenvectors of the symmetric and
positively defined Christoffel matrix Λiq =

, where i, q = 1, 2, 3.

The condition of existence of a nonzero solution for
the system of three equations (4) is written in the form
of a cubic equation in the squared phase velocity:

(5)

For any preliminarily chosen direction of the normal n
to the front, the roots of this equation are three positive
numbers that allow the determination of the phase
velocity magnitudes and their arrangement in descend-
ing order: v 1(n) > v 2(n) ≥ v 3(n) > 0. The maximum
propagation velocity corresponds to the quasi-longitu-
dinal wave, while the remaining velocities correspond
to two quasi-transverse waves with different polariza-
tions.

The polarization vector A(r) for each of the three (r =
1, 2, 3) waves possible in anisotropic media can be
found by substituting the corresponding squared phase
velocity into system (4) and determining the eigenvector
of the matrix of coefficients of the system of equations

(6)

The time-dependent phase front surface of an elastic
wave is described by the relationship

(7)

where τ is some function satisfying the first-order par-
tial differential equation [11]

(8)

which extends the eikonal equation of geometrical
optics to elastic waves in anisotropic media.
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Partial derivatives of the function τ with respect to
the Cartesian coordinates are the components of the
refraction vector p and are determined by the formulas

pk ≡ ∂τ/∂xk = n/v r(n), k = 1, 2, 3. 

To construct the frontal surfaces (7) of an elastic
nonstationary wave in a homogeneous anisotropic
medium (ρ = const, cik, pq = const), we must find solu-
tions to Eq. (8) that can be reduced to a system of ordi-
nary differential equations by using the method of char-
acteristics:

(9)

In system (9), three first equations allow the deter-
mination of three components of the ray velocity vector
x = x(r)(n, xk), along which the wave travels. Another
group of equations shows that these rays are rectilinear
in a homogeneous anisotropic medium.

Hence, the kinematic problem of constructing the
evolving front of a nonstationary shock wave in a
homogeneous anisotropic medium is reduced to the
construction of a system of rectilinear rays whose
directions satisfy Eq. (9) and correspond to a given
sequence of normals n to the wave front. For a certain
t = const, the locus of the points lying on these rays and
located at a distance ξ(n) · t from the elastic wave
source forms the front surface.

The interaction of rays and wave fronts with the
boundaries between anisotropic media with different
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Fig. 1. Schematic diagram of orientation of the phase veloc-
ity vectors of nonstationary waves (G1 is the boundary
between media I and II).

I

II

G1
physical parameters makes their geometries much more
complicated. In the general case, the front incident on
the boundary generates three refracted and three
reflected fronts of differently polarized elastic waves.

METHOD OF SOLUTION

Consider a plane shock wave traveling along the Ox2
axis and passing through a convex anisotropic lens, and
assume that the Ox2 axis coincides with the symmetry
axes of both transversely isotropic medium and lens.
This is a special direction in which the vectors of the
ray and phase velocities coincide, so that the wave
appears purely longitudinal. Because of the axial sym-
metry of the problem, an investigation of the behavior
of traces of front surfaces in some plane containing the
Ox2 axis appears to be sufficient for the solution. We
distinguish two transversely isotropic media with dif-
ferent elastic parameters: the initial medium (with the
incident wave), whose parameters are marked with sub-
script I, and the internal medium of the lens marked
with subscript II (Fig. 1). At every point M of the first
boundary surface of the lens (boundary G1 between
elastic media I and II), the incident ray produces a beam
of two refracted and two reflected rays whose direc-
tions and phase velocities satisfy Snell’s law [11]

(10)

where γ is the angle of inclination of the tangent to the
surface G1 at the point M of ray incidence; Θ1 and Θ2
are the angles between the Ox2 axis and the directions
of the phase velocity vectors of the quasi-longitudinal
qP and quasi-transverse qS waves reflected in medium I;

 and  are the corresponding angles for waves
refracted in medium II (in the lens); and v , v ν, and 
are the phase velocities of the incident longitudinal
wave and reflected and refracted waves (subscripts 1
and 2 correspond to quasi-longitudinal and quasi-trans-
verse waves, respectively).

The characteristic feature of Snell’s law (10) for
anisotropic media is that the denominators v ν and 
are explicit functions of the corresponding angles Θν

and  and implicit functions of the angle γ as are the
numerators. The refraction and reflection angles Θν and

 (ν, µ = 1, 2) at a point M of boundary G1 are
obtained from the nonlinear system of equations (10),
which is solved using the Newton method combined
with the algorithm of solution continuation with respect
to a parameter [14]. The angle of inclination of the tan-
gent γ appears to be a convenient choice for the leading
parameter. With such a choice, for the first equation of
system (10) with certain known parameter γ = γn and

γ( )sin
v

---------------
Θν γ–( )sin

v ν Θν( )
----------------------------

Θµ γ+( )sin

v µ Θµ( )
----------------------------,= =

ν µ, 1 2,,=
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v µ

v µ

Θµ

Θµ
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vectors , a small increment of the leading parameter
∆γn will cause the following increments of the pointing
angles of elastic waves reflected in medium I:

(11)

where rν = sin v – sinγv ν  are the residu-
als at the considered step of the solution construction.

Rays of quasi-longitudinal and quasi-transverse
waves outgoing from point M are incident on the
boundary surface G2. At the points MP and MS of inci-
dence on surface G2, each wave produces new beams of
quasi-longitudinal and quasi-transverse waves refrac-
ted in medium I and reflected in the lens (medium II).
Phase velocities and vector directions of the rays of
every beam again satisfy Snell’s equations, which now
have the form

(12)

The solution of system (12) is also performed
according a step-by-step procedure. By way of exam-
ple, a small variation ∆ϕn of the angle of inclination of
the tangent to surface G2 will cause increments of the
pointing angles of phase velocity vectors of the
refracted waves of both types:

(13)

Here, we introduced the functions

and the residual of Eqs. (12) is  = sin v  –

sin(Θ – γ) .

The implementation of successive calculations by
formulas like (11) and (13) requires the knowledge of

some initial state γ, v , , and v ν( ). In the case of
the axially symmetric lens under consideration, a con-
venient choice of the initial direction is γ = 0, which
corresponds to constructing a family of reflected and
refracted rays beginning with the ray directed along the
Ox2 axis, because this ray produces rays directed along
this very axis at both lens surfaces. For nonzero denom-
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inators, formulas like (11) and (13) allow the determi-
nation of a unique set of increments for pointing angles
of all phase velocity vectors of both types of waves at
both lens surfaces. Angles γ for which the denominator
on the right-hand side of Eqs. (11) and (13) vanishes,

(14)

are the conditions of bifurcation for the solution. The
solution continuation through this state requires that the
terms of the second (third, and so on as required) order
should be added to these equations [13].

Condition (14) of a possible nonuniqueness of the
solutions to system (11), (13) corresponds to the con-
vergence (contact) and intersection of reflected and
refracted rays on one lens surface. These effects can be
accompanied by the phenomenon of quasi-total internal
reflection [16].

Moving away from lens surfaces, rays can touch and
cross one another forming the envelopes of ray families
called caustics. Since the singularities of the wave front
appear on caustics, the focusing occurs at them and is
accompanied by an infinite growth of the stress field
intensity at the points of geometric singularities.
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Fig. 2. Focusing of the rays of a longitudinal wave by a con-
vex ellipsoidal lens.
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The variation of the strain discontinuity at the mov-
ing front behaves depending on the geometry of the
front surface and is characterized by the geometric
divergence of rays, which is a function of n for aniso-
tropic media. The geometric divergence of rays can be
determined by the formula [11]

(15)

where c(α, β) is a constant coefficient and J(α, β, τ) is
the Jacobian of the transformation of the ray coordinate

L L α β τ, ,( ) c α β,( ) J α β τ, ,( )
ξ α β τ, ,( )

--------------------------,= =

x2

0–5 5 x1

G1
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qPI+
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Fig. 3. Divergence of the rays of a longitudinal wave by a
convex ellipsoidal lens.
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Fig. 4. Focusing of the rays of a longitudinal wave within a
convex ellipsoidal lens.
system to the Cartesian coordinate system. The Jaco-
bian is calculated by the formula

(16)

where z1 = ik, z2 = ik, and z3 =

ik are the coordinate vectors of the curvilin-

ear ray coordinate system α, β, and τ determined
numerically by using the difference scheme for calcu-
lating partial derivatives.

RESULTS

The algorithm suggested above was used to investi-
gate the diffraction of a plane longitudinal wave by a
convex axially symmetric anisotropic lens bounded by
ellipsoidal surfaces whose traces on the symmetry
plane Ox1x2 are

(17)

The problem was solved for anisotropic media with
the following physical and mechanical parameters: ρ1 =
2.650 × 103 kg/m3, λ1 = 4.972 × 1010 Pa, µ1 = 3.906 ×
1010 Pa, ρ2 = 2.650 × 103 kg/m3, λ2 = 2.486 × 1010 Pa,
and µ2 = 1.953 × 1010 Pa. For the anisotropy coefficients
li = –0.1λi, mi = 0.3µi, and pi = 0.5(λi + 2µi), where i =
1, 2, Fig. 2 shows the system of rays belonging to the
longitudinal incident wave PI–, rays of quasi-longitudi-
nal wave qPII refracted into the lens, and rays of quasi-
longitudinal wave PI+ produced by the latter in medium I
(behind the lens). In Fig. 2, we did not show quasi-lon-
gitudinal rays reflected from both lens surfaces, all
quasi-transverse rays, and evolutions of fronts (exclud-
ing the fronts of the quasi-longitudinal wave behind the
lens). It is seen that initially parallel rays of an elastic
wave are focused after their passage through an acous-
tically softer lens in the same way as light rays in geo-
metrical optics. However, focuses of anisotropic lenses
with ellipsoidal surfaces are not points in the general
case; instead, each pair of symmetric rays has its own
point of intersection at the symmetry axis, and these
intersection points form a focusing zone. The sizes and
location of such a zone depend on the lens geometry
and the physical parameters of both anisotropic media.
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As was described in [17], in the case of isotropic
lenses and surrounding media, the ability of a biconvex
lens to cause convergence or divergence of rays
depends on the refractive index n = c1/c2, where c1 and
c2 are the velocities of waves in the surrounding
medium and in the lens material, respectively. When n
> 1, the lens is convergent, and when n < 1, it is diver-
gent. If we interchange the places of the elastic media
with the parameters used above, the lens under consid-
eration will become divergent (Fig. 3). The divergence
degree and the uniformity of doubly refracted rays
depends on the elastic characteristics of media and on
the geometry of the surfaces G1 and G2.

Because of anisotropy, variation of some elastic
characteristics of one of the media may considerably
complicate the pattern of rays and fronts under consid-
eration. By way of example, using the lens with the
Lamé coefficients λ2 = 5.682 × 109 Pa and µ2 = 2.273 ×
1010 Pa, for the first case we obtain that some rays of the
elastic wave qPII intersect within the lens (Fig. 4). This
fact causes rather complicated focusing of these rays
behind the second boundary between the media and
noticeably changes the stress field in medium II.
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Abstract—Effect of a standing ultrasonic wave on the spontaneous and induced (specific, immune) processes
of erythrocyte aggregation is studied in vitro on the basis of the data obtained from the elastic scattering of light.
The effect of the time of ultrasonic action and the concentration of the initial reagents on the enhancement of
these processes is analyzed. An approximate theoretical model is developed to describe the mechanism of the
enhancement of erythrocyte aggregation by an ultrasonic field and the observation of the process of interest by
the turbidimetric optical method. The model provides a good agreement between theory and experiment. The
results of the study are used to derive recommendations as to how to increase the resolving power of the turbi-
dimetric method of immunoanalysis with the aid of ultrasound. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Ultrasonic waves have found wide application in
clinical medicine. Examples of such applications
include ultrasonic therapy and surgery, Doppler spec-
troscopy, and ultrasonic testing. The possibilities of
using ultrasound in biomedical technologies and in lab-
oratory diagnostics have also been investigated. For
example, experiments on ultrasonic manipulation of
suspended particles [1–3] and cells [3–6] as well as fil-
tration of bacteria [7–9] and their separation by ultra-
sound [10] have been described in the literature. A
promising area of ultrasound application is biomedical
immunology [11–18]. Note that immunological meth-
ods based on a specific interaction of antigenes and
antibodies in vitro with the subsequent observation of
the resulting immune complexes (induced formation of
complexes) lie at the heart of many diagnostic tests
used in laboratory medical diagnostics.

In [14–18] it was shown that the application of ultra-
sound accelerates the process of the induced formation
of complexes, leads to an increase in the size of eryth-
rocyte complexes, and accelerates their sedimentation.
As a result, the resolving power of the method of
detecting the immune complex formation increases and
the time required for diagnostic testing is reduced. Note
that the resolving power of the method characterizes
the difference between the signals (e.g., optical signals
[14–18]) recorded for the induced and spontaneous
processes of complex formation (without specifying
the interaction between the reagents). Naturally, an
increase in the resolving power of the method makes
the results of diagnostic testing more reliable and
allows one to detect microscopic concentrations of the
reagents of interest, which is important for, e.g., early
1063-7710/04/5002- $26.00 © 20146
diagnostics of diseases. In this paper, as in [14–18], we
determine the resolving power of the method used for
detecting the process of complex formation as the ratio
of two optical signals: K = Iind/Isp, where Iind is the opti-
cal signal level obtained in the case of the induced for-
mation of erythrocyte complexes (the agglutination
reaction) and Isp is the optical signal level in the case of
the spontaneous formation of complexes.

The subject of this paper is an analysis of the mech-
anism of induced and spontaneous processes of eryth-
rocyte aggregation in vitro in the presence of an ultra-
sonic wave and an analysis of the optical (turbidimet-
ric) response to these processes. For this purpose, we
developed an approximate theoretical model, which
described the immune processes in vitro under the
action of ultrasound, as well as the changes in the opti-
cal signals obtained when probing these processes by a
light beam. The study is carried out with a view to opti-
mizing the parameters of the biological object under
investigation, the time of the ultrasonic action on this
biological object, and the experimental technique, so as
to increase the resolving power of the method of detect-
ing the induced immune process and, hence, the reli-
ability of the diagnostic test. The results of theoretical
calculations are compared with the experimental data
obtained by the authors.

1. IRRADIATION OF A SUSPENSION
WITH ULTRASOUND

The object of investigation was a mixture of dilute
human blood with isohemagglutinating serum, i.e., a
mixture similar to that used in the standard medical pro-
cedure for blood group determination. If the blood
group of the specimen under investigation immunolog-
004 MAIK “Nauka/Interperiodica”
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ically fits the isohemagglutinating serum, erythrocyte
complexes of large mass are formed and intensely sed-
iment (precipitate). This process corresponds to the
induced formation of complexes unlike the spontane-
ous process, which occurs when the erythrocytes of the
blood did not fit the serum. In the latter case, erythro-
cyte complexes are practically not formed and the sed-
imentation of free erythrocytes proceeds at a low rate.

Naturally, the reliability of blood group determina-
tion (errors should be completely ruled out) is better the
higher the resolving power with which the induced and
spontaneous processes of complex formation are
resolved.

The solvent used for the whole blood and the isohe-
magglutinating serum was an isotonic solution of
sodium chloride with a concentration of 0.85%. Blood
dilutions were within 1–6% of the whole blood. The
standard isohemagglutinating serum was diluted by the
same solvent to a concentration of 33%.

The mixture under study was incubated and then
exposed to ultrasound. When the ultrasonic field was
turned off, the destruction of spontaneously formed
erythrocyte complexes was observed and, hence, the
erythrocyte sedimentation process was slow. In the case
of induced aggregation of erythrocytes (the erythrocyte
agglutination reaction), the rate of sedimentation of the
complexes and its depth were much greater.

As a source of ultrasound, we used an ultrasonic
generator and a piezoceramic transducer, which was
30 mm in diameter and 1 mm in thickness. The fre-
quency of the generator was 2.64 MHz ± 20%, and its
rated output power was no greater than 1 W. The volt-
age applied to the transducer was limited so as to pre-
vent the hemolysis (disruption) of erythrocytes and was
approximately 6 V. The voltage and the frequency of
ultrasonic oscillations were constant in all experiments.

A dish with the blood–serum solution under investi-
gation was positioned on the piezoceramic transducer.
The latter was wet with water to improve its acoustic
matching with the glass dish. The length, thickness, and
height of the dish were 20, 3, and 40 mm, respectively.
The time of the ultrasonic action on the object varied
from 20 to 160 s with the aim to determine the optimal
conditions of irradiation of the biological object from
the viewpoint of obtaining the maximal resolution K.

Under irradiation, a standing ultrasonic wave was
formed in the dish. This wave caused the separation of
erythrocytes and erythrocyte complexes by way of their
grouping near the nodes of the standing wave. The sep-
aration of the cells and their complexes could easily be
observed visually. Erythrocytes coming closer to each
other at the nodes caused an increase in the probability
of an induced immune interaction and, hence, an
increase in the rate of the agglutination reaction. In
addition, the effect of ultrasound caused an increase in
ACOUSTICAL PHYSICS      Vol. 50      No. 2      2004
the size of the erythrocyte complexes and, hence, accel-
erated their sedimentation after the ultrasonic field was
switched off.

2. PRINCIPLES OF CONSTRUCTING 
THE THEORETICAL MODEL

The processes under study were modeled according
to the following scheme.

Calculations performed for the motion of erythro-
cytes in the ultrasonic field with their grouping in the
nodal zones of the standing wave made it possible to
determine the concentration of cells in these zones. In
its turn, the concentration of erythrocytes served as the
starting data for calculating the kinetics of the forma-
tion of erythrocyte complexes in the nodal zones. The
next step was the evaluation of the amount of erythro-
cytes and their complexes after switching off the ultra-
sonic field with the sedimentation of cells and their
complexes being taken into account. Finally, the knowl-
edge of the concentration of erythrocytes and light
complexes that did not have enough time for their sed-
imentation allowed the determination of the optical
response to the processes of interest when studied by
the turbidimetric method.

It should be noted that the modeling of the processes
considered above was performed for both the spontane-
ous and induced formation of complexes with a subse-
quent comparison of the results.

The motion of erythrocytes in the field of a standing
ultrasonic wave was analyzed with allowance for the
dynamics of the spatial variation of viscosity in the
solution. Erythrocytes were approximated by spherical
particles. It was assumed that the formation of sponta-
neous and immune erythrocyte complexes occurred
only after the erythrocytes gathered in the zone of a cer-
tain given thickness near a node of the standing ultra-
sonic wave. The analysis was performed for the condi-
tions of a continuous influx of erythrocytes into this
zone under the effect of the radiation pressure forces of
the standing ultrasonic wave. The sedimentation of
erythrocyte complexes was analyzed with allowance
for their distribution in size.

The calculation of the concentration of erythrocyte
complexes in a given zone with their subsequent sedi-
mentation made it possible to determine the level of a
probing optical signal transmitted through the mixture
under study. The results obtained by calculating the cell
concentrations in the given zone for the cases of spon-
taneous and induced aggregation of erythrocytes were
compared. In addition, a similar comparison was per-
formed for the corresponding optical signals. The theo-
retical results were compared with the experimental
data obtained by the authors.
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3. MOTION OF AN ERYTHROCYTE 
IN THE SOLUTION IN THE PRESENCE 

OF AN ULTRASONIC WAVE

The radiation pressure forces of the standing ultra-
sonic wave cause a separation of the cell suspension
between the nodes of the pressure field, which occur at
half-wavelength intervals. Since the total volume of
erythrocytes in blood is approximately 50 times greater
than the total volumes of other blood-forming elements
[19], it is possible to simplify the calculations by con-
sidering blood as a homogeneous solution of erythro-
cytes. The motion of a body in the field of an ultrasonic
wave is mainly determined by the size and shape of this
body. In normal conditions (in vivo), erythrocytes of
human blood have the form of biconcave disks with
diameters varying from 5.7 (microcytes) to 9.35 µm
(macrocytes). The majority of red cells (68%) have
diameters within 7.0–8.0 µm (normocytes) [20] with
the ratio of diameter to maximal thickness being
approximately equal to 4 [21]. However, in experimen-
tal conditions (in vitro) without changes in volume,
erythrocytes gradually transform to echinocytes (the
cell surface develops thorns), stomacytes (disks that are
concave on one side), spherocytes, etc. [19]. An exact
calculation of the motion of such particles in the ultra-
sonic field presents a difficult problem. Therefore, to
simplify the description of the cell motion, we approx-
imate an erythrocyte with a sphere. Since the volume of
an average erythrocyte is about 87 femtoliters [22], its
radius should be about 2.75 µm.

The motion of an erythrocyte in the field of an ultra-
sonic wave is determined by such parameters as the
densities of the cell and the surrounding medium, their
compressibilities, and the structural viscosity of the
medium surrounding the erythrocyte. The structural
viscosity of the liquid under study is understood as the
viscosity of the plasma solution with allowance for the
effect of the surrounding erythrocytes on the motion of
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Fig. 1. Dependence of the structural viscosity of the blood
solution on the erythrocyte concentration.
a given erythrocyte. In the process of cell separation
under the action of the ultrasonic field, the cell concen-
tration and, hence, the structural viscosity cease being
uniform over the whole dish volume and become
dependent on the distance to the nodal plane and on the
time of ultrasonic action. This fact should be taken into
account in considering the cell motion under the effect
of the radiation pressure force of the standing ultrasonic
wave. For high erythrocyte concentrations, high levels
of cell concentrations are characteristic of the regions
near the nodal planes of the ultrasonic field. With the
accumulation of blood cells in these regions, the deter-
mination of the structural viscosity becomes rather dif-
ficult. Therefore, in practice, at high erythrocyte con-
centrations, numerous empirical relations are used. For
example, η/η0 = (1 – H1/3)–1 [23] or η/η0 = (1 – H)–2.5

[24], where η/η0 represents the dependence of the rela-
tive structural viscosity on the hematocrit index H (the
relative volume of blood-forming elements), η0 is the
viscosity of the plasma solution (1.072 × 10–3 kg/(m s)),
and η is the structural viscosity of blood. The above
empirical dependences of η on erythrocyte concentra-
tion are plotted in Fig. 1 (curves 1 and 2, respectively).

Using a capillary viscometer (for low concentra-
tions) and an AKR-2 rotational viscometer (for concen-
trations from 5% to whole blood), we measured the
blood viscosity. The results of these measurements are
also shown in Fig. 1 (dots 4).

The approximation of these experimental results
was realized with the following empirical relation:

(1)

Here, C is the number of erythrocytes per 1 mm3 and
k is a coefficient chosen so as to provide the best agree-
ment of the approximation with the experimental data;
this coefficient proved to be equal to 3.4805 × 10–7. The
form of approximation (1) is shown in Fig. 1 (curve 3).
One can see a good agreement of empirical dependence
(1) with the dependences described earlier, as well as
with the results of our measurements. Therefore, in
what follows, we use relation (1) to describe the spatial
changes in the resistance to cell motion in the presence
of the ultrasonic field.

The motion of a cell is determined by the radiation
force Fr and the Stokes force FS. The radiation force Fr

has the form [25]

(2)

where Pm is the sound pressure amplitude, V is the vol-
ume of the moving particle, λ is the ultrasound, wave-
length ρ and ρm are the densities of the cell and the sur-
rounding medium, and β and βm are their compressibil-
ities. The Stokes force FS is determined as

(3)
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where η is the structural viscosity of the medium, r is
the radius of the particle, and v  is the velocity of its
motion.

Hence, a spherical particle moves under the action
of the resulting force F:

(4)

where m is the mass of the moving particle and a is its
acceleration. Note that, according to estimates, the
gravity and buoyancy forces acting on an erythrocyte
can be neglected in comparison with the sound pressure
force acting on the cell even in the region of the nodal
plane of a standing ultrasonic wave.

Since the grouping of erythrocytes in the zones of
pressure nodes of the standing ultrasonic wave pro-
ceeds relatively slowly, we can neglect the acceleration
of the cell (by analogy with [8]). Then, we have

. (5)

From this relation, we easily obtain the expression for
the instantaneous velocity of the particle at a point
located at a distance Z from a pressure node of the ultra-
sonic wave:

(6)

Since the distance between neighboring nodes of the
pressure field is equal to a half-wavelength of the ultra-
sonic wave, the cells located within a quarter-wave-
length from a node should gather near this node within
a certain time. The time required for a particle to reach
a node depends on the initial position of the particle. As
the particle approaches the node, the velocity of its
motion drastically decreases. This occurs because, first,
the radiation force (2) of the standing ultrasonic wave,
which moves the particle, decreases near the node, and,
second, the structural viscosity of the medium increases
with an increasing concentration of erythrocytes gath-
ering in this zone. Therefore, one should not consider
the time within which a particle exactly reaches the
node. In the literature, the usual practice is to consider
the time within which the particles gather in a certain
zone near the node [8]. We choose the zone with the
boundaries at approximately ±λ/80 from a node, where
λ is the wavelength of ultrasound. The choice of the
width of the zone is determined by the fact that, for the
experimental solutions of human blood [17, 18], all
erythrocytes lying at distances up to λ/4 from the nodal
plane of the ultrasonic wave may group into a zone of
approximately this width. For λ = 0.576 mm, this value
is about 7 µm. The time that is necessary for the cells
lying at a distance Z from the node to reach the bound-
ary of the chosen zone can be estimated by the formula

(7)
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The results of numerical integration by formula (7)
can be used to analyze the variation of the number of
cells in a given volume with time. For suspensions con-
taining 1 and 6% of erythrocytes, the results of calcula-
tions are presented in Fig. 2. In the calculations, the fol-
lowing initial parameters were used: Pm = 250 kPa, ρ ≈
1.092 × 103 kg/m3 [19], ρm = 1.0045 × 103 kg/m3 [26],
βm = 4.58 × 10–10 Pa–1 [8], and β = 3.48 × 10–10 Pa–1

[27]. One can easily see that the time within which all
erythrocytes will gather near the node (in the zone of
width ±λ/80) strongly depends on their initial concen-
tration. For 1 and 6% solutions of blood, this time is
about 60 and 160 s, respectively, which agrees well
with the experimental results presented below.

Figure 3 shows the dependence of the erythrocyte
concentration in the given zone near the nodal plane of
the ultrasonic wave on the time of ultrasonic action.
These results were used to determine the concentration
of immune erythrocyte complexes and their distribution
in size.

4. INDUCED AGGREGATION 
OF ERYTHROCYTES IN THE ULTRASONIC 

FIELD

An increase in the concentration of blood cells near
the nodal plane leads to an increase in the probability of
intercellular interactions. Depending on the group of
blood and on the type of isohemagglutinating serum,
these interactions may be of a spontaneous or induced
(specific immune) character [16, 18]. The kinetics of
the formation of erythrocyte complexes can be
described using the system of ordinary differential
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Fig. 2. Time that is necessary for erythrocytes to gather in
the zone lying within ±λ/80 from the nodal plane of the
ultrasonic wave versus their initial position with respect to
this plane.
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equations of the first order [28]:

(8)

where CA, CB, and CAB are the concentrations of the ini-
tial reagents A and B and their product AB; kAB is the
association constant, which depends on the mobility of
the reagents and on the steric factor (the probability of
the formation of a complex at the collision of the reac-
tion products).

For spontaneous processes, the association con-
stants are much smaller than those for induced pro-
cesses [29]. In our study, the best agreement between
theory and experiment was achieved under the condi-
tion that the association constant for the induced agglu-
tination reaction was approximately 10 times as great
as the corresponding constant for the spontaneous
aggregation process.

Using this condition, we determined the dependence
of the size distribution of erythrocyte complexes on the
time of ultrasonic action by solving the system of dif-
ferential equations in the framework of the first three
stages of complex formation [28]. The time depen-
dences of the concentrations of free erythrocytes and
complexes consisting of 4 and 8 erythrocytes is shown
in Fig. 4. The time of the characteristic break in curve 1
corresponds to the accumulation of all erythrocytes
near the nodal plane, after which only the process of
transformation of free erythrocytes into complexes due
to their interaction takes place. The bell-shaped run of
the curve is explained as follows: at small times of
ultrasonic action, an increase in T leads to an increase
in the concentration of complexes as free erythrocytes
arrive at the given zone ±λ/80; however, at greater
times, the erythrocyte inflow into this zone slows down

dCAB

dt
------------- kABCACB,=

C × 10–5, mm–3
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Fig. 3. Dependence of the concentration of blood cells near
the nodal plane on the time of ultrasonic action.
while the complexes are transformed to larger ones
with a simultaneous decrease in their number.

5. TURBIDIMETRY OF THE BIOLOGICAL 
OBJECT UNDER STUDY

To estimate the optical response to the induced
aggregation of erythrocytes, one should take into
account that the object under study is a dynamic one:
the formation of erythrocyte complexes is accompanied
by a simultaneous sedimentation of erythrocytes and
their complexes.

It is well known that the agglutination of erythro-
cytes accelerates the sedimentation process, because
the rate of sedimentation depends on the mass of parti-
cles sedimented. Therefore, the sedimentation of heavy
erythrocyte complexes proceeds faster than that of light
complexes or single cells. An exact modeling of the
sedimentation process in a dynamically varying poly-
disperse medium is a rather complicated problem.
Therefore, to simplify the calculations, we assumed
that heavy erythrocyte complexes leave the zone of
observation fast, so that after the ultrasonic field is
switched off, only free erythrocytes and light erythro-
cyte complexes remain in this zone.

The observation of the dynamics of sedimentation in
a red cell suspension allows one to judge the intensity
of the agglutination process. Among the methods used
for such observations, the most informative and most
used ones are the optical methods, such as photometry
[30], nephelometry [31], and fluorescence measure-
ments [32]. In [16–18], we used an optical method that
was a combination of the photometric and nephelomet-
ric ones, namely, the turbidimetric method. Since the
object under investigation was a highly concentrated
suspension of particles varying widely in size, the exist-
ing theories of single scattering of light provided no
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Fig. 4. Concentration of erythrocyte complexes as a func-
tion of the time of ultrasonic action: (1) single erythrocytes,
(2) four-cell complexes, and (3) eight-cell complexes.
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adequate solution to the problem. The use of the theory
of multiple scattering of light by disperse systems in the
general form requires cumbersome mathematics and
physical data that are not easily accessible. For the
transmission of normally incident light through an
erythrocyte suspension on the assumption that almost
all radiation is scattered into the front half-plane, after
some additional simplifications, the general theory
yields the expression [33]

(9)

where I and I0 are the intensities of the transmitted and
incident light beams, C is the concentration of scatter-
ers, σa and σs are the absorption and scattering cross
sections, d is the thickness of the scattering layer, and
q describes the total power fraction scattered in the
solid angle of reception from a single scatterer. For the
theoretical calculation of q, it is necessary to know the
geometry of the experiment and the dependence of the
scattered light intensity on the observation angle. The
latter cannot be easily determined for erythrocytes with
allowance for their distribution in size, shape, and ori-
entation. Therefore, in modeling, the value of q was
chosen empirically, proceeding from the values of pho-
tocurrents at the initial instant of time (when the con-
centration of particles was known) and at the terminal
instant (when the concentration of cells in the volume
under observation was equal to zero as a result of their
sedimentation). The value of q proved to be approxi-
mately equal to 10–4. With this value, the time depen-
dence obtained above for the concentration of blood
cells with allowance for its variation under the effect of
the ultrasonic field (Fig. 3) and sedimentation was sub-
stituted into Eq. (9). This allowed us to estimate the
dynamics of the clarification of the medium with time
and to compare the results with experimental data.

6. COMPARISON OF THEORETICAL 
AND EXPERIMENTAL RESULTS

Theoretical results and experimental data for the
case when the intercellular interaction is not of a spe-
cific immune character are shown in Fig. 5. Curve 1 and
dots 3 represent the theoretical and experimental
results, respectively, for the 1% solution of blood, and
curve 2 and dots 4, for the 6% solution. One can see
that, up to certain values of the time of ultrasonic
action, the medium is clarified weakly, after which the
clarification proceeds much faster. This may be
explained as follows. The probability of the spontane-
ous formation of a strong large erythrocyte complex is
fairly small, but it increases with increasing concentra-
tion of cells in the zones of nodal planes of the ultra-
sonic standing wave because of the increase in the
probability of cell membrane contacts. The comparison
of the results shown in Figs. 5 and 3 suggests that the
characteristic instant of time at which the clarification

I/I0 Cσad–( )exp=

× exp Cσsd–( ) q 1 exp Cσsd–( )–[ ]+{ } ,
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of the medium is drastically enhanced corresponds to
the instant when almost all cells gather near the nodal
planes of the standing ultrasonic wave. Further action
of the ultrasonic field leads to a still denser packing of
cells and, hence, to an increase in the number of large
cell complexes, whose fast sedimentation leads to the
clarification of the medium observed in the experiment.
It should be noted that the time within which the red
cells gather near the nodal planes strongly depends on
the initial concentration of erythrocytes in the solution.
As one can see from the experiment (Fig. 5), the char-
acteristic pre-clarification times for the 1 and 6% con-
centrations of blood differ by approximately a factor of
2.5, which agrees well with the results of theoretical
modeling (Figs. 3 and 5).

Similar results for the agglutination reaction (spe-
cific immune intercellular interaction) are presented in
Fig. 6. Their comparison with the results displayed in
Fig. 5 shows that, in this case, the characteristic time of
the beginning of the fast clarification process is much
smaller than the corresponding time in the case of the
spontaneous formation of erythrocyte complexes. This
difference can be explained as follows. Unlike the
spontaneous process, induced agglutination actively
proceeds during both incubation of the specimens and
ultrasonic action on the specimens. In the field of the
ultrasonic wave, the velocity of erythrocytes and their
complexes strongly depends on the size of the biologi-
cal objects (see Eq. (6)). This leads to a decrease in the
time within which most erythrocytes gather near the
nodal planes of the ultrasonic wave, as compared to the
spontaneous process. A rigorous description of this pro-
cess presents a difficult problem. Therefore, we use the
approximation in which all complexes have a single
effective size (the radius of an effective sphere). An
estimate of this size by the least squares method yields
approximately 5 µm, which approximately corresponds
to a complex consisting of six erythrocytes.
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Fig. 5. Dependence of the photocurrent on the time of ultra-
sonic action in the case of the spontaneous formation of
erythrocyte complexes.
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Naturally, in the case of agglutination, the induced
complex formation and, hence, the sedimentation pro-
ceed more actively than in the case of the spontaneous
process, which manifests itself in the observed degree
of clarification of the medium. From Fig. 6, one can see
that it reaches values that are hundreds of times greater
than in the previous case (Fig. 5). It should be noted
that, eventually, all curves (Figs. 5 and 6) exhibit satu-
ration, which is explained by the sedimentation of prac-
tically all cells.

Figure 7 presents the resolving power K for 1 and
6% solutions of blood. The curves are bell-shaped
because, for the induced and spontaneous processes of
complex formation, the clarification of the medium
occurs with different rates (see Figs. 5 and 6). This dif-
ference is determined by two components: first, by the
aforementioned difference in the association constants
for the spontaneous and induced erythrocyte agglutina-
tion reactions, and, second, by the aforementioned
decrease in the time within which the erythrocyte sus-
pension undergoes separation due to the effect of the
standing ultrasonic wave. These two components can
be manipulated. The rate of the induced agglutination
of erythrocytes can be increased by choosing the opti-
mal concentration ratio of the isohemagglutinating
serum and the blood cells. As the time of incubation of
the erythrocyte suspension increases, the depth of the
agglutination reaction grows. This leads to an increase
in the fraction of large erythrocyte complexes. As a
result, the time of separation of the medium decreases
and, hence, the clarification process is accelerated.
However, the dependence of the gain in the resolution
of the method on the time of incubation has the form of
a saturation curve [17, 18]. The latter is explained by
the fact that an increase in the incubation time may lead
to the state when the agglutination reaction almost
completely terminates and a further increase in the
incubation time does not lead to any considerable

T, s
0 50 100 150 200

J, µA
400

300

200

100

0

1
2
3
4

Fig. 6. Dependence of the photocurrent on the time of ultra-
sonic action in the case of the induced formation of erythro-
cyte complexes.
change in the size distribution of erythrocyte com-
plexes. In its turn, this situation leads to a smaller vari-
ation in the time of separation of the medium and to a
saturation of the gain in resolving power K as a function
of the time of incubation.

A decrease in the resolving power of the method for
large times of ultrasonic action (Fig. 7) is also caused
by the difference in the rates of the complex formation
and sedimentation processes. In the case of the aggluti-
nation reaction, practically all blood cells are sedi-
mented within a certain time and, hence, the observed
clarification of the medium reaches its maximum
(Fig. 6). In the case of the spontaneous formation of
complexes, the signal continues to grow (Fig. 5). In the
limit, the ratio of the two signals tends to unity, which
corresponds to the case of a complete sedimentation of
the cells and complexes in both cases. Therefore, to
obtain the maximal resolving power, one has to choose
the optimum time of ultrasonic action. From Fig. 7, one
can also see that this optimum strongly depends on the
initial concentration of erythrocytes. When the initial
concentration of blood cells changes from 1 to 6%, the
resolving power of the method increases by approxi-
mately a factor of 5. Simultaneously, the time of ultra-
sonic action that corresponds to the maximal resolving
power increases by approximately a factor of 3.

CONCLUSIONS

In this paper, the mechanism of erythrocyte aggluti-
nation enhancement by a standing acoustic wave was
studied on the basis of a specially developed approxi-
mate theoretical model and the theoretical results were
compared with experimental data. This study allowed
us to reveal ways to increase the resolving power of the
method of immunoanalysis. They include the optimiza-
tion of both the initial erythrocyte concentration and the
ratio between this concentration and the concentration
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Fig. 7. Dependence of the resolving power of the immu-
noanalysis method on the time of ultrasonic action.
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of the isohemagglutinating serum. In addition, the
resolving power of the method may be considerably
increased by choosing the optimal time of incubation of
the biological object and the time of ultrasonic action.
With these recommendations, one can increase the
maximal resolving power of the method by a factor of 4
for the case of a 1% solution of blood and by a factor of
1.5 for a 6% solution, compared with the data shown in
Fig. 7. It should be noted that an increase in the resolv-
ing power of the method of analyzing the induced
aggregation of cells is an important problem, for exam-
ple, in the case of determining the group of blood with
a reduced agglutination ability of erythrocytes, when
the standard methods lead to a high probability of error
while the procedure of the blood group determination is
rather laborious.

On the whole, the study described above should be
useful for understanding the processes that occur in an
immune biological medium in the presence of an ultra-
sonic wave. It also demonstrates the prospects of ultra-
sound application in the development of methods and
instruments for biomedical immunological studies and
diagnostics.
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Abstract—Response of a horizontal linear receiving antenna combining the powers of incident normal waves
in a shallow sea is studied. The acoustic field is produced by an omnidirectional monochromatic point source.
The antenna aperture is comparable to or smaller than the sea depth. © 2004 MAIK “Nauka/Interperiodica”.
At present, linear antennas are widely used in
applied hydroacoustics [1]. The acoustic field in under-
water acoustic waveguides can be characterized in
terms of its intensity averaged over the propagation
path [2–4], which is calculated by a noncoherent sum-
mation of individual normal modes or beams, so that
the interference structure of the field proves to be
smeared. The cited publications consider omnidirec-
tional transmission or reception. Averaged characteris-
tics of the acoustic field produced by a vertical trans-
mitting antenna in a waveguide are addressed in [5–8].
The present paper studies the shape of the response of
a horizontal linear antenna in an underwater acoustic
waveguide with uniform sound velocity (a shallow sea
model) when the responses of the antenna to individual
normal waves are combined disregarding their phases;
i.e., the antenna combines the powers of normal waves.

The acoustic field in a waveguide excited by a point
source can be represented as a superposition of normal
waves [9]. Consider the reception by a horizontal linear
antenna with an aperture L and with an electronic com-
pensator, which allows the rotation of the antenna phase
front about the center through a given compensation
angle β in the horizontal plane. Assume that the source
is in the far field (Fraunhofer region) of the antenna. A
definition of the far-field region for a horizontal antenna
in a waveguide can be found in [10].

Directional characteristics of hydroacoustic anten-
nas in a homogeneous unbounded medium (free space)
are studied in sufficient detail [11, 12]. It seems reason-
able to evaluate the directional properties of the same
antennas operating in a waveguide in terms of similar
characteristics but with an allowance made for specific
features of the waveguide propagation. Therefore, we
define the antenna response in a waveguide as the out-
put signal intensity, normalized by its maximum, versus
the angle α between the source direction and the nor-
mal to the antenna in the horizontal plane and the com-
1063-7710/04/5002- $26.00 © 20154
pensation angle β [13–16]:

(1)

(2)

(3)

Here, the quantity Dl(α, β) is the response of the
antenna to the first normal wave alone, and B(α, β) is
the superposition of individual responses to each of the
rest of the normal waves, when considered in the hori-
zontal plane. At a certain fixed β, B(α) is the directional
pattern of the antenna in the horizontal plane, and B(β)
at a certain fixed α is the scanogram of the horizontal
linear antenna in the waveguide. These functions are
analogs of the antenna pattern and scanogram in free
space; ua is the signal at the antenna output; m is the
number of normal waves, which propagate in the
waveguide without attenuation; ξl and bl are the hori-
zontal and vertical components of the wave vector k of
the first normal wave; Z0 and Z are the transmission and
reception depths, respectively; R is the horizontal dis-
tance between the source and the antenna center; and
Al characterizes the intensity of the lth normal wave.
The compensator introduces linear phase delays in each
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receiving channel of the antenna in accordance with the
phase velocity C of sound in water (k = ω/C is the wave
number and ω is the circular frequency).

The first term on the right-hand side of expression (2)
(single sum) is a superposition of responses to individ-
ual normal waves without taking into account phases,
i.e., a sum of their powers (the power-related part of the
response Bp). The second term on the right-hand side of
expression (2) (double sum) characterizes the interfer-
ence between normal waves with different indices at
the antenna aperture (the interference-related part of
the response). The antenna response B(α, β) in a
waveguide for different parameters of the problem was
studied in [13–16]. The attention was focused mostly at
the low-frequency region, in which a small number of
normal waves (a few or few tens) propagate in the
waveguide, and at long linear antennas whose length
may be greater (sometimes considerably) than the sea
depth. Below, we analyze a distribution of the power-
related part of the response of an antenna whose aper-
ture is comparable to or smaller (or even much smaller)
than the waveguide depth. The waveguide may allow
the propagation of a great number (hundreds) of normal
waves, so that the geometrical acoustics approximation
becomes valid. Our calculations are performed for a
waveguide of uniform sound velocity with a soft sur-

face and rigid bottom, with Al = cos(blZ0)cos(blZ)/ .
According to Eqs. (1)–(3), the parameters that deter-

mine the response of the antenna include the number of
normal waves propagating in the waveguide. While, in
free space, a decrease in the wavelength λ (an increase
in the frequency ω) increases the antenna dimension in
terms of the wavelength, L/λ in the waveguide. Simul-
taneously, the ratio H/λ increases and, therefore, the
number m of propagating waves also increases. This sit-
uation must be taken into account when interpreting the
results presented below.

As is known, the directional pattern of a continuous
linear antenna in free space has the form of one main
lobe and a number of small side lobes, which move
along the axis of angles α when the compensation angle
β is varied [11, 12]. A similar behavior is observed in
the scanogram, but the lobes move along the axis of
angles β when the angle α is varied. It has been shown
[13–16] that, when the antenna is placed in the
waveguide horizontally, its pattern or scanogram
retains one main lobe only when β = 0° or α = 0°,
respectively. Otherwise (β > 0° or α > 0°), the energy is
distributed in the response over a wide angular range
from 0° to 90°. (A symmetric situation observed in the
angular range from 90° to 180° is not considered here.)
While the interference-related part of the response is
oscillatory and these oscillations are random, the
power-related part of the response is smooth and has a
specific shape. The number of oscillations increases
with the number of normal waves.

Our further discussion will be illustrated by calcula-
tions performed for particular examples. Figure 1

ξ l
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shows the power-related part of the response of a hori-
zontal linear antenna with an aperture L = 10λ in a
waveguide with a depth of H = 50λ at different compen-
sation angles βc (patterns, Fig. 1a) and directions to the
source characterized by the angle αs (scanograms,
Fig. 1b). In this waveguide, m = 100 normal waves can
propagate without attenuation. Here and below, the
source and the antenna reside on the bottom: Z0 = Z =
0. All curves in each of these figures are normalized by
the same maximum value. Figures 1a and 1b show that,
as we noted above, it is only at βc = 0° or αs = 0° that
the response curve has the form of one symmetric main
lobe whose amplitude is greater than the amplitudes of
all the other curves. With an increase in the compensa-
tion angle βc (Fig. 1a) or the angle αs, which character-
izes the direction to the source (Fig. 1b), the curves of
the power-related part of the response acquire a flat
shape in their central part with a smooth plateau on
their left-hand side at α = βc for patterns (Fig. 1a) or
right-hand side at β = αs for scanograms (Fig. 1b). For
the above parameters, these maxima are approximately
three times lower than the maximum of the response at
βc = 0° or αs = 0°.
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Fig. 1. (a) Patterns and (b) scanograms for different angles
(a) βc = (1) 0°, (2) 20°, (3) 40°, and (4) 60° and (b) αs =
(1) 0°, (2) 25°, (3) 50°, and (4) 75° at H = 50λ, m = 100,
L = 10λ, and Z0 = Z = 0.
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According to (1)–(3), the power-related part of the
response is a sum of the responses Dl to individual nor-
mal waves shifted in the axis of angles α to the right at
βc ≠ 0° (Fig. 1a) or in the axis of angles β to the left at
αs ≠ 0° (Fig. 1b). The shift of the response Dl increases
with the index of the normal wave in a nonlinear man-
ner. This is illustrated in Fig. 2, which shows the differ-

ences ∆α =  –  (curves 1–3) and ∆β =  –

 (curves 4–6) versus the index of normal wave l =

2–100. The angles  and  are the angular posi-
tions of the maxima of the responses to the lth normal
waves. As can be seen from the figure, the rate at which
these differences increase with the index of the normal
wave l is small for normal waves with small indices,
which gives rise to the maxima in the curves in Figs. 1a
and 1b. The rate at which the differences increase is
more or less constant for medium normal wave indices,
which provides a relatively constant level of response
within the rest of the range.

We should emphasize the following feature of the
curve obtained for the power-related part of the
response of the antenna operated in the waveguide. If
the dimension L/λ of the antenna is comparable to or
less than the depth H/λ of the waveguide, the shape of
the curve remains almost unchanged with an increase in
H/λ or, which is the same, with an increase in number
m of normal waves propagating in the waveguide if
other parameters (L/λ, Z0, Z, and angles βc for patterns
or αs for scanograms) are constant. Figure 3 shows the
power-related part of the pattern (Fig. 3a) and scano-
gram (Fig. 3b) for the antenna with an aperture of L =
10λ in waveguides with depths of H = 10λ, 50λ, 100λ,
and 250λ (m = 20, 100, 200, and 500) at βc = 20° and
αs = 60°. Each curve is normalized by its maximum
value. The curves for H = 50λ, 100λ, and 250λ coincide
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Fig. 2. Differences (1–3) ∆α and (4–6) ∆β versus the nor-
mal wave index l for βc = (1) 20°, (2) 40°, and (3) 60° and
αs = (4) 25°, (5) 50°, and (6) 75°.
for patterns (curve 1 in Fig. 3a) and actually coincide in
their main part for scanograms (curves 1–3 in Fig. 3b).
The latter curves differ insignificantly in their left part.
A minor difference in the right-hand parts of the pat-
terns (curve 2 in Fig. 3a) and a noticeable difference in the
left-hand parts of the scanograms (curve 4 in Fig. 3b) are
observed at H = 10λ and m = 20. In this case, the antenna
aperture L/λ is equal to the waveguide depth H/λ.

If the aperture size L/λ is comparable to or greater
than the waveguide depth H/λ, under certain conditions
(large angles βc for the pattern or αs for the scanogram),
part or all of the normal waves can be separated in the
form of clear-cut maxima in the curve of the antenna
response as a whole and in the curve of its power-
related part as well [13–16]. The height of these max-
ima and their angular positions can be used to calculate
the parameters of these normal waves. If the antenna
aperture is comparable to or smaller than the waveguide
depth, a small number of normal waves, if any, can sep-
arate. Figure 3 illustrates this very case, when one or
two normal waves become separated.
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Fig. 3. (a) Patterns and (b) scanograms for different num-
bers of waves propagating in the waveguide at L = 10λ and
Z0 = Z = 0: (a) βc = 20° and m = (1) 100, 200, and 500 and
(2) 20 and (b) αs = 60° and m = (1) 100, (2) 200, (3) 500,
and (4) 20.
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Now, let us consider the effect of the aperture length
on the behavior of the energy-related part of the
response, the remaining parameters of the problem
being unchanged. Figure 4 shows the energy-related
part of the pattern (Fig. 4a) and scanogram (Fig. 4b) for
antennas with apertures L = 10λ, 25λ, 50λ, and 200λ
(curves 1–4 in Figs. 4a and 4b) operating in a
waveguide of depth H = 100λ at m = 200, βc = 20°, and
αs = 60°. Each curve is normalized by its maximum
value. As can be seen from the figure, an increase in the
aperture length narrows the maximum on the left-hand
side of the pattern and on the right-hand side of the scan-
ogram and also lowers their central plateau-shaped parts.
If the antenna aperture is larger than the waveguide
depth, individual maxima appear in the patterns and
scanograms (curves 4 in Figs. 4a and 4b), which are
associated with normal waves with the greatest indices; in
the case under study, the antenna aperture L = 200λ is
twice as large as the waveguide depth H = 100λ. As was
noted above, these waves are separated from the curves.

Thus, at low frequencies as well as at high frequen-
cies, when a few (tens) or hundreds of normal waves,
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Fig. 4. (a) Patterns and (b) scanograms for different antenna
apertures at H = 100λ, m = 200, Z0 = Z = 0, and L = (1) 10λ,
(2) 25λ, (3) 50λ, and (4) 200λ; (a) βc = 20° and (b) αs = 60°.
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respectively, propagate in the waveguide, the energy in
the antenna response appears to be distributed in the
general case (at nonzero angles βc and αs) over a wide
range of angles α (pattern) and β (scanogram). This fact
degrades the directional characteristics of the antenna
operated in the waveguide (decreases its concentration
factor and reduces its noise immunity) and makes it
more difficult to determine the exact direction of the
source. To solve these and a number of other problems
of applied hydroacoustics, a usual compensator, which
introduces a linear phase delay into each receiving chan-
nel, proves to be inefficient, so that a special processing
of the signal over the antenna aperture is necessary.

The use of a waveguide model with a lossy imped-
ance bottom instead of an ideal waveguide leads to the
attenuation of normal waves with large indices and a
change in the behavior of the response curve. Its pla-
teau-shaped part becomes shorter on the right (for pat-
terns) or left (for scanograms), the effect being stronger
the higher the attenuation of the normal waves is. It
should also be noted that, if various averaging proce-
dures (over space or time) or the power summation of
normal waves are used, it is necessary to perform a
comparative analysis of the results obtained.
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Abstract—The problem of determining the positions and levels of signals by an array in a thick layer of large-
scale inhomogeneities is considered. The problem is solved in two steps. At the first step, the method of wave
front inversion is used to find the fractions of the spatial spectra at which one of the signals predominates. At
the second step, within each spectral fraction, the signal is processed by using both the method [5] of taking the
logarithms of complex functions with a subsequent filtering and the method of parameter estimation. The
results of numerical modeling are presented. © 2004 MAIK “Nauka/Interperiodica”.
Media in which one can acoustically locate an
object in the absence of inhomogeneities can be in prac-
tice so inhomogeneous that classical acoustic imaging
proves to be unfeasible. Inhomogeneities in solids, and
sometimes in liquids (in the absence of currents and
within the time of a two-way sound propagation), are
stationary to an extent that allows one to use the method
of wave front inversion (WFI) to suppress the effects of
inhomogeneities [1]. In [2], the WFI method was used
to exclude the influence of strong inhomogeneities
occupying a thin layer. The method used in [2] has two
significant limitations. First, it cannot be used when the
inhomogeneous layer is so thick that the signals from
the objects corresponding to different angles relative to
the array (and to the layer) have different distortions.
Second, this method allows one to determine the posi-
tions and strengths of objects in a relative form, with
respect to the strongest object: the coordinate and the
level of this strongest object remain unknown.

In further studies, both the aforementioned limita-
tions of the method used in [2] were overcome. The
objective of the present study is to show that one can
determine the positions and levels of all objects when
the inhomogeneous layer is rather thick, so that each
object to be located undergoes its own distortions. The
problem was solved by imposing an additional restric-
tion on the properties of the inhomogeneities, namely,
the inhomogeneities should be large-scale ones. The
method described in [2] is free of such a restriction.
Here, we assume that only the inhomogeneities them-
selves should be large-scale. This restriction does not
refer to the phase distribution over the antenna array
under the influence of the inhomogeneities: the phase
distribution can have a broad spatial spectrum resulting
in strong interference.

There are also two restrictions on the shape and
positions of the objects for the WFI method to be feasi-
1063-7710/04/5002- $26.00 © 20158
ble [1]. The objects to be located must reradiate a spher-
ical wave in response to a wave of arbitrary shape inci-
dent on it. In addition, the objects should be arranged in
space so that they can be reliably separated from each
other by the same array in a homogeneous medium.

The problem is solved in two steps. At the first step,
the WFI method is used to separate signals from differ-
ent objects. First, the strongest signal is separated by
multiply repeated wave front inversion [1]. This stron-
gest signal is fixed. Then, at the array, a signal is formed
that makes the strongest signal equal to zero or close to
zero. Now, by repeating the WFI procedure, one sepa-
rates the next strongest signal from the remaining ones.
This signal is fixed again, and a signal is emitted that
suppresses almost to zero the signal scattered by the
second object. The procedure lasts until all signals of
interest are found. At the second step, each of the
detected signals is separately processed to specify the
angle at which the object is located and the level of the
signal scattered by it. The latter can be accomplished in
two different ways: by the procedure of parameter esti-
mation [3, 4] or by filtering. In this work, both methods
are used.

Filtering is performed by the method that was pro-
posed and put into practice in [5]. Before filtering, the
signal phase is extracted without the 2π-periodic
jumps. For this purpose, the logarithm of the complex
signal is taken [6]. As a result, the spectra of the signal
and interfering noise prove to be separated, just as in
the cepstral analysis [5, 7]. After that, the noise is filtered
out and one obtains a pure signal whose parameters (the
angular position and level) are to be determined.

Let us consider an example to show how the signal
parameters can be determined by using an extended
array in a thick inhomogeneous layer.

Consider a linear array that consists of L receiving
(and transmitting) elements spaced at λ/2, where λ is
004 MAIK “Nauka/Interperiodica”
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the wavelength. The array is placed into a stationary
inhomogeneous medium. The transmitted and received
signals are pulses with a monochromatic carrier and a
duration sufficient for the signals to be treated as mono-
chromatic. The signal received by the array can be writ-
ten as

(1)

Here, An(k) represents the signals received by the array
in the medium without inhomogeneities and Fn(k) rep-
resents the phase changes caused by the medium. These
changes are supposed to be much greater than π. Let us
assume that the signal sources are in the far field of the
array, where the signals received by the array in the
homogeneous medium can be represented as plane
waves [8]:

(2)

Here, Wn is the wave amplitude and Un is the spatial fre-
quency. The angle θn corresponding to the wave can be
determined as [8]

(3)

In our example, we consider the case of three signals
whose parameters are summarized in the table.

The signal levels are specified in advance to differ
substantially in their values; otherwise too many WFI
repetitions would be required in the numerical simula-
tion. The array consists of 1024 receiving elements
spaced at 0.5λ.

According to the WFI procedure [1], the observa-
tions begin with the emitting of a pulse from one ele-
ment of the array. This pulse undergoes strong distor-
tions in propagating through the medium. However, in
spite of the distortions, each object reradiates a spheri-
cal wave [1]. These waves, propagating through the
inhomogeneous medium again, reach the array to form
the field of the form given by Eq. (1). The distortions of
the wave field are so strong that the signal processing
used in the homogeneous medium (Fourier spectral
analysis of the array signal) leads to the result shown in
Fig. 1a. The Fourier spectrum of the array signal can be
represented in the form

(4)

where

(5)

(6)

S k( ) An k( ) iFn k( )( ).exp
n

∑=

An k( ) Wn i
2π
L

------kUn 
  .exp=

θn( )arcsin
λ
L
---Un.=

P1 u( ) W1ua u( ) W2ub u( ) W3uc u( ),+ +=

ua u( ) Φ
A1 k( )

W1
-------------- iF1 k( )( )exp ,=

ub u( ) Φ
A2 k( )

W2
-------------- iF2 k( )( )exp ,=
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(7)

Here, Φ denotes the Fourier transform of the square-
bracketed function.

Figure 1a shows the modulus of the spatial spectrum
for the signal received by the array, as given by Eqs. (5),
(6), and (7). Figure 2a presents the result of such a sig-
nal processing for the homogeneous medium. This fig-
ure shows the levels of all three signals and their posi-
tions on the axis of spatial frequencies. These quanti-
ties, in turn, determine the signal amplitude values Un

related by Eq. (3) to the angles θn, at which the objects
are observed. In the homogeneous medium, no addi-
tional processing is required.

However, from Fig. 1a, which is all we have at our
disposal, no pattern characterizing the position of the
objects is apparent. To extract such information, one
needs to perform additional signal processing. At the
first stage, this processing procedure consists in sepa-
rating the signals from different scattering objects.
First, we separate the strongest signal from all other
signals. To do so, we fix the field at the array and then
transmit a complex-conjugate signal with the opposite
sign of time from the same array. As a result, the array
will emit the WFI signal. Upon propagating through the
same inhomogeneities, this signal will take the form of
a spherical wave in the vicinity of the object. The
amplitude of this wave will correspond to the value of
Wn for each given object. Being scattered by an object,
the wave acquires an additional factor Wn.

For the received wave that was emitted as the WFI
one, the spatial spectrum at the array takes the form

(8)

As a result, the first signal becomes much greater than
the other signals. This result is illustrated by Fig. 1b.
For free space, the same procedure yields Fig. 2b.

Now the signal that is next in amplitude should be
separated. To do so, one should exclude the first signal.
This is accomplished by emitting the following WFI
signal:

(9)

where NA is a factor fitted to minimize the signal scat-
tered by the first located object.

To select the value of NA, one should use signals
that are received by the array after transmitting the sig-

uc u( ) Φ
A3 k( )

W3
-------------- iF3 k( )( )exp .=

P2 u( ) W1
2ua u( ) W2

2ub u( ) W3
2uc u( ).+ +=

PA k( ) P1 k( )NA P2 k( ),–=

Table

n 1 2 3

Wn 6 2 0.5

Un 50 150 250
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nals of form (9) with different values of NA. Actually,
by substituting Eqs. (4) and (8) into Eq. (9), we obtain:

(10)

From Eq. (10) it follows that the signal scattered by
the first strongest object becomes equal to zero when

(11)

However, one cannot directly use condition (11),
because the level of the first signal is unknown. Then,
one can make use of the fact that the excluded signal is

P4 u( ) W1NA W1
2–( )ua u( )W1=

+ W2NA W2
2–( )ub u( )W2

+ W3NA W3
2–( )uc u( )W3.

NA W1.=
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Fig. 1. Angular spectra of signals (a) before and (b–d) after
their separation by the WFI method.
the strongest one, and its absence should substantially
change the level of signal (10), which is available for
observation. The minimum must occur in the signal at
the array but not in its spectrum. Therefore, one should
search for the minimum in the inverse Fourier trans-
form of Eq. (10). The value NA = 5.975 corresponds to
the minimum of the integral of the squared inverse Fou-
rier transform of Eq. (10). By comparing this value with
the value W1 = 6 presented in the table, we arrive at the
conclusion that the estimate is biased. In further pro-
cessing, this estimate can be refined. Signal (10) with
the value NA = 5.975 substituted into it can be treated
as the second selected signal. This signal should be
recorded. The modulus of the spatial spectrum of this
signal is shown in Fig. 1c. The corresponding spectrum
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Fig. 2. Angular spectra of signals in free space (a) before
and (b–d) after their separation by the WFI method.
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in free space is presented in Fig. 2c. One can see from
Fig. 2c that the second signal is actually the maximal
one in the case at hand.

By repeating the procedure described above, we
eliminate the second signal. For this purpose, we emit a
signal constructed by analogy with Eq. (9):

(12)

Here, PA(k) is determined by Eq. (9) with NA being
replaced by its value determined above, and the term
P4(k) represents the inverse Fourier transform of
Eq. (10) with NA being replaced by the aforementioned
value. Let us omit here the full lengthy expression for
the received signal. We rather mention the fact that the
coefficient of ua(u) contains the factor NA – W1 and
consider the coefficient ub(u) of the signal second in
intensity:

. (13)

From Eq. (13) it follows that the second signal becomes
equal to zero when

(14)

Since the value of W2 is unknown, condition (14)
can be determined by minimizing the result of WFI for
signal (12) by varying the value of NB. In this way, we
arrive at a value of NB = 1.993. Figure 1d shows the
modulus of the spatial spectrum of this signal for the
inhomogeneous medium, and Fig. 2d, for the homoge-
neous medium. In Figs. 1d and 2d, one can see traces of
the first signal. These traces are the consequence of the
fact that the value of NA was determined with an error.
The error can be substantially decreased by varying the
value of NA so as to minimize the traces of the first sig-
nal in Fig. 1d. I performed such a procedure. As a result,
the value NA = 6 was obtained to an accuracy of 10–4.

At the second stage of the processing procedure,
pure signals are extracted from the medium-caused
interference by way of sequential elimination of the
strongest signals. In the case at hand, the technique
described in [5, 9] was used. This technique for signal
extraction is based on the fact that only one monochro-
matic signal in the form of one summand of Eq. (1) is
known to be present. By taking the logarithm of this
expression without the 2π-periodic phase jumps,
according to [6], we obtain the pure expression for the
signal phase with a minimal spectrum width. To sepa-
rate the spectra of signal and noise, we use the method
that is considered in detail in [5]. Prior to extracting the
signal phase free of the 2π-periodic jumps, the signal is
multiplied by the factor

(15)

PB k( ) PA k( )NB P4 k( ).–=

Kb W2NA W2
2–( ) NB W2–( )=

NB W2.=

M k( ) i
2π
L

------kQn 
 exp 0.5.+=
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The value of Qn is selected in view of the condition
of minimal spectral width for the product of factor M(k)
with the signal extracted by the WFI procedure.

The fitting of Un is performed by multiplying the
signal that was obtained using the WFI by factor (15)
(without adding the term 0.5 to the exponential). Vary-
ing the quantity Qn, one can obtain a minimal variance
of the extracted phase. Figure 4 shows the resulting
dependences of the phase variance on the value of Qn.
In separating the signals of individual objects, the val-
ues NA = 5.975 and NB = 1.993, obtained experimen-
tally, were used. The minimal values of the phase vari-
ances in Figs. 4a and 4c coincide with the specified val-
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Fig. 3. Angular spectra of signals filtered out by taking the
complex logarithm (a) before and (b–d) after the separation
of signals by the WFI method.
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Fig. 4. Estimations of the spatial frequencies (angles) of the objects by minimizing the phase variance. Estimates for the (a) first,
(b) second, and (c) third signals.
ues of spatial frequencies. The minimal value in Fig. 4b
is 151 instead of the specified value of 150. The differ-
ence corresponds to a single element of the array reso-
lution. This difference is caused by the interfering
noise, which was not suppressed in this processing pro-
cedure.

Note that the estimates obtained are quite sufficient
to determine the coordinates of the objects, and one can
do so without filtering to separate the signals. Such a
procedure of determining the signal parameters without
filtering admits a broader band of spatial frequencies of
the inhomogeneities, compared to the method with fil-
tering.

The results obtained by filtering the signals are pre-
sented in Fig. 3. This figure illustrates both the posi-
tions of the signals on the frequency axis and their
amplitudes. Let us make use of these data to determine
the level of the third weakest signal, whose parameters
remain unknown. According to Eq. (12), the amplitude
of the third signal Kc (in Fig. 3d) must have the follow-
ing value:

(16)

To obtain the estimate from Eq. (16), one should solve
the cubic equation. We proceeded in another way. If we
substitute all true values from the table into Eq. (16), we
obtain the value Kc = 4.087. In Fig. 3d, the correspond-
ing value of the signal amplitude is 4.086. The close-
ness of these values confirms that the estimate of the
signal level obtained from Fig. 3d is close to the true
value.

The method of signal separation with the use of WFI
can be also applied to a focusing array. However, the
method of filtering is not applicable in this case, and the

Kc NBW3 NA W3–( ) W3 W3NA W3
2–( ).–=
estimation procedure has some specific features. Such
a situation will be analyzed in a next paper.
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Abstract—On the basis of the method of equivalent linearization combined with the method of moments, laws
of self-oscillation excitation are obtained that provide the modes with maximum intensity of resonance (or
quasi-resonance) oscillations in one-dimensional systems with distributed parameters. A restriction of a general
type is imposed on the law of excitation. In the particular case of an integral quadratic restriction, the law of
excitation leads to the generation of purely harmonic self-oscillations. The use of an extended (multiplicatively
stabilizing) control provides the uniqueness and stability of the quasi-optimal mode of self-oscillation. © 2004
MAIK “Nauka/Interperiodica”.
This paper considers the problem of constructing
the law of self-oscillation excitation in a one-dimen-
sional linear system with distributed parameters. Such
a problem is of interest, in particular, for designing
ultrasonic machine systems. Below, the problem of
synthesizing the law of excitation is solved with the use
of methods of the optimum control theory. A restriction
of a general type is imposed on the law of excitation u:

where Ug represents the limiting values of the excita-
tion resource, 1 ≤ g  < ∞, and ω is the predefined fre-
quency of self-oscillation. It is shown that a quadratic
restriction (g = 2) imposed on the excitation law u
results in the generation of purely harmonic self-oscil-
lations.

Problems of self-oscillation excitation in distributed
systems are urgent for many fields of engineering. In
particular, ultrasonic vibrations are widely used for
ultrasonic treatment of different materials. The excita-
tion and stabilization of the corresponding self-oscilla-
tion modes are among the principal issues in the design
of machines for these purposes [1, 2]. By now, the
methods of analyzing self-oscillatory systems are com-
pletely developed for systems with both lumped [3] and
distributed [4] parameters. The most used scheme of
designing self-oscillatory systems is based on preset-
ting a possible structure of the excitation law and then
analyzing the dynamics of the system [1, 2, 5].

As regards the development of regular methods for
synthesizing self-oscillatory systems (SOS), only a few
publications have been concerned with this problem. In
monograph [6], which is the only Russian book entirely

u g td

0

2π/ω

∫ 
 
 

1
g
---

Ug,≤
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dedicated to this topic, such problems are completely
solved in detail for objects belonging to a specific class
by using the criterion of maximum speed of operation;
the solutions are based on the Pontryagin maximum
principle and on the analysis of phase trajectories. In
paper [7], the problem of SOS synthesis is also solved
for a specific object: a wind-driven powerplant. The
cited paper [7] points out the urgency of using the meth-
ods of optimum control theory in solving the problems
of SOS synthesis.

Since self-oscillatory systems usually operate in
resonance or quasi-resonance modes, which means that
the harmonic approximation is quite adequate for
describing these modes of operation, the combination
of the method of harmonic (equivalent) linearization
with the methods of the optimum control theory (in par-
ticular, with the method of moments) should be the
most efficient approach to the SOS synthesis. The cor-
responding procedures can be found in papers [8–10].

It is known that nonlinear systems, which include
SOSs and, specifically, SOSs whose excitation laws
were synthesized with the use of such procedures, are
characterized by multiple periodic modes. For the prob-
lems of our concern, this means that some other modes
can appear in addition to the designed optimum mode
of maximum intensity and predefined frequency. More-
over, the designed (rated) mode may appear unstable.
To eliminate the multiple mode feature and stabilize the
rated mode, the principle of extended (multiplicatively
stabilizing) control was proposed in [11, 12]. This prin-
ciple consists in introducing an additional factor into
the primarily synthesized excitation law, so that this
factor ensures the feature of an artificial attractor whose
degree of attraction to the rated limiting cycle can be as
high as desired. On the basis of this principle, the law
004 MAIK “Nauka/Interperiodica”



 

164

        

IZRAILOVICH

                                                                                                                                                       
of excitation of purely harmonic self-oscillations was
synthesized for a system with a linear passive part [13].

The results of papers [8–13] refer to systems with
finite numbers of degrees of freedom. The present
paper extends them to one-dimensional distributed sys-
tems. In addition, unlike [8–13], this paper presents a
general procedure for constructing an excitation source
in the class of functions defined either in space Lg(0;
2π/ω), 1 ≤ g < ∞ or in space M(0; 2π/ω).

Consider the one-dimensional distributed system (in
this particular case, a bar system) shown in the figure.
It is assumed that a force acts on the system at a point
with coordinate r and that this force is formed by the
combination of a current displacement v p and displace-
ment derivative sv p at a point with coordinate p. The

excitation law of self-oscillations, (v p, sv p), should
be synthesized so as to excite self-oscillations with
maximum amplitude of the steady-state mode at a point
with coordinate x.

Displacement v x at this point is related to the excit-
ing force through the dynamic compliance operator:

(1)

where Lxr(s) is a linear differential operator describing
the response at a point in the section with coordinate x
to a force acting in the section with coordinate r. The
function ur can be considered as an unknown function
of quantities v x and sv x.

Additionally, we assume that the specified angular
frequency ω of self-oscillation excitation is close to (or
coincides with) one of the natural frequencies of the
system. Then, the total contribution of higher harmon-
ics of steady-state oscillations excited in the distributed
system is small. It should be noted that this assumption

ur*

v x Lxr s( )ur,=

p x

r

v x

ur

svp

vp

vp

Figure. 
is equivalent to the existence of resonant (or filtering)
properties in the system [14] and does not mean that
higher harmonics ur are small in the general case.

Taking into account the above assumptions, we
apply the procedure of harmonic linearization [14] to
Eq. (1) to obtain

(2)

where ur1 and ur2 are the coefficients of harmonic lin-
earization of the sought-for quantity ur:

(3)

Here, Ax is the amplitude of the harmonic component of
steady-state oscillations at point x and ψ = ωt. Replac-
ing operator s in the characteristic equation correspond-
ing to Eq. (2) by the product jω, which corresponds to
the steady-state mode with frequency ω, we obtain the
equation in ur1 and ur2:

(4)

Separating real and imaginary parts in Eq. (4), we
obtain the system of two linear algebraic equations in
ur1 and ur2:

(5)

where Lxr1 = ReLxr( jω) and Lxr2 = ImLxr( jω). From
Eqs. (5), we obtain

(6)

where |Lxr | = |Lxr( jω)|.
Equations (3) and (6) determine the isoperimetric

conditions (moment conditions) imposed on the
sought-for function ur:

(7)

where α1(A, ω) = πAxLxr1/|Lxr |2 and α2(A, ω) =
−πAxLxr2/|Lxr |2.

The restriction imposed on the excitation law is
specified in the form

(8)

Such a definition of the restriction covers different
particular cases: for g = 1, we have a restriction on the

v x Lxr s( ) ur1
s
ω
----ur2+ 

  v x,=

ur1
1

πAx

--------- ut ψsin ψ, ur2d

0

2π

∫ 1
πAx

--------- ur ψcos ψ.d

0

2π

∫= =

1 Lxr jω( ) ur1 ur2+( )– 0.=

Lxrur1 Lxr2ur2– 1, Lxr2ur1 Lxr1ur2+ 0,= =

ur1

Lxr1

Lxr
2

------------, ur2

Lxr2

Lxr
2

------------,–= =

ur ψsin ψd

0

2π

∫ α1 A ω,( ),=

ur ψcos ψd

0

2π

∫ α2 A ω,( ),=

ur
g td

0

2π/ω

∫ 
 
 

1
g
---

Ug, 1 g ∞.<≤ ≤
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impulse of the exciting force; for g = 2, a restriction on
the integral value; and for g  ∞, a restriction on the
magnitude of the maximum value of ur.

To determine the function  that provides the max-
imum value of Ax under restriction (8), we first consider
the following auxiliary problem, which can be of inter-
est by itself. Let Ax be a given quantity and we seek a
function u0r(ψ) satisfying conditions (7) and corre-
sponding to the minimal intensity

(9)

In accordance with [15], the solution to this problem
exists; it is unique and representable in the form

(10)

where  +  = 1; the numbers  and  are deter-

mined from the solution to the extremum problem

(11)

under the condition that α1ε1 + α2ε2 = 1; and l–1 is the
minimum value of norm (9): 

After the transformation of the left-hand side of
Eq. (11)

(12)

where Mq =  =

 and ψ1 = , the mini-

mizing values of numbers  and  can be found by
the formulas

(13)

From Eqs. (11)–(13) and expressions (7) for α1 and
α2 , one can determine the relationship between the

ur*

Jg ur
g ψd

0

2π

∫ 
 
 

1
g
---

.=

uγ
0 1

lq
--- ε1

0 ψsin ε2
0 ψcos+

q 1–
=

× ε1
0 ψsin ε2

0 ψcos+( ),sgn

1
q
--- 1

g
--- ε1

0 ε2
0

ε1 ψsin ε2 ψcos+ q ψd

0

2π

∫ 
 
 

1
q
---

ε1 ε2,
min 1

l
---=

l 1– Jg ur
0( ) Jg

0.= =

ε1
2 ε2

2+ ψ ψ1+( )sin q ψd

0

2π

∫
1
q
---

ε1 ε2,
min

=  ε1
2 ε2

2+ Mq,
ε1 ε2,
min

ψ ψ1+( )sin q ψd
0

2π∫[ ]
1
q
---

ψsin q ψd
0

2π∫( )
1
q
--- ε1

ε1
2 ε2

2+
--------------------cosarg

ε1
0 ε2

0

ε1
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amplitude Ax and the minimum intensity of exciting
action:

(14)

From Eq. (14) it follows that Ax is a monotonically

increasing function of intensity . Therefore, the max-

imum value  of amplitude Ax is achieved at the lim-
iting value of intensity specified by restriction (8):

(15)

From Eqs. (13) with Ax =  determined by

Eq. (15), we obtain  = ,  = .

Then, according to Eq. (10), we obtain that the exci-
tation law corresponding to the value of Ax is deter-
mined as the following function of ψ:

(16)

To form the control action  in the form of a func-
tion of v p and sv p, we need to determine the response

of the system at a point of section p to the action (ψ)
given by Eq. (16). The exact expression for this
response has the form

(17)

where Lpr(s) is the operator of dynamic compliance
from point r to point p. Since the problem is considered
in the first harmonic approximation (by virtue of the
smallness of the total contribution of higher harmonics,
which was mentioned earlier), we can calculate the first
harmonic of function v p in Eq. (17) using only the first
harmonic of function (16) rather then the exact expres-
sion. The coefficients of the first harmonic of the Fou-
rier series of this function are determined by formulas
(6) and (7). Then, from Eq. (17), we have

(18)

From Eqs. (18) and (6), we obtain

(19)
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ur*

v p Lpr s( )ur* ψ( ),=

v p ψ( ) Lpr s( )Ax* ur1 ψsin ur2 ψcos+( ).=

v p ψ( ) Ap* ψ ϕcossin ψ ϕsincos+( ),=

sv p ψ( ) ωAp* – ψ ϕsinsin ψ ϕcoscos+( ),=
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where  = , cosϕ = ,

sinϕ = ,

Using system (19), the functions sinψ and cosψ can be
expressed in terms of v p(ψ) and sv p(ψ):

(20)

Substituting Eqs. (20) into the program law (ψ)
given by Eq. (16), we determine the structure of the
excitation law with a feedback:

(21)

The Dynamic properties of the system with the
source of self-oscillation excitation in the form of
Eq. (21) are determined, according to Eq. (17), by the
equation

(22)

In the harmonic approximation, the analysis of the
dynamics of a closed system is performed using the
equivalent linearization of Eq. (22):

(23)

where  and  are the coefficients of harmonic lin-
earization of the nonlinear function (v p, sv p) given
by Eq. (21):
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1
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0

2π

∫
=  λqAp

q 2– η2 ω1( ),
Here, Ap and ω1 are the values of modes of closed sys-
tem (22); in the general case, these values are different
from the calculated values of  and ω. From the def-
inition of the structure of function (v p, sv p),
Eq. (21), it follows that

(24)

where ur1 and ur2 (6) defined in Eqs. (6) are the given
values of the harmonic linearization coefficients used in
the construction of the program law (ψ), Eq. (16).

The characteristic equation corresponding to
Eq. (23) has the form

(25)

Substituting s = jω1 in Eq. (25) and separating the real
and imaginary parts, we obtain a system of two equa-
tions in two unknowns, Ap and ω1:

(26)

(27)

where Lpr1(ω1) = ReLpr( jω1) and Lpr2(ω1) = ImLpr( jω1).

The system of equations (26), (27) has the solution
Ap = , ω1 = ω. However, this solution is not unique
in the general case. From Eq. (27), one can derive the
following equation in frequency:

(28)

If Eq. (28) has positive solutions ω1 ≠ ω, the corre-
sponding amplitudes Ap can be found from Eq. (26):

(29)
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The stability of the modes of closed system (22) is
analyzed on the basis of the criterion suggested in paper
[16]. According to this criterion, the mode Ap, ω1 is sta-
ble when

(30)

where Y(A, ω1) is the imaginary part of characteristic
equation (25) and ω1 = ω1(A), i.e., the frequency is
determined in the general case as the function inverse of
function (29). As shown in [16], criterion (30) is equiv-
alent to the energy condition of stability.

For the rated mode Ap = , ω1 = ω, by virtue of
identity (24), and stability condition (30) has the form

(31)

In the general case, modes Ap, ω1 different from the

rated mode , ω and the instability of the rated mode

, ω may occur. In particular, for g = 2, which corre-
sponds to an integral quadratic restriction imposed on
the excitation law, the law  Eq. (21), appears to be
linear:1

(32)

In this case, the mode , ω in system (22) is unstable,
because the left-hand side of inequality (31) vanishes at
q = 2.

To make the rated mode stable and to eliminate
unwanted modes, according to [11, 12], we replace the
law  given by Eq. (21) by the extended control

(33)

where ,  is a
function that is continuous together with its derivatives
as functions of the current value of Ap (this value is cal-

culated through v p and sv p: Ap = 2 and

the rated value of , and ρ and m are constant param-
eters; this function must satisfy the following condi-

tions: σ( , ) = 0 and σ( , ) ≠ 0.

1 Because (ψ) is a purely harmonic function, law (32) corre-

sponds to the excitation of purely harmonic self-oscillations. A
similar solution for systems with finite numbers of degrees of
freedom is given in paper [13].

2 Formally, the current value of frequency ω1 appearing in this
expression must be measured in the process of the system opera-
tion; however, in practice, as follows from numerical experiments
[12, 13], the given frequency ω can be used instead of ω1. 
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Thus, for Ap = , the control law  given
by Eq. (33) coincides with the previously defined
law (21), and when Ap differs from , these functions
can take different values. Since, by virtue of (33), the
coefficients of harmonic linearization of function 
are determined by the formulas

 

where  and  are the coefficients of harmonic lin-

earization of function , Eqs. (26) and (27) for the sys-

tem with exciting action  given by Eq. (33) will
take the form

(34)

(35)

From Eq. (35) it follows that the values of frequency are
determined, as before, by Eq. (28). If this equation has
positive roots ω1 ≠ ω, the corresponding amplitudes Ap

are determined, according to Eq. (35), from the equa-
tion

(36)

Equation (36) involves an arbitrary function σ(Ap,

) and two parameters ρ and m. They can be defined
in such a way that Eq. (36) will have no positive solu-
tions Ap, excluding Ap = . In particular, when g = q =
2, which corresponds to linear law (32), and when σ(Ap,

) = (  – ), the solution to Eq. (36) is deter-
mined by the formula

(37)

For  < , the radicand in Eq. (37) is
negative, which ensures the uniqueness of the rated
mode , ω. The condition of stability of mode , ω
given by Eq. (30) for the system with excitation law (33)
takes on the following form by virtue of Eq. (35):
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Ap*  urmc* urmc*

Ap*

urmc*

wrmc* χ Ap Ap*,( )wr1* , wrmc2* χ Ap Ap*,( )wr2* ,==

wr1* wr2*

ur*

urmc*

X Ap ω1,( ) 1 χ Ap Ap*,( )λqAp
q 2––=

× Lpr1 ω1( )η1 ω1( ) Lpr2 ω1( )η2 ω1( )– 0,=

Y A ω1,( ) χ Ap Ap*,( )λqAp
q 2–=

× Lpr2 ω1( )η1 ω1( ) Lpr1 ω1( )η2 ω1( )+[ ] 0.=

λqχ Ap Ap*,( )Aq 2–

=  Lpr1 ω1( )η1 ω1( ) Lpr2 ω1( )η2 ω1( )–[ ] 1– f ω1( ).=

Ap*

Ap*

Ap* Ap*
2

Ap
2

Ap Ap*
2 f m ω1( ) 1–

ρ
--------------------------–

1
2
---

.=

ρ Ap*
2

f m ω1( ) 1–

Ap* Ap*

1 ρ δ
δAp

---------σ Ap* Ap*,( )+
m 1–

Ap*
q 2–

q 2–( )Ap*
q 1–

+
 
 
 

× Lpγ2uγ1 Lpγ1uγ2+( ) 0.>



168 IZRAILOVICH
The first factor of inequality (38) contains three

parameters: σ( , ), ρ, and m. They can always

be chosen so as to satisfy inequality (38). This way, we
ensure the stability of the mode , ω.
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Abstract—Sound propagation in a shallow sea is considered in the presence of a packet of intense internal
waves. It is shown that horizontal refraction caused by these packets can lead to noticeable changes in the spec-
trum and spatial intensity distribution of a signal propagating approximately parallel to the wave fronts of inter-
nal wave packets. © 2004 MAIK “Nauka/Interperiodica”.
The present state of the art in studying the ocean in
general and the shelf zone (shallow sea) in particular by
acoustic methods is such that researchers now pass
from relatively simple experiments on acoustic probing
along single tracks to the realization of tomographic
schemes. In the latter case, a set of sources and receiv-
ing arrays of different configurations is used that can
probe simultaneously in different directions with sig-
nals of different duration and spectral composition
(broadband and narrowband signals) for quite a long
time. For example, such experiments are the SWARM
[1, 2] and PRIMER [3] ones, in which intersecting
acoustic tracks covered certain regions of the ocean.
These kinds of ocean studies allow one to detect rather
fine acoustic effects caused by various oceanic phe-
nomena. However, in explaining many of the experi-
mental results, one should take into account the anisot-
ropy that appears in the horizontal plane due to various
ocean motions (internal waves, tides, and the motion of
frontal zones). To a great extent, such an anisotropy
manifests itself for internal waves (IWs) in shallow
water. As is known, the IWs propagate toward the beach
with an almost plane wave front whose length can reach
several tens of kilometers. The amplitude of oscilla-
tions of the constant density surface can reach 5–10 m.
In this case, if the sound velocity gradient along the
wave front (or in the absence of IWs) is on the order of
0.001 s–1, it may be 0.1 s–1 along the propagation direc-
tion (across the wave front). This value is comparable
with the vertical gradient. Moreover, the sound velocity
field in this direction has a quasi-periodic structure.
Observations [4, 5] show that a packet may contain ten
or more individual IWs for a total length of the packet
of up to 10 km. In this case, the propagation medium is
similar to a diffraction lattice covering a considerable
area of about 10 × 20 km2. If we take into account the
presence of a noticeable geometric (waveguide) disper-
sion, we obtain a periodic inhomogeneous anisotropic
1063-7710/04/5002- $26.00 © 20169
dispersive medium. It is important to note that, in
studying the propagation of broadband signals (short
pulses), the predominance of intermode dispersion (the
difference in the group velocities for different vertical
modes) has been conventionally recognized. This
allows one to perform a reliable mode selection (mode
filtering) by the arrival times of the corresponding sig-
nals. Usually, the difference in the group velocities of
waveguide modes is several tens of meters per second,
which for typical tracks (>10 km) gives a quite observ-
able difference of more than 0.1 s in the arrival times.
As for intramode dispersion (i.e., the frequency depen-
dence of the group velocity of a single mode and,
hence, the deformation of pulses corresponding to indi-
vidual modes), its manifestation has been much weaker
until now. However, as will be shown below, the mani-
festation of the intramode dispersion in the aforemen-
tioned anisotropic waveguide medium is noticeable.

As is shown in [6], space anisotropy manifests itself
as a noticeable horizontal refraction caused by IWs, up
to the formation of a waveguide in the horizontal plane
for acoustic tracks that are almost parallel to internal
wave fronts (see also the numerical modeling of this sit-
uation in [7]). It is also noted that, using the approach
of “vertical modes and horizontal rays,” the influence of
anisotropy on the three-dimensional structure of the
sound field has a selective character in modes. In other
words, the structure of horizontal rays may be qualita-
tively different for different vertical modes. Since the
vertical modes depend on frequency (in general, in a
rather complicated way), one should expect that the
structure of horizontal rays (and, hence, the three-
dimensional field structure) will also depend on fre-
quency. This frequency dependence in the case of a hor-
izontal refraction is studied in the present paper. The
dependence may be of resonance character and mani-
fest itself in the propagation of broadband signals.
004 MAIK “Nauka/Interperiodica”



 

170

        

KATZNEL’SON, PERESELKOV

                                                                                                                                         
The spectral characteristics of sound signals in the
presence of internal waves attracted some interest pre-
viously. In particular, the presence of a frequency
dependence of a resonance character was detected in
the known experimental work [8], where the propaga-
tion of broadband (explosive) signals crossing the inter-
nal wave fronts was studied. The authors of [8] stated
that the measured difference in the sound level at a fixed
frequency reached 25 dB depending on the direction of
sound propagation. They (as did the authors of [9])
interpreted such a behavior of the frequency depen-
dence as a result of a selective interaction of modes
because of the sound velocity perturbation by IWs. This
interaction steeply increases at the coincidence of the
spatial period (quasi-period) of the IW packet with the
spatial scale of beatings of interacting modes at some
resonance frequency.1 Note that, in this work, some
features (dips and peaks) are observed in the frequency
dependence of the signals for another orientation of the
acoustic track. However, for this case, the authors do
not suggest any interpretation.

In the present paper, the frequency dependence of
signal characteristics is considered in the course of sig-
nal propagation in the medium described above. In par-
ticular, it will be shown that different features, among
them resonance-like ones, can occur due to horizontal
refraction when the acoustic track is oriented at a rela-
tively small angle to the shoreline (to the wave fronts of
IWs).

Let us consider the propagation of a signal along the
acoustic track in a shallow-water sound channel in the

1 A direct comparison with [8] is difficult, because detailed data on
IWs are absent in [8].
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Fig. 1. Statement of the problem. Dotted lines denote the
wave fronts of a packet of internal waves (the lines of max-
imum amplitude ζ). The location of the IW packet, whose
form corresponds to a chosen model at a given moment, is
shown on the right.
presence of internal waves propagating almost nor-
mally to this track. Otherwise, we consider the sound
field in the region corresponding to rather small azi-
muth angles with respect to the X axis (Fig. 1).

We represent a shallow-water ocean medium as the
three-dimensional waveguide in the system of coordi-
nates X, Y, Z. The waveguide is formed by a water layer
with squared refractive index

(1)

where n2(z) corresponds to some average equilibrium
stratification of the layer (the profiles of the sound
velocity and density are denoted by c(z) and ρ(z),
respectively), µ(r, z, t) is the fluctuation of its acoustic
properties caused by the packet of the internal waves,
and r = (x, y) is the radius vector in the horizontal plane.
The water layer is bounded in depth by the free surface
z = 0 and a homogeneous absorbing half-space (bot-
tom) z = H with a density ρ1 and squared refractive

index (1 + iα), where n1 = c(H)/c1 and α is deter-
mined by the absorbing properties of the bottom.

According to [10], the expression for µ(r, z, t) is
determined by the parameters of the packet of internal
waves

. (2)

Here, δc is the sound velocity variation caused by the
displacement of the surface of constant density, N(z) =

 is the buoyancy frequency determined by the

density stratification of the water layer, g is the gravita-
tional acceleration, Q ≈ 2.4 s2/m is the constant deter-
mined by the physical properties of water, and ζ is the
vertical displacements of the water layers. Taking into
account that the first gravitational mode Φ(z) predomi-
nates in the vertical distribution, these displacements
can be written as

(3)

where u = (ux, uy) is the velocity of an internal wave in
the horizontal plane. In general, u depends on the coor-
dinates, which causes, in particular, a possible distor-
tion of the wave front. The function Φ(z) is normalized
by its maximum value, and ζs, which represents the dis-
placement of the surface where the gravitational mode
equals unity, can be called the envelope of the IW
packet. For numerical modeling, it is assumed that the
speed of the packet motion is directed along the Y axis
(ux = 0) and the wave fronts in the packet are rectilinear
and parallel to the X axis.

In [6, 7] it was shown that, if the IW packets propa-
gate along an acoustic track that is roughly parallel to
the IW front (i.e., roughly parallel to the shoreline),
there is a significant horizontal refraction of the sound
rays propagating from the source to the receiver. This
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refraction may form a waveguide in the horizontal
plane, which generates noticeable field fluctuations in
time at the receiver. This issue has been analyzed in
detail in [6]. Here, we consider possible space–fre-
quency fluctuations in the spectrum of the sound field
at the point of reception in our conditions.

Our problem is to determine the three-dimensional
field structure of a monochromatic point source for the
waveguide model described above. We need to solve
the equation

(4)

with the boundary conditions for the function Ψ(r, z) at
the bottom and the sea surface and with the conditions
that determine the omnidirectional point source.2 We
seek the solution to Eq. (4) as an expansion in the
modes of the reference waveguide, ψl(r; z), which
depend on the horizontal coordinate r as a parameter:

(5)

In the adiabatic approximation (neglecting the interac-
tion of vertical modes) for the function Pl(r), we obtain
the equation

(6)

where ∇ r =  and ξl(r) = ql(r) +  are the

eigenvalues of the Sturm problem in the given cross-
section of the waveguide. These eigenvalues are com-
plex quantities because of the absorption and they also
depend on the horizontal coordinate as a parameter.

The three-dimensional field structure can be found
in the framework of the theory of horizontal rays and
vertical modes when we seek the complex modal
amplitude of the sound field in the form

. (7)

Here, Anl(x, y) is the amplitude and θnl(x, y) is the phase
shift (eikonal) of the lth acoustic mode ψl(r; z), which
depends on the horizontal coordinate as a parameter.
Note that, in the general case, not one but several hori-
zontal rays corresponding to a given mode can arrive at
the point of reception. These rays have different paths,
and, therefore, they are characterized by different
amplitudes and phase shifts. Hence, in Eq. (3), the sum-
mation is carried out over the horizontal rays (index n).
For the amplitude and eikonal from Eq. (6), we can
obtain conventional (two-dimensional) equations of

2 Because the time dependence is slow, the problem can be solved
in the quasistatic approximation with parameter t being omitted.

∆Ψ r z,( ) k2n2 r z,( )Ψ r z,( )+ 0=

Ψ r z,( ) Pl r( )ψl r; z( ).
l

∑=

∇ r
2Pl r( ) ξ l

2 r( )Pl r( )+ 0,=

∂
∂x
------ ∂

∂y
-----, 

  i
γl r( )

2
------------

Pl r( ) Anl r( ) iθnl r( )[ ]exp
n

∑=
ACOUSTICAL PHYSICS      Vol. 50      No. 2      2004
geometric acoustics:

(8)

On the right-hand side of the first equation, there is the
efficient wave vector, which, for horizontal rays, can be
replaced by the refractive index nl(r) depending on the
horizontal coordinates. It is determined by the relation-
ship

(9)

where  and  are the eigenfunctions and eigenval-
ues of the unperturbed wave problem (without internal
waves) and k = 2πf/c is the wave vector at a fixed depth

(for example, at the sea surface). The correction 
can be determined by the perturbation theory

(10)

where, using Eq. (2), the IW packet form can be singled
out as a separate factor; the remaining quantities are
included in the factor νl. As can be seen from Eq. (10),
the correction (factor νl) is determined by the overlap-
ping integral of the vertical mode and sound velocity
perturbation; i.e., it is determined by the part of the
modal amplitude that corresponds to the thermocline
layer. In such an approximation, the space–frequency
dependence of the correction for the squared refractive

index of horizontal rays, , is determined by the
form of the IW packet. Note also that, for horizontal
rays (in contrast to conventional geometric acoustics),
there is a frequency dependence in the eikonal and
transport equations (8), or, more exactly, in the refrac-
tive index of horizontal rays (10). The frequency depen-
dence of the part of the effective refractive index, νl,
that is related to internal waves (and that causes hori-
zontal refraction) can be estimated on the assumption
that the thermocline located at some depth h has a
thickness ht that is small compared to the vertical scale
of mode variations:

(11)

This factor also depends on the waveguide parameters:
its depth, bottom parameters, Vaisala frequency, and
sound velocity profile. The frequency dependence is
also related to the mode number for a horizontal ray.
Subsequent calculations will be performed for the
model of a shallow-water sound channel with the fol-
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Fig. 2. Sound velocity profile and Vaisala frequency corresponding to the calculated model. Three first vertical modes for different
sound frequencies (at the right): circles refer to frequencies of 40, 70, and 110 Hz for the first, second, and third modes; solid lines,
to 80, 180, and 350 Hz for the same modes; and crosses, to 600 Hz for all modes.
lowing parameters. The sound velocity profile, c(z), for
the unperturbed state and the Vaisala frequency are
shown in Fig. 2; the water layer depth is H = 50 m; the
bottom has a density of ρ1 = 1.8 g/cm3; the sound veloc-
ity in the bottom is c1 = 1750 m/s; and the absorption
coefficient is α = 0.02. As a model of the IW packet, we
take a train of four internal waves with plane wave
fronts shifted relative to each other:

(12)

these waves propagate, in the general case, with differ-
ent velocities um in the negative direction of the Y axis.
The parameters of the packet are determined by more or
less typical values: A1 = 10 m, A2 = 8.61 m, A3 = 7.41m,
A4 = 6.38 m; y1 = 300 m, y2 = 800 m, y3 =1300 m, y4 =
1800 m; L1, 2, 3, 4 = 75 m, and u1, 2, 3, 4 = 0.5 m/s. In spite
of the approximate character of formula (12), similar
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Fig. 3. Frequency dependence of corrections to the refrac-
tive index for horizontal rays corresponding to the first three
vertical modes.
formulas are used for modeling IW packets (see, for
example, [2, 7]). Packet (12) moves as a whole in the
negative direction of the Y axis, its total length is
roughly 2 km, and it covers the acoustic track within
1.1 h. The position of the packet in Fig. 1 corresponds
to the value of t ~ 2000 s.

As was noted above, the addition to the squared
refractive index, which determines the horizontal
refraction, depends on the frequency and the transverse
coordinate relative to the acoustic track (in our case, the
Y axis) in accordance with the form of the IW packet. It
is evident that this addition has its maximum value
where the quantity ζs(y, t) is maximum, i.e., at the wave
fronts. Figure 3 shows the frequency dependences of

the quantity | |max for the first three modes at ζ = A1 =
10 m. Note that each vertical mode has a region where
the frequency dependence is relatively steep. For exam-
ple, for the first mode such a region is in the vicinity of
100 Hz. At frequencies above 200 Hz, the first mode
has a small addition to the refractive index for the hor-

izontal rays, | |max, which smoothly decreases with
increasing frequency. It means that, if we single out the
first mode in some way, then, in the frequency range
above 200 Hz, its amplitude has an almost cylindrical
symmetry in the horizontal plane and the frequency dis-
persion is almost absent. The second and third modes at
such frequencies generate a system of curvilinear hori-
zontal rays, which depends on frequency. One can see

that the addition | |max has a noticeable maxima in the
range of ~80 Hz for the first mode, ~180 Hz for the sec-
ond mode, and ~350 Hz for the third mode. This feature
is explained by the fact that, in the aforementioned fre-
quency regions, a considerable part of the mode (the
region of the first maximum) is located in the ther-
mocline zone. As the frequency increases or decreases,
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δnl
2

δnl
2
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Fig. 4. Horizontal ray patterns (left) and the field distribution obtained in the horizontal plane by the parabolic equation method
(right) for the first three modes; gradations of gray color indicate different frequencies. The scale of gradations for the intensity in
relative units is shown at the top. Diagrams 1 corresponds to the first mode at f = (a) 50 and (b) 350 Hz; diagrams 2 corresponds to
the second mode at f = (a) 180 and (b) 350 Hz; and diagrams 3 corresponds to the third mode at f = (a) 150 and (b) 350 Hz.
this region of the maximum of the eigenfunction leaves
the thermocline and the influence of the internal waves
on it weakens in accordance with Eqs. (10) or (11). This
reasoning is illustrated by Fig. 2, where vertical ampli-
tude distributions of the first three modes are shown for
several frequencies. Thus, the range of frequency fea-
tures for the horizontal rays corresponding to a given
mode is determined mainly by the location of the ther-
mocline and its width.

Consider now the field structure in the horizontal
plane in the ray approximation for individual modes.
Figure 4 shows a set of horizontal rays for the first three
modes at two frequencies, one of which corresponds to
the resonance value and the other is away from it. The
position of the source corresponds to the case of “focus-
ACOUSTICAL PHYSICS      Vol. 50      No. 2      2004
ing” in the horizontal plane; i.e., it is located in the
region where the surface of constant density has its
minimum deviation (minimum of the function ζs(x).3

This corresponds to the instant t =1000 s for our model
of packet motion. At another moment, the ray pattern
can be quite different.

First consider the field properties at a fixed fre-
quency, for example, at 350 Hz. According to Fig. 3, for
this frequency, the third mode has the greatest refractive
index, the second mode comes next, and the first mode
experiences the influence of horizontal refraction to the
least extent.The ray patterns in the horizontal plane are

3 In our case, the thermocline is located near the surface and inter-
nal waves propagate with their crests downwards.
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shown in Fig. 4 (diagrams 1b, 2b, and 3b at the left).
One of results is that, at different points in the XY plane,
the amplitudes (weights) of three modes at this fre-
quency differ from their initial distribution (at the
source). For example, at y = 0, x = 6 km, the third mode
predominates with a focusing of horizontal rays in this
region, as compared to the first two modes. At the point
with the coordinates y = 0.2 km and x = 6 km, the third
mode is almost in the shadow zone and the first and sec-
ond modes predominate in the modal expansion. As it
was noted above, this pattern also varies in time. In
other words, the modal amplitudes (modal composi-
tion) change in space and time but without any mode
transformation in the usual sense, i.e., without the
energy transfer from one mode to another due to the
interaction with inhomogeneities. Here, the main
mechanism of modal amplitude variation is the redistri-
bution of energy transferred by the modes in the hori-
zontal plane. (Remember that all calculations are car-
ried out in the adiabatic approximation.)

It should be noted that the aforementioned features
appear in the frequency dependence of the horizontal
ray pattern, which one can see in Fig. 4. Consider, for
example, the horizontal rays corresponding to the first
mode (diagrams 1a and 1b). When a source is located
in the region of the minimum deviation (the case of
focusing), they undergo the greatest influence of hori-
zontal refraction in the frequency range ~80 Hz. As the
frequency increases, the influence of the horizontal
refraction decreases and the focusing region moves
away from the source. For frequencies of 200 Hz and
higher, horizontal refraction of the first mode can be
neglected for distances of about 10 km. In the range
>200 Hz, the effect of the frequency dependence
appears mainly for the second and third vertical modes
(Fig. 4, diagrams 2 and 3). This is evident, because the
first maxima of the second and third modes pass
through the thermocline as the frequency changes in the
vicinity of 200 and 350 Hz, respectively. In this case,
the maxima in the frequency dependence are fairly
sharp. Otherwise, horizontal refraction (focusing and
defocusing) for sound waves with frequencies 200–
400 Hz is rather pronounced for the second and third
modes, as compared to the indicated effects in another
frequency range.

It is possible to estimate the longitudinal distance of
focusing Lf. Using simple geometric-acoustic consider-
ations, we obtain

(13)

where Λ is some average quasi-period of the packet and
ζ0 is the typical amplitude of the internal wave. The
dependence on frequency and mode number is mainly
described by the term ψl(h). For example, for the third
mode at a frequency of 150 Hz and the parameters cor-
responding to this example, we obtain Lf ~ 10 km. The

L f
2 2Λ

N0ψl h( ) Qhtζ0

---------------------------------------,∼
dependence on the transverse coordinate (in our case,
on x in the vicinity of this distance) is rather steep. Near
this distance, there is even a shadow zone (see Fig. 4,
diagram 3a). This means that when our receiver is in the
shadow zone the horizontal rays corresponding to a
given mode at a given frequency do not arrive at the
receiver. In other words, this mode does not contribute
to the sound field and, hence, the frequency dependence
of the sound intensity (the spectrum of the received sig-
nal) has a dip. The depth of this dip depends on the con-
tribution of this mode at other frequencies. The indi-
cated ray pattern varies with time as the IW packet
moves. After some time, the point of observation can
come out from the shadow zone and the frequency
dependence changes. Because the IW packets move
slowly, with the use of short signals (for example,
broadband signals) we obtain a certain sequence of
spectra varying in time. Such a dependence may appear
in the propagation of broadband signals when the fre-
quency selection is realized by the indicated mecha-
nism. The amplification or attenuation of the sound
field at a given frequency and at a given point can be
realized either by gathering the energy from different
azimuth directions or by the energy leakage in the hor-
izontal direction. This effect can be interpreted as the
manifestation of a considerable intramode dispersion.

For a numerical calculation of the sound field char-
acteristics (in our case, spectra) at a certain point, it is
more convenient to use the parabolic equation in the
horizontal plane rather then the ray approximation. To
construct the main formulas of the parabolic equation
method, we seek the solution to Eq. (6) in the form

(14)

Taking into account that the internal wave fronts are
directed along the X axis, we assume that Fl(r) is a
smooth function of the x coordinate. As a result, in the

forward scattering approximation (∂Fl/∂x ! Fl) for
the function Fl(r) we obtain

(15)

where nl(r) is determined by Eq. (9).
The construction of the field amplitude, i.e., the

solution to Eq. (15), is carried out numerically. For this
purpose, we use the Split Step Fourier (SSF) algorithm:

(16)

where FFT is the operator of the fast Fourier transform,

Tl(q) = (q/ )2 is the operator in the Fourier space q,

and U(x, y) = –  (x, y) – 1 /2 is the operator in the
space of (x, y) coordinates. In the calculations, we
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Fig. 5. (a) Space–frequency diagram of the modal intensity of the sound field for the third mode at a distance xR = 10 km from the
source (in gradations of gray color); the location of the wave packet is shown at the right. The coordinate of the observation point
(receiver), yR, is represented by the vertical axis. The dotted lines show the vertical and horizontal sections. (b, c) Ray patterns in
the horizontal plane for frequencies of 150 and 350 Hz; vertical sections are shown in Fig. 5a.
assumed that the source is located at the point with coor-
dinates x = 0, y = 0. The field distribution in the Fourier
space of the lth mode near the source has the form

(17)

where al is the mode amplitude determined by its value

at the depth of the source and ∆l = sinθmax is the
parameter that determines the angular range of source
radiation, which is taken into account in calculations
(the angle θ is measured with respect to the X axis). It
is assumed that the sound velocity profile corresponds
to that shown in Fig. 2. The parameter θmax determining
the angular field distribution at the source equals π/18,

Tl q 0,( ) al q2/2∆l
2

–( ),exp=

ql
0

ACOUSTICAL PHYSICS      Vol. 50      No. 2      2004
which corresponds to the horizontal rays with launch
angles no greater than 10° in both directions. In the cal-
culations, the digitization steps in the horizontal plane
were taken to be ∆x = 50 m and ∆y = 5 m.

According to the above considerations, the ampli-
tude Fl(r) depends on frequency. Figure 4 (at the right)
shows the distribution of the field amplitude in the hor-
izontal plane by gradations of the gray color for the
same parameters as those used for the ray patterns of
vertical modes 1–3. It is seen that the qualitative pattern
corresponds to the interpretation given above in the
framework of the ray theory. Note that, at rather long
distances from the source, even the waveguide is
formed in the horizontal plane (i.e., a stable interfer-
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ence structure is formed in the horizontal plane, this
structure being different for different frequencies).

For construction and analysis of the spectra of sig-
nals received at different points of the horizontal plane,
we construct a space–frequency pattern (Fig. 5), where
the quantity yR (the distance from the observation point)
is represented by the vertical axis and the sound fre-
quency, by the horizontal axis. In this pattern, the
modal amplitude at a given point is determined by the
gradation of gray color. The scale of gradations for
amplitude in relative units is shown at the top of the dia-
gram. The position of the IW packet corresponding to
this pattern is shown at the right and corresponds to the
moment t = 1600 s. The vertical section of the diagram
gives the spatial distribution (across the acoustic track)
of intensity at a given frequency. It is seen that a similar
dependence in our case always has a maximum (the
field focusing in the horizontal plane), however, this
focusing occurs at different points of space. For exam-
ple, comparing the field intensity distributions in the
transverse section at frequencies of 150 and 350 Hz
(Fig. 5, vertical lines), we see that both dependences
have maxima. However, these maxima are shifted rela-
tive to each other (in our case, by about 0.5 km). To
understand the origin of this shift, one should analyze
the patterns of horizontal rays for the corresponding
frequencies, which are shown in Figs. 5b and 5c. It is
seen that such a position of the packet corresponds to a
defocusing of rays in the horizontal plane and causes a
dip (white color) in the region yR ~ 0. However, at a fre-
quency of 350 Hz, a maximum is observed because of
certain asymmetry of the packet shifted relative to the
axis at the given moment. In this case, there is a group
of rays undergoing the deviation from the lower (in our
figure) maximum in the direction toward the acoustic
track. This ray tube determines the location of the field
maximum near yR ~ 0. It is clear that for another loca-
tion of the IW packet this pattern changes and one can
note a nontrivial time effect. From diagram 5a, we can
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0.05

100 200 300 400 500 600
Frequency, Hz

0

Fig. 6. Examples of spectra of the received signal at obser-
vation points corresponding to horizontal sections in
Fig. 5a.
conclude that the maximum of modal intensity in the
transverse dependence (i.e., in the dependence on x)
should move together with the packet if the fixed fre-
quency is higher or lower than the resonance frequency,
i.e., at frequencies f < 300 Hz and f > 400 Hz. The
amplitude of this maximum is approximately the same
in both cases. At f ~ 350 Hz, the maximum is located
near the waveguide axis and its amplitude varies almost
simultaneously with the passage of the packet. The hor-
izontal section at the distance yR determines the fre-
quency spectrum of the signal received at the point
(xR, yR). Figure 6 shows two examples of amplitude
spectra for the third mode. It is seen that, at different
distances from the axis, the forms of these spectra are
different, which can qualitatively account for the differ-
ent forms observed in the experiment [8]. Note that this
figure corresponds to only one mode (the third). How-
ever, since the main contribution to the sound field is
made by lower modes (in our case, by three to four
modes), the variation of one of them considerably
changes the characteristics of the total field. In addition,
it is possible to select lower modes in the experiment
and study the spectrum of each of them.

We believe that the results and analysis presented
above and concerned with the features of spatial and
frequency dependences of acoustic signals will be use-
ful for setting experiments and analyzing the data on
acoustic probing in the shelf zone of the ocean.

ACKNOWLEDGMENTS
This work was supported by the Ministry of Educa-

tion of Russian Federation and the CRDF, project
no. VZ-010-0.

REFERENCES
1. R. H. Headrick, J. F. Lynch, J. K. Kemp, et al., J. Acoust.

Soc. Am. 107, 221 (2000).
2. M. Badiey, Y. Mu, J. Lynch, et al., IEEE J. Ocean Eng.

27 (1), 117 (2002).
3. J. A. Colosi, R. C. Beardsley, J. F. Lynch, et al., J. Geo-

phys. Res. 106 (C5), 9587 (2001).
4. M. K. Hsu, A. K. Liu, and C. Liu, Cont. Shelf Res. 20,

389 (2000).
5. X. Li, P. Clemente-Colon, and K. S. Friedman, in Johns

Hopkins APL Technical Digest (2000), Vol. 21, No. 1,
pp. 130–135.

6. B. G. Katsnel’son and S. A. Pereselkov, Akust. Zh. 46,
779 (2000) [Acoust. Phys. 46, 684 (2000)].

7. R. Oba and S. Finette, J. Acoust. Soc. Am. 111, 769
(2002).

8. Ji-xun Zhou and Xue-zhen Zhang, J. Acoust. Soc. Am.
90, 2042 (1991).

9. B. G. Katsnel’son and S. A. Pereselkov, Akust. Zh. 44,
786 (1998) [Acoust. Phys. 44, 684 (1998)].

10. Sound Transmission through a Fluctuating Ocean, Ed.
by S. M. Flatte (Cambridge Univ. Press, Cambridge,
1979; Mir, Moscow, 1982).

Translated by Yu. Lysanov
ACOUSTICAL PHYSICS      Vol. 50      No. 2      2004



  

Acoustical Physics, Vol. 50, No. 2, 2004, pp. 177–184. Translated from Akusticheski

 

œ

 

 Zhurnal, Vol. 50, No. 2, 2004, pp. 220–230.
Original Russian Text Copyright © 2004 by K. Kebkal, A. Kebkal, Yakovlev.

        
A Frequency-Modulated-Carrier Digital Communication 
Technique for Multipath Underwater Acoustic Channels

K. G. Kebkal, A. G. Kebkal, and S. G. Yakovlev
State Oceanarium of Ukraine, ul. Épronovskaya 7, Sevastopol, 99024 Ukraine

e-mail: kebkal@ua.fm
Received February 26, 2003

Abstract—Along with interferences, multipath propagation and, in particular, its instability in shallow sea is
the main obstacle to increasing the digital data transfer rate in underwater acoustic communication systems.
Given these conditions, the use of simple waveforms, for which the product of bandwidth by the length of the
processing interval is close to unity, makes testing the quality of the communication channel much more diffi-
cult and strongly limits the possibilities of devices that compensate for current waveform distortions, such as,
for example, equalizers. In multipath channels with random parameters, various complex waveforms with dif-
ferent spectrum spreading techniques had been used for years. Complex waveforms with a large base (time–
bandwidth product) offer advantages in efficiently suppressing narrowband interferences and providing asyn-
chronous multiple-access communications. This paper proposes a new complex waveform, which uses
sequences of chirp pulses. On receiving, this waveform can be divided into individual responses through con-
verting the delays of these individual responses to frequency offsets. After a special frequency conversion of
the received signal, the multipath responses are separated in the frequency domain by conventional band-pass
filtering. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The conditions of sound propagation in a shallow
sea determine the structure of the received signal. As a
result of the multipath propagation typical of such
underwater sound channels, the received waveform is a
superposition of time shifted pulses of various intensi-
ties rather than an isolated pulse. This superposition
causes intersymbol interference and reduces the com-
munication quality of the digital data transmission.

Digital underwater communication channels
employ various systems, which can be divided into two
main groups. The first group uses noncoherent commu-
nication techniques, such as frequency keying. They
feature a high data transmission reliability, but the data
transfer rate is low. Systems of the second group use
phase-coherent techniques. They are recognized as pro-
viding a higher transfer rate. However, they apply com-
plex processing algorithms and expensive bulky equip-
ment, for example, phased antenna arrays for shaping a
narrow transmitting pattern or distributed receiving
antennas for finding the signal arrival direction on
reception. Below, we concisely describe the advantages
and disadvantages of the highest-performance digital
communication systems.

The approach developed at Northeastern University
(Boston, United States) and at WHOI (United States) is
detailed in [1–3]. It uses a combined technique based
on the adaptive transversal filter with optimal phase
synchronization for suppressing intersymbol interfer-
ence. This kind of system provides underwater data
transfer rates as high as 20 kbit/s [2]. An advantage of
1063-7710/04/5002- $26.00 © 20177
this approach is that it is capable of improving the sig-
nal-to-noise ratio (SNR) by combining the energy of
the signal that arrives through all paths. The application
of this approach is, however, severely limited when the
channel’s impulse response rapidly varies [4, 5]. The
rapidly variable multipath structure also creates difficul-
ties for synchronization of the communication systems.

Another approach relies on antennas that feature a
narrow transmitting pattern. This design produces a
simpler multipath structure of the received signal [6].
Equalizers are not employed. Instead of them, the
receiving side uses antennas that compensate for fluctu-
ations in the arriving signal. However, the efficiency of
this approach considerably degrades with an increase in
the transmission range, especially when the transmit-
ting and receiving systems change their relative posi-
tions.

One more approach was developed at Newcastle
University. It adaptively shapes the receiving pattern
and separates the remaining beams through the angular
filtering of the multipath components [7]. This
approach adaptively places nulls on the antenna pattern
in the directions of arrival of the reflected beams using
the least-squares method [8, 9]. As in the previous case,
the performance of this system rapidly degrades with
an increase in the transmission range [10]. To improve
the performance, it was proposed to supply the system
with an adaptive equalizer [8]. However, in this case,
the system faced the problem of convergence of the
solution produced by the equalizer, especially when
operating through real rapidly fluctuating channels.
004 MAIK “Nauka/Interperiodica”
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According to [11], it is not the multipath propaga-
tion itself that limits the performance of underwater
acoustic telemetry systems, but fluctuations of individ-
ual beams. The separation of multipath signal compo-
nents so that each of them contains fluctuations associ-
ated with only one propagation path may become a key
to improving the quality of processing the received sig-
nal. An attempt to separate the multipath signal compo-
nents and process them individually was described in
[12, 13]. A system with the differential quarternary
phase-shift keying (DQPSK) was used in [12] to com-
municate through a 100-m-long horizontal channel
with a known multipath structure (the time the intervals
between the arrivals of the direct signal and subsequent
components were known). The special time distribution
of the signals allowed the system to complete the recep-
tion of each pulse before the arrival of the first signifi-
cant multipath component. The average transfer rate
was 1.6 kbit/s. The system, however, stopped working
when the distance was increased to 200 m, because the
intervals between the arrivals became too short. Under-
water communication systems that spread the spectrum
by the direct sequence method to separate the multipath
components of the received signal were presented in
[13]. The systems applied the DQPSK and provided a
transfer rate of 625 bit/s. The spectrum was spread
using a 16-chip (16-element) spreading code. The data
transfer rate determined the initial bandwidth, while the
16-chip (element) per bit code spread the frequency
spectrum of the transmitted signal by a factor of 16. The
cited paper reported that this code must provide an
approximately 0.1-ms time resolution of the multipath
components. However, there were no experimental
results that could verify such a resolution. The use of
spectrum spreading techniques for providing multiple-
access and secure underwater communications was
also discussed in [14]. At a 5-mile distance, a data rate
of 80 bit/s was attained with 500-Hz-wide waveforms.
Another trial tested a 45-mile-long channel with
375-Hz-wide waveforms showing a 37.5-bit/s data rate.

As follows from the above examples, the application
of spectrum spreading codes for the suppression of
multipath interference in underwater acoustic channels
is associated with low data rates. Clearly, this occurs
because of physical and implementation limitations on
the available frequency band. In fact, if the spread-
spectrum waveform should be confined within a 10- to
20-kHz-wide frequency band, usual for underwater
acoustic telemetry, then the original narrowband digital
waveform must occupy an order of magnitude narrower
band; i.e., the data rate should not exceed 1–2 kbit/s.

In this paper, we propose an alternative spectrum
spreading technique for the transmitted signal that
allows a receiver to separate the multipath components.
Instead of spreading the spectrum by a pseudo-random
code, we use a linear frequency modulation. This tech-
nique considerably increases the data rate over the
modern spectrum spreading techniques. A significant
advantage is that it separates the multipath components
in the frequency domain rather than in time. For under-
water acoustic channels, which are usually character-
ized by discrete (in propagation delay) multipath and
random (rather slow) variation of their parameters, this
technique is capable of accurately resolving (separat-
ing) the beams without such complicated processing
systems as adaptive equalizers. The beams are sepa-
rated through a special preprocessing and a usual band-
pass filtering. As a result, the received multipath sig-
nals, which have a complex structure and are unstable
in time, are transformed into a number of separate
beams. Importantly, each multipath component is sepa-
rated from the others with its individual phase and time
distortions that it acquires when propagating along a
particular path. After being separated, some (for exam-
ple, the most intense) components can be extracted
from the spectrum of the multipath signal and pro-
cessed in order to reconstruct the transmitted message.

In the next section, we define the frequency-modu-
lated carrier waveform and the model of its propagation
through the multipath channel. Further, the section
devoted to the experiment reports results on the digital
data transmission tests through the multipath underwa-
ter acoustic channels. It should be noted that these were
only proof-of-the-principle tests intended to prove the
feasibility of the technique and its advantages described
in the second section. No complex pulse modulation
techniques were applied to form the narrowband digital
signal. The tests employed the differential binary
phase-shift keying (DBPSK).

2. FREQUENCY-MODULATED 
CARRIER SIGNAL AND ITS PROPAGATION 

THROUGH MULTIPATH CHANNELS

A feature of the technique is that a digital narrow-
band signal (symbol) modulates a carrier, whose fre-
quency continuously changes. Let us call it the fre-
quency-modulated carrier (FM carrier). Since the avail-
able frequency band is limited, the carrier frequency
cannot change without limit. Therefore, such a carrier
will consist of a sequence of frequency-modulated seg-
ments (FM segments) limited from above and from
below by the operating frequency band.

An advantage of this solution for underwater acous-
tic communications is as follows. Usually, when a sig-
nal of a constant frequency is transmitted through a
channel characterized by long and unstable reverbera-
tion, multipath components add together in such a man-
ner that the phase and amplitude of the received (total)
signal vary randomly. Under such adverse conditions,
data transmission using the phase and(or) amplitude
modulation becomes much more difficult or, under cer-
tain conditions, impossible. An additional modulation
of the carrier may solve this problem. If the frequency
slope is sufficiently large, each multipath component
arriving at the receiver with its individual delay has its
individual instantaneous frequency, which is noticeably
different from the instantaneous frequencies of all the
ACOUSTICAL PHYSICS      Vol. 50      No. 2      2004
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other multipath components. For example, in the clas-
sical ray propagation, the instantaneous frequency of
the reflected frequency-modulated signal (FM signal)
lags behind the frequency of the direct FM signal, i.e.,
the signal that arrives at the receiver through the direct
path. Under these conditions, the interference due to the
beam superposition can be removed. The greater the
FM slope is, the higher the resolution of the multipath
components that can be achieved. Because acoustic sig-
nals propagate in water with a relatively low speed, FM
slopes that provide a sufficient beam resolution are fea-
sible.

Below, we give a mathematical definition of the fre-
quency-modulated carrier signal and a mathematical
model of the signal received after propagation through
the multipath acoustic channel.

Let the carrier signal consist of a sequence of FM
segments that lie in the frequency band from ωL to ωH
and have the duration and repetition period Tsw. Let the
frequency vary within each FM segment by the linear law
(Fig. 2). Then, this carrier signal can be represented as

(1)

where Ac is the amplitude; the coefficient m = (ωH –
ωL)/2Tsw determines the frequency rate; ωL and ωH are
the lowest and highest circular frequencies, respec-
tively; Tsw is the length of the chirp segment; and |t/Tsw|
is the integer part of t/Tsw.

By definition, we have

(2)

Expression (2), which enters into Eq. (1), can be
interpreted as the current cyclic time tc with the cycle

length Tsw, i.e., tc = .

Let a signal with carrier (1) be transmitted through
an underwater acoustic channel whose simplified
model is illustrated in Fig. 1. The source of information
generates a narrowband digital signal s(t), which mod-
ulates the FM carrier so that the transmitted signal is
x(t) = s(t)c(t). After traveling through the channel, the
received signal denoted as y(t) is demodulated by mul-
tiplying it by c(t) and applied to a low-pass filter (LPF).
The output of the LPF provides the recipient with an
estimate of the transmitted narrowband digital signal.
The part of the model that represents the signal propa-
gation in water consists of the delay components τi,
which determine the time intervals between the multi-
path responses, and weights, which allow for the atten-
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uation of each of the multipath responses in the chan-
nel. In real conditions, both weights Vi and delays τi

vary in time. To simplify the analysis, consider a short
time interval on which the transmission path can be
regarded as stable. Let τi and Vi be constant. To simplify
the notations, we assume that the received signal is
intense enough that noise can be neglected. Then, the
transmitted signal, after propagating through the multi-
path channel, can be represented as

(3)

where x(t) is defined above and x(t – τi) has the follow-
ing form:

(4)

The term in braces in formula (4) can be written as

where tc = Tsw is the cyclic time defined in

Eq. (2) and τci = Tsw is the fractional part of the

delay determined by the ratio of τi to the length of the
FM segment Tsw.

Therefore, each delayed response (3) can be repre-
sented as

(5)

After transforming expression (5), each delayed
multipath component can be written as

(6)

where

∆ωi = 

is the frequency excursion from the intermediate fre-
quency of each ith multipath response received with the
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Fig. 1. Model of signal propagation through a multipath underwater sound channel.
delay τi and

ϕi = 

is the phase of the ith multipath response.
The first term in formula (3) is a weighted copy of

the original signal, the second is a weighted sum of the
multipath components, which arrived with particular
delays and, therefore, are shifted in frequency.

It should be noted that, in Eq. (6) at each instant of
time, all multipath responses have different instanta-
neous frequencies, which differ by ∆ωi from the fre-
quency of the direct signal. The technique relies on the
fact that the FM carrier allows the receiver to transform
the signal propagation delays through the multipath
channel into frequency shifts of the multipath
responses. The frequency separation (resolution) of the
multipath responses having been performed, the signal
distorted by the interference can be reconstructed in the
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Fig. 2. Part of the spectrogram of the transmitted sounding
signal.
frequency domain, where each spectral component
(multipath response) can be extracted and processed
separately [15]. Moreover, each multipath response,
separable from the others, contains only the distortions
that it acquires when propagating along the particular
path. Clearly, each individual beam is simpler to ana-
lyze (and process) than a superposition of unseparated
multipath components and, accordingly, than a super-
position of distortions acquired by the signal as it prop-
agates through different paths. When the beams are pro-
cessed separately, the received multipath signal can be
cleared from the noise and represented by a single mul-
tipath component or a number of components chosen
for the combined processing in order to reconstruct the
narrowband digital signal.

3. EXPERIMENTAL

The material presented below was obtained in prac-
tical data transmission tests on August 24, 2001, in the
inner water area of Kazach’ya bay (Sevastopol).

The acoustic channel was shallow. The depth at the
test site gradually increased from 6 m on the receiver
side to 8 m on the transmitter side. The transmitting and
receiving transducers were carried by small-tonnage
waterborne vehicles and lowered to depths of 4 and
5 m, respectively. The slant range was 210–230 m.

The operating conditions were as follows. The wind
force was 6–8 m/s. The sea state was Beaufort 1.5–2.
The surf at the nearby coastline, wind, and pulsed sig-
nals of a biological origin created a high noise level.
The radiation intensity was 180 dB relative to 1 µPa/m.
The SNR in the receiver was 11–14 dB. The transducer
continuously changed its orientation in the course of
transmission as a result of the rocking of the carrier
vehicle. The instantaneous relative velocity of the
transmitter and receiver was no higher than 2 m/s.

For the transmitter, we used a PCT Device 2 wide-
band piezoceramic transducer (UK). On transmission,
it features a smooth amplitude-vs-frequency response
with a 6-dB ripple in a 40 to 80 kHz frequency range.
The transducer had a weak resonance at 57 kHz.
Because of heavy damping in order to widen the oper-
ACOUSTICAL PHYSICS      Vol. 50      No. 2      2004
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ating bandwidth, the transducer had a low efficiency of
no higher than 1%. To provide radiation intensity of up
to about 180 dB relative to 1 µPa/m, we excited the
transducer with a voltage of a peak value of up to
1200 V. To galvanically decouple the transmitting and
receiving electroacoustic circuits, special electronic
devices were developed.

All devices of the electroacoustic channel were
mounted in a watertight container made of an alumi-
num–magnesium alloy. To reduce the noise level, the
transducer was connected directly to the transmit–
receive switch, whose other two ports were connected
to the input of the preamplifier and output of the power
amplifier. The power amplifier was fed from a VICOR
VI-214 DC-DC dc transducers. A +24-V mains was
applied through a cable from an external battery located
on board the vehicle.

To form the transmitted waveforms and process the
received acoustic signals, we used mobile Intel Pen-
tium III-based computers. The computers were placed
in splash-proof casings from ACME and supplied with
high-speed analog I/O devices from National Instru-
ments. The output analog signal was applied from the
computer to the power amplifier through a cable. The
amplified signal was fed through the transmit–receive
switch to the underwater acoustic transducer to be emit-
ted into the water. As the receiving transducer, we used
a TC4034 wideband (from 5 to 350 kHz) instrument
hydrophone from RESON. The hydrophone output sig-
nal was amplified and fed to an analog-to-digital con-
verter (ADC). The sampling rate was 1 MHz. The data
were preprocessed, time selected, demodulated, and
recorded by a computer similar to the one used on the
transmitting side.

3.1. Structure and Parameters of Transmitted Signals

The data were transmitted in packets in the form of
binary sequences consisting of 5000 to 10 000 informa-
tion symbols. The sequences were produced by a stan-
dard quasi-random-number generator with fixed initial
conditions. The DBPSK was applied to the narrowband
digital signal. The carrier had the form of a sequence of
frequency-modulated segments which followed with-
out intervals. The carrier frequency was swept from 40
to 80 kHz. The length of the FM carrier segments used
in our tests was 0.3 to 2 ms. Accordingly, the fre-
quency-sweep rate was 20 to 133 kHz/ms. The symbols
were 80 to 500 µs long. The data rate was 2 to 12 kbit/s.

To remove intersymbol interference, the carrier-fre-
quency-sweep rate and the length of carrier segments
were chosen so that multipath components of the cur-
rent segment did not overlap with those of the next one,
or the overlap was insignificant. To this end, a sounding
signal consisting of ten chirp segments, used to esti-
mate the structure of the multipath channel, was emit-
ted immediately before transmitting the data. The
sounding signal used more wideband and longer chirp
ACOUSTICAL PHYSICS      Vol. 50      No. 2      2004
segments than those used by the information carrying
signal. The frequency of the sounding signal was swept
from 40 to 90 kHz, and the length of the segment was
5 ms. The longer segments represented the multipath
channel structure more clearly. Figure 2 shows part of
the spectrogram of the emitted sounding signal. Figure 3
is a spectrogram of the same part of the received signal.
Arrows in Fig. 3 indicate the most intense multipath
components.

3.2. Signal Processing on Reception

After the received signal was synchronized, it was
processed and demodulated, and the narrowband digital
signal was subsequently estimated.

To demodulate the received signal, it was multiplied
by a heterodyne frequency-modulated signal generated
locally. It was identical to the carrier signal of the trans-
mitting station. The multiplication produced two fre-
quency bands: a high-frequency band at a double fre-
quency with a factor of two greater chirp rate and a low-
frequency band at the intermediate frequency with a
zero chirp rate. If properly synchronized, the low-fre-
quency range contained the central intermediate fre-
quency, which is zero for the useful multipath compo-
nent, and a number of spectral lines, which represent
spurious multipath components shifted in time and fre-
quency. The spurious spectral lines were filtered out by
a low-pass filter.

Since we used the relative phase shift keying, the
transmitted symbol was determined by the phase differ-
ence between consecutive pulses (narrowband digital
signals). Phase differences within 0° ± 90° referred to
logical zero, while phase differences within 180° ± 90°
referred to logical unity.
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Fig. 3. Part of the spectrogram of the sounding signal on the
receiver side.
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Fig. 4. Example of the impulse response of a multipath sound channel.
3.3. Channel Characteristics

To estimate the properties of the data transmission
channel, we sounded it with a test train of chirp signals.
After the receiver calculated the cross-correlation func-
tion of the received and transmitted signals, the chan-
nel’s multipath structure was represented as a sequence
of responses whose time position, shape, and intensity
could be used to estimate the channel’s properties.

Figure 4 exemplifies the multipath nature of the
channel through which data were transmitted immedi-
ately after the sounding sequence. The multipath prop-
agation is represented by 3 to 4 responses. Our repeated
observations have shown that power fluctuations in the
multipath components were about 2 to 3 dB. The delay
between the two first responses was 135 µs, which
approximately agreed with the theoretical delay of the
signal reflected from the surface (124 µs). The time
interval occupied by the whole multipath response
sequence was estimated to be 380 µs. Delays of the
multipath components remained stable during the time
necessary for transmitting a block of data.

3.4. Capacity of the Communication System

Below, we provide an example of transmitting a
sequence of binary signals through a shallow multipath
underwater channel illustrated in Fig. 4. The data rate
was 10.42 kbit/s. The carrier was modulated by sweep-
ing its frequency from 40 to 80 kHz with a chirp rate of
83.3 kHz/ms. The length of the carrier segment was
480 µs. To compensate for the irregularity of the ampli-
tude-vs-frequency response (on transmission), the
amplitude of the chirp segments was corrected so that
the emitted signal had approximately the same ampli-
tude over the operating frequency range. The carrier
segments were divided into five parts, each of which
contained a 96-µs-long phase shift keyed symbol.

The phase angles of the received symbols are illus-
trated in Fig. 5. Despite the comparatively strong scat-
ter in both angular sectors, the digital values of the
phase shift keyed symbols are well distinguishable.
Figure 6 shows the SNR in the course of the data trans-
mission. As follows from this figure, the SNR deviated
by 2.9 dB about its mean value of 11.5 dB. The most
likely explanation of such a large deviation observed in
a short data transmission time is that, in addition to a
variation in the ambient noise, the fine structure of the
multipath channel also changed (e.g., due to the rough
sea), producing random short-term beams, which inter-
fered with the useful signal and corrupted it.

To estimate the error level, we subtracted the known
digital sequence produced by the source from the
sequence processed by the receiver and supplied to the
recipient. There were 9 errors almost uniformly distrib-
uted over 7200 transmitted symbols, so that the trans-
mission error probability calculated as the ratio of the
number of error symbols to the length of the transmitted
sequence was 0.00125.

For the sake of comparison, other data and chirp
rates were tested. Binary phase shift keying was also
used. The transmitted data packets were 5000 bit long.
For 165-µs-long symbols (or a data rate of 6061 bit/s)
and 800-µs-long chirp segments, the error in the data
transmission over 230 m was estimated as 0.00091.
After the range was reduced to 100 m, the data were
received without errors. In the trials at higher data rates
with 90-µs-long symbols (11.1 kbit/s) and 380-µs-long
chirp segments, the error probability estimate increased
to 0.0109. There was no sense in further increasing the
ACOUSTICAL PHYSICS      Vol. 50      No. 2      2004
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Fig. 6. Signal-to-noise ratio in the course of data transmission (at a data rate of 10.42 kbit/s).
data rate under these communication conditions
because of the rapid increase in the error probability
and emergence of group errors, which cannot be
removed without special error-correcting codes.

3.5. Frequency Efficiency

To estimate the results of the tests in terms of the
data rate-to-bandwidth ratio, below we provide the data
on the frequency efficiency of other underwater acous-
tic communication systems known from the literature.
For noncoherent systems, this factor is usually within
 PHYSICS      Vol. 50      No. 2      2004
0.01 to 0.15 Baud/Hz) [16]. Only one noncoherent sys-
tem with a frequency efficiency as high as
0.24 Baud/Hz is known [16]. These systems are applied
in the most complex (from the viewpoint of data trans-
mission) shallow underwater channels. Partially coher-
ent systems that use the differential phase shift keying
have a frequency efficiency of 0.06 to 2 Baud/Hz. It
should be noted that, although differential phase shift
keying systems do not require carrier tracking, they are
sensitive to intersymbol interference and their applica-
tion is therefore limited with few exceptions to simple
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(in terms of digital data transfer) deep vertical channels.
Review [16] contains detailed information about the
capacity of such systems. Only one frequency-coherent
data transmission system for shallow horizontal chan-
nels, which was used in communications over a dis-
tance of 100 m, is known. Its frequency efficiency is as
low as 0.16 Baud/Hz.

The highest frequency efficiency is exhibited by
coherent systems. It is usually within 0.67 to
2 Baud/Hz.

Since the communication system reported in Sec-
tion 2 uses differential phase shift keying, it compares
with partially coherent systems. Its frequency effi-
ciency, determined by the ratio of the achieved data rate
to bandwidth, is (11.1 × 103)/(40 × 103) =
0.28 Baud/Hz. As follows from the comparison, this
value is much greater than the frequency efficiency of
noncoherent systems and also of frequency-coherent
systems used for communications through shallow
underwater sound channels.

4. DISCUSSION AND CONCLUSIONS
Both theoretical and experimental results demon-

strated a high efficiency of the technique in reducing
the effect of multipath interference in communications
through shallow horizontal underwater acoustic chan-
nels.

The main distinctive feature of the technique is its
complex carrier signal, which consists of sequences of
chirp segments with a high chirp rate. After propagating
through a shallow underwater acoustic channel, this
signal, being corrupted with reverberation interference,
can be separated into individual multipath components.
The multipath components are separated in the fre-
quency domain and, depending on the length of a single
digital symbol (data rate), the received signal can be
partially or completely cleared from the effect of mul-
tipath interference.

To estimate the advantages of this technique, we
tried various parameters of carrier signal modulation
and various communication ranges and data rates. Our
tests of the data transmission over a range of 230 m at a
data rate of 6061 bit/s with 800-µs-long chirp carrier
segments demonstrated an error probability of 0.00091.
In a similar test with a shorter range (100 m), no errors
were observed in the transmission of a 5000-bit-long
data package. In the test at a higher data rate
(11.1 kbit/s) with 380-µs-long chirp segments, the error
probability increased to 0.0109. This higher demodula-
tion error can be attributed to the fact that the carrier
signal became more poorly matched with the transmis-
sion channel. For example, when a current carrier seg-
ment overlapped one of the lagged replicas of the pre-
vious chirp segments, intersymbol interference was
observed and the communication quality degraded.

An important index of the system’s capacity is its
frequency efficiency defined as the ratio of the data rate
to bandwidth occupied by the transmitted signal. Its
maximum value for the technique proposed here is
0.28 bit/Hz. Compared to conventional systems, the
frequency-modulated carrier signal considerably
increased the frequency efficiency and, accordingly, the
potential data rate.

The above material relies on the analysis of data
transmission using differential binary phase-shift key-
ing. The bandwidth of these symbols is known to be the
same as that necessary for the DQPSK. The hardware
and software developed, which provides a data rate of
11.1 kbit/s, is thus suitable for data transmission at
twice as high a rate by changing the phase modulation
technique to the DQPSK. However, to keep the noise
immunity of the DQPSK signal at the same level as that
of the DBPSK signal, the power of the emitted signal
should be increased by at least 3 dB [16, 17].

An important feature of the frequency-modulated
carrier is that it provides the possibility of processing
the multitude of separated multipath components in
parallel. After synchronizing the beams in their propa-
gation delay, such processing can combine the energies
of the separated beams and thus increase the SNR in the
receiver and improve the reliability of estimating the
transmitted digital signal.
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Abstract—Photothermoacoustic oscillations in a thin plane-layered structure consisting of an isotropic solid
and a piezoelectric crystal of class 6mm (or piezoelectric ceramics) are studied theoretically and experimentally.
Expressions for the potential difference across an arbitrary layer of the piezoelectric transducer are derived. For
the case of a two-layer transducer, the amplitude–frequency and phase–frequency dependences of the signal are
analyzed. It is shown that, from these experimental dependences, one can determine certain elastic and thermal
parameters of a solid. An experiment is performed with samples of Cu, Zn, and TsTS-19 piezoceramics in the
frequency range within 9–1000 Hz. The experimental data are used to determine the values of the reduced
Young’s modulus and the thermal diffusivity of the materials under study. © 2004 MAIK “Nauka/Interperiod-
ica”.
In the last few years, a growing interest has been
expressed in acoustic studies with contactless excita-
tion of acoustic vibrations and waves on the basis of the
photothermoacoustic (PTA) effect [1–3]. The PTA
effect is as follows: when a modulated light beam is
incident on a material, the absorption of light leads to
the heating of this material and to the excitation of ther-
mal waves in both the material and the surrounding gas;
owing to the thermoelastic effect, the temperature field
formed in the material and in the gas generates acoustic
vibrations and waves. A specific feature of the PTA
effect is the dependence of the information obtained
from it on the method used for detecting acoustic vibra-
tions. One of the most sensitive methods for detecting a
PTA signal is the piezoelectric method [1]. For acoustic
studies of solids, the PTA effect in plates offers consid-
erable promise [4–8]. The problem of the PTA effect in
plates with piezoelectric detection is rather complicated
in the general case and, hence, can only be solved for
particular cases [4–6]. The problem considered in [6]
most closely fits the experimental conditions. However,
the cited publication only considers the case of a strong
attenuation of thermal waves, i.e., when the thermal
waves do not reach the piezoelectric transducer. This
assumption imposes certain limitations on the fre-
quency of thermal waves and on the sample thickness:
the latter must be greater than the thermal diffusion
length. The limitation on the thickness is especially
inconvenient because, in most cases, objects of investi-
gation are thin layered structures. In addition, most
piezoelectric transducers are made of piezoceramics,
and the latter is a strong pyroelectric. Therefore, if a
thermal wave reaches the piezoelectric transducer, it is
necessary to take into account the pyroelectric effect.
Hence, a study of the PTA effect in a plate with a piezo-
1063-7710/04/5002- $26.00 © 20185
electric detection of acoustic vibrations and without
any limitations imposed on the relation between the
object thickness and the thermal diffusion length seems
to be rather topical. Below, we present the results of
theoretical and experimental studies of this problem.

Let us consider a layered structure formed by an iso-
tropic solid and a piezoelectric crystal of class 6mm (or
piezoelectric ceramics). The structure is shaped as a
plate bounded by two planes z = 0 and h (h = h1 + h2)
and a cylindrical lateral surface with a closed directrix
(Fig. 1). (1) The sample of the material under investiga-
tion has a thickness h1; (2) the piezoelectric crystal has
a thickness h2 and is assumed to be isotropic in its ther-
momechanical properties. The polar axis of the piezo-
electric crystal coincides with the Z axis. The sample
surface z = 0 is uniformly illuminated with a modulated
light beam

, (1)

where P0 is the light intensity and ω is the cyclic mod-
ulation frequency.

P
1
2
---P0 1 ωtcos+( )=

1
0

2
Z

∆h

h1

h2
z

Fig. 1. Geometry of the problem.
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We first consider the case when light is strongly
absorbed by the material under investigation (αh1 @ 1,
where α is the coefficient of light absorption in the
material). The absorption of light changes the tempera-
ture of the sample surface in proportion to the absorbed
light energy, which gives rise to thermal waves propa-
gating along the Z axis. Owing to the thermoelastic
effect, acoustic vibrations are excited in the system. Let
us consider relatively low light modulation frequencies,
at which the acoustic wavelength far exceeds the char-
acteristic dimensions of the plate (the quasi-static
approximation) and the plate can be considered as thin.
In this case, the nonzero components of the elastic
stress tensor will be T11 and T22. Since the materials
forming the structure are assumed to be homogeneous
in their elastic and thermal properties, we have T11 =
T22 ≡ T. Then, for the structure under consideration, we
can write [9]

(2)

where En = , αT, and θ are the reduced Young’s

modulus (E is Young’s modulus and σ is Poisson’s
ratio), the linear coefficient of thermal expansion, and
the temperature of the sample (piezoelectric trans-
ducer), respectively, and C1 and C2 are constants deter-
mined from the boundary conditions.

Acoustic vibrations of the plate give rise to an elec-
tric polarization in the piezoelectric. In addition, since
the piezoelectric under consideration is a pyroelectric,
the thermal wave propagating in it should also produce
a pyroelectric field. In the case under study, the normal
component of the electric induction in the piezoelectric,
Dz, is determined as

(3)

where ε33, d31 , and p are the dielectric permittivity,
piezoelectric constant, and pyroelectric constant of the
piezoelectric material, respectively, and Tn and θn are
the elastic stress and temperature in the piezoelectric.

Let us calculate the potential difference  in a
piezoelectric layer of thickness ∆h with a coordinate z
(Fig. 1). This difference is a measure of the acoustic
vibrations excited in the system and is expressed as

(4)

Since external electric fields are absent and the nor-
mal component of the electric induction is continuous,
we have Dz = 0. From this condition, using Eq. (3), we
obtain

(5)

T En C1 C2z– αTθ–( ),=

E
1 σ–
------------

Dz ε33Ez 2d31Tn pθn,+ +=

Û

Û Ez z.d

z
∆h
2

-------–

z
∆h
2

-------+

∫–=

Ez –
2d31

ε33
----------Tn

p
ε33
------θn.–=
Now, let us determine the distribution of the alter-
nating component of temperature θ in the structure
under study. For this purpose, it is necessary to solve
the heat conduction equation with the corresponding
boundary conditions.

For the sample and the piezoelectric, the heat con-
duction equations in the complex form and the bound-
ary conditions (the continuity of the heat flow and tem-
perature) are as follows [1]:
the heat conduction equation for the sample is

, (6)

the heat conduction equation for the piezoelectric is

(7)

and the boundary conditions (neglecting the heat flow
to the surrounding medium) are

(8)

In the above expressions, c, ρ, and χ are the specific
heat, density, and thermal conductivity coefficient of
the sample and cn, ρn, and χn are the corresponding
parameters of the piezoelectric. We assume that all the
light energy absorbed by the sample is spent for its
heating. The solution to Eq. (6) has the form

(9)

and the solution to Eq. (7) is

(10)

The coefficients θ11, θ12, θ21, and θ22 are determined
from boundary conditions (8). They depend in a com-
plex way on the thermal and geometric parameters of
the structure and on the modulation frequency of light.
When heat does not reach the surface z = h1 + h2 , i.e.,
when the thermal wave completely attenuates in the
structure (θn(h1 + h2) = 0); this case is considered
below), the expressions for θmn are simplified and take
the form

(11)

∂2θ
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------–
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----------e α z– eiωt–=
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Substituting Eq. (10) into Eq. (5) with allowances
for Eqs. (2) and (11), we obtain the potential difference

 across a piezoelectric layer of thickness ∆h:

(12)

where Emn and αTn are the reduced Young’s modulus
and linear coefficient of thermal expansion of the piezo-
electric, respectively. Here and below, the time factor is
omitted.

Constants C1 and C2 are determined from the fol-
lowing boundary conditions: the resultant force and the
resultant moment per unit length of the structure con-
tour should be equal to zero [9], i.e.,

(13)

Substituting Eq. (2) into Eqs. (13) with allowance
for Eqs. (9)–(11) and the relation α @ γ, we obtain

, (14)

, (15)

 

where DT =  and DTn =  are the thermal diffu-

sivities of the sample and the piezoelectric, respec-
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tively. One can easily show that the geometric parame-
ters Zp and Zu actually represent the coordinates of neu-
tral planes after normalization to h: Zp corresponds to
the neutral plane of the structure under surface tension
and Zu, to the neutral plane of the structure under pure
bending.

Substituting Eq. (14) into expression (12) for , we
finally obtain

, (16)

,

,

,

The first term in Eq. (16), G1, is associated with the
thermoelastic deformation of the piezoelectric (the
piezoelectric component), and the second term, G2,
with the heating (the pyroelectric component).

An analysis of expression (16) shows that, when the
thermal wave completely attenuates in the sample
γh1 @ 1 (i.e., does not reach the piezoelectric trans-
ducer), the first term in Eq. (16) predominates and the
voltage  is proportional to the thermoelastic coeffi-
cient (αTEn) of the material under study. This means
that, at fixed parameters of light (P0, ω), the amplitude
of acoustic vibrations in the given structure is mainly
governed by the thermoelastic properties of the sample.

The pyroelectric part of the voltage consists of two
components: the first is caused by the true pyroelectric
effect and the second, by the secondary pyroelectric
effect. 

Depending on the relation between coordinate Z of
the layer from which the electric signal is taken and
coordinate Zp, the piezoelectric component of the signal
may be as follows: G1 > 0 when Z > Zp, G1 < 0 when
Z < Zp, and G1 = 0 when Z = Zp. In the latter case, the
PTA signal is determined by the pyroelectric effect
alone.

Consider the case of a two-layer piezoelectric trans-
ducer proposed in [6]. Assuming that the layers of the

transducer have the same thickness , we obtain the

following expression for the ratio between the voltages
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taken from these layers:

(17)

   H2 = ,

where , , Z1, Z2, n1 , and n2 are the respective
quantities for the first layer, which lies next to the sam-
ple, (subscript 1) and the second layer (subscript 2) of
the piezoelectric transducer.

Formula (17) takes into account that the thermal
wave completely attenuates in the structure under study
(i.e., does not reach the surface z = h). From this for-
mula one can see that, at relatively high modulation fre-
quencies, when the thermal wave does not reach the
piezoelectric transducer, the second terms in the numer-
ator and denominator tend to zero and q = ψ = 1. Then,
expression (17) takes the form

(18)

which coincides with the results reported in [6], where
only this particular case was considered. At relatively
low modulation frequencies, when the thermal wave
does reach the piezoelectric transducer, The PTA signal
is influenced by the pyroelectric effect and the ratio

 varies noticeably with the frequency.

From Eq. (16), one can see that, in the case under

consideration, the ratio  depends on the parame-

ters of the structure and on the light modulation fre-
quency in a complex way, which is difficult to analyze.
However, for a specific structure, the amplitude–fre-
quency and phase–frequency dependences of the PTA
signal can be calculated by numerical methods.

Let us analyze some particular cases.

(i) We assume that the material under study is a heat-
conducting material (like a metal) and γχ @ γnχn; i.e.,
the thermal wave is almost completely reflected from
the piezoelectric transducer (the heat almost does not
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penetrate into the transducer). In this case, Eq. (17)
takes the form

(19)
From Eq. (19), we determine the amplitude ratio

 of signals taken from individual layers of the

piezoelectric transducer and the phase difference ∆ϕ =
ϕ1 – ϕ2 between these signals:

, (20)

(21)

where

, β = ,

F = f is the dimensionless frequency, and f = .

An analysis of Eqs. (20) and (21) shows that, at rel-

atively high frequencies satisfying the condition  ! 1

(β @ 1), the amplitude ratio  and the tangent of the

phase difference  are approximately linear

functions of :

, (22)

(23)

These high-frequency properties of the amplitude–fre-

quency, , and phase–frequency, ,

dependences of the PTA signal can be used to deter-
mine some elastic and thermal parameters of the sam-
ple material, including the reduced Young’s modulus En

and the thermal diffusivity DT. Indeed, by extrapolating

the experimental dependence  to the region
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  0, we determine the quantity  and,

hence, the quantity Zp. From expression (15) for Zp,
using the known geometric parameters of the structure
and the known reduced Young’s modulus of the piezo-
electric transducer, we determine En. Knowing En, from
the slope of dependence (22) or dependence (23), we
determine the thermal diffusivity DT of the sample
material.

(ii) Now, we assume that the thermal and elastic
properties of the material under study are close to those
of the transducer material (such sample materials are
mainly dielectrics): D0, α0, E0 ≈ 1. In this case, expres-
sion (17) takes the form

(24)

where 

In the particular case when both sample and trans-
ducer are made of TsTS-19 piezoceramics, which is
often used in practice (PZT-type ceramics), with both
the sample thickness and the transducer layer thickness

are about 1 mm, the quantities  are negligibly
small for frequencies beginning from several hertz. In
this case, we obtain

(25)

From Eq. (25), we derive

, (26)

. (27)

From expressions (26) and (27), one can see that, if
the sample and the piezoelectric transducer are made of
the same material and the layers of the transducer and
the sample have the same thickness, the amplitude–fre-
quency (26) and phase–frequency (27) dependences do
not depend on the elastic parameters of the material and
are governed by thermal diffusivity alone. Hence, only
this parameter can be determined experimentally.

In the case of relatively high frequencies,  ! 1 ,

expressions (26) and (27) take the form

, (28)
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Experimental studies were performed with samples
made of Cu, Zn, and TsTS-19 piezoceramics. The
piezoelectric transducer consisted of two identical lay-
ers of TsTS-19 piezoceramics, each of them being
0.6 mm thick. The samples and the transducer had the
form of circular plates 15 mm in diameter. The thick-
ness of different samples was as follows: 0.97 and
1.64 mm for Cu, 1.13 mm for Zn, and 0.6 mm for
TsTS-19. The sample surface was uniformly illumi-

∆ϕ( )tan
2

F
-------.–=

–4

U1/U2

f–1/2, Hz–1/2
0.40.30.20.10
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Cu h1 = 1.64 mm
Cu h1 = 0.97 mm
Zn h1 = 1.13 mm

Fig. 2. Amplitude ratio  of signals taken from individ-

ual layers of the piezoelectric transducer versus the inverse
square root of frequency (f–1/2) for Cu and Zn: dots repre-
sent the experiment and solid lines, the theory.
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Fig. 3. Phase difference (∆ϕ) between signals taken from
individual layers of the piezoelectric transducer versus the
inverse square root of the frequency (f –1/2) for Cu and Zn:
dots represent the experiment and solid lines, the theory.
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nated with modulated light. In the experiment with low
modulation frequencies (up to 100 Hz), the light was
produced by 25 light-emitting diodes (LEDs) (λ =
700 nm) distributed over a parabolic surface, and in the

–1.4
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0.40.30.20.10
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0

0.5

Fig. 4. Amplitude ratio  of signals taken from individ-

ual layers of the piezoelectric transducer versus the inverse
square root of frequency (f –1/2) for TsTS-19: dots represent
the experiment and solid lines, the theory.
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Fig. 5. Phase difference (∆ϕ) between signals taken from
individual layers of the piezoelectric transducer versus the
inverse square root of the frequency (f –1/2) for TsTS-19:
dots represent the experiment and solid lines, the theory.

Table

Material

Reduced Young's
modulus, ×1010 N/m2

Thermal diffusivity, 
×10–6 m2/s

experiment literature experiment literature

Cu 22 12–20 100 117

Zn 11 11–12 40 37–42

TsTS-19 – – 0.4 –
experiment with high modulation frequencies, the
source of light was a laser (λ = 687 nm). The light from
the LEDs was modulated by varying the current flow-
ing through them, and the laser light was modulated by
an electromechanical chopper. The studies were per-
formed in the frequency range within 9–1000 Hz. The
quantities determined from the experiment were the

amplitude ratios  and the phase differences ∆ϕ =

ϕ1 – ϕ2 of signals taken from individual layers of the
transducer as functions of the light modulation fre-
quency f. The informative signal was measured by a
lock-in nanovoltmeter. The relative measurement error
was different for different modulation frequencies: it
increased with frequency and did not exceed 10% in the
high-frequency region of the frequency range used in
the experiments.

The results of the experimental studies are repre-
sented by dots in Figs. 2–5. From these experimental
data, by the method described above, we determined
the reduced Young’s modulus En and the thermal diffu-
sivity DT for Cu and Zn; for TsTS-19 piezoceramics,
we determined only DT. The resulting values are pre-
sented in the table. For comparison, the table also
shows data taken from the literature [10, 11]. Using the
experimental values of En and DT, we calculated the the-

oretical dependences (f) and (∆ϕ(f)) from

Eq. (17) for Cu and Zn and from Eqs. (26) and (27) for
TsTS-19. These dependences are shown in Figs. 2–5 by
solid lines. The elastic, piezoelectric, and pyroelectric
parameters of TsTS-19 were taken from [12, 13]. From
Figs. 2–5, one can see that the experimental data agree
well with the theoretical calculations.

Thus, we derived expressions for the potential dif-
ference across an arbitrary layer of a piezoelectric
transducer in the presence of PTA oscillations in a
solid–piezoelectric layered structure. For the case of a
two-layer piezoelectric transducer, we analyzed the
amplitude–frequency and phase–frequency depen-
dences of signals taken from individual layers of the
transducer. We showed that, in the high-frequency

region, the amplitude ratio  and the tangent of the

phase difference  of signals taken from indi-
vidual layers of the transducer depend almost linearly

on the inverse square root of the frequency . This

feature made it possible to determine some elastic and
thermal parameters of solids from experimental data.
For samples whose material has the same elastic and
thermal parameters as the piezoelectric transducer and
whose thickness is greater than the thermal diffusion
length, the amplitude–frequency and phase–frequency
dependences of the PTA signal are only determined by

U1

U2
------ 

 
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U2
------ 

 
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∆ϕ( )tan
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2
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the thermal diffusivity, which can be found from the
experiments. Experimental data were obtained for sam-
ples of Cu, Zn, and TsTS-19 piezoceramics and proved
to agree well with the theoretical calculations. These
data were used to determine the thermal diffusivities for
all samples; for Cu and Zn, we also determined the
reduced Young’s moduli.
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Absorption of Bending Waves in a Plate Driven 
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Abstract—The field produced by a harmonic point source of normal force in a plate with resonators is studied.
The origin of the force is encircled with a ring of closely spaced identical monopole–dipole resonators respon-
sive to both the displacement and tilt of the plate. For these resonators, parameters are determined that ensure
the complete absorption of the divergent cylindrical bending wave generated in the plate by the point source of
normal force. © 2004 MAIK “Nauka/Interperiodica”.
Previously, the simplest resonator for bending
waves in a rod was studied, this resonator being respon-
sive to both the displacement and tilt (the derivative of
the displacement) of the rod axis [1]. The resonator
consists of two spring-mass systems attached to the rod,
along which a bending wave propagates via a hard
(unbendable) bar common to both systems. One of
these spring-mass systems is oriented perpendicularly
to the rod and serves as a monopole resonator respon-
sive to the rod displacements, and the other is oriented
along the rod and serves as a dipole resonator respon-
sive to the tilt of the rod. Under the action of an incident
bending wave, monopole and dipole resonators begin to
oscillate and produce, via the hard bar, a point normal
force and a point bending moment applied to the rod. In
the rod, the scattered field is the sum of the monopole
and dipole fields generated by these point sources. It
was shown that, in the rod, a single monopole–dipole
resonator completely absorbs the incident bending
wave of resonance frequency if the dissipative loss
coincides with the radiation loss. Note that a single
monopole resonator with the optimal friction can
absorb no more than half the energy of the incident
bending wave. Theoretical and experimental investiga-
tions of vibration insulation for bending waves with the
use of monopole resonance systems was carried out in
[2–8].

In practice, the issue of the day is the problem of the
absorption of bending waves generated by a point
source in a plate. This problem can be solved with the
use of a system of monopole–dipole resonators
attached to the plate. Let us encircle the origin of force
on the plate with a ring of closely spaced identical
monopole–dipole resonators and orient the horizontal
spring-mass systems along the ring radius. One can
expect that monopole–dipole resonators with an appro-
priate friction will completely absorb the divergent
1063-7710/04/5002- $26.00 © 20192
cylindrical bending wave generated in the plate by the
point source at resonance frequency.

Let an unbounded think plate lie in the xy plane and
a harmonic normal force f(t) = f0exp(–iωt) act on it at
the point (0, 0). If the plate had no resonators, the bend-
ing waves excited by this point source would have the
displacements

(1)

where k =  is the wave number of the bending

wave; (kr) is the Hankel function of the first kind;

r = ; and ρ and D are the surface density and
flexural rigidity of the plate, respectively. In Eq. (1), the
first and second terms describe the propagating and
evanescent (damped) cylindrical waves, respectively.
Let us attach closely spaced identical monopole–dipole
resonators to the plate along the circle r = r0 . By
“spreading” these resonators over the circumference, it
is possible to characterize the circular resonance sys-
tem by the parameters determined per unit length of the
circumference. The figure shows the section of the plate
with attached resonators by the plane passing through
the vertical axis z; in the figure, marker 1 points to the
vertical spring-mass system with linear elastic stiffness
κ1(1 – iε1), marker 2 points to the horizontal spring-
mass system with linear elastic stiffness κ2(1 – iε2),
ε1 and ε2 are the linear dissipation coefficients), m1 and
m2 are the linear masses of the monopole and dipole
resonators, marker 3 points to the hard bar of length H,
and marker 4 points to the plate. Under the action of
harmonic cylindrical waves (1), the resonators oscillate

w0 r t,( ) = 
i f 0

8k2D
------------- H0

1( ) kr( ) H0
1( ) ikr( )–{ } iωt–( ),exp

ρω2

D
---------4

H0
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x2 y2+
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and create a linear normal force F(t) and a linear bend-
ing moment M(t) applied to the plate. The equation of
motion of the plate with the attached resonators can be
written in the form

(2)

where ∆ is the Laplace operator and δ(r – r0) and δ'(r –
r0) are the delta-function and its derivative.

We denote ξ1(t) the displacement of mass m1 from
the equilibrium position along the z axis and ξ2(t) the
displacement of mass m2 from the equilibrium position
in the radial direction. Then, the equations of motion of
the resonators have the form

(3)

where the forces F(t) and g(t) are given by the formulas

(4)

(5)

and w(r, t) is the total field in the plate, which is equal
to the sum of the incident and scattered fields.

In the case of harmonic incident field (1), the normal
force and bending moment can be represented as F(t) =
F0exp(–iωt) and M(t) = M0exp(−iωt), where F0 and
M0 are the complex amplitudes of the force and the
moment, respectively. In accordance with Eq. (2), the
scattered field in the plate is the sum of the monopole
(w1) and dipole (w2) fields determined by the formulas

(6)

(7)

(8)

(9)

where J0(kr) and J1(kr) are the Bessel functions. The
total field in the plate is w = w0 + w1 + w2.

Let us choose the amplitudes F0 and M0 so as to sat-
isfy relationships (4) and (5). In accordance with
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Eq. (3), the displacements of the masses will be

(10)

Substituting Eqs. (1), (7), (9), and (10) into Eqs. (4) and
(5), we obtain equations for the force and moment
amplitudes:

(11)

where

(12)

(13)

Y10 and Y20 are the conductivities of the monopole and
dipole resonators,

(14)

(15)

and w0(r) ≡ w0(r, t)exp(+iωt) is the complex amplitude
of the displacement in the incident wave.
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Monopole–dipole absorber of bending waves generated by
a point source of normal force in a plate.
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Solutions to Eqs. (11) have the form

Substituting these expressions for F0 and M0 into
Eqs. (6)–(9), we obtain the scattered fields of monopole
and dipole types.

Now, we determine the resonator parameters ensur-
ing that the cylindrical wave diverging from the point
source f(t) = f0exp(–iωt) is completely absorbed. For
this purpose, we find the force and moment amplitudes
that satisfy the following requirements:

(i) the divergent homogeneous cylindrical wave is
absent in the total field w = w0 + w1 + w2 outside the ring
(for r > r0),

(ii) homogeneous (propagating) cylindrical waves
are absent in the scattered field w1 + w2 inside the ring
(for r < r0).

Using the relationships that express these require-
ments and taking into account Eqs. (1) and (6)–(9), we
obtain the following expressions:

(16)

Let us choose the conductivities Y10 and Y20 so that
expressions (16) satisfy Eqs. (11). The desired conduc-
tivities are

(17)

(18)

where the quantities Y11, Y22, and G are given by formu-
las (13), (14), and (15), respectively. Resonators with
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Y22,–
conductivities (17) and (18) completely absorb the
divergent cylindrical wave of frequency ω.

Assume that the radius of the ring is much greater
than the wavelength of the bending wave (kr0 @ 1). In
this case, formulas (17) and (18) are simplified and take
on the form

Separating the real and imaginary parts in these approx-
imate formulas, we obtain the expressions

These expressions mean that the dissipative losses in
the monopole and dipole resonators are equal to the
radiation losses and that the natural frequencies of these
resonators coincide. The ring consisting of such mono-
pole–dipole resonators completely absorbs the diver-
gent cylindrical wave in a thin plate. In a thicker plate,
two such resonator rings attached to the plate from
above and from below will completely absorb the diver-
gent bending wave generated by a point source,
because no scattered longitudinal wave will be gener-
ated in the plate owing to the symmetry of the problem.
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Abstract—With the use of adiabatic and WKB approximations for the mode representation of an acoustic field
excited by a tone source in an oceanic waveguide smoothly varying along the track, dependences of the char-
acteristic spatial scales of the phenomenon of diffraction focusing are obtained. Conditions that should be sat-
isfied for the formation of zones of diffraction focusing of the acoustic field in such a waveguide are formulated.
© 2004 MAIK “Nauka/Interperiodica”.
As is known from the literature [1–3], by analogy
with the formation of diffraction images of periodic
structures in optics [4], the phenomenon of diffraction
focusing can be observed for acoustic waves propagat-
ing in some waveguide media. The formation of the
zones of diffraction focusing of acoustic fields in range-
independent oceanic waveguides was considered in
detail in [5–11].

The purpose of this paper is to study the effect of a
smooth horizontal variability of the parameters of an
oceanic waveguide on the formation of zones of diffrac-
tion focusing of an acoustic field.

To solve the above-stated problem, let us use the
adiabatic approximation for the mode representation of
the acoustic field in a waveguide smoothly varying
along the track by assuming that the conditions of
applicability of this approximation are satisfied
[12−16]. Then, the dependence of the acoustic field
intensity J(r, z) on the horizontal distance r and recep-
tion depth z is expressed by the formula

(1)

Here,

(2)

is the amplitude of the mode of number l, kl(r) is the
wave number of this mode, ψl(z, r) is the corresponding
orthonormal eigenfunction determined for the refer-
ence waveguide, L = max{l} is the number of modes
excited at the cyclic frequency of transmission ω, zs is
the source depth, and p0 is the amplitude of pressure
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perturbation produced by a point source in the corre-
sponding homogeneous medium at a spherical surface
of radius R0. Expression (1) also involves the quantity 

(3)

which corresponds to the spatial scale of interference of
modes with numbers l and l', where

(4)

Using the results reported in [5], by analogy with
range-independent oceanic waveguides, we introduce
the following quantity that is necessary for subsequent
consideration:

(5)

This quantity characterizes the spatial scale of the re-
arrangement of the interference structure formed by the
field of two pairs of modes with numbers l, l' and n, n',
where

(6)

Evidently, dependences Rl, l '(r) and Rg(l, l'; n, n'; r)
(Eqs. (4) and (6)) can be interpreted as the periods of
interference of modes with numbers l and l' and the
periods of rearrangement of interference structure
formed by different pairs of modes with numbers l, l'
and n, n' for the reference waveguide.
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As in [5], in the range-dependent oceanic
waveguides under consideration, the constructive inter-
ference of different pairs of constructively interfering
modes is characterized by the quantity (l, l'; n, n'; r)
given by Eq. (5), which determines the possibility of a
noticeable manifestation of the diffraction focusing of
an acoustic field in spatial regions

. (7)

The changes that occur with distance in the characteris-
tic minimal

(8)

and maximal

(9)

spatial scales of diffraction focusing lead not only to
displacements of the zones of diffraction focusing
along the r axis but also to changes in the width of these
zones:

(10)

However, the absolute values of the changes that occur
in the width of diffraction focusing zones ∆ (r) can-
not uniquely characterize the changes in the efficiency
of diffraction focusing. This is caused by the fact that,
even for two similar range-independent oceanic
waveguides with different scales of vertical inhomoge-
neity, a comparative estimate of the efficiency of dif-
fraction focusing implies (all other factors being the
same) a comparison of the relative variations of all
quantities characterizing this phenomenon in the dif-
fraction focusing zones of corresponding numbers. The
use of relative values allows one to eliminate the differ-
ences in the positions of these zones, as well as in the
conditions of excitation and reception of modes. There-
fore, the efficiency of diffraction focusing in oceanic
waveguides smoothly varying along the track can be
estimated by the ratio

(11)

which characterizes the relative width of each given
zone. Naturally, the efficiency of diffraction focusing
increases with decreasing σ(r).

Here, it should be noted that, in the general case, the
acoustic field in an oceanic waveguide is formed by dif-
ferent types of modes, namely, by purely water-path
modes, modes interacting only with the surface or with
the bottom, and by modes interacting with both surface
and bottom. In this connection, by analogy with [5], the
diffraction focusing may manifest itself most strongly
for a certain group of maximum-energy-carrying
modes with numbers ls(r) ≤ l ≤ lb(r) (belonging to one
of the aforementioned types), for which the quantity

(l, l'; n, n'; r) (Eq. (5)) exhibits minimal variations as
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a function of l, l', n, and n'. The greater the number of
modes Lm(r) = lb(r) – ls(r) in such a group, the more pro-
nounced the diffraction focusing of acoustic field is in
the corresponding intervals of horizontal distances:

(12)

where

(13)

In addition to the number of modes Lm(r), the width of
these zones for the corresponding group of modes,

(14)

also determines the efficiency of diffraction focusing.
The latter proves to be more pronounced for smaller
values of the ratio

(15)

characterizing the relative width of the zones. This sug-
gests that the efficiency of diffraction focusing of the
acoustic field in an oceanic waveguide smoothly vary-
ing along the track may exhibit no decrease with
increasing σ(r) (Eq. (11)): it may even grow if the
increase in σ(r) is accompanied by a decrease in δ(r)
(Eq. (15)) and an increase in the number of modes Lm(r)
in the corresponding group.

Below, as in [5–11], we consider the most stable and
actually predictable large-scale interference structure
of an acoustic field formed in an oceanic waveguide by
different pairs of adjacent modes. Then, assuming that
the conditions of applicability of the WKB approxima-
tion are satisfied (see [16]) and applying the transfor-
mations analogous to those given in [5] and relations
derived in the same paper [5], from Eqs. (3) and (5) we
obtain the expressions 
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(19)

Here,

(20)

is the cycle length of the Brillouin ray with a corre-
sponding grazing angle χl(r) at a depth z = z0(r) of the
channel axis where the velocity of sound c(z, r) takes its
minimal value c0(r), n(z, r) = c0(r)/c(z, r) is the refrac-
tion index of acoustic waves, and βl(r) = kl(r)/k(r) =
cosχl is the ray parameter. The latter is determined from
the dispersion relation in the WKB approximation:

(21)

where k(r) = ω/c0(r). Depending on whether z1(r) and
z2(r) are the turning or reflection depth of Brillouin
rays, the values of parameter ν in Eq. (21) vary in a rel-

atively narrow interval:  ≤ ν ≤  (see [5, 16]).

From Eqs. (8), (9), (18), and (19) for kDl @ 1, we
obtain fairly simple expressions for the minimal and
maximal spatial scales of diffraction focusing:

(22)

(23)

The presence of two fundamentally different depen-
dences for (r) (see Eq. (23)) is caused by the pos-
sibility of the formation of weakly divergent beams
along the track at certain values of the parameter βl =
βc(r), which correspond to relatively smooth minima of
the function Dl(βl) [17, 18].

As noted in [5], in range-independent oceanic
waveguides, the diffraction focusing is more pro-
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nounced for smaller intervals of variation of the quan-
tity

(24)

as a function of l for all 1 ≤ l ≤ L or for a certain group
of modes ls ≤ l ≤ lb. Here, r0 is an arbitrarily fixed dis-
tance, on which the quantities under consideration do
not depend in this case. Under the conditions of multi-
mode propagation of acoustic waves, the interval of
variation of the parameter βg ≤ βl ≤ 1 that is acceptable
for propagating modes (this interval is bounded from
below by βg, corresponding to the excitation of reradi-
ating modes at βl < βg) is separated into small segments
∆βl = βl – βl + 1:

In this case, the condition for an efficient manifestation
of diffraction focusing of acoustic field in a range-inde-
pendent oceanic waveguide can be formulated as the
requirement that the derivative dRg/dl be small. Since
the strongest diffraction focusing is observed at Rg =
const (see [5]), in this situation, in the case of multimode
propagation, the corresponding differential equality is
satisfied for a certain group of modes ls ≤ l ≤ lb:

(25)

Now, let us return to considering the possibility of
the enhancement or weakening of diffraction focusing
for the same group of modes in an oceanic waveguide
smoothly varying along the propagation track. In this
case, the behavior of the derivative /dl, analogous
to that given by Eq. (25) as a function of distance, is no
longer an informative feature. The point is that, as in the
formulation of expressions (11) and (15) for the quan-
tities σ(r) and δ(r), the essential characteristics prove to
be not absolute but relative variations of the quantity

(r) (with respect to ). Therefore, in oceanic
waveguides smoothly varying along the track, the effi-
ciency of diffraction focusing for the given group of
modes ls ≤ l ≤ lb should be characterized by the deriva-
tive

(26)

Naturally, the strongest diffraction focusing of
acoustic field is achieved in the limiting situation

(27)

From Eq. (21), we derive the relation

(28)

Using this relation and assuming that condition kDl @ 1 is
satisfied, from Eqs. (18), (19), and (27) we obtain the
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approximate equation

(29)

for the dependence (βl), which should be satisfied

for the given group of modes. Here,  =
Dl/  and la is the mode number correspond-

ing to the maximal value of .

It should be noted that, if the solution  = a1(r) to
Eq. (29), where a1(r) is an arbitrary function of r, does
not depend on the ray parameter βl at a fixed distance,
it should be rejected, because it corresponds to an infi-
nitely large value of  (Eq. (18)), which actually
means the absence of diffraction focusing of the acous-
tic field for the given group of modes.

Equation (29) can be reduced to a simpler form
more convenient for analysis:

(30)

This equation allows one to determine the intervals of
the ray parameter variation, βb ≤ βl ≤ βs, within which
the linear dependence (following from Eq. (30))

(31)

corresponds to the maximal possible effect of the dif-
fraction focusing of the acoustic field. In Eq. (31), the
arbitrary function a2(r) taken at a fixed distance also
does not depend on the ray parameter βl for the given
group of modes.

With the use of dependence (31), expression (18) is
reduced to the form

(32)

As one would expect (see Eq. (32)), the efficiency of
diffraction focusing for the given group of modes does
not depend on the behavior of the functions a1(r) and
a2(r). In this case, only one of them, a1(r), influences

the values of the characteristic spatial scales  and 
(Eqs. (13)). From Eq. (32) it also follows that, in the
special case of a possible mutual compensation of a1(r)
and c0(r) variations, i.e., at a1c0 = const, the spatial scale
of diffraction focusing of the field of the given group of
modes does not depend on horizontal distance. There-
fore, in such range-dependent oceanic waveguides
smoothly varying along the track, the phenomenon
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under consideration will be of a purely periodic cha-
racter:
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It is quite natural that the efficiency of the diffraction
focusing of the acoustic field is completely determined
by the width of the corresponding interval of the ray
parameter variation, ∆β(r) = βs(r) – βb(r), and the rate
of its displacement along the βl axis. An increase in the
interval ∆β(r) with distance, which accompanies an
increase in the number of modes in the given group
Lm(r) = lb(r) – ls(r), will necessarily lead to an increase
in the efficiency of diffraction focusing for βb(0) ≥ βb(r)
and βs(0) ≤ βs(r). However, in some situations, an
increase in ∆β(r) with distance may be accompanied by
a considerable displacement of this interval along the βl

axis. The latter may result in that when one of the con-
ditions

(34)

are satisfied, when the initial interval ∆β(0) does not
overlap with a similar interval ∆β(r) at distances
smaller than the maximal spatial scale of the effect, the
diffraction focusing of acoustic field will not manifest
itself.

After the above-stated general conclusions concern-
ing the phenomenon of diffraction focusing of acoustic
fields in oceanic waveguides smoothly varying along
the track, let us proceed to considering the possibility of
using the simplest waveguide model that allows the
determination of the approximate analytical depen-
dences for the quantities of interest.

For this purpose, we consider a waveguide model in
the form of an isovelocity water layer whose depth H(r)
smoothly varies with distance and assume that this
layer overlies a perfectly rigid half-space:

(35)

With the use of an adiabatic approximation in the
framework of this model, we obtain a fairly simple ana-
lytical dependence for the horizontal wave numbers of
modes [16, 19]:

(36)

where xl(r) ≤ 1. For the case of interest, i.e., for multi-
mode propagation with kH @ 1, we limit our consider-
ation to the low-number modes with small grazing
angles (xl(r) ! 1). Then, using the expression following
from Eq. (36) and obtained by a series expansion in
xl(r) to the second-order terms inclusive, by analogy
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with [7, 8] we obtain the dependence for Rg (see
Eq. (6)) at l' = l + 1, n = l', and n' = n + 1:

(37)

Consider the situation when k(r) = k0 = const and the
depth of the water layer varies with distance according
to the law

(38)

where H0 = H (r = 0) and the characteristic horizontal
scale of inhomogeneity RH is sufficiently large:

(39)

Then, from Eq. (5) with the use of Eq. (37), we deter-
mine the following dependence for  at l ' = l + 1, n =
l ', and n' = n + 1:

(40)

As seen from Eq. (40), variations of  as a function of
l are minimal for low-number modes, and, therefore, it
is these modes that form the most intense field maxima
in the diffraction focusing zones (see [7, 8]). Naturally,
the maximal value (r) of  is achieved in expres-

sion (40) at l = la = ls = 1. The minimum of  is
achieved at a certain value of l = lu, the determination of
which by approximate expression (40) is inappropriate
(see [7, 8]). However, if we only consider the group of
modes with 1 ≤ l ≤ lb, which make the main contribu-
tion to the formation of the diffraction focusing zones,
then, instead of lu, we can use the boundary value lb,
which can approximately be determined from the con-
dition of equality between the width of the first diffrac-
tion focusing zone and the period of interference of
adjacent modes:

(41)

For the following consideration, the knowledge of the
value of lb is of no significance. Therefore, without
solving Eq. (41), we proceed to the determination of
dependences (14), (15), and (26) for (r), δ(r), and
Φ(l, r), which characterize the phenomenon of diffrac-
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tion focusing of an acoustic field in an ideal waveguide
given by Eq. (35).

From Eqs. (14), (15), (26), and (37), we obtain

(42)

(43)

(44)

As seen from Eqs. (37) and (42)–(44), an increase in
the depth of the water layer with distance leads to a
noticeable increase in the maximal and minimal scales
of diffraction focusing,

(45)

and to a small increase in the absolute width of each of
the corresponding zones. However, a decrease in the
relative width δ(r) of the diffraction focusing zones
with distance, as well as a decrease in the absolute
value of the characteristic derivative |Φ(l, r)|, should
lead to an enhancement of the effect under discussion
in such a waveguide. It should be noted that the quantity
|Φ(l, r)|, considerably increasing with the mode num-
ber, exhibits the fastest decrease with distance for the
low-number modes, which govern the formation of the
zones of diffraction focusing of an acoustic field.

Let us now consider an isovelocity waveguide in
which not only the depth H(r) (Eq. (38)) but also the
sound velocity c0(r) and, hence, the wave number k(r)

vary with distance while the quantity kH2 = k0

remains constant. In this case, from Eqs. (5) and (37),
we obtain the dependence
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With an allowance for the smallness of the ratio r/RH !
1 (see Eq. (39)), we transform expression (46) to the
more convenient form

(47)

From the comparison of dependences (40) and (47),
it follows that, in the second case, the maximal (at l =
ls = 1) and minimal (at l = lb) spatial scales of diffraction
focusing increase much more slowly with distance. As
a result, the dependence

(48)

which follows from Eqs. (14) and (47), decreases with
distance in contrast to the ascending dependence (42) at
k = k0 . However, the corresponding decrease in the
width of each diffraction focusing zone ∆Rm(r) with
distance is not accompanied by an enhancement of the
effect as compared to the first case (where k = k0), since
the dependences δ(r) and Φ(l, r) following from
Eqs. (15), (26), and (47) and characterizing this process
fully coincide with the analogous dependences (43) and
(44). Therefore, in the situations considered above, the
efficiency of diffraction focusing of an acoustic field in
the corresponding spatial regions increases with dis-
tance at the same rate.

In closing, let us formulate the main results of this
study and the conclusions derived from them.

Conditions are formulated that are necessary for the
diffraction focusing of an acoustic field to occur in an
oceanic waveguide smoothly varying along the track.
Using the adiabatic and WKB approximations for the
mode representation of acoustic field in such
waveguides, it is shown that the highest efficiency of
diffraction focusing is achieved for the intervals of ray
parameter variation, within which the inverse square of
Brillouin ray cycle length linearly depends on the ray
parameter. It is noted that the diffraction focusing man-
ifests itself only when the initial interval of ray param-
eter variation overlaps with a similar interval at dis-
tances exceeding a certain number of maximal spatial
scales of the phenomenon under consideration.

Characteristic features of the enhancement of dif-
fraction focusing in an oceanic waveguide smoothly
varying along the track are studied analytically for the
model of an isovelocity waveguide with an increasing
depth of the water layer and a perfectly rigid bottom.

A numerical simulation of the processes considered
above will be the subject of a subsequent publication.

Presumably, the quasi-periodic character of diffrac-
tion focusing should be taken into account in the case
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 +

---------------------------------------------------------------------------------------≈
of sound focusing in oceanic waveguides with the use
of wave conjugation, because, in this case (see [19–
21]), even in oceanic waveguides that are inhomoge-
neous along the track, the formation of several pro-
nounced focal regions is possible.
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Stochastic Resonance at the Periphery of Auditory System: 
A Simulation Experiment

L. K. Rimskaya-Korsakova
Andreev Acoustics Institute, Russian Academy of Sciences, ul. Shvernika 4, Moscow, 117036 Russia

e-mail: lkrk@akin.ru
Received April 14, 2003

Abstract—An auditory nerve fiber model is studied. The model includes the formation of the response of the
basilar membrane, formation of the receptor potential of the internal hair cell, formation of the synaptic poten-
tial of the auditory nerve fiber, and transformation of the synaptic potential into a sequence of spikes. The role
of this transformation, as well as the role of changes in the excitability of the fiber after the spike generation in
the coding of amplitude-modulated signals is revealed for the cases of signals of medium (i.e., corresponding
to the sloping part of the curve representing the mean firing rate of an auditory nerve fiber as a function of the
stimulus level) and subthreshold levels. Simulated experiments show that the coding of the envelope of a
medium-level amplitude-modulated signal is a dynamic process, which includes fine tuning (adaptation) of the
threshold of the auditory nerve fiber to the stimulus level. The coding of the signal envelope is little affected by
the slope of the dependence of the mean firing rate on the stimulus level. However, fibers with steep input–out-
put characteristics may exhibit stochastic resonance properties. Owing to these properties, such fibers are capa-
ble of reproducing the envelope of a subthreshold modulated signal when weak noise is added to it. Ways are
considered for extending the range of subthreshold signal and noise levels within which the envelope of a mod-
ulated signal is reproduced (or the phenomenon of stochastic resonance is observed). © 2004 MAIK
“Nauka/Interperiodica”.
It has been known that auditory nerve fibers, accord-
ing to their spontaneous activity (SA), i.e., the ability of
a fiber to spontaneously generate spikes in the absence
of stimulus, possess not only different physiological
and morphological properties [1–12] but, presumably,
also different functional properties [13].

Depending on the level of SA, auditory nerve fibers
are classed into three groups: fibers with low, medium,
and high SA [1, 2, 10]. The time of recovery of the
response thresholds after the end of a stimulus presen-
tation (short-term adaptation) is known to be greater for
auditory nerve fibers with lower SA [4, 14]. After the
beginning of the stimulus presentation, the firing rate
decreases to a certain stationary level. According to the
data reported in [11, 12], this decrease occurs faster for
fibers with lower SA, while according to [4, 14], it is
faster for fibers with higher SA. 

Fibers with higher SA are known to have steep and
narrow characteristics that represent the mean firing
rate as a function of the signal level (the input–output
characteristics), as well as low response thresholds.
Fibers with low SA have gently sloping and wide
input–output characteristics and high response thresh-
olds. However, fibers with low SA and sloping input–
output characteristics reproduce the envelope of a sine-
amplitude-modulated signal (SAMS) much better than
fibers with high SA and steep input–output characteris-
tics [3, 7–9, 11, 12, 16, 17]. Fibers with medium SA
have intermediate properties.
1063-7710/04/5002- $26.00 © 20201
Auditory nerve fibers have one synaptic input from
the internal receptor hair cell, and they exhibit SA [1, 2,
10]. Each internal receptor hair cell innerves 10–
20 afferent fibers with different SAs, while these fibers
are assumed to be affected by the same receptor poten-
tial. Fibers with different SAs are connected to a recep-
tor cell on different sides and, at the points of connec-
tion, have different sizes of synaptic knobs; in addition,
they have different diameters within the distance from
the hair cell to the cochlear nuclei and different num-
bers of synaptic terminals at the cells of these nuclei
[15]. The mechanism of SA is believed to be related to
spontaneous outbursts of mediator portions from the
receptor cell into the synaptic cleft. Evidently, the for-
mation of synaptic potentials of auditory nerve fibers
with different SAs from the receptor potential of a sin-
gle internal hair cell should be related to SA. This rela-
tion may be responsible for the dependence of the
steepness of the input–output characteristic of auditory
nerve fiber on the level of SA.

Using a model of auditory nerve fiber, it was shown
that the reproduction of the envelope of a SAMS in
fibers is closely related not to the profile of the input–
output characteristic but to the adaptation properties,
which presumably provide the tuning (adaptation) of
the fiber response threshold to the level of the acting
stimulus. For auditory nerve fibers that have high SA
levels, low response thresholds, steep input–output
characteristics, and poorly reproduce the envelope of
004 MAIK “Nauka/Interperiodica”
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a SAMS, it was found that such fibers may exhibit sto-
chastic resonance properties. Owing to the stochastic
resonance, these fibers are capable of extracting the
envelope of a SAMS of a subthreshold level when weak
noise is added to the signal. A stochastic resonance
occurs in nonlinear systems transforming a signal to a
Poisson sequence of events [19–21]. Precisely this kind
of sequence of events is formed by the evoked activity
of real [22] and model [23–25] auditory nerve fibers.

Band-pass
filtering

Basilar
membrane

Compression
and detection

Formation
of synaptic

noise

Integration

Comparison of G(t)
with the threshold H(t),

the spike generation

Variation of

Internal hair 
cell and
the synapse
of a spiral
ganglion
neuron

Spiral
ganglion
neuron

H(t)

X(t)

Y(t)

R(t)

S(t)

G(t)

Pi

Fig. 1. Flow chart representing the model of the periphery
of the auditory system. (For explanation, see the main body
of the paper.)
The purpose of this study is to determine the condi-
tions for the best reproduction of the envelopes of
SAMSs of medium (corresponding to the sloping part
of the input–output characteristic) and subthreshold
levels in the firing rate of auditory nerve fibers with dif-
ferent SAs. Conditions for the appearance of a stochas-
tic resonance in auditory nerve fibers in the presence of
an additive mixture of subthreshold SAMSs and broad-
band noise are estimated. Ways of extending the range
of subthreshold SAMS levels, within which the extrac-
tion of the SAMS envelope is possible, are considered.

The study was carried out using a phenomenologi-
cal model of auditory nerve fiber (Fig. 1) [23–25]. The
model includes several stages of stimulus transforma-
tion: first, formation of the response of the basilar mem-
brane; second, formation of the receptor and synaptic
potentials of an internal hair cell; and, third, formation
of a sequence of short pulses, i.e., spikes, by the spiral
ganglion neurons. The adequacy of the model was ver-
ified by comparing the responses of model and real
auditory nerve fibers.

At the first stage corresponding to the formation of
the pulsed response of the basilar membrane y(t), a con-
volution of the input signal x(t) with the pulsed charac-
teristic of the filter of the basilar membrane h(t) takes
place [26]:

(1)

(2)

where t is time; ω is the central frequency of the filter,
i.e., the tuning frequency of the model of auditory nerve
fiber; and α and β are constants.

The nonlinear transformation of the signal, which
reproduces the stage of mechanoreception, is often
realized by one of the sigmoid functions [27–30]. Such
functions adequately reproduce the variations of the
receptor potentials of internal hair cells [31, 32] and are
capable of providing a better amplification for weak
signals than for stronger ones. The model under consid-
eration uses a nonlinear transformation realized by a
modified sigmoid function R(t). It was assumed that the
mechanism of the synaptic potential formation from the
receptor potentials is related to the mechanism respon-
sible for the appearance of SA. Therefore, in the model
of auditory nerve fiber, the slope of the sigmoid func-
tions (parameter Sl in Eq. (3)) depends on the level of
SA in approximately the same way as the slope of the
input–output characteristic of real fiber depends on the
level of SA [7]:

R(t) = Rmax[2.0 /(1.0 + e (Dis – y(t))/Sl) – 1.0], (3)

where Rmax is the maximum synaptic potential and the
parameter Dis determines the displacement of the func-
tion; this parameter was equal to 0.05 in all cases.

Then, synaptic noise S(t) was formed as a random
process whose mean value and variance were propor-
tional to the demodulated function R(t). To reproduce

y t( ) h t t'–( )x t'( ) t',d∫=

h t( ) ωt( )β –α ωt( )[ ] ωt( ),sinexp=
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the SA, the rms deviation of the random process was
increased by a quantity ξ. In the absence of the signal
x(t), the synaptic noise S(t) had a zero mean and an rms
deviation proportional to ξ. The formation of the synap-
tic potential G(t) was terminated by integrating the
quantity S(t):

(4)

where τ is a time constant equal to 0.2 ms. Expression (4)
takes into account the inertial properties of the signal
transformation at the mechanoreceptor level and (or) at
the membrane of the spiral ganglion neuron.

The stage of the transformation of the synaptic
potential to the firing rate of the fiber Pi included the
comparison of the synaptic potential G(t) with the time-
dependent threshold H(T). If G(t) exceeded the thresh-
old, a short pulse, i.e., a spike, was generated by a neu-
ron. Each spike caused a temporal threshold increase in
the neuron model. Within a time interval equal to the
sum of the periods of the absolute and relative refracto-
rinesses, the threshold decreased to the initial level H0.
At the stage of the relative refractoriness, the threshold
H(t) had a rapid and a slow component [33] and could
increase by quantities equal to the remainders of the
rise of each of the threshold components before the
spike generation. The variation of the threshold H(t)
with time after the spike generation has the form

(5)

where Hf = H0f + dHf and Hs = H0s + dHs; H0f , H0s, Hf ,
and Hs are the constant and varying values of the rapid
and slow components of the neuron threshold at the
stage of relative refractoriness; dHf and dHs are the
remainders of the rise of each of the threshold compo-
nents at the instant preceding the spike generation; τa is
the time of absolute refractoriness; τf and τs are the time
constants of the two threshold components at the stage
of relative refractoriness; Ω is a constant that deter-
mines the threshold value at the stage of absolute
refractoriness; and  is the function determined as

 = 1 for t < 0 and  = 0 for t > 0.
The threshold function H(t) given above allows one

to preset different adaptation and refractoriness proper-
ties in the fiber model. Remember that refractoriness is
characterized by a change in the excitability of a neuron
immediately after the appearance of a response while
adaptation is characterized by a decrease in the firing
rate of the response during the action of a prolonged
stimulus.

The central frequency of the filter of the basilar
membrane was taken to be equal to 10 kHz. The thresh-
old value was H0 = 0.02. The period of the absolute
refractoriness was τa = 0.5 ms. It was assumed that
smaller values of parameter ξ, which determines the
frequency of synaptic potential fluctuations with

G t( ) –t/τ( )S t( )exp t,d∫=

H t( ) H0 Hf – t τa–( )/τ f Ω τa t–( )sgn+[ ]exp+=

+ Hs – t τa–( )/τ s Ω τa t–( )sgn+[ ] ,exp

sgn
t( )sgn t( )sgn
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respect to the spike generation threshold in the absence
of a stimulus, correspond to greater values of the
parameter Sl, which determines the slope of the trans-
formation function R(t). The smaller the parameters ξ,
τf, τs, H0f /H0, and H0s/H0, the lower the level of SA. The
quantity Rmax determines the mean firing rate in the sat-
uration regime. The value of this quantity was chosen
so that the firing rate did not exceed 380–400 spikes per
second. The parameters chosen for the fiber models
with different SAs are presented in the table at the bot-
tom of Fig. 2.

The stimuli had the form of a SAMS, broadband
noise, and an additive mixture of the SAMS and noise.
The carrier frequency of the SAMS was equal to
10 kHz, the modulation depth m was equal to 0.2, and
the modulation frequency was 100 Hz. The duration of
a stimulus was 100 ms. The time step used in the calcu-
lations was 0.001 ms, and the time step (bin) in calcu-
lating the histograms of the responses of fiber models
was 0.1 ms.

To estimate the statistical properties of the responses
of fiber models, the following characteristics were
determined (by analogy with electrophysiological
experiments):

(i) The post-stimulus histogram determining the
probability of firing for auditory fiber before, during,
and after stimulus presentation;

(ii) The dependence of the mean firing rate n of the
fiber during the stimulus presentation on the input sig-
nal level (the input–output characteristic);

(iii) The phase histogram determining the probabil-
ity of firing corresponding to a given phase of the
SAMS. For the phase histogram, the synchronization
coefficient r was calculated. This quantity character-
ized the degree of reproduction of modulations in the
response of the auditory nerve fiber, so that r = 0 when
the density of spike distribution over the modulation
period was constant and r = 1 when all spikes were
localized in one bin;

(iv) The dependence of the synchronization coeffi-
cient r on the level of the SAMS carrier;

(v) The dependence of the principal component of
the Fourier transform of the phase histogram, r1, on the
noise level for the case of a stimulus in the form of an
additive mixture of SAMS and noise: r1 = 2nr. The
quantity r1 allows one to estimate the modulation of the
instantaneous firing rate of the fiber and can be inter-
preted as the energy characteristic of the envelope
reproduction in the response of the fiber at the modula-
tion frequency [34].

Let us consider the responses of the models of audi-
tory nerve fibers with different SAs to an SAMS in the
absence of noise (Fig. 2). Figure 2a presents post-stim-
ulus histograms of the responses of different fiber mod-
els. The histograms were obtained at SAMS levels at
which the mean firing rate was equal to about 200
spikes per second. The character of adaptation varied
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Fig. 2. Responses of the models of auditory nerve fibers with different SAs to a SAMS in the absence of noise: (a) post-
(b) dependences of (1) the threshold H averaged over the time of stimulus presentation and (2) the synaptic potential G on the SA
nization coefficient r and (2) the mean firing rate n in spikes per second on the SAMS level. The first row from the top represen
SA, the second row corresponds to fiber with medium SA, and the third row, to fiber with low SA. The level of 0 dB corresponds 
noise) in the model of fiber with high SA. The parameters given over the histograms (Fig. 2a) indicate the corresponding type o
was obtained, and the values of n and r. The table presented at the bottom shows the parameters of the models of fibers with diff
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for different models because of the difference in the
parameters of the threshold function H(t). The differ-
ence between the mean firing rates recorded at the
beginning and at the end of the SAMS presentation was
greater and the time interval within which this change
occurred was smaller in the model of fiber with low SA,
compared to the model with high SA.

Figure 2b displays the threshold values averaged
over the stimulus duration (curves 1) and the synaptic
potentials (curves 2) as functions of the SAMS level.
Curve 2 is called the amplitude characteristic of synap-
tic transmission of the fiber. The steepness of this curve
(determined by parameter Sl of the function R(t)) is
greater and the SAMS level interval, within which the
steepness grows, is smaller for fiber with high SA, com-
pared to fiber with low SA. The dependences of the
mean threshold values (curves 1) on the SAMS level
exhibit pronounced differences in the temporal summa-
tion of the thresholds for different fibers. The summa-
tion is smaller for models of fiber with high SA. The
greater the parameters of the threshold function H(t)
and the smaller the SA (parameter ξ of the function
S(t)), the greater the change in the threshold value
(curve 1), finer the tuning (adaptation) of the threshold
to the synaptic potential level (curve 2), and longer the
time of recovery of the mean threshold value after the
end of the SAMS presentation (not shown in the plots).

Figure 2c shows the dependences of the synchroni-
zation coefficients r on the SAMS level (curves 1) and
the input–output characteristics (curves 2) of the mod-
els of auditory nerve fibers. The steepness of the input–
output characteristic is determined by the steepness of
the amplitude characteristic of synaptic transmission
(curve 2 in Fig. 2b) but can also flatten. The flattening
of a steep characteristic will be stronger the greater the
adaptation parameters of the threshold function are and
the greater the SA is. The range of variation of the
quantity r (curve 1 in Fig. 2c) is determined by the
width of the range within which the input–output char-
acteristic exhibits a growth (curve 2 in Fig. 2c). The
maximum values of r and the widest range of SAMS
levels, within which the SAMS is synchronized with
the response of the fiber, is observed for the fiber model
with low SA, sloping input–output characteristic, and
high values of the parameters of the threshold function.
In the fiber model with high SA, which has the steepest
input–output characteristic and small values of the
parameters of the threshold function, the minimum val-
ues of r are obtained along with the smallest range of
SAMS levels, within which the SAMS is synchronized
with the fiber response.

From calculations it follows that both the synchroni-
zation coefficient r and the steepness of the input–out-
put characteristic depend on the steepness of the ampli-
tude characteristic of synaptic transmission of the fiber
(parameter Sl in R(t)), on the SA (parameter ξ in S(t)),
and on the tuning (adaptation) of the threshold to the
level of the synaptic potential (the parameters of H(t)).
ACOUSTICAL PHYSICS      Vol. 50      No. 2      2004
In the fiber models with different SAs, these processes
occur in different ways and lead to the same relation
between the steepness of the input–output characteris-
tic and the values of the synchronization coefficient r as
in real fibers with different SAs [3, 7–9, 11, 12, 16, 17].
It is significant that the reproduction of the SAMS enve-
lope in the responses of auditory nerve fibers occurs via
the transformation of the synaptic potential G(t) into a
sequence of spikes Pi. Such a transformation is only
weakly affected by the steepness of the input–output
characteristic but strongly affected by the tuning (adap-
tation) of the threshold to the level of the acting SAMS.
In fact, the tuning realizes a kind of amplification con-
trol by means of the threshold variation.

However, the steepness of the input–output charac-
teristic of auditory nerve fiber may play an important
role in the reproduction of the envelopes of subthresh-
old SAMSs when the latter are combined with weak
noise. Figures 3–5 show the responses of the models of
fibers with different SAs to noise and to an additive
mixture of SAMS and noise. The curves nearest to the
abscissa axes in Figs. 3–5 correspond to the responses
of fiber models to noise alone.

Figure 3 shows the responses of the fiber models
whose parameters are given in Fig. 2. Evidently, if an
SAMS of over-threshold level is presented in combina-
tion with low-level noise, any fiber provides a good
synchronization of its response with the SAMS (the
first row in Fig. 3). An increase in the noise level
reduces the synchronization. However, when the
SAMS level is gradually decreased below the response
threshold, at some of the subthreshold SAMS levels the
dependence of the synchronization coefficient r (of the
response with the SAMS envelope) on the noise level
exhibits an increase in synchronization in a local region
near the response threshold. As in Fig. 2c, the maxi-
mum values of the synchronization coefficient r are
observed for the model of auditory nerve fiber with
low SA.

An analysis of the data presented in the second row
of Fig. 3 shows that a combination of SAMS with noise
increases the mean firing rate in the initial part of the
profile of the input–output characteristic, compared to
the profile of the characteristic obtained in the presence
of noise alone. The steeper the input–output character-
istic, the greater the aforementioned increase in the fir-
ing rate and the wider the range of noise levels within
which this increase is observed. Since the greatest
increase in the firing rate occurs in the fiber model with
high SA, the lowest subthreshold SAMS level at which
the fiber response is synchronized with the SAMS
envelope is also observed for this model (the first row
in Fig. 3).

Now, let us consider the principal component of the
Fourier transform of the phase histogram, r1, as a func-
tion of the noise level under the presentation of an addi-
tive mixture of SAMS and noise (the third row in
Fig. 3; this row is obtained as a result of the multiplica-
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bottom. The abscissa axis represents the rms deviation of noise in decibels, where 0 dB corresponds to the threshold of th
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Fig. 4. Families of responses to noise or to an additive mixture of SAMS and noise for models of auditory nerve fibers with different
SAs. The effect to be estimated is that of the steepness of the curve representing the mean firing rate versus the noise level (i.e.,
parameter Sl of the function R(t)) on the range of noise and signal levels within which the SAMS envelope can be extracted. The
parameters of the fiber models are given in the table at the bottom. The rest of the description corresponds to that of Fig. 3.
tion of the first two rows). In the models of fibers with
low and medium SA and with steep input–output char-
acteristics, a certain local increase in r1 is observed at
some noise levels (the third row in Figs. 3a and 3b). The
response of the fiber model with low SA and with a
gently sloping input–output characteristic does not
exhibit such a local region (the third row in Fig. 3c).
From the value of r1, it is possible to estimate the mod-
ulation of the instantaneous firing rate of the fiber, i.e.,
to estimate a certain energy characteristic showing the
reproduction of the envelope of the SAMS in the output
response of the fiber at the modulation frequency.
Using the values that were obtained for the principal
component of the Fourier transform of the phase histo-
gram r1 when the SAMS was mixed with noise and
when noise was presented alone, it is possible to esti-
mate the signal-to-noise ratio at different noise levels.
Analyzing the data shown in Fig. 3 (the third row in
Figs. 3a and 3b), one can see that the signal-to-noise
ratio as a function of noise level exhibits an extremum,
which occurs in the same optimal range of noise levels
as that observed for r1. This extremum corresponds to
ACOUSTICAL PHYSICS      Vol. 50      No. 2      2004
the region of the appearance of stochastic resonance
[19–21]. The stochastic resonance occurs when the
SAMS levels are within –3.7 to 0 dB for the fiber model
with high SA and from –2.5 to 0 dB for the fiber model
with medium SA. In the case of the fiber model with
low SA and a sloping input–output characteristic, sto-
chastic resonance is absent (the third row in Fig. 3c).

Is it possible to detect subthreshold SAMSs with
even lower levels? Remember that the model of audi-
tory nerve fiber includes several stages of nonlinear
transformation of the signal, namely: compression of
the signal at the receptor or synapse level (R(t)), forma-
tion of synaptic noise and SA (S(t)), transformation of
the synaptic potential (G(t)) to a sequence of spikes
(Pi), and adaptation and refractoriness (H(t)). These
processes affect the property of extracting the SAMS
envelope in the response of auditory nerve fiber in the
absence of noise. Now, let us consider how these prop-
erties affect the value of the subthreshold SAMS level,
at which the extraction of the envelope of SAMS is still
possible, in the presence of weak noise.
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Fig. 5. Families of responses to noise or to an additive mixture of SAMS and noise for models of auditory nerve fibers with different
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Figure 4 illustrates the effect of parameter Sl of the
function R(t) on the range of signal and noise levels
within which the stochastic resonance is observed. All
other parameters of the fiber models were identical. The
steepness of the amplitude characteristic of synaptic
transmission is crucial for the appearance of stochastic
resonance. The greater the steepness, the lower the sub-
threshold SAMS levels at which a stable extraction of
the SAMS envelope is possible and the wider the range
of noise levels within which stochastic resonance man-
ifests itself.

Fiber models with lower SA (i.e., with a smaller
parameter ξ of the function S(t) and with all other
parameters of the fiber model being the same) have
lower subthreshold SAMS levels at which the SAMS
envelope can be extracted in the presence of noise and
a wider range of noise levels within which stochastic
resonance takes place. However, this decrease in the
subthreshold SAMS levels is very small (not shown in
the plots).

Other parameters that are crucial for the appearance
of stochastic resonance are the parameters of the
threshold function H(t). Figure 5 shows the responses
of the models of auditory nerve fibers with identical
SAs and with the same steepness of the amplitude char-
acteristics of synaptic transmission. The models of
fibers with greatest parameters of the threshold func-
tion and steep amplitude characteristics of synaptic
transmission (Fig. 5b) exhibit the lowest subthreshold
SAMS level equal to –6.9 dB, at which the extraction of
the SAMS envelope is observed in the presence of weak
noise. The simulation experiment shows that the
parameters of the threshold function (the adaptation
and refractoriness properties) and the SA (the synaptic
noise properties) influence the position of the operating
point of the amplitude characteristic of synaptic trans-
mission, i.e., the point at which the spikes synchronized
ACOUSTICAL PHYSICS      Vol. 50      No. 2      2004
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with the SAMS envelope are generated in a given fiber
model.

Owing to the great volume of data characterizing the
firing rates of auditory nerve fibers of different animals,
it is possible to compare the model responses with real
responses. It was noted above that real auditory nerve
fibers are classed into three groups according to both
the SA levels and the response thresholds. The lower
the SA of a given auditory nerve fiber, the higher its
response threshold is. The scatter of the thresholds
depending on SA has been much discussed in the liter-
ature [1, 3, 35, 36]. It is well known that the experimen-
tal values of the response thresholds of auditory nerve
fibers strongly depend on the criterion of the threshold
determination. Using the statistical criterion [3], it was
found that the response thresholds of auditory nerve
fibers with different SAs differ from each other by only
a few decibels. Taking these data as a basis, we fixed
parameter Dis in the function R(t) and parameter H0 in
the function H(t) but varied parameter ξ in the function
S(t) determining both the synaptic noise and SA.
Because of the change in the synaptic noise level, the
response thresholds for the fiber model with high SA
were found to be approximately 5 dB lower than those
for the fiber model with low SA.

The parameters that determine the refractoriness
and adaptation properties (the parameters of the thresh-
old function H(t)) of the fiber models were selected so
as to reproduce the profiles of the post-stimulus histo-
grams of the responses obtained from auditory nerve
fibers with different SAs [11, 12]. Therefore, in the
fiber models with high SA, the parameters of the
threshold function were the smallest ones. Hence, after
the stimulus termination, the response thresholds of
these fiber models recovered faster than the response
thresholds of other models (this effect is not shown in
the figures). This result agrees well with the known
fact: the time of the response threshold recovery after
the stimulus presentation is greater for fibers with low
SA [4, 14].

It has been shown [3, 7, 9, 11, 16] that real auditory
nerve fibers with low SA exhibit wider and less steep
input–output characteristics than fibers with high SA.
The models of auditory nerve fibers with different SAs
adequately reproduce these properties (Fig. 2). The
input–output characteristic will be flatter when the
amplitude characteristic of synaptic transmission is less
steep and when the adaptation and refractoriness are
more pronounced. The influence of SA is much weaker:
the steepness of the characteristic is smaller for higher
SA. Therefore, in the model of auditory nerve fiber with
low SA, the input–output characteristic is wider and
less steep than the corresponding characteristic in the
model with high SA.

If the stimulus is a SAMS alone (without noise), real
auditory nerve fibers with low SA, in spite of the profile
of their input–output characteristic, reproduce the
SAMS envelope more adequately than fibers with high
ACOUSTICAL PHYSICS      Vol. 50      No. 2      2004
SA [7, 9, 11, 12]. In addition, the range of signal levels,
within which the envelope is reproduced, is wider for
fibers with low SA. An explanation was found for the
discrepancy between the profiles of the input–output
characteristics of fibers with different SAs and the mea-
sured values of the synchronization coefficient r
(Fig. 2). Calculations by the model showed that the
reproduction of the SAMS envelope in the responses of
auditory nerve fibers critically depends on the property
of tuning (adaptation) of the threshold to the level of the
acting synaptic potential. Since in fibers with low SA
such an adaptation occurs more quickly [11, 12], we
believe that the synchronization of the response with
the SAMS envelope should be better in these fibers.

Different authors investigated the responses of audi-
tory nerve fibers to SAMSs in the presence of broad-
band noise [9, 11, 37]. As a rule, the presence of high-
level noise shifts the mean firing rate of auditory nerve
fiber to the region of higher stimulus levels. Such a shift
does not affect the reproduction of the SAMS envelope
[11]. The physical properties of an additive mixture of
signal and noise, as well as the nonlinear properties of
the transformation, which manifest themselves at the
periphery of the auditory system, may shift the input–
output characteristic of the fiber toward lower signal
levels [38].

An improvement in the extraction of the stimulus
envelope is actually observed in the auditory system for
a mixture of a threshold-level signal and broadband
noise [39]. In measuring the microphone potentials
from the round window of the cochlea, the amplitudes
of the envelope of the summary response produced by
auditory nerve fibers were estimated under the variation
of either noise level or stimulus level. The amplitude of
the response increased when the threshold signal was
mixed with broadband noise whose level was below
10–15 dB. The amplitude remained unchanged at inter-
mediate noise levels and decreased at high noise levels.
The increase in the amplitude of the response of the
summary microphone potential was explained by the
author of the cited publication by the phenomenon of
stochastic resonance. Most likely, under the effect of
the additive mixture of the threshold-level signal and
noise, the summary microphone potential was formed
from the responses of low-threshold auditory nerve
fibers with steep input–output characteristics. Hence,
the results reported in paper [39] can be qualitatively
compared with the results of the above calculations
(Fig. 3). From the model calculations, it follows that an
improvement in the extraction of the signal envelope
for subthreshold SAMSs in the presence of weak
broadband noise occurs in the low-threshold models of
auditory nerve fiber with high SA owing to their steep
input–output characteristics and the stochastic reso-
nance property. This result agrees well with the conclu-
sions of [31, 40].

Model studies show that the region of the stochastic
resonance manifestation can be different. Therefore,
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the range of subthreshold SAMS and noise levels may
be broader if the adaptation and refractoriness proper-
ties of the fiber are clearly pronounced (Fig. 5). At this
point it is unclear which of the properties of real fibers
change in the course of adaptation. Let us assume that
adaptation provides not only the tuning of the synaptic
potential to the response threshold of a spiral ganglion
neuron but also leads to a change in the profile of the
transient amplitude characteristic of synaptic transmis-
sion by increasing the steepness of the profile. In this
case, the effect of stochastic resonance may play an
important role in the analysis of hearing data at the
periphery and at higher levels of the auditory system.

It is also necessary to note the important role of syn-
aptic noise. Owing to noise, the spike sequence obeys a
Poisson distribution. It is well known that noise pro-
vides the desynchronization of responses in different
fibers. Noise can prevent the correlation that may
appear between interspike intervals at high-level stim-
uli because of the refractoriness. Such a correlation
leads to the appearance of chopper-type responses,
which are characteristic of the neurons of cochlear
nuclei rather than of auditory nerve fibers [24, 25].

Evidently, the coding of the SAMS envelope at the
periphery of the auditory system depends on the prop-
erties of nonlinear transformations. The periphery
model considered in this study includes the following
nonlinear transformations: (i) compression and detec-
tion of the signal at the receptor level, (ii) formation of
the synaptic potential in the form of a random process,
(iii) transformation of the synaptic potential into a
sequence of spikes, (iv) change in the excitability of the
fiber after the generation of a spike (refractoriness), and
(v) decrease in the firing rate during the presentation of
a prolonged stimulus (adaptation).

The simulation experiments revealed the role of
these processes in the extraction of the envelopes of
SAMSs of medium (corresponding to the sloping part
of the input–output characteristic) and subthreshold
levels.

The coding of the envelopes of SAMSs with any
levels at the periphery of the auditory system is a
dynamic process, which occurs with the transformation
of synaptic potentials into a spike sequence and pro-
vides the tuning (adaptation) of the system to the level
of the acting SAMS. This tuning plays a positive role in
all cases. It serves as a kind of amplification control. It
changes the position of the operating point on the
amplitude characteristic of synaptic transmission, i.e.,
the point at which the generation of spikes synchro-
nized with the SAMS envelope takes place.

When a SAMS of intermediate level is presented,
the steepness of the input–output characteristic weakly
affects the degree of reproduction of the SAMS enve-
lope in the fiber response. The SAMS envelope is
reproduced and pronounced more strongly when the
SA is lower and the adaptation and refractoriness are
greater, i.e., when the tuning of the threshold of the
fiber response to the level of the synaptic potential is
better. For low-threshold auditory nerve fibers, the role
of the steepness of the input–output characteristic dras-
tically increases when the coding of subthreshold
SAMS envelopes occurs in the presence of weak noise.
The region of the stochastic resonance manifestation
can be greater if the tuning of the response threshold of
the fiber to the signal level is finer. The existence of the
tuning of the system to the level of an acting stimulus is
recognized by many researchers [1, 5, 6, 9, 12, 17]. This
study reveals its important role.

Further studies of both the dynamic coding of the
SAMS envelope and the stochastic resonance are nec-
essary for understanding the mechanisms of signal pro-
cessing not only at the periphery but also at higher lev-
els of the auditory system.
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Abstract—Nonlinear processes accompanying the focusing of a microsecond acoustic pulse produced by an
electromagnetic source shaped as a spherical segment are investigated. The processes are considered to be far
from the boundaries of a liquid, in the absence of cavitation. Detailed measurements of the pressure field by a
fiber-optic sensor and high-speed photography of the shock front are performed. The pressure field is found to
be determined by the nonlinear effects that occur in the course of the propagation of the initial converging com-
pression wave and an edge rarefaction wave. The peak pressure amplitudes at the focus are 75 and –42 MPa for
the compression and rarefaction waves, respectively, at the maximum voltage of the pulse generator in use. The
measured length of the compression wave front is equal to the response time of the sensor (8 ns). The pressure
amplitude is shown to be limited by the irregularity of the propagation of a shock wave in the form of Mach’s
disk. At the focus, the pressure gradient across the radiator axis reaches 0.5 atm/µm, while the diameter of the
focal spot is 2.5 ± 0.2 mm. The focus of the edge rarefaction wave formed due to diffraction is located closer
to the radiator than the focus of the compression wave, which may facilitate the study of the biological effect
of cavitation independently of the shear motion of the medium. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Starting from the mid-1980s and up to now, systems
for focusing shock waves have been much used in med-
icine for lithotripsy (stone destruction in kidneys) [1]
and therapy of malignant tumors [2]. The pressure gra-
dient in the compression phase and the cavitation in the
rarefaction phase seem to be the two most important
factors in the mechanisms of stone and cell destruction
that are not yet understood [3]. Thus, to develop medi-
cal applications of shock-wave generators, it is neces-
sary to know the pressure field and, especially, its neg-
ative component. The location of the focus of the nega-
tive pressure phase is quite important: it is almost
always reached before the geometrical focus of the
radiator [4], and, according to theoretical estimates, the
coefficient of volume expansion of a gas-vapor cavity
in the case of cavitation is maximal at this point [5].
This rule was suggested to increase the efficiency of
destruction of kidney stones in lithotripsy [6].

In the approximation of linear geometrical acous-
tics, the amplitude of both positive and negative pres-
sure pulses at the focus theoretically grows without
limit. However, in practice, pressure at the focus is lim-
ited by the diffraction laws and the irregular (Mach’s)
character of propagation of a shock front near the focus
[7, 8]. Therefore, investigations [9] of focusing of a rar-
efaction wave, whose form in a liquid can be calculated
using the Khokhlov–Zabolotskaya–Kuznetsov model
proposed in [10, 11], are conducted in a limited pres-
sure range. The results of experimental and theoretical
studies in this case agree well in the precavitation con-
ditions [12].
1063-7710/04/5002- $26.00 © 20212
Here, we present the results of an experimental
study of nonlinear processes and measurement of a
detailed space–time distribution of pressure in the case
of focusing of an acoustic pulse produced by a source
shaped as a spherical segment. The results of pressure
field measurements belong to the precavitation condi-
tions of acoustic pulse propagation (the influence of
cavitation on pressure measurements is excluded).

1. BRIEF THEORY
To develop a theory of shock waves, an equation of

state and conservation laws are necessary. The key
points of this study were interpreted using the approxi-
mation of weak shock waves in water, which can be
described by the following equation of state:

p/pc = (ρ/ρ0)γ(1 + p0/pc) – 1, (1)

where ρ0 is the density of water at atmospheric pressure
p0 and pc and γ are characteristic functions that are usu-
ally selected from the experiment, but in the pressure
and temperature ranges under consideration they can
approximately be considered as constants. The values
of pc = 2955 atm and γ = 7.44 are chosen so as, with the
given equation of state, to obtain the correct value of
sound velocity c0 = 1483 m/s at room temperature from
the expression

 ≡ (∂p/∂ρ)s = γ(p + pc)/ρ. (2)

Using the approximation of an infinitely small
thickness of a shock front and proceeding from the laws
of conservation of mass and momentum, we obtain

cs
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equations for calculating the velocity of a plane shock
wave c and the velocity of motion of the medium
behind the front u1:

c2 = p1/ρ0[1 – (1 + p1/pc)–1/γ]–1, (3)

u1 = (p1 – p0)/ρ0Ò (4)

or, in terms of the Mach number M = c/c0 and dimen-
sionless density r = ρ1/ρ0 ,

M2 = (r/γ)(rγ – 1)/(r – 1). (5)

Since the compressibility of water is small, its den-
sity does not change significantly in the case of weak
shock waves if the pressure is p ≤ pc. Therefore, the
equations obtained can be simplified by decomposition
with respect to a small parameter r – 1. Holl demon-
strated [13] that the equations of gas dynamics can be
used to describe weak shock waves in a liquid by intro-
ducing the effective pressure p' = p + pc and index γ
instead of the adiabatic exponent γgas into the equations
of gas dynamics. For example, the expression for the
Mach number in a liquid takes the form

M = {[(γ + 1)(p1 + pc)/(p0 + pc) + γ – 1]/2γ}1/2 (6)

and M = 1.07 for p1 = 72 MPa.

Thus, in the case of the focusing of weak shock
waves in water, one can expect effects analogous to
those observed in [14] in the case of reflection and
focusing in a gas.

The dependence of the refraction index of water

n(p1) = 1 + (n0 – 1)[1 + (p1 – p0)/(p0 + pc)]1/γ, (7)

which is expressed through the relationship of density
and pressure, is used in optical diagnostics of shock
waves.

This means that shock waves can be detected by the
deflection of an illuminating beam or by the reflection
of light from a shock front with possibility of a quanti-
tative determination of shock wave parameters.

A converging shock wave in the form of a spherical
segment has an axial symmetry. Therefore, the velocity
of the medium at the axis does not have a component
normal to the axis. In other words, the symmetry axis
plays the role of a solid boundary. An oblique incidence
of an shock wave front on a solid surface is examined
in [7] and schematically represented in Fig. 1. A solu-
tion for the reflection angle α' as a function of the angle
of incidence α has two roots. This fact indicates a spe-
cial reflection mode that is known as the irregular or
Mach’s reflection. The critical reflection angle αextr can
be calculated proceeding from simple conditions for
reflection and the laws of conservation of mass and
momentum at the fronts of the incident and reflected
waves. For example, for the pressure p = 65 MPa, we
obtain αextr = 57° and  = 73° [7]. As the Mach’s
foot does not obey the D–U equation [15] for regular

α extr'
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shock waves, its velocity depends on the angle of inci-
dence α.

2. MATERIALS AND METHODS

2.1. Electromagnetic Generator of Shock Waves

The generator of acoustic pulses used in the experi-
ment consists of a generator of intense current pulses
[16] and a removable spherical radiator. In the genera-
tor, a low-inductance (L < 5 nH) capacitance C = 1 and
2 µF was connected with a high-voltage charging unit.
The capacitance was charged up to the voltage set by a
voltage comparator with the help of high-voltage pulses
of 10 kV with a frequency of 10–20 kHz. After attain-
ing a preset voltage, charging was interrupted until the
voltage at the capacitance became lower than the preset
one. An accumulating capacitance was connected to the
output terminals of the generator of current pulses
through an RU-62 gas-discharge switch. The operating
voltage Uc of the generator was 5 to 10 kV.

To obtain short pulses and, therefore, a high coeffi-
cient of conversion of electric energy to acoustical
energy, the inductance of the circuit capacitance–
switch–shunt circuit must be smaller than the radiator
inductance. Radiators were connected to the generator
output with the help of a strip line. A high-power pulse
of current is formed as a result of the capacitance dis-
charge through the coil of the radiator. It is evident that
periodic damped oscillations are excited in the circuit
[17]. The maximum possible pulse frequencies for dif-
ferent charging voltages are given in Table 1.

Axis of symmetry Reflected wave

Mach’s disk Incident wave

α'

α

Fig. 1. Mach’s disk formation in the focusing process.

Table 1.  Frequency of “fast” pulses of the generator for C = 2 µF

Ug, kV Time between
pulses, s

Pulse frequency
ff, Hz

5 4.0 0.25

6 4.5 0.22

7 5.2 0.19

8 6.3 0.16

9 7.5 0.13

10 8.1 0.12
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The spherical radiator (schematically represented in
Fig. 2) had an aperture D = 70 mm and a curvature
radius R = 55 mm. It contained (1) an electromagnetic
coil and (2) an aluminum membrane, which were sepa-
rated by an insulating foil. The coil consisted of eleven
winds laid in an Archimedes spiral onto a caprolan sub-
strate with the help of adhesive tape. The wind density
of the coil was uniformly distributed over the substrate
surface, and, therefore, the coil provided the most
homogeneous magnetic field at its surface. The coil
made of a 0.6-mm copper wire, a mylar insulating film
with a thickness of 0.04 mm, and an aluminum mem-
brane with a thickness of 0.3 mm were tightly pressed

C
D1

2

3

4

F–

F+
Z

r

Fig. 2. Radiator of acoustic pulses: (1) single-layer induc-
tance coil, (2) membrane, (3) focused acoustic pulse,
(4) edge rarefaction wave, (C) accumulating capacitor,
(S) switch, (F+) focus of the compression wave, and
(F−) focus of the rarefaction wave.

1.0

7

pM, arb. units

Ug, kV

1

5 6 8 9 10
0

0.5

1.5

2.0

2.5

3.0

3.5

4.0

2

Fig. 3. Relative pressure values at the radiator membrane.
T = (1) 4 and (2) 3 µs.
to each other. The membrane screens the magnetic field
of the coil and, therefore, the magnetic pressure pushes
the membrane into a liquid. A compression wave with
its focus at the point F+ and an edge rarefaction wave
with its focus at the point F– propagate in the liquid [18].

The generator design provides an opportunity to
shape the radiator as a spherical segment to obtain a
converging acoustic pulse without a lens. Utilization of
an acoustic lens for focusing is undesirable, since it
leads to a temperature dependence of the focal distance
of the radiator [19], to a complex pattern of pressure
field because of the interference of waves reflected
from the lens surfaces [20], and to a possible tribolumi-
nescence of the lens.

It was found experimentally that the pressure ampli-
tude of an acoustic pulse in the positive and negative
phases near the membrane changes proportionally to
the square of charging voltage Ug [17]. When the
capacitance was reduced by half, the period T changed
from 4 to 3 µs, which led to an approximately 30%
reduction of pressure at the membrane [21]. The pres-
sure at the radiator was calculated on the basis of obser-
vations, according to the approximating function preset
with the help of Fig. 3.

In the approximation of linear diffraction, the diam-
eter d of the focal region is determined by the diffrac-
tion relation d ~ Fc0τå/D, where D is the radiator aper-
ture, F is the focal distance, c0 is the sound velocity, and
τå is the length of a pressure pulse at the membrane.
The pulse amplitude at the focus is approximately
inversely proportional to the diameter d of the focal
spot. This means that to increase the pressure gain it is
necessary to reduce the pulse length τå and the ratio
F/D as follows from the diffraction relation.

2.2. Measurement of the Velocity of a Shock Front

High-speed cameras and pressure sensors were used
to investigate the pressure field. A setup for studying
the propagation dynamics of converging shock waves is
similar to that described in [22]. Experiments were con-
ducted in water at room temperature.

The time profile of pressure was measured by an
FOPH 300 sensor [23], which operates on the basis of
the determination of the variation of the reflection coef-
ficient at the end of optical fiber because of the change
in the refraction index of the medium (Eq. (7)). The
measurement error in the pressure measurement is
determined by the conditions at the optical fiber surface
(2.5%), by temperature instability (1%), by the error of
measurement of the oscilloscope signal (about 2%),
and by the error in positioning the optical fiber of the
sensor. In the case of a wave with a shock front, the
measurement error is also connected with the limited
time resolution of the sensor, which reduces the ampli-
tude of the measured signal. The time resolution
becomes lower if the optical fiber is installed incor-
rectly. In the case of an inclination of 5°–7°, the pres-
ACOUSTICAL PHYSICS      Vol. 50      No. 2      2004
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sure rise time becomes comparable with the time reso-
lution of the sensor because of the oblique incidence of
shock waves. The front speed for regular waves was
determined by Eq. (3) according to the measured pres-
sure amplitude.

To estimate the propagation velocity of waves, we
also used the formula

v  = (z1 – z2)/(t1 – t2), (8)

where z1 and z2 are two positions of the sensor and t1
and t2 are the times corresponding to the pressure max-
imum. This formula makes it possible to evaluate the
velocity from two measurements by the sensor. The
value of the velocity obtained in this way belongs to the
time moment ti = (t1 + t2)/2 and the coordinate zi = (z1 +
z2)/2. The measurement error was introduced in the pro-
cess of sensor positioning and determining the position
of the pressure maximum. The coordinate was con-
trolled with an accuracy of 20 µm, which constitutes
0.4% of the base |z1 – z2| = 5 mm.

The time error was determined by the sharpness of
the pressure peak for a wave without a shock front,
whose principal spectral component had a frequency of
250 kHz (a time error of 80 ns). In the case of a wave
with a shock front, the error was determined by the time
resolution of the measuring system, which was equal to
8 ns or 125 MHz, and the start-up system using an
antenna pickup with a signal front shorter than 4 ns.
Therefore, a delay between the generator start and the
arrival of a wave at the sensor is measured with a scatter
of less than 12 ns. The systematic error of measurement
was 0.4% for shock fronts and 2.5% for pulses without
shock fronts.

Film shots present a time-resolved general pattern
of waves in the x, z coordinates. The determination of
the velocity of a wave front according to film shots was
performed using Eq. (8). In this case, the coordinates of
the darkest points in a film shot were taken as the values
of z1 and z2, and delays for two frames were taken as the
values of t1 and t2. The measurement error z was deter-
mined by the height of a digital matrix, which was
50 µm in the object plane, and the time error of 10 ns
was determined by the time of exposure of each frame.
The root-mean-square error of measurement in this
case was 1.5%.

3. RESULTS

Since the membrane is shaped as a spherical seg-
ment, a converging acoustic pulse is generated in water.
As a result of nonlinear distortion, a sinusoidal pulse is
transformed to a pulse with a shock front.

Figure 4a presents an oscillogram of a signal from a
pressure sensor. The sensitive surface of the sensor was
positioned at the focus z = r = 0 of a spherical radiator
in water, which was determined as the maximum of
pressure amplitude for pM = 3.0 MPa. This method pro-
vided an opportunity to determine the focus position
ACOUSTICAL PHYSICS      Vol. 50      No. 2      2004
across the axis with an accuracy of 0.25 mm. The par-
allelism of the sensor to the shock front was monitored
according to the film shots obtained using a micro-
scope. We achieved an alignment precision of 1°. Fig-
ure 4b demonstrates the front of a reconstructed
inverted and calibrated signal. The time of its rise from
10 up to 90% of the maximum value was 8 ns and did
not change when the pressure at the membrane pM var-
ied from 3.0 to 9.7 MPa; i.e., this time was determined
by the sensor lag.

High-speed microscopic photography of a shock
front was performed near the focus of the radiator. The
results are given in Fig. 5. One can see a transition from
a front geometry that is concave towards the membrane
(a spherically converging wave) to a geometry convex
from the membrane (a spherically divergent wave). A
visible transition near the focus point is accompanied
by the formation of a Mach type wave pattern. At the
instant of 36.5 µs for pM = 3.0 MPa (Fig. 5a), a disk-like
front is observed, which is connected with two fronts
inclined with respect to it. The incident wave front
makes a smaller angle (α3.0 MPa = 71.0° ± 0.8°) to the
axis than the reflected wave front. Thus, the disk perim-
eter is the place of connection of three fronts, by anal-
ogy with the triple point (Fig. 1), and the disk is the
Mach’s foot in the case of a Mach’s or irregular reflec-
tion.

At the same setting of the generator parameters, the
time and space reproducibility of the pressure field
from one experiment to another provided an opportu-
nity to investigate it in detail, including the case of pre-
cision positioning of the sensor with the help of a
microscope (a displacement in the direction perpendic-
ular to the generator axis that is smaller than 1/4 of the
sensor diameter corresponds to 50 µm).

Figure 6 gives the pattern of pressure field for pM =
3.0 MPa. Time dependences of pressure at some points
are given (Figs. 6f–6m). At z = –24.5 mm, at the axis,
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Fig. 4. (a) Signal from a fiber-optical sensor and (b) the
reconstructed pressure at the focus (z = r = 0 mm) for pM =
4.3 MPa. The digitizing rate is 1 ns.



216 SANKIN
1 mm

1 mm

33.5 34.5 35.5 36.5 37.5 38.5 39.5 40.5 µs

(a)

(b)

41.99 µs41.3840.7740.1639.5538.9438.3337.7237.1136.50

Fig. 5. Microscopic image of the compression wave front (propagating from left to right) near the focus for pM = (a) 3.0 and
(b) 5.9 MPa (the radiator axis is shifted from the center toward the lower boundary of the frame).
the positive phase of pressure consists of two peaks
(Fig. 6l, indicated by arrows) corresponding to two
half-periods of the discharge current of the capacitor. At
r = 2 mm, for the same z, in the negative phase the sen-
sor detects a double passage of the rarefaction wave
from opposite edges of the radiator in the form of two
minima in the oscillogram (indicated by arrows in
Fig. 6m) with the distance between them decreasing
down to zero at the axis.

After that, the pressure profiles were linearly inter-
polated taking into account the weight, and the result-
ing isobars were plotted in the t, r coordinates for dif-
ferent z. Figures 6a–6d present the result of the interpo-
lation. For z = –8, –2, 0, 2, and 8 mm, the sensor
coordinate r varied from 0 to 9 mm with a step of 1 mm
(Figs. 6a, 6b). For z = –24.5 mm, the measurements
were conducted for r from 0 to 14 mm with a step of
2 mm (Fig. 6d). The isobars have artefacts in the form
of “microscopic islands” of increased pressure because
of the large step.
Figure 6c shows the results of pressure measure-
ments at the focus for z = 0 mm and for r = –1 to 1.5 mm
with a step of 250 µm (160% of the sensor diameter).
The focal zone width measured at a level of –6 dB (the
50%-level for pressure) was 2.5 mm for pM = 3.0 MPa.

The region of the medium with a pressure amplitude
greater than half the maximum one has a form close to
axisymmetric and is elongated along the axis. Some
characteristics of pressure in this region that are mea-
sured for a spherical generator as functions of pulse
length and amplitude at the membrane are given in
Tables 2 and 3. The region length along the axis (the
focus depth L+/–), the region diameter D+/–, the pressure
gain Kp+, the position of space–time extrema of pres-
sure ∆z+/–, the peak flux of acoustic energy at the center
of the region

(9)I
pmax

2

ρc
----------,=
Table 2.  Geometrical characteristics of the focal region

pM, MPa/T, µs L+, mm L–, mm D+, mm D–, mm K ∆z+, mm ∆z–, mm

1.5/3 9 ± 2 20 ± 5 1.6 ± 0.2 4.0 ± 0.5 36.7 ± 1.5 0 ± 0.5 –3 ± 1

3.0/4 18 ± 1 25 ± 5 2.5 ± 0.2 6.0 ± 0.5 23.3 ± 0.5 0 –5 ± 1

4.3/4 22 ± 1 25 ± 5 3.0 ± 0.5 – 15.9 ± 0.5 0 ± 0.5 –5 ± 1
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the area of the section S–6 dB of the indicated region by
the focal plane, and the total energy transmitted through
the indicated area
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are given in these tables as functions of the pressure at
the membrane. The subscripts + and – correspond to the
positive and negative maxima, respectively.

Figure 6e presents the comparison of the results of
pressure measurements with the model of linear acous-
tics, where solid lines show the front of a compression
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wave and broken lines, the front of a rarefaction wave
at different time moments. One can see from the figure
that experimental isobars near the focus do not coincide
with the approximation of linear geometrical acoustics,
because the velocities of different parts of fronts differ
due to an inhomogeneity of the pressure, which leads to

Table 3.  Energy characteristics of the generator (T = 4 µs)

pM, MPa I, W/m2 S–6 dB, m2 E–6 dB, J

3.0 (2.9 ± 0.2) × 109 (4.9 ± 0.3) × 10–6 ~8 × 10–4

4.3 (3.2 ± 0.2) × 109 (7.1 ± 0.3) × 10–6 ~18 × 10–4

5.9 (3.8 ± 0.2) × 109 (12.6 ± 6) × 10–6 ~70 × 10–4
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Fig. 7. (a) Pressure amplitude at the radiator axis for (1, 3,
5) the compression and (2, 4, 6) rarefaction waves: (1, 2)
pM = 3.0 MPa and T = 4 µs; (3, 4) pM = 2.0 MPa and T =
3 µs; and (5, 6) pM = 4.3 MPa and T = 4 µs; (7) the approx-
imation of linear geometrical acoustics for pM = 3.0 MPa
(p = pMR/|z|). (b) Pressure amplitude in the focal plane for
(1, 3) the compression and (2, 4) rarefaction waves: (1, 2)
pM = 3.0 MPa and T = 4 µs; (3, 4) pM = 2.0 MPa and
T = 3 µs.
a deviation of the front shape from a spherical one, and
because the direction of the velocity of the wave front
is not parallel to the generator axis. Therefore the pulse
front propagates along the axis with a phase velocity
exceeding the sound velocity. The deviation is more
significant the higher the pressure is.

The pressure was measured systematically in the
focal plane as a function of the radius r and along the z
axis as a function of the distance to the focus z. Figure 7
shows positive and negative pressure amplitudes esti-
mated from pressure oscillograms along the axis
(Fig. 7a) and in the focal plane (Fig. 7b) for a spherical
radiator for different voltages and capacities of the
charging capacitor. An amplification of pressure ampli-
tude at the focus was determined for compression and
rarefaction waves on the basis of these measurements.
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Fig. 8. Wave velocity along the radiator axis: (a) the phase
velocity of an edge rarefaction wave (1) measured by the
FOPH 300 sensor for pM = 3.0 MPa and (2) calculated
according to Eq. (11) and (3) the sound velocity; (b) the
velocity of the compression wave measured (1) by the
FOPH 300 sensor for pM = 3.0 MPa, (2, 3) measured
according to high-speed photography for pM = (2) 3.0 and
(3) 5.9 MPa, and (4) calculated according to Eq. (3) and
(5) the sound velocity.
ACOUSTICAL PHYSICS      Vol. 50      No. 2      2004



SPHERICAL FOCUSING OF ACOUSTIC PULSES IN A LIQUID 219
If we reduce the length of the current pulse by 50%,
the amplitude at the membrane, which is determined by
the approximation, decreases by 30% (Fig. 7a), which
agrees well with the previous numerical estimate
(Fig. 3). In the case of a shorter pulse, the half-height
width of pressure distribution becomes smaller
(Figs. 7a, 7b), and the amplification coefficient of pos-
itive pressure increases (Table 2).

The velocity of the compression wave was deter-
mined according to the delays of the wave front mea-
sured by both the sensor and high-speed photography.
To determine the velocity, the signal from the sensor
was filtered at the frequency f1 = 150 MHz for the data
at t > 29 µs, where a shock front exists. In the case of
t < 29 µs, the filtration frequency was reduced to f2 =
2 MHz. The velocities of a compression wave and a rar-
efaction wave coming from the membrane edges with
the delay caused by the geometric dimensions of the
membrane were measured. The results of velocity mea-
surements at the radiator axis are given in Fig. 8.

The axial component of the phase velocity of a rar-
efaction wave was measured at the z axis. Its value var-
ies from the sound velocity (at z  ∞) up to 5000 m/s
(Fig. 8a, z = –30 mm) as the observation point was
shifted towards the radiator. Since the normal to the rar-
efaction half-wave is inclined to the axis, its phase
velocity v ph along the axis at negative z is higher than
the velocity of the compression wave and the sound
velocity. An estimate of the velocity of this wave can be
performed according to the following expression from
geometrical acoustics under the assumption that the
source is located at the membrane edges:

v ph/c0 = [1 + {(4F2/D2 – 1)1/2 + 2z/D}–2]1/2. (11)

Here, F is the focal distance, D is the diameter of the
radiator aperture, and c0 is the sound velocity.

Theoretical estimates (dots 4 in Fig. 8b) by Eq. (3)
for a plane wave coincide within the experimental error
(±2.5%) with the data measured for z smaller than
−10 mm and greater than 20 mm, for which we can
ignore the curvature of the shock front. Near the focus,
the experimental data for the velocity of the positive
pressure phase lie higher than those calculated proceed-
ing from the equations of hydrodynamics (the differ-
ence reaches 4.7 ± 0.7%), since they are determined by
the velocity of motion of the Mach’s disk. An analo-
gous effect is observed in the measurements with an
electrochemical sensor [24].

As the data in Fig. 8b (curve 1) from a FOPH sensor
refer to the velocity of motion of the pressure maxi-
mum, they deviate from the data measured according to
high-speed photography records (curve 2), where the
maximum gradient of pressure is detected.

Figure 9 demonstrates the dependences of ampli-
tudes in the compression and rarefaction phases at the
focus of the radiator with increasing initial pressure at
the membrane. The growth of the peak pressure in a
shock wave slowed down for both values of the gener-
ACOUSTICAL PHYSICS      Vol. 50      No. 2      2004
ator pulse length and did not exceed 75 MPa, and the
gain did not exceed 36.7 ± 1.5 for the compression
phase (Table 2). Within the pressure range of på from
2.0 to 7.7 MPa, the amplitude of the negative phase at
the focus (z = r = 0) obeys the dependence

p = –5.1på. (12)

At the focus of an edge wave of rarefaction, its
amplitude is no less than 10% higher than at z = 0 in the
absolute value (Fig. 7a); i.e., the coefficient in Eq. (11)
is about –5.7 at z = –5 mm. The values obtained for
på > 5.5 MPa correspond to the case of developed cav-
itation [25, 26], however cavitation weakly affects the
amplitude of a rarefaction wave because of the focusing
and the small length of a cavitation pulse.

With this geometry of spherical focusing, the rar-
efaction wave moving along the axis with a phase
velocity exceeding the sound velocity overtakes the
compression wave and forms a so-called N-wave. At
the same time, the compression wave becomes a shock
wave about 30 µs after the generator discharge, which
occurs due to the dependence of sound velocity on pres-
sure. The pressure amplitude of a positive pulse for
negative z increases as 1/|z|1.25 up to the moment when
the Mach’s disk begins to form.

4. CONCLUSIONS
The generation of a localized region of reduced

pressure, which can be used to excite cavitation away
from the boundaries of a liquid, is obtained by the
method of focusing a compression wave and an edge
rarefaction wave arising due to diffraction at the edges
of a radiating membrane. The pressure at the focus var-
ies from –22 to –42 MPa, which exceeds the threshold
of developed cavitation. The pressure amplitude
depends linearly on pressure at the membrane (quadrat-
ically on the charging voltage of the capacitor). This

–20

5

p, MPa

pM, MPa
2 7 9 10

–40

0

20

40

60

80

3 4 6 8

1
2
3
4

Fig. 9. Pressure amplitudes at the focus as functions of the
pressure at the membrane: (1, 3) the compression wave and
(2, 4) the rarefaction wave. T = (1, 2) 4 and (3, 4) 3 µs.
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can be used to determine the cavitation strength of a liq-
uid. Negative pressures of higher absolute values and
an intensification of cavitation luminescence can be
obtained by focusing a compression wave at a free sur-
face [18, 26].

Despite the inhomogeneity of pressure distribution
over the membrane [17] and, probably, a small inaccu-
racy in the radiator manufacture, we obtained the mode
of generation of a spherically converging wave when
pressure at the compression focus is determined by the
pressure in the Mach’s disk and is likely to be limiting
for this value of the ratio of the aperture to the focal dis-
tance of the radiator. This statement is supported by the
reduction of pressure gain and growth of the diameter
of the focal region with increasing pressure amplitude
at the membrane, which was also noted in [27, 28]. The
growth in the pressure gain is obtained by reducing the
discharge time. This assumption is confirmed experi-
mentally by a comparison of the pressure fields of the
radiator with discharge periods of 3 and 4 µs.

The values of negative pressure measured by a
piezoelectric transducer [18] turned out to be lower in
their moduli than the values obtained with a fiber-opti-
cal sensor. Thus, an FOPH sensor is suitable for mea-
suring large tensile stresses.

Pressure gradients near the focus can reach
50 GPa/m, which is very important for the survival of
biological cells under lithotripsy. One may expect that
high gradients of shear liquid motion can cause the
destruction of cells without the effect of cavitation [29].
Therefore, this problem needs further investigation. In
this respect, it may be important that, for a spherically
focused acoustic pulse, the focuses of compression and
rarefaction waves are spaced apart, which provides an
opportunity to study separately the processes connected
with each of these waves. One can expect that the max-
imum cavitation activity will occur at the focus of the
negative phase, i.e., below the geometrical focus of the
radiator.

At present, a pulsed mode of cavitation excitation
with an analogous setup is being used for a complex
investigation of collective properties of clusters (bubble
dynamics, pressure fields, and luminescence) under the
conditions of formation of a cavitation zone [30, 31].

ACKNOWLEDGMENTS

This work was supported by the German Academic
Exchange Service (Deutscher Akademischer Austaus-
chdienst), DAAD grant no. A/00/01480; the Acoustical
Society of America, CRDF grant no. 1210/1; and the
Russian Foundation for Basic Research, project nos.
00-02-17992, 03-02-17682, 01-02-06444-mas, 02-02-
06838-mas, and 03-02-06212-mas.

I am sincerely grateful to V.S. Teslenko for formu-
lating the problem, to V.A. Maier for developing the
GIT-2 generator of high-power current pulses, and to
A.P. Drozhzhin for his assistance in servicing the gen-
erator. I am also grateful to the employees of the Third
Physical Institute, Goettingen University (Drittes Phys-
ikalisches Institut, Univesitaet Goettingen), Germany:
W. Lauterborn for the opportunity to conduct this study,
R. Mettin and R. Geisler for their assistance in familiar-
izing me with the diagnostic equipment (FOPH 300
pressure sensor and high-speed microscopic photogra-
phy) and for their interest in the study. I am grateful to
S.V. Stebnovskii and V.F. Klimkin for valuable remarks
and M.E. Topchiyan for discussions, which critically
improved the manuscript.

REFERENCES
1. H. Reichenberger, Proc. IEEE 76, 1236 (1988).
2. V. S. Teslenko, N. G. Kolosova, I. V. Mastikhin, and

V. P. Nikolin, Dokl. Ross. Akad. Nauk 369, 698 (1999).
3. W. Eisenmenger, Ultrasound Med. Biol. 27, 683 (2001).
4. A. J. Coleman, M. Whitlock, T. Leighton, and J. E. Saun-

ders, Phys. Med. Biol. 38, 1545 (1993).
5. C. C. Church, J. Acoust. Soc. Am. 86, 215 (1989).
6. D. L. Sokolov, M. R. Bailey, L. A. Crum, et al.,

J. Endourol. 16, 709 (2002).
7. R. H. Cole, Underwater Explosions (Princeton Univ.

Press, Princeton, N.J., 1948; Inostrannaya Literatura,
Moscow, 1950).

8. M. Müller, Dissertation (Reinisch-Westfalischen Tech-
nischen Hochschule, Aachen, Germany, 1987).

9. A. J. Coleman and J. E. Saunders, Ultrasound Med. Biol.
15 (3), 213 (1989).

10. E. A. Zabolotskaya and R. V. Khokhlov, Akust. Zh. 15,
40 (1969) [Sov. Phys. Acoust. 15, 35 (1969)].

11. V. P. Kuznetsov, Akust. Zh. 16, 548 (1970) [Sov. Phys.
Acoust. 16, 467 (1970)].

12. M. A. Averkiou and R. O. Cleveland, J. Acoust. Soc. Am.
106, 102 (1999).

13. R. Holl, Dissertation (Reinisch-Westfalischen Technis-
chen Hochschule, Aachen, Germany, 1982).

14. B. Sturtevant and V. A. Kulkarny, J. Fluid Mech. 73, 651
(1976).

15. R. F. Trunin, Usp. Fiz. Nauk 171, 387 (2001) [Phys. Usp.
44, 371 (2001)].

16. V. V. Mitrofanov, V. S. Teslenko, V. A. Maœer, and
A. I. Kudryashov, Report under Contract No. 43/89
(Inst. Gidrodin., Sib. Otd. Akad. Nauk SSSR, Novosi-
birsk, 1990).

17. G. N. Sankin, Prib. Tekh. Éksp. 46 (3), 145 (2003).
18. V. S. Teslenko, G. N. Sankin, and A. P. Drozhzhin, Fiz.

Goreniya Vzryva 35 (6), 125 (1999).
19. P. Augat and L. Claes, Ultrasound Med. Biol. 21 (1), 89

(1995).
20. Yu. V. Andriyanov, A. A. Li, and V. S. Teslenko, Vopr.

Kurortol. Fizioter. Lech. Fiz. Kult., No. 4, 42 (1992).
21. W. Eisenmenger, Acustica 12, 185 (1962).
22. D. V. Voronin, G. N. Sankin, V. S. Teslenko, et al., Prikl.

Mekh. Tekh. Fiz. 44 (1), 22 (2003).
23. J. Staudenraus and W. Eisenmenger, Ultrasonics 31, 267

(1993).
24. G. N. Sankin, Prib. Tekh. Éksp. 46 (1), 136 (2003).
ACOUSTICAL PHYSICS      Vol. 50      No. 2      2004



SPHERICAL FOCUSING OF ACOUSTIC PULSES IN A LIQUID 221
25. G. N. Sankin, R. Mettin, V. Lauterborn, and V. S. Tes-
lenko, in Physical Acoustics, Wave Propagation and Dif-
fraction: Proceedings of XI Session of the Russian
Acoustic Society (GEOS, Moscow, 2001), Vol. 1, p. 32.

26. G. Sankin, R. Mettin, R. Geisler, et al., in Fortschritte
der Akustik—DAGA 2001, Harburg–Hamburg, Ger-
many, Ed. by Otto von Estorff (DEGA, Oldenburg,
2001), p. 258; CDROM, ISBN 3-9804568-9-7.

27. O. A. Sapozhnikov, Akust. Zh. 37, 760 (1991) [Sov.
Phys. Acoust. 37, 395 (1991)].
ACOUSTICAL PHYSICS      Vol. 50      No. 2      2004
28. A. G. Musatov, O. V. Rudenko, and O. A. Sapozhnikov,
Akust. Zh. 38, 502 (1992) [Sov. Phys. Acoust. 38, 274
(1992)].

29. M. Lokhandwalla, J. McAteer, J. Williams, Jr., and
B. Sturtevant, Phys. Med. Biol. 46, 1245 (2001).

30. G. N. Sankin and V. S. Teslenko, Dokl. Akad. Nauk 393
(6), 665 (2003).

31. G. N. Sankin, Akust. Zh. (in press).

Translated by M. Lyamshev



  

Acoustical Physics, Vol. 50, No. 2, 2004, pp. 222–231. Translated from Akusticheski

 

œ

 

 Zhurnal, Vol. 50, No. 2, 2004, pp. 272–282.
Original Russian Text Copyright © 2004 by Filonenko, Gavrilov, Khokhlova, Hand.

                
Heating of Biological Tissues by Two-Dimensional Phased Arrays 
with Random and Regular Element Distributions
E. A. Filonenko*, L. R. Gavrilov**, V. A. Khokhlova*, and J. W. Hand***

* Moscow State University, Vorob’evy gory, Moscow, 119899 Russia
e-mail: vera@acs366.phys.msu.su

** Andreev Acoustics Institute, ul. Shvernika 4, Moscow, 117036 Russia
e-mail: gavrilov@akin.ru

*** Hammersmith Hospital, Imperial College, London, W12 0HS United Kingdom
Received May 28, 2003

Abstract—The effect of an irregularity of the element distribution in a two-dimensional phased array upon the
efficiency of heating of biological tissue is studied in an ultrasonic surgery regime. Two arrays of 256 piston
elements, which either form a regular square pattern or are positioned randomly on the surface of a spherical
segment, are considered as a model. The formation and the steering of a set of nine foci along the array axis and
in the direction perpendicular to it are investigated. The theoretical model includes the algorithm of determining
a phase set at the array elements that is optimal for the formation of foci with equal intensities and a preset
geometry, as well as the calculation of acoustic and temperature fields in a tissue. The results of numerical sim-
ulation are presented for the spatial distributions of ultrasonic intensity, temperature, and the corresponding
thermal dose in tissue. It is demonstrated that an irregularity of the element distribution reduces the level of sec-
ondary intensity peaks in the field produced by the array. This provides an opportunity to avoid the overheating
and ablation of tissue outside the target volume, even in the case of steering with the set of foci away from the
array axis within a distance of ±7 mm. A nine-foci regime is studied with the parameters necessary to produce
uniform thermal ablation in a volume that is evaluated on the basis of the thermal dose distribution. © 2004
MAIK “Nauka/Interperiodica”.
Opportunities to use phased arrays capable of focus-
ing ultrasonic energy and electrically steering the focus
within a preset volume of a biological tissue have been
actively investigated in connection with the develop-
ment of new noninvasive surgery methods [1–9]. An
advantage of phased arrays is their capability to simul-
taneously produce several foci in tissue and in this way
increase the volume of the affected region, which
essentially reduces the treatment time [2]. However the
discrete structure of an array can give rise to undesir-
able sidelobes and secondary peaks in the acoustic field
produced by the array [3–6]. It is known that the steer-
ing of foci in the direction perpendicular to the axis of
a regular array within a distance of 7–10 mm leads to
the appearance of secondary peaks with an intensity
level reaching 50–60% of the maximum intensity in the
major foci [8]. In the case of greater distances, the sec-
ondary intensity peaks may be still higher. The problem
of secondary peaks in the field of phased arrays is espe-
cially important for ultrasonic surgery, where high
intensity values (500–3000 W/cm2) are used, which
lead to a fast temperature rise in the focal region (above
60–80°C) within several seconds. This regime can be
used for the ablation of tumors in soft tissues and also
to stop internal bleeding [10]. A series of papers [2–6]
are devoted to discussing the problem of secondary
peaks in the acoustic field of therapeutic arrays and the
1063-7710/04/5002- $26.00 © 20222
ways to minimize the overheating of tissue along the
path of ultrasound propagation to the target region.

One of the approaches used to reduce the level of
secondary peaks is based on the utilization of arrays
with elements positioned randomly on their surfaces
[7–9]. This approach is also known in radar [11],
where, however, the effect of randomization does not
manifest itself as noticeably as in the case of powerful
acoustic arrays. This can be explained by the fact that
the velocity of light is greater than the velocity of
sound, and, therefore, it is much simpler to manufacture
an electromagnetic array with a distance between the
centers of neighboring elements not exceeding the half-
wavelength λ/2. Manufacturing such an acoustic array,
which in addition has an acoustic power not smaller
than 300–500 W, requires an extremely large number of
elements and channels feeding them. Therefore, the
development of theoretical models and numerical algo-
rithms for calculating and analyzing the acoustic field
and the corresponding temperature distribution in tis-
sue in the case of the utilization of arrays of various
configurations is important for designing therapeutic
arrays and planning an experiment. Numerical simula-
tion and comparative analysis of acoustic [8, 9] and
temperature [12] fields produced by two-dimensional
phased arrays for the case of steering a single focus
with the help of arrays with regular and random distri-
004 MAIK “Nauka/Interperiodica”



        

HEATING OF BIOLOGICAL TISSUES 223

                                              
butions of 256 elements demonstrated that irregularity
in the element distribution noticeably improves the
quality of intensity and temperature distributions. A
randomization of the element distribution suppresses
the secondary intensity and temperature peaks in the
field produced by the array and provides an opportunity
to bring the size of the elements up to five sound wave-
lengths while still retaining an acceptable intensity
level for the secondary peaks (approximately 10% of
the principal peak in the case of steering a single focus
up to 15 mm away from the array axis) [8, 9, 12]. An
increase in the size of elements leads to a sharp
decrease in the effect of randomization of element dis-
tribution. For example, elements with a diameter of
11.2λ were used in [7], and the effect of randomization
was insignificant.

Here, we investigate the regime of simultaneous for-
mation and steering of nine foci (N = 9) by a powerful
acoustic array with random and regular element distri-
butions on the array surface shaped as part of a sphere
(Fig. 1). The theoretical model presented below
includes an algorithm for calculating the coordinates of
element positions for a random array, for choosing the
phases at the elements to produce foci of equal intensi-
ties, and for calculating the acoustic and temperature
fields in tissue, as well as the distribution of the thermal
dose. Modeling and analysis of the acoustic field and
thermal sources and the spatial distributions of temper-
ature and thermal dose are performed for arrays with
regular and random element distributions in the case of
steering the focal volume along the array axis and in the
direction perpendicular to it. The necessary parameters
of irradiation and focus geometries that provide tissue
ablation not only locally, in each focal region, but also
uniformly in the whole volume between them are
revealed.

Let us consider the problem of obtaining nine foci at
a preset distance z at the array axis, so that these foci
form a square pattern in the (x, y) plane perpendicular
to the z axis and that the distance between the focus
centers is, foe example, 3 mm (Fig. 2). To estimate the
array capability to steer the set of foci along the array
axis and in the direction perpendicular to it, we set the
shift of the central focus along the array axis (z axis) to
be equal to 2 cm from the geometrical focus toward the
array and equal to 0.7 cm in the y direction away from
the axis. It is assumed that ultrasound propagates in a
tissue with the following acoustic parameters: density
ρ0 = 1000 kg/m3, sound velocity c0 = 1500 m/s, and
attenuation coefficient α0 = 5 m–1 at a frequency of
1 MHz, with the attenuation coefficient increasing lin-
early with frequency.

We use an acoustic array of M = 256 circular piston
elements with diameters d = 5 mm and operating fre-
quency f0 = 1.5 MHz. The elements are distributed over
the surface of a spherical segment 13 cm in diameter with
a curvature radius F = 12 cm. The maximum distance
between the centers of the outermost elements is 12 cm.
ACOUSTICAL PHYSICS      Vol. 50      No. 2      2004
In the case of a regular array, the elements are posi-
tioned in squares with a distance of 6 mm between the
centers of neighboring elements (Fig. 1a). A distribu-
tion in the form of a square pattern was selected because
it is the most popular one among the designs of powerful
therapeutic arrays discussed in the literature [4, 5].

In the case of a randomized array (Fig. 1b), the ele-
ment coordinates are selected as follows. A large (tens
of thousands) two-dimensional array of independent
random coordinates (x, y) is formed with the help of a
random-number generator (uniform distribution) in the
interval from –6 to 6 cm. The coordinates within a cir-
cle with a radius of 6 cm are selected from it. The first
point is chosen arbitrarily from this array at the begin-
ning, and then all other 255 points (element coordi-
nates) are chosen so as to be located no closer than
5.5 mm from all preceding ones. Coordinates inconsis-
tent with this condition are rejected. In one of the real-
izations of element distributions obtained in this way

(a)

(b)

Fig. 1. Schematic diagrams of ultrasonic arrays containing
256 elements 5 mm in diameter: (a) a regular arrangement
of elements in a square pattern and (b) a random distribution
of elements over the array surface.
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and examined here (Fig. 1b), the distances between the
centers of neighboring elements vary within the inter-
val from 5.5 to 8.45 mm. It is necessary to note that the
utilization of different sets of random coordinates of the
256 elements can affect the fine structure of the field
produced by the array but does not influence in any way
the main result: the use of randomized arrays leads to a
considerable reduction of secondary intensity peaks
caused by the regular discrete structure of the array.

Calculation of the acoustic field produced by an
array in a tissue in the case of a preset element distribu-
tion and a set of control points (foci) in space can be
conditionally divided into three stages: the calculation
of the field of a single array element, the determination
of the optimal phase set with a subsequent matching of
the absolute values of amplitudes at the elements, and
the determination of the array field by summation of all
fields of all elements with the amplitude-phase distribu-
tion determined at the previous stages. At the first stage
the acoustic field of one circular element of the array is
calculated with the help of the Rayleigh–Sommerfeld
integral [1, 13],

(1)

where p is the complex pressure amplitude, k = 2πf0/c0

is the wave number, α = 7.5 m–1 is the attenuation coef-
ficient at the operating frequency of the array, u0 is the
amplitude of particle velocity at the element surface,
|r – ri| is the distance from a point r of the radiating sur-

p ri( )
jρ0c0ku0

2π
---------------------

jk α–( ) r ri–( )exp
r ri–

--------------------------------------------------

S

∫ S,d=

x

L

y

z

π
π/2

3π/2
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π
π/2

3π/2

2π
L

Fig. 2. Schematic diagram of nine foci in the xy plane and
the method of rotation of the pressure phase at the foci. The
distance between the foci L is equal to 3 mm.
face S of the circular piston element to the ith point in
the space ri.

The Rayleigh–Sommerfeld integral (Eq. (1)) is cal-
culated numerically at the nodes of a sufficiently dense
spatial grid. The following values of simulation param-
eters are used: the integration region along the longitu-
dinal coordinate is 2 < z < 16 cm, the spatial window
along the transverse coordinate is 0 < r < 10 cm, and the
grid step along both directions is hz = hr = 0.2 mm,
which is 1/5 of the wavelength. For numerical integra-
tion, the element surface was divided into 7849 square
regions with a side of 0.05 mm (λ/20), which provided
the necessary precision of the solution. The solution
obtained is further used to determine the phases at the
elements and also in calculating the total field produced
by the array.

At the second stage, the values of the complex
amplitude of the particle velocity at each element are
determined so as to obtain a set of N = 9 physical foci
(control points) with preset coordinates in space. Addi-
tional conditions are imposed upon the selection of
pressure amplitudes and phases at each control point:
phases rotate uniformly clockwise with respect to the
axis of the given set of foci with a step of π/2 (Fig. 2),
and the values of the pressure amplitude at the control
points are equal. The basis of the technique for calcu-
lating the complex amplitude of particle velocity at the
elements was proposed in [1]. However, the brevity of
its description makes it difficult to use it in practice.
Therefore, below we give the basic components of this
approach in two modifications. In one of them, the
acoustic field of a piston element (Eq. (1)) is used for
calculating the amplitude and phase of particle velocity
at the elements [1]. In the second modification, the pis-
ton field is replaced by the field of a point source
located at the element center [8, 9]. Both modifications
are considered here to compare the resulting sets of
phases and the acoustic fields produced by the array.

In the approximation of the linear propagation of an
acoustic wave, the pressure p(rn) at each nth control
point (n = 1, …, N) is the superposition of M partial
pressures pm produced by each of the M elements of the

array, p(rn) = , or, in the matrix form,

(2)

Here, um is the complex amplitude of particle velocity
at the surface of the mth element (m = {1, …, M}), U is
the vector of the M values of the particle velocity ampli-
tudes um, P is the vector of pressures p(rn) at N control
points, and the matrix H with the dimension (N × M)
determines the operator of direct propagation from the
mth element at the array to the nth control point in
space. If the field of a piston element with a uniform
distribution of particle velocity is used to solve Eq. (2),
the elements of the matrix Hnm are determined by solu-
tion (1) that is calculated for the mth element of the

Hnmumm 1=
M∑

P H U .×=
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array at the nth control point:

(3)

It should be noted that, to determine the values of
the elements of the matrix Hnm (Eq. (3)), it is necessary
to calculate the Rayleigh–Sommerfeld integral NM
times (in N foci from M elements of the array). How-
ever, it is possible to use field (1) calculated for one of
the elements to determine the matrix elements (3) from
an arbitrary element m at an arbitrary control point n.
To do this, we determine the position of the control
point with respect to the cylindrical coordinate system
connected with the selected element and determine the
weighted mean value of the field at the closest nodes if
the point lies within the intervals hz or hr of the grid.
Multiplying the result by the complex amplitude of the
particle velocity of the element, it is possible to obtain
the value of the pressure field produced by the element
m at the control point n.

However, if we use the field of a point source with
the coordinate rn, the matrix elements Hnm have a sim-
pler form:

(4)

where the coefficient of proportionality C = jρ0c0kS/2π
is the same for all n and m and S = πd2/4 is the area of
the array element.

In the case of equal quantities of array elements and
foci (N = M), the matrix H is quadratic, and there is a
unique solution to the set of equations (2); i.e., U =
H−1 × P, where H–1 is the matrix inverse with respect to
matrix H. Within the framework of this problem, an
underdetermined system of equations (N < M) exists,
which has an infinite number of solutions in the general
case [14]. Therefore, the principal goal is to determine

the “best” solution, i.e., a vector  with the elements
 that provides the minimum acoustic power at the

array (the minimum norm of vector ) with the given
values of complex pressure at the control points. From
a physical point of view, this condition guarantees that
the control points are local peaks of the field. Here, we
use the singular value decomposition method and the
technique of minimization of the norm to construct a
solution [14]. The method of decomposition of a singu-
lar quantity provides an opportunity to obtain a matrix
pseudo-inverse to H, while the technique of minimiza-
tion of the norm allows us to choose the “best” pseudo-

solution . In this case, a solution to Eqs. (2) can be
written down as

(5)

Hnm

jρ0c0k
2π

----------------
jk α–( ) rm rn–( )( )exp

rm rn–
---------------------------------------------------------- Sm.d

Sm

∫=

Hnm C
jk α–( ) rm rn–( )( )exp

rm rn–
----------------------------------------------------------,=

Û
ûm

Û

Û

Û H*T H  H*T( ) 1–
P.=
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Here, H*T is the matrix conjugate to H, for which the
transposition procedure is performed. The solution
given by Eq. (5) provides the minimum norm of the
vector U of matrix equation (2) [14]. The matrix
H*T(M × N) determines the operator of inverse propa-
gation of an acoustic wave from the nth control point in
space to the mth element at the array surface. The phys-
ical significance of the operator (H H*T)–1 (the N × N
matrix inverse of the matrix H H*T) lies in the fact that
it introduces a correction to the directivity of the ele-
ment’s field before the procedure of reconstructing the
field at the control points [1, 14]. If we ignore this oper-
ator in Eq. (5), the field at the control points is recon-
structed inaccurately.

It is necessary to note that a certain limiting admis-
sible value of the amplitude of particle velocity (or
intensity) exists at the surface of the piezoelectric array
elements, which makes its operation safe. In the solu-
tion given by Eq. (5), the modulus of the complex
amplitude  is not the same for different elements;
i.e., if the velocities at some elements are close to the
maximum admissible value, they can be very small at
other elements. In this case, the array efficiency [1]

ηA = 100% × ,

where umax is the maximum amplitude of particle veloc-
ity at its elements, can be from 20 to 35% in the case of
the generation of nine foci. It is clear that the maximum
efficiency of the array can be obtained when all ele-
ments have the same amplitude. Therefore, this condi-
tion of the minimum norm of the vector U is relaxed,
and the iteration procedure of amplitude equalizing is
performed to increase the efficiency of (to optimize) the
acoustic array. The notion of a weighted norm is intro-
duced to perform such an optimization [14]:

(6)

where W is a positively defined diagonal matrix with
the dimension M × M. The condition of amplitude
equality is realized by calculating the diagonal matrix
elements of matrix W in the iterative procedure [1]. If
W is a unit matrix, the determination of a weighted
norm (6) exactly reproduces the determination of the
Euclidean norm [14]. A solution to matrix equation (2)
taking into account weighted norm (6) is written down
in the form

(7)

At the first step of the iterations, the diagonal matrix
elements of the weight matrix W in Eq. (7) are assumed

to be equal to unity, and the velocity vector  (Eq. (5))
is determined. The solution obtained is verified for uni-
formity of the distribution of velocity amplitude using

the criterion of array efficiency. If solution  satisfies
the condition ηA ≥ 99%, the iterations are stopped. If
the condition is not satisfied, a redetermination of the

ûm

ûm
2

m 1=
M∑ /Numax

2

Û W Û*T
 W  Û( )

1/2
,=

Û W  H*T H  W  H*T( ) 1–
P.=

Û

Û
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Fig. 3. Spatial intensity distributions in the xy plane (from above) and in the yz plane (from below) (a, b) for a regular array and (c,
d) for two random arrays with a different choice of phases at the elements. Stirring with the set of foci is performed along the array
axis to a distance of 2 cm from the geometrical focus towards the radiator and to 7 mm away from the axis. The intensity is normal-
ized to the corresponding maximum value reached in the focus region.
diagonal elements of the weight matrix W takes place,
so that Wmm = umax/| | (m = 1, …, M). Then, Eq. (7) is
used again to calculate the vector of the complex ampli-

tudes of particle velocity , taking into account the
redetermined elements of the weight matrix. After that,
the result is again tested to make sure it satisfies the
condition ηA ≥ 99%. The described iteration technique
provides an opportunity to conduct an equalization of
the amplitude values of particle velocity at different
elements on the array surface [1].

At the second stage, the pressure field in a tissue
 produced by the whole array is calculated for a

selected value of amplitude and a preset distribution of

ûm

Û

p r( ))
phases of particle velocity at the elements. The calcula-
tion is performed in the nodes of a rectangular grid ri

with a step hz = hy = hx = 0.2 mm in the region 4 < z <
13 cm along the array axis and –2 < y < 2 cm and –2 <
x < 2 cm along the transverse coordinates. For this pur-
pose, pressures from each element are determined anal-
ogously to the calculation of pressure at control points,
which was described above, and the procedure of sum-
mation is performed (for details, see [8, 9]). The result-
ing pressure field is used to calculate the intensity field
at the same grid in the plane wave approximation:

I(ri) = /2ρ0c0, and the field of thermal sources:

(8)

p ri( ) 2)

Q ri( ) 2α I ri( ),=
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Fig. 4. Spatial intensity distributions (Fig. 3) for two random arrays on an extended scale. The phases of particle velocity at the
elements are determined using either (a, b) the field of a point source or (c, d) the field of a piston element.
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where the absorption coefficient at the operating fre-
quency of the array is assumed to be equal to the atten-
uation coefficient α.

The inhomogeneous Pennes equation of heat con-
duction [15] is used to calculate the temperature field in
a tissue:

(9)

where T = T(x, y, z, t) is the temperature in the tissue,
T0 = 36.6°ë is the equilibrium temperature, ∆ =
∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplacian, cv = 3.81 ×
106 W s/m3 °ë is the volumetric heat capacity, and k =
1.33 × 10–7 m2/s is the thermal diffusivity. The perfu-
sion time τ was selected to be sufficiently large, τ =
250 s, so that the process of perfusion almost did not
influence the heating of the tissue [16]. Equation (9)
was solved numerically in the Cartesian coordinates
(x, y, z) by the finite-difference method on the same spa-
tial grid with the nodes where the acoustic field was cal-
culated and the thermal sources Q were located. An
algorithm developed earlier for a cylindrically symmet-
rical problem [17] and generalized here for the case of
an arbitrary three-dimensional spatial distribution of a
temperature field was used. The field was calculated
within the region 4 < z < 13 cm along the array axis and

∂T
∂t
------ k∆T

T T0–
τ

---------------–
Q r( )

cv

------------,+=
ACOUSTICAL PHYSICS      Vol. 50      No. 2      2004
–2 < y < 2 cm and –2 < x < 2 cm along the transverse
coordinates. At each time step of the grid ht = 0.05 s, the
results for the temperature field were used to calculate
the thermal dose [18]:

(10)

where the integration is performed over the total time of
heating and subsequent cooling t = theat + tcool and Tref is
the temperature with respect to which the thermal dose
necessary for thermal ablation of the tissue is calculated
[18, 19]. In the hyperthermia regimes, the thermal dose
usually corresponds to the temperature Tref = 43°C
maintained in the tissue during 120–240 min [20]. For
heating regimes used in acoustic surgery, it is conve-
nient to use Tref = 56°C; then, the thermal dose  =

1 s is equivalent to  = 140 min at a temperature of
43°C [2, 18].

The results of the simulation given below provide an
opportunity to investigate the influence of irregularity
in the element distribution on the spatial distributions of
thermal sources and the evolution of the temperature
field and thermal dose in a tissue. As indicated above,
the stirring of a set of nine foci was performed along the

tdT ref
R

T ref Tt–( )
t,d

0

t

∫=

tdT ref

tdT ref
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Fig. 5. Spatial temperature distributions after 8 s of heating in ultrasonic field (Fig. 3) with (a, b) regular and (c, d) random arrays.
The phases at the elements are chosen with the help of the field of a piston element.
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array axis to 2 cm from the geometrical focus towards
the radiator and to 7 mm away from the array axis. Fig-
ure 3 demonstrates the spatial intensity distributions for
regular (left) and random (in the middle and at the right
of the figure) distributions of elements. The intensity
was normalized to its maximum value Imax in the vol-
ume of the region of foci, and nine levels of contours in
the figures correspond to an intensity change from
0.1Imax to 0.9Imax. In the case of a regular array, the
phases of particle velocities at the elements were recon-
structed using the field of a point source located at the
element center [8, 9]. In the case of a random array,
both approaches were used, i.e., the approximation of a
point source (the results are given in the middle of the
figure) and the approximation of a piston element (at
the right of the figure). The distributions are shown in
two sections: xy at z = 10 cm (section from above) and
yz at x = 0 (section from below). One can see that, in the
case of using a regular array, an incidental set of pro-
nounced secondary peaks with an intensity level
exceeding 80% of Imax is observed together with the
main set of physical foci (Figs. 3a and 3b). The pres-
ence of these secondary peaks is inadmissible, because
they can lead to unpredictable heating of tissue outside
the target region. If a randomized array is used, the
intensity of the secondary peaks is considerably
reduced down to a level below 30% of Imax (Figs. 3c–
3f), which is more acceptable in practice. Figure 4
shows the same intensity distributions (on an extended
scale) in the region of nine foci for a randomized array
and for two approaches to the determination of phases
at the elements. Four contours from 0.2Imax to 0.8Imax
with the step between them equal to 0.2Imax are chosen
for illustration.

The major differences in the intensity distributions
obtained for a randomized array in the cases of choos-
ing the phases at the elements in the approximations of
point (Figs. 4a, 4b) or piston (Figs. 4c, 4d) sources are
as follows. As can be seen from Fig. 3, in the first case
(the approximation of a point source), the field does not
contain any great number of secondary peaks with an
intensity within 10–20% of Imax. In the second case (the
ACOUSTICAL PHYSICS      Vol. 50      No. 2      2004



HEATING OF BIOLOGICAL TISSUES 229
0.6

–0.6

–1.2

x, cm

y, cm

0

0.6

–0.6

0

0 1.2 –1.2 0 1.2 –1.2 0 1.2

(a)

(b) (d)

(c) (e)

(f)
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approximation of a piston element), a greater number
of such peaks with the higher intensity of 10–30% of
Imax is observed both along the array axis and in the
transverse direction. However, the approach of a piston
element is still preferable, because it provides an oppor-
tunity to obtain a set of nine foci with very close values
of maximum intensity (Fig. 4). In the case of using the
approximation of a point source, the intensity levels in
the foci noticeably decrease with the distance from the
array axis and constitute from 60–80% of Imax at the
nearest foci to 40–60% of Imax at the foci most distant
from the axis. Further calculation for a randomized
array is conducted for the case of phase setting using
the field of a piston element.

The simulation was performed for different intensi-
ties obtained at the foci, different distances between the
foci, and different durations of treatment with the aim
to determine a regime that provides a thermal necrosis
of tissue after 5–10 s of treatment not only in the dis-
crete number of regions around the foci but also in all
intervals between them. Below, we present the results
for a 8-s-long treatment and the geometry of focus
arrangement already determined earlier, in determining
the intensity fields (Figs. 2 and 3). The intensity at the
radiator was selected to be 25 W/cm2, which corre-
sponded to a maximum intensity of 754 W/cm2 in the
focus region for a random array and an intensity of
845 W/cm2 for a regular array. It is necessary to note
that this high intensity value at the radiator is obtained
under the assumption that ultrasound propagates in tis-
sue through the whole distance from the array to the tar-
get depth of 10 cm. If the water–tissue boundary is
located within 5 cm from the array, which is quite rea-
sonable for many practical applications, the intensity at
the radiator is 10.5 W/cm2.

Figure 5 shows the spatial distributions of tempera-
ture in the same sections, xy and yz, as in Figs. 3 and 4
ACOUSTICAL PHYSICS      Vol. 50      No. 2      2004
after 8 s of irradiation for regular (Figs. 5a, 5b) and ran-
dom (Figs. 5c, 5d) distributions of elements. Four con-
tours are presented, where the outer contour corre-
sponds to the temperature exceeding the equilibrium
value T0 = 36.6°C by ∆T = 0.2(Tmax – T0). The step
between the contours is also equal to ∆T. Here, Tmax is
the maximum temperature value in the focal region,
Tmax = 92.6°ë and ∆T = 11.2°ë for a regular array, and
Tmax = 80.3°C and ∆T = 8.74°C for a random one. One
can see that, in the temperature field of a regular array,
the temperature increment in the incidental set of foci is
not smaller but actually greater (Fig. 5a) than in the
principal one, which is inadmissible for practical pur-
poses. At the same time, in the case of a random array
(Figs. 5c, 5d), one may expect that the ablation of tissue
will occur only in the region where the set of nine foci
is focused, because the temperature increment outside
this region is much smaller.

Figures 6 and 7 demonstrate the evolution of ther-
mal dose distributions for the same sections, xy and yz,
selected above. The distributions are calculated for the
time of 8 s corresponding to the moment of switching
on ultrasound (Figs. 6a, 6b, 7a, 7b) and after 5 (Figs. 6c,
6d, 7c, 7d) and 10 s (Figs. 6e, 6f, 7e, 7f) after switching
it off. The thermal dose fields obtained with regular
(left) and random (right) arrays are compared. Contours
in the figures correspond to the level of td56 = 1 s and
surround the region of a thermal necrosis of tissue. As
one can see, the role of thermal diffusion can be consid-
erable even after the irradiation is switched off. Within
5 and 10 s after switching off the source, the outflow of
heat from the strongly heated regions of foci to less
heated regions occurs due to a high temperature gradi-
ent, which provides in this way the uniformity of abla-
tion in the region between the foci. In the case of cool-
ing times exceeding 10 s, no considerable changes in
the thermal dose field are observed.
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To reduce the acoustic power of the array and the
intensity values at the elements, the above-mentioned
nine-foci regime can be modified to a regime with two
sequentially switched sets of four and five foci formed
at the same coordinates. The frequency of switching the
sets can be selected within 10–20 Hz, as in [20]. The
results of our calculation of the spatial distributions of
acoustic and temperature fields, which correspond to
this regime, show that, for obtaining the same thermal
effect within the heated region, the array power and
average intensity can be reduced almost twice (for
brevity, we do not present here the corresponding
graphical representation). The advantage of this regime
is the much better quality of spatial distributions of
acoustic and temperature fields, and its disadvantage is
the more than twofold increase in the duration of ultra-
sonic treatment that is necessary for obtaining the same
thermal effect.

The results presented above show that arrays with
random element distributions provide a noticeably bet-
ter quality of intensity and temperature distributions in
the case of the steering of several foci than arrays with
regular element distributions. We determined the
parameters of a random array, the geometry of the
arrangement of nine foci, and the heating regime that
provide a uniform thermal ablation of tissue within the
volume surrounding the foci. At the same time, in the
field of a regular array, the ablation is observed in both
the region of focusing of the set of nine foci and in the
region of secondary intensity peaks, which is inadmis-
sible for practical use.
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It is well known that sound vibrations find increas-
ing application in the intensification of such processes
as mass transfer, combustion, separation, and precipita-
tion; in measurement technology; and so on [1]. The
data on the velocity of ultrasound in substances give
additional information on their thermodynamic proper-
ties. A combined processing of data on thermal proper-
ties of materials and data on the velocity of ultrasound
makes it possible to determine their thermodynamic
properties [2]. Evidently, this approach increases the
reliability of investigations. The study of the velocity of
ultrasound propagation in substances in a wide range of
state variables in combination with other thermal phys-
ical properties allows one also to develop new
approaches for predicting the thermal physical proper-
ties of these substances [3, 4].

The problem of exploitation of deposits of heavy
high-viscosity oils (HVOs) by using thermal methods
requires a calculation of the heat and mass transfer pro-
cesses in the disperse flows of oil pools. In its turn, such
a calculation requires a prediction of the effective ther-
mal physical properties of fluids (oils and their aqueous
emulsions) in the pools.

To study the velocity of ultrasound in HVOs, a spe-
cial system was developed that allowed us to perform
the measurements in the temperature range from 20 to
200°C under pressures from 0.1 to 60 MPa [4].

A flow chart of this system is shown in Fig. 1. A
rectangular pulse with a width of about half the reso-
nance wavelength of the transducers is fed from pulse
generator 2 to radiator Rad. Under the shock action of
the electric pulse, the radiator is excited and transmits
oscillations to receiver Rec in the form of a decaying
pulse. The shape of the pulse can be observed on the
screen of oscilloscope 5. The oscilloscope is synchro-
nized by pulse generator 2. The latter is excited by
audio-frequency generator 3, whose frequency is mon-
itored by digital frequency meter 4.

Varying the pulse repetition frequency by generator 3,
we reach a frequency equal to the reciprocal of the dou-
bled time of pulse propagation along the distance l, and
the transmitted and twice reflected pulses become
superimposed. In this case, a resonance increase in the
1063-7710/04/5002- $26.00 © 20232
pulse amplitude is seen on the screen of the oscillo-
scope.

The formula for calculating the sound velocity has
the simple form

c = 2lf, (1)

where c is the velocity of sound propagation, l is the
distance between radiator and receiver, and f is the fre-
quency of pulse repetition.

As a radiator, we used quartz plates 20 mm in diam-
eter with a resonance frequency f = 1 MHz.

Thermostatting of an autoclave with a measuring
cell was realized in a special thermostat. The tempera-
ture was measured using a platinum thermometer, accu-
rate to ±0.05°ë.

The pressure in the autoclave was produced and
measured by an MP-600 dead-weight pressure gauge of
accuracy class 0.05.

The measuring system described above provided the
measurements of ultrasonic velocity in HVOs with a
relative error not exceeding, on the average, ±0.1%
with a confidence level of 0.95. This was confirmed by
calibration tests with distilled water and pure hydrocar-
bons with various values of state variables.

2 3 4 5

Rad Rec

1

Fig. 1. Flow chart of the system for measuring the velocity
of ultrasound in a liquid: (1) measuring cell, (2) pulse gen-
erator, (3) audio-frequency generator, (4) digital frequency
meter, and (5) oscilloscope.
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A total of 12 samples of HVOs from various depos-
its of Russia and Kazakhstan were investigated. The
physical chemical properties of the oils studied were
presented in [5]. As an example, Fig. 2 illustrates the
dependence of the velocity of ultrasound in HVO from
the Zybza–Glubokii Yar deposit (well no. 304) on both
temperature and pressure. As can be seen from this fig-
ure, the isobars of ultrasonic velocity vary linearly and
the isotherms vary curvilinearly. The rate of the ultra-
sonic velocity variation with pressure increases at high
temperatures. Similar dependences were observed for
other HVOs.

For mathematical processing of the data on the
velocity of ultrasound in oils, we used the results pre-
sented in [6]. In the cited paper, for describing and
developing the procedure of calculating thermal physi-
cal properties of hydrocarbon mixtures, elements of
information theory were used along with the methods
of thermodynamic similarity of the properties of mate-
rials. As applied to describing the velocity of ultrasound
in HVOs, the equation derived in [4] can be written as

(2)

where c0 is the velocity of ultrasound (in m/s) in oil at a
fixed temperature of T = 0.45 Tcr (in K) and a fixed pres-
sure of p = pcr (in Pa), c1(τ) is the function depending on
the reduced temperature τ = T – 0.45Tcr at the critical
isobar p = pcr, and c2(τ, π) is the function depending on
τ and π = pcr.

In Eq. (2), the pseudocritical temperature Tcr and
pseudocritical pressure pcr are calculated using the pro-
cedure described in [5].

The values of c0 for the oils under investigation were
determined by the extrapolation of experimental data
on sound velocity. In the absence of these data, c0 can
be found from the equation

(3)

where µ is the molar mass of the oil and A, α, β, and γ
are constants: A = 13999.5, α = –0.747510, β =
0.454857, and γ = –1.787843 × 10–2.

The mean relative error of calculating c0 from
Eq. (3) was ±0.16% with a confidence level of 0.95; the
maximum error was –0.41%.

The function c1(τ) in Eq. (2) was found by process-
ing the experimental data on the ultrasonic velocity in
HVO at the pseudocritical isobar; this function has the
form

(4)

Figure 3 displays the dependence supporting the
validity of Eq. (4). The function c1(τ) is represented as

, where cτ, 0 are the values of the velocity of ultra-

sound in HVO at the pseudocritical isobar.

cτ π, c0 c1 τ( ) c2 τ π,( )+[ ] ,exp=

c0 AT" p
α p"

βµγ,=

c1 τ( ) 0.00246609τ 8.437174 10 7–× τ2.––=

cτ 0,

c0
--------ln
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For determining the function c2(τ, π), experimental

data were processed in the coordinates  – π.

Here, cτ, π is the value of ultrasonic velocity as a func-
tion of reduced temperature τ and reduced pressure π.

The function c2(τ, π) =  mentioned above is

described by the equation

(5)

where M and L are the quantities depending on the
reduced temperature τ.

cτ π,

cτ 0,
--------ln

cτ π,

cτ 0,
--------ln

c2 τ π,( ) Mπ Lπ2,+=
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Fig. 2. Dependence of the velocity of ultrasound propaga-
tion in HVO from the Zybza–Glubokii Yar deposit (well
no. 304) on temperature and pressure. Isobars: (a) 0.098,
(b) 19.6, (c) 39.7, and (d) 58.8 MPa. Isotherms: (1) 21.0,
(2) 43.3, (3) 82.7, (4) 99.7, (5) 145.0, and (6) 190.0°C.
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Fig. 3. Dependence of the velocity of ultrasound in HVOs
in reduced coordinates at the critical isobar: (1–3) Zybza–
Glubokii Yar (well nos. 688, 304, 849), (4) Karazhanbas
(well no. 2), and (5) Russkoe (well no. 42).



234 MAGOMADOV
The quantity M is described by the equation

(6)

where F0 = 0.00493874, F1 = 2.482396 × 10–5, and F2 =
3.464068 × 10–8.

The quantity L is described by the equation

(7)

where J0 = –2.111854 × 10–5, J1 = –1.768529 × 10–7,
and J2 = –4.195657 × 10–10.

Equations (2)–(7) make it possible to determine the
velocity of ultrasound in HVOs with a mean error of
±0.22% at a confidence level of 0.95 and with a maxi-
mum error of +0.57%.
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Review of the Book Modulated Waves 
by L. Ostrovsky and A. Potapov 

(Fizmatlit, Moscow, 2003; J. Hopkins Univ. Press, Baltimore, 1999)
The book that has finally appeared in Russian can be
considered a textbook on the theory of linear and non-
linear waves, as well as a monograph, because it
describes a wide variety of wave processes on the basis
of a unified approach. Namely, the authors make an
attempt to consider complex dynamic wave structures
in terms of modulated waves, i.e., quasi-plane waves
whose amplitude, frequency, and phase vary in the
course of their propagation. This approach makes the
monograph logically complete, and the aforementioned
attempt can be characterized as rather successful,
although the authors also had to consider some struc-
tures that did not in the least resemble plane waves,
such as, for example, soliton solutions to the Korteweg–
de Vries equation.

The book is written in an easy and vivid manner. It
does not contain a “clinical sequence” of lemmas and
theorems, which, according to R. Feynman, would be a
disadvantage. At the same time, it contains sufficiently
rigorous derivations of the main statements of the the-
ory of modulated waves. This fact makes the mono-
graph under review suitable for being used as a text-
book for students and postgraduates specializing in
physics; moreover, mature scientists can also find it
interesting and useful. The book analyzes wave pro-
cesses in a wide variety of media: waves on the water
surface, acoustic waves in fluid and elastic media, and
electromagnetic modulated waves in dielectric struc-
tures.

Note that the Russian edition, which was prepared
by the authors after the appearance of the American
version, is more complete. The theory of solitons is pre-
sented in two separate chapters. This is all the more
appropriate because it includes the results of a series of
original works by L.A. Ostrovsky with students, which
were carried out in the 1970s. One should especially
note Chapter 14, Interaction of Topological Solitons,
1063-7710/04/5002- $26.00 © 20235
where a set of exact solutions to the sine-Gordon equa-
tion is presented and the efficiency of approximate
solutions is analyzed. By the width of the scope and the
rigor and clarity of the presentation, the book under
review can be compared to the well-known monograph
by Whitham, Linear and Nonlinear Waves, published
more than thirty years ago. The book by Ostrovsky and
Potapov contains some recent results, for example:
results obtained for waves in nonequilibrium media and
negative-energy waves in continuous media, an asymp-
totic analysis of modulated waves, and results for
waves in nonstationary media. An efficient approach is
used by the authors for describing the nonlinear evolu-
tion equations, which for a number of years were stud-
ied by Russian scientists: R.V. Khokhlov, O.V. Ru-
denko, S.I. Soluyan, K.A. Naugol’nykh, L.A. Ostro-
vsky, and E.N. Pelinovskiœ.

An important advantage of the book is that it con-
tains historical notes and comments for every chapter,
as well as tasks and exercises, which contribute to a bet-
ter understanding of the material.

Evidently, every professional has his own favorite
topics, while some of the problems seem to be some-
what briefly described. However, such deviations are
inevitable. On the whole, one can be sure that the reader
will find sufficiently full and, often, original answers to
the problems of the evolution of modulated waves in
nonstationary inhomogeneous media.

The monograph under review is the result of long-
term scientific and pedagogical activities of the authors.
Its publication, supported by the Russian Foundation
for Basic Research, is timely and topical.

S.A. Rybak
Translated by E. Golyamina
004 MAIK “Nauka/Interperiodica”
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XV Session of the Russian Acoustical Society
The XV Scientific Session of the Russian Acoustical
Society, dedicated to the 80th birthday of Correspond-
ing Member of the Russian Academy of Sciences
Vitaliœ Anatol’evich Zverev, will be held November 15–
18, 2004, at the Institute of Applied Physics, Russian
Academy of Sciences, in Nizhni Novgorod.

The program of the session includes lectures, oral
presentations, and poster sessions that cover the follow-
ing fields of acoustics:

Ocean acoustics
Speech acoustics
Acoustic measurements and standardization
Acoustics in higher education
Acoustical problems of applied linguistics
Architectural acoustics and acoustics of buildings
Atmospheric acoustics
Aeroacoustics
Geoacoustics
Medical acoustics and bio- and psychoacoustics
Musical acoustics
Photoacoustics
1063-7710/04/5002- $26.00 © 20236
Propagation and diffraction of waves
Physical acoustics
Noise and vibration
Ultrasound and ultrasonic technologies
Electroacoustics.

The session will be accompanied by an exhibition of
instruments with demonstrations of experimental mod-
els and computer programs.

May 15, 2004, is the deadline for submitting papers:
six pages for plenary lectures and four pages for regular
oral presentations.

Information concerning participation in the session
is available from the Russian Acoustical Society,
Andreev Acoustics Institute, ul. Shvernika 4, Moscow,
117036 Russia

Tel: (095) 126 9835; (095) 126 9823
Fax: (095) 126 0100
e-mail: ras@akin.ru; yudina@akin.ru
Web: http://www.akin.ru/rao.htm
004 MAIK “Nauka/Interperiodica”
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Congratulations to Academician Fedor Vasil’evich Bunkin
The Editorial Board of Acoustical Physics and col-
leagues-acousticians cordially congratulate Academi-
cian Fedor Vasil’evich Bunkin, Director of the Wave
Research Center of the General Physics Institute, Rus-
sian Academy of Sciences, on his 75th birthday. Acade-
mician Bunkin is the author of many important basic
and applied studies in radio-wave physics, laser phys-
ics, and acoustics. We are grateful to Bunkin for his
1063-7710/04/5002- $26.00 © 200237
long-term fruitful work as a member of the Editorial
Board and Editorial Council and as Deputy Editor-in-
Chief of our journal.

We wish Fedor Vasil’evich Bunkin many happy
years to come and new scientific achievements.

Editorial Board
04 MAIK “Nauka/Interperiodica”
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