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Abstract—Predictions of the models based on effective chiral Lagrangians of vector mesons p(770) and
w(782) are considered for such measurable quantities as the partial widths of variousp — 4mmand w — 51t
decays and their corresponding excitation curves. Analogous curves for the channel p~ — (41)~ are obtained
for T lepton decays. The angular distributions for various combinations of the final pions from the p — 41t
and w — 571 decays in the e"e-annihilation and photoproduction are also found. A simple method for the
order-of-magnitude estimation of the partial widths based essentially on the threshold character of the above
multipion decaysis presented. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In early times, the chiral pion dynamics was tested
in the low-energy TtTiscattering, with the scattering data
extracted from the studies of the one pion exchange—
dominated reaction TN — 1tTiN. Themain difficulty in
interpreting the results was due to the necessity of
extrapolating to the pion pole. The sources of soft pions
that are feasible at present are unconventional from the
point of view of the chiral pion dynamics and do not
have the drawbacks of the classical Tt scattering.
Indeed, progress in increasing the intensity of low-
energy e"e colliders (¢ factories) and photon beams, as
well asthe huge number of the specific hadronic decays
of T leptons, offers naturally controlled sources of soft
pions, provided the sufficiently low invariant mass
regions of hadronic systems are isolated. Since the
yield of pionsis considerably larger when they are pro-
duced through the proper vector-resonance states, the
theoretical study of the multipion decay channels of the
low-lying vector mesons p(770) and w(782) becomes
important [1].

In this paper, based on the Weinberg Lagrangian [2]
obtained under the nonlinear realization of the chiral
symmetry—or in modern terms, the Lagrangian of hid-
den local symmetry (HLS) [3]—we systematically
consider the predictions resulting from the approach of
[2, 3]. Specificaly, the partia widths and resonance
excitation curves are calculated for the reactions

g'e — p? — 22 and e'e— p° — T 21,

It is shown that the intensities of the above decays
change twice as fast as the phase space variation when
the energy varies inside the p width. This means that

TThis article was submitted by the authors in English.

the e*e- annihilation offers an ideal tool for the study of
such effects. The decay widths of the charged p meson

p*t — m3m° and p* — 21T,
and of the w meson

W — 212 and @ — T30

are aso evaluated.

The paper is organized as follows. Section 2 con-
tains the expressions for the p — 41t amplitudes and
the order-of-magnitude estimates of the p — 411 par-
tial widths. The results of calculation of the excitation
curves and partial widths for different isotopic states of
four pions are presented in Section 3. Thisis done for
the e*e~ annihilation, T decays, and photoproduction. In
addition, the angular distributions of the emitted pions
are obtained for the e"e~ annihilation and photoproduc-
tion. The partial widths of the decays w — Smaredis-
cussed in Section 4. The angular distributions of vari-
ous combinations, chosen among five emitted pions,
are obtained for the e"e~ annihilation and photoproduc-
tion. Section 5 contains concluding remarks.

2. THE p — 4t DECAY AMPLITUDES
2.1. Historical Background and General Remarks

The decay p — 41T is a unique source of soft
(Jp|~ my pions. It attracts much attention [4—7]
because it can be used to study the chiral dynamics of
the p meson interaction with multipion systems. Aswas
found in [4, 5, 6], this decay must be rather strong,
B(p —= 4m) ~ 10%. A detailed analysis given in [7]
revealed a number of shortcomings of the calculations
in [5, 6] related with the actual violation of chira
invariance, in particular, the Adler condition [8] for soft
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pions. The correct results based on the amplitudes
obeying the Adler condition and obtained in [1, 7] cor-
respond to B(p — 4m) = 10-°. The large magnitude of
the branching ratio B(p — 4m) ~ 10 obtained in [4]
isrelated, by all appearance, with avery rough method
of calculation. A common drawback of papers[4—7] is
that their authors evaluate the partial width at the
energy level equal to the mass of the p meson, asif this
were a genuine narrow resonance. However, because
the width of the p resonance is rather large and
[, - 4(E) risesrapidly with the energy increase even at
energies inside the p peak, one tends to think that the
magnitude of the 4rtpartial width at the p mass cannot
adequately characterize the dynamics of the process. In
this respect, the resonance excitation curvein the chan-
nel e'e” — p® — 4misof muchinterest, being atest-
ing ground of various chiral models of the decay under
consideration.

The HLS approach [3] permits one to include the
axial mesons aswell.! In theideal treatment, under the
assumption that

mp~E< m, ,

the difference between the modd swith and without the a,
meson would amount to taking the higher derivativesinto
account, and the latter were small.“ Inred life, one has

2 2 2
my, —m, Dmp,

and the correction may appear to be appreciable even at
the p mass. In fact, the calculation of [7] showsthat the
corrections amount to ~20-30% in the width. This
implies, in particular, that the left shoulder of the p
peak, where the contributions of higher derivatives van-
ish rapidly, is the best place to work. In this work, we
do not take the a; meson into account.

2.2. The General Expression
for the p — 41t Decay Amplitude

The p — 4t decay amplitudes are obtained from
the Weinberg Lagrangian [2]

1
& = (0,0,-0,p, +olp,x p.])’

m; nXxXo0,n 2
+?[pu+ 2 2,152 }
2g9f2(1+n°/452)
(0,m)”
2(1+n%/41%)°

2.1)

2 2
m.m

+ - y
2(1+r°/4£2)

1 The problem of theinclusion of vector and axial mesons and pho-
tonsin the framework of chiral theories has required considerable
efforts; for example, [9]. It is solved in an elegant way in the
approach based on hidden local symmetry [3].

2 Taki ng the higher derivatives into account also requires account-
ing for the chiral loops, the task which is not yet fulfilled for vec-
tor mesons.
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where &, m; and p, m, are, respectively, the isovector
field and mass of the pion and the p meson and f, =
92.4 MeV isthe pion decay constant. The cross denotes
the vector product in the isotopic space. The ppp cou-
pling constant g and the prtricoupling constant g, are
related to the p mass and the pion decay constant f,; via
the hidden local symmetry parameter a as[3]

g =m/f/a
U = AJamy/2f .

We note that imposing the universality condition g = gy,
givesa = 2. Thisthen |leadsto the so-called KSRF rela-
tion [10]

(2.2)

2Q0mfo/my = 1, (2.3)

which beautifully agrees with the experiment. The
prtrtcoupling constant resulting from thisrelation is
g = Gorr= 5.89.

We first obtain the T — 3t transition amplitudes
that are necessary for the calculation of the multipion

decays of vector mesons. They are found from the dia-
gramsin Fig. laand are given by

MOT —~ TG ,76) = (1+ P2

T

[ m2 [
X G- 2(qy, Gp) + a0y, G — 1——9}
E‘ (91, 9p) +a(dy, 92 %)[ D, (0 + 03) %

MO —~ TG T6.16) = (1+ P

s
2

mg 0
Do(a, + %J %
(2.4)

O
X %%v 01 —20,) +a(gs g, — %)[1 -

MOP — TG 6) = (1+ Pu)

4 m d
Bl 00-209) -t -0 15|
E(Ch 02 —203) —a(0, G2 — ) D,(0+ 03) 51

M(TTO — nglngzngs)
= _—f];Z[(ql, 02) + (dy, ds) + (2, d3)],

T

where P; is the interchange operator of the pion
momentag; and g; and

|m2Eh 4mzﬁ/ [ o)
Jo

Em 4mD
No. 3

D,(@) = m—¢’ (2.5)
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isthe inverse p meson propagator.3

The diagrammatic representations of the p — 41t
decay amplitudes for different combinations of charges
of thefinal pionsare showninFigs. 1b and 1c. By intro-
ducing the 4-vector ¢, of the decaying p meson polar-
ization, we can write the general expression for the
amplitude as

M = e g
fa
where
Qo _ A 26)
2 2f

isobtained from Eq. (2.2). We now give the expressions
for the current J, for all the decay modes considered
here.

(1) The decay p%(q) — TT(Q)TT () TT(Cl3)TT(Cla)-
One has

Ju = (1+Pp)(1+Pg)

% O 1 a(Qgy, gs) —(a—2)(d3, q,)
gq“‘[Z ' D(q -0y }

1 a5, 94 —(a—2)(q1, 9p)
+q3“[§+ 1 4Dn(q—qg) 1 2}

2.7)

01.(03, 02 —0a) %
Dn(q - ql) Dp(qz + q4) O

+amy(1+ Py)

where D,(q) = mf[ — @? isthe inverse pion propagator.

(2) The decay p°(q) —= ()T (@) TE(G)TC(A)- 1N
this case, onehas J, = 33" + J;", where

I = —(1-Py)(+ P34)Chu% + Wl—ql)

2(0s, 0 — th)}D

(3= 1) 00 - (a-2(a @9 + amy i
p\M2 4,

2
m

2D, (g, + %)pr(QZ +0,)

x[(dy + O3 — 02— 04), (01 — G, 92— Ga)
—2(0;—03), (A1 + G, 92— 0a)
+2(0d2—04), (G2 + gy A1 —Cs) ]

+(1+Py)

(2.8)

30ur notation for the Lorentz-invariant scalar product of two
4-vectorsaand bis(a, b) = aghg—a - b.
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Fig. 1. (8) The diagrams describing the Tt — 3rttrangition
amplitude. The symmetrization over the momenta of identi-
cal pions is understood whenever necessary. (b), (c) the
diagrams describe the amplitudes of the decays pO —
e and p© — e, respectively. The shaded
circlesinthemt—— 3mverticesin diagrams (b) and (c) refer
to the sum of the diagrams shown in (a). The symmetri-
zation over the momenta of identical pions emitted from

different verticesisimplied. The diagrams for the decays

pt — O and p* — w0 are similar to

those of (b) and (c), respectively.

is obtained from Eq. (2.1) and

an ENCQZDZ
Ju = 20—=0(1 + Pgy)[01,(1 = P53)(0, 92)(ds, As)
08’ O

+ 0pu(1—P13)(0, 95)(Ay, Aa)

(2.9)
+03,(1 = P12)(0, a1)(02 A4)]

x[ 1 N 1 N 1 } 1
Dy(0;+0,) Dy(a;+0s) Dy(a,+03)IDy(d—0s)’

with D(q) = m;, — o being the inverse w meson prop-
agator and N, = 3 (the number of colors) is the contri-

bution of the term induced by the anomalous Wess—
Zumino Lagrangian [3, 11]

N.g”

Poon = —=€,,150,0, (7 (D, po), 2.10
P 8T[2fnu)\ uwv( }\p) ( )
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manifesting in the process p® — wrn® — 1T T°re. In

general, J;" is attributed to the contribution of higher

derivatives. We nevertheless take it into account to
show the effect of higher derivatives and the dynamical
effect of the opening of the p — T — 41t channel.
In agreement with [3], the contribution of the point ver-
tex w — 3mis omitted. The following amplitudes of
the charged p decay are necessary for obtaining the
w — 5Smtdecay amplitude and are interesting on their
own for studying the reactions of peripheral p meson
production and T decays.

(3) The decay p*(q) — T°(q)T(qR)TO(0R) ().
One has

= (1+ Py + Pgy) Eﬂqlu[g D(Cga qegl)}
Q4
— Dn(q—E%)[Z(a —1)(2: 03) (211)

(02,9, -03)10
—(a=2)(qy, 0, + 0) +am’(1L+ P —}
(=2 Gz + 6o +amy(1+ Pao) 5 0 0

(4) The decay p*(q) —= T (A)TT(AITT () T(q)-
Here, the contribution induced by the anomal ous Wess—

Zumino Lagrangian isalso possible; hence, J, = J;™" +

J;", where
3= (1+ Plz)%(ch C|4)

+%[(a 1)(0: 93) — (2—2)(d, 9a)]

TR
DA{0-0,)

2 Q1 (92, 93— 0a)
—amp| =————(1+Py)—F——
p[Dn(q—on)( 3)Dp(qe,+q4)
, (2.12)
Oap(d1, 92 —dg) ] + mp

D(d—0,)Dy(a, +03) ] 2D,(q; +93)Dy(az + ds)

[a(a., 93) —(2a—2)(a1, Gy)]

x[(q,+ 03— Qs O —0s)

-2(q;—

02— 0a) (0 —

0s),(0z + s, G2 — 0la)

0
+2(0,—04) (A1 — 03, A2 + Gg) ] E
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is obtained from Eq. (2.1), while the anomaly-induced
termis

an |:,\IC
3 = 25&5(“%)[%(1 P,2)(Ch G2)(l )

+ 0ou(1—P1)(9, 91 (93, Aa)

(2.13)
+ 0(1 = P12)(0, 92)(d1, d3) ]

X[ 1 + 1 + 1 } 1
Dy(d:+d;) Dy(ds+0ds) Dy(q +da)]D(q—0)
One can verify that up to corrections of the order

mi./mg,, the above amplitudes vanish in the limit of the

vanishing 4-momentum for each final pion. In different
words, they obey the Adler condition.

The amplitudes for the p~ — (41~ decays are
obtained from the above expressions for the p* —
(4m)* decay amplitudes by inverting the overall sign.

2.3. Nonrelativistic Limit
and an Order-of-Magnitude Estimate
of the Partial Widths

Aswill be clear in what follows, the nonrelativistic
expressions for the above amplitudes are needed. They
are obtained by neglecting the space components of the
pion 4-momenta. For the T — 3rttransition, they are
given by

M@t~ 5, TG, 1G) = —2m3/ 2,

M(T[+ - T[‘;1T[82T['(1)3) = _m72'[/ ff"

M(T[O - T[:hn;zngs = _mi/ fTZT’

M(T° — T TG, TG) = —3m}/ .
We note that the HL S parameter a is dropped from the
expressions in the nonrelativistic limit. The nonrelativ-
istic expressions for the p — 41t decay amplitudes are
relevant for the four-pion invariant mass below 700 MeV.
They are obtained by neglecting the space components
of the pion momenta in the Lorentz invariant scalar
products (g;, ¢;). One can convince oneself that in this
limit, a enters the expressions for the amplitudes as an

overal factor, Eq. (2.6), and the amplitudes therefore
become

(2.14)

M(po - T[:rh.r[‘;znasn‘;) = gzpfrm(8 Q1 +Qx2—0Qs— q4)l
M(p° 1,15, 7E 1) =—‘=f’4—"ff—”;(e a4 - a),
K (2.15)
M(p+4> Tr‘;lT[;;Z _31-[24) gpﬂﬂ(s Uz + 02— ZQ4),
No. 3 2000
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Yo

MG Tty =8

(5 du)-

T

These simplified expressions* are convenient, espe-

cially, in the calculation of the v — 5t decay ampli-
tude, because the typical invariant masses of the four-
pion system in the above decay are in the vicinity of
620 MeV (see Section 4 for more detail). Moreover, as
thedirect numerical calculations of the subsequent Sec-
tion 3.1 show, the nonrelativistic expressions (2.15) are
valid with an accuracy up to 15% even at the invariant
mass near my, provided the termsinduced by the anom-
alous Wess-Zumino Lagrangian are neglected® in the

p? — 20 and pt — 2T 1P decay amplitudes.

We now give very simple estimates of the partial
p — 4mnwidthsthat are valid up to the factor of three.
They are based on approximating the true branching
ratio by the product of the squared modulus of the
matrix element averaged over the polarizations of the
decaying p and by the nonrelativistic expression for the
Lorentz-invariant phase space volume of four pions.
The latter is obtained by settingn=4and M = m,inthe
general expression

R.(M)
3n-4 !
2M(2m) N,

where M isthe decaying particle mass; n is the number
of final particles with the massesm (i = ., N); Ngis
the factor accounting for indistinguishable particles in
the final state; and [12]

Ry(M)

12

L O
(2 )(n l)/2 %:!Lrni% |:| n lj3n—5)/2 (217)

[Q(n—l)}éimglzgw_zlmﬁ |
0

4 Amplitudes (2.15) are obtained from the expressions given in
Section 2.2 obeying the Adler condition. However, they do not

o, (M) = (2.16)

contain the factor m,zT/ f ]21 typical for the Ttriscattering amplitudes
that also obey this condition, see Eq. (2.14), except the natural
kinematical smallnessU & ; ¢;q; , where c; are numerical coeffi-
cients from Eq. (2.15). This is because the pointlike p — 411
vertex in the exact p — 4m amplitude Fig. 1b up to the terms
O(mﬁ/mf, ) is compensated in the Adler limit of vanishing of one

of the pion momenta by the 1t pole diagrams, while in the nonrel-
ativistic limit the latter compensate only one-half of the former.

5 The terms induced by the anomal ous Wess—Zumino Lagrangian
involved in the p® — mrmr2m® and p* — 2w 0 decay

amplitudes are appreciable at the p mass, see Section 3.1. How-
ever, they vanish in the nonrelativistic limit.
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with I being the gamma function. We note that at m =
m, = 139.6 MeV (i =1, ..., 4), the numerical value of
®,(m,) agreeswithin 7% with the exact value obtained via
numerical integration of Eq. (3.3) in the next section.

The results of the estimation are as follows. The
answer depends on which combination of the pion
momenta is retained in the expression for the ampli-
tude. Therelation

(,9;+0,+03+qy) =0 (2.18)

expressing the transverse character of the p polariza-
tion four-vector € permits one to eliminate one combi-
nation of the pion momenta in favor of another one.
Thisresultsin the above-mentioned uncertain factor up
to 3, which illustrates the role of angular correlations
among the momenta of the final pions.

(1) The p® — 2121t decay. Here, using the first
line of Eg. (2.15), wefind

1 Qo
12?92 g(ql

1@pm[fq2
3|:J f2 aHm

‘|M| _Q4)2

(2.19)

where the approximate equality follows by setting all
the pion three-momenta to the equilibrium one (|g,| =
133 MeV), obtained by taking the energy of each pion
equa to m,/4 and neglecting the angular correlations
among different momenta. Another choice is to elimi-
nate, for example, g5 and q,, which results in multiply-
ing the right-hand side of Eqg. (2.19) by the factor 2.
Taking N = 4 and M = m,,, we then find

[ = 0.8-1.6 keV.

p L o2mem

(2) The p°® — tT21° decay. Equation (2.18)
allows us to eliminate g, in the second equation in
(2.15) and replace g, — g, with 2g;, + g3 + Q4. This
replacement results in the factor of three multiplying
the approximate expression for |M|? obtained from the
second line of Eq. (2.15). With N = 2, the estimate is
then

Mo .. 0=02-06keV.

p - T 2T
(3) The p* — 21t 1 decay. Here, N, = 2, and the
estimateis
r. - 0= 0.6-1.0KkeV.

p 21T

The uncertainty within the factor 5/3 comes from the
above arbitrariness of the choice among the final pion
momenta.

(4) The p* — 131 decay. Here, N, = 6, and the
estimate is
r. ...=05-15keV,
p- - T 31
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o(ete” = 2mT210), nb
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$12 , GeV

Fig. 2. The energy dependence of the e'e” —> p® —>

TOTOTC T reaction cross section in the model based on the
chiral Lagrangian due to Weinberg. Experimental pointsare
from [16]. The solid (dashed) line refers to the dynamic
(phase space) model of the decay.

with the above arbitrariness of the choice among the
pion momenta resulting in the uncertain factor 3. We
note that the order-of-magnitude estimates in cases 2
and 3 should be compared to the exact calculations in
the models where the terms induced by the anomalous
Lagrangian are neglected (see footnote 5). We now pro-
ceed to the exact numerical evaluation of the above
branching ratios and show that they agree with the
above very simple estimates sufficiently well.

3. RESULTS FOR VARIOUS p — 411 DECAYS

In evaluating the partial widths of the 41t decays of
p meson, the modulus squared of the matrix element is
expressed via the Kumar variables [13]. The idea of
speeding up the numerical integration suggested in[14]
is realized in the numerical algorithm. The results of

evaluating the partial widthsat /s = m, =770 MeV are
asfollows:

ro (my) = 0.89 keV,

p S 2w

Mo o(m,) = 0.24 keV, and 0.44 keV,
o’ o w2’ P

respectively, without and with the induced anomalous
term taken into account. This coincides with the results
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obtained in [7]. For the charged p meson decays, the
estimates are new:

Fp+ M) = 041 keV,

‘i m o(mp) =0.71 keV, and 0.90 keV,

p - 210 TU pTT

respectively, without and with the anomaly-induced
term taken into account. A comparison with the model
estimates in Section 2.3 shows that they are rather reli-
able despite their extreme simplicity. In obtaining the
exact figures, the narrow p width approximation is
used. Thisisequivaenttousing I, —> 0in Eq. (2.5).
Keeping the physical value of the p width gives results
that deviate from those obtained in the narrow-width
approximation by a quantity that does not exceed afew
percent of the values obtained in that approximation.
Thisistruefor the invariant mass of the four-pion state
lying below the prt threshold energy, m,,, < 910 MeV.
We recall that allowing for the finite width effectsisin
fact equivalent to taking the loop correction into
account.

The above results are obtained for a= 2. The varia-
tion of awithin 20% around this value leadsto the vari-
ation of the branching ratios within 20% around the
above values. This fact can easily be traced in the non-
relativistic limit, where the parameter a enters the

expressions for the amplitudes as an overall factor ﬁ\ ,
see Egs. (2.2) and (2.15).

3.1. The p° —» 41t Decay Manifested
in e'e- Annihilation

The results of the 471 state production cross section
in the reaction e'e” — p° — 4,

_ 12nnﬁrp€§0n9rpﬁ44E)
E’Dy(s)’ ’

where s = E? is the square of the total center-of-mass
energy and D,(s) is obtained from Eq. (2.5) by substi-
tuting g2 — s, are shown in Figs. 2 and 3. The values
of the vector meson parameters taken from [15] are
used here and in what follows. To demonstrate the
effects of chiral dynamics, the energy dependence of the
cross section evaluated in the pure phase space modd for
the four-pion decay is aso shown. In this model, the 41t
partial width normalized to the width at the p mass calcu-
lated in the dynamical mode is given by

(3.1)

e'e - p-4am

LIPS W, (S)
- 41t '\/_S - = 4711 m N 32
Mo an(WS) = T al p)VNhnUﬂp) (3.2
No. 3 2000
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where the four-pion phasespace volumeis[12, 13]

(Jfs—my)
dsy, 1 2
W, (s) = )\ , St
4T[() 83/2N I ( lmTl)

16(2m)°s
3.3
(fsi-m)’ (33
ds;, 12
S

(2my)?

X

(S1, So MIN(s,, mE, m)).

In thisformula, Ng = 4 (2) isthe factor that accounts for
the identity of final pions in the fina state 2m2rc
(respectively, ' 2mP), and

AX Y, 2 = X2+ y2 +X° —2(xy+xz+yz). (3.4
As the evaluation shows, theratio

p - 2m 21 ('\/_S)
LIPS _(Jé)

(o on2m

rs =

changesfrom 0.4 a ./s =650 MeV to 1 at ./s = m,. As
can be seen from Figs. 2 and 3, therise of thep —» 411
partial width with the energy increase is so fast that it
completely compensates the faling of the p meson
propagator and the electron width. Also noticeable is
the dynamical effect in the decay p® — ' 2m° at

Js > 850 MeV resulting from the anomaly-induced
Lagrangian wrtt threshold (see Fig. 3). To quantify the
above-mentioned effect of the vanishing higher deriva-
tive contribution at the left shoulder of the p resonance,
we note that the difference between the magnitudes of

. o(+/3) with and without the term originating

from the anomaly-induced Lagrangian, which is equal
to 100% at /s = m,, decreases rapidly with an energy
decrease, amounting to 8% at /s =700 MeV and 0.3%

at /s =650 MeV.

It should be pointed out that the evaluation of the
partial widths with the nonrelativistic expressions for
the p — 4mmamplitudes, Eq. (2.15), gives values that
deviate from those obtained with the exact expressions
within 7-15%, depending on the energy in the interval
from 610 to 770 MeV. This corresponds to the case
where the terms induced by the anomalous L agrangian
are neglected (see footnote 5).

As seen from Fig. 2, the predictions of chiral sym-

metry for the e'e- — 21" 21T reaction cross section do
not contradict the experimental points of the CMD-2

detector [16] attributed to the energies /s < 800 MeV.

At ./s > 800 MeV, however, one can observe a substan-
tial deviation of the predictions of Lagrangian (2.1)
from the CMD-2 data. By all appearances, this is the
result of neglecting the contribution of higher deriva
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Fig. 3. The energy dependence of the e'e” — p0 —

i OO reaction cross-section in the model based on the
chiral Lagrangian due to Weinberg, added with the terms
induced by the anomalous Wess—Zumino Lagrangian.
Solid, dashed, and dotted linesrefer to the respective models
with theanomaly induced term, without thisterm, and phase
space.

tives and chiral loops. It is expected that the left shoul-
der of the p peak is practically free of such contribu-
tions and is therefore preferable for studying the

dynamical effects of chiral symmetry. Even at /s =
650 MeV, where the contribution of higher derivatives
is negligible, one can hope to gather one event of the
reaction ete- — 211211 per day and up to 10 events of

this reaction per day at ./s = 700 MeV, provided the
luminosity L = 10°? cm™ s is achieved (i.e., to have a
factory for acomprehensive study of the chiral dynam-
ics of multipion systems).

Because of the helicity conservation, the p mesonis
produced in the states with the spin projections A = +1
on the e*e~ beam axis characterized by a unit vector n,
that is assumed to be directed along the z-axis. Using
the expressions for the total p —» 41t amplitudes, one
can then obtain the angular distributions for the final
pions. They are expected to be cumbersome. However, a
good approximation for these didributions can be
obtained from the approximate nonrelativistic expression
in Eq. (2.15), a least a energieslessthan 700 MeV. Tak-
ing 6; and @ to be the polar and azimuthal angles of the
pion three-momentum g;, where the momentum assign-
ment corresponds to Eqg. (2.15); assuming the p meson
to be at rest, one arrives at the following results.
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(1) The p® —» 21t*21T decay. The probability den-
sity of the emission of four charged pions can be found
directly from thefirst linein Eq. (2.15):

w (g, + Q2—Q3—Q4)2—(no Ha, + CIZ—Q3—Q4))2
4
= z q7sin’e, + 2|04/ (1-Px—Py)
i=1

% |g,sinB,sinB,cos(¢; — @,) (3.5

— 2|0 (1 + P3,)|03 SinB,sinB;cos(@, — @3)

+2|q4/|g,4 SNB;35inB,cos(@; — @,).

As before, P;; interchanges the momenta g; and g;. One
can use Eqg. (2.18) to eiminate the momenta of nega-
tively charged pions g; and q,. Then, the probability
density of the emission of two 1t"’s found from the first
linein Eq. (2.15) is
w0 (d; +0,)° = (No dy + 62))* = isin’6, 9
+055in°0, + 2|q4||0,| N6, SiNB,cos(@, — @,).

With Eg. (2.18) taken into account, the angular distri-
bution for the emission of two 1U's is abtained from
Eq. (3.6) by the respective replacements q; , — 0z 4.

(2) The p® — 1210 decay. The probability den-
sity of the emission of Tt'1T pair is found from the sec-
ond linein EqQ. (2.15) as

w0 (d;-02)° (N [d; - 02))” = gisin’e, a7
+055in°8, — 2|q4/|q,| SinB, sinB,cos(@, — @,).

Eliminating the momentum q,, one finds the corre-
sponding expression for the final state combination
21

w [J (ZQ1_Q3_q4)2_(no E(ZQ1_Q3_Q4))2
= 4g°sin’0, + q3sin’0, + g3sin’0,
—(1+ P3,)4|0,)|q4| Sin6;sinB;cos(@, — ¢s)

+2|q4/|q4 SiNB;3sinB,cos(@; — @,).

In view of EQ. (2.18), the angular distribution for the
state T021° is obtained from the above by replacing
0. — g, and changing the signsin front of the terms
containing (1 + Ps,).

(3.8)

3.2. Thep — 4mnDecay in T Decays

Based on the vector current conservation, the partial
width of the decay T~ — v, (41)~[17, 18] can be writ-
ten as the integral over the invariant mass of the four-
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pion state m extended up to some mass m,, whose max-
imal value is My = My,

BT_ > v1(4n)'(m0)
™o omr. (m) (3.9)
=T Jdm M
am, T[| Dp(m )|
where T, and
GZcosO.
oM = =
p
3.10
s o0 00 D 19
X mmpEl——ZD + 2‘—2D
O mOoO0 mO

are, respectively, the lifetime of the T lepton and the
partial width of itsdecay 1T~ — v,p~[17], withmbeing
the invariant mass of the four-pion state. Using the
numerical values of thep — 4rtdecay widths, onecan
evaluate the branching ratios of the four-pion T decays
for various values of the upper invariant mass m,. The
results of the evaluation of the branching ratios of the
decays 1~ — v 2t and 1= — v, U310 for the
invariant mass values of the four-pion system from 600
to 850 MeV are plotted in Fig. 4. In particular, taking
m, = 740 MeV, one abtains

vorered(M0) = 7.6x107°(8.4x10°)
without (with) the anomaly induced term, respectively,
and
_ -8
v, arorMo) = 46x10°
The corresponding values for the upper integration
mass m, = 640 MeV are

T - V12n’n+n°(m0) = 2.895 x 10_10(2900 x 10_10)
without (with) the anomaly induced term, respectively,
and

B (my) = 1.8x107".

T - VT3T[OT[
The comparison of both curvesin Fig. 4aagain demon-
strates that the contributions of higher derivatives rep-
resented by the terms induced by the anomalous Wess—
Zumino Lagrangian vanish rapidly as the mass decreases.
Unfortunately, the domainsin the low four-pion invariant
mass, where the chiral dynamics effects are clean, are
hardly accessible with T factories.

Indeed, guided by the expression for the cross sec-
tion of the T lepton pair production in the e*e~ annihila-

tion,
410 | 4mf me
O-ff(s) = ? 1- ? %l + ZED (3.11)
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one can find that up to N = 25 x 107 1 lepton pairs with

the total energy /s = My, 25 Can be produced per sea-
son at a t-charm factory with the expected luminosity
L =10%* cm= st [15]. Thisimpliesthat one can detect
only 2 to 4 events per season in the four-pion mass
range below 700 MeV. However, the event counting
rate rises rapidly with the increase of the upper integra-
tion mass m, in Eq. (3.9), reaching the figure about 60
to 120 events per season at m, = m,, depending on the
charge combination of the final pions.

3.3. The p — 4mt Decay in Photoproduction,
TN — p1iN, and So On

To conclude on the possibility of studying the p —
47t decays in photoproduction, we calculate the quan-
tity

By an(Mp) =

2 J’ gmT oo™ g0

i, p< m’)|’

which is the average of the branching ratio against the
invariant mass of the four-pion state. In the limit
m, — oo, Eq. (3.12) serves as the definition of the
branching ratio for a wide resonance. Equation (3.12)
should be confronted with the familiar definition of the
branching ratio at the p mass,

By - arMp) = T an(Mp)/ T, (3.13)
which follows from Eq. (3.12) upon the replacement
mr /14D (m?)|?

which isvalid in the narrow-width limit. With the par-
tial widths evaluated here, one finds

_ _6
Bpo oareMp) = 5.9% 10

2 2
— d(m"—m,),

and
Bo . dm) =16x10°(29x10°)

p -T

without (with) the anomaly-induced term, respectively.

aver

Theplotof B, ;(m) isshowninFig. 5. In particular,
the evaluation gives

B are(Mo) = 44x10™,6.1x107,

and 1.4x107°

at the respective values m, = 850, 700, and 640 MeV.
For other four-pion decay modes of p°, the results are
as follows. In the model with the vanishing term
induced by the anomalous Wess—Zumino Lagrangian,
one obtains

B . (mp) = 1.3x10° 1.58x10°

p - e’

and 3.66x 107°
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Fig. 4. The branching ratio of the decays (a) T~ —
ve2rr 0 and (b) T — vt 310 vs. the invariant mass
of thefour-pion system, see Eq. (3.9). The solid (dotted) line

in (a) refersto the model with (without) the term induced by
the anomal ous Lagrangian.

a m, = 850, 700, and 640 MeV. In the model that
includes the above term, one obtains

B ariMo) = 49x 10, 1.65x 10,

and 3.63x10°

at the same respective values of m,. Asis expected, the
branching ratios in the two models mentioned above
converge to because of the rapid vanishing of the con-
tributions of higher derivative terms. The difference
between the two definitions of the branching ratio is

seen by comparing By 4, (m, = 850 MeV) evaluated
for various charge combinations of the final pions with
_. 4r{my,) evaluated above.

With the total number of p mesons N = 6 x 10°
expected to be produced on a nucleon at the Jefferson
Laboratory [19], one may hope to observe about 100
and 360 events of the p decaysinto the respective states
210 and 2121T in the mass range my < 700 MeV,
where the chira dynamics effects are cleanest. The
photoproduction on heavy nuclel results in increasing
the number of the produced p mesons faster than AZ3,
where A is the mass number. The generally adopted
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1072
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107°

Baver(pO . T[+T[_2Tl0)
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10—12

|
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1072

(d)
10°°

BV (p - T[_3TP)
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my, GeV

| | |
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Fig. 5. The branching ratio of the decays (a) p° — 2rt"2rt, (b) p° — 21, (¢) p~ — 2T, (d) p° — m'r2r vs.
the invariant mass of the four-pion system, see Eq. (3.12). The solid (dotted) line in (b) and (c) refers to the model with (without)

the term induced by the anomal ous L agrangian.

behavior is in accordance with the function A%8&0%
[20]. Thus, the photoproduction of four-pion states on
heavy nuclei would give the possibility for the high sta-
tistics study of chiral dynamics effects in the four-pion
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decays of p(770). It should be recalled once more that
the counting rate rises rapidly with the increase of m,

The conclusions about the angular distributions of
the final pions with zero net charge in photoproduction
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are as follows. The general expression should certainly
be deduced from the full decay amplitudes given in
Section 2 together with the detailed form of the photo-
production mechanism. The qualitative picture, how-
ever, can be obtained by noting that the s-channel helic-
ity conservation is a good selection rule for photopro-
duction reactions. In the helicity reference frame
(which isthe frame where p is at rest and its spin quan-
tization axis is directed along the p momentum in the
center-of-mass system), the expressions for the angular
distributions coincide with the corresponding expres-
sionsfor the production of these statesin e"e~ annihila-
tion. Thelatter can befound in Section 3.1. For the pho-
toproduction on heavy nuclei at high energies, the
direction of thefinal p momentum lies at the scattering
angle less than 0.5° and the vector ny can therefore be
treated as pointed along the photon-beam direction.

We note that other peripheral reactions can provide
sufficiently intense sources of p mesons. For example,
the diffractive production of the ptt state in TN colli-
sions are currently under study with the VES detector
in Protvino. Theregions of the four-pion invariant mass
spectrum larger than m,, namely, m, = 850 MeV with

B ' 4(My) ~ 1075, should be included to reliably mea-

sure the p — 4t branching ratio. As explained in the
Introduction, this would require including the contribu-
tions of the a; meson and higher derivatives to the total
amplitude. Nevertheless, the results of the present
paper shown in Figs. 5¢ and 5d, obtained while neglect-
ing these contributions, can be regarded as a guess in
the experimental work in this direction.

4. THE w — 5m DECAY
4.1. The w — 51t Decay Amplitudes

One can be corvinced that the w —= p1T — 511
decay amplitude unambiguously follows from the
anomaly-induced Lagrangian (2.10). This amplitudeis
represented by the diagrams shown in Fig. 6. As could
be expected, its general expression is cumbersome.
However, it can be considerably simplified by noting
that although |q,J/m,, = 0.5, the nonrelativistic expres-
sionsin Eqg. (2.15) for the p — 41t decay amplitudes
inthediagramsin Fig. 6aare valid within 5% in therel-
evant 41t mass range [1]. Similarly, the expression for

the combination Dy M(rt —= 3m) involved in the
expression for the diagramsin Fig. 6b can be replaced,

with the same accuracy, by (8m2) ™ times the nonrela-
tivistic T — 3mamplitudesin Eq. (2.14). Thus, using
Eqg. (2.15) to obtain the expression for the sum of the
diagrams shown in Fig. 6a and Eq. (2.14) to obtain
the expression for the sum of the diagrams shown in

Fig. 6b,6 one obtains, upon neglecting the corrections

6 The contribution of the di agrams Fig. 6b was neglected in [1].
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Fig. 6. The diagrams describing the amplitudes of the
decays w — T TC. The shaded circles in set (@)
denote the entire set of the p —— 41t diagrams shown in
Fig. 1b, c. The shaded circlesinthe T— 3mverticesin set
(b) refer to the sum of diagrams shown in Fig. 1la. The sym-
metrization over the momenta of identical pions emitted
from different vertices is understood. The diagrams for the

decay o — it OrOrC are obtained from those shown
here via evident replacements.

of the order O(|q,|* mf[) or higher, the decay ampli-
tudes

2
NcGormd
2.3 8pv)\oqp€v

M(w —= 22T T) =
N RE

(A+30s); 2G4 }
Do(d—a;) Dy(a;+0,)

(95 + 30d4),4 _ 204 }
Do(d—as) Dy(ds+0a,)

X E(l + PlZ)Ql)\[
O
(4.1)

—(1+ Pss)%)\[

2045
Dp(q - q4)

—(1+Pp)(1+ Pss)%x[ o %

} 0
Do(a; + )

with the fina momentum assignment according to
TC (A 7T (G) T () TT(05)(9)) and

N.Gormd’

M(0 —» TOTE 3T0) =
8(2m)°f3

(1-Py)
x (1 + P34 + P35)€uv)\oqp€vql)\

XEH [ 1 B 1 }
0 °LDy(a—0s) Dp(a; + )

(4.2)
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2913D,(a-0a) 2Dy(ay + ).

with the fina momentum assignment according to
() TT(9,) T0(03) T°(g,) T°(gs). In both these formulas,
€, and q, stand for the w meson polarization and
momentum 4-vectors. The first term in each square
bracket refers to the specific diagram shown in Fig. 63a;
the second term, to the diagram in Fig. 6b.

Even in this simplified form, however, the expres-
sions for the w —» 51T amplitudes are not easy to use
for the evaluation of branching ratios. To go further,
one should note the following. The contribution of the
diagrams shown in Fig. 6a depends on the invariant
mass of the 41t system, which changesin avery narrow
range (558 MeV < m,,; < 642 MeV). In al the p propa
gators involved in the first terms in every set of square
bracketsin Egs. (4.1) and (4.2), thisinvariant mass can be

o 2
set to the equilibrium value m4n =620 MeV within the

width accuracy of 20%. This equilibrium vaue is evalu-
ated for the pion energy E,;= m,/5 that givesthe dominant
contribution. The p propagators involved in the last terms
in the square brackets of the above expressions depend on
the invariant mass of the pion pairs, for which a smilar
statement is true. This invariant mass varies in a narrow
range (280 MeV < m,,; < 360 MeV). With the same

5 12
accuracy, one can set it to mﬁn =295 MeV indl re-

o(ete™ -» w - 5m), tb

2.0

1.5

1.0

0.5

0.790
52, Gev

0.780  0.785

0.775

Fig. 7. The o — Smexcitation curvesin e'e” annihilation
in the vicinity of the w resonance. The solid (dotted) line
refersto the 2t 20 (e 3r0) final state.
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evant propagators. On the other hand, the amplitude of the
w— p° — (2r2m)rlis

M[ooa p’° — (2r" 21 )]

= 4__0__025__ ) ) — Mo

8(2 )2f3 u )\cqp (ql qZ)}\Dp(q q4)

where the momentum assignment is the same as in
Eq. (4.1). The other relevant amplitude corresponding
tothefirst diagramin Fig. 6bis

Mlw—» p°TC — (1) (T T T0)]
cgprmg

012930
0Oy (L + Pro)(L + Pag) =210
8(2 )2f3 p A qu ( 12)( 35)Dp(q1+q3)

Then, taking the above consderation concerning the
invariant masses into account and comparing Egs. (4.1),
(4.3), and (4.4), one can see that

(4.4)

M(w —» 2T 21T T) (4.5)
2
gM[wH p | p— (2n 2n)n][ p(—mLz")}
2Dp(m2n)
A similar analysis shows that
M(w > TU'T 31) (4.6)
2
gM[wH P’ — (1T 31 )Tr][ p(—m“_z")}
2Dp(m2n)
where
M[w— p'TT — (T'31) 1]
- _ Ncgpnn92 Spv}\cqpevql)\qZU (47)
8(2m)’f3 Dp(a—az)
and the final momentum assignment is the same as in
Eq. (4.2). The numerical values of M, and M2,

found above are such that the correction factor in paren-
theses of Egs. (4.5) and (4.6) amounts to 20% in mag-
nitude. In what follows, the above correction is taken
into account as the overall factor 0.64 in front of the
branching ratios of the decays w — 571t In making this
estimate, the imaginary part of the p propagatorsin the
square brackets of Eq. (4.5) and (4.6) is neglected. This
assumption is valid with an accuracy better than 1% in
width.

4.2. An Approximate Model Estimate
of the w — 51t Branching Ratio

Itisuseful to derive the model estimate of the w —»
5t partial widths as follows. The corresponding equi-

librium pion momenta are |qn+ =
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79 MeV The integrations over the angles of final pions
can be evaluated under the assumption that they are
independent. Using the nonrelativistic expression for
the phase space volume of five pions obtained from
Eq. (2.17) withn=5and M = m,, onefinds

5 2
6§—| D]J
T mmD

1—D
600 mD
£, "0

Its numerical value coincides with the numerically
evaluated exact expression to within 1%. Introducing
the branching ratio at the w mass as

Rs = 4.8)

|:||_:||:|m

D 5
3 M

B(JL)—»5TI = rw—vST[(m(A))/rCl)’ (49)
one finds
5N, [prg”0 Me/d
oo e i o]
0 n Dp(m4n)‘
R D, (M) |
5 4
x > _ e _: (4.10)
18(2m) " myl | 2D, (m3,)

ano|2, for 22T,
X 2
aﬂ for 10T 3.

g3’

The above formula is obtained with the Lorentz struc-
tures chosen asin Egs. (4.3) and (4.7). Using the anti-
symmetry property of g,,,, and the 4-momentum con-
servation relation

5
q=>a,
i=1

one can €iminate one combination of the pion
momenta in favor of another (see Section 4.4 for more
detail). This arbitrariness results in an uncertain factor
ranging from 2 for the w — 21"t decay to 3 for the
w — T3P decay. As in the case of the p — 41
decay, this factor illustrates the role of the angular cor-
relations among the final pions. The calculation gives

B(w —~ 2r2mTP) = (2.5-3.9) x 10°9,
B(w —~ T0'TT30) = (1.0-3.8) x 10,

where, in addition to the above uncertain factor due to
the choice of momenta, the correction for the mass dif-
ference of T¢ and T° is taken into account.
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4.3. AMore Careful Evaluation
of the Branching Ratios and Excitation Curves

The partial widths can be evaluated with an accu-
racy of a 20% by taking the amplitude of each relevant
decay to be 5/2 timesthe prtstate production amplitude
with the subsequent decay p — 4mand using the cal-
culated widths of the | atter:

N 2
=] ——2 D(mﬁzlrr) |:5|:F 2
woomom e EQD T[r
ZDP( ZT[)
Mo~Mo (4.11)
mT o o(m ™ . (m
I dm wapn( )ZpngIZT[( )=1.1><10_9,
|Dy(m)
where
_ 2 3
o oM = Gopr (Mg, M M)/ 127,

2

= = 143 GeV "
8T[2f

The notation is such that

gcopn

a(m, my, my = A, mf, my)/2m,  (4.12)
with the function A given by Eq. (3.4) standing for the
momentum of final particlej (or k) intherest frame sys-
tem of decaying particlei. We note the a™* dependence
of the w — 5mtwidth on the HL S parameter a through

Eq. (2.2). The branching ratio B . . , is obtained

from Eq. (4.11) by inserting the lower integration limit
m_. +3m,, replacing m , —= m_. in the expression

for the momentum g, and then inserting the p* —»
131 decay width corrected for the mass difference of
charged and neutral pions. Obviously, the main correc-
tion of thistype comes from the phase-space volume of
the final 4t state. One obtains

Ty 2
= |q_ Do(min) | c5F 2
w- w3’ EQD T,
2Dp( 2n)
me-m. (4.13)
J_ d I r S p T[(m)r T[+3T[O( ) — 8.5 y 10_10
m +3m |Dp(m )|
where
m P n(m) = gcoprrq (mw m, m_ )/ 121

As pointed out in [3], the inclusion of the direct w —
T TO vertex reduces the 3rtdecay width of w by 33%.
This implies that the effect of the pointlike v —
3 — 2m(3m) diagrams shown in Fig. 6b must be
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taken into account by the following replacement in the
expression for the suppression factor:

2

2D,(m3,)
1_Dp(m_iT) 11 i 414
Dp(mZTI) P
D (M) |°
=[1-—-=X| =075
3Dp(m2n)

Using this value instead of 0.64 results in the increase
of the above branching ratios by a factor of 1.17. One
can see that the results of the order-of-magnitude esti-
mates given in Section 4.2 agree with the careful calcu-
lations by afactor lower than 4.5.

The numerical value of the w — 51t decay width
changes by afactor of 2 when the energy varies within
+I /2 around the w mass. |n other words, the depen-
dence of this partial width on the energy is very strong.
Thisisillustrated in Fig. 7 with the w — 5mtexcitation
curvesin ete annihilation,

_ o
O-e+e’ LW 5T[(S) - 12T[|:|E|:J we"e’(m“’)
[ Bo s(E) (415
2.2 2,
[(S_ moo) + (mwrw) ]
where B ., _JE) (B .. (E)) is given by

Eq. (4.11) (respectively, (4.13)) with the substitution
m,, — E. The strong energy dependence of the partial
width results in the asymmetric shape of the w reso-
nance and the shift of its peak position by +0.7 MeV. As
can be seen from Fig. 7, the peak value of the 5t state
production cross section is about 1.5-2.0 fb. The decays
w — 51tcan neverthel ess be observable on e*e collid-
ers. Indeed, with the luminosity L = 10® cm™ s near
the w peak, which seemsto be feasible, one may expect
to detect about 2 events per week for the above decays.

4.4. Angular Distributions of the Final Pions
in the «w — 51t Decay

The angular distributions of the fina pions must of
course be deduced from the full amplitudesin Egs. (4.1)
and (4.2). However, some qualitative conclusions about
the angular distributions can be drawn from the simpli-
fied expressions in Egs. (4.3)—«4.7). We find these dis-
tributions in the rest frame of the decaying w meson.
Since helicity is conserved, only the w(782) states with
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the spin projections A = 1 on the e*e~ beam axis given
by the unit vector n, are populated. The notation for the
vector product of the pion 3-momenta used in what fol-
lowsis

qixd; = |ai|qj

. . : . (4.16)
x sinB;;(sin®;;cos®;;, SiINQ;; SINP;

i j» COSO;)).

In other words, 6; is the angle between the pion
momentag; and g;, with ©;; and ®;; being the polar and
azimuthal angles of the normal to the plane spanned by
g and g;. Choosing n, to be the unit vector along the
zaxis, the probability density of the emission of two
"'s with the momenta g, and g, and of ™° with the
momentum g, is represented as

w O [ds% (A +02)]17 = (N (a4 % (a; + G)])°

. 2 .2 .2 .2
= g5[q3sin°0,,Sin"0O, + g3sin‘0,,SiN° O, (4.17)
+2|Q1||Q2|Sin@41$in@4zsin641

X SN0, CoS(P,; — D) ]

in the case of thefinal state 22t . Here, the momen-
tum assignment is the same asin Eq. (4.1). The angular
distribution of T° and of two 1T’s with the momenta
03z, Qs is obtained from Eq. (4.17) by the replacement
dy, » —> 03 5, because the identity

epv)\cqpev(ql + qZ))\q40 = _Suv)\oqpev(qB + qS))\q40
is satisfied. Another identity

8pv)\cquev(Ql + q2))\q40
= _Epv)\cqpev(ql + qZ)A(qS + q5)0

allows one to write the angular distribution that
includes four charged pions as

w O [(d; +d2) % (ds+ ds)]°
—(no [0 +92) X (4 +95)])°
= (1+P,)(1+Py)q’q3sin’0,,8in° 0y,
+2|qyf|q2 (1 + Pss)qg
X SiNB,35N0,35NO 35 NO3C0S(D 53— D,3)  (4.18)

+2|04f|as| (1 + PL,)d;
X Sinel3Sinel5Sin@13$in@15COS(¢)l3—¢)15)

+2d/|a2l|as[ag (1 + Pss)
X Sinel3Sin9255in9135in@25COS(q313—q325) y

where P interchanges the indicesi and j.
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For the final state 131, the corresponding prob-
ability density can be obtained from Egs. (4.6) and

(4.7) as
w[g, xg,]*—(n x q,])?
[d, 2q22], 2( OF[Z% dz]) (4.19)
= Q102SiN°0,,SIN" Oy,

where the momentum assignment is the same as in
Eq. (4.2). The corresponding angular distribution of
one charged (e.g., 1) and three neutral pions can be
obtained from Egs. (4.6) and (1.7) with the help of the
identity

Spv)\cqpev 1022

as

= _Spv)\cqpevql)\(qii Q.+ qS)c

2

woloe 3] foor 3o

= qi[z SIELCPELECH
! (4.20)
+ 22 |ai||a;|sin6;;sin8;;

P %]
X sin@ilsinejlcos(dbil—mjl)}

wheretheindicesi and j run over 3, 4, 5.

The strong energy dependence of the five-pion par-
tial width of wimplies that the branching ratio at the w
mass (Eq. (4.9), evaluated above) is dightly different
from that determined by the expression

Bgi 51‘[(E11 EZ)
E2
_ 24 ETuBu_ sn(B) (4.21)
"Jl (E°—m)*+ (myly)’

Taking E, = 772 MeV and E, = 792 MeV, one finds
B ., o(Ey Ep) = 9.0x107"

W - 221

and
B¥ . . (E.,E,) = 6.7x107",

W T 31T
to be compared with Eqg. (4.11) and (4.13), respectively.
In particular, the quantity B . _«(E;, E)) is the

- 21 21
relevant characteristic of this specific decay mode in
photoproduction experiments. The Jefferson Lab [19]
could al so be suitable for detecting the five-pion decays
of w. However, in view of the suppression of the w pho-
toproduction cross section by a factor of 1/9 as com-
pared with the p one, the total number of w mesonswill

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Voal. 91

447

amount to 7 x 108 per nucleon. Hence, the increase of
intensity of this machine by a factor of 50 is highly
desirablein order to observethe w — 5mtdecay and to
measure its branching ratio. Evidently, the w photopro-
duction on heavy nuclei is preferable because the cross
section grows with the mass number A as A%8-095[20].

The conclusions about the angular distributions in
photoproduction are as follows. Of course, their gen-
eral expression should be deduced from the full decay
amplitudes in Egs. (4.1) and (4.2) together with the
detailed form of the photoproduction mechanism. The
qualitative picture, however, can be obtained by noting
that the s-channel helicity conservation is agood selec-
tion rulefor the photoproduction reactions. Then, inthe
helicity reference frame (which isthe framewhere wis
at rest and its spin quantization axis is directed along
the w momentum in the center-of-mass system), the
expressions for the angular distributions coincide with
the expressions in Egs. (4.17)—(4.20). Since the direc-
tion of the final w momentum lies at a scattering angle
that is less than 0.5° for the photoproduction on heavy
nuclei at high energies, the vector n, can be treated as
pointing along the photon-beam direction.

5. CONCLUSION

Theresults presented in this paper show that the left
shoulder of the p peak is, by al appearance, the best
place to study the effects of chiral dynamics as com-
pared to the classical low-energy TUTt scattering. The
e*e” colliders with a sufficiently large luminosity at
energies below the p mass provide the controlled
source of soft pions. The role of higher derivatives and
loop correctionsin the low-energy effective Lagrangian
for soft pions, aswell as various schemes of incorpora-
tion of vector mesons into the chiral approach, can be
successfully tested with such machines. The intense
beams of photons from the Jefferson Laboratory are
also of great importance in achieving the theoretical
goals mentioned above. The decay w — 5rtis of spe-
cial interest, becauseits kinematicsis such that thefinal
pions are essentially nonrelativistic, so that the effects
of chiral dynamics are manifested most clearly. The
measurements of the branching ratio of the five-pion
decays of w would be a challenge to experimenters,
because thistask would help in rigorously testing chiral
theories that incorporate the vector mesons.
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Abstract—A graphic method for describing the localization of quantum wave packetsin several dimensionsis
proposed. The method employs classical action—angle coordinates. Different kind of wave packets arising in
the two- and three-dimensional Coulomb problems are described from a unified point of view. Specificaly, a
more precise interpretation of the structure of “angular” Rydberg wave packetsis given. Certain additional fea-
tures of the proposed approach are discussed. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Localized quantum states (wave packets) have been
studied since quantum mechanics came into existence.
Nonetheless, such states have been attracting increas-
ing attention in the last few years. The reason is that
wave packets are quantum states which are closest to
classical particles. These are objects which manifest
both classical and exclusively quantum features. Con-
sequently, as the experimental and technical possibili-
tiesincrease, the question of the production and control
of wave packets in practice is becoming increasingly
more important in many fields ranging from microelec-
tronics to chemistry. Specifically, wave packets arising
in Rydberg (highly excited) atoms have been attracting
a great dea of attention in the last few years. Such
packets have been investigated theoretically and exper-
imentally [1-3].

Wave packets arise in many processes as a superpo-
sition of quantum states with different quantum num-
bers. Often, when a superposition of quantum statesin
a specific process is under study it is desirable to have
a simple method for answering questions such as: Is a
wave function in a system with several degrees of free-
dom localized? What is the wave function like? Does
such localization exist for any classical model? What
are the dynamics of a localized state? In the present
paper a quite ssimple method is proposed for giving a
qualitative answer to these questions. Such an answer
can often make it easier to understand the physics of a
problem, underscoring the rel ation betweenitsclassical
and quantum features. Such a method has not been dis-
cussed in the literature.

In classical mechanics the behavior of integrable
systems is often described using action—angle coordi-
nates. Then, asiswell known, atransformation is made
into a coordinate system where the momenta are the
integrals of motion and the conjugate coordinates—the
angles—vary linearly in time. If the actions and their
conjugate angles are known, then everything is known
about the motion of a classical system. However, a

strict definition of the quantum action—angle coordi-
nates encounters mathematical difficulties. Quantum
action—angle coordinates are too difficult to use, and as
aresult they cannot be used as asimpletool for analyz-
ing the properties of awave function.

It is shown in the present paper how the classical
action—angle coordinates can be conveniently used to
analyze the locdlization and dynamics of quantum
states. For this, the sensein which classical action—angle
coordinates can describe a quantum state is discussed in
Section 2. Specifically, the wave function is represented
in aform that singles out the classical action and angles
and it is shown how such a description can be applied to
wave packets. This approach is especialy convenient for
describing systems with several degrees of freedom. The
proposed method is explained in greater detail in Sec-
tion 3 for a two-dimensional Coulomb problem. The
localization and dynamics of various Rydberg wave
packets in a two-dimensional problem are analyzed in
the same section. Almost all these packets have been
studied previoudy, but a unified approach to their
description has never been proposed. Specifically, a
simplified understanding of the structure of certain
packets sometimes led to an incorrect conception of
their localization. Wave packets arising in a three-
dimensional Coulomb problem with m = 0 are studied
in Section 4. Certain additional features of the proposed
approach—semisiclassical quantization, the Wigner
function, and the calculation of matrix e ements—are
discussed in Section 5. The results obtained in this
paper are briefly summarized in Section 6.

2. SEMICLASSICAL REPRESENTATION
OF ANGLES

It is well known [4, 5] that a semiclassica wave
function of an integrable system can be constructed as
follows. Let I be the Lagrangian manifold of the corre-
sponding classical system, i.e., the set of points in
phase space which are reached during motion with the
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same integrals of motion and with different initial con-
ditions. For finite motion a Lagrangian manifold is
equivalent to a multidimensional torus [5, 6]. For one-
dimensional motion, I' is a trgjectory in phase space.
For the system to be quantizable ' must satisfy the
Bohr—Sommerfeld quantization rule (see below). A
semiclassical, unnormalized wave function at an arbi-
trary point r in the classically allowed region far from
singularities (turning points) is determined as [5]

_ a°S
W(r) = %det a_raJ‘

(1)
X exp[i %am_ Et —%"E} = Z W, (),

where Sis the action, J = {J;} is a set of integrals of
motion, y, isanindex characterizing the point a,, and

depends on the properties of " (see [4]), and {a,} isa
set of pointson I that project into afixed pointr. It is

obvious that there arem = 2™ such points, where N
is the number of degrees of freedom along which the
system executes an oscillatory. Here and below 7 = 1.

Action—angle coordinates can beintroduced into the
system being integrated. In this case, the integrals of
motion (action) J are the momenta and the coordinates
conjugate to them—the angles—are

0 0
A={A} =028 0
Eﬁ‘]i r = const J

(see[5, 6]). The action and angles can be normalized in
amanner so that in classical motion the A, vary linearly
from 0 to 2 According to the Bohr—Sommerfeld
quantization rule

J=n+vy/4,

wherey ={v;} isaset of Maslov indices corresponding
to different basic cycles[4].

We shall now study a superposition of states with
guantum numbers n, closely spaced around n, and
amplitudes C,. For every such state the action at the
points of the corresponding Lagrangian manifold a,(r)
that project into the pointr is

S =S+ (n—npA, @)

where S';m is the action at the point a,, in classica
motion with J = n + y/4.
The phase of classical motion along the orbit A at a

given point r remains essentially unchanged for small
variations of J. Consequently, it can be assumed that
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the wave function of a superposition of statesis approx-
imately

_ OA|V2 .
W(r,t) = Z‘deta exp[iF, ]W,. (3)

In Eq. (3) A(r) is estimated at n = n,, and

Wi 9 = 5 Crexp(i(nA - Eyt)), (4)

where E,, isthe energy for classical motionwithJ=n +
y/4. The function

Fo = S —NoA—y, U2

incorporates the generating function of a classica
canonical transformation to action—angle coordinates

with J = n + y/4, equal to S° — JA [6], and the addi-
tional phase
Ya, TU2 + yA/A.

In Eq. (3) the expression for the wave function for
each point a,,, isdivided into two parts. W, characterizes
only aquantum state given by the set of amplitudes C,,.
The second term, containing the preexponential factor
and the exponential in Eq. (3), characterizes the r-rep-
resentation in which the wave function is written. We
assume that it is independent of the set of quantum
numbers, since A(r) changes very little with small vari-
ations of J.

In what follows we shall say that W, gives a wave
function in the angle A; representation. This terminol-
ogy, which is not absolutely precise, correspondsto the
general principles of the construction of action—-angle
guantum coordinates [7-9].

Since the function W, is found as a Fourier trans-
form of the amplitudes of the states C,exp(—E,t), its
localization is quite easily described. If the function W,
is strongly localized near some values A(t), then, evi-
dently, W(r) islocalized near r (A(t)).

If the function W, (A) is not strongly localized (for
example, the localization width AA > 1), it is more con-
venient to express the quantum state as

W(r, t) = sz;(r,t)f(Aam, 1), (5)

where
f(A, 1) = ‘Phexp(—i(no)\—EnOt)),

and sz are the terms corresponding to different points
a., in Eq. (1) for states with the quantum numbers n,,

The formula (5) can be interpreted as follows. A
semiclassical wave function can be represented as
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being distributed on I (in the one-dimensional case—
on the phase trgjectory) and then projected into the r
space by adding a preexponential factor. Then, oscilla-
tions of the wave function as a function of r arise
because of the interference of terms corresponding to
different sheetsof I". This approach (Einstein—Brilloui—
Keller approach [5]) is incorporated in Eq. (1), where
the action can be calculated at the points of I that are
projectable into r. According to Eg. (5), however, the
“wave packet” is the envelope moving along I' and
modulating the central state of the packet. The function
f(A, t) determines the form and dynamics of this enve-
lope. Specifically, if f(A) islocalized on one sheet of the
Langrangian manifold (on one branch of the phase tra-
jectory), then there is no interference of the terms cor-
responding to different a,,, and the wave function of the
packet has no oscillations which are characteristic for
the eigenstates.

Thus, the prescription for describing the spatial
localization of the wave function of a superposition of
quantum states is as follows. The geometric meaning of
the classical angles corresponding to the quantum num-
bers of the problem must be determined. Next, thewave
function of the superposition of states must be written
inthe angle representation (4), or (whichisactually the
same thing) the modulating function f in the Eq. (5)
must be determined. The localization of W, or fin some
range of angles determines the localization of the wave
function in the coordinate region corresponding to
these angles.

In what follows we shall illustrate the application of
this principle for various Rydberg wave packets. The
method will be used to analyze the localization of a
wave function in various packets. Then this analysis
will be illustrated by means of numerical calculations.

3. TWO-DIMENSIONAL COULOMB PROBLEM

In this section the various Rydberg wave packets
arising in atwo-dimensional Coulomb problem will be
considered. Such a model problem is often used to
describe electronic states with large quantum numbers
m == | in fieldswhere the motion of the electron remains
amost planar [10-14].

The motion of an electron in the classical two-
dimensional Coulomb problem can be described using
the following two pairs of action—angle variables [15].
Thefirst pair consists of the angular momentum J,, = p,
and its conjugate angle @,,, which is the angle between
the direction to the perihelion of the electron orbit and
a fixed direction in the xy plane. The second pair con-
sists of the action

- p+ L
Jn = Pyt 2T[flordr
and its conjugate angle 6—the average anomaly of the

electron, giving its position on an ellipse. The orbit of a
classical electron in atwo-dimensional Coulomb prob-
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lem is an ellipse with semiaxes Jﬁ and J.J,, and with

focus located at the nucleus of the atom. The average
anomaly 6 is proportional to the area swept out by the
radius vector of an electron in the classical motion. The
value 6, = 0 correspondsto an interior turning point and
8, = Tt corresponds to an exterior turning point.

In classical motion

J
H=—

For quantization according to the Bohr—Sommerfeld
rule

. Gy =0, 06=w =13 (6

J,=n+12 n=012.., ©)

Jp=m, m=-n,..,n (8

In classica motion, the two-dimensional electron
undergoes oscillations only along the radius, one of the
two polar coordinates. The semiclassical wave function
at in arbitrary point r of aclassically alowed region is
given by the sum of two terms corresponding to the
motion of an electron aong two ellipses passing
through the point r (Fig. 1). In Eq. (1) theindices y,_
for these two terms differ by 1. The wave function W,
of these two terms s, correspondingly,

LP;,m,l,z - exp[i(n91’2+|(pxy 12— Et)], 9
where

1
2(n+ 1/2)%

@®y1 and @, are the slope angles of the two ellipses,
and 6, = -0, are the average anomalies characterizing
the point r in the motion along the first or second
ellipse. The function F in Eqg. (3) can be found by cal-
culating numerically or analytically the action Sand the
coordinates 6 and @ for each ellipse at each point.

To calculate the semiclassical wave function of the
superposition of stateswith different values of nand m,
it would be necessary to draw two ellipses with semi-

axes Jﬁ and J.J,, through the point r for each pair n, m

and then find on each ellipse the value of the action at
the point r, calculate the preexponential factor in
Eg. (1), and sum al values of the characteristic wave
functions with the required coefficients.

In the approximate expression (3) it is assumed that
all ellipsesfor different values of n and m are the same
as for the central state ny, m,. Then it is sufficient to
draw through the point r only two éllipses, to calculate
on each ellipse

n

Y, = Z Ch. mexp[i(nB + mg,, —E )],
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100 arb. units
L1

Fig. 1. Squared wave function of the statewith n =19, m= 15. The broken lines show two ellipses corresponding to classical motion

with the actions J,, = 19.5 and J,,, = 15.

and substitute this expression into Eqg. (3), using the
function F found for the central state.

However, according to the Eq. (5), there is no need
to calculate the semiclassical wave function of the
superposition in order to describe the wave packet. It is
sufficient to know the wave function of one central state

W™ ™(r), the function whose exact form iswell known
[16] and which can be easily found numerically with-
out using the semiclassical approximation. The wave

function of the packet W(r, t) is g mo(r) , hormalized
by the envelope

f(ev (pxy! t) = LIJ)\ exp[—l (noe + mO(pxy - Enot)] .

The function W(r, t) is more localized at locations,
where f(6, @, t) is locaized. Given the geometric
meaning of the angles 8 and @, it is easy to predict the
region and degree of localization of the wave function.
The presence or absence of an interference pattern in
the region of localization depends on the relative con-
tribution made to the wave function at a particular point
by both sets of angles 6,, @, and 8,, @, correspond-
ing to thispoint, i.e., on the degree of localization of the
function f. This latter approach will be assumed below
in the interpretation of the form of the localization of
the wave function of superpositions of states.
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In this and the next sections various wave packetsin
two- and three-dimensional Coulomb problems will be
studied. The form of the localization of various packets
will be predicted qualitatively using the analysisin the
angle representation. As an illustration, we shall find
numerically the wave functions of the packets using the
exact (not semiclassical) expressions for the character-
istic states of an atom.

As afirst example of a wave packet, we shall study
the superposition of quantum states with the same
angular momentum m, and with amplitudes having a
Gaussian distribution over n:

(n—np)*

g

Since the Fourier transform of a Gaussian is a Gauss-
ian, the function W,(8, ¢) (and hence (6, @) aso) is
localized as a function of 8 near 6, and is not localized
as a function of @,. All possible ellipses contribute to
the wave function of such a state, and on each ellipse
the regions O close to 6, contribute. This means that
We(r) should be localized along the radius near r(6,)
and should not be localized along the polar coordinate.
Such states are called “radial wave packets’ [1, 2, 17].

Figure 2a shows an exampl e of the wave function of
aradia wave packet. Here ny =19, my = 15, 6 = 3, and

—iBy(n—ny) [¥™™. (10)
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(a)

100 arb. units
[

(b)

©)

(d)

Fig. 2. Wave packets of atwo—dl mensiona Coulomb problem: (a) radial wave packet, (b) elliptical state, (c) wave packet on an ellip-
tical orbit, (d) the state WF. The broken line corresponds to the curve 6 + @y =0.

6, = 1Y3. The superposition wave function, calculated
without using any approximations, in Fig. 2ais local-
ized along the radius and is not localized along the
angle. This corresponds to the prediction of our theory.

The radial wave packets were produced experimen-
tally using short optical pulses with a wide spectrum
[1, 2]. However, such states are excited in astrong field as
aresult of Raman bound—bound transitions viathe con-
tinuum [17]. Moreover, such states can be produced in
amicrowave field with frequency close to w, [10, 18].

To describe the dynamics of aradial wave packet we
shall expand, as usual, the energy E,, up to second order
around E, :

EII

E, = E, +E'N+EN
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where
N = n—no, E' :—wkz_;‘?‘l
(no + 1/2)
E" = _3 =
(no +1/2)

According to Eqg. (4), we obtain for W,

W) = exp(ilngd + myd — E,t])

XL

Hence, it is evident that the wave function W™ is an
unperturbed wave function of a state with quantum

zgl |E t0 (11)

D iN(8 — 8, wkt)]
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numbers n,, M, that is modulated by a Gaussian wave
packet moving aong 6 (i.e., oscillating along the
radius) with frequency wy. This packet spreads in a
characteristic time ty, = 2/0°E" and is completely
restored in atimet,, = TVE".

The expression (11) also describes the fractional
restoration of the radial wave packet in atime t,.,i/j,
when the term E"t adds the corresponding phases to all
components of the sum (11). Indeed, at the time t =
t,e i/ the phase N°E"t/2 isidentical for the statesN, N +
k, N £ 2k, ..., where k depends on i/j [19]. In this case
the sum (11) decomposes into k subsums, each of
which contains only terms with the numbers N + s, N +
st k, ... and reproduces the initial localized distribu-
tion k times on the classical tragjectory. According to the
formula (11), if at t = 0 W, is given by alocalized 2m
periodic function G,(0) (1), thenat t = t.¢,i/]

W . 1
l'P;\ p(trevl/J) = E

(12)

k-1

x 3 e Ez”fzi + (0 - DGO -0u),
s=0

where G, is a 21tk periodic function which isidentical
to G; in the region of localization. As aresult of inter-
ference of terms with different values of s, depending
on i/j, the distribution (12) can represent from O to k
packets on a classical trajectory. The expression (12) is
identical to the known expression describing the partial
restorations of the wave packets[19], and its derivation
is clearer than the corresponding arguments in the r
representation. In addition, the arguments in the angle
representation (4) transfer directly to the motion of a
packet along several angles simultaneously.

We shall now consider the superposition of states
with the same principal quantum number n, and with a
Gaussian distribution over m near m,. The wave func-
tion of such a state

W = exp(i[ngd — En,t])

—m)? (13)
x z exp|:_£—nl?.£—n92— + irn((pxy_(pxy O)i|

islocalized near the angle @, o. Only ellipseswith slope
angles close to @, contribute to the wave function of
such a state. This means that W4(r) is localized near
an ellipse corresponding to classical motion with J,, =
Ny + 12, J,, = my, and @, = @ o. An example of such a
statewithny =19, my=15, 0 = 3, and ¢, o = O isshown
in Fig. 2b. This state can be called “elliptical ”

In the literature localized superpositions with
respect to the quantum number m are usualy called
“angular wave packets’ [1, 12] in view of the somewhat
simplified understanding of their angular distribution.
It is obvious from the analysis performed here that the
so-cdled “angular packets’ are locdized not so much
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aong the polar angle as dong the angle @,, near one cen-
tra dlipse. When the wave function of such astateisana
lyzed, it is usualy easy to see the dliptical type localiza-
tion (see, for example, the “angular packet” in [1]).

States with the sharpest localization near a Keple-
rian ellipse were described as coherent quantum states
corresponding to the hidden symmetry of atwo-dimen-
sional Coulomb problem [12]. They can be produced,
for example, by using a combination of pulses of
crossed electric or electric and magnetic fields [20]. If
W, islocalized near several angles @, the wave func-
tion W(r) is localized near several Keplerian ellipses
(seeFig. 1in[10Q]).

If the superposition of states is localized along m
and n, W(r) is one or several wave packets revolving
around the nucleus along elliptical orbits. Examples of
such statescan befoundin[1, 2, 10, 12]. Such a packet
can be produced, for example, from an elliptical state
using amicrowave field in resonance with respect to w,
or from a low-lying state by using a combination of a
short optical pulse and a microwave or constant field.
Figure 2c shows such astate with ny = 19, my =15, 0,, =
0, =3, 8, =13, and @, , = 0. The dynamics of such a
state in the absence of a field is identical to that of a
radial packet. A resonance microwave field strongly sup-
presses the spreading along the angle 6 and adds a very
slow precession and spreading along the angle @, [10].

Finaly, we shall consider localized states of the
form

2
L|JCP(r) - Zexp[_N_z}qanN,mwN. (14)
N o
Such a state can be produced, for example, from a state

with quantum numbers n,, m, by a circularly polarized
field with frequency close to wy, [10, 13]. Substituting
the expression (14) into Eq. (4), we find that LIJ;:P (and
hence also WCP(r)) possesses Gaussian localization
around the curve 6 + @, = 0. Thiscurveis astable tra-
jectory of a classical electron in a coordinate system
rotating together with the field. Figure 2d shows the
state with ng = 19, my = 15, and o = 3, found numeri-
cally, and the corresponding classical trajectory.

If in the expansion (14) the state (n,, M) iscircular,
i.e, my = ny, WP(r) is a completely localized wave
packet revolving around the nucleus along a circular

trajectory. The dynamics of such wave packets has been
studied many timesin the literature [13, 14].

4. WAVE PACKETS IN A THREE-DIMENSIONAL
COULOMB PROBLEM

We shall now consider a three-dimensional Cou-
lomb problem. The corresponding actions are quan-
tized according to the Bohr—-Sommerfeld rule as

L, = Ppyy = M M= -, ..., 1,
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: 1
h = Z_T[fpwpolardl'l'lpmar +J, = |+ 5

| =0,...,n,

(15

1
3= pfpdr+d = nvl n=012..

The angles corresponding to these actions are the aver-
age anomaly 6 and two other Keplerian elements of the
orbit—the argument of the pericenter and the longitude
of the ascending angle [15]. The notation for the prin-
cipal quantum number n, introduced here according to
the Bohr—Sommerfeld quantization rule, differs by 1
from the conventional value.

The description of quantum statesis especialy sim-
ple when the numbers mare very large or very small. If
m~ | > 1, the electron wave function is localized near
the xy plane and the problem is essentially equivalent to
atwo-dimensiona problem.

L et us consider the opposite case, m= 0. In this case
the wave function possessesradial symmetry relative to
thezaxis. Inthe xz planethe position of aclassical elec-
tron is characterized by the average anomaly 06 and the
angle @, (the argument of the pericenter of the orbit)
characterizing the slope of the orbit with respect to the
zaxis.

The classical motion includes oscillations along two
polar coordinates (Wyq, and r), and the wave function
at the point r is given by a sum of four terms corre-
sponding to motion aong four ellipses and character-
ized by W, of the form

pohL2ad expli(nNBy 534+ 19,1 2354—Ent)], (16)
where

1
2(n+1)%

C3=Q1, @rp=Py0.

Compared with the two-dimensional problem, here
there are two additional ellipses with the opposite sign
of @, and simultaneously with the plane of classica
motion rotated by Ttrelative to the zaxis. Consequently,
the interference pattern in the xz plane is more compli-
cated than in the xy plane. Moreover, the preexponen-
tial factor in Eq. (1) islarger for pointsr near the zaxis,
which corresponds to classical motion with J,,,= 0. Fig-
ure 3a shows the probability distribution in the xz plane
for the staten =19, | = 15, and m= 0.

Just as in the two-dimensional case, the superposi-
tion of states with different n and the same value of | is
aradial wave packet. The angular structure of aradia
wave packet isidentical to that of astate with the quan-
tum numbers n,, | in the corresponding formula (5).
Figure 3b shows the numerically constructed radial
wave packet withny=19,1 =15, m=0,0=3,and 6, =TL

94 = 91, 62 = 93 = —91,
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The dynamics of such a packet is identical to the two-
dimensional case.

Let us consider the superposition of states with the
same n but different I:

LIJeSd — zexp|:_(|—|20) _i(pzo(l_lo):|wno,l. (17)
o

Such a state is localized around the angle @, . In the xz
plane thislocalization correspondsto asuperposition of
two €ellipses, one of which is obtained from the other
by reflection relative to the z axis. At the locations
where these ellipses intersect the wave function is an
interference pattern corresponding to the state n, |,.
Figures 3c, 3d show the state W4 with ny = 19, |, = 15,
m=0,0=3, @,,=T and @,, = V2. Such statesare also
often called “angular wave packets,” having in mind
localization with respect to the polar angle. In agree-
ment with our analytical predictions, Figs. 3c, 3d show
that such an interpretation is not completely correct.
Such states can be produced from a single Rydberg
state by using a constant electric-field pulse [21].

Just as in the two-dimensiona case, simultaneous
localization along 6 and ¢, corresponds to wave packets
moving along ellipses in the xz plane. In this case the
complete wave function is awave packet which is sym-
metric with respect to rotations around the z axis and
oscillates along the z axis. Such a state can arise, for
example, when a linearly polarized microwave field
acts on the state (n,, 1) [18].

In order for athree-dimensional quantum stateto be
localized near a single ellipse localization with respect
to @, and @, is required, i.e., a superposition with
respect to both quantum numbers| and mis necessary.
The generalized coherent states of the three-dimen-
siona Coulomb problem possess this property [22].
Just asthe two-dimensional elliptical states, they can be
produced, making use of symmetry conservation in
electric or crossed electric and magnetic fields.

5. ADDITIONAL FEATURES
OF THE PROPOSED APPROACH

We have shown that the angle representation (4)
makes it possible to describe in a simple manner the
localization and dynamics of multidimensional semi-
classical wave packets. We shall consider severa
important additional features of this representation.

The first important feature is the possibility of
describing the system by using intuitively obvious
“unified” semiclassical quantization [23—-26]. Then the
actions J; are replaced by the operators —0/0A; + v/4
and periodic boundary conditions are imposed on the
wave function. In this approach J and A commute cor-
rectly from the standpoint of quantum mechanics, the
energy and action of the system are determined to semi-
classical accuracy, and W, is the wave function of the
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(a)

| I—

(b)

©)

()

Fig. 3. (a) Distribution of the squared wave function in the xz plane for the state n = 19, | = 15, m= 0; (b) three-dimensional radial
wave packet in the xz plane z; (c) and (d) packets corresponding to a superposition of states with different values of |.

system. This semiclassical method, which gives a uni-
fied description of all points of a classical trajectory,
has been used to find the energies of semiclassical sys-
tems. According to the Egs. (3) and (5), it can aso
describe the localization of awave function.

An important feature of such an approach follows
from the following fact. The quantum theory of nonlin-
ear resonance [9] reproduces all corresponding steps of
the classical perturbation theory with respect to the
action [6] and actually uses W, as a formal auxiliary
tool. Thistool is used to describe an isolated resonance
and in regions where severa resonances can interact.
Consequently, “unified” semiclassical quantization is
applicable not only to strictly integrable systems but
also to awide class of perturbed systems.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 91

In such systems the form of the localization of a
wave function can be most easily determined directly
from the classical approximate (averaged) Hamilto-
nian.

A second important feature of the representation (4)
is its convenience for calculating semiclassical matrix
elements. Indeed, let a perturbation V(r, t) act on asys-
tem. When cal culating the matrix element of the pertur-
bation between states with close quantum numbers n,;
and n,, the fact that the values of the angles A(r) for
them are almost the same must be taken into account,
just as in the description of wave packets. Conse-
guently, only the expression

| WV, (18)
= exp{i[(n;—n)A - (E,, - Ep)t]} VAA(r), 1).
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remainsin the integral determining the matrix element.
This approach immediately answers the question of
which of the multidimensional Fourier components of
the perturbation V(r, t) describes particular transitions
in asystem with several degrees of freedom.

The latter remark refers to the form of the Wigner
function in the representation (4). This function, deter-
mined by the expression

W(r, p) = J'dQJ'dPeXp(—i(p [Q+r[P))

x OWlexp(i(p Q +T [P))[ W

is often used as a quantum-mechanical analog of aclas-
sical representation in phase space [8, 25]. For large
guantum numbers it is very difficult to calculate W in
the r representation. Moreover, the semiclassical Wigner
function possesses singularities that depend on the
quantum state and not only on the representation [25].
These facts make it difficult to use W for qualitative
analysis of semiclassical quantum systems. At the same
time, it is easy to calculate W in the representation (4).
For a state with quantum numbers n it has the form of
a d function on the torus J = J,,, corresponding to clas-
sical motion [25]. The representation (4) can strongly
simplify the analysis of a quantum system in phase
space when the structure of the system, and not the
structure of the singularities, isimportant.

(19)

6. CONCLUSIONS

In this paper a quite simple approach was proposed
for describing wave packets in multidimensional prob-
lems. In this approach attention is focused primarily on
the question of the angular localization corresponding
to combinations with a particular set of quantum num-
bers. The angular representation (3)—(5) was used to
describe quantum states. It was shown that the expres-
sion for the wave function of awave packet in this rep-
resentation determines the envelope modulating the
central state in the packet.

As an application, various Rydberg wave packets
arising in two- and three-dimensional Coulomb prob-
lems were described in a unified manner. This analysis
made it possible to elucidate the form of the localiza-
tion of the so-called “angular wave packets” aswell as
some other localized states. Accurate (not semiclassi-
cal) numerical calculations support the qualitative pre-
dictions obtained using the proposed approach.

The representation (4) can be obtained by means of
“unified” quantization of the corresponding classica
Hamiltonian. The approach in some cases can make it
easier to describe perturbed multidimensional systems
and the dynamics of systems in phase space.
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Abstract—Under the conditions of the total Paschen—Back effect the diamagnetic interaction determines the
dependence of the intensity of the Zeeman components of atomic radiation lines on a magnetic field. The
change in the matrix elements of the radiative transitions is due to the magnetically induced corrections to the
wavefunctions of theinitial and final states, whose contributions are of the same order of magnitude for the head
lines of the optical series. For the high-frequency lines the positive corrections to the matrix element from the
wavefunction of the upper level dominate. A magnetic field also induces dipole radiative transitions with selec-
tion rules for the orbital angular momentum |Al | = 3. The matrix elements of such transitions increase rapidly
with the energy of the upper level, making possible efficient single-photon popul ation of the dipole-inaccessible
Rydberg states in moderate magnetic fields. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

External electromagnetic fields ater the optical
spectrum of matter. Consequently, it is important to
know the properties of the atomic spectrum in a mag-
netic field not only for determining the basic laws of the
matter—field interaction but also for detecting the field
and measuring its intensity by optical methods. The
Zeeman effect—the splitting of atomic levelsin amag-
netic field—is described in detail in the literature for
the linear (in the magnetic field B) paramagnetic inter-
action with an atom; see, for example, [1-5]). The fre-
guency, intensity, and polarization of individual Zee-
man components of split lines have been calculated for
the normal and anomalous Zeeman effect on the sub-
levels of the fine structure.

The effect of adiamagnetic interaction (quadraticin B)
has been investigated in detail only for hydrogen atoms.
Calculations of the energy have been performed using
perturbation series [6—10] and numerical integration
of the Schrédinger equation for an atom in strong and
superstrong fields [4, 11-14]. Together with the first-
order diamagnetic energy, the field-independent distri-
bution of the oscillator strengths over the diamagnetic
sublevels, including for transitions from highly excited
Rydberg states, has also been calculated [6]. Higher
order perturbation theory has been used [15] to calcu-
late the field-dependent corrections to the matrix ele-
ments of dipole transitions. These show, specifically,
that the transition matrix element between nondegener-
ate states increases and a field has a selective effect on
the intensity of the diamagnetic components of transi-
tion lines from degenerate states [16].

Interest in the optical properties of multielectronic
atoms in magnetic fields has increased appreciably in

the last few years. The method for calculating diamag-
netic corrections to the energy has been extended to
arbitrary states of alkali atoms for degenerate diamag-
netic sets [7, 17] and for isolated states taking account
of corrections which are second-order in the diamag-
netic interaction [18]. The diamagnetic first- and sec-
ond-order susceptibilities have been calculated for the
ground and metastable states of inert atoms [19], and
asymptotic formulas have been written out and the
parameters appearing in them have been calculated for
determining the susceptibilities of Rydberg states of
alkali atoms [15]. Hartree—Fock calculations of energy
levelsin awide range of magnetic field intensities have
been performed for helium [20-22], lithium [23], and
beryllium [24].

Together with the frequency, an important charac-
teristic of an atomic line is its intensity. Information
about the dependence of the intensity of Zeeman lines
on the magnetic field gives additional data on the Zee-
man effect in atomic spectra and could be helpful in
many problems of atomic physics and astrophysics.

The splitting of atomic lines into Zeeman compo-
nents results in a redistribution of the line intensities,
which in weak fields (anomalous Zeeman effect) are
determined by intensity-independent matrix elements
of dipole transitions between Zeeman sublevels of
states with definite values of the total angular momen-
tum of theatom J = L + Sand its projection M, where
L isthe orbital angular momentum and Sisthe spin. In
strong fields, for the total Paschen-Back effect, the
states of the atom and the matrix elements of dipole
transitions are characterized by definite values and cor-
responding selection rules for the orbital L and spin S
angular momenta and their projections M, and Mg sep-

1063-7761/00/9103-0458%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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arately. The difference of these states from the fine-
structure states [nJMOresults in a difference between
the intensity distribution of the optical lines of an atom
in the anomal ous Zeeman effect and the corresponding
distribution in the total Paschen—Back effect. The
atomic spectrais quite easy to calculate in the limiting
cases of weak and strong fields and such a calculation
ispresented in detail in theliterature[1, 3-5]. However,
the dependence of the intensity of radiative transitions
onthefield intensity isordinarily ignored. For interme-
diate magnetic fields, qualitative information on that
variation in the oscillator strengths of the Zeeman com-
ponents of doublet lines which is caused by the atom—
field interaction linear in B (paramagnetic interaction)
isavailable [25].

In strong fields, when the paramagnetic interaction
energy is greater than the spin—orbit interaction energy
and the indicated rearrangement of the spectrum from
[NIMto |nLM, SMd[states is completed, the change in
the matrix element of a radiative transition is deter-
mined by the diamagnetic (quadratic in B) interaction.
The effect of a diamagnetic interaction under the con-
ditions of the total Paschen—-Back effect on the depen-
dence of the intensity of radiative transitions of hydro-
gen atoms on thefield intensity has been investigated in
[16]. In the present paper this dependenceis calculated
for multielectronic atoms.

Analytical expressions for the diamagnetic correc-
tions of order B? to the matrix elements of radiative
transitions are presented in Section 2. Theradial matrix
elements determining these corrections are calculated
in Section 3 using the wave functions and Green’sfunc-
tions of a mode potential for the valence electron in
alkai atoms and in helium [26, 27]. The numerical
results and the possibility of observing experimentally
the change in the intensity of atomic linesin amagnetic
field are discussed in Section 4.

2. DIAMAGNETIC CORRECTIONS
TO THE DIPOLE MATRIX ELEMENTS

Both the energy spectrum (eigenvalues) and wave
functions (eigenvectors) of an atom change in a con-
stant magnetic field. The change in the energies of the
atomic levels is expressed in the shift and splitting of
the emission and absorption lines, whereas the field
dependence of the wave functionsresultsin achangein
the matrix element of the electromagnetic transition
d;; = y;|(e - d)|yxO(e is the polarization vector of the
emitted or absorbed photon, d is the dipole moment
operator of the atom), which together with the fre-
quency wy = E; — E; determines the line intensity:*

4
lif = éagwflf|dif|2- 1

1 We use atomic units.
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Here a = 1/137 is the fine-structure constant. In what
follows, this constant is taken into account in the inter-
action with the magnetic field by choosing the unit of
magnetic induction B, = B,/a = 2.35 x 10° T, where
B, =1715T isan atomic unit.

For fields B < By/v® (v = 1/ ,/—2E,, isthe effective
principal quantum number of the energy level E,) the
magnetically induced corrections to the energy and the
wave functions can be calculated using perturbation
theory. For the central line with the magnetic field par-
allel to the polarization (11 polarization) the frequency
shift and the change in the matrix elements are qua-
dratic in the field. For side lines with polarization per-
pendicular to the field B (o polarization) the frequency
shift contains a linear term, which is identical for al

linesin agiven series, Aw’ ~ B. The quadratic correc-
tion depends strongly on the principal quantum number

of the upper level: Awi(fz) ~ v*B2. As calculations for

hydrogen atoms show [16], the analogous corrections
to the matrix element can be even larger. In this connec-
tion, the effect of the diamagnetic interaction on the
dipole matrix elements for optical lines of multielec-
tronic atoms in the region of the total Paschen—-Back
effect is quite important. On the basis of the discussion
in the Introduction it can be assumed that the diamag-
netic correctionsto the frequencies of atomic lines have
been well studied, so that in what follows we shall con-
fine our attention to the calculation of the corrections
only to the matrix elements.

The operator describing the interaction of an atom
with a constant magnetic field B,

\78 = \7m + \7D7
contains a linear paramagnetic term corresponding to
the interaction of the magnetic dipole moment of an

atom with the field (the z-axis is directed along the B
vector),

U = ~(m [B) = §(£z+2éz), @

and a quadratic diamagnetic term corresponding to the
interaction with the field of the additional moment
induced by the Larmor precession of the electronic
shell of an atom,

- B

Vo = 55r°[1-Cx(8, 9)]. )
Herer, 6, and ¢ are the radia and angular coordinates
of the valence electron, C,, is the modified spherical
function of the angular variable [28], andL =1 and S=s
arethe orbital and spin angular momenta of the valence
electron.

In the region of the total Paschen—Back effect the
spin-orbit interaction can be neglected. The operator
(2) can be included in the atomic Hamiltonian, leaving
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the diamagnetic interaction (3) as a perturbation. Then
the wave functions of the unperturbed basis will be the
wave functions of the valence electron neglecting spin,
and the energies will be split with respect to the mag-
netic quantum number: E,,,= E, + mB/2. Sincethelev-
els of a valence electron with | > 3 are hydrogen-like,
the radiative properties of the Zeeman stateswithm> 3
are completely analogous to those properties of the
states of the hydrogen atom studied in [16]. Conse-
guently, we shall confine our attention only to transi-
tions between stateswith m< | < 3. Such states are non-
degenerate, and perturbation theory for the nondegen-
erate states is sufficient to calculate the corrections to
the wave functions and the matrix elements.

Let us assume that the nondegenerate initial and
final statesin Eq. (1) in the absence of amagnetic field
are identical to the eigenstates of an atom |10and |00
(with energies E; and E;). Then the equations for the
wave function and energy of an atom in afield can be
written in an integral form, convenient for iteration,
using the unperturbed Green's function Gg(r, r') [29]:

Eir) = E1(0)+<1(0)|\7D|i(f)>, @
li(f)0= [LO)- G, Voli(f)

Here

[F | 1(0)1(0) |r'0
Ei(f)

GE (r,r) = Gg (r,r)—

i(f) i(f)

()

Ei0)—

isthereduced Green'sfunction with the exact energy of
an atomin afield.

Using the standard iterative procedure of perturba
tion theory to solve Egs. (4) we obtain a series expan-
sion in powers of the small parameter B®> < 1 for the
wave functions and energies, whence power series can
be obtained for the transition frequency and matrix ele-
ment:

]
wy(B) = wlom-+ ZW(S)BZSE.
(6)

Oaa

di(B) = dlomu Z 03B

The coefficient w ) inthe expansion for the frequency
istheratio of the dlfference of the diamagnetic suscep-

tibilities x5 — x”, determining the corrections AE(}) =
)

—Xo(1) B*/2s! [18] of order sto the energies of thelower
and upper levels, to the unperturbed frequency w,:

(s) (s)
(s _ Xo —X1

Wiy = :
107 2dlwy,

(7)
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The first-order susceptibility xmm can be deter-
mined from the relation for the correction to the energy

AEY = (nIm[Vp|nim) = — xfﬁn (8)

Substituting here the operator (3) and integrating with
respect to the angular variables gives

@ _ 1(+1)+m -1 2
in = e ®)
The mean-square radius of the electron orbit in this
expression and therefore the factor w9 are rapidly
increasing functions of the principal quantum number
of thelevel |nIL]

The decomposition of the tensor x@ into irreducible
parts for nondegenerate levels of multielectronic atoms
isgiven in [18], where the numerical values of theirre-
ducible components of this tensor are also calculated
for the s, p, and d states of alkali elements. A method
for calculating x@ in highly excited Rydberg states is
proposed in [15]. Numerical calculations of the suscep-
tibilities X® of very high orders (up to s = 75) for the
hydrogen levels with principal quantum numbersn< 3
were performed in [8]. Analytic expressions and the
general properties of the third-order susceptibilities in
arbitrary states of hydrogen were obtained in [9, 10].
Besides perturbation theory, other methods making it
possible to determine the change in the radiation fre-
quenciesin fields stronger than the upper limit of appli-
cability of perturbation theory have also been used to
calculate the energies of atomic levels in a magnetic
field (see, for example, [11-14, 20-24]). Thus, thereis
now available a variety of analytica and numerical
methods for calculating the change in the frequencies
of radiative transitions of atomsin amagnetic field and
therefore for determining the corrections (7).

The change of the matrix element di«(B) in a mag-
netic field can be calculated on the basis of the integral
equations (4). Expanding the wave functions of theini-
tial and final states in powers of the operator (3), the
coefficients q(s) in Eq. (6) can be represented as aratio
of the matrix element of order s to the unperturbed
value. Specificaly, for s= 1 (in what follows we con-
fine our attention to the first-order correction q(lé) = Ohos
omitting the order index s) we have

Q10 = O10(1) + A50(0), (10)
where
1|VoGe dy|0
Gho(D) = < e {0 (1)
B dy
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determines the contribution due to the field-induced
change in the wave function of the upper level |10 the
term

(1]d.Gg,Vo|0)
Bd,o
gives the contribution associated with the change in the

wave function of the lower level |00 d,, isthe operator
of the (. projection of the electric dipole moment (i =
0, +1).

After integrating with respect to the angular vari-
ables of the valence electron, the quantities (11) and
(12) can be represented as aratio of alinear combina
tion of the second-order radial matrix elements of the
electric dipole and diamagnetic interaction operators
(r and r?) to the first-order matrix element of the opera-
tor r. In the general case, we obtain for the transition
|1C= [nImO— n'I'mC=E 001" =1£ 1, m =m—p)

00(0) = . (12

qio(nim) = Z AL, m; ay(nl; n'l),
p=0,%2
(13)
qo(n'l'm) = A, M Day(n'l'; nl),

p=0,%2

where A‘;,(I, m; 1) istheratio of the angular integrals

I0+1)+m —1
4(21-1)(21 +3)’

Al m; 1) =

AL, m;1¥1) =0,

0 o o (1+2°-m’
A mi T+ 1) = v 3y @ +5)°
0 _ (1-1)%-m°
Adm=D = gorrny@-3
AL, m; 1+1) = A, —m; | +1)
_(+m+1)(+m+2)
8(21 +3)(21 +5) ’
A, m; 1=1) = AL(l,-m; [ -1)
_ _(+m=-1)(+m).
T 8(2-1)(21-3)"
e ]|
a(nl; nl") = mlllrlr?'I'D (15)

istheratio of theradial matrix elements. In these expres-
sions g™ (r, ') is the reduced radial Green's function

with energy E,; in the subspace of the states of avaence
electron with orbital angular momentum |, [27].
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3. CALCULATION OF THE MATRIX ELEMENT
BY THE MODEL POTENTIAL METHOD

For transitions between states of a valence electron
all radia matrix elements in Egs. (11)—(13) and (15)
can be calculated analytically and presented as func-
tions of the principal and orbital quantum numbers
using the model-potential method [26, 27, 29]. For
first-order matrix elements these expressions can be
represented as a generalized hypergeometric function
of two variables after calculating the radial integrals
using the explicit expression for the radial wave func-

tion:
Ry = 2 | M2 ¢ cezr
" V§| r(nr + 2\ + 2) ”r)\Dan i

Here Z is the charge of the core ion in whose field the

valence electron moves; v, = Z/ ,/-2E,, isthe effective
principal quantum number, n, =0, 1, 2, ... isthe radial
guantum number, A = v, —n, — 1 isthe effective orbital
guantum number of the level;

(16)

—x/2 A

fa®) = L2 (%) (17)

is the Sturm function of the Schrodinger equation with
the model Hamiltonian. Just like the Coulomb function,
thisfunction isexpressed in terms of the Laguerre poly-

nomials Lg(x), which are related with the confluent
hypergeometric function as [30]

(a+1),
n 1!

Le(X) = F.(—k; a + 1; x).
Here(a +1),=(a + 1)(a + 2)...(a + n) isthe Pochham-
mer symbol.

Theserelationsmakeit possibleto expresstheradial

matrix element in terms of the generalized hypergeo-
metric function F, of two variables:

e (@) L (2A+2), (2N +2),
Chlfr[n'I'D= 27 n!n/! OHG)

x X' 2N *2E (a; -n,, -ni; b, b'; X, X).

(18)

Here

a=A+AN+4, b=2A+2, b =2\+2,

2v' .2V
v+v

V+V|1

For negative integer values of the upper parameters, the
double series representing the function F, reduces to a
double sum—a polynomial in powers of the arguments
x and X. In practical calculations the radial quantum
number of the lower level isusualy small, so that it is
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convenient to represent the series F, as alinear combi-
nation of n, + 1 hypergeometric functions:

Fo(a; =k, —n;; b, b'; x, X)

a)s(—n
= Z (@)<(=). S?!S((bl);)s(x')stl(a+ s, —k; b; x).
To calculate this sum, it is convenient to use recurrence
relations between the functions ,F; with adjacent
parameters [30]. The formula (18) can be regarded asa
generalization of the Gordon formula (see, for exam-
ple, [2]) for the radial matrix element of a radiative
transition of an arbitrary atom, the states of whose
valence electron are described by a model potential.
Using the Sturm expansion of the Green’s function of
the model potential [27, 29],

O, o _ 4ZD k!
gr(r.r) = ZF(k+2)\+2)
f [22er [2ng

k+)\+1—vnI F(vy tA+21)v,
<®, . d do, @2Zrg, RzZrgd
oAt dr'Df“Dv Df“DV od

O

the second-order matrix element can be obtained by
analogy with the radial matrix element (18) as a gener-
alized hypergeometric series, each term of which can
be expressed in terms of the function F,. One of the
negative integer parameters of this function isidentical
to theradial quantum number of theinitial or final state,
and the other isidentical to the summation index of the
series (19). Thus, we obtain for the ratios (15) of the
second- and first-order radial matrix elements

Cn V(D) < (D),
ay(nl; n'l") = v o

k=0 (20)
X F2(b + 31 _nr1 _k1 ba b1 1! 1)

x ®(a; k,n, n; b, b'; X X),

where the cofactor @ under the summation sign is the
ratio of generalized hypergeometric functions F, and
for k # n, hasthe form

®(a; k, n,, n;; b, b'; x, x)
3 F.(a; =k, —n;; b, b'; x, X)
(k—n,)Fy(a; —n,, —n;; b, b'; %, X))

(21)
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For k = n, this cofactor is
®(a; n, N, n;; b, b X X)
B 1[(2v —n,)F,(a; —n, =1, -n;; b, b'; X, X)
Y 2F (a; —n,, —n;; b, b'; x, X))
Ny —n +1, -n;; b, b'; X, x')}
2F,(a; —n,, —n;; b, b x,x) 1

(22)

The generalized hypergeometric function F, with unit
arguments in Eq. (20) is the orthogonality integral for
the Laguerre polynomials, which is different from zero
only for |k — n,| < 3. Consequently, the seriesin k here
contains no more than seven nonzero terms.

The effective orbital quantum numbers A and A, for
states of the valence electron with angular momenta |
and | = 2 virtually aways assume values such that the
difference v, — A, is not a positive integer. In this case
the Green’s function in the second-order matrix ele-
ment in the expression (15) for a,, may not be reduced.
The nonreduced Green’s function is the first term in
Eq. (19), where A isreplaced by A;, and the summation
extends over al nonnegative integer values of k, including
k= n,. After integrating with respect to the radia coordi-
nate of the vaence eectron Eq. (15) assumestheform

Y F(a)r(a)

a,(nl; n'l') =
8z* r(a)r(bl)

(<)

(b)),
y Ny, =K ; 23
xkzok!(kmlu_vfz(“' n, —k; b,by; 1,1) (23)

Fo(a'; =k, —n;; by, b'; X, X)
F,(a; —n, —n;; b, b'; x, )’

wherea =A+A; +5 a'=A;+A' +4,andb; =2\, + 2.
The generalized hypergeometric function F, appearing
here is not an orthogonality integral, since the differ-
ence between the upper and lower parametersis not an
integer. Nonetheless, the Sturm series remains rapidly
converging, and n, + 2 or n, + 3 terms, where n, is the
radial quantum number of the upper level, are sufficient
to calculate the series with relative accuracy 107,

4. RESULTS OF NUMERICAL
CALCULATIONS AND DISCUSSION

4.1. Variation in the Matrix Elements
of Dipole-Allowed Transitions

We performed calculations of the numerical values
of the factor g, determining the first diamagnetic cor-
rection to the matrix elements of dipole transitions
between the ground and first excited states of alkali
atoms, corresponding to the most important series of
lines, and the corrections to the matrix elements of sin-
glet and triplet lines of helium.
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Table1. Diamagnetic susceptibilities g™ and ¢° for correctionsto the matrix elements d, p s of radiative tand o transitions

n,P —= nScorresponding to the Zeeman components of the lines in the principal series of akali atoms: (k) = 10

Atom n(n,P) dio q(2) q(0) q" q°(0) q°

Li 0 —2.40 -1.34 -1.20 254 -11.2 -13.8
1 1.29(-1) 5.56(2) —2.02(2) 3.54(2) -3.90(2) 7.21(2)
2 1.14(-1) 1.16(3) —6.94(1) 1.09(3) —1.40(2) 2.19(3)
3 8.51(-2) 3.87(3) -4.62(1) 3.82(3) ~9.65(1) 7.64(3)
4 6.57(-2) 1.13(4) —3.72(1) 1.12(4) —7.95(1) 2.24(4)
5 5.23(-2) 2.83(4) —3.27(1) 2.83(4) —7.11(2) 5.66(4)
6 4.32(-2) 6.31(4) —2.96(1) 6.31(4) —6.54(1) 1.26(5)

Na 0 —2.54 0.925 2231 -1.36 -1.51(1) -1.32(1)
1 ~1.43(-1) —4.36(2) 2.00(2) —2.36(2) 3.70(2) —5.02(2)
2 —2.72(-2) —2.24(3) 4.08(2) ~1.84(3) 7.67(2) -3.72(3)
3 —5.24(-3) -1.85(4) 1.19(3) ~1.73(4) 2.27(3) —3.47(4)
4 8.74(-4) 1.99(5) —4.78(3) 1.94(5) —9.15(3) 3.88(5)
5 2.83(-3) 1.09(5) ~1.08(3) 1.08(5) —2.08(3) 2.17(5)
6 3.38(-3) 1.57(5) —7.07(2) 1.56(5) -1.36(3) 3.12(5)

K 0 295 —0.612(5) -0.192(3) ~0.804 —2.31(1) —2.43(1)
1 —7.42(-2) -1.77(3) 7.05(2) -1.06(3) 1.38(3) —2.16(3)
2 1.88(-2) 8.59(3) -9.87(2) 7.60(3) —2.02(3) 1.52(4)
3 2.75(=2) 1.11(4) —3.61(2) 1.07(4) —7.64(2) 2.14(4)
4 2.58(-2) 2.31(4) —2.49(2) 2.28(4) -5.40(2) 4.56(4)
5 2.25(-2) 4.88(4) —2.06(2) 4.86(4) —4.54(2) 9.72(4)
6 1.94(-2) 9.79(4) -1.83(2) 9.78(4) —4.07(2) 1.96(5)

Rb 0 -3.06 —2.85(-2) 0.815 0.786 —2.68(1) —2.69(1)
1 -1.32(-1) ~1.09(3) 4.47(2) ~6.42(2) 8.72(2) -1.31(3)
2 -1.05(-2) —1.49(4) 2.07(3) —1.29(4) 4.23(3) —2.56(4)
3 8.95(-3) 2.94(4) -1.32(3) 2.81(4) —2.78(3) 5.61(4)
4 1.26(-2) 3.81(4) -6.11(3) 3.74(4) -1.32(3) 7.48(4)
5 1.26(-2) 6.78(4) —4.44(2) 6.74(4) —-9.71(2) 1.35(5)
6 1.17(-2) 1.24(5) -3.69(2) 1.24(5) -8.16(2) 2.48(5)

Cs 0 -3.25 -0.417 5.84 5.43 —3.44(1) -3.52(1)
1 -1.38(-1) ~1.35(3) 5.41(2) -8.10(2) 1.08(3) -1.63(3)
2 -9.85(-3) —2.04(4) 2.75(3) -1.77(4) 5.81(3) -3.50(4)
3 1.06(-2) 3.13(4) -1.38(3) 2.99(4) -3.03(3) 5.95(4)
4 1.43(-2) 4.15(4) —6.70(2) 4.09(4) ~1.50(3) 8.16(4)
5 1.40(-2) 7.37(4) -4.93(2) 7.32(4) -1.12(3) 1.46(5)
6 1.27(-2) 1.35(5) -4.19(2) 1.35(5) —-9.67(2) 2.69(5)

Table 1 shows the values obtained for the coeffi-
cients (10) and the individual contributions to them
from field-induced changes of the wave functions of the
upper level (11) and the lower level (12) for Tt
(n,PO — nNV)and o (n;P1 — n) transitionsin the
principal series of the alkali atoms. The numerical val-
ues of the matrix element d,, of the dipole transition of
an unperturbed atom, which in this case does not
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depend on thetype of transition, are also presented. The
absolute value of the factor for ac transition is approx-
imately twice the analogous value for the Tttransitionin
accordance with the relation for the corrections (11)
g°(1) = 29(1), making the main contribution to
Eg. (10) (the table gives only the value for g(1)). The
factors g are negative for the head lines of all atoms and
from oneto three subsequent lines (for lithium, only for
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the head line). For the high-frequency lines the fac-
tors q are positive and increase rapidly with the princi-
pal quantum number of the upper level; thisis similar
to the behavior of q for the lines of the Lyman and
Balmer series of the hydrogen atom [16]. Thus, the
intensity of the Zeeman components of the head lines
of the principal series of alkali atoms decreases as the
magnetic field intensity increases, while the intensity of
the high-frequency lines in this series increases. For
transitions from high states, the diamagnetic correction
to the wave function of the upper level makes the main
contribution to g—thisisevident from Table 1: for tran-
sitionsin the principal seriesfrom stateswith n, > 3 the
relation |g(1)| > |g(0)| holds. The correction g(1) is pos-
itive and increases rapidly with n,, while g(0) is nega
tive and decreases smoothly in absolute magnitude, so
that q° = q°(1) = 29™(1) = 2™, which is similar to the
behavior of these quantities for hydrogen lines[16].

We note that the numerical values of the correction
factors q and their rates of increase with increasing
effective principal quantum number v, of the upper
level [nPL]

q = 2V, (24)

are much gresater than the corresponding values for the
diamagnetic susceptibilities (9):

_ 4
Xn - a4Vn-

This means that the change in the matrix elements
makes the main contribution to the change in the inten-
sity (1) for the high-frequency lines of a specific series
of the single-electron spectrum of an atom, and the
effect on theintensity isitsalf just asimportant magnet-
ically induced optical effect asthe action of thefield on
the frequencies of the same lines. The calculation
shows that the numerical value of the coefficient ag for
the main series is essentially identical for all akali

atoms: ag =2ag = 0.53—for potassium, rubidium, and

cesium; ag = 2ag = 0.5 for lithium; and, ag = 2ag =
0.57 for sodium.

For the sharp series (the transitions ;S — nPm)
the values of the factors g for 1T and o transitions in
most cases have opposite signs because the signs of the
corresponding dipole matrix elements of the unper-
turbed atom are opposite. The same relation between
the signs of g™ and ¢° is also observed for other atomic
series. The signs and absolute values of the coefficients
g depend on the specific atom and on the specific tran-
sition.

As an illustration, Table 2 gives the numerical val-
ues of the susceptibilities g determining the change in
the matrix elements of the diffuse seriesof akali atoms,
which correspond to the transitions n,Dm;, — nPm.
The axial symmetry of the system ensuresthat q(—m, —»
—m) = g(m, — m) with asimultaneous replacement of
photons with right-hand circular polarization, which
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are emitted in transitions with m; —m= %1, by photons
with left-hand polarization (and vice versa). For this
reason, transitions only between states with positive
magnetic quantum numbers are indicated in Table 2.
Theratio of the dipole matrix elements d(m, — m) of
an unperturbed atom, which correspond to different
values of m; and m, is determined only by the angular
factors, so that for transitions in the diffuse series
do—1):d1—0):d(1—1):d(O0— 0):

d2 —1)=1:./3:./3:2:./6.Thetablegivesdata
only for the smallest matrix element, d,, p ,p (0 —= 1).

Here, just as for the principal series, the asymptotic
formula (24) can be written down for each coefficient
g(m; — m). The ratio between the asymptotic values
of the coefficients corresponding to transitions from
states with m; # 0 is essentialy identical to the ratios
between the unperturbed matrix elements: ag(1 — 0) :

a(l—1):a2—1)=1:1: .2, whereas(1 —
m) = 0.35 for all akali atoms. For transitions from
stateswith m, = O theratio of the coefficientsisclosein
absolute value to the ratio of the unperturbed matrix ele-
mentsand negative: ag(0 — 1) : a(0 —= 0) =—2, which
is dueto the large negative contribution of intermediate
Sstatesto g. This contribution isrelated with the strong
perturbation of the D levels with zero magnetic quan-
tum number by the close-lying S levels, which are
absent in states with m, # 0. Conseguently, the coeffi-
cients ag(0 — m) are much greater in absolute value
than ag(1, 2 — m). The numerical values of these
guantities are presented in Table 3.

Our computed diamagnetic corrections to the inten-
sity of the singlet and triplet linesin helium atoms, cor-
responding to radiative transitionsinto the ground state
1°(1S)) and into the metastable 1s25(1S)) and 1s2s(3S))
states, decrease the matrix element of the radiative tran-
sition for the head lines of series ending on metastable
levelsand increaseit for all other lines of the seriesand
thelines of the series of transitionsinto the ground state
of the atom; thisagrees qualitatively with Hartree—Fock
calculations of the radiative matrix elements [20]. Just
asin akali atoms, the field-induced change of the upper
level, which increases rapidly with the principal quan-
tum number, makes the main contribution to the effect.
The corrections to the matrix elements of ¢ transitions
are approximately two times greater than the correc-
tions to the matrix elements of Tt transitions in propor-
tion to the ratio of the angular matrix elements, corre-
spondingtop=21and u=0inEq. (11). The asymptotic
values of q are determined by the Eq. (24) with the

coefficients ag = 2ag = 0.5, which are equal to the

anal ogous coefficients for the corrections to the matrix
elements of the principal series of alkali atoms (see
above).

The experimental observation of the dependence of
atomic lineintensities on the magnetic field seemsto be
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Table 2. Matrix element dnlD. np (0 — 1) and diamagnetic susceptibilities g(m; — m) for corrections to the matrix ele-

ments of radiative transitionsin the diffuse series of alkali aloms n,Dm; — nPm; (k) = 10

Atom n.(n,D) d0—1) | q0—1) | g1 —0) [ q1—1) | 9q0—0) | 92— 1)
Li 0 1.16 5.16(2) 7.34(1) 7.48(1) —1.65(2) 1.11(2)
1 4.38(-1) 4.31(3) 6.63(2) 6.76(2) -1.32(3) 1.00(3)
2 2.54(-1) 2.25(4) 3.54(3) 3.55(3) —6.80(3) 5.31(3)
3 1.74(-1) 8.37(4) 1.24(4) 1.24(4) —2.64(4) 1.86(4)
4 1.30(-1) 2.51(5) 3.40(4) 3.40(4) —8.28(4) 5.10(4)
5 1.02(-1) 6.44(5) 7.98(4) 7.98(4) —2.22(5) 1.20(5)
6 8.31(-2) 1.47(6) 1.67(5) 1.67(5) -5.27(5) 2.51(5)
Na 0 1.44 4.69(2) 2.81(1) 3.56(1) ~1.93(2) 4.60(1)
1 4.24(-1) 4.27(3) 4.17(2) 4.46(2) ~1.59(3) 6.40(2)
2 2.27(-1) 2.40(4) 2.91(3) 2.94(3) -8.33(3) 4.37(3)
3 1.49(-1) 9.27(4) 1.10(4) 1.11(4) —3.26(4) 1.66(4)
4 1.09(-1) 2.84(5) 3.15(4) 3.15(4) ~1.03(5) 4.72(4)
5 8.45(-2) 7.37(5) 7.55(4) 7.55(4) —2.74(5) 1.13(5)
6 6.83(~2) 1.70(6) 1.61(5) 1.61(5) —6.50(5) 2.41(5)
K 0 1.69 1.57(3) ~3.24(2) ~1.58(1) -8.11(2) —4.04(1)
1 2.06(~1) —4.84(5) —2.91(2) —2.02(2) 2.42(5) ~3.92(2)
2 6.53(~2) —4.94(5) 1.73(2) 2.91(2) 2.47(5) 3.19(2)
3 2.94(-2) ~1.91(6) 3.02(3) 3.17(3) 9.56(5) 461(3)
4 1.62(-2) —6.71(6) 1.22(4) 1.24(4) 3.37(6) 1.84(4)
5 1.01(-2) —2.03(7) 3.49(4) 3.51(4) 1.02(7) 5.25(4)
6 6.74(-3) —5.38(7) 8.27(4) 8.29(4) 2.70(7) 1.24(5)
Rb 0 1.79 -3.28(3) —5.65(1) ~3.37(2) 1.59(3) ~7.33(2)
1 3.82(-2) —9.34(4) ~3.25(3) —2.75(3) 4.30(4) —4.63(3)
2 —2.27(-2) 3.48(5) 7.47(3) 7.23(3) ~1.65(5) 1.11(4)
3 —2.56(-2) 7.21(5) 1.38(4) 1.38(4) —3.43(5) 2.07(4)
4 —2.26(-2) 1.78(6) 3.24(4) 3.23(4) ~8.51(5) 4.86(4)
5 ~1.93(-2) 4.21(6) 7.22(4) 7.21(4) —2.01(6) 1.08(5)
6 ~1.65(-2) 9.23(6) 1.49(5) 1.49(5) —4.43(6) 2.23(5)
Cs 0 1.85 ~357(2) —7.64(1) —4.37(1) 1.07(2) ~9.82(1)
1 ~3.13(-1) 5.47(3) 4.24(2) 3.87(2) —2.23(3) 6.17(2)
2 ~1.60(-1) 2.66(4) 1.87(3) 1.88(3) ~1.09(4) 2.81(3)
3 ~1.03(-1) 1.04(5) 7.34(3) 7.36(3) —4.27(4) 1.10(4)
4 —7.40(-2) 3.27(5) 2.21(4) 2.21(4) ~1.36(5) 3.31(4)
5 —5.69(-2) 8.79(5) 5.51(4) 5.52(4) —3.71(5) 8.27(4)
6 —457(-2) 2.09(6) 1.21(5) 1.21(5) —8.94(5) 1.82(5)

distinctly accessible for transitions between the Zee-
man components of Rydberg states, similarly to the
experimental study of thefield dependence presentedin
[31] for Stark lines. The rapid increase in the correc-
tions with increasing principal quantum number n of
the upper level showsthat for n = 20 the diamagnetic cor-
rectionsto the intensity are 20-30%inthefiedldB=0.5T.

4.2. Diamagnetically Induced Dipole Transitions

Together with the changein the matrix elements and
intensities of dipole-alowed transitions, a diamagnetic
interaction induces dipole-forbidden transitions. Just as
the allowed transitions, these transitions occur between
states with opposite parity, but in addition to the dipole
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selection rules the rule Al = +3 aready appears in first
order in the diamagnetic interaction, so that, specifi-
caly, atransition from the ngF state into the nS state

Table 3. Numerical values of the factor ag(0 — m), deter-
mining the asymptotic susceptibilities (24) for correctionsto
the matrix elements of radiative transitions in the diffuse
series of alkali atomsn;D0 — nPm

Atom a5(0 —= 0) a(0 — 1)
Li 4.4 -1.8
Na 6.0 -25
K -300 150
Rb 37 18
Cs 9.6 —4.4

No. 3 2000



466

OVSIANNIKOV, CHERNUSHKIN

Table4. Susceptibility n for the relative intensity of magnetically induced (ngF — nS) and allowed (nP — nS) radiative
Tttransitions into the ground state of alkali atoms and into the ground and metastable states of the helium atom; (k) = 10K

Atom 4F —nS | 5F—nS | 6F—nS | 7F—nS | 8F —nS | 9F —nS aio

Li 2s 2.30(7) 5.24(8) 5.57(9) 3.67(10) 1.80(11) 6.86(11) 27
Na3s 7.40(4) 1.17(5) 7.60(5) 6.71(6) 6.82(7) 3.71(8) 3.4(-2)
K 4S 1.13(4) 1.13(6) 1.77(7) 1.41(8) 7.54(8) 3.17(9) 1.6(-1)
Rb 55 4.00(3) 6.31(4) 2.58(6) 2.77(7) 1.73(8) 8.00(8) 5.2(-2)
Cs6S 5.98(3) 5.16(4) 2.43(6) 2.72(7) 1.70(8) 7.65(8) 5.3(-2)
He 1S 9.64(8) 2.38(10) 3.92(11) 9.64(12) 4.48(14) 3.69(13) 3.3(2)
He2'sS 1.27(11) 3.60(12) 6.34(13) 1.62(15) 7.69(16) 6.43(15) 6.0(4)
He 2°S 2.12(8) 4.55(9) 4.26(10) 2.52(11) 1.09(12) 3.75(12) 1.2(2)

becomes possible. The intensity of the corresponding
lines is proportional to the fourth power of the field B
and is determined by the matrix element of the induced
transitions, which (without the factor B?) can be repre-
sented as

dnn = A(IM)(R, + Ry) (25)
for Tttransitions and
dg3n = A(IMRy + As(IM)R, (26)

for o transitions, where

2 (ng)

Ry = <n3| +3|r 0i+1f

nl>

istheradial matrix element of the transition induced by
amagnetic field acting on the initial state |ngl + 30

R, = <n3l + 3|rg|('l)2r2|nl>

is the matrix element of a transition induced by the
magnetic field acting on the final state. The dependence
on the orbital and magnetic quantum numbers for the
angular factors can be written in an explicit form simi-
larly to the expressions (14):

A (l, m)

_ lJ[(I +1)*—m’][(1 + 2)° —m’][( + 3)° —m’]

8 (2 + 1)(21 + 3)%(2l +5)*(21 +7) &27)

+1+m)(l +2+m)
2[(1+1)*-m]

Al m) = Ayl m) J('

+3+m)(l+4+m)
2[(1 +3)* -]
It is convenient to express the intensity of a magnet-

ically induced transition in terms of the intensity of the
dipole-allowed transition:

A, m) = Al(l,m)J(I

(28)

— 4
In3l+3ﬂnl - r]Inll+lﬂnIB .
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The numerical parameter n is determined by the ratio
of the frequencies and matrix elements of the induced
and allowed transitions:

(29)

For transitions into the ground state of an alkali atom,
the intensity of the head line of the principal radiation
series of the atom can be chosen as the normalizing
intensity.

The explicit expressions for the ratios of the radial
matrix elements R, and R, to [ml4|r|nICdiffer from
Eq. (23) only by the parameters of theinitial and inter-
mediate states, so that the calculations of these quanti-
ties are fundamentally identical to the calculations of
the corrections to the matrix elements of allowed tran-
sitions, described in Section 3.

Table 4 gives the numerical values of the parameter
n for the intensity of the transition nF — nS
expressed in terms of the intensity of the transition
nP —» nS(n is the principal quantum number of the
ground state for an alkali atom, n= 2 for transitionsinto
metastable states of helium). For transitions into the
ground state of helium 1sn;f(*F;) — 1%(1S) the
parameter n expresses the intensity interms of 14 _ 1o
Since the angular factors A,(I, m) and Ay(l, m), deter-
mining the matrix elements of theinduced Ttand o tran-
sitions (24) and (25), are identical in the present case
and the matrix element R, is small compared with R;,
the numerical values of n for Ttand o transitions are
essentialy identical. Consequently, data only for 1t
transitions are presented in the table.

The computational results presented in Table 4 dem-
onstrate a rapid increase in the matrix elements of
induced transitions nyF-nS with increasing principal
quantum number n; of the upper level. This shows, spe-
cifically, that one-photon excitation of the F states of
atomsin amagnetic field by resonance radiation is pos-
sible. The probability of excitation of the Rydberg F
levels with large principal quantum numbers (n; > 10)
with the same intensity of the exciting light pulses is
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much higher than the probability of excitation of the
first F states with n; = 4, 5. In al atoms the parameter
n increases monotonically with the principal quantum
number of the F level, with the exception of the singlet
states of helium, where this parameter decreases some-
what for transitions from 9F and 10F states because of
the decrease of the third-order matrix element R;. Sub-
sequently (for ny > 10), the increase in ) reappears.

A formula, similar to Eq. (24), for the asymptotic
dependence on the principal quantum number of the
upper level can be written down for the coefficients n:

(30)

The numerical values of the coefficients a;, are pre-
sented in the last column in Table 4. As one can see
from the table, the largest values of the magnetically
induced matrix element correspond to atransition into
ametastable singlet state 21S,.

It follows from the data obtained, specifically, that
the cross section of the transition 21§, — 8'F; in the
field B = 10 T is approximately one-fourth the cross
section for the strongest resonance line of the transition
2'S, — 2'P,. In such afield the absolute values of the
diamagnetic shift and the paramagnetic Zeeman split-
ting of theinduced line are approximately identical and
equal about 5 cm™ [18, 19].

n = a,v'.

5. CONCLUSIONS

The changes due to the diamagnetic interaction and
examined here in the intensity of the radiation lines of
atoms give new information about the interaction of
multiel ectronic atoms with a magnetic field under con-
ditions of the total Paschen-Back effect, where the
spin-orbit splitting is small compared with the mag-
netic splitting. The computed val ues of the diamagnetic
susceptibilities, determining the corrections to the
matrix elements of dipole-allowed transitions, show
that the effect of a magnetic field on the wave functions
of atomic levels between which atransition occurs can
be more important than the change in their energies.
The effect of amagnetic field on theintensity of optical
lines is found to be selective, similarly to the effect on
the lines in the spectrum of hydrogen-like atoms [16].
The selectivity of the diamagnetic effects is manifested
not only in the difference in the absolute values and
signs for the corrections to the intensity of the lines of
different atoms and the lines in different series of the
same atom but also in the differencesin the signs of the
corrections to the intensity of the head and high-fre-
guency lines in the same series as well as to the inten-
sity of the Zeeman 1t and 6 components of the same
line.

For practical applications the most interesting effect
is the induction of transitions which are forbidden in
the dipole approximation. The diamagnetic interaction
of an atom with the field is completely responsible for
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this effect. The intensity of such transitions increases
rapidly with the principal quantum number of the upper
level; this shows that the transitions between Rydberg
states with angular momentum | = 3 and the nSground
state can be observed in quite weak fields which are
attainable under laboratory conditions. This effect
could be helpful for single-photon pumping of F states
of an atom in amagnetic field. A magnetic field can be
used in the same manner for two-photon population
of G states (I = 4), and so on. We note that magnetic-
field-induction of dipole-allowed transitions in the
spectrum of an atom is similar to the analogous phe-
nomenon in an electric field, specifically, deexcitation
of metastable states of an atom by an electric field [2],
and can appear, for example, in the quenching of meta-

5 310 5 g
stable %p n+ 15[2LD and %\p n+ 1§[2LD states

of inert atoms.
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Abstract—Data from high-resolution x-ray shadow photography of an X-pinch in the diode of a high-power
dense-plasma generator are presented. The processes |eading to the formation of aminidiode, the compression
of the neck arising in it, and the cutoff and subsequent emptying of the neck are studied. Cascade formation of
short-lived structures, which consistently reproduce the form of the minidiode on small scales before the x-ray
burst, is observed in the course of the implosion. The position of the x-ray emission points is determined.

© 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

An electrical explosion of wireloadsisused in mod-
ern research to obtain powerful x-ray pulses [1]. The
properties of matter in such nanosecond discharges
vary over awide range from aliquid and vapor up to a
strongly emitting hot and high-density plasma with
multiply-charged ions, greatly complicating an already
difficult diagnostics problem. In solving this problem,
amethod of high-resolution x-ray shadow photography
has been developed over the last few years [2, 3]. This
made it possible to begin the study of the previously
unknown internal structure of a discharge through an
exploding wire, containing together with the usually
studied plasma phase of the corona, core material with
heterogeneous composition (liquid—vapor) [4]. The lat-
ter could be responsible for the unusually high values
of the plasma parameters (the density, temperature, and
ion charge) characterizing the hot points of the necksin
discharges through a wire. An X pinch—an important
element of the new method—gives a unique experi-
mental realization of asingle neck.

The diagnostics is based on the method of shadow
projection of a point source. The large, compared with
laser probing, shortening of the wavelengths of the
source radiation makes deep layers accessible: the limit
of the achievable density, determined in the laser
method by the nonuniformity of the plasma and the
aperture angles of the optics employed, is now severa
orders of magnitude (2-3 and more) greater than for a
light-range laser, and the weak sensitivity to sharp
changes in density makes it possible to operate with
essentially arbitrary gradients. Investigations [2, 3]
have demonstrated that the bursts of the hot points in
X pinches, placed in the diode of a high-voltage gener-
ator, are highly efficient as miniature short-pulse x-ray

sources. The subject of these investigations were dis-
charges through one or several parallel wires, while the
present work is devoted to the processes occurring in an
X pinch, whichisan interesting object and an important
element of the observation method.

2. EXPERIMENTAL ARRANGEMENT

In our experiments, the plasma generator consisted of
an XP setup (Corndl University; parameters. 470 kA,
0.5Q, 100 ns). Pairs of crossed Mo wires with diame-
ters12.7, 17, 25, and 30 um were exploded in its diode.
Their radiation was detected with diamond detectors
with photoconductivity, whose signals were recorded
using afast Tektronix 684B oscillograph. Thetimeres-
olution of the detectors, taking account of the input
cables and the oscillograph, was =0.5 ns, but in reality
the determining resol ution of the method—the duration
of the burst of the hot point of aMo X pinch—was even
shorter. Its measurement was a difficult problem: even
the latest experiments make it possible to assert only
that the duration of the burst lies within the resolution
of the apparatus employed—shorter than 250 ps for a
high-frequency oscillograph and <100 ps for a slit-scan
camera. The spatial resolution of x-ray images
depended on the size of the hot spot, the distance from
this spot to the object, and the hardness of the detected
radiation (filters, film types and position). The geomet-
ric ratio of the distances of the object from the record-
ing photographic film and the source (magnification)
was 4-10 and gave good quality photographs: after dig-
itizing with a Nikon LS-2000 scanner the resolution
was estimated to be 1.2 pm. Detecting filmswith differ-
ent sensitivity arranged in the form of “sandwiches”
Kodak RAR 2497, DEF, Mikrat VE, and Ti filters
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Fig. 1. (a), (b) Diagram of the experiment, (c) typical oscillograms of the current through the load and the signal from the x-ray detector.

12.5 um thick made it possible to obtain at the same
time imagesin radiation with different hardness.

Two X pinches were placed in the diode in paralldl,
serving as sources of x-rays for obtaining in one shot
two (at different times) images of the experimental object.
The time delay between the bursts of up to 30 ns was
determined by the difference of the load masses, which
were chosen on the basis of experience; the variance for
virtually identical masses was 0.2-2 ns. Another advan-
tage of the scheme with a pairwise arrangement of
pinchesin the diode was an extremely small, in contrast
to adischarge through one X pinch, number of bursts of
hot points (1-2). This effect, caused by current redistri-
bution between the loads, improved the quality of the
images obtained. Optimization of the source dimen-
sions made it possible to operate in the spectral range
1-5 A, including the transmission band 2.5-4 A of the
Ti filters.

Two variants of the diagnostics complex were used
(Fig. 1). First, there was the standard scheme which
used in our previous experiments, where the experi-
mental load replaced outside the diode one of three
return-current rods (Fig. 1a); the other two supported
the anode plate. The diode current was divided into three
parts corresponding to the inductances of the load and
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rods, the currents through which were measured with indi-
vidual Rogowski loops (oscillogramsin Fig. 1c). Because
of the high inductance, less than one third of the total
current, usually not greater than 120 kA, flowed
through theload; thismadeit possible either to use only
very thin wires or to study only the onset of an explo-
sion. X pinches based on various metals, from Al toAu,
with wire diameters from 7.5 to 25 um were investi-
gated in this scheme.

In the other scheme, which was used to obtain most
of the images presented below, the X pinches in the
diode served simultaneously as the object of investiga-
tion and the source of x-rays. Although the current in
this apparatus was divided between the pinches, only
the total current was measured, and the currents of the
X pinches were assumed to be approximately the same,
from 200 to 230 kA. Only X pinches from Mo and W
were investigated in this scheme. The difficulties were
exacerbated by the fact that very often the pinches still
had more than one hot spot, degrading the quality of the
recorded image. Typical signals from diamond photo-
detectors are shown in Fig. 1c.

The method of crossing the thin conductors in the
diode was also important: the processes occurring in
the neck depended on how the wires touched one
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Fig. 2. Slow stage of the evolution of a X pinch before the x-ray burst.

another: excess twisting of the strands engendered par-
asitic helical disturbances, impeding good compression
of the plasma. “Point” touching of the wires was best.
Theintensity of the x-ray burst was highest in this case.
The angle 2a between the wires was also varied. The
best choicewas a = 176.

3. FORMATION OF A MINIDIODE
AND NECK IN AN X PINCH

The general picture of the evolution, constructed
according to data from many shots, isshown in Figs. 2-4.
It substantially supplements previous results of optical
and x-ray spectral measurements [5]. It is evident how
the slow (10 ns scale; Fig. 2) process of formation of a
minidiode transforms into arapid process, accelerating
up to the moment of the burst the devel opment of com-
pression instabilities of the neck (Fig. 3), whichiscom-
pleted by a cutoff of the neck and subsequent emptying
of the minidiode (Fig. 4). The time scales of these pro-
cesses run successively through values from the initial
values from the initial 10 ns to 1-2 ns up to a moment
approximately over 5 ns up to the moment of the burst
taken as 0 and then to 0.1 ns. After the burst the
sequence of scales with the same values alternates in
the opposite direction.

Let us examine the photographs in greater detail.
The photograph in Fig. 2 shows the core metal remain-
ing after the explosion and the corona plasma. The
dense core matter behaves differently inside and out-
side the neck region. Inside the neck it gradually
merges into a single, evidently liquid, filament, and the
initial trough (frame for —19 ns) transforms into a minid-
iode shorted by adensefilament. No indications of boiling
are noticeable here. The situation is completely different
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in the outer part of the cores, where the pattern is similar
to parald wires: the volumeis frothy with vapor bubbles
and the current can flow only along the surrounding
plasma corona. It appears that the greater the distance
from the wire crossing, the more intense the hesting and
explosion of the meta by the current are. In the corona
surrounding the cores, theincrease in the amplitude of the
plasma perturbations as the crossing is approached draws
attention. At the crossing itself, where a minidiode grad-
ually forms, no corona is seen; but, incidentally, this
does not mean that it is absent. Nonetheless, it can be
concluded that in time cylindrical geometry dominates
around individua wires far from the minidiode and is
more noticeableinside.

The coronal plasmaacquires aspecial structure near
the crossing—these are axia jets which were observe
in preceding frames. Their asymmetry is noticeable: the
jet is a sharp cone in the direction of the anode and
opens up toward the cathode. They can be attributed to
the collision of the fluxes of matter evaporated from the
surface of the metal at the start of the explosion. The
inclination of the front of the vapor cloud, propagating
aong the normal to the surface of the wires with veloc-
ity 3¢ (Cs = (e¢/m)V%= (1-2) x 10° cm/s—the velocity
of sound in the cold phase, & isthe Fermi energy of the
electrons in the metal) toward the axis gives rise to
cumulation, and the axial velocity of the jet is

3c/sina = (0.6-1.2) x 10°cm/s,

Therefore, in the 30—40 ns elapsed from the onset of the
current the length of thejet rangesfrom 200t0 400 um (in
our photographs 300400 pm). The rest of the vapor
expands freely, until the braking action of the fields has
an effect. The amount of matter flowing into ajet and
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Fig. 4. Image of a X pinch at fast stage of emptying of the minidiode after the x-ray burst.

the role of this matter in the current distribution at the
entrance and exit of the minidiode are still not known.

Theorigin of thelongest of our timescales, 10's, can
be understood. It is the same as the heating time of the
neck volume

Tza2/2nx,

where a = 100 um is the radius of the neck and x =
2k/3n, O Z71T52 is the electronic thermal diffusivity.
For this, the heating wave gradually converging into the
interior must heat the plasmato T=30eVandZ=5
(Z O TY2). Under such conditions the magnetic viscosity

Xm = C/4mo 02T

reaches = 5 x 10* cm?/s. Since the magnetic Reynolds
number

R, = va/lx,<ca/X,=0.1

(cs=(ZT/Im)¥2 =7 x 10° cm/siis the velocity of sound),
here diffusion determines the penetration of the current
and field into the interior volume of the plasma. The
required time

T, = a2/2T[Xm

isonly =0.3 ns, and the power density of Joule heating
with atypical current | = 100 kA reaches

j’lo = 21%I’c’t,a° = 50 TW/em®.

Such a wave of current heating deviates increasingly
from cylindrical symmetry asit penetrates.

In summary, at the crossing point the dense core
matter is gradually heated and redistributed, evidently,
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primarily in the azimuthal direction, forming a single
cylindrical neck inside the minidiode. Outside the
crossing the processes resemble an explosion of a pair
of paralel wires, but because of theinclination acumu-
lative collapse of the evaporated matter with formation
of aspecia structure of the coronal plasma—axia jets—
occurs. Their velocities are still much higher than the
axial expansion rate of the dense matter in the crossing,
and the latter does not yet participate in the formation
of thejets. Dense matter, evidently still not compressed
much, appears in the base of the jets only at the next
stage; its outflow is still not substantial in the process of
magnetic compression of the neck, especially sinceitis
impeded by the dense matter forming the el ectrodes of
the minidiode. These are the conditions at the transition
to rapid compression of the neck.

4. PROCESSES NEAR
AND AFTER THE X-RAY BURST

We shall now turn to the frames of the eventsimme-
diately before the x-ray burst and rupture of the neck
(Fig. 3; Fig. 5 shows enlarged, brighter images of the
minidiode; the thinnest neck with asharp boundary and
thickness =6 um was photographed at t = -0.3 ns
amost at the moment of x-ray emission). Comparing
the framesfor t = —-1.9 and —173 ns, we note how short
the time is between the quite even neck and the appear-
ance of an appreciable distortion at the center. Its
smooth development between t = —2 and —1 ns then
accelerates sharply, and in the frames for t = -0.6 ns
and —0.3 ns narrowing is clearly evident in the anode
half of the minidiode, encompassing approximately
one-fourth of the total length of the filament closer to
themiddle. The picture is associated with the develop-
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100 pm
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Fig. 5. Enlarged images of aminidiode in the phase of fast compression of the neck and formation of a cascade of diode structures.

ment of an instability of the neck, during which a diode
structure of asmaller scaleformsin the minidiode. Closer
study of Fig. 5 showsthe appearance of similar structures,
closer to the burst (t =—0.3 ns), of ahigher order indde a
new neck. Cascade development of the neck, terminated
by an explosion, occurs. It is visible in the frame for t =
+0.2 ns(Fig. 4) and somewhat later the samething appears
on the “minicathode’” side dso; for t > 0.5 ns an almost
symmetric pattern with a central plasmabunch arises.

The form of the cutoff of the filament in Fig. 4 is
associated with amicroexpl osion of the neck. The char-
acteristic effects are noticeable in enlarged fragments
(Fig. 6) of thefirst three frames: shock fronts propagate
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away from the cutoff pointsin the direction of the cen-
tral bunch and minielectrodes. The bunch at the center
gradually dissipates in the next nanosecond, and by the
end of the second nanosecond after the burst the minid-
iode contains amost no appreciable plasma. At the
same time, indications of an increase in the mass of the
dense matter in the bases of the jet cones on the
minielectrodes appear. Moreover, reflection of wave
fronts accompanying an interaction with stationary
dense cores is observed. The shock waves penetrating
into the space between the cores gradually displace the
dense neck matter into the region near the symmetry
axis of the X pinch.
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t=+0.6 ns

t=+0.56 ns

t=+0.2ns

Anode

500 pm

Cathode

Fig. 6. Enlarged fragments of thefirst imagesin Fig. 4.

(b) t=+22.6 ns

(a)
Anode
t=+11.4ns

1 mm

1 mm

Cathode
Fig. 7. The process of slow outflow of the neck matter from the minidiode.

The initial expansion rate of the plasma in the sion of the plasmain the x-ray burst. The relative half-
width of the lines of Ne-like Mo was

microexpl osion can also be estimated. For this, we shall
employ spectral datathat make it possible to judge the .
ANN = 3%x10 .

processes occurring at the stage of the brightest emis-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 91 No. 3 2000



476

IVANENKOV et al.

Mech image 1

Position of

hot spot 2
Image of
X-pinch 2
®) (©)
Anode t=—13ns t=+13ns
1 g
4 €
K o - |
— o
Cathode

Hot spot
will be here

Hot spots
have been here

Fig. 8. (a) Scheme and (b) and (c) examples of the determination of the positions of the hot spots.

Attributing it entirely to Doppler broadening, caused by
uniform spreading of the plasma in 4mt directions from
the point of the explosion, we estimate the velocity to
be 9 x 10’ cm/s. For comparison, the velocity of a fast
magnetic sound

2 1/2
Cim = [(ZT+ B7/41mn;)/m]

under Bennet equilibrium conditions with Z = 30 and
T.= 1 kV is three times lower. In other words, the
plasma of the hot points expands with this velocity
seemingly into avoid; i.e., the plasma does not feel the
more rarefied matter in front of it. Of course, this esti-
mate, which neglects other expansion mechanisms,
could be too high. Nonetheless, it still characterizesthe
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initial stage of the microexplosion, whose duration can
be estimated by the expansion time. Even according to
the maximum spatial resolution of 1 pm the latter is
only 1 ps, whichisvery short compared to our timeres-
olution. Consequently, most of the explosive expansion
should be much slower. X-ray spectra methods were
also used to measure the average (time-integrated) tem-
perature of the hot spots T, = 0.8-1.3 keV, and genera
tion of electronic and ionic beamsin the minidiode was
detected.

The subsequent decomposition is even slower. This
is demonstrated in Fig. 7, in the later frames of which
the cores and plasma formations are appreciably larger.
Here one can see how the dense flow of plasma displaced
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Fig. 9. Density distribution of the matter of an aluminum X pinch inside and near the neck.

from the minidiode squeeze through the minielectrodes.
Similarly to what happens when a fast moving body
strikes a barrier, splashes of unloading matter can be
seen directed into the minidiode, and gradual swelling
of the minielectrodes into the space between the cores
is observed at the center.

Therapid x-ray burst isacumulation of eventsin the
evolution of an X-pinch type discharge. We were ableto
determine the positions of the burst points. The scheme
shown in Fig. 8 was used for this purpose. In this
scheme, an insulated grid with high transmittance was
placed between the pinch object and the detecting film
(the spacing of the cellsis much larger than the diame-
ter of the wires). A double image of the grid, obtained
from bursts of both pinches at different times, formed
on the film together with an image of the object. The
position of the point of the pinch object was determined
by the double mask image method according to the
intersection of the lines connecting the corresponding
points of two images (see schemein Fig. 8). Thismade
it possible to work with one- and two-point burst; the
position of the hot emitting points in the neck was
determined with accuracy no worse than =5 pum. Exam-
ples of the determination are shown in the same Fig. 8
against the background of photographs of processes
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occurring both before and after the burst, for one hot
spot and for apair of hot spots.

Processes occur similarly in X pinches from other
metals, for example W, with the same arrangement as
for Mo. But similar phenomena occur in the scheme
with the pinches arranged in the return current lead,
though one- or two-point bursts are more difficult to
obtain here (such experiments are explained in greater
detail in [6]). It is important that for filaments with
close dimensions the length scales and the sequence of
the temporal phases of the events are the same in both
schemes, and as the diameter of the wiresincreases, the
spatial and tempora scales of the phenomena also
increase correspondingly, but the patterns remain simi-
lar. Axiad jets of rarefied plasma can be clearly seenin
tungsten, just as in molybdenum. The image of an alu-
minum X pinch at 38 ns from the onset of current flow,
obtained in a scheme with aload in the return current
circuit, is presented in Fig. 9. Here the current was low
for the burst of the hot spot. A stepped attenuator (Al,
the thicknesses are indicated to the side in the figure)
made it possible to obtain a picture of the density dis-
tribution in an X pinch at the slow stage of formation of
aminidiode. It is evident that far from the crossing the
cores are in a two-phase vapor-iquid state, and the
highest densities occur inside and close to the minid-
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iode. No axial jetsarevisible here; thisistypical for Al
and anumber of other metals, because the matter of the
jetsistransparent to the probe radiation from the bursts
of an Mo X pinch.

5. CONCLUSIONS

Our observations have revealed a number of unique
processes in the minidiode of a X pinch. It isstill diffi-
cult to say how similar they areto an implosion in dis-
charges through single wires. Probably, the azimuthal
nonuniformity, caused by the presence of a distin-
guished plane for the arrangement of wires in the load
(at least one) and the three-dimensionality of the mag-
netic field in the X pinch, isimportant. Even in the cross-
ing itself the formation of aminidiode initidly is different
from single wires, and the more dense matter is subjected
to compression in the minidiode. This could explain the
high x-ray spectral parameters recorded in an X pinch.

The central event of the evolution of a pinch is the
almost instantaneous x-ray burst. It coincides with cas-
cade development of an increasingly more complicated
minidiode structure with an increasingly thinner neck.
We note that the similarity of such structuresis consis-
tently reproduced, even though the scales decrease very
substantially. How strong can the compression be?
According to calculations [7], the size of the neck can
decrease to 0.1-0.3 um, comparable to the range of the
radiation. This makes it possible to estimate the radia-
tion energy flux from the hot spot. According to measure-
ments, the total yield of x-raysin the range 25-35 A is
0.1-0.3 J, the emission time < 0.1 ns (see Section 1),
and the size of the emitting plasma falls within the
experimental resolution of 1 um. Consequently, it isnot
an exaggeration to take =0.5 Jfor the energy emitted in
the entire spectrum of the hot spot. Then the energy flux
should be >0.5/(1t x 108 x 107%°) = 10Y” W/cn?. If the
maximum computed radius of the neck is taken to be
0.1 um, then the flux istwo orders of magnitude larger.
In this case the radiation pressure can reach subgigabar
and even gigabar values (this form of pressure was taken
into account in [7]) and plays an important role in the
compression dynamics. These estimates, of course,
determine the upper limits, characterizing only a very
small mass of the compressed matter. But they make
it possible to obtain the largest values of the radiation
fluxes incident on the object. Thus, for a pair of
X pinches separated by atypical distance of 3 cm and
irradiating one another, taking the energy flux emitted
from the hot spot as 10® W/cm? and assuming the
emission to be isotropic, we obtain probe radiation
fluxes of 10’ W/cm?.

Although evidence for rupture of the neck had been
noted previously [8], the inadequate temporal resolu-
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tion of optical interferometry still did not guarantee a
final result, and the data obtained can be taken as con-
firmation of the effect. Especially interesting, together
with the somewhat mysterious cascade development of
the neck, is the microexplosion which terminates this
process. We hope that subsequent investigations will
shed light on the new data obtained using the technique
of x-ray shadow photography of dense and hot plasma.
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Abstract—It is well-known that the motion of a charged particle in a magnetic field is described by the drift
approximation, in which it is assumed that the squared velocity of the particle and the magnetic moment of the
Larmor circle are conserved. It is shown that to afirst approximation a third conservation law is also satisfied:
the unaveraged generalized momentum in the direction of the binormal to the reference flux line around which
the particle rotates is conserved. This new conservation law makes it possible to determine additional fine
details of the motion, specifically, the deflection of a particle in the direction of the normal to the reference flux
line, in terms of which the known drift velocity along the binormal is expressed after averaging. © 2000 MAIK

“ Nauka/Interperiodica” .

1. For smal Larmor radius p the motion of a
charged particlein amagnetic field B is described well
by the drift approximation, in which (1) the squared
velocity v?2 of the particle is conserved, (2) the mag-

netic moment p = mvé /2B of the Larmor circleis con-
served, (3) itsguiding center (GC) moves along the ref-
erenceflux line, and (4) the guiding center slowly shifts
sideways along the binormal b to thereferenceflux line
with average drift velocity

vi+ (vi2)
R ®

where w = gB/mc is the local Larmor frequency and R
is the radius of curvature K = 1/R of the reference flux
line. These four features give a complete picture of the
motion of a particle in the drift approximation.

2. We recall that the equations of the drift approxi-
mation which were described above are usually derived
from Newton’s equation (see, for example, [1])

V, = b

V= VX,
writing the position of the particle in the form
r=R+ pD!

where R are the coordinates of the guiding center.
Expanding the fields as

B(r) = B(R) + (pL)B

in powers of the small radius p and averaging over fast
Larmor oscillations gives Eq. (1). Theterm with v iniit
isdueto the centrifugal force oriented along the normal
n to the reference flux line, and the term with v is due
to the diamagnetic force

FD = HDDBv (2)

where
O,B = nKB.

However, such a“force” interpretation of Eq. (1) is not
the only possible one. In the present paper it is shown
that an alternative and even more detailed description
of the motion can be obtained from the Lagrangian

_1 2.0
L = 2mv +Cv [A. 3
3. Wehavediscovered that for asmall Larmor radius
Py = nx+by

this Lagrangian must be regarded as being independent
of the binormal component y, and consequently on the
basis of the same drift approximation, together with
conservation of v2 and p, there is a third conservation
lav—conservation of the generalized binormal
momentum

P, = dL/dy = const = 0.

Subsequent averaging gives an aternative derivation of
Eqg. (1) with its new “nonforce” interpretation. In the pro-
cess it also becomes clear that the particle motion differs
from the smple picture of a drifting “circle” This differ-
enceisimportant for the derivation of Eq. (1).

4. Asanillustration, it is helpful to examinefirst the
cases where the exact conservation of the generaized
binormal momentum isdueto the symmetry of thefield B.
As three “symmetric” examples, we shall choose the
following cases of particle motion: (a) in the field of a
wire carrying a current J,; (b) in the field of a planar

dipole p”: and (c) in the field of a point dipole .
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Case (a). For awire carrying a current the potential
in cylindrical coordinatesr, ¢, zis

_ 23, reonstp
Az = TInDTD

and the Lagrangian does not depend on z, so that the
generalized binormal momentum P, is conserved. This
can be rewritten as an exact expression for the velocity
along the binormal:

: r r
Vp = Z = Vgln— = rqwgln—, (@]
lo Io

where

2J B
0= —Zg = rowy = const, @y = E:—ngo

B, = 2J,/cr,.

We note here that the choice of a definite value of P,
means choosing a constant ry determining the “refer-
ence” magnetic surface near which the particle drifts.

Case (b). For a planar dipole in Cartesian coordi-
nates x, y, zthe potential is

(1)
Wy X

X2+y2

A, =

and the Lagrangian likewise isindependent of z, so that
P, = const is conserved, whence an exact expression
can be obtained for the unaveraged velocity aong the

binormal:
Vp = 2= Vyrl— 5
b 0%‘ X2+y2D
where
= (l)/ P =
Xg = QU; /CF; Vo = XoWyp,
_ 9B, _ Ugl)
@ = Bo= T
Xo

We note that here the choice of a definite value of P,
fixesthe parameter x, and areference magnetic surface,
in this case with acircular section

[X—(%/2)]*+Y* = (xo/2)?

with radius xy/ 2.

Case (c). For a point dipole in cylindrical coordi-
nates the potential

A= WP 2
and the Lagrangian are independent of the angle ¢, so
that the generalized momentum P, = 0L/d¢ is con-
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served. This gives an exact expression for the unaver-
aged angular velocity along the binormal

2 3
r r
¢ = ool 3-——55 |, (6)
I,,2 (r2+22)3/2
where
r = q—u(Z) Wy = q_BO = ﬁ
T cRy YT met 0T 3

so that here the choice of adefinite value of P, fixesthe
parameter r, and the reference magnetic surface, in this
case with section

2 2/3 413
Z=rgr

2
—r-.

Time-averaging of Egs. (4)—6) over thefast Larmor
oscillations should give the average velocity (1) along
the flux lines, corresponding to the binormals, of the
three magnetic fields described. But, aswe can see, it is
not theforces (centrifugal and diamagnetic) but the par-
ticle coordinates, describing the deflection of a particle
only in the direction of the corresponding normals to
the reference magnetic surfaces, that appear in these
formulas.

5. Since the formula (1) is applicable to any fields,
an expression of the type Egs. (4)—(6) should also hold
in the general case with a small Larmor radius, which
for our purposes we write in the form

Po = nx+by.

However, we shall confine our attention only to vacuum
magnetic fields, for which the vector potential and field
can be represented as

A = FOG, B =rotA = OF x G, (7

and therefore the flux lines of the field lie on the lines
of intersection of two magnetic surfaces F = const and
G = congt, and the magnetic field istaken at thelocation
of the particle.

However, we are interested only in the drift approx-
imation, where the quantities x and y are assumed to be
small, and we wish to expand the functions F and G in
powers of x and y. On the reference flux line itself the
field is By(s), and itstransverse gradient is

0.B = nKB,

30 that near the reference flux line the modulus of the
field is approximately

B = By(1+Kx).

In addition, it is easy to see that near the reference flux
line the expansions of the functions F and G must have
the form

F = x%l+%KX+---EBo(S), G=y+.., (8
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sinceit isthis representation that |eads to the formula
B = By(1+KXx)

for the field. Correspondingly, the Lagrangian in the
drift approximation can be written in the simplified
form

L= %m[(xs)2 R4y + qTBOx%l + %Kx%&y, ©

where A = 1 — Kx is the longitudinal Lamé coefficient.
The small termswith twisting of the reference flux line
can be neglected. In addition, such a Lagrangian obvi-
ously does not depend explicitly on the coordinate y.
Therefore, the unaveraged binormal generalized momen-
tum is conserved approximately during the entire time of
the motion:

_0¥ _ . QB 1.0
= — = my+Tx%l+§KxD

(10)
which, in addition, should be set equal to zero, which
corresponds to choosing a definite reference flux line
from which the coordinates x and y are measured.

Thismeansthat the binormal velocity of the particleis

Vp=Yy = —wx%H %KXS
(11)
Vp = 0= —oHXO+ %K T

where wy, = gBy/mc. Thus the average drift velocity

along the binormal b in the genera case can be
expressed interms of the average deviations XCand X°0
in the direction of the normal! Thisisthe main result of

our Lagrangian description, which refinesthe picture of

the familiar drift approximation where the quantities
X% 0 and X2[do not enter explicitly.

6. Inturn, they should be determined from the equa-
tion obtained for the coordinate x from the ssimplified
Lagrangian (9):

¢ = %%% = _K(1—Kx)&+ (1 +Kx)Y.

(12)
Substituting here the expression (11) for y, we obtain
approximately the “main” equation for x:

.. 20 _ 2.3 2.2
X+wx =% -—K% *50°Xg (13)

which must be solved by successive approximations,
assuming the right-hand side % to be small and setting
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X = X; + X,. Then we have for thefirst term in the equa-
tion with a“semiclassical” solution

.. 2
X1 twx, =0, % = COsQ,

a
AJaxt)
t (14
®= J’w(t‘)dt' + @,
0
where a = congt is the amplitude and @ is the angle of

rotation. Substituting x, into %, we write the equation
for the second correction as

%, + WX, = P = C+Dcos2, (15)
where
_ 2.3 ] 3 2
C= —K% +£—1wa[r D = —ZKwa.
Its approximate solution is
X, = XO- %cosZcp, (16)
3w

where

C Knoz,3 .20
k= = = ——= +-wa
W wz% 470
Thus the complete expression for the deflection x of a

particle from the reference flux line in the direction of
the normal has the form

2
x = = cos@ + X[+ K—i) C0S24.

= 4 (an

Here the term with cos2¢ should not be neglected,
sinceit isof the same order of magnitude as XCand [X2[)
without knowing which it is impossible to obtain the
correct expression for the average drift velocity (1)
along the binormal.

This velocity is obtained from the expression (11):

Vp = —0HXO+ %K XTH

2 2

K,.2 2 _2 V||+VD/2

= — + = 4
(+w XD R

and isidentical to the familiar expression (1).

7. In the opinion of the present author, the
“Lagrangian” refinement, examined above, of the formu-
las of the standard drift approximation isnot only of meth-
odological but also of practical interest. In the first place,
we have found aprevioudy unnoticed and hence new con-
servation law for the generaized unaveraged binormal
momentum. The reader can assessthe practical usefulness
of our formulas by attempting to solve any specific prob-
lem and answering the question: Where is the particle
under consideration actually located?

(18)
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The point is that the “stand drift approximation”
gives a qualitative picture of the motion, but it does not
adequately determine even the concept of a “guiding
center” R of the particle under consideration. For exam-
ple, inthe cases(a), (b), and (c) indicated above the par-
ticle moves within the strip

Fin <T <T
and it would seem that the “guiding center” should be
(mentally) placed at the center of the strip (the geomet-
ric center, R=(rin + rma)/ 2). But thisquantity does not
appear at al inthe formulas of the drift approximation,
and it should be replaced by the more accurate concepts
of “reference” flux line and deviation of x from it (spe-
cifically, the time average [X[J. Then x contains a term
with cos2¢, which takes into account the difference of
the trajectory from the standard “ hypocycloid picture,”
and even though the differenceis small it must be taken
into account if wewish to obtain Eq. (1) for the average
velocity along the binormal. This formula, as is well
known, describes the “banana’ trajectories of trapped
particles, which are responsible for the main energy
losses in tokamaks, the most promising setups for solv-
ing the problem of controlled thermonuclear fusion.

max
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In numerical calculations of trajectories with a
“small but not too small” Larmor radius, it is helpful to
compare the results with our Egs. (11) and (17), which
are more accurate than the formulas of the stand drift
approximation. It should also be noted that the conser-

vation of the invariant y ~ vé/B in our method is sim-

ply a consequence of the semiclassical nature of the
solution for x in first order:

O = a5/2 = const.
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Abstract—Self-consistent molecular-dynamics calculations of the charge of micron-size particles in a low-
pressure gas-discharge plasma are performed. It is shown that charge exchange of ions on neutrals starts to
affect the charge of dust particles at pressures corresponding to ion mean free paths much greater than the
Debye radius. The computational results show that the potential of a particle depends nonmonotonically on the
pressure and on the particle size. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

One of the most important parameters determining
the properties of adust plasmais the charge of the dust
particles. However, at present there are no direct meth-
ods for measuring the charge Q of macroparticles. In
[1-3] measurements of the resonance frequency of ver-
tical oscillations of macroparticles, levitating in the
near-electrode layer of a capacitive-type radio-fre-
guency discharge, were used to determine Q. The oscil-
lations were excited either with low-frequency modula
tion of the voltage[1, 2] or with modulated laser radia-
tion [3] illuminating one of the particles. The product
Qn;, where n; is the ion density in the near-electrode
layer, is determined from the experiment. The ion den-
sity isnot measured in the experiment; it is obtained by
extrapolating electron density measurements per-
formed in the quasineutral region. In [4] the quantity Q
is extracted by analyzing the trgjectories of two inter-
acting macroparticles. However, the result is sensitive
to the screening length, which is determined simulta-
neously with Q from the same measurements. Thus, in
the experiments the charge of macroparticles is deter-
mined in combination with another unknown parame-
ter. Naturaly, this affects the accuracy of the measure-
ments of Q. Measurements performed in astratified global
discharge also suffer from similar drawbacks[5].

The charge of spherical particles with radius a is
often estimated from measurements of the floating
potential ¢, assuming that

Q = ady.

In so doing, the fact that the conditions under which
levitation of particles is observed in a gas-discharge
plasma of a particular type are such that the floating
potential dependence on the probe size is neglected.
Consequently, the quantity ¢; determined by probe
methods cannot be identified with the surface potential
of adust particle.

It should al so be noted that there are no reliabl e pub-
lished experimental data that would make it possible to
judge the dependence of the charge of macroparticles
on either their size or the plasma parameters.

The limited orbits model (OML) [6], which isvalid
in the collisionless casg, is often used to determine the
charge of dust particlesin the theoretical description of
the properties of a dust plasma and in calculations of
the parameters of dust structures. However, under the
conditions of most experiments on dust plasmathe col-
lisions of ions with neutrals have a large effect on the
ion flux onto adust particle and therefore on the charge
of the particlealso. It isshownin [7] that under the con-
ditions of the near-electrode later of an hf discharge at
the typical experimental pressures the ions which have
undergone collisions with charge transfer near a dust
particle make the main contribution to the ion flux onto
aparticle. Under conditions for which the formation of
dust structures was observed in the positive column of
adc glow discharge [8] and in an hf induction-type dis-
charge[9], the velocity of the directed motion of ionsis
lower than the thermal velocity and the characteristic
scale of variation of the parameters of an unperturbed
plasma by the particles is much larger than the Debye
radius. In this connection it is of interest to investigate
the question of the influence of ion—neutrals collisions
on the charging of anisolated dust particlein aspatially
uniform, isotropic plasma. It is not difficult to estimate
the ion mean free path for which the collisionless the-
ory no longer works. For simplicity, we shall consider
aquite small dust particle with radius

a<<RyT,/T,,
where
-1/2 -1/2
2 . NiO D1D2 D1D2
R. = |4me"==<+ -2 = | H=Y 4 L=
° |: Ijl-e TiD:| |: DeD |:RDiDi|
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is the Debye radius, T, n,, T;, and n; are, respectively,
the electron and ion temperatures and densities, and eis
the electron charge. For ions surrounding a negatively
charged particle with surface potential ¢, there existsa
potential well, and at distances less than p = a€g|¢p4|/T;
the depth of thiswell is greater than the thermal energy
of anion. If an ion passing near a particle has under-
gone a collision with charge transfer inside a sphere of
radius p, then such an ion has little chance of escaping
from the potential well. Most such ions settle on the
particle. To estimate the additional collisional ion flux
onto a particle the ion flux through a sphere of radius p
must be multiplied by the probability of charge
exchange on the ions passing through the indicated
sphere:

J anzvinip/)\i,

where v; isthe average thermal velocity of the ions and
A; istheion mean free path.

L et us compare thisflux with theion flux onto a par-
ticle as determined according to the Langmuir formula
in the OML model:

JomL = nazvini(l +e|dpd/T)).

Comparing shows that the ion flux due to collisions
becomes of the water of the ion flux in the OML
approximation when

A Da(.elT)’.

Sincee|d,| ~ T, under conditionstypical for aglow dis-
charge, T/ T, ~ 100, the quantity A; can be much greater
than not only the particle radius but also of the Debye
radius (Rp = Ry, ~ 0.08 mm). Thus, for a= 1 um colli-
sionlesshave astrong effect even for A; ~ 10 mm, which
corresponds to a pressure of the order of 1.3 Pa. Much
higher pressureswere used in the experiments of [8, 9].
Consequently, the calculation of the charge of dust par-
ticles under conditions intermediate between the colli-
sionless and hydrodynamic limitsis an urgent problem.
Such a calculation cannot be performed analytically
and requires numerical methods.

2. DESCRIPTION
OF THE MATHEMATICAL MODEL

The calculation of the charge of a dust particle was
performed under assumptions which are nearly aways
satisfied under the conditions of experiments with a
gas-discharge dust plasma. Specifically, an isolated
spherical particle was considered; the particle surface
absorbed al ions and electrons incident on it and it did
not emit charged particles; the plasma was assumed to
consist of electrons and singly charged positiveionsin
their proper gas; the electron mean free path was much
greater than the particle size, so that electron losses
could be neglected and the equilibrium distribution
could be used for the spatial distribution of the elec-
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trons; ion—neutrals collisions were described using the
cross-section for resonance charge transfer, which
plays the main role in the relaxation of the momentum
of neon ions in neon gas [10]. The ion—ion and ion—
electron collisions where neglected, since the degree of
ionization is low. In addition, it was assumed that the
unperturbed ion and electron distribution functions are
Maxwellian with temperatures T, and T;, respectively,
and the ion temperature was assumed to be the equal to
the temperature of the neutral gas, whose perturbation
by the ions was neglected.

The spatial distribution of the ions and the ion flux
onto a particle were calculated by direct numerical sim-
ulation of the motion of each ion in the region under
study in a self-consistent electric field.

The computational procedure consisted of the fol-
lowing. The electron density distribution E(R) and the
electric field n(R) were calculated for a given initia
charge of a dust particle and a given ion distribution in
a sphere of radius L (which is the computational cell).
For this, the following system of equations was solved
numerically:

Ne(R) = nNeoexp(ed(R)/Te), (1)
o ° 0

E(R) = —eBﬂfnJ’ne(r)rzdr—Ni(R)—QD’Rz, )
oJ O

L

o (R) =J'Edr, (3)

where N;(R) is the number of ions in a sphere with
radius R and Q is the charge of a dust particle. The
unperturbed ion density n,, was given and the unper-
turbed electron density ny, was chosen so as to ensure
electrical neutrality of the computational cell:

L

4njne(r)r2dr—Ni(L)—Q = 0. 4

The potential on the outer boundary of the computa-
tional cell was assumed to be zero.

The spatial distribution of the ions and the ion flux
onto a particle were calculated by the molecular-
dynamics method for the eectric field and electron
density distribution obtained in this manner. A con-
densing time grid was used as the particle was
approached. Theinflow of ionsfrom outside the system
was given by the flux

1/2
2. (810
L niODITmiD ; )

where m istheion mass. Theradial components of the
momentum p and the absol ute magnitude of the angular

dN; _
dt
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Fig. 1. The normalized surface potential of a particle versus
the parameter PRp (or Rp/A;), calculated for particles of
various sizes (a/Rp = 0.24, 0.12, 0.06, 0.24, 0.012, and
0.005) for T, = (solid curves) 2.5 and (dashed curves) 5 eV.

The OML approximation is shown by horizontal straight lines,
hydrodynamic approximation is displayed by heavy lines.

momentum M of the ions flowing in from the outside
were random numbers with the distributions

W(p) O pexp(-p“/2mT,), 6)
W(M) O Mexp(=M?/2L°mT)), )

which corresponded to a Maxwell distribution of the
ions on the outer boundary of the cell.

The agorithm for taking account of charge
exchange of ions on neutrals consisted of following.
For each ion the probability that the ion will collide
with an atom having random values of the radial com-
ponent of the momentum and angular momentum in a
time equal to the integration time step At was deter-
mined (the velocity distribution of the atoms was
assumed to be Maxwellian). At the end of each integra-
tion time step adie was rolled, and in accordance with
the previously computed probability the radial compo-
nent of the momentum and the angular momentum of
theion either acquired values equal to the correspond-
ing values for the atom or remained unchanged. In the
calculations, the velocity dependence of the cross-
section for resonance charge transfer was used in the
form [11]

o = ay(In(b/v))?,
where g, and b are constants. Despite the logarithmic

character of this dependence, it is important to it into
account because the average velocity of ions close to a
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Fig. 2. Relation between the surface potential and charge of
aparticlefor T,=2.5eV: Rp/A; = (1) 0.125, (2) 0.6, (3) 1.25,
and (4) 2.5. The dashed curve corresponds to the Debye
potential and the dash—dotted curve correspondsto the Cou-
lomb potential.

dust particle can be an order of magnitude higher than
the thermal velocity.

The ion flux IE onto a particle calculated in this

manner, together with the electron flux | eP onto a parti-
cle calculated using the formula

1/2
P _ _2[BTe[] €9
le = TMa Chm0 neoexpD_I_eD (8

where ¢, = ¢(a) is the surface potential of the particle,
were used to correct the particle charge:

Q* = Q+(l¢—I))At. 9)

Then the entire procedure was repeated. The calcula-
tion was terminated when the particle charge became
stationary, which is equivalent to the ion and electron
fluxes onto a particle being equal to one another.

3. COMPUTATIONAL RESULTS

The calculations were performed for a neon plasma
with two electron temperatures T, = 2.5and 5 eV. The
ion temperature was assumed to be T, = 0.025 eV, and
the ion density at the outer boundary of the computa-
tional cell was n; = 2 x 108 cm. The radius L of the
computational cell was chosen so that the ion flux onto
a particle was much less than the random ion flux (5)
directed into the computational cell. The radius of a
dust particle was varied in the range 1-20 um, i.e.,
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10
r/Rp

Fig. 3. Electric field distribution near a particle with T, =
2.5 eV: Rp/A; = (1) 0.025, (2) 0.125, (3) 0.6, and (4) 2.5.

approximately (0.012-0.24)R,. The neon pressure was
varied from P = 0 up to 270 Pa. The computational
results are presented in Figs. 1-4. It should be noted
that for an ideal plasmathe surface potential of a parti-
cle depends on the density of charged particles only
through the Debye radius and is determined by the
ratios of the particle radius and the ion mean free path
to the Debye radius. The method for representing the
results was chosen on the basis of these considerations.
We also note that this fact was used to test the numeri-
cal model. Specifically, acal culation was performed for
Nip = 8 x 108 cm 3.

Figure 1 shows, aside from the results of the numer-
ical caculation performed using the model described
above, the dependences corresponding to the OML
model and the hydrodynamic approximation for ions.
The hydrodynamic approximation is valid if the ion
mean free path A; < Ry. In addition, if adust particleis
much smaller than the electron Debye radius (under the
conditions considered Ry, ~ 0.8 mm), then the ion cur-
rent onto a particle is determined by the formula

l; = 4mal 4 byn;,, (10)

where by is the ion mobility. If the pressure is still not
too high and Eg. (8) is valid for the electron current,
then the balance of the ion and electron fluxes onto a
particle leads to the equation

T
-5 e [

- a — ex -
104 Drin?m D pDTe 0
It is evident from Fig. 1 that for PRy > 30 Pamm, i.e,,
when Ry/A; > 3, the computational results agree well

with the computational results obtained in the hydrody-
namic approximation. At the same time, in the colli-

(11)
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I‘/RD
Fig. 4. lon and electron density profiles near a particle with
T.=2.5eV and a/Rp = 0.12: Ry/A; = (1) 0.025, (2) 0.6,
(3) 2.5. Broken curves are equilibrium ion density distribution.

sionless limit (PR; —= 0) the quantity e|,|/ T, tends
to the value calculated in the OML model (see Fig. 1).
The relation between the surface potential and charge
of aparticleis presented in Fig. 2. We note that for the
range of values of the parameter a/R; studied, the rela-
tion between Q and ¢ differs negligibly from the rela-
tion corresponding to a vacuum, and this difference
decreases with increasing value of the parameter Ry/A;.

It is evident from the data presented in Fig. 1 that
ion—neutrals collisions start to affect the potential of
micron-size dust particles aready at pressures of the
order of several Pa, which correspondsto ion mean free
paths of the order of several mm, i.e., much greater than
the Debye radius. As long as the mean free path
remains larger than the Debye radius, increasing pres-
sure resultsin a higher ion current and a lower particle
charge. In the hydrodynamic regime, as pressure
increases, the particle charge once again starts to
increase, since the ion mobility decreases. Collisions
also cause the surface potential of a particle to depend
weakly on the particle size. In the hydrodynamic limit
the surface potential of a particle increases monotoni-
caly (in modulus) with increasing particle radius
(approximately logarithmically). As follows from Fig. 1
and estimates of the ion flux which are presented in the
Introduction, the opposite trend is observed at low pres-
sures for very small particles (a/Ry < T;/T), since for
them the ion flux is proportional to the cubed particle
radius, while the electron flux is proportional to the
squared radius. For particles with a/Ry = T,/ T, (see
Fig. 1) the absolute value of the surface potential
increases with the particle size, but this dependence
becomes weaker as the particle radius and pressure
decrease.
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It follows from the electric field distributions, pre-
sented in Fig. 3, near a particle that as the pressure or
the value of the parameter Ry/A,; increases, a transition
occurs from the Debye to the Coulomb potential
because the screening effect decreasing. Comparing the
ion and electron density distributions, presented in Fig.
4, near a particle also attests to the fact that the screen-
ing effect decreases as the parameter Ry/A; increases.
In turn, the perturbation of the Boltzmann distribution
of theion density (see Fig. 4) isdueto beion losses on
the particle. Asthe particle sizeincreases, this perturba-
tion increases. As aresult, for large particles the devia-
tions from the Debye potentia begin to appear for
lower values of the parameter Ry/A; (see Fig. 3). The
data presented in Fig. 2 also attest to this.

In summary, it was shown above that at pressures
corresponding to ion mean free paths much greater than
the Debye radius the limited orbits approximation for
calculating the charge of dust particles levitating in a
gas-discharge plasma leads to large errors. The pres-
sure dependence of the surface potential of the particles
is nonmonotonic, and for neon plasma it has a mini-
mum at pressure ~100 Pa.
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Abstract—The temperature variations of the cholesteric pitch in thin planar layers of cholesterics and their
dependence on the surface anchoring force are investigated theoretically. It is shown that the temperature vari-
ations of the pitch in alayer are of auniversal character. Thisis manifested in the fact that they depend not sep-
arately on the parameters of the sample but only on one dimensionless parameter S, = Ko,/dW, where Ko, isthe
torsional modulus in the Frank elastic energy, W is the height of the surface-anchoring potential, and d is the
thickness of the layer. The investigation is performed the parameter S; in a range where the change per unit
number of cholesteric half-turns within the thickness of the layer accompanying a change in the temperature is
dueto the dipping of the director on the surface of the layer through the potential barrier for surface anchoring.
The critical values of the parameter S, (which are most easily attained experimentally by varying the thickness
of the layer), determining the region of applicability of the approach employed, are presented. The temperature
variations of the free energy of the layer and the pitch of the cholesteric helix in the layer aswell asthe temper-
ature hysteresisin the variations of the pitch with increasing and decreasing temperature are investigated for the
corresponding values of S;. Numerical calculations of the quantities mentioned above are performed using the

Rapini anchoring potential. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Interest in detailed investigations of chiral liquid
crystals (LC) has increased in recent years (see, for
example, [1]). Thisinterest is partially due to the gen-
eral-physical problem (not solved thusfar) of choosing
the chiral order parameters characterizing chiral sys-
tems (see, for example, thereview in [2]). Such investi-
gations are also of interest because the many additional
advantages of chiral LC over the nematic LC, which are
ordinarily used, have not been completely realized in
applications. Since cells of chiral, specifically, choles-
teric, LC are now widely used as sensors of various
kinds as well as for information display devices con-
trolled by optical transparencies and for many other
purposes, it is extremely important to study the proper-
ties of these LC in bounded geometries. Investigations
of the optical characteristics of thin layers of chiral LC
yield important information (for applications and for
understanding the physics of LC) about changesin the
structure of aL C in thin layers and about the dynamics
of these changes.

In [3, 4] the temperature behavior of the cholesteric
pitch in thin planar cholesteric layers was investigated
by measuring their optical transmission spectra, which
on the basis of a well-developed theory of the optical
properties of chiral liquid crystals [5, 6] were inter-
preted in terms of the temperature variations of the
parameters of the cholesteric in the layer. An unusual

temperature behavior of the transmission spectra of
light with wavelength of the order of the pitch of the
cholesteric helix and temperature hysteresis in abrupt
changes of the pitch were attributed to the deviations of
the director on the surface of the sample awvay from the
direction of alignment in the potential well of the sur-
face-anchoring forces and the abrupt transitions of the
cholesteric helix in the layer between configurations
differing from one another by one half-turn of the helix
in the layer. Comparing the results with the theory of
temperature variations of the pitch in cholesteric layers,
which was devel oped on the basi s of the continuum the-
ory of elasticity taking account of the surface-anchor-
ing forces, showed that the parameters of the experi-
mental samples were such that the mechanism of the
temperature jump in the pitch did not correspond to a
transition between configurations of the helix with the
number of half-turns differing by one by means of the
director overcoming on the surface the barrier in the
surface anchoring potential. Specifically, the measured
angles of deflection of the director on the surface of the
layer from the direction of alignment for the tempera-
ture of the jump [3, 4] were much smaller than the crit-
ical (see below) value of this angle. Consequently, the
mechanism of the jump in the pitch and the reasons
why a superposition of two spectra corresponding to
configurationsin which the number of half-turns of the
helix in the layer differs by one are present in the trans-
mi ssion spectraremained unknown. Thisrequiresafur-
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ther study of the question, specifically, an analysis of
the situations for which a reliable theoretical descrip-
tion is known, especialy since the pitch jumps appear
in various precise investigations of layers of chira lig-
uid crystals, for example, in the nonlinear generation of
high optical harmonics [7] and investigations with a
Fabry—Perot interferometer [8]. The present paper is
devoted to an analysis of one such situation, specifi-
cally, the study of the temperature variations of the cho-
lesteric pitch inthin layers. The conditions under which
the simple continuum theory of elasticity, taking
account of the surface-anchoring forces, is applicable
are found. For these conditions a universal description
of the temperature variations of the pitch in the layer is
proposed, and atheory of the temperature hysteresis of
jumpsin the pitch is given and experimentally observ-
able effects are found.

2. BASIC EQUATIONS

We shall consider the temperature behavior of the
pitch of ahelix in athin planar cholesteric layer, assum-
ing the surface-anchoring forcesto be identical on both
surfaces of thelayer and assuming the alignment axisto
be the same on both surfaces. We shall use for this the
expression for the free energy in the form [9]

Kpd 2m _2n f (1)
2 [pym) p(Mb”

where K,, isthe torsional elastic modulus, W(d) isthe
surface anchoring potential, d is the thickness of the
layer, p(T) is the equilibrium value of the pitch of the
cholesteric helix for temperature T in a bulk choles-
teric, py(T) is the pitch at the same temperature in a
layer of thickness d, and ¢ isthe angle of deflection of
the director on the surface of the layer from the direc-
tion of alignment.

F(T) = 2W(¢) +

The formula (1) requires comment. The point is that
the properties of a deformed cholesteric depend strongly
on the ratios of the nonuniformity scale and the pitch of
the helix. On scales much less than the pitch of the helix
the cholesteric hasthe same propertiesasanematic. Inthe
opposite limit the elastic properties of the cholesteric
are equivalent to those of a smectic. Consequently, the
expression for the “quasi-smectic” energy (1) is valid
for cells with thickness much greater than the pitch of
the cholesteric helix when the surface anchoring
ensures that the director is not tilted away from the nor-
mal to the cholesteric axis for the equilibrium configu-
ration of the LC in the layer.

Since the pitch py(T) in the layer is uniquely related
with the angle ¢ and the equilibrium pitch p(T) is
related with ¢(T)—the angle of deflection of the direc-
tor on the surface of the layer away from the direction
of alignment in the absence of surface anchoring, the
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expression for the free energy can be rewritten as a
function of these angles:

F(T) = 2W() + 2K/ d) [0 —do(MI*. (2

However, ¢ and ¢(T) are interrelated and the rela
tion between them can be found by minimizing the free
energy (2). This gives an equation for the angle ¢ asa
function of temperature:

OW(9) , 2K _
5ot d L0—eMl =0 )

Using Egs. (2) and (3), the expression for the free
energy can be represented in the form

OW()f_d
O] a¢ Dm' (4)

where the temperature dependence of the angle ¢ of
deflection of the director from the direction of aign-
ment on the surface of the layer is determined by
Eq. (3). Inwhat follows, we shall assume for simplicity
(and a so for making estimates) that the surface anchor-
ing potential W ¢) is determined only by one charac-
teristic energy W (depth of the potential well).

We note that dividing Egs. (2)—4) by the depth W of
the surface potential we find that the depth of the sur-
face anchoring potential, the elastic modulus, and the
thickness of the layer enter in these equations only
through the dimensionless parameter §; = K,,/dW (we
note that the parameter S, differs only by afactor from
the parameter S= 41(d/p)S; used in [3, 4]). Thus, for a
fixed value of §; the temperature dependence of the ori-
entation of the director on the surface (the angle ¢) is
determined only by the form of the anchoring potential
and the temperature dependence of the equilibrium
pitch p(T), i.e., do(T). The temperature dependence of
¢ and the free energy, which follow from the equations
presented, for a fixed value of the parameter S; will be
universal, i.e., it will not depend on the number of half-
turns of the cholesteric helix over the thickness of the
layer (or, which isthe samething, it does not depend on
the thickness of the layer).

The potentia barrier between the configurations of
the helix that differ by one half-turn also does not
depend on the thickness of the layer and is determined
only by the parameter S;. The barrier height depends on
the temperature (through the function ¢y(T)) and is
determined by the expression

B(T, ) = F(¢c 9o(T), S) = F(O(T), 9o(T), S), (5)

where ¢, is a critical angle at which an abrupt change
occurs in the configuration of the cholesteric helix in
the layer; the equilibrium value of the angle ¢(T) is
determined by the solution of Eq. (3), and the free energy
F(¢, §o(T), §) isdetermined by Eq. (2). As should be the
case, when the angle ¢ (T) reachesthe critical value the
barrier height becomes zero and a transition between

F(T) = 2W(¢) +
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configurations differing from one another by one half-
turn of the helix occurs abruptly in the layer.

The value ¢, of the pitch in the layer immediately
before the jump (of course, the angle py(T,) of freerota
tion of the director, i.e., the pitch T, of ahelix in abulk
cholesteric, can also be found from the temperature
p(T.)) can be expressed in terms of the critical angle
0o(T.), whose value is determined by the form of the
anchoring potential:

_ 2d _ 2d
Pa(To) = N+ 201 p(To) = N+ 20T )/ (6)

where N isthe number of half-turns of the helix over the
thickness of the layer in theinitial equilibrium configu-
ration of the helix, T, is the temperature of the pitch
jump, and the free-rotation angle of the helix for this
temperature of the jump is given by the formula

PWLd)g 1
O op Hh=e.2WS,

Thus, if the form of the surface anchoring potential
and the temperature behavior of the pitch of the helix in
a bulk cholesteric are known, then the relations pre-
sented above determine the temperature behavior of the
pitch of the helix in alayer of finite thickness. These
same formulas can be used to solve the inverse prob-
lem, specifically, to reconstruct the surface anchoring
potential on the basis of the experimentally found tem-
perature behavior of the pitch of the helix in a layer of
finite thickness.

0o(Te) = ¢+

(7)

3. TEMPERATURE HY STERESIS
OF PITCH VARIATIONS IN A LAYER

To describe the temperature variations of the pitch
inalayer it isnecessary to know the specific form of the
surface anchoring potential Wg(¢) [10, 11]. However,
the qualitative character of the temperature variations
of the pitch in a cholesteric layer can be determined
even without specifying the form of this potential.
Since we are interested in investigating the temperature
dependence of the pitch in the layer, specifically, deter-
mining the temperatures of the pitch jumps that corre-
spond to changesin the number of half-steps of the cho-
lesteric spiral in alayer by one, we recall the results of
the corresponding analysisin [3, 4]. On the surface of
the layer the director is oriented in the direction of
alignment at atemperature for which an integer number
of half-pitches p(T) of the helix of abulk cholesteric fit
within the thickness of the layer, i.e., do(T) = 0. When
the temperature deviates from thisvalue ¢ (T) and $(T)
become different from zero. The temperature for which
$o(T) = 14 corresponds to the situation where the free
energies of both configurations of the helix which differ
by one half-turn over the thickness of the layer are the
same, but because of the presence of a potential barrier
between these configurations, which is due to surface

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 91

BELYAKOV, KATS

anchoring, the transition between them occurs not at
thistemperature point but with afurther variation of the
temperature. Thus, temperature hysteresis is observed
inthetransition, i.e., thetransition temperatures are dif-
ferent for different directions of variation of the tem-
perature. However, the temperature determined by the
condition ¢,(T) = 174 would correspond to the point of
a pitch jump at a transition between configurations of
the helix in the absence of hysteresis. In reality, how-
ever, because of hysteresis the pitch jump occurs at a
temperature determined by the condition ¢(T) = ¢,
where ¢, is the critical angle at the pitch of the helix
changes abruptly.

Using the natural assumption that the potential
W(¢) is an even function of p—the angle of deflection
of the director from the alignment direction on the sur-
face of the layer—it is easy to conclude that the solu-
tion of Eq. (3) for ¢ isan odd function of ¢y(T) and is
bounded by the values +¢.. For example, when the
angle ¢ reaches one of these limiting values ¢ the pitch
of the cholesteric helix in the layer changes abruptly,
and the angle ¢ also assumes a new value abruptly. If
the jump point corresponds to the angle of free rotation
of the director ¢4(T,), then the angle of free rotation of
the director determining the value of ¢ after thejumpis
do(T,) — W2 but in anew configuration of the helix dif-
fering by one half-turn over the thickness of the layer.
For temperature varying in the opposite direction the
pitch jJump occurs when the angle ¢ reaches a different
limiting value -, and the corresponding angle of free
rotationis$o(T_) =—4(T.) (Where T_isthetemperature
corresponding to the jump for this direction of temper-
ature variation). Thelatter relation resultsin the follow-
ing relation between the values of the free pitches of the
helix (temperatures) corresponding to a jump with
opposite directions of temperature variation [4]:

1 1 _ 1|]1-
o) e T 0 T2
71 __1p
Iy R ®)
_ WO 1, 1%

009 Dh-pmws, 20w O

where N is the number of half-pitchesin alayer for the
initid configuration of the helix (before the jump at tem-
perature T, and after the jump at the temperature T_).

Thefirst relation in Egs. (8) is universal and at first
glance in no way depends on the surface anchoring
forces. In redlity, the jump temperatures T, and T_
depend on the surface anchoring, more accurately, on
the parameter S;. Thereationitself determinestherela
tion, which does not depend on the specific form of the
surface potential, between the pitch jump temperatures
with opposite directions of temperature variation, i.e.,
temperature hysteresisin the pitch variations, and it has
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predictive power, which can be checked experimen-
tally. Specifically, if the pitch at the jump point is mea-
sured experimentally for a certain direction of temper-
ature variation, then the pitch at the jump point with the
opposite direction of temperature variation can be cal-
culated using Eqg. (8) and checked experimentally. Spe-
cificaly, it follows from Eq. (8) that in the limit of van-
ishingly weak surface anchoring (i.e., T, — T.) the
pitch at the jump point is d/(N + 1/2), as should be [3],
and there is no hysteresis. It follows from the same for-
mula that as the thickness of the layer increases, the
hysteresis decreases (more accurately, the hysteresis
decreases for fixed S; with increasing N).

4. CRITICAL THICKNESS OF THE LAYER

We shall now discussin somewhat greater detail the
conditions of applicability of the mechanism, discussed
here, for the jump in the pitch of the helix due to dlip-
ping of the director on the surface through the barrier in
the surface anchoring potential. Since ¢, = W4 in rea
sonable models of surface anchoring potentials [3, 4],
we shall assume below that the jump condition is
¢o(T) =174, i.e, on the surface of the layer the director
turns from the aignment direction by the angle 174
when anchoring forces are present. Depending on the
surface anchoring force, more precisely, the value of
the parameter S, the free rotation angle ¢y(T) of the
director can exceed 172 or remain less than this value.
In thefirst casethe helix is* overwound,” i.e., the equi-
librium configuration of the helix and the configuration
under study differ by more than one half-turn. Conse-
guently, the pitch jump accompanying a change in the
number of half-turns of the helix by one is accompa
nied by atransition into not an equilibrium but rather a
metastable configuration of the helix. In addition,
depending on the anchoring force, the number of such
metastable states, which differ by 1, 2, and so on half-
turns from the equilibrium configuration of the helix in
the layer, can be quite large. Thus, for infinitely strong
surface anchoring the number of such states is infinite,
and the transition into the equilibrium state by slipping
of the director through the surface anchoring barrier
cannot occur at all. This means that in this case the
mechanism of relaxation of the configuration of ahelix
toits equilibrium state accompanying temperature vari-
ations is not the same as slipping of the director on the
surface through the surface anchoring barrier, for
example, the mechanism of fluctuation formation of a
defect in the interior volume of the layer, giving rise to
further relaxation of the director distribution in the
layer to the equilibrium configuration.

The simplest form of such defects are the so-called
X lines[9] in cholesterics (analogous to dislocationsin
smectic-type layered structures). A change in the num-
ber of half-turns of the cholesteric helix and corre-
spondingly “shedding” of excess free energy can occur
when such a dislocation loop nucleates and grows (in
the central part of the layer, where the elastic stresses
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are weakest under conditions of strong surface anchor-
ing). The nucleation and growth of a dislocation loop
are determined by the competition between two factors:
lossinlinear tension because of the appearance of asin-
gular line 2Rt (R is the radius of the dislocation loop
and t = K, is the linear tension) and gain in surface
energy inside the dislocation loop TiR?bB/(Ad) (here B
is the potential barrier given by Eq. (5), b is Burgers
vector (of the order of the pitch of the helix), and Ais
the surface area of the layer). Minimizing both of these
contributions gives the activation energy of the process
E, = mt?Ad/(bB), and in order for the dislocation mech-
anism to be efficient the value of E, must not be too
large compared with kg T (kg is Boltzman's constant).

Onthisbasisit is helpful to introduce the concept of
the critical thickness of a layer or the critical value of
the parameter S;, which determine the boundary value
of the thickness or S, for which the jump in the pitch of
the helix in the mechanism of dlipping through abarrier
with temperature variations is accompanied by atransi-
tion of the helix into an equilibrium configuration. The
critical values of the thickness of the layer and §;; are
determined by Eq. (3), if ¢ = ¢, and 2(¢. — §o(T)) = -1t
there, which gives

BaWs((I))D _T[Kzz
0730 h-s  d

As follows from Eq. (9), the critical values depend on
the explicit form of the surface potential. For definite-
ness we shall use here and below the critical valuesin
the Rapini potential (see, for example, [9-11]): W{(¢) =
—(W/2)cos’p, for which ¢. = /4. Then the critical
thickness d, and the parameter ;. are determined by
the formulas

= 0. (9)

_ 21Ky S, = Ke _ 1
Coow T T T wd, 2

Thus, for layer thicknesses less than d. or §; > Sy
metastable configurations of the helix in the layer are
not drawn into the temperature jump in the pitch and the
temperature variations of the pitch can be described on

the basis of the mechanism of dipping of the director on
the surface through the anchoring potential barrier.

dec (10)

5. PITCH VARIATIONS
IN THE RAPINI POTENTIAL

The relations presented above can be used to recon-
struct the anchoring potential from the experimental
measurements of the temperature variations of the pitch
in cholesteric layers. However, as demonstrated above,
some regul arities of the corresponding dependences are
insensitive to the specific form of the surface anchoring
potential, so that it is reasonable to perform theoretical
calculations of these dependences on the basis of a
model potential. The Rapini potential is most widely
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Fig. 1. Computed dependence of the deflection angle of the
director at the surface of a layer for various values of the
parameter . The value of the angle ¢;, realized after the
pitch jJump, is marked on one of the curves.

used for describing the surface anchoring [9-11]. Con-
sequently, we present bel ow the cal culations of the tem-
perature variations of the pitch in a planar cholesteric
layer for the Rapini potential.

The explicit form of the expression for the free
energy is now determined by the relation

F(T)/W = 28[6(T) —¢o(T)]*~ cos’d(T).  (11)

The relation determining the equilibrium value of
the angle ¢(T) becomes

4S[0(T) —9o(T)] + sin2¢(T) = 0. (12)

The expression for the free energy in the form of a
function of the deflection angle of the director at the
surface from the alignment direction is

F(T) _ sin’2¢(T)

W T s — cos §(T). (13)
Finally, Eq. (5) for the barrier becomes
B0 = 25 Fsanbo—4n)|
(14)
+ coszq)(T) sin 82;;(1-) ;
Using Eq. (12), we recast Eq. (14) into the form
B0 = 25/ Fsanéo-o(m |
(15

<[ Fsando + (1) ~204(T) | + cos’p(T) - 3.

The temperature dependence of the pitch of the
helix can be represented in a universal form. For this,
only the functions ¢4(T) (the angle of free rotation of the
director on the surface of the layer) or ¢(T) (the rotation
angle of the director on the surface of the layer in the pres-
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ence of anchoring) should appear in Egs. (11)—15). As
noted above, the corresponding dependences are uni-
versal, i.e., they are determined only by the dimension-
less parameter S;. The conversion from computed
guantities to dependences for a real sample is made
using simple transformations (see below).

For example, the free rotation angle of the director
at the jJump point is given by the expresi on

¢O(Tc) = (I)c Sd

and the pitch corresponding to the jump in abulk cho-
lesteric is given by the formula

(T = 20@\1 sdD_

Figure 1 shows the temperature dependence ¢(T) of
the deflection angle of the director on the surface of the
layer for the critical value of the parameter §;= S, = /21
and several other values of the parameter S, for which
the pitch jump cannot draw metastable states into the
process |eading to the change in the configuration of the
helix in the layer. Possible multiple pitch jumps, ater-
nating with smooth temperature variations of the pitch
with increasing temperature, fall on the right-hand
branch of the curve. As temperature increases (it is
assumed that in the bulk of a cholesteric the pitch
decreases with increasing temperature), the angle ¢(T)
reaches the critical value 174 (for a free rotation angle
do. that depends on S,), after which it decreases
abruptly to ¢;, corresponding to the abscissa ¢, — T72.
As temperature increases further, ¢(T) changes from
the value corresponding to the abscissa ¢ . — V2 to 174,
where it once again changes abruptly to the same value
asinthefirst jump. Thus, the angle changes repeatedly
along the curve between the points with the abscissas
Poc — T2 and ¢q.. In the process, the number of half-
turns of the helix over the thickness of the layer
changes, but the range of variation of the director
angles on the surface of the layer is independent of the
number of half-turns of the helix. As temperature
decreases, ¢(T) reaches a critical value —1v4, after
which it changes abruptly to the value —¢; correspond-
ing to the abscissa —¢,. + W2, and as temperature
decreases further, it changes a ong the left-hand branch of
the curve between the pointswith abscissas—. + 172 and
—gc, jUSt as with increasing temperature.

It follows from Eq. (16) that the case of interest for
the problem at hand, where after the jump ¢(T) =
¢o(T) =0, i.e., anew configuration of the helix corre-
spondsto a minimum of the free energy, correspondsto
the value §; = YTt In this case the angles which the
director makes at the surface with the alignment direc-
tion before and after the jump differ by /4. The maxi-
mum value of this difference is 172 and occurs in the
limit of vanishingly weak surface anchoring, i.e., in the
limit of infinitely large S;.

(16)

(17)
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The values of the pitches of the helix in the layer for
a specific sample immediately before and after ajump
can be easily found from the computed curve. Thus, as
temperature increasesin alayer with N half-turns of the
helix the values of the pitch before and after ajump are
given by the expressions, respectively,

_2d 24
P N+12 P T Nvmze2e,m

Astemperature decreases, the corresponding values

of the pitchesin the layer are given by the expressions
_ 2 o 2d

P = NZ12 P T NT12—2¢, im0

The second relation in Egs. (8) for the temperature
hysteresis of the pitch assumes the form

(18)

(19)

dD 1 1 O 1
Ch(Ty) p(M)E 2nSy

Figures 2 and 3 show the computed values of the
free energy of alayer for various values of the parame-
ter §; as afunction of the free angle of rotation of the
director on the surface and the angle of rotation of the
director taking account of the surface anchoring,
respectively. We note that for a constant direction of
temperature variation the free energy of the equilibrium
state of the layer varies between two values, exceeding
its minimum, and the free energy of the layer can pass
through the minimum value before the first pitch jump
only if the direction of temperature variation changes.
As could be seen above, the only exception is the case
corresponding to the parameter S, = /1, for which the
equilibrium value of the free energy after the jump
reaches a minimum value.

Figure 4 showsthe computed dependence of the height
of the barrier between the configurations of the helix that
differ by one half-turnin the layer ontheangle of rotation
of the director at the surface in the presence of surface
anchoring. Figure 5 shows the same dependence but as
afunction of the free angle of rotation of the director. It
is evident that, just like the free energy, the behavior of
the barrier does not depend on the number of turns of
the helix within the thickness of the layer, but rather it
is determined only by the value of the parameter S;. We
note here that the curves presented correspond to areal
barrier only for ¢,(T) > 174, whilefor asmaller value of
this angle the energy of the initial configuration of the
helix islower than for the configuration with adifferent
number of half-turns of the helix, and the curves pre-
sented do not represent a barrier.

Figure 6 showsthe hysteresis|oopsfor the deviation
of the number N(T) of half-turnsof the helix inthe layer
versus the integer number corresponding to the orienta-
tion of the director at the surface of the layer in the
direction of alignment for the case where the tempera-
ture range contains one pitch jump with temperature
varying in the direct and reverse directions (a) and for

(20)
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Fig. 2. Computed dependence of the free energy of thelayer
(arbitrary units) on the deflection angle of the director at
the surface of the layer ¢(T) for various values of the
parameter & .
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Fig. 3. Computed dependence of the free energy (arbitrary
units) on ¢(T) for various values of the parameter ;.
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Fig. 4. Computed dependence of the barrier height (arbi-
trary units) between helix configurations differing by one
half-turninthelayer versusthe deflection angle of thedirec-
tor at the surface of the layer for various values of the
parameter .

the case where the temperature range contains severa
jumps of the pitch with temperature varying in the
direct and reverse directions (b). In contrast to the preced-
ing figures, here the reference point for the angle ¢y(T)
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Fig. 5. Computed dependence of the barrier height (arbi-
trary units) between helix configurations differing by one

half-turn in the layer on ¢o(T) for various values of the
parameter .

does not change after apitch jump, but rather it remains
fixed in the entire temperature range. We call attention
to the fact that temperature ranges where the variation
of N does not depend on the direction of temperature
variation occur at the limits of the ranges of variation of
¢o(T) which were presented above.

6. TEMPERATURE FLUCTUATIONS
OF THE DIRECTOR ORIENTATION

In the analysis performed above, the orientational
fluctuations of the director in the layer were completely
ignored, since the analysis was performed on the basis
of the continuum theory of elasticity, which workswith
the macroscopic average characteristics of a liquid
crystal. It isobviousthat under definite conditions fluc-
tuations can be very strong, and sometimes they can
even determine the character of the phenomenon under
study (see, for example, the investigation of orienta-
tional fluctuations in nematic layers [12, 13]). In what
follows, the influence of orientational fluctuations of
the director on the temperature variations of the pitchin

BELYAKOV, KATS

the layer is briefly analyzed on the basis of the model
free energy (2).

The quadratic correction to the free energy (with
respect to small angular deflections A¢ of the director
away from its equilibrium orientation at the surface of
thelayer for the temperature under study) isdetermined
by the expression

AF = W(cos2¢ +2S,)(A)°. (21)

Hence the mean-squared angular temperature fluctua-

tions of the director at the surface of the layer [{(A¢)?0]
can be expressed in terms of the temperature on the

basis of the equipartition theorem for energy [14],

2— _ kBT
HAG) D= W(cos2¢ + 2S,) A’

The expression (22) shows that because of temperature
fluctuations of the orientation angle of the director at
the surface or, equivalently, the free energy of the layer
the temperatures of the pitch jumps shift in the direction
of decreasing hysteresis: a decrease of the jJump tempera
ture with increasing temperature and an increase of the
jump temperature with decreasing temperature. If the
shift of the jump points covers the temperature range of
hysteresis, then hysteresis does not appear in the tem-
perature variations of the pitch of the helix in the layer.

Specifically, a modification of Eq. (16) for the free
angle of rotation of the director at the jJump point of the
pitch, determining the temperature of thejump, follows
from Eq. (22). Now, taking account of fluctuations of
the director, we obtain instead of Eq. (16)

I i kBTc
%oTd=7* 75 * J (CoS20 + 25, WA’
where 174 is substituted for the critical angle ., i.e., the
value for the Rapini potential.

An obvious conseguence of Eq. (23) isthat hystere-

sis decreases with temperature and can vanish com-
pletely with a definite increase of temperature.

(22)

(23)
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Fig. 6. Computed dependence on ¢(T) of the hysteresisin the deviation AN of the number of half-turnsin alayer from an integer
for the temperature range (&) with one pitch jump for both directions of variation of the temperature and (b) with three jumps for
Sy = /21 Here the reference point for the angle ¢o(T) does not change after a pitch jump, but rather it remains fixed in the entire

range of temperature variation.
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Of course, Egs. (21) and (22) describe only uniform
fluctuations of ¢ on the basis of quasi-smectic (large-
scale) energy (1). The general orientationa fluctuation
of the director can be described by two parameters that
depend on three coordinates. However, the energy of
such ageneral fluctuation cannot be found by confining
attention only to the large-scale energy (1). The tota
Frank energy must be minimized. The solution of this
problem falls outside the scope of the present work.

7. CONCLUSIONS

The analysis, given above, of the temperature varia-
tions of the pitch of ahelix in acholesteric layer shows
that if the pitch jumpsin the layer can be described by
the mechanism of surface slipping of the director (i.e.,
if the parameter S, islarger than the critical value found
above), then a quite universal pattern of temperature
variations of the pitch, determined by the dimension-
less parameter S, is realized. The theory developed
gives experimentally verifiable predictions, for exam-
ple, the values of the pitch in the layer at the jump tem-
peraturesfor temperature varying in opposite directions
should be related with one another. The formulas
derived make it possible to obtain from the measure-
ments quantitative information about the surface
anchoring forces (the value of the parameter §)), if the
form of the surface potentia isknown, for example, the
Rapini potential. However, the problem of reconstruct-
ing the real potential of the surface anchoring from the
measured temperature dependences of the pitch of the
helix in alayer is probably no less urgent. This problem
can be solved in principle using the formulas obtained in
the present paper. This problem is especially important
for liquid crystals bounded by perfect single-crystal sub-
gtrates, for which the anchoring potential, in contrast to
the Rapini potential, can be nonmonotonic with respect
to angle and can even possess several local minima.

As far as the hysteresis of the pitch in cholesteric
(and other chiral) liquid crystal layersis concerned, this
phenomenon is promising for applications, especially
since not only can the temperature hysteresis examined
above appear, but hysteresis with respect to other exter-
nal actions, for example, electric or magnetic fields, can
also arise.

It is interesting that although formally the large-
scale energy (1) used above has a quasi-smectic form,
the physics of cholesteric and smectic ordering is very
different. Smectic layers are associated with density
modulations in the system, and consequently a change
in the number of smectic layersin thefilm resultsin an
abrupt change in the thickness of the film. “ Cholesteric
layers’ are formed in a continuous distribution of the
orientational order parameter (director), and conse-
quently achangein the number of half-turns of the cho-
lesteric spiral on the thickness of the sampleis not nec-
essarily directly related with a change in the thickness
of the sample. Consequently, it can be stated that the
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mechanism, investigated in the present paper, for the
abrupt change in the pitch of a helix in cholesteric lay-
ersisdual to the intensely studied, in recent years (see,
for example, [15-17]), phase transitions of layerwise
thinning of the freely suspended films of smectic liquid
layers.

The results obtained in the present work can be
applied directly for determining the surface anchoring
force and restoring the form of the surface potential
according to the angular deflections of the director.
The results obtained can be used to determine whether
or not the mechanism of surface slipping of the director
works in the case investigated. This is determined
according to the difference between the angle corre-
sponding to a pitch jump and the critical angle. If the
difference exceeds the rms angle of the fluctuations,
determined by Eq. (22), then the mechanism of the
pitch jump is different from surface slipping.

Investigations of the dependence of the temperature
hysteresis in pitch jumps on the thickness of the layer
makeit possibleto study the effect of fluctuations of the
orientation of the director on the temperature variations
of the pitch. The general tendency here is as follows:
the smaller the thickness of the layer, other conditions
being the same, the stronger the effect of fluctuations of
the director on the temperature variations of the pitch
are. This is illustrated in Fig. 5, which demonstrates
that for small values of the parameter §; (i.e., large
layer thicknesses) the barrier height is a very gently
sloping function of the angle of free rotation of the
director ¢4(T), and consequently small fluctuation vari-
ations of the layer energy make it possible to overcome
thebarrier for ¢o(T) < do(Ty), i.€., they decreasethe hys-
teresis. Ultimately, for sufficiently thick layers this
results in no temperature hysteresisin variations of the
pitch (asis observed experimentally).

On the whole, the possibility of varying the experi-
mental parameters opens up a large scope for experi-
mental investigation of the problem. For example,
changing the temperature makes it possible to change
near T,—the transition point of the LC into an isotropic
liquid—the parameter S, since W O (T — T,)¥?, and
Ky O(T-T,),sothat §0(T-T)¥andasT — T,
strong anchoring conditions always occur. As the sur-
face area A of the layer decreases, fluctuations should
play a larger role, since they grow as 1/A, which
decreases hysteresis and hysteresis vanishes if the sur-
face area is sufficiently small. It could be helpful to
study the phenomenon in awedge-shaped cell.

It should also be noted that the results obtained in
the present work are a necessary initial step for study-
ing the dynamical characteristics of LC layers. For

1 The preferred variant is the one where an absolutely rigid anchor-
ing of the director with the surface exists on one of the surfaces of
the layer, sincein this case the form of the potential can be recon-
structed up to the angle of deflection of the director from the
alignment direction 192 and not up to 174, as in the case consid-
ered.
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example, assuming a purely relaxation dynamics for a
single variable describing the properties of the model
under study, the angle ¢, the temporal correlation of the
phase of the light which has passed through aLC layer
can be found. Comparing the correlation function,
found theoretically in this manner, with the experimen-
tal data makes it possible to find an important charac-
teristic of the LC in the layer—the relaxation time of
the angular deflection of the director at the surface from
the direction corresponding to a minimum of the free
energy of the layer.
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Abstract—A method is developed for calculating the elastic deformation in coherently strained heterostruc-
tures on the basis of the valence force field (VFF) model using the Green’s function of the “atomistic” elastic
problem. The spatial distribution of the elastic deformationsin a Ge/Si system with pyramidal Ge quantum dots
buried in a Si matrix isinvestigated theoretically. The deformation distribution in and around the pyramidsis
determined. Near quantum dots, the region near the tip of the pyramid is most strongly intensely. Inside quan-
tum dotsthe region of the vertex ismost relaxed, and the most strained section lies on the contour of the pyramid
base. Compression occurs in the plane of the pyramid base inside quantum dots, and stretching occurs along
the vertical direction. The picture is reversed near quantum dots: stretching occurs in the lateral direction and
compression in the vertical direction. It is shown that the local deformations and their spatial distribution
are essentialy independent (to within the scaling) of the size of the quantum dots for 10-15 nm pyramid bases.

© 2000 MAIK “ Nauka/lnterperiodica” .

1. INTRODUCTION

The interest of researchers in semiconductor struc-
tures containing zero-dimensional objects (quantum
dots) has increased substantially in the last few years.
On account of their small sizes and high size and shape
uniformity quantum dots formed during heteroepitaxy
of elastically strained systems are most attractive for
practical applications[1, 2].

The main characteristic of quantum dots, which
determines their electric and optical properties, is the
energy spectrum of the charge carriers. To calculate the
spectrum of the states in self-forming islands it is nec-
essary to know the el astic deformation dueto the lattice
mismatch between the nanocluster and substrate mate-
rials. For example, in the Ge/Si system the lattice mis-
match is 4.2%. A deformation can change the energy
structure by an amount of the order of 0.1 eV [3], which
is comparable to the size-quantization energy of the
charge carriersin quantum dots. Consequently, finding
the elastic deformation fieldsis anecessary preliminary
step for calculating the electronic structure of self-
forming quantum dots.

Most theoretical and experimental works on deter-
mining the elastic deformation in self-forming quan-
tum dots are concerned with the heterosystem
INAS/GaAs [4-9]. There are two approaches to calcu-
lating the deformation in quantum dots: the continuous
medium model [4, 8, 10] and the valence force field
(VFF) modd [5-7, 9]. The first model is macroscopic
and the second isatomistic, and it is based on the poten-
tial of the elastic forces as afunction of the interatomic

distances and angles. Moreover, a recent work [11]
employed the molecular-dynamics method to obtain
the distribution of elastic stresses over the free surface
in Ge/Si structures with quantum dots.

Even though there have been many experimental
investigations of Ge/Si heterostructures with quantum
dots (see[1] and the references cited there), no theoret-
ical investigations of the electronic spectrum of such
guantum dots have yet been performed. Our objective
in the present work is to find numerically the elastic
deformation fields in self-forming Ge quantum dots
buried in a Si matrix; knowledge of these fields is nec-
essary in order to analyze the electronic spectrum in
such structures theoretically. We chose the atomistic
approach to find the deformations. This choice is made
because, in the first place, the objects under study are
comparable in size with the lattice constant. In the sec-
ond place, to calcul ate the el ectronic spectrum it is bet-
ter to have aresult in the form of the positions of the
atoms and not in the form of average quantities, such as
the deformation tensor. We devel oped a method for cal-
culating the elastic deformation on the basis of the VFF
model [12-14] with a Keating potential [13]. The
Green'sfunction, together with the atomistic approach,
isused for thefirst timeto find the deformation in ahet-
erostructure. The main advantage of the method is that
the final results are insensitive to the position of the
boundary of the atomic cluster chosen.

Theinitia structure and the characteristic shape and
size of Ge quantum dotsin Si are shown in Fig. 1. The
guantum dots are square pyramids with a (001) base
and {105} lateral faces, and they lie on top of a thin
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Geisland
(quantum dot)
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(wetting layer) [100]

Fig. 1. Schematic diagram of atypical Gequantumdotin Si.

continuous Gefilm. The problemisto find the deforma-
tion in a system containing quantum dots and a two-
dimensional (2D) layer.

2. MODEL

TheVFF model iswidely used to calculate the elas-
tic deformation at the atomic level. It is postulated in
thismodel that the el astic deformation energy of acrys-
tal depends only on the positions of the atomic nuclei
and can be expressed as a sum in which each term
depends only on the position of an atom and its nearest
neighbor. In the present paper we employ the Keating
expression [13] for the elastic energy V extended to the
case of a heterostructure (see [6]):

= 3¢ v lig2og..)
V = 1622(:12 (dlj dO,l])
(|

0,ij
3 Bijk

+_
8iz(JZk)do,ijdo,ik

where the indices i, j, and k enumerate the atoms, the
index i runs over all atoms, j in the first sum runs over
the nearest neighbors of the ith atom, and the pair of
indices (j, k) in the second sum runs over all pairs of
nearest neighbors of theith atom,; d;; isavector directed
fromtheatomi to the atomj, and d;; isthelength of this
vector; d, j; is the length of the undeformed i— bond;

.
do,ijdo,ikD
3 0

ijdix +

Parameters of theVFF model for silicon and germanium [13]

dp, Nm o, N/m B, N/m
Si 0.2352 485 13.8
Ge 0.2450 38 12
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and, a;; and 3; are the force constants in the Keating

model. For d, j;, a;;, and 3 we use the values

do . = dO,i;do,j' o = Gi;aj,
B _ (Bi+B)+(Bi+B
ik = 2 ,

whered, ;, 0;, and 3, are the corresponding values for a
pure Si or Ge crystal depending on the type of ith atom.
The values used in this work are presented in table.

The problem isto find a set of atomic positions that
minimizes V. Thisis equivalent to vanishing of the elas-
tic forces acting on each atom. Ordinarily, this problem
is solved by using periodic boundary conditions (see,
for example, [9]). In such an approach a large number
of atoms must be included in the calculations, since to
avoid any influence of the finite size of the region of the
crystal under study the boundaries of this region must
be located at a distance which is large compared with
the size of the quantum dots. This increases the
required computer resources substantially.

In the method proposed for calculating the elastic
deformation in aguantum dot, only atoms belonging to
aquantum dot and several atomic layers around the dot
areincluded in the analysis. For this, we shall consider
the set of atomic displacements and we shall introduce
the following transformation of this set:

Us — U + 3 G falul, e
i

wherea and 3 aretensor indices, which run through the
valuesx, y, z theindicesi and j run over all atoms; the
brackets denote the set of displacements of the atoms;
u, isthe ath component of the displacements of theith
atom, measured from its position in the undeformed lat-
tice of the matrix in the absence of quantum dots (we

are considering a defect-free structure); fé[u] is the
Bth component of the elastic force (defined as—0V/0 ué)

acting on the jth atom with atomic displacement u; Gf,jB

is the ath component of the displacement of the ith
atom under the action of asingleforce applied to thejth
atom of the pure matrix crystal inthedirection 3 (inthe

linear approximation). We shall call GEB the Green's

function of the atomistic problem, by analogy to the
Green's tensor, or the Green's function of the main
problem of the continuum theory of elasticity [15].

We note that the transformation (2) decreases the
elastic forces acting on the atoms if the force constants
of the substrate and quantum-dot atoms are close.

Indeed, for atomic displacements vi, = GEB we have

the forces f;[v] = —§,;0,p for apure substrate crystal
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and f,[V] = fg[0] — 8,345 + 8fep inthe presence of
guantum dots (the linear approximation is assumed).
Here f,[0] are the elastic forces for zero displace-

ments; o f f,jB are small compared to 1. For the displace-
ments

Uy = Uy + Y Gap plul
j
we obtain

falll = fo[ul + 3 (=880 + ) o[l
i

=Y fapfalul.
i

Since CSfl,'B are small, the forces f[u] will be small
compared to f[u]. The nonlinear termsin the expression
for f[U] are dropped, since they are also small com-
pared to f[u].

Thus, by repeating the transformation (2) the elastic
forces can be made as small as desired. If the initial
atomic displacements are set equal to zero, then after
performing the transformation (2) successively the dis-
placements will have the form

Uz = Y GapGp- 3
i

The quantities g, in Eqg. (3) vanish (in the linear
approximation) for all sitesi where the second coordi-
nation sphere contains only matrix atoms. This follows
from the fact that the expression for the elastic force
acting on such a site is identical to the analogous
expression for apure matrix crystal. Thus, according to

the definition of GEB we obtain from Eq. (3)

falu] = -ga.
Consequently, after performing the transformation (2)
the quantities g, will be zero for all such sites.

Thus, the sumin Eg. (3) contains afinite number of
nonzero terms, which is approximately equa to the
number of atoms in a quantum dot. We now write the

transformation (2) in terms of gix ;

o —= Oo + FolU]. (4)

Since the number of nonzero coefficients g is finite, a
finite number of operations must be performed in order
to perform this transformation.

Thus, the proposed method consists of performing
the transformation (4) successively, starting with zero
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atomic displacements, until the elastic forces are negli-
gible. Inthismethod it is sufficient to calcul ate only the
positions of the atoms belonging to a quantum dot
together with its environment within one lattice con-
stant, because the positions of al other atoms (in the
linear approximation) do not influence the nonvanish-
ing value of gin Eq. (3).

In order to apply the above-described method to a
structure which includes an infinite two-dimensional
layer it is necessary to find the positions of the atomsin
a system containing only a 2D layer and then to use
these positions as initial values. In this case the atoms
located far from the quantum dots need not be included.
Strictly speaking, it is necessary to use the Green's

function égﬁ for a structure containing a 2D layer

together with the Green's function G;J'B for the pure
matrix. However, for the system Ge/Si (100) the differ-

ence between GLOB and G;?( can be neglected because

the thickness of the wetting layer and the difference
between the force constants of Si and Ge are both
small.

Finding the atomic positions in a continuous germa-
nium film on (100) silicon reduces to finding the dis-
tances between the (100) atomic planes. The distance
between two neighboring Ge monolayers can be
obtained in the continuum theory of elasticity (from the
deformation tensor of a two-dimensional Ge layer in a
Si matrix). The distance between the Si—Si layersinthe
theory of elasticity remains the same asin bulk Si, and
the Si—Ge layer is found as the arithmetic-mean of the
distances S-S and Ge-Ge.

Thefunction GEB can be calculated using the “con-

tinuum” Green's function. We note first that since all
sites in a diamond-type lattice are equivalent, it is suf-

ficient to find GLOB for asite 0. Next, on account of the
symmetry of thethree directions |1000]it is sufficient to

find only the coefficients Gl,ox .Asalfirst approximation

to Glﬁ( , we shall use the Green’s function for the prob-

lem of the continuum theory of elasticity, G,,(r), where
r is avector directed from the site o to the sitei. The
function G,g(r) is determined as the displacement of
the elastic medium in the direction a under the action
of asingle force applied to the origin of coordinatesin
the direction (. (In what follows, we shall drop the sec-
ond index x in the Green’s function.) It was found in
[16] for a cubic crystal. The elastic moduli of the
medium, which are required in order to calculate
Gyp(r), can be obtained from the force constants o and

B [13].
The function G,(r) decreases with distance as r=.

To obtain the correction Gf,z) (r), which decreases as 1=,
we shall consider the displacement of two sublattices
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relative to one another in a deformation. The compo-
nents X, y, and z of such a displacement are, respec-
tively, —AZe,./2, —ALE,,/2, and —A&e, /2 [ 13], where Ais
the lattice constant, & = (a — B)/(a + B) isthe deforma-
tion tensor, and ¢,z is the relative-displacements
parameter [17]. If G,(r) is treated as a displacement
vector, then the relative displacement of the sublattices
is proportional to r—this is what gives the desired

correction Gf,z) (r). Assuming that the displacement is

distributed uniformly over both sublattices, we obtain
finally

@,y - AEPG(r)  0G,(r)
GO =tgaS, " oy U

for the x component and similar expressions for the y
and z components. Here the “+” and “~" signs are cho-
sen depending on the sublattice: the “+” sign corre-
sponds to the sublattice which transforms into the other
sublattice as a result of a trandation by the vector

A A AQ

(' 4’ 40
It is easy to check numerically that for atomic dis-

placements equal to G,(r) + Gf,z) (r) the elastic forces
decrease with distance as r. Thus the desired Green’s

function Gi,o iISGy(r) + G((,Z) (r) to within O(r4). Con-

sequently, we can set GLO = Gy(r) + Gf,z) (r) for dis-
tancesr > 10A. For smaller distances the Green's func-
tion can be found numerically as the equilibrium dis-
placement of atomsin acluster surrounding the atom o
under asingle force directed toward the atom o, and the
atoms on the boundary of the cluster must be fixed with

the displacements G,(r) + G (r).

The atomic displacements can be converted into
local values of the deformation tensor. For this, we shall
consider the deformation of atetrahedron consisting of
the nearest neighbors of alattice site. The form of the
tetrahedron is determined by six parameters, for exam-
ple, the edge lengths. Thus, the deformation of such a
tetrahedron uniquely determines the six components of
the deformation tensor associated with a given lattice
site. The elastic energy related with a definite atom can
be found similarly: the expression (1) for the elastic
energy is separated into terms, each of which is associ-
ated with a lattice site and consequently can be inter-
preted as the fraction of the energy per atom.

3. DEFORMATIONS IN A Ge/SI HETEROSY STEM

The method described above was used to find the
gpatia distribution of other deformations in Ge quan-
tum dots buried in a Si matrix (Fig. 1).

Figure 2 (isolines) showsthe distribution of the elas-
tic energy per atom in two sections for quantum dots
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with the base edge length equal to 28 lattice constants
(about 15 nm). The thickness of the solid Ge film was
taken to be 5 monolayers [18]. It is evident that the
region near the tip of the pyramid is the most stressed
region around quantum dots. Inside quantum dots the
neighborhood of the tip is most strongly relaxed. The
most strongly stressed section lies along the contour of
the pyramid base. In the region of the S—Ge interface
the elastic energy per atom changes abruptly at a tran-
sition to an atom of a different kind or to an atom with
a different immediate environment. Consequently, the
isolines are not shown there.

For comparison, Fig. 3 showsasimilar distribution of
the elastic energy in aquantum dot with a~10 nm base.
It isevident that the overall picture of the spatial distri-
bution of the elastic stresses is similar to the picture
obtained for a 15 nm dot. This shows that the elastic
deformation of a system with these sizes can be
described by the macroscopic approximation. In the
macroscopic limit structures with the same shape but
different size should be deformed identically, i.e., the
spatial distribution of the deformation temperature and
hence the density of the elastic energy should be the
same in such structures to within the scaling. This fol-
lowsfrom dimensional considerations: the deformation
tensor, being a dimensionless quantity, cannot depend
on the dimensions of the structure themselves, but
rather it depends only on the ratio of the dimensions,
i.e., on the shape.

To analyze the quantitative dependences of the elas-
tic stresses on the size of ananocluster we examined the
values of the elastic deformation at equivalent points of
pyramids of different size. We shall say that points
inside nanoclusters of different size are equivalent to
one another if the nanoclusters transform into one
another under a transformation that brings one cluster
into coincidence with another. As the size of a nano-
cluster increases, the elastic deformation at equivalent
points must approach a constant corresponding to the
continuous medium approximation. Our results show
that the elastic deformation first becomes a constant
near the center of the pyramid base (curve 1 in Fig. 4).
On thewhole, in the central region of a Ge pyramid the
deviation of the deformation tensor from the limiting
macroscopic value does not exceed 10~ for 10-15 mm
pyramids. Thus, the values of €, on the pyramid axis
in the indicated size range of pyramids lies in the
range £0.5 x 103, which corresponds to a zero macro-
scopic value. A different behavior of the deformation as
afunction of the size of a nanoisland is observed near
an edge of the pyramid base. As an illustration, we
present the dependence of the component €,, at a point
located 1.5 lattice constants from the edge center in the
direction of the center of the pyramid base (curve 2 in
Fig. 4). Asthe size of the Ge cluster increases, the elas-
tic deformation near the edge does not approach a con-
stant; thisis because the deformation at the edge of the
pyramid becomes infinite in the macroscopic limit.
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(a)
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Fig. 2. Distribution of elastic energy in aGe/Si quantum dot on the side of a 28 lattice constants base (15 nm): (&) in the (100) plane
passing through the pyramid axis; (b) in the (001) plane passing through the center of a continuous Ge layer. The numbersindicate

the energies in units of 10%ev per atom; the arrows show the direction of increasing energy. The spacing of theisolinesis 5 x 104 eV
inside the pyramid and 10 eV outside the pyramid. Isolines are not shown near the Si-Ge interface (=4 monolayers).

Asone can easily see (see, for example, the analytic
solution for a cubic quantum dot [19]), according to the
macroscopic theory of elasticity the deformation tensor
at afixed distance from the edge should grow logarith-
mically as a function of the cluster size; our results
demonstrate this (Fig. 4).

To show the structure of the deformation field of a
guantum dot and its environment, the deformation ten-
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sor profile along the pyramid axis for a 15 nm quantum
dot isshown in Fig. 5. Insde the pyramid ¢,, and g, < 0
but €,, > 0. This means that compression occurred in
thelateral direction and stretching occurred in the ver-
tical direction. The opposite pictureis observed in the
environment around a quantum dot: stretching occurs
in the lateral direction and compression in vertical
direction.
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Fig. 3. Distribution of elastic energy in quantum dots on the side of an 18 lattice constants base in the (100) section. The notation is

thesameasin Fig. 2.

The spatia distribution obtained for the deforma-
tion can be compared with the results of similar calcu-
lations for INAS/GaAs quantum dots. It should be kept
in mind that the distribution of the deformations depend
strongly on the slope angle of the lateral faces[5]. The
profiles of the components of the deformation tensor
which are presented in Fig. 5 are similar to the profiles
obtained for INAs/GaAs quantum dots with {104} |at-
eral faces [5]. For a comparatively large slope of the
faces, for example, for quantum dots bounded by { 101}
planes [4-6, 20], a qualitative difference from our
results appears. the deformation inside quantum dots
becomes strongly nonuniform and even sign-alternat-
ing. Asaresult, aregion of purely hydrostatic compres-
sion arises approximately at the center of the quantum
dots. Thisisimportant, since the band picture depends
on the structure of the deformation: splitting of the light-
and heavy-hol e subbands does not occur under hydrostatic

€., 1072

-3.5

-3.6

-3.7

-3.8

_39 1 1 1 1 1
6 8 10 12 14
Edge length of the pyramid base, nm

Fig. 4. The component &, of the deformation tensor versus
the size of a quantum dot: (1) at the center of the pyramid
base; (2) at distance of 1.5 lattice constants from the center
of the edge of the pyramid base (see inset). Solid line is
result of fitting afunction of theform A + BIin(a + C) to the
curve 2, where a is the size of the quantum dot.
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compression, and under anisotropic deformation, as in
Fig. 5, the subbands split by ~0.15 eV (see[3]).

The computational results for the deformation in a
heterostructure depend on whether the continuous
medium approximation or the VFF model is used.
These two models are compared in [20]. We note that
near heteroboundaries the VFF model and the continu-
ous medium approximation give substantially different
results. For all other regions the difference between the
two modelsis due primarily to the fact that the Keating
model does not describe the elastic properties of the
medium accurately. This discrepancy is much smaller
for Ge/Si heterostructures than for INAS/GaAs struc-
tures. The errors in fitting the elastic properties using
the parameters of the Keating model are 1% and 7%,
respectively, for Si and Ge and 13% and 22%, respec-
tively, for GaAsand InAs[20].

-0.02

-0.04

Fig. 5. Profiles of the components of the deformation tensor
along the symmetry axis of aquantum dot. The step along z
is equal to the lattice constant. The numeral | denotes the
region occupied by a solid film of Ge and the numeral Il
denotes the tip of the pyramid.

No. 3 2000



SPATIAL DISTRIBUTION OF ELASTIC DEFORMATIONS IN Ge/SI STRUCTURES

Another difference between the two models, which
was noted in [20], is that when the VFF model is used
the symmetry of the deformation field decreases to C,,
(C,, in the continuous-medium model). We add also
that in the continuous-medium model the distribution
of the deformation depends only on the shape of the
inclusion and not its size [4]. A size dependence of the
deformation appears in the VFF model.

In [21] it was concluded on the basis of an analysis
of the Raman scattering spectra in a Ge/Si structure
with quantum dotsthat directly below thetip of aquan-
tum dot there exists a region where the deformation is
much different from the deformation elsewhere in the
guantum dot. The thickness of this region is 0.4 nm
[21]. Our results (Fig. 5) also showed the existence of a
region with a size of about 0.3 nm below the tip of the
guantum dot, where the component ¢, of the deforma-
tion tensor is negative, while elsewhere in the quantum
dot it is positive.

4. CONCLUSIONS

In summary, in the present paper a method was
developed for calculating the elastic deformation fields
in nonuniform structures on the basis of an atomistic
approach. The distribution of deformations in Ge/Si
heterostructures with quantum dots for 6-15 nm pyra-
mid bases was obtained. It was found that the deforma-
tions and their spatial distribution are essentially inde-
pendent of the size of a quantum dot in the central
region of a pyramid for quantum dots larger than
10 nm. At the same time, near the edge of a pyramid
base the deformation increases logarithmically as a
function of the size of the quantum dots.

We propose to use the results obtained to calculate
the energy spectrum of holes in Ge/Si quantum dots.
These quantum dots are so small that there is no guar-
antee that the effective-mass method is applicable for
describing the motion of electrons in them. Conse-
quently, following [7], the tight-binding method will be
used to obtain the energy spectrum. Thus, even though
the calculation of the deformation can be done in the
continuous-medium  approximation, the atomistic
approach, which gives direct information about specific
atomic bonds, is preferred. Moreover, an appreciable
number of the atoms in a quantum dot lie on the Si—-Ge
heteroboundary, and for these atoms a description in
terms of the continuous-medium approximation is
unsuitable.
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Abstract—A theory of the interaction of fast charged particles and gamma rays with nanotubes with different
helicity is developed. Analytical expressions are obtained for the potential and the electron density of a nano-
tube taking account of the anisotropic thermal vibrations of the atoms. A system of equations determining the
guantum states of the transverse motion of relativistic electrons, positrons, and x-ray photons in a superlattice
consisting of nanotubes is formulated, and methods for solving this system are developed. Calculations of the
soft x-ray Bragg reflection coefficients of a superlattice are performed in the two-wave approximation of the
dynamical theory of diffraction. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Nanotubes can be regarded as gigantic carbon mol-
ecules (fullerenes) which are obtained by folding
graphite planesinto a cylinder whose diameter is mea-
sured in nanometers and whaose length can reach mac-
roscopic dimensions [1]. This linear structure of nano-
tubes determines their extremely high strength [2] and
the strong dependence of the electrical conductivity on
the diameter and helicity (the angle between the most
highly packed chains of atoms and the axis of the cyl-
inder) [3]. There exist nanotubes whose walls contain a
singlelayer of atoms [4] and nanotubes with walls con-
sisting of severa concentric layers [5]. A remarkable
feature of some single-wall nanotubes is their capabil-
ity to unite, asthey form from plasma, into a“rope” whose
transverse cross section is a two-dimensional hexagonal
superlattice consisting of nanotubes [6]. Since the discov-
ery of nanotubes in 1991 [5], a large number of works
have appeared on the problems of synthesizing nanotubes,
the physical properties and possible gpplications in nano-
electronics [7], catalysis [8], and other fields. Besides
nanotubes consisting of carbon atoms similar structures
based on boron nitride also exist.

Asnoted in [9], channeling of fast particles in nan-
otubes exhibits a number of special features associated
with the relatively large diameter of the channels and a
weaker influence of dechanneling factors than in ordi-
nary crystals. These features (in prospect of synthesis
of quitelong defect-free nanotubes) could find applica-
tion in high-energy particle-beam physics. Channeling
and electromagnetic radiation spectra arising during
channeling of relativistic electrons and positrons with
energy above 100 MeV have been analyzed previously
[10] on the basis of classical mechanics by numerical
simulation of particle trgjectories. It was shown in [10]
that channeling of neutral particles (x-ray photons and
thermal neutrons) becomes possible when the wall
thickness and diameter of a nanotube are sufficiently

large. The present work is devoted to afurther develop-
ment of thetheory of the interaction of fast charged and
neutral particles with nanotubes. First, an analytical
method for calculating the potential and electron den-
sity distribution in superlattices consisting of nano-
tubes will be developed, and a general approach to the
problem of the quantum states of relativistic electrons
(positrons) and x-ray photons, propagating at suffi-
ciently small angles with respect to the axis of nano-
tubes or the planes of a superlattice, will be formulated
on the basis of this method. Second, the electromag-
netic radiation spectra of fast particles in nanotube
superlattices will be analyzed for cases where quantum
effects are substantial. Further, calculations of the
Bragg reflection coefficients for soft x-rays with differ-
ent wavelengths will be performed on the basis of the
two-wave theory of diffraction.

2. STRUCTURE AND CONTINUOUS POTENTIAL
OF NANOTUBES

As noted above, the structure of ananotube is deter-
mined by the method of constructing the nanotube from
acrystallographic plane of graphite (Fig. 1a). Letaand
b denote the basis vectors of a planar lattice of graph-
ite, whose unit cell (dashed rhombusin Fig. 1a) con-
tains two carbon atoms with the coordinates (a + b)/3
and 2(a + b)/3, respectively. Taking into account that
the angle between the vectors a and b is /3 and the
vectors have the same modulus (a = b) and denoting by
| the length of the bond between the carbon atoms

(whichisusually 0.14 nm), weobtaina=b=1,/3. The
roll-up vector r is determined as a linear combination
I, = na+ mb of the basis vectors, where the pair (n, m)
of integersis called the indices of a nanotube. A nano-
tube can be constructed from a strip of width rg, cut
from a plane perpendicular to the vector r, and folded
into acylinder (arow of such cylindersis shown sche-
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DIFFRACTION AND CHANNELING IN NANOTUBES

matically in Fig. 1b). The angle 8 between the roll-up
vector ryand the basis vector a of the graphite latticeis
called the helicity of ananotube. The helicity showsthe
angle under which the most closely packed chains of
carbon atoms are wound on the cylindrical surface of a
nanotube. It follows from simple geometric consider-
ations that the radius R and helicity 0 of a single-wall
nanotube are uniquely determined by the indices of this
nanotube:

R = I—“@A/n2 +nm+ m’,
21

nmJ/3 g
Un+2n0

Since the basis vectors a and b are equivalent, it can be
assumed with no loss of generality that n > mand there-
fore the helicity liesin therange 0 < 6 < 176.

It is well known [11] that channeling occurs when
the angles between the momenta of fast charged parti-
clesand the chains of atoms are sufficiently small. Then
the potential of the chain atoms, averaged over the
entire length of achain, is the effective potential acting
on a particle. The form factor f(k) of an individual car-
bon atom can be represented, to a high degree of accu-
racy, intheform [12]

(D)

0 = arctan

f(k) = 4miZea,exp[-k’/ (4b?)], )

where Ze is the nuclear charge, g = {3.222, 5.270,
2.012, 0.5499}10* nm?, and b, = {10.330, 18.694,
37.456, 106.88} nm! are dimensiona parameters which
are determined, according to [12], from the best fit of
Eg. (2) to the most accurate calculations based on the
Hartree—Fock method, and summation over repeated
indicesj isassumed here and below (in the present case
from 1to 4).

Small displacements of the atoms of a nanotube rel-
ative to the positions of equilibrium in an ideal lattice
can be dueto thermal vibrations aswell as other factors
(for example, structural defects or deformations of nan-
otubes). In general, these displacements are anisotropic
and can be taken into account by introducing an addi-
tional factor of the form e into the atomic form factor
(2), where the exponent (the Debye-Waller factor) is
given by

W = (12)(Kuf + ku? + Kou?), 3)

where u?, u?, and u> are the mean-square deviations
of the atoms in various directions: normal to the cir-
cumference of the cylinder (y), tangential (x), and along
the axis of the cylinder (2).

The average potential Vg(p) of the atomic chain
(more accurately, the potential energy of aparticlewith
charge ), whose atomslie on the z-axis with spacing dg,
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isrelated with the form factor of an individual atom by
therelation

V(p) = e(2m)2dz J’f(kD, 0)e k.. (4)

Here p isthe radius vector in a plane orthogonal to the
chain, (k, k,) are the corresponding components of the
vector k, and the integration is performed over the
transverse momenta k. Using the relations (2)—(4) we
obtain the average potential of achain of atoms

47¢° X ?

Ve(x,y) = ——(—r)——(r—)a,-exp{——m——%}, 5)
dR Bj Bj i BJ

where B{” = b;? +2u? and B{” = b;? + 2u?. For an

ideal static structure (u> = u® = 0) Eq. (5) isidentical
to the corresponding result

ze?

4
Vi(p) = Zg-abjepl-bip’], (6)

obtained previoudly in [10]. Here p = (X2 + y)V?
denotes the distance to the chain.

For subsequent calculations, it is important that a
nanotube with indices (n, m) can always be represented
asacollection of chains of atoms paralel to the axis of
ananotube and arranged in a definite manner along the
perimeter of the cylinder. Indeed, it is easy to show that
the potential of a nanotube is invariant under tranda
tions by the vector

t = g [(2m+n)a—(2n+m)b],

and, sincetr, = 0, this vector directed along the axis of
the nanotube. Here g denotes the largest common
denominator of (2m + n) and (2n + m), so that t is the
smallest of all possible translation vectors of this kind.
The distance dy between neighboring atoms in each
such achain isequal to the modulus of the vector t and
is given by

de = %I(n2+ nm-+m’)"%. 7)

We shall now take into account the fact that the unit
cell contains two atoms on a crystal plane of graphite
(seeFig. 1a). It can be easily calculated that the surface
density o of atomsis o = 332412, Thus, two sequences
of atomic chains parallel to the axis of the nanotube are
obtained. In each sequence the chains are equally
spaced along the generatrix of the cylinder, and the dis-
tance & between the neighboring chains in a given
sequenceis d = 2(adg)*. Next, we choose acylindrical
coordinate system (r, ¢, 2) in which the radial coordi-
nate r is measured from the axis of a nanotube, and we

denoteby ¢{* the azimuthal angle of the kth chain (k =
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Fig. 1. (8) The atomic structure of a nanotube and (b) the structure of a nanotube superlattice.

0,1, 2, ..., N—1) in the corresponding sequence of
chains (1 = 1, 2). Thus each sequence contains exactly

N = é(n2+nm+ m2), (8

atomic chains, whose azimuthal coordinates are deter-
mined by the relations

o0 = k&9, & = —H ©)
n+nm+m

P = o0 +ng, ap = 1M ()

n“+nm+m
We notetwo limiting helicities® =0 and 6 = 176, where
the atomic chains, parallel to the axis of ananotube, are
most densely packed and therefore the number of
chainsisreatively small. The first case corresponds to
nanotubes (n, 0) with zero index m (which are usualy
called zigzag nanotubes); here, g =n, N = 2n, dg = 3l,
09 = Ad = 1/n, and the two chain sequences overlap,
i.e., there are actualy 2n chains with a doubled linear
atomic density 2/dg. The other case corresponds to nan-
otubes with equal indices (n, n) (which are usually
called armchair nanotubes); here, g=3n, N=2n,dz =

1./3, 80 = 1n, and A = 21U(3n), i.e., there are 4n
chains arranged in pairs.

The potential of ananotubeis obtained by summing
the average potentials of all chains. To perform such a
summation we represent the potential of an individual
chain (5) as a Fourier series

Vi = i v, (e’

V = —00

(11)
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The coefficients V,(r) in the expansion (11) are related
with the potential V of the chain by the relation

2n

V,(r) = %{ J’VRe_iV"’dq), (12)
0

where Vg is a function of the cylindrical coordinates.
Specifically, when the average potential of a chain has
theform (5), the coordinatesx and y are related with the
cylindrical coordinates r and ¢ by the relations x =
rsing and y = rcosd — R; the expansion coefficients
become

2
Vv(r) = & ]
dg BEOB?) (13)
R r’gl . 17 <
XeXp|——=-35m Tt z Ip(Vj)'v—Zu(aj)'

r) r)
By 2

Here a; = 2Rr/B\", v = (UB — LB )ra/2, 1, isthe
modified Bessel function. If it is assumed that the dis-
placements of the atoms are distributed isotropically
(u? = u2), then B{” = B{"” and y; = 0, so that only one
term with 1 = 0 remains in the sum (13) and asimpler
expression is obtained:

md
j U =—c0

2

47¢°

deB}"

Vi(r) =

2
i (13)

O O
a;expd Oy(aj).
O O

i

In the static limit (u> = u’? = 0), corresponding to the
potential of the chain (6), theresult acquiresthe simpler
form

476

Vy(r) = d—Rajbjzexp[—bjz(r2+ R%)]1,(2b{Rr). (14)
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Using the Fourier expansion (11), the potentia pro-
duced by the first sequence of chains in the nanotube
can be represented in the form

U(l)(r q)) — z vV (r)elvti)z —|vk6¢

V= —00

Taking account of Egs. (7) and (8), the summation over
the chains now reduces to cal culating the sum of a geo-
metric progression, which can be written in the form
N-1 .
> eV = N3, o, S=0,%1,%2, ...,
k=0
where 9, ¢ IS the Kronecker delta We now take

account of the fact that two sequences of chains con-
tribute to the potential U(r, ¢) of ananotube, i.e.,

u(r, ¢) = U9, )+ U, ¢ —49).

Here A¢ is the azimuthal shift between the sequences
of chains, which wasintroduced in Eq. (10). Asaresult
we arrive a the following expression for the average
potential of a nanotube with arbitrary indices (n, m):

U, ¢) = 2N %\/o(l’) . sz Ve(D) cos[”s(”q+ uy
(15)

X cos[qu) —@} E;

For the model of an atom corresponding to the form
factor (2), the coefficients V,(r) have the form (13),
(13), or (14), and since the potential (15) isappreciably
different from zero only closeto (|R—r| < R) thewalls
of a nanotube, where the arguments of the modified
Bessel function are quite large (a; > 1), the Bessel
functions can be replaced by the asymptotic expres-
sions of the form [13]

IsN(aj) = (anj)_ﬂz(EZ + 1)—1/4

x exp{ o[ JE* + 1—EIn(E + /€7 + 1)]}.
Here & = sN/q; is the ratio of the index of the Bessel
function to its argument.

The coefficients V can be represented in an analyti-
cal form for some other models of an atom aswell. Spe-
cificaly, for the Moliere model, which is commonly
used for calculating the average potentials [9, 11], the
expression anal ogous to Eg. (14) intheranger < Ris

e Bk
TF
Here summation over the repeated index j from 0 to 3
is assumed; {4} = (0.35, 055, 0.1} and {b;} =
{0.3, 1.2, 6.0} are the constants in the Moliere model,

Vi(r) = (16)
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arr is the Thomas—Fermi radius, and the potentias in
the region r = R are obtained from Eq. (16) by inter-
changing the arguments in the modified Bessel func-
tions I, and K,. It should be noted that the Moliere
approximation is afit to the corresponding calculations
of the atomic potential on the basis of the Thomas—
Fermi model, which, as is well known, is not accurate
enough for light atoms, specifically carbon atoms.

We shall now analyze the general expression (15)
for the average potential of a nanotube. The zero har-
monic (s = 0) in Eq. (15) corresponds to a potential aver-
aged over the azimuthal angle. The remaining harmonics
lead to modulation of the azimutha distribution. As the
number of chains forming the walls of a nanotube
increases, the modulation frequency increases and the
modulation depth decreases. The distance between the
neighboring chains (in each of two sequences) is deter-
mined by the quantity & = 3227 1gl(n? + nm + n¥)~2,
If & is much less than the range of the atomic potential,
then analysis of Eg. (15) shows that the higher order
harmonics (s = 1) are negligibly small. This condition
holds for indices (m, n) for which the parameter q (see
Eq. (7)) ismuch less than the number N of chains. Con-
fining attention to the zeroth harmonic (s = 0) and
neglecting the random deviations of atoms from the

positions of equilibrium (u” = u’ = 0), we arrive at the
following expressions for the potential of a nanotube:

U(r, $) = 37° x32nze’ *Ra,b}
x exp[—bi (r? + R%)]1,(2bfrR)
for the Doyle-Turner approximation (2) and

(17)

77 2|25 ir RO
u(r, ¢) = 3% x 16mzé’l RajIOQ;;%(OEE;D(lS)
for the Moliere approximation (r < R), and close to
(IR=r|=R) thewalls of the nanotube the arguments of
the cylindrical functions are quite large and the expres-
sions (17) and (18) can be replaced by the simpler
asymptotic representations.

u(r, 9) = 4m’?cze’ab, RO
17)

x exp[-b (R-r)?],

bIR
ar

2
u(r, o) = 2nZe oaTFJ[RDU [ l} (18)
F
According to Egs. (17) and (18" the potentia of nano-
tubes with intermediate helicity (when g < N) is virtu-
ally independent of theindices of the nanotube and near
the top of the barrier (r = R) it is identical with the
potential of a graphite plane averaged over the coordi-
nates of the atoms on the plane (we recall that o =
3732412 isthe surface density of atoms, and |[R—r | must
be interpreted as the distance to the plane). The depen-

No. 3 2000



508
U,eV
160 T T T T T
2
1 .
120 .
80
3 4
IN
\\7ZAav} \Vj VIV [\ \Vj
401 7
0 10° 20°

3

Fig. 2. The azimuthal distribution of the height of the poten-
tia barrier U(r, ¢) of nanotubes with variousindices (n, m).
The curves 1, 2, and 3 correspond to nanotube indices
(10,10), (17,0), and (12,8), respectively. The horizontal
straight line 4 corresponds to nanotubes with intermediate
helicity, for example, (11,9).
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Fig. 3. The average potentia of a nanotube with intermedi-
ate helicity according to (1) the Doyle-Turner model and
(2) the Moliere model.

dence of the potential on theindicesin thiscase appears
only at sufficiently large distances (|[R—r| ~ R) from the
nanotube wall, where the curvature of thewall becomes
substantial, but in this region the values of the potential
and its gradient are relatively small.

The azimuthal distribution of the height of the
potential barrier U(R, ¢) of nanotubes with different
indices (n, m), based on Egs. (14) and (15), isillustrated
inFig. 2. Thecurves, 2, and 3 correspond to nanotube
indices (10,10), (17,0), and (12,8), respectively. The hor-
izontal straight line 4 corresponds to nanotubes with the
parameters q < N, for example (11,9).
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Figure 3 shows the dependences of the potentials
(17) and (18) on the distance to the axis of the nanotube
(12,9). Calculations based on the more accurate Doyle—
Turner model (curve 1) give a sharper dependence of
the potential onr near thewall of ananotube and appre-
ciably lower potential barrier than similar calculations
based on the commonly used Moliere approximation
(curve 2).

To estimate the effect of thermal vibrations of the
atoms it is necessary to know the temperature depen-

dence of the mean-square deviations u> and u?. This
reduces to analyzing the phonon spectra of the nano-
tubes. It should be noted that in contrast to graphite
photons in nanotubes are localized in the transverse

plane, and consequently u’ and u’ can differ apprecia-
bly from the corresponding values in graphite. If the
values uy = 8.5 x 10 nm and u, = 3.8 x 103 nm pre-
sented in [14] for room-temperature graphite are none-
theless used to estimate u, nm and u,, then thermal
vibrations do not appreciably influence the average
potential of a nanotube.

X-rays are scattered primarily by electrons of a sub-
stance. The Fourier component of the electron density
in a carbon atom can be approximated to an adequate
degree of accuracy by an expression similar to Eq. (2):

fOK) = Zage)exp[— (19)

k2 }
(26{)°
where al® = (0.3499, 0.3014, 0.2103, 0.0946, 0.0438}

and bl® ={17.300, 11.400, 75501, 155.24, 7.596} nm-

are five pairs of fotting parameters, which are deter-
mined, according to [15], from the best fit of Eq. (19) to
the corresponding values calculated by the Hartree—
Fock method. The electron density averaged over the
direction of the nanotubes or over the planes of the
superlattice is obtained using Eq. (19) just as was done
above for the potential.

In ordered two-dimensional structures of nanotubes
(superlattices), in addition to the channeling inside
individual nanotubes, a different type of channeling,
which can be called planar channeling, becomes possi-
ble. The two-dimensional superlattice (see Fig. 1b) has
the hexagonal symmetry characterized by a pair of
basis vectors A and B, whose modulus is the period L
of the superlattice. Nanotubes in a superlattice are kept
in the position of equilibrium by van-der-Waals forces,
and the gap between the walls of neighboring nano-
tubes is usually about 3.15 A. For example, the super-
|attice with period L ~ 16.95 A, consisting of (10,10)
nanotubes with diameter 2R = 13.8 A, has been
observed [6]. Let a charged particle move at a compar-
atively large angle with respect to the axis of the nano-
tubes (so that the channeling conditions inside the nan-
otubes are not satisfied), but the momentum of the par-
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ticle makes a quite small angle with respect to one of the
planes of the superlattice. Then, following Lindhard's
arguments [11], it can be assumed that a particle is sub-
jected to the effective potential of the nanotubes averaged
over the corresponding planes of the superlattice:

Uy00 = 3 Uslx+vdy),
’ (20)

dy/2

U9 = 3 [ UG )y,

—d./2

Here U,(X) is the potential of an individual plane, x is
the distance to the plane, the potential of a nanotube
U(r, ) in the genera case has the form (15), y is the
distance to the nanotube, d, is the distance between the
neighboring nanotubes in a given plane, and summa-
tion extends over all planesv which are arranged peri-
odically (with period d, = 3%2.%2d,) in a direction
orthogonal to the x-axis.

3. SCATTERING AND RADIATION
OF ELECTRONS AND POSITRONS
IN NANOTUBE SUPERLATTICES

The motion of relativistic charged particles at a
small angleto the axis of the nanotubes (or to the planes
of the superlattice), similarly to the case of crystals
[16], can be represented asthe longitudinal motion with
constant momentum p, and the transverse motion in an
average potential. The wave functions of the transverse
motion Y(r) satisfy the equation

(A, + p2(r)]w(r) = 0,

where A, is the Laplacian in the space of transverse
coordinates, pé(r) =2E(e —U(r)), Eisthetota particle

(21)

energy, € = E— ,/p’ + 1 isthe transverse energy, U((r)
is the potential of the nanotube superlattice, and the
system of units# = m=c = 1isused. Electromagnetic
radiation appears as a result of spontaneous radiative
transitions between the states of transverse motion.
According to [17], for radiative transitions between
high-lying (€ > Uymax(1, EU,), U, is the depth of the
potential well) states of the continuous spectrum of
transverse energies the superlattice potential Uy(r) can
be treated as a perturbation, the angles of deflection of
an ultrarelativistic particle by the field are small com-
pared with the effective angles of emission E7, and,
consequently, the radiation is dipole one, the emission
probability per unit path length of an el ectron (positron),
differential with respect to the photon energy w, can be
related with the Fourier component of the potential Uy,
of a unit cell of the superlattice by the ssmple relation
(see, for example, [18])
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dw _ € H? 2
dw ~ Ezg(Hv)2|UH|

u
><[1+2(1+u)

(22)

—ZQH+ZQf|}r](1—QH).

Here v is a unit vector in the direction of the initial
momentum of a charged particle, u = W/(E — w), Qy =
W2EHv, and ) is the Heavside unit step function.

A unit cell can be chosen so that it containsasingle
nanotube (see Fig. 1b), and the reciprocal -l attice vec-
torsH = n;h; + nyh, are represented as a superposition
of basis vectors h; and h, (orthogonal to the corre-

sponding vectors of the direct superlattice) with integer
coefficients n, and n,. The moduli of the vectors are

determined by the relationsh = 417L /3 and H = h(n? +

n, + mnyYY2. As a result, the expression for U,
becomes

U, = éJ'U(r, 0)e " . 23)

where U(r, ¢) is the potential of an individual nano-
tube (15). The integration in Eq. (23) extends over the

area of aunit cell S=12,/3/2, but, since outside a unit
cell the potential of a nanotube is negligibly small, the
integration in Eq. (3) can be extended over the entire
transverse plane without substantial loss of accuracy.
Substitution of Eg. (15) into Eg. (20) and the subse-
guent integration give

N8nze’ O np* O
Uy = =—a,exp——0O
" S di T O(20)%

B - 1is(n + m)
BJO(RH) + ZSZleN(RH)cos[————-———q } (24)

X cos[chl)H —T[—S(nq+ m)} E&

where ¢ is the azimuthal angle of the vector H. We
note that the higher order azimutha harmonicswiths= 1
can make an appreciable contribution to Eg. (24) only
if the argument of the Bessel functionsiscomparablein
magnitude to the index, i.e., when the vector H is a
large multiple of the main reciprocal-lattice vectors
(H/h ~ N). However, if the analysis is confined to pro-
cesses where H < hN, then with adequate degree of
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dW/dw, cm™!

0.04
0.03
0.02

0.01

0 10 20 30 40 50
w, MeV

Fig. 4. Spectral distribution of the energy of coherent
bremsstrahlung emitted by a 1 GeV electron (positron)
entering at angle 3.04 x 10~* with respect to the (1,0) planes
of a superlattice of (10,10) nanotubes.

accuracy simpler expressions can be used instead of
Eq. (24):
KZe’R

0= (R+—g/2)2 Uy = Up3(H),

Z=%a;=1105x10" nm’,

J

(25)

2 0
[(Wo(RH).

O
J(H) = = aexpF- H -

0 (2b;
Here we have introduced the structure factor J(H) of a
nanotube, normalized by the condition 3(0) = 1. Ordi-
narily, the van-der-Waalsgap g = L — 2R is3.15 A, as
noted above.

If it is assumed at the outset that there is no azi-
muthal correlation between different nanotubes of a
superlattice, then the form factor of a nanotube (24)
must be additionally averaged over ¢,,. As aresult, we
arrive once again at the expression (25), where, how-
ever, H can now be regarded as arbitrarily large com-
pared with the modulus of the basis vector of the recip-

rocal latticeh = 417L /3. The nonideality of ananotube
superlattice can be taken into account by multiplying
Egs. (24) and (25) by the exponentia factor exp(-\W,),
wherethe Debye-Waller factor isW, = H2u? /2, where uZ
now denotes the mean-square deviation of the superlat-
tice sites from their positions in an ideal structure. We
notethat in areal superlattice (u§ # 0), besides coherent

bremsstrahlung, incoherent background radiation corre-
sponding to scattering of particlesby individual nanotubes
should aso arise. The spectral distribution of the coher-
ent bremsstrahlung energy dW/dw = wdu/dw, corre-
sponding to a 1 GeV electron (positron) and entrance
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angle 6, = 26, = 3.04 x 10 with respect to the planes
(1,0) of asuperlatticeof (10,10) nanotubes, isillustratedin
Fig. 4. The maximum near 2 MeV corresponds to the
first harmonic of coherent bremsstrahlung, and the
intensity of the higher order harmonics (right up to the
tenth harmonic) is comparable in magnitude to that of
the first harmonic. This behavior of the coherent
bremsstrahlung spectrum in nanotubes differs substan-
tially from that of the bremsstrahlung spectrum in ordi-
nary crystals. This is due to the specific nature of the
structure factor J(H) of a nanotube.

If radiative transitions occur between lower lying
states (€ < Uy) of the transverse energy spectrum, then
the perturbation theory with respect to the superlattice
potential is inapplicable, the standard theory of coher-
ent bremsstrahlung is inapplicable, and the wave func-
tion and energy eigenvalues satisfying Eqg. (21) must
first befound in order to cal cul ate the radiation spectra.
According to the Bloch theorem, the wave function of
aparticlein aperiodic potential U(r) hasthe form

W(r) = ¢(r)exp(ixr), (26)

where @(r) is a periodic function with period equal to
the period of the superlattice and x is the transverse
guasimomentum of a particle, which can be assumed to
be restricted by the first Brillouin zone. As is well
known, the wave functions (26) correspond to trans-
verse-energy bands (), which in the limit of infinitely
small tunneling through the potential barrier separating
neighboring nanotubes degenerate into discrete levels.
As estimates show, the number of quasidiscrete levels
isreatively small when the energy of the electrons and
positrons does not exceed 10 MeV. For such energies
the electromagnetic radiation can be treated as being due
to dipole radiative transitions between levels (bands), and
the energy of an emitted photon is negligible compared
to the energy of the particle (w < E). The spectral-
angular probability density of emission due to sponta-
neous transition of a particle from aband n into a band
n' with lower transverse energy can be represented in
the form (see, e.g., [19])
ew

dw _ ew’
dwd 81

2 3

%3 (8% + E) 0o x 1) = (87— E)Incronf ] 27)

x8] (07 + E7 X)) — 0nr |

Here dQ = 6d6d¢ is the differential of the solid angle
of emission, 8 < 1 isthe polar angle of emission rela-
tive to the axis of a nanotube, n; = {cos¢, sing} isthe
unit vector in the direction of the projection of the
momentum of the emitted photon on a plane perpendic-
ular to the axis of a nanotube, €,(x) is the transverse
energy of a particle with qguasimomentum « in the nth
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band, w,, = €,(k) — €,(x) is the transition frequency,
and o isthe Dirac delta function.
The matrix element of a dipole transition between

bands has the form

Fow = jmzx(r)rmnx(r)dzr. (28)
S

The quasimomentum of a particle is determined by the
condition that the wave function is continuous at the
boundary of the superlattice and is equal to (to within a
reciprocal lattice vector) the transverse momentum p
of the particle at the entrance into the superlattice; this
value of the quasimomentum is conserved in radiative
dipoletransitions[19]. We note that, following [20], we
have taken into account the possible influence of the
polarization of the medium on the process of radiation
by channeled particles by introducing the volume-aver-
aged real part of the permittivity of the medium at x-ray

frequencies Xo(w) < 1. As will be shown below, for

nanotubes, in contrast to ordinary crystals, the polariza-
tion can indeed considerably affect the spectrum of
emitted frequencies because of the possibility of acom-
plex Doppler effect.

To solve the wave equation (21) we represent the
periodic part of the wave function ¢(r) as an expansion
in reciprocal-lattice vectors. As a result, Eq. (26)
becomes

w(r) — e““ Z LIJGeiGr.
G

Then the wave equation reduces to the following infi-
nite system of algebraic linear equations for Yg:

[%E(K"'G)Z—E}‘“G* ZwG—HUH =0, (29)

where the formula (25) determines the coefficients of
the system of equations Uy;. The condition for the exist-
ence of anontrivial solution of the system (29) requires
that the determinant of the matrix of this system vanish;
this determines the possible transverse energy bands
and the dependence (dispersion) of the transverse
energy on the quasimomentum in each band. We note
that the transition from the motion of particlesaong the
axis of nanotubes to that along planes of a superlattice
formally reduces to taking account of only that recipro-
cal-superlattice vectors H which are orthogonal to the
corresponding planes.

Our numerical method for solving the system of
equations consisted of step-by-step increasing the num-
ber of waves 21vd, taken into account and correspond-
ingly increasing the rank of the system until the trans-
verse-energy eigenvalues obtained no longer varied appre-
ciably. Figures 5 and 6 show the resulting transverse-
energy bands in the planar channel (1,0) of a superlattice
of (10,10) nanotubes for positrons and electrons, respec-
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Fig. 5. (a) Potentiad well and transverse-energy bands of
positrons with energy: (b) 1 MeV, (c) 3 MeV, (d) 9 MeV in
aplanar channel (1,0) of asuperlattice of (10,10) nanotubes
within the first Brillouin zone.
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Fig. 6. (a) Potential well and transverse energy band of elec-
tronswith energy: (b) 1 MeV, (c) 3MeV, (d) 9MeV inapla
nar channel (1,0) of a superlattice of (10,10) nanotubes in
thefirst Brillouin zone.

tively, with various energies (1, 3, and 9 MeV). The
transverse quasimomentum in units of the Brillouin
zone width 9 is plotted along the abscissa. The same
figures show the planar potentials for positrons and
electrons. The number of allowed transverse-energy
bands within a potential well increases with the total
energy of the particles, and this number is greater for
positronsthan for e ectrons (with the sametotal energy E).
For 1 and 3 MeV there are also relatively wide above-
barrier bands, which ultimately pass into the continu-
ous energy spectrum, corresponding to almost free par-
ticles. For 9 MeV positrons the number of quasidiscrete
levelsin awell is so large that, apparently, their motion
can be investigated with adequate accuracy by methods
of classical mechanics. As far as similar results for the
motion of particles along nanotubes are concerned, the
number of bandsin this caseis much larger than in the
corresponding planar cases. For example, our calcula-
tions show that for 1 MeV positrons there are several
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tens of bands within apotential well and the number of
bands increases approximately linearly with the total
energy of the particles.

According to Eq. (27) the frequencies of radiative
transitions between bands are determined by the con-
dition that the argument of the Dirac delta function,

which contains the permittivity of the medium X(w) ,

vanishes. Since, as we shall see below, the possible
radiation frequencies can lie below the K edge of the
photoeffect, the permittivity must be cal culated taking
account of the coupling of some electrons of the
medium with the atomic nucleus and can be repre-
sented in the form

. AN,
Xow) = = 1(w),

where A = 21w is the wave length, r, = €2/mc? is the
classical electron radius, n, = 2NZ/Sdy, is the average
number of electrons per unit volume of the nanotube
superlattice, and f'(w) isthereal part of the atomic scat-
tering factor [21]. Moreover, since the potential well is
symmetric and the states of transverse motion are char-
acterized by a definite parity, dipole transitions are pos-
sible only for transitions between states with different

parity.

Calculations show that 1 MeV electrons and
positrons can emit only in the ultraviolet range, where
radiation is completely absorbed in the substance itself
and it is hardly possible to observe the radiation. Elec-
trons with energy 3 MeV at zero angle of observation
0 = 0 can emit severa lines in the range 290-311 eV,
and asenergy increasesto 9 MeV radiation at even higher
frequencies 1.3-2.2 keV is possible. The detailed sponta-
neous-emission spectra depend on the population of the
energy bands, which is determined by the conditions of
entry of the particle beam into the nanotubes.

4. SCATTERING OF X-RAYS
BY A NANOTUBE SUPERLATTICE

L et an electromagnetic wave corresponding to x-ray
frequencies w propagate at a quite small angle with
respect to the axes of the nanotubes. Then, similarly to
the potential, we can introduce a permittivity x(cw, r)
averaged along the axis of the nanotubes. The longitu-
dinal component F of the electric (magnetic) field of
the wave satisfies the equation

AF+K5 = 0. (30)

Here k% = w1 + X(w, 1)] — K, k, is the longitudinal
component of the wave vector of the wave, and x(w, r)
isthe complex permittivity. The transverse components
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of the electromagnetic field can be expressed in terms
of the longitudinal components as follows:

ik, g OF, 0E,
Eo = 2B Ho= VAR S

O

for TM waves and

— L@@HZ aHD H — E<_Z

D_kZDDayV_E-)ZD [ ké

OH,

for TE waves. Here [, is a two-dimensional gradient.
The dependence of all components of the electromag-
netic field of the wave on the longitudinal coordinate z
is determined by the factor exp(—ik,z), where the possi-
ble values of the propagation constant k, are determined
by solving Eqg. (30).

We shall represent the permittivity x(w, r) as an
expansion in terms of reciprocal-lattice vectors:

X@.1) = 3 xu(@e"™".
H

L et us assume that the energy w of the photonsis much
higher than the binding energy of the K electronsin car-
bon (=283 eV). Then the rea part of the permittivity
X'(w, r) isdetermined by the interaction of photonswith
the electrons in the medium, which can be assumed to
be free. Then the explicit form of the coefficients

Xy(w) inthe expansion of the real part of the suscepti-

bility can be found as done above for the case of the
electric potential. Since the distribution (19) of the elec-
tron density in a nanotube differs only by the coefficients
from the corresponding potential distribution (2), under
the same assumptions as used in the derivation of (25)
we obtain

roA’n,

Xo(w) = —

' ' (e 0 p? O (31

Xu(W) = Xo(w)a; eXpB‘T)ZEUo(RH)-
0 4b{®?0]

Here A = 2w isthe wavelength, r, = €2/mc? isthe clas-
sical electron radius, and n, = 2NZ/Sdy, is the average
number of electrons per unit volume of the nanotube
superlattice. Theimaginary part x"(w) of the permittiv-
ity isdue to absorption of photons (primarily asaresult
of the photoeffect on K electrons) and is related with
theimaginary part of the atomic scattering factor f "(w)
by the relation

re)\zp fn
Tt

(w).

Herep(r) istheloca density of atoms, which, sincethe
K shell isrelatively small, differs from zero only at the
sites of the lattice of carbon atoms. Thus, we obtain the

X'(w,r) =
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following representation for the expansion coefficients
of theimaginary part of the susceptibility:

n rEAZpO " n n
Xo(@) = ————1"(w),  Xu(w) = Xo(00) Jo(RH),
where pg = 2N/SdR is the number of atoms per unit vol-
ume of the nanotube superlattice. The values of f"(w)
for carbon in the frequency range of interest to us are

presented, for example, in [21].
We seek the solutions of Eqg. (30) in the form

F(r) = €' Fee®".
2

As a result, we obtain a system of equations for the
coefficients F that describes the multiwave diffraction
of x-rays in a nanotube superl attice:

[—(x + G)* + (0’ = K)] Fe

(32)
+ 0022 Fe_uXu = 0.
H

The zeros of the determinant of the system (32)
determine the modes of the electromagnetic field prop-
agating freely along nanotubes or along the planes of
the superlattice. By the order of magnitude, the number
of modes localized inside a nanotube is determined by
the sguared ratio of the nanotube radius R to the trans-
versewavelength A = 1/k; = 1(w|xy *%). Itiseasy to see
that, in contrast to relativistic electrons and positrons, the
characteristic value of A5 does not depend on the parti-
cle (photon) energy w and is about 85 A for a superlat-
tice of (10,10) nanotubes. Thus, localized modes can
exist, irrespective of the value of w, only for sufficiently
large nanotube radii [10]. In this case, nanotubes can be
treated as waveguides for x-rays similarly to the
positron channeling examined above. Indeed, neglect-
ing the vector character of the electromagnetic field,
Egq. (32) differs from the similar Eq. (29) for
positrons only by the meaning of the coefficients appear-
inginit.

In nanotube superlattices, in contrast to ordinary
crystals, diffraction of relatively soft nanometer-range
x-rays is possible. We shall consider the case of sym-
metric Bragg reflection under the conditions of the two-
wave approximation of the dynamical theory of diffrac-
tion. Let a wave be incident at an angle close to the
Bragg angle with respect to the planes of the superlattice,
and, for the sake of amplicity, we shall assume that the
entrance surface is paralel to these planes.

The differentid coefficient of the Bragg reflection
from superlattice planes can be represented in the
form[22]

R®O) = [n+n?-1)""
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Fig. 7. Levels of constant differential Bragg reflection coef-
ficient as afunction of the wavelength of the incident radia-
tion and angular deflection as a function of the kinematic
direction for o polarization.

The sign in front of the parentheses is chosen from the
conditionR< 1. Heren =n' +in" isacomplex param-
eter, related to X, (w) as

nN' = (-A8sin26; + X0)/|Cl Xk,

W _ Xed, 1 x0Hd
n =—m-==
xuO  IClxa0

where C = 1 for radiation polarized perpendicular to the
plane of incidence (o polarization), C = cos26g for
polarization in the plane of incidence (1t polarization),
the kinematic Bragg angle is determined by the equal-
ity sinBg = 2w/H, and AB = 6 — B isthe angular devia
tion from kinetic Bragg direction. Another important
characteristic isthe integral coefficient

00

R = [R@A8)dAe.

The dependence of the differential reflection coeffi-
cient R on the deflection angle A6 for various wave-
lengths A for o polarization and symmetric Bragg
reflection by (1,0) planes of a superlattice of (10,10)
nanotubesisdisplayed in Fig. 7. The curves correspond
to constant values of the reflection coefficient, indi-
cated on the curves. As the wavelength increases, the
reflection maximum due to refraction at the boundary
undergoesincreasingly larger displacements relative to
the kinematic direction and is broadened. On the
whole, as the wavelength increases, the differential
reflection coefficient R(AB) decreases as a result of an
increase in the absorption in the medium, but it still
remains substantial (R = 0.3) even for very soft x-rays
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1 |
0 10 20 30
A A

Fig. 8. Integral Bragg reflection coefficient as a function of
wavelength for (1) o polarization and (2) 1t polarization.

with wavelength 15 A. The integral reflection coeffi-
cient isdisplayed in Fig. 8. It isinteresting to note that
near 20 A the reflection of a Tepolarized wave is sub-
stantially suppressed with respect to o polarization, i.e.,
a nanotube superlattice acts as a polarizer in this fre-
quency range.
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Abstract—A molecular-dynamics simulation of the behavior of atwist point defect with stretching in achain
of an equilibrium polymer crystal (“united” atoms approximation for polyethylene) is performed for immobile
and mobile neighboring chains. It is shown that such a defect in a cold polymer crystal possesses soliton-type
mobility. The upper limit of the spectrum of soliton velocities is found, and it is the same for both cases. The
maximum possible velocity of defects is three times lower than the theoretical limit of the spectrum (which is
equal to the velocity of “torsional” sound in anisolated chain). An explanation of the reason for this discrepancy
is proposed: because of the interaction of two “ degrees of freedom” of the defect (twisting and stretching) the
energy of a nonlinear wave is dissipated in the linear modes of the system, which results in effective friction
whose magnitude depends strongly on the velocity of the defect. The “boundary of the spectrum of soliton
velocities” determines the transition between regimes of strong and weak braking of defects. © 2000 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

To predict the relaxation, plastic, and strength prop-
erties aswell asthe melting temperature of crystalsitis
necessary to study localized mobile defects—devia-
tions from an ideal structure. Point structural defects
(vacancies or inclusions) are responsible for the relax-
ation properties of solids. The impossibility of directed
motion of such defects is the reason why relaxation
processes are slow in low-molecular crystals. On
account of the strong anisotropy of the properties of
polymer crystals (the atoms in a polymer chain are
bound with one another by chemical covalent bonds,
and the intermolecular interaction is due to weak van-
der-Waals forces) vacancies with breaking of intrac-
hain covalent bonds are virtually immobile. However,
such crystals can contain different, specifically poly-
mer, point defects, which are due to not the breaking of
intrachain bonds but rather the deformation of a chain
localized on asmall section of the chain.

The concepts of such defects appeared in the phys-
ics of polymer crystals after the discovery of the anom-
alously rapid dielectric relaxation of oxidized polyeth-
ylene (see the review in [1]). Analysis of a number of
possible molecular mechanisms of this process (see the
review in [2]) made it possible to identify as the most
likely mechanism the propagation of regions of twist-
ing (by 180°) with stretching (by a half-period of the
chain) that have a length of several tens of periods, in
the absence of conformational changes, along the
chains. It turned out [3, 4] that such defectsare also cre-
ated in the process of premelting of a crystal (their

energy ismuch lower than the energy of purely stretch-
ing defects—vacancies of one unit of the chain without
twisting).

The quasi-one-dimensional approximation with
immobile neighboring chains (see, for example, [5] and
the literature cited there) makes it possible to describe
a point defect as a soliton-type topological excitation
[6]—alocalized nonlinear wave propagating with con-
stant subsonic velocity aong the chain, changing the
state of the chain after it passes and therefore capable
of causing rapid relaxation in the crystal.

An approximate analytical description of static
point defects in polyethylene was proposed in [7], and
a numerica investigation by molecular-mechanics
methods was conducted in [8]. However, these works
did not consider the question of the mobility of defects
and correspondingly the role of defects in the relax-
ation of acrystal.

The problem of point defects in a polyethylene
chain surrounded by immobile neighboring chains has
recently been solved by anumerical-variational method
[9, 4] (in the “united” atoms model, in which CH,
groups are replaced by point particles). It was found
that in this case point defects possess soliton-type
mobility, and the upper limits of the velocity spectrum
for different types of defects were calculated.

But, in a more previous work [10] a molecular-
dynamics investigation of the behavior of torsional
point defects with stretching in a polyethylene crystal
was performed in the same “united-atoms’ model but
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Fig. 1. Model of a polymer crystal (polyethylene with
united atoms): parameters of the chain and the local coordi-
nates of the atoms.

with mobile molecules of the first coordination sphere,
and it was concluded from the results of the numerical
experiment that the mobility of such defectsis of non-
soliton type: they stopped rapidly.

However, the arrangement of this experiment was
such that defects could stop rapidly for several reasons.
In the first place, it was discovered in [11] that purely
stretching defects in an equilibrium crystal configura-
tion with all mobile chains in the crystal retain the ini-
tial velocitiesright up to values of the order of 0.6 times
the velocity of sound, and for high velocities they slow
down to thisvelocity but do not stop. In nonequilibrium
or unstable structures (including the orthorhombic struc-
ture, which is nonequilibrium in the “united atoms’
model of polyethylene used in [10]), requiring that the
chainsrotate in order for relaxation to occur, the vacan-
cies stop rapidly. The clearly soliton character of the
dynamics of pure vacancies led us to conjecture that
the stopping of adefect in [10] was due precisely to the
nonequilibrium nature of the initial crystal.

But, in addition, we saw in [11] that friction against
the phonon modes of mobile neighboring chains sub-
stantially decreased the upper limit of the velocity spec-
trum even for pure vacancies (from the velocity of
sound c (theoretical limit) down to =0.6 times this

Table 1. Parameters of the moddl crystal

value). The interaction of a twist point defect with
stretching with the same phonon modes can be much
stronger and can even make the soliton mechanism of
defect mobility impossible.

The purpose of the present work is to study the
dynamics of twist point structural defects with stretch-
ing in a polymer crystal with all mobile chains on the
basis of the same mol ecul ar-dynamics model asthe one
used in [11].

Our numerical model of a crystal for studying the
dynamics of point defectsis described in Section 2. An
approximate analytical description of the defectsis pre-
sented in Section 3 for immobile neighboring chains.
The results of a molecular-dynamics simulation of the
dynamics of defects with immobile and mobile neigh-
boring chains are presented in Section 4. Finaly, Sec-
tion 5 is devoted to a discussion of these results and the
conclusions.

2. NUMERICAL MODEL OF A POLYMER
CRYSTAL (POLYETHYLENE WITH “UNITED”
ATOMYS); EQUILIBRIUM CRY STAL
CONFIGURATION

We adopted the following model of a polymer crys-
tal [12] (polyethylene with united atoms; see Fig. 1):
the chains are a planar trans-zigzags; the bonds between
the atoms (point particles with mass m) are absolutely
rigid and their lengthis|; the deformation energies of the
valence (6,)) and conformational (t,) angles are

Us(8,) = 3Ko(8,=80)" M

U,(t,) = a + Bcost, +ycos3t,, ()]

the atoms separated by more than 2 neighbors or
belonging to different chains interact according to the
law

MU -U,(R), r=sR
u(r) = EQ (>R

where U, ;(r) = 4¢[(a/r)*?—(o/r)®] isthe Lennard—Jones
potential with a minimum at the point r, = 2¥%g. The

numerical values used for the constants are given in
Table 1.

Parameter Quantity References Parameter Quantity References
m 14 amu - B 1.675 kJmole [13]
lo 1.53A [13] y 6.695 kJmole [13]
6 113° [13] € 0.4937 kJmole [14]
Kg 331.37 kImole [13] o 38A [14]
a 8.370 k¥moale [13] R 2rg -
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For the model of the crystal we adopted periodic
boundary conditionsin all three directions. A rectangu-
lar parallelepiped was chosen for the working cell. The
leap-frog algorithm [15], taking account of the restric-
tions imposed by the rigid bonds [16], was used to
solve the corresponding classical Lagrangian equations
of the first kind numerically. Periodic boundary condi-
tions along the axis of the molecules makeit possibleto
follow the dynamics of a defect for an unbounded time
and those in the transverse section of the crystal, to
avoid introducing in the transverse section unphysical
boundary conditionswith arigidly fixed second coordi-
nation sphere. To prevent a soliton from affecting itself
the number of molecules in the working cell was cho-
sen so that the image of each molecule was located no
closer than in its fourth coordination sphere and the
length of the molecule—for a defect of the order of
35 chain periods ¢ long—was assumed to be 200c (one
period contains two CH, groups).

Since the length of the projection of a molecule on
its transverse section is |5 = 0.843 A and the van-der-
Waalsradii of the united atomsr, are 4.265 A = 51, the
packing of the zigzag planesin the crystal will be close
to that of cylinders. Theoreticaly, two different
mechanically equilibrium configurations are possible
(see Fig. 2). Both possess a monoclinic cell and close
energies. However, the second one is unstable and sep-
arates into two domains, each of which corresponds to
thefirst configuration[11], asaresult of relaxation. The
parameters of a stable equilibrium structure a and b
depend on the cutoff radius R. Table 2 presents data on
the relaxation of samples for different values of R. The
period along the axis of amoleculeisawaysc = 2554 A.
The density of the sampleisp = 1.155 g/cm?.

Molecular-dynamics simulation of a polyethylene
crystal in the united-atoms model has shown [11] that
the potential energy does not have alocal minimum for
an orthorhombic structure for any value of the cell
parameters. The numerical experiment reveals the
appearance of this minimum only in a model of poly-
ethyleneinwhich the CH, group isrepresented by three
spatially separated force centers. Thus, the possibility
of the existence of an orthorhombic structure in poly-
ethylene is due to the presence of side groups and not
the form of the backbone of the chains.

3. APPROXIMATE ANALYTICAL DESCRIPTION
OF A TWIST POINT DEFECT
WITH STRETCHING IN A CHAIN
OF A POLYMER CRY STAL

We shall consider the simplest description of the
dynamics of atwist defect with stretching in the chain
of apolymer crystal in the immobile-neighbors approxi-
mation using the continuum model.

The effective substrate potential generated for the
nth atom by immobile neighbors in a stable equilibrium
monoclinic lattice of a polymer crystal in the “united”
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Fig. 2. Possible equilibrium configurationsfor planar zigzag
packing: (a) stable, (b) unstable (the period of thetransverse
section of the molecules is shown; the arrows show the
direction from the nearest atom of the molecule under the
plane to the nearest above the plane).

atoms model should have two wells with different min-
ima at the points (@,, ¥,): (0, 0) and (11, ). Here @, is
theanglein acylindrical coordinate system whose axis
is directed along the axis of a molecule, Y, = (217c)u,
(u, is the longitudinal displacement from the position
of equilibrium).

Numerically, the substrate potentials obtained by
calculating the energy of the crystal with all molecules
secured except one, which can move and rotate (as a
whole) along the axis. In the stable equilibrium config-
uration of the crystal the function

V(@ Wr) = A(1—cos@,cosy,) + B(1—cos2q,) (3)

with A= 0.274 kJ/mole and B = 0.865 kJ/mole approx-
imates the substrate potential with an error of less than
10% of its maximum value. The level lines of the func-
tion (3) are shown in Fig. 3.

Adding aterm C(1 — cos4q,) with C =-0.067 kI¥mole
to the potential (3) decreases the error to 2%. We shall
discuss in Section 5, after presenting the results of the
mol ecular-dynamics simulation, how this addition can
influence the dynamics of a defect.

In our analysis we neglect the dependence of the
potential V on the third coordinate—transverse dis-
placements v, since for long-wavelength waves (with
characteristic scale much greater than the distance
between the atoms of a chain) the transverse displace-
ments of the atoms are much smaller than the longitu-
dinal displacements (see Appendix A). The conse-
guences (except for a small change in the form of the
analytical solution) of taking account of the depen-

Table 2. The parameters a and b (in A) of the equilibrium
crystalline configuration for different cutoff radii R

Parameter R=1.8rg R=2r,
a 3.998 3.980
b 7.994 7.966
No. 3 2000
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Fig. 3. Level lines of the potential surface (3) for asubstrate,
generated by immobile neighboring chains, in the (@, V)
plane. The broken line shows the “orbit” of the zeroth ana-
Iytical approximation (L/Ly, —= 0) in the solution of the
system of equations (8).

dence of the potential on this coordinate will be dis-
cussed in Section 5. Here we shall confine our attention
to the main interaction of the two basic degrees of free-
dom of an atom.

The rigid-bond condition determines the relation
between the longitudinal and transverse displacements
u and v of the atoms (see Fig. 1). Switching to the con-
tinuum approximation (which isjustified because of the
relative weakness of the intermol ecular interaction) and
neglecting dispersion and nonlinearity, which are due
to intramolecular interactions (see [17] for a more
accurate continuum description), we obtain the
Lagrangian system

Y A A T S
L _J'IO—SO|:|(')§ + IU’? —Kq)E _KL|J7 —V((P7 UJ)}’ (4)

where the constants are related with the parameters of
the numerical model of the crystal by the relations (see
Appendix B)

C 2 SO 2
o=mBSE L =miSE o
(so=9in(6,/2), cy=cos(6,/2));

Ky = 1o(B + 9y), (6)

_ st

v =t Ke (7)

Herel,, 1, and K, K, are, respectively, the inertial and
stiffness parameters of the chain—"torsional” (with
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respect to ) and “longitudinal” (with respect to ). For
our numerical values of the crystal parameters, |,/1, =
1.08 and K,/K,, = 0.29.

Thus, we have abtained avery simple model for two
coupled fields with different “stiffness characteristics’
and “inertial properties,” and the relation between them
is due only to the anharmonicity of the externa sub-
strate potential.

The Lagrangian (4) with the potential function (3)
corresponds to coupled equations describing the evolu-
tion of thefields @ and y:

| g — K@y + ASin@cosy + 2Bsin2¢ = 0,
LWy — KWy + Asingicose = 0.

Itiseasy to seethat the variables @ and Y in thelin-
earized equations of the system separate and give two
branches of the dispersion curve with two sound veloc-

ities: torsional sound Vo= ./K(pllq, =7.63km/sand lon-

gitudinal sound v, = /K /1, = 14.70 km/s. In the con-

tinuum model of a chain without a substrate these are
the maximum propagation velocities of small-ampli-
tude disturbances along ¢ and y, respectively.

Let us assume that the system of equations (8) pos-
sesses a solution in the form of a topological solitary
nonlinear wave moving with velocity v = 0 in adirec-
tion of positive values of x, i.e., in the form of “cou-
pled”’ kinks

¢ = o(x—vt), U =P(x-vt),

where the functions ¢ and  are such that astimet var-
iesfrom —oo to +oo they vary from rtto 0. Then thiswave
correspondsto akink of twisting by 180° and stretching
by a half-period of the chain. When such awave passes
along the chain all particles will move in turn into the
position of the nearest neighbor in the direction of neg-
ative values of x.

If a solution of this form exists, then the problem
consists simply of finding the correct “orbit” in the
plane. The exact solution of such a problem is known
for identical stiffness and inertial parameters of the
fields for a number of simple polynomial potentias
V(, ) (see [18] and the references cited there, as well
as [19]). In our case successive approximations to the
solution can be found assuming that the kink width L,
with respect to @is much smaller than thekink width L,
with respect to Y. Indeed, the “torsional” stiffnessK,, of
the chain is approximately 3.4 times smaller than the
longitudinal stiffness K, and the substrate is stiffer
for ¢ than for Y because of the presence of the large
term B(1 — cos2q@,) in the potentia. In the limit
L/Ly — O the orbit will approach the broken line
shown in Fig. 3. For afinite value of the parameter the
first approximation to the solution can be obtained by
assuming that in the equation for @ the kink with
respect to Y is“infinitely wide” and setting y — 172.
The equation for Y can be solved in two regions: for x —
vt <0, replacing @ by 0, and for x — vt = 0, making the

(8)
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substitution @ — T1Tand matching the solutions at the
point x— vt = 0 (thismethod of solving asimilar system
of equations was proposed in [5]). In our case all three
equations reduce to the sine-Gordon equations. After
matching the solutions we obtain

O - O
@, = 2arctan exp#ﬂ

[Lgn/1= (Vv

©)
K c
= |9 et
Lo = |78 =5.085;
Py
4arctanexpE Xt _Intan 2T
O, 1= (viv,)? -8
_ | x=vt<O
O x—vt 3 (10)
4arctanexp3 +IntanF=g1-T1t
D ’
O, 1= (viv,) 8
X—vt=0,
K Cc
= (Y= =z
Ly =[x =335;,

and the kink velocity v must be less than the lowest of
the velocities v, and v, We can see that the parameter
L/Ly=0.152 isindeed small.

When the term C(1 — cos4q,) is included in the
potentia the form of the kink with respect to @ will be
the solution not of a simple but rather a double sine-
Gordon equation.

In what follows we shall seek the solution in the
fome=@ +@+ ... =W, + P, + ..., refining the
form of the kinks. However, it isimportant to note that
this procedure, even though it leads to the dependence
of the form of the kink with respect to ¢ on the param-
etersL,, and v, and the form of the kink with respect to
y on the parameters L, and v, it cannot change the
maximum velocity of a kink. In the opposite approxi-
mation (the case of identical stiffness and inertial
parameters of the field [19]) the exact solution aso
admits arbitrary subsonic velocities of coupled waves.

Thus, if the interaction V(¢, ) is such that there
existsan “orbital” solution in the form of acoupled sol-
itary wave @— \, then for the potential (3) with asmall
value of the parameter L/L,, the form of this wave is
given approximately by Egs. (9) and (10) and the veloc-
ity v<v,<v,

In summary, a twist defect with stretching (no
breaking of covalent bonds (Fig. 4)) can move along the
chain with subsonic velocity v < v, < v, maintaining
localization and not disrupting the crystal structure out-
side the region of the defect. This means that for veloc-
ities that are not too close to the sound velocity the
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Fig. 4. Static twist point defect with stretching in achainin
a polymer crystal: the coordinates of the atoms in a chain
with adefect inacylindrical coordinate system with theaxis
directed along the axis of the molecule (see Fig. 1): the
steeper curve is for the angle @/t (¢ in radians), the more
gently sloping curveisfor Yy/1t= (2/c)u, (u, isthe longitu-
dinal displacement from the position of equilibrium); the
form of the defect after relaxation of the crystal in 15 psis
shown, and the difference of the curves shown from the ana-
lytical solution (9) and (10) does not exceed 0.005.

dynamics of defects should be of a soliton character (as
v —= V, the discreteness and the intramolecular non-
linearity can no longer be neglected, since the solitons
aretoo “narrow”).

4. RESULTS OF MOLECULAR-DYNAMICS
SIMULATION OF THE BEHAVIOR
OF TWIST DEFECTS WITH STRETCHING IN A
POLYMER CRY STAL

The following time scales are characteristic for the
system under study: the travel time of longitudinal
sound over one period of the chain is approximately
1.7 x 107 ps, the width of a defect along Y is about
0.58 ps, the travel time of “torsiona” sound over the
width of a defect along the @ coordinate is approxi-
mately 0.17 ps.

In the molecular-dynamics experiment, for one of
the molecules of a crystal, which has relaxed and
cooled down to 0.01 K, we set the atomic displace-
ments and vel ocities according to the approximate ana-
Iytic formulas (9) and (10) and observed the evolution
of a defect for a prolonged time (of the order of hun-
dreds of picoseconds).

Our analytical approximation (9) and (10) seemsto
be very rough: kinks “are not coupled.” But it turns out
that for a static kink the approximation fits the experi-
mentally observed curves (Fig. 4) with an error of less
than 0.5% of the magnitude of the jump.

In the numerical experiment we followed the posi-
tion X, and vel ocity v, of the center of mass of achain
with a defect, which were easily converted to the dis-
placement and velocity of adefect: Xy = —Nj[Xgn —Xem(t =
0)] and v g = —N; V¢ (N; = 399 is the number of atoms

No. 3 2000



520

Xger/ (c/2)
5000 -
I
4000 -
2
3000 -
3
2000 F
1000 - 4
1 1 1 1
0 50 100 150 200
t, ps

Fig. 5. Dynamics of defectsin achain on a substrate gener-
ated by stationary neighboring chains: displacement of
defects (in half-periods of the chain) with velocities (1) 0.9,
(2) 0.45, (3) 0.2, and (4) 0.1 of the vel ocity of thelower (tor-
sional) sound as a function of time.

in achain with a defect). With this conversion, because
of the thermal vibrations of the atoms (for sample tem-
perature of the order of several Kelvins) high-fre-
guency oscillations are superposed on the true value of
the velocity of adefect. These oscillations have no rela
tion to the velocity, and we filtered them out to make
the picture clearer.

4.1. Dynamics of Twist Defects with Stretching
in a Chain on a Substrate, Generated
by Stationary Neighboring Chains

We shall now describe the results of a simulation of
the evolution of twist defects with stretching with ini-

|

200

t, ps
Fig. 6. Dynamics of defects in a polymer crystal: variation
of the average velocity of defects with time with immobile
(dashed lines) and mobile (solid lines) neighboring chains;
the initial velocities of the defects are 0.45, 0.2, and 0.1 times
the velocity of lower (torsional) sound (the sharp cutoffs at
the end of the plots are not a physical effect; they are dueto
the averaging procedure).

| |
100 150
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tial velocities of approximately 0.9, 0.45, 0.2, and 0.1
timesthe vel ocity of the lower (torsional) sound (6.875,
3.437, 1.514, and 0.757 km/s) in a crystal in stable
equilibrium (Fig. 2a) with clamped neighboring mole-
cules.

As expected, soliton-type mobility of defectsisclearly
observed in the numerical experiment (see Fig. 5): they
move along the chain with constant average velocity,
traversing in 200 ps 4378, 4003, 2194, and 937 CH,
groups (half-periods of the chain), respectively. By
analogy with the dynamics of pure vacancies, one
would expect that the defects would retain their initial
velocities. However (Figs. 6 and 7), only two of the
slowest defects retain their velocities. The velocity of
fast defects decreasesin thefirst 7 psto 0.43 (from 0.9)
and 0.39 (from 0.45) from the vel ocity of sound, and in
the next 193 ps it slowly decreases to 0.34 and 0.33,
respectively.

This picture strongly resembles the evolution of
pure vacancies in the presence of mobile neighboring
chains [11], when the energy of high-velocity vacan-
cies was transferred to neighboring chains because of
the stronger interaction, and the intensity of the interac-
tion with phonon modes of the surrounding molecules
decreased sharply with decreasing velocity of the
vacancy, so that the (first) limit of the vel ocity spectrum
of purely stretching solitons (approximately 0.6 times
the upper (longitudinal) sound) in the presence of
mobile neighboring chains arose.

For the propagation of atwist defect with stretching,
the energy of a nonlinear wave in the coordinate | is
transferred into phonon modes ¢ (or, possibly, other
modes; see the discussion in Section 5) because of the
interaction of thefields ¢ and . Conversely, the energy
of the nonlinear wave in the coordinate @is transferred

Vdef/vq)

0.8F

0.6

0.4 1
L 2

02 1 1 1 1 1 1 1 1
0 50 100 150 200

1, ps

Fig. 7. Dynamics of adefect withinitial velocity 0.9 timesthe
velocity of lower (torsional) sound in a polymer crystal:
variation of the average velocity with time with (1) immobile
and (2) mobile neighboring chains (the sharp cutoffs at theend
of the plotsare not aphysical effect; they are due to the aver-
aging procedure).
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into phonon (or other) modes . The intensity of this
interaction, just asthe interaction of apurely stretching
soliton with the phonon maodes of neighboring mobile
chains, decreases sharply with decreasing velocity of
the wave, and the (second) limit of the velocity spec-
trum of twist solitons with stretching (~0.34 times the
lower (torsional) sound) arises even with immobile
neighboring chains. For initial defect velocities much
higher than thislimit the defect slows down (with large
oscillations of even the average velocity; see Fig. 7,
curve 1). These oscillations are still noticeable with the
initial velocity of the defect 0.45 times the “torsional”
sound (above the limit where the velocity decreases;
see Fig. 6, upper curve), but they are no longer notice-
able for dow defects, whose initial velocities are
remain unchanged.

4.2. Dynamics of Torsional Defects with Stretching
in a Chain Surrounded by Mobile Neighboring Chains

The simulation results for the evolution of torsional
defects with stretching with initial velocities of the
order of 0.9, 0.45, 0.2, and 0.1 times the velocity of
lower (torsional) sound in a crystal in stable equilib-
rium (Fig. 2a) with all mobile molecules are very close
to the results obtained for a sample in which the neigh-
boring chains are clamped.

Soliton-type mobility of defects is observed in the
numerical experiment: they move steadily along the
chain; the corresponding plot is very similar to Fig. 5,
the only difference being that the tangents of the slope
angles of the curves are smaller (see Figs. 6 and 7 for
the velocities) and the average velocities fluctuate
somewhat and decrease dightly even for the two slow-
est defects.

Deformations (along the axis of the molecule and
along the angle) accompanying a defect during motion
aong a chain (“shadows’) arise on the mobile neigh-
boring chains near adefect. The form of the “ shadows”
can be determined analytically in perturbation theory
for a purdly stretching defect [20]. In the numerical
experiment we took as the initial condition the atomic
displacements and velocities using the analytical for-
mulas (9) and (10) only on a chain with a defect. It is
probably because the initial conditions are not com-
pletely “correct” that the velocities of the defectsin the
steady state with mobile neighbors turned out to beless
than for immobile neighbors.

The oscillations of the magnitude and the hardly
noticeabl e additional decrease of the velocities (Fig. 6)
are the only direct conseguences of the mobility of the
neighboring chainsin the crystal. It is obviouswhy this
effect is so weak: the velocities of the defects are low,
and the interaction of the defects with the phonon
modes of neighboring chains become substantial, aswe
saw in[11], only for velocities higher than thefirst limit
~0.6v,, = 1.2v, It is interesting that near this first
boundary (with initial defect velocity 0.9v,) friction on
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the phonon maodes of neighboring mobile chainsis still
so large that the velocity of a defect decreases much
more rapidly than for stationary neighboring chains, and
it decreases immediately down to the value of the lower
second boundary, after which it stops decreasing and no
longer fluctuates (Fig. 7, curve 2).

5. DISCUSSION

In the present paper it was found by molecular-
dynamics simulation that the dynamics of twist point
defects with stretching in a (cold) polymer crystal is of
asoliton character: defects retain their initial velocities
if they lie below acertain value (~0.34 times the vel oc-
ity of the lower (torsional) sound—the theoretical limit
of the spectrum). The motion of a twist defect with
stretching in achain in a polymer crystal with veloci-
ties below torsional sound is essentially independent
of whether the surrounding chains are mobile or
immabile.

In [21] the upper limit of the velocity spectrum of
twist solitonswith stretching remained unnoticed in the
mol ecular-dynamics study of defects in a close model
of polyethylene with united atoms because the evolu-
tion of the solitons was followed for only a short time
(in the time available the solitons could traverse only
several tens of CH, groups). In [4, 9] it was found for
other values of the parameters of the model crystal
(with immobile neighboring chains) by a numerical-
variational method (it wasfound that anumerical extre-
mum of the Lagrangian of the system exists for solu-
tions in the form of a solitary wave only for velocities
below a certain limit), but the reason why this limit
appeared was not discussed.

We believe that the reason is as follows: because the
fields @ and y interact with one another energy istrans-
ferred from the nonlinear wave in the coordinate | into
phonon modes ¢ (or modes localized near a kink) and,
conversely, energy is transferred from the nonlinear
wave in the coordinate @ into phonon modes ¢ (or
modes |ocalized near akink).

We note that, of course, for the sine-Gordon equa-
tion no localized linear modes other than atrand ational
mode exist. However, in our analytical approximation
we actually “separated” the kinks, and only because of
this our equations all reduce to the sine-Gordon equa-
tions. In addition, in our theoretical analysis we con-
fined our attention to the simplest potential for the
interaction of the fields (3), which, however, approxi-
mates areal substrate to within about 10%. To increase
the accuracy to 2%, a term C(1 — cos4q,) with C =
—-0.067 kJmole must be added; this leads to a double
sine-Gordon equation in the variable ¢. Finally, multi-
ple harmonics can effectively be added to the main term
in (3) when the transverse displacements of atoms in
the zigzag plane are taken into account.

For the perturbed sine-Gordon equation, however, it
isknown that, just asin the nonintegrable ¢* model, the
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energy of the directed motion of a defect can be trans-
ferred not only to phonon but also to localized modes,
which can be excited “around” a nonlinear wave (for
certain types of perturbations see [22]; for the double
sine-Gordon equation the form of these modes was
obtained in [23]).

Thus, because the energy of anonlinear waveisdis-
sipated into linear modes of the system an effective
friction arises, and the magnitude of this friction
decreases sharply with decreasing vel ocity of the wave,
so that alimit of the velocity spectrum of atwist soliton
with stretching appears even with stationary neighbor-
ing chains. The friction against the phonon modes of
neighboring mobile chains [11] is much smaller than
theinteraction of the torsional and longitudinal degrees
of freedom of a defect, and consequently it isthisinter-
action that limits the velocity of adefect in acold poly-
mer crystal.

Of course, the “orbital” analytical approximation in
Section 3 cannot describe such a transfer of energy
from a nonlinear wave into linear modes of the system.
Further study of the evolution of theinteracting fieldsis
required (analytical “nonorbital” and numerical).
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APPENDIX A

Possihility of Ruling Out Transver se Displacements
of Atoms of a Flat Trans-Zigzag for Long Wavel engths
in a Model with Absolutely Rigid Bonds between Atoms

The condition for the interatomic bonds to be rigid
givesin the linear approximation

C0(Vn+1+Vn):SO(un+l_un)v (A-l)

where u,, and v, are the local Cartesian coordinates of
theatoms (see Fig. 1), and the third coordinate w;, forms
atriplet with them.

If we confine our attention to waves with long wave-
lengths and switch from a discrete set {u,(t)} to afield
ux, t) (and similarly for v and w), then Eq. (A.1)
becomes

2
V(X t) = %)loux(x, t).

We can seethat v ~ (c/4L)u (c isthe period of the chain
and L isthe characteristic scale of variation of u). Thus,
for long wavel engths the coordinate v can be neglected
in the zeroth approximation.
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APPENDIX B

Relation between the Constants of the Anal ytical Model
and the Parameters of the Numerical Model
of the Crystal

The inertial constants (5) can be easily obtained by
writing the kinetic energy of an atom in cylindrical
coordinates (z, r, @) with r = const.

To express the constant K, in terms of Kg, we shall
write theincrement to the angle 8, in the linear approx-
imation:

Co
8,—6p= r(un+l_un—l)
0

So
+ I_(Vn+1 + 2Vn + Vn—l)-
0

It is independent of w (in the linear approximation).
Using Eqg. (A.1) it becomes

1

en—e(): IOCO

(un+1_un—l)' (Bl)
Switching to the variable Y, = (217 c)u,, we obtain from
the formula (1) for the deformation energy of the
valence angle U4(B, — 8;) and the relation (B.1) the
expression (7) for K.

To obtainthe constant K, we note that the conforma-
tional angle 1, between the atomic planes [nth, (n +
Dst, (n +2)nd] and [(n — 1), nth, and (n + 1)st] with
slow variation (for long-wavelength waves) is 1, = TT—
Xn Xn << 1. The angle ¥, in the linear approximation
does not depend on u,, and v,, and is equal to

1

= —((W +W —W,—W,_4).
ZIOCOSO( n+2 n+1 n n l)

Xn

Inacylindrical coordinate system withr = const this

difference can be easily represented in terms of the dif-
ference of the angles @:

X% Ge (Oee Ors= @) (B2)
Using the harmonic (in the small angle x,,) approxima-
tion of the potential U,(t,,) of the conformational angle
and switching to the continuum approximation, we
obtain from Egs. (2) and (B.2) the relation (6) between
K, and the constants 3 and y for the numerical potential.
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Abstract—The magnetic anomalies due to the interaction of the energy levels of a rare-earth ion in a strong
magnetic field are studied experimentally and theoretically for the van-Vleck paramagnet PrVO,. A maximum
is discovered in the differential susceptibility dM/dH in afield H; = 45 T, where the lower energy levels cross.
The magnetocaloric effect in pulsed fields is calculated assuming the magnetization process to be adiabatic.
Thiseffect is characterized by the absence of initial heating of the samplewhen the field isturned on and strong
cooling as H. is approached. It is shown that in PrVO,, which is an enhanced nuclear magnet, the hyperfine
interaction plays an extremely important role for the magnetic anomalies associated with crossover. For another
van-Vleck paramagnet, HoVQ,, it is shown that a second crossover occurs near 310 T and the magnetocaloric
effect is calculated. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Recently, we began experimental and theoretical
investigations of magnetic anomalies occurring in
strong and superstrong magnetic fields as aresult of the
interaction of the energy levels of a rare-earth ion for
paramagnets with the tetragonal structure of zircon
RXQ,, X =P, V. In [1] magnetic susceptibility anoma-
lies and the magnetocaloric effect for YbPO, in fields
up to 400 T, obtained by an explosive method [2], were
investigated. A wide peak in the differential susceptibil-
ity dM/dH inafield H,= 280 T was observed. This peak
is due to the crossing of energy levels (crossover) of
magnetic ionsin thefield and ajump on the magnetiza-
tion curve. Assuming the magnetization process to be
adiabatic in pulsed fields, the magnetocaloric effect,
characterized by a nonmonotonic field dependence and
accompanied by substantial cooling of the crystal near
H., was calculated. In [1] it was shown for Y bPO, that
crossover is very senditive to the crystal field parame-
ters and investigation of the anomalies due to them
yields important information about the crystal field,
which, asiswell known, remains one of the main fac-
tors determining the physical properties of rare-earth
compounds.

The quite low tetragona symmetry of zircon (space

group D, = I14,/amd) and the absence of nonequiva-

lent positions for the rare-earth ion giverise to therich,
weakly degenerate spectrum of the rare-earth ion and
the large magnetic anisotropy along and perpendicular
to the tetragonal axis of the crystal. Crossing or conver-
gence of energy levels of the rare-earth ion in a mag-
netic field occurs, as our calculationsin [3] showed, for

al rare-earth vanadates and phosphates with zircon
structure. For different rare-earth zircons with the field
oriented along various crystallographic directions, one
or two crossovers can occur in average fields—up to
40 T (eg., in DyvQ,, TmVQ,, and TbhVO,), high
fields—up to 100 T (e.g., in Prvo,, ErvQ,), and
superhigh fields—up to 300-500 T (e.g., in NdVO,,
TmVO,). At lower temperatures crossover is accompa:
nied by ajump on the magnetization curve. The charac-
ter of this jump is substantially different in isothermal
and adiabatic regimes for different rare-earth zircons
and is determined by the specific nature of the interac-
tion of the energy levels. The interaction of energy lev-
elsinamagnetic field isaccompanied by anomalies not
only of the magnetic but also magnetoelastic proper-
ties, as we showed in our study of the magnetostriction
of DyVO, [4]. Several works study crossover near 12 T
for field orientation along the tetragonal axisin the sin-
glet paramagnet HoVO,: the Zeeman effect is mea
sured in [5] and calculated in [6], anomalies arising in
the elastic constants as aresult of crossover are inves-
tigated in [7], and special features of the magnetiza-
tion curves, specifically, the strong character of the
jumps at low temperatures down to 0.1 K, have been
studied in detail in static fields [8] andat T=4.2K in
pulsed fields [9].

2. EXPERIMENTAL RESULTS

In the present paper we continue the investigation of
crossover phenomena for another zircon—ypraseody-
mium vanadate PrvVO,. The measurements were per-
formed at 4.2 K by the induction method in pulsed
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magnetic fields up to 400 T, obtained by an explosive
method [2], on a PrVO, single crystal. The field rise
time in the pulse was 15 ps. These measurements are
single measurements and the measuring coils and sam-
ples are destroyed after each pulse. The signal in the
measuring coils relative to the magnetic field cannot be
completely compensated. Thus, the signal induced in
the measuring coils can be written in the form
dM dH

a Far @
where the first term corresponds to the signal from the
sample and the second term corresponds to the decom-
pensation signal of the coils. The signals V, and V, ~
dH/dt from the measuring and “field” coils (about 8000
points) were recorded during the field pulse with an
interval of 0.002 ps. These datamake it possibleto cal-
culate the curves V;(H)/V,(H), which, assuming the
decompensation signal to depend on the magnitude of
the field, are proportional, to within the constant K, to
the differential susceptibility of the sample dM/dH =
(dM/dt)/(dH/dt), and to perform time-averaging of the
signa in order to decrease the high-frequency fluctua-
tions of the background. The discreteness of the signal
measurements with step 0.002 ps canin principle result
in cutoff of the sharp peaks of the signal dM/dH, which,
as our analysis showed, does not exceed in our case
20% of the height of the peak. Sometimes, an oscillat-
ing signal, whose nature is not clear and which was
removed when the data were processed, is induced in
the measuring coils during a pulse.

The experimental and theoretical curves of dM/dH
for aPrvO, single crystal with magnetic field along the
[001] tetragonal axis are presented in Fig. 1. The sharp
maximum of the susceptibility at H.= 45T isdueto, as
will be shown below, to the crossing of the low energy
levels of the Pr3* ion. The large magnitude of the signal
in fields below the crossover field on the experimental
curve (dM/dH),,,, in contrast to the computed curve
(dM/dH),, is due to the decompensation of the coils
and the large measurement error for weak fields.

V,(H) O

3. CALCULATION AND DISCUSSION

Hamiltonian. To calculate the Zeeman effect and
the magnetic characteristics in a strong magnetic field,
we used a Hamiltonian that includes the crystal field
Hamiltonian Heg, the Zeeman term H,, and the hyper-
fine interaction Hamiltonian Hy:

H = Hee+ H,+ Hy,
Her = B2C2+BiCh+ BSCS
+By(Cy+ CL) + By(Cy + C2),
H, = g;ugHJ, Hy = Ho+Hye+Hz,
Ho=(IPI1), Hue = (JAI), H,z = giugHI.

)
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Fig. 1. (1) Experimental and theoretical (2) isothermal and
(3, divided by 22) adiabatic differential susceptibilities
dM/dH of a PrVO, single crystal for magnetic field along
the[001]-axisat T=4.2 K.

Here C; areirreducible tensor operators, Bj are crys-
tal-field parameters, g; isthe Landé factor, P isthe qua-
drupole hyperfine interaction tensor, A is the magnetic
hyperfine interaction tensor, and g, is the nuclear g fac-
tor [10-12]. The hyperfine interaction for PrVO, was
described in [13] using a spin Hamiltonian of the form

HNS = _h[y||Hz|z+yD(Hx|x+ Hyly)]

+P[If—%l(l +1)] ®)

We used such a form for Hy for quantitative calcula-
tions with the values of the hyperfine parameters deter-
mined in [13].

In [13] the structure of the lower levels of PrvVO,
was established by means of fluorescence and Raman
and infrared spectroscopy investigations. In the accor-
dance with this structure, a singlet lies 35 cm™ above
theground singlet state of the Pr3* ion and adoublet lies
~84 cm! above the ground state. The positions of all
other levels of the *H, multiplet were determined in this
work by an extrapolation procedure employing the
symmetry properties of the Hamiltonian of atetragonal
crystal field and the experimental NMR data. The data
obtained for the energies and wave functions of the Pr3*
ion enabled the authors to describe the measurements
of the nuclear magnetic resonance spectrum and the
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Fig. 2. Zeeman effect for PrVO, with H || [001] (the four
lowest levels of the ground state multiplet are shown). Inset:
Formation of agap with crossover for field disorientation by
5° from the tetragonal axis.

low-temperature initial magnetic susceptibility. How-
ever, the values of the crysta field parameters are not
presented in [13]. The crystal field parametersin PrvVO,
were proposed in [14]. They were determined from
measurements of the magnetization in the temperature
range4-40 K and in magnetic fieldsup to 5T with field
orientation along and perpendicular to the tetragonal
axis, using spectroscopic information from [13]. We
note that the wave functions that they give for al mul-
tiplet levels and the positions of the upper levels differ
substantially from those proposed in [13]. The cross-
over field with these parametersis found to be 86.5 T,
which is much greater than our experimentally deter-
mined valueH = 45T.

Using the datain [13] for the splitting of the ground
state multiplet of the Pr3* ion, the magnetic susceptibil-
ity data [13, 15], and the magnetization curves [14] as
well as our value of the crossover field T, we deter-
mined the crystal field parameters for the ion Pr3* in
PrvO,. These parameters describe well al known
experimental data for PrvQ,, and they reproduce the
wave functions proposed in [13]. These parameters are
not presented in the present work, since they differ
from the parameters established reliably for other rare-
earth vanadates (e.g., for HoVO, in [6]) by an amount
greater than is considered to be admissible for measure-
ments of parameters in the rare-earth series. The
approximate character of the structure of the upper part
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of the multiplet of the Pr3* ion in PrvVO, [13] makes it
impossible to give more accurate values for these
parameters at the present time. It is interesting that
quite small variations of the crystal-field parameters do
not change the physical essence of the phenomena
examined in the present work.

Zeeman effect and magnetization curves. Figure 2
shows the variation of the spectrum of the Pr3* ion for
field orientation al ong the tetragonal axis neglecting the
hyperfine interaction (Zeeman effect). The total split-
ting of the multiplet is ~550 cm?; only the four lowest
levelsare presented in thefigure. It isevident that cross-
ing of the lower energy levelsis observed in fields T. The
symmetry of these levelsis such (in the J, M; represen-
tation the wave function of thelowest singlet level isthe
state |4; 2S[Jwhile for the excited singlet the state is |4;
45, 00)i.e., amixture of the states |450and |00) that in a
field H || [001] may cross without the formation of a
gap. It is obvious that the calculation of the Zeeman
effect in different bases—multiplet, term, or configura-
tion—qives the same result: thereisno gap at H,, since
the symmetry of the crossing levels, taking account of
mixing with respect to the quantum numbersL, S and J,
does not change. Repulsion of these levels near cross-
over and gap formation are obtained when the hyper-
fineinteractionin amagnetic field istaken into account.
It will be shown below that when the hyperfine splitting
of the electronic levels, which resultsin a large change
of the electronic specific heat, and the nuclear specific
heat are neglected, the magnetocaloric effect in pulsed
fields cannot be calculated correctly. The large role of
the hyperfine interaction in van-Vleck paramagnets,
which are enhanced nuclear magnets and which PrvQ,,
studied in the present work, is, is well known (see,
e.g., [16]).

A disorientation of the field by severa degrees
results in an interaction of the first and second levels,
the appearance of asmall gap near H., and a shift of H,
to higher values. For disorientation angle 5° the gap is
~0.2 cm?, and the shiftisH.= 1 T (seeinsetin Fig. 2).
A calculation of the Zeeman effect for H ||[110] shows
the presence of crossover in fields =290 T. The magne-
tization curves along the main crystallographic direc-
tionsfor T=4.2 K are shownin Fig. 3. The magnetiza-
tion jumps correspond to crossings of the lower energy
levels. The magnitude of the jump (~2.5ug) is much
larger for H ||[001] thanfor H ||[110] (~0.5ug). Thefig-
ure also shows the adiabatic magnetization curves for
initial temperature T, = 4.2 K, which were calculated
taking account of the magnetocaloric effect. It is evi-
dent that for field directions characterized by crossover
the adiabatic magnetization curves can be steeper than
the isothermal curves. This attests to cooling of PrvVO,
as the crossover field is approached. For H || [100] the
adiabatic and isothermal magnetization curves are
identical; thisis characteristic for the van-Vleck char-
acter of the magnetization in the “easy” direction.
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Magnetocaloric effect. The adiabatic magnetiza-
tion curves must be calculated in order to interpret
magnetization processes in pulsed fields with quite
short pulse durations. As investigations of magnetiza-
tion processesin rare-earth diel ectric paramagnets, per-
formed in [17] on Gd;Gas0;,, show (see referencesin
[17]), if astrong magnetic field isturned on sufficiently
rapidly (with rates much higher than 102 T/s) the mag-
netization process occurs without hysteresis and there-
fore without heat exchange with the surrounding
medium through the surface of the sample. It isobvious
that the presence of hysteresiswill indicate that the pro-
cess is irreversible and hence various temperature
regimes exist as the field is switched on and off. In our
experiment the field was switched on at a rate higher
than the upper estimates, made in [17], for satisfaction
of the adiabaticity condition. Consequently, we con-
sider the process of magnetization of the PrvVO, single
crystal to be adiabatic. We note that if the field is
switched on too rapidly, the magnetization can lag the
field even in a paramagnet; this once again leads to the
appearance of hysteresis.

To calculate the magnetic characteristics the Hamil-
tonian (2) was diagonalized numerically for each value
of the field from 0 to 400 T with step AH = 0.01 T in
order to determine the spectrum and wave functions of
the Pr3* ion and the “elementary” magnetocaloric
effect AT was calculated with the field varying from H
toH + AH:

_ _t@Mp AH
AT = _TmTQCH' (4)

Here C,, is the total specific heat of a sample per for-
mula unit, including the specific heat of the lattice

121, OT f
3 kBVDrDD

(for a zirconium lattice the Debye temperature is Tp =
275K [18], v =6), and the electronic C, and nuclear C,
magnetic specific heats, calculated for each value of the
field and temperature on the basis of the el ectronic (tak-
ing account of the hyperfine interaction) and nuclear
spectra of the rare-earth ion using the standard formula

CIat =

1
Cen) = k_Tz[ [Eizel(n)D_ EEieI(n)lj]- ©)

B

The parameters of the hyperfineinteraction spin Hamil-
tonian, which were determined for PrvVO, in[13], were
used for the calculations. The computed dependences
of the specific heat of the sample on the magnetic field
for field orientation along the tetragonal axis are pre-
sented in Fig. 4 for T, = 4.2 K. It is evident that the
nuclear specific heat plays a large role close to cross-
over, where the temperature becomes comparable to the
nuclear multiplet splitting, i.e, as temperature
decreases to tenths of a Kelvin (see Fig. 5). The lattice
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Fig. 3. Isothermal (solid lines) and adiabatic (dashed lines)
magnetization curvesfor PrVO, at To=4.2K: (1) H ||[001],
(2) HI[100], (3) H [[[110].
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Fig. 4. Field dependences of the (1) nuclear, (2) electron,
and (3) total specific heats of PrvVO, with adiabatic magne-
tization along the tetragonal axis, Tg = 4.2 K. Inset: Frag-
ment of the Zeeman effect for the two lowest levels taking
account of the hyperfine interaction.

specific heat is negligibly small in this temperature
range. The el ectronic subsystem makesthe main contri-
bution to the specific heat. The maxima in the curve
Cy(H) are Schottky anomalies. The dependence Cy(H)
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Fig. 5. Adiabatic magnetization curves and magnetocaloric
effect for PrVO, with H [|[001] for different initial temper-
atures To = (1) 4.2, (2) 10, (3) 22, and (4) 24 K.

is not symmetric with respect to H.. This asymmetry is
due to the different magnitudes of the hyperfine split-
ting of the two lower levels of the Pr3* ion and can be
easily understood from the inset in Fig. 4.

Thus, with adiabatic magnetization the PrVO, sam-
ple coolsfrom Ty =4.2to T = 0.17 K near the crossover
field H; and then heatsup to T = 1.5 K (Fig. 5). For
H > H, the temperature does not increase to the initial
value. Thisis due to the different rate of change of the
magnetic part of the entropy of the system before and
after crossover. The magnetocaloric effect closetoH. is
symmetric with respect to H.. However, a further
increase of the field results in a large decrease of
(0M/aT)y, since the possibilities for decreasing the
magnetic part of the entropy are exhausted (all elec-
trons at these temperatures are in the bottom energy
level and further lowering of this level with increasing
field cannot change the entropy), and in a slower
increase of the temperature. It isinteresting to note that
this asymmetric character of the magnetocaloric effect
vanishes as the initia temperature increases above
Ty = 10 K. Above this value of T, the minimum tem-
perature which is reached with H = H. is not small
enough in order for the mechanism described above to
come into play. As T, increases further above Ty, = 22 K
the character of the magnetocal oric effect changes even
more (see Fig. 5), since the character of the adiabatic
magnetization curves changes substantialy—the impor-
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tant section near the crossover field almost vanishes. We
note that the height of the peak in the susceptibility
decreases, but the width of the peak does not change—
the peak remains narrow. The quantity Ty, is deter-
mined by the energy gap between the ground and
excited singlets for H = 0. Both characteristic tempera-
tures Ty, and T, are determined by the electronic struc-
ture, formed by the crystal field, of the rare-earth ion.
All this means that investigation of the temperature
dependences of the magnetic anomalies with crossover
should yield important information about the crystal
field.

The computed magnetocaloric effect concerns the
electronic subsystem of the compound under study.
Whether or not the temperature of the sample decreases
to the computed values depends on the spin-lattice
relaxation time. According to estimates made for rare-
earth van-Vleck dielectric paramagnets in a recent
review [16, pp. 354, 378] (see aso thecitation in [16]),
this time is 10°-107'° s. However, the variance in the
spin-lattice relaxation times is quite large for the com-
pounds studied at low temperatures. According to some
estimates made in [19] they can be 102-1073 s. If the
spin-lattice relaxation times for T < 1 K are such, then
the electronic subsystem is decoupled from the lattice
under magnetization conditions in pulsed fields with
rapid buildup of the field and it is impossible for the
electronic subsystem to cool down, shedding hest into
the lattice. In this case the larger width of the peak in
the experiment than in theory can be interpreted as
information about the spin-lattice relaxation times.

M agnetic susceptibility. We now return to the dis-
cussion of Fig. 1, whereitisevident that the peak in the
isothermal differential susceptibility, calculated at 4.2 K,
iswider than the experimental peak. This showsthat the
PrvO, sample cools down below T, = 4.2 K. The sus-
ceptibility maximum cal culated assuming the magneti-
zation process to be adiabatic is narrower than the
experimental peak. We note that if the hyperfine split-
ting of the electronic levelsis neglected, the maximum
becomes even narrower (approximately by afactor of 2).
The hyperfine quadrupol e interaction contributes to the
width of the peak because of the lifting of the degener-
acy of theenergy levelsevenin zerofield; the effect cal-
culated with existing hyperfine interaction parameters
[13] isthree orders of magnitude weaker than the effect
due to the hyperfine magnetic interaction. Taking into
account a possible disorientation of the field in an
experiment by several degrees relative to the tetragonal
axis gives negligible broadening of the peak and a shift
of the peak in the direction of high fields. The reasons
why the width of the peak does not correspond to the
differential susceptibility dM/dH, calculated assuming
the magnetization process to be adiabatic, which for
pulse duration ~15 psis difficult to doubt, as discussed
above, are till not clear. By analogy to HovO,, one
reason could be, for example, the complicated structure
of the peak, which in the situation where it is not
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Fig. 6. Adiabatic (solid line) and isothermal (dotted line)
magnetization curves and magnetocaloric effect in PrVOy,
with To = 4.2 K and H || [001], cal culated taking account of
the hyperfine interaction.

resolved results in broadening. The fine structure of the
peak at crossover in HoVO,, consisting of the presence
of two peaks and resulting in a total width of the peak
of atleast 1.5 T (in anisothermal regime at 0.1 K), has
been observed in measurementsin static [8] and pulsed
[9] fields. The nature of such a profile of the peak has
not been definitely established; the authors of [8, 9]
conjecture either theinfluence of mechanical stressesin
the sample or the existence of nonequivalent positions
for the rare-earth ion. The fine structure of the peak in
the differential susceptibility at crossover in PrVO, is
attributed in [20] to the possibility of spin ordering in a
magnetic field.

Magnetic anomalies at crossover in HoVO,. As
mentioned in the introduction, crossover in HoVO, in
fields=11.8 T oriented along the tetragonal axisand the
associated anomalies in various properties of the crys-
tal have been investigated in a number of works. How-
ever, the magnetocaloric effect was not discussed in
any of these works. The magnetocal oric effect in pulsed
fields for HovO, was calculated with the crystal-field
and hyperfine interaction parameters from [6]. The
Zeeman effectsfor PrvO, and HoVO, are very similar;
the differences are only qualitative, for example, the
gap separating the excited level from the ground state
singlet isdifferent (21 cm for HovO, and 35 cm for
PrvQ,) and, consequently, the crossover field is differ-
ent (11.8 T for HOVO, and 45 T for PrvVQ,). This sug-
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gests that the magnetocaloric effect, its evolution as a
function of the initial temperature of the sample, and
the behavior of the characteristics determining the
effect (such as the specific heat) will be similar in
PrvO, and HoVO,. Our calculations confirm this. As
an example, theisothermal and adiabatic magnetization
curves (the latter being steeper than the isothermal
curve) and the magnetocaloric effect for T,=4.2K and
direction of the field along the tetragonal axis, which
were cal culated taking account of the hyperfine interac-
tion, are displayed in Fig. 6. It is evident from Fig. 6
that in HoVO, with the field oriented along the tetrago-
nal axis a second crossover occursin afield ~310 T, in
which the magnetization of the compound increases
from the nominal value to 10pg/ion. For the hyperfine
interaction parameters used, the temperature at the first
crossover decreases to ~0.03 K and then increases to
~0.2 K; at the second crossover it decreases to ~0.08 K
and then once again tends to a constant value ~0.13 K.

4. CONCLUSIONS

We call attention once again to the substantialy dif-
ferent form of al anomalies associated with crossover
inthe singlet paramagnets PrvVO, and HoVO, and inthe
paramagnet with the Kramersion YbPO, [1]. In PrVO,
and HoV O, the susceptibility peaks are much narrower
than in YbPO,, the magnetocaloric effect is anoma
lous—thereisno initial increase of sampletemperature
when the field is switched on. The differences are due
to the different character of the magnetization of these
compounds. In PrvVO, and HoVO, the magnetization
before crossover is very small, and the magnetic sus-
ceptibility is of van-Vleck origin; in Y bPO, the magne-
tization up to the moment of crossover is quite large,
and the Curieterm isthe main termin the magnetic sus-
ceptibility. For singlet van-Vleck paramagnets PrvO,
and HoVO, the hyperfine interaction, which modifies
the electronic specific heat and forms a nuclear specific
heat through the hyperfine splitting of the electronic
and nuclear spectra, playsavery important role near the
crossover field.
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Abstract—The special features of precessional motion under ferromagnetic resonance conditionswith perpen-
dicular magnetization of thefilm areinvestigated on the basis of anumerical solution of the equations of motion
of magnetization in a (111) typeiron garnet film. Several nonlinear magnetization precession regimes exist for
fixed values of the crystallographic and induced anisotropies. Depending on the value of the magnetizing field
and the amplitude of the microwave field, precession occurs around the normal to the film with the third har-
monic of the fundamental frequency making a small or large contribution to the nutation motion and with a
small or large amplitude of the precession angle. Precession regimes around one of three symmetric directions
different from the direction of the normal are possible. Narrow ranges of the static field, where dynamical
bistability and regimes with a period which is a multiple of the period of the microwave field are realized,

exist. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The nonlinear dynamics of the magnetization in
magnetically ordered crystals is of interest because of
the diversity of the nonlinear effects that arise when a
dissipative spin system is exposed to a high-frequency
field and aso because of the possibility of attaining
large precession angles and realizing dynamica chaos
and various statistical and dynamical self-organizing
structures [1-6]. One of the main manifestations of the
nonlinear dynamics of magnetization for large angles
of uniform precession is frequency doubling, which
occurs with a linearly polarized high-frequency field.
For precession in a transverse microwave field, as a
rule, the analysisis confined to agiven nonlinear effect.
However, according to the analysis in this paper, as a
result of a definite symmetry, associated with the crys-
tallographic symmetry, of the magnetic anisotropy field
in amaterial, primarily the higher-order harmonics of
the fundamental precession frequency are manifested
in the precessional motion of the magnetic moment.
The interest in the behavior of the magnetization for
large precession anglesis also due to problems associ-
ated with the application of such precession for modu-
lating laser radiation, whose efficiency is determined
by the precession angle [7-9]. In the present paper the
specia features of the dynamics of the precessiona
motion of the magnetization in a nonlinear ferromag-
netic resonance regime in a film with cubic symmetry
and with the normal oriented along the crystallographic
axis[111] and the direction of the magnetizing field are
investigated.

Energy is transferred to spin waves from uniform
precession with transverse magneti zation by two mech-
anisms [3, 10]. The first mechanism involves a three-
magnon process in which a magnon with the wave vec-
tor k = 0 is annihilated and two magnons with wave
vectors k and —k and frequency w, = w, where wisthe
frequency of uniform precession, appear. The second
mechanism involves a four-magnon process in which
two magnons with k = 0 vanish and two magnons with
wave vectors k and —k and frequency w, = w appear.
Consequently, to attain large angles of uniform pre-
cession the precession frequency must equal the
minimum frequency of the spin-wave spectrum,
associated with the frequency of spin waves with k =
0 and direction along the magnetizing field, i.e., it is
the ferromagnetic resonance frequency. Then neither
mechanism for energy transfer from uniform preces-
sionto spin wavesisreadlized. Itisshownin[4, 11] that
precession angles @ = 20-25° have been attained at the
ferromagnetic resonance frequency in an iron-garnet
filmY, oL &, 1Fe; sGay 104, grown on a gadolinium—gal -
lium garnet substrate.

2. GENERAL EQUATIONS AND RELATIONS

Epitaxia iron garnet films are single-crystal layers
with acubic lattice. We shall assume that the crystallo-
graphic axis[111] isaligned with the x axisand the nor-

mal to the surface of the film and the axes [112] and

[110] arealignedwiththey and z axes; the polar angle
8 and the azimuthal angle | of the magnetization vector

1063-7761/00/9103-0531$20.00 © 2000 MAIK “Nauka/Interperiodica’
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Fig. 1. Free energy density versus (@) the polar angle for the
azimuthal direction @ = 0 and (b) the azimuthal angle for the
polar direction 8 = 40° for the magnetizing field H = (1) 260,
(2) 265, (3) 270, (4) 275, (5) 280 Oe.

M are measured from the x and y axes, respectively. We
shall describe the dynamical behavior of the magneti-
zation in external static H and varying h magnetic
fields, which we shall assume are orthogonal to one
another (H O h), by the equations of motion of the mag-
netization written in spherical coordinate systems[10]:

smsing < VOF 4 A 1 OF
WMsin® = V55 + Visneay’ "
GM = Aa_l:_ ia_l:
Ma6 _ Ysneoy’

where y is the gyromagnetic ratio, A is the damping
parameter, and F isthe free-energy density. Solving these
equations makes it possble to find the precession fre-
quency of the magnetic moment relative to its equilibrium
orientation and the time dependence of theangles and 6
with a fixed geometry of the applied fields and time
dependence of the external field. The resonance frequency
w, isdetermined by the expression

W = YHgs = #ne«/ FeeFl]JlIJ_FgLIJ’ (2

where the values of the second derivatives of the free-
energy density are taken for the equilibrium values 6,
and y,, obtained from the conditions

oF _
96

oF _

0, a—lp—O.
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For our orientation of the crystallographic axes the
free-energy density is given by the expression

= —M(H +h) + (K, - 2nM?)sin’0

3)
Mm.a,, 1 4 J2 3 0 (
+ Klmsm 0+ 3cos 0+ 3 sin E)cos,ecosfquD
where K, and K; are the constants characterizing the
growth-induced and crystallographic anisotropies. Sub-
stituting Eqg. (3) into Eg. (1) we can find the resonance
frequency for an arbitrary orientation of the equilib-
rium magnetization.

As follows from the relations presented, together
with the orientation and magnitude of the magnetizing
field and the induced and crystallographic anisotropy
fields, the polarization, amplitude, and initial phase of
the microwave field also have a large effect on the
dynamics of the magnetization in the precessional
motion. For small amplitudes of the microwave field
(h < H) linear ferromagnetic resonance, for which the
precession angles are small and the time dependences
8(t) and Y(t) can be found from the linearized (with
respect to the deviations of the magnetization from the
equilibrium position) equations of motion, occursat the
frequency w = w,. As the amplitude of the microwave
field and, correspondingly, the precession angle
increase, the contribution of the higher harmonics of
the fundamental precession frequency to the indicated
dependences increases and the nutation motion of the
vector M becomes substantid. In this case the linear
approximation isno longer adequate for solving Egs. (1).

A detailed analysis of the special features of the pre-
cessional motion of magnetization taking account of all
parameters determining the state of the magnetization
in the film is possible only on the basis of numerical
methodsfor solving Egs. (1). Asasimplification, the static
field H isassumed to be perpendicular to the surface of the
film, and the magnitude of the field is chosen to be such
that for given values of the constants K, and K, the equi-
librium orientation of the vector M is in the direction of
the normal (8, = 0). Then the resonance precession fre-
quency is w, = yHg«(0), where the effective fidld is deter-
mined, according to Eq. (2), by the expression

2 2

Het(0) = H-4mM + 5K ~2Kig (@)
The high-frequency field is assumed to be linearly
polarized and lyingintheyzplane, i.e.,, h OH. Inthiscase
severa regimes of precessiona motion of the magnetiza-
tion occur, and their redization is determined by the mag-
nitude of the gtatic field H and, correspondingly, the fre-
guency range of the ferromagnetic resonance.

To understand the specia features of the preces
sional mation of the vector M it is necessary to know
the energy relief given by the function F(6, ). Figure 1
shows the free energy density as afunction of the polar
and azimuthal angles. The function F(8) was con-
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Fig. 2. Projections m, = M, /M on the (a) xz and (b) zy planes of the magnetic moment, whose initial orientation is changed by
the microwave field and which reaches one of the four stationary dynamical regimes characterized by asmall precession amplitude.
The amplitudes of the microwavefield areh = (0) 0.04 and (1-3) 1.5 Oe; the orientation anglesare Y, = (1) 0°, (2) 200°, and (3) 270°.

structed for the azimuthal direction @ = 0, for which the
function F characteristically hastwo local minima. The
projection of the [001] crystallographic axis, which
makes an angle 6 = 54.7° with the normal to thefilm, is
oriented in the direction Y = 1t (i.e., in the direction of
the continuation of the indicated direction). The func-
tion F() was constructed for the polar direction 6 =
40°, closeto one of the vocal minima of the free energy
with y = 0. The function F()) has a period equal to
2173 in correspondence with the arrangement of the
magnetizing field and the three {100} type crystallo-
graphic axes. The curves 1-5 correspond to various val -
ues of the magnetizing field. The calculation of these
dependences, just as for the subsequent analysis,
employed values of the parameters that are close to
those of areal iron-garnet film with the indicated com-
position: 41M = 214.6 G, y = 1.755 x 10" (Oe s)™, A =
3 x 106 st K, = K; = 103 ergg/cm® [11]. It follows
from the curves presented that for the direction =0 =
0 (the vector M is parallel to the normal to the film)
with magnetizing field H > H, the function F(8)pos-
sesses a local minimum which becomes more pro-
nounced as H increases. The value of the field Hy can
be found from Eq. (4) with w, = 0. For the structure
chosen H, = 254 Oe. Besidesthe indicated minimumin
the direction of the normal, there are also three loca
minimathat correspond to the angles ¢ = 0°, 120°, and
240° and O = 3541°. As the magnetizing field
increases, the minima slowly shift toward the normal
and become less pronounced, vanishing for H = 275 Oe.
Analysis shows that for sufficiently low resonance fre-
quencies and weak magnetizing fields (for the experi-
mental film wy <4 x 108 s, H < 275 Oe) the precession
axisis aligned aong the normal only for small ampli-
tudes of the microwave field (h < 0.04 Oe). Then the
precession amplitude is several degrees (¢ = 2°). The
form of the magnetization tragjectory for h = 0.04 Oeis
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now substantially different from a circle because the
vector M undergoes a nutation motion with the third
harmonic of the precession frequency predominating.
As the amplitude of the microwave field increases, the
magnetization in the precessional motion tilts toward
one of three directions (depending on the orientation of
the field h in the yz plane and the initial phase of this
field), which are determined by the corresponding local
minima of the free-energy density with 6 # 0. Over
times of the order of 200-500 ns precession of the mag-
netization along a stationary trajectory with average
amplitude [@O=< 3° is established near the indicated
direction.

3. NUMERICAL ANALYSIS

The results of solving Egs. (1) numerically that
characterize the dynamics of the precessional motionin
the experimental film are presented below. Figure 2
shows the projections of the magnetic moment, m, =
Mq/M, a =X, Y, z, on the xz and zy planes. The micro-
wave field changes the initial orientation of the mag-
netic moment, as a result of which one of the four sta-
tionary dynamical regimes described above is estab-
lished. The resonance precession frequency is chosen
tobew, =1.12 x 108 s%, which correspondsto the static
field H = 260 Oe. The amplitude of the microwavefield
ish=0.04 Oe (curve0), 1.5 Oe (curves 1-3) and itsini-
tial phaseis0; the orientation angle, measured from the
y axis, is ), = 0°, 200°, and 270° (the curves 1-3). For
precession of the magnetic moment around the normal
(the curve 0) the initial phase and orientation of the
high-frequency field are irrelevant. The dashed curves
in the figure separate three sectors, corresponding to the
initial orientational angles Y, of the high-frequency
field h for which precession of the vector M around the
corresponding direction is established. For an initia
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Fig. 3. (a) theangle Wy Cversusthe orientation of amicrowave field with amplitude h= 0.5 Oe (dashed curve) and 1.5 Oe (solid curve)
in steady precessional motion and (b) projection of thetrajectory of the vector M on the yz plane with a precession regime established

near one of the three distinguished directions.

phase, i.e., whentheinitial sign of thefield h changes,
the distinguished regions of the angles ;, shift by 180°.

Figure 3a shows the dependence of the average azi-
muthal angle IpOof the vector M (t) in stationary pre-
cessional motion near one of the three distinguished
directions on the orientation ), of a microwave field
with amplitude h = 0.5 Oe (dashed curve) and 1.5 Oe
(solid curve). The establishment of a magnetization pre-
cession regime with microwave field orientation close to
the boundary of the sectors is shown in Fig. 3b (the
curves 1-3) for the angles ,, = 85°, 87°, 88° (h=0.5 Og)
and , = 99°, 100°, 101° (h = 1.5 Oe). At first, ahop by
240° occurs at the boundary between the sectors, and
precession in the position 3 replaces precession in the
position 1. As the angle (), increases further, a transi-
tion occurs to the missed position 2, where the dynam-
ical regimeissecured up to the next changein the angu-
lar sectors. When the amplitudes of the microwavefield
become sufficiently large ((h = 1 Oe), a hop by 240°
occurs and the magnetization goes around the position 2
along the open trajectory and is drawn by the high-fre-
guency fields to the next position 3. As the angle Y,
increases, the envel ope of thetrajectory becomes spiral-
shaped and magnetization precession in the position 2 is
established. In weak fields (h = Oe) a hop by 240°
occurs without the magnetization going around the
position 2. The precession regimes described above are
dueto the character of the arrangement of the four min-
ima of the free energy F(8, ) for weak static fields
(H>Hy).

Asthe static field H increases further, the three min-
ima of the function F(8, ) which lie at an angle with
respect to the normal vanish and precession occursonly
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with the axis oriented in the direction of the normal to
the sample. Figure 4 shows for various values of the
static field H and the high-frequency field h = 1.5 Oe
the projections of the stationary trajectories of the pre-
cession of the magnetic moment on the yz plane. The
orientation ), and the initial phase of the microwave
field in the cases considered do not affect the estab-
lished precessional motion of the magnetization. In the
dynamical regime arising immediately after the regime
with four possible axes of precessional motion the mag-
netization goes around the three distinguished direc-
tions described above and resonance precession with
maximum average amplitude [pO= 30° (curve 1) is
established asaresult. The form of the trgjectory of the
vector M shows that for the prescribed ferromagnetic
resonance geometry the third harmonic of the reso-
nance frequency w, predominates in the nutation
motion of the magnetic moment, and its contribution to
the motion of the magnetization is greatest precisely in
the dynamical regime characterized by the maximum
precession angle L] For static fields in the range
283.4 Oe = H = 284.5 Oe histability occurs, for which
a second stationary orbit with a small amplitude (=
10° (curve 2) is present together with the above-
described stationary orbit of precession motion of the
magnetization (curve 1). Fluctuations of the parameters
of the microwavefield, theinitial phase of thefield, and
the deviation of theinitial orientation of the magnetiza-
tion vector away from the direction along the normal
influence the redization of one of the two dynamical
sates. For satic fieldsintherange 284.5 Oe<H <285 Oe
asmall stationary orbit of precessional motion becomes
the only orbit. Bifurcations leading to regimes with a
complicated trgjectory with period T = 21d/w, arise in
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Fig. 4. Projections, on the yz plane, of the stationary precession trajectories of the magnetic moment for the static field H = (1) 283,

(2) 284, (3) 285, (4) 290, (5) 350, (6) 400, (7) 600 Ok.

very narrow ranges of thefields H; specifically, | =4 for
trajectory 3. As H increases further (Fig. 3c) and for a
fixed amplitude H of the microwavefield the precession
amplitude at first increases very little (curves 4 and 5)
and then decreases (curves 6 and 7), and the form of the
trajectory approaches a circle, i.e., the contribution of
the higher harmonics of the resonance frequency to the
nutation motion of the magnetization decreases.

For a quantitative estimate of the contribution of
various harmonics of the resonance frequency to the
nutation motion of the magnetization, we shall repre-
sent the time-dependent precession angle @(t) in the
form of the series

o) = Y @roe". (5)

The contributions of the first three harmonics for sev-
eral values of the static field H are presented in table. It
is evident that under ferromagnetic resonance condi-
tionsin a (111) type sample the third harmonic makes
the largest contribution among the higher order har-
monics (n > 0). For sufficiently strong static fields, H >
Hy, and small precession amplitudes the angle @(t) is
determined, to a high degree of accuracy, by the con-
stant angle @, = [pLand the higher order harmonics can
be neglected in the description of the motion of the

magnetization. The average precession angle @, in this
case can be approximately found from the expression

h2
cosy = 1———(IxI*+|xd*). (6)
IM

where the complex diagonal x = x' —ix" and off-diago-
nal X, = Xa —iXs, components of the high-frequency
susceptibility tensor, determining the linear relation

between the high-frequency fields and the magnetiza-
tion, are, under resonance conditions (w = wy),

o yM(}\Z—szZ) . y2M2(3)\2+2y2M2)
X WA » X WAA ’

3h,3 4, .4

L VM L 2y
Xa = "0n " Xa T Toan

where A = A% + 4y°M? [10]. Thus, the expression (6) for
the precession amplitude with H = 500, 600, and 700 Oe
gives, respectively, @, = 17.510, 12.431, and 9.639°,
which shows the high degree of accuracy of the results
obtained from Eq. (6) for strong static fields.

The above analysis of resonance precessional
motion of a magnetic moment in a (111) typeiron-gar-
net film showed that there exist severa nonlinear

Table
H, Oe @, deg O/ P ®0/ B0 O30/®
283 30.108 2.50 x 1072 1.38 x 1072 3.62x 101
300 11.463 3.20 x 1072 4.42 x 1072 1.13x 101
400 16.904 1.98 x 1073 1.25 x 1072 5.03 x 1072
500 15.721 1.09 x 1073 6.29 x 1073 2.89 x 1072
600 12.228 7.24 x 1074 4.94 x 1073 1.65 x 1072
700 9.629 413x 10 4,94 %1073 1.02 x 1072
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 91 No.3 2000
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regimes determined by the parameters of the magnetiz-
ing and high-frequency fields and by the crystallo-
graphic anisotropy field in the sample. It was shown
that for sufficiently low resonance frequencies and
weak magnetizing fields the precession axis is aligned
in the direction of the normal only for small amplitudes
of the microwave field; in the opposite case the magne-
tization tilts toward one of the three directions around
which precessional motion with average amplitude
(U= 3° isestablished. As the magnetization field and,
correspondingly, the ferromagnetic resonance fre-
guency increase, a precession regime, characterized by
the maximum amplitude [ = 30° and alarge contribu-
tion of the third harmonic of the fundamental preces-
sion frequency . to the nutation maotion of the mag-
netic moment, isrealized around the normal to thefield.
In higher stetic fields there exists arange where dynam-
ical bistability occurs; i.e., two stationary orbits of the
precessing magnetic moment that differ strongly in
amplitude ([pG= 30° and [pL= 10°) exist. Bifurcations
resulting in regimes with a complicated traectory,
whose period is a multiple of the period of the micro-
wave field (T = 21 /w,), were observed.
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L. S. Lobanovskii, |. O. Troyanchuk®*, and H. Szymczak®
8 ngtitute of Solid-Sate and Semiconductor Physics, Belarussian Academy of Sciences,
Minsk,220072 Belarus
bl nstitute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
*e-mail: troyan@ifttp.bas-net.by
Received March 28, 2000

Abstract—The purpose of this work is to establish the relation between the magnetic, electric, and magne-
totransport properties and the oxygen nonstoichiometry of the compounds Ba,(FeM0)O, (5.88 < x< 6.01). The
investigations established the behavior of the magnetization, resistance, and magnetoresistance of samplesin
this series. It is shown that the behavior of the magnetization can be described by assuming that the iron ions
become divalent (Fe** —» Fe?*) asaresult of the reduction of the samples and the molybdenum ions become
hexavalent (Mo®" —= Mo®") as aresult the oxidation of the samples. It is established that there are two con-
tributionsto the magnetoresi stance which arise as result of magnetic ordering of the intragranular interlayer and
intergranular transfer of spin-polarized charge carriers. It is inferred that electric transport in samples of this
series is determined by percolation processes between granules with metallic conductivity separated by a
dielectric interlayers. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The discovery of “colossal magnetoresistance”
stimulated the search for new materials with a large
magnetoresi stance effect in weak magnetic fields. Such
materials are required for information storage and pro-
cessing devices. In manganites a large magnetoresis-
tance effect is, asarule, attained in comparatively large
magnetic fields (H = 5 kOe). Recently there have
appeared reports that perovskites of the type
Sr,(FeM0)Og manifest alarge magnetoresi stance effect
in weak magnetic fields at room temperature [1-3].
This effect was explained by intergranular transfer of
spin-polarized charge carriers. The results obtained on
epitaxial thin films have confirmed this conclusion [4].
It has turned out that the magnetoresistance effect in
epitaxial filmsis positive, while polycrystals manifest a
negative effect, i.e., the electric resistance of samples
decreases in a magnetic field. A magnetoresistance
effect attributable to intergranular tunneling of spin-
polarized electrons is also observed in manganites.
Ordinarily, an effect of this type increases monotoni-
cally with decreasing temperature, while the intragran-
ular magnetoresistance effect is strongest near phase-
transition temperatures. The nature of the intergranular
magnetoresistance effect is a subject of debate [5-8].
Consequently, further investigations are required.

The objective of the present work isto establish the
relationship between the magnetic, electric, and mag-
netotransport properties and the oxygen nonstoichiom-
etry of the compounds Ba,(FeEM0)O, (5.88 < x < 6.01).

2. EXPERIMENTAL PROCEDURE

The Ba,(FeMo0)O, sample was prepared from
oxides and carbonates of the corresponding elements
using the standard ceramic technology in an inert-gas
atmosphere. The materials BaCO;, Fe,O;, M0,0;, and
MoO, were taken in stoichiometric proportions and
ground in an agate mortar. Next, the powder was com-
pressed under a pressure of 6 kbar into tablets, which
were synthesized in an argon flow at 1000°C for 3h and
then cooled at a rate of 100°C/h. X-Ray diffraction
data, obtained in Co K, radiation, for a sample after
synthesis showed the presence of one phase with per-
ovskite structure. The oxygen content in the composi-
tion obtained by this method was determined according
to the mass loss after reduction in a hydrogen flow to
barium oxide and metallic iron and molybdenum.

The samples were reduced at temperature 900°C in
evacuated quartz ampullae in the presence of pulver-
ized metallic tantalum, which served as an oxygen get-
ter. To oxidize the samples, pulverized LaMnO;; was
placed into the ampulla. The oxygen content was deter-
mined according to the mass loss of the sample after
reduction or according to the mass increase after oxida-
tion. After each treatment x-ray diffraction analysiswas
performed on the samples to determine the unit-cell
parameters and to monitor the single-phase composi-
tion of the samples.

The magnetic susceptibility was measured by the
bridge method and the resistance was measured by the
standard four-contact method. The magnetization was
determined with a vibrating coil magnetometer.
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Fig. 1. Magnetization versus the external magnetic field for
Bay(FeM0)O, (5.88< x< 6.01) at 8K.
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Fig. 2. Dynamic magnetic susceptibility versus temperature
for Bay(FeM0)O, (5.88 < x < 6.01).

3. RESULTS AND DISCUSSION

The chemical formulafor the sample after synthesis
was determined to be Ba,(FEM0)Os 9. According to the
x-ray diffraction dataall sampleswere characterized by
cubic symmetry of the unit cell. The x-ray diffraction
patterns contained superstructural peaks due to order-
ing of the iron and molybdenum ionsin a NaCl struc-
ture. The cell parameter a of the Ba,(FeEM0)O; oo SAM-
ple was found to be 8.068 A. Oxidation decreased the
volume of the cubic unit cell. The parameter a for the
Ba,(FEM0)Ogo; Samplewas 8.066 A. The unit-cell vol-
ume was observed to increase with oxidation of the
composition Ba,(FeM0)Os . The parameter a for the
composition Ba,(FeM0)Os g5 Was 8.086 A.
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Magnetization measurements (Fig. 1) showed that
the Ba,(FEM0)Osoy Sample possesses a magnetic
moment 3.5 Bohr magnetons per formula unit (pg/for-
mulaunit) at 8 K. The Curie temperature T, which for
this sample is 324 K, was determined from the temper-
ature dependence of the dynamic susceptibility (Fig. 2).
When the Ba,(FeM0)O; oo Sample was reduced the mag-
netic moment and the Curie temperature decreased. For
the composition Bay(FeM0)Os g the magnetic moment
was approximately 2.7pg/formulaunit, and T decreased
to 318 K. When the sample Ba,(FeEM0)Os o9 Was 0oxi-
dized the magnetization increased but no appreciable
changes were observed in T.. The magnetic moment of
the composition Bay,(FEM0)Ozy; was found to be
3.6ug/formula unit, while the Curie temperature
remained unchanged—324 K.

Theresistivity for the sample Ba,(FeEM0)Os o4 @t lig-
uid nitrogen temperature was of the order of 10°Q cm
(Fig. 3a). For al samples except Ba,(FEM0)Os o the
resistivity decreased after reduction, and for the
Ba,(FeEM0)O; g5 Sample the resistivity was of the order

of 10* Qcm. The resistivity of the composition
Ba,(FeEM0)O5 s Was essentially identical to that of
Ba,(FeM0)Os . For all reduced samplesthe resistivity
increased negligibly with increasing temperature in the
entire experimental temperature range. A kink was
observed in the temperature dependence of the resistiv-
ity near the Curie temperature.

A strong increase in the resistivity was observed
when the sample Ba,(FeM0)Os o9 Was oxidized. In this
case, the resistance increased by 4 orders of magnitude
with a negligible change in the oxygen content from
5.99 t0 6.01. The temperature dependence of the resis-
tivity also changed. Up to temperature 325 K for
Ba,(FEM0)Og o and 254 K for Bay,(FEM0)Ogz; the
resistivity of the samples increased with temperature.
However, under further heating the resistivity of the
samples decreased.

The magnetoresistance was calculated as MR =
{[p(H=0) —p(H =9kOe)]/p(H = 0)} x 100%. Thetem-
perature dependence of the magnetoresistanceisshownin
Fig. 3b. For all samples except Ba,(FeM0)Os o5 the mag-
netoresistance at liquid-nitrogen temperature was 20—
25% and decreased with increasing temperature to
approximately 1%. Then, a peak was observed in the
magnetoresistance, reaching 3-4%, at the Curie tem-
perature. The composition Ba,(FeM 0)Os o demonstrate
adecrease of the magnetoresistanceto 4% at 77 K, while
the magnitude of the peak MR at T remained in the
range 3—4%. With further reduction of this sample the
magnetores stance once again reached 20-25% at liquid-
nitrogen temperature. An interesting feature in the behav-
ior of the magnetoresistance can be seen by andyzing its
temperature dependence. The magnetoresistance of the
more highly oxidized sample Ba,(FeM0)O; 5, remained
constant near 20% in the range from 77 K right up to
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Fig. 3. (a) Electric conductivity and (b) magnetoresistance versus temperature for Ba,(FeM0)O, (5.88 < x < 6.01).

185 K. However, as the oxygen content in the samples
decreases, the low-temperature magnetoresi stance effect
decreases with increasing temperature more rapidly,
even though the difference in the Curie temperature is
very small.

Investigations of the field dependences of the mag-
netoresistance effect at liquid-nitrogen temperature
established that the magnetoresistance saturates in
fields up to 3 kOe (Fig. 4). Magnetization saturation
was observed in approximately the same magnetic
field.

Comparing the behavior of the compound
Ba,(FeM0)O, (5.88 < x < 6.01) with that of manganites
with perovskite structure shows that the compositions
Bay(FeM0)O, possess a smaller region of oxygen non-
stoichiometry. When our experimental samples were
reduced they retained a single-phase composition up to
the oxygen parameter x = 5.88, while manganites
retained a single-phase composition when the index x
decreased from 3.0 to 2.66 [9]. Therefore, the
Ba,(FeM0)O, (5.88 < x < 6.01) retains a single-phase
composition with variation of the oxygen content in
only a 2% range, while for manganites with perovksite
structure thisrange is approximately 11%.

Nuclear magnetic resonance investigations of
Ba,(FeM0)O, showed that the iron ions are in a triva
lent state and the molybdenum ions are in a pentaval ent
state [10].

We assume that two opposing factors influence the
change in the cell volume in our experimental compo-
sitions: when the compositions were reduced oxygen
atoms were removed and iron ions became divalent. In
addition, when one oxygen atom is removed two iron
ions must become divalent in order for the sample to
remain electrically neutral. The first process decreases
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the cell parameter, while the second process should
increase the cell parameter, since the radius of the ion
Fe?* is much larger than that of Fe**. According to the
experimental data, the cell volume increases on reduc-
tion. This shows that a decrease of the average oxida-
tion state of the iron ions has a somewhat stronger
effect on the change in the cell parameter.

It can beinferred that the oxidation of Ba,(FeM0)Og
is analogous to the oxidation of LaMnOj; type perovs-
kites. Then, when the samples are oxidized the valence
state of the molybdenum ions changes (Mo®* —~
Mo®*") and cationic vacancies appear. Both processes
decrease the cell volume. As mentioned earlier, for our
samples the cell parameter decreased on oxidation.

The spontaneous magnetic moment for the stoichio-
metric composition Ba,(FeM0)O; is determined by the
antiparallel ordering of the magnetic moments of the iron
ions Fe**(3d°) and the molybdenum ions Mo®*(4db). In

250 4
S5 S5
g 20 38
X 15 X
E Bay(FeMo)Os g 2 EC_’
Q10 Q
L —— 77K Ll
g5 —e— 300K =
1 1 1 O
0 2 4 6 8
H, kOe

Fig. 4. Field dependences of the magnetoresistance of a
Bay(FeM0)Og g9 Sample at various temperatures.
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this case the spontaneous magnetic moment of a sto-
ichiometric compound is 4pg/formulaunit at 0 K. This
valueis somewhat higher than the value 3.6pg/formula
unit at 8 K, which we obtained for the composition
Ba,(FEM0)Og ;. Apparently, the strong hybridization
of the orbitals of the Feand Mo ionswith the 2p orbitals
of the oxygen ions decreases the effective magnetic
moment of these ions.

Reduction of the sample Ba,(FeM0)Os oo decreases
the spontaneous magnetic moment per formula unit as
result of a change in the electronic configuration of
some iron ions from Fe**(3d®) to Fe**(3d°). The mag-
netic moment of Fe?*(3d®) ions is smaller than that of
Fe**(3d°) ions. Hexavalent molybdenum ions are dia-
magnetic. Conseguently, oxidation of Ba,(FeEM0)Oq
should increase the spontaneous magnetic moment.
The decrease in the Curie temperature on reduction of
the samples is probably due to the fact that the
exchange interaction Fe?*—O-Mo® is weaker than the
exchange interaction Fe**-O-Mo°*.

Reduction increased the electric conductivity of the
samples (Fig. 3a) despite the appearance of oxygen
vacancies, which are structural defects and should limit
the mobility of charge carriers. This tendency could be
due to the disruption of the ordering of the Fe** and
Mo®* ions. In strongly reduced samples we observed a
large decrease of the intensity of superstructural lines,
which are due to ordering of iron and molybdenum
ions. It is well-known that perovskites containing only
Fe* ions are good dielectrics. When the oxygen con-
tent exceeded the value corresponding to the stoichio-
metric composition the resistance increased sharply.
Theform of the temperature dependence of theresistiv-
ity (Fig. 3a) can be interpreted assuming that the con-
ductivity of strongly oxidized samplesis due to perco-
lation processes. Apparently, the samples consist of a
main metallic phase and diglectric interlayers. At some
locationsthe dielectric interlayers are weakened, which
results in percolation conductivity along the metallic
phase. When the samples are oxidized the surface com-
position of the granules probably changes radicaly
first. This is confirmed indirectly by the fact that
strongly oxidized samples became brittle.

Investigations of the magnetotransport properties
shows that strongly oxidize samples are most promis-
ing for practical applications, since the magnetoresis-
tance effect in such samples remains large at compara-
tively high temperatures. Thistendency is probably due
partialy to the percolation character of the electrical
conductivity of these samples. The magnetoresistance
effect and the magnetic properties are correlated with
one ancther. The more the exchange interactions in
Ba,(FeM0)O, are weakened, the more rapidly the mag-

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 91

LOBANOVSKII et al.

netoresistance effect decreases with increasing temper-
ature. The maximum of the magnetoresistance effect
near the Curie temperature is probably due to the same
processes as in metalic TI,Mn,O, with pyrochlore
structure [11]. In TI,Mn,O, the conductivity type like-
wise remains unchanged at the point T, but the magni-
tude of the magnetoresistance effect is several times
larger [11]. This could be due to the fact that
Bay(FeM0)Og isaferrimagnet, while TI,Mn,O; is char-
acterized by parallel ordering of the magnetic moments
of al manganese ions. It is well-known that ferrimag-
netic spinels of the type MnFe,O, also manifest amax-
imum magnetoresi stance effect near the Curie temper-
ature, though its value is very small even compared
with the analogous quantity for Ba,(FeM0)Og type fer-
rimagnets.

The reasons for the sharp decrease of the magne-
toresistance effect in the compositions Ba,(FeM0)Oq
are not known. A complex of spectrometric investiga-
tions is now being conducted in order to determine the
nature of the unusual behavior of this compound.
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Abstract—A theoretical model making it possible to calculate the characteristics of metal—insulator—size-
quantized film tunneling junctionsin awide range of voltagesis proposed. The conditions for observing a geo-
metric resonance in the differential tunneling conductivity are modeled, and the influence of temperature on the
resonance oscillatory structureisinvestigated. It is shown that the geometric resonance is not the only possibil-
ity for manifestation of standing wavesin real nonuniform films. For one polarity of the voltage resistance peaks
which are stable with respect to temperature smearing can appear. Moreover, quantization of the spectrum asa
whole changes the behavior of the curve a(V), shifting its minimum by afinite amount relative to zero voltage.
It isinferred that this effect, which does not require any specia conditions in order to appear, can serve as an
indication of the presence of standing waves in one of the electrodes. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The observation of size-quantization of electron
waves in thin metallic films is one of the most remark-
able achievements of electron tunneling spectroscopy
[1, 2]. Inthe course of theseinvestigations, theideathat
effects of thiskind are impossible in the characteristics
of tunnel junctions changed. The problem wasthat even
negligible changes in thickness (of the order of several
angstroms, which are unavoidable in real films) should
change the position of the energy levels by an amount
comparable to the splitting between the levels and in
consequence the effect under study should unavoidably
be washed out. However, as shown in [1], because the
thickness d of a nonuniform polycrystalline film can
vary only discretely, d = Na (aisthelattice constant and
N is an integer), so-called commensurate levels, whose
energies do not depend on the thickness, exist in thin
films. Subsequent detailed experimental investigations
made it possible not only to show, very reliably, the
existence of commensurate levels in various materials
(Au, Mg, Pb, Bi) but also to determine, on the basis of
the data obtained, a variety of electronic characteristics
of an experimental film [2—4]. For example, the posi-
tion of certain singular points, located far from the
Fermi level, was found in [4], and the slope of the dis-
persion curves near these points was also found. Size-
quantization under conditions of high hydrostatic pres-
sures (up to 10 kbar) was investigated in [5, 6]. Thus,
by the beginning of the 1980s the effect under discus-
sion was aready a well-studied phenomenon and was
described in detail in a number of monographs[7-9] as
a promising method for investigating the electronic
characteristics of solids. On the other hand, despite
such a much-promising beginning, it must now be
stated that the hopes were by no means fully justified.
In our view, the effect has not found the expected appli-

cationsin studying new materials, such as, for example,
metal-oxide compounds. We believe that the main rea-
son for this situation isthat all preceding investigations
were limited to the use of simple theoretical construc-
tions, capable of predicting primarily only thelocations
of the experimental features on the voltage scale. In the
present paper we present atheoretical model, which, in
our view, gives the most complete possible description
of the experimental situation. It makes it possible to
calculate in a wide range of voltages (of the order of
several volts) the characteristics of atunneling contact,
taking account of all two-dimensional bands of the
quantized electrode that lie below the Fermi level and
al bands of any importance above the Fermi level.

2. FORMULATION OF THE MODEL

Let us consider a tunneling contact in which one
electrodeisan ordinary Fermi metal. For simplicity, we
assume that the second electrode is made of the same
material, but because its thickness L is small (severa
hundreds of angstroms) size-quantization occurs in it,
i.e., the wave number k, in a direction perpendicular to
the plane of the barrier and therefore the kinetic energy
component E, in thisdirection can assume only discrete
values[7]:

Enz

_ (hk)® _ (h)? 2
omL>  2mL® ¢y
n=123,..
(the generally accepted notation is used in this expres-

sion). The electronic spectrum of the size-quantized
electrode is quasicontinuous and consists of two-
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dimensional bands—planes perpendicular in reciprocal
space to the axis k.

(1k,)°

En(k||’ Enz) = Enz+ om

2
where k; isthe component of the wave vector parallel to
the tunneling plane and varies continuously. We shall
assume that the potential barrier separating the elec-
trodes in the tunneling structure is a trapezoid with
heights ¢, and ¢, and thickness d. When a bias voltage
Visapplied to one of the electrodes the form of the bar-
rier changes as

Wz V) = ¢+ (. —eV—@)Z/d. ©)

Let us apply abias voltage V to the size-quantized film
and calculate the contribution J,(V) of the nth band to
the total tunneling current J(V). We note that the trans-
mittance of the tunneling barrier depends only on the
perpendicular component of the kinetic energy E, and
does not depend on the parallel component E;, so that
all electrons in the nth band which have the same per-
pendicular energy component E,, possess the same tun-
neling probability P(E,,, V). For atrapezoidal barrier [10]

o A
P.(E,» V) = exp—————
1( ) pD G-V —0,

(4)

%[ (- eV —Er)’— (@1~ )] E;

where A, = 4./2md/3h (the barrier height ¢ and the
energy E,, in this formula are measured from the con-
duction band bottom). We shall assume that tunneling
is elastic and specular, i.e., the component k; of the
wave vector paralld to the barrier and the total energy
E of the tunneling electron are conserved. We note that
under these conditions the electrons lying in the recip-
rocal space of the initial electrode in the same plane
k., = const will lie in the reciprocal space of the oppo-

site electrode also in the same plane k;,, = const (when
the Fermi energies are the same E¢ = E¢_, their ener-

giesarerelated by therelation E,,, = E,, + €V). We note
that although the spectrum of the opposite electrode is
continuous, only the electrons lying in the plane E;,

can participate in the tunneling process and contribute
to the reverse tunneling current, since allowed statesin
the plane E,, exist only for them in the first electrode.
Thus, even though the spectrum of the opposite elec-
trode is continuous on the whole, the spectrum of the
tunneling electrons consists of two-dimensional bands.
In contrast to “real” stationary bands of the quantized
electrode, when a voltage is applied these “imaginary”
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bands will move aong the k-axis, satisfying the rela-

tion k;,, = ,/2m(E,, + eV) /A. The number of electrons
in the nth band is

dk,dk,
(em?’

N = 2f [f(E By T) (5)

where f(E,,, E, T) is the Fermi distribution function
(the factor of 2 takes account of the fact that each state
is doubly spin-degenerate). Since all electrons belong-
ing to the same band have the same group velocity v,,,
we find the contribution of the nth band to the current
incident on the plane of the junction as

IVV) = ev,,N
ko, (6)
(2m)?*

= 4T[eanIf(EnZ, E,T)
0

Multiplying this expression by the barrier transmit-
tance P(E,,, V) and by the probability that thefinal state
in the opposite electrode is not occupied, we find the
contribution of the nth band to the direct tunneling cur-
rent:

‘]ln(V) = 4T[eVnZP1(EnD V)
xJ’f(EnZ, Ep M[1-f(E,,+eV,E, T)] ﬁk! @)
! (2m)

Similar arguments for the reverse current lead to the
expression

Jin(V) = 4mev,Py(Ey, V)

00

x J’f(EnZ +eV, E, D1~ f(E,, E;, 1] kdky -~ (®)
0

(2m)?

For simplicity we shall assume that the group velocities

v [Ee o
m

are approximately the same (this assumption is obvious
for small bias voltages, and for large €V, since the
reverse current decreases rapidly with increasing volt-
age, it does not lead to a noticeable error). The tunnel-
ing current J, from the nth band is the difference
between the direct and reverse currents:

2(E,, +eV)

3V) = I, (V) = Ji(V) = ﬁnithETzPl(Enz, V)
TU

00

XJ'[ f(E.,,+eV,E, T)-f(E,, E, T)dE, 9)
0
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g
4

H _
- 1+exp[_EnT<—TEF} il
E.. V),
[l Enz_EF+eV:|Dl( nz V)
O

+ exp [—
O kT O

= C./E,KTIn

where C = ./2me/mi2. Differentiating the expression
obtained with respect to the voltage, we find the contri-
bution of the nth band to the differential tunneling con-
ductivity

0,(V) = 01p(V) + 024(V), (10)
where
0:n(V) = CJEKT
0 14 exp| -E= ] 0
y InD KT [(OP,(E,, V)
mep[ Euzferevi O
U
KT g
0,(V) = eC.JE,
0 E.,— EF+eV|:|
expD TD
X Pi(Enz V),
0 E,,—Eg+ eVD
1+ exp TD
dP,(E, V
P ) = ol(g,-30,-ev +2E)
P,(E, V
X /(pz—eV—EZ'l'ZA[((pl—EZ)S]m.
- — WY1

Figure 1 (curve 1, negative bias voltages) displays
the dependence o,,(V) for the band E,,, lying below the
Fermi level E. Its behavior can be understood by tak-
ing account of the fact that the first term, 0,,(V), in
Eq. (10) is determined by the change in the transmit-
tance of the tunneling barrier and can grow monotoni-
cally when abias voltage V is applied. The increase in
thefirst term, o,,(V), is due to the decrease in the num-
ber of reverse electrons tunneling into the band under
study. This decrease is due to the fact that, as already

noted, the plane E;,, on which the reverse electrons are

located moves, as voltage increases, along the k;-axis.

A region populated with the largest number of reverse
electrons—the section of this plane by the Fermi
sphere—decreases in size. For voltage eV = E: — E,,,
which corresponds to the plane indicated moving out-
side the Fermi sphere, the reverse current virtually van-
ishes, and the term due to this current in the conductiv-
ity decreases abruptly to zero. If the plane E,, lies at a
distance E,, — Er > KT from the Fermi surface, then the
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Fig. 1. Contribution of the two-dimensional band to the dif-
ferential conductivity: 1, E,, < Eg (E,, = 0.7 meV, Eg =
1.2meV); 2, By, > Er (E,; = 1.35 meV). Positive polarity
corresponds to electron tunneling from the massive elec-
trode into the band under study, negative polarity corre-
sponds to tunneling from the band. The parameters of the
squarebarrier are: d=10A, ¢, = ¢, = 1 V. Thetemperature

T =77 K. The computational step h =1 meV.

contribution of this band to the conductivity can be
assumed to be zero since the population of the band is
small (Fig. 1, curve 2, negative voltages).

When a negative voltage is applied to the massive
electrode the “imaginary” bands of the massive elec-
trode move toward the center of the Brillouin zone, E;,, =
E., — €V, while the planes from which the reverse elec-
trons tunnel are stationary. As a result of this motion,
the dependence of the barrier transmittance on the bias
voltage P,(E,,,V) in this case differs somewhat from

Eq. (4):

0 A
P,E.,V) = expi— 23—
o ) pg—(pl “ev—_o,
(11)

% [ (01— En)’ = (@2~ Enp+ V)] Ex

Arguments similar to those presented above yield an
expression for the contribution of one band to the tun-
neling current:

J,(V) = C.JE,,—eVKT

0
E,—E-—eV
el et
kT (12)
x In D %DZ(Enzv V)
E 1+ exp[_ﬁ: 0
0 kT 0
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Fig. 2. Differential conductivity o(V) of a metal—insulator—
quantized film, uniform over the thickness L = 500 A, tun-
neling contact. It is assumed that the el ectrodes are made of
a hypothetica metal with Ex = 4 eV and lattice constant a =
2 A. The height of the square potentia barrier ¢; = ¢, =4 €V,
the thickness d = 10 A. Curve 1 correspondsto T = 4.2 K,
curve 2 correspondsto T =77 K (curve 2 is shifted upwards
relative to curve 1 by 0.005 arb. units). The computational
step h=2meV.

Differentiating Eq. (12) with respect to the voltage V
we find an expression for the tunneling conductivity:

O'n(V) = O-C*‘»n(V) + o-4n(V) + O-5n(V)1 (13)

where
eC
03,(V) = —————KkT
: 2. [E—eV
O _av._ O
Bl + exp[———-——————--EnZ If'l\'/ EF} 0
Int e PAE V).
1+ exp[— nz Fi|
O ad
O kT O
0,(V) = eC,/JE,,— eV
N E.,,—¢eV- EFIZI
el T =
X PZ(Enzv V)1
1+ DEnZ—eV—EFD
T
0s5,(V) = —eCKT JE,,— eV
D + exp|:_EnZ— eV - EFi| E
kT |:BPZ(EnD V)
x N3 B EV .
B 1+ exp|:_Enz_ EFi| E
O kT O
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If the “imaginary” band of the massive electrode with
V =0 intersectsthe Fermi sphere, E,, < Eg, thenright up
to voltages eV = E,, the dependence o,(V) is a mono-
tonically decreasing function (Fig. 1, curve 1, positive
polarity). Thisisaconsequence of the fact that theindi-
cated plane moves, when a voltage is applied, in the

direction opposite to the k;-axis, and the barrier trans-

mittance of electrons lying on it decreases. As the cen-
ter of the Brillouin zone is approached, eV = E,,, the
differential conductivity tends towards minus infinity.
Itisobviousthat for eV > E,the “imaginary” band van-
ishes and the contribution to the differential conductiv-
ity becomes zero. If the “imaginary” band does not
cross the Fermi surface initialy, E,, > Eg then it
remains essentially empty right up to voltages eV =
E., — Er and consequently its contribution to the con-
ductivity is negligibly small. At the moment this band
touchesthe Fermi surface, eV = E,, — Ef, electrons start
to occupy it, and thisis reflected in the conductivity as
a jump, whose sharpness depends on the temperature,
after which the contribution to the conductivity, just as
in the preceding case, becomes a monotonically
decreasing function.

We note that Egs. (10) and (13), though compli-
cated, contain only elementary functions, i.e., we are
dealing with avery unusual case where the calculation
of the tunneling conductivity does not require any inte-
gration. This situation makes it possible to take into
account the contributions from all bands lying below
the Fermi level and all bands of any importance above
the Fermi level, whose number n in real nonuniform
metallic films can be very large:

o(V) = ZGn(V, E.). (14

Figure 2 shows curves of the differential conductiv-
ity calculated for a square potentia barrier ¢, =¢,=4¢eV
(6 = @ — Ep) with thickness d = 10 A (curve 1 corre-
sponds to temperature T = 4.2 K, and curve 2 corre-
spondsto T = 77 K). It is assumed that both electrodes
are made of the same metal with E- = 4 eV, but one
electrode consists of athin ideal uniform metallic film
of thicknessd =500 A, whilethe geometric dimensions
of the second electrode make it possible to assume that
its electronic spectrum is continuous. For definiteness,
we assume that the positive polarity corresponds to
electron tunneling from the massive eectrode. As
expected, features occur along the entire curve o(V)
(curve 1, Fig. 2). As temperature increases, these fea-
tures wash out and an oscillatory structure is observed
along the curve o(V), and the amplitude of the oscilla-
tions increases with the voltage (curve 2, Fig. 2).

Figure 3 (curve 1) shows a section of the differential
conductivity calculated for positive polarity. A number
of sharp conductivity dips, which appear at the moment
the “imaginary” band approaches the center of the Bril-
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louin zone, are aso noticeable on this section together
with a step structure. We note that thisresult in itself is
very unusual, since it is well known that electrons
located close to the Fermi surface make the over-
whelming contribution to the tunneling current, but as
eV approaches E,, the contribution from the nth band,
which is negligibly small compared with the contribu-
tion of the lower-lying bands to the tunneling current,
decreases so rapidly that the corresponding term in the
differential conductivity o(V) is larger than all other
terms in Eq. (14). The fact that the contribution from
the lower-lying bandsis negligibly small isreflected in
the fact that the corresponding dips in the conductivity
are, as a result, extremely narrow in voltage even
though their amplitudes are infinitely large. At first
glance, the possibility of observing these features
experimentally is very problematic, since any of three
factors—temperature, modulation, and finite life-
time—can completely wash out the effects under dis-
cussion. However, as one can see from Fig. 3 (curve 2),
the resistance peaks are essentially unaffected by the
temperature, while the structure which consists of wide
steps and dominates at low temperatures completely
vanishes at high temperatures. Thus, paradoxically, the
temperature smearing should make it possible to
observe sharp resistance peaks, since it washes out the
structure which consists of wide conductivity steps and
dominates at low temperatures. The finite lifetime of
the quantized states, T = A/I", was taken into account by
replacingin Eq. (13) E,, by E,, + il and calculating the
real part of the tunneling conductivity Re[a(V)]. The
calculations showed that the resistance peaks gradually
decrease as I increases, and they vanish completely for
=3 meV (Fig. 3, curve 3).

Figure 4 shows the computational results for the
tunneling conductivity of a nonuniform film, whose
thickness L variesfrom 470 to 530 A around an average

value L, satisfying the Gaussian distribution,

O ra(L-L)7°0
W(L)Dexpg—[ - }E

Following [3], it was assumed that a = 1/6. We can see
on curve 1 that, in compl ete agreement with the discus-
sion presented above, the oscillator structure remained
only in voltage ranges centered around the values 0.178
and 0.777 V, for which the geometric-resonance condi-
tion (1) is valid, respectively, for the values §Q = 2/3
and §Q =5/7 (§Qisanirreducible fraction) [3, 7]. As
expected, the resonance structure corresponding to
SQ = 5/7 is much less pronounced than the structure
corresponding to §Q = 2/3. For other bias voltages on
the tunnel junction the contributions from various val-
ues of the thickness L mutually cancel. It should be
noted that the commensurate states are most strongly
manifested when they lie outside the Fermi sphere. For
positive voltages two resonance series appear in Fig. 4
(curve 1); for negative voltages only one series appears.

a(V)/a(0)

0 0.1 02 Vv,V
Fig. 3. A branch of the curve of the differential conductivity
a(V), corresponding to electron tunneling from the ordinary
electrode into a quantized film which is uniform over the
thickness L = 500 A. It is assumed that the electrodes are
made of ahypothetical metal with Eg =1 eV and | attice con-
stant a=2 A. The height of the square potential barrier ¢4 =
d, =2eV, andthethicknessd = 10 A. Curve 1 corresponds
toT=4.2K, I =0; curve 2 correspondsto T=77K, I =0;
curve 3 correspondsto T=77 K, I =3 meV (curves 1 and 2
are shifted upwards by 0.04 and 0.02, respectively). The
computational step h = 0.5 meV.

0, arb. units

0.18
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0.12
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0.08 L
-1.0 -0.5 0 0.5 1.0

V.,V

Fig. 4. Differential conductivity o(V) of a metal—insulator—
quantized film (nonuniform over thickness) tunneling con-
tact. It is assumed that the electrodes are made of a hypo-
thetical metal with Ep = 4 eV and lattice constant a=2 A.
Thefilm thicknessvariesfrom 470 to 530 A and satisfiesthe
Gaussian distribution W(L) O exp{{a(L — L)/L]2}, L=
500 A, and o = 1/6. The parameters of the square potential
barrier are: d=10A, ¢, = ¢, =4 eV. Curve 1, T= 4.2K,
curve 2, T = 77 K (curve 2 is shifted upwards relative to
curve 1 by 0.01 arb. units). The computational step h =
2meV.
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The high sensitivity of the computed curvesto the tem-
perature smearing, which makes it impossible to
observe the resonance structure at nitrogen tempera-
tures (Fig. 4, curve 2), is another unexpected result. We
indicate one other feature in the behavior of o(V): cal-
culated for a symmetric square barrier, assuming the
Fermi energies are the same on both sides of the tunnel
junction, this curve is strongly asymmetric. Its mini-
mum is shifted along the voltage axis by the amount
V4. Such shifts of the differential conductivity curve
were investigated in detail in [10, 11] and were attrib-
uted exclusively to the asymmetry of the potential bar-
rier. It was shown in [12] that together with the asym-
metry of the potential barrier the differencein the Fermi
energies of the materials of the edges of the tunneling
junction can also result in an asymmetry in the differ-
ential conductivity. We underscore once again that in

our case E¢ = E¢ , the potential barrier is square, ¢, =

¢,, and therefore the effect under discussion is entirely
due to the presence of size-quantization in one of the
electrodes. Thislarge-scale effect is stable with respect
to an increase of temperature (see Fig. 4, curve 2). In
our view, of all the effects associated with the presence
of the electronic standing waves, the latter promises to
be the simplest to detect.

3. CONCLUSIONS

A theoretical model making it possible to calculate
the voltage-dependence of the tunneling current and
tunneling conductivity for atunnel junction where size-
guantization occurs in one of the electrodes was pro-
posed. The minimal number of working parameters
used in the model (the height ¢ and thickness d of the
barrier, the Fermi energy Er, and the lattice constant a
of the size-quantized electrode) gives hope that it can
be used successfully in experimental investigations. It
was shown that together with the well-known oscilla-
tory structure, which is due to two-dimensiona reso-
nance bands, additional effects can appear in the tun-
neling conductivity. For example, the presence of indi-
vidual two-dimensional bands with tunneling of
electrons from the quantized electrode can be mani-
fested in the form of sharp isolated resistance peaksin
the curve o(V). Moreover, the differential conductivity
o(V) should be, on the whole, asymmetric relative to
zero voltage and possess a minimum shifted along the
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voltage axis by the amount Vg,. A negative feature of
these new effectsisthat they are insensitive to the tem-
perature. As far as the last effect is concerned, being
large-scal e with respect to voltage it should be sensitive
to modulation smearing and to smearing due to the
finiteness of the lifetime. On this basis there is every
reason to believe that the observation of the latter effect
is a necessary indication of two-dimensional quantiza-
tion in experimental samples.
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Abstract—Tunneling experiments were performed on ceramic samples with the composition Ly gSrg sMnOs,
manifesting negative magnetoresistance. Two types of contacts were studied: symmetric (break junction type)
and asymmetric ceramic—insulator—metal contact. A high magnetic-field sensitivity of the conductivity o(H) of
the contacts was observed even when only one of the electrodes was magnetic. The effect was explained by the
existence of spin-polarized localized statesin the tunneling barrier. Their appearance was attributed to the for-
mation of an oxygen-depleted, magnetically two-phase state of localized ferromagnetic nanoregionsin an anti-
ferromagnetic dielectric matrix in the near-contact region. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Manganese oxides R, _,A,MnO; (R = La, Pr, Nd
ionsand ions of other trivalent rare-earth elements, A =
divalent Ca, Sr, Ba, Pb ions (see [1-4])) are the most
widely studied materials whose resistive properties are
highly sensitive to magnetic fields. The relationship
between the magnetic and electric characteristics of
these manganites is largely determined by the dopants
A and the oxygen stoichiometry. For sufficiently high
degrees of doping (x = 0.2-0.6), as temperature
decreases, the compounds R; _,A,MnO; transform into
the ferromagnetic phase, where they manifest metallic-
type conductivity. The magnetoresistive effect in such
compounds (upto 100%ina6 T field) is observed near
the ferromagnetic transition. It isusually determined as
the relative change in the resistance Ap/p(0) = [p(H) —
p(0)]/p(0), where p(0) and p(H) are the resistivities,
respectively, in azero magnetic field and in afield H.

The properties of R;_,A,MnO; samples are aso
very sengitive to a change in the oxygen stoichiometry.
Specifically, the composition La, Ca,,MnO;_; is fer-
romagnetic with & = 0 but antiferromagnetic with & =
—0.2 [5]. The magnetization of samples with low oxy-
gen content exhibits, on cooling in zero field, a peak
characteristic for the spin-glass state. As the oxygen
deficiency increases, the samples demonstrate intensifi-
cation of coercivity [6]. In systemswith an oxygen defi-
ciency (polycrystaline LaygBay3sMnO;_5 [7] or

LayePgsMnO;_5 films [8]) the magnetoresistive
effect intensifies as the oxygen content decreases.

The anomalies observed in [6] for the magnetic
properties are similar to those observed in ferromag-
netic granules embedded in anonmagnetic matrix. This
enabled the authors of [6] to assume that such mangan-
ites contain small ferromagnetic clusters (<70 A in
size) in a nonferromagnetic matrix. Asis well known
[1], the model of a magnetically two-phase state of
lanthanum manganites is an attempt to explain the
nature of the colossal magnetoresistive effect near the
Curie temperature. For oxygen-stoichiometric com-
pound Lay gSr, s,MNO; the magnetically two-phase state
can arise as aresult of electronic phase separation. The
existence of this state is confirmed by the fact that the
spontaneous magnetization at 4.2 K of the compound
Lay7Srp3Mn0O;sis, according to the data of [9], lessthan
expected for total ferromagnetic ordering. Specificaly,
it is 95% of the latter. The investigations performed in
[10, 11] also attest to the possible appearance of amag-
netically two-phase state. This makes it possible to
explain a variety of properties of the single crysta
L&y 7SrpsMnO; which are manifested near the Curie
temperature [12]: sharp increase of the thermal expan-
sion coefficient, maximum of the modulus of negative
volume magnetostriction, and growth of the resistivity.
The distinguishing feature of the behavior of such spin
glasses—the presence of a susceptibility peak in weak
fields (H < 100 Oe)—is observed in investigations of
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the properties of the manganite  series
Ro7Cay3-xS,MnO; (R = Pr, x =0.10, 0.05, 0; R = Nd,
x=0)[13].

The weak binding of oxygen with the lattice and the
ease with which oxygen diffuses have very important
consequences for the formation of near-surface layers
in manganite compounds as well as the formation of a
transition contact layer between the materia and the
film deposited on it. Such an oxygen-deficient layer can
also occur onintergrain boundaries of a polycrystaline
material, which will aso influence magnetoresistive
effects in the samples. The most informative investiga-
tions of the electric properties of such near-surface lay-
erscan be performed by studying the tunneling effect in
these materias. In the last few years electron tunneling
has been used to study the low-field magnetoresistive
effect in polycrystalline structures of doped manganites
[14, 15] and junctions based on epitaxia films [16].
A spin valve has been realized in tunneling experi-
ments[17] on contacts with lanthanum manganite el ec-
trodes with different coercive fields. Current flow in
such magnetic structures is explained by the spin-
dependent probability of tunneling of charge carriers
[18] between ferromagnetic electrodes. However, such
an approach neglects the possible influence of states
inside the tunneling barrier on the character of the tun-
neling.

In the present work the magnetoresistive effect was
observed on symmetric tunneling  contacts
LaySro4aMnOz—Lay6Sro,MnOz. The asymmetric con-
tacts Lay ¢Srg 4MNnO;—Pb showed a similar sensitivity to
magnetic fields. Ceramic materials are used because
high-quality tunneling contacts can be obtained by
breaking thin ceramic plates [19]. The high degree of
texture (i.e., the orientation of the ceramic microcrys-
talsin onedirection) isvery important. It was achieved,
as described in Section 2, by preparing compact
ceramic plates with a small thickness (0.1 mm). Asa
rule, for a transverse breaking of such plates only one
microcrystal-microcrystal tunneling contact (or Shar-
vin microcontact; in the latter case the resistance of the
contact makes it possible to estimate its area) forms.

The simplicity of our technological technique made
it possible to prepare many tens of tunneling contacts,
making it possible to greatly expand the experimental
possihilities. It was shown that a large spin-dependent
tunneling magnetoresi stive effect is possible even when
one of the contacts is a nonmagnetic metal. The magni-
tude of the magnetoresistive effect in the contacts
LayeSro4sMnOz—Pb reached 15%, while in symmetric
contactsit was 10-30% (for H < 100 Oe). The observed
magnetoresistive effect can be explained by assuming
that the spin-dependent electron tunneling occurs
through states (or clusters of states) that possess a defi-
nite magnetic moment and are localized inside the bar-
rier.
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2. EXPERIMENT

Samples of lanthanum manganite LaygSry,MnOs,
which were prepared by solid-phase synthesis using
chemically pure oxides La,0O; and MnO, and the car-
bonate SrCO;, served as the experimental objects. Flat
samples of atextured ceramic, whose grainsare aligned
in the direction of the transport current, are convenient
for fabricating high-quality tunneling contacts (espe-
cialy by the break junction method). Plates of such a
ceramic with the dimensions 1 x 0.1 x 0.01 cm® were
obtained by compressing the LaygSry,MnO; powder
between two flat steel anvils under 3040 kbar pres-
sure. Copper wires, 0.1-0.2 mm in diameter, glued par-
allel to one another on the surface of an anvil were used
as a band support for the powder being compressed. As
a result of pressure treatment, the powder was com-
pressed into dense plane-parallel plates with thickness
d< 0.1 mm.

Sampleswith current and potential contacts consist-
ing of silver paste were annealed at T = 1000°C for 6 h.
The room-temperature resistance of the initia plates
was 0.8-2 Q. The transition resistance of the current
and potential contactswas R= 10~" Q cm?. The temper-
ature dependence of the resistance of the plates had a
characteristic maximum near 360 K, associated with an
insulator—-metal phase transition. The measurements of
the magnetization of the samples were performed in
static magnetic fields up to 10 kOe by the weighing
method. Under magnetization hysteresis was observed
with coercivity fidldH.= 100 Ceat 77K (Fig. 1, inset (b)).

Thetunneling junctionswere prepared by two meth-
ods. Ceramic—honmagnetic metal type junctions were
produced by pressing a drop of lead into the ceramic
surface. Symmetric junctions were produced by break-
ing athin textured ceramic plate. A LaygSry ,MNnO; plate
with current and potential contactswas placed on atex-
tolite substrate and covered with athick (thicknessd ~
0.5 mm) layer of lacquer. After the lacquer polymer-
ized, the substrate was bent until the ceramic broke.
The moment of breaking was monitored according to
the change in the resistance of the plate. A thick layer
of lacquer eliminated possible shifts of the contact
edges, and as a result its electric characteristics were
highly stable. The resistance of the finished tunneling
contacts was 100-300 Q.

3. RESULTS AND DISCUSSION

Figure 1 shows the temperature dependence of the
resistance of the experimental ceramic in magnetic
fieldsH =0and H = 100 Oe a T = 77 K. Substantial
hysteresiswas observed (Fig. 1, inset a) in the magnetic
field dependences of the resistance of the ceramic plate.
InaH =100 Oefield the resistance of a plate decreased
by 3-4%.

At low temperatures the conductivity o(V) of both
types of tunneling structures (symmetric and asymmet-
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Fig. 1. Temperature dependence of the resistance of the
ceramic Lay gSrg 4MNnO3in zero and finite magnetic fields.

Inset: (a) Field dependence of the resistance of the sample,
(b) field dependence of the magnetization of the sample.

ric) was characterized by a linear dependence on the
bias voltage V (seeinset in Figs. 2 and 3). The appear-
ance of such a linear background in the tunneling
curvesisattributed at present to resonance el ectron tun-
neling through localized states in the tunneling barrier.
The Coulomb interaction of electrons (and holes) in
localized levelsresultsin the formation of a“soft” Cou-
lomb pseudogap, when the density of localized levelsin
the barrier g(g) ~ |€] [20]. In this case the differential
conductivity of a tunneling contact, which is propor-
tional to the density g(g), acquiresthe form a(V) = g, +
YV|[21, 22]). Here g, is the conductivity of the contact
at zero voltage and y is a constant. The fact that such
characteristics reflect electron tunneling processes is
confirmed by the observation of an energy gap Ap, of
lead in the asymmetric junction Lag ¢Sry ,MnO—Pb (see
inset in Fig. 2). Even though the smearing of the gap
features of Pb, which is associated in al probability
with injection of spin-polarized electrons into the
superconductor (see, for example, [23, 24]), is strong,
the observed ratio R(V = 0)/R(V > A) = 4 of the contact
resistances is quite large, indicating that the tunneling
mechanism of current flow through the manganite- ead
structure predominates.

In the presence of resonance tunneling of electrons
through localized states the conductivity of the contact
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Fig. 2. Conductivity 0 of atunnel junction LaygSrg sMnO5—

Pb versus the magnetic field. Inset: (8) Manifestation of an
energy gap of lead and (b) o(V) =dl/dvVa T=20K.

0 ~ 0N, Where o, = €2/1 is the conductivity quan-
tum and o, = 77.5 x 105 Q1 [25]. This relation makes
it possible to estimate the number N,,. of localized
states in the plane of the section of the experimental
contacts according to the characteristic interval Ao in
which alinear dependence of o(V) on the bias voltage
V is observed (Figs. 2 and 3). For Ac ~ 0.1 Q1 we
obtain the estimate N, = 10°.

The conductivity of a LaygSrg,MnO—Pb contact is
highly sensitive to magnetic fields for T > T, of lead
(Fig. 2) and with alead electrode in the superconduct-
ing state (not shown in the figure). In the latter case a
voltage V > Ap, was applied to the contact. The experi-
ments demonstrated that the character of the magne-
toresistive effect in LaygSry ,MNnO4s—I—Pb contacts does
not depend on the state (superconducting or normal) of
the lead electrode.

Figure 3 shows the dependence o(H) for a symmet-
ric contact LaygSrgsMnOsz—Lay6Sro,MnO;. It is evident
that according to the form of the signal (“butterfly”)
and the magnetic-field sensitivity of the tunneling con-
ductivity this characteristic is virtually identical to the
curve o(H) for an asymmetric Lag ¢Sy ,MnO;—Pb con-
tact (Fig. 2). Thereisadefinite smilarity between these
curves and the dependence R(H) for the ceramic
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tact. Inset: Tunneling conductivity o(V) at T =40 K.

LaygSrp4MnO; (Fig. 1, inset a). However, the tunneling
magnetoresistive effect is approximately an order of
magnitude stronger.

The effect of a magnetic field on the conductivity
o(V) of asymmetric Lay gSrp sMnOs—L a, Sty 4MnO; con-
tact isshown in Fig. 4. In afield H = 100 Oe the con-
ductivity curve o(V) simply shifted upwards relative to
the curve recorded in zero field. The maximum relative
field sensitivity of the conductivity was observed for
V = 0 and decreased with increasing voltage (see inset
inFig. 4).

The conductivity a(H) of the experimental tunnel-
ing junctions has a characteristic minimum (corre-
sponding to the peak in the resistivity p(H)) in weak
magnetic fields. For tunneling junctions with electrodes
made of ferromagnetic materials (Fig. 3) the existence
of such apeak is explained by the spin-valve effect [17,
26-28]. Asiswell known [23, 28], spinis conserved in
elastic tunneling of electrons. Consequently, the
strength of the tunneling current dependson therelative
orientation of the magnetic moments M, and M, of the
electrodes. The resistance of the contact is smallest
when the magnetic moments M ; and M, are parallel to
one another and largest if the moments are antiparallel.
In the latter case the channel for current flow with con-
servation of the orientation of the electron spin is
closed.
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Fig. 4. Tunneling conductivity of a LaggSrgsMNnOs—
Lag gSrg.4MnO; contact in the magnetic fields H = 0 and

H =100 Ceat T=77K. Inset: Normalized conductivity versus
the bias voltage on acontact in amagnetic field H = 100 Oe.

Let the coercive fields of the electrodesH; and H,
be different and let H,, > H.,. Then the antiparalld ori-
entation of the magnetization vectors M ; and M, of the
electrodesisattained in magnetic fieldsHg, < |H| <Hg,.
In this range the resistance of a tunneling contact is
maximum, R=R,, . Inthe opposite case, for |H| > H,,
H¢1, the magnetization vectors of the electrodes are ori-
ented paralel and the contact resistance reaches its
minimum value (R=R,,).

However, abreak junction type contact is, according
to the method used to fabricate it, a symmetric (in the
sense of the magnetic properties of the plates) tunnel
contact, whereas in the asymmetric contact
LaygSrpsMNnOs—Pb lead is not a magnetic material. At
the same time the behavior of the conductivity o(H) of
these two, at first glance completely different, struc-
turesiscompletely identical (Figs. 2 and 3). Thisshows
that the mechanism magnetoresistance in both cases is
of the same nature.

In this connection we note that the data presented in
Figs. 2 and 3 demonstrate a characteristic dependence
of the magnetoresistance of tunneling junctions with
impregnations of small ferromagnetic clusters in the
insulating layer [20, 30]. Thus, in[29] a Co-Al,O;—Co
tunneling contact contained alayer of inclusions of Co
nanoparticles in aluminum oxide. In the experiment of
[30] the tunneling structure was fabricated on the basis
of a thin granular film, which consisted of a nonuni-
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form magnetic medium consisting of magnetically hard
ferromagnetic CaogyPt,, Nanoparticlesin a SiO, matrix.

On the basis of the behavior of the magnetoresis-
tance in the cases of [29, 30] one can imagine that a
phenomenon close to the spin-dependent tunneling
transition of electrons through localized ferromagnetic
centersin the barrier can also occur in our contacts. The
most obvious reason for the appearance of ferromag-
netic nanoparticles in the barrier layer, both a meta
(Pb) in direct contact with LaygSrg,MnO; and a sym-
metric contact, is an oxygen-depleted region in
LaygSrp4MnO5 in the contact region. According to [6],
for an average oxidation state of Mn ions of less than
three in this region the magnetization M of the near-
contact layer should decrease relative to the value of M
in the interior volume, and the region itself will repre-
sent a structure consisting of ferromagnetic inclusions
in a dielectric matrix. The coercivity field of such a
magnetically two-phase near-barrier layer (in our case
Hy = He ~ 30 Oe, Figs. 2 and 3) can differ appreciably
from that of electrodes, which, as follows from mea-
surements of the magnetization loop of LaggSry,MnO;,
is approximately 100 Oe (Fig. 1).

The conductivity o(H) of the contactsislowest inan
external fieldH =H_ = H, (Figs. 2 and 3). At thispoint
the magnetization of the electrode sections next to the
tunneling contact (and also of the ferromagnetic inclu-
sionsin the barrier) is zero, i.e., for tunneling electrons
thereisno fixed spin orientation. If |[H|>Hg, = Hg,, then
the magnetization vectors of the ferromagnetic inclu-
sions in the barrier rotate together with the magnetiza-
tion vectors of electrodes in the same direction as the
field increases, so that the conductivity o(H) increases
(Figs. 2 and 3). This picture is suitable for describing
the symmetric and asymmetric contacts investigated in
the present work.

We shall now examine a symmetric contact in
greater detail (Fig. 3). If the coercive fields of the elec-
trodes are essentially the same (H, = Hy,), then the tun-
neling magnetoresistive relation following from the
spin-dependent electron tunneling model [26, 27]
becomesARR,; = (R,, —R,,)/R;;, =P? where Pisthe
polarization of the electron spins at the boundaries of a
tunneling contact. The maximum magnetoresistive
effect (50%) for such a symmetric contact is attained
withP=1.

For the observed ratio AR/R,; = 0.3 (Fig. 3) this
givesfor Lay ¢Sy ,MnO; thevalue P = 0.55 for the polar-
ization of the electrons. We note that such an analysis
of the tunneling curves of the junctions
L&y 57Sr0.33sMNO;—SITiOL &y 5;S5r053MNO; [16] and
Lay;Sr0sMNO—STiOL ay;S5sMNO; [17] at T=4.2K
leads, respectively, to P = 0.54 and P = 0.83, which
agrees with our results. The small discrepancy between
the values of P [16, 17] and our value could be due to
the state of the interface in the experimental tunneling
contacts [33, 34], since the tunneling electrons “feel”
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only the near-surface electrode layer whose thisis sev-
eral tens of angstroms. In addition, there is a tempera-
ture dependence of the polarization [31], determined by
the constant o, which depends on the material and is
different for the interior volume or the surface (P(T) =
Po(1 — aT?®?)). Ordinarily, o is larger for the latter
because the exchange interaction decreases at the sur-
face of the sample [32].

Returning to Fig. 4, we note that the observed
dependence of the magnetoresistance on the bias volt-
age V on the contact (inset in Fig. 4) agrees with the
results of [29] (see also [34]). The magnetoresistive
ratio on the junctions CoFe-Al,04—Co in the classical
work [26] decreases almost by a factor of 20 over a
range of 0.7V, whereasfor Co-Al,0;—Co samples[29]
containing alayer of Co nanoparticleinclusionsin alu-
minum oxide it decreases in the same voltage range by
only a factor of 2, and on (Au—Cr)—thin granular
Cog6Al,,0,, film junctionsits value is essentially inde-
pendent of the voltage. This discrepancy is due to the
complicated structure of the junction, because of which
the voltage is redistributed between the granules and
the electrodes. A possible explanation could lie in the
fact (see[29]) that the strong dependence of the magne-
toresistanceon Vin classical junctionsisdueto thefine
structure in the spin-polarized density of states. How-
ever, in junctions with ferromagnetic microregions in
an insulating interlayer this fine structure can wash out
as aresult of tunneling through resonance levelsin the
barrier.

In[26, 27] the analysis was based on the concept of
direct (i.e., elastic) tunneling. In our case, however, a
“linear background” yN|, a(V) = o, + yNV| (insets in
Figs. 2 and 3) is observed in the conductivity o of the
contacts; this background indicates that resonance tun-
neling of electrons through a system of localized states
in the barrier makes a large contribution to the current.
In principle, both parameters, o, and y, could have been
functions of the magnetic field H. But, experimentally
(Fig. 4), the dependence of the slopey of the tunneling
curveson thefield H isvery weak, so that the result can
be represented as theratio [ay(H = 0) — ao(H)]/[oo(H) +
YV, i.e, the quantity Ac/o should decrease as the volt-
age V on the contact increases. Theinset in Fig. 4 dem-
onstrates this dependence.

The parameter y, determining the slope of the linear
background directly, is due to resonance tunneling of
electrons through localized states [21, 22]. Its indepen-
dence on the magnetic field shows for our experimental
contacts the resonance processes make virtually no
contribution to the spin-polarized el ectron tunneling.

It is well known that localized states located at the
center of the tunneling barrier make the dominant con-
tribution to resonance tunneling of electrons [21, 25].
According to what has been said above, such states do
not contribute to the observed spin-polarized tunneling
of electrons. Consequently, the dependence o(H) is
entirely determined by electron tunneling through
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localized states located at the edges of the tunneling
barrier close to the contact electrodes.

4. CONCLUSIONS

The experimental results show that spatially nonuni-
form magnetic states consisting of ferromagnetic
microregions in an antiferromagnetic matrix can occur
in the near-surface layers of lanthanum manganite. The
explanation of this magnetoresistive effect in such tun-
neling contacts could also involve the formation of a
band of localized states in the insulating interlayer.
Localized levels located at the center of the tunneling
barrier contribute to resonance tunneling of electrons
and lead to a“linear background” yN|in the conductiv-
ity a(V) of a contact. Tunneling through such states
makes no contribution to the magnetoresistive effect (in
any case, in weak magnetic fields H < 100 Oe). How-
ever, localized states at the junction edges possess a
definite magnetic moment, so as to ensure functioning
of the tunneling spin valve.
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Abstract—Experimental data are presented for the temperature dependence of the conductivity of Cu : SIO,
metal -insulator composite films containing 3-nm Cu granules. At low temperatures in the concentration range
17-33 vol % Cu, all of the conductivity curves have atemperature dependence of theform o O exp{—«(Ty/T)V?},
while at higher temperatures a transition is observed to an activational dependence. A numerical simulation of
the conduction in acomposite material showsthat an explanation of the observed temperature dependence must
include the Coulomb interaction and the presence of arather large random potential. The simulation also yields
the size dependence and temperature dependence of the mesoscopic scatter of the conductivities of composite
conductors. It isshown that a self-selecting percolation channel of current flow isformed in the region of strong
mesoscopic scatter. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Recently there has been a considerable heightening
of interest in the study of the electrical properties of
granular nanostructures—island metal films and metal-
insulator structures containing conducting granules
several nanometersin size, separated by thin insulating
gaps. If the density of granulesin such astructureis not
too high, a regime of tunneling conduction is realized
init. The most important circumstance isthat for metal-
lic granules of the order of several nanometers in size,
their charge energy E. = €%/2C (C is the capacitance of
a granule) amounts to around 100 meV, which is con-
siderably higher than the energy of thermal noise, even
at room temperature. For this reason, macroscopic
charge quantization effects are observed at high tem-
peratures[1]. For comparison, the structures fabricated
for single-electron electronics by electron lithography
contain metallic islands with minimum dimensions of
the order of tens of nanometers, which correspondsto a
working temperature range of the order of a few
Kelvins[2]. For thisreason, granular nanostructuresare
being considered as a basis for the creation of new
nanoelectronic devices capable of operating at room
temperature [3].

Electron transport processes in granular metallic
films and metal-insulator nanostructures are largely
determined by the random character of these media.
Indeed, itisin principle impossible to control precisely
the size and position of the individual metallic gran-
ules, and the charge energies and tunneling resistances
between granules therefore have a certain scatter. Fur-
thermore, in such structuresthere are fluctuations of the
potential of the individual granules [4]. For this reason
the electrical properties of such structures must be

described using dtatistical approaches. Statistical
approaches have been devel oped in anumber of studies
[4-6]. It has been shown [6] that the value of the ran-
dom potential in the structure determines the equilib-
rium density of positively and negatively charged parti-
cles. The density of single-particle excitationsin aran-
dom granular medium was consideredin [7], and it was
shown that it has a dip (the Coulomb gap) near the
Fermi level, the shape of this dip depending on the
value of therandom potential. In[8] the charge energies
of the granules were calculated with alowance for the
random environment and finite size of the particle.
Although some progress has been made, the theory of
transport phenomenain granular mediais not yet com-
plete. In particular, thereis as yet no generally accepted
explanation for the experimental temperature depen-
dence of the conductivity. For example, some authors
attribute the behavior Ino ~ T-Y2 that iswidely observed
in experiment [9] to structural features of the composite
material [5, 10], while others point to an important role
of the Coulomb interaction between charged granules
[6, 11]. There have also been indications that it is nec-
essary to take into account the multiparticle excitations
in the theoretical treatment of the conduction of granu-
lar structures at low temperatures [12]. Moreover, it
remains an open question as to how much the statistical
character of the media affects the reproducibility of the
electrical characteristics of granular conductors, the
sizes of the conductors and the temperatures for which
one can observe a strong mesoscopic scatter of the elec-
trical characteristics.

In this paper we report an experimenta study of the
temperature dependence of the conductivity of Cu: SO,
composite films obtained by the method of simulta-
neous magnetron sputtering of two sources. The exper-
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Fig. 1. Transmission electron micrograph of a composite film with a copper concentration of 27 vol %.

imental data are analyzed on the basis of a numerical
model of hopping conduction. The model isbased on a
representation of the electrical conduction by means of
single-electron hops; the single-electron density of
states is constructed with alowance for the Coulomb
interactions between charged granules. We bdieve that
neglecting the multiparticle excitations is justified, since
we are not considering the case of very low temperatures
here and, as was shown in [12], taking multiparticle exci-
tationsinto account does not lead to anew type of temper-
ature dependence of the conductivity but only modifiesthe
parameter T, of the law o O exp{(Ty/T)Y?} at low tem-
peratures.

The results of the simulation are in good agreement
with the experimental data; moreover, approximation
of the experimental temperature dependence of the
conductivity by the cal cul ated dependence made it pos-
sible to determine the values of several microscopic
parameters of the composite material and their depen-
dence on the concentration of the metallic phase. The
model constructed here can also be used to study the
dependence of the amplitude of the mesoscopic scatter
of the conductivity of composite conductors as a func-
tion of the dimensions of the conductors and the tem-
perature.

2. TECHNOLOGY OF FABRICATION
OF COMPOSITE CONDUCTORS

To obtain amorphous SiO, films containing copper
clusterswe used the method of joint magnetron sputter-
ing. The sputtering was done on an Alcatedl SCM-450
apparatus with the chamber pumped down beforehand
to 107 Pa. As a source of SiO, we used a planar mag-
netron with aquartz target, which was sputtered in an rf
discharge. A dc voltage was applied to the second mag-
netron, which had a copper target. Both targets were
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100 mm in diameter and were made of high-purity
materials (99.999%). The sputtering was done in an
atmosphere of high-purity argon at apressure of 0.3 Pa.
As in [13], the substrate holders were rotated during
deposition of the films, so that the substrates were alter-
nately found above the Cu and SiO, targets. The neces-
sary copper concentration in the film was set by chang-
ing the rate of deposition of the SiO, in the interval
0.42-3.3 nm/min at aconstant copper deposition rate of
0.53 nm/min. The rotational velocity of the substrate
holders was 8 rpm, so that less than one monolayer of
material was deposited in each revolution of the sub-
strate above the sources. The volume concentration of
copper in the samples studied was 17-33 vol %.

Figure 1 shows a typical transmission electron
micrograph of a Cu : SiO, composite film with a cop-
per concentration of 27 vol %. The presence of metallic
clusterswith acharacteristic size of 3 nmisevident. We
note that the films grown were not subjected to addi-
tional annealing, and cluster formation occurred in
them directly during deposition. Analysis of the result-
ing films by x-ray photoelectron spectroscopy [14]
showed that the copper in the film was found in the
unoxidized state. Furthermore, studies of the fine struc-
ture of the x-ray absorption edge [15] show that the
clusters have close to acrystalline structure, but asmall
fraction of the Cu atoms remain dispersed in the insu-
lating matrix. It has been shown that the structure of the
clusters become less dense as the volume concentration
of Cu decreases. A study of the films by the small-angle
X-ray scattering technique yielded amore precise value
of the average size of the granules. For example, for
films with a Cu concentration of 27 vol % the average
granule size determined by that technique was 1.6 nm.
The scatter of the granule sizein these films, according
to the transmission eectron microscope and small-
angle x-ray scattering data, is 20—30%.
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TEMPERATURE DEPENDENCE

To study the temperature dependence of the conduc-
tivity of composite films we prepared a series of sam-
ples with different volume concentrations of Cu. The
filmswere 200 nm thick; Au/Cr contacts 400 x 400 pm
in area were deposited on top, with the gap between
contacts varied over the interval 5-200 pm.

3. TEMPERATURE DEPENDENCE
OF THE CONDUCTIVITY

The temperature dependence of the conductivity
was measured in the temperature range 30-300 K in an
Oxford 450 closed-cycle helium cryostat by means of a
V7-49 precision electrometer. The current-voltage
characteristics of the samples with different gaps
between contacts had alinear initial segment at all tem-
peratures in the range studied, and the value of the dif-
ferential conductivity obtained from the slope of this
linear segment did not depend on the size of the gap.
This confirms the Ohmic properties of the contacts
between the metal and the composite film. The temper-
ature dependence of the conductivity was measured at
avoltage corresponding to the linear part of the current-
voltage characteristics.

Figure 2 shows the experimenta temperature depen-
dence of the conductivity for four samples with different
Cu concentrations, plotted on ascale of Ino versus U/TY2,
Asweseeinthisplot, at low temperaturesthe conductivity
of all the samples studied follows ao O exp{ (Ty/T)¥3}
law, in good agreement with the published data avail-
able[5, 11]. At the same time, at higher temperatures a
smooth increase of the exponent in the power law
occurs, in the direction of an activational dependence.
Here the boundary temperature at which the transition
from one temperature dependence to the other occurs
increases with decreasing concentration of the metallic
phase. The dashed linesin Fig. 2 show the linear (on a
scale of Ina versus 1/TV?) approximations of the exper-
imental temperature dependence of the conductivity.
The parameters T, of these approximations arelisted in
table.

4. MODELING OF THE TEMPERATURE
DEPENDENCE OF THE CONDUCTIVITY

4.1. Construction of the Model

For analysis of the experimental data obtained, we
constructed a numerical model of the conductivity of a
composite material. In this model acomposite material
isrepresented as a set of metallic spheresrandomly sit-
uated in acube of aspecified volume; theradiusr of the
spheres is Gaussian-distributed about its mean valuer

1 O(r—rp)0
expd 0
J2mE O 287 O

where € isthe width of the distribution.

p(r) = )
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Fig. 2. Experimenta temperature dependence of theconductiv-
ity of composite films on the scale of Inc versus /TY2.

Another parameter of the random distribution of
spheres is the minimum admissible distance between
them, A;,. For anumerical realization of the quasi-ran-
dom arrangement we used the following method: first
the sphereswere analyzed in aregular cubic | attice, and
then each sphere was randomly assigned an initia
velocity, and its motion was calculated with allowance
for collisions, with the remaining spheres being
assumed immoabile. The effective radius of each sphere

was taken as r'" =r; + A;,/2, which guaranteed that
the distance between sphereswas not smaller than A,
In addition, all of the collisions were assumed to be
completely inelastic, i.e., after each collision the veloc-
ity of the sphere was again assumed random. The cal-
culation was terminated when each sphere had under-
gone a large number of collisions (several hundred),
and then the resulting arrangement was used as a ran-
dom realization.

Of course, the arrangement of the granulesin area
composite material is not completely random; acertain
correlation can be present in their relative position on
account of the way these granules were grown. In the

Results of a fitting of the experimental temperature depen-
dence of the conductivity of composite films by the calcu-
lated dependence

Ccys VOl % | KTp, meV € Dpin, MM | Ay, &V
17 1464 6.6 0.6 0.12
24 1248 6 0.54 0.11
27 1048 6 0.52 0.1
33 702 6 0.5 0.09
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proposed model the parameter A, is introduced for
taking such correlations into account, and the depen-
dence of the electronic properties of the material on the
value of this parameter will be demonstrated bel ow.

For describing the electrical properties of the result-
ing system of metallic spheres the Hamiltonian of the
system iswritten as

H = 5 0Q+3Y C'oQ, @
i i ]

Here Q, is the charge on the ith sphere, which can take
one of three values: —, 0, and e, where e is the charge
of the electron (for simplicity we are neglecting multi-
ply charged states of the spheres); (@ is the so-called

random potential [4, 6] on granule i, and Ci‘jl is the
inverse matrix of the capacitance coefficients and the
coefficients of the electrostatic induction of the system
[16]. In the simplest approximation, when the distance
between spheres is much larger than the size of the
spheres, the diagonal elements of this matrix are equal
to the reciprocal of the capacitance of ametallic sphere
of radius r embedded in an insulator with dielectric

constant e: Cﬁl = 1/er;, and the off-diagonal elements

can be written as C;j' = L/ed,, where d; is the distance

between the centers of theith and jth spheres. However,
this extremely simple approximation is poorly suited to
the case of a composite material with arelatively high
concentration of the metallic phase, sincethe character-
istic distances between granules are comparable to the
dimensions of these granules, and one must take into
account the corrections due to the polarization of the

granules. The matrix Ci_jl is calculated using the dipole

approximation described in [8]. It follows from [8] that
taking the polarization of the spheresinto account leads
to a decrease in their charge energy E. in comparison
with the value for an isolated sphere of radiusr: Eg =
Q?/2er; taking the polarization into account also modi-
fies the dependence of the Coulomb interaction of the
charged spheres (the off-diagonal elements of the

matrix Ci'jl) on the distance between spheres. Further-

more, the values of the charge energies of the spheres
have some scatter due to the random distribution of the
spheres surrounding them.

The random potential ¢ that appearsin Eq. (2) and
serves as a source of diagonal disorder in the systemis
ordinarily attributed to the electric fields of defects and
charged states in the matrix and at the granule/insulator
interfaces. We note that, unlike [6], we do not attribute
the random potential to fluctuations of the size and
shape of the granules. The random potential here is
understood to mean the potential of an external (with
respect to the system of metallic spheres) electric field;
only such a potential can give rise to charged granules
inthe ground state of the system. In the given model the
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random potential is assumed to be uniformly distrib-
uted over a specified range A@: -A@2 < @ < A@2.

4.2. Ground State and Spectrum
of Sngle-Particle Excitations

Thefirst step in the modeling of the conductivity of
a composite material is to find the ground state of the
system described by Hamiltonian (2). Because of the
presence of the random potential, some of the metallic
particlesin this state may be charged. In our model the
ground state of the system was determined by minimiz-
ing Hamiltonian (2) with respect to al possible pair-
wise permutations of electrons between the metallic
spheres. The procedure was repeated many times until
pairwise permutations that lowered the total energy of
the system were no longer found.

Let us construct the spectrum of single-particle
excitations of the system, taking the energy of the
ground state as the zero of energy. The energy of asin-
gle-particle excitation is defined as the energy required
to transport an electron or hole from infinity to one of
the spheres. This energy isthe value of Hamiltonian (2)
calculated for a system with one “extra’” electron or
holein comparison with the ground state. Here asphere
having charge O in the ground state supplies one level
to each of the electron and hole densities of states, a
sphere having charge +e supplies a twofold degenerate
level to the electron density of states, and a sphere hav-
ing charge —e supplies atwofold degenerate level to the
hole density of states. Furthermore, it must be taken
into account that each metallic sphere actually repre-
sents not an isolated energy level but a spectrum of lev-
els, with a density of the form p(E) = 6(E — E) [11],
where E; is an energy level obtained by the method
described above. The total electron or hole density of
states will thus have the form

p°"(E) = Y 8(E-E")g"", 3

where g " ={1, 2} isthe degeneracy of the electron or
hole level mentioned above.

Figure 3 shows the results of a calculation of the
density of states(3) for amonodisperse system contain-
ing 102 spheres, for different values of the scatter Ag of
the random potential. The inset in this figure gives the
dependence of the fraction of charged granules in the
ground state as a function of the scatter A of the ran-
dom potential. It is seen that charged granules arise in
the ground state when the random potential becomes
comparable to the charge energy of the particles. At
such values of the random potential a parabolic Cou-
lomb gap isformed in the density of states, after which
the form of the density states changes little as the scat-
ter of the random potential isincreased further.
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4.3. Modeling the Temperature Dependence
of the Conductivity

In the single-particle approximation the probability
of a tunneling transition of the electron (or hole)
between any two granulesi, j is determined by the dis-
tance d;; between them, the single-particle energy levels
E;, E, and the temperature. For this probability we used
the expression [17]

v = V’exp(=xd)N(E; - E)), @)

where \° is a constant, X is the tunneling transparency
of theinsulator (we have used thevalue x = 108 cm for
SI0,), and N(4) isthe equilibrium Planck distribution
of phonons with energy A;; = E; - E;:

A2
1]
exp(4;;/kT) -1 ©)

where k is Boltzmann’s constant and T is the tempera-
ture. To find the total current between granulesi and |
we must sum the rates of all possible electron and hole
transitionsi —» j and j — i (with the opposite sign)
with the density of states (3) taken into account. For
example, the rate of the electron transitioni — j is

N(Aij) =

I = ylexp(=xd;) [ [ f®
E =EE =E

x (1- f(E,))|N(E, - E;)|dE,dE;.

(6)

Here Ef,— are the single-particle energy levels of elec-

tronson granulesi, j, and f(E) is the Fermi distribution:
f(E) = U(exp((E — Ep)/KT) + 1) (the Fermi level E¢ is
zero in our case, since the numbers of electrons and
holes are always equal, and the density of statesissym-
metric about the zero of energy). For holes the rate of
thetransitioni — j iswritten in an analogous way, but

with the electron energy levels E; ; in (6) replaced by

the hole levels E?j . Thetotal current between granules

i and j isthe sum of the electron and hole currents (here
we are negl ecting the generati on-recombination current
that arises in the presence of creation and annihilation
of electron-hole pairs, since this current is small in the
weak-field regime):

0y :_e[rieﬂj_rihﬂj_rieej'i'rihej]- (7)

It iseasily seen that this current is zero in a state of equi-
librium. However, an external €ectric field disturbs this
equilibrium, and in the linear approximation the current
between granules can be written in the form [17]

i = Rj'(U;=U)), ®)

where U;, U; are the potentials of granules i, j in the
externa field, and the coefficient R;, which has the
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02

(E-Ep)/E

Fig. 3. Calculated density of single-particle excitations for
various values of A@; Ay, = 0.5r, € =5, metal concentration
20 vol %. Inset: Dependence on Ag@ of the fraction of
charged spheresin the ground state.

meaning of the electrical resistance of the junction, is
given by

Rij = k—T (9)

e[rieg it rihti j]1

where ' and ' are the electron and hole transition
rates in the absence of an electric field. Thus, in aweak
electric field the problem reduces to one of calculating
the conductivity of a network of resistances. We note
that the above scheme for calculating the conductivity
is a modification of the approach used for describing
impurity conductivity in semiconductors [17].

The Ohmic contacts to the composite material were
modeled as follows: all the spheres found in a certain
layer near one of the faces of the cube were assigned an
external applied potential U, while the spheres in a
layer near the opposite face were assigned zero poten-
tial. The potentials of al the rest of the spheres and the
currents between them were found by numerical solu-
tion of the system of Kirchhoff’s equations, and the
total current through the samplewas found by summing
the elementary currents in one cross section. In that
way we have calculated the total conductivity of the
system at the given temperature.

Figure 4 shows the temperature dependence of the
conductivity of a system of 10° spheres; the curves
were calculated for the same values of the amplitude of
the random potential asfor the density of statesin Fig. 3.
We see that at A ~ E, the temperature dependence of
the conductivity at low temperatures has the form
Ino O T-Y2, At small A the temperature dependence
has an activational character.

Figure5illustrates how the temperature dependence
of the conductivity of a composite material depends on
the variance of the size of the spheresin the absence of
arandom potential and at an amplitude of the random
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Fig. 4. Calculated temperature dependence of the conduc-

tivity for various values of Ag; Ay, = 0.5r, € = 5, metal con-
centration 20 vol %.
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Fig. 5. Calculated temperature dependence of the conduc-
tivity for various values of the variance of the size of the
spheres (the solid curveisfor 0%, the dashed curvefor 20%,
and the dotted curve for 30%) in the absence of a random
potential and for an amplitude of the random potential equal
to L.5Eg; Apin = 0.5r, € = 5.
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Fig. 6. Calculated temperature dependence of the conduc-
tivity for various values of Aqin A@ = 1.5E, € = 5, metal
concentration 20 vol %. Inset: plot of Ino versus A, a a
fixed temperature.
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potential of 1.5E,, (here E, is understood to mean the
energy of an isolated sphere of average radius ry). We
seein the figure that an rms deviation of the sphere size
of the order of afew tens of percent hasasmaller influ-
ence on the form of the temperature dependence of the
conductivity than does the random potential, and can-
not by itself account for the T~ law observed experi-
mentally. Sincethereal scatter of the particlesizein the
investigated composite films, according to microscopy
data, is not over 20-30%, we shall henceforth assume
that the system of spheres is monodisperse and devote
our attention mainly to the effect of the random poten-
tial on the conductivity. We note that in calculating the
temperature dependence shown in Fig. 5 we used the
approximation of point charges in calculating the off-
diagonal elements of the matrix C;;, i.e., the scatter in
the size of the spheres was taken into account only in
the values of their charge energies E;. Thisis because
of the great computational difficulties that arise when
the polarization is taken into account in a system of
metallic particles of different sizes, but one expectsthat
taking the polarization into account will not alter our
main conclusion that the variance of granule size has
only a weak effect on the form of the temperature
dependence of the conductivity.

Figure 6 shows a series of curves of the conductivity
versus temperature as calculated for different values of
the spacing parameter A, a an amplitude of the ran-
dom potential A@ = 1.5E, in the case of zero variance
in the size of the spheres. Theinset to thisfigure shows
the dependence of the conductivity on A, at a fixed
temperature. It isseenin thefigurethat the conductivity
depends exponentially on A, while this parameter
has only a weak effect on the form of the temperature
dependence of the conductivity. The exponential char-
acter of the dependence of the conductivity on A, is
expected according to Eq. (4), where the distance
between granules appears in the argument of the expo-
nential function.

4.4. Mesoscopic Scatter of the Conductivity

Since the position of the granules in the structure
has a random character and the potential on them is a
random quantity, the electrical properties of the struc-
ture as awhole can, in principle, fluctuate as one goes
from one random realization of the sample to another.
To estimate the scale of the mesoscopic fluctuations of
the conductivity due to the random character of the
medium and to assess its dependence on the macro-
scopic parameters of the system as a whole, we did a
series of calculations of the temperature dependence of
the conductivity for samples containing different num-
bers of spheres. The results of these calculations are
presented in Fig. 7 in the form of aplot of thermsdevi-
ation of the common logarithm of the conductivity ver-
sus the inverse temperature and the size of the sample
(the number of spheres). As we see in the figure, for
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Fig. 7. Amplitude of the mesoscopic scatter of the conduc-
tivity asafunction of the size of the sample and the temper-
ature.

samples containing ~100 spheres the mesoscopic scat-
ter of the conductivity relativeto its valueis an order of
magnitude at a temperature of 30 K, whereas for sam-
ples containing ~1000 spheresthis scatter on averageis
not more than a factor of 1.5-2. At room temperature
the mesoscopic scatter of the conductivity is afactor of
1.5-2 for samples containing ~100 spheres and not over
10-20% for samples containing ~1000 spheres.

Figure 8 shows the distribution of the current over
the sample, as calculated in the region of large mesos-
copic scatter (T = 30 K, 125 spheres) and for the same
structureat T = 300 K (the region of small scatter). Itis

100

0%

559

seen that in thefirst case practically all of the current is
concentrated in one chain of severa spheres, and, con-
sequently, the electrical conductivity of the sampleasa
wholeis determined by the parameters of thischain. As
the temperature increases, current flow over the entire
cross section of the sample occurs, and the conductivity
of the structure is the result of an averaging of the
parameters of all the spheres contained in it.

We note that if the potentials of the spheres in the
system are changed in some way, then the position of
the conducting chain described above can also change,
and that can cause the conductivity of the system as a
whole to jump to a new value. Such a redistribution of
the potential can be caused, e.g., by an external electric
field applied by means of athird (gate) electrode added
to the system. It could also be caused by an electric field
produced by granules not belonging to the chain (float-
ing gate) if their charge state is changed. This might be
the explanation for the memory effect observed in com-
posite materials[18].

5. COMPARISON OF THE CALCULATIONS
WITH EXPERIMENTAL DATA

To compare the results of the numerical simulation
with the experimental data, model calculations were
done in the region of macroscopic conduction, where
the conductivity fluctuations are small (see Fig. 7). Fur-
thermore, the calculated temperature dependence was
averaged over 10 random redlizations. The minimum
distance A,,,, between granules, the amplitude Ag of the
random potential, and the dielectric constant € of the
film were used in these calculations as adjustable
parameters, and the variance of the granule size was not
taken into account. With these parameters a simulta-

100

100% of total current

Fig. 8. Distribution of the current over asample consisting of 125 spheres at temperatures of (a) 30 and (b) 300 K; thefield direction

isindicated by arrows.
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Fig. 9. Results of afitting of the experimental temperature
dependence of the conductivity by the calculated depen-
dence: the solid curves are experimental, the dotted curves
theoretical.

neous fitting of both the temperature dependence of the
conductivity and the dependence of the conductivity on
the volume concentration of Cu was done. Thefitting of
the temperature dependence of the conductivity yielded
the values of Agand €, and an independent fitting of the
dependence of the conductivity on the concentration of
the metal yielded the value of A;,, in each case.

The curves of the experimental and calculated tem-
perature dependence of the conductivity are shown in
Fig. 9, and the values of the parameters giving their best
fitarelisted in the table. Aswe seein thefigure, at high
concentrations of the metallic phaseinthefilmsthereis
practically total agreement between the calculated and
experimental curves of the temperature dependence of
the conductivity, whereas for films with Cu concentra-
tions of 17 and 24 vol % there is a divergence in the
high-temperature region. As we see from the table, the
amplitude of the random potential Ag depends weakly
on the concentration and is equal in order of magnitude
to Ey (Eco = 100 meV for a sphere of radius 1.5 nm).
The minimum distance between granules, A, which
is a measure of the “anticorrelation” in the positions
of the granules, falls off monotonically as the concen-
tration increases. The values obtained for e are some-
what greater than the characteristic value for pure SiO,
(€so, =4). Thisdisagreement isindicative of the pres-
ence of asmall amount of dissolved metal inthe matrix.
This explanation is confirmed by the results of separate
measurements of the capacitance of capacitors filled
with adielectricintheform of aSiO, film having acop-
per content of 0-5% (at these concentrations the copper
does not form clusters). The measured values of the
dielectric constant lay in the range 4-5.

The observed divergence of the caculated and
experimental curves at high temperaturesin the case of
low concentrations may be due to the circumstance that
in such films the clusters do not have a dense structure
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and possibly have a broader size distribution. In addi-
tion, it follows from the results presented above that as
the concentration decreases, there is an increase in the
relative fraction of the metal dissolved in the matrix,
which may cause the real structure of the material to
deviate from the model structure.

6. CONCLUSION

The numerical model proposed in this paper for the
conduction of a composite material, based on the con-
cept of single-electron hops between metallic granules
of nanometer size, has enabled usto describe the exper-
imentally observed temperature dependence of the con-
ductivity of Cu: SiO, filmswith copper concentrations
of 17-33 vol %. Approximation of the experimental
data by the calculated results has yielded an estimate of
such parameters of the material as the value of the ran-
dom potential of the granules, the average distance
between Cu granules, and the fraction of dissolved
metal in the matrix. We have shown that in order to
explain the experimentally observed universal low-
temperature law o O exp{—(Ty/T)¥?} it is necessary to
take into account the Coulomb interaction between
charged granules and al so the presence of arather large
random potential, which brings about charge exchange
between the initialy neutral granules in the ground
state of the system. The deviation from this law at
higher temperatures is also satisfactorily described in
the framework of the proposed model. We have ana-
lyzed the influence of the variance of the granule size
on the conductivity of a composite material and found
that the existing scatter in the granule size in the exper-
imental samples has a weak effect on the form of the
temperature dependence of the conductivity.

We have also carried out a numerical investigation
of the dependence of the amplitude of the mesoscopic
scatter of the conductivity of composite conductors on
their size and temperature. These studies showed that a
strong (severalfold) scatter of the conductivity should
be expected for conductors less than ~40 nm in size at
temperatures ~30 K and for conductors smaller than
~20 nm at room temperature. We have also shown that
in the region of strong mesoscopic scatter of the con-
ductivity a percolation channel for the current is
formed, i.e., achain of granules a ong which more than
90% of the total current flows. The position of this
channel can in principle be controlled by applying an
external electric field (e.g., using an additional, third
(gate) electrode), and that opens up a way of creating
devicesfor nanoelectronics (such as, e.g., atransistor or
memory cell) based on composite materials.
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Abstract—Nonmonotonic temperature dependence of the thermopower and resistivity of the multilayer mer-
cury cuprate HgBa,Ca,Cus0;, are observed in the temperature range 77-300 K under hydrostatic pressures of
up to 10 kbar. The data obtained agree qualitatively with our resultsfor HgBa,Ca,Cu;Og [ V. F. Kraidenov et al.,
Fiz. Nizk. Temp. 16, 1016 (1990), 20, 76 (1994), 19, 835 (1993) [Sov. J. Low Temp. Phys. 16, 593 (1990), 20,
64 (1994), 19, 597 (1993)]]. Experiments are carried out to check the applicability of the new “correlated
polaron” model to the description of the normal state of HTSCs. It is shown that the model proposed by
J. B. Goodenough and J. S. Zhou [Phys. Rev. B 49, 4251 (1994), 51, 3104 (1995)] is suitable for use as awork-
ing hypothesisfor describing research on the temperature dependence of the thermopower, including its behav-
ior under pressure. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Two of us (E.S.I. and V.F.K.) have previoudly inves-
tigated the temperature dependence of the ther-
mopower a(T) and resistivity p(T) in the Y-123 and
Y-124 systems in the temperature range 77-300 K
under hydrostatic pressures of up to 15 kbar [1-3]. For
Y-123 the measurements were made for different oxy-
gen concentrations (Y Ba,Cu;0,). We have analyzed
our results in the framework of the model proposed in
[4], which allows one to determine a number of the
parameters of the normal state. However, that model
cannot answer many questions and, in particular, can-
not explain the main feature of o(T)—a broad maxi-
mum at T= 140K or thelinear dependence p(T) O T at
T > T.. Most important, the model used in [4] did not
take into account the possible mechanisms of high-T,
superconductivity and their relation to the normal state
of superconductorswith ahigh superconducting transi-
tion temperature T..

In papers [5, 6] published in 1994-1995 the phe-
nomenological concept of “correlated polaron” was
proposed in order to explain the features of the trans-
port properties of high-T, superconducting copper
oxides. This is a nonuniform charge state that takes
place in thermodynamically distinguishable phases
with localized and mobile carriersin avariable-valence
system. The use of this new concept makes it possible
to understand, from a unified point of view, many prop-
erties of thenormal state of HTSCs, including the exist-
ence of stripes, and the transport properties, including
the maximum on the a(T) curveat T =140 K. This con-
cept has aroused great interest and is under active
development. As was pointed out in [7], “Recently a
growing number of experiments have provided indica-

tions of the key role of polarons ... in doped perovs-
kites...”

In the model proposed in [5] it is assumed that the
occurrence of high-T, superconductivity in copper
cuprates can be understood in the framework of the
hypothesis that a “thermodynamically distinguishable
phase” arisesin which the HTSC state isrealized. This
phaseisstable near the crossover of two types of behav-
ior of the carriers. The authors of the model mention
three characteristic features of the normal state of this
phase: (1) an anomalously large compressibility of the
Cu—0O bonds in the CuO, planes; (2) the existence of
mobile stripes with a high concentration of holes;
(3) appreciable rise of the thermopower, with a maxi-
mum of a(T) intheregion 100K < T, < 150K [8].

Itisstatedin [5, 6] that the existing theories of high-
T, superconductivity, including the Fermi-liquid, Hub-
bard, weak electron-phonon interaction, and standard
polaron models, do not give a complete description of
the normal state of aHTSC (see the references cited in
[5]); the normal state of the superconducting phase is
characterized by a strong dependence of o, on doping
and by the presence of a maximum of da.

The temperature at which the maximum is observed
(140 K) suggests a coupling of the holes with optical
vibrations of the lattice. There arises a vibronic reso-
nance of two types of bonding (ionic and covalent),
which can be characterized as a polaron. There is rea-
son to supposethat on cooling (T < 300 K), the polarons
in the normal state condense into a polaron liquid.
Superconductivity is brought about by a strong elec-
tron-lattice interaction, the so-called vibronic stabiliza-
tion, which is associated with the dynamic Jahn—Teller
effect.
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From an analysis of the well-known Mott formula
describing the thermopower one can say that: (1) the
value of the thermopower depends on the details of the
carrier dispersion relation E(K) at the Fermi energy Eg;
(2) the interaction of the carriers with other excitations
changes the sign of the dispersion relation near E- and
causes the values of the width da and temperature T,
of the maximum to depend on the interaction energies.
It follows, in view of the behavior of a(T) in
La, _,Sr,CuO, for x = 0.15, that the superconducting
phase should have a dispersion relation E(k) with asub-
stantial nonmonotonicity near E-. Such a picture for
E(K) was discussed in [5] in terms of the polaron-liquid
concept. The formation of a gap leads to growth of the
effective mass of the carriers.

For T, < T <300 K intheinterval of concentrations
x corresponding to the superconducting composition,
0o(T) is strongly dependent on doping and weakly
dependent on T. The temperature dependenceis mainly
determined by the maximum &a. In the underdoped
casethereisonly the monotonic dependence ay(T), and
for overdoping thereis only the maximum &a(T).

In the case of heavy doping, perturbations of the
periodic potentia in the CuO, layer due to defects in
the apical oxygen sites suppress the thermopower peak
and superconductivity [6].

The authors of [5, 6] performed a series of experi-
mental studies expressly to test their theory. They
mainly studied model systems based on single-layer
La,CuO, with variable concentrations of oxygen and
the strontium dopant and also the systems Y-123 and
Y-124. They measured a(T) and p(T) at temperatures
from 4 to 300 K and above. Experiments were also
done under hydrostatic pressure in a fixed-pressure
low-temperature chamber [9]. The experimental results
[6, 10-12] were anadlyzed in the light of the theory
described above, and rather good agreement was dem-
onstrated. Thus another model featuring polarons of a
special type (or mobile nonuniform charge states on a
mesoscopic scale) has come into being; it explains
many known experimental results and to a certain
extent ties in with the generally accepted knowledge
base for the other models.

Our previous papers [1-3] on yttrium systems
showed the same features in a(T) as were later
observed in [10, 12]: rather large absolute values of a,
a broad maximum on the a(T) curve, dependence of a
and p on the pressure and the degree of oxidation. It
should be noted that there is a detailed quantitative
agreement of the a(T) curves obtained under pressure
for Y-124 samples not containing nonstoichiometric
oxygen. Of course, the data of our studies [1-3] have
been refined by the detailed and careful measurements
made for the purpose of testing the concept of anoma:
liesin the transport properties[5, 6].

We wish to point out that the value of studying the
thermopower over a wide temperature interval and
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under hydrostatic pressure was correctly foreseen by us
at that time. It was clear that the maximum in the tem-
perature dependence of the thermopower, which we
observed in al the HT SCsthat we studied, derivesfrom
some specific properties, and the effect of pressure on
this maximum might clarify considerably the interrela-
tionships involved.

Recently we have published the results of our mea-
surements of a(T) and p(T) under hydrostatic pressure
for samples of the phase Hg-1223 [13] with the opti-
mum oxygen concentration and the highest values of T,
known at the present time. These data were confirmed
in [14]. In the present paper we report analogous mea-
surements for the phase Hg-1245, which differs from
Hg-1223 by the presence of three types of CuO, layers
and which has certain features in the pressure depen-
dence Ty(P) [15]. The main features in a(T) are mani-
fested in the region of the normal state, permitting a
comparison with the correlated polaron theory for the
system of layered mercury cuprate HTSCs. The results
are discussed in relation to the experimental data on
yttrium HTSCs. The theory of [5, 6] isitself subject to
divided opinion, and a detailed comparison with it
would be extremely desirable.

2. MEASUREMENTS AND RESULTS

Samples. Ceramic samples of mercury HTSCs
were prepared by the technology described in [16]. Our
sampl e consisted 90% of the HgBa,Ca,CusO;, , 5 phase
and 10% of the HgBa,Ca;Cu,Og , 5 phase. The tetrago-
nal lattice parameters were a = 3.849(4) A and ¢ =
22.151(5) A.

The sample was in the form of ahalf cylinder 3 mm
in diameter and 3 mmin height, with atransverse cross-
sectional area of 3.5 mm?. The heater and heat sink
were mounted to the sample using silver paste, which
was then dried for several hours at 60°C.

Thermopower. The measurements were made in
the temperature interval 77-300 K under hydrostatic
pressure up to 10 kbar. The method of longitudinal heat
flow with a constant power delivered to the heater [17]
was used. The temperature drop across the sample
ranged from 0.1 K at atmospheric pressureto 0.04 K at
the highest pressure. The temperature was measured by
a (Cu + 0.1%/Fe + 0.017%L1)—Cu thermocouple. The
thermopower of the sample was determined relative to
that of copper. The correction to the thermopower for
copper was taken from published data and from our
measurements of ag, relative to the Y-123 supercon-
ducting sample. The pressure dependence of o, was
not taken into account asit would introduce anegligible
correction.

The overal trend of the a(T) curve at al pressures
follows the typical dependence for the majority of
HTSCs (see, eg., [1, 10]). As the temperature is low-
ered from 300 K the thermopower o increases linearly
at arate of 7.7 x 107 uV/K?, passes through a maxi-
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Fig. 1. (@) Temperature dependence of the thermopower for the Hg-1245 sample at different pressures. (0) 4.3 kbar, (m) 6.4 kbar,
(») 9.5 kbar; (b) enlargement of the part of these curvesin the interval from 165 to 215 K.

mum at T = 190 K, and falls off sharply near T, (Fig. 1).
A comparison with the data for single crystals shows
that the thermopower of the ceramic correspondsto the
contribution from the CuO, layers[18].

The insufficient single-phaseness of our samples
does not alter the qualitative picture observed in the
a(T) curve, and from a quantitative standpoint we esti-
mated the extraneous contribution to be 3-4% of the
measured value in the Hg-1245 phase.

The first kink in the region of the superconducting
transition occursat T= 132-134 K, which indicates that
traces of the Hg-1223 phase may be present. From this
kink to 113 K the thermopower decreases linearly at a
low rate, passing through the superconducting transi-
tion of the Hg-1234 phase. At 113 K the sharp super-
conducting transition of the Hg-1245 phase begins,
ending at T < 100 K. Thewidth of thetransition accord-
ing to the linear part of the drop is approximately 6 K.
A linear extrapolation to pressure P = 0 by the least-
squares method gives avalue T, = 110 K. Asthe pres-

P, 10°Q cm
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1.0r
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]
300
T,.K
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100 150 200 250

Fig. 2. Plot of the resistivity of the Hg-1245 sample versus
temperature at P = 0.
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sure is increased, T, increases at a rate of dT./dP =
0.19 K/kbar.

In the range from T, to 300 K the value of a
increases very weakly with increasing pressure. For
cuprate superconductors the thermopower is usually
written in the form

a(T) = ag +oa(T),

where 0y = a3 IS the part of the thermopower that
depends weakly on temperature, and da(T) is the part
that includes the broad maximum.

In the region of the monotonic behavior of a(T) the
thermopower at 300 K isequal to 25 pV/K, and

dog/dP = 2x 107 pV/K Kbar,
and near the maximum

dinda
dP

The behavior of T, under pressure is difficult to esti-
mate. For all the samples from the papers cited above,
Trax Shifts to lower temperatures. Such behavior is
most clearly observed in Y-123 and La-S—Cu-O
[1, 10].

Resistivity. The resistivity p was measured by the
usual four-contact scheme. The potential leads were
made of copper wire 50 um in diameter, attached by
means of silver paste at a distance of 1.2 mm apart. At
room temperature and atmospheric pressure Py =
1.55 x 102 Q cm. Measurements of p under pressure
were not made.

The p(T) curve is shown in Fig. 2. The resistivity
fallsoff linearly in the temperature interval 290-230 K.
Extrapolation to p = 0 gives a value of 70 K for the
T-axis intercept. As the temperature is decreased fur-
ther to T = 113 K the resistivity decreases, the p(T)
curve being convex downward and close to the extrap-
olated straight line. The superconducting transition

= (4%1) x 107 kbar ™.
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begins at 113 K and ends at approximately 100 K. The
temperature width of the steep linear drop of p iISAT, =
6 K. The midpoint temperature of the superconducting
transition is 110 K, in agreement with the value
obtained from the thermopower measurements. The
form of the p(T) curveisnot entirely typical for cuprate
HTSCs. A similar dependence has been observed in
Hg-1223 [13, 19], although the curve had an upward
convexity.

It may be that the two different slopes of the two
parts of the p(T) curves observed in the Hg-1223 phase
[13] are analogous to the results of [1] for Y-124 sam-
ples, and the temperature at which the change in slope
occursis correlated with T, for da.

3. DISCUSSION OF THE RESULTS

The main difference between our experimental
results on the thermopower of mercury HTSCs[13] and
those in the present study for the optimally oxidized
samples with a high value of T isthat the maximum of
oa is not very high and is strongly broadened, and the
positive values of da/dP are an order of magnitude
smaller than in the yttrium samples. The maximum da
for the Hg-1245 phase has a relative value da/a, =
0.27, whilefor Hg-1223itisda/ay = 0.55. The position
of the maximum, T, was shifted by approximately
50 K to higher temperatures, and the absolute value of
050 iNcreased substantially. For the Hg-1223 phase at

To™ we have dinda/dP = 3.8 x 10-3 kbar2, while for
Hg-1245 the derivative dinda/dP = 4.0 x 10 kbar

and is aimost independent of temperature.

The absolute value of 0y(300 K) for Hg-1223 is
approximately the same as for Y Ba,Cu;Og 6. The value
of T, agrees with the experimental results [20]. The
signs of the derivatives dT/dP and dda/dP are positive
and correspond to the theory of [5, 6], according to
which the value of T, is determined by the curvature of
the dispersion curve E(K) at E = E, which increases
under pressure [10]. The changing gap for E > Ef
increases the value of da(T), so that it increases under
pressure.

The presence of a maximum of da at T, = 140 K
is attributed in the theory [5, 6] to optical phonons par-
ticipating in the formation of vibrons. The published
values of the vibrational frequencies in CuO, corre-
spond approximately to such abinding energy [21]. For
Y-124 there is a431 cm™* mode. In Hg-1223 the value
of T, 15158 K [13], while in Hg-1245 this value rises
to 195 K, and it is not yet clear which vibrations in the
given material can correspond to this temperature. All
of the modes investigated in [21] are shifted to higher
frequencies under pressure. Granted, the shift is small
and, on account of the broadening of the maximum, is
hard to observe at low pressures. However, experiments
on lightly and optimally doped Y-123 and La-Sr—Cu-O
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Fig. 3. Pressure dependence of the superconducting transi-
tion temperature T, of the Hg-1245 sample, as estimated
from the center of the linear drop of the thermopower a(T).

samples have shown that the shift of T, isquite notice-
able and isin the opposite direction: dInT,,/dP = —1.2 x
102 kbartinY-123[1].

According to [15, 22], To = 111-113 K for
Hg-1245. If these numbers refer, asin our case, to the
center and not to the start of the superconducting tran-
sition, then our sampleisvery closeto optimally doped

(Fig. 3). The empirical relation oy = f(TJ/To ) for

cuprate HTSCs from [22] gives T/T. = 1 and O3y =
3-5 uV/K. Our measurements gave a vaue Ogyy =
25 uV/K, which is six times greater than the expected
result. This is al the more surprising because in
Hg-1223 one has 045, = 5 pV/K [13], which corre-
sponds to the universal dependence. The maximum of
o0 inHg-1245isalso strongly shifted to higher temper-
atures. The absolute value of a in its temperature
dependence for Hg-1245 is reminiscent of the anao-
gous dependence for the “yttrium” HTSCs with a car-
rier concentration considerably below 3, such as, e.g.,

inYBa,Cu,0;_sWithd=04(T,=65.9K, T. =129K,
Omax = 3L.7 WV/K, O350 = 22 uV/K). In Hg-1245 this
may be due to a sharp decrease in the hole concentra-
tion in the CuO, layer [15]. Such a decrease can give
rise to nonuniformity of the potential in the middle
CuO, layer and is very similar to the data for
L&, _,Sr,CuO, (Oizg = 25 uV/K) from [6].

Data on the pressure derivative for yttrium samples
are given in [10-12]. For both YBa,CusO, and
Y Ba,Cu,Og samples there are no major discrepancies
with our data[1-3]. The main difference between these
samples and purely layered onesliesin the influence of
the orthorhombicity (the Cu-O chains), which has been
used to explain the behavior of a(T) inY Ba,Cu,Og [12].

Theshiftof T, onthea(T) curvefor the Hg-1245
phaseisvery likely dueto the vibronic spectrum, which

determines T, for da(T). The Hg-1245 phase has
five CuO, layers of three different types, each type hav-

ing different carrier concentrations [15]. This can com-
plicate the picture set forth in [12] and can lead to a
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growth of the frequency w,;, . Thisis evidenced by the
curvesof T, versusthetetragonal |attice parameter afor
samples with different numbers of layers n: the
Hg-1245 layer has a smaller parameter a than do
phases with smaller n [23]. In mercury HTSCs the
parameter aisintimately related to the amount of non-
stoi chiometric oxygen in the samples and, hence, to the
carrier concentration. There can be an additional effect
from the defects that exist in all phases of mercury
HTSCs and can disrupt the periodic potential of the
CuO, layer. Thislast, we believe, has more of an influ-
ence on the absolute value of da(T) and its change
under pressure. All of the above reasoning in the com-
parison with theory can also be applied to the behavior
of p(T) obtained for all our samples at temperatures
between T, and 300 K, wherewe seeagrowthp O T.

It should be noted that the absolute values of p(T)
for Y-HTSCs [1, 9] decrease under pressure (with
increase of T;). For Y Ba,Cu;Og s Sampl es the same val-
ues of the derivative dInp/dP =-0.01 kbar-*were found
in[1] and [6].

The signs of the derivatives dT/dP and dda/dP
should be the same for each sample [5, 6]. However, in
experiments on yttrium HTSCs[10] and in our samples
this correlation of the signswas not observed (dT/dP > 0,
while dda/dP < 0). The signs were the same only for
the yttrium sample with concentration x = 6.7 at a pres-
sureof 17 kbar intheinterval from T, = 70K to approx-
imately 120 K [10].

It is apropos to mention some specifics of the
approach of [5, 6] to the interpretation of the transport
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properties. It was assumed that the HT SC state arisesin
a so-called thermodynamically distinguishable phase
that can be stable near the crossover at which the char-
acter of the carrier behavior changes from localized to
collectivized. This occurs through the trapping of holes
into clusters of “short” Cu—O bonds: the clusters are
thereby stabilized, so that, according to [5], one can
speak of a “second electronic phase” In the Cu-O,
planes, clusters consisting of five or six copper ions,
which are called “correlated polarons,” are stabilized
on account of the fact that besides the local lattice
deformation there occurs a sharp decrease in the Hub-
bard effective correlation U in a certain small region of
real (coordinate) space. The question of whether or not
this formation corresponds to a renormalized quasi par-
ticle cannot be answered in the framework of the phe-
nomenological approach [5, 6]. However, the phenom-
enological pictureis partially confirmed by a proposed
[24] microscopic approach to the problem. Mobile
polarons in the normal state condense into mobile
stripes. In this picture, the presence of stripes brings
about a superconducting pairing.

4. CONCLUSION

We have measured the thermopower and resitivity
of the Hg-1245 phase as functions of temperature and
pressure in the region of the normal state. The qualita-
tive picture of a(T) agrees with the results of our mea-
surements of the Hg-1223 phase. The absolute value of
a(T) in the Hg-1245 phase in the normal state is six
times aslarge asin the Hg-1223 phase.
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The results described here on the thermopower and
resistivity of two phases of the mercury cuprate HTSCs
HgBa,Ca,_,Cu0,, . »_5 (X = 3.5) under hydrostatic
pressure over awide temperature interval of the normal
state are in agreement with the model of [5, 6] and
allow oneto generalize that model to multilayer HTSC
systems with high T..

We made a comparative analysis of the results
which we obtained previously for yttrium HTSCs[1-3]
with the implications of the correlated polaron model
and the experimental results of the authors of that
model for the same HTSCs. It was found that the
majority of our results are in rather good agreement
with both the model and the experiment done by the
authors of that model.

At the same time, there are a number of experimen-
tal resultsthat disagree in the two groups of studies and
that have not been analyzed in terms of the model of
[5, 6]. Theseincludethe direction of pressure effectson
Y-123 samples, the downward shift of the temperature
Tmax Of the broad maximum under pressure, and the
high value of a5y, for Hg-1245.
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Abstract—The electronic structure of the A-15 compounds is investigated with allowance for the Hubbard
energy as the largest energy parameter. The conditions for the onset of Cooper instability are obtained. The
dependence of the superconducting transition temperature on the degree of filling of the d and p shells of the
transition elements and nontransition elements is determined. The relation between the transition temperature
and the energy of ahop along the chainsis established, permitting a comparison with experiment. A qualitative
explanation is given for the empirical results of Matthias. © 2000 MAIK “ Nauka/Interperiodica” .

1. STATEMENT OF THE PROBLEM

According to BCS theory, which is based on the
usual phonon mechanism, the various properties of
superconductors are represented by universal relations
containing T, as a scale parameter. There are severa
properties of superconducting compounds with the
A-15 structure which disagree with a phonon mecha-
nism or which are at least atypical for it. These include
the everywhere positive curvature of H,(T), the low-
degree power-law behavior of the resistance (T or T?),
and the anomalous values of the dimensionless ratios
20T, and 2AC/YT, [1]. Theimpossibility of explaining
these facts without using a rather strong electron-elec-
tron interaction indicates that the role of the Coulomb
interactions is substantial in comparison with the usual
electron-phonon interaction [2].

It iseven more difficult to explain the dependence of
the superconducting transition temperature T, on the
position of the Fermi level. Table 1 gives the values of
the superconducting transition temperature for all of
the known superconductors with the A-15 structure.
Listed for each compound in Table 1 are the average
number ny of d electrons per A cation of the transition
element, and the average number n,, of p electrons per B
anion in the investigated compounds A;B. In the lower

part of the table is the dependence of T, on (3ng + ny),

where ny isthe average number of d electrons per tran-

sition element D in the configurations A;D. The exper-
imentally observed value of T, in Kelvin is written in
brackets after the corresponding element. Membership

in aparticular subgroup, corresponding to agiven value
of 3ny + N, (or 3ny+ ny ) isdetermined for each individ-
ual compound A3B (or A;D) on the assumption that the
s shell of the A cation is empty and the s shell of the B

anion is completely filled. As to the number n; for the

elements D of one of the transition groups, itssshell is
assumed to be unfilled.

All superconducting compounds of thetypeA;B are
naturally divided into two groups of eight subgroups,
each of which corresponds to a certain number %R =
2ny + n,, with 14 < R < 28. For a specified number of
electrons per unit cell, (3ny + ny) or (3ng + ny), one
observes anomalies due to the possibility of an increase
in T, on going to a B element with a larger number of
nucleons. The change in T, as afunction of the number
of electrons per unit cell obeysthe relations discovered
by Matthias [3]. The superconducting transition tempera-
ture hastwo sharp peaks: at 3ny + n, = 16.8 (T, = 20.1) and

at 3ng+ ny = 25.7 (T, = 12.7).

These relations cannot be explained from the stand-
point of a purely electron-phonon interaction. How-
ever, they can be understood on the basis of the strong-
coupling approximation with allowance for the strong
el ectron-€lectron repulsion within the same atom—the
so-called generalized Hubbard—Emery modd [4, 5].

Our problem is to investigate the influence of the
electron-electron coupling parameters on the supercon-
ducting transition temperature in compounds with the
A-15 structure for A;B compounds (with a nontransi-
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tion element). In the compounds studied, the distance
between atoms of the metal and nonmetal (=2 A) isthe
same asin the CuO, layers of high-T, superconductors.

2. GENERAL RELATIONS

Let us assume that the Hubbard energy is large for
both the p and d electrons. In the ladder approximation
the condition for the onset of the Cooper instability is
the same as the requirement that there be a nontrivial
solution of the system of homogeneous equations for
thetwo-particlevertex part I, g, whichiscalculated for
zero total frequency, momentum, and spin:

Fap = =T GopysP) PG PN (D)

w,p

Direct calculations show that the Hubbard energy isthe
largest energy parameter for both the d and p electrons,
and we therefore treat it as infinite below. The zeroth
vertex part g, g. y, 5(P) is calculated by Dyson’s method.

In the simplest case, when the lower Hubbard sub-
band for both the p and d electronsisfilled, we have

G pau(P) = =84 20ut” ' (P) = 35.,06t" (). (2

Theindices a, A in the odd positions differ only in the
sign of the spin projection from the indices 3, v in the
even positions. The coefficients g, and g are equal to
+1 or 0 and are determined by the product of the struc-
ture constants corresponding to the given transitions
[6]. The vertex part turns out to be proportional to the
matrix of the hopping integrals t?V(p), in terms of
which the inverse single-particle Green's function is
expressed:

[Ga(P]ya = 8, a(iw—e,)—f 0" (). (3

Here €, isthe energy of the single-particle transitionsyy,
and f, isthe so-called end factor, equal to the sum of the
initial and final occupation numbers corresponding to
the given transition. This last equation corresponds to
the zero-loop approximation and will be used in writ-
ing the equations of state.

This same equation is conveniently used for calcu-
|ating the products tAp) G “(p) :

S (PG5 (p)
] (4)
= L (iw-¢)G," (M) - =53,

blf, Y fb2 "

Y=y

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Voal. 91

569
Table 1

A3B (A isatransition element,
B isanontransition element)

14 | Zr;Sn(0.94), ZrsPb(0.76)

15 | TisSh(5.8), ZrsSb(0)

16 | V4AI(11.65), V4Ga(16.5), V5In(13.9)

16 | NbsAl(18.55), Nby,Ga(20.3), NbsIn(9.2)

16.75 | NbsAlo75G€, »5(20.10)

17 | V5Si(17.1), V4Ge(6.1), V3Sn(3.8), Nb,Si(16.5)
17 | NbsGe(6.9), Nb;Sn(18.0), Nb3Bi(9.6), Ta;Sn(5.8)
18 | VAS(0), V4Sb(0.8), V3Bi(0)

18 | NbsySh(1.95), Nb;Bi(3.05), TasSb(0.66)

19 | NbsTe(2.5), CrsGa0), Mo,Al(0.58), M0,Ga(0.76)
20 | Cr;Si(0), CryGe(0), M0Si(1.3)

20 | M0sGe(1.43), MosSn(0), W.Si(0)

22 | Mo,O(4.5), W50(0.4-3.35)

24 | Cr0(0)

3ng + Ny

3ng+n,

A3D (A and D are transition elements)

21 | Tiglr(4.3)

22 | TisPt(0.49), Zr;Au(0.92)

23 | Ti;Au(<0.015), Zr;Au(0.92), V40s(5), Nb;Os(0.95)
24 | V3Rh(1.075), V4lr(1.7), Nbslr(1.71)

25 | V4Ni(0), V5Pb(0.082), V4Pt(3.2), NbsPt(9.8),

TagPt(0.4)
25 | MosTc(14), MosRe(15)
25.7 | NbsPtysAu-(12.7)

26 | V4Au(3.14), NbsAu(10.8), TasAu(0.51-10)
26 | CrsRu(3.3), Crs05(4.24), M0;0s(11.76)
27 | CrsR1(0.072), Crslr(0.17), Mo4lr(8.5)

28 | CrsPt(<0.3), MosPt(4.5)

Substituting (4) and (2) into the basic Eg. (1) and
neglecting the nonlogarithmic terms, we find

EC( a, ,V
Fap = Tz =y CLEPCL PN,
a ’agy, p (5)

€ o, A B.v
~Toe=E§ GL(=p) GG (P)T 5 v-
bﬁfﬁgp

Theindicesa, A inthe odd positionsin the definition of
the vertex parts I' refer to final states with a positive
spin projection. The indices 3, v in the even positions
in the definition of the vertex partsT™ refer to final states
with anegative spin projection. Asto the crystal indices
(p, d), the vertex partsIy gand T , in Egs. (1) and (5)
should be assumed diagonal in these indices.

Since the single-particle Green's functions do not
depend on the spin indices, we rewrite Eq. (5) in the
form

bﬁ; TS GLnG" rm (6

n'n wpm

rn = _2yn
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Table 2

Interval Vi fr b’ O Interval Yo f, bf) Y
O<n<1| 1 [1-3ny/4 1 4 Jo<n<1| 1 |1-5ny6 1 6
1<ng,<2 3/4 (2+ny/12 3/2 3 1< N < 2 3/2 4- np)/18 3 9
2<n,<3| 34 |(6-n)12 32 4 |2<n,<3| 23 |(5n,-6)36 2 4
3<n,<4| -1 |(3n,—8)/12 1 1 |3<n,<4| 23 |(24-5n)/36 2 9

Interval Vo fy b2 Jo Interval Yo f, bf) Y
0<ng<1 1 1-ny/2 1 2 4<n,<5| 32 |(n,—2)/18 3 6
l<ng<2 -1 Ny/2 1 5< Np < 6| -1 (5I‘lp —24)/6 1 1

where the dimensionl ess coefficients y, and the sums of

the sguares of the geneal ogical coefficients bﬁ areeval-

uated for each particular group of transitions (see Table 2).
In order to integrate over the momentum variable p, we
decompose al of the matrix elements of each Green's
function G.(xp) with respect to the normal coordinates:

Go(p) = X (P

Here we have introduced the notation

pd _ 2 .pd
p - ep,d"'fp,dbp,dt ’

+ _ 1
& = SIER+Enx J(ED-E0) + 4f Tobbft, .

(11)

One notices that for specified branch number A and
quasimomentum p the coefficients A*p), B*(p), and
C(p) of the decomposition are related by

_EA’ ~
P 7) A'(P)A™(p) = B'(p)C'(p). (12)
G<DP)(p) - After substituting decompositions (10) and (11) into
® Eqg. (6) and using relation (12), one can show that the
products of four Green’s functions vanish from the final
condition. The final form of the solvability condition

- contains only a sum of the diagonal matrix elements:
G."(p) = P (P _EA, Y %
P € -
® 3 R ()|
Gy (p) = pr- Dafo %o (13)
X —tanhE;"’E = 1
where the normal coordinates are defined in terms of T

the matrix elements appearing in the definition of the
single-particle Green's function (3):

Ap) = 3

ES_E‘; } 9)
J(E§—£3)2+4fpb§fdb§|t| |

X {1 + sgn(A)

p

This equation must be supplemented by the equations
of state, which relate the average occupation numbers
n, and ny with the energy differencer = €, — €4 and the
chemical potential 1 = —(e, + €4)/2:

Ng = [Nal *+ o+ 1D3Fe S ATPINEES), (19)
A

Ny = [N]+ Gy abpfp Y APINE(ES”),  (15)

A _ fdbgtp [
B'(p) = sgn()\)J D zd\2 2.2, 12 where[n, 4 istheinteger part of n, 4, N:(§) isthe Fermi
(&p—&p) +4fpfabpbilty (10) function, and g, is the degree of degeneracy of the
N f bit* n-particle states. All of the coefficients specified for
C\p) = =LLB\(p). each whole-number interval of the n, and ny values are
f gt givenin Table 2.
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3. EQUATIONS OF STATE

Let us discuss the phase diagram of the supercon-
ducting state in the variables ny, n,. According to band
calculations[2] the d states of the A cations are split by
the crystalline field into four sublevels. The lower xy
state is separated from the (xz, y2) states by at least 3/2 eV
(the Tt band). In turn, the next, (322 —r?), state is sepa-
rated from the (x2 —y?) state by 1 eV (the o band). Then
the distance between the (xz, yz) and (32° — r?) statesis
of the same order of magnitude. Thus it is necessary to
consider the sequentid filling of the xy, (xz, y2), (322 —r?),
and (X% —y?) states with the simultaneous filling of the
p shells of the B anions of the nontransition element. In
the compounds under study the B atoms are found at
the corners of the cube, and it is therefore necessary to
take into account the threefold degeneracy of the p or t
states and also the twofold degeneracy of the g, states
of the B atoms.

Our problem is to study the influence of the elec-
tron-electron coupling parameters on the superconduct-
ing transition temperature in compounds with the A-15
structure for compounds A ;B (with anontransition ele-
ment). Below we use asimple model in which only the
hops to a neighboring site are taken into account.
Accordingly, for the description of the compounds
under study we have aHamiltonian of the Emery—Hub-
bard type:

A= S 06 () +Hel

rrrzr

S IR Pro(v) + Hel

rrrzr

+ 5 [tidie) P, o(v) + He]

rrrEr

(16)

tegy roM)dio®) e S P o(V)Prolv)-

r,o,A r,o,v

Here d:,o()\), Pr o (V) and dr,s (A), P, 4 (v) arecreation
and annihilation operators for electrons of the d and p
shells, respectively, and u ={x, y, Z} and A denote three
types of p states and two t,, states, respectively.

Aswe see from Table 1, afinite value of the super-
conducting transition temperature T, is observed under
the condition n, + 3ny < 14. Therefore, thefilling of the
lower xy subband, for which ny< 2 and n, < 6, is not of
interest.

In considering the filling of the degenerate (xz, yz)
subbands we make use of the circumstance that the
hopping integral J = 1 eV aong the chain is consider-
ably greater than the energy of hybridization between
the p and d electrons while, of course, remaining
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smaller than the Hubbard energy. If it is assumed that
the Hubbard energy is the largest energy parameter,
then the energy of the excitations has the usua form,
but with a hopping integral 1 that depends on the den-
sity of Ttelectrons [4]:

&p = 2tCOSp, + €y. 17)
Heret = anifTT is the product of the hopping integral
and the sum of the squares of the genealogical coeffi-

cients b and the end factor f,. (b and f, are given in
Table 2 for each whole-number interval of n;).

Let us consider the start of thefilling of the Te(xz, y2)
subband: 0 < n, < 2. If the Hubbard energy is assumed
infinite, then the equation of state can be written for
each whole-number interval in [ng] < ng <[ng + 1] as
follows:

Ng = [Ng] +9ufeKy Ky = ZnF(Ep)'

Here g4 is the degree of degeneracy of the lowest
([ng + 1)-particle state and is also given in Table 2.

One noticesthat the p electrons are strongly hybrid-
ized only with the e electrons. The hopping energy
itself, for hopping between nearest anions, is of the
order of |t| =2 x 102 Ry = 0.3 eV. The Hubbard energy
of the p electrons is at least five times as large as the
hopping energy |t|, so that we can again use the “Hub-
bard I” approximation [4]:

n, = [n,] +3g,f K, K, = %ZnF(ap). (19)

Here the three branches of the spectrum &, depend on
an additional parameter, the tetragonal anisotropy
parameter b:

(18)

S —|t|gf,fp[(1—b)cospk+b > COSDS}- (20)

S=XY,Z

Hereand below ng(&) isthe Fermi distribution, and b < 1.

At a fixed energy difference €, — €4 the system of
equations (18) and (20) determine the average occupa-
tion numbers ny and n, for theregion0<n;<2,0<
n, < 3. The equationsin the remaining regions, 0 < n; <2,
3<n,<6,2<n;<4 and0<n, <6 can beobtained
from (14), (15) by the particle-hole symmetry transfor-
mation

Ng—=4-nN, N,—=6-n, €,4—>—€pq-

According to Egs. (14) and (15), the equation of
state can be written for each whole-number interval n,
asfollows:

3n,
o= gofr Y ne(E), fr) = 1-=F,
p
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gY = 2 bicosp, + €4, 0<n.<1,
2+n, (21)
n = 1+gf (2)ZHF(E(2)) =~

g = 22 bicosp, + €4, 1<n,<2.

After the substitution e = —cos8 we obtain the follow-
ing equation of statefor T = 0:

)
n = [nrr] * On nﬁ- (22)
For the p electrons we have
n, = gpfy) S ne(Es "),
p,A
5
£ = 1—%’, 0<n,<1,
N, = 1+gyf ‘”an(z“ V).
4—n
fg) = ——]:8—2, 1<np<2,
N, = 2+ gy % f“’an(z“ V), (23)
5n,—6
f(3) T, 2<np<3,

™
AN
=
e
|

) = b2 f, x 2t[ cosp, + b(cosp, + cosp,)] + €,
= b} f ,x 2t[ cosp, + b(cosp, + cosp,)] + €,

£ = bif, x 2t[cosp, + b(cosp, + cosp,)] + €.

We further assume that b = 1, and after the substitution
€ = —os(f/2) we obtain the following equation of state
forT=0:

B-sing

21

n, = [n,] +g,f, (24)
At afixed energy difference e, —e4 the systemof Egs. (21)
and (22) determines the average occupation numbers n;
and n, for theregion {0 < n;<2,0<n, <3}. The equa-
tionsin the remaining regions {0 < n; <2, 3<n, <6},
{2<n;<4,0<n,<6} canbeobtained from (21), (22)

by means of the particle-hole symmetry transformation
n,—4-ng,

np4>6—np, ep,d"_ep,d'
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According to Eqg. (13), the contribution to the equa-
tion for T, for each type of excitation is determined
independently [6-9]. The equation for T, has the form

—sin a
1= Sp%l_gppr T BE"'SUE'TL—gnfnﬁ% (25)

where S, and §; are the contributions for the p and d
types of excitations, respectively.

In Eq. (25) we have introduced the factors
[1-9 p(|3 sinB)/2m] and (1 — g.fa/m), which take
into account the vanishing of the effective value of the
hopping upon the completefilling of theband (a = rtfor
the Ttband, and 3 = 2t for the p electrons), which cor-
responds to localization of the electronic excitations
upon the complete filling of the lower Hubbard band.
We note that f(a = m) = Ug, f,(B = 2m) = 1/g, (see
Table 2).

For the Tt excitations we have

J.cos¢
S = —TZId > >
o+ (23, f bitcosd +e,)

(26)

wherew=1T(2k+ 1), k=0, £1, +2, 3, ....
For the p excitations we calculate S, in an anal ogous
way':
te
2 2
w + (2prpbpe +€,)

= %’TZ [plede @7

where the density of states p(e) in an isotropic model

has the form
2
p(e) = ﬁA/ 1-€

The dimensionless scattering amplitudes y; and vy, for
the excitationsin expressions (26) and (27) were calcu-
lated by Dyson’s method [7], and the genealogical
coefficients b7, b’ and the degrees of degeneracy g, g,
aregivenin Table 2.

(28)

4. INFLUENCE OF THE p ELECTRONS

It follows from Eq. (25) that the transition tempera-
tureisdetermined by two terms, each of which depends
on either the p or the d electrons. To describe the influ-
ence of the p electrons, let us consider the variation of
S asafunction of temperature and the degree of filling
B of the band. One can calculate S, as follows. After
summation over n and the substitution

W =-2ftb cosg
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we obtain
= —yp
y b5
(B/2) )
€ + COS
f“’ +%Wam%'be}

Let us assume that T < f,tb? . We write the expression
for S, asasum of two terms:

Sp = Spo+ Spus
where
y 1
o = E_ fep(e)de
6f pbp_ (30)
anh[e + cos(B/Z)}
TItf b5 1

e+cos(B2) e+ cos(BI2)| + T/ b2

1
(31
7 5 b-r =p(e)d |e+cos([3/2)|+T/fptbf,( )

Asafunction of T the quantity S,, tends toward afinite
limitas T — 0. In fact, making the substitution

_ €+ cos(B/2)
TItf b3

we obtain

Spo = 1imS,o(T) = Y,Snp dx[ta”h’(_ 1 }

2 X 1+x
3nf bpo | (32)
YpS0B AT 619 YeSB
3nf by T 3ntf by,

wherelny = C = 0.577 (C is Euler’s constant).

We also write the expression for S, for low temper-
atures to an accuracy up to terms of order O(1). Then

_ n-p
Sp1 - fpb[ 5 cosf + = smB

) (33)
21 tsin (3/2)}

—sinBl
sinBIn T
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and, ultimately,
Y .
b = fpbz[—(n—B)cosB+39nB
entf by, (34)
.2
—ZsinBIn—-—————-—Syfpti$ (BIZ)]

We seethat S, consists of two parts, one of which (S}p)
is the factor multiplying the logarithm, while the other

(Sf)) plays the role of a correction to unity in the BCS
formulafor the transition temperature:

S, = S+Sy, (35)
where
S, = FB)Y,,
F(B) = —"—gﬁcosm 0.681sinB, W, = Sn\;z G

- 2f tsin’(B/2)
S = —Wpsnﬁln%.

We note that F(B) is an odd function of the argument
11—, F(0) =—1v2, F(1) = 172, and for B = 0.124 it has
aminimum equal to F(0.124) = —1.5815. The function
F(B) does not depend on the number of the subband,
i.e., on the character of the dependence of the end fac-
tors f, on a. The value of ¥, on the other hand, is

largely determined by the number of the subband. The

maximum value of S, depends on the number of the
subband and for the first band has the value x = 0.007
(for n, = 0.97), while for the second (1 < n, < 2) and
third (2 < n, < 3) bands it has the value x = 0.021 (for
n, = 1.899 and n, = 2.725, respectively).

The coefficient multiplying the logarithm of the
temperatureis given by

Sz»p _ _ypsinB.

3nf by,

The maximum of S, in the first band (0 < n, < 1) has
the value x = 0.019 at n, = 0.97, while in the second
(1<n,<2) andthird (2 < n, < 3) bands the maximum

of S, has the values x = 0.0589 at n, = 1.806 and at
n, = 2.56, respectively. Therefore, if the d electrons are
not taken into account, one would expect that the tran-
sition temperature in thefirst band (0 < n, < 1) is of the
order of

T;texp% O_%)ZE 107,
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Fig. 1. Dependence of the transition temperature on the concentration for p electrons.

while in the second (1 < n, < 2) and third (2 < n, < 3)
bands the transition temperature is of the order of

~ 1 0.107

Thus when only the p excitations are taken into
account, the transition temperature T, does not exceed
0.5 x 107"t. The dependence of T, on the p-electron con-
centration n, isshownin Fig. 1.

5. INFLUENCE OF THE d ELECTRONS

The value of §; can be calculated in an analogous
way. After summation over w, = TtT(1 + 2n) in (6) and

the substitution p,, = —2f,J, b%cos® we have

_ cosd
S = 41-[fnb$[__[[ ¢cos¢ + cos8

(36)

o tanh[coscb + cose}.

T/, f,b%
We shall assumethat T < J,.fb%. We write the expres-
sion for §; as a sum of two terms:
S = Siot S
where
[posq) + coseg

Ut/ I
cos¢ + cos@

LS

Yn
= ——— [ cosdd
S0 4nfnbf[£ ¢ ¢

(37)

1
|cos¢ + cosB| + T/J,.f b, p°
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Yn
Sd =
' 4thnbf[
m (38)
x J’ cosd dd 1 -
J |cosd + cos6| + T/J,.f b,p

Asafunction of T the quantity S, tends toward afinite
limitasT — O:

L _ yncote (Lanhx 1 0
S0 = JIM Suo(T) = f b2 I X 1+XD( )
39
_ yncoteI A;_\[/ _0819yncot92'
if b 4t by

For §;; we obtain in asimilar way

YrCOtO 23.b3f sin"0
Sip= f bZInD T ] (40)
and, ultimately,
Y
S = SptSn = > b

By Jb%f sin’0 )

Y Jn0r 1T -IN O

X[(H—ZG)—cotelnD————————————nT D}.

We seethat §; consists of two terms, one of which (S;,)
determines the factor multiplying the logarithm, while
the other (S,) plays the role of a correction to unity in
the BCS formula for the transition temperature. It is
easy to see that the factor

YCot0
nf, b2
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Fig. 2. Dependence of the transition temperature on the concentration for d(1) electrons.

multiplying the logarithm is positive for 8 > 172,
increases monotonically with increasing 0 for 6 > 172,
and at 6 = Tttakesthevalue S, =0.1forny=1and S, = 0.2
for ny = 2. In absolute value Sy, is not greater than 0.06
for all valuesof ngintheregion where S, > 0. Therefore
thetransition temperaturein theregion ny > 1 can exceed
the maximum value of the transition temperature for
the region ny < 1 by an order of magnitude. According
to a numerical calculation, the maximum transition
temperature in the region ny < 1 does not exceed 1074,
whilein the region ny > 1 the maximum transition tem-

perature does not exceed 107t (Fig. 2).

6. SUPERCONDUCTING TRANSITION
TEMPERATURE AS A FUNCTION
OF THE OCCUPATION NUMBERS n, AND ny

L et us write the resulting equation for T.. We have

Yp 2[—(11— B)cosB + 3sinB

. 8 f tglﬁ B/Z — 'n
ZS”'IBln V P ( )}%1 gppr S BD

a By b5 f Sin“0p]
+ ﬁ[(n—ze) - cotelnDTD}

™1
o0
x %I- —On n.‘_.[D
The superconducting region at T = 0 is determined by
the condition that the coefficient multiplying the loga-

rithm of the dimensionless temperature vanishes, i.e.,
by the condition

_ YpSinB %L smBD
3nf b’ b
YCot0 0 (43)
T _ o
+ T[fanZ_[ %I‘ gT[ T[T[D

which is sketched in Fig. 3.
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AsisseeninFig. 3, in the regions where p1,, > 0 and
M, > O superconductivity always exists for T = 0. We
note that, although superconductivity is mainly deter-
mined by the influence of the Tt excitations, there exist
regions of n, valuesin which the superconducting state
a T = 0 does not arise at any values of ny. Figure 3
shows the largest possible existence regions of the
superconductivity but does not give any ideaof the val-
ues of the transition temperature. It follows from
Eq. (42) and the discussion in Sections 2 and 3 that the
superconducting transition temperature T, is mainly
determined by the Tt excitations, and it is clear that for
3<ny<5thevalues of T, can reach higher values than

Hr=0

Hr=0_| fup=0] =0 Hy =0

5
. /. ) =0
IJp_O

3
H,=0
1 ="
pa

0
2 3 4 5 6
ng

Fig. 3. Phase diagram for the existence of superconductivity
a T = 0. The superconducting regions are shaded.
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for2<ny< 3and 5 < ny < 6. The combined effect of the
p excitations and Tt excitations can lead to an increase
in the transition temperature by approximately an order
0.0022¢ of magnitude. The results of anumerical calculation of
(»)) the transition temperature as a function of the degree of
Topax = 0.0063¢ filling of the bands, i.e., of n, and ny, are presented in
Fig. 4. The calculation was done under the assumption
that the hopping integrals for the p and d electrons are
the same. Figure 4 shows level lines of the transition
— 0.0062¢ temperature, at intervals of AT, = 0.0005t starting at
0.0062 AT, = 0.0002t. We note that these transition tempera-
tures are observed only if 3 < ny <5. The highest possi-
ble transition temperature obtained in our calculation is
\( 0.0064t. Figure 4 shows the lines of electrical neutrality
corresponding to compounds with the highest experi-
mentally observed transition temperatures: V;Ga, V3in,
NbzAl, Nb;Ga, NbsAl, ,Gey s, V3Si, and NbsSn. As one
moves along the electrica-neutrdity lines 3ny + n, = p
N the ny, n, phase diagram, the chemical potential is
\ fixed, while the parameter r = €, — €4 formally varies
from —co to +oo. For all of these compounds the lines of
electrical neutrality pass through regions with values of
3n,+n,= 16 T, close to the maximum possible value.

3ng+n,=17
3ny+n,=16

0.0062¢
0.0062¢

T, = 0.00641

3ng+n,=17

£a

0.0062¢
0.0062¢

D)) 1 (&=)
S N
0.0022¢ 0.0022¢

7. FEATURES OF THE ONE-DIMENSIONAL
Tinax = 0.0022¢ MOTION ALONG THE CHAINS

2 3 4 5 6 It can be noted that in addition to the Cooper singu-
ng larity our model also has the Peierls instability, which
arises on account of the logarithmic integration of the

Fig. 4. Transition temperature as a function of the concen- diagram of the zero-sound type (see Fig. 5¢)

tration of p and d electrons. Shown are the level lines of the

transition temperature, at intervals of AT, = 0.0005t starting
at 0.0002t. The straight lines aretheliné:s of electrical neu- At zero temperature and zero energy transfer the

trality of the compounds with the highest values of T. polarization operator depends only on the momentum

—

S Y Y

X >< b+ gy : +4 +4
+4 +¥ +4 +1  +b 4+ b +y H Y +¥ i
- 4 -4 .y

(d) (e

+4

(©

_*

Fig. 5. Sudakov equations. The plus and minus signs denote motion parallel and antiparallel to the x-axis. Thearrowsh andy indicate
the directions of the spin projection.
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INFLUENCE OF THE ELECTRON-ELECTRON COUPLING PARAMETERS

transfer g and the position of the Fermi level p,, =
2f J,.bZ coso:

no(q) - 1 |n‘sin(e+q/2)_ (44)

4nf,J,b2sin(g/2) |sin(8—q/2)

It follows that the logarithmic divergence arises under
the condition

Mr
2’
dvynn

q = 2arccos

i.e., a a momentum transfer equal to twice the Fermi
momentum.

If we ignore the additional features due to umklapp
processesat = 1tor [, = 0, then taking the parquet dia-
grams into account will lead to the well-known Suda-
kov equations [10], which for one-dimensional systems
and low Hubbard energies were obtained by Dzya-
loshinskii and Larkin [11].

In our case, “backscattering” occursonly for excita-
tions with opposite spin projections. For this reason it
is sufficient to consider two amplitudes. one of them,
I";, corresponds to any collision with no change in the
spin direction, while the other, I',, is the amplitude for
“backscattering” with a change in the sign of the spin
projection:

M) = g,- j[rim) +T5n)]dn +k jri(n)dn,
0 0 (45)

T

M(t) = g, - ZIrl(n)FZ(r])dn .

Here

T=1In °F
max(T, pveg)

is a logarithmic variable that depends on the Fermi
energy e and on the temperature T or the product of the
momentum p times the Fermi velocity vi. Under the
condition of completely nesting kK = 1, so that the con-
tribution of the Cooper and zero-sound diagram cancel
each other halfway. For kK = 0 we obtain the ladder
equations that were used in the present study. Solving
the equationsin the two limiting cases, we establish the
connection between the transition temperature in the
case of complete nesting and the value which was
obtained in the previous sections.

Differentiating the equations with respect to the log-
arithmic variable 1, we obtain the following system:

M1(T) = =T 3(1) =T 51) + KT 3(0),

. (46)
Mo(T) = —2M,(Mr(1).
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For k = 1 the system has a solution that satisfies the
condition 2% — g5 = ¢? > O:

M) = '—}'Zcoth[(r—ro)lngl,

_ [e]
M = + .
O =199 2

It can be noted that the zeroth vertex part does not
depend on the momentum direction: g, = g, = g. From
thiswe find the rel ation between the bare vertex part |g|
and the arbitrary constant t,:

(47)

|0l Ton/2 = arctanh./2 = 0.8815. (48)

Thetransition temperature in the case of complete nest-
ing isfound from the condition T = 1,

_ T _ tanh/\/éD
T, = e ° = eexpD—-————————arc
: S lgl/a

To solve the system of differential equations for Kk = 0
it is sufficient to multiply these equations together. The
solution of the resulting equation has the familiar lad-
der form:

(49)

2|g|
1-2glt’

From this equation we find the transition temperature
as the condition for a singularity to appear at T =

1(2lgl):

F=r,+r, = (50)

_ 10
Ty = eexpE— 51
Thus the transition temperature in the presence of nest-
ing is related to the superconducting transition temper-

ature in the absence of nesting as

B T 1/9;
TcZ = EE?C:LEQ '
(52)
9, _ 2arctanh./2 _ 1,946
9z J2

As expected, the presence of nesting, which leadsto the
Peierls instability, lowers the temperature of the super-
conducting transition. If the system contains small
amounts of impurities, then the zero-sound anomaly
due to nesting vanishes, while the Cooper instability

does not vanish, since here T, = T;. Thevalue of € can
be obtained formally by proceeding from the ladder
approximation, where the cal culationsin the absence of
nesting are done to a higher accuracy than in the par-
guet approximation. Thus the trandtion temperatures
found in the present study for compounds with the A-15
structure are in good agreement with the experimen-
tally observed values.
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8. CONCLUSIONS

In summary, the proposed mechanism gives a qual-
itatively correct explanation for the empirical Matthias
rules, which are reflected in the existence of asharp and
nonmonotonic dependence of the transition tempera-
ture on the average number of electronsinincompletely
filled shells. The onset of the Cooper instability at a
fixed position of the Fermi level isdueto the possibility
of a change in sign of the scattering amplitude for the
entire Fermi surface at once. A calculation of the scat-
tering amplitude for all values of the Fermi energy
allows oneto find the dependence of the superconduct-
ing transition temperature for the entire concentration
region within which the Cooper instability can exist.
The change in sign of the scattering amplitude occurs
once and only once between the center and the bound-
aries of the Brillouin zone. Accordingly, boundaries of
the superconducting region arises within each whole-
number interval of variation of n, and ny. Thus one can
explain the cause of the nonmonotonic dependence of
the superconducting transition temperature on the num-
ber of conduction electrons. The numerical values
obtained for the highest possible transition temperature
are somewhat higher than those observed in experi-
ment. However, taking into account the features due to
the motion along the one-dimensional chains lowers
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the transition temperature and results in quantitative

agreement with experiment.
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Abstract—The mechanism of formation of —U centersin high-T, superconductors (HTSCs) is considered. Itis
shown that the transition from the insulator to the metallic state on doping passes through a certain range of
dopant concentrations in which it becomes possible for local transitions of singlet electron pairsto occur from
oxygen ionsto two neighboring cations (a—U center), while single-electron transitions are still forbidden. Con-
duction arisesin such systems at aconcentration of —U centers exceeding the percolation threshold for the orbit-
als of singlet hole pairs. A phase diagram constructed on the basis of the proposed model for the HTSC com-
pounds of the Ln-214 classisin complete agreement with experiment. The mechanisms of formation and relax-
ation of free hole carriers are considered. It is shown that a distinctive feature of the normal state of HTSCs s
the dominant contribution of electron—electron scattering to the charge carrier relaxation processes. It is con-
cluded from the analysis presented that HT SCs comprise aspecial class of solidsinwhich anonstandard mech-
anism of superconductivity, different from the BCS mechanism, is realized. © 2000 MAIK “ Nauka/ | nterperi-

odica” .

1. INTRODUCTION

In the 13 years since the discovery of high-T, super-
conductivity [1] there have been many models pro-
posed (seethereview [2]) that might explain the nature
of the ground state and the anomalous properties of
these compounds. However, the lack of any decisive
experiment makes it impossible to decide in favor of
any one of them.

In the present paper we show that the mechanism
responsible for the many anomal ous properties of these
compounds (including the high-T. superconductivity)
is apparently the interaction of the electrons with the
so-caled —U centers [3]. To do this, we consider how
the insulator-metal transition occurs in HTSCs upon
doping. We show in the framework of a simple ionic
model that this transition must pass through a certain
range of dopant concentrations in which it becomes
possible, within individual microclusters consisting of
several unit cells, for local transitions of singlet elec-
tron pairsto occur from oxygen ionsto a pair of neigh-
boring cations (a—U center), while the single-electron
transitions are still forbidden. We believe that it is this
range of concentrations that corresponds to the HTSC
region, in which the electron—electron attraction is due
to the interaction of the electron pairs with —U centers
[4-11]. Conduction in such asystem arises at aconcen-
tration of —U centers exceeding the percolation thresh-
old for the orbital s of the singlet hole pairs. We consider
the questions of which parts of the crystal structure
form the —U centers and in what range of concentra-
tions does an infinite percolating cluster connecting the
—U centers exist, and on these considerations we con-

struct the phase diagram of Ln-214 compounds. Com-
parison of the resulting phase diagram with the phase
diagrams of the Ln-214 compounds that have been
studied in detail should, we believe, be the decisive
experiment for choosing the mechanism responsible
for the unusual properties of HTSCs. We conclude with
adiscussion of theformation and relaxation of hole car-
riersin HTSCs.

2. MECHANISM OF FORMATION
OF —U CENTERS IN HTSCs

There are some rather weighty grounds for assum-
ing that the electron spectrum of the insulator phases of
the various HTSC compounds in the neighborhood of
Er can be best approximated by the model of acharge-
transfer (CT) insulator [12], i.e., aninsulator with agap
due to charge transfer. In such a modd (Fig. 1a) the
upper, empty band, formed by the unfilled orbitals of
the cations, is separated by a gap from the 2p valence
band, formed mainly by oxygen states. The gap Ay in
the spectrum is due to the transfer of an electron from
the oxygen to a neighboring cation and has a value of
15-2eV for al HTSCs[13].

What is the mechanism for the insulator—-metal
phasetransition in doped HTSCs? Asan example, let us
consider the HTSC compounds of the Ln-214 type. For
them the value of Aqr in the framework of a simple
ionic model is given by arelation among three quanti-
ties[14]:

Acr = |AEy| + Ay =g,

1063-7761/00/9103-0579%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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(a) Cu3d" (b)

e

02
b ]

Fig. 1. (a) Electron spectrum of aCT insulator inthevicinity
of Eg; (b) modification of the electron spectrum of a CT
insulator upon doping; 1 is pair level of a—U center.

(@) -

O |

@ 5

O Sr(Ba, Ce)

|
e Cu

Fig. 2. Different types of M,Cu,0,, clustersin cuprates. On
the left are fragments of the crystal structure, and on the
right are the corresponding projections on the CuO, plane.
The Sr (Ba, Ce) ions can be located on either side of the
CuO, plane. In Nd, _,Ce,CuQ, the apical oxygen ions are
absent. (a, b) Two typesof clustersforming—U centersat the
inner Cuions (M = Cu for Ln-214); (c) a cluster “interme-
diate” between aand b, for which a—U center doesnot form;
it correspondsto an insulating phase; (d) an M,CuO,, cluster
on which a normal-phase nucleus forms. (1) U centers;
(2) localization regions of the doped carriers; (3) a
“nucleus’ of the metallic phase.

where | 4 isthe second ionization potential of copper, A,
is the electronegativity of oxygen in relation to the for-
mation of O%-, and |AEy| is the difference between the
electrostatic Madelung energies of the configuration in
which the oxygen and copper ions are found in the
states Cu?* and O?~ and the configuration in which they
are in the states Cu* and O~. Since |4 ~ 20 eV and
At ~ 1.5-2 eV, the balance between these three quan-
titiesisrather delicate. It can be atered by heterovalent
doping, e.g., the doping of La,CuQ, by divalent Sr or of
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Nd,CuO, by tetravalent Ce. The doped carriers (in any
case at small x) arelocalized [15-17] near the dopant
ion: either on the oxygen orbitals (as holes in
La, _,Sr,CuQ,) or on the copper orbitals (as electrons
in Nd,_,Ce CuQ,). Here it important to note that the
admixture of both electrons (on the Cu orbitals) and
holes (on the O orbitals) will lead to the same result: a
decrease of |AE,,| and, hence, alowering of Aq; for the
other pairs of copper and oxygen ions found in the
neighborhood of the doped carrier. At a certain critical
concentration X. the gap Ar vanishes throughout the
entire crystal. Thus it becomes possible for electron
transitions to occur from the oxygen to the copper, and
the substance is transformed into an ordinary metal.

This is the genera picture of the transition from a
CT insulator to ametallic state on doping in the frame-
work of the ionic model. However, we suppose that in
HTSC compounds the transition from the insulator to
metal on increasing x first passes through a specia
stage or, more precisaly, through a concentration region
Xo < X < X, in which two-€electron transitions can occur
from the oxygen ions to certain pairs of neighboring
cations, while the single-electron transitions are still
forbidden.

Let us consider a cluster Cu,M,0,, where the Cu
ions are “built into” the CuO, plane and where M = Cu
in the CuO, plane for Ln-214, M = Cu (in chains) for
YBa,Cu;0,, and M = Bi for Bi-2212 and Bi-2223. The
condition for the formation of —U centers at the Cu ions
in the CuO, plane is the presence of alocalized doped
carrier in the neighborhood of each M ion (in YBCO
and BSCCO the doped carriers are localized in the
CuO; chains and in the BiO planes, respectively). In
Ln-214 there are two possible types of such clusters
(Fig. 2), in which the projections of the dopant ion on

the CuO, plane are at distances of either 3a or aﬁ,
where a is the lattice constant in the CuO, plane. In
both of these cases the presence of a doped carrier in
the neighborhood of each M ion decreases Aqt for the
neighboring Cu ion and creates conditions (i.e., forms
alocal minimum of the potential energy) for the simul-
taneous transition of two electrons to the internal Cu
ions from the oxygen ions surrounding this pair. We
note immediately that in the intermediate case, when

the M ions are found at adistance a./8, pairs of neigh-
boring Cu ions such that doped carriers would be local-
ized in the neighborhoods of the adjacent cations do not
appear, and a—-U center is not formed.

The lowering of Ay for agiven Cuion owing to the
presence of asingle hole around the neighboring Cuion
can be estimated by taking into account the interaction
between nearest neighbors only and the fact that this
hole is “distributed” (Fig. 3) over twelve nearest oxy-
gen ions (the first and second coordination spheres).

1 This assumption agrees with the experimentally determined solu-
bility limit of the dopant (see below).
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Then the lowering of the energy of the 3d'° state for the
given Cu ion is AE = (1/4)e?/r ~ 1.8 eV. Here it is
assumed that on three of the twelve oxygen ions the
hole “sees’ the unscreened Cu ion located at a distance
r =a/2 =2 A from them (eis the charge of an electron
and a is the lattice constant in the CuO, plane). Thus,
on account of the doping, the energy of these statesis
below the bottom of the conduction band by AE =
1.8 eV, which isapproximately 0.1-0.2 eV smaller than
Acr=1.9-2.0eV for La,CuO,.

An additional lowering of the energy of the 3d'°
state of Cu isachieved on account of the formation of a
bound state of two electrons on neighboring Cuionsin
the presence of two holes in the nearest-neighbor envi-
ronment of this pair. Such alowering of the energy can
occur for the bonding orbital of a singlet hole pair, as
takes place in the H, molecule. Here this analogy is
more appropriate, since the distance between electrons
on Cu ions is approximately 3.8 A and is close to the
quantity Ryg,, ~ 3.6 A, where R, = 0.8 A isthe distance
between nuclei in the H, molecule, and €, = 4.5[18] is
the high-frequency dielectric constant. Therefore the
additional lowering of the density AE; on account of
the transition of two electrons to neighboring copper
ions in our case can be estimated from the relation

AE ~ AEHZ/si = 0.23 eV, where AE,;, = 4.75 €V is

the binding energy in the H, molecule. This estimate,
however, is too low, since the oxygen ions effectively
screen the repulsive interaction of the electrons on Cu
and weakly screen the electron-hole attraction.

Thus it can be assumed that A7, which has avalue
of to 1.5-2.0 eV for doped cuprates, is depressed for
two-€electron transitions to neighboring Cuions. In this
case it appears that the holes occupy mainly the mp,
orbital [19], bringing about in a natural way a bonding
character of the orbital of the hole pair on account of the
geometry of the bondsin the CuO, plane, so that holescan
be found in the space between Cuions (Fig. 4).

It follows from the foregoing analysis that upon the
creation of alocal minimum of Asr (on account of dop-
ing) it ispossible for electronic bound statesto arise on
pairs of neighboring Cuions, i.e., theformation of a-U
center can occur.? In that case the singlet hole pair will
belocalized inthevicinity of the—U center at adistance
~al/2. The localization region of the hole pair will be
limited by the condition such that the position of the
pair level coincides with the top of the valence band
(the energy of the pair level becomes higher as the
localization region of the hole pair increases).

2In Ba, _,K,BiO3 the U centers are formed on neighboring Bi
cationsin the presence of three K ionsin the eight cells surround-
ing each of them, i.e., each hole depresses At = 2 €V by approx-
imately 0.6 eV. The smaller influence of aholein Ba, _,K,CuO3

in comparison with La-214 is explained by the proximity of the Bi
ion to the K ion, which is negatively charged (in relation to Ba).
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Fig. 3. Thelocalization region of a doped hole in the CuO,
plane (shaded) includes 12 oxygen ions. (X) copper ions,
(0) oxygen ions, (m) Cu ions for which Ac is lowered by
1.8 eV by the presence of a hole at three nearest-neighbor
oxygen ions.

jeasse
it

Fig. 4. The formation of bonding orbitals of a singlet hole
pair of a—U center from 1,  orbitals of oxygen.

Conduction can occur in such a system if these
localization regions of the hole pairs form apercolating
cluster, or, in other words, when the threshold of classi-
cal percolation is exceeded for the orbitals of the hole
pairsof the—U centers. The delocalization region of the
hole carriersin acluster of —U centersisalso limited by
the condition such that the position of the pair level
coincides with the top of the valence band. This mech-
anism will cause the pair level to be pinned precisely at
the top of the valence band (Fig. 1b) for X <X, , Where
Xover COrresponds to the transition to the “overdoped”
region. In that case the localization regions of the carri-
ers will overlap substantially, and the pair level will
sink below the top of the valence band.

On the other hand, if the M ions are located at adis-
tance of 2a (Fig. 2d), for the inner Cu ion the gap Acr

vanishes for single-electron transitions aswell.3 Such a
fragment isanucleus of the metallic (nonsuperconduct-
ing) phase. At the corresponding concentrations the
entire crystal undergoes atransition to the normal metal
state. For this state there is a single-band electronic
spectrum in the vicinity of E. In La,_,Sr,CuQ, the
charge carriers in the normal metal phase will be elec-
trons, since thefilling of the band p < 1/2 on account of
the doping by divalent Sr, whilein Nd, _,Ce CuO, they
will be holes, since p > 1/2 on account of the doping by
tetravalent Ce.

31n Ba, _ ,K,BiOs this occurs in the presence of four K ionsin the
eight cells surrounding a Bi ion.
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Concentration values determining the boundaries of the per-
colation regions for various L

L2 Xo Xm State
16 0.0371 0.0625 Insulator
13 0.0456 0.0769
10 0.0593 0.100
9 0.0659 0.111 HTSC
8 0.0742 0.125 Insulator
5 0.118 0.200 HTSC
4 0.148 0.250 Metal

3. PHASE DIAGRAM OF HTSC COMPOUNDS
OF THE Ln-214 TYPES

Let us now construct the phase diagram of the
HTSC compounds Ln-214, starting from the following
postul ates:

(1) The—-U centers are formed on pairs of neighbor-
ing Cu ions belonging only to clusters with L = 3 and

L=./5.

(2) The orbitals of hole pairs are found in the imme-
diate vicinity of these ion pairs at a distance ~a/2.

(3) The conduction in the system arises upon perco-
lation of the—U centers.

(4) The localized doped carriers cannot be found at
adistance of less than 2a.

Thislast postul ate follows from the existence of sol-
ubility limits for dopants in the Ln-214 lattice, X, =
0.2-0.25 [20-22], the exceeding of which results in

pes SO Seer <
5\59 Saver

% N A
LVRm e <l s o> Vaw

(a) (b)

=

I

Fig. 5. A constructionillustrating the method of determining

the percolation thresholds of units of length L = ./5 in a
square lattice: (a) correct determination of the percolation
threshold of units of length L when the distance between
atomsisnot lessthan L; (b) determination of the percolation
threshold for L = ./5 in the presence of units with L = 2
gives alowered value of X, because of the superposition of
circles. Thetriplelinesindicate unitswith L = 2. Theregions
of overlap of the circles are shaded.
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decomposition of the single-phase state and/or disrup-
tion of the oxygen stoichiometry. The existence of a
solubility limit, we believe, is due to the presence of a
repulsive interaction of the localized doped carriers.
This repulsion will in turn affect the distribution of the
dopant ions if they have a high enough mobility at the
heat-treatment temperature. We therefore assume that
the dopant ions (more precisely, their projection on the
CuO, plane) cannot be located at distances L < 2a.

Under this assumption the threshold of two-dimen-
sional (2D) percolation for —U centers in a square lat-
tice can be determined in the following way. Suppose
we have asquare mesh with acell parameter a=1, with
a fraction x of the mesh points (sites) occupied by
atoms, and we are to determine the percolation thresh-
old for units of length L (i.e., pairs of atoms located at
adistancel). For thiswe place each occupied site at the
center of acircle of radius L/2 (Fig. 5). The sum of the
areas of the circles constructed around these atoms is
S= xml.?/4. For a square lattice, percolation sets in
when S= 0.466 [23]. It follows that the concentration
corresponding to the percolation threshold is

x, = 0.593/L°.

Here we are assuming that the distribution of the atoms
over sitesis random and that L is the shortest distance
between atoms at the given concentration. Otherwise
there will be superpositions of circles (Fig. 5b) and X,
will be larger than that obtained from the above rela-
tion. Then the percolating cluster will include units of
length L and smaller (connecting sites found at shorter
distances). The maximum number of unitsof length L, X,
can be achieved for an ordered arrangement of the atoms
in the square lattice with acongtant L, i.e., X, = 1/L% The
values of x, and x,, for different L are given in Table 1.
Also indicated, in the right-hand column, is the state
(insulator, ordinary metal, or HTSC) that would corre-
spond to the given value of L in the case of an ordered
distribution of the dopant.

Figure 6a shows the percolation region for units of
various lengths L (the corresponding value of L? is
given to the left of each rectangle in the figure). The
left-hand side of each rectangle corresponds to the
threshold of 2D percolation for units of length L in the
case of a random distribution of the atoms in the
absence of units with lengths shorter than L. The right-
hand side corresponds to the points x,,. The heavy lines
indicate the percolation regionsfor unitswith L = 3 and

L = ./5 (i.e, clusters containing —U centers). It is in
these regions that high-T, superconductivity isrealized,
according to the proposed model.

As we shall see below, the relationship between
order and disorder in the distribution of the atoms over
sites plays a very large role and determines all of the
features of the phase diagrams of HTSC compounds of
the Ln-214 type. The tendency toward ordering is due,
we think, to the difference of the ionic radii of Ln and
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the dopant. It should be largest for the pair La/Ba and
smallest for Nd/Ce. The degree of ordering should aso
increase with increasing x (decreasing L). When we
talk about ordering of the dopant, we will mean the for-
mation of alarge number of ordered clusters (less than
100 A in size), separated by narrow regions (domain
walls) with arandom distribution of the dopant.4 Thus
only short-range order is present in the system. It is
assumed that when X, is exceeded there is a transition
to a random distribution of atoms over sites, with the
formation of an infinite percolating cluster with a
smaller L.

Let us now consider the different concentration
intervals in Fig. 6a, assuming that not more than two
types of units coexist at each point x > 0.1.

(2) 0.20 < x < 0.25. Here 2D percolation occurs via
unitswith L = 2 (i.e,, via clusters of normal (nonsuper-
conducting) metal).

(2) 0.148 < x<0.20. In thisinterval the 2D percola-
tion threshold for units with L = 2 depends on the

degree of ordering of the dopant atomswith L = /5. In

the presence of ordering of the atomswith L = /5 the
L = 2 percolation setsin at x = 0.2, whereas in the case
of arandom distribution, percolation for L = 2 isachieved
a x = 0.148. Therefore, this region corresponds either to
high-T, superconductivity or to a mixed state of aHTSC
and anormal (nonsuperconducting) metal.

(3) 0.125 < x < 0.148. Here there is “pure” 2D per-
colation viaunitswith L = /5. Thisregion corresponds
to high-T, superconductivity.

(4) 0.118 < x < 0.125. In the presence of ordering of
theatomswith L = ./8 the onset of percolationwith L =
JE occurs at x = 0.125, while in the case of arandom
distribution of theatomswith L = ./8 and L = ./5, per-

colation for L = ./5 is achieved at x = 0.118. This
region corresponds to an insulator in the first case and
to aHTSC in the second.

(5) 0.111 < x < 0.118. This is the region of “pure’
2D percolation with L = /8, and here an insulating
state isrealized.

(6) 0.10 < x < 0.111. In the case of ordering of the
atomswith L = 3 (more precisaly, in the absence of pairs
withL = ./8), 2D percolationwith L = 3 setsinat x=0.10,
while in the case of a random digtribution of the atoms
withL =3and L = ./8 thereisno 2D percolation. In this
case the percolating cluster will include regions with
L = 3(HTSC) and with L = ./8 (insulator), and conduc-
tion is possible only in cases of 3D percolation (with
Josephson tunneling between CuO, planes and/or with
tunneling between clusterswith L = 3).

4 Subject to the restriction L > 2.
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(7) 0.066 < x< 0.10. Inthisinterva thereisno 2D per-
colation with L = 3. 3D percolation (and superconductiv-
ity) can still occur for x > 0.077, whilefor x < 0.077 there
is no 3D superconductivity.

For comparison, Figs. 6b—6d shows the experimen-
tal phase diagramsof La,_,BaCuO,[24], La,_,S,CuO,
[25], and Nd, _,Ce CuO, [26]. The difference between the
phase diagrams of La,_,BaCuO, and La,_,S,CuQ, is
that thedipin T, occursat x, = 0.125 in thefirst caseand
at x, = 0.115in the second. Comparing Figs. 6aand 6b-6d,
we can easily see that all of the extremal points on the
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Fig. 6. (a) Boundaries of the percolation regions for units
with different L. The left-hand side of each rectangle corre-
sponds to the threshold of 2D percolation for units of length L
(in the case of arandom distribution of circles of radius L/2
over sites and in the absence of units with lengths shorter
than L). Theright-hand side of each rectangleisthe point of
the maximum number of units of length L, corresponding to
an ordered distribution of atomsin asguare lattice with con-
stant L. To the left of each rectangle is the corresponding
value of L2 The height of the rectangles qualitatively
reflects the growth of the number of units with as L
decreases; (b)—(d) experimental phase diagrams T(x) for
Ln-214 HTSCs. The triangles on the diagrams indicate
compositions for which superconductivity is not observed
downto4.2K: (b) Lay, _,Ba,CuO,[24], (C) Lay _,Sr,CuOy
[25], (d) Nd, _,Ce,CuO, [26].

No. 3 2000



584

experimental phase diagrams practically coincide with
the boundaries of the percolation regions for units
with different L. The difference in the values of x, for
La,_,BaCuO,and La,_,S,CuQ, isnaturally attributed
to the high degree of ordering in the La/Basublatticein
comparison with La/Sr, as a result of which the perco-

|ation threshold for unitswith L = /5 is shifted to x =
0.125—the point of maximum ordering for L = ./8.

The maximum of T, at x = 0.15 is due to the onset
(for x>0.148) of clusters of the normal metal inside the
superconducting phase. Therefore, the superconductiv-
ity in this region is “weakened” in proportion to the
ratio of the superconducting and normal phases. Thisis
confirmed [27] by measurements of the volume of the
“Meissner phase” asafunction of magnetic field. Those
measurements show that whereasfor x = 0.15 thisquantity
ispracticaly independent of field, for x> 0.15 the volume
of the superconducting phase is noticeably decreased
by amagnetic field. At the same time, in low fields the
volume of the Meissner phase increases up to x = 0.2
[20, 27], which attests to ordering of the dopants with

L=./5.

In Nd,_,Ce CuQ, (Fig. 5b), because of the small
difference in the sizes of the Nd and Ce ions, there is
practically no ordering of Ce. Therefore 2D percolation

can occur only for x > 0.118 (with L = ./5). However,
because of the absence of ordering the percolating clus-
ter will aso include regions with L = 2, and the perco-

lation threshold for L = /5 is shifted to the percolation
threshold for L = 2. This agrees with the experimental
phase diagram.

Let us now discuss the region x < 0.12 for
La,_,BaCuO, and La,_,Sr,CuO, (the underdoped
region) in special detail. It follows from Fig. 6 that for
x < 0.077 even 3D percolation does not occur, and only
“traces’ of superconductivity can be observed. This
conclusion agrees with the results of [28], it was
observed that 3D superconductivity did not occur in
La,_,Sr,CuQ, for x < 0.08. As we have said, it would
be hard to expect 2D percolation (in any case for
La, _,Sr,CuO,) intheinterval 0.08 < x < 0.12 either, on
account of the proximity of the percolation regions for
three different types of units with L? = 8, 9, and 10.
Here there will most likely be 3D percolation and/or
tunneling between clusters with L = 3. This conclusion
explains the results of [29], wherein La, _,Sr,CuQ, for
x < 0.15 alogarithmic divergence of the resistivity was
observed as T — 0, with suppression of the supercon-
ductivity by a magnetic field.

The proposed model offersanother way of interpret-
ing the results of experiments on the observation of a
pseudogap in HTSCs in the underdoping and optimal
doping regions [30—-32]. It follows from the experiment
that the pseudogap has the value and symmetry of the
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superconducting gap but collapsesat T* > T, (where T*
increases with decreasing x).

We assume that the observed pseudogap is actualy
the superconducting gap but that it arisesat T>T.asa
result of large fluctuations of the number of particles
due to transitions of electrons between pair levels and
the band. The point is that, unlike an ordinary super-
conductor with an electron-phonon interaction, where
the superconducting gap closes on account of thermal
excitations which decrease the number of states to
which the electron pairs can be scattered (the interac-
tion with real phonons), in our case the mechanism
leading to suppression of the gap is the filling of -U
centers by electrons (the interaction with real bosons).
Therefore the fluctuational decrease of the population
of electron pair levels will tend to increase the “ super-
conducting” interaction and can lead to a fluctuational
“turning on” of superconductivity (a second-order tran-
sition) at T* > T, > T, (here Ty, isthe equilibrium value
of T.) [33]. Such large fluctuations can occur in under-
doped and optimally doped samples when an apprecia-
ble fraction of the —U centers belong to small isolated
clusters. As x decreases, an ever-larger fraction of the
-U centers are found in small clusters, and the relative
fluctuations of the number of particlesincrease(i.e., T*
increases). On the other hand, in the “ overdoped” sam-
ples, when practically all of the copper ions belong to
the infinite percolating cluster, such large fluctuations
become impossible.

We can thus conclude that all of the features observed
onthephasediagramsof Ln-214 HTSCsareonly areflec-
tion of the geometrical relationshipsin asquarelatticeand
the competition between order and disorder in the distri-
bution of the dopant ions. The agreement of the calcu-
lated phase diagram with the experimental diagrams
confirms the conclusion that the superconductivity in
Ln-214 isdue specifically to the investigated fragments
containing pairs of neighboring Cu ions in the CuO,
plane and is convincing evidence in favor of the pro-
posed model of high-T, superconductivity.

4. MECHANISM OF RELAXATION
OF HOLE CARRIERS IN HTSCs

It follows from the above discussion that for x > X,
two-electron transitions can occur to certain pairs of
neighboring copper ions, while single-electron transi-
tions are still forbidden. The pair level of the—-U center
formed on a pair of neighboring Cu ions is located at
the top of the valence band and is essentially a pair res-
onance state. The transition of electrons from the oxy-
gen ions to these —U centers will give rise to additional
hole carriersin acertain neighborhood of the—U center
and will lead to the onset of hole conduction of the perco-
|lation type at a dopant concentration X > X, (X < X, < X).
We stress that for x, < X <X, the state is not the ordinary
metallic state (which arises only for x > x.) but is an
intermediate state (the—U phase) in which doping gives
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rise to —U centers, and the hole carriers that arise can
effectively interact with one another at these centers.
We assumethat it is this concentration range X, < X < X,
that corresponds to the HTSC region on the phase dia-
gram. Let us now consider the kinetics of the hole car-
riersin the —U phase.

Since the mechanism described leads to the appear-
ance of apair electron level located near the top of the
oxygen valence band in the el ectron spectrum of theini-
tial insulator phase, its hybridization with the states of the
oxygen band causes both the itinerant and localized states
to be broadened. As the two-particle hybridization
increases, the broadening of the pair level is[9, 10]

[ = 4TKT(DV)?

(hereV isthe hybridization constant, D isthe density of
states in the valence band, and T is the temperature).
The corresponding broadening of the itinerant statesis

yOTrOT.

The broadening of the itinerant states causes a smear-
ing of the featuresin the density of states of the oxygen
valence band and leads to its energy independence in
the interaction region (an anaog of the “marginal”
Fermi liquid [34]).

The occupation n of the pair states and the hole con-
centration n in the valence band are determined by the
equality of the rates of transitions from the band to the
pair level and back. If N isthe concentration of —U cen-
ters, then 2Nn = n. The frequency of transitions from
thepair level tothebandisequal toNnI" O Tn. Therate
of thereverse processis determined by the frequency of
electron—electron scattering and is proportional to
(1 -n) O T%1 —-n). Hence

- _T_
n= T+ T
where the constant T, is independent of temperature.
Hence n O T in the low-temperature region, while at
high T it approaches a constant (equa to 2N). This result
agrees with the data of Hall measurements [35, 36] on
Y Ba,Cu;0;.

Thus, on account of the interaction of the electrons
with —U centers, the distribution of hole carriersisnon-
degenerate in the sense that the chemica potentia 1 =0
for holes is zero for all T, whereas the condition of
degeneracy is that L > 0. When one takes into account
the nondegenerate character of the distribution (the
absence of Pauli exclusion) and the high concentration
(10%%-10% cm3), it is expected that the predominant
contribution to the relaxation process will be from elec-
tron—electron scattering (in this case, the scattering of
hole carriers on one another). However, since the inter-
action of two holes in a system with —U centers corre-
sponds to an effective attraction, this is not ordinary
Coulomb scattering. In the present case the main mech-
anism for electron—electron scattering is analogous to
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that [37] which takes place in metals and alloys with a
strong electron—phonon interaction. In those sub-
stances, for the electrons found in alayer with athick-
ness of about k@p (@ isthe Debye temperature) on the
Fermi surface, the effective e ectron—electron interaction
responsible for the attraction, involving the exchange of
virtua phonons, is much greater than the screening of the
Coulomb repulsion. Therefore the main channel of
electron—electron scattering in the present case will
also be due to the exchange of virtual phonons. The
contribution from these processes [37] becomes sub-
gtantia at T < ©p. Here the electron—el ectron scattering
amplitude is independent of the energy E of the parti-
cles being scattered for E < k@p and falls off sharply
for E ~ kOp. For E > k®p only the Coulomb interaction
contributes to the scattering amplitude. A contribution of
electron—€lectron scattering to the resistivity p (p = AT?)
greater than the dectron—phonon contribution has been
observed experimentaly in Al [38] & T <4 K and in
superconductors with the A15 lattice [39] at T < 50 K.
Here the amplitude A was more than an order of mag-
nitude larger than the value calculated on the assump-
tion of a Coulomb scattering mechanism.

Thus the main contribution to the hole carrier relax-
ation processes in HTSCs is from hole—hol e scattering
at a—U center due to the exchange of a virtual boson
with energy Q. Since Q ~ 0.1-1 eV, the temperature
interval in which there is a substantial contribution
from scattering processes involving a virtual boson is
broadenedto T~ 10° K.

The temperature dependence of the resistivity p(T)
in this model can be obtained from the Drude formula:
p = m*(v/n)e? (where m* is the effective mass of the
holes, and v is the hole carrier scattering frequency).
For Q > E the scattering amplitude is independent of
the particle energy E. The scattering frequency v will
therefore be determined by the hole concentration and
the statistical factor in the scattering cross section, i.e.,
the volume of phase space accessible to the particles
being scattered, which is proportional to E; + E, (here
E, and E, are the energies of the scattering particles
measured from the top of the oxygen band), i.e.,

v On(E,+E,).

For steady conductiononehask; ~E,~yOT,vOnT O

T2, and thus p(T) O T. A dependence of this form is
observed experimentally for optimally doped samples
of YBa,Cu;0, L&, _,Sr,Cu0,, Bi,Sr,CaCu,0,, etc.

In overdoped HTSCs the additional carriers cause
the pair level to sink below the top of the valence band
by an amount &E. Then, asaresult of the degeneracy of
the hole carriers at low temperatures, n ceases to
depend on T for y < OE. The temperature-dependent
part of the resistivity in this case takes the form

p(T) OV’ OT.
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A dependence of this kind is observed experimentally
in anumber of HTSCsin the " overdoped” regime. AsT
increases, when y becomes of the same order as oE, a
transition to alinear p(T) dependence is observed.

The predominant contribution of the electron—elec-
tron interaction to the scattering processes will affect
both the frequency dependence and temperature depen-
dence of the optical conductivity g:

Tope = (N/M*)[V/(w" +V7)]

(here w is the frequency of the radiation and v is the
“optical” relaxation frequency). For electron—electron
scattering (at a concentration n ~ 10?2 cm3) the colli-
sion frequency v = 10* s™. Therefore, in the IR range
we havev > w, and the formulafor the optical conduc-
tivity takes an even simpler form:

Ogpt = €N/M*v.

For optical relaxation we have E; ~w, E, ~y O T, and
v Onwforw>T andv OnT for w < T. Hence g, U
w?forw>T and 04 O T for w < I'. These results
are in complete agreement with the data of various
experiments [40, 41].

5. CONCLUSION

We have presented an elementary model for the
modification of the electron spectrum of a HTSC upon
doping, wherein the transition from an insulator to a
metallic state passes through a certain range of dopant
concentrations in which transitions of singlet electron
pairs can occur from the oxygen ions to two neighbor-
ing cations (a —U center), while the single-electron
transitions are still forbidden. We believe that it is this
range of concentrations that corresponds to the region
of high-T, superconductivity, when the electron—elec-
tron attraction is due to the scattering of electron pairs
on —U centers. Conduction arises in the system as a
result of percolation via—U centers,” or, more precisely,
via T, , orbitals of singlet hole pairs. The aforemen-
tioned features of the electron spectrum give rise to
qualitatively new properties of the system (anondegen-
erate distribution of hole carriers, apredominant contri-
bution of electron—€lectron scattering to energy relax-
ation processes), which are responsible for the unusual
behavior of HTSCs in the normal state. Starting from
the proposed model we have constructed the phase dia-
gram of HTSC compounds of the Ln-214 class and
obtained complete agreement with experiment. Based
on the analysis presented here, one can conclude that
HTSCs are indeed a specia class of solids in which a

S Interestingly, the percolating cluster in the case of doped HTSCs of
the Ln-214 class is reminiscent of a Little “polymer” [42], while in
the case of the HTSCs Y Ba;Cu;07 and BiSrCa,Cuy + 10, (where
the doping holes are found in a plane parallel to the CuO, plane) it
resembles a Ginzburg “sandwich” [43].
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nonstandard mechanism of superconductivity, different
from the BCS mechanism, is realized.
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Abstract—A variational method is proposed to find the magnetic field dependence of the magnetization of type-
[l superconductors in the mixed state by a self-consistent technique. This model alows for suppression of the
order parameter to zero at the centers of Abrikosov vortices and also for the magnetic field dependence of the
order parameter. The results can be applied to the entirerange of fieldsH.; < H < H, for any values of the Gin-

zburg-Landau parameter k > 1/./2.. It is shown that in weak fields where k > 1 the behavior of the magnetiza-
tion can be described exactly in the London approximation provided that the correct value of H,; is used. Near
the second critical field this dependence shows good agreement with the well-known Abrikosov result. Itisalso
shown that using the concept of isolated vortices and applying the principle of superposition of the fields and
currents generated by these vortices to cal culate the magnetization gives inaccurate quantitative results even in
fairly weak fields. By going beyond these concepts, it was possible to allow more accurately for the influence
of the vortex cores on the magnetization behavior in theintermediate range of fieldsH; < H < H, and to iden-
tify the range of validity of various approximations used widely in the literature. © 2000 MAIK “ Nauka/Inter-

periodica” .

1. INTRODUCTION

The magnetization of type-Il superconductors is a
fundamental electromagnetic characteristic. It can be
used to find various important parameters of the super-
conductor such as the lower H,, and upper H, critical
fields, and the Ginzburg—L andau parameter K [1-3]. An
enormous number of experimental and theoretical stud-
ies have been devoted to magnetization (see, for exam-
ple, thereviews[4, 5]). In this context it isimportant to
obtain formulas for the magnetization of superconduc-
tors which would be suitable for quantitative calcula-
tions over awiderange of external magneticfields. This
problem has been discussed in the literature for some
time (see, for example, [2—15]). Until recently, how-
ever, there was no convenient and reliable approach
which could be applied to calculate the magnetization
of atype-Il superconductor analytically over the entire
range of external fieldsH, <H <H,.

The problem of cal culating the magnetic moment M
of a superconductor can be solved most easily in weak
fieldsH < H,. Herethe cores of the Abrikosov vortices
occupy only a small part of the volume and M(H) is
obtained for kK > 1 using the London approximation
where the modulus of the order parameter is assumed
to be constant to calculate the local fields and currents
outside the core[1-3]. In the London model the depen-
dence of the magnetization M of an ideal isotropic
superconductor on the magnetic field H in the range

Hx < H < H, can be described using the Fetter for-
mula[6]:

_4TM = Hcl—ﬁ{ln[ZK(H—Hcl)] +134. ()

In this formula and subsequently we use a system of
units[3] inwhich all the distances are normalized to the
L ondon depth of penetration of the magneticfield A, the

magnetic field is normalized to H./2 (where H, is the
thermodynamic critical field), the order parameter is
normalized to its equilibrium value, and the vector
potentia is normalized to #c/2e, where # is Planck’s
constant, c is the velocity of light, e is the electron
charge, and € is the coherence length. The dimension-
lessvalues of the local magnetic field, the vector poten-
tial, and the order parameter are denoted by h, a, and f.
Note that in this system of units the flux quantum is
@, = 21K and H, = K. The lower critical field H,, can-
not be calculated self-consistently in the London
model. For this reason, H,, appears in Eq. (1) as a
parameter and for kK > 1 may be written in the form [3]

Hy, = i(an +e). @

The constant € is determined by the structure of the
order parameter at the vortex coreand itsvaluee = 0.50
was determined by Hu [7] by means of a numerical
solution of the complete Ginzburg—Landau system of
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equations (see aso [8]). The Fetter dependence (1) dif-
fersfor H —= H,. In theimmediate vicinity of H, the
magnetization in the London model can be obtained
numerically [14] or anaytically using an approxima-
tion which only allowsfor vortex interaction with near-
est neighborsin the vortex lattice [3]. In order to extend
the validity of the London approximation, various
approaches have been developed which make partia
allowance for the contribution of the vortex coresto the
free energy of the superconductor (see[5, 13]).

The London model cannot be applied in strong
fields because the vortex density is high in this case.
The behavior of the magnetization near the second crit-
ical field is described by the well-known Abrikosov
expression [3]:

- _H-He
ATBA(2K° 1)
where, for atriangular vortex lattice, we have 3, = 1.16.

In [10, 11] Clem proposed a fairly simple varia-
tional model which allows for the structure of the order
parameter near the center of the vortex. The following
trial function was used for the modulus of the order
parameter:

Hc2_H < H021 (3)

for

wherer isthe distance from the center of the vortex, &,
and f, are variational parameters characterizing the
spatial distribution of the order parameter. This model
was used to obtain aformulafor H,, [10,11] which for
K > 1 may be expressed in the form (2) where € = 0.52
which shows good agreement with the results of [7, 8].

Hao and Clem then generalized this variationa
model to the case of a regular vortex lattice and
obtained a unified formula for M(H) which can be
applied over the entire range of fields Hy < H < Hy,
[11]. One of the most important conclusions of this
study is that, even in weak fields, the influence of the
vortex cores cannot be neglected and consequently the
London model cannot generaly give an exact result
[11,22]. In the range of fields near H,, the dependence
M(H) obtained in [11] is almost the same as the Abri-
kosov result (3). Thistheory was subsequently general-
ized to the case of anisotropic superconductors [16].
The model proposed in[11] has been widely used in the
literature. The formula for the magnetization has been
actively used to analyze experimental data from mea-
surements of the magnetic moment of various super-
conductors such as. YBa,Cu;O,_5 [17], YBa,Cu,Oq
[18], Bi,Sr,Ca,Cus04 [19], (TI,Pb)Sr,Ca,CusOy and
TI,Ba,Ca,Cu;0,, [20], HgBa,Ca,Cu;0q. 5 [21, 22],
E%(i.SPbO.ZBal.Sg 2CUs0g_5 [23], and Nd, g5Cey15CUO, _5

In the present paper we show that several errors
were made in the derivation of the formulafor M(H) in

f = (4)
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[11]. For example, the expression for the free energy of
the vortex lattice F was formulated using the principle
of superposition of the fields and currents of isolated
vortices, which can only be applied in weak fields. At
the same time, also in the calculations of F the transi-
tion was made from summeation over the reciprocal vor-
tex lattice to integration. The error associated with this
transition and also using an inaccurate value of Hy, in
(1) led these authors [11] to the erroneous conclusion
that the London model is incorrectly formulated for
K >1 eveninweak fields. Unfortunately, this statement
is now accepted by awhole range of researchers. Addi-
tionally, the dependences of the variational parameters
&, and f, on the magnetic induction given in [11]
(which determine the behavior of the magnetization to
a considerable extent) were not obtained self-consis-
tently and do not follow from the expression used for
the free energy, but are simply convenient approxima-
tions.

Here we use a variational model to obtain a self-
consistent derivation of the expression for M(H). Inthis
case, the spatial distribution of the order parameter was
simulated using thetrial function (4) and the unit cell of
the regular vortex lattice was replaced by acircular one
(Wigner—Seitz approximation). The formula obtained
for M(H) can be applied over the entire range of fields
H. < H < H, for any values of the Ginzburg—L andau

parameter k > 1/ ﬁ The result for the magnetization
inweak fieldsfor k > 1 agrees with the London depen-
dence (allowing for the exact value of H.;) whereasin
strong fields it shows good agreement with the Abriko-
sov result. The formula obtained for the magnetization
can easily be generalized to the case of anisotropic
superconductors where the vortices are oriented along
one of the principal axes of the crystal. For this orienta-
tion a scaling transformation exists which can be used
to calculate the magnetization of an anisotropic super-
conductor from an isotropic one simply by changing
the notation of K [11]. This aspect is considered in Sec-
tion 2.

We also discuss the correctness of the approxima-
tion of isolated vortices in the mixed state of a super-
conductor. It is shown that even in weak fields, when
the density of vortex filaments is still low, using the
principle of superposition of the fields created by sepa-
rate vortices leads to appreciable quantitative errorsin
calculations of the magnetization.

2. WIGNER-SEITZ APPROXIMATION

In weak fields the distances between the neighbor-
ing vortex filaments are many times the dimensions of
the vortex cores. This means that the vortices can be
considered as independent interacting objects (see, for
example, [1-3, 13, 25, 26]). Thus, in weak fields the
principle of field superposition is satisfied: the self-
induced field of each filament is assumed to bethe same
as that of an isolated filament and the local field at an
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arbitrary point in the superconductor is the sum of the
fields of all the filaments. The energy of the vortex lat-
tice is expressed as the sum of the self-energies of the
filaments and the energies of their pairwise interaction
[3, 25]. A particular case of thisapproach isthe London
approximation which neglects the influence of the spa-
tial variation of the order parameter in the core of each
filament on itsfield which isvalid when k > 1.

In strong fields the vortex concentration is high and
for this reason the concept of independent filament
interactions becomes meaningless (see, e.g., [3]). How-
ever, as was shown in [27], the local magnetic field in
the regular vortex lattice can still be represented as the
sum of terms interpreted as contributions from isol ated
unit cells. In strong fields however, calculation of these
contributions is a nontrivial problem. Moreover, this
approach is artificial since the vortices are no longer
isolated objects and their properties are determined by
the lattice as a whole. In this case, it is far simpler to
calculate the local magnetic field distribution and the
order parameter in an isolated lattice unit cell. The area
of the cell isuniquely related to the magnetic induction
and the existence of trandational invariance in the sys-
tem yields the boundary condition that the current den-
sity at the cell boundary is zero. This method can also
be used to obtain the well-known Abrikosov result for
the magnetization in fields near H,. This approach is
also convenient for numerical solutions of the Gin-
Zburg—L andau equation over the entire range of exter-
nal fieldsHy <H <Hg, [28, 29].

An important simplification in this case is the
Wigner—Seitz approximation, i.e., replacing the hexag-
onal vortex cell with acircle of the same area. In[9] the
Wigner—Seitz approximation was applied to find the
magnetization in weak fields when k > 1 and the
results show good agreement with the London model.
This approximation has frequently been used in numer-
ical calculations of vortex structures [30-34]. It has
been found that in Ginzburg—Landau theory [30] and in
microscopic superconductivity theory [34] the approx-
imation of acircular cell yields good resultsnot only in
weak fields but also near H,.

In the present paper we propose a variational model
to obtain analytic expressions for the magnetization in
the Wigner—Seitz approximation. Instead of solving the
complete system of Ginzburg-Landau equations, we
usethetrial function (4) to model the distribution of the
order parameter in a Wigner—Seitz cell and the corre-
sponding local magnetic field is calculated from the
second Ginzburg-Landau equation. The fact that
expression (4) contains two variational parameters
means that the vortex shape at the center of the cell can
be varied widely for an arbitrary induction.

We shall calculate the magnetic field distribution in
aWigner—Seitz cell. For the case of cylindrical symme-
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try the second Ginzburg—Landau equation for the mag-
netic field can be expressed in the form [3]

ldgrdhg_
rdrCzard ™ ®)

Equation (5) alowing for (4) hasthe solution

h = aKo(funr?+ &)+ Blo(fur’+E),  (6)

where |, is an nth-order Bessel function of an imagi-
nary argument, K, is an nth-order Macdonald function,
and a and 3 are constant coefficients. The values of the
constants a and 3 can be determined from the condi-
tionsfor quantization of the magnetic field flux through
the Wigner—Seitz cell @ = 217k and zero superconduct-
ing current j = roth at itsinterface. This gives:

t 14(f.p)
& KB (Top) — (B K (o) )
5o e Ky(t.p) ©

K& Ky(FE)1(fop) —11(f.E)Ki(f.p)’

where we introduce the notation p = /R +&2, R =

2/ BK isthecdl radius, B = 217k Ay, isthe magnetic
induction, and A is the cell area. We stress that this
result can be applied for any kK and in particular for Kk ~ 1
when Hy; ~ H, and the concept of independent fila-
mentsisonly valid in anarrow range of fieldsnear H;.

The free energy density of the vortex lattice may be
expressed in the form

F = Fcore + Fema

where F,. IS the energy density associated with the
change in the order parameter near the centers of the
vortices, and F, is the electromagnetic energy density
[3, 11]. In Ginzburg—Landau theory F,. and F,,, are
given by the expressions[3]

1

1 22, 1 2] 2
I:core= |:— 1-f +=(gradf :|d|", 9
a3+ (o) (©)

Fem (10)

1 2, ¢2 1 1.2
h2+ £2h + Zgrad }d r,
ceIII |: %i K g VD
wherey isthe phase of the order parameter and integra-
tion is performed over the cell area. We shall find the
dependence of F on the variational parameters and the
magnetic induction. For the electromagnetic energy
density using the second Ginzburg-Landau equation
from (10) we can easily obtain: F,, = Bh(0), where h(0)
isthe magnetic field at the center of the vortex filament
[11]. If we substitute Egs. (4) and (6)—(8) into this for-
mula, we have

_ Bfo Ko(fu8)li(fup) + 1o(f &) Ki(fop)
o KE Ky(fLag)a(fagy) = Hi(fag ) Ku(fap)’

(11)
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Fig. 1. Curves of §,,(B) (a) and f,(B) (b) for kK = 100; (1) obtained using the Wigner—Seitz approximation, (2) obtained using the
isolated vortex approximation, (3) using the Hao—Clem continuous approximation, and (4) using formulas (24) givenin [11].

The expression for F,. isderived from Egs. (4) and (9)
and was calculated by Hao and Clem [11]:

1 2
I:core = —(1_ fi)

+3BRE T2 (1- m)'”%“ D}

f 4
+ = ®
2 2+ BKEV

(12)

Bf S(1+ BKE)
K(2+ BKE)

Thus, we have obtained the dependence of the free
energy density of the vortex lattice on the magnetic
induction and the variational parameters &, and f,.. In
order to achieve self-consistency in the theory the
dependences &, (k, B) and f,(k, B) should be obtained
by numerically minimizing the function F(k, B, &, f.)
with respect to &, and f,.. Figures 1a and 1b gives the
curves &,(B) and f,(B) plotted for the case k = 100
(curves 1). The numerical calculations show that for
arbitrary values of kK they can be approximated by the
following formulas:

.3 .98
Ev(Ba K) = EVO[%‘_ EG %EO E
|:BDO.Q 1/2 (13)
xH-086[Ex E}
f.(B,K) = %—28 0
(14)
4__1/2
[%1 17|3E;l 14E;DZ%l Egi%%} ’

where the constant is s = 0.985 and &, is the value of
the parameter &, at B = 0. This value is obtained from
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the condition 0F/0¢, = O for B = O:

Ké(zvo)}

, 15
KZ(Eyo) (49

KE.VO = '\/§|:1_
from which it follows that &, = +/2/k for k > 1.

The magnetic field H is determined from the condi-
tion for minimum Gibbs thermodynamic potential G =
F —2BH:

10F

For the magnetization we then have
_B-H_ 10
M= = Bres\ - 8. (10

The magnetization can be conveniently expressed in
theform M = M, + M, Where the terms

_0Fcore _ 10
9B ' ™~ T8moB

arethe contributions made to the total magnetization by
the energy associated with the change in the order
parameter at the vortex core and the electromagnetic
energy.

For Mg, using Eq. (11) we then obtain the following
expression:

Meore = —=(Fen—B) (18)

fo
2E,
Ko(f &)1 1(fep) + 1o(fuév)Ki(fep)
Ki(fo€)1(fop) = 11(fué))Ki(feup)
1
2BK’E5p’
X [Ky(f &) 11(foup) = 11(f &) Ka(fup)] > =

—4AnM,,, =

(19)

+
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Fig. 2. Curves of —4rtM(H) over the entire range of fields
H¢1 < H < H, for k = 100 obtained using different approx-
imations: (1) Wigner—Seitz approximation; (2) London
approximation [using the Fetter formula (1)] alowing for
the exact value of Hq, and (3) Abrikosov approximation for
strong fields.

-4t
0.012

0.008

0.004

Fig. 3. Curves of —4rM(H) in wesk fields Hy < H <
0.05H, for kK = 100 obtained using different approxima-
tions: (1) Wigner—Seitz approximation, (2) isolated vortex
approximation, (3) Hao—Clem continuous approximation,
(4) London approximation [using the Fetter formula (1)]
alowing for the exact value of H,.

The relationship for —41iM,,. from [11] still holds and,
in accordance with (9), has the form

f2 2 l—f2
K&, ©|nE_2 _
2 2 EBKE\)
-2 2 }+fi(2+SBK55)
2+ BKE2 (2+BKE§)2 2K(2+BK53)3'

—ATM oy = +1

(20)

The dependences ¢, (k, B) and f,(k, B) are determined
by Egs. (13) and (14). According to Eq. (17), we have
H(B) = B —41iM. Thus we obtained the implicit depen-
dence M(H).

We shall consider the limiting case k > 1. Then, in
the range of fields H < H, the variational parameters

can be assumed to be constant: &, = £, = /2/k < 1,
f, = 1 and it also follows from (20) that M., can be
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assumed to be constant. In this case, Egs. (19) and (20)
can be expanded in powers of &, and we obtain the
well-known expression [9]:

_1_[@+_1 }
2KLIL(R)  21%R)

—B+O(&2).

This expression holds as far as H,; where the Fetter
dependence (1) diverges. If H > H,, wefindR<< 1. In
this case, the expression for —41M can be expanded not
only in powers of &, but also in powers of R and we
obtain expression (1) with Hg, in the form (2) with € =
0.52.

Figure 2 gives the curve of -4riM(H) calculated
using Egs. (19) and (20) for k =100 (curve 1). Figure 3
givesthis curvein weak fields (curve 1). In weak fields
the dependence is the same as the Fetter curve (Fig. 2,
curve 2, Fig. 3, curve 4). In strong fields it shows good
agreement with the Abrikosov result (3) (Fig. 2,
curve 3). Note that the Abrikosov expression fairly
accurately describes the behavior of the magnetization
as far as fields of around 0.4H,. In fields close to H;
where the Fetter formula cannot be applied, our depen-
dence agrees with the calculations [14] for the London
model. Thus, in order to calculate the magnetization in
weak fields for kK > 1 we can use the London approxi-
mation provided that we allow for the correct value of
Hg. In fact, in weak fields in the London approxima-
tion, the influence of the structure of the order parame-
ter inside the cores of vortex filaments on the self-
energy of each filament can be taken into account by
introducing the exact value of H. At the same time
when K > 1 the structure of the order parameter has a
negligible influence on the filament interaction energy
because the distances between neighboring filaments
are many times greater than their core dimensions. Our
result agrees with the conclusion reached by Hao and
Clem [11, 12] that the London approximation is inac-
curateeveninweak fieldsfor k > 1. The authorsof [11]
used an inexact value of H, in the Fetter expression (1)
(which is equivalent to using an inexact value of the
self-energy of an isolated vortex). In addition, an
approximation for the electromagnetic energy was used
in[11]. We shall show that the error associated with this
approximation is also significant.

Figure 4 gives the curve M(H) for kK =5 (curve 1).
Note that in this case the magnetization can only be
described using the approximation of independent vor-
tices near H,,. As for large K, the Abrikosov depen-
dence (3) (Fig. 4, curve 2) remainsvalid as far asfields
around 0.4H .

The upper critical field in the variational model is
defined as the field at which the order parameter in the
entire superconductor becomes zero. According to the
approximation (14), f,, (and thusthe order parameter) is
zerofor H=0.985k. Thisvalueisfairly closetothetrue

—ATIM(B) = H,, +
(21)
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value H, = K. The small difference between H,, and kK
can be attributed to the approximate nature of the vari-
ational model. As a result, the values of the first and
second critical fields calculated using thismodel cannot
be identically equal to the true values H, and He,.
Thus, although the value of the lower critical field is
fairly closeto the exact value Hy, it still differsfromiit.
The same appliesto the upper critical field.

For practical application of the formulafor the mag-
netization, we can set s=11in (14). This leads to better
agreement between the dependence obtained and the
Abrikosov expression (3) for H — H. In fields
below Hg, our result remains the same. Small differ-
ences from the Abrikosov result for H — H, can be
explained by the fact that the variational model uses a
circular vortex cell.

Thus, in the asymptotic limits of weak and strong
fields this dependence of the magnetization on the mag-
netic field agrees with the well-known results: the Lon-
don dependence (1) (for k > 1) and the Abrikosov

result (3) (in awide range of valuesk > 1/./2). In this
model the values of the first and second critical fields
are fairly close to the true values of H,; and Hg,. This
suggests that this dependence accurately describes the
behavior of the magnetization of type-Il superconduc-
torsin the mixed state.

The magnetic properties of anisotropic supercon-
ductors are described by Ginzburg—Landau equations
with an effective mass tensor. The variational model
can easily be generalized to this case if the vortices are
oriented along one of the principal axes of the crystal x;,
i = 1, 2, 3. Note that these directions of the external
magnetic field are usually used in experimental studies.
It was shown in[35] (seealso[11]) that in this case, the
anisotropic Ginzburg—Landau equations can be trans-
formed to theisotropic form by means of asimple scal-
ing transformation. In order to obtain the dependence
of the magnetization on the external field in the aniso-
tropic case from the known dependence for an isotropic
superconductor, we need to replace the Ginzburg-Lan-

dau parameter Kk with K, = Ku;"’, where u, =

m,/ /m;m,m;, and m are the effective masses in the
direction of the x; axis (here the vortices are directed
along the x, axis). The case of arbitrary orientation of
the vortex filaments relative to the principal axes is
studied in [24].

3. APPROXIMATION OF ISOLATED VORTICES

The field hy generated by an isolated vortex is a
decreasing solution of the Ginzburg-L andau equation (5)
over large distances. If the order parameter in the entire
superconductor is distributed according to Eq. (4), tak-
ing into account the flux quantization condition, we can
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Fig. 4. Curves of 4mM(H) infiddsHy <H<Hfork =5
obtained using various approximations: (1) Wigner—Seitz
approximation; (2) Abrikosov result (3).

find the dependence of the field h, on the distance from
the vortex axisr from (5) [11]:

f o Ko fonT?+E2)
KEvKl(fooEv) .

Note that thisformulais aparticular case of Eq. (6) for
B—0.

The tria function (4) was used in [11, 12] to model
the distribution of the order parameter in each unit cell
of aregular vortex lattice. In these studies the local mag-
netic field over the entirerange of fieldsH,; <H <H, was
obtained from the sum of the contributions of isolated
cells. These contributions should be calculated from the
second Ginzburg—Landau equation for a given periodic
distribution of the order parameter. Instead it was assumed
in [11] that each contribution at an arbitrary point in the
superconductor isgiven by Eq. (22) whichisvalid for an
isolated vortex. In this approximation the local mag-
netic field hy(r) may be obtained by the simple superpo-
sition:

ho(r) = (22)

h(r) = > ho(|r =ri)). (23)

This approach retains the concept of vortices asisol ated
objects. We shall therefore call it the “isolated vortex
approximation.”

As in the case of the London approximation, the
approach described above should only remain exact in
weak fields. Unlike the Wigner—Seitz model, this
approximation can be used to study various vortex |at-
tice configurations and also to study the vortex state
near the surface. We shall analyze the range of validity
of thisapproach. To do thiswe shall cal culate the super-
conductor magnetization in this approximation over the
entirerange of external fieldsH,, <H <H_, and we shall
compare this with known results.

As before, the electromagnetic energy density in
this case is determined by the formula F,,, = Bh(0) and
the magnetic field at the center of the vortex h(0) is
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Fig. 5. Curves of 4mM(H) infieldsHy < H < H, fork =
100 calculated using various approximations: (1) isolated
vortex approximation; (2) Hao—Clem continuous approxi-
mation, (3) London approximation [using the Fetter formula
(1)] dlowing for the exact value of Hq.

made up of the self-induced field of the vortex and the
fields generated by all the other vortices. In this case,
for F, for atriangular |attice we have

Bf,

Fen = REK (T

<)

x 3 Y [Ko(fur/di(3m" +17) + )

m=—oon=—w

+ Ko( funfdi(m+ 12)2 + d?(n+ 1/2)? + £2)],

(24)

where d; = (417BK ./3)2 is the vortex lattice constant.
Using Eqg. (24), we find the dependence of the magne-
tization on the magnetic field. The values of the varia-
tional parameters are determined by numerical minimi-
zation of the free energy density. However, this proce-
dure using Eq. (24) directly is difficult since in strong
fieldswe need to have thousands of termsin each of the
single sums to achieve the required accuracy. In the
Appendix, Eqg. (24) is transformed to a more suitable
form for the numerical calculations.

A numerical minimization of the free energy gives
the dependences &, (B) and f..(B) plotted in Figs. laand
1b for k = 100 (curves 2). The corresponding curve
-41iM(H) is plotted in Fig. 3 (curve 2) and Fig. 5
(curve 1) for k = 100. In this case, the value of the sec-
ond critical field Hy, is higher than the correct value,
being approximately 1.29H,. Thus, in this approxima
tion the behavior of the magnetization near H, doesnot
agree with the Abrikosov result because the concept of
isolated vortices becomes meaningless here as a result
of the substantial overlap of the vortex cores.

For comparison the Fetter curve (1) is plotted in
Fig. 3 (curve 4) and Fig. 5 (curve 3). In weak fields the
dependence M(H) in the isolated vortex approximation
is amost the same as the corresponding curve in the
London approximation (for k = 100 asfar asfieldsH =
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0.02H., which is approximately 80H;). At the same
time, acomparison of the magnetization curves (Fig. 3,
curves 1 and 2) shows that even in fairly weak fields
H = 0.05H,, for kK = 100, when the spacings between
the vortices are still large, the error associated with
using the isolated vortex approximation is quite appre-
ciable and is around 10%. This is because, in accor-
dance with formula (17), the magnetization is deter-
mined by the difference between two numbers, each
many times greater than the magnetization itself. Thus,
even small correctionsto F,,, may be significant.

To conclude this section we note that for H < H,
we have calculated the free energy of a square vortex
lattice in the isolated vortex approximation. As was to
be predicted, this was higher than the free energy of a
triangular lattice. Thus, in the London approximation a
triangular lattice is thermodynamically more favorable
than a square one.

4. CONTINUOUS APPROXIMATION

In[11] atransition was made to summation over the
reciprocal lattice to calculate the free energy F,, fol-
lowed by a transition to the continuous limit, i.e., the
sum was approximated by an integral. For k > 1 the
following approximations were given in [11] for &,(B)
and f,(B):

£, = EvoJ%L—ZEL—EBZE

_ Bl
f = /1-[@.

It can be seen from (25) that f, = 0for B=H, =K. A
numerical check shows that the formulas (25) do not
follow from the expression for the free energy density
in the continuous approximation [11]. Minimizing F in
terms of the parameters €, and f,, givesthe curves &, (B)
andf,,(B) plotted in Figs. laand 1bfor the case k = 100
(curves 3). The dependences (25) are also plotted in
these figures (curves 4).

It can be seen from Figs. 1laand 1b that in the field
H = H,/2 the dependences ¢,,(B) and f.,(B) exhibit an
abrupt jump. This jump leads to a small jump in the
magnetization M(H) which is nevertheless incorrect
from the physical point of view (Fig. 5, curve 2). Such
an abrupt change in &,(B) and f..(B) occurs because in
addition to the absolute minimum of the free energy, a
loca minimum occurs near the field H,. As B varies, the
absolute and local extrema abruptly change places. It can
be seen from Figs. 1b (curve 3) and Fig. 5 (curve 2) that
the field for which the order parameter in the supercon-
ductor becomes zero differs from the true value Hy, = K.
For k = 100 this difference is approximately 6.6%.

More significantly, using this approximation for F,
gives an error in the behavior of M(H) in weak fields.

L BOD
koo
(25)
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Thus, the difference between the values of the magne-
tization obtained using the continuous approximation
(Fig. 3, curve 3) and the self-consistent (Wigner—Seitz)
and London approaches (Fig. 3, curves 1 and 4) is
around 10% for H = 0.01H,,, k = 100. It can be seen
from Fig. 3 that a smilar difference does not occur
when the isolated vortex approximation is used system-
atically (curve 2). Using the approximations (25) barely
alters the behavior of the magnetization in weak fields
although it eliminatesthe jump in M(H) and more accu-
rately describes the behavior of the magnetic moment
near He,.

Consequently, the difference between the magneti-
zation in weak fields in the Hao—Clem model and the
magnetization in the London approximation for k > 1
isaresult of the inaccuracy of the approximation [11]
for the electromagnetic energy.

5. CONCLUSIONS

Thus, we have used a variational model which
allows for the structure of the order parameter inside
the vortex core and the dependence of the modulus of
the order parameter on the magnetic field to determine
the magnetization of a homogeneous isotropic type-I|
superconductor in the mixed state over the entire range
of magnetic fields H,; < H < H,. The model has been
generalized to the case of anisotropic superconductors
when the filaments are oriented along one of the princi-
pal axes of the crystal. In weak fields when k > 1 our
results agree with the predictions of the London model,
while in fields near the second critical value they agree
with the well-known results obtained by Abrikosov.
The proposed model is self-consistent and can be
applied for a quantitative description of the magnetiza-
tion of type-11 superconductors. We have also analyzed
the accuracy of representing the mixed state as a set of
isolated vortices for k > 1. We have shown that calcu-
lating the magnetization using these representations
yields appreciable quantitative errorsin weak fields.
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APPENDIX

Electromagnetic Energy Density of a Vortex Lattice
in the I solated Vortex Approximation

We shall express the field b created by a single vor-
tex array in a convenient form for numerical calcula
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tions. We introduce coordinates centered on the axis of
one of the vortices with the x-axis perpendicular to the
plane in which the vortex array lies, the y-axis lying in
this plane and orthogonal to the vortices, and the z-axis
directed along the vortex axes. In this case, using (22)
we obtain

-_— f°°
b(X1 y) - KEvKl(mev)
- (A.2)
X 3 Ko(fanf(dim+y)*+x*+ £)).

L et us perform Fourier transformation of asummand in
Eq. (A.1) with respect to the coordinate y:

fo dqdy
KEK (fa)zf

x exp(—iqy)Ko( fon/(d;m+y)2 +5% + E2).

Having integrated this expression with respect to v,
using known formulas for the definite integrals of the
Bessdal functions [36] and the relationships

b(x,y) =

(<)

Z exp(—igm) = 2m i d(q—2mm),

we can obtain

fo M o arem?d
b(x,y) = —————— Of . + ——0O
BN = TR, Z_MD d; O

(A.2)

0 5 [.. 4amO m
f

Taking into account Egs. (24) and (A.2), we have
Brt
K&K (fo&y)ds 3

em

x Ezz exp(~1.../3d0n" + £2) + exp(~1..&,)
n=1

O 2[] O
Dl 4Tisz eXpE)—E\, 4T[2m
L0 3dif20 3df
T[2 2|:|1/2
+4Z zm 3d2f2
m=1n=1
O
x exp fi,+4"Zm Jdin’ + ED
O 3d?
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12

B mD 4T[2m2|]_
+4 (1) +——0O
m;go 0 3difi0

4

0 2 0
x exp- [f2 + ”z';“ Jd2(n+1/2)2+ €20
O 3d? 0

+2 Z exp(=f o, Jd2(n + 1/2)2 + £2) E; (A.3)
m=20

Although this formulaisfairly cumbersome, it is more
convenient for numerical calculations than Eq. (24)
since only afew terms (several tens) need be taken into
account in the double sums on the right-hand side of

Eq.

1
2.

3.

O NG

9.
10.
11.

12.
13.

14.

(A.3).
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Abstract—Multiple-quantum spin dynamics is studied using analytic and numerical methods for one-dimen-
sional finite linear chains and rings of nuclear spins 1/2 coupled by dipole—dipole interactions. An approxima:
tion of dipole—dipole interaction between nearest neighbors having the same constants is used to obtain exact
expressions for the intensities of the multiple-quantum coherences in the spin systems studied, which are ini-
tially in thermal equilibrium and whose evolution is described by a two-spin two-quantum Hamiltonian. An
approximation of nearest neighborswith arbitrary dipole—dipoleinteraction constantsis used to establishasim-
ple relationship between the multiple-quantum dynamics and the dynamics of spin systems with an XY Hamil-
tonian. Numerical methods are developed to cal culate the intensities of multiple-quantum coherencesin multi-
ple-quantum NMR spectroscopy. The integral of motion is obtained to expand the matrix of the two-spin two-
quantum Hamiltonian into two independent blocks. Using the nearest-neighbor approximation the Hamiltonian
isfactorized according to different values of the projection operator of thetotal spin momentum on the direction
of the external magnetic field. Results of calculations of the multiple-quantum dynamics in linear chains of
seven and eight nuclear spins and a six-spin ring are presented. It is shown that the evolution of the intensities
of the lowest-order multiple-quantum coherences in linear chainsis accurately described allowing for dipole—
dipole interaction of nearest and next-nearest neighbors only. Numerical calculations are used to compare the
contributions of nearest and remote spins to the intensities of the multiple-quantum coherences. © 2000 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

Asaresult of the local nature of the main spin—spin
interactions, NMR spectroscopy in solids can only be
used to obtain structural information on the nearest
neighborhoods of the nuclei being studied which
restricts the scope for studying structural characteris-

tics at distances greater than 6 A [1]. In multiple-quan-
tum NMR spectroscopy, various multiple-spin transi-
tionsare excited between the Zeeman level s of asystem
of interacting spinsin an external magnetic field which
in principle can be used to obtain information on the
structure at considerably greater distances. In this case,
information on the nuclear spin distribution in the solid
is extracted by determining the number N(t) of spins
correlated as a result of spin—spin interactions at the
end of a preparation period of duration T when the sys-
tem is exposed to a specialy selected sequence of rf
pulses which ensure the appearance and evolution of
various multiple-quantum coherences [2]. Multiple-
quantum NM R has been successfully used to study pro-
ton distributionsin liquid crystals[3], in ssmple organic
systems [2], and in light-sensitive polymer mixtures
[4]. The time evolution of the multiple-quantum coher-
ences has proved to be very sensitive to the spatia
dimension of the system of interacting nuclear spins

[5], which opens up new prospects for structural inves-
tigations.

The main theoretical method for interpreting multi-
ple-quantum NMR experiments is the statistical theory
[2]. According to [2], for afairly long irradiation time
the probability of the excitation of all possible multiple-
spin transitionsis the same. Determining the intensities
of the multiple-quantum coherences then simply
reduces to a combinatorial problem. In a group of N
interacting nuclear spins (S= 1/2) the number of transi-
tions responsible for multiple-quantum coherence of

order nis Chy ". According to the Stirling formula [6]
thisexpression for N > 6 is accurately approximated by
the Gaussian function 22N(TiN)“2exp(—n?N). By
approximating the experimentally observed depen-
dence of the multiple-quantum coherenceintensities on
thetimet [2] (the multiple-quantum coherence profile)
by a Gaussian curve, we can find the number of spins
N(T) coupled by spin—spin interactions. In asmall clus-
ter the value of N(t) corresponds to the number of
nuclear spins contained in it. However, in solids with a
macroscopically large number of spins this definition
becomes meaningless. Theinitial hypothesis of the sta-
tistical theory [2] that the probabilities of excitation of
various multiple-quantum coherences are the same for
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long times of excitation of the system by a series of
pulses (compared with the time determined by the
spin-spin interactions) remains unclear. Although the
experimental datafor spin systemswith asmall number
of spins (6 < N < 8) agree qualitatively with the predic-
tions of the statistical theory [7], a more detailed anal-
ysis of multiple-quantum NMR experiments revealed
substantial discrepancies [8]. An experimenta investi-
gation [9] of the profiles of multiquantum coherences
showed that in some cases, these profiles are in fact
described by Gaussian curves and in other cases, the
multiple-quantum coherences decay exponentiadly, as
was noted in [8]. It should be stressed that it is very dif-
ficult to uniquely determine the correspondence
between the profiles of multiple-quantum coherences
and the predictions of the statistical theory since we are
dealing with experimental signals obtained for long
excitation times when the imperfections of the pulse
sequences used and relaxation processes are important
factors.

The phenomenological theory [10, 11] of multiple-
guantum NMR spectroscopy, like the theory of the
NMR line shape in systems with chemical exchange
[12], has played an important rolein understanding var-
ious aspects of multiple-quantum dynamics. In thisthe-
ory, multiple-spin, multiple-quantum dynamics is con-
sidered as multipositional exchange of coherences in
Liouville space. A hopping model [10, 11] was used to
describe some features of multiple-quantum NMR
experiments. However, an explanation of the oscillating
nature of multiple-quantum dynamics was outside the
scope of phenomenological theory.

M ultiple-quantum coherencesform at timest > ;o

(W is the characteristic frequency of the spin—spin
interactions). Hence, perturbation theory methods can-
not be used effectively to study multiple-spin, multiple-
guantum dynamics. This leaves us with numerical
methods of multiple-quantum NMR and exactly solv-
able models.

A numerical analysis of the evolution (growth) of
multiple-quantum coherences is extremely difficult
since for a system of N spins the density matrix con-
tains 4N elements. Numerical solutions describing the
growth of multiple-quantum coherences have been
obtained for systems containing up to six spins by diag-
onalizing the Hamiltonian [13]. An iterative method
[14] was used for a numerical study of the growth of
multiple-quantum coherences in a nine-spin system.
However, the accuracy of the results obtained in [14]
for long times requires additional verification.

Multiple-spin multiple-quantum dynamics is smpli-
fied appreciably in one-dimensiona spin systems. Thus,
an experimentd investigation [ 1, 15] of multiple-quantum
NMR in calcium hydroxyapatite Cay(OH)(PO,); contain-
ing quasi-one-dimensional chains of hydroxyl-group pro-
tons opened up anew direction for the evolution of theo-
retical methods of analyzing multiple-spin multiple-
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guantum dynamics. Since the constant of the dipole—
dipole interactions of neighboring nuclear spins in a
chain is 20 times the maximum constant of dipole-
dipole interactions of neighboring chains, we can
assume that in calcium hydroxyapatite the main contri-
bution to the intensity of the multiple-quantum coher-
ences is made by the nuclear spins of one-dimensional
linear chains. Itisalso significant that the dipole—dipole
interaction of the spins decreases with distancer asr=
and thus the dipole—dipol e interaction of the next near-
est neighborsiseight timesweaker than theinteractions
of the nearest neighbors. This gives rise to the problem
of multiple-quantum NMR of one-dimensional linear
chains of nuclear spinsin which only nearest neighbors
interact. This problem was solved exactly in the ther-
modynamic limit when the number of spinsin the chain
iISN — oo at high[16, 17] and low [18] temperatures.

Problems involving multiple-quantum NMR of
finite linear chains and rings of nuclear spins when
allowance is only made for spin—spin interactions of
nearest neighbors belong to the exactly solvable one-
dimensional models[19] and their solution can be used
to study multiple-quantum dynamics of various clusters
of nuclear spins.

In the present paper we use analytic and numerical
methods to study multiple-quantum spin dynamics for
one-dimensional linear chains and rings of nuclear
spins. For these systems which are initially in thermal
equilibrium, whose evolution is described by a two-
spin, two-quantum Hamiltonian [2], we obtain exact
formulas for the intensities of multiple-quantum coher-
ences when allowance is only made for nearest-neigh-
bor interactions and the constants of these interactions
are assumed to be the same. It is shown that in the near-
est-neighbor approximation (for arbitrary dipole-
dipole interaction constants) the multiple-quantum
dynamics can be reduced by means of a simple trans-
formation to spin dynamics described by the flip-flop
Hamiltonian [20]. Thus, an example which can be
achieved experimentally was constructed for the first
time when as a result of dipole—dipole interaction of
nuclear spins in a solid, only the part responsible for
flip-flop processes remains. Thisimplies that multiple-
quantum dynamicsis closely related to the dynamics of
systems of nuclear spins with an XY Hamiltonian [19,
21, 22]. Numerical methods have also been developed
to calculate multiple-quantum coherences in multiple-
guantum NMR spectroscopy in solids. Theseareimple-
mented using an integral of motion which can expand
the matrix of the dipole—dipole interactions into two
independent blocks. In order to obtain a numerical
solution of the problem of multiple-quantum NMR in
the nearest-neighbor approximation, the two-spin two-
guantum Hamiltonian isfactorized in terms of different
values of the operator of the total spin momentum on
the direction of the external magnetic field. Numerical
solutions of the problem of multiple-quantum NMR are
obtained for linear chains consisting of seven and eight
spins, and aring of six spins. It is shown that in these
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linear chains the time evolution of the zeroth- and sec-
ond-order multiple-quantum coherences is described
allowing only for dipole—dipole interaction of nearest
and next-nearest neighbors. The contributions of near-
est and remote spinsto the intensities of multiple-quan-
tum coherences of various orders are compared on the
basis of the numerical calculations.

2. INTENSITIES OF MULTIPLE-QUANTUM
COHERENCES IN SOLIDS

Multiple-quantum NM R spectroscopy in solids uses
atwo-dimensiona NMR experiment in which a prepa-
ration period of duration T, free evolution over thetime
interval t;, amixing period 1, and detection are system-
atically carried out [2]. In the preparation period the
system is exposed to a sequence of pulses which leads
to the appearance and evolution of multiple-quantum
coherences. We shall assume that the exciting sequenceis
periodic and that one period contains eight rf pulses[2]:

%—X—E—X—A—X—E—X—A—X
(€
N -X-A-X-N-X-

where A, A' = 2A + t, are the time intervals between

pulses (t, is the pulse duration), X and X are resonant
pulses having the phase difference 1t which flip the
spins by 90° about the x axis of coordinates rotating at
the pulse carrier frequency [23]. Then the average
Hamiltonian 7€ determining the dynamics of the
nuclear spin system may be written in the form [17]

H = FH2+ F2, 2
where

+ 1 +
%Zz_éleklllk (3)

i<k

In (3) 1 are the raising and lowering spin angular
momentum operators of spin j. The dipolar coupling
constant D;, between spinsj and k is given by

2
Dj = l?h(l—%oszejk), (4)
21

wherer;, is the distance between spinsj and k, 6 isthe
angle between the internuclear vector r;, and the exter-
nal magnetic field H,, and y is the gyromagnetic ratio.
In one-dimensional linear chains, the angle §;, is the
same for all spin pairs. We shall subsequently assume
that for these chains 8, = 0. The distance between near-
est neighbors r;; ., can generaly differ for different
spins. However, in order to find an exact solution, we
shall assume that they are the same.
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Assuming that a system of nuclear spinsisinitialy
inthermal equilibrium with the lattice, at the end of the
preparation period, apart from terms which do not
depend on T, in the high-temperature approximation the
density matrix p(t) is given by:

p(1) = exp(— )l exp(idT), ()

where |, is the projection of the total spin angular
momentum on the z direction of the external field Hy,.
Following [17], we expand the density matrix p(t) asa
series:

P = Y P, ©)

where p,(T) is the contribution to p(t) made by multi-
ple-quantum coherences of order n. Specia experimen-
tal methods are used to separate the signals from the
multiple-quantum coherences of various orders [2, 24,
25]. These methods can be described by introducing the
offset field Aw over the evolution period of the system.
Assuming that W, < |Aw| (W iSthelocal dipole fre-
guency determined by the dipole-dipole interaction),
wefind that the density matrix p(t +t;) at the end of the
free evolution period has the form

p(T +1ty) = exp(idwtl,)p(r)exp(—idwt,l,). (7)
Taking into account Eq. (7), we rewrite Eq. (6) asfollows:

T(T+t) = exp(indoty)py(T). (8)

During the mixing period the multiple-quantum coher-
ences are transformed into longitudinal magnetization.
Over this period we use a multipulse sequence which
changes the sign of the Hamiltonian (2) as in time-
reversal experiments in a system of interacting nuclear
spins[26, 27]. This sequence ensuresthat different con-
tributionsto the multiple-quantum coherence of agiven
order n have the same phases. At the end of the mixing
period the density matrix has the form

p(2t +1,) = exp(iF1)exp(iAwt,l,)exp(—i 1) 9
x |exp(i# 1) exp(—iAwt,l,)exp(—i #H1). ®

In this case, the longitudinal polarization I(t, t,) is
defined as follows [17]:

(1, t) = Tr{l,p(2T +t,)}
= Tr{p(t) exp(idwt,|,)p(T) exp(-iAwt,l,)}

=S €™ Tr{pr(P,(D)} (10)

= z einq)6—m, nTr{ p—n(T) pn(T)}
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= z €"Tr{ p_(1)pn(1)},

where d_, , isthe Kronecker deltaand ¢ = Awt;. Thus,
the intensity of the multiple-quantum coherence of
order n is determined using the formula

Jn(1) = Tr{pn(1)p_s(D)} - (11)

3. MULTIPLE-QUANTUM NUCLEAR MAGNETIC
RESONANCE IN NUCLEAR SPIN RING
SYSTEMS

We shall consider a ring of N nuclear spins in an
external magnetic field H, perpendicul ar to the plane of
thering. It follows from Eqg. (2) that the Hamiltonian of
this system is given by

N
% = bZ(|;|T+1+|]_IJ_+1)! (12)
j=1

whereb=-D;; . ,/2. It isassumed that the cyclicity con-
dition, i.e, I7 =17,y (j=1,2, ..., N) issatisfiedin this
system. In order to diagonalize the Hamiltonian (12)
we need to convert from the spin operators IJ-i to the

fermion operators W, , W, which is achieved by means
of the Jourdan—Wigner transformation [19]:

+ D . + D
I, = Wnexp[-l—lnz w.Ww.0
m>n

(13)

z
I

1 +
n = Z—LIJnl-Pn.

Here, 1} is the projection operator of the spin angular

momentum of nucleus n on the z axis (I, = r':‘: lIﬁ).

In the fermion representation, the Hamiltonian # (12)
may be rewritten asfollows:
N-1
# =D Z (WoWosr+ Woi Wh)
n=1
N-1

b (1-2¥,w )W, W,
Il
N-1

+b|‘| (1-2W, W )W V.

n=2

(14)

The Hamiltonian (12) does not commute with |, but it
is easy to check that

[#, exp(iTly)] = O, (25

The integral of motion exp(itd,) may be used to repre-
sent the Hamiltonian # as two blocks having dimen-

a=xYy,z
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sions of 2N-1 x 28-1 1 |t js convenient to introduce the
operator

M =

Ny
2

2 (16)

which has an integer-value spectrum (0, 1, 2, ..., N). It
is easy to check that in the fermion representation we
have

N
T Wi,
k=1

and using Eq. (17), theformulafor # (14) can betrans-
formed to give

M = (17)

N-1
¥ = bz (WoWoit + Whit W)

n=1
—be™w W, + be™w Wi,

(18)

In accordance with Eq. (15), € is divided into two
blocks, #_, and #, for €™ = -1 and €™ = 1 (for odd
and even eigenvaues of the operator M). The block #_;
has the standard form [19]:

N
%—1 = bz (qu-’n+1+q-’:+1‘-|-’;),
n=1

(19
Wyer = Wy,

needed for its diagonalization. At the same time, the
block 7€, in accordance with (18) does not have the
standard form [19] since the interaction of fermions 1
and N hasthe opposite sign rel ative to the interaction of
the remaining fermions. For an odd number of spins N
we can reduce ¥, to the standard form. Transforming

to the new fermion operators W, :

W, = (-1)" Y%, n=12..,N, (20)
we obtain from (18) for odd N
N
¥, = bz (Pa®ns1+ Pri W), (21)

n=1

Multiple-quantum NMR in systems with even N
requires a different approach and will be analyzed
below.

3.1. Multiple-Quantum Nuclear Magnetic Resonance
in Rings with an Odd Number of Spins

For odd N the diagonalization of 7€ is performed in
two stages which we shall illustrate using the example

1 This division of the Hamiltonian was used in [28] to derive ana-
Iytic formulas for multiple-quantum coherences for N = 2 and 3.
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of the diagonalization of #€_;. Performing the Fourier
transformation

+ —ikn

1 ikn + 1
LIJ:—Eae,LIJ=—§ae ,
" mkk " mkk

we rewrite #_; using the fermion creation and annihi-
|ation operators a, and a, in the form

(22)

K, = bz(aka_k+a;aik)e“k. (23)

At the second stage we need to perform the Bogoly-
ubov transformation [29]:

a = sink
T J2lsink
sink | +
a,=-——D,+—D,.
© 2lsnk 2
The diagonal representation of #_; in terms of the fer-
mion operators D, and D, iswritten as follows:

+

|
t —=D,
ﬁ. (24)

. + 1
K, = —2bZ|snk|EDka—§%
K (25
_ 2T

NI, l =0,1,...,N-1

The Hamiltonian block 7€,; can be diagonalized in
exactly the same way. For €™ = —1 the projection oper-

ator of the total spin angular momentum I;l on the z
axisin the fermion representation has the form

- N +
It = E_Zakak'
k

Equation (26) determines the initial condition for the
equation for the density matrix o_y(t) (& = 1)

Kk

(26)

do_,
1920 = e, 0,00, 27)

whose solution may be expressed as
0_(t) = a%y(t) + aZy(t) + 0T3(D), (28)

where
%) = 25 cos[4btsink](1—2aja),  (29)
1 ZZ k @k

(30)

o%(t) = _%Z sin[4btsink]aa,,
k
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o) = %z sin[4btsink]a}a’,. (31)
k

The structure of Egs. (29)«(31) suggests that o°(t)
describes a zeroth-order multiple-quantum coherence

and o°,(t) and o0(t) describe multiple-quantum
coherences of the second and “minus’ second orders.
The intensities of these coherences are determined by
Eg. (11) and are given by

() = 2“‘32 cos’[4btsink],

“ (32)
(1) = 2“‘42 sin‘[4btsink].

k

Similar formulas are obtained for the block 7€, of the
Hamiltonian # as a result of which the intensities of
the multiple-quantum coherences (32) are doubled. The
sum of the intensities of the multiple-quantum coher-
ences does not depend on time [1,30] which follows
directly from Egs. (6) and (11). Normalizing this sum
to unity, wefinally obtain

1 2 .
Jo(T) = NZCOS [4bTsink],
‘ (33)
1 .2 .
J.(1) = == sin"[4btsink].

Asinthethermodynamiclimit N — oo inlinear chains
[16, 17], the profile of the multiple-quantum coher-
ences in the rings only consists of lines corresponding
to multiple-quantum coherences of the zeroth and
plus/minus second orders. The intensities of the multi-
ple-quantum coherences averaged over the irradiation
time T are determined using the formulas

T

o = limLramd = L L
Jo = T“[anIJO(T)dT = S*5n
0
1T - (34
Ji2 = .I!IEnoo-T-I‘Jrz(T)dT = 17N
0

3.2. Multiple-guantum Nuclear Magnetic Resonance
in Rings with an Even Number of Spins

In order to analyze multiple-quantum coherencesin
rings with an even number of nuclear spins N we again
consider the Hamiltonian # in the spin space (12). Let
usassumethat 1, 2, ..., Nisthe numbers of spinsin the
ring. We perform a unitary transformation U of the
Hamiltonian # which is a composition of T pulses
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which flip even-numbered spins through 180° about the
X axis.

U = exp(—imily)exp(—iml})...exp(—imly), (35)
where | isthe projection operator of the spin angular
momentum of nucleus k on the x axis. As a result, the
transformed Hamiltonian % has the followi ng struc-

ture:

N

H = UHU" = bz(|}|;+1+|;|j++l), (36)
j=1
and the initial density matrix has the form
N .
6(0) = UIL,U" = Z(—l)"ﬂf. (37)
i=1

Equations (36) and (37) show that the problem of mul-
tiple-quantum dynamics is reduced to the dynamics of
spin systems with an XY Hamiltonian solved in [21].
Using [21], we can obtain a solution for the density

matrix o(t) of asystem with the Hamiltonian (36) and
theinitial condition (37). The density matrix o(t) con-
sists of blocks G,(t) corresponding to even and odd
eigenvalues of the operator M [21]:

2N

0,(0) = -2 S expl-i(ef ~€))T]
N e

xS (1) expl-i(k—Kk)j]

o (38)
exp[i(kn—k'n)]
xz 2n+n'
nn
e Y EPN oY N Y OO ] e

where the single-fermion energies (in frequency units)
¢, forodd (a = 0) and even (o = €) eigenvalues M are
respectively given by [21]:

T
€, = 2bcosk, e = 2bcosB<+N%
(39)
k = 2%“ m=12 .., N.

Itiseasy to check that the sum over j in Eg. (38) isnon-
zero (and equal to N) only when k— k' = £1t Also bear-
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inginmindthat e, =—e;, (0 =0, €) wewritetheden-
Sity matrix 0,(T) intheform

2N it exp[lk(n n)]
o0 =Ty ey cayeelizal
xIrZ1+1|f1+2"'INInIn'+l|n'+2"'If\llz"
Performing atransformation inverse of (37),
04(1) = U'G,(1)U, (42)

we express the density matrix o,(1) describing the mul-
tiple-quantum dynamics of aring having an even num-
ber of nuclear spins, in the form

0a(1) = 0g(1) + Tg(1) + 0, (1), (42)
where
0 2N
.a
o,(1) = WZE’XD(—ZIEKT)
XE Z )(n+n)/zeXp[|kn(:']n n)]
|1121,3,...n‘:l,3,... 2
L Y PN 11 N Y FPO 1 e (43)

(m+my2exXplik(n—n')]
> ueeeliel

n=24,..n=24,

Z,+,2

z
x| IN|n|n+1|n+2

n+1|n+2-'

_0
A sl
O

2 22N i
0y(T) = WZGXP(—ZIEKT)

z (1)(n+n+1)/zexp[|k(n n)] (44

n+n'

n=24,..n=13, .. 2
z zZ+ z+
><In+1|n+2 IN|n|n+1|n+2 INIn'i

o (1) = ——zexp( 2iegT)

(n+n+1)2eXplik(n—=n")] (45)
z ( l) 2n+n

n=13,..n=24,..

z

| z -2
n+1lin+2---

z .-
INInIn'+1In‘+2---

x| H

Here og(T) describes transitions between Zeeman lev-

els of the spin system in an external magnetic field
which are responsible for zeroth-order multiple-quan-
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tum coherence and o%(t) and o;%(t) describe multi-

ple-quantum coherences of plusminus second order.
The intensities of the multiple-quantum coherences are
determined by Eqg. (11) as before and in normalized
form are given by

1 2
Jo(1) = _ZNDEK cos [4bt cosk]
(46)

U
2 T[]
+ Z cos [4br cosE( + ND}E’

I,(0) = 4iND Sin’[4br cosk]
k

O
.2 T[]
+ Zsm [4brcosB<+ ND}%

The profile of the multiple-quantum coherences again
consisted of only three lines corresponding to multiple-
quantum coherences of zeroth and plus/minus second
orders. It is interesting to note that in al argumentsin
the Egs. (46) and (47) the cosine may be replaced by a
sine without changing the intensities of the multiple-
quantum coherences. Despite the difference between
Egs. (33) and (46), (47) for the intensities of multiple-
gquantum coherences in rings with even and odd num-
bers of nuclear spins, the intensities of the multiple-
guantum coherences averaged over the excitation time
are the same for both cases and are determined by
Eqgs. (34).

(47)

4. MULTIPLE-QUANTUM NUCLEAR
MAGNETIC RESONANCE IN LINEAR CHAINS
OF NUCLEAR SPINS

The Hamiltonian of the system of nuclear spinsin
linear chains only differs from the Hamiltonian of ring
systemsin that there isno interaction of nuclear spins 1
and N at the ends of the chains:

N-1

¥’ = bZ(|i+|i++1+|i_|f+1)- (48)

We perform the transformation U of the Hamiltonian (48)

U = exp(-imly)exp(=iml})..., (49)
applying selective 1t pulses which flip the spinsin even
positions through 180° about the x-axis of the rotating
reference frame. As aresult, we obtain

N-1

Ho=UdUT = DY (). (G0)
i=1
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Theinitial density matrix a(0) =1, isthen transformed

N
6(0) = ULl = § (1)’ U5 (51)
2
A solution of the equation for the density matrix o(t) of
a spin system with the Hamiltonian (50) subject to the
initial condition (51) may be obtained by generalizing
the analytic solution obtained in [22]. Thus, we find

2 expl-ife,—et]
k

LK

() =

oM O (52)

XDZ (—1)j‘19n(kj)9n(k‘j)EBEBk-—1[1—(—1)N],
U5 U 4

_

TN+1

where the fermion operators B, are related to the spin
operators by

— 2 - -1_ z,z z -
B« = /N+1|;(—2)' sn(k)I313... 17407, (53)

and the single-fermion energies (in frequency units) are
determined using the formula

k n=1,2 ...,N,

€, = 2bcosk, (54

It is convenient to replace the wave vector k with k =
11— K. We then have

Y (1) "'sin(kj)sin(kj)

j=1

S (-1 sn[(r-K)j]sin(K )
j=1

(55

N
L N+1
z sin(kj)sin(k'j) = ———2——6@,.
j=1
Taking into account Eg. (55), we can rewrite Eq. (52)
for the density matrix o(t) asfollows:

5(t) = —Ni 1; exp(2ie )

<y (=1)"2"""2sin(kl)sin(kI")

LI'=1

Z,2 z +,2,2 z — 1
x|1|2...||_1|||1|2...||._1||.—Z[1—(-1)N],

(56)
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After performing a transformation the inverse of
Eq. (49), we obtain the density matrix o(t) describing
the multiple-quantum dynamics of a one-dimensional
linear chain of nuclear spinsin theform

a(t) = og(t) + ox(t) + a(1), (57)
where
_ 2 .
oot) = —mz exp(2iet)
k
O . .
0y Y (P2 dn(k)sin ki)
|1:1,3,..1':1,3,...
S8 S N F e (58)
+ > (=1) 122" 2 gin(kl) sin(kI")
1=2,4,...1'=2,4,...
Z,2 z —12,2 z +D
S A N H N A M
O
_ 2 ,
o,(t) = N+ 12 exp(2ig,t)
k
x Z (_1)(I+|'+1)/22|+I'—2Sin(k|) (59)
1=1,3,...1'=2,4, ...
x sin(KING15.. 1 115G ],
OL(t) = ——2— exp(2ie,t)
-2 - N+1Z p ek
x z (_1)(I+|'+1)/22|+I'—25in(k|) (60)

1=2,4,...1'=1,3, ...
- Z,2 z —yZ,Z z —
x Sn(KINES. 2 TS

According to Eq. (11), the normalized intensities of the
zeroth- and plus/minus second-order multiple-quantum
coherences, which only occur in a linear spin chain
when alowance is made for nearest-neighbor interac-
tions, are given by

1 2
Jo(T) = = cos (4btcosk),
NZ
(61)
1 )
J.(1) = == sin“(4btcosk).
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In the thermodynamic limit when N — oo, by replac-
ing summation with integration in Egs. (61), we arrive
at the formulas

1 1~
3o1) = 5+ 5o(8b1),

11 (62)
1) = -7 o(8b),

where §§(X) is the zeroth-order Bessel function. The
formulas (62) are the same asthose obtained in [16, 17]
by amethod valid only for N> 1. Theintensities of the
multi ple-quantum coherences averaged over the excita-
tiontime T for alinear chain having an odd number of
nuclear spins are given by

.
= _ .1 _1,.1
Jo = TllfanJ'JO(r)dr = 5*5y
0
1T - (63)
Jip = 'I!IEnoo-T-J’Jiz(T)dT = 4_],_4_N
0

Similar formulasfor alinear chain having an even num-
ber of nuclear spins have the form

1 5 _1

iv ‘]1'2 - 4
and agree with the expressions obtained for N — o in
[16, 17]. Unlikeringsin linear chainsthe average inten-
sities of the multiple-quantum coherences differ for
even and odd N.

jo = (64)

5. RELATIONSHIP
BETWEEN MULTIPLE-QUANTUM DYNAMICS
OF SPIN SYSTEMS AND DYNAMICS
DESCRIBED BY AN XY HAMILTONIAN

A study of the multiple-quantum dynamics of spin
systems in rings having an even number of nuclear
spins N and in finite linear chains carried out in Sec-
tions 3.2 and 4 demonstrates a clear relationship
between multiple-quantum dynamics and the dynamics
of systems with an XY Hamiltonian [31]. Although in
multiple-quantum NMR al possible transitions are
excited between the Zeeman levels of a multiple-spin
system in an external magnetic field [2], in the approx-
imation of nearest-neighbor interaction multiple-quan-
tum dynamicsis closely related to the dynamics deter-
mined by the XY Hamiltonian when all the transitions
are merely attributable to flip-flop processes [20]. Let
us assume that the initial density matrix of a linear
chain consisting of N spinsis

o(0) = Z'E =1,
k

Then, as aresult of the time evolution described by the
two-spin, two-quantum Hamiltonian [see (48)], at the
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end of the preparation period the density matrix o(t) is
given by

o(t) = exp(—i7t)l, exp(iFt), (65)

and all multiple-quantum coherences of odd orders
evolve in the system [24]. At the same time, by per-
forming the transformation (49) we obtain

G(t) = Ua(t)U" = exp(-iHt)I exp(-iFt), (66)

where the Hamiltonian # is given by Eqg. (50). In this
case, at the end of the preparation period only multiple-
guantum coherences of plus/minus first order appear.
The exact sol utions obtai ned above can explain thisfac-
tor. If the term in the expression for the density matrix

(56) containsraising |,” and lowering |- operatorswith
odd or even | and I', it is responsible for zeroth-order
multi ple-quantum coherence. If the parity of | and I' dif-
fers, the term obtained after transforming (49) becomes

responsible for multiple-quantum coherence of
plus/minus second order.

The approximation of nearest-neighbor interactions
does not necessarily lead to an exactly solvable model.
If the spacings between the spins and thus the dipole—
dipole interaction constants differ, the methods pro-
posed above do not lead to exactly solvable problems of
multiple-quantum dynamics. In this case, in principle
multiple-quantum coherences of all even orders may
occur.

We propose a simple experiment to demonstrate the
relationship between multiple-quantum dynamics and
the dynamics determined by the XY Hamiltonian. For
this we need to study the multiple-quantum dynamics
of benzene molecules dissolved in a liquid-crysta
matrix [32], by exposing the system to a sequence of
pulses (1). Theinitial condition o(0) = ] is created by
cross polarization [33] between the *C nucleus and a
proton associated with it in the benzene. A similar pro-
cess can be used to measure the polarization of thefirst
proton at time T which is not too large so that interac-
tions with next-nearest neighbors can be neglected. In
this multiple-quantum experiment the polarization of

thefirst proton [3[{t) is determined by
010 = Tro()11]
= Trlexp(—i #t) 1 1exp(iFt)17].
Performing the transformation (35) in (67) we find

(67)

020t = Triexp(—i #t) 1 2exp(i%t)12],  (68)

where ¥ is an XY Hamiltonian. The experimentally

observed signal 7[{t) can be compared with the simi-

lar theoretical result for the dynamicsin a nuclear spin
ring with an XY Hamiltonian, obtained in [21]. This
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relationship between multiple-quantum dynamics and
the dynamics of a system with an XY Hamiltonian
allows us to create an effective XY Hamiltonian in a
solid. A completely different method was used to solve
the analogous problem for liquids [34].

6. NUMERICAL ANALYSIS
OF MULTIPLE-QUANTUM NUCLEAR
MAGNETIC RESONANCE IN RINGS
AND LINEAR CHAINS

In order to make numerical caculations for the
intensities of multiple-quantum coherencesit is conve-
nient to use the formula

3,0 = Y lpy()’ (69)
i

derived directly from Eq. (11). The prime after the sum-
mation sign in Eq. (69) implies that summation is
merely limited to states i, j for which the projections
M;, M; of thetotal spin momentum on the z axis satisfy

M, —M; = n. (70)

In order to make calculations using Eqg. (69) we need to
find the density matrix

p(_[) — e—i%tlzei%T — Ce_iAT(CT|ZC)eiATCT, (71)
where the orthogonal matrix C (CCT = E) diagonalizes
the Hamiltonian of the system:

A = C'%C. (72)

In order to diagonalize the Hamiltonian 7€ we used the
integral of motion exp(—td,) (15) which divides the

matrix #€ into two blocks of dimensions 2N-1 x 2N-1,
More effective factorization can be achieved in linear
chains in the approximation of nearest-neighbor inter-
actions when, however, the dipole-dipole interaction
constants of the pairs differ. For thiswe need to perform
the transformation (49) and factorize the matrix of the

Hamiltonian % (50) into blocks of dimensions Cy, x
C'ﬁ, (k=0,1, 2, ..., N) in terms of eigenvalues of the

operator |, which commutes with # . For the following
calculations we need to perform a transformation the
inverse of Eq. (49). The accuracy of the calculations was
monitored by checking the normalization condition

gn J,(1) =1and comparing the numerical solutionsin
t

e approximation of nearest-neighbor interactions with
the analytic solutions presented in Sections 3 and 4.

Figure 1 gives time dependences of the multiple-
guantum coherences of a linear chain of seven nuclear
spins coupled by dipole—dipoleinteraction. For T =0 only
zeroth-order multiple-quantum transitions occurred in
the system. In the initial period of evolution multiple-
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Fig. 1. Time dependences of theintensities of multiple-quantum coherencesin alinear chain of seven spinscoupled by dipole-dipole
interaction, b = -Dj; + 1/2 = 21t x 1475 s (a) intensities of multiple-quantum coherences of zeroth Jo(t) and second Jy(t) + J_x(t)
orders; (b) intensities of multiple-quantum coherences of fourth J,(t) + J_4(t) and sixth Jg(t) + J_g(t) orders. The horizontal straight

lines give the time-averaged multiple-quantum coherence intensities J,, = T J’g J,(Mdt, T=1ms.

J, J,
1.0f 0.10-
Jo() (a) (b)
0.8 0.08
J4(0) + J_4(0)
0.6F 0.06F
0.4F 0.04F
0.2 20 +T0) 0.02}
Jo(0) +J_g(1)
1 1 1 1 | | 1 ,;—-\/\J
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
t, ms t, ms

Fig. 2. Time dependences of theintensities of multiple-quantum coherencesin alinear chain of seven spinscoupled by dipole-dipole
interaction of nearest and next-nearest neighbors, b = -Dj; 4 1/2 = 211 x 1475 s (a) intensities of multiple-quantum coherences of
zeroth Jo(t) and second Jo(t) + J_x(t) orders; (b) intensities of multiple-quantum coherences of fourth J,(t) + J_4(t) and sixth Jg(t) +

J_g(t) orders.

guantum coherences of plus/minus second order appear
and the multiple-quantum dynamics at this stage can be
described as exchange between multiple-quantum
coherences of zeroth and plus/minus second orders. For
0 < 1 < 0.2 ms the multiple-quantum dynamics of a
seven-spin system is fairly accurately described by the
analytic solution (61) obtained in the nearest-neighbor
approximation. For T > 0.1 ms fourth-order multiple-
guantum transitions occur and for T > 0.4 ms sixth-
order transitions. Figure 2 shows the multiple-quantum
dynamics of aseven-spin system for the case when only
nearest- and next-nearest-neighbor interactions are
taken into account. A comparison of Figs. 1la and 2a
shows that allowance for dipole—dipole interaction of
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nearest and next-nearest neighbors is quite sufficient
for quantitative agreement between the multiple-quan-
tum dynamics of zeroth- and second-order coherences
and the similar dynamics allowing for all dipole—dipole
interactionsin the system, at least asfar astimeT=1ms.
Small differences in the dynamics of fourth- and sixth-
order multiple-quantum coherences (Figs. 1b and 2b)
are insufficient to obtain structural information outside
the limits of two “coordination spheres’ in quasi-one-
dimensional systems. In two-dimensional and three-
dimensional systems the small contribution made by
various remote nuclear spinsto theintensity of the mul-
tiple-quantum coherences is compensated by the large
number of these spins. Thus, multiple-quantum NMR
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Fig. 3. Time dependences of the intensities of multiple-quantum coherencesin aring of six spins coupled by dipole-dipole interac-
tion, b=-Djj 4+ 1/2=21% 2253.6 st (8) intensities of multiple-quantum coherences of zeroth Jy(t) and second J,(t) + J_x(t) orders;
(b) intensities of multiple-quantum coherence of fourth J,(t) + J_4(t) and sixth Jg(t) + J_g(t) orders.

I I
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Fig. 4. Time dependences of the intensities of multiple-quantum coherencesin aring of six spins coupled by dipole-dipole interac-
tion of nearest and next-nearest neighbors, b =-Dj; + 1/2 = 211x 2253.6 st (a) intensities of multiple-quantum coherences of zeroth
Jo(t) and second Jo(t) + J_,(t) orders; (b) intensities of multiple-quantum coherences of fourth J4(t) + J_4(t) and sixth Jg(t) + J_g(t)
orders.

Jn
0.10L J4® +J_4()
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Fig. 5. Time dependences of theintensities of multiple-quantum coherencesin alinear chain of eight spins coupled by dipole—dipole
interaction, b = -Dj; 4 1/2 = 21t x 1475 s (a) intensities of multiple-quantum coherences of zeroth Jo(t) and second Jx(t) + J_x(t)
orders; (b) intensities of multiple-quantum coherence of fourth J,(t) + J_4(t) and sixth Jg(t) + J_g(t) orders. The horizontal straight

lines give the multiple-quantum coherence intensities averaged over irradiation time J,, = T Ig J,(Mdt, T=3ms.
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Table

Number of multiple-

guantum coherence 0 2 4 6
Statistical theory [2] 0.393 | 0.244 | 0.056 | 0.004
Results of numerical 0.436 | 0.243 | 0.032 | 0.007

calculations

may be potentially extremely useful for obtaining
structural information in solids.

Unlike one-dimensional linear chains in ring sys-
tems information on the contributions of remote spins
to the intensity of multiple-quantum coherences can be
obtained from the profiles of the multiple-quantum
coherences. Figure 3 shows the evolution of multiple-
guantum coherences in a six-spin ring. Similar multi-
ple-quantum dynamics allowing for dipole-dipole
interaction of nearest and next-nearest neighbors is
shown in Fig. 4. Here there are clear differences even
between the multiple-quantum dynamics of the zeroth-
and second-order coherences plotted in Figs. 3aand 4a.
The reason for this is whereas in a linear chain the
dipole—dipole interaction of the first and fourth spinsis
3.375 times weaker than that of the first and third spins,
in asix-spin ring the ratio of the similar dipole-dipole
interactions is only 1.5. Hence the contribution of
remote spins in aring is more significant than that in
chains. At the same time, in rings it is possible in prin-
ciple to extract fine structural information associated
with the interactions of remote spins. Figure 5 gives
dependences of the multiple-quantum coherence inten-
sities in a linear eight-spin system. Qualitatively the
multiple-quantum dynamics of an eight-spin system
does not differ from the similar dynamics of a seven-
spin system. In the table the intensities of the multiple-
guantum coherences averaged over the excitation time
are compared with the predictions of the statistical the-
ory [2] for an eight-spin linear chain.

It can be seen from the table that the predictions of
the dtatistical theory [2] agree qudlitatively with the
result of a numerical analysis. The intensity of the
eighth-order multiple-quantum coherence is negligible
and has an insignificant influence on the multiple-quan-
tum dynamics in an eight-spin chain.

7. CONCLUSIONS

We have studied analytic and numerical methods of
analyzing the multiple-quantum dynamics of one-
dimensional systems of nuclear spins in solids. In the
approximation of nearest-neighbor interactions the
multiple-quantum dynamics of linear chains and rings
with an even number of spinswasdirectly related to the
dynamics of systemswith an XY Hamiltonian. Thisfac-
tor leadsto new experimental methods of studying mul-
tiple-quantum dynamics and new numerical methods
for interpreting the experimental results. In an experi-
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mental study of multiple-quantum dynamics in quasi-
one-dimensional systems of hydroxyl protons of cal-
cium hydroxyapatite [15] it was found that the
observed one-dimensional cluster consists of approxi-
mately twelve spins[15]. It istherefore extremely rele-
vant to make a numerical study of multiple-quantum
dynamicsin linear chains consisting of between twelve
and twenty spins. The solution of this problem requires
significant development of new approaches to the
numerical methods used for calculations in multiple-
quantum dynamics.
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Abstract—The two-electron wave function and charge distribution are obtained in a symmetric double quan-
tumdot in awesak variable electric field. It is shown that the action of avariablefield under resonance conditions
when the perturbation frequency is close to the frequency of the quantum transition leads to the appearance of
electron density oscillations between the dots having the characteristic form of beats. However, the Coulomb
repulsion between the electrons strongly “ quenches’ the amplitude of the beats even in aresonant variablefield.
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1. INTRODUCTION

Various low-dimensional nanostructures, which have
recently attracted increasing attention among researchers,
are attractive mainly from the point of using their func-
tiona possibilities. The question of controllably influenc-
ing the e ectron dynamicsin quantum structuresusing var-
ious external actionsthen arises.

The possibility of achieving so-called controlled
tunneling in double quantum-well heterostructures by
exposing the electron to a strong variable electric field
has been reported [1-5] and the electron distributionin
adouble quantum dot and electron transport in the pres-
ence of a variable electric field were studied in [6].
Charge oscillations in tunnel-coupled quantum wells
and dots and terahertz emission accompanying these
oscillations were observed experimentally in [7-10].

It should be noted that the theoretical studies cited
above [1-6] only considered the single-electron
dynamics which may appreciably distort the true pat-
tern, especialy for systems of quantum dots where the
Coulomb interaction between the electrons is aready
significant, and generally leads to a Coulomb blockade
effect. Theaim of the present paper isto study theinflu-
ence of Coulomb interaction on the electron dynamics
in a double guantum dot in the presence of an external
variable field.

2. BASIC APPROXIMATIONS

We shall consider a symmetric double quantum dot
with two electrons in an external variable electric field
whose intensity varies with time as é(t) = €sin(wt). To
simplify the calculations to some extent we shall
assume that the size of each quantum dot is so small
that the characteristic Coulomb interaction energy is

much lower than the characteristic energy of the quan-
tum transition in an isolated quantum dot:
2
< ﬁ
€ R

whereRisthesize of the quantum dot, misthe effective
mass, and € is the permittivity of the medium. Esti-
mates show that thisinequality is satisfied for quantum
dots having dimensions not exceeding tens of nanome-
ters. Such quantum dots are obtained, for example, by
ion implantation followed by deposition, and are gener-
ally close to spherical [11-13].

Tunnel coupling between quantum dots leads to
splitting of the electron energy levelsinisolated dots by
the amount A which is small compared with the transi-
tion energies in an isolated quantum dot. According to
estimates, the ratio of these energies may be lower than
or of the order of 1072, giving a value of approximately
102 eV or lower for the splitting energy A which is of
the same order of magnitude as the thermal energy at
room temperatures.

We shall also assume that the probability of electron
“dumping” to upper levels of the isolated quantum dot
is low, for which we impose the constraint that the
amplitude of the variable electric field and itsfrequency
satisfy the inequalities

h’ _ At

mR T a
Taking into account all the relationships given above
between the energy parameters of the problem, we con-
clude that only two levels obtained as a result of split-
ting of the ground-state energy level in an isolated dot
are “involved” in the electron dynamics. We take the
energy origin midway between these levels, and then
the level energies will be +A/2. The single-electron
wave functions of the steady states corresponding to
these levels are denoted by X 4(r).
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FORCED CHARGE OSCILLATIONS IN A DOUBLE QUANTUM DOT

The functions X, 1(r) are respectively even and odd
with respect to the coordinate z [we take the axis of the
double quantum point as the z coordinate axis and
assume that the function xu(r) is everywhere positive
while x,(r) is only positive in the region z > 0]. Using
Xo(r) and xi(r) we can then construct two other
orthonormalized functions:

W (r) = XO(r)_Xl(r)’ Xo(r)"'Xl(r)’

2 N2

which will be amost completely localized at the left
and right quantum dots, respectively. For the subse-
guent calculations we shall neglect the product of the
functions W (r)Wg(r), assuming that thisis small.

We(r) =

3. SELECTION RULES
FOR QUANTUM TRANSITIONS

We shall begin with calculations of the spectrum
and wave functions of the steady states of a two-elec-
tron system for € = 0 for which we find the eigenfunc-
tions and eigenvalues of the Hamilton operator

2

H(ry,rz) = Ho(ry) + Ho(ry) + -———, (1)
€lr;—ry

where Ho (r) is the single-electron Hamilton operator

in adouble quantum dot (its eigenfunctions X 4(r) and

eigenvalues +A/2). As a result of using the two-level

approximation in the single-electron problem the

eigenfunction W(r, r,,) of the operator H (r, r,,) will be
a superposition of four orthonormalized vectors

Xi(rox;(ro) @i, j =0, 1) with various expansion coeffi-
cients.
Asaresult of solving the equation
FNJJ("L rp) = EjW(ry,ry), (2

we arrive at the following expressions for the energies
E; and wave functions of the steady states:

Eos = UFAV+A?, E,, = UFV; ©)
€3t V+A
2/\/(50,3+A)2+V2

X (W(r)Wo(ry) + We(r)We(r,))
€3—V+A

_ZV(50,3+A)2+V2 “

X (WL(r)Wr(ry) + We(r )W (ry)),
W r(r)Wr(r,) —We L(rl)LPL(rZ).

J2

Wo,5(ry, rp) =

Wy o(ry,ry) =
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Heregy 3= Ey 3— U, and U and V are the two-particle

(pair) matrix elements of the Coulomb interaction oper-
ator:

2
=&
V = 2€’[drldrz

o (WR(r) —Wi(r ) (Wa(r) —Wi(ry)
=1y

2
- £
U= 2EJ'drldr2

o (WR(r) + WE(r)) (Wa(ro) + Wilry)
[ri—ry '

It follows from Egs. (4) that the wave functions of
the zeroth, second, and third steady states are symmet-
ric with respect to exchanges of the particles, whereas
the wave function of the first steady state is antisym-
metric. Here we do not write the spin part of the wave
function because Coulomb interaction like the external
electric field does not lead to spin flipping. The spin
component, being symmetric for thefirst state and anti-
symmetric for the remaining states, conserves its form
and can thus be omitted.

We shall now introduce the external electric field
with the result that an additional term appears in the
Hamiltonian (1)

W(rl!rZ) = eé(r, +ry)sin(wt), 5)

this being the energy of the interaction of the electrons
with the external field.

We express the wave function of the system in a
variable field as alinear combination of the wave func-
tions obtained for the steady states (4) with time-depen-
dent coefficients:

: 0 .E;. O
W(ry,rpt) = ZCj(t)ij(rla rz)eXpD—i#tD (6)
< 0 O
j=0
Substituting the Eq. (6) into the Schrédinger equation

yields a system of equations for the four expansion
coefficients:

.dC ) .dC
lﬁd_to = W, (t)Cexp(—itmpt), 'ﬁd_tl =0,
..dC .
d_t2 = Woy(t) Coexp(iwyt) @
+ Ws(t) Cyexp(—iwgt),
iﬁdd_% = Wy, (1) Coexp(iwst),
Vol. 91 No.3 2000
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Fig. 1. Dependences of the resonant Rabi frequency for the
(1) 0«<— 2 and (2) 2« 3 transitions on the Coulomb
energy.

where w; = (E; — Ej)/2 and Wjj(t)are the matrix elements
of the operator W where

J2(g,+V +4)
Who = Wy, = n—22
J(E,+A) +V

for n=0, 3 and al the other matrix elements W;; go to
zero. The vector L connects the origin positioned mid-
way between two identical quantum dots and the center
of the “right” quantum dot (to be specific we assume
that the dots are spherical).

€€ [Lsin(wt) (8)

The matrix elements W; determine the so-called
selection rulesfor trangitionsin afour-level spectrum (3).
The expressions (8) show that in our system under the
action of a variable electric field of frequency w: it is
only possible to have two transitions. between the
ground and second excited states (0 — 2) and
between the second and third excited states (2 ~— 3).

Transitions from or to the first excited state are
impossible. The reason for thisis the different symme-
try of the wave functions of the first state and all the
other states relative to particle exchanges and since the

perturbation operator W (ry, r,) is symmetric with
respect to exchanges, it cannot lead to transitions
accompanied by a change in the symmetry of the wave
function. Thus, the coefficient C, remains constant, as
follows from the second equation in the system (7), and
isdefined only by theinitial condition.

In addition to the selection rules determined by the
specific structure of the wave functions of the steady
states, there are also additional selection rules for the
direction of the electric field vector €. It can be seen
from expressions (8) that in order to achieve 0 ~— 2
and 2 — 3 transitions the vector € must have a non-
zero projection on the axis of the double quantum dot.
In the opposite case when € L, all the transitions are
forbidden.
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4. ELECTRON DENSITY OSCILLATIONS

We obtain solutions of Egs. (7) in the so-called res-
onance approximation, when the frequency of the
external field is close to the frequency of one of the
transitions (see, for example, [14]). We shall assume
that the externa field is sufficiently weak for the ine-
quality |W;| < %w to be satisfied. We shall begin with
the case w = w,, and we shall introduce the deviation
from resonance 0 = w — w,, Which we shall assume to
be small compared with the frequency w. In Egs. (7) we
can only retain resonant harmonics as aresult of which
we find C; = const and the remaining pair of equations
for C, and C, are the standard evolution equations for a
two-level system in aweak resonant external field.

As is well-known [14], the solution of the equa-
tions (7) in this case describes periodic transitions
between two states coupled by the variable field (in our
case, between the ground and second excited states) at
the Rabi frequency

v = 814+ (9)

where the parameter n defines the Rabi frequency in
strict resonance and is given by
1+ V2N —VIA

N :e%uJ
h 2.1+ V3A?

For the initial condition corresponding to a 100%
ground-state population we have

(10)

Co(t) = [cos(vt)—i2—?}sin(vt)}expagtgr
(11)
C, = eexpﬁgtgs'n(vt).

These expressions are also well known from the theory of
resonant excitation of atwo-level system [14].

New here is the expression for the frequency n,
which depends explicitly on the parameters character-
izing the interelectron Coulomb interaction and the
steady-state energy spectrum of the system. In the sin-
gle-frequency case the Rabi frequency in strict reso-
nance is determined only by the perturbation amplitude
and does not depend on the structure of the single-elec-
tron spectrum. Allowance for Coulomb interaction
abruptly changes the situation and the dependence of
the Rabi frequency on the pair interaction parametersis
fairly significant, as can be seen from Fig. 1 (curve 1).

In particular, for noninteracting particlesin the limit

for V. — 0 the frequency n(0) = €8 - L/%./2 has a
maximum, decreasing with increasing characteristic
Coulomb energy V. The decrease in nj compared with
n(0) as afunction of Vis determined by the level split-
ting energy A (on scales V ~ A the frequency decreases
appreciably). For quantum dots having dimensions of
severa hanometers[11-13] and distances between dots
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no exceeding their size, the ratio A/V becomes fairly
small (of the order of 0.1) which leadsto areductionin
the Rabi frequency by more than order of magnitude.

For the case of the other possible transition 2 ~— 3
the two equations for the coefficients C, and C; can be
retained in Egs. (7) and the coefficient C, can be con-
sidered to be almost constant. The solution of these
equations is exactly the same as the previous case for the
0~— 2transition and yields exactly the same structure
of the expression for the Rabi frequency (9) and the
same solutions (11) in which we now merely need to
substitute C, —= C, and C, —» C; (assuming that the
second level isinitially completely filled).

The only difference will be the specific dependence of
the resonant Rabi frequency n on the parameters of the
energy spectrum. Instead of Eq. (10) we will now have

q = €& EL/\/A/1+V2/A2+V/A
h 2.1+ VA2

In accordance with (12) the resonant Rabi frequency
for the 2~ 3 trangition of aninteracting two-electron
system is always higher than the Rabi frequency for a
system of noninteracting electrons (see Fig. 1, curve 2)
and as V increases, the graph of the ratio n/n(0) reaches

a constant whose valueis /2.

Unlike the 0 —— 2transition for which the Rabi fre-
guency decreases monotonically as the characteristic
Coulomb energy V increases and may decrease arbi-
trarily strongly asfar as zero, for the 2-— 3 transition
the Rabi frequency does not change substantially,
remaining close to its value in the compl ete absence of
interaction. As has been noted, the maximum increase
in the Rabi frequency relative to this value may be a

factor of /2.

However, it should be noted that under real condi-
tions at temperatures below or around room tempera-
ture, and for the sizes of quantum dots noted above the
thermal energy is considerably lower than the Coulomb
energy V and consequently the probability of 2 ~— 3
transitionswill be almost zero because of the negligible
population of these levels. Conversely, the 0 ~—— 2
transition will be quite feasible so that the following
discussion of the electron dynamics will be made for
this case.

We shall now analyze the spatial distribution of the
charge in a double quantum dot and its variation with
time. For this we shall use the wave function (6) in
which we set C, = C; = 0 and for C, and C, we use
Egs. (11). We shall calculate the quantity of charge
concentrated, for example, in theleft quantum dot Q, (t)
as a function of time. Bearing in mind that the wave
function will be strictly symmetric with respect to par-
ticle exchanges and also that the functions W, (r) and
Wr(r) will be amost completely localized in “their”

(12)
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Fig. 2. Beat amplitude in the absence of interelectron inter-
action for various values of the ratio n/v: n/v = (1) 0.1,

(2) 1/./2, (3) 0.85, and (4) 0.999.

guantum dots, we shall determinethe charge Q, (t) asan
integral over the region z < O from the single-particle
distribution density multiplied by —2e.

As aresult, we obtain the following expression for
Q.(t) [naturally the charge Qg(t) in the right quantum
dot can be obtained as—2e — Q, (V)]:

Qu(t)

(13)
1+ VA2 —VIA :
= —¢gl1- A(t)sn[¢(t)+wt]},
{ /\/ J1+VAIA®

where A(t) and ¢(t) are dowly varying functions of
time given by

2
At) = J23[sin(t)] [1-Lsin’(vt),
Y v (14)

cotd(t) = %tan(vt).

The dependence Q,(t) exhibits a characteristic beat
form. Fast oscillations of charge between the quantum
dotswhich take place at afrequency close to that of the
external electric field are modulated in amplitude by a
slower function A(t) of frequency v.

The functions A(t) and ¢(t) have the simplest form
in the two limiting cases: d=0and d > n. For 6=0

Eq. (14) gives: A(t) = |[sin2vt]/ /2, ¢(t) = T¢2 and for

5 > n we have A(t) = (/2n/V)|sinvt], (t) = TV2 — vt.
For al other intermediate cases the dependences A(t)
and ¢(t) are more complex and have the form shownin
Fig. 2. It can be seen that as & decreases and the ratio
n/v increases, the envelope of A(t) differsincreasingly

from sinusoidal. For n/v > 1/ /2 the curve of A(t) at the
point vt = T¥2 has a minimum instead of a maximum,

which progresses with increasing 6 and in the limit
n/v — 0 fallsto zero, doubling the envel ope frequency.
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Fig. 3. Maximum quantity of charge oscillating between
quantum dots in the absence of interaction. From n/v =

1/./2 the curve reaches a constant value of /2.

The function eA(t) describes the amplitude of the
charge oscillations for the case of noninteracting parti-
cles. The maximum value of the function A(t) is

nd/(/2v? for 0<niv <1/ 42 and 1/ /2 for 1/./2 <
n/v < 1. The maximum quantity of charge flowing from
one quantum dot to another in the absence of interpar-
ticle interaction Q,,,.(0) may be defined as the product
of the maximum of the function A(t) and twice the elec-
tron charge 2e. The dependence of Q,,,(0) on the ratio
n/visplottedinFig. 3. Far from resonance (n < o) very
little charge tunnels from one dot to another, keeping
the equal populations of both quantum dots constant (in
terms of —€). As resonance is approached, the ampli-
tude of the charge oscillationsincreases and fromn/v =

1/./2 these oscillations are the most intensive, at certain
times the charge in one quantum dot is—e(1 + 1/./2).

Coulomb interaction between the electrons changes
the amplitude of the envelope: now, in accordance with
Eqg. (13) the amplitude acquires an additional factor
which isequal to the ratio of the Rabi frequency for the
interacting electrons (10) to the Rabi frequency in the
absence of interaction n(0). The maximum quantity of
charge flowing from one quantum dot to another for
V # 0 isnow also determined by this factor:

= N

The frequency ratio n/n(0) whose dependence on the

Coulomb energy V was discussed above (see Fig. 1)
thus accurately determines the ratio of the maximum

charges Qna(V)/Qmax(0)-

(15
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Consequently, on the basis of (15) and Fig. 1 we can
confirm that the quantity of charge tunneling between
guantum dots will always be smaller for interacting
particles than in the absence of interaction. Moreover,
as soon as the typical Coulomb energy V exceeds the
level splitting energy A, the amount of flowing charge
falsrapidly and for V > A we can assume that no tun-
neling takes place between the quantum dots. As has
been noted for quantum dots having dimensions of a
few nanometers, the ratio n/n(0) is less than or of the
order of 0.1 which reduces the quantity of tunneling
charge by more than an order of magnitude.

The sharp drop in the amplitude of the charge oscil-
lations and their slowing in a weak variable electric
field is another manifestation of the so-called Coulomb
tunneling blockade. A reduction in the sizes of the
guantum dots accompanied by convergence of the elec-
trons leads to fairly strong interelectron repulsion
forces, which cannot be overcome in weak €lectric
fields even in aresonance regime.
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Abstract—An analysis is made of the dependence of the geometric shape of the chaotic layer near the separa-
trix of anonlinear resonance of a Hamiltonian system on the parameters of thissystem. A separatrix algorithmic
mapping, which describes the motion near the separatrix in the presence of an asymmetric perturbation having
an arbitrary degree of asymmetry. The separatrix algorithmic mapping is an algorithm containing conditional
transfer instructions, is considered. An analytic procedure is derived to reduce the separatrix a gorithmic map-
ping to the unified surface of the cross section of the initial Hamiltonian system (mapping synchronization pro-
cedure). It is observed that in the case of the high-frequency perturbation A — +co (where A istheratio of the
perturbation frequency to the frequency of small phase oscillations at resonance), the chaotic layer is subjected
to strong bending in the sense that during motion near the separatrix the amplitude of the energy deviationsrel-
ative to the unperturbed separatrix value is much larger than the layer width. However, the synchronized sepa-
ratrix algorithmic mapping ensures an accurate representation of the phase portrait of the layer for both low and
high values of the parameter A provided that the amplitude of the perturbation is fairly small. This is demon-
strated by comparing the phase portraits obtained using the synchronized separatrix algorithmic mapping with
the results of direct numerical integrations of theinitial Hamiltonian system. © 2000 MAIK “ Nauka/Interperi-

odica” .

1. INTRODUCTION

Thetheory of the chaotic layer [1-5] in Hamiltonian
dynamics has applications in the most diverse fields of
physicsand mechanics (seg, for example, [5, 6] and thellit-
erature cited there). The most important characteristic of
the chaotic layer is its width. Problems associated with
estimating this have been studied in detail in [4, 5, 7, 8].
However, the geometric profile of the layer and how it
is influenced by the parameters of the dynamic system
have been very little studied (except for the role of mar-
ginal resonances[4, 5, 9]). The procedure for synchro-
nization of the separatrix mapping [9] (reducing it to
the unified surface of the cross section) can be used to
obtain rea phase portraits of the motion near the separa-
trix and thus to assess the real profile of the chaotic layer.
In the present study the synchronization procedure is
derived for the genera case of an asymmetric perturbation
and is applied to anayze the layer geometry.

1.1. Hamiltonian of the Problem

The equations for a nonlinear pendulum with peri-
odic perturbations are an important paradigm in various
fields of modern physics and mechanics, ranging from
plasma physics [10, 11] to the dynamics of orbital [12]
and spin-orbit [13,14] resonances in the motion of
celestial bodies.

We shall consider the Hamiltonian

Gp°
2

+ cos(kd —1) + beos(kd +1),

where 1 = Qt + 1,. Thefirst two terms are the Hamilto-
nian of the pendulum while the last two are the periodic
perturbations. The variable ¢ is the deviation of the
pendulum from the equilibrium position, p isits conju-
gate momentum, T is the phase angle of the perturba-
tion, and 1 isitsinitial value. The value of Q isthe per-
turbation frequency, and %, %, a, b, and k are constants.
The Hamiltonian of the unperturbed pendulum is then
denoted by H,, i.e.,

H= F cosd

)

2
H, = Cng—QFcosq).

The number k is assumed to be integer or half-integer.

The Hamiltonian (1) is present in many problemsin
mechanics and physics. The case of a symmetric per-
turbation a=b and k = 1 has been studied in the greatest
detail. In this case, the Hamiltonian is reduced to the
form of the Hamiltonian of a pendulum with a modu-
lated frequency of small oscillations. In particular, it
corresponds to a pendulum with a vertically oscillating
suspension point [15].

The case with an arbitrary nonzero value of k and
zero a or b has been studied as the problem of particle
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motion in the field of two plane waves [16-19]. The
case of k = 1/2 and special values of a, b defines an
approximate description of motion in orbital 3/1 reso-
nance in satellite systems [12, 20]. Thecasek=1,b =
—al/7 corresponds to the problem of the rotational
motion of anonspherical satellite in synchronous spin—
orbit resonance in an elliptic orbit [13, 14].

The reason for the universal nature of the Hamilto-
nian (1) isthat anonlinear pendulum isamodel of non-
linear resonance under very general conditions [4—6].

1.2. Separatrix Mapping

Motion near a pendulum separatrix or a nonlinear
resonance separatrix in the symmetric case a = b (and
k = 1) was considered by Chirikov in [4, 5]. He showed
that this motion is effectively described by some map-
ping known as a “whisker mapping.” Now the term
“separatrix mappings’ is more commonly used for this
type of mapping. The description of motion using a
mapping affords certain advantages both in qualitative
analyses of motion and in computer analyses.

The usual separatrix mapping (in the form [4, 5])
has the form

Wp.e1 = W,—Wsint,,

Th41 = rn+)\ln—§—2—- (mod 21), @

W

where w denotes the relative (to the value on the sepa-

ratrix) pendulum energy w = Hy/% — 1 and 1 is the

phase of the perturbation as above. The constants A and

W are parameters. A isthe ratio of the perturbation fre-

quency Q to the frequency w, = (F9)Y2 of the small
pendulum oscillations, and

W = %)\ag()\), ©)

where a5(A) = Ay(A) + Ay (-N),

exp(T\/ 2)

sinh(T\)
is the Melnikov—Arnold integral [4-6]; the functions
a;N\) (k=0,1,2, ...) are analyzed in the Appendix.
The notation € is subsequently used for a/%.

A singleiteration of the separatrix mapping (2) cor-
respondsto asingle period of the pendulum rotation or
ahalf-period of its oscillation.

An important property of the separatrix mapping in
the form (2) is that it represents the motion asynchro-
nously [9-11]: the action variableis mapped for ¢ = +1t
whereas the phase angle of the perturbation is mapped
for ¢ = 0. This property follows from the derivation
procedure [4-6] for the separatrix mapping (2). Abdul-
laev and Zaslavsky [10, 11] derived a“ shifted” separa-
trix mapping in which the phase angle of the perturba-

A(\) = 4T\
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tion can be taken at an arbitrary cross section. In this
case, the action variable is mapped for ¢ = £1tasin the
usual separatrix representation.

In order to completely describe the motion around a
separatrix we need to find a procedure for synchroniz-
ing the mapping to the surface of the cross section ¢ = 0,
i.e., for the position of the pendulum in stable equilib-
rium. In fact, the cross section ¢ = +7t(for the position
of the pendulum in unstabl e equilibrium) does not com-
pletely represent the dynamic behavior since the angle
of the pendulum during oscillations does not reach £Tt

The procedure for synchronizing an ordinary sepa-
ratrix mapping (case of a symmetric perturbation) to
the surface of the cross section ¢ = 0 was described in
[9]. As was noted in that article, desynchronization of
the separatrix mapping leads, in particular, to asymme-
try of the phase portraits relative to the lines T = 0 or
T =11 (see for example Fig. 1in [21], Fig. 6in [22], or
Fig. 3bin[23)]).

In the present study the synchronization procedure
is derived for the general case of an asymmetric pertur-
bation (1). Synchronization confers meaning to com-
parisons of cross-section surfaces obtained by numeri-
cal integration with the corresponding phase portraits
of a separatrix mapping. Such comparisons provide
direct information on the range of validity of the sepa-
ratrix mapping in parameter space. By means of such
comparisons we confirm that the separatrix mapping
can be applied over a wide range of values of the
parameter A, both for low-frequency and for high-fre-
guency perturbations, provided that their amplitudes
arefairly small.

2. SEPARATRIX ALGORITHMIC MAPPING

The separatrix mapping for an asymmetric perturba-
tion differs from that for the symmetric case since the
energy increments differ for the forward and backward
motion of the pendulum. Following [20, 24], we write
the separatrix mapping in the asymmetric case in the
form of an algorithm which we shall call a separatrix
algorithmic mapping:

if w,<0 and W = W*, then W := W";
W1 = W,—WsinT,, 4
(mod 2m).

In this mapping the sign of the upper index of W alter-
nates on each iteration if w, < 0 (i.e.,, during oscilla

tions); W= impliesW* or W-and W™ implies W~ or W¥,
respectively. The value of A, ., T, approximately equal
to AIn(32/|w,, . 4|) [asis assumed for the ordinary sepa-
ratrix mapping (2)], is determined more accurately
below, while W* and W- are the values of the parameter
W for the forward and backward motion, respectively.
Here the motion is called forward (or backward respec-
tively) if the change of ¢ with time is positive (nega-

Ther = Tt AT
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tive). Any functions having the indices + or — subse-
guently denote forward and backward motion, respec-
tively.

The separatrix algorithmic mapping may be written
in a more detailed “expanded” form if we introduce
numbering of W as for the variables T and w; however
westressthat Wisaparameter which can only have two
values W+ and W-. The separatrix algorithmic mapping
in expanded form is as follows:

if w,<0 and W, = W, then W,,,:=W",
if w,<0 and W, = W', then W_,, :=W;
Wpe1 = W,—W,,,SNT,,
Theg = (mod 2m).

The essence of the algorithm (4), (5) isthat it takesinto
account the alternation of the values of the parameter
W. These dternate when the direction of motion
changes. The algorithm (4), (5) does not contain the
condition w;, > 0 (case of rotation) because in this case
the direction of motion remains unchanged.

The logarithmic expression for the phase increment
in the ordinary separatrix mapping (2) is afairly rough
approximation. Thus, using (2) we can only predict an
exact representation of the phase portraits of the motion
for very small values of the perturbation amplitude W.
If the perturbation is not weak, in order to improve the
accuracy of the separatrix algorithmic mapping (4), (5),
the logarithmic approximation of the phase increment
should be replaced by its exact value. The analytic
expressions for this differ in regions of oscillation and
rotation and have the form [9]

()

T, tA, T

An+1T
2AK%L+V—V”—+—35HZD W,.,<0
2 |:| D n+1 (6)
Wi+ 1D_1/2 Wi + 1|]_]J2|:|
2Ad+—57g K+ =570 5 W >0,

where K(k) is a complete elliptic integral of the first
kind. Thefirst linein Eqg. (6) correspondsto the oscilla-
tions of a model pendulum while the second corre-
spondsto its rotations.

By using this separatrix algorithmic mapping we
can rapidly reproduce the cross sections of the phase
space of the system near the separatrix. Using this map-
ping gives arelative advantage of two or three orders of
magnitude in terms of calculation speed. However, its
use not only involves an increase in calculation speed.
More importantly, this theory gives a direct analytic
description of the phase space of a system: an analysis
of the separatrix mapping allows us to precalculate the
locations of resonance and chaos boundaries [24], and
the appearance of marginal resonances [9] by means of
compact analytic expressions. For instance, when the
values of the parameters of the separatrix algorithmic
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mapping are known, it is easy to find the conditions of
Hamiltonian intermittency [9] which are the same as
the conditions for the appearance of margina reso-
nances.

3. SYNCHRONIZATION PROCEDURE

In order to find the cross section of phase space for
¢ = 0 we need to calculate the energy increment not in the
timelimits (—oo, +0) asare used to derive the ordinary sep-
aratrix mapping but inthelimit (—eo, 0) or (0, +eo0). Wefirst
give various formulas required for the motion at the
unperturbed separatrix:

E(t) = i[4arctan exp(t) —]. (7)

(1) = £2mcost (0 ®

The plus sign in these expressions corresponds to the
forward motion of the pendulum while the minus sign
corresponds to the backward motion.

We shall calculate the requi red energy increment:

° dH
AH, = f dtodt

—00

The derivative is given by the Poisson bracket:

dH, _ 0HodH 9HOH,
@ (HeM =55 e o
= ak9p[sin(k —1) + nsin(ke +1)],

where T = Qt + 15, n = b/a. The value of AH, is
expressed in terms of the Melnikov—Arnold (MA) inte-
grals (see Appendix). For the case of forward motion
we have

Ko = 5[ A() + AN IS,

—af{ A[Ba(A) —nBy(-A)] +1+n} cost,.
The derivation of the expression for backward motion

is similar. We shall subsequently calculate the change
in the pendulum energy H, relative to the line of the

unperturbed separatrix Hy, = &% = congt, in accordance
with the definition of the rel atlve energy w=Hy/%F —1

given above. In general for the increment of therelative
energy w we have

+

A*w = —V%sinto—éiwi COST,, (11)
where
W'(k, A, n) = %)\[Azk()\)-'-nAzk(_)\)]! (12)
a
Wi(k,A,n) = @J\[ﬂAzk()\) +Ax(-N)] (13
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. A[Ba(A) =By (-A)[ +1+n
o (kA n) = ,

(A ) = T A # A N]

- A[NBa(A) =By (-A)[+1+n

0 (k,A,n) = .

(A1) = N I A ) + A ]
Formulas (14) and (15) for o are valid for calculating
the changesin Hy; i.e., the relative energy is defined as
w = Hy/%F — 1 (see above). They will be different for the
changesin the total energy H; i.e., if w=Hy/% — 1. In
thislast case, the derivation is dlightly simpler since

dH _ oH
dt ot’
The expressions for W* remain the same as for the H,

case but the expressions for & change and have the
form

(14)

(15

oy = Ba) =By
kA = R B T AL

NBa(A) —Ba(A)
NAKA) + Ag(-A)

Everywhere subsequently we take the definition of win
termsof H; i.e., Egs. (16) and (17) are not used for the
calculationsin this article. We also note that all the for-
mulas are given herefor arbitrary integer or half-integer
values of the parameter k, but all the computer experi-
ments described below are given for k = 1. Construction
of the cross sectionsfor k# 1 requires separate analysis;
the case of a separatrix algorithmic mapping with k =
1/2 was considered in [20].

Thevalue of therelative energy on the surfaced =0
when its value w, on the surface ¢ = +1tis known, is
given by the algebraic summation of w,, and the calcu-
lated increment A*w,:

(16)

o (k,A,n) =

(17

4

~ ~ W T
W, = WH—TSIHT,,—5+W+COST”
- Wn+Wn+1
2

wherew, , ; isthe next iteration of the nonsynchronized
separatrix algorithmic mapping. The phase portrait of
the separatrix mapping is synchronized by replacing
the pair (w,, T,) with (W,, T,,).

In other words, the procedure (18) synchronizes the
separatrix agorithmic mapping (4) where the index of
o (“+” or “~") isthe same asfor the instantaneous value
of W. In the specific case of the ordinary separatrix
mapping (Ssymmetric perturbation), quantities having
the indices “+” and “—" are equal to each other. The
algorithm (4) together with the synchronization proce-
dure (18) can be used to construct synchronized phase
portraits of the motion near the separatrix of the Hamil-
tonian (1).

(18)
— 8" W* cost,,,
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The new variable W is dynamic. The separatrix
algorithmic mapping can be written in terms of the new
(“synchronized”) variables W, 1. The change of vari-
ablesw, T —» W, T is canonica. However, the new
mapping is implicit. Since it is merely of theoretical
interest and not very suitable for practical calculations,
we shall confine ourselves to writing the mapping in
terms of the new variables merely in the symmetric
casea=Dh:

. T, +

- . T
Wo.1 = W,—Wsin nxd

2

T -1 . T -1
X %os_r‘.il_z__ﬂ_ZBSn_nf_lz___ﬂS
W+ Wpy g
2

Theq1 = T+ AIN32—-Aln (29

W _ T,+1
2 2

x %nT””T_T“ + ZBCOST””T_T“H (mod 2T).

In practice, it is clearly easier to iterate a nonsynchro-
nized mapping and by thus calculating w,,, w,, , 1, and T,,,

go over to the variables w,, and T,, using Eq. (18).

To conclude this section, we note that the synchro-
nization parameter & can be determined not only analyt-
ically but also by means of adirect numerical estimate
of the MA integralsin Egs. (14), (15) or (16), (17). We
shall consider the case k = 1. The primitives of theinte-

grand expressionsin theformulasfor a3(A) and B5(A)

(quantities in terms of which & is expressed, see their
integral representations in the Appendix) as a function of
the independent variable t oscillate at t — +c0 and the
amplitude of the oscillations is nonzero in the limit. In

the Appendix the analytic representations of a5(A) and

B5(A\) are given in accordance with the agreement that

in the limit when the upper limit of integration tendsto
infinity (t — +o0) the mean is taken for the primitive.
This implies that for the numerical integration the
upper limits of integration should be taken as certain
nonarbitrary discrete values given in Table 1 in the
Appendix.

4. SYNCHRONIZATION
FOR A SYMMETRIC PERTURBATION

We shall consider the case of asymmetric perturbation
(weaso assumek =1) in greater detail. Werecdl that this
corresponds to the ordinary separatrix mapping (2).
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Fig. 1. Curve 1, synchronization parameter 8(A) (21) for a
symmetric perturbation and k = 1 in the Hamiltonian (1).
Curve 2, synchronization parameter &(A) (23) for the Hamil-
tonian (22).

—02F TR e e

3.14

—0.4——1
0 1.57

|
4.71 6.28

Fig. 2. Phase plane of separatrix mapping (2) with A= 0.5,
W=0.181.

Inthis case, the expression for the synchronization
parameter & has the form

_ B3\ + 2/A

O(A) =
() e (20)

Thisisthe same for the forward and backward motion.

The functions a5(A\) and B5(A\) are determined in the

Appendix. Using the recurrence formulas given in the
Appendix we find

1 Chorn 4 205 = 1
3(A) = ﬁg}l(}\)+)\—£§nh—2- ==

(21)
A A 0. T
x ERG[UJEEE—LPEZE} *fz"”zgﬁ'““?’

where Y(2) = ' (2/T (2) is the digamma function (see
Appendix), and i isthe imaginary unit. This expression
was given earlier in [9] without derivation. The depen-
dence of the synchronization parameter d on A, Eq. (21),
isplotted in Fig. 1 (curve 1). We note the existence of a
central plateau and the steep slopes to +o in the low-
and high-frequency limits.
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(a)

—02f S

04 T T

0.2

~02p7 i Sa

6.28
T

Fig. 3. () AsFig. 2 but synchronized to the unified plane of
the crosssection ¢ = 0; 6=0.929. (b) Cross section obtained
by direct numerical integration. In Fig. 3b the synchroniza-
tion sign (tilde) in the notation of thew axisis omitted since
no analytic synchronization procedureis used in integration
and the values of w and T are obtained directly at the unified
surface of the cross section ¢ = 0.

We shall compare the phase portraits of the separa-
trix algorithmic mapping with the cross sections of the
phase space of the initial Hamiltonian calculated
directly (by numerical integration). By way of example
we consider the case of arelatively low-frequency per-
turbation: A = 0.5. In Figs. 2 and 3athe behavior of the
same system is shown represented by nonsynchronized
and synchronized separatrix mappings. Here and
everywhere subsequently the figures only show the
principal chaotic layer. Note that the asymmetry rela
tive to the line T = Ttwhich is quite appreciable in Fig. 2
had disappeared in Fig. 3a, i.e., this asymmetry is an
artifact of the desynchronization of theinitial separatrix
mapping.

Figure 3b shows the same phase plane asin Fig. 3a
but obtained by direct numerical integration of the sys-
tem with the Hamiltonian (1). The values of the param-
etersinthe Hamiltonian (1) correspond to the values of the
separatrix mapping parametersA = 0.5 and W=0.181 and
specifically #=1,%=2,a=b=0.05and Q = 212,
Here and subsequently integration is performed by the
eighth-order Dormand—Prince method [25] with a con-
trolled step size. The local accuracy of the integrator is
set to 10710,

The calculated values of the variablesw and T were
taken directly at the unified cross section surface ¢ = 0.
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| |
3.14 4.71 6.28

T

Fig. 4. Phase plane of synchronized separatrix mapping (2),
(18) with A = 0.1, W= 0.00797, & = 4.99.
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Fig. 5. Phase plane of synchronized separatrix mapping (2),
(18) with A = 10, W= 0.000379, 6 = —232.5.

The phase plane in Fig. 3b can be compared directly
with the phase plane of the synchronized separatrix
mapping in Fig. 3a. It can be seen that the behavior of
the real system (1) is well described by the phase por-
trait of the synchronized separatrix mapping. The accu-
racy of the agreement along the w-axis is better than
0.03. The small differences disappear as the amplitude
a = b of the perturbation decreases.

Figures 4 and 5 give another two examples of the
phase portraits of a synchronized separatrix mapping
for cases of low- and high-frequency perturbations
(A being 0.1 and 10, respectively, where the amplitude
of the perturbation € in the initial Hamiltonian is 0.01
and 1, respectively). Numerica integration gives amost
identical cross sections so that the figures giving the
results of integration are not included here. The accu-
racy of the agreement along the W-axis is better than
0.001 in the first case and better than 0.002 in the sec-
ond. The accuracy of the agreement between the ampli-
tudes of the layer bending is better than 0.001 in both
Cases.

The case of an asymmetric perturbation is consid-
ered in Section 6.
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5. SYNCHRONIZATION
FOR A DIFFERENT TYPE OF PERTURBATION

As an example of a nonlinear resonance with a per-
turbation different to that considered earlier [see the
Hamiltonian (1)] we consider the following Hamilto-
nian:

2

H = (ng—@cos¢+a¢sinr. (22)
Holmes and coworkers analyzed this model in a study
of separatrix splitting [26].

An important difference from the case of the Hamil-
tonian (1) is that the synchronization formula here is
the samefor variations of Hy and H since the perturbing
term degenerates to zero for ¢ = 0. We obtain (the der-
ivation is similar to that given in Section 3)

W) =W'(}) = -W})

_a_c _a 211
= Gl = F cosh(TiA/2)’
. - BIN) (23)
dA)=0'(A) =0 (\) = —
a3(A)
1. m 1.1, [d+iAg

= Esmh—z__ﬁCOSh—z— my 7 D

and the separatrix algorithmic mapping has the univer-
sal form (4). In this case, it reduces to the simple form:

if w,<0, then W :=-W,

Whiq = W,—WsINT,, (24)

T4 = To+ A, ,T (Mod 2m).

The dependence of the synchronization parameter 6 on
A, Eq. (23),isshownin Fig. 1 (curve 2). The qualitative
differencefrom curve 1, EqQ. (21), isthat for A — Othe
value of d(A\) does not go to +eo but tends to zero.

Figure 6 shows the behavior of the system (22) with
the parameters A = 0.5, € = 0.02 represented using the
synchronized separatrix algorithmic mapping (24),
(18) with the corresponding parameters A = 0.5, W =
0.0949, 6 =-0.303, Eq. (23). The phase portrait for the
backward direction of motion (Fig. 6b) issimply ashift
of the phase portrait for the forward direction (Fig. 6a)
along the t-axis by 1t The results of finding the cross
section ¢ = 0 by direct numerical integration are visu-
ally the same as Fig. 6 (the accuracy of the agreement
along the w-axis is better than 0.01) and are not given
here.

6. BENDING OF THE CHAOQOTIC LAYER
IN THE HIGH-FREQUENCY
PERTURBATION LIMIT

Figures4 and 5 (exampl es corresponding to low and
high perturbation frequencies) clearly show that the
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chaotic layer is strongly bent. This bending is only
observed for the synchronized mapping; the chaotic
layer of the nonsynchronized separatrix mapping
always completely encloses the line w = 0. Figure 1
(curve 1) shows that the synchronization parameter
0(A), Eq. (21), goes steeply to + in the low- and high-
frequency perturbation limits. However, this does not
yield any conclusions on the geometry of the chaotic
layer. The energy amplitude of the layer bending is
measured by the product oW [see Eq. (18)]. From
Egs. (12)—(15) for k = 1 we have: for a symmetric per-
turbation (n = 1) if A =0, then &*'W*" = &W = 4¢, if
A = +00, then 3*W* = W~ = O; for a perturbation hav-
ing maximum asymmetry (n = 0) if A =0, then &*'W* =
OW =2candif A =+, O*'W'=6"W-=0. Thus, in the
high-frequency perturbation limit the energy amplitude
of the layer bending always tends to zero.

Nevertheless, qualitatively the layer bending effect
cannot be considered to be weak. We shall analyze the
ratio of the amplitude of the layer bending and its half-
width. In the high-frequency perturbation limit the lat-
ter isgiven by the product AW [4, 5]. Thus, for energies
w > 0, which correspond to rotations of the model pen-
dulum, the unknown ratio is &*/A for forward motion
and &7/A for backward motion. For any value of the
asymmetry parameter the absolute values of these
guantities increase without bound if A —= +co. For
energiesw < 0, which correspond to oscillations of the
model pendulum, a rougher estimate (since the for-
ward and backward motion alternates) of the unknown
ratio is &*/A for forward motion and &W/&*W* for back-
ward motion (without loss of generality it is implied
here that the parameter n is contained within the limits
0sn<l).

Thus, in the case of a high-frequency perturbation
the chaotic layer is subjected to strong bending in the
sense that during motion near the separatrix the ampli-
tude of the energy deviationsrelative to the unperturbed
separatrix value is much greater than the layer width.

In accordance with Eq. (18), as aresult of synchro-
nization the line of the unperturbed separatrix w =0 is
transformed into the curve w = &*W*cost. If the cha-
otic layer is relatively thin AW* < &*W=), in natura
polar coordinates p, T (wherep = w + 2, i.e, the zero
point of the relative pendulum energy is taken to be its
rest state in the lower equilibrium position) the line of
the layer isaPascal limagon: p = 2 + &*W=*cosT.

For the Hamiltonian (22) the conclusions on the
nature of the layer bending in the high-frequency per-
turbation limit are qualitatively similar.

The case of alow-frequency perturbation is not con-
sidered here because no reliable estimates of the layer
width are available for it.

From these approximate formulasfor the ratio of the
bending amplitude of the chaotic layer to its half-width,
it follows that when the perturbation has the maximum
possible asymmetry (n = 0) the layer bending effect
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Fig. 6. Phase plane of synchronized separatrix algorithmic
mapping (24), (18) for the Hamiltonian (22) with the param-
eters A = 0.5, € = 0.02; (&) forward motion, (b) backward
motion as defined in text.

begins to become appreciable (the amplitude becomes
greater than the width) for the forward and backward
motion if A = 8. Thus, this last value was selected to
construct the phase portraits of the separatrix algorith-
mic mapping.

Figure 7 shows the behavior of the system (1) with
the parametersA = 8, £ =1, n =0, k= 1 using the rep-
resentation of the synchronized separatrix algorithmic
mapping (4), (18) with the corresponding parameters
A =8, W =0.00561, W = 6.82 x 1074, &* = —-62.3,
O =2.96 x 10*? [Egs. (12)—(15)]. The results of finding
the cross section ¢ = 0 by direct numerical integration
are similar to those obtained using the synchronized
separatrix agorithmic mapping (the accuracy of the
agreement along the w axisis better than 0.04, and the
accuracy of the agreement between the layer bending
amplitudes is better than 0.01) and are not given here.

Thus, the bending effect isin fact present and corre-
spondsto the predicted value for the forward and back-
ward motion. The theoretical bending amplitudes for a
thin chaotic layer (8*W* = —0.35, &W- = 0.20) show
good agreement with those observed (with an accuracy
better than 0.01).

In this last example the perturbation parameter is
large € = 1, but nevertheless the synchronized separa
trix al gorithmic mapping very accurately representsthe
real motion. We shall now explain why this synchro-
nized separatrix algorithmic mapping is so efficient.
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Fig. 7. Phase plane of synchronized separatrix agorithmic
mapping (4), (18) for the Hamiltonian (1) with the parame-
tersh=8,e=1,n =0, k=1, (a) forward motion, (b) back-
ward motion.

Thefirst of thetwo termsin thefinal expression (18)
for the procedure for reducing the phase pattern of the
motion to the unified surface of the cross section ¢ =0
is the average of two successive values of w. The struc-
ture of the formula thus resembles taking the average
(first term) with a certain correction (second term
describing the layer bending effect). This division is
formal. No approximation is used here. Both terms
appear in the course of the exact derivation of the syn-
chronization procedure.

The synchronized separatrix algorithmic mapping is
free from any averaging effects. It may seem that these
may appear and influence the accuracy of the mapping
and the synchronization procedure since oscillating
terms of amplitude of order € are neglected in the
numerical determination of the MA integrals (see
Appendix). In fact, the primitives of the MA integrals
A, and B, for any n oscillate at infinity with nonzero
amplitude. We shall first consider the case of the
Hamiltonian (1) and the definition of the relative
energy in terms of Hy: w = Hy/% — 1. Aswe can easily
see, theinitial expression for the increment Hy [see (9)]
contains the MA integralsin the form of sums A, _; +
Ao+ 1and By _ 1 + By, 1. The primitives of the MA inte-
gralsin these sums oscillate at infinity in antiphase and
therefore compensate for each other. (The absence of
oscillations can be clearly seen from the presence of the
cofactor p(t) in the initial integrand expression; this
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suppresses oscillations at infinity.) The final expres-
sions for the parameters of the separatrix algorithmic
mapping and the synchronization (12)—(15) were
obtained using recurrence formulas (A.10) and (A.11)
by means of which these sums are transformed in the
MA integralsAy and By, The primitives of thelast inte-
grals oscillate at infinity. This “acquisition” of oscilla-
tionsin the final expression is essentially a mathemati-
cal artifact which occurs as a result of using the recur-
rence formulas (A.10) and (A.11) which are derived
using averaging. These oscillations have no relation to
the accuracy of the nonsynchronized separatrix algo-
rithmic mapping nor to the accuracy of the synchroni-
zation procedure.

When the relative energy is defined in terms of H
(w = H/% — 1) the oscillations of the energy increment
in the nonsynchronized separatrix agorithmic mapping
are real [since there is no cofactor p(t) in the integrand
expression in the initia formula for the increment].
However, in the synchronized separatrix algorithmic
mapping these oscillations compensate for each other,
as we can easily see, when the increments of H are
summed on intervals between t1,_; and +c and
between —co and 1,,.

Finally, for the Hamiltonian (22) the situation with
the oscillations of the energy increment is quite similar
sinceit is determined by the presence or absence of the
cofactor p(t) in the initial integrand expressions. The
apparent difference is that the integrals in the final for-
mulas for the parameters of the separatrix algorithmic
mapping and the synchronization (23) (specifically, the
integrals af and PB;) are proper athough in reality,
when the relative energy is defined in terms of H, oscil-
lations of the energy increments do occur in the non-
synchronized separatrix agorithmic mapping. The
“loss’ of oscillations herelike their “acquisition” in the
case of the Hamiltonian (1) in the previous example can
be explained by thefact that the MA integralswere sub-
jected to transformations using averaging.

On the whole, no real oscillations of the energy
increments occur in the case of a synchronized separa-
trix algorithmic mapping and this mapping is free from
averaging effects.

For perturbations € ~ A and above the standard
Poincaré-Melnikov method of calculating exponen-
tially small effects associated with separatrix splitting
generally requires corrections [27, 28]. In the two
examples given above (Figs. 5 and 7) the perturbation
islarge (¢ = 1). In the last case, however, the perturba-
tion is completely asymmetric (n = 0) and for thisrea-
son (see [27]) the correction is zero. For a perturbation
of arbitrary asymmetry the correction factor for the sys-
tem (1) according to the Simé [27] hypothetical for-
mulais

f09] = <o
X
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where

(here x may be either a real or an imaginary number
depending on the signs of a and b). In the case of Fig. 5,
the correction factor to the separatrix mapping parame-

ter Wisf(./2) = 1.368.

This correction merely influences the layer width
but not its bending amplitude since the bending has no
relation to the separatrix splitting effect (in fact, the
product dW contains no MA integrals of the first kind),
i.e., this correction should be made to W and not to dW.
Inthe case shownin Fig. 5 the layer width isvery small
compared with the bending amplitude and allowance
for the correction negligibly influences the genera
form of the phase portrait.

Thus, our comparisons of the cross sections of the
phase space obtained using the separatrix algorithmic
mapping and direct numerical integration show that the
synchronized separatrix algorithmic mapping correctly
represents the near-separatrix motion both at high and
low values of the relative perturbation frequency A.

7. CONCLUSIONS

In the present article we have derived a procedure
for synchronizing a separatrix agorithmic mapping
describing motion near the separatrix of a nonlinear
resonance in the presence of an asymmetric perturba-
tion [20, 24] to the unified cross section surface of an
initial Hamiltonian system. This procedure is valid for
the particular case of asymmetric perturbation, i.e., for
an ordinary separatrix mapping. This choice of cross-
section surface gives a complete description of the
phase space of the motion near the separatrix. It is
found that in the limit of a high perturbation frequency
the principal chaotic layer undergoes strong bending:
during motion near the separatrix the amplitude of the
energy deviations relative to the unperturbed separatrix
valueisgreater than the layer width (their ratio tendsto
infinity for A — +0). However, acomparison with the
results of direct numerical integration shows that the
synchronized separatrix algorithmic mapping gives
(both at high and low perturbation frequencies) a cor-
rect representation of the phase portrait of the motion
near the separatrix if the perturbation amplitude is
fairly small.

To conclude we note that the synchronized separa
trix algorithmic mapping describes motion of the sys-
tem on the “phase perturbation angle—energy devia-
tion” plane for a fixed resonant phase angle ¢ = O.
When the Poincaré cross sections are constructed
numerically in applied problems, a different plane is
usually used, i.e., the “resonant phase angle—momen-
tum” plane for a fixed perturbation phase angle, for
example 0 (mod21). Can we construct a second type of
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Cross section using separatrix mapping? To quite a
good approximation, thisisin fact possible. The proce-
dure is again an algorithm containing conditional
transfer instructions. This algorithm was described
in[20, 24].
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APPENDIX
Melnikov—Arnold Integrals

In the Appendices to [4, 5] a detailed description is
given of functions of the type

A\ = Icos%cp(t)-m%jt, (A1)

where

@t) = 4arctanexp(t) — Tt (A.2)
(separatrix solution of the unperturbed equation for a
nonlinear pendulum), the parameter A is any real num-
ber, and nisareal parameter n = 0. Everywhere subse-
guently we confine ourselves to the case of integer val-
ues of n = 0. Following the terminology adopted in [4, 5]
the functions (A.1) will be called Melnikov—Arnold
integrals (MA integrals). They can bewrittenin thefol-
lowing form:

[

A = 2J'cos[narctansinh(t) —At]dt. (A.3)

In order to synchronize the separatrix mapping we need
to introduce the related functions

00

B.,A) = Isin[narctansinh(t) —At]dt, (A.9)
0

which we shall call MA integrals of the second kind.
(Thefunctions A, aretherefore MA integrals of thefirst
kind.) We also introduce the auxiliary functions

a;(A) = AA) + A=N),
ap(d) = AN) = A(A),
Br(d) = B,(A) + By(-N),
Ba(A) = By(A) = By(-A).

(A.5)

No. 3 2000



624

The upper indices ¢ and sindicate that the expressionin
the integrand contains the cosine or sine of At respec-
tively according to the following equivalent formulas:

[

ar(A) = 4J’cos[narctansinh(t)]cos()\t)dt, (A.6)

ay(A) = 4J’sin[narctansinh(t)]sin()\t)dt, (A.7)
0

(A.8)

B:(\) = 2J’sin[narctansinh(t)] cos(At)dt,
0

00

BN = ~2[ cos[narctansinh(t)] sn(At)dt.  (A.9)

The primitives in the integrands in the integral repre-
sentations for A, B,, o, oy, By, By as functions of
theindependent variablet oscillatefor t — +o0 and the
amplitude of the oscillations may be nonzero in the
limit depending on the parity of the parameter n. Thus,
determining the numerical values of the MA integrals
should follow a specific forma agreement. According
to the traditional natural agreement for A, [4, 5] the
numerical values of all these MA integrals are taken to
be averagesin the limit when the upper limit of integra-
tion for their integral representations tends to infinity.
For example, we therefore assume here that A, = 0.

In [4, 5] the MA integrals of the first kind with any
real values of n were estimated analytically by means
of residue theory. If we confine ourselvesto natural val-
ues of n, the MA integrals of the second kind of interest
to us and also those of the first kind are most easily
determined by induction. We shall first consider func-
tions of the first kind. The induction for A,, in terms of
A,_;and A, _, for any natural n = 2 isdescribed by the
Zhirov recurrence formula (see Appendices in [4, 5]).
Thus, if Ay and A; are known, the expression for A, is
obtained by induction:

A =0,
Ay = B0 ;aim,
(A.10)
AN = ZA 0~ A0,

Deriving the recurrence formula for B, similar to the
derivation for A, (by integrating by parts) for the func-
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tions of the second kind we have similar formulas:

BN =
_ Bih) + BION
BiA) = 2 ’ (A.11)
2)\ 2

B,(A) = By_1(A) =By o(A) + —=5.

The induction bases in Egs. (A.10), (A.11) are Ay, By,
A;, and B,. The last two functions are expressed in

terms of a5, aj, B;, and B3 . Using tabular integrals

from [29] or [30], we have the following expressions
for these four functions;

2T

ai(A) = (D)’ (A.12)

a0 = gheTE (A.13)

B = 2Re[¢5%% wﬁ)ﬂ—zlnz, (A.14)
B = mann™ ~2impEE0 (A

In these expressions Y(2) = IM'(2)/T (2) is the digamma
function and i istheimaginary unit. Thereal part of the
digamma function of imaginary argument is given by
the series [31]:

Rew(y) = -C+y'S Hfﬁ—l__z_ (A.16)
n=1

“+y)
wherey is any real number, C = 0.577216 is the Euler
constant.

Formulas (A.11) together with Egs. (A.14) and
(A.15) express the MA integrals of the second kind of
any natural order nin terms of special functions.

How can the MA integrals be estimated with pre-
scribed accuracy by numerical integration, for exam-
ple, to check the formulas given above? In addition to
selecting a suitable quadrature scheme to improve the
accuracy we aso need to increase the upper limit of
numerical integration. A direct monotonic increase
would lead to oscillations of the results in some cases
because of the nature of the MA integrals described
above. This can be avoided by selecting the upper limit
of integration successively equal to the values of t for
which the oscillating component of the primitive
(selected assuming At > 2m) goes to zero. This reason-
ing gives values for the upper limits of numerical inte-
gration and these are given in the table.

In Table 1 the number M implies any sufficiently
large natural number (the values of M =5-6 are usually
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Upper limits of numerical integration to estimate Melnikov—Arnold integrals
n AdA) oan () an() B,() Ba ) B )
(M +1/2) (M +1/2) ™ ™
Odd —_— * E AL = LA *
Al Al Al A
™ ™ (M + 1/2) (M + 1/2)
Even — — * - * -
Al A Al A

sufficient to ensure four significant digitsin the result);
the asterisk indicates that the upper limit of integration
can beany fairly large positive real number (since oscil-
lations of nonzero amplitude at infinity do not occur in
the corresponding cases).

=

10.

11.

12.
13.

14.
15.

16.
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Abstract—An anaysisis made of the dynamic stability of soliton solutions of the Hamilton equations describ-
ing plane waves in nonlinear elastic composite media in the presence and absence of anisotropy. In the aniso-
tropic case two two-parameter soliton families, fast and slow, are obtained in anaytic form; in the absence of
anisotropy thereis a single three-parameter soliton family. It is shown that solitons from the slow family in an
anisotropic composite and solitons in an isotropic composite are dynamically stable if their velocitiesliein a
certain range known as the range of stability. The analysis of stability is based on the spectral properties of the
“linearized Hamiltonian” €. It is shown that the operator ¥ is positively semidefinite on some linear subspace
of the main solution space from which stability follows. Problems of instability of the fast soliton family in the
anisotropic case and representatives of soliton families whose velocities lie outside the range of stability in the
presence and absence of anisotropy are discussed. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Recently so-called composite materials have contin-
ued to attract interest in the theory of easticity and its
applications. Asisindicated by their name, these mate-
rials consist of various substances capable of mixing at
the macrolevel. A method of averaging the fundamental
equations of the model (see, for example, [1]) isused to
study large-scale processes having a characteristic
scal e substantially exceeding the inhomogeneity scale.
Inthiscase, it isfound that the properties of a compos-
ite described by averaged equations reveal substantial
differences compared with those of the component
materials. In particular, atypical caseisthe appearance
of dispersion despite the fact that no dispersion occurs
inany of the elastic material s forming the composite [1].
Consequently, acomposite consisting of elastic materi-
as with a nonlinear equation of state is a dispersive
medium in which waves resulting from the interaction
of nonlinear and dispersion effects, including solitons,
can propagate. The possibility of observing solitonsin
practice is naturally related to the dynamic stability of
these waves.

The literature relating to the study of soliton stabil-
ity by modern methods in various problems in nonlin-
ear physicsisfairly extensive. Without claiming to give
any kind of complete review of thistopic, we shall con-
fine ourselves to mentioning various studies in this
field. Ananalysisof orbital stability based on ageomet-
ric approach to the study of Hamiltonian systems was
first developed in [2, 3] where the authors analyzed the
nonlinear stability of solitons of the Korteweg—deVries
equation and the alternative Benjamin—-Bona—Mahony
equation. The application of similar methods to study
soliton solutions of various other model equations can
be found in [4] (Benjamin-Ono equation), [5] (nonlin-

ear Klein—Gordon equation and nonlinear Schrédinger
equation), [6] (so-called equation for moderate wave-
lengths), [7] (generalized Boussinesq equation), [8, 9]
(Kawahara equation), [10] (family of generalized
Korteweg—de Vries eguations), and [11] (asymptotic
stability of solitons of Korteweg—deVries equations). A
discussion of general aspects of the stability and insta-
bility of solitons in hydromechanics and plasma is
reportedin[12, 13].

Soliton structures in elastic media are found, for
example, in geometrically nonlinear media where dis-
persion occurs as a result of stretching and bending
effects (see, for example, [14]). The only results on the
dynamic stability of solitonsin elastic media known to
the author are results on the stability of solitonsin non-
linear elastic strings[7] and plane loop solitonsin elas-
tic inextensible thin rods [15,16].

In the present study we investigate the dynamic sta-
bility of solitons in nonlinear elastic composites in the
presence and absence of anisotropy. For our study of
stability we follow a method which was definitively
developed in [17]. Dynamic (orbital) stability of
boundary states (solitons) in Hamiltonian systems hav-
ing symmetries automatically occurs if the “linearized
Hamiltonian” [defined as 7€ by Eq. (2.7) in the present
article] is nonnegative over the entire functional space
of the solutions of the system. However, for the general
position, the operator #¢ has at |east one negative eigen-
value. If thisvalue is unique and simple, soliton stabil-
ity will also occur for specific properties of the soliton
solution in tranglationally invariant Hamiltonian sys-
tems[17].

The present article is organized as follows. In Sec-
tion 2 we give the basic equations describing plane
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waves in nonlinear anisotropic elastic composites, we
present the Hamiltonian form of the basic equations,
we consider symmetriesin the anisotropic and isotropic
cases, give the conserved quantities, and obtain soliton
solutions. Two families of solitons are obtained in the
anisotropic case. These families are parametrized by
the propagation velocity and shear. In the absence of
anisotropy thereisasingle family which dependson an
additional parameter, the angle of rotation in the wave
plane. Section 3 is devoted to the spectral properties of
the operator 7€. It is shown that for certain ranges of
velocities of the slow soliton family in an anisotropic
medium and for the soliton family in the absence of
anisotropy (the so-called range of stability), the opera-
tor ¥ is positive definite on a certain closed linear sub-
space of the entire functional space of the solutions of
the basic equations. This implies orbital stability
(dynamic shape stability) of these soliton families for
these ranges of velocities. Evidence of stability is pro-
vided in Section 4. In Section 5 we give a brief formu-
lation of the results and discuss problems of instability
of the fast soliton family in the anisotropic case and
representatives of soliton families whose velocities lie
outside the range of stability in the presence and
absence of anisotropy.

2. FORMULATION OF THE PROBLEM
2.1. Basic Equations

We shall consider plane wave motion in an inhomo-
geneous nonlinear elastic medium (composite) when
the displacements w,, strains u, = dw,/0x, and particle
velocities v, a =1, 2, 3depend on asingle spatia vari-
able, the Cartesian coordinate x = X3, and thetimet. We
are interested in incompressible elastic media when u;
and v; are constant. These constants may be set equal
to zero without limiting the generality.

Although the motion of a nonlinear elastic body is
described by ahyperbolic system of equations[18], the
existence of an internal inhomogeneous material struc-
ture at the macrolevel leads to wave dispersion [1]. For
an elastic medium we shall assume that the nonlinear-
ity, anisotropy, and dispersion are small and repre-
sented by terms of the same order of magnitude. The
system of basic equations can then be written in the
form [19]

ou, adv; _
9 ax O
aVi a [@CDD azui _ (21)
Poat ~axtoul’ Mo - O
i =12
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Here p, is the average density of the material, ® isthe
elastic potential which is given by

® = %f(uf+u§)
1 1 2
+59(U3 — ) — K (U + ).

The constants g > 0 and Kk characterize the anisotropy
and nonlinearity, respectively. An expression for the
constantsf, g, and K isgiven in [18]. A dispersion term
with m > 0 appears in the equations of motion [second
pair of equationsin (2.1)], for examplein caseswhen a
homogeneous, elastic, easily deformable medium con-
tains uniformly distributed rods having sufficient bend-
ing rigidity and positioned parall€l to the x axis[19].

The equations (2.1) may be written in the Hamilto-
nian form:

0. _ ¢
v = JE' (W),

00

£ = 5[ [vieviemul el

—00

(2.2)

K 2 22, M 2, M 2
——(ui+u;) +—(0,u))"+—(0.u }dx,
2o U+ D)+ 20"+ Z(0,u)

where
Wy = (f=9)/po, M, = (f+9)/po,

w ={u,, Uy, V4, Vo}tisan unknown vector function, the
prime denotes the variational derivative &/dw = {d/du;,
d/duy,, 8/0v,, dIdV,}, and & is a skew-symmetric oper-
ator:

0 0
Joo100

0ooo1pmo0
01000Dx

2.2. Conserved Quantities and Symmetries

Quite clearly, the Hamiltonian E is constant on
account of the system (2.2). In addition, it iseasy to see
that the functional

[

Q= I[ulvl + U,V ] dx

is also an invariant. Another formally conserved quan-
tity isthe vector functional

[

A= J'wdx.
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The system of Egs. (2.2) has additional conserved
quantities in the particular case of degeneracy of the
anisotropy. We shall subsequently make separate anal-
yses of the anisotropic g # 0 and isotropic g = 0 cases.

2.2.1. Anisotropic case. Equations (2.1) and (2.2),
and also the functions E, Q, and A are invariant with
respect to the group of trandations

T(w = w(x+s) = exp(sd )w(x), sOR.

The functional Q is a conserved quantity as a result of
the trandational invariance (2.1).

2.2.2. Isotropic case. In this case we have the addi-
tional rotational symmetry

G(o)w = exp(Ad)w, ¢ OS,

where S* denotes acircle and the matrix s{ = diag(a, a)
is a partitioned diagonal matrix with the blocks

Og 10
a=g%1lpg
0-100

As a result of the rotational symmetry, the following
quantity isformally conserved

100
U= éJ’[yl‘/Z_yZVl + UW; — Uy W] dX,

o = U, 0w = v,

The Hamiltonian E and functional Q are also invariant
with respect to the rotation group.

2.3. Soliton Solutions

The soliton solutions of the system (2.1) are travel-
ing waves which decay rapidly at infinity. After substi-
tuting into (2.1) w = w(§), where § = & — Vt (Visthe
constant wave propagation velocity) and integrating

once, using the conditions of decay at infinity weobtain
v, = -Vu;,

m (2.3)

. K
p_oui = (1 -VI)u, - p—oui(ui +u3).
The dots here denote differentiation with respect to the

variable . The Eq. (2.3) for isolated waves are written
in the equivalent form:

E(e) +VQ(a) = 0.

In equation (2.4) the vector function @, = { u3, U5, V3,

(2.4)

v5}T, vi =-Vu’ denotes soliton solutions (2.3).

For ; > 0, K > 0 Egs. (2.3) have soliton solutions.
Asin the previous paragraph we consider the anisotro-
pic and isotropic cases separately.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 91

IL'ICHEV

2.3.1. Solitons in the presence of anisotropy. In
this case, Egs. (2.3) have two families of soliton solu-
tions:

US = £4/2p0K (g — V) cosh™ 2p0m (1, — VI)E,

uy =0, a 0<V’<p,

ui =0, (25)
U = £,/2p0k ™ (1, — V?) cosh™/2p0m™ (1, = VO)E,
a 0<Vi<y,.

Each of the families (2.5) is a two-parameter one, the
parameters being the velocity V and the shear s along
the & coordinate. We shall subsequently call the first
family of solitonsin (2.5) slow since these exist in the
lower velacity range and we shall call the second fast.
2.3.2. Solitons in an isotropic material. In the
absence of anisotropy |; = 1, = 1 we have additional

rotational symmetry: if @, = {uj, u;, vi, v;}Tisa
soliton solution of Egs. (2.3), then exp(sd¢)q,, d O S*

is also a soliton solution. Thus, it is sufficient to con-
sider only the specific case with fixed ¢:

WS = +,/2pK (= V) cosh ™ /2p,m (1 — VIE,
W=0, a 0<Vi<p, (26)

The family of solitons represented by Eg. (2.6) is a
three-parameter one, the third parameter being the
angle of rotation ¢.

By virtue of Eq. (2.4), the behavior of the functional
E(w) = VQ(w) near w = @, is compl etely determined by
the spectral properties of the self-conjugate operator

# = E'(e) +VQ'(e). (2.7)

We shall discuss these properties in the following sec-
tion.

3. SPECTRAL PROPERTIES
OF THE OPERATOR %

The operator 7 has the form

UH, O voU
O O
% = E 0 H,O V%
oV 0 10p
Oo vo1l
, (3.0
3K 2 K 2 md
H, = yy,—=—u; ——u, ———,
LT T T T pode?
3K 2 K 2 md
H, = —Uu; ——Uu; ———.
2 = Po ° Po PodE?
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It follows from Eq. (3.1) that the eigenvalue problem

%)_( = )\)_(1 )_( = {X11 X21 X31 X4}T1
reduces to two independent problems:

=V = B35
Ho= VX = B3

and the third and fourth components X are determined
using the formulas

X3a = VX1 /(A =1).

As before, we shall discuss the anisotropic and isotro-
pic cases separately.

(3.2)

3.1. Spectrumin Anisotropic Case

For the slow soliton family (u; = 0) the spectral
problem (3.2) has the form

O 2 3kuy md’0 _

il Po podz%xl X

O o kU md’0 (3.3)
— —_—— e — = V , .

o b Pogerd Ve

The differential operators on the left-hand sides of
Egs. (3.3) are Sturm-Liouville operators and the corre-
sponding eigenvalue prablems are investigated using
general theory. In thefirst equation in (3.3) we have for

v = 0 the antisymmetric eigenfunction x; = 0; u;. This
means that there is a single simple eigenvalue v_< 0
and the positive spectrum v isisolated from zero:

v=v,>0.
For the lowest state v_we have
2)\ _ )
A-1 -
It follows from (3.4) that

A —

(3.4

1+Vi+v_
2

whence A_< 0, A, > 0. For the continuous spectrum A
of thefirst problem (3.3) we have

2
A— A 1>u1 V2> 0.

A, = ’—“%J(1+V2+v)2—4\;_,
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From this we obtain

e T Y

i.e., the continuous spectrum A is positive and nonzero.
The lowest state of the second spectral problem (3.3)

is a simple eigenvalue v; = 0 with the symmetric

eigenfunction u; . The positive spectrum of v, is non-

zero. For the eigenvalues A correspondingtov,; = 0we
have

A———=-==0
)\ _1 po ’
1+ V2 +2g/p,
A, = ——————
* 2
L1 JDMDZ_E%_Q “o.
2y0  p, 0 pg
For the continuous spectrum similar to the previous
case we obtain
1+
A> ZHZ—A/(l—u2)2+4V2>O.

Thus, for the slow soliton family in the anisotropic
case the spectrum of the operator # is organized asfol-
lows:

(i) there is exactly one simple negative eigenvalue;
(ii) the kernel of the operator # is one-dimensional
and pulled onto the eigenvector 0;@, ;

(iii) the positive spectrum of ¥ is nonzero.
We shall subsequently consider the spectrum of the

operator ¥ for the fast soliton family (u; = 0). For this
family the spectral problem (3.2) has the form

O 2 Kuy md0
_y2_f2 = 1
(Mo 0o pdEZD(l ViXa1
d » 3ku¥ md?O
ERVERR L R = VX, 35
%12 0o podEZD(Z X2 (3.9)
_ 0 _ VD v. = VA Zgg
A—10 71 Ao1 Pl

The lowest state of thefirst spectral problemin (3.5) is
v, = 0 with the eigenfunction X, = u;. The positive
spectrum of v, isisolated from zero. For the eigenval-
ues A corresponding to v, = 0 we have

VAA B
A > = 0,
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_ L1+ VZ=2g/p,
2

2 2
i}J@+V -2g°f , 89
28 pg 0 p
from which it follows that A_ < 0, A, > 0. The positive
and nonzero nature of the continuous spectrum for the

first spectral problem in (3.5) is demonstrated as in the
previous cases.

The analysis of the second spectral problem is
exactly the same as the first spectral problem for the
slow family of solitons. As aresult for the spectrum of
the operator 7€ for the fast family we have:

(i) two simple negative eigenvalues A where the
eigenvalue A_ corresponds to the eigenfunction )‘(9 =
{us,0, VY1 +2g " )us, O}

(if) a one-dimensional kernel pulled to the zero
eigenvector 0; @, ;

(iii) a positive spectrum isolated from zero.

Thus, for thefast family thereisan additional unsta-

ble direction )'(9 compared with the slow family. The

existence of this unstable direction presumably leads to
instability of the fast soliton family. The question of
instability is discussed in greater detail in Section 5.

As

3.2. Spectrumin the Isotropic Case

Intheisotropic case u; = I, = U the spectral problem
(3.2) degenerates:

0 5 3kuf’ md’0O
_V - —— = ,
= P pogerd K
O o ku md*0 (36)
_V —— e ——— = .
il Po podz%xz X2
_ VA O
v “a_10

Studying (3.6) as in the previous case, we find that the
first eigenvalue problem has a simple negative eigen-
value, a simple zero eigenvalue with the eigenfunction
X1 = 0s u; and a positive nonzero spectrum. The second
problem in (3.6) gives a simple zero eigenvalue with

the eigenfunction X, = uj and a positive nonzero spec-

trum. Summarizing we find that in the isotropic case
the spectrum of the operator € consists of:

(i) asimple negative eigenvalue;
(ii) adouble zero eigenval ue with the eigenfunctions
0:¢, and Aqy;
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(iii) a positive part of the spectrum isolated from
Zero.

The existence of an additional eigenvalue compared
with the anisotropic caseis caused by the appearance of
additional rotational symmetry.

We then introduce the notation: for X = {Xy, X5, X3,
X' 2={2, 2, 75, 2},
X, zO= I(xlzl + Xp2Z, + XgZ3 + X,42,) A

and we consider the properties of the bilinear form
[y, yOfor the slow soliton family in the anisotropic
case and for the isotropic case.

3.3. Properties of the Bilinear Form [y, y[l
for a Sow Soliton Family in an Anisotropic Medium
and for Solitonsin an Isotropic Medium

We shall analyze the bilinear form [#y, ydin the
functional space X which is defined as follows:

Y = {Y Y2 ¥ Va} O X
= H'([R) x H'(R) x L(R) x L(R),

where HY(R) is the Sobolev space of quadratically inte-
grable functions together with the derivatives, and
L,(R) isthe space of quadratically integrable functions
on the real R-axis. The space X is chosen because it is
the space of least smoothness where the Hamiltonian E
is continuous.

In the following analysis a key role will be played
by the positivity of

d(Vv) = aQ(e))/0V,
which has the form
2,/pom
A M1 -V?

for the slow soliton family in the anisotropic case and

d(v) = (2V2-py)

dv) = (2v2—p) 2Rl

NTEAY
for solitonsin theisotropic case. Thus, we haved(V) >0
when V2> 1,/2 for the anisotropic case and V2 > /2 for
the isotropic case. For conciseness we shall subse-
quently call the range of the parameter V where d(V) > 0
the stability range. It follows from the spectral proper-
ties of the operator 7€ that the bilinear form [Ky, ylis
not positively semidefinitein the entire space X because
the negative spectrum of the operator # is not empty.

Nevertheless, for d(V) > 0 this bilinear form is nonneg-
ative definite on the linear subspace

L ={yOX Q(y,), yO= 0},
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tangential to the manifold Q(w) = Q(@,) at the point
w = @, Moreover we have

[y, y=>cly,y] y OL,,

where cisacertain positive constant which depends on
the velocity V,

L, = Ln ¥,d¢0=0

(3.7)

for the slow family in the anisotropic case and

L, = Ln {3, 0,0,0=0, ¥, d ¢, 0= 0}

for the isotropic case. In order to prove (3.7) we note
that the condition

E(p) +VQ(p) = 0
after differentiation once with respect to velocity yields
Hovey, ovpO= —[Q(q), 0y
= —0yQ(qy) = —d(V) <—e,

where e > 0 isafairly small number which depends on
V [we recall that the case d(V) > 0is being considered].
We then express the vector function 0., in the form

(3.8)

Ov@y = agX_+ by @, + by, + po,

b (3.9)
0 ]

where ¥_ isasingle negative eigenvector of 7¢:

m—' X—D = 1!

P is a positive half-space of 7; for p, O P we have
[Fp,, Po= d[P,, Pyl O is a certain positive constant,
and b; = 0 in the anisotropic case. From Egs. (3.8) and
(3.9) we have

IHX- = A X,

[Hpo, Pol< 8| —e. (3.10)
We then represent the vector y [ L, as
y =ax_+p, pUP. (3.11)
It followsfrom (3.9) and (3.11) for y [J L, that
0 = (py), yd= [H#ao,e yO
Qo). y voy (3.12)

= agah_+ [Fp,, pOd

Then using (3.10), (3.11), (3.12), and the Cauchy—Bun-
yakovsky inequality, we obtain fory (1L,

By, yO= —a’|A | + L¥tp, pO

(3.13)
>—a’|\ | +30p, pQ
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and also
Ky, yO= —a’|]\| + [Kp, p0
_azl)‘—l + [(Hp, po0
[(Hpo, po (3.14)
2.242 2
—ef o B
aglA | —e &

We then multiply (3.13) by e/2|)\_|a§ and add to (3.14).
Asaresult we obtain

Ae > O
ey, yre 2|)\|_|a|§ ¥ ega MNR P (3.15)
2c(a’+ [p, p0),
where
- V‘—'f min{ 1, 8/|A|}.
2|AJagte
From (3.15) and the orthogonality condition (X_, pC= 0

we then directly obtain the estimate (3.7).

Inequality (3.7) can be made even stronger and spe-
cifically we have the inequality

|jey! y|:E C1||y||21 y |:| Ll!

where [|-|| denotes the norm in X space:

(3.16)

© 2
]
Iwl| = D[(ui+u§+azui+6zu§+vi+v§)d&g .

To prove (3.16) we note that the definition of
(Hy, yLyields

3K c2[]

iy, yO = j[y3+y4+81 G

K c2 2. m 2. m 2
+ +—(0 +—(0
BJ E}g/z po( £Y1) po( £Yo)

00

FVyy, + Vy2y4}da 2 [ [5(v2 — Y2 (3.17)

—00

m m
+ (V2= o)y + 2 (3:y2)" + 2 (3eys)°
Po Po

3, 3
Vst 4yi}dé

Here and subsequently in the isotropic case we should
write W instead of , and W,. Multiplying both sides
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of (3.7) by 1 — €, where € is fairly small and using
(3.17), we obtain

Ky, y(= ey, y(+ (1—€)cly, yO
ZJ'E[(l—s)c—5s(u1—V2)]yi
J 0

-VAly; (3.18)

+[(1-¢)c—e(l,

Em
+ €M/py(deyy)” + p—owayz)z

(- —} (V3 +Y) [dE

From (3.18) we directly obtain (3.16) with the choice
¢, = min[(1-g)c—5¢e(p, — V),

(1—g)c—g(py— V), (L—g)c+ 3e/4, em/p,].

4. ANALY SIS OF STABILITY

We shall determine soliton orbits, i.e., families of
solutions, which depend on the parameters of the sym-
metry group. In the anisotropic case we shall call the
soliton orbit @, a single-parameter family of all shears
T(s)@,. Similarly, in the isotropic case the soliton orbit
is defined as the two-parameter family T(s)G(¢)@, .
A small perturbation of the soliton may lead to the
appearance of asoliton at adifferent velocity and in the
isotropic case a soliton formed as aresult of aperturba
tion may correspond to a different angle ¢. Thus, it is
quite clear that the physical stability of the solitonswill
be orbital stability where one of the elements of the
orbit is transferred to an element of the same orbit. In
other words, a soliton is called stable if for any €, > 0,
0, > O exists such that if |w(0) — @] < d;, then

sup inf [w(t) —T(S) @[ <e;
t>0sOR

for the slow soliton family (2.5) in the anisotropic case
and

sup inf inf ||W(t) T(G(h) | <e;

t>0sO0R¢ O
for the soliton family (2.6) in the isotropic case. Here
w(t) denotes a continuous solution of the basic equa-
tions (2.2) in time on an arbitrary segment t O [0, T)
with theiinitial value w(0).:

We note that for the groups of shifts T(s) and rota-

tions G(¢) there are optimal shifts s(w) and rotations
¢(w) which minimize the distances from the soliton

1 The existence and uniqueness of the Cauchy problem for (2.2)
occurs in classes of smooth functions. For the present stability
analysis it is sufficient to confine ourselves to continuous func-
tions with respect to time having valuesin X.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 91

IL'ICHEV

orbits to the vector functions w. These shifts and rota-
tions satisfy [15, 17]

r(s(w))w, 9:@,0= 0 4.2
in the anisotropic case and
[T (s(w)) G((W))w, 0g @, 0= 0, 42)

O (s(w) G(dW)w, st 0= 0

in the isotropic case.

Orbital stability of these soliton families occurs if
the Hamiltonian E(w) hasalocal minimum near w = @,
subject to the condition Q(w) = Q(¢,) [17], more accu-
rately if the following inequality is satisfied

E(w) — E(@) = &, T(sw))w — @)%,

(4.3
Qw) = Q(ey)
for the anisotropic case with s(w) from (4.1) and
E(w) — E(®)) = ¢ T(S(W)) GoW)w — @], (4.)

Qw) = Qe

for theisotropic case with s(w), ¢(w) from (4.2) for low
values of the norms on the right-hand sides of (4.3),
(4.4), and c, = const > 0. We shall prove this statement.
We shall subsequently confine ourselves to the isotro-
pic case, in the anisotropic caseall thereasoning issim-
plified because of the absence of additional rotational
symmetry.

Following [17], we shall assume that the family @,
isorbitally unstable. There then exists a series of initial
dataw,(0) and &, > 0 such that

inf inf ||wn(0) -T(9G()p | — O,
sup |nf |nf ||Wn(t) T(9G(d) | = 6,,
t>0sOR¢ O
where w(t) are solutions of (2.2) with the initial data
w,,(0). We select the series of instantst,, when

inf |nf ||Wn('[n) T(G(P)p| = 6,.

sOR¢

Asaresult of the continuity of the conserved function-
alsE and Q, we have

E(wq(ty) = EWy(0)) — E(®y),

Qwy(ty) = Qwy(0)) — Qlay),
We then select the auxiliary series v, such that Q(v,) =
Q(ey) and

(4.5)

n —» 00,

w(t)| = 0.
It then follows from (4.4) that for fairly small o,

0~— E(vy) — E(®) = & T(S(V)) G (Vi) Vo —
= o[V = T(=S(V)) G(=0(Vn)) @] -

lim v, —
n - o
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From thisit follows that

Vo= T(=s(V)) (=9 (Vo)) @] — O,
which contradicts (4.5).

Thus, in order to determine the orbital stability of
these soliton families, it remains for us to establish the
validity of inequalities (4.3) and (4.4) which are
obtained for V2 > p,/2 and V2 > /2, respectively. As
before, we shall confine our analysis to the isotropic
case: inequality (4.3) isaparticular case of (4.4).

We perform the expansion
v = T(sw)GoW)w-@, = a,Q(q) +y, (4.6)
where a, = const and [Q'(,), Y 0. We then have
Qey) = Qw) = QT(s(W))G(dp(w))w)
= Q@) + [ (@), v+ O(IVI")
= Q@) +a (@), Q@)+ O(IvI).

From thisit follows that
a; = O(Ivi").
We then introduce the notation
R(w) = E(w) + VQ(Ww)
and perform the expansion
R(w) = R(T(s(w))G(¢(w))w)
= R(@) + [R(®,), VE+ 5 v, v+ o(vI).

Since R(@,) = 0 and Q(w) = Q(@,), we abtain

E(w) ~E(9)) = 5 0v, v+ o)
= 203y, y+ O(af) + O(ay V) + o(v?])

1
= SOty yow o([Iv[%).

It is easy to see from (4.6) and (4.2) that
,0:¢,0=0, 0, 0:Ap0=0,
i.e,y L, Asaresult of (3.16) we have
E(w) —~ E(@) 2 3clyl? + o(IV?).
Having then noted that
Iyl = v -a:Q(e)]

= v] - [ay/ | Q(@)] = IVl — O(IvI*),
we arrive at (4.4).
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5. DISCUSSION OF RESULTS

In the present paper we have obtained the following
results on the nonlinear dynamic stability of the soliton
families (2.5) and (2.6):

(i) in an anisotropic materia solitons in the slow
family (2.5) are stable for velocities V in the range p,/2
<VZ<y;

(ii) in the absence of anisotropy solitonsin the fam-
ily (2.6) are stable in the velocity range W/2 < V2 < .

The operator # for the fast soliton family in the

anisotropic case has an additional unstable direction )‘(9
which corresponds to perturbations of the zeroth com-

ponent u; of thefast soliton family; we can assume that

these perturbations will destroy the soliton in the fast
family over the entire velocity range of its existence.

Unlike the situation typical of hydromechanics
when the solitons are arranged such that amplitude
growth takes place together with anincreasein velocity
and areduction in soliton “width”, in an e astic medium
we have adecrease in amplitude and increasein soliton
“width” with increasing velocity. This is responsible
for the different behavior of the quantity Q conserved
as a result of the trandational invariance in hydrody-
namics and e asticity theory; in hydrodynamic models
it isanincreasing function of velocity whereasin elas-
ticity theory models it either decreases (see, for exam-
ple [15]) or has different behavior on various velocity
intervals (as in the case considered in the present
study). This factor ensure that the global and local sta-
bilities of the soliton families are equivalent in hydro-
mechanics in the sense that if the elements of a family
from asmall velocity interval are stable, the entire fam-
ily is stable. For the case of an elastic medium consid-
ered in the present study the situation is different: sta-
bility of solitons on these velocity intervals (range of
stability) does not imply stability on additiona inter-
vals. Moreover, it seemsthat solitonsin the slow family
in the anisotropic case for 0 < V2 < p,/2 and solitonsin

the absence of anisotropy for 0 < V2 < /2 will be unsta-
ble. The physical substantiation for this assumption is
that a soliton propagating at lower velocity (and thus
having a larger amplitude) is destroyed by the resis-
tance formed as a result of the elastic response of the
medium. To overcome this resistance the soliton must
have afairly high velocity, in this case avelocity whose
square exceeds ,/2 in the anisotropic case or /2 in
isotropic materials.

The mathematical substantiation of the assumption
that solitons having velocities outside the stability
range are unstableisasfollows. In[17] sufficient insta-
bility conditions were formulated for Hamiltonian sys-
tems of theform (2.2). The only violation of these con-
ditions in this case is the purely formal fact that the
operator .$ is not reversible on the functional space X.
A similar situation occursfor generalized Korteweg—de
Vries equations with higher-order nonlinearity. In [10]

No. 3 2000



634

the difficulty associated with the irreversibility of $ in
proving the instability of solitons of the generalized
Korteweg—de Vries equation was overcome using the
properties of an invariant similar to A in Section 2.2 in
the present study. Strict proof of the instability of soli-
tons in an elastic composite having velocities outside
the stability range will be the subject of forthcoming
investigations.

ACKNOWLEDGMENTS

| am grateful to A.G. Kulikovskii for useful discus-
sions. Thiswork was supported by the Russian Founda-
tion for Basic Research (project no. 99-01-01150).

REFERENCES
1. N. S. Bakhvalov and M. E. Eglit, Tr. Mat. Inst. im.
V.A. Steklova, Akad. Nauk SSSR 192, 5 (1990).

2. T. B. Benjamin, Proc. R. Soc. London, Ser. A 328, 153
(1972).

. J.L.Bona, Proc. R. Soc. London, Ser. A 344, 363 (1975).

D. P. Bennet, R. W. Brown, S. E. Stansfield, et al., Math.
Proc. Cambridge Philos. Soc. 94, 351 (1983).

5. J. Shatah and W. A. Strauss, Commun. Math. Phys. 100,
173 (1985).

6. J. P Albert, J. L. Bona, and D. B. Henry, Physica D
(Amsterdam) 24, 343 (1987).

5w

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 91

IL'ICHEV

7.

8.

9.
10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

J. L. Bonaand R. L. Sachs, Commun. Math. Phys. 118,
15 (1988).

A. II'ichev and A. Semenov, Theor. Comput. Fluid Dyn.
3, 307 (1992).

F. Diasand E. Kuznetsov, Phys. Lett. A 263, 98 (1999).

J. L. Bona, P. E. Souganidis, and W. A. Strauss, Proc. R.
Soc. London, Ser. A 411, 395 (1987).

R. L. Pego and M. I. Weinstein, Commun. Math. Phys.
164, 305 (1994).

E. A. Kuznetsov, A. M. Rubenchik, and V. E. Zakharov,
Phys. Rep. 142, 103 (1986).

R. L. Pego and M. |. Weinstein, Philos. Trans. R. Soc.
London, Ser. A 340, 47 (1992).

A. E. H. Love, A Treatise on the Mathematical Theory of
Elasticity (Dover, New York, 1944).

A. Beliaev and A. II'ichev, Physica D (Amsterdam) 90,
107 (1996).

D. J. Dichmann, J. N. Maddocs, and R. L. Pego, Arch.
Ration. Mech. Anal. 135, 357 (1996).

M. Grillakis, J. Shatah, and W. Strauss, J. Funct. Anal.
74, 160 (1987).

A. G. Kulikovskii and E. I. Sveshnikova, Nonlinear
Waves in Elastic Medium (Moskovs. Litsef, Moscow,
1998).

N. I. Gvozdovskayaand A. G. Kulikovskii, Prikl. Mekh.
Tekh. Fiz. 40, 174 (1999).

Translation was provided by AIP

No. 3 2000



Journal of Experimental and Theoretical Physics, Vol. 91, No. 3, 2000, pp. 635-651.

From Zhurnal Eksperimental’ nor i Teoreticheskor Fiziki, Vol. 118, No. 3, 2000, pp. 730-748.

Original English Text Copyright © 2000 by Chechkin, Gonchar.

MISCELLANEOUS

Linear Relaxation Processes Gover ned
by Fractional Symmetric Kinetic Equations'

A.V. Chechkin and V. Yu. Gonchar
Kharkov Institute for Theoretical Physics, National Science Center Kharkov Institute of Physics and Technol ogy,
Kharkov, 310108 Ukraine
Institute of Sngle Crystals, National Academy of Sciences of Ukraine, Kharkov, 310001 Ukraine
*e-mail: chechkin@ipp.kharkov.ua
*e-mail: achechkin@kipt.kharkov.ua
Received November 4, 1999

Abstract—The fractional symmetric Fokker—Planck and Einstein-Smoluchowski kinetic equations that
describe the evolution of systems influenced by stochastic forces distributed with stable probability laws are
derived. These equations generalize the known kinetic equations of the Brownian motion theory and involve
symmetric fractional derivatives with respect to velocity and space variables. With the help of these equations,
the linear relaxation processes in the force-free case and for the linear oscillator is analytically studied. For a
weakly damped oscillator, akinetic equation for the distribution in slow variablesis obtained. Linear relaxation
processes are a so studied numerically by solving the corresponding Langevin equations with the source given
by a discrete-time approximation to white Levy noise. Numerical and analytical results agree quantitatively. ©

2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The study of the evolution of various systemsunder the
influence of externa stochadtic forces congtitute a large
section of statistical physics. It hasagrest variety of appli-
cationsin physics, chemistry, biology, economy, and soci-
ology (see, 9., [1-3]). The best known problem is the
description of Brownian mation. In the classical formula
tion, Brownian motion manifests itself as an unceasing
chaotic motion of small macroscopic particlesin aliquid
or agas. Thisisexplained by atoms nudging one another
and, hence, reveals the atomic structure of continuous
medium in which the motion occurs.

The achievements of the theory of probability serve
as a mathematical basis for the kinetic theory of
Brownian motion. They are asfollows:

(i) the Central Limit Theorem, which justifies that
the stochastic force acting on a Brownian particle is
Gaussian,

(ii) the theory of Markovian stochastic processes,; an
important assumption used in the kinetic description of
Brownian motion is that the behavior of the particle at a
given instant depends only on the instantaneous val ues of
the physical parameters, but not on their previous history;

(i) studies of stochastic Gaussian processes, and pri-
marily, the work of Bachelier (1900), who was the first
to study a continuous stochastic Gaussian process with
independent increments, and the work of Wiener (1927),
who gave a rigorous mathematical formulation of this
process and studied the properties of its sample paths.

TThis article was submitted by the authors in English.

The basic eguations of the kinetic theory of Brown-
ian motion are the Fokker—Planck equation for the
probability density function (PDF) f(x, v, t) in the
phase space of coordinates and velocities, and the Ein-
stein—Smoluchowski equation for the PDF f (x, t) in real
space. The relaxation in the phase space can occur in
two steps: the first is the “fast” stage, at which relax-
ation over velocities occurs and a Maxwellian PDF is
established, and the second is the “slow” diffusion
stage, at which relaxation in the real (coordinate) space
occurs. If the physical conditionsin the system are such
that the two rel axation stages can be separated, it is pos-
sible to pass from the Fokker—Planck equation to the
Einstein—Smoluchowski equation and describe the sys-
tem at the diffusion stage with a simpler equation. The
transition to the diffusion stage is discussed in more
detail by Chandrasekhar in [4], where a brilliant pre-
sentation of the classical Brownian motion theory is
given, and also in monograph [3], which contains a
modern presentation of the Brownian motion theory
including the motion in nonlinear open systems.

In the second half of the 1980s, the term “Levy
motion” started to become widely used in statistical
physics, in particular, in anomal ous diffusion problems,
where the characteristic displacement of diffusive par-
ticlegrowsastH pu # 1/2 (the case where 4 = 1/2 corre-
spondsto classical Brownian motion). The Levy anom-
alous diffusion appears in different areas of physics,
including turbulence [5], solid and amorphous state
physics [6], chaotic dynamics [7], plasma physics [9],
etc. It isaso worthwhile mentioning nonphysical areas,
e.g., biology and physiology [9], and the theory of

1063-7761/00/9103-0635%20.00 © 2000 MAIK “Nauka/Interperiodica’
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finance [10]. Levy motion can be considered as a gen-
eralization of Brownian motion. The mathematical
foundation of this generaization is provided by
remarkabl e properties of stable probability laws, whose
theory was begun in the works by Levy and Khintchine
[11]. From the limit theorem point of view, the stable
probability laws are a generalization of thewidely used
Gaussian lawv. Namely, the stable laws are the limiting
the probability laws of (properly normalized) sums of
independent identically distributed (i.i.d.) random vari-
ables[12]. Therefore, theselaws (similarly to the Gaus-
sian one) occur when the evolution of aphysical system
or theresult of an experiment is determined by a sum of
a large number of identical independent random fac-
tors. An important distinction of stable PDFs is a
power-law tail decreasing as |x[*~¢, x —» oo, where a
isthe Levy index, 0 < a < 2. Hence, the PDF moments
of the order g = a diverge.

The above-mentioned properties of stable PDFs
allow one to obtain a simple intuitive basis for anoma-
lous diffusion in the framework of the model of inde-
pendent random “jumps’ [6]. However, in order to con-
struct a consistent theory of Levy motion, it is neces-
sary to obtain kinetic equations that generalize those of
Brownian motion, namely, the Fokker—Planck and the
Einstein—Smoluchowski equations. It isclear from very
simple arguments that these equations must contain
fractional space and/or time derivatives. During the last
two decades, several monographs solely devoted to the
theory of fractional calculus have appeared, see, e.g.,
[13], and an extensive treatment of fractional-order dif-
ferential equations applied to heat and mass transfer
has been given [14]. Different forms of diffusion (for
example, equations with fractional derivatives) were
proposed [15-20]. These equations were used, in par-
ticular, in the description of anomalous diffusion on
random fractals [21, 22] and in chaotic Hamiltonian
systems, for which the orders of fractional space and
time derivatives are determined by delicate properties
of the phase space [7, 23]. We aso refer to [24], where
the general description of the fractional relaxation-
oscillation and fractional diffusion-wave phenomena
was provided using a simple adaptation of a mathemat-
ical approach to the fractional calculus.

Our paper deals with fractional generalizations of
the classica Fokker—Planck and Einstein—Smolu-
chowski equations describing the respective relaxation
in the phase space and in real space [44]. Wefollow the
classical approach [4] in deriving kinetic equations for
Brownian motion and also the approach of [25], where,
asfar asweknow, thefractional kinetic equation for the
phase space PDF was proposed for the first time.
Throughout the paper, we restrict ourselves to a one-
dimensional coordinate space and two-dimensiona
(coordinate plus velocity) phase space. In addition, we
restrict ourselves to symmetric fractional kinetic equa-
tions, that is, those involving symmetric fractional
derivatives (see below).
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First, we derive kinetic equations with symmetric
fractional derivatives, which generalize the Fokker—
Planck and Einstein-Smoluchowski equations in the
case of Levy mation. These equations are called the
fractional symmetric Fokker—Planck equation (FSFPE)
and the fractional symmetric Einstein—Smoluchowski
equation (FSESE), respectively. Second, we use these
equations in studying classical problems of linear
relaxation, namely, relaxation in a force-free case and
relaxation of alinear Levy oscillator.

It isworthwhile to note that the force-free relaxation
in aspatially homogeneous case and the relaxation of a
linear oscillator were first studied in [26]. In this paper,
the equationsfor characteristic functions were obtained
by solving the corresponding Langevin equations and
by subsequently averaging the Liouville equation over
the phase space density. The linear oscillator was also
considered in [27] with the help of afractional kinetic
equation for the diffusion stage of relaxation. Using the
FSFPE and FSESE, we study in detail both the “fast”
and the“slow” stages of alinear relaxation and demon-
strate atransition from thefirst level of description (the
use of FSFPE) to the second one (the use of FSESE).

We next consider two limiting cases for the oscilla-
tor, namely, an overdamped and a weakly damped
oscillator. Both these cases are very important in study-
ing the Levy motion in nonlinear open systems. We
propose a new kinetic equation for the weakly damped
linear oscillator and study its solutions. We aso solve
numerically the Langevin equations that correspond to
fractional kinetic equations. We demonstrate numerical
resultsfor thelinear relaxation problemsthat are solved
analytically, and show a close agreement between the
kinetic theory results and the numerical modeling.

The paper is organized as follows. In Section 2, we
derive fractional generalizations of the Fokker—Planck
and Einstein-Smoluchowski eguations following the
approaches of [4] and [25]. In Section 3, weinvestigate
relaxation in real space for force-free Levy motion and
for the Levy linear oscillator. In Section 4, we investi-
gate both relaxation problems in the phase space. In
Section 5, we consider relaxation for the overdamped
and weakly damped limits of the Levy oscillator. Con-
clusions and a discussion are presented in Section 6.

2. FRACTIONAL FOKKER-PLANCK
AND FRACTIONAL
EINSTEIN-SMOLUCHOWSKI EQUATIONS

The derivation of the Fokker—Planck equation is
usually based on the finiteness assumption for the sec-
ond moment of the PDF. Since this assumption breaks
down for stable PDFs, we find that the classical
approach used by Chandrasekhar [4] can be adopted for
a derivation not using the finiteness of the second
moment. A similar treatment was undertaken in [28],
where the discussion of [29] was adopted for the pur-
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pose of obtaining a kinetic equation in coordinate
space.

2.1. Fractional Fokker—Planck Equation

Similar to the Brownian motion theory, the initia
equations in our approach are as follows:

(D) theintegral equation for the PDF f (X, v, t) of the
Markovian stochastic process in the phase space,

f(x, v,t+At) = J’J’d(Ax)d(Av) 2.1)
x f(x=Ax, v —Av, )W (Xx—AX, v —Av; Ax, Av, At),

where W(x, v; Ax, Av, At) isthe transition probability,
that is, the probability for the coordinate x to acquire
the increment Ax and for the velocity v the increment
Av during the time interval At;

(2) the Langevin eguations

dx _ dv
at Y

where v isthe friction coefficient (which is assumed to
be independent of v), F is the regular external force,
and A(t) is the fluctuation component of the external
force.

Following traditional assumptions in the theory of
Brownian motion [4], one then obtains the expressions
for the coordinate and velocity increments during the
time interval At that is larger than the characteristic
timeintervals of A(t) but smaller than thetimeintervals
during which physical parameters change appreciably:

Ax = vAt, Av = —(vv —F)At+ B(At). (2.3)
Here

= —vv +F+ A1), (2.2

t+At

BAY = [ A(t)dt

is anonstationary stochastic process that is assumed to
be a homogeneous Gaussian process with independent
increments possessing a PDF

L opl (BT
JarDat  H o 4DAt U

The Central Limit Theorem serves as a mathemati-
cal justification of this assumption. In accordance with
the above, we generalize the Chandrasekhar approach
by generalizing the Central Limit Theoremtoi.i.d. vari-
ables with infinite variances. We recall that Levy and
Khintchine [11] discovered a class of stable probability
laws. These arelimiting lawsfor the probability laws of
normalized sumsof i.i.d. random variables. Each stable
law with a characteristic Levy index (0 < q < 2) pos-
sessesfinite moments of theordersqg, 0 < g<a, but infi-
nite moments of higher orders. The Gaussian law is
also astable onewith the characteristicindex a = 2, and
it possesses moments of al orders. Returning to

w(B(At)) = (2.4
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Eq. (2.4), we note that in the theory of stochastic pro-
cesses, the corresponding generalizations of ahomoge-
neous Gaussian process B(t) with independent incre-
ments are stable Levy processes L(t) with the character-
istic function (werestrict ourselvesto symmetric stable
laws) [30]

W (k, At) = 0= exp(-DI|K/*At), (2.5)

where D > 0 and (DAt)Y is called the scale parameter.
At a = 2, one recovers the Gaussian process B(t). The
above statements justify the expediency of the general-
ization B(At) — L(At) in Egs. (2.3).

With Egs. (2.3) and (2.5), the transition probability
inEq. (2.1)is

W(x, v; Ax, Av) = Y(x, v; Av)d(AX— vAL),
where & is the Dirac delta-function and

w(x v,Av) = I%—If[ 26

x exp[—ik(Av + vvAt—FAt) — DIk “At]

isthe transition probability in the velocity space.
Weinsert Eq. (2.6) in Eq. (2.1), expand the left- and
the right-hand sides into seriesin At, and let At — O.
Asaresult, we obtain
of of _

+V

5t Vax " —J‘d(Av)f(x, v—-Av,t)

o 2.7)
x J'%[exp(—ikAv)[—ikF +ikv(v —Av) + D|K°].

We now turn to the physical space by making the
inverse Fourier transform with respect to the velocity
on the right-hand side of Eq. (2.7). We treat each term
in the square brackets separately. The first and the sec-
ond terms, being “classical,” are transformed trivialy,
yielding —F(x, t)af/ov and va(vf)/dv, respectively. The
last term can be written as

00d —inwdk —ikv
_D:[EKTG Jﬁe “

where (K, k, t) isthe characteristic function.

We use the symmetric fractional derivative of an
arbitrary order a > 0O that can be defined, for a “suffi-
ciently well-behaved” function @(v), v O R, as the
pseudo-differential operator characterized by its Fou-
rier representation,

da
dlv|®

On the left-hand side, we adopt the notation introduced
in[19].

IK*F(x, k, 1), (2.8)

a>0.

®v) =K @(K),

v,kOR,
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To treat this kind of fractional derivatives properly,
we recall the definition of the left and right Liouville
derivatives on the infinite axis [13]

a 1 ®&)dé

Degv) = r(1-— O‘)dVI(x—E)
2.9)

QDS([(V) = 1 (p(E.)dE

ri- “)dVI(E _X)

where0O<a <1 Fora =1,

(ED)" d” a1y, 25y, (2.10)
0

Dig(v) =

F(n—a)gy"

=[a] + 1, where the sguare brackets denote the inte-
ger part. Derivatives (2.9)<2.10) are characterized by
their Fourier representation as

DLe(v) = (FiK) 9K,

az=0,
where

rLiar

(Fik)* = |k|°‘expD+—sgnkD

Thus, the symmetric fractional space derivative can be
written as

div[* 2.11)
_ 1 a a
~ " 2cos(ma/2) [0 @v) + D-@v)],

wherea #1, 3, ....

We now return to Eq. (2.7) and write the kinetic
equation for the PDF f (X, v, t) in the phase space as

of . of  _of _ 9 9"
StV tFa a—v(vf)+Da|V|uf, (2.12)

where the last term is defined through Egs. (2.9)-
(2.11). Thisisafractiona Fokker—Planck equation for
Levy motion. For a = 2, this is the standard Fokker—
Planck equation for Brownian motion.

We note that Eq. (2.12) becomes meaningless when
o is an odd integer. That is why the particular case
o = 1 must betreated separately in our range of interest
0 < a < 2. However, if one uses the Fourier transform
over velocity in solving a particular problem, this case
isnot singled out.

2.2. Fractional Einstein—Smoluchowski Equation

Along with the relaxation parameter /v, the
description of Brownian motion involves another relax-
ation parameter that characterizes diffusion in read
space. If the characteristic time of this processis much
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greater than 1/v, it is possible to pass from the Fokker—
Planck equation for the PDF f (X, v, t) to the Einstein—
Smoluchowski equation for asimpler PDF f (X, t).

As in deriving the fractional symmetric Einstein—
Smoluchowski equation in the previous subsection, we
follow the reasoning used in the theory of Brownian
motion.

Instead of EQ. (2.1), anintegral equation in the coor-
dinate space serves as an initial one,

f(x, t+At)
= J‘d(Ax) f(x—Ax, )P(x —Ax; Ax, At),

where i(x; Ax, At) is the transition probability, that is,
the probability for the coordinate x to square the incre-
ment Ax during the interval At.

Inthekinetic theory of Brownian motion, thetransition
to the Einstein-Smoluchowski equation corresponds to
neglecting theterm dv/dt in Langevin Eq. (2.2) [2]. Thus,
instead of two equations, we have a single Langevin
equation,

dx _ F 1

a - v A

and instead of Egs. (2.3), we obtain
Ax = FAt/v + L(At)/v,

where L(t) is a stable process with a symmetric PDF
and characteristic function (2.5), as before. We now
obtain the fractional symmetric Einstein—-Smolu-
chowski equation

of _ _9rFn, D 0"
ot~ oxv O v 6|x|
In what follows, we give examples of relaxation pro-

cesses governed by Egs. (2.12) and (2.14). In all cases,
in order to obtain the solutions, we passto the characteris-

tic functions ?(K, t) with respect to the coordinate of the

FSESE and to the characteristic function f(K, k, t) with
respect to the coordinate and the vel ocity of the FSFPE.

(2.13)

f. (2.14)

3. SOLUTIONS
TO THE FRACTIONAL SYMMETRIC
EINSTEIN-SMOLUCHOWSKI| EQUATION

In this section, we consider two simple exampl es of
relaxation processes governed by FSESE, namely,
relaxation in a force-free case and relaxation of the
Levy linear oscillator.

3.1. Force-Free Relaxation

Setting F = 0in Eq. (2.14), we seek the solution with
theinitial condition

f(x,t=0) = &(X—Xo)-
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The characteristic function of the solution is

- 0
fD) = epOrxo-2tE (@)
O v O

In the force-free case, the random process x(t) is there-
fore anon-stationary Levy stable process with indepen-
dent increments and with the scale parameter (Dt)Yo/v.
Inthereal space, the Levy stable PDFs are expressed in
terms of the Fox’ H functions [31]. This representation
of all stable PDFs was achieved in [32]. Mathematical
details on H functions are presented in [33, 34]. In the
present paper, we do not consider the real space repre-
sentation for an arbitrary o, however.

Because the variance and higher moments of integer
orders diverge for stable PDFs, the moments of frac-
tional orders can be used as statistical means character-
izing the properties of these processes [26, 35]. To
guarantee the reality, the moments must be defined for
the modulus of the stochastic variable. For the force-
free relaxation, the fractional-order moments are there-
fore given by

0

M(t; g, ) = IdXIXI“f(x, t)

(3.2)
_ %K(Dt)”“/v)q(:(q; a), 0<g<a
[, g=aq,
for0<a <2, and by
Dt q/2
Mt 6.2) = B o 2 (33)

for a = 2 and an arbitrary g, where
C ) — j a 9% : a
C(q; a) = Idx2|x2| Iﬁexp(—|x1x2—|x1| ).

The coefficient C(q; a) can be evaluated using the gen-
eralized function theory [26] as

2
Ca; ) = s @+ ard-gg

O<g<a.

(3.4)

Equations (3.2)«3.4) have a direct physical conse-
guence for the description of anomalous diffusion. For
ordinary Brownian motion, the characteristic displace-
ment ox(t) of a particle can be written through the sec-
ond moment as

3x(t) = MYAt; 2,2) Ot

One can note from Egs. (3.3) that for the normal diffu-
sion, M ij (t; g, 2) O tY2at any g, and therefore, any order
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of the moment can serve as ameasure of the normal dif-
fusion rate,

3x(t) = My (t; q,2) Ot

if oneisinterested in the time dependence of the char-
acteristic displacement, but not in the value of the pref-
actor. We remind the reader that the time dependence
alone, without the prefactor, usually serves as an indi-
cator of normal or anomalous diffusion [6]. In analogy
with the Brownian case, it follows from Egs. (3.2) that

the quantity MY (t; g, a) for 0<a <2 and any g < o
can serve as a measure of the anomalous diffusion rate,

dx(t) = MY%t; g, 0) OtY", O0<qg<a<2 (35

This describes a fast anomalous diffusion, or superdiffu-
sion, asthe second moment M,(t; 2, a) diverges. We note
that in order to extract the scaling form for the second
moment, the “waker” was enclosed in an “imaginary
growing box” in [27]. Thisformal procedure leads to the
diffusion scaling t2¢ for the variance, which is consistent
with Eq. (3.5), and it wasimplemented numerically. How-
ever, it seems that a more physically relevant procedure
mugt take the finite velocity of a diffusive particle into
account. This problem is beyond the scope of our paper.
We only mention an extensive recent discussion on this
interesting and important theme [36, 37].

The numerical simulation results for the Langevin
eguation (2.13) areshownin Figs. 1 and 2. Hereand in
what follows, the stochastic source A(t) is represented
in numerical simulation as a discrete approximation of
a“white Levy noise”, that is, as a stationary sequence of
independent identically distributed variables having a
symmetric stable PDF with the Levy index o and with the
scale parameter equal to 1. To obtain the sequence, we
use the generator based on the inversion method [38]
and the Gnedenko limit theorem [12]. This generator
was described in our recent papers [39] and [40] in
more detail. The time interval between the terms of the
sequence is equa to unity. In the force-free problem,
we estimate the moments M(t; g, o) numerically by
averaging realizations of x(t). The total number of real-
izationsis equal to 500, each of alength of 512.

InFig. 1, we show M,(t; g, 1) versust at a different
gin alog-log scale. For g < a = 1, the dependence is
well fitted by the straight line whose slope allows us to
define the diffusion exponent. For g = a, the theoretical
value of the moment isinfinite, and in numerical simu-
lation the moment strongly fluctuates, and it is there-
fore impossible to obtain the diffusion exponent.

In Fig. 2, we show the exponent p involved in the
relation M,(t; g, a) O t* versus the Levy index a of the
discrete approximation of the white noise. The order q
of the moment is equal to 0.25, which is smaller than
the smallest value a = 1 used in numerical simulation.
Thetheoretical dependence 0.25/a is shown by the dot-
ted line. The values of p obtained in simulations are
shown by black dots. Close agreement between the the-
ory and numerical simulationsis obvious.
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Fig. 1. Force-free relaxation in the FSESE framework. The
moment M, versust at different values of the moment expo-
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Fig. 2. Force-free relaxation in the FSESE framework.
The exponent p of the time dependence of the moment

M,(t; g, a) ~t" versusthe Levy index o. The moment order

is g = 0.25. The theoretical dependence 0.25/a is depicted
by the dotted line. Numerical results are depicted by black
dots.

3.2. Relaxation of the Linear Levy Oscillator

Setting F = —w?X in Eq. (2.14), we seek the solution
with the initial condition

f(X, t=0) = (X —X).
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The characteristic function of the solution is

Tk, 1) = exp{ikxe™®™"" = DoV},

where

(3.6)

2 a—l(

Dosc(t) = D 1- e—awzt/v) .
aw v

This result was recently obtained in [27].

It can be seen that the relaxation of the oscillator,
contrary to the force-free case, isnot aLevy stable pro-
cess with independent increments. It can be named a
“stable-like” or a “Levy-like” process, because the
exponent of the characteristic function involves|k|*, but
the scale parameter for the oscillator, (D(t))Y?, does not

increase ast¥®, which isamanifestation of the Levy stable
process with independent increments, see Eq. (2.5). The
process Xx(t) behaves as a Levy stable one only asymp-
totically for short times,

t < 1, = v/iow?.

On the other hand, for t > T1,, the process x(t)
becomes asymptotically stationary with a stable PDF
that does not depend ont and with the Levy index a and
the scale parameter

va _ oy - D
Dose(t = ) = g0

(3.7)
We also note that for the Brownian oscillator only,
the stationary solution has the Boltzmann form

2 2
v Uvw 0
fabi a0 =2) = s ePop X 0

In what follows, we return to the problems related to
stationary solutions of fractional kinetic equations.

It is convenient to define fractional moments after
subtracting from a stochastic quantity x its regular part
containing the initial condition, that is, X,exp(—w?t/v).
Thus, the moments are

M(t; g, a) = <|x—x0exp(—w2t/v)|£>
= DB C(a; ),

where C(q; a) isthe same asin (3.4).

Numerical simulations of the linear oscillator relax-
ation involve solution of Langevin equation (2.13) with
the external force F = —w?x and the calculation of the gth
order moments. In Fig. 3, we present the results
obtained for various values of w by averaging over 300
realizations, each of length 4096. The Levy index a is
equal to 1, and the order of themoment is0.25. The val-
ues obtained in the numerical simulation are depicted
by black dots, whereas the solid line indicates the val-
ues estimated from Eq. (3.9). The vertical mark indi-
cates the value t1,, after which the random process x(t)

(3.8)

(3.9)
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becomes stationary. For t > 1,, the moment tends to a

constant value that can be estimated from Egs. (3.7)
and (3.9). Numerical results demonstrate close agree-
ment with theoretical estimates on both the non-station-
ary and stationary stages of the evolution.

4. SOLUTIONS TO THE FRACTIONAL
SYMMETRIC FOKKER-PLANCK EQUATION

In this section, asin the previous one, we consider
the same examples of relaxation processes, but gov-
erned by FSFPE.

4.1. Force-Free Relaxation

Setting F = 0in EqQ. (2.12), we seek the solution of
FSFPE with theinitial condition

f(x, v,t =0) = &(X—Xp)0(V —Vy).

For clarity, it is expedient to consider the space-homo-
geneous relaxation first.

4.1.1. Space-homogeneous force-free relaxation.
The solution for the characteristic function with respect
tothevelocity is

f(kt) = exp{ikve™ - KDY ®)},

where

(4.1)

DY () = (D/av)(1-e“")

and “ff " means “force-free.” The space homogeneous
relaxation in a force-free case was first considered in
[26]. The relaxation process is not a Levy stable pro-
cess with independent increments, but, following the
terminology used in the previous section, it can be
called astable-like, or Levy-like process, sinceits char-
acteristic function (4.1) involves [k|* in the exponent,

but D(ﬁv )(t) is not alinear function of t, and hence, the

scale parameter (DY(H))"" does not scale as tve.

A stable process with independent increments arises
for short times, t < 1, = L/av, when the exponent in
(4.1) can be expanded in a power series. With the accu-
racy up to linear terms in t inclusively, we obtain the
Levy stable process. On the other hand, for t > 1, the
stochastic process v(t) becomes asymptotically station-
ary with a stable PDF that is independent of t and with
the Levy index a and the scale parameter

Wy = Ve _ oD
(Di'(t=0)) = Chvd -

Here it seems expedient to discuss the problems
related to stationary solutions of fractional Kinetic
equations. In the classical theory of Brownian motion,
the equilibrium Maxwell PDF over velocity is reached
ast — oo, It is characterized by the temperature T of

(4.2)
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Fig. 3. Relaxation of alinear oscillator in the FSESE frame-
work. The qth order coordinate moment versus time in a
twice logarithmic scale. The numerical simulation results
are depicted by black dots, the moment obtained from the
FSESE is shown by the solid line. Vertical marks indicate
the coordinate relaxation time.

the surrounding medium. There exists a relation
between the parameter D of the PDF of the random
source in the Langevin equations, see Eg. (2.2), and the
friction coefficient v such that

D = vkgT/m,
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where mis the mass of the Brownian particle and kg is
the Boltzmann congtant. The temperature T is a measure
of the mean kinetic energy of the Brownian particle,

mO/’0_ keT

2 2

Equation (4.3) is an example of fluctuation-dissipa
tion relations. In this case, the source A(t) in the Lan-
gevin equation is called the source of internal fluctua-
tions. Relation (4.3) may not be satisfied, as it takes
place, e.g., in auto-oscillation systems. One then says
that A(t) is a source of external (relative to the system)
fluctuationsin Eq. (2.2). However, the Maxwel|-Boltz-
mann exponential form of stationary solutions is pre-
served [2]. Asfor the Levy motion, the fluctuation-dis-
sipation relations cannot be satisfied, because of the
infinite squared velocity V2= « for 0 < a < 2. There-
fore, we can only speak of A(t) asof asource of external
fluctuations. Moreover, it follows from the example
considered in this subsection and from the linear oscil-
lator exampl e considered above that the stationary solu-
tions do not possess the Maxwell-Boltzmann form but
rather a more genera form of stable distributions. At
present, there is no theory of equilibrium state based on
stable PDFs. Perhaps, it can be constructed with the
help of Tsdlis' statistics and his generalizations, see
recent review [41] and references therein.

We also write the gth order fractional moment of the
velocity,

LE,.0= 4.3

M, (t; g a) = (v —v,e™%)
= (DY) " c(q; o),

where DY/(t) is determined above. This formula is

compared with the results of numerical simulations at
the end of Subsection 4.1.

4.1.2. Space-inhomogeneous force-free relax-
ation. Weturn to theforce-freerelaxation in the genera
case, which is governed by Eq. (2.12) with F = 0. The

solution for the characteristic function f(k, k, t) canbe
obtained by the method of characteristics. For Brown-
ian motion, where a = 2, one can make an analytical
Fourier transformation [4]. For an arbitrary a, 0 < a < 2,
the analysis becomes rather complicated. However,
since we aready have some information about the
velocity relaxation, we study the evolution of asimpler
function,

f(X t|Xq Vo) = J’dvf(x, vV, t[Xo Vo),
whose characteristic function is

?(K, K=0,1t|Xp Vo)

(4.4)

(4.5)

= eXp%KX0+IK—(l Y (X)(t)|K|
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where

DY = = IdT(l e’

The random coordinate is a stable-like process. For
prolonged timest > T, we obtain

DY(t—» 00) —» =

(4.6)
and the characteristic function (4.5) coincides with the
solution of the Einstein—-Smoluchowski eguation in the
force-free case. In the prolonged time limit, therefore,
the random process x(t) becomes an a-stable process
with independent increments and with the Levy index
a and the scale parameter (Dt)Y°/v. One can see that
the space-inhomogeneous relaxation occurs in two
stages, namely, the “fast” stage, at which a stationary
stable velocity PDF is established after the time period
T,, and the“dow” diffusion stage, whose characteristic
relaxation time 1, can be defined as

T,=(vL)"/D,

where L is an externa scale of the system. For suffi-
ciently large systems, 1, > 1, .

For the coordinate, we also write the gth order frac-
tional moment that is estimated in the numerical simu-
lations given in what follows,

3 4.7
C(q; a).

M,(t; g; o) = <
= (D)

Numerical ssimulation of the force-free relaxation
process described by FSFPE involves solving Langevin
equations (2.2) with F = 0 and estimating the moments
M,(t; g, a) and M,(t; g, a). The results are shown in
Figs. 4, 5.

Figure 4 has an illustrative purpose. It shows typical
velocity trajectories (at the left) and coordinate trajec-
tories (at theright) for various values of the Levy index.
We set v = 0.03 and, thus, the velocity relaxation time
T, isequal to 20 for a = 1.7, 26 for a = 1.3, and 33 for
a = 1.0, respectively. In most of the realizations pre-
sented here, the process v(t) is stationary. Large outli-
ers that are clearly seen in the velocity realizations
appear to be due to the power law asymptotic behavior
of the stable PDFs of the velacity. With the Levy index
decreasing (from top to bottom), the asymptotic behav-
ior becomes flatter, leading to the growth of the outlier
amplitudes. Large outliers of the velocity, in their turn,
lead to large jumps in the trajectories x(t), that is, the
Levy flights, seeillustrations on the right.

In Fig. 5, we depict the velocity moments M, (at the
left) and coordinate moments M, (at the right) versus
timeat different values of thefriction coefficient v. The

X — xo——(l— e’

g/a
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Fig. 4. Force-free relaxation in the FSFPE framework. The typical trajectories of the velocity (at the left) and of the coordinates (at
the right) for various values of the Levy index a. The friction coefficient v is 0.03.

moments are obtained by averaging over 50 rediza
tions, each of length 4096. The moment exponent q is
equal to 0.25 for the velocity and of the coordinate, the
Levy index is equal to 1.3. The moments estimated by
numerically solving the Langevin equations are shown
by black dots, whereas the moments estimated with
Egs. (5.5) and (4.7) are shown by solid lines. The verti-
cal mark indicates the relaxation time t,,. At the inter-
vals greater than T, the random process v(t) becomes
stationary and the velocity moment tends to the con-
stant value D/av. At the same time, it follows from the
right-hand figures that the process x(t) remains non-sta-
tionary, and the moment of the coordinatetendsto alin-
ear (in a twice logarithmic scale) asymptotic regime,
which has a slope g/a and is shown by the dotted line
in the right-hand figures. From Fig. 5, we can make
conclusions about the agreement between the theoreti-
cal results obtained for the force-free relaxation by
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solving FSFPE and the results obtained by numerically
solving the Langevin equations.

4.2. Relaxation of the Linear Levy Oscillator

Setting F = —w?x in Eq. (2.12), we seek the solu-
tion of FSFPE with the initial conditionf(x, v,t=0) =
(X = X)3(V — Vo).

Making the Fourier transform and using the method
of characteristics, we obtain the characteristic function

~ _ . t
f(k, k t) = exp%oozxoe Vt/2[—%|—(smh\—)—l—

+

K . Vlt VltD
h— + —
Vlwzgism > v, cosh > D}

Vol. 91 No. 3 2000
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Fig. 5. Force-free relaxation in the FSFPE framework. The velocity moments (at the left) and the coordinate moments (at the right)
versustime in atwice logarithmic scale. Black dots indicate the numerical simulation results for the Langevin equations, the solid
line indicates the moments obtained from the FSFPE. The moment order is0.25. TheLevy index a is 1.3. Vertical marks show the
velocity relaxation time t,, and the time 5t,,. The dotted lines in the right-hand figures indicate the theoretical values g/a of the

straight-line asymptotic regime (in alog-log scal€) for the moment of the coordinate.

o w2l 2K o Vgl «0
+iv,€e [—smh— (4.8) 2K ;0 Vil Vit v Vil
vy 2 x VlSInh > +k%osh > Vlsm 5 E
t
= (v2— 12 Thi assion i i 2_
—Vh%sinh\%t —vlcosh\%ltg} B DJ’dTe_u‘”/Z where v, = (V2 —40¥)Y2. This expression is valid for v
1 0 402 > 0. If v2—4u? < 0, we introduce w, = /o’ —v?/4
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and make the following changes:
cosh(v,t/2) —» cos(w;t),
sinh(v,t/2)/v; — sin(w,t)/2w,,
sinh(v,t)/v; — sin(2w,t)/2w;.
In the aperiodic case, v = 4uY, evidently,
cosh(v,t/2) —= 1, sinh(v,t/2)/v, —t/2,
snh(v,t)/v, —t.

Setting o = 2 and using the first and the second
derivatives of the characteristic functionat k =k =0, we
can obtain the means and the variances of the velocity
and coordinates for the Brownian oscillator. These for-
mulas are given in [4]. The expressions for the means
arealso valid for al a greater than unity.

We now turn to more complicated fractiona
moments,

M,(q) = Ov|'0= (D))" C(a; a), (4.9)
M (q) = OX0= (D))" C(q; a),
where
t
ey — Javt Vil v \i“
Dye(t) = DJ'drexp aco > v h2 ,

DY) = jdr epHH

[ D’lDex

o Vi)’
Po5 0

p|:| 2[',

and C(q; a) isthe same as in previous sections. Equa-
tions (4.9) are compared with the results of numerical
simulations at the end of Section 5.

Equation (4.8), in principle, allows one to study the
stationary solution, which is defined by

de
fux V) = [ 5

] (4.10)
x [ X eavp(cinx—ikv) Fa(k, K)
Iz_’_[ 1 i)
where
falk, K) = exp[i—DIdT g2
; 0 Valg V Y1l
0o g+ k[costh o v. th D}‘ E
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A simple analytic expression can be obtained for the
stationary solution in the case where a = 2 only. How-
ever, Eq. (4.10) alows one to derive some conclusions
for smpler stationary PDFs, namely,

f(X) = J’dvfst(x v) = IZ e "k, k= 0)

and

00

falv) = [oxfalxv) = fg—fTe-i”%s«K = 0,K).

Both stationary PDFs are stable with the Levy index o
and with the scale parameters expressed as integrals
over 1, see EqQ. (4.9).

Although the linear oscillator, as we see, admits an
exact solution, the general formulas are not easy to ana-
lyze andytically. Therefore, it is indtructive to consider
two limiting cases, namely, an overdamped and a weakly
damped oscillator. Both cases are aso very important in
problems related to the nonlinear oscillator.

5. LIMIT CASES OF THE LEVY OSCILLATOR
5.1. The Overdamped Levy Oscillator, w/v <1

We consider the relaxation of the moments for an
overdamped oscillator. We first turn to the velocity
relaxation. It follows from Eq. (4.9) that we can restrict
ourselves by the zero-order approximation in w/v. We

then obtain D{(t) and 1, that obviously coincide with

(")(t) and 1, or the force-free case. The conclusionis

that the velocity relaxation for the overdamped oscilla-
tor intheleading order inthe small parameter w/v isthe
same as in the force-free case.

We next consider space relaxation, which differs
from the force-free case. We obtain from Eq.(4.9) inthe
first order in w/v,

DY) = J'dT( e gy, (5.1)
It followsfrom Eq. (5.1) that for t > 1, = /av, the sec-

ond term in the brackets gives anegligibly small contri-
bution, and therefore,

%_1(1 _ e—awzrlv)’ (52)
awv

DYt > 1,) =

which coincides with the result obtained in the FSESE
framework. Thus, we conclude that at time intervals
greater than the vel ocity relaxation T,,, the overdamped
oscillator can be described with the help of a simpler
kinetic eguation, namely, the FSESE. For the over-
damped oscillator, the relaxation process occurs in two
stages: the fast vel ocity relaxation stage, at which asta-
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tionary stable velocity PDF is established during the
timeinterval 1, and the dow diffusion stage, at which
the stable PDF is established in real space during the
timeinterva 1, = v/ow?.

5.2. The Weakly Damped Levy Oscillator, w/'v > 1
In this case, the theory of the Brownian oscillator
provides us with the method of simplifying the kinetic
description [2]. It is based on the method of dowly
varying amplitudes, or the van-der-Pol method, which
isfrequently used, e.g., inradiophysics [42, 43]. In this
approach, the solution of the Langevin equations

dx _ dv
a7t
is sought in the form

= —WX—VV +A(t) (53

x = Xcos(ot) +£sin(oot),

v = vcos(wt)—wxsin(wt),

where the amplitudes X and v are slowly varying dur-
ing the period 217w. The evolution equation for the PDF
f(x, v, t)isgiven by

of v6~

3 2ax( f)+ (Vf) 6
54
;(6~f + 0 f
X alw®
where
Dy = D/(2w)", D, = D/2%

The detailed derivation of Eq. (5.4) is presented in the
Appendix and is analogous to that of FSFPE. If, as
usual, theinitial conditionis

f(X, v,t =0) = 3(X—=x)d(V —V,),
the solution for the characteristic function is

VUZ —Vt/2

f(k, k t) = exp%Kxoe +ikvge
0

(5.5)

—uvt/2 —otvt/2)

X|K| (1- Vlkl (1-

||

We also obtain the fractional moments
My(t; g, a) = (DY) C(g; o),

Ms(t; g, a) = (DS%H)""C(a; a),
where

g/a

v (5.6)

2D,
av

Dbg = 5y (1)
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2Dq ~
Vx(l _e avt/Z).

x _
Dosc -

It follows from the last equations that unlike in the case
of the overdamped Levy oscillator, the coordinate and
the velocity of the weakly damped oscillator possess
egual relaxation times,

T, =T, =71 = 2/av.
For the weakly damped oscillator, it istherefore impos-
sible to divide the relaxation process into the fast and

slow stages. At timeintervalsgreater than t, therandom
processes X(t) and v (t) become stationary with stable

PDFs. The characteristic function of the stationary state
is determined from Eg. (5.5) as

n 2Dy

2D;
exp- —IK|" - =K

falk, k) =

and the PDF retains the Maxwell-Boltzmann form for
a =2only.

Numerical simulations of the linear oscillator relax-

ation involve solving Langevin equations (2.2) with the

external force F = —w?x and subsequently calculating

the velocity and coordinate moments. The results are
shown in Figs. 6-8.

Figure 6 has an illustrative character. It shows the
typical trgjectories of the velocity (at thetop) and of the
coordinate (at the-bottom) for the overdamped oscilla-
tor (at the left) and for the weakly damped oscillator (at
the right), respectively. The frequency value is equal to
0.003 and 0.3 for the overdamped and weakly damped
oscillators, respectively. The friction coefficient is
egual to 0.03 and the Levy index is 1.3. The trgjectories
shown in the figures have a single large outlier. This
allows us to visually demonstrate the difference in the
behavior of the two kinds of oscillators: the relaxation
process for the overdamped oscillator (at the left)
resembles the force-free relaxation and isradicaly dif-
ferent from the rapidly oscillating behavior of the
velocity and coordinates of the weakly damped oscilla-
tor (at the right).

In Fig. 7, we show the velocity moments M, (at the
top) and coordinate moments M, (at the bottom) versus
t for the overdamped oscillator (at the left) and for the
weakly damped oscillator (at the right), respectively.
The oscillation frequencies w are equal to 0.01 and 0.1
for the overdamped and the weakly damped oscillators,
respectively, the friction coefficient is 0.03. The order
of the moment is 0.25 and the Levy index is 1.3. The
moments obtained by numerical simulation are shown
by black dots, whereas the theoretical values, see
Eqg. (4.9), are shown by a solid line. The numerical val-
ues are obtained by averaging over 200 realizations,
each of length 1024. The vertical marks indicate the
velocity relaxation time 1, = L/av and the coordinate

relaxation time 1, = v/aw? for the overdamped oscilla-
tor, and also the relaxation time 1, = T, = 2/av for the
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Fig. 6. Relaxation of the linear oscillator in the FSFPE framework. Typical trajectories of the velocity (top) and the coordinate (bot-
tom) for the overdamped (left) and the weakly damped (right) oscillators. The frequencies are 0.003 (overdamped) and 0.3 (weakly
damped), the friction coefficient is 0.03, and the Levy index is 1.3.
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Fig. 7. Relaxation of the linear oscillator in the FSFPE framework. The velocity moments (at the top) and the coordinate moments
(at the bottom) versustime in atwice logarithmic scale. At the | eft, the results are for the overdamped oscillator are presented, with
w = 0.01, and at the right, the results are for the weakly damped oscillator, with w = 0.1. The frequency coefficient v is 0.03, the
order g of the momentsis 0.25, and the Levy index o is 1.3. Black dots indicate the numerical simulation results of the Langevin
equations, the solid lines indicate the moments obtained from the FSFPE, see Eq. (4.9). The arrows show velocity and coordinate
relaxation times.
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Fig. 8. Relaxation of the linear oscillator in the FSFPE
framework. The velocity moments versus time in a twice
logarithmic scale for different truncation parameters A4

for the stable PDFs of the noise in the Langevin equations.
The parameters used in simulations are as follows: w =
0.05,v =0.01, q=0.25, and a = 1.3. A5, 151600, 300, and
50 for the cases (), (b), and (c), respectively.

weakly damped oscillator. Both theoretical and numer-
ical curves reach a “plateau” at intervals greater than
the relaxation times. This implies that the processes
v(t) and x(t) become stationary. The figures demon-
strate an important difference between the overdamped
and the weakly damped oscillators: for the overdamped
oscillator, the coordinate relaxation time is much
greater than the velocity relaxation time, whereas for
the weakly damped oscillator both times are the same.
From Fig. 7, we also conclude that there is close quan-
titative agreement between theoretical results obtained
by solving FSFPE and the numerical solution of the

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 91

CHECHKIN, GONCHAR

corresponding Langevin equations. In thisrespect, it is
worthwhile to draw one's attention to the coincidence
of the theoretical curve with numerical dependence in
the nonstationary parts.

To estimate the influence of the power-law asymp-
totic behavior on the evolution of the moments, we
replace the stable PDFsin the Langevin equation by the
“truncated” ones, in which large values of random
quantities are cut off. In Fig. 8, the velocity moments
versus time are depicted for the weakly damped oscil-
lator inalog-log scale. The oscillator frequency is0.05,
the friction coefficient is 0.01, the order of the moment
is 0.25, and the Levy index is 1.3. The moments are
obtained by averaging over 1500 redlizations, each of
length 2048, thus the total number of pointsis 3 x 10°.
The mode with the maximum value (that is, the most
probable value) is of the order N2, In the figure, the
moments obtained numerically are shown by black
dots. The Langevin source A(t) is modeled as the effect
of independent random variables possessing a trun-
cated stable PDF, that is|A(t)| < Aya = 1600, 300, 50 for
the respective variants (@), (b), and (c). The solid lines
indicate the moments estimated analytically from the
FSFPE. It isseen that therole of large outliersincreases
as time increases, because large values become more
and more probable. Therefore, the discrepancy between
theoretical results and numerical simulations using the
truncated PDF grows with time. As the truncation
parameter decreases, the discrepancy increases. Thus,
it is clearly seen that the discrepancies are most essen-
tial at the stationary stage of the evolution.

We have aready mentioned that our studies demon-
strate a good quantitative agreement between the the-
ory based on the FSFPE and the numerical simulations
based on the Langevin equations. To show this fact
more precisely, we estimated the velocity and coordi-
nate moments by averaging over 50 x 10° realizations
with the total number of points 108, which is much
larger than in simulations presented in Fig. 7. It isseen
that the numerical results strictly repeat al the bends of
the theoretical curves at the nonstationary stage of the
evolution.

6. RESULTS

The main results are as follows.

(1) We have obtained the fractional symmetric Fok-
ker—Planck equation and the fractional symmetric Ein-
stein—-Smoluchowski equation. These equations gener-
alize the Fokker—Planck and Einstein—Smoluchowski
equations for Brownian motion. The FSFPE describes
alinear relaxation in the phase space of systems influ-
enced by stochastic forces distributed with symmetric
stable laws. The FSFPE contains a fractional velocity
derivative instead of a second-order derivative. The
FSESE describes relaxation in real space. It contains a
fractional space derivative.

(2) Using the kinetic equations obtained, we consid-
ered the linear relaxation processes for two problems:
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the force-free relaxation and the relaxation of the linear
oscillator. We have obtained general analytic solutions
of the FSFPE and FSESE and the expressions for the
fractional velocity and coordinate moments.

(3) For both problems, we solved numerically the
Langevin equations with random sources that are dis-
crete approximations to white Levy noises. After aver-
aging many redlizations, we estimated the fractional
moments and compared the numerical results with the
results of analytical solutions to the kinetic equations.
The analytical and numerical results appear to be in a
guantitative agreement.

(4) In studying the rel axation of the linear oscillator,
it is expedient to distinguish between the two variants:
the overdamped oscillator with w/v < 1 and the weakly
damped oscillator with w/v > 1. Both cases are of spe-
cial importance in nonlinear generalizations of the the-
ory presented. We study in detail, both analytically and
numerically, each of the limiting cases, and point out
substantialy different properties of the relaxation pro-
cesses in the two cases.

(5) The relaxation of an overdamped oscillator
occursin two stages, which are described in the FSFPE
framework: the“fast” stage, at which astationary stable
PDF over velocity is established during the time inter-
val 1, = Lav and the“dow” diffusion stage, at which a
stationary stable PDF in the rea space is established
during the time interval 1, = v/aw?. At the diffusion
stage, the relaxation of the overdamped oscillator can
be described in the FSESE framework.

(6) For the weakly damped L evy oscillator, we have
derived a kinetic equation for the PDF depending on
slowly varying (at the period of oscillations) variables.
This equation contains fractional derivatives over the
velocity and the coordinate. The relaxation process
cannot be divided into two stages. On the contrary, the
velocity and the coordinate relax during the same time
interval T=2/av.
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APPENDIX

Kinetic Equation for the Weakly Damped Levy
Oscillator

We start from Egs. (5.3) and look for the solutionin
the form

X = Xcos(wt) + g)sin(wt), A1)

v = vcos(wt) + wXsin(wt),
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where the amplitudes X and v are slowly varying over
the period 217w. The choice of solution (A.1) is equiv-
alent to the condition

dx _ sin(wt)dv
dt w dt

Weinsert (A.1) in (5.3) and, after averaging the period,
obtain the Langevin equations for X and v,

cos(wt) =0.

dX v~ _ dv v _ o
G tsX = Ax(), rr Ay(D), (A.2)
where
1 t
A(t) = 5 I dt'A(t") sin(wt'),
t—2mw (A3)

t
f— 2 1 1 ]
A;(t) = omt I dt' A(t") cos(wt").
t—21mw
It follows from Egs. (A.2) that the Langevin sources
Ay (t) and A;(t) do not contain the “fast” time 21v/w.

Therefore, it follows from Egs. (A.3) that A(t) can be
represented as

A(t) = a(t) cos(wt) — b(t) sin(wt), (A.9)

where a(t) and b(t) are random stationary functionsthat
arerelated to Ay(t) and A;(t) as

alt) = 2A,(1), b(t) = —2wA(). (A.5)

Equations (A.4) and (A.5) have the following meaning
[42]. According to Egs. (A.2) and (A.3), the random
forceinfluencesthe oscillator by means of slowly vary-
ing components Ax(t) and A;(t) [or a(t) and b(t)] only.
Therefore, if one considers the random influence on the
weakly damped oscillator, the main components of the
random force are singled out by Eq. (A.4). Furthermore, if
A(t) isadationary Gaussian process, then the expression
for the correlation function of this process shows that the
one-point PDFs of A(t), a(t), and b(t) coincide [43] with
each other. We assume that the conclusion about identical
PDFs of A(t), a(t), and b(t) is dso vaid for (symmetric)
stable PDFs, even though the proof of this statement isnot
sotrivial asinthe Gaussian case. It followsfrom this coin-
cidence that the processes

t+At

L@y = [ deAw),

t+At

Loy = [ dra(t), (A.6)

t+At

L(ay = [ drb(r)
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also haveidentical PDFs, and thus, with Eg. (2.5) taken
into account, the PDFs of L, and L, are given by

_ otk ;
w(Lyp) = I?ﬁeXp(_lkLa'b_lel At). (A7)
We also define the processes

t+At
L;(At) = J’ dt'A; (1),
‘ (A.8)

t+At

L;((At) = I dt'A;((t')

which in accordance with (A.5) arerelatedto L, and L, as

LAY = 2L;(A1), LAt = —2wLy(At). (A.9)

Now, with the help of Egs. (A.7) and (A.9), we are able
to obtain the characteristic functions W(Ly) and W(L;)

and their PDFs w(Ly) and w(L;),

W(Ls) = exp(-Ds/k"AD),

(A.10)
W(L;) = exp(-DylK°At),
where
D;< = D o D;, = Bu' (All)
(2w) 2

The equation for f(Xx, v, t) is derived similarly to the
FSESE. Theinitial equationis

f(x, v,t+At)
= [[AAX)dAT)f(X~O% v A7, 1)
x Y(X—AX, v —AV; Ax, Av, At),

(A.12)

where W is the transition probability. For the incre-
ments AX and Av , we obtain from Egs. (A.2)

A>“<+‘§’§<At = Ly(Ab),
(A.13)
AV +\§}\7At = L,(Ab),

wherethe PDFsfor Ly and L; aregiven by Egs. (A.10)
and (A.11). We now construct W. From the structure of

Egs. (A.13), it follows that
WX —-AX v —AV; AX, AV, At)

~ ~ o~ - - - A.14
= W (x—AX; AX AW (v —Av; Av, At), ( )
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where
W% A%, At = Ig—';[

DylK|“AtE

X eXp IK%)X+ xAtD 0

(A.15)

W,V AT, At) = f%r

X exp |k%3v+ vAtD D; |k AtD

Inserting Egs. (A.14) and (A.15) in Eg. (A.12), expand-
ing into a power seriesin At and letting At go to zero,
we arrive at

a—f - —Hd(Ax)d(Av)f(x A%,V —AV, 1)

“dk . dk

IZT[I exp(—iKAX—ikAV) (A.16)

x [iK‘é()?—A)"() ¥ ik\é(f/ — A7)+ Dylk| + D‘;Ikla]

Transforming the terms in the right-hand side as
described in Section 2, we arrive at the differentia

equation for f(X, v , 1), see (5.4).
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