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Abstract—Predictions of the models based on effective chiral Lagrangians of vector mesons ρ(770) and
ω(782) are considered for such measurable quantities as the partial widths of various ρ  4π and ω  5π
decays and their corresponding excitation curves. Analogous curves for the channel ρ–  (4π)– are obtained
for τ lepton decays. The angular distributions for various combinations of the final pions from the ρ  4π
and ω  5π decays in the e+e–-annihilation and photoproduction are also found. A simple method for the
order-of-magnitude estimation of the partial widths based essentially on the threshold character of the above
multipion decays is presented. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In early times, the chiral pion dynamics was tested
in the low-energy ππ scattering, with the scattering data
extracted from the studies of the one pion exchange–
dominated reaction πN  ππN. The main difficulty in
interpreting the results was due to the necessity of
extrapolating to the pion pole. The sources of soft pions
that are feasible at present are unconventional from the
point of view of the chiral pion dynamics and do not
have the drawbacks of the classical ππ scattering.
Indeed, progress in increasing the intensity of low-
energy e+e– colliders (φ factories) and photon beams, as
well as the huge number of the specific hadronic decays
of τ leptons, offers naturally controlled sources of soft
pions, provided the sufficiently low invariant mass
regions of hadronic systems are isolated. Since the
yield of pions is considerably larger when they are pro-
duced through the proper vector-resonance states, the
theoretical study of the multipion decay channels of the
low-lying vector mesons ρ(770) and ω(782) becomes
important [1].

In this paper, based on the Weinberg Lagrangian [2]
obtained under the nonlinear realization of the chiral
symmetry—or in modern terms, the Lagrangian of hid-
den local symmetry (HLS) [3]—we systematically
consider the predictions resulting from the approach of
[2, 3]. Specifically, the partial widths and resonance
excitation curves are calculated for the reactions

e+e–  ρ0  2π+2π– and e+e–  ρ0  π+π–2π0.

It is shown that the intensities of the above decays
change twice as fast as the phase space variation when
the energy varies inside the ρ width. This means that

¶This article was submitted by the authors in English.
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the e+e– annihilation offers an ideal tool for the study of
such effects. The decay widths of the charged ρ meson

ρ±  π±3π0 and ρ±  2π± π0,

and of the ω meson

ω  2π+2π–π0 and ω  π+π–3π0

are also evaluated.
The paper is organized as follows. Section 2 con-

tains the expressions for the ρ  4π amplitudes and
the order-of-magnitude estimates of the ρ  4π par-
tial widths. The results of calculation of the excitation
curves and partial widths for different isotopic states of
four pions are presented in Section 3. This is done for
the e+e– annihilation, τ decays, and photoproduction. In
addition, the angular distributions of the emitted pions
are obtained for the e+e– annihilation and photoproduc-
tion. The partial widths of the decays ω  5π are dis-
cussed in Section 4. The angular distributions of vari-
ous combinations, chosen among five emitted pions,
are obtained for the e+e– annihilation and photoproduc-
tion. Section 5 contains concluding remarks.

2. THE ρ  4π DECAY AMPLITUDES

2.1. Historical Background and General Remarks

The decay ρ  4π is a unique source of soft
(|p | ~ mπ) pions. It attracts much attention [4–7]
because it can be used to study the chiral dynamics of
the ρ meson interaction with multipion systems. As was
found in [4, 5, 6], this decay must be rather strong,
B(ρ  4π) ~ 10–4. A detailed analysis given in [7]
revealed a number of shortcomings of the calculations
in [5, 6] related with the actual violation of chiral
invariance, in particular, the Adler condition [8] for soft
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pions. The correct results based on the amplitudes
obeying the Adler condition and obtained in [1, 7] cor-
respond to B(ρ  4π) ≈ 10–5. The large magnitude of
the branching ratio B(ρ  4π) ~ 10–4 obtained in [4]
is related, by all appearance, with a very rough method
of calculation. A common drawback of papers [4–7] is
that their authors evaluate the partial width at the
energy level equal to the mass of the ρ meson, as if this
were a genuine narrow resonance. However, because
the width of the ρ resonance is rather large and
Γρ → 4π(E) rises rapidly with the energy increase even at
energies inside the ρ peak, one tends to think that the
magnitude of the 4π partial width at the ρ mass cannot
adequately characterize the dynamics of the process. In
this respect, the resonance excitation curve in the chan-
nel e+e–  ρ0  4π is of much interest, being a test-
ing ground of various chiral models of the decay under
consideration.

The HLS approach [3] permits one to include the
axial mesons as well.1 In the ideal treatment, under the
assumption that

mρ ~ E ! ,

the difference between the models with and without the a1
meson would amount to taking the higher derivatives into
account, and the latter were small.2 In real life, one has

and the correction may appear to be appreciable even at
the ρ mass. In fact, the calculation of [7] shows that the
corrections amount to ~20–30% in the width. This
implies, in particular, that the left shoulder of the ρ
peak, where the contributions of higher derivatives van-
ish rapidly, is the best place to work. In this work, we
do not take the a1 meson into account.

2.2. The General Expression
for the ρ  4π Decay Amplitude

The ρ  4π decay amplitudes are obtained from
the Weinberg Lagrangian [2]

(2.1)

1 The problem of the inclusion of vector and axial mesons and pho-
tons in the framework of chiral theories has required considerable
efforts; for example, [9]. It is solved in an elegant way in the
approach based on hidden local symmetry [3].

2 Taking the higher derivatives into account also requires account-
ing for the chiral loops, the task which is not yet fulfilled for vec-
tor mesons.

ma1

ma1

2 mρ
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JOURNAL OF EXPERIMENTAL 
where p, mπ and r, mρ are, respectively, the isovector
field and mass of the pion and the ρ meson and fπ =
92.4 MeV is the pion decay constant. The cross denotes
the vector product in the isotopic space. The ρρρ cou-
pling constant g and the ρππ coupling constant gρππ are
related to the ρ mass and the pion decay constant fπ via
the hidden local symmetry parameter a as [3]

(2.2)

We note that imposing the universality condition g = gρππ
gives a = 2. This then leads to the so-called KSRF rela-
tion [10]

(2.3)

which beautifully agrees with the experiment. The
ρππ coupling constant resulting from this relation is
g = gρππ = 5.89.

We first obtain the π  3π transition amplitudes
that are necessary for the calculation of the multipion
decays of vector mesons. They are found from the dia-
grams in Fig. 1a and are given by

(2.4)
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is the inverse ρ meson propagator.3 
The diagrammatic representations of the ρ  4π

decay amplitudes for different combinations of charges
of the final pions are shown in Figs. 1b and 1c. By intro-
ducing the 4-vector εµ of the decaying ρ meson polar-
ization, we can write the general expression for the
amplitude as

where

(2.6)

is obtained from Eq. (2.2). We now give the expressions
for the current Jµ for all the decay modes considered
here.

(1) The decay ρ0(q)  π+(q1)π+(q2)π–(q3)π–(q4).
One has

(2.7)

where Dπ(q) =  – q2 is the inverse pion propagator.

(2) The decay ρ0(q)  π+(q1)π–(q2)π0(q3)π0(q4). In

this case, one has Jµ =  + , where

(2.8)

3 Our notation for the Lorentz-invariant scalar product of two
4-vectors a and b is (a, b) = a0b0 – a · b.
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is obtained from Eq. (2.1) and

(2.9)

with Dω(q) =  – q2 being the inverse ω meson prop-
agator and Nc = 3 (the number of colors) is the contri-
bution of the term induced by the anomalous Wess–
Zumino Lagrangian [3, 11]

(2.10)
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Fig. 1. (a) The diagrams describing the π  3π transition
amplitude. The symmetrization over the momenta of identi-
cal pions is understood whenever necessary. (b), (c) the
diagrams describe the amplitudes of the decays ρ0 
π+π–π+π– and ρ0  π+π–π0π0, respectively. The shaded
circles in the π  3π vertices in diagrams (b) and (c) refer
to the sum of the diagrams shown in (a). The symmetri-
zation over the momenta of identical pions emitted from
different vertices is implied. The diagrams for the decays
ρ+  π+π0π0π0 and ρ+  π+π+π–π0 are similar to
those of (b) and (c), respectively.
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manifesting in the process ρ0  ωπ0  π+π–π0π0. In

general,  is attributed to the contribution of higher
derivatives. We nevertheless take it into account to
show the effect of higher derivatives and the dynamical
effect of the opening of the ρ  ωπ  4π channel.
In agreement with [3], the contribution of the point ver-
tex ω  3π is omitted. The following amplitudes of
the charged ρ decay are necessary for obtaining the
ω  5π decay amplitude and are interesting on their
own for studying the reactions of peripheral ρ meson
production and τ decays.

(3) The decay ρ+(q)  π+(q1)π0(q2)π0(q3)π0(q4).
One has

(2.11)

(4) The decay ρ+(q)  π+(q1)π+(q2)π–(q3)π0(q4).
Here, the contribution induced by the anomalous Wess–

Zumino Lagrangian is also possible; hence, Jµ =  +

, where
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is obtained from Eq. (2.1), while the anomaly-induced
term is

(2.13)

One can verify that up to corrections of the order

/ , the above amplitudes vanish in the limit of the
vanishing 4-momentum for each final pion. In different
words, they obey the Adler condition.

The amplitudes for the ρ–  (4π)– decays are
obtained from the above expressions for the ρ+ 
(4π)+ decay amplitudes by inverting the overall sign.

2.3. Nonrelativistic Limit 
and an Order-of-Magnitude Estimate

of the Partial Widths

As will be clear in what follows, the nonrelativistic
expressions for the above amplitudes are needed. They
are obtained by neglecting the space components of the
pion 4-momenta. For the π  3π transition, they are
given by

(2.14)

We note that the HLS parameter a is dropped from the
expressions in the nonrelativistic limit. The nonrelativ-
istic expressions for the ρ  4π decay amplitudes are
relevant for the four-pion invariant mass below 700 MeV.
They are obtained by neglecting the space components
of the pion momenta in the Lorentz invariant scalar
products (qi , qj). One can convince oneself that in this
limit, a enters the expressions for the amplitudes as an
overall factor, Eq. (2.6), and the amplitudes therefore
become

(2.15)
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These simplified expressions4 are convenient, espe-
cially, in the calculation of the ω  5π decay ampli-
tude, because the typical invariant masses of the four-
pion system in the above decay are in the vicinity of
620 MeV (see Section 4 for more detail). Moreover, as
the direct numerical calculations of the subsequent Sec-
tion 3.1 show, the nonrelativistic expressions (2.15) are
valid with an accuracy up to 15% even at the invariant
mass near mρ, provided the terms induced by the anom-
alous Wess–Zumino Lagrangian are neglected5 in the

ρ0  π+π–2π0 and ρ±  2π± π0 decay amplitudes.

We now give very simple estimates of the partial
ρ  4π widths that are valid up to the factor of three.
They are based on approximating the true branching
ratio by the product of the squared modulus of the
matrix element averaged over the polarizations of the
decaying ρ and by the nonrelativistic expression for the
Lorentz-invariant phase space volume of four pions.
The latter is obtained by setting n = 4 and M = mρ in the
general expression

(2.16)

where M is the decaying particle mass; n is the number
of final particles with the masses mi  (i = 1, …, n); Ns is
the factor accounting for indistinguishable particles in
the final state; and [12]

(2.17)

4 Amplitudes (2.15) are obtained from the expressions given in
Section 2.2 obeying the Adler condition. However, they do not

contain the factor  typical for the ππ scattering amplitudes

that also obey this condition, see Eq. (2.14), except the natural

kinematical smallness ∝ e , where ci are numerical coeffi-

cients from Eq. (2.15). This is because the pointlike ρ  4π
vertex in the exact ρ  4π amplitude Fig. 1b up to the terms

O( ) is compensated in the Adler limit of vanishing of one

of the pion momenta by the π pole diagrams, while in the nonrel-
ativistic limit the latter compensate only one-half of the former.

5 The terms induced by the anomalous Wess–Zumino Lagrangian

involved in the ρ0  π+π–2π0 and ρ±  2π± π0 decay
amplitudes are appreciable at the ρ mass, see Section 3.1. How-
ever, they vanish in the nonrelativistic limit.
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with Γ being the gamma function. We note that at mi =
mπ = 139.6 MeV (i = 1, …, 4), the numerical value of
Φ4(mρ) agrees within 7% with the exact value obtained via
numerical integration of Eq. (3.3) in the next section.

The results of the estimation are as follows. The
answer depends on which combination of the pion
momenta is retained in the expression for the ampli-
tude. The relation

(2.18)

expressing the transverse character of the ρ polariza-
tion four-vector ε permits one to eliminate one combi-
nation of the pion momenta in favor of another one.
This results in the above-mentioned uncertain factor up
to 3, which illustrates the role of angular correlations
among the momenta of the final pions.

(1) The ρ0  2π+2π– decay. Here, using the first
line of Eq. (2.15), we find

(2.19)

where the approximate equality follows by setting all
the pion three-momenta to the equilibrium one (|qπ| =
133 MeV), obtained by taking the energy of each pion
equal to mρ/4 and neglecting the angular correlations
among different momenta. Another choice is to elimi-
nate, for example, q3 and q4, which results in multiply-
ing the right-hand side of Eq. (2.19) by the factor 2.
Taking Ns = 4 and M = mρ, we then find

(2) The ρ0  π+π–2π0 decay. Equation (2.18)
allows us to eliminate q2 in the second equation in
(2.15) and replace q1 – q2 with 2q1 + q3 + q4. This
replacement results in the factor of three multiplying
the approximate expression for |M |2 obtained from the
second line of Eq. (2.15). With Ns = 2, the estimate is
then

(3) The ρ±  2π± π0 decay. Here, Ns = 2, and the
estimate is

The uncertainty within the factor 5/3 comes from the
above arbitrariness of the choice among the final pion
momenta.

(4) The ρ±  π±3π0 decay. Here, Ns = 6, and the
estimate is

ε q1 q2 q3 q4+ + +,( ) 0=

1
3
--- M 2 1

12
------

gρππ

f π
2
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  2

q1 q2 q3– q4–+( )2=

≈ 1
3
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gρππ

f π
2

---------- 
  2

qπ
2 ,

Γ
ρ0 2π+2π–→

0.8–1.6 keV.≈

Γ
ρ0 π+π–2π0→

0.2–0.6 keV.≈

π+−

Γ
ρ± 2π± π+− π0→

0.6–1.0 keV.≈

Γ
ρ± π± 3π0→

0.5–1.5 keV,≈
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with the above arbitrariness of the choice among the
pion momenta resulting in the uncertain factor 3. We
note that the order-of-magnitude estimates in cases 2
and 3 should be compared to the exact calculations in
the models where the terms induced by the anomalous
Lagrangian are neglected (see footnote 5). We now pro-
ceed to the exact numerical evaluation of the above
branching ratios and show that they agree with the
above very simple estimates sufficiently well.

3. RESULTS FOR VARIOUS ρ  4π DECAYS

In evaluating the partial widths of the 4π decays of
ρ meson, the modulus squared of the matrix element is
expressed via the Kumar variables [13]. The idea of
speeding up the numerical integration suggested in [14]
is realized in the numerical algorithm. The results of

evaluating the partial widths at  = mρ = 770 MeV are
as follows:

respectively, without and with the induced anomalous
term taken into account. This coincides with the results

s

Γ
ρ0 2π+2π–→

mρ( ) 0.89 keV,=

Γ
ρ0 π+π–2π0→

mρ( ) = 0.24 keV, and 0.44 keV,

0.6
10–6

0.7 0.8 0.9 1.0

10–5

10–4

10–3

10–2

10–1

1

10

s1/2, GeV

σ(e+e– → 2π+2π–), nb

Fig. 2. The energy dependence of the e+e–  ρ0 
π+π–π+π– reaction cross section in the model based on the
chiral Lagrangian due to Weinberg. Experimental points are
from [16]. The solid (dashed) line refers to the dynamic
(phase space) model of the decay.
JOURNAL OF EXPERIMENTAL 
obtained in [7]. For the charged ρ meson decays, the
estimates are new:

respectively, without and with the anomaly-induced
term taken into account. A comparison with the model
estimates in Section 2.3 shows that they are rather reli-
able despite their extreme simplicity. In obtaining the
exact figures, the narrow ρ width approximation is
used. This is equivalent to using Γρππ  0 in Eq. (2.5).
Keeping the physical value of the ρ width gives results
that deviate from those obtained in the narrow-width
approximation by a quantity that does not exceed a few
percent of the values obtained in that approximation.
This is true for the invariant mass of the four-pion state
lying below the ρπ threshold energy, m4π < 910 MeV.
We recall that allowing for the finite width effects is in
fact equivalent to taking the loop correction into
account.

The above results are obtained for a = 2. The varia-
tion of a within 20% around this value leads to the vari-
ation of the branching ratios within 20% around the
above values. This fact can easily be traced in the non-
relativistic limit, where the parameter a enters the

expressions for the amplitudes as an overall factor ,
see Eqs. (2.2) and (2.15).

3.1. The ρ0  4π Decay Manifested
in e+e– Annihilation

The results of the 4π state production cross section
in the reaction e+e–  ρ0  4π,

(3.1)

where s = E2 is the square of the total center-of-mass
energy and Dρ(s) is obtained from Eq. (2.5) by substi-
tuting q2  s, are shown in Figs. 2 and 3. The values
of the vector meson parameters taken from [15] are
used here and in what follows. To demonstrate the
effects of chiral dynamics, the energy dependence of the
cross section evaluated in the pure phase space model for
the four-pion decay is also shown. In this model, the 4π
partial width normalized to the width at the ρ mass calcu-
lated in the dynamical model is given by

(3.2)

Γ
ρ± π± 3π0→

mρ( ) 0.41 keV,=

Γ
ρ± 2π± πm

pπ0→
mρ( ) = 0.71 keV, and 0.90 keV,

a

σ
e

+
e

– ρ 4π→ →
s( )

12πmρ
3Γ

ρe
+
e

– mρ( )Γρ 4π→ E( )

E3 Dρ s( ) 2
----------------------------------------------------------------,=

Γρ 4π→
LIPS s( ) Γρ 4π→ mρ( )

W4π s( )

W4π mρ
2( )

--------------------,=
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where the four-pion phase-space volume is [12, 13]

(3.3)

In this formula, Ns = 4 (2) is the factor that accounts for
the identity of final pions in the final state 2π+2π–

(respectively, π+π–2π0), and

(3.4)

As the evaluation shows, the ratio

changes from 0.4 at  = 650 MeV to 1 at  = mρ. As
can be seen from Figs. 2 and 3, the rise of the ρ  4π
partial width with the energy increase is so fast that it
completely compensates the falling of the ρ meson
propagator and the electron width. Also noticeable is
the dynamical effect in the decay ρ0  π+π–2π0 at

 > 850 MeV resulting from the anomaly-induced
Lagrangian ωπ threshold (see Fig. 3). To quantify the
above-mentioned effect of the vanishing higher deriva-
tive contribution at the left shoulder of the ρ resonance,
we note that the difference between the magnitudes of

 with and without the term originating

from the anomaly-induced Lagrangian, which is equal

to 100% at  = mρ, decreases rapidly with an energy

decrease, amounting to 8% at  = 700 MeV and 0.3%

at  = 650 MeV.

It should be pointed out that the evaluation of the
partial widths with the nonrelativistic expressions for
the ρ  4π amplitudes, Eq. (2.15), gives values that
deviate from those obtained with the exact expressions
within 7–15%, depending on the energy in the interval
from 610 to 770 MeV. This corresponds to the case
where the terms induced by the anomalous Lagrangian
are neglected (see footnote 5).

As seen from Fig. 2, the predictions of chiral sym-
metry for the e+e–  2π+2π– reaction cross section do
not contradict the experimental points of the CMD-2

detector [16] attributed to the energies  < 800 MeV.

At  > 800 MeV, however, one can observe a substan-
tial deviation of the predictions of Lagrangian (2.1)
from the CMD-2 data. By all appearances, this is the
result of neglecting the contribution of higher deriva-

W4π s( )
π3

16 2π( )8s3/2Ns

----------------------------------
s1d

s1
-------λ1/2 s s1 mπ

2, ,( )

3mπ( )2

s mπ–( )
2

∫=

×
s2d

s2
-------λ1/2 s1 s2 mπ

2, ,( )λ1/2 s2 mπ
2 mπ

2, ,( ).

2mπ( )2

s1 mπ–( )
2

∫

λ x y z, ,( ) x2 y2 x2 2 xy xz yz+ +( ).–+ +=

r s( )
Γ

ρ 2π+2π–→
s( )

Γ
ρ 2π+2π–→
LIPS s( )

----------------------------------=

s s

s

Γ
ρ π+π–2π0→

s( )

s

s

s

s

s
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tives and chiral loops. It is expected that the left shoul-
der of the ρ peak is practically free of such contribu-
tions and is therefore preferable for studying the

dynamical effects of chiral symmetry. Even at  =
650 MeV, where the contribution of higher derivatives
is negligible, one can hope to gather one event of the
reaction e+e–  2π+2π– per day and up to 10 events of

this reaction per day at  = 700 MeV, provided the
luminosity L = 1032 cm–2 s–1 is achieved (i.e., to have a
factory for a comprehensive study of the chiral dynam-
ics of multipion systems).

Because of the helicity conservation, the ρ meson is
produced in the states with the spin projections λ = ±1
on the e+e– beam axis characterized by a unit vector n0
that is assumed to be directed along the z-axis. Using
the expressions for the total ρ  4π amplitudes, one
can then obtain the angular distributions for the final
pions. They are expected to be cumbersome. However, a
good approximation for these distributions can be
obtained from the approximate nonrelativistic expression
in Eq. (2.15), at least at energies less than 700 MeV. Tak-
ing θi and φi to be the polar and azimuthal angles of the
pion three-momentum qi, where the momentum assign-
ment corresponds to Eq. (2.15); assuming the ρ meson
to be at rest, one arrives at the following results. 

s

s

0.6

10–6

s1/2, GeV
0.7 0.8 0.9

10–5

10–4

10–3

10–2

σ(e+e– → π+π–π0π0), nb

Fig. 3. The energy dependence of the e+e–  ρ0 
π+π–π0π0 reaction cross-section in the model based on the
chiral Lagrangian due to Weinberg, added with the terms
induced by the anomalous Wess–Zumino Lagrangian.
Solid, dashed, and dotted lines refer to the respective models
with the anomaly induced term, without this term, and phase
space.
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(1) The ρ0  2π+2π– decay. The probability den-
sity of the emission of four charged pions can be found
directly from the first line in Eq. (2.15):

(3.5)

As before, Pij interchanges the momenta qi and qj . One
can use Eq. (2.18) to eliminate the momenta of nega-
tively charged pions q3 and q4. Then, the probability
density of the emission of two π+’s found from the first
line in Eq. (2.15) is

(3.6)

With Eq. (2.18) taken into account, the angular distri-
bution for the emission of two π–’s is obtained from
Eq. (3.6) by the respective replacements q1, 2  q3, 4.

(2) The ρ0  π+π–2π0 decay. The probability den-
sity of the emission of π+π– pair is found from the sec-
ond line in Eq. (2.15) as

(3.7)

Eliminating the momentum q2, one finds the corre-
sponding expression for the final state combination
π+2π0:

(3.8)

In view of Eq. (2.18), the angular distribution for the
state π–2π0 is obtained from the above by replacing
q1  q2 and changing the signs in front of the terms
containing (1 + P34).

3.2. The ρ  4π Decay in τ Decays

Based on the vector current conservation, the partial
width of the decay τ–  ντ(4π)– [17, 18] can be writ-
ten as the integral over the invariant mass of the four-

w q1 q2 q3– q4–+( )2 n0 q1 q2 q3– q4–+( )⋅( )2–∝

=  qi
2 θisin

2
2 q1 1 P23 P24––( )+

i 1=

4

∑

× q2 θ1 θ2 φ1 φ2–( )cossinsin

– 2 q2 1 P34+( ) q3 θ2 θ3 φ2 φ3–( )cossinsin

+ 2 q3 q4 θ3 θ4 φ3 φ4–( ).cossinsin

w q1 q2+( )2 n0 q1 q2+( )⋅( )2–∝ q1
2 θ1sin

2
=

+ q2
2 θ2sin

2
2 q1 q2 θ1 θ2 φ1 φ2–( ).cossinsin+

w q1 q2–( )2 n0 q1 q2–( )⋅( )2–∝ q1
2 θ1sin

2
=

+ q2
2 θ2sin

2
2 q1 q2 θ1 θ2 φ1 φ2–( ).cossinsin–

w 2q1 q3– q4–( )2 n0 2q1 q3– q4–( )⋅( )2–∝

=  4q1
2 θ1sin

2 q3
2 θ3sin

2 q4
2 θ4sin

2
+ +

– 1 P34+( )4 q1 q3 θ1 θ3 φ1 φ3–( )cossinsin

+ 2 q3 q4 θ3 θ4 φ3 φ4–( ).cossinsin
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pion state m extended up to some mass m0, whose max-
imal value is m0max = mτ,

(3.9)

where Tτ and

(3.10)

are, respectively, the lifetime of the τ lepton and the
partial width of its decay τ –  ντρ– [17], with m being
the invariant mass of the four-pion state. Using the
numerical values of the ρ  4π decay widths, one can
evaluate the branching ratios of the four-pion τ decays
for various values of the upper invariant mass m0. The
results of the evaluation of the branching ratios of the
decays τ –  ντ2π–π+π0 and τ–  ντπ–3π0 for the
invariant mass values of the four-pion system from 600
to 850 MeV are plotted in Fig. 4. In particular, taking
m0 = 740 MeV, one obtains

without (with) the anomaly induced term, respectively,
and

The corresponding values for the upper integration
mass m0 = 640 MeV are

without (with) the anomaly induced term, respectively,
and

The comparison of both curves in Fig. 4a again demon-
strates that the contributions of higher derivatives rep-
resented by the terms induced by the anomalous Wess–
Zumino Lagrangian vanish rapidly as the mass decreases.
Unfortunately, the domains in the low four-pion invariant
mass, where the chiral dynamics effects are clean, are
hardly accessible with τ factories.

Indeed, guided by the expression for the cross sec-
tion of the τ lepton pair production in the e+e– annihila-
tion,

(3.11)

B
τ– ντ 4π( )–→

m0( )

=  T τ m
2m2Γ

τ– ντρ
–→

m( )

π Dρ m2( )
2

--------------------------------------Γ
ρ– 4π( )–→

m( ),d

4mπ

m0

∫

Γ
τ– ντρ

–→
m( )

GF
2 θCcos

8πf ρ
2

----------------------=

× mτ
3mρ

2 1 m2

mτ
2

------–
 
 
  2

1 2
m2

mτ
2

------+
 
 
 

B
τ– ντ2π–π+π0→

m0( ) 7.6 10 8–× 8.4 10 8–×( )=

B
τ– ντ3π0π–→

m0( ) 4.6 10 8– .×=

B
τ– ντ2π–π+π0→

m0( ) 2.895 10 10–× 2.900 10 10–×( )=

B
τ– ντ3π0π–→

m0( ) 1.8 10 10– .×=

σ
τ+τ– s( )

4πα2

3s
------------ 1

4mτ
2

s
---------– 1 2

mτ
2

s
------+ 

  ,=
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one can find that up to N = 25 × 107 τ lepton pairs with

the total energy  = mψ(2S) can be produced per sea-
son at a τ-charm factory with the expected luminosity
L = 1034 cm–2 s–1 [15]. This implies that one can detect
only 2 to 4 events per season in the four-pion mass
range below 700 MeV. However, the event counting
rate rises rapidly with the increase of the upper integra-
tion mass m0 in Eq. (3.9), reaching the figure about 60
to 120 events per season at m0 = mρ, depending on the
charge combination of the final pions.

3.3. The ρ  4π Decay in Photoproduction,
πN  ρπN, and So On

To conclude on the possibility of studying the ρ 
4π decays in photoproduction, we calculate the quan-
tity

(3.12)

which is the average of the branching ratio against the
invariant mass of the four-pion state. In the limit
m0  ∞, Eq. (3.12) serves as the definition of the
branching ratio for a wide resonance. Equation (3.12)
should be confronted with the familiar definition of the
branching ratio at the ρ mass,

(3.13)

which follows from Eq. (3.12) upon the replacement

  ,

which is valid in the narrow-width limit. With the par-
tial widths evaluated here, one finds

and

without (with) the anomaly-induced term, respectively.

The plot of  is shown in Fig. 5. In particular,
the evaluation gives

at the respective values m0 = 850, 700, and 640 MeV.
For other four-pion decay modes of ρ0, the results are
as follows. In the model with the vanishing term
induced by the anomalous Wess–Zumino Lagrangian,
one obtains

s

Bρ 4π→
aver m0( )

2
π
--- m

m2Γρ 4π→ m( )

Dρ m2( )
2

-------------------------------,d

4mπ

m0

∫=

Bρ 4π→ mρ( ) Γρ 4π→ mρ( ) Γρ,⁄=

mΓρ π Dρ m2( )
2⁄ δ m2 mρ

2–( )

B
ρ0 2π+2π–→

mρ( ) 5.9 10 6–×=

B
ρ0 π+π–2π0→

mρ( ) 1.6 10 6– 2.9 10 6–×( )×=

Bρ 4π→
aver m0( )

B
ρ0 2π+2π–→
aver m0( ) 4.4 10 6–× 6.1 10 8– ,×,=

and 1.4 10 9–×

B
ρ0 π+π–2π0→
aver m0( ) 1.3 10 6–× 1.58 10 8– ,×,=

and 3.66 10 10–×
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at m0 = 850, 700, and 640 MeV. In the model that
includes the above term, one obtains

at the same respective values of m0. As is expected, the
branching ratios in the two models mentioned above
converge to because of the rapid vanishing of the con-
tributions of higher derivative terms. The difference
between the two definitions of the branching ratio is

seen by comparing  (m0 = 850 MeV) evaluated
for various charge combinations of the final pions with
Bρ → 4π(mρ) evaluated above.

With the total number of ρ mesons N ≈ 6 × 109

expected to be produced on a nucleon at the Jefferson
Laboratory [19], one may hope to observe about 100
and 360 events of the ρ decays into the respective states
π+π–2π0 and 2π+2π– in the mass range m0 < 700 MeV,
where the chiral dynamics effects are cleanest. The
photoproduction on heavy nuclei results in increasing
the number of the produced ρ mesons faster than A2/3,
where A is the mass number. The generally adopted

B
ρ0 π+π–2π0→
aver m0( ) 4.9 10 6–× 1.65 10 8– ,×,=

and 3.63 10 10–×

Bρ 4π→
aver

B(τ– → υτ2π–π+π0)

(a)

10–12
0.60

m0, GeV
0.65 0.70 0.75 0.80 0.85

10–11

10–10

10–9

10–8

10–7

10–6

B(τ– → υτπ–3π0)

0.60
10–12

m0, GeV
0.65 0.70 0.75 0.80 0.85

10–11

10–10

10–9

10–8

10–7
(b)

Fig. 4. The branching ratio of the decays (a) τ– 
ντ2π–π+π0 and (b) τ–  ντπ–3π0 vs. the invariant mass
of the four-pion system, see Eq. (3.9). The solid (dotted) line
in (a) refers to the model with (without) the term induced by
the anomalous Lagrangian.
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Baver(ρ0 → 2π+2π–) Baver(ρ0 → π+π–2π0)

(a) (b)

Baver(ρ– → 2π–π+π0) Baver(ρ– → π–3π0)
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10–5
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Fig. 5. The branching ratio of the decays (a) ρ0  2π+2π–, (b) ρ0  π+π–2π0, (c) ρ–  2π–π+π0, (d) ρ0  π+π–2π0 vs.
the invariant mass of the four-pion system, see Eq. (3.12). The solid (dotted) line in (b) and (c) refers to the model with (without)
the term induced by the anomalous Lagrangian.
behavior is in accordance with the function A0.8–0.95

[20]. Thus, the photoproduction of four-pion states on
heavy nuclei would give the possibility for the high sta-
tistics study of chiral dynamics effects in the four-pion
JOURNAL OF EXPERIMENTAL 
decays of ρ(770). It should be recalled once more that
the counting rate rises rapidly with the increase of m0.

The conclusions about the angular distributions of
the final pions with zero net charge in photoproduction
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are as follows. The general expression should certainly
be deduced from the full decay amplitudes given in
Section 2 together with the detailed form of the photo-
production mechanism. The qualitative picture, how-
ever, can be obtained by noting that the s-channel helic-
ity conservation is a good selection rule for photopro-
duction reactions. In the helicity reference frame
(which is the frame where ρ is at rest and its spin quan-
tization axis is directed along the ρ momentum in the
center-of-mass system), the expressions for the angular
distributions coincide with the corresponding expres-
sions for the production of these states in e+e– annihila-
tion. The latter can be found in Section 3.1. For the pho-
toproduction on heavy nuclei at high energies, the
direction of the final ρ momentum lies at the scattering
angle less than 0.5° and the vector n0 can therefore be
treated as pointed along the photon-beam direction.

We note that other peripheral reactions can provide
sufficiently intense sources of ρ mesons. For example,
the diffractive production of the ρπ state in πN colli-
sions are currently under study with the VES detector
in Protvino. The regions of the four-pion invariant mass
spectrum larger than mρ, namely, m0 ≈ 850 MeV with

 ~ 10–5, should be included to reliably mea-
sure the ρ  4π branching ratio. As explained in the
Introduction, this would require including the contribu-
tions of the a1 meson and higher derivatives to the total
amplitude. Nevertheless, the results of the present
paper shown in Figs. 5c and 5d, obtained while neglect-
ing these contributions, can be regarded as a guess in
the experimental work in this direction.

4. THE ω  5π DECAY

4.1. The ω  5π Decay Amplitudes

One can be convinced that the ω  ρπ  5π
decay amplitude unambiguously follows from the
anomaly-induced Lagrangian (2.10). This amplitude is
represented by the diagrams shown in Fig. 6. As could
be expected, its general expression is cumbersome.
However, it can be considerably simplified by noting
that although |qπ|/mπ . 0.5, the nonrelativistic expres-
sions in Eq. (2.15) for the ρ  4π decay amplitudes
in the diagrams in Fig. 6a are valid within 5% in the rel-
evant 4π mass range [1]. Similarly, the expression for

the combination M(π  3π) involved in the
expression for the diagrams in Fig. 6b can be replaced,

with the same accuracy, by  times the nonrela-
tivistic π  3π amplitudes in Eq. (2.14). Thus, using
Eq. (2.15) to obtain the expression for the sum of the
diagrams shown in Fig. 6a and Eq. (2.14) to obtain
the expression for the sum of the diagrams shown in
Fig. 6b,6 one obtains, upon neglecting the corrections

6 The contribution of the diagrams Fig. 6b was neglected in [1].

Bρ 4π→
aver m0( )

Dπ
1–

8mπ
2( ) 1–
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of the order O(|qπ|4/ ) or higher, the decay ampli-
tudes

(4.1)

with the final momentum assignment according to
π+(q1)π+(q2)π–(q3)π–(q5)π0(q4) and

(4.2)

mπ
4

M ω 2π+2π–π0( )
Ncgρππg2

8 2π( )2 f π
3

-----------------------εµνλσqµeν=

× 1 P12+( )q1λ
q2 3q4+( )σ

Dρ q q1–( )
---------------------------

2q4σ

Dρ q1 q4+( )
----------------------------–





– 1 P35+( )q3λ
q5 3q4+( )σ

Dρ q q3–( )
---------------------------

2q4σ

Dρ q3 q4+( )
----------------------------–

– 1 P12+( ) 1 P35+( )q3λ
2q4σ

Dρ q q4–( )
--------------------------

q1σ

Dρ q1 q3+( )
----------------------------+





,

M ω π+π–3π0( )
Ncgρππg2

8 2π( )2 f π
3

----------------------- 1 P12–( )=

× 1 P34 P35+ +( )εµνλσqµeνq1λ

× q3σ
1

Dρ q q3–( )
-------------------------- 1

Dρ q1 q3+( )
----------------------------–





+ +

++

π+

π–
π+

π+

π+

π+

π+

π+

π+

π+
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π+ π+

π+

π–

π–

π–

π–

π–
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ω ρ+

ρ–
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(a)

(b)

Fig. 6. The diagrams describing the amplitudes of the
decays ω  π+π–π+π–π0. The shaded circles in set (a)
denote the entire set of the ρ  4π diagrams shown in
Fig. 1b, c. The shaded circles in the π  3π vertices in set
(b) refer to the sum of diagrams shown in Fig. 1a. The sym-
metrization over the momenta of identical pions emitted
from different vertices is understood. The diagrams for the
decay ω  π+π–π0π0π0 are obtained from those shown
here via evident replacements.
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with the final momentum assignment according to
π+(q1)π–(q2)π0(q3)π0(q4)π0(q5). In both these formulas,
eν and qµ stand for the ω meson polarization and
momentum 4-vectors. The first term in each square
bracket refers to the specific diagram shown in Fig. 6a;
the second term, to the diagram in Fig. 6b.

Even in this simplified form, however, the expres-
sions for the ω  5π amplitudes are not easy to use
for the evaluation of branching ratios. To go further,
one should note the following. The contribution of the
diagrams shown in Fig. 6a depends on the invariant
mass of the 4π system, which changes in a very narrow
range (558 MeV < m4π < 642 MeV). In all the ρ propa-
gators involved in the first terms in every set of square
brackets in Eqs. (4.1) and (4.2), this invariant mass can be

set to the equilibrium value  = 620 MeV within the
width accuracy of 20%. This equilibrium value is evalu-
ated for the pion energy Eπ = mω/5 that gives the dominant
contribution. The ρ propagators involved in the last terms
in the square brackets of the above expressions depend on
the invariant mass of the pion pairs, for which a similar
statement is true. This invariant mass varies in a narrow
range (280 MeV < m2π < 360 MeV). With the same

accuracy, one can set it to  = 295 MeV in all rel-

– q2σ
4

3Dρ q q1–( )
---------------------------- 1

2Dρ q1 q2+( )
-------------------------------–





,

m4π
2 1/2

m2π
2 1/2

0.775
0

0.5

s1/2, GeV

σ(e+e– → ω → 5π), fb

0.780 0.785 0.790

1.0

1.5

2.0

Fig. 7. The ω  5π excitation curves in e+e– annihilation
in the vicinity of the ω resonance. The solid (dotted) line
refers to the 2π+2π–π0 (π+π–3π0) final state.
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evant propagators. On the other hand, the amplitude of the
ω  ρ0π0  (2π+2π–)π0 is

(4.3)

where the momentum assignment is the same as in
Eq. (4.1). The other relevant amplitude corresponding
to the first diagram in Fig. 6b is

(4.4)

Then, taking the above consideration concerning the
invariant masses into account and comparing Eqs. (4.1),
(4.3), and (4.4), one can see that

(4.5)

A similar analysis shows that

(4.6)

where

(4.7)

and the final momentum assignment is the same as in

Eq. (4.2). The numerical values of  and 
found above are such that the correction factor in paren-
theses of Eqs. (4.5) and (4.6) amounts to 20% in mag-
nitude. In what follows, the above correction is taken
into account as the overall factor 0.64 in front of the
branching ratios of the decays ω  5π. In making this
estimate, the imaginary part of the ρ propagators in the
square brackets of Eq. (4.5) and (4.6) is neglected. This
assumption is valid with an accuracy better than 1% in
width.

4.2. An Approximate Model Estimate
of the ω  5π Branching Ratio

It is useful to derive the model estimate of the ω 
5π partial widths as follows. The corresponding equi-
librium pion momenta are  = 70 MeV and  =

M ω ρ0π0 2π+2π–( )π0[ ]

=  4
Ncgρππg2

8 2π( )2 f π
3

-----------------------εµνλσqµeν q1 q2+( )λ
q4σ

Dρ q q4–( )
--------------------------,

M ω ρ0π0 π+π–( ) π+π–π0( )[ ]

=  
Ncgρππg2

8 2π( )2 f π
3

-----------------------εµνλσqµeν 1 P12+( ) 1 P35+( )
q1λq3σ

Dρ q1 q3+( )
----------------------------.

M ω 2π+2π–π0( )

≈ 5
2
---M ω ρ0π0 2π+2π–( )π0[ ] 1

Dρ m4π
2( )

2Dρ m2π
2( )

------------------------– .

M ω π+π–3π0( )

≈ 5
2
---M ω ρ+π– π+3π0( )π–[ ] 1

Dρ m4π
2( )

2Dρ m2π
2( )

------------------------– ,

M ω ρ+π– π+3π0( )π–[ ]

=  4
Ncgρππg2

8 2π( )2 f π
3

-----------------------
εµνλσqµeνq1λq2σ

Dρ q q2–( )
---------------------------------------,–

m4π
2 1/2

m2π
2 1/2

q
π+ q

π0
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79 MeV The integrations over the angles of final pions
can be evaluated under the assumption that they are
independent. Using the nonrelativistic expression for
the phase space volume of five pions obtained from
Eq. (2.17) with n = 5 and M = mω, one finds

(4.8)

Its numerical value coincides with the numerically
evaluated exact expression to within 1%. Introducing
the branching ratio at the ω mass as

(4.9)

one finds

(4.10)

The above formula is obtained with the Lorentz struc-
tures chosen as in Eqs. (4.3) and (4.7). Using the anti-
symmetry property of εµνλσ and the 4-momentum con-
servation relation

one can eliminate one combination of the pion
momenta in favor of another (see Section 4.4 for more
detail). This arbitrariness results in an uncertain factor
ranging from 2 for the ω  2π+π–π0 decay to 3 for the
ω  π+π–3π0 decay. As in the case of the ρ  4π
decay, this factor illustrates the role of the angular cor-
relations among the final pions. The calculation gives

B(ω  2π+2π–π0) = (2.5–3.9) × 10–9,

B(ω  π+π–3π0) = (1.0–3.8) × 10–9,

where, in addition to the above uncertain factor due to
the choice of momenta, the correction for the mass dif-
ference of π± and π0 is taken into account.

R5

π6 mπi

i 1=

5

∏ 
 
 

1/2

60 mπi

i 1=

5

∑ 
 
 

3/2
--------------------------------- mω mπi

i 1=

5

∑–
 
 
 

5

.=

Bω 5π→ Γω 5π→ mω( ) Γω,⁄=

Bω 5π→
5Nc

2π2
---------

gρππg2

8 f π
3

---------------
 
 
  mω q

π+

Dρ m4π
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-----------------------

2

≈

×
R5

18 2π( )11mωΓω
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Dρ m4π
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2Dρ m2π
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------------------------–

2

×

q
π0

2, for 2π+2π–π0,

q
π+

2

3
------------, for π+π–3π0.






q qi

i 1=

5

∑ ,=
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4.3. A More Careful Evaluation
of the Branching Ratios and Excitation Curves

The partial widths can be evaluated with an accu-
racy of a 20% by taking the amplitude of each relevant
decay to be 5/2 times the ρπ state production amplitude
with the subsequent decay ρ  4π and using the cal-
culated widths of the latter:

(4.11)

where

The notation is such that

(4.12)

with the function λ given by Eq. (3.4) standing for the
momentum of final particle j (or k) in the rest frame sys-
tem of decaying particle i. We note the a–1 dependence
of the ω  5π width on the HLS parameter a through
Eq. (2.2). The branching ratio  is obtained

from Eq. (4.11) by inserting the lower integration limit
 + 3 , replacing    in the expression

for the momentum q, and then inserting the ρ+ 
π+3π0 decay width corrected for the mass difference of
charged and neutral pions. Obviously, the main correc-
tion of this type comes from the phase-space volume of
the final 4π state. One obtains

(4.13)

where

As pointed out in [3], the inclusion of the direct ω 
π+π–π0 vertex reduces the 3π decay width of ω by 33%.
This implies that the effect of the pointlike ω 
3π  2π(3π) diagrams shown in Fig. 6b must be

B
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1
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2Dρ m2π
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------------------------–

2
5
2
--- 

 
2 2
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----------=
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2

-------------------------------------------------------------------d
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Γ
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2 q3 mω m m
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Ncg

2
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------------------------------------------------------------------d

m
π+ 3m

π0+

mω m
π+–
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taken into account by the following replacement in the
expression for the suppression factor:

(4.14)

Using this value instead of 0.64 results in the increase
of the above branching ratios by a factor of 1.17. One
can see that the results of the order-of-magnitude esti-
mates given in Section 4.2 agree with the careful calcu-
lations by a factor lower than 4.5.

The numerical value of the ω  5π decay width
changes by a factor of 2 when the energy varies within
±Γω/2 around the ω mass. In other words, the depen-
dence of this partial width on the energy is very strong.
This is illustrated in Fig. 7 with the ω  5π excitation
curves in e+e– annihilation,

(4.15)

where  ( ) is given by

Eq. (4.11) (respectively, (4.13)) with the substitution
mω  E. The strong energy dependence of the partial
width results in the asymmetric shape of the ω reso-
nance and the shift of its peak position by +0.7 MeV. As
can be seen from Fig. 7, the peak value of the 5π state
production cross section is about 1.5–2.0 fb. The decays
ω  5π can nevertheless be observable on e+e– collid-
ers. Indeed, with the luminosity L = 1033 cm–2 s–1 near
the ω peak, which seems to be feasible, one may expect
to detect about 2 events per week for the above decays.

4.4. Angular Distributions of the Final Pions
in the ω  5π Decay

The angular distributions of the final pions must of
course be deduced from the full amplitudes in Eqs. (4.1)
and (4.2). However, some qualitative conclusions about
the angular distributions can be drawn from the simpli-
fied expressions in Eqs. (4.3)–(4.7). We find these dis-
tributions in the rest frame of the decaying ω meson.
Since helicity is conserved, only the ω(782) states with

1
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------------------------–

2

1
Dρ m4π
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2
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+
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– ω 5π→ →
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E
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ωe

+
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ΓωBω 5π→ E( )
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2–( )
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mωΓω( )2+[ ]

------------------------------------------------------,

B
ω 2π+2π–π0→

E( ) B
ω π+π–3π0→

E( )
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the spin projections λ = ±1 on the e+e– beam axis given
by the unit vector n0 are populated. The notation for the
vector product of the pion 3-momenta used in what fol-
lows is

(4.16)

In other words, θij is the angle between the pion
momenta qi and qj , with Θij and Φij being the polar and
azimuthal angles of the normal to the plane spanned by
qi and qj . Choosing n0 to be the unit vector along the
z axis, the probability density of the emission of two
π+’s with the momenta q1 and q2 and of π0 with the
momentum q4 is represented as

(4.17)

in the case of the final state 2π+2π–π0. Here, the momen-
tum assignment is the same as in Eq. (4.1). The angular
distribution of π0 and of two π–’s with the momenta
q3, q5 is obtained from Eq. (4.17) by the replacement
q1, 2  q3, 5, because the identity

is satisfied. Another identity

allows one to write the angular distribution that
includes four charged pions as

(4.18)

where Pij interchanges the indices i and j.

qi q j× qi q j=

× θijsin Θij Φijcossin Θijsin Φijsin Θijcos, ,( ).

w q4 q1 q2+( )×[ ]2 n0 q4 q1 q2+( )×[ ]⋅( )2–∝

=  q4
2 q1

2 θ41sin
2 Θ41sin

2 q2
2 θ42sin

2 Θ42sin
2

+[
+ 2 q1 q2 Θ41sin Θ42 θ41sinsin

× θ42 Φ41 Φ42–( )cossin ]

εµνλσqµeν q1 q2+( )λq4σ εµνλσqµeν q3 q5+( )λq4σ–=

εµνλσqµeν q1 q2+( )λq4σ

=  εµνλσqµeν q1 q2+( )λ q3 q5+( )σ–

w q1 q2+( ) q3 q5+( )×[ ]2∝

– n0 q1 q2+( ) q3 q5+( )×[ ]⋅( )2

=  1 P12+( ) 1 P35+( )q1
2q3

2 θ13sin
2 Θ13sin

2

+ 2 q1 q2 1 P35+( )q3
2

× θ13sin θ23sin Θ13sin Θ23 Φ13 Φ23–( )cossin

+ 2 q3 q5 1 P12+( )q1
2

× θ13sin θ15sin Θ13sin Θ15 Φ13 Φ15–( )cossin

+ 2 q1 q2 q3 q5 1 P35+( )
× θ13sin θ25sin Θ13sin Θ25 Φ13 Φ25–( ) ,cossin
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For the final state π+π–3π0, the corresponding prob-
ability density can be obtained from Eqs. (4.6) and
(4.7) as

(4.19)

where the momentum assignment is the same as in
Eq. (4.2). The corresponding angular distribution of
one charged (e.g., π+) and three neutral pions can be
obtained from Eqs. (4.6) and (1.7) with the help of the
identity

as

(4.20)

where the indices i and j run over 3, 4, 5.
The strong energy dependence of the five-pion par-

tial width of ω implies that the branching ratio at the ω
mass (Eq. (4.9), evaluated above) is slightly different
from that determined by the expression

(4.21)

Taking E1 = 772 MeV and E2 = 792 MeV, one finds

and

to be compared with Eq. (4.11) and (4.13), respectively.

In particular, the quantity  is the

relevant characteristic of this specific decay mode in
photoproduction experiments. The Jefferson Lab [19]
could also be suitable for detecting the five-pion decays
of ω. However, in view of the suppression of the ω pho-
toproduction cross section by a factor of 1/9 as com-
pared with the ρ one, the total number of ω mesons will
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amount to 7 × 108 per nucleon. Hence, the increase of
intensity of this machine by a factor of 50 is highly
desirable in order to observe the ω  5π decay and to
measure its branching ratio. Evidently, the ω photopro-
duction on heavy nuclei is preferable because the cross
section grows with the mass number A as A0.8–0.95 [20].

The conclusions about the angular distributions in
photoproduction are as follows. Of course, their gen-
eral expression should be deduced from the full decay
amplitudes in Eqs. (4.1) and (4.2) together with the
detailed form of the photoproduction mechanism. The
qualitative picture, however, can be obtained by noting
that the s-channel helicity conservation is a good selec-
tion rule for the photoproduction reactions. Then, in the
helicity reference frame (which is the frame where ω is
at rest and its spin quantization axis is directed along
the ω momentum in the center-of-mass system), the
expressions for the angular distributions coincide with
the expressions in Eqs. (4.17)–(4.20). Since the direc-
tion of the final ω momentum lies at a scattering angle
that is less than 0.5° for the photoproduction on heavy
nuclei at high energies, the vector n0 can be treated as
pointing along the photon-beam direction.

5. CONCLUSION

The results presented in this paper show that the left
shoulder of the ρ peak is, by all appearance, the best
place to study the effects of chiral dynamics as com-
pared to the classical low-energy ππ scattering. The
e+e– colliders with a sufficiently large luminosity at
energies below the ρ mass provide the controlled
source of soft pions. The role of higher derivatives and
loop corrections in the low-energy effective Lagrangian
for soft pions, as well as various schemes of incorpora-
tion of vector mesons into the chiral approach, can be
successfully tested with such machines. The intense
beams of photons from the Jefferson Laboratory are
also of great importance in achieving the theoretical
goals mentioned above. The decay ω  5π is of spe-
cial interest, because its kinematics is such that the final
pions are essentially nonrelativistic, so that the effects
of chiral dynamics are manifested most clearly. The
measurements of the branching ratio of the five-pion
decays of ω would be a challenge to experimenters,
because this task would help in rigorously testing chiral
theories that incorporate the vector mesons.
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Abstract—A graphic method for describing the localization of quantum wave packets in several dimensions is
proposed. The method employs classical action–angle coordinates. Different kind of wave packets arising in
the two- and three-dimensional Coulomb problems are described from a unified point of view. Specifically, a
more precise interpretation of the structure of “angular” Rydberg wave packets is given. Certain additional fea-
tures of the proposed approach are discussed. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Localized quantum states (wave packets) have been
studied since quantum mechanics came into existence.
Nonetheless, such states have been attracting increas-
ing attention in the last few years. The reason is that
wave packets are quantum states which are closest to
classical particles. These are objects which manifest
both classical and exclusively quantum features. Con-
sequently, as the experimental and technical possibili-
ties increase, the question of the production and control
of wave packets in practice is becoming increasingly
more important in many fields ranging from microelec-
tronics to chemistry. Specifically, wave packets arising
in Rydberg (highly excited) atoms have been attracting
a great deal of attention in the last few years. Such
packets have been investigated theoretically and exper-
imentally [1–3].

Wave packets arise in many processes as a superpo-
sition of quantum states with different quantum num-
bers. Often, when a superposition of quantum states in
a specific process is under study it is desirable to have
a simple method for answering questions such as: Is a
wave function in a system with several degrees of free-
dom localized? What is the wave function like? Does
such localization exist for any classical model? What
are the dynamics of a localized state? In the present
paper a quite simple method is proposed for giving a
qualitative answer to these questions. Such an answer
can often make it easier to understand the physics of a
problem, underscoring the relation between its classical
and quantum features. Such a method has not been dis-
cussed in the literature.

In classical mechanics the behavior of integrable
systems is often described using action–angle coordi-
nates. Then, as is well known, a transformation is made
into a coordinate system where the momenta are the
integrals of motion and the conjugate coordinates—the
angles—vary linearly in time. If the actions and their
conjugate angles are known, then everything is known
about the motion of a classical system. However, a
1063-7761/00/9103- $20.00 © 20449
strict definition of the quantum action–angle coordi-
nates encounters mathematical difficulties. Quantum
action–angle coordinates are too difficult to use, and as
a result they cannot be used as a simple tool for analyz-
ing the properties of a wave function.

It is shown in the present paper how the classical
action–angle coordinates can be conveniently used to
analyze the localization and dynamics of quantum
states. For this, the sense in which classical action–angle
coordinates can describe a quantum state is discussed in
Section 2. Specifically, the wave function is represented
in a form that singles out the classical action and angles
and it is shown how such a description can be applied to
wave packets. This approach is especially convenient for
describing systems with several degrees of freedom. The
proposed method is explained in greater detail in Sec-
tion 3 for a two-dimensional Coulomb problem. The
localization and dynamics of various Rydberg wave
packets in a two-dimensional problem are analyzed in
the same section. Almost all these packets have been
studied previously, but a unified approach to their
description has never been proposed. Specifically, a
simplified understanding of the structure of certain
packets sometimes led to an incorrect conception of
their localization. Wave packets arising in a three-
dimensional Coulomb problem with m = 0 are studied
in Section 4. Certain additional features of the proposed
approach—semisiclassical quantization, the Wigner
function, and the calculation of matrix elements—are
discussed in Section 5. The results obtained in this
paper are briefly summarized in Section 6.

2. SEMICLASSICAL REPRESENTATION
OF ANGLES

It is well known [4, 5] that a semiclassical wave
function of an integrable system can be constructed as
follows. Let Γ be the Lagrangian manifold of the corre-
sponding classical system, i.e., the set of points in
phase space which are reached during motion with the
000 MAIK “Nauka/Interperiodica”
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same integrals of motion and with different initial con-
ditions. For finite motion a Lagrangian manifold is
equivalent to a multidimensional torus [5, 6]. For one-
dimensional motion, Γ is a trajectory in phase space.
For the system to be quantizable Γ must satisfy the
Bohr–Sommerfeld quantization rule (see below). A
semiclassical, unnormalized wave function at an arbi-
trary point r in the classically allowed region far from
singularities (turning points) is determined as [5]

(1)

where S is the action, J = {Ji} is a set of integrals of
motion,  is an index characterizing the point am and
depends on the properties of Γ (see [4]), and {am} is a
set of points on Γ that project into a fixed point r. It is

obvious that there are m =  such points, where Nosc

is the number of degrees of freedom along which the
system executes an oscillatory. Here and below " = 1.

Action–angle coordinates can be introduced into the
system being integrated. In this case, the integrals of
motion (action) J are the momenta and the coordinates
conjugate to them—the angles—are

(see [5, 6]). The action and angles can be normalized in
a manner so that in classical motion the λi vary linearly
from 0 to 2π. According to the Bohr–Sommerfeld
quantization rule

J = n + γ/4,

where g = {γi} is a set of Maslov indices corresponding
to different basic cycles [4].

We shall now study a superposition of states with
quantum numbers n, closely spaced around n0, and
amplitudes Cn. For every such state the action at the
points of the corresponding Lagrangian manifold am(r)
that project into the point r is

(2)

where  is the action at the point am in classical
motion with J = n + γ/4.

The phase of classical motion along the orbit λ at a
given point r remains essentially unchanged for small
variations of J. Consequently, it can be assumed that

Ψ r( ) det ∂2S
∂r∂J
------------

1/2
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∑=

× i Sam
Et–
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2
----------– 

  Ψam
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λ λ i{ } ∂S
∂Ji
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r const= 
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n Sam

n0 n n0–( )λ ,+≈
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n
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the wave function of a superposition of states is approx-
imately

(3)

In Eq. (3) λ(r) is estimated at n = n0, and

(4)

where En is the energy for classical motion with J = n +
γ/4. The function

incorporates the generating function of a classical
canonical transformation to action–angle coordinates

with J = n + γ/4, equal to  – Jλ [6], and the addi-
tional phase

In Eq. (3) the expression for the wave function for
each point am is divided into two parts. Ψλ characterizes
only a quantum state given by the set of amplitudes Cn.
The second term, containing the preexponential factor
and the exponential in Eq. (3), characterizes the r-rep-
resentation in which the wave function is written. We
assume that it is independent of the set of quantum
numbers, since λ(r) changes very little with small vari-
ations of J.

In what follows we shall say that Ψλ gives a wave
function in the angle λi representation. This terminol-
ogy, which is not absolutely precise, corresponds to the
general principles of the construction of action–angle
quantum coordinates [7–9].

Since the function Ψλ is found as a Fourier trans-
form of the amplitudes of the states Cnexp(–iEnt), its
localization is quite easily described. If the function Ψλ
is strongly localized near some values λ(t), then, evi-
dently, Ψ(r) is localized near r(λ(t)).

If the function Ψλ(λ) is not strongly localized (for
example, the localization width ∆λ > π), it is more con-
venient to express the quantum state as

(5)

where

and  are the terms corresponding to different points
am in Eq. (1) for states with the quantum numbers n0.

The formula (5) can be interpreted as follows. A
semiclassical wave function can be represented as

Ψ r t,( ) det
∂λ
∂r
------

1/2
iFam

[ ]Ψλ .exp
am

∑=

Ψλ λ t,( ) Cn i nλ Ent–( )( ),exp
n

∑=

Fam
Sam

n0 n0λ– γam
π/2–=

Sam

n0

γam
π/2 γλ /4.+

Ψ r t,( ) Ψam

n0 r t,( ) f λam
t,( ),

am

∑=

f λ t,( ) Ψλ i n0λ En0
t–( )–( ),exp=

Ψam

n0
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being distributed on Γ (in the one-dimensional case—
on the phase trajectory) and then projected into the r
space by adding a preexponential factor. Then, oscilla-
tions of the wave function as a function of r arise
because of the interference of terms corresponding to
different sheets of Γ. This approach (Einstein–Brilloui–
Keller approach [5]) is incorporated in Eq. (1), where
the action can be calculated at the points of Γ that are
projectable into r. According to Eq. (5), however, the
“wave packet” is the envelope moving along Γ and
modulating the central state of the packet. The function
f(λ, t) determines the form and dynamics of this enve-
lope. Specifically, if f(λ) is localized on one sheet of the
Langrangian manifold (on one branch of the phase tra-
jectory), then there is no interference of the terms cor-
responding to different am and the wave function of the
packet has no oscillations which are characteristic for
the eigenstates.

Thus, the prescription for describing the spatial
localization of the wave function of a superposition of
quantum states is as follows. The geometric meaning of
the classical angles corresponding to the quantum num-
bers of the problem must be determined. Next, the wave
function of the superposition of states must be written
in the angle representation (4), or (which is actually the
same thing) the modulating function f in the Eq. (5)
must be determined. The localization of Ψλ or f in some
range of angles determines the localization of the wave
function in the coordinate region corresponding to
these angles.

In what follows we shall illustrate the application of
this principle for various Rydberg wave packets. The
method will be used to analyze the localization of a
wave function in various packets. Then this analysis
will be illustrated by means of numerical calculations.

3. TWO-DIMENSIONAL COULOMB PROBLEM

In this section the various Rydberg wave packets
arising in a two-dimensional Coulomb problem will be
considered. Such a model problem is often used to
describe electronic states with large quantum numbers
m . l in fields where the motion of the electron remains
almost planar [10–14].

The motion of an electron in the classical two-
dimensional Coulomb problem can be described using
the following two pairs of action–angle variables [15].
The first pair consists of the angular momentum Jm = pφ
and its conjugate angle φxy , which is the angle between
the direction to the perihelion of the electron orbit and
a fixed direction in the xy plane. The second pair con-
sists of the action

and its conjugate angle θ—the average anomaly of the
electron, giving its position on an ellipse. The orbit of a
classical electron in a two-dimensional Coulomb prob-

Jn pφ
1

2π
------ prdr∫°+=
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lem is an ellipse with semiaxes  and JnJm and with
focus located at the nucleus of the atom. The average
anomaly θ is proportional to the area swept out by the
radius vector of an electron in the classical motion. The
value θ0 = 0 corresponds to an interior turning point and
θ0 = π corresponds to an exterior turning point.

In classical motion

(6)

For quantization according to the Bohr–Sommerfeld
rule

(7)

(8)

In classical motion, the two-dimensional electron
undergoes oscillations only along the radius, one of the
two polar coordinates. The semiclassical wave function
at in arbitrary point r of a classically allowed region is
given by the sum of two terms corresponding to the
motion of an electron along two ellipses passing
through the point r (Fig. 1). In Eq. (1) the indices 
for these two terms differ by 1. The wave function Ψλ
of these two terms is, correspondingly,

(9)

where

φxy 1 and φxy 2 are the slope angles of the two ellipses,
and θ1 = –θ2 are the average anomalies characterizing
the point r in the motion along the first or second
ellipse. The function F in Eq. (3) can be found by cal-
culating numerically or analytically the action S and the
coordinates θ and φ for each ellipse at each point.

To calculate the semiclassical wave function of the
superposition of states with different values of n and m,
it would be necessary to draw two ellipses with semi-

axes  and JnJm through the point r for each pair n, m
and then find on each ellipse the value of the action at
the point r, calculate the preexponential factor in
Eq. (1), and sum all values of the characteristic wave
functions with the required coefficients.

In the approximate expression (3) it is assumed that
all ellipses for different values of n and m are the same
as for the central state n0, m0. Then it is sufficient to
draw through the point r only two ellipses, to calculate
on each ellipse

Jn
2

H
Jn

2

2
-----, φ̇xy– 0, θ̇ ωk 1/Jn

3.= = = =

Jn n 1/2, n+ 0 1 2 …,, , ,= =

Jm m, m n … n., ,–= =

γam

Ψλ
n m 1 2, , , i nθ1 2, lφxy 1 2, Ent–+( )[ ] ,exp=

En
1

2 n 1/2+( )2
---------------------------,–=

Jn
2

Ψλ Cn m, i nθ mφxy Ent–+( )[ ] ,exp
n m,
∑=
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Fig. 1. Squared wave function of the state with n = 19, m = 15. The broken lines show two ellipses corresponding to classical motion
with the actions Jn = 19.5 and Jm = 15.
and substitute this expression into Eq. (3), using the
function F found for the central state.

However, according to the Eq. (5), there is no need
to calculate the semiclassical wave function of the
superposition in order to describe the wave packet. It is
sufficient to know the wave function of one central state

, the function whose exact form is well known
[16] and which can be easily found numerically with-
out using the semiclassical approximation. The wave

function of the packet Ψ(r, t) is , normalized
by the envelope

The function Ψ(r, t) is more localized at locations,
where f(θ, φxy, t) is localized. Given the geometric
meaning of the angles θ and φxy it is easy to predict the
region and degree of localization of the wave function.
The presence or absence of an interference pattern in
the region of localization depends on the relative con-
tribution made to the wave function at a particular point
by both sets of angles θ1, φxy 1 and θ2, φxy 2 correspond-
ing to this point, i.e., on the degree of localization of the
function f. This latter approach will be assumed below
in the interpretation of the form of the localization of
the wave function of superpositions of states.

Ψ
n0 m0,

r( )

Ψ
n0 m0,

r( )

f θ φxy t, ,( ) Ψλ i n0θ m0φxy En0
t–+( )–[ ] .exp=
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In this and the next sections various wave packets in
two- and three-dimensional Coulomb problems will be
studied. The form of the localization of various packets
will be predicted qualitatively using the analysis in the
angle representation. As an illustration, we shall find
numerically the wave functions of the packets using the
exact (not semiclassical) expressions for the character-
istic states of an atom.

As a first example of a wave packet, we shall study
the superposition of quantum states with the same
angular momentum m0 and with amplitudes having a
Gaussian distribution over n:

(10)

Since the Fourier transform of a Gaussian is a Gauss-
ian, the function Ψλ(θ, φ) (and hence f(θ, φ) also) is
localized as a function of θ near θ0 and is not localized
as a function of φxy. All possible ellipses contribute to
the wave function of such a state, and on each ellipse
the regions θ close to θ0 contribute. This means that
Ψrwp(r) should be localized along the radius near r(θ0)
and should not be localized along the polar coordinate.
Such states are called “radial wave packets” [1, 2, 17].

Figure 2a shows an example of the wave function of
a radial wave packet. Here n0 = 19, m0 = 15, σ = 3, and

Ψrwp n n0–( )2

σ2
---------------------– iθ0 n n0–( )– Ψ

n m0,
.exp

n

∑=
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θ0 = π/3. The superposition wave function, calculated
without using any approximations, in Fig. 2a is local-
ized along the radius and is not localized along the
angle. This corresponds to the prediction of our theory.

The radial wave packets were produced experimen-
tally using short optical pulses with a wide spectrum
[1, 2]. However, such states are excited in a strong field as
a result of Raman bound–bound transitions via the con-
tinuum [17]. Moreover, such states can be produced in
a microwave field with frequency close to ωk [10, 18].

To describe the dynamics of a radial wave packet we
shall expand, as usual, the energy En up to second order
around :En0

En En0
E'N

E''
2
-----N2,+ +=

where

According to Eq. (4), we obtain for Ψλ

(11)

Hence, it is evident that the wave function Ψrwp is an
unperturbed wave function of a state with quantum

N n n0, E'– ωk–
1

n0 1/2+( )3
--------------------------,–= = =

E''
3

n0 1/2+( )4
--------------------------.=

Ψλ
rwp t( ) i n0θ m0ϕ En0

t–+[ ]( )exp=

× N2 1

σ2
----- iE''t

2
----------– 

 – iN θ θ0– ωkt–( )+ .exp
N

∑

100 arb. units

(a) (b)

(c) (d)

Fig. 2. Wave packets of a two-dimensional Coulomb problem: (a) radial wave packet, (b) elliptical state, (c) wave packet on an ellip-
tical orbit, (d) the state ΨCP. The broken line corresponds to the curve θ + φxy = 0.
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numbers n0, m0 that is modulated by a Gaussian wave
packet moving along θ (i.e., oscillating along the
radius) with frequency ωk. This packet spreads in a
characteristic time tspr = 2/σ2E '' and is completely
restored in a time trev = π/E ''.

The expression (11) also describes the fractional
restoration of the radial wave packet in a time trevi/j,
when the term E ''t adds the corresponding phases to all
components of the sum (11). Indeed, at the time t =
trevi/j the phase N2E ''t/2 is identical for the states N, N ±
k, N ± 2k, …, where k depends on i/j [19]. In this case
the sum (11) decomposes into k subsums, each of
which contains only terms with the numbers N + s, N +
s ± k, … and reproduces the initial localized distribu-
tion k times on the classical trajectory. According to the
formula (11), if at t = 0 Ψλ is given by a localized 2π
periodic function G1(θ) (1), then at t = trevi/j

(12)

where Gk is a 2π/k periodic function which is identical
to G1 in the region of localization. As a result of inter-
ference of terms with different values of s, depending
on i/j, the distribution (12) can represent from 0 to k
packets on a classical trajectory. The expression (12) is
identical to the known expression describing the partial
restorations of the wave packets [19], and its derivation
is clearer than the corresponding arguments in the r
representation. In addition, the arguments in the angle
representation (4) transfer directly to the motion of a
packet along several angles simultaneously.

We shall now consider the superposition of states
with the same principal quantum number n0 and with a
Gaussian distribution over m near m0. The wave func-
tion of such a state

(13)

is localized near the angle φxy 0. Only ellipses with slope
angles close to φxy 0 contribute to the wave function of
such a state. This means that Ψe2d(r) is localized near
an ellipse corresponding to classical motion with Jn =
n0 + 1/2, Jm = m0, and φxy = φxy 0. An example of such a
state with n0 = 19, m0 = 15, σ = 3, and φxy 0 = 0 is shown
in Fig. 2b. This state can be called “elliptical.”

In the literature localized superpositions with
respect to the quantum number m are usually called
“angular wave packets” [1, 12] in view of the somewhat
simplified understanding of their angular distribution.
It is obvious from the analysis performed here that the
so-called “angular packets” are localized not so much

Ψλ
rwp trev i j⁄( ) 1

k
---=

× i
2πs2i

j
------------- s θ ωkt–( )+ 

  Gk θ ωkt–( ),exp
s 0=

k 1–

∑

Ψλ
e2d i n0θ En0

t–[ ]( )exp=

×
m m0–( )2

σ2
-----------------------– im φxy φxy 0–( )+exp

m

∑
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along the polar angle as along the angle φxy near one cen-
tral ellipse. When the wave function of such a state is ana-
lyzed, it is usually easy to see the elliptical type localiza-
tion (see, for example, the “angular packet” in [1]).

States with the sharpest localization near a Keple-
rian ellipse were described as coherent quantum states
corresponding to the hidden symmetry of a two-dimen-
sional Coulomb problem [12]. They can be produced,
for example, by using a combination of pulses of
crossed electric or electric and magnetic fields [20]. If
Ψλ is localized near several angles φxy k, the wave func-
tion Ψ(r) is localized near several Keplerian ellipses
(see Fig. 1 in [10]).

If the superposition of states is localized along m
and n, Ψ(r) is one or several wave packets revolving
around the nucleus along elliptical orbits. Examples of
such states can be found in [1, 2, 10, 12]. Such a packet
can be produced, for example, from an elliptical state
using a microwave field in resonance with respect to ωk

or from a low-lying state by using a combination of a
short optical pulse and a microwave or constant field.
Figure 2c shows such a state with n0 = 19, m0 = 15, σn =
σl = 3, θ0 = π/3, and φxy 0 = 0. The dynamics of such a
state in the absence of a field is identical to that of a
radial packet. A resonance microwave field strongly sup-
presses the spreading along the angle θ and adds a very
slow precession and spreading along the angle φxy [10].

Finally, we shall consider localized states of the
form

(14)

Such a state can be produced, for example, from a state
with quantum numbers n0, m0 by a circularly polarized
field with frequency close to ωk [10, 13]. Substituting

the expression (14) into Eq. (4), we find that  (and
hence also ΨCP(r)) possesses Gaussian localization
around the curve θ + φxy = 0. This curve is a stable tra-
jectory of a classical electron in a coordinate system
rotating together with the field. Figure 2d shows the
state with n0 = 19, m0 = 15, and σ = 3, found numeri-
cally, and the corresponding classical trajectory.

If in the expansion (14) the state (n0, m0) is circular,
i.e., m0 = n0, ΨCP(r) is a completely localized wave
packet revolving around the nucleus along a circular
trajectory. The dynamics of such wave packets has been
studied many times in the literature [13, 14].

4. WAVE PACKETS IN A THREE-DIMENSIONAL 
COULOMB PROBLEM

We shall now consider a three-dimensional Cou-
lomb problem. The corresponding actions are quan-
tized according to the Bohr–Sommerfeld rule as

ΨCP r( ) N2

σ2
------– Ψ

n0 N+ m0 N+,
.exp

N

∑=

Ψλ
CP

Lm pϕpolar
m, m l … l,, ,–= = =
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(15)

The angles corresponding to these actions are the aver-
age anomaly θ and two other Keplerian elements of the
orbit—the argument of the pericenter and the longitude
of the ascending angle [15]. The notation for the prin-
cipal quantum number n, introduced here according to
the Bohr–Sommerfeld quantization rule, differs by 1
from the conventional value.

The description of quantum states is especially sim-
ple when the numbers m are very large or very small. If
m ~ l @ 1, the electron wave function is localized near
the xy plane and the problem is essentially equivalent to
a two-dimensional problem.

Let us consider the opposite case, m = 0. In this case
the wave function possesses radial symmetry relative to
the z axis. In the xz plane the position of a classical elec-
tron is characterized by the average anomaly θ and the
angle φz (the argument of the pericenter of the orbit)
characterizing the slope of the orbit with respect to the
z axis.

The classical motion includes oscillations along two
polar coordinates (ψpolar and r), and the wave function
at the point r is given by a sum of four terms corre-
sponding to motion along four ellipses and character-
ized by Ψλof the form

(16)

where

Compared with the two-dimensional problem, here
there are two additional ellipses with the opposite sign
of φz and simultaneously with the plane of classical
motion rotated by π relative to the z axis. Consequently,
the interference pattern in the xz plane is more compli-
cated than in the xy plane. Moreover, the preexponen-
tial factor in Eq. (1) is larger for points r near the z axis,
which corresponds to classical motion with Jm = 0. Fig-
ure 3a shows the probability distribution in the xz plane
for the state n = 19, l = 15, and m = 0.

Just as in the two-dimensional case, the superposi-
tion of states with different n and the same value of l is
a radial wave packet. The angular structure of a radial
wave packet is identical to that of a state with the quan-
tum numbers n0, l in the corresponding formula (5).
Figure 3b shows the numerically constructed radial
wave packet with n0 = 19, l = 15, m = 0, σ = 3, and θ0 = π.

Jl
1

2π
------ pψpolar

dψpolar∫° Jm+ l
1
2
---,+= =

l 0 … n,, ,=

Jn
1

2π
------ prdr Jl+∫° n 1, n+ 0 1 2 …, , ,= = =

Ψλ
n l 1 2 3 4, , , , , i nθ1 2 3 4, , , lφz  1 2 3 4 , , , E n t –+  ( )[ ] ,exp=

En
1

2 n 1+( )2
----------------------, θ4– θ1, θ2 θ3 θ1,–= = = =

φz  3 φ z  1 = , φ z   4 φ z   2 .=                                 
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The dynamics of such a packet is identical to the two-
dimensional case.

Let us consider the superposition of states with the
same n but different l:

(17)

Such a state is localized around the angle φz 0. In the xz
plane this localization corresponds to a superposition of
two ellipses, one of which is obtained from the other
by reflection relative to the z axis. At the locations
where these ellipses intersect the wave function is an
interference pattern corresponding to the state n0, l0.
Figures 3c, 3d show the state Ψe3d with n0 = 19, l0 = 15,
m = 0, 

 

σ

 

 = 3, 

 

φ

 

z

 

 0

 

 = 

 

π

 

, and 

 

φ

 

z

 

 0

 

 = 

 

π

 

/2. Such states are also
often called “angular wave packets,” having in mind
localization with respect to the polar angle. In agree-
ment with our analytical predictions, Figs. 3c, 3d show
that such an interpretation is not completely correct.
Such states can be produced from a single Rydberg
state by using a constant electric-field pulse [21].

Just as in the two-dimensional case, simultaneous
localization along 

 

θ

 

 and 

 

φ

 

z

 

 corresponds to wave packets
moving along ellipses in the 

 

xz 

 

plane. In this case the
complete wave function is a wave packet which is sym-
metric with respect to rotations around the 

 

z 

 

axis and
oscillates along the 

 

z 

 

axis. Such a state can arise, for
example, when a linearly polarized microwave field
acts on the state (

 

n

 

0

 

, 

 

l

 

0

 

) [18].
In order for a three-dimensional quantum state to be

localized near a single ellipse localization with respect
to 

 

φ

 

z

 

 and 

 

φ

 

xy

 

 is required, i.e., a superposition with
respect to both quantum numbers 

 

l 

 

and 

 

m 

 

is necessary.
The generalized coherent states of the three-dimen-
sional Coulomb problem possess this property [22].
Just as the two-dimensional elliptical states, they can be
produced, making use of symmetry conservation in
electric or crossed electric and magnetic fields.

5. ADDITIONAL FEATURES
OF THE PROPOSED APPROACH

We have shown that the angle representation (4)
makes it possible to describe in a simple manner the
localization and dynamics of multidimensional semi-
classical wave packets. We shall consider several
important additional features of this representation.

The first important feature is the possibility of
describing the system by using intuitively obvious
“unified” semiclassical quantization [23–26]. Then the
actions 

 

J

 

i

 

 are replaced by the operators –

 

i

 

∂

 

/

 

∂

 

λ

 

i

 

 + 

 

γ

 

i

 

/4
and periodic boundary conditions are imposed on the
wave function. In this approach 

 

J

 

 and 

 

λ

 

 commute cor-
rectly from the standpoint of quantum mechanics, the
energy and action of the system are determined to semi-
classical accuracy, and 

 

Ψ

 

λ

 

 is the wave function of the

Ψe3d l l0–( )2

σ2
------------------– iφz  0 l l 0 –( )–  Ψ 

n
 

0

 
l

 
,

 .exp  

l

 ∑  =
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(a) (b)

(c) (d)

100 arb. units

Fig. 3. (a) Distribution of the squared wave function in the xz plane for the state n = 19, l = 15, m = 0; (b) three-dimensional radial
wave packet in the xz plane z; (c) and (d) packets corresponding to a superposition of states with different values of l. 
system. This semiclassical method, which gives a uni-
fied description of all points of a classical trajectory,
has been used to find the energies of semiclassical sys-
tems. According to the Eqs. (3) and (5), it can also
describe the localization of a wave function.

An important feature of such an approach follows
from the following fact. The quantum theory of nonlin-
ear resonance [9] reproduces all corresponding steps of
the classical perturbation theory with respect to the
action [6] and actually uses Ψλ as a formal auxiliary
tool. This tool is used to describe an isolated resonance
and in regions where several resonances can interact.
Consequently, “unified” semiclassical quantization is
applicable not only to strictly integrable systems but
also to a wide class of perturbed systems.
JOURNAL OF EXPERIMENTAL 
In such systems the form of the localization of a
wave function can be most easily determined directly
from the classical approximate (averaged) Hamilto-
nian.

A second important feature of the representation (4)
is its convenience for calculating semiclassical matrix
elements. Indeed, let a perturbation V(r, t) act on a sys-
tem. When calculating the matrix element of the pertur-
bation between states with close quantum numbers n1
and n2, the fact that the values of the angles λ(r) for
them are almost the same must be taken into account,
just as in the description of wave packets. Conse-
quently, only the expression

(18)
Ψλ

n2*VΨλ
n1

=  i n1 n2–( )λ En1
En2–( )t–[ ]{ } V λ r( ) t,( ).exp
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remains in the integral determining the matrix element.
This approach immediately answers the question of
which of the multidimensional Fourier components of
the perturbation V(r, t) describes particular transitions
in a system with several degrees of freedom.

The latter remark refers to the form of the Wigner
function in the representation (4). This function, deter-
mined by the expression

(19)

is often used as a quantum-mechanical analog of a clas-
sical representation in phase space [8, 25]. For large
quantum numbers it is very difficult to calculate W in
the r representation. Moreover, the semiclassical Wigner
function possesses singularities that depend on the
quantum state and not only on the representation [25].
These facts make it difficult to use W for qualitative
analysis of semiclassical quantum systems. At the same
time, it is easy to calculate W in the representation (4).
For a state with quantum numbers n it has the form of
a δ function on the torus J = Jn, corresponding to clas-
sical motion [25]. The representation (4) can strongly
simplify the analysis of a quantum system in phase
space when the structure of the system, and not the
structure of the singularities, is important.

6. CONCLUSIONS
In this paper a quite simple approach was proposed

for describing wave packets in multidimensional prob-
lems. In this approach attention is focused primarily on
the question of the angular localization corresponding
to combinations with a particular set of quantum num-
bers. The angular representation (3)–(5) was used to
describe quantum states. It was shown that the expres-
sion for the wave function of a wave packet in this rep-
resentation determines the envelope modulating the
central state in the packet.

As an application, various Rydberg wave packets
arising in two- and three-dimensional Coulomb prob-
lems were described in a unified manner. This analysis
made it possible to elucidate the form of the localiza-
tion of the so-called “angular wave packets” as well as
some other localized states. Accurate (not semiclassi-
cal) numerical calculations support the qualitative pre-
dictions obtained using the proposed approach.

The representation (4) can be obtained by means of
“unified” quantization of the corresponding classical
Hamiltonian. The approach in some cases can make it
easier to describe perturbed multidimensional systems
and the dynamics of systems in phase space.
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Abstract—Under the conditions of the total Paschen–Back effect the diamagnetic interaction determines the
dependence of the intensity of the Zeeman components of atomic radiation lines on a magnetic field. The
change in the matrix elements of the radiative transitions is due to the magnetically induced corrections to the
wavefunctions of the initial and final states, whose contributions are of the same order of magnitude for the head
lines of the optical series. For the high-frequency lines the positive corrections to the matrix element from the
wavefunction of the upper level dominate. A magnetic field also induces dipole radiative transitions with selec-
tion rules for the orbital angular momentum |∆l | ≥ 3. The matrix elements of such transitions increase rapidly
with the energy of the upper level, making possible efficient single-photon population of the dipole-inaccessible
Rydberg states in moderate magnetic fields. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

External electromagnetic fields alter the optical
spectrum of matter. Consequently, it is important to
know the properties of the atomic spectrum in a mag-
netic field not only for determining the basic laws of the
matter–field interaction but also for detecting the field
and measuring its intensity by optical methods. The
Zeeman effect—the splitting of atomic levels in a mag-
netic field—is described in detail in the literature for
the linear (in the magnetic field B) paramagnetic inter-
action with an atom; see, for example, [1–5]). The fre-
quency, intensity, and polarization of individual Zee-
man components of split lines have been calculated for
the normal and anomalous Zeeman effect on the sub-
levels of the fine structure.

The effect of a diamagnetic interaction (quadratic in B)
has been investigated in detail only for hydrogen atoms.
Calculations of the energy have been performed using
perturbation series [6—10] and numerical integration
of the Schrödinger equation for an atom in strong and
superstrong fields [4, 11–14]. Together with the first-
order diamagnetic energy, the field-independent distri-
bution of the oscillator strengths over the diamagnetic
sublevels, including for transitions from highly excited
Rydberg states, has also been calculated [6]. Higher
order perturbation theory has been used [15] to calcu-
late the field-dependent corrections to the matrix ele-
ments of dipole transitions. These show, specifically,
that the transition matrix element between nondegener-
ate states increases and a field has a selective effect on
the intensity of the diamagnetic components of transi-
tion lines from degenerate states [16].

Interest in the optical properties of multielectronic
atoms in magnetic fields has increased appreciably in
1063-7761/00/9103- $20.00 © 20458
the last few years. The method for calculating diamag-
netic corrections to the energy has been extended to
arbitrary states of alkali atoms for degenerate diamag-
netic sets [7, 17] and for isolated states taking account
of corrections which are second-order in the diamag-
netic interaction [18]. The diamagnetic first- and sec-
ond-order susceptibilities have been calculated for the
ground and metastable states of inert atoms [19], and
asymptotic formulas have been written out and the
parameters appearing in them have been calculated for
determining the susceptibilities of Rydberg states of
alkali atoms [15]. Hartree–Fock calculations of energy
levels in a wide range of magnetic field intensities have
been performed for helium [20–22], lithium [23], and
beryllium [24].

Together with the frequency, an important charac-
teristic of an atomic line is its intensity. Information
about the dependence of the intensity of Zeeman lines
on the magnetic field gives additional data on the Zee-
man effect in atomic spectra and could be helpful in
many problems of atomic physics and astrophysics.

The splitting of atomic lines into Zeeman compo-
nents results in a redistribution of the line intensities,
which in weak fields (anomalous Zeeman effect) are
determined by intensity-independent matrix elements
of dipole transitions between Zeeman sublevels of
states with definite values of the total angular momen-
tum of the atom J = L + S and its projection M, where
L is the orbital angular momentum and S is the spin. In
strong fields, for the total Paschen–Back effect, the
states of the atom and the matrix elements of dipole
transitions are characterized by definite values and cor-
responding selection rules for the orbital L and spin S
angular momenta and their projections ML and MS sep-
000 MAIK “Nauka/Interperiodica”
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arately. The difference of these states from the fine-
structure states |nJM〉  results in a difference between
the intensity distribution of the optical lines of an atom
in the anomalous Zeeman effect and the corresponding
distribution in the total Paschen–Back effect. The
atomic spectra is quite easy to calculate in the limiting
cases of weak and strong fields and such a calculation
is presented in detail in the literature [1, 3–5]. However,
the dependence of the intensity of radiative transitions
on the field intensity is ordinarily ignored. For interme-
diate magnetic fields, qualitative information on that
variation in the oscillator strengths of the Zeeman com-
ponents of doublet lines which is caused by the atom–
field interaction linear in B (paramagnetic interaction)
is available [25].

In strong fields, when the paramagnetic interaction
energy is greater than the spin–orbit interaction energy
and the indicated rearrangement of the spectrum from
|nJM〉  to |nLMLSMS〉  states is completed, the change in
the matrix element of a radiative transition is deter-
mined by the diamagnetic (quadratic in B) interaction.
The effect of a diamagnetic interaction under the con-
ditions of the total Paschen–Back effect on the depen-
dence of the intensity of radiative transitions of hydro-
gen atoms on the field intensity has been investigated in
[16]. In the present paper this dependence is calculated
for multielectronic atoms.

Analytical expressions for the diamagnetic correc-
tions of order B2 to the matrix elements of radiative
transitions are presented in Section 2. The radial matrix
elements determining these corrections are calculated
in Section 3 using the wave functions and Green’s func-
tions of a model potential for the valence electron in
alkali atoms and in helium [26, 27]. The numerical
results and the possibility of observing experimentally
the change in the intensity of atomic lines in a magnetic
field are discussed in Section 4.

2. DIAMAGNETIC CORRECTIONS
TO THE DIPOLE MATRIX ELEMENTS

Both the energy spectrum (eigenvalues) and wave
functions (eigenvectors) of an atom change in a con-
stant magnetic field. The change in the energies of the
atomic levels is expressed in the shift and splitting of
the emission and absorption lines, whereas the field
dependence of the wave functions results in a change in
the matrix element of the electromagnetic transition
dif = 〈ψi|(e · d)|ψf〉  (e is the polarization vector of the
emitted or absorbed photon, d is the dipole moment
operator of the atom), which together with the fre-
quency ωif = Ei – Ef determines the line intensity:1

(1)

1 We use atomic units.

Iif
4
3
---α3ωif

4 dif
2.=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Here α ≈ 1/137 is the fine-structure constant. In what
follows, this constant is taken into account in the inter-
action with the magnetic field by choosing the unit of
magnetic induction B0 = Bat /α = 2.35 × 105 T, where
Bat = 1715 T is an atomic unit.

For fields B ! B0/ν3 (ν = 1/  is the effective
principal quantum number of the energy level Enl) the
magnetically induced corrections to the energy and the
wave functions can be calculated using perturbation
theory. For the central line with the magnetic field par-
allel to the polarization (π polarization) the frequency
shift and the change in the matrix elements are qua-
dratic in the field. For side lines with polarization per-
pendicular to the field B (σ polarization) the frequency
shift contains a linear term, which is identical for all

lines in a given series,  ~ B. The quadratic correc-
tion depends strongly on the principal quantum number

of the upper level:  ~ ν4B2. As calculations for
hydrogen atoms show [16], the analogous corrections
to the matrix element can be even larger. In this connec-
tion, the effect of the diamagnetic interaction on the
dipole matrix elements for optical lines of multielec-
tronic atoms in the region of the total Paschen–Back
effect is quite important. On the basis of the discussion
in the Introduction it can be assumed that the diamag-
netic corrections to the frequencies of atomic lines have
been well studied, so that in what follows we shall con-
fine our attention to the calculation of the corrections
only to the matrix elements.

The operator describing the interaction of an atom
with a constant magnetic field B,

contains a linear paramagnetic term corresponding to
the interaction of the magnetic dipole moment of an
atom with the field (the z-axis is directed along the B
vector),

(2)

and a quadratic diamagnetic term corresponding to the
interaction with the field of the additional moment
induced by the Larmor precession of the electronic
shell of an atom,

(3)

Here r, θ, and ϕ are the radial and angular coordinates
of the valence electron, C20 is the modified spherical
function of the angular variable [28], and L = l and S = s
are the orbital and spin angular momenta of the valence
electron.

In the region of the total Paschen–Back effect the
spin-orbit interaction can be neglected. The operator
(2) can be included in the atomic Hamiltonian, leaving

2Enl–

∆ωif
1( )

∆ωif
2( )

V̂ B V̂m V̂D,+=

V̂m m B⋅( )–
B
2
--- L̂z 2Ŝz+( ),= =

V̂D
B2

12
------r2 1 C20 θ ϕ,( )–[ ] .=
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the diamagnetic interaction (3) as a perturbation. Then
the wave functions of the unperturbed basis will be the
wave functions of the valence electron neglecting spin,
and the energies will be split with respect to the mag-
netic quantum number: Enlm = Enl + mB/2. Since the lev-
els of a valence electron with l > 3 are hydrogen-like,
the radiative properties of the Zeeman states with m > 3
are completely analogous to those properties of the
states of the hydrogen atom studied in [16]. Conse-
quently, we shall confine our attention only to transi-
tions between states with m ≤ l ≤ 3. Such states are non-
degenerate, and perturbation theory for the nondegen-
erate states is sufficient to calculate the corrections to
the wave functions and the matrix elements.

Let us assume that the nondegenerate initial and
final states in Eq. (1) in the absence of a magnetic field
are identical to the eigenstates of an atom |1〉  and |0〉
(with energies E1 and E0). Then the equations for the
wave function and energy of an atom in a field can be
written in an integral form, convenient for iteration,
using the unperturbed Green’s function GE(r, r') [29]:

(4)

Here

(5)

is the reduced Green’s function with the exact energy of
an atom in a field.

Using the standard iterative procedure of perturba-
tion theory to solve Eqs. (4) we obtain a series expan-
sion in powers of the small parameter B2 ! 1 for the
wave functions and energies, whence power series can
be obtained for the transition frequency and matrix ele-
ment:

(6)

The coefficient  in the expansion for the frequency
is the ratio of the difference of the diamagnetic suscep-

tibilities  – , determining the corrections  =

– B2s/2s! [18] of order s to the energies of the lower
and upper levels, to the unperturbed frequency ω10:

(7)

Ei f( ) E1 0( ) 1 0( ) V̂D i f( ) ,+=

i f( )| 〉 1 0( )| 〉 GEi f( )
' V̂ D i f( )| 〉 .–=

GEi f( )
' r r',( ) GEi f( )

r r',( )
r 1 0( )〈 〉 1 0( ) r'〈 〉

E1 0( ) Ei f( )–
--------------------------------------------–=

ωif B( ) ω10 1 w10
s( )B2s

s 1=

∞

∑+
 
 
 

,=

dif B( ) d10 1 q10
s( )B2s

s 1=

∞

∑+
 
 
 

.=

w10
s( )

χ0
s( ) χ1

s( ) ∆E f i( )
s( )

χ0 1( )
s( )

w10
s( ) χ0

s( ) χ1
s( )–

2s!ω10
----------------------.=
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The first-order susceptibility  can be deter-
mined from the relation for the correction to the energy

(8)

Substituting here the operator (3) and integrating with
respect to the angular variables gives

(9)

The mean-square radius of the electron orbit in this
expression and therefore the factor w(1) are rapidly
increasing functions of the principal quantum number
of the level |nl〉 .

The decomposition of the tensor χ(2) into irreducible
parts for nondegenerate levels of multielectronic atoms
is given in [18], where the numerical values of the irre-
ducible components of this tensor are also calculated
for the s, p, and d states of alkali elements. A method
for calculating χ(2) in highly excited Rydberg states is
proposed in [15]. Numerical calculations of the suscep-
tibilities χ(s) of very high orders (up to s = 75) for the
hydrogen levels with principal quantum numbers n ≤ 3
were performed in [8]. Analytic expressions and the
general properties of the third-order susceptibilities in
arbitrary states of hydrogen were obtained in [9, 10].
Besides perturbation theory, other methods making it
possible to determine the change in the radiation fre-
quencies in fields stronger than the upper limit of appli-
cability of perturbation theory have also been used to
calculate the energies of atomic levels in a magnetic
field (see, for example, [11–14, 20–24]). Thus, there is
now available a variety of analytical and numerical
methods for calculating the change in the frequencies
of radiative transitions of atoms in a magnetic field and
therefore for determining the corrections (7).

The change of the matrix element dif(B) in a mag-
netic field can be calculated on the basis of the integral
equations (4). Expanding the wave functions of the ini-
tial and final states in powers of the operator (3), the

coefficients  in Eq. (6) can be represented as a ratio
of the matrix element of order s to the unperturbed
value. Specifically, for s = 1 (in what follows we con-

fine our attention to the first-order correction  ≡ q10,
omitting the order index s) we have

(10)

where

(11)

χnlm
1( )

∆E 1( ) nlm V̂D nlm
B2

2
-----χnlm

1( ) .–= =

χnlm
1( ) l l 1+( ) m2 1–+

2 2l 1–( ) 2l 3+( )
----------------------------------------- nl r2 nl .–=

q10
s( )

q10
1( )

q10 q10 1( ) q10 0( ),+=

q10 1( )
1 V̂DGE1

' d̂µ 0

B2d10

------------------------------------–=
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determines the contribution due to the field-induced
change in the wave function of the upper level |1〉; the
term

(12)

gives the contribution associated with the change in the

wave function of the lower level |0〉;  is the operator
of the µ projection of the electric dipole moment (µ =
0, ±1).

After integrating with respect to the angular vari-
ables of the valence electron, the quantities (11) and
(12) can be represented as a ratio of a linear combina-
tion of the second-order radial matrix elements of the
electric dipole and diamagnetic interaction operators
(r and r2) to the first-order matrix element of the opera-
tor r. In the general case, we obtain for the transition
|1〉  ≡ |nlm〉   |n'l 'm'〉  ≡ |0〉  (l ' = l ± 1, m' = m – µ)

(13)

where  is the ratio of the angular integrals

(14)

(15)

is the ratio of the radial matrix elements. In these expres-

sions (r, r ') is the reduced radial Green’s function
with energy Enl in the subspace of the states of a valence
electron with orbital angular momentum l1 [27].

q10 0( )
1 d̂µGE0

' V̂ D 0

B2d10

------------------------------------.–=

d̂µ

q10
µ nlm( ) Ap

µ l m  l';,( )ap nl  n'l';( ),
p 0 2±,=

∑=

q10
µ n'l'm'( ) Ap

µ– l' m'  l;,( )ap n'l'  nl;( ),
p 0 2±,=

∑=

Ap
µ l m  l';,( )

A0
µ l m  l';,( )

l l 1+( ) m2 1–+
4 2l 1–( ) 2l 3+( )
-----------------------------------------,–=

A 2±
µ l m  l 1+−;,( ) 0,=

A2
0 l m; l 1+,( )

l 2+( )2 m2–
8 2l 3+( ) 2l 5+( )
------------------------------------------,=

A 2–
0 l m; l 1–,( )

l 1–( )2 m2–
8 2l 1–( ) 2l 3–( )
-----------------------------------------,=

A2
1 l m; l 1+,( ) A2

1– l m  l 1+;–,( )=

=  
l m 1+ +( ) l m 2+ +( )

8 2l 3+( ) 2l 5+( )
-----------------------------------------------------,–

A 2–
1– l m; l 1–,( ) A 2–

1 l m  l 1–;–,( )=

=  
l m 1–+( ) l m+( )
8 2l 1–( ) 2l 3–( )
-------------------------------------------;–

ap nl; n'l'( )
nl r2gl p+

nl( ) r n'l'
nl r n'l'〈 〉

---------------------------------------=

gl1

nl( )

3. CALCULATION OF THE MATRIX ELEMENT
BY THE MODEL POTENTIAL METHOD

For transitions between states of a valence electron
all radial matrix elements in Eqs. (11)–(13) and (15)
can be calculated analytically and presented as func-
tions of the principal and orbital quantum numbers
using the model-potential method [26, 27, 29]. For
first-order matrix elements these expressions can be
represented as a generalized hypergeometric function
of two variables after calculating the radial integrals
using the explicit expression for the radial wave func-
tion:

(16)

Here Z is the charge of the core ion in whose field the

valence electron moves; νnl = Z/  is the effective
principal quantum number, nr = 0, 1, 2, … is the radial
quantum number, λ = νnl – nr – 1 is the effective orbital
quantum number of the level;

(17)

is the Sturm function of the Schrödinger equation with
the model Hamiltonian. Just like the Coulomb function,
this function is expressed in terms of the Laguerre poly-

nomials , which are related with the confluent
hypergeometric function as [30]

Here (α + 1)n = (α + 1)(α + 2)…(α + n) is the Pochham-
mer symbol.

These relations make it possible to express the radial
matrix element in terms of the generalized hypergeo-
metric function F2 of two variables:

(18)

Here

For negative integer values of the upper parameters, the
double series representing the function F2 reduces to a
double sum—a polynomial in powers of the arguments
x and x'. In practical calculations the radial quantum
number of the lower level is usually small, so that it is

Rnl r( )
2

νnl
2

------
nr!Z3

Γ nr 2λ 2+ +( )
----------------------------------- f nrλ

2Zr
νnl

--------- 
  .=

2Enl–

f kλ x( ) e x/2– xλ Lk
2λ 1+ x( )=

Lk
α x( )

Lk
α x( )

α 1+( )n

n!
-------------------- F1 1 k  α 1  x;+;–( ).=
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4Z
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-------------------------------------------------=
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convenient to represent the series F2 as a linear combi-

nation of  + 1 hypergeometric functions:

To calculate this sum, it is convenient to use recurrence
relations between the functions 2F1 with adjacent
parameters [30]. The formula (18) can be regarded as a
generalization of the Gordon formula (see, for exam-
ple, [2]) for the radial matrix element of a radiative
transition of an arbitrary atom, the states of whose
valence electron are described by a model potential.
Using the Sturm expansion of the Green’s function of
the model potential [27, 29],

(19)

the second-order matrix element can be obtained by
analogy with the radial matrix element (18) as a gener-
alized hypergeometric series, each term of which can
be expressed in terms of the function F2. One of the
negative integer parameters of this function is identical
to the radial quantum number of the initial or final state,
and the other is identical to the summation index of the
series (19). Thus, we obtain for the ratios (15) of the
second- and first-order radial matrix elements

(20)

where the cofactor Φ under the summation sign is the
ratio of generalized hypergeometric functions F2 and
for k ≠ nr has the form

(21)
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For k = nr this cofactor is

(22)

The generalized hypergeometric function F2 with unit
arguments in Eq. (20) is the orthogonality integral for
the Laguerre polynomials, which is different from zero
only for |k – nr| ≤ 3. Consequently, the series in k here
contains no more than seven nonzero terms.

The effective orbital quantum numbers λ and λ1 for
states of the valence electron with angular momenta l
and l ± 2 virtually always assume values such that the
difference νnl – λ1 is not a positive integer. In this case
the Green’s function in the second-order matrix ele-
ment in the expression (15) for a±2 may not be reduced.
The nonreduced Green’s function is the first term in
Eq. (19), where λ is replaced by λ1, and the summation
extends over all nonnegative integer values of k, including
k = nr. After integrating with respect to the radial coordi-
nate of the valence electron Eq. (15) assumes the form

(23)

where α = λ + λ1 + 5, α' = λ1 + λ' + 4, and b1 = 2λ1 + 2.
The generalized hypergeometric function F2 appearing
here is not an orthogonality integral, since the differ-
ence between the upper and lower parameters is not an
integer. Nonetheless, the Sturm series remains rapidly
converging, and nr + 2 or nr + 3 terms, where nr is the
radial quantum number of the upper level, are sufficient
to calculate the series with relative accuracy 10–4.

4. RESULTS OF NUMERICAL
CALCULATIONS AND DISCUSSION

4.1. Variation in the Matrix Elements 
of Dipole-Allowed Transitions

We performed calculations of the numerical values
of the factor q, determining the first diamagnetic cor-
rection to the matrix elements of dipole transitions
between the ground and first excited states of alkali
atoms, corresponding to the most important series of
lines, and the corrections to the matrix elements of sin-
glet and triplet lines of helium.

Φ a; nr nr nr' ; b b'; x x',,, ,( )
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Table 1.  Diamagnetic susceptibilities qπ and qσ for corrections to the matrix elements  of radiative π and σ transitions

n1P  nS corresponding to the Zeeman components of the lines in the principal series of alkali atoms: (k) ≡ 10k

Atom nr(n1P) d10 qπ(1) qπ(0) qπ qσ(0) qσ

Li 0 –2.40 –1.34 –1.20 –2.54 –11.2 –13.8

1 1.29(–1) 5.56(2) –2.02(2) 3.54(2) –3.90(2) 7.21(2)

2 1.14(–1) 1.16(3) –6.94(1) 1.09(3) –1.40(2) 2.19(3)

3 8.51(–2) 3.87(3) –4.62(1) 3.82(3) –9.65(1) 7.64(3)

4 6.57(–2) 1.13(4) –3.72(1) 1.12(4) –7.95(1) 2.24(4)

5 5.23(–2) 2.83(4) –3.27(1) 2.83(4) –7.11(1) 5.66(4)

6 4.32(–2) 6.31(4) –2.96(1) 6.31(4) –6.54(1) 1.26(5)

Na 0 –2.54 0.925 –2.31 –1.36 –1.51(1) –1.32(1)

1 –1.43(–1) –4.36(2) 2.00(2) –2.36(2) 3.70(2) –5.02(2)

2 –2.72(–2) –2.24(3) 4.08(2) –1.84(3) 7.67(2) –3.72(3)

3 –5.24(–3) –1.85(4) 1.19(3) –1.73(4) 2.27(3) –3.47(4)

4 8.74(–4) 1.99(5) –4.78(3) 1.94(5) –9.15(3) 3.88(5)

5 2.83(–3) 1.09(5) –1.08(3) 1.08(5) –2.08(3) 2.17(5)

6 3.38(–3) 1.57(5) –7.07(2) 1.56(5) –1.36(3) 3.12(5)

K 0 –2.95 –0.612(5) –0.192(3) –0.804 –2.31(1) –2.43(1)

1 –7.42(–2) –1.77(3) 7.05(2) –1.06(3) 1.38(3) –2.16(3)

2 1.88(–2) 8.59(3) –9.87(2) 7.60(3) –2.02(3) 1.52(4)

3 2.75(–2) 1.11(4) –3.61(2) 1.07(4) –7.64(2) 2.14(4)

4 2.58(–2) 2.31(4) –2.49(2) 2.28(4) –5.40(2) 4.56(4)

5 2.25(–2) 4.88(4) –2.06(2) 4.86(4) –4.54(2) 9.72(4)

6 1.94(–2) 9.79(4) –1.83(2) 9.78(4) –4.07(2) 1.96(5)

Rb 0 –3.06 –2.85(–2) 0.815 0.786 –2.68(1) –2.69(1)

1 –1.32(–1) –1.09(3) 4.47(2) –6.42(2) 8.72(2) –1.31(3)

2 –1.05(–2) –1.49(4) 2.07(3) –1.29(4) 4.23(3) –2.56(4)

3 8.95(–3) 2.94(4) –1.32(3) 2.81(4) –2.78(3) 5.61(4)

4 1.26(–2) 3.81(4) –6.11(3) 3.74(4) –1.32(3) 7.48(4)

5 1.26(–2) 6.78(4) –4.44(2) 6.74(4) –9.71(2) 1.35(5)

6 1.17(–2) 1.24(5) –3.69(2) 1.24(5) –8.16(2) 2.48(5)

Cs 0 –3.25 –0.417 5.84 5.43 –3.44(1) –3.52(1)

1 –1.38(–1) –1.35(3) 5.41(2) –8.10(2) 1.08(3) –1.63(3)

2 –9.85(–3) –2.04(4) 2.75(3) –1.77(4) 5.81(3) –3.50(4)

3 1.06(–2) 3.13(4) –1.38(3) 2.99(4) –3.03(3) 5.95(4)

4 1.43(–2) 4.15(4) –6.70(2) 4.09(4) –1.50(3) 8.16(4)

5 1.40(–2) 7.37(4) –4.93(2) 7.32(4) –1.12(3) 1.46(5)

6 1.27(–2) 1.35(5) –4.19(2) 1.35(5) –9.67(2) 2.69(5)

dn1P nS,
Table 1 shows the values obtained for the coeffi-
cients (10) and the individual contributions to them
from field-induced changes of the wave functions of the
upper level (11) and the lower level (12) for π
(n1P0  nS0)and σ (n1P1  nS0) transitions in the
principal series of the alkali atoms. The numerical val-
ues of the matrix element d10 of the dipole transition of
an unperturbed atom, which in this case does not
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
depend on the type of transition, are also presented. The
absolute value of the factor for a σ transition is approx-
imately twice the analogous value for the π transition in
accordance with the relation for the corrections (11)
qσ(1) = 2qπ(1), making the main contribution to
Eq. (10) (the table gives only the value for qπ(1)). The
factors q are negative for the head lines of all atoms and
from one to three subsequent lines (for lithium, only for
SICS      Vol. 91      No. 3      2000
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the head line). For the high-frequency lines the fac-
tors q are positive and increase rapidly with the princi-
pal quantum number of the upper level; this is similar
to the behavior of q for the lines of the Lyman and
Balmer series of the hydrogen atom [16]. Thus, the
intensity of the Zeeman components of the head lines
of the principal series of alkali atoms decreases as the
magnetic field intensity increases, while the intensity of
the high-frequency lines in this series increases. For
transitions from high states, the diamagnetic correction
to the wave function of the upper level makes the main
contribution to q—this is evident from Table 1: for tran-
sitions in the principal series from states with nr > 3 the
relation |q(1)| @ |q(0)| holds. The correction q(1) is pos-
itive and increases rapidly with nr, while q(0) is nega-
tive and decreases smoothly in absolute magnitude, so
that qσ ≈ qσ(1) = 2qπ(1) ≈ 2qπ, which is similar to the
behavior of these quantities for hydrogen lines [16].

We note that the numerical values of the correction
factors q and their rates of increase with increasing
effective principal quantum number νn of the upper
level |nP〉 ,

(24)

are much greater than the corresponding values for the
diamagnetic susceptibilities (9):

This means that the change in the matrix elements
makes the main contribution to the change in the inten-
sity (1) for the high-frequency lines of a specific series
of the single-electron spectrum of an atom, and the
effect on the intensity is itself just as important magnet-
ically induced optical effect as the action of the field on
the frequencies of the same lines. The calculation
shows that the numerical value of the coefficient a6 for
the main series is essentially identical for all alkali

atoms:  = 2  ≈ 0.53—for potassium, rubidium, and

cesium;  = 2  ≈ 0.5 for lithium; and,  = 2  ≈
0.57 for sodium.

For the sharp series (the transitions n1S  nPm)
the values of the factors q for π and σ transitions in
most cases have opposite signs because the signs of the
corresponding dipole matrix elements of the unper-
turbed atom are opposite. The same relation between
the signs of qπ and qσ is also observed for other atomic
series. The signs and absolute values of the coefficients
q depend on the specific atom and on the specific tran-
sition.

As an illustration, Table 2 gives the numerical val-
ues of the susceptibilities q determining the change in
the matrix elements of the diffuse series of alkali atoms,
which correspond to the transitions n1Dm1  nPm.
The axial symmetry of the system ensures that q(–m1 
–m) = q(m1  m) with a simultaneous replacement of
photons with right-hand circular polarization, which

q a6νn
6,=

χn a4νn
4.=

a6
σ a6

π

a6
σ a6

π a6
σ a6

π
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are emitted in transitions with m1 – m = ±1, by photons
with left-hand polarization (and vice versa). For this
reason, transitions only between states with positive
magnetic quantum numbers are indicated in Table 2.
The ratio of the dipole matrix elements d(m1  m) of
an unperturbed atom, which correspond to different
values of m1 and m, is determined only by the angular
factors, so that for transitions in the diffuse series
d(0  1) : d(1  0) : d(1  1) : d(0  0) :

d(2  1) = 1 :  :  : 2 : . The table gives data
only for the smallest matrix element, (0  1).
Here, just as for the principal series, the asymptotic
formula (24) can be written down for each coefficient
q(m1  m). The ratio between the asymptotic values
of the coefficients corresponding to transitions from
states with m1 ≠ 0 is essentially identical to the ratios
between the unperturbed matrix elements: a6(1  0) :

a6(1  1) : a6(2  1) ≈ 1 : 1 : , where a6(1 
m) ≈ 0.35 for all alkali atoms. For transitions from
states with m1 = 0 the ratio of the coefficients is close in
absolute value to the ratio of the unperturbed matrix ele-
ments and negative: a6(0  1) : a6(0  0) ≈ –2, which
is due to the large negative contribution of intermediate
S states to q. This contribution is related with the strong
perturbation of the D levels with zero magnetic quan-
tum number by the close-lying S levels, which are
absent in states with m1 ≠ 0. Consequently, the coeffi-
cients a6(0  m) are much greater in absolute value
than a6(1, 2  m). The numerical values of these
quantities are presented in Table 3.

Our computed diamagnetic corrections to the inten-
sity of the singlet and triplet lines in helium atoms, cor-
responding to radiative transitions into the ground state
1s2(1S0) and into the metastable 1s2s(1S0) and 1s2s(3S1)
states, decrease the matrix element of the radiative tran-
sition for the head lines of series ending on metastable
levels and increase it for all other lines of the series and
the lines of the series of transitions into the ground state
of the atom; this agrees qualitatively with Hartree–Fock
calculations of the radiative matrix elements [20]. Just
as in alkali atoms, the field-induced change of the upper
level, which increases rapidly with the principal quan-
tum number, makes the main contribution to the effect.
The corrections to the matrix elements of σ transitions
are approximately two times greater than the correc-
tions to the matrix elements of π transitions in propor-
tion to the ratio of the angular matrix elements, corre-
sponding to µ = 1 and µ = 0 in Eq. (11). The asymptotic
values of q are determined by the Eq. (24) with the

coefficients  = 2  ≈ 0.5, which are equal to the
analogous coefficients for the corrections to the matrix
elements of the principal series of alkali atoms (see
above).

The experimental observation of the dependence of
atomic line intensities on the magnetic field seems to be

3 3 6
dn1D nP,

2

a6
σ a6

π
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Table 2.  Matrix element (0  1) and diamagnetic susceptibilities q(m1  m) for corrections to the matrix ele-

ments of radiative transitions in the diffuse series of alkali atoms n1Dm1  nPm; (k) ≡ 10k

Atom nr(n1D) d(0  1) q(0  1) q(1  0) q(1  1) q(0  0) q(2  1)

Li 0 1.16 5.16(2) 7.34(1) 7.48(1) –1.65(2) 1.11(2)
1 4.38(–1) 4.31(3) 6.63(2) 6.76(2) –1.32(3) 1.00(3)
2 2.54(–1) 2.25(4) 3.54(3) 3.55(3) –6.80(3) 5.31(3)
3 1.74(–1) 8.37(4) 1.24(4) 1.24(4) –2.64(4) 1.86(4)
4 1.30(–1) 2.51(5) 3.40(4) 3.40(4) –8.28(4) 5.10(4)
5 1.02(–1) 6.44(5) 7.98(4) 7.98(4) –2.22(5) 1.20(5)
6 8.31(–2) 1.47(6) 1.67(5) 1.67(5) –5.27(5) 2.51(5)

Na 0 1.44 4.69(2) 2.81(1) 3.56(1) –1.93(2) 4.60(1)
1 4.24(–1) 4.27(3) 4.17(2) 4.46(2) –1.59(3) 6.40(2)
2 2.27(–1) 2.40(4) 2.91(3) 2.94(3) –8.33(3) 4.37(3)
3 1.49(–1) 9.27(4) 1.10(4) 1.11(4) –3.26(4) 1.66(4)
4 1.09(–1) 2.84(5) 3.15(4) 3.15(4) –1.03(5) 4.72(4)
5 8.45(–2) 7.37(5) 7.55(4) 7.55(4) –2.74(5) 1.13(5)
6 6.83(–2) 1.70(6) 1.61(5) 1.61(5) –6.50(5) 2.41(5)

K 0 1.69 1.57(3) –3.24(1) –1.58(1) –8.11(2) –4.04(1)
1 2.06(–1) –4.84(5) –2.91(2) –2.02(2) 2.42(5) –3.92(2)
2 6.53(–2) –4.94(5) 1.73(2) 2.91(2) 2.47(5) 3.19(2)
3 2.94(–2) –1.91(6) 3.02(3) 3.17(3) 9.56(5) 4.61(3)
4 1.62(–2) –6.71(6) 1.22(4) 1.24(4) 3.37(6) 1.84(4)
5 1.01(–2) –2.03(7) 3.49(4) 3.51(4) 1.02(7) 5.25(4)
6 6.74(–3) –5.38(7) 8.27(4) 8.29(4) 2.70(7) 1.24(5)

Rb 0 1.79 –3.28(3) –5.65(1) –3.37(1) 1.59(3) –7.33(1)
1 3.82(–2) –9.34(4) –3.25(3) –2.75(3) 4.30(4) –4.63(3)
2 –2.27(–2) 3.48(5) 7.47(3) 7.23(3) –1.65(5) 1.11(4)
3 –2.56(–2) 7.21(5) 1.38(4) 1.38(4) –3.43(5) 2.07(4)
4 –2.26(–2) 1.78(6) 3.24(4) 3.23(4) –8.51(5) 4.86(4)
5 –1.93(–2) 4.21(6) 7.22(4) 7.21(4) –2.01(6) 1.08(5)
6 –1.65(–2) 9.23(6) 1.49(5) 1.49(5) –4.43(6) 2.23(5)

Cs 0 1.85 –3.57(2) –7.64(1) –4.37(1) 1.07(2) –9.82(1)
1 –3.13(–1) 5.47(3) 4.24(2) 3.87(2) –2.23(3) 6.17(2)
2 –1.60(–1) 2.66(4) 1.87(3) 1.88(3) –1.09(4) 2.81(3)
3 –1.03(–1) 1.04(5) 7.34(3) 7.36(3) –4.27(4) 1.10(4)
4 –7.40(–2) 3.27(5) 2.21(4) 2.21(4) –1.36(5) 3.31(4)
5 –5.69(–2) 8.79(5) 5.51(4) 5.52(4) –3.71(5) 8.27(4)
6 –4.57(–2) 2.09(6) 1.21(5) 1.21(5) –8.94(5) 1.82(5)

dn1D nP,
distinctly accessible for transitions between the Zee-
man components of Rydberg states, similarly to the
experimental study of the field dependence presented in
[31] for Stark lines. The rapid increase in the correc-
tions with increasing principal quantum number n of
the upper level shows that for n = 20 the diamagnetic cor-
rections to the intensity are 20–30% in the field B = 0.5 T.

4.2. Diamagnetically Induced Dipole Transitions

Together with the change in the matrix elements and
intensities of dipole-allowed transitions, a diamagnetic
interaction induces dipole-forbidden transitions. Just as
the allowed transitions, these transitions occur between
states with opposite parity, but in addition to the dipole
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
selection rules the rule ∆l = ±3 already appears in first
order in the diamagnetic interaction, so that, specifi-
cally, a transition from the n3F state into the nS state

Table 3.  Numerical values of the factor a6(0  m), deter-
mining the asymptotic susceptibilities (24) for corrections to
the matrix elements of radiative transitions in the diffuse
series of alkali atoms n1D0  nPm

Atom a6(0  0) a6(0  1)

Li 4.4 –1.8
Na 6.0 –2.5
K –300 150
Rb 37 18
Cs 9.6 –4.4
SICS      Vol. 91      No. 3      2000
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Table 4.  Susceptibility η for the relative intensity of magnetically induced (n3F  nS) and allowed (nP  nS) radiative
π transitions into the ground state of alkali atoms and into the ground and metastable states of the helium atom; (k) ≡ 10k

Atom 4F  nS 5F  nS 6F  nS 7F  nS 8F  nS 9F  nS a12

Li 2S 2.30(7) 5.24(8) 5.57(9) 3.67(10) 1.80(11) 6.86(11) 27

Na 3S 7.40(4) 1.17(5) 7.60(5) 6.71(6) 6.82(7) 3.71(8) 3.4(–2)

K 4S 1.13(4) 1.13(6) 1.77(7) 1.41(8) 7.54(8) 3.17(9) 1.6(–1)

Rb 5S 4.00(3) 6.31(4) 2.58(6) 2.77(7) 1.73(8) 8.00(8) 5.2(–2)

Cs 6S 5.98(3) 5.16(4) 2.48(6) 2.72(7) 1.70(8) 7.65(8) 5.3(–2)

He 1S 9.64(8) 2.38(10) 3.92(11) 9.64(12) 4.48(14) 3.69(13) 3.3(2)

He 21S 1.27(11) 3.60(12) 6.34(13) 1.62(15) 7.69(16) 6.43(15) 6.0(4)

He 23S 2.12(8) 4.55(9) 4.26(10) 2.52(11) 1.09(12) 3.75(12) 1.2(2)
becomes possible. The intensity of the corresponding
lines is proportional to the fourth power of the field B
and is determined by the matrix element of the induced
transitions, which (without the factor B2) can be repre-
sented as

(25)

for π transitions and

(26)

for σ transitions, where

is the radial matrix element of the transition induced by
a magnetic field acting on the initial state |n3l + 3〉 ,

is the matrix element of a transition induced by the
magnetic field acting on the final state. The dependence
on the orbital and magnetic quantum numbers for the
angular factors can be written in an explicit form simi-
larly to the expressions (14):

(27)

It is convenient to express the intensity of a magnet-
ically induced transition in terms of the intensity of the
dipole-allowed transition:

(28)

dn3n
π A1 lm( ) R1 R2+( )=

dn3n
σ A2 lm( )R1 A3 lm( )R2+=

R1 n3l 3 r2gl 1+
n3( )

r nl+=

R2 n3l 3 rgl 2+
n( ) r2 nl+=

A1 l m,( )

=  
1
8
--- l 1+( )2 m2–[ ] l 2+( )2 m2–[ ] l 3+( )2 m2–[ ]

2l 1+( ) 2l 3+( )2 2l 5+( )2 2l 7+( )
----------------------------------------------------------------------------------------------------------,

A2 l m,( ) A1 l m,( ) l 1 m+ +( ) l 2 m+ +( )
2 l 1+( )2 m2–[ ]

-----------------------------------------------------,=

A3 l m,( ) A1 l m,( ) l 3 m+ +( ) l 4 m+ +( )
2 l 3+( )2 m2–[ ]

-----------------------------------------------------.=

In3l 3 nl→+ η In1l 1 nl→+ B4.=
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The numerical parameter η is determined by the ratio
of the frequencies and matrix elements of the induced
and allowed transitions:

(29)

For transitions into the ground state of an alkali atom,
the intensity of the head line of the principal radiation
series of the atom can be chosen as the normalizing
intensity.

The explicit expressions for the ratios of the radial
matrix elements R1 and R2 to 〈n1l1|r |nl〉  differ from
Eq. (23) only by the parameters of the initial and inter-
mediate states, so that the calculations of these quanti-
ties are fundamentally identical to the calculations of
the corrections to the matrix elements of allowed tran-
sitions, described in Section 3.

Table 4 gives the numerical values of the parameter
η for the intensity of the transition n3F  nS,
expressed in terms of the intensity of the transition
nP  nS (n is the principal quantum number of the
ground state for an alkali atom, n = 2 for transitions into
metastable states of helium). For transitions into the
ground state of helium 1sn3f(1F3)  1s2(1S0) the
parameter η expresses the intensity in terms of I2P → 1S.
Since the angular factors A1(l, m) and A2(l, m), deter-
mining the matrix elements of the induced π and σ tran-
sitions (24) and (25), are identical in the present case
and the matrix element R2 is small compared with R1,
the numerical values of η for π and σ transitions are
essentially identical. Consequently, data only for π
transitions are presented in the table.

The computational results presented in Table 4 dem-
onstrate a rapid increase in the matrix elements of
induced transitions n3F–nS with increasing principal
quantum number n3 of the upper level. This shows, spe-
cifically, that one-photon excitation of the F states of
atoms in a magnetic field by resonance radiation is pos-
sible. The probability of excitation of the Rydberg F
levels with large principal quantum numbers (n3 > 10)
with the same intensity of the exciting light pulses is

η
ωn3n

ωn1n

--------- 
 

4 dn3n

dn1n

-------- 
 

2

.=
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much higher than the probability of excitation of the
first F states with n3 = 4, 5. In all atoms the parameter
η increases monotonically with the principal quantum
number of the F level, with the exception of the singlet
states of helium, where this parameter decreases some-
what for transitions from 9F and 10F states because of
the decrease of the third-order matrix element R1. Sub-
sequently (for n3 > 10), the increase in η reappears.

A formula, similar to Eq. (24), for the asymptotic
dependence on the principal quantum number of the
upper level can be written down for the coefficients η:

(30)

The numerical values of the coefficients a12 are pre-
sented in the last column in Table 4. As one can see
from the table, the largest values of the magnetically
induced matrix element correspond to a transition into
a metastable singlet state 21S0.

It follows from the data obtained, specifically, that
the cross section of the transition 21S0  81F3 in the
field B = 10 T is approximately one-fourth the cross
section for the strongest resonance line of the transition
21S0  21P1. In such a field the absolute values of the
diamagnetic shift and the paramagnetic Zeeman split-
ting of the induced line are approximately identical and
equal about 5 cm–1 [18, 19].

5. CONCLUSIONS

The changes due to the diamagnetic interaction and
examined here in the intensity of the radiation lines of
atoms give new information about the interaction of
multielectronic atoms with a magnetic field under con-
ditions of the total Paschen–Back effect, where the
spin-orbit splitting is small compared with the mag-
netic splitting. The computed values of the diamagnetic
susceptibilities, determining the corrections to the
matrix elements of dipole-allowed transitions, show
that the effect of a magnetic field on the wave functions
of atomic levels between which a transition occurs can
be more important than the change in their energies.
The effect of a magnetic field on the intensity of optical
lines is found to be selective, similarly to the effect on
the lines in the spectrum of hydrogen-like atoms [16].
The selectivity of the diamagnetic effects is manifested
not only in the difference in the absolute values and
signs for the corrections to the intensity of the lines of
different atoms and the lines in different series of the
same atom but also in the differences in the signs of the
corrections to the intensity of the head and high-fre-
quency lines in the same series as well as to the inten-
sity of the Zeeman π and σ components of the same
line.

For practical applications the most interesting effect
is the induction of transitions which are forbidden in
the dipole approximation. The diamagnetic interaction
of an atom with the field is completely responsible for

η a12ν
12.=
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this effect. The intensity of such transitions increases
rapidly with the principal quantum number of the upper
level; this shows that the transitions between Rydberg
states with angular momentum l = 3 and the nS ground
state can be observed in quite weak fields which are
attainable under laboratory conditions. This effect
could be helpful for single-photon pumping of F states
of an atom in a magnetic field. A magnetic field can be
used in the same manner for two-photon population
of G states (l = 4), and so on. We note that magnetic-
field-induction of dipole-allowed transitions in the
spectrum of an atom is similar to the analogous phe-
nomenon in an electric field, specifically, deexcitation
of metastable states of an atom by an electric field [2],
and can appear, for example, in the quenching of meta-

stable  and  states

of inert atoms.
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Abstract—Data from high-resolution x-ray shadow photography of an X-pinch in the diode of a high-power
dense-plasma generator are presented. The processes leading to the formation of a minidiode, the compression
of the neck arising in it, and the cutoff and subsequent emptying of the neck are studied. Cascade formation of
short-lived structures, which consistently reproduce the form of the minidiode on small scales before the x-ray
burst, is observed in the course of the implosion. The position of the x-ray emission points is determined.
© 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

An electrical explosion of wire loads is used in mod-
ern research to obtain powerful x-ray pulses [1]. The
properties of matter in such nanosecond discharges
vary over a wide range from a liquid and vapor up to a
strongly emitting hot and high-density plasma with
multiply-charged ions, greatly complicating an already
difficult diagnostics problem. In solving this problem,
a method of high-resolution x-ray shadow photography
has been developed over the last few years [2, 3]. This
made it possible to begin the study of the previously
unknown internal structure of a discharge through an
exploding wire, containing together with the usually
studied plasma phase of the corona, core material with
heterogeneous composition (liquid–vapor) [4]. The lat-
ter could be responsible for the unusually high values
of the plasma parameters (the density, temperature, and
ion charge) characterizing the hot points of the necks in
discharges through a wire. An X pinch—an important
element of the new method—gives a unique experi-
mental realization of a single neck.

The diagnostics is based on the method of shadow
projection of a point source. The large, compared with
laser probing, shortening of the wavelengths of the
source radiation makes deep layers accessible: the limit
of the achievable density, determined in the laser
method by the nonuniformity of the plasma and the
aperture angles of the optics employed, is now several
orders of magnitude (2–3 and more) greater than for a
light-range laser, and the weak sensitivity to sharp
changes in density makes it possible to operate with
essentially arbitrary gradients. Investigations [2, 3]
have demonstrated that the bursts of the hot points in
X pinches, placed in the diode of a high-voltage gener-
ator, are highly efficient as miniature short-pulse x-ray
1063-7761/00/9103- $20.00 © 20469
sources. The subject of these investigations were dis-
charges through one or several parallel wires, while the
present work is devoted to the processes occurring in an
X pinch, which is an interesting object and an important
element of the observation method.

2. EXPERIMENTAL ARRANGEMENT

In our experiments, the plasma generator consisted of
an XP setup (Cornell University; parameters: 470 kA,
0.5 Ω, 100 ns). Pairs of crossed Mo wires with diame-
ters 12.7, 17, 25, and 30 µm were exploded in its diode.
Their radiation was detected with diamond detectors
with photoconductivity, whose signals were recorded
using a fast Tektronix 684B oscillograph. The time res-
olution of the detectors, taking account of the input
cables and the oscillograph, was ≈0.5 ns, but in reality
the determining resolution of the method—the duration
of the burst of the hot point of a Mo X pinch—was even
shorter. Its measurement was a difficult problem: even
the latest experiments make it possible to assert only
that the duration of the burst lies within the resolution
of the apparatus employed—shorter than 250 ps for a
high-frequency oscillograph and <100 ps for a slit-scan
camera. The spatial resolution of x-ray images
depended on the size of the hot spot, the distance from
this spot to the object, and the hardness of the detected
radiation (filters, film types and position). The geomet-
ric ratio of the distances of the object from the record-
ing photographic film and the source (magnification)
was 4–10 and gave good quality photographs: after dig-
itizing with a Nikon LS-2000 scanner the resolution
was estimated to be 1.2 µm. Detecting films with differ-
ent sensitivity arranged in the form of “sandwiches”
Kodak RAR 2497, DEF, Mikrat VE, and Ti filters
000 MAIK “Nauka/Interperiodica”
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(c)

loop

To detector To detector
12.5 µm thick made it possible to obtain at the same
time images in radiation with different hardness.

Two X pinches were placed in the diode in parallel,
serving as sources of x-rays for obtaining in one shot
two (at different times) images of the experimental object.
The time delay between the bursts of up to 30 ns was
determined by the difference of the load masses, which
were chosen on the basis of experience; the variance for
virtually identical masses was 0.2–2 ns. Another advan-
tage of the scheme with a pairwise arrangement of
pinches in the diode was an extremely small, in contrast
to a discharge through one X pinch, number of bursts of
hot points (1–2). This effect, caused by current redistri-
bution between the loads, improved the quality of the
images obtained. Optimization of the source dimen-
sions made it possible to operate in the spectral range
1–5 Å, including the transmission band 2.5–4 Å of the
Ti filters.

Two variants of the diagnostics complex were used
(Fig. 1). First, there was the standard scheme which
used in our previous experiments, where the experi-
mental load replaced outside the diode one of three
return-current rods (Fig. 1a); the other two supported
the anode plate. The diode current was divided into three
parts corresponding to the inductances of the load and
JOURNAL OF EXPERIMENTAL 
rods, the currents through which were measured with indi-
vidual Rogowski loops (oscillograms in Fig. 1c). Because
of the high inductance, less than one third of the total
current, usually not greater than 120 kA, flowed
through the load; this made it possible either to use only
very thin wires or to study only the onset of an explo-
sion. X pinches based on various metals, from Al to Au,
with wire diameters from 7.5 to 25 µm were investi-
gated in this scheme.

In the other scheme, which was used to obtain most
of the images presented below, the X pinches in the
diode served simultaneously as the object of investiga-
tion and the source of x-rays. Although the current in
this apparatus was divided between the pinches, only
the total current was measured, and the currents of the
X pinches were assumed to be approximately the same,
from 200 to 230 kA. Only X pinches from Mo and W
were investigated in this scheme. The difficulties were
exacerbated by the fact that very often the pinches still
had more than one hot spot, degrading the quality of the
recorded image. Typical signals from diamond photo-
detectors are shown in Fig. 1c.

The method of crossing the thin conductors in the
diode was also important: the processes occurring in
the neck depended on how the wires touched one
AND THEORETICAL PHYSICS      Vol. 91      No. 3      2000
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Fig. 2. Slow stage of the evolution of a X pinch before the x-ray burst.
another: excess twisting of the strands engendered par-
asitic helical disturbances, impeding good compression
of the plasma. “Point” touching of the wires was best.
The intensity of the x-ray burst was highest in this case.
The angle 2α between the wires was also varied. The
best choice was α . π/6.

3. FORMATION OF A MINIDIODE
AND NECK IN AN X PINCH

The general picture of the evolution, constructed
according to data from many shots, is shown in Figs. 2–4.
It substantially supplements previous results of optical
and x-ray spectral measurements [5]. It is evident how
the slow (10 ns scale; Fig. 2) process of formation of a
minidiode transforms into a rapid process, accelerating
up to the moment of the burst the development of com-
pression instabilities of the neck (Fig. 3), which is com-
pleted by a cutoff of the neck and subsequent emptying
of the minidiode (Fig. 4). The time scales of these pro-
cesses run successively through values from the initial
values from the initial 10 ns to 1–2 ns up to a moment
approximately over 5 ns up to the moment of the burst
taken as 0 and then to 0.1 ns. After the burst the
sequence of scales with the same values alternates in
the opposite direction.

Let us examine the photographs in greater detail.
The photograph in Fig. 2 shows the core metal remain-
ing after the explosion and the corona plasma. The
dense core matter behaves differently inside and out-
side the neck region. Inside the neck it gradually
merges into a single, evidently liquid, filament, and the
initial trough (frame for –19 ns) transforms into a minid-
iode shorted by a dense filament. No indications of boiling
are noticeable here. The situation is completely different
URNAL OF EXPERIMENTAL AND THEORETICAL PHY
in the outer part of the cores, where the pattern is similar
to parallel wires: the volume is frothy with vapor bubbles
and the current can flow only along the surrounding
plasma corona. It appears that the greater the distance
from the wire crossing, the more intense the heating and
explosion of the metal by the current are. In the corona
surrounding the cores, the increase in the amplitude of the
plasma perturbations as the crossing is approached draws
attention. At the crossing itself, where a minidiode grad-
ually forms, no corona is seen; but, incidentally, this
does not mean that it is absent. Nonetheless, it can be
concluded that in time cylindrical geometry dominates
around individual wires far from the minidiode and is
more noticeable inside.

The coronal plasma acquires a special structure near
the crossing—these are axial jets which were observe
in preceding frames. Their asymmetry is noticeable: the
jet is a sharp cone in the direction of the anode and
opens up toward the cathode. They can be attributed to
the collision of the fluxes of matter evaporated from the
surface of the metal at the start of the explosion. The
inclination of the front of the vapor cloud, propagating
along the normal to the surface of the wires with veloc-
ity 3cs (cs ≈ (εF/mi)1/2≈ (1–2) × 105 cm/s—the velocity
of sound in the cold phase, εF is the Fermi energy of the
electrons in the metal) toward the axis gives rise to
cumulation, and the axial velocity of the jet is

Therefore, in the 30–40 ns elapsed from the onset of the
current the length of the jet ranges from 200 to 400 µm (in
our photographs 300–400 µm). The rest of the vapor
expands freely, until the braking action of the fields has
an effect. The amount of matter flowing into a jet and

3cs/ α 0.6–1.2( ) 10
6
cm/s.×≈sin
SICS      Vol. 91      No. 3      2000
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Fig. 4. Image of a X pinch at fast stage of emptying of the minidiode after the x-ray burst.
the role of this matter in the current distribution at the
entrance and exit of the minidiode are still not known.

The origin of the longest of our time scales, 10 s, can
be understood. It is the same as the heating time of the
neck volume

where a ≈ 100 µm is the radius of the neck and χ =
2κ/3ni ∝  Z–1T5/2 is the electronic thermal diffusivity.
For this, the heating wave gradually converging into the
interior must heat the plasma to T ≈ 30 eV and Z ≈ 5
(Z ∝  T1/2). Under such conditions the magnetic viscosity

reaches ≈ 5 × 104 cm2/s. Since the magnetic Reynolds
number

(cs = (ZT/mi)1/2 ≈ 7 × 105 cm/s is the velocity of sound),
here diffusion determines the penetration of the current
and field into the interior volume of the plasma. The
required time

is only ≈0.3 ns, and the power density of Joule heating
with a typical current I = 100 kA reaches

Such a wave of current heating deviates increasingly
from cylindrical symmetry as it penetrates.

In summary, at the crossing point the dense core
matter is gradually heated and redistributed, evidently,

τ a
2
/2πχ ,≈

χm c
2
/4πσ ZT

–3/2∝=

Rm va/χm csa/χm 0.1≈<=

τm a
2
/2πχm=

j
2
/σ 2I

2
/π2

c
2τma

2
50 TW/cm

3
.≈≈
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primarily in the azimuthal direction, forming a single
cylindrical neck inside the minidiode. Outside the
crossing the processes resemble an explosion of a pair
of parallel wires, but because of the inclination a cumu-
lative collapse of the evaporated matter with formation
of a special structure of the coronal plasma–axial jets–
occurs. Their velocities are still much higher than the
axial expansion rate of the dense matter in the crossing,
and the latter does not yet participate in the formation
of the jets. Dense matter, evidently still not compressed
much, appears in the base of the jets only at the next
stage; its outflow is still not substantial in the process of
magnetic compression of the neck, especially since it is
impeded by the dense matter forming the electrodes of
the minidiode. These are the conditions at the transition
to rapid compression of the neck.

4. PROCESSES NEAR 
AND AFTER THE X-RAY BURST

We shall now turn to the frames of the events imme-
diately before the x-ray burst and rupture of the neck
(Fig. 3; Fig. 5 shows enlarged, brighter images of the
minidiode; the thinnest neck with a sharp boundary and
thickness ≈6 µm was photographed at t = –0.3 ns
almost at the moment of x-ray emission). Comparing
the frames for t = –1.9 and –173 ns, we note how short
the time is between the quite even neck and the appear-
ance of an appreciable distortion at the center. Its
smooth development between t = –2 and –1 ns then
accelerates sharply, and in the frames for t = −0.6 ns
and –0.3 ns narrowing is clearly evident in the anode
half of the minidiode, encompassing approximately
one-fourth of the total length of the filament closer to
the middle. The picture is associated with the develop-
SICS      Vol. 91      No. 3      2000
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Fig. 5. Enlarged images of a minidiode in the phase of fast compression of the neck and formation of a cascade of diode structures.
ment of an instability of the neck, during which a diode
structure of a smaller scale forms in the minidiode. Closer
study of Fig. 5 shows the appearance of similar structures,
closer to the burst (t = –0.3 ns), of a higher order inside a
new neck. Cascade development of the neck, terminated
by an explosion, occurs. It is visible in the frame for t =
+0.2 ns (Fig. 4) and somewhat later the same thing appears
on the “minicathode” side also; for t > 0.5 ns an almost
symmetric pattern with a central plasma bunch arises.

The form of the cutoff of the filament in Fig. 4 is
associated with a microexplosion of the neck. The char-
acteristic effects are noticeable in enlarged fragments
(Fig. 6) of the first three frames: shock fronts propagate
JOURNAL OF EXPERIMENTAL 
away from the cutoff points in the direction of the cen-
tral bunch and minielectrodes. The bunch at the center
gradually dissipates in the next nanosecond, and by the
end of the second nanosecond after the burst the minid-
iode contains almost no appreciable plasma. At the
same time, indications of an increase in the mass of the
dense matter in the bases of the jet cones on the
minielectrodes appear. Moreover, reflection of wave
fronts accompanying an interaction with stationary
dense cores is observed. The shock waves penetrating
into the space between the cores gradually displace the
dense neck matter into the region near the symmetry
axis of the X pinch.
AND THEORETICAL PHYSICS      Vol. 91      No. 3      2000
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Fig. 6. Enlarged fragments of the first images in Fig. 4.
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Fig. 7. The process of slow outflow of the neck matter from the minidiode.

(a) (b)
The initial expansion rate of the plasma in the
microexplosion can also be estimated. For this, we shall
employ spectral data that make it possible to judge the
processes occurring at the stage of the brightest emis-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
sion of the plasma in the x-ray burst. The relative half-
width of the lines of Ne-like Mo was

∆λ /λ 3 10
–3

.×=
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Attributing it entirely to Doppler broadening, caused by
uniform spreading of the plasma in 4π directions from
the point of the explosion, we estimate the velocity to
be 9 × 107 cm/s. For comparison, the velocity of a fast
magnetic sound

under Bennet equilibrium conditions with Z = 30 and
Te = 1 kV is three times lower. In other words, the
plasma of the hot points expands with this velocity
seemingly into a void; i.e., the plasma does not feel the
more rarefied matter in front of it. Of course, this esti-
mate, which neglects other expansion mechanisms,
could be too high. Nonetheless, it still characterizes the

c fm ZTe B
2
/4πni+( )/mi[ ]

1/2
=
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initial stage of the microexplosion, whose duration can
be estimated by the expansion time. Even according to
the maximum spatial resolution of 1 µm the latter is
only 1 ps, which is very short compared to our time res-
olution. Consequently, most of the explosive expansion
should be much slower. X-ray spectral methods were
also used to measure the average (time-integrated) tem-
perature of the hot spots Te = 0.8–1.3 keV, and genera-
tion of electronic and ionic beams in the minidiode was
detected.

The subsequent decomposition is even slower. This
is demonstrated in Fig. 7, in the later frames of which
the cores and plasma formations are appreciably larger.
Here one can see how the dense flow of plasma displaced
AND THEORETICAL PHYSICS      Vol. 91      No. 3      2000
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Fig. 9. Density distribution of the matter of an aluminum X pinch inside and near the neck. 
from the minidiode squeeze through the minielectrodes.
Similarly to what happens when a fast moving body
strikes a barrier, splashes of unloading matter can be
seen directed into the minidiode, and gradual swelling
of the minielectrodes into the space between the cores
is observed at the center.

The rapid x-ray burst is a cumulation of events in the
evolution of an X-pinch type discharge. We were able to
determine the positions of the burst points. The scheme
shown in Fig. 8 was used for this purpose. In this
scheme, an insulated grid with high transmittance was
placed between the pinch object and the detecting film
(the spacing of the cells is much larger than the diame-
ter of the wires). A double image of the grid, obtained
from bursts of both pinches at different times, formed
on the film together with an image of the object. The
position of the point of the pinch object was determined
by the double mask image method according to the
intersection of the lines connecting the corresponding
points of two images (see scheme in Fig. 8). This made
it possible to work with one- and two-point burst; the
position of the hot emitting points in the neck was
determined with accuracy no worse than ≈5 µm. Exam-
ples of the determination are shown in the same Fig. 8
against the background of photographs of processes
AL OF EXPERIMENTAL AND THEORETICAL PHY
occurring both before and after the burst, for one hot
spot and for a pair of hot spots.

Processes occur similarly in X pinches from other
metals, for example W, with the same arrangement as
for Mo. But similar phenomena occur in the scheme
with the pinches arranged in the return current lead,
though one- or two-point bursts are more difficult to
obtain here (such experiments are explained in greater
detail in [6]). It is important that for filaments with
close dimensions the length scales and the sequence of
the temporal phases of the events are the same in both
schemes, and as the diameter of the wires increases, the
spatial and temporal scales of the phenomena also
increase correspondingly, but the patterns remain simi-
lar. Axial jets of rarefied plasma can be clearly seen in
tungsten, just as in molybdenum. The image of an alu-
minum X pinch at 38 ns from the onset of current flow,
obtained in a scheme with a load in the return current
circuit, is presented in Fig. 9. Here the current was low
for the burst of the hot spot. A stepped attenuator (Al,
the thicknesses are indicated to the side in the figure)
made it possible to obtain a picture of the density dis-
tribution in an X pinch at the slow stage of formation of
a minidiode. It is evident that far from the crossing the
cores are in a two-phase vapor–liquid state, and the
highest densities occur inside and close to the minid-
SICS      Vol. 91      No. 3      2000
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iode. No axial jets are visible here; this is typical for Al
and a number of other metals, because the matter of the
jets is transparent to the probe radiation from the bursts
of an Mo X pinch.

5. CONCLUSIONS

Our observations have revealed a number of unique
processes in the minidiode of a X pinch. It is still diffi-
cult to say how similar they are to an implosion in dis-
charges through single wires. Probably, the azimuthal
nonuniformity, caused by the presence of a distin-
guished plane for the arrangement of wires in the load
(at least one) and the three-dimensionality of the mag-
netic field in the X pinch, is important. Even in the cross-
ing itself the formation of a minidiode initially is different
from single wires, and the more dense matter is subjected
to compression in the minidiode. This could explain the
high x-ray spectral parameters recorded in an X pinch.

The central event of the evolution of a pinch is the
almost instantaneous x-ray burst. It coincides with cas-
cade development of an increasingly more complicated
minidiode structure with an increasingly thinner neck.
We note that the similarity of such structures is consis-
tently reproduced, even though the scales decrease very
substantially. How strong can the compression be?
According to calculations [7], the size of the neck can
decrease to 0.1–0.3 µm, comparable to the range of the
radiation. This makes it possible to estimate the radia-
tion energy flux from the hot spot. According to measure-
ments, the total yield of x-rays in the range 2.5–3.5 Å is
0.1–0.3 J, the emission time < 0.1 ns (see Section 1),
and the size of the emitting plasma falls within the
experimental resolution of 1 µm. Consequently, it is not
an exaggeration to take ≈0.5 J for the energy emitted in
the entire spectrum of the hot spot. Then the energy flux
should be >0.5/(π × 10–8 × 10–10) ≈ 1017 W/cm2. If the
maximum computed radius of the neck is taken to be
0.1 µm, then the flux is two orders of magnitude larger.
In this case the radiation pressure can reach subgigabar
and even gigabar values (this form of pressure was taken
into account in [7]) and plays an important role in the
compression dynamics. These estimates, of course,
determine the upper limits, characterizing only a very
small mass of the compressed matter. But they make
it possible to obtain the largest values of the radiation
fluxes incident on the object. Thus, for a pair of
X pinches separated by a typical distance of 3 cm and
irradiating one another, taking the energy flux emitted
from the hot spot as 1018 W/cm2 and assuming the
emission to be isotropic, we obtain probe radiation
fluxes of 107 W/cm2.

Although evidence for rupture of the neck had been
noted previously [8], the inadequate temporal resolu-
JOURNAL OF EXPERIMENTAL 
tion of optical interferometry still did not guarantee a
final result, and the data obtained can be taken as con-
firmation of the effect. Especially interesting, together
with the somewhat mysterious cascade development of
the neck, is the microexplosion which terminates this
process. We hope that subsequent investigations will
shed light on the new data obtained using the technique
of x-ray shadow photography of dense and hot plasma.
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Abstract—It is well-known that the motion of a charged particle in a magnetic field is described by the drift
approximation, in which it is assumed that the squared velocity of the particle and the magnetic moment of the
Larmor circle are conserved. It is shown that to a first approximation a third conservation law is also satisfied:
the unaveraged generalized momentum in the direction of the binormal to the reference flux line around which
the particle rotates is conserved. This new conservation law makes it possible to determine additional fine
details of the motion, specifically, the deflection of a particle in the direction of the normal to the reference flux
line, in terms of which the known drift velocity along the binormal is expressed after averaging. © 2000 MAIK
“Nauka/Interperiodica”.
1. For small Larmor radius ρ the motion of a
charged particle in a magnetic field B is described well
by the drift approximation, in which (1) the squared
velocity v2 of the particle is conserved, (2) the mag-

netic moment µ = m /2B of the Larmor circle is con-
served, (3) its guiding center (GC) moves along the ref-
erence flux line, and (4) the guiding center slowly shifts
sideways along the binormal b to the reference flux line
with average drift velocity

(1)

where ω = qB/mc is the local Larmor frequency and R
is the radius of curvature K = 1/R of the reference flux
line. These four features give a complete picture of the
motion of a particle in the drift approximation.

2. We recall that the equations of the drift approxi-
mation which were described above are usually derived
from Newton’s equation (see, for example, [1])

writing the position of the particle in the form

where R are the coordinates of the guiding center.
Expanding the fields as

in powers of the small radius ρ and averaging over fast
Larmor oscillations gives Eq. (1). The term with v|| in it
is due to the centrifugal force oriented along the normal
n to the reference flux line, and the term with v⊥  is due
to the diamagnetic force

(2)

v ⊥
2

Vb b
v ||

2 v ⊥
2 /2( )+

ωR
-----------------------------,=

v̇ v w,×=

r R r⊥ ,+=

B r( ) B R( ) r∇( )B+=

F⊥ µ∇ ⊥ B,=
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where

However, such a “force” interpretation of Eq. (1) is not
the only possible one. In the present paper it is shown
that an alternative and even more detailed description
of the motion can be obtained from the Lagrangian

(3)

3. We have discovered that for a small Larmor radius

this Lagrangian must be regarded as being independent
of the binormal component y, and consequently on the
basis of the same drift approximation, together with
conservation of v2 and µ, there is a third conservation
law—conservation of the generalized binormal
momentum

Subsequent averaging gives an alternative derivation of
Eq. (1) with its new “nonforce” interpretation. In the pro-
cess it also becomes clear that the particle motion differs
from the simple picture of a drifting “circle.” This differ-
ence is important for the derivation of Eq. (1).

4. As an illustration, it is helpful to examine first the
cases where the exact conservation of the generalized
binormal momentum is due to the symmetry of the field B.
As three “symmetric” examples, we shall choose the
following cases of particle motion: (a) in the field of a
wire carrying a current Jz; (b) in the field of a planar

dipole ; and (c) in the field of a point dipole .

∇ ⊥ B nKB.=

L
1
2
---mv 2 q

c
---v A.⋅+=

r⊥ nx by+=

Pb ∂L/∂ ẏ const 0.= = =

µz
1( ) µz

2( )
000 MAIK “Nauka/Interperiodica”



 

480

        

TRUBNIKOV

                                                  
Case (a). For a wire carrying a current the potential
in cylindrical coordinates r, ϕ, z is

and the Lagrangian does not depend on z, so that the
generalized binormal momentum Pz is conserved. This
can be rewritten as an exact expression for the velocity
along the binormal:

(4)

where

We note here that the choice of a definite value of Pz

means choosing a constant r0 determining the “refer-
ence” magnetic surface near which the particle drifts.

Case (b). For a planar dipole in Cartesian coordi-
nates x, y, z the potential is

and the Lagrangian likewise is independent of z, so that
Pz = const is conserved, whence an exact expression
can be obtained for the unaveraged velocity along the
binormal:

(5)

where

We note that here the choice of a definite value of Pz

fixes the parameter x0 and a reference magnetic surface,
in this case with a circular section

with radius x0/2. 

Case (c). For a point dipole in cylindrical coordi-
nates the potential

and the Lagrangian are independent of the angle ϕ, so
that the generalized momentum Pϕ = ∂L/∂  is con-

Az

2Jz

c
-------- const

r
------------ 

 ln=

v b ż v 0
r
r0
----ln r0ω0

r
r0
----,ln= = =

v 0
2Jzq

mc2
----------- r0ω0 const, ω0

qB0

mc
---------,= = = =

B0 2Jz/cr0.=

Az

µz
1( )x

x2 y2+
----------------=

v b ż v 0 1
x0x

x2 y2+
----------------– 

  ,= =

x0 qµz
1( )/cPz, v 0 x0ω0,= =

ω0

qB0

mc
---------, B0

µz
1( )

x0
2

--------.= =

x x0/2( )–[ ]2 y2+ x0/2( )2=

Aϕ µz
2( )r r2 z2+( )–3/2

=

ϕ̇
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served. This gives an exact expression for the unaver-
aged angular velocity along the binormal

(6)

where

so that here the choice of a definite value of Pϕ fixes the
parameter r0 and the reference magnetic surface, in this
case with section

Time-averaging of Eqs. (4)–(6) over the fast Larmor
oscillations should give the average velocity (1) along
the flux lines, corresponding to the binormals, of the
three magnetic fields described. But, as we can see, it is
not the forces (centrifugal and diamagnetic) but the par-
ticle coordinates, describing the deflection of a particle
only in the direction of the corresponding normals to
the reference magnetic surfaces, that appear in these
formulas.

5. Since the formula (1) is applicable to any fields,
an expression of the type Eqs. (4)–(6) should also hold
in the general case with a small Larmor radius, which
for our purposes we write in the form

However, we shall confine our attention only to vacuum
magnetic fields, for which the vector potential and field
can be represented as

(7)

and therefore the flux lines of the field lie on the lines
of intersection of two magnetic surfaces F = const and
G = const, and the magnetic field is taken at the location
of the particle.

However, we are interested only in the drift approx-
imation, where the quantities x and y are assumed to be
small, and we wish to expand the functions F and G in
powers of x and y. On the reference flux line itself the
field is B0(s), and its transverse gradient is

so that near the reference flux line the modulus of the
field is approximately

In addition, it is easy to see that near the reference flux
line the expansions of the functions F and G must have
the form

(8)

ϕ̇ ω0
r0

2

r2
----

r0
3

r2 z
2
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-------------------------– ,=
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qµ 2( )

cPϕ
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z2 r0
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since it is this representation that leads to the formula

for the field. Correspondingly, the Lagrangian in the
drift approximation can be written in the simplified
form

(9)

where λ = 1 – Kx is the longitudinal Lamé coefficient.
The small terms with twisting of the reference flux line
can be neglected. In addition, such a Lagrangian obvi-
ously does not depend explicitly on the coordinate y.
Therefore, the unaveraged binormal generalized momen-
tum is conserved approximately during the entire time of
the motion:

(10)

which, in addition, should be set equal to zero, which
corresponds to choosing a definite reference flux line
from which the coordinates x and y are measured.

This means that the binormal velocity of the particle is

(11)

where ω0 = qB0/mc. Thus the average drift velocity
along the binormal b in the general case can be
expressed in terms of the average deviations 〈x〉  and 〈x2〉
in the direction of the normal! This is the main result of
our Lagrangian description, which refines the picture of
the familiar drift approximation where the quantities
〈x〉  ≠ 0 and 〈x2〉  do not enter explicitly.

6. In turn, they should be determined from the equa-
tion obtained for the coordinate x from the simplified
Lagrangian (9):

(12)

Substituting here the expression (11) for , we obtain
approximately the “main” equation for x:

(13)

which must be solved by successive approximations,
assuming the right-hand side 3 to be small and setting
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-------- mẏ
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2
---ω2x2+ 

  ,–= =
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x = x1 + x2. Then we have for the first term in the equa-
tion with a “semiclassical” solution

(14)

where a = const is the amplitude and φ is the angle of
rotation. Substituting x1 into 3, we write the equation
for the second correction as

(15)

where

Its approximate solution is

(16)

where

Thus the complete expression for the deflection x of a
particle from the reference flux line in the direction of
the normal has the form

(17)

Here the term with cos2φ should not be neglected,
since it is of the same order of magnitude as 〈x〉  and 〈x2〉 ,
without knowing which it is impossible to obtain the
correct expression for the average drift velocity (1)
along the binormal.

This velocity is obtained from the expression (11):

(18)

and is identical to the familiar expression (1).
7. In the opinion of the present author, the

“Lagrangian” refinement, examined above, of the formu-
las of the standard drift approximation is not only of meth-
odological but also of practical interest. In the first place,
we have found a previously unnoticed and hence new con-
servation law for the generalized unaveraged binormal
momentum. The reader can assess the practical usefulness
of our formulas by attempting to solve any specific prob-
lem and answering the question: Where is the particle
under consideration actually located?
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The point is that the “stand drift approximation”
gives a qualitative picture of the motion, but it does not
adequately determine even the concept of a “guiding
center” R of the particle under consideration. For exam-
ple, in the cases (a), (b), and (c) indicated above the par-
ticle moves within the strip

and it would seem that the “guiding center” should be
(mentally) placed at the center of the strip (the geomet-
ric center, R = (rmin + rmax)/2). But this quantity does not
appear at all in the formulas of the drift approximation,
and it should be replaced by the more accurate concepts
of “reference” flux line and deviation of x from it (spe-
cifically, the time average 〈x〉). Then x contains a term
with cos2φ, which takes into account the difference of
the trajectory from the standard “hypocycloid picture,”
and even though the difference is small it must be taken
into account if we wish to obtain Eq. (1) for the average
velocity along the binormal. This formula, as is well
known, describes the “banana” trajectories of trapped
particles, which are responsible for the main energy
losses in tokamaks, the most promising setups for solv-
ing the problem of controlled thermonuclear fusion.

rmin r rmax,< <
JOURNAL OF EXPERIMENTAL 
In numerical calculations of trajectories with a
“small but not too small” Larmor radius, it is helpful to
compare the results with our Eqs. (11) and (17), which
are more accurate than the formulas of the stand drift
approximation. It should also be noted that the conser-

vation of the invariant µ ~ /B in our method is sim-
ply a consequence of the semiclassical nature of the
solution for x in first order:
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Abstract—Self-consistent molecular-dynamics calculations of the charge of micron-size particles in a low-
pressure gas-discharge plasma are performed. It is shown that charge exchange of ions on neutrals starts to
affect the charge of dust particles at pressures corresponding to ion mean free paths much greater than the
Debye radius. The computational results show that the potential of a particle depends nonmonotonically on the
pressure and on the particle size. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

One of the most important parameters determining
the properties of a dust plasma is the charge of the dust
particles. However, at present there are no direct meth-
ods for measuring the charge Q of macroparticles. In
[1–3] measurements of the resonance frequency of ver-
tical oscillations of macroparticles, levitating in the
near-electrode layer of a capacitive-type radio-fre-
quency discharge, were used to determine Q. The oscil-
lations were excited either with low-frequency modula-
tion of the voltage [1, 2] or with modulated laser radia-
tion [3] illuminating one of the particles. The product
Qni, where ni is the ion density in the near-electrode
layer, is determined from the experiment. The ion den-
sity is not measured in the experiment; it is obtained by
extrapolating electron density measurements per-
formed in the quasineutral region. In [4] the quantity Q
is extracted by analyzing the trajectories of two inter-
acting macroparticles. However, the result is sensitive
to the screening length, which is determined simulta-
neously with Q from the same measurements. Thus, in
the experiments the charge of macroparticles is deter-
mined in combination with another unknown parame-
ter. Naturally, this affects the accuracy of the measure-
ments of Q. Measurements performed in a stratified global
discharge also suffer from similar drawbacks [5].

The charge of spherical particles with radius a is
often estimated from measurements of the floating
potential ϕfl, assuming that

In so doing, the fact that the conditions under which
levitation of particles is observed in a gas-discharge
plasma of a particular type are such that the floating
potential dependence on the probe size is neglected.
Consequently, the quantity ϕfl determined by probe
methods cannot be identified with the surface potential
of a dust particle.

Q aϕ fl.=
1063-7761/00/9103- $20.00 © 20483
It should also be noted that there are no reliable pub-
lished experimental data that would make it possible to
judge the dependence of the charge of macroparticles
on either their size or the plasma parameters.

The limited orbits model (OML) [6], which is valid
in the collisionless case, is often used to determine the
charge of dust particles in the theoretical description of
the properties of a dust plasma and in calculations of
the parameters of dust structures. However, under the
conditions of most experiments on dust plasma the col-
lisions of ions with neutrals have a large effect on the
ion flux onto a dust particle and therefore on the charge
of the particle also. It is shown in [7] that under the con-
ditions of the near-electrode later of an hf discharge at
the typical experimental pressures the ions which have
undergone collisions with charge transfer near a dust
particle make the main contribution to the ion flux onto
a particle. Under conditions for which the formation of
dust structures was observed in the positive column of
a dc glow discharge [8] and in an hf induction-type dis-
charge [9], the velocity of the directed motion of ions is
lower than the thermal velocity and the characteristic
scale of variation of the parameters of an unperturbed
plasma by the particles is much larger than the Debye
radius. In this connection it is of interest to investigate
the question of the influence of ion–neutrals collisions
on the charging of an isolated dust particle in a spatially
uniform, isotropic plasma. It is not difficult to estimate
the ion mean free path for which the collisionless the-
ory no longer works. For simplicity, we shall consider
a quite small dust particle with radius

where

a ! RDTi/Te,

RD 4πe
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is the Debye radius, Te, ne, Ti, and ni are, respectively,
the electron and ion temperatures and densities, and e is
the electron charge. For ions surrounding a negatively
charged particle with surface potential ϕs there exists a
potential well, and at distances less than ρ = ae|ϕs |/Ti

the depth of this well is greater than the thermal energy
of an ion. If an ion passing near a particle has under-
gone a collision with charge transfer inside a sphere of
radius ρ, then such an ion has little chance of escaping
from the potential well. Most such ions settle on the
particle. To estimate the additional collisional ion flux
onto a particle the ion flux through a sphere of radius ρ
must be multiplied by the probability of charge
exchange on the ions passing through the indicated
sphere:

where vi is the average thermal velocity of the ions and
λi is the ion mean free path.

Let us compare this flux with the ion flux onto a par-
ticle as determined according to the Langmuir formula
in the OML model:

Comparing shows that the ion flux due to collisions
becomes of the water of the ion flux in the OML
approximation when

Since e |ϕs | ~ Te, under conditions typical for a glow dis-
charge, Te/Ti ~ 100, the quantity λi can be much greater
than not only the particle radius but also of the Debye
radius (RD ≈ RDi ~ 0.08 mm). Thus, for a = 1 µm colli-
sionless have a strong effect even for λi ~ 10 mm, which
corresponds to a pressure of the order of 1.3 Pa. Much
higher pressures were used in the experiments of [8, 9].
Consequently, the calculation of the charge of dust par-
ticles under conditions intermediate between the colli-
sionless and hydrodynamic limits is an urgent problem.
Such a calculation cannot be performed analytically
and requires numerical methods.

2. DESCRIPTION 
OF THE MATHEMATICAL MODEL

The calculation of the charge of a dust particle was
performed under assumptions which are nearly always
satisfied under the conditions of experiments with a
gas-discharge dust plasma. Specifically, an isolated
spherical particle was considered; the particle surface
absorbed all ions and electrons incident on it and it did
not emit charged particles; the plasma was assumed to
consist of electrons and singly charged positive ions in
their proper gas; the electron mean free path was much
greater than the particle size, so that electron losses
could be neglected and the equilibrium distribution
could be used for the spatial distribution of the elec-

J πρ2
v iniρ/λ i,∼

JOML πa
2
v ini 1 e ϕ s /Ti+( ).=

λ i a ϕ se/Ti( )2
.∼
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trons; ion–neutrals collisions were described using the
cross-section for resonance charge transfer, which
plays the main role in the relaxation of the momentum
of neon ions in neon gas [10]. The ion–ion and ion–
electron collisions where neglected, since the degree of
ionization is low. In addition, it was assumed that the
unperturbed ion and electron distribution functions are
Maxwellian with temperatures Te and Ti, respectively,
and the ion temperature was assumed to be the equal to
the temperature of the neutral gas, whose perturbation
by the ions was neglected.

The spatial distribution of the ions and the ion flux
onto a particle were calculated by direct numerical sim-
ulation of the motion of each ion in the region under
study in a self-consistent electric field.

The computational procedure consisted of the fol-
lowing. The electron density distribution E(R) and the
electric field ne(R) were calculated for a given initial
charge of a dust particle and a given ion distribution in
a sphere of radius L (which is the computational cell).
For this, the following system of equations was solved
numerically:

(1)

(2)

(3)

where Ni(R) is the number of ions in a sphere with
radius R and Q is the charge of a dust particle. The
unperturbed ion density ni0 was given and the unper-
turbed electron density ne0 was chosen so as to ensure
electrical neutrality of the computational cell:

(4)

The potential on the outer boundary of the computa-
tional cell was assumed to be zero.

The spatial distribution of the ions and the ion flux
onto a particle were calculated by the molecular-
dynamics method for the electric field and electron
density distribution obtained in this manner. A con-
densing time grid was used as the particle was
approached. The inflow of ions from outside the system
was given by the flux

(5)

where mi is the ion mass. The radial components of the
momentum p and the absolute magnitude of the angular
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momentum M of the ions flowing in from the outside
were random numbers with the distributions

(6)

(7)

which corresponded to a Maxwell distribution of the
ions on the outer boundary of the cell.

The algorithm for taking account of charge
exchange of ions on neutrals consisted of following.
For each ion the probability that the ion will collide
with an atom having random values of the radial com-
ponent of the momentum and angular momentum in a
time equal to the integration time step ∆t was deter-
mined (the velocity distribution of the atoms was
assumed to be Maxwellian). At the end of each integra-
tion time step a die was rolled, and in accordance with
the previously computed probability the radial compo-
nent of the momentum and the angular momentum of
the ion either acquired values equal to the correspond-
ing values for the atom or remained unchanged. In the
calculations, the velocity dependence of the cross-
section for resonance charge transfer was used in the
form [11]

where σ0 and b are constants. Despite the logarithmic
character of this dependence, it is important to it into
account because the average velocity of ions close to a

W p( ) p p
2
/2miTi–( ),exp∝

W M( ) M M
2
/2L

2
miTi–( ),exp∝

σ σ0 b/v( )ln( )2
,=
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Fig. 1. The normalized surface potential of a particle versus
the parameter PRD (or RD/λi), calculated for particles of
various sizes (a/RD = 0.24, 0.12, 0.06, 0.24, 0.012, and
0.005) for Te = (solid curves) 2.5 and (dashed curves) 5 eV.
The OML approximation is shown by horizontal straight lines,
hydrodynamic approximation is displayed by heavy lines.
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dust particle can be an order of magnitude higher than
the thermal velocity.

The ion flux  onto a particle calculated in this

manner, together with the electron flux  onto a parti-
cle calculated using the formula

(8)

where ϕs = ϕ(a) is the surface potential of the particle,
were used to correct the particle charge:

(9)

Then the entire procedure was repeated. The calcula-
tion was terminated when the particle charge became
stationary, which is equivalent to the ion and electron
fluxes onto a particle being equal to one another.

3. COMPUTATIONAL RESULTS

The calculations were performed for a neon plasma
with two electron temperatures Te = 2.5 and 5 eV. The
ion temperature was assumed to be Ti = 0.025 eV, and
the ion density at the outer boundary of the computa-
tional cell was ni0 = 2 × 108 cm–3. The radius L of the
computational cell was chosen so that the ion flux onto
a particle was much less than the random ion flux (5)
directed into the computational cell. The radius of a
dust particle was varied in the range 1–20 µm, i.e.,

Ie
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2 8Te
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  ,exp=

Q* Q Ie
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Fig. 2. Relation between the surface potential and charge of
a particle for Te = 2.5 eV: RD/λi = (1) 0.125, (2) 0.6, (3) 1.25,
and (4) 2.5. The dashed curve corresponds to the Debye
potential and the dash–dotted curve corresponds to the Cou-
lomb potential.
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approximately (0.012–0.24)RD. The neon pressure was
varied from P = 0 up to 270 Pa. The computational
results are presented in Figs. 1–4. It should be noted
that for an ideal plasma the surface potential of a parti-
cle depends on the density of charged particles only
through the Debye radius and is determined by the
ratios of the particle radius and the ion mean free path
to the Debye radius. The method for representing the
results was chosen on the basis of these considerations.
We also note that this fact was used to test the numeri-
cal model. Specifically, a calculation was performed for
ni0 = 8 × 108 cm–3.

Figure 1 shows, aside from the results of the numer-
ical calculation performed using the model described
above, the dependences corresponding to the OML
model and the hydrodynamic approximation for ions.
The hydrodynamic approximation is valid if the ion
mean free path λi ! RD. In addition, if a dust particle is
much smaller than the electron Debye radius (under the
conditions considered RDe ~ 0.8 mm), then the ion cur-
rent onto a particle is determined by the formula

(10)

where bi is the ion mobility. If the pressure is still not
too high and Eq. (8) is valid for the electron current,
then the balance of the ion and electron fluxes onto a
particle leads to the equation

(11)

It is evident from Fig. 1 that for PRD > 30 Pa mm, i.e.,
when RD/λi > 3, the computational results agree well
with the computational results obtained in the hydrody-
namic approximation. At the same time, in the colli-
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Fig. 3. Electric field distribution near a particle with Te =
2.5 eV: RD/λi = (1) 0.025, (2) 0.125, (3) 0.6, and (4) 2.5.
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sionless limit (PRD  0) the quantity e |ϕs |/Te tends
to the value calculated in the OML model (see Fig. 1).
The relation between the surface potential and charge
of a particle is presented in Fig. 2. We note that for the
range of values of the parameter a/RD studied, the rela-
tion between Q and ϕs differs negligibly from the rela-
tion corresponding to a vacuum, and this difference
decreases with increasing value of the parameter RD/λi.

It is evident from the data presented in Fig. 1 that
ion–neutrals collisions start to affect the potential of
micron-size dust particles already at pressures of the
order of several Pa, which corresponds to ion mean free
paths of the order of several mm, i.e., much greater than
the Debye radius. As long as the mean free path
remains larger than the Debye radius, increasing pres-
sure results in a higher ion current and a lower particle
charge. In the hydrodynamic regime, as pressure
increases, the particle charge once again starts to
increase, since the ion mobility decreases. Collisions
also cause the surface potential of a particle to depend
weakly on the particle size. In the hydrodynamic limit
the surface potential of a particle increases monotoni-
cally (in modulus) with increasing particle radius
(approximately logarithmically). As follows from Fig. 1
and estimates of the ion flux which are presented in the
Introduction, the opposite trend is observed at low pres-
sures for very small particles (a/RD ! Ti/Te), since for
them the ion flux is proportional to the cubed particle
radius, while the electron flux is proportional to the
squared radius. For particles with a/RD ≥ Ti/Te (see
Fig. 1) the absolute value of the surface potential
increases with the particle size, but this dependence
becomes weaker as the particle radius and pressure
decrease.
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23
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0 2 4 6 8 10
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Fig. 4. Ion and electron density profiles near a particle with
Te = 2.5 eV and a /RD = 0.12: RD /λ i = (1) 0.025, (2) 0.6,
(3) 2.5. Broken curves are equilibrium ion density distribution.
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It follows from the electric field distributions, pre-
sented in Fig. 3, near a particle that as the pressure or
the value of the parameter RD/λi increases, a transition
occurs from the Debye to the Coulomb potential
because the screening effect decreasing. Comparing the
ion and electron density distributions, presented in Fig.
4, near a particle also attests to the fact that the screen-
ing effect decreases as the parameter RD/λi increases.
In turn, the perturbation of the Boltzmann distribution
of the ion density (see Fig. 4) is due to be ion losses on
the particle. As the particle size increases, this perturba-
tion increases. As a result, for large particles the devia-
tions from the Debye potential begin to appear for
lower values of the parameter RD/λi (see Fig. 3). The
data presented in Fig. 2 also attest to this.

In summary, it was shown above that at pressures
corresponding to ion mean free paths much greater than
the Debye radius the limited orbits approximation for
calculating the charge of dust particles levitating in a
gas-discharge plasma leads to large errors. The pres-
sure dependence of the surface potential of the particles
is nonmonotonic, and for neon plasma it has a mini-
mum at pressure ~100 Pa.
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Abstract—The temperature variations of the cholesteric pitch in thin planar layers of cholesterics and their
dependence on the surface anchoring force are investigated theoretically. It is shown that the temperature vari-
ations of the pitch in a layer are of a universal character. This is manifested in the fact that they depend not sep-
arately on the parameters of the sample but only on one dimensionless parameter Sd = K22/dW, where K22 is the
torsional modulus in the Frank elastic energy, W is the height of the surface-anchoring potential, and d is the
thickness of the layer. The investigation is performed the parameter Sd in a range where the change per unit
number of cholesteric half-turns within the thickness of the layer accompanying a change in the temperature is
due to the slipping of the director on the surface of the layer through the potential barrier for surface anchoring.
The critical values of the parameter Sd (which are most easily attained experimentally by varying the thickness
of the layer), determining the region of applicability of the approach employed, are presented. The temperature
variations of the free energy of the layer and the pitch of the cholesteric helix in the layer as well as the temper-
ature hysteresis in the variations of the pitch with increasing and decreasing temperature are investigated for the
corresponding values of Sd . Numerical calculations of the quantities mentioned above are performed using the
Rapini anchoring potential. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Interest in detailed investigations of chiral liquid
crystals (LC) has increased in recent years (see, for
example, [1]). This interest is partially due to the gen-
eral-physical problem (not solved thus far) of choosing
the chiral order parameters characterizing chiral sys-
tems (see, for example, the review in [2]). Such investi-
gations are also of interest because the many additional
advantages of chiral LC over the nematic LC, which are
ordinarily used, have not been completely realized in
applications. Since cells of chiral, specifically, choles-
teric, LC are now widely used as sensors of various
kinds as well as for information display devices con-
trolled by optical transparencies and for many other
purposes, it is extremely important to study the proper-
ties of these LC in bounded geometries. Investigations
of the optical characteristics of thin layers of chiral LC
yield important information (for applications and for
understanding the physics of LC) about changes in the
structure of a LC in thin layers and about the dynamics
of these changes.

In [3, 4] the temperature behavior of the cholesteric
pitch in thin planar cholesteric layers was investigated
by measuring their optical transmission spectra, which
on the basis of a well-developed theory of the optical
properties of chiral liquid crystals [5, 6] were inter-
preted in terms of the temperature variations of the
parameters of the cholesteric in the layer. An unusual
1063-7761/00/9103- $20.00 © 20488
temperature behavior of the transmission spectra of
light with wavelength of the order of the pitch of the
cholesteric helix and temperature hysteresis in abrupt
changes of the pitch were attributed to the deviations of
the director on the surface of the sample away from the
direction of alignment in the potential well of the sur-
face-anchoring forces and the abrupt transitions of the
cholesteric helix in the layer between configurations
differing from one another by one half-turn of the helix
in the layer. Comparing the results with the theory of
temperature variations of the pitch in cholesteric layers,
which was developed on the basis of the continuum the-
ory of elasticity taking account of the surface-anchor-
ing forces, showed that the parameters of the experi-
mental samples were such that the mechanism of the
temperature jump in the pitch did not correspond to a
transition between configurations of the helix with the
number of half-turns differing by one by means of the
director overcoming on the surface the barrier in the
surface anchoring potential. Specifically, the measured
angles of deflection of the director on the surface of the
layer from the direction of alignment for the tempera-
ture of the jump [3, 4] were much smaller than the crit-
ical (see below) value of this angle. Consequently, the
mechanism of the jump in the pitch and the reasons
why a superposition of two spectra corresponding to
configurations in which the number of half-turns of the
helix in the layer differs by one are present in the trans-
mission spectra remained unknown. This requires a fur-
000 MAIK “Nauka/Interperiodica”
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ther study of the question, specifically, an analysis of
the situations for which a reliable theoretical descrip-
tion is known, especially since the pitch jumps appear
in various precise investigations of layers of chiral liq-
uid crystals, for example, in the nonlinear generation of
high optical harmonics [7] and investigations with a
Fabry–Perot interferometer [8]. The present paper is
devoted to an analysis of one such situation, specifi-
cally, the study of the temperature variations of the cho-
lesteric pitch in thin layers. The conditions under which
the simple continuum theory of elasticity, taking
account of the surface-anchoring forces, is applicable
are found. For these conditions a universal description
of the temperature variations of the pitch in the layer is
proposed, and a theory of the temperature hysteresis of
jumps in the pitch is given and experimentally observ-
able effects are found.

2. BASIC EQUATIONS

We shall consider the temperature behavior of the
pitch of a helix in a thin planar cholesteric layer, assum-
ing the surface-anchoring forces to be identical on both
surfaces of the layer and assuming the alignment axis to
be the same on both surfaces. We shall use for this the
expression for the free energy in the form [9]

(1)

where K22 is the torsional elastic modulus, Ws(ϕ) is the
surface anchoring potential, d is the thickness of the
layer, p(T) is the equilibrium value of the pitch of the
cholesteric helix for temperature T in a bulk choles-
teric, pd(T) is the pitch at the same temperature in a
layer of thickness d, and ϕ is the angle of deflection of
the director on the surface of the layer from the direc-
tion of alignment.

The formula (1) requires comment. The point is that
the properties of a deformed cholesteric depend strongly
on the ratios of the nonuniformity scale and the pitch of
the helix. On scales much less than the pitch of the helix
the cholesteric has the same properties as a nematic. In the
opposite limit the elastic properties of the cholesteric
are equivalent to those of a smectic. Consequently, the
expression for the “quasi-smectic” energy (1) is valid
for cells with thickness much greater than the pitch of
the cholesteric helix when the surface anchoring
ensures that the director is not tilted away from the nor-
mal to the cholesteric axis for the equilibrium configu-
ration of the LC in the layer.

Since the pitch pd(T) in the layer is uniquely related
with the angle ϕ and the equilibrium pitch p(T) is
related with ϕ0(T)—the angle of deflection of the direc-
tor on the surface of the layer away from the direction
of alignment in the absence of surface anchoring, the

F T( ) 2Ws ϕ( )
K22d

2
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------------- 2π

p T( )
-----------– 

  2

,+=
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expression for the free energy can be rewritten as a
function of these angles:

(2)

However, ϕ and ϕ0(T) are interrelated and the rela-
tion between them can be found by minimizing the free
energy (2). This gives an equation for the angle ϕ as a
function of temperature:

(3)

Using Eqs. (2) and (3), the expression for the free
energy can be represented in the form

(4)

where the temperature dependence of the angle ϕ of
deflection of the director from the direction of align-
ment on the surface of the layer is determined by
Eq. (3). In what follows, we shall assume for simplicity
(and also for making estimates) that the surface anchor-
ing potential Ws(ϕ) is determined only by one charac-
teristic energy W (depth of the potential well).

We note that dividing Eqs. (2)–(4) by the depth W of
the surface potential we find that the depth of the sur-
face anchoring potential, the elastic modulus, and the
thickness of the layer enter in these equations only
through the dimensionless parameter Sd = K22/dW (we
note that the parameter Sd differs only by a factor from
the parameter S = 4π(d/p)Sd used in [3, 4]). Thus, for a
fixed value of Sd the temperature dependence of the ori-
entation of the director on the surface (the angle ϕ) is
determined only by the form of the anchoring potential
and the temperature dependence of the equilibrium
pitch p(T), i.e., ϕ0(T). The temperature dependence of
ϕ and the free energy, which follow from the equations
presented, for a fixed value of the parameter Sd will be
universal, i.e., it will not depend on the number of half-
turns of the cholesteric helix over the thickness of the
layer (or, which is the same thing, it does not depend on
the thickness of the layer).

The potential barrier between the configurations of
the helix that differ by one half-turn also does not
depend on the thickness of the layer and is determined
only by the parameter Sd . The barrier height depends on
the temperature (through the function ϕ0(T)) and is
determined by the expression

(5)

where ϕc is a critical angle at which an abrupt change
occurs in the configuration of the cholesteric helix in
the layer; the equilibrium value of the angle ϕ(T) is
determined by the solution of Eq. (3), and the free energy
F(ϕ, ϕ0(T), Sd) is determined by Eq. (2). As should be the
case, when the angle ϕ(T) reaches the critical value the
barrier height becomes zero and a transition between
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configurations differing from one another by one half-
turn of the helix occurs abruptly in the layer.

The value ϕc of the pitch in the layer immediately
before the jump (of course, the angle pd(Tc) of free rota-
tion of the director, i.e., the pitch Tc of a helix in a bulk
cholesteric, can also be found from the temperature
p(Tc)) can be expressed in terms of the critical angle
ϕ0(Tc), whose value is determined by the form of the
anchoring potential:

(6)

where N is the number of half-turns of the helix over the
thickness of the layer in the initial equilibrium configu-
ration of the helix, Tc is the temperature of the pitch
jump, and the free-rotation angle of the helix for this
temperature of the jump is given by the formula

(7)

Thus, if the form of the surface anchoring potential
and the temperature behavior of the pitch of the helix in
a bulk cholesteric are known, then the relations pre-
sented above determine the temperature behavior of the
pitch of the helix in a layer of finite thickness. These
same formulas can be used to solve the inverse prob-
lem, specifically, to reconstruct the surface anchoring
potential on the basis of the experimentally found tem-
perature behavior of the pitch of the helix in a layer of
finite thickness.

3. TEMPERATURE HYSTERESIS
OF PITCH VARIATIONS IN A LAYER

To describe the temperature variations of the pitch
in a layer it is necessary to know the specific form of the
surface anchoring potential Ws(ϕ) [10, 11]. However,
the qualitative character of the temperature variations
of the pitch in a cholesteric layer can be determined
even without specifying the form of this potential.
Since we are interested in investigating the temperature
dependence of the pitch in the layer, specifically, deter-
mining the temperatures of the pitch jumps that corre-
spond to changes in the number of half-steps of the cho-
lesteric spiral in a layer by one, we recall the results of
the corresponding analysis in [3, 4]. On the surface of
the layer the director is oriented in the direction of
alignment at a temperature for which an integer number
of half-pitches p(T) of the helix of a bulk cholesteric fit
within the thickness of the layer, i.e., ϕ0(T) = 0. When
the temperature deviates from this value ϕ0(T) and ϕ(T)
become different from zero. The temperature for which
ϕ0(T) = π/4 corresponds to the situation where the free
energies of both configurations of the helix which differ
by one half-turn over the thickness of the layer are the
same, but because of the presence of a potential barrier
between these configurations, which is due to surface
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anchoring, the transition between them occurs not at
this temperature point but with a further variation of the
temperature. Thus, temperature hysteresis is observed
in the transition, i.e., the transition temperatures are dif-
ferent for different directions of variation of the tem-
perature. However, the temperature determined by the
condition ϕ0(T) = π/4 would correspond to the point of
a pitch jump at a transition between configurations of
the helix in the absence of hysteresis. In reality, how-
ever, because of hysteresis the pitch jump occurs at a
temperature determined by the condition ϕ(T) = ϕc,
where ϕc is the critical angle at the pitch of the helix
changes abruptly.

Using the natural assumption that the potential
Ws(ϕ) is an even function of ϕ—the angle of deflection
of the director from the alignment direction on the sur-
face of the layer—it is easy to conclude that the solu-
tion of Eq. (3) for ϕ is an odd function of ϕ0(T) and is
bounded by the values ±ϕc . For example, when the
angle ϕ reaches one of these limiting values ϕc the pitch
of the cholesteric helix in the layer changes abruptly,
and the angle ϕ also assumes a new value abruptly. If
the jump point corresponds to the angle of free rotation
of the director ϕ0(T+), then the angle of free rotation of
the director determining the value of ϕ after the jump is
ϕ0(T+) – π/2 but in a new configuration of the helix dif-
fering by one half-turn over the thickness of the layer.
For temperature varying in the opposite direction the
pitch jump occurs when the angle ϕ reaches a different
limiting value –ϕc, and the corresponding angle of free
rotation is ϕ0(T–) = –ϕ0(T+) (where T– is the temperature
corresponding to the jump for this direction of temper-
ature variation). The latter relation results in the follow-
ing relation between the values of the free pitches of the
helix (temperatures) corresponding to a jump with
opposite directions of temperature variation [4]:

(8)

where N is the number of half-pitches in a layer for the
initial configuration of the helix (before the jump at tem-
perature T+ and after the jump at the temperature T–).

The first relation in Eqs. (8) is universal and at first
glance in no way depends on the surface anchoring
forces. In reality, the jump temperatures T+ and T–
depend on the surface anchoring, more accurately, on
the parameter Sd. The relation itself determines the rela-
tion, which does not depend on the specific form of the
surface potential, between the pitch jump temperatures
with opposite directions of temperature variation, i.e.,
temperature hysteresis in the pitch variations, and it has
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predictive power, which can be checked experimen-
tally. Specifically, if the pitch at the jump point is mea-
sured experimentally for a certain direction of temper-
ature variation, then the pitch at the jump point with the
opposite direction of temperature variation can be cal-
culated using Eq. (8) and checked experimentally. Spe-
cifically, it follows from Eq. (8) that in the limit of van-
ishingly weak surface anchoring (i.e., T+  T–) the
pitch at the jump point is d/(N + 1/2), as should be [3],
and there is no hysteresis. It follows from the same for-
mula that as the thickness of the layer increases, the
hysteresis decreases (more accurately, the hysteresis
decreases for fixed Sd with increasing N).

4. CRITICAL THICKNESS OF THE LAYER
We shall now discuss in somewhat greater detail the

conditions of applicability of the mechanism, discussed
here, for the jump in the pitch of the helix due to slip-
ping of the director on the surface through the barrier in
the surface anchoring potential. Since ϕc = π/4 in rea-
sonable models of surface anchoring potentials [3, 4],
we shall assume below that the jump condition is
ϕ(T) = π/4, i.e., on the surface of the layer the director
turns from the alignment direction by the angle π/4
when anchoring forces are present. Depending on the
surface anchoring force, more precisely, the value of
the parameter Sd, the free rotation angle ϕ0(T) of the
director can exceed π/2 or remain less than this value.
In the first case the helix is “overwound,” i.e., the equi-
librium configuration of the helix and the configuration
under study differ by more than one half-turn. Conse-
quently, the pitch jump accompanying a change in the
number of half-turns of the helix by one is accompa-
nied by a transition into not an equilibrium but rather a
metastable configuration of the helix. In addition,
depending on the anchoring force, the number of such
metastable states, which differ by 1, 2, and so on half-
turns from the equilibrium configuration of the helix in
the layer, can be quite large. Thus, for infinitely strong
surface anchoring the number of such states is infinite,
and the transition into the equilibrium state by slipping
of the director through the surface anchoring barrier
cannot occur at all. This means that in this case the
mechanism of relaxation of the configuration of a helix
to its equilibrium state accompanying temperature vari-
ations is not the same as slipping of the director on the
surface through the surface anchoring barrier, for
example, the mechanism of fluctuation formation of a
defect in the interior volume of the layer, giving rise to
further relaxation of the director distribution in the
layer to the equilibrium configuration.

The simplest form of such defects are the so-called
χ lines [9] in cholesterics (analogous to dislocations in
smectic-type layered structures). A change in the num-
ber of half-turns of the cholesteric helix and corre-
spondingly “shedding” of excess free energy can occur
when such a dislocation loop nucleates and grows (in
the central part of the layer, where the elastic stresses

are weakest under conditions of strong surface anchor-
ing). The nucleation and growth of a dislocation loop
are determined by the competition between two factors:
loss in linear tension because of the appearance of a sin-
gular line 2πRt (R is the radius of the dislocation loop
and t ≈ K22 is the linear tension) and gain in surface
energy inside the dislocation loop πR2bB/(Ad) (here B
is the potential barrier given by Eq. (5), b is Burgers
vector (of the order of the pitch of the helix), and A is
the surface area of the layer). Minimizing both of these
contributions gives the activation energy of the process
Ea = πt2Ad/(bB), and in order for the dislocation mech-
anism to be efficient the value of Ea must not be too
large compared with kBT (kB is Boltzman’s constant).

On this basis it is helpful to introduce the concept of
the critical thickness of a layer or the critical value of
the parameter Sd , which determine the boundary value
of the thickness or Sd for which the jump in the pitch of
the helix in the mechanism of slipping through a barrier
with temperature variations is accompanied by a transi-
tion of the helix into an equilibrium configuration. The
critical values of the thickness of the layer and Sdc are
determined by Eq. (3), if ϕ = ϕc and 2(ϕc – ϕ0(T)) = –π
there, which gives

(9)

As follows from Eq. (9), the critical values depend on
the explicit form of the surface potential. For definite-
ness we shall use here and below the critical values in
the Rapini potential (see, for example, [9–11]): Ws(ϕ) =
–(W/2)cos2ϕ, for which ϕc = π/4. Then the critical
thickness dc and the parameter Sdc are determined by
the formulas

(10)

Thus, for layer thicknesses less than dc or Sd > Sdc

metastable configurations of the helix in the layer are
not drawn into the temperature jump in the pitch and the
temperature variations of the pitch can be described on
the basis of the mechanism of slipping of the director on
the surface through the anchoring potential barrier.

5. PITCH VARIATIONS
IN THE RAPINI POTENTIAL

The relations presented above can be used to recon-
struct the anchoring potential from the experimental
measurements of the temperature variations of the pitch
in cholesteric layers. However, as demonstrated above,
some regularities of the corresponding dependences are
insensitive to the specific form of the surface anchoring
potential, so that it is reasonable to perform theoretical
calculations of these dependences on the basis of a
model potential. The Rapini potential is most widely
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used for describing the surface anchoring [9–11]. Con-
sequently, we present below the calculations of the tem-
perature variations of the pitch in a planar cholesteric
layer for the Rapini potential.

The explicit form of the expression for the free
energy is now determined by the relation

(11)

The relation determining the equilibrium value of
the angle ϕ(T) becomes

(12)

The expression for the free energy in the form of a
function of the deflection angle of the director at the
surface from the alignment direction is

(13)

Finally, Eq. (5) for the barrier becomes

(14)

Using Eq. (12), we recast Eq. (14) into the form

(15)

The temperature dependence of the pitch of the
helix can be represented in a universal form. For this,
only the functions ϕ0(T) (the angle of free rotation of the
director on the surface of the layer) or ϕ(T) (the rotation
angle of the director on the surface of the layer in the pres-
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Fig. 1. Computed dependence of the deflection angle of the
director at the surface of a layer for various values of the
parameter Sd . The value of the angle ϕj , realized after the
pitch jump, is marked on one of the curves.
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ence of anchoring) should appear in Eqs. (11)–(15). As
noted above, the corresponding dependences are uni-
versal, i.e., they are determined only by the dimension-
less parameter Sd . The conversion from computed
quantities to dependences for a real sample is made
using simple transformations (see below).

For example, the free rotation angle of the director
at the jump point is given by the expression

(16)

and the pitch corresponding to the jump in a bulk cho-
lesteric is given by the formula

(17)

Figure 1 shows the temperature dependence ϕ(T) of
the deflection angle of the director on the surface of the
layer for the critical value of the parameter Sd = Sdc = 1/2π
and several other values of the parameter Sd for which
the pitch jump cannot draw metastable states into the
process leading to the change in the configuration of the
helix in the layer. Possible multiple pitch jumps, alter-
nating with smooth temperature variations of the pitch
with increasing temperature, fall on the right-hand
branch of the curve. As temperature increases (it is
assumed that in the bulk of a cholesteric the pitch
decreases with increasing temperature), the angle ϕ(T)
reaches the critical value π/4 (for a free rotation angle
ϕ0c that depends on Sd), after which it decreases
abruptly to ϕj , corresponding to the abscissa ϕ0c – π/2.
As temperature increases further, ϕ(T) changes from
the value corresponding to the abscissa ϕ0c – π/2 to π/4,
where it once again changes abruptly to the same value
as in the first jump. Thus, the angle changes repeatedly
along the curve between the points with the abscissas
ϕ0c – π/2 and ϕ0c. In the process, the number of half-
turns of the helix over the thickness of the layer
changes, but the range of variation of the director
angles on the surface of the layer is independent of the
number of half-turns of the helix. As temperature
decreases, ϕ(T) reaches a critical value –π/4, after
which it changes abruptly to the value –ϕj correspond-
ing to the abscissa –ϕ0c + π/2, and as temperature
decreases further, it changes along the left-hand branch of
the curve between the points with abscissas –ϕ0c + π/2 and
–ϕ0c, just as with increasing temperature.

It follows from Eq. (16) that the case of interest for
the problem at hand, where after the jump ϕ(T) =
ϕ0(T) = 0, i.e., a new configuration of the helix corre-
sponds to a minimum of the free energy, corresponds to
the value Sd = 1/π. In this case the angles which the
director makes at the surface with the alignment direc-
tion before and after the jump differ by π/4. The maxi-
mum value of this difference is π/2 and occurs in the
limit of vanishingly weak surface anchoring, i.e., in the
limit of infinitely large Sd .
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The values of the pitches of the helix in the layer for
a specific sample immediately before and after a jump
can be easily found from the computed curve. Thus, as
temperature increases in a layer with N half-turns of the
helix the values of the pitch before and after a jump are
given by the expressions, respectively,

(18)

As temperature decreases, the corresponding values
of the pitches in the layer are given by the expressions

(19)

The second relation in Eqs. (8) for the temperature
hysteresis of the pitch assumes the form

(20)

Figures 2 and 3 show the computed values of the
free energy of a layer for various values of the parame-
ter Sd as a function of the free angle of rotation of the
director on the surface and the angle of rotation of the
director taking account of the surface anchoring,
respectively. We note that for a constant direction of
temperature variation the free energy of the equilibrium
state of the layer varies between two values, exceeding
its minimum, and the free energy of the layer can pass
through the minimum value before the first pitch jump
only if the direction of temperature variation changes.
As could be seen above, the only exception is the case
corresponding to the parameter Sd = 1/π, for which the
equilibrium value of the free energy after the jump
reaches a minimum value.

Figure 4 shows the computed dependence of the height
of the barrier between the configurations of the helix that
differ by one half-turn in the layer on the angle of rotation
of the director at the surface in the presence of surface
anchoring. Figure 5 shows the same dependence but as
a function of the free angle of rotation of the director. It
is evident that, just like the free energy, the behavior of
the barrier does not depend on the number of turns of
the helix within the thickness of the layer, but rather it
is determined only by the value of the parameter Sd. We
note here that the curves presented correspond to a real
barrier only for ϕ0(T) > π/4, while for a smaller value of
this angle the energy of the initial configuration of the
helix is lower than for the configuration with a different
number of half-turns of the helix, and the curves pre-
sented do not represent a barrier.

Figure 6 shows the hysteresis loops for the deviation
of the number N(T) of half-turns of the helix in the layer
versus the integer number corresponding to the orienta-
tion of the director at the surface of the layer in the
direction of alignment for the case where the tempera-
ture range contains one pitch jump with temperature
varying in the direct and reverse directions (a) and for
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the case where the temperature range contains several
jumps of the pitch with temperature varying in the
direct and reverse directions (b). In contrast to the preced-
ing figures, here the reference point for the angle ϕ0(T)
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Fig. 2. Computed dependence of the free energy of the layer
(arbitrary units) on the deflection angle of the director at
the surface of the layer ϕ(T) for various values of the
parameter Sd .
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Fig. 3. Computed dependence of the free energy (arbitrary
units) on ϕ0(T) for various values of the parameter Sd .
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Fig. 4. Computed dependence of the barrier height (arbi-
trary units) between helix configurations differing by one
half-turn in the layer versus the deflection angle of the direc-
tor at the surface of the layer for various values of the
parameter Sd .
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does not change after a pitch jump, but rather it remains
fixed in the entire temperature range. We call attention
to the fact that temperature ranges where the variation
of N does not depend on the direction of temperature
variation occur at the limits of the ranges of variation of
ϕ0(T) which were presented above.

6. TEMPERATURE FLUCTUATIONS
OF THE DIRECTOR ORIENTATION

In the analysis performed above, the orientational
fluctuations of the director in the layer were completely
ignored, since the analysis was performed on the basis
of the continuum theory of elasticity, which works with
the macroscopic average characteristics of a liquid
crystal. It is obvious that under definite conditions fluc-
tuations can be very strong, and sometimes they can
even determine the character of the phenomenon under
study (see, for example, the investigation of orienta-
tional fluctuations in nematic layers [12, 13]). In what
follows, the influence of orientational fluctuations of
the director on the temperature variations of the pitch in

Sd = 5/π

5/(2π)

1/(2π)

1/π

2.0

1.5

1.0

0.5

0
–1 0 2

B

ϕ01–2

Fig. 5. Computed dependence of the barrier height (arbi-
trary units) between helix configurations differing by one
half-turn in the layer on ϕ0(T) for various values of the
parameter Sd .
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the layer is briefly analyzed on the basis of the model
free energy (1).

The quadratic correction to the free energy (with
respect to small angular deflections ∆ϕ of the director
away from its equilibrium orientation at the surface of
the layer for the temperature under study) is determined
by the expression

(21)

Hence the mean-squared angular temperature fluctua-
tions of the director at the surface of the layer 〈(∆ϕ)2〉
can be expressed in terms of the temperature on the
basis of the equipartition theorem for energy [14],

(22)

The expression (22) shows that because of temperature
fluctuations of the orientation angle of the director at
the surface or, equivalently, the free energy of the layer
the temperatures of the pitch jumps shift in the direction
of decreasing hysteresis: a decrease of the jump tempera-
ture with increasing temperature and an increase of the
jump temperature with decreasing temperature. If the
shift of the jump points covers the temperature range of
hysteresis, then hysteresis does not appear in the tem-
perature variations of the pitch of the helix in the layer.

Specifically, a modification of Eq. (16) for the free
angle of rotation of the director at the jump point of the
pitch, determining the temperature of the jump, follows
from Eq. (22). Now, taking account of fluctuations of
the director, we obtain instead of Eq. (16)

(23)

where π/4 is substituted for the critical angle ϕc, i.e., the
value for the Rapini potential.

An obvious consequence of Eq. (23) is that hystere-
sis decreases with temperature and can vanish com-
pletely with a definite increase of temperature.
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Fig. 6. Computed dependence on ϕ0(T) of the hysteresis in the deviation ∆N of the number of half-turns in a layer from an integer
for the temperature range (a) with one pitch jump for both directions of variation of the temperature and (b) with three jumps for
Sd = 1/2π. Here the reference point for the angle ϕ0(T) does not change after a pitch jump, but rather it remains fixed in the entire
range of temperature variation.
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Of course, Eqs. (21) and (22) describe only uniform
fluctuations of ϕ on the basis of quasi-smectic (large-
scale) energy (1). The general orientational fluctuation
of the director can be described by two parameters that
depend on three coordinates. However, the energy of
such a general fluctuation cannot be found by confining
attention only to the large-scale energy (1). The total
Frank energy must be minimized. The solution of this
problem falls outside the scope of the present work.

7. CONCLUSIONS

The analysis, given above, of the temperature varia-
tions of the pitch of a helix in a cholesteric layer shows
that if the pitch jumps in the layer can be described by
the mechanism of surface slipping of the director (i.e.,
if the parameter Sd is larger than the critical value found
above), then a quite universal pattern of temperature
variations of the pitch, determined by the dimension-
less parameter Sd, is realized. The theory developed
gives experimentally verifiable predictions, for exam-
ple, the values of the pitch in the layer at the jump tem-
peratures for temperature varying in opposite directions
should be related with one another. The formulas
derived make it possible to obtain from the measure-
ments quantitative information about the surface
anchoring forces (the value of the parameter Sd), if the
form of the surface potential is known, for example, the
Rapini potential. However, the problem of reconstruct-
ing the real potential of the surface anchoring from the
measured temperature dependences of the pitch of the
helix in a layer is probably no less urgent. This problem
can be solved in principle using the formulas obtained in
the present paper. This problem is especially important
for liquid crystals bounded by perfect single-crystal sub-
strates, for which the anchoring potential, in contrast to
the Rapini potential, can be nonmonotonic with respect
to angle and can even possess several local minima.

As far as the hysteresis of the pitch in cholesteric
(and other chiral) liquid crystal layers is concerned, this
phenomenon is promising for applications, especially
since not only can the temperature hysteresis examined
above appear, but hysteresis with respect to other exter-
nal actions, for example, electric or magnetic fields, can
also arise.

It is interesting that although formally the large-
scale energy (1) used above has a quasi-smectic form,
the physics of cholesteric and smectic ordering is very
different. Smectic layers are associated with density
modulations in the system, and consequently a change
in the number of smectic layers in the film results in an
abrupt change in the thickness of the film. “Cholesteric
layers” are formed in a continuous distribution of the
orientational order parameter (director), and conse-
quently a change in the number of half-turns of the cho-
lesteric spiral on the thickness of the sample is not nec-
essarily directly related with a change in the thickness
of the sample. Consequently, it can be stated that the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
mechanism, investigated in the present paper, for the
abrupt change in the pitch of a helix in cholesteric lay-
ers is dual to the intensely studied, in recent years (see,
for example, [15–17]), phase transitions of layerwise
thinning of the freely suspended films of smectic liquid
layers.

The results obtained in the present work can be
applied directly for determining the surface anchoring
force and restoring the form of the surface potential
according to the angular deflections of the director.1

The results obtained can be used to determine whether
or not the mechanism of surface slipping of the director
works in the case investigated. This is determined
according to the difference between the angle corre-
sponding to a pitch jump and the critical angle. If the
difference exceeds the rms angle of the fluctuations,
determined by Eq. (22), then the mechanism of the
pitch jump is different from surface slipping.

Investigations of the dependence of the temperature
hysteresis in pitch jumps on the thickness of the layer
make it possible to study the effect of fluctuations of the
orientation of the director on the temperature variations
of the pitch. The general tendency here is as follows:
the smaller the thickness of the layer, other conditions
being the same, the stronger the effect of fluctuations of
the director on the temperature variations of the pitch
are. This is illustrated in Fig. 5, which demonstrates
that for small values of the parameter Sd (i.e., large
layer thicknesses) the barrier height is a very gently
sloping function of the angle of free rotation of the
director ϕ0(T), and consequently small fluctuation vari-
ations of the layer energy make it possible to overcome
the barrier for ϕ0(T) < ϕ0(Tc), i.e., they decrease the hys-
teresis. Ultimately, for sufficiently thick layers this
results in no temperature hysteresis in variations of the
pitch (as is observed experimentally).

On the whole, the possibility of varying the experi-
mental parameters opens up a large scope for experi-
mental investigation of the problem. For example,
changing the temperature makes it possible to change
near T1—the transition point of the LC into an isotropic
liquid—the parameter Sd, since W ∝  (T – T1)1/2, and
K22 ∝  (T – T1), so that Sd ∝  (T – T1)1/2 and as T  T1
strong anchoring conditions always occur. As the sur-
face area A of the layer decreases, fluctuations should
play a larger role, since they grow as 1/A, which
decreases hysteresis and hysteresis vanishes if the sur-
face area is sufficiently small. It could be helpful to
study the phenomenon in a wedge-shaped cell.

It should also be noted that the results obtained in
the present work are a necessary initial step for study-
ing the dynamical characteristics of LC layers. For

1 The preferred variant is the one where an absolutely rigid anchor-
ing of the director with the surface exists on one of the surfaces of
the layer, since in this case the form of the potential can be recon-
structed up to the angle of deflection of the director from the
alignment direction π/2 and not up to π/4, as in the case consid-
ered.
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example, assuming a purely relaxation dynamics for a
single variable describing the properties of the model
under study, the angle ϕ, the temporal correlation of the
phase of the light which has passed through a LC layer
can be found. Comparing the correlation function,
found theoretically in this manner, with the experimen-
tal data makes it possible to find an important charac-
teristic of the LC in the layer—the relaxation time of
the angular deflection of the director at the surface from
the direction corresponding to a minimum of the free
energy of the layer.
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Abstract—A method is developed for calculating the elastic deformation in coherently strained heterostruc-
tures on the basis of the valence force field (VFF) model using the Green’s function of the “atomistic” elastic
problem. The spatial distribution of the elastic deformations in a Ge/Si system with pyramidal Ge quantum dots
buried in a Si matrix is investigated theoretically. The deformation distribution in and around the pyramids is
determined. Near quantum dots, the region near the tip of the pyramid is most strongly intensely. Inside quan-
tum dots the region of the vertex is most relaxed, and the most strained section lies on the contour of the pyramid
base. Compression occurs in the plane of the pyramid base inside quantum dots, and stretching occurs along
the vertical direction. The picture is reversed near quantum dots: stretching occurs in the lateral direction and
compression in the vertical direction. It is shown that the local deformations and their spatial distribution
are essentially independent (to within the scaling) of the size of the quantum dots for 10–15 nm pyramid bases.
© 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The interest of researchers in semiconductor struc-
tures containing zero-dimensional objects (quantum
dots) has increased substantially in the last few years.
On account of their small sizes and high size and shape
uniformity quantum dots formed during heteroepitaxy
of elastically strained systems are most attractive for
practical applications [1, 2].

The main characteristic of quantum dots, which
determines their electric and optical properties, is the
energy spectrum of the charge carriers. To calculate the
spectrum of the states in self-forming islands it is nec-
essary to know the elastic deformation due to the lattice
mismatch between the nanocluster and substrate mate-
rials. For example, in the Ge/Si system the lattice mis-
match is 4.2%. A deformation can change the energy
structure by an amount of the order of 0.1 eV [3], which
is comparable to the size-quantization energy of the
charge carriers in quantum dots. Consequently, finding
the elastic deformation fields is a necessary preliminary
step for calculating the electronic structure of self-
forming quantum dots.

Most theoretical and experimental works on deter-
mining the elastic deformation in self-forming quan-
tum dots are concerned with the heterosystem
InAs/GaAs [4–9]. There are two approaches to calcu-
lating the deformation in quantum dots: the continuous
medium model [4, 8, 10] and the valence force field
(VFF) model [5–7, 9]. The first model is macroscopic
and the second is atomistic, and it is based on the poten-
tial of the elastic forces as a function of the interatomic
1063-7761/00/9103- $20.00 © 20497
distances and angles. Moreover, a recent work [11]
employed the molecular-dynamics method to obtain
the distribution of elastic stresses over the free surface
in Ge/Si structures with quantum dots.

Even though there have been many experimental
investigations of Ge/Si heterostructures with quantum
dots (see [1] and the references cited there), no theoret-
ical investigations of the electronic spectrum of such
quantum dots have yet been performed. Our objective
in the present work is to find numerically the elastic
deformation fields in self-forming Ge quantum dots
buried in a Si matrix; knowledge of these fields is nec-
essary in order to analyze the electronic spectrum in
such structures theoretically. We chose the atomistic
approach to find the deformations. This choice is made
because, in the first place, the objects under study are
comparable in size with the lattice constant. In the sec-
ond place, to calculate the electronic spectrum it is bet-
ter to have a result in the form of the positions of the
atoms and not in the form of average quantities, such as
the deformation tensor. We developed a method for cal-
culating the elastic deformation on the basis of the VFF
model [12–14] with a Keating potential [13]. The
Green’s function, together with the atomistic approach,
is used for the first time to find the deformation in a het-
erostructure. The main advantage of the method is that
the final results are insensitive to the position of the
boundary of the atomic cluster chosen.

The initial structure and the characteristic shape and
size of Ge quantum dots in Si are shown in Fig. 1. The
quantum dots are square pyramids with a (001) base
and {105} lateral faces, and they lie on top of a thin
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continuous Ge film. The problem is to find the deforma-
tion in a system containing quantum dots and a two-
dimensional (2D) layer.

2. MODEL

The VFF model is widely used to calculate the elas-
tic deformation at the atomic level. It is postulated in
this model that the elastic deformation energy of a crys-
tal depends only on the positions of the atomic nuclei
and can be expressed as a sum in which each term
depends only on the position of an atom and its nearest
neighbor. In the present paper we employ the Keating
expression [13] for the elastic energy V extended to the
case of a heterostructure (see [6]):

(1)

where the indices i, j, and k enumerate the atoms, the
index i runs over all atoms, j in the first sum runs over
the nearest neighbors of the ith atom, and the pair of
indices (j, k) in the second sum runs over all pairs of
nearest neighbors of the ith atom; dij is a vector directed
from the atom i to the atom j, and dij is the length of this
vector; d0, ij is the length of the undeformed i–j bond;
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Fig. 1. Schematic diagram of a typical Ge quantum dot in Si.

Parameters of the VFF model for silicon and germanium [13]

d0, nm α, N/m β, N/m

Si 0.2352 48.5 13.8

Ge 0.2450 38 12
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and, αij and βijk are the force constants in the Keating
model. For d0, ij, αij, and βijk we use the values

where d0, i, αi, and βi are the corresponding values for a
pure Si or Ge crystal depending on the type of ith atom.
The values used in this work are presented in table.

The problem is to find a set of atomic positions that
minimizes V. This is equivalent to vanishing of the elas-
tic forces acting on each atom. Ordinarily, this problem
is solved by using periodic boundary conditions (see,
for example, [9]). In such an approach a large number
of atoms must be included in the calculations, since to
avoid any influence of the finite size of the region of the
crystal under study the boundaries of this region must
be located at a distance which is large compared with
the size of the quantum dots. This increases the
required computer resources substantially.

In the method proposed for calculating the elastic
deformation in a quantum dot, only atoms belonging to
a quantum dot and several atomic layers around the dot
are included in the analysis. For this, we shall consider
the set of atomic displacements and we shall introduce
the following transformation of this set:

(2)

where α and β are tensor indices, which run through the
values x, y, z; the indices i and j run over all atoms; the
brackets denote the set of displacements of the atoms;

 is the αth component of the displacements of the ith
atom, measured from its position in the undeformed lat-
tice of the matrix in the absence of quantum dots (we

are considering a defect-free structure);  is the

βth component of the elastic force (defined as –∂V/∂ )

acting on the jth atom with atomic displacement u; 
is the αth component of the displacement of the ith
atom under the action of a single force applied to the jth
atom of the pure matrix crystal in the direction β (in the

linear approximation). We shall call  the Green’s
function of the atomistic problem, by analogy to the
Green’s tensor, or the Green’s function of the main
problem of the continuum theory of elasticity [15].

We note that the transformation (2) decreases the
elastic forces acting on the atoms if the force constants
of the substrate and quantum-dot atoms are close.

Indeed, for atomic displacements  =  we have
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and  in the presence of
quantum dots (the linear approximation is assumed).

Here  are the elastic forces for zero displace-

ments;  are small compared to 1. For the displace-
ments

we obtain

Since  are small, the forces  will be small
compared to f[u]. The nonlinear terms in the expression
for  are dropped, since they are also small com-
pared to f[u].

Thus, by repeating the transformation (2) the elastic
forces can be made as small as desired. If the initial
atomic displacements are set equal to zero, then after
performing the transformation (2) successively the dis-
placements will have the form

(3)

The quantities  in Eq. (3) vanish (in the linear
approximation) for all sites i where the second coordi-
nation sphere contains only matrix atoms. This follows
from the fact that the expression for the elastic force
acting on such a site is identical to the analogous
expression for a pure matrix crystal. Thus, according to

the definition of  we obtain from Eq. (3)

Consequently, after performing the transformation (2)

the quantities  will be zero for all such sites.

Thus, the sum in Eq. (3) contains a finite number of
nonzero terms, which is approximately equal to the
number of atoms in a quantum dot. We now write the

transformation (2) in terms of :

(4)

Since the number of nonzero coefficients g is finite, a
finite number of operations must be performed in order
to perform this transformation.

Thus, the proposed method consists of performing
the transformation (4) successively, starting with zero
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atomic displacements, until the elastic forces are negli-
gible. In this method it is sufficient to calculate only the
positions of the atoms belonging to a quantum dot
together with its environment within one lattice con-
stant, because the positions of all other atoms (in the
linear approximation) do not influence the nonvanish-
ing value of g in Eq. (3).

In order to apply the above-described method to a
structure which includes an infinite two-dimensional
layer it is necessary to find the positions of the atoms in
a system containing only a 2D layer and then to use
these positions as initial values. In this case the atoms
located far from the quantum dots need not be included.
Strictly speaking, it is necessary to use the Green’s

function  for a structure containing a 2D layer

together with the Green’s function  for the pure
matrix. However, for the system Ge/Si (100) the differ-

ence between  and  can be neglected because
the thickness of the wetting layer and the difference
between the force constants of Si and Ge are both
small.

Finding the atomic positions in a continuous germa-
nium film on (100) silicon reduces to finding the dis-
tances between the (100) atomic planes. The distance
between two neighboring Ge monolayers can be
obtained in the continuum theory of elasticity (from the
deformation tensor of a two-dimensional Ge layer in a
Si matrix). The distance between the Si–Si layers in the
theory of elasticity remains the same as in bulk Si, and
the Si–Ge layer is found as the arithmetic-mean of the
distances Si–Si and Ge–Ge.

The function  can be calculated using the “con-
tinuum” Green’s function. We note first that since all
sites in a diamond-type lattice are equivalent, it is suf-

ficient to find  for a site o. Next, on account of the
symmetry of the three directions |100〉 , it is sufficient to

find only the coefficients . As a first approximation

to , we shall use the Green’s function for the prob-
lem of the continuum theory of elasticity, Gαx(r), where
r is a vector directed from the site o to the site i. The
function Gαβ(r) is determined as the displacement of
the elastic medium in the direction α under the action
of a single force applied to the origin of coordinates in
the direction β. (In what follows, we shall drop the sec-
ond index x in the Green’s function.) It was found in
[16] for a cubic crystal. The elastic moduli of the
medium, which are required in order to calculate
Gαβ(r), can be obtained from the force constants α and
β [13].

The function Gα(r) decreases with distance as r–1.

To obtain the correction (r), which decreases as r–2,
we shall consider the displacement of two sublattices
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relative to one another in a deformation. The compo-
nents x, y, and z of such a displacement are, respec-
tively, –Aξεxz/2, –Aξεxz/2, and –Aξεxy/2 [13], where A is
the lattice constant, ξ = (α – β)/(α + β) is the deforma-
tion tensor, and ξαβ is the relative-displacements
parameter [17]. If Gα(r) is treated as a displacement
vector, then the relative displacement of the sublattices
is proportional to r–2—this is what gives the desired

correction (r). Assuming that the displacement is
distributed uniformly over both sublattices, we obtain
finally

for the x component and similar expressions for the y
and z components. Here the “+” and “–” signs are cho-
sen depending on the sublattice: the “+” sign corre-
sponds to the sublattice which transforms into the other
sublattice as a result of a translation by the vector

.

It is easy to check numerically that for atomic dis-

placements equal to Gα(r) +  (r) the elastic forces
decrease with distance as r–4. Thus the desired Green’s

function  is Gα(r) +  (r) to within O(r–4). Con-

sequently, we can set  = Gα(r) + (r) for dis-
tances r > 10A. For smaller distances the Green’s func-
tion can be found numerically as the equilibrium dis-
placement of atoms in a cluster surrounding the atom o
under a single force directed toward the atom o, and the
atoms on the boundary of the cluster must be fixed with

the displacements Gα(r) + (r).

The atomic displacements can be converted into
local values of the deformation tensor. For this, we shall
consider the deformation of a tetrahedron consisting of
the nearest neighbors of a lattice site. The form of the
tetrahedron is determined by six parameters, for exam-
ple, the edge lengths. Thus, the deformation of such a
tetrahedron uniquely determines the six components of
the deformation tensor associated with a given lattice
site. The elastic energy related with a definite atom can
be found similarly: the expression (1) for the elastic
energy is separated into terms, each of which is associ-
ated with a lattice site and consequently can be inter-
preted as the fraction of the energy per atom.

3. DEFORMATIONS IN A Ge/Si HETEROSYSTEM

The method described above was used to find the
spatial distribution of other deformations in Ge quan-
tum dots buried in a Si matrix (Fig. 1).

Figure 2 (isolines) shows the distribution of the elas-
tic energy per atom in two sections for quantum dots
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with the base edge length equal to 28 lattice constants
(about 15 nm). The thickness of the solid Ge film was
taken to be 5 monolayers [18]. It is evident that the
region near the tip of the pyramid is the most stressed
region around quantum dots. Inside quantum dots the
neighborhood of the tip is most strongly relaxed. The
most strongly stressed section lies along the contour of
the pyramid base. In the region of the Si–Ge interface
the elastic energy per atom changes abruptly at a tran-
sition to an atom of a different kind or to an atom with
a different immediate environment. Consequently, the
isolines are not shown there.

For comparison, Fig. 3 shows a similar distribution of
the elastic energy in a quantum dot with a ~10 nm base.
It is evident that the overall picture of the spatial distri-
bution of the elastic stresses is similar to the picture
obtained for a 15 nm dot. This shows that the elastic
deformation of a system with these sizes can be
described by the macroscopic approximation. In the
macroscopic limit structures with the same shape but
different size should be deformed identically, i.e., the
spatial distribution of the deformation temperature and
hence the density of the elastic energy should be the
same in such structures to within the scaling. This fol-
lows from dimensional considerations: the deformation
tensor, being a dimensionless quantity, cannot depend
on the dimensions of the structure themselves, but
rather it depends only on the ratio of the dimensions,
i.e., on the shape.

To analyze the quantitative dependences of the elas-
tic stresses on the size of a nanocluster we examined the
values of the elastic deformation at equivalent points of
pyramids of different size. We shall say that points
inside nanoclusters of different size are equivalent to
one another if the nanoclusters transform into one
another under a transformation that brings one cluster
into coincidence with another. As the size of a nano-
cluster increases, the elastic deformation at equivalent
points must approach a constant corresponding to the
continuous medium approximation. Our results show
that the elastic deformation first becomes a constant
near the center of the pyramid base (curve 1 in Fig. 4).
On the whole, in the central region of a Ge pyramid the
deviation of the deformation tensor from the limiting
macroscopic value does not exceed 10–3 for 10–15 mm
pyramids. Thus, the values of εxy on the pyramid axis
in the indicated size range of pyramids lies in the
range ±0.5 × 10–3, which corresponds to a zero macro-
scopic value. A different behavior of the deformation as
a function of the size of a nanoisland is observed near
an edge of the pyramid base. As an illustration, we
present the dependence of the component εxx at a point
located 1.5 lattice constants from the edge center in the
direction of the center of the pyramid base (curve 2 in
Fig. 4). As the size of the Ge cluster increases, the elas-
tic deformation near the edge does not approach a con-
stant; this is because the deformation at the edge of the
pyramid becomes infinite in the macroscopic limit.
AND THEORETICAL PHYSICS      Vol. 91      No. 3      2000
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Fig. 2. Distribution of elastic energy in a Ge/Si quantum dot on the side of a 28 lattice constants base (15 nm): (a) in the (100) plane
passing through the pyramid axis; (b) in the (001) plane passing through the center of a continuous Ge layer. The numbers indicate
the energies in units of 10–4 eV per atom; the arrows show the direction of increasing energy. The spacing of the isolines is 5 × 10–4 eV
inside the pyramid and 10–4 eV outside the pyramid. Isolines are not shown near the Si–Ge interface (≈4 monolayers).
As one can easily see (see, for example, the analytic
solution for a cubic quantum dot [19]), according to the
macroscopic theory of elasticity the deformation tensor
at a fixed distance from the edge should grow logarith-
mically as a function of the cluster size; our results
demonstrate this (Fig. 4).

To show the structure of the deformation field of a
quantum dot and its environment, the deformation ten-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
sor profile along the pyramid axis for a 15 nm quantum
dot is shown in Fig. 5. Inside the pyramid εxx and εyy < 0
but εzz > 0. This means that compression occurred in
the lateral direction and stretching occurred in the ver-
tical direction. The opposite picture is observed in the
environment around a quantum dot: stretching occurs
in the lateral direction and compression in vertical
direction.
SICS      Vol. 91      No. 3      2000
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Fig. 3. Distribution of elastic energy in quantum dots on the side of an 18 lattice constants base in the (100) section. The notation is
the same as in Fig. 2.
The spatial distribution obtained for the deforma-
tion can be compared with the results of similar calcu-
lations for InAs/GaAs quantum dots. It should be kept
in mind that the distribution of the deformations depend
strongly on the slope angle of the lateral faces [5]. The
profiles of the components of the deformation tensor
which are presented in Fig. 5 are similar to the profiles
obtained for InAs/GaAs quantum dots with {104} lat-
eral faces [5]. For a comparatively large slope of the
faces, for example, for quantum dots bounded by {101}
planes [4–6, 20], a qualitative difference from our
results appears: the deformation inside quantum dots
becomes strongly nonuniform and even sign-alternat-
ing. As a result, a region of purely hydrostatic compres-
sion arises approximately at the center of the quantum
dots. This is important, since the band picture depends
on the structure of the deformation: splitting of the light-
and heavy-hole subbands does not occur under hydrostatic
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–3.6

–3.7

–3.8

–3.9
6 8 10 12 14

εxx, 10–2

Edge length of the pyramid base, nm

Fig. 4. The component εxx of the deformation tensor versus
the size of a quantum dot: (1) at the center of the pyramid
base; (2) at distance of 1.5 lattice constants from the center
of the edge of the pyramid base (see inset). Solid line is
result of fitting a function of the form A + Bln(a + C) to the
curve 2, where a is the size of the quantum dot.
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compression, and under anisotropic deformation, as in
Fig. 5, the subbands split by ~0.15 eV (see [3]).

The computational results for the deformation in a
heterostructure depend on whether the continuous
medium approximation or the VFF model is used.
These two models are compared in [20]. We note that
near heteroboundaries the VFF model and the continu-
ous medium approximation give substantially different
results. For all other regions the difference between the
two models is due primarily to the fact that the Keating
model does not describe the elastic properties of the
medium accurately. This discrepancy is much smaller
for Ge/Si heterostructures than for InAs/GaAs struc-
tures. The errors in fitting the elastic properties using
the parameters of the Keating model are 1% and 7%,
respectively, for Si and Ge and 13% and 22%, respec-
tively, for GaAs and InAs [20].

0.02

0

–0.02

–0.04
–1 0 1 2 3

εik

z, nm
4

I II

εzz

εxx = εyy

Fig. 5. Profiles of the components of the deformation tensor
along the symmetry axis of a quantum dot. The step along z
is equal to the lattice constant. The numeral I denotes the
region occupied by a solid film of Ge and the numeral II
denotes the tip of the pyramid.
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Another difference between the two models, which
was noted in [20], is that when the VFF model is used
the symmetry of the deformation field decreases to C2ν
(C4ν in the continuous-medium model). We add also
that in the continuous-medium model the distribution
of the deformation depends only on the shape of the
inclusion and not its size [4]. A size dependence of the
deformation appears in the VFF model.

In [21] it was concluded on the basis of an analysis
of the Raman scattering spectra in a Ge/Si structure
with quantum dots that directly below the tip of a quan-
tum dot there exists a region where the deformation is
much different from the deformation elsewhere in the
quantum dot. The thickness of this region is 0.4 nm
[21]. Our results (Fig. 5) also showed the existence of a
region with a size of about 0.3 nm below the tip of the
quantum dot, where the component εzz of the deforma-
tion tensor is negative, while elsewhere in the quantum
dot it is positive.

4. CONCLUSIONS

In summary, in the present paper a method was
developed for calculating the elastic deformation fields
in nonuniform structures on the basis of an atomistic
approach. The distribution of deformations in Ge/Si
heterostructures with quantum dots for 6–15 nm pyra-
mid bases was obtained. It was found that the deforma-
tions and their spatial distribution are essentially inde-
pendent of the size of a quantum dot in the central
region of a pyramid for quantum dots larger than
10 nm. At the same time, near the edge of a pyramid
base the deformation increases logarithmically as a
function of the size of the quantum dots.

We propose to use the results obtained to calculate
the energy spectrum of holes in Ge/Si quantum dots.
These quantum dots are so small that there is no guar-
antee that the effective-mass method is applicable for
describing the motion of electrons in them. Conse-
quently, following [7], the tight-binding method will be
used to obtain the energy spectrum. Thus, even though
the calculation of the deformation can be done in the
continuous-medium approximation, the atomistic
approach, which gives direct information about specific
atomic bonds, is preferred. Moreover, an appreciable
number of the atoms in a quantum dot lie on the Si–Ge
heteroboundary, and for these atoms a description in
terms of the continuous-medium approximation is
unsuitable.
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Abstract—A theory of the interaction of fast charged particles and gamma rays with nanotubes with different
helicity is developed. Analytical expressions are obtained for the potential and the electron density of a nano-
tube taking account of the anisotropic thermal vibrations of the atoms. A system of equations determining the
quantum states of the transverse motion of relativistic electrons, positrons, and x-ray photons in a superlattice
consisting of nanotubes is formulated, and methods for solving this system are developed. Calculations of the
soft x-ray Bragg reflection coefficients of a superlattice are performed in the two-wave approximation of the
dynamical theory of diffraction. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Nanotubes can be regarded as gigantic carbon mol-
ecules (fullerenes) which are obtained by folding
graphite planes into a cylinder whose diameter is mea-
sured in nanometers and whose length can reach mac-
roscopic dimensions [1]. This linear structure of nano-
tubes determines their extremely high strength [2] and
the strong dependence of the electrical conductivity on
the diameter and helicity (the angle between the most
highly packed chains of atoms and the axis of the cyl-
inder) [3]. There exist nanotubes whose walls contain a
single layer of atoms [4] and nanotubes with walls con-
sisting of several concentric layers [5]. A remarkable
feature of some single-wall nanotubes is their capabil-
ity to unite, as they form from plasma, into a “rope” whose
transverse cross section is a two-dimensional hexagonal
superlattice consisting of nanotubes [6]. Since the discov-
ery of nanotubes in 1991 [5], a large number of works
have appeared on the problems of synthesizing nanotubes,
the physical properties and possible applications in nano-
electronics [7], catalysis [8], and other fields. Besides
nanotubes consisting of carbon atoms similar structures
based on boron nitride also exist.

As noted in [9], channeling of fast particles in nan-
otubes exhibits a number of special features associated
with the relatively large diameter of the channels and a
weaker influence of dechanneling factors than in ordi-
nary crystals. These features (in prospect of synthesis
of quite long defect-free nanotubes) could find applica-
tion in high-energy particle-beam physics. Channeling
and electromagnetic radiation spectra arising during
channeling of relativistic electrons and positrons with
energy above 100 MeV have been analyzed previously
[10] on the basis of classical mechanics by numerical
simulation of particle trajectories. It was shown in [10]
that channeling of neutral particles (x-ray photons and
thermal neutrons) becomes possible when the wall
thickness and diameter of a nanotube are sufficiently
1063-7761/00/9103- $20.00 © 20504
large. The present work is devoted to a further develop-
ment of the theory of the interaction of fast charged and
neutral particles with nanotubes. First, an analytical
method for calculating the potential and electron den-
sity distribution in superlattices consisting of nano-
tubes will be developed, and a general approach to the
problem of the quantum states of relativistic electrons
(positrons) and x-ray photons, propagating at suffi-
ciently small angles with respect to the axis of nano-
tubes or the planes of a superlattice, will be formulated
on the basis of this method. Second, the electromag-
netic radiation spectra of fast particles in nanotube
superlattices will be analyzed for cases where quantum
effects are substantial. Further, calculations of the
Bragg reflection coefficients for soft x-rays with differ-
ent wavelengths will be performed on the basis of the
two-wave theory of diffraction.

2. STRUCTURE AND CONTINUOUS POTENTIAL 
OF NANOTUBES

As noted above, the structure of a nanotube is deter-
mined by the method of constructing the nanotube from
a crystallographic plane of graphite (Fig. 1a). Let a and
b denote the basis vectors of a planar lattice of graph-
ite, whose unit cell (dashed rhombus in Fig. 1a) con-
tains two carbon atoms with the coordinates (a + b)/3
and 2(a + b)/3, respectively. Taking into account that
the angle between the vectors a and b is π/3 and the
vectors have the same modulus (a = b) and denoting by
l the length of the bond between the carbon atoms

(which is usually 0.14 nm), we obtain a = b = l . The
roll-up vector r0 is determined as a linear combination
r0 = na + mb of the basis vectors, where the pair (n, m)
of integers is called the indices of a nanotube. A nano-
tube can be constructed from a strip of width r0, cut
from a plane perpendicular to the vector r0 and folded
into a cylinder (a row of such cylinders is shown sche-
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matically in Fig. 1b). The angle θ between the roll-up
vector r0 and the basis vector a of the graphite lattice is
called the helicity of a nanotube. The helicity shows the
angle under which the most closely packed chains of
carbon atoms are wound on the cylindrical surface of a
nanotube. It follows from simple geometric consider-
ations that the radius R and helicity θ of a single-wall
nanotube are uniquely determined by the indices of this
nanotube:

(1)

Since the basis vectors a and b are equivalent, it can be
assumed with no loss of generality that n ≥ m and there-
fore the helicity lies in the range 0 ≤ θ ≤ π/6.

It is well known [11] that channeling occurs when
the angles between the momenta of fast charged parti-
cles and the chains of atoms are sufficiently small. Then
the potential of the chain atoms, averaged over the
entire length of a chain, is the effective potential acting
on a particle. The form factor f(k) of an individual car-
bon atom can be represented, to a high degree of accu-
racy, in the form [12]

(2)

where Ze is the nuclear charge, aj = {3.222, 5.270,
2.012, 0.5499}10–4 nm2, and bj = {10.330, 18.694,
37.456, 106.88} nm–1 are dimensional parameters which
are determined, according to [12], from the best fit of
Eq. (2) to the most accurate calculations based on the
Hartree–Fock method, and summation over repeated
indices j is assumed here and below (in the present case
from 1 to 4).

Small displacements of the atoms of a nanotube rel-
ative to the positions of equilibrium in an ideal lattice
can be due to thermal vibrations as well as other factors
(for example, structural defects or deformations of nan-
otubes). In general, these displacements are anisotropic
and can be taken into account by introducing an addi-
tional factor of the form e–W into the atomic form factor
(2), where the exponent (the Debye–Waller factor) is
given by

(3)

where , , and  are the mean-square deviations
of the atoms in various directions: normal to the cir-
cumference of the cylinder (y), tangential (x), and along
the axis of the cylinder (z).

The average potential VR(ρ) of the atomic chain
(more accurately, the potential energy of a particle with
charge e), whose atoms lie on the z-axis with spacing dR,

R
l 3
2π
--------- n2 nm m2+ + ,=

θ m 3
m 2n+
---------------- 

  .arctan=

f k( ) 4πZea j k2 4b j
2( )⁄–[ ] ,exp=
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is related with the form factor of an individual atom by
the relation

(4)

Here r is the radius vector in a plane orthogonal to the
chain, (k⊥ , kz) are the corresponding components of the
vector k, and the integration is performed over the
transverse momenta k⊥ . Using the relations (2)–(4) we
obtain the average potential of a chain of atoms

(5)

where  =  + 2  and  =  + 2 . For an

ideal static structure (  =  = 0) Eq. (5) is identical
to the corresponding result

(6)

obtained previously in [10]. Here ρ = (x2 + y2)1/2

denotes the distance to the chain.

For subsequent calculations, it is important that a
nanotube with indices (n, m) can always be represented
as a collection of chains of atoms parallel to the axis of
a nanotube and arranged in a definite manner along the
perimeter of the cylinder. Indeed, it is easy to show that
the potential of a nanotube is invariant under transla-
tions by the vector

and, since tr0 = 0, this vector directed along the axis of
the nanotube. Here q denotes the largest common
denominator of (2m + n) and (2n + m), so that t is the
smallest of all possible translation vectors of this kind.
The distance dR between neighboring atoms in each
such a chain is equal to the modulus of the vector t and
is given by

(7)

We shall now take into account the fact that the unit
cell contains two atoms on a crystal plane of graphite
(see Fig. 1a). It can be easily calculated that the surface
density σ of atoms is σ = 3–3/24l–2. Thus, two sequences
of atomic chains parallel to the axis of the nanotube are
obtained. In each sequence the chains are equally
spaced along the generatrix of the cylinder, and the dis-
tance δ between the neighboring chains in a given
sequence is δ = 2(σδR)–1. Next, we choose a cylindrical
coordinate system (r, ϕ, z) in which the radial coordi-
nate r is measured from the axis of a nanotube, and we

denote by  the azimuthal angle of the kth chain (k =

V R ρ( ) e 2π( ) 2– dR
1– f k⊥ 0,( )e

ik⊥ r
k⊥ .d∫=

V R x y,( )
4Ze2

dR β j
r( )β j
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β j
r( )--------– y2
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2– ur
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Fig. 1. (a) The atomic structure of a nanotube and (b) the structure of a nanotube superlattice.
0, 1, 2, …, N – 1) in the corresponding sequence of
chains (µ = 1, 2). Thus each sequence contains exactly

, (8)

atomic chains, whose azimuthal coordinates are deter-
mined by the relations

(9)

(10)

We note two limiting helicities θ = 0 and θ = π/6, where
the atomic chains, parallel to the axis of a nanotube, are
most densely packed and therefore the number of
chains is relatively small. The first case corresponds to
nanotubes (n, 0) with zero index m (which are usually
called zigzag nanotubes); here, q = n, N = 2n, dR = 3l,
δϕ = ∆ϕ = π/n, and the two chain sequences overlap,
i.e., there are actually 2n chains with a doubled linear
atomic density 2/dR. The other case corresponds to nan-
otubes with equal indices (n, n) (which are usually
called armchair nanotubes); here, q = 3n, N = 2n, dR =

l , δϕ = π/n, and ∆ϕ = 2π/(3n), i.e., there are 4n
chains arranged in pairs.

The potential of a nanotube is obtained by summing
the average potentials of all chains. To perform such a
summation we represent the potential of an individual
chain (5) as a Fourier series

(11)

N
2
q
--- n2 nm m2+ +( )=

ϕk
1( ) kδϕ , δϕ πq

n2 nm m2+ +
-------------------------------,= =
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2( ) ϕk
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π n m+( )
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-------------------------------.= =

3

V R Vν r( )eiνϕ

ν ∞–=

∞

∑ .=
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The coefficients Vν(r) in the expansion (11) are related
with the potential VR of the chain by the relation

(12)

where VR is a function of the cylindrical coordinates.
Specifically, when the average potential of a chain has
the form (5), the coordinates x and y are related with the
cylindrical coordinates r and ϕ by the relations x =
rsinϕ and y = rcosϕ – R; the expansion coefficients
become

(13)

Here αj = 2Rr/ , γj = (1/  – 1/ )r2/2, Iµ is the
modified Bessel function. If it is assumed that the dis-
placements of the atoms are distributed isotropically

(  = ), then  =  and γj = 0, so that only one
term with µ = 0 remains in the sum (13) and a simpler
expression is obtained:

(13')

In the static limit (  =  = 0), corresponding to the
potential of the chain (6), the result acquires the simpler
form

(14)
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Using the Fourier expansion (11), the potential pro-
duced by the first sequence of chains in the nanotube
can be represented in the form

Taking account of Eqs. (7) and (8), the summation over
the chains now reduces to calculating the sum of a geo-
metric progression, which can be written in the form

where δν, sN is the Kronecker delta. We now take
account of the fact that two sequences of chains con-
tribute to the potential U(r, ϕ) of a nanotube, i.e.,

Here ∆ϕ is the azimuthal shift between the sequences
of chains, which was introduced in Eq. (10). As a result
we arrive at the following expression for the average
potential of a nanotube with arbitrary indices (n, m):

(15)

For the model of an atom corresponding to the form
factor (2), the coefficients Vν(r) have the form (13),
(13'), or (14), and since the potential (15) is appreciably
different from zero only close to (|R – r | ! R) the walls
of a nanotube, where the arguments of the modified
Bessel function are quite large (αj @ 1), the Bessel
functions can be replaced by the asymptotic expres-
sions of the form [13]

Here ξ = sN/αj is the ratio of the index of the Bessel
function to its argument.

The coefficients V can be represented in an analyti-
cal form for some other models of an atom as well. Spe-
cifically, for the Moliere model, which is commonly
used for calculating the average potentials [9, 11], the
expression analogous to Eq. (14) in the range r ≤ R is

(16)

Here summation over the repeated index j from 0 to 3

is assumed; { } = (0.35, 0.55, 0.1} and { } =
{0.3, 1.2, 6.0} are the constants in the Moliere model,
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aTF is the Thomas–Fermi radius, and the potentials in
the region r ≥ R are obtained from Eq. (16) by inter-
changing the arguments in the modified Bessel func-
tions Iν and Kν. It should be noted that the Moliere
approximation is a fit to the corresponding calculations
of the atomic potential on the basis of the Thomas–
Fermi model, which, as is well known, is not accurate
enough for light atoms, specifically carbon atoms.

We shall now analyze the general expression (15)
for the average potential of a nanotube. The zero har-
monic (s = 0) in Eq. (15) corresponds to a potential aver-
aged over the azimuthal angle. The remaining harmonics
lead to modulation of the azimuthal distribution. As the
number of chains forming the walls of a nanotube
increases, the modulation frequency increases and the
modulation depth decreases. The distance between the
neighboring chains (in each of two sequences) is deter-
mined by the quantity δ = 3–1/22–1ql(n2 + nm + m2)–1/2.
If δ is much less than the range of the atomic potential,
then analysis of Eq. (15) shows that the higher order
harmonics (s ≥ 1) are negligibly small. This condition
holds for indices (m, n) for which the parameter q (see
Eq. (7)) is much less than the number N of chains. Con-
fining attention to the zeroth harmonic (s = 0) and
neglecting the random deviations of atoms from the

positions of equilibrium (  =  = 0), we arrive at the
following expressions for the potential of a nanotube:

(17)

for the Doyle–Turner approximation (2) and

(18)

for the Moliere approximation (r ≤ R), and close to
(|R – r | & R) the walls of the nanotube the arguments of
the cylindrical functions are quite large and the expres-
sions (17) and (18) can be replaced by the simpler
asymptotic representations:

(17')

(18')

According to Eqs. (17') and (18') the potential of nano-
tubes with intermediate helicity (when q ! N) is virtu-
ally independent of the indices of the nanotube and near
the top of the barrier (r ≈ R) it is identical with the
potential of a graphite plane averaged over the coordi-
nates of the atoms on the plane (we recall that σ =
3−3/24l–2 is the surface density of atoms, and |R – r | must
be interpreted as the distance to the plane). The depen-
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dence of the potential on the indices in this case appears
only at sufficiently large distances (|R – r | ~ R) from the
nanotube wall, where the curvature of the wall becomes
substantial, but in this region the values of the potential
and its gradient are relatively small.

The azimuthal distribution of the height of the
potential barrier U(R, ϕ) of nanotubes with different
indices (n, m), based on Eqs. (14) and (15), is illustrated
in Fig. 2. The curves 1, 2, and 3 correspond to nanotube
indices (10,10), (17,0), and (12,8), respectively. The hor-
izontal straight line 4 corresponds to nanotubes with the
parameters q ! N, for example (11,9).

10° 30

40

80

120

160
U, eV

ϕ
0 20°

1

2

3 4

Fig. 2. The azimuthal distribution of the height of the poten-
tial barrier U(r, ϕ) of nanotubes with various indices (n, m).
The curves 1, 2, and 3 correspond to nanotube indices
(10,10), (17,0), and (12,8), respectively. The horizontal
straight line 4 corresponds to nanotubes with intermediate
helicity, for example, (11,9).
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Fig. 3. The average potential of a nanotube with intermedi-
ate helicity according to (1) the Doyle–Turner model and
(2) the Moliere model.
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Figure 3 shows the dependences of the potentials
(17) and (18) on the distance to the axis of the nanotube
(11,9). Calculations based on the more accurate Doyle–
Turner model (curve 1) give a sharper dependence of
the potential on r near the wall of a nanotube and appre-
ciably lower potential barrier than similar calculations
based on the commonly used Moliere approximation
(curve 2).

To estimate the effect of thermal vibrations of the
atoms it is necessary to know the temperature depen-

dence of the mean-square deviations  and . This
reduces to analyzing the phonon spectra of the nano-
tubes. It should be noted that in contrast to graphite
photons in nanotubes are localized in the transverse

plane, and consequently  and  can differ apprecia-
bly from the corresponding values in graphite. If the
values u⊥  = 8.5 × 10–3 nm and u|| = 3.8 × 10–3 nm pre-
sented in [14] for room-temperature graphite are none-
theless used to estimate ur nm and uτ, then thermal
vibrations do not appreciably influence the average
potential of a nanotube.

X-rays are scattered primarily by electrons of a sub-
stance. The Fourier component of the electron density
in a carbon atom can be approximated to an adequate
degree of accuracy by an expression similar to Eq. (2):

(19)

where  = (0.3499, 0.3014, 0.2103, 0.0946, 0.0438}

and  = {17.300, 11.400, 75.501, 155.24, 7.596} nm–1

are five pairs of fotting parameters, which are deter-
mined, according to [15], from the best fit of Eq. (19) to
the corresponding values calculated by the Hartree–
Fock method. The electron density averaged over the
direction of the nanotubes or over the planes of the
superlattice is obtained using Eq. (19) just as was done
above for the potential.

In ordered two-dimensional structures of nanotubes
(superlattices), in addition to the channeling inside
individual nanotubes, a different type of channeling,
which can be called planar channeling, becomes possi-
ble. The two-dimensional superlattice (see Fig. 1b) has
the hexagonal symmetry characterized by a pair of
basis vectors A and B, whose modulus is the period L
of the superlattice. Nanotubes in a superlattice are kept
in the position of equilibrium by van-der-Waals forces,
and the gap between the walls of neighboring nano-
tubes is usually about 3.15 Å. For example, the super-
lattice with period L . 16.95 Å, consisting of (10,10)
nanotubes with diameter 2R . 13.8 Å, has been
observed [6]. Let a charged particle move at a compar-
atively large angle with respect to the axis of the nano-
tubes (so that the channeling conditions inside the nan-
otubes are not satisfied), but the momentum of the par-
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ticle makes a quite small angle with respect to one of the
planes of the superlattice. Then, following Lindhard’s
arguments [11], it can be assumed that a particle is sub-
jected to the effective potential of the nanotubes averaged
over the corresponding planes of the superlattice:

(20)

Here U1(x) is the potential of an individual plane, x is
the distance to the plane, the potential of a nanotube
U(r, ϕ) in the general case has the form (15), y is the
distance to the nanotube, dn is the distance between the
neighboring nanotubes in a given plane, and summa-
tion extends over all planes ν which are arranged peri-
odically (with period dp = 33/2L2/2dn) in a direction
orthogonal to the x-axis.

3. SCATTERING AND RADIATION
OF ELECTRONS AND POSITRONS
IN NANOTUBE SUPERLATTICES

The motion of relativistic charged particles at a
small angle to the axis of the nanotubes (or to the planes
of the superlattice), similarly to the case of crystals
[16], can be represented as the longitudinal motion with
constant momentum pz and the transverse motion in an
average potential. The wave functions of the transverse
motion ψ(r) satisfy the equation

(21)

where ∆r is the Laplacian in the space of transverse

coordinates,  = 2E(ε – U(r)), E is the total particle

energy, ε = E –  is the transverse energy, Us(r)
is the potential of the nanotube superlattice, and the
system of units " = m = c = 1 is used. Electromagnetic
radiation appears as a result of spontaneous radiative
transitions between the states of transverse motion.
According to [17], for radiative transitions between
high-lying (ε @ U0max(1, EU0), U0 is the depth of the
potential well) states of the continuous spectrum of
transverse energies the superlattice potential Us(r) can
be treated as a perturbation, the angles of deflection of
an ultrarelativistic particle by the field are small com-
pared with the effective angles of emission E–1, and,
consequently, the radiation is dipole one, the emission
probability per unit path length of an electron (positron),
differential with respect to the photon energy ω, can be
related with the Fourier component of the potential UH
of a unit cell of the superlattice by the simple relation
(see, for example, [18])

U p x( ) U1 x νd p+( )
ν
∑ ,=

U1 x( )
1
dn

----- U r ϕ,( ) y.d

dn 2⁄–
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2 r( )+[ ]ψ r( ) 0,=
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(22)

Here n is a unit vector in the direction of the initial
momentum of a charged particle, u = ω/(E – ω), ΩH =
u/2EHn, and η is the Heavside unit step function.

A unit cell can be chosen so that it contains a single
nanotube (see Fig. 1b), and the reciprocal-lattice vec-
tors H = n1h1 + n2h2 are represented as a superposition
of basis vectors h1 and h2 (orthogonal to the corre-
sponding vectors of the direct superlattice) with integer
coefficients n1 and n2. The moduli of the vectors are

determined by the relations h = 4π/L  and H = h(  +

 + n1n2)1/2. As a result, the expression for UH

becomes

(23)

where U(r, ϕ) is the potential of an individual nano-
tube (15). The integration in Eq. (23) extends over the

area of a unit cell S = L2 /2, but, since outside a unit
cell the potential of a nanotube is negligibly small, the
integration in Eq. (3) can be extended over the entire
transverse plane without substantial loss of accuracy.
Substitution of Eq. (15) into Eq. (20) and the subse-
quent integration give

(24)

where ϕH is the azimuthal angle of the vector H. We
note that the higher order azimuthal harmonics with s ≥ 1
can make an appreciable contribution to Eq. (24) only
if the argument of the Bessel functions is comparable in
magnitude to the index, i.e., when the vector H is a
large multiple of the main reciprocal-lattice vectors
(H/h ~ N). However, if the analysis is confined to pro-
cesses where H ! hN, then with adequate degree of

dw
dω
-------

e2

E2
----- H2

Hn( )2
--------------- UH

2
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× 1 u
2 1 u+( )
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3 n1
2

n2
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accuracy simpler expressions can be used instead of
Eq. (24):

(25)

Here we have introduced the structure factor J(H) of a
nanotube, normalized by the condition J(0) = 1. Ordi-
narily, the van-der-Waals gap g = L – 2R is 3.15 Å, as
noted above.

If it is assumed at the outset that there is no azi-
muthal correlation between different nanotubes of a
superlattice, then the form factor of a nanotube (24)
must be additionally averaged over ϕH. As a result, we
arrive once again at the expression (25), where, how-
ever, H can now be regarded as arbitrarily large com-
pared with the modulus of the basis vector of the recip-

rocal lattice h = 4π/L . The nonideality of a nanotube
superlattice can be taken into account by multiplying
Eqs. (24) and (25) by the exponential factor exp(–Ws),

where the Debye–Waller factor is Ws = H2 /2, where 
now denotes the mean-square deviation of the superlat-
tice sites from their positions in an ideal structure. We

note that in a real superlattice (  ≠ 0), besides coherent
bremsstrahlung, incoherent background radiation corre-
sponding to scattering of particles by individual nanotubes
should also arise. The spectral distribution of the coher-
ent bremsstrahlung energy dW/dω = ωdu/dω, corre-
sponding to a 1 GeV electron (positron) and entrance

U0
KZe2R

R g 2⁄+( )2
---------------------------, UH U0J H( ),= =

Σ a j

j

∑  . 1.105 10 3–  nm2,×=

J H( ) Σ 2– a j
H2

2b j( )2
---------------–

 
 
 

J0 RH( ).exp=

3

us
2 us

2

us
2

0 10 20 30 40 50

0.01

0.02

0.03

0.04

ω, MeV

dW/dω, cm–1

Fig. 4. Spectral distribution of the energy of coherent
bremsstrahlung emitted by a 1 GeV electron (positron)
entering at angle 3.04 × 10–4 with respect to the (1,0) planes
of a superlattice of (10,10) nanotubes.
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angle θ0 = 2θL = 3.04 × 10–4 with respect to the planes
(1,0) of a superlattice of (10,10) nanotubes, is illustrated in
Fig. 4. The maximum near 2 MeV corresponds to the
first harmonic of coherent bremsstrahlung, and the
intensity of the higher order harmonics (right up to the
tenth harmonic) is comparable in magnitude to that of
the first harmonic. This behavior of the coherent
bremsstrahlung spectrum in nanotubes differs substan-
tially from that of the bremsstrahlung spectrum in ordi-
nary crystals. This is due to the specific nature of the
structure factor J(H) of a nanotube.

If radiative transitions occur between lower lying
states (ε & U0) of the transverse energy spectrum, then
the perturbation theory with respect to the superlattice
potential is inapplicable, the standard theory of coher-
ent bremsstrahlung is inapplicable, and the wave func-
tion and energy eigenvalues satisfying Eq. (21) must
first be found in order to calculate the radiation spectra.
According to the Bloch theorem, the wave function of
a particle in a periodic potential Us(r) has the form

(26)

where φ(r) is a periodic function with period equal to
the period of the superlattice and k is the transverse
quasimomentum of a particle, which can be assumed to
be restricted by the first Brillouin zone. As is well
known, the wave functions (26) correspond to trans-
verse-energy bands ε(k), which in the limit of infinitely
small tunneling through the potential barrier separating
neighboring nanotubes degenerate into discrete levels.
As estimates show, the number of quasidiscrete levels
is relatively small when the energy of the electrons and
positrons does not exceed 10 MeV. For such energies
the electromagnetic radiation can be treated as being due
to dipole radiative transitions between levels (bands), and
the energy of an emitted photon is negligible compared
to the energy of the particle (ω ! E). The spectral-
angular probability density of emission due to sponta-
neous transition of a particle from a band n into a band
n' with lower transverse energy can be represented in
the form (see, e.g., [19])

(27)

Here dΩ . θdθdϕ is the differential of the solid angle
of emission, θ ! 1 is the polar angle of emission rela-
tive to the axis of a nanotube, n⊥  = {cosϕ, sinϕ} is the
unit vector in the direction of the projection of the
momentum of the emitted photon on a plane perpendic-
ular to the axis of a nanotube, εn(k) is the transverse
energy of a particle with quasimomentum k in the nth

ψ r( ) φ r( ) ikr( ),exp=

d ω2

dωd
----------

e2ω3

8π
-----------=

× θ2 E 2–+( )
2

n⊥ rnn'× 2 θ2 E 2––( )2
n⊥ rnn'

2–[ ]
n'

∑

× δ ω
2
---- θ2 E 2– χ0' ω( )–+( ) ωnn'– .
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band, ωnn' = εn(k) – εn'(k) is the transition frequency,
and δ is the Dirac delta function.

The matrix element of a dipole transition between
bands has the form

(28)

The quasimomentum of a particle is determined by the
condition that the wave function is continuous at the
boundary of the superlattice and is equal to (to within a
reciprocal lattice vector) the transverse momentum p⊥ 0
of the particle at the entrance into the superlattice; this
value of the quasimomentum is conserved in radiative
dipole transitions [19]. We note that, following [20], we
have taken into account the possible influence of the
polarization of the medium on the process of radiation
by channeled particles by introducing the volume-aver-
aged real part of the permittivity of the medium at x-ray
frequencies  ! 1. As will be shown below, for
nanotubes, in contrast to ordinary crystals, the polariza-
tion can indeed considerably affect the spectrum of
emitted frequencies because of the possibility of a com-
plex Doppler effect.

To solve the wave equation (21) we represent the
periodic part of the wave function φ(r) as an expansion
in reciprocal-lattice vectors. As a result, Eq. (26)
becomes

Then the wave equation reduces to the following infi-
nite system of algebraic linear equations for ψG:

(29)

where the formula (25) determines the coefficients of
the system of equations UH. The condition for the exist-
ence of a nontrivial solution of the system (29) requires
that the determinant of the matrix of this system vanish;
this determines the possible transverse energy bands
and the dependence (dispersion) of the transverse
energy on the quasimomentum in each band. We note
that the transition from the motion of particles along the
axis of nanotubes to that along planes of a superlattice
formally reduces to taking account of only that recipro-
cal-superlattice vectors H which are orthogonal to the
corresponding planes.

Our numerical method for solving the system of
equations consisted of step-by-step increasing the num-
ber of waves 2π/dp taken into account and correspond-
ingly increasing the rank of the system until the trans-
verse-energy eigenvalues obtained no longer varied appre-
ciably. Figures 5 and 6 show the resulting transverse-
energy bands in the planar channel (1,0) of a superlattice
of (10,10) nanotubes for positrons and electrons, respec-

rnn' φn'k* r( )rφnk r( ) r2 .d

S

∫=

χ0' ω( )

ψ r( ) eikr ψGeiGr.
G

∑=

1
2E
------- k G+( )2 ε– ψG ψG H– UH

H

∑+ 0,=
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tively, with various energies (1, 3, and 9 MeV). The
transverse quasimomentum in units of the Brillouin
zone width δ is plotted along the abscissa. The same
figures show the planar potentials for positrons and
electrons. The number of allowed transverse-energy
bands within a potential well increases with the total
energy of the particles, and this number is greater for
positrons than for electrons (with the same total energy E).
For 1 and 3 MeV there are also relatively wide above-
barrier bands, which ultimately pass into the continu-
ous energy spectrum, corresponding to almost free par-
ticles. For 9 MeV positrons the number of quasidiscrete
levels in a well is so large that, apparently, their motion
can be investigated with adequate accuracy by methods
of classical mechanics. As far as similar results for the
motion of particles along nanotubes are concerned, the
number of bands in this case is much larger than in the
corresponding planar cases. For example, our calcula-
tions show that for 1 MeV positrons there are several

25 2525

20

15

10

5 5

10

15

20 20

15

10

5

0

5

10

15

20

00–1 1 0.5 0 0.5 0 0.5

(‡) (b) (c) (d)

ε ε εUp, eV

Fig. 5. (a) Potential well and transverse-energy bands of
positrons with energy: (b) 1 MeV, (c) 3 MeV, (d) 9 MeV in
a planar channel (1,0) of a superlattice of (10,10) nanotubes
within the first Brillouin zone.
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Fig. 6. (a) Potential well and transverse energy band of elec-
trons with energy: (b) 1 MeV, (c) 3 MeV, (d) 9 MeV in a pla-
nar channel (1,0) of a superlattice of (10,10) nanotubes in
the first Brillouin zone.
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tens of bands within a potential well and the number of
bands increases approximately linearly with the total
energy of the particles.

According to Eq. (27) the frequencies of radiative
transitions between bands are determined by the con-
dition that the argument of the Dirac delta function,
which contains the permittivity of the medium ,
vanishes. Since, as we shall see below, the possible
radiation frequencies can lie below the K edge of the
photoeffect, the permittivity must be calculated taking
account of the coupling of some electrons of the
medium with the atomic nucleus and can be repre-
sented in the form

where λ = 2π/ω is the wave length, re = e2/mc2 is the
classical electron radius, ne = 2NZ/SdR is the average
number of electrons per unit volume of the nanotube
superlattice, and f '(ω) is the real part of the atomic scat-
tering factor [21]. Moreover, since the potential well is
symmetric and the states of transverse motion are char-
acterized by a definite parity, dipole transitions are pos-
sible only for transitions between states with different
parity.

Calculations show that 1 MeV electrons and
positrons can emit only in the ultraviolet range, where
radiation is completely absorbed in the substance itself
and it is hardly possible to observe the radiation. Elec-
trons with energy 3 MeV at zero angle of observation
θ = 0 can emit several lines in the range 290–311 eV,
and as energy increases to 9 MeV radiation at even higher
frequencies 1.3–2.2 keV is possible. The detailed sponta-
neous-emission spectra depend on the population of the
energy bands, which is determined by the conditions of
entry of the particle beam into the nanotubes.

4. SCATTERING OF X-RAYS
BY A NANOTUBE SUPERLATTICE

Let an electromagnetic wave corresponding to x-ray
frequencies ω propagate at a quite small angle with
respect to the axes of the nanotubes. Then, similarly to
the potential, we can introduce a permittivity χ(ω, r)
averaged along the axis of the nanotubes. The longitu-
dinal component F of the electric (magnetic) field of
the wave satisfies the equation

(30)

Here  = ω2[1 + χ(ω, r)] – , kz is the longitudinal
component of the wave vector of the wave, and χ(ω, r)
is the complex permittivity. The transverse components

χ0' ω( )

χ0' ω( )
reλ

2ne

π
--------------- f ' ω( ),=

∆rF k ⊥
2+ 0.=

k ⊥
2 kz

2
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of the electromagnetic field can be expressed in terms
of the longitudinal components as follows:

for TM waves and

for TE waves. Here ∇ r is a two-dimensional gradient.
The dependence of all components of the electromag-
netic field of the wave on the longitudinal coordinate z
is determined by the factor exp(–ikzz), where the possi-
ble values of the propagation constant kz are determined
by solving Eq. (30).

We shall represent the permittivity χ(ω, r) as an
expansion in terms of reciprocal-lattice vectors:

Let us assume that the energy ω of the photons is much
higher than the binding energy of the K electrons in car-
bon (≈283 eV). Then the real part of the permittivity
χ'(ω, r) is determined by the interaction of photons with
the electrons in the medium, which can be assumed to
be free. Then the explicit form of the coefficients

 in the expansion of the real part of the suscepti-
bility can be found as done above for the case of the
electric potential. Since the distribution (19) of the elec-
tron density in a nanotube differs only by the coefficients
from the corresponding potential distribution (2), under
the same assumptions as used in the derivation of (25)
we obtain

(31)

Here λ = 2π/ω is the wavelength, re = e2/mc2 is the clas-
sical electron radius, and ne = 2NZ/SdR is the average
number of electrons per unit volume of the nanotube
superlattice. The imaginary part χ''(ω) of the permittiv-
ity is due to absorption of photons (primarily as a result
of the photoeffect on K electrons) and is related with
the imaginary part of the atomic scattering factor f ''(ω)
by the relation

Here ρ(r) is the local density of atoms, which, since the
K shell is relatively small, differs from zero only at the
sites of the lattice of carbon atoms. Thus, we obtain the
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following representation for the expansion coefficients
of the imaginary part of the susceptibility:

where ρ0 = 2N/SdR is the number of atoms per unit vol-
ume of the nanotube superlattice. The values of f ''(ω)
for carbon in the frequency range of interest to us are
presented, for example, in [21].

We seek the solutions of Eq. (30) in the form

As a result, we obtain a system of equations for the
coefficients FG that describes the multiwave diffraction
of x-rays in a nanotube superlattice:

(32)

The zeros of the determinant of the system (32)
determine the modes of the electromagnetic field prop-
agating freely along nanotubes or along the planes of
the superlattice. By the order of magnitude, the number
of modes localized inside a nanotube is determined by
the squared ratio of the nanotube radius R to the trans-

verse wavelength λ⊥  = 1/k⊥  ≈ 1/(ω ). It is easy to see
that, in contrast to relativistic electrons and positrons, the
characteristic value of λ⊥  does not depend on the parti-
cle (photon) energy ω and is about 85 Å for a superlat-
tice of (10,10) nanotubes. Thus, localized modes can
exist, irrespective of the value of ω, only for sufficiently
large nanotube radii [10]. In this case, nanotubes can be
treated as waveguides for x-rays similarly to the
positron channeling examined above. Indeed, neglect-
ing the vector character of the electromagnetic field,
Eq. (32) differs from the similar Eq. (29) for
positrons only by the meaning of the coefficients appear-
ing in it.

In nanotube superlattices, in contrast to ordinary
crystals, diffraction of relatively soft nanometer-range
x-rays is possible. We shall consider the case of sym-
metric Bragg reflection under the conditions of the two-
wave approximation of the dynamical theory of diffrac-
tion. Let a wave be incident at an angle close to the
Bragg angle with respect to the planes of the superlattice,
and, for the sake of simplicity, we shall assume that the
entrance surface is parallel to these planes.

The differential coefficient of the Bragg reflection
from superlattice planes can be represented in the
form [22]

χ0'' ω( )
reλ
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π
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2
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The sign in front of the parentheses is chosen from the
condition R ≤ 1. Here η = η' + iη'' is a complex param-
eter, related to χH(ω) as

where C = 1 for radiation polarized perpendicular to the
plane of incidence (σ polarization), C = cos2θB for
polarization in the plane of incidence (π polarization),
the kinematic Bragg angle is determined by the equal-
ity sinθB = 2ω/H, and ∆θ = θ – θB is the angular devia-
tion from kinetic Bragg direction. Another important
characteristic is the integral coefficient

The dependence of the differential reflection coeffi-
cient R on the deflection angle ∆θ for various wave-
lengths λ for σ polarization and symmetric Bragg
reflection by (1,0) planes of a superlattice of (10,10)
nanotubes is displayed in Fig. 7. The curves correspond
to constant values of the reflection coefficient, indi-
cated on the curves. As the wavelength increases, the
reflection maximum due to refraction at the boundary
undergoes increasingly larger displacements relative to
the kinematic direction and is broadened. On the
whole, as the wavelength increases, the differential
reflection coefficient R(∆θ) decreases as a result of an
increase in the absorption in the medium, but it still
remains substantial (R . 0.3) even for very soft x-rays

η' ∆θ 2θB χ0'+sin–( ) C χH' ,⁄=
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Fig. 7. Levels of constant differential Bragg reflection coef-
ficient as a function of the wavelength of the incident radia-
tion and angular deflection as a function of the kinematic
direction for σ polarization.
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with wavelength 15 Å. The integral reflection coeffi-
cient is displayed in Fig. 8. It is interesting to note that
near 20 Å the reflection of a π-polarized wave is sub-
stantially suppressed with respect to σ polarization, i.e.,
a nanotube superlattice acts as a polarizer in this fre-
quency range.
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Abstract—A molecular-dynamics simulation of the behavior of a twist point defect with stretching in a chain
of an equilibrium polymer crystal (“united” atoms approximation for polyethylene) is performed for immobile
and mobile neighboring chains. It is shown that such a defect in a cold polymer crystal possesses soliton-type
mobility. The upper limit of the spectrum of soliton velocities is found, and it is the same for both cases. The
maximum possible velocity of defects is three times lower than the theoretical limit of the spectrum (which is
equal to the velocity of “torsional” sound in an isolated chain). An explanation of the reason for this discrepancy
is proposed: because of the interaction of two “degrees of freedom” of the defect (twisting and stretching) the
energy of a nonlinear wave is dissipated in the linear modes of the system, which results in effective friction
whose magnitude depends strongly on the velocity of the defect. The “boundary of the spectrum of soliton
velocities” determines the transition between regimes of strong and weak braking of defects. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

To predict the relaxation, plastic, and strength prop-
erties as well as the melting temperature of crystals it is
necessary to study localized mobile defects—devia-
tions from an ideal structure. Point structural defects
(vacancies or inclusions) are responsible for the relax-
ation properties of solids. The impossibility of directed
motion of such defects is the reason why relaxation
processes are slow in low-molecular crystals. On
account of the strong anisotropy of the properties of
polymer crystals (the atoms in a polymer chain are
bound with one another by chemical covalent bonds,
and the intermolecular interaction is due to weak van-
der-Waals forces) vacancies with breaking of intrac-
hain covalent bonds are virtually immobile. However,
such crystals can contain different, specifically poly-
mer, point defects, which are due to not the breaking of
intrachain bonds but rather the deformation of a chain
localized on a small section of the chain.

The concepts of such defects appeared in the phys-
ics of polymer crystals after the discovery of the anom-
alously rapid dielectric relaxation of oxidized polyeth-
ylene (see the review in [1]). Analysis of a number of
possible molecular mechanisms of this process (see the
review in [2]) made it possible to identify as the most
likely mechanism the propagation of regions of twist-
ing (by 180°) with stretching (by a half-period of the
chain) that have a length of several tens of periods, in
the absence of conformational changes, along the
chains. It turned out [3, 4] that such defects are also cre-
ated in the process of premelting of a crystal (their
1063-7761/00/9103- $20.00 © 20515
energy is much lower than the energy of purely stretch-
ing defects—vacancies of one unit of the chain without
twisting).

The quasi-one-dimensional approximation with
immobile neighboring chains (see, for example, [5] and
the literature cited there) makes it possible to describe
a point defect as a soliton-type topological excitation
[6]—a localized nonlinear wave propagating with con-
stant subsonic velocity along the chain, changing the
state of the chain after it passes and therefore capable
of causing rapid relaxation in the crystal.

An approximate analytical description of static
point defects in polyethylene was proposed in [7], and
a numerical investigation by molecular-mechanics
methods was conducted in [8]. However, these works
did not consider the question of the mobility of defects
and correspondingly the role of defects in the relax-
ation of a crystal.

The problem of point defects in a polyethylene
chain surrounded by immobile neighboring chains has
recently been solved by a numerical-variational method
[9, 4] (in the “united” atoms model, in which CH2
groups are replaced by point particles). It was found
that in this case point defects possess soliton-type
mobility, and the upper limits of the velocity spectrum
for different types of defects were calculated.

But, in a more previous work [10] a molecular-
dynamics investigation of the behavior of torsional
point defects with stretching in a polyethylene crystal
was performed in the same “united-atoms” model but
000 MAIK “Nauka/Interperiodica”
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with mobile molecules of the first coordination sphere,
and it was concluded from the results of the numerical
experiment that the mobility of such defects is of non-
soliton type: they stopped rapidly.

However, the arrangement of this experiment was
such that defects could stop rapidly for several reasons.
In the first place, it was discovered in [11] that purely
stretching defects in an equilibrium crystal configura-
tion with all mobile chains in the crystal retain the ini-
tial velocities right up to values of the order of 0.6 times
the velocity of sound, and for high velocities they slow
down to this velocity but do not stop. In nonequilibrium
or unstable structures (including the orthorhombic struc-
ture, which is nonequilibrium in the “united atoms”
model of polyethylene used in [10]), requiring that the
chains rotate in order for relaxation to occur, the vacan-
cies stop rapidly. The clearly soliton character of the
dynamics of pure vacancies led us to conjecture that
the stopping of a defect in [10] was due precisely to the
nonequilibrium nature of the initial crystal.

But, in addition, we saw in [11] that friction against
the phonon modes of mobile neighboring chains sub-
stantially decreased the upper limit of the velocity spec-
trum even for pure vacancies (from the velocity of
sound c (theoretical limit) down to ≈0.6 times this

z

n + 1

l0

un

vnnc

un – 1

vn – 1 n – 1

θ0

Fig. 1. Model of a polymer crystal (polyethylene with
united atoms): parameters of the chain and the local coordi-
nates of the atoms.
JOURNAL OF EXPERIMENTAL 
value). The interaction of a twist point defect with
stretching with the same phonon modes can be much
stronger and can even make the soliton mechanism of
defect mobility impossible.

The purpose of the present work is to study the
dynamics of twist point structural defects with stretch-
ing in a polymer crystal with all mobile chains on the
basis of the same molecular-dynamics model as the one
used in [11]. 

Our numerical model of a crystal for studying the
dynamics of point defects is described in Section 2. An
approximate analytical description of the defects is pre-
sented in Section 3 for immobile neighboring chains.
The results of a molecular-dynamics simulation of the
dynamics of defects with immobile and mobile neigh-
boring chains are presented in Section 4. Finally, Sec-
tion 5 is devoted to a discussion of these results and the
conclusions.

2. NUMERICAL MODEL OF A POLYMER 
CRYSTAL (POLYETHYLENE WITH “UNITED” 

ATOMS); EQUILIBRIUM CRYSTAL 
CONFIGURATION

We adopted the following model of a polymer crys-
tal [12] (polyethylene with united atoms; see Fig. 1):
the chains are a planar trans-zigzags; the bonds between
the atoms (point particles with mass m) are absolutely
rigid and their length is l0; the deformation energies of the
valence (θn) and conformational (τn) angles are

(1)

(2)

the atoms separated by more than 2 neighbors or
belonging to different chains interact according to the
law

where ULJ(r) = 4e[(σ/r)12 – (σ/r)6] is the Lennard–Jones
potential with a minimum at the point r0 = 21/6σ. The
numerical values used for the constants are given in
Table 1.

U3 θn( ) 1
2
---Kθ θn θ0–( )2,=

U4 τn( ) α β τn γ 3τn,cos+cos+=

U r( )
ULJ r( ) ULJ R( ), r R≤–

0 r R,>,



=

Table 1.  Parameters of the model crystal

Parameter Quantity References Parameter Quantity References

m 14 amu – β 1.675 kJ/mole [13]
l0 1.53 Å [13] γ 6.695 kJ/mole [13]
θ0 113° [13] e 0.4937 kJ/mole [14]
Kθ 331.37 kJ/mole [13] σ 3.8 Å [14]
α 8.370 kJ/mole [13] R 2r0 –
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For the model of the crystal we adopted periodic
boundary conditions in all three directions. A rectangu-
lar parallelepiped was chosen for the working cell. The
leap-frog algorithm [15], taking account of the restric-
tions imposed by the rigid bonds [16], was used to
solve the corresponding classical Lagrangian equations
of the first kind numerically. Periodic boundary condi-
tions along the axis of the molecules make it possible to
follow the dynamics of a defect for an unbounded time
and those in the transverse section of the crystal, to
avoid introducing in the transverse section unphysical
boundary conditions with a rigidly fixed second coordi-
nation sphere. To prevent a soliton from affecting itself
the number of molecules in the working cell was cho-
sen so that the image of each molecule was located no
closer than in its fourth coordination sphere and the
length of the molecule—for a defect of the order of
35 chain periods c long—was assumed to be 200c (one
period contains two CH2 groups).

Since the length of the projection of a molecule on
its transverse section is l⊥  = 0.843 Å and the van-der-
Waals radii of the united atoms r0 are 4.265 Å ≈ 5l⊥ , the
packing of the zigzag planes in the crystal will be close
to that of cylinders. Theoretically, two different
mechanically equilibrium configurations are possible
(see Fig. 2). Both possess a monoclinic cell and close
energies. However, the second one is unstable and sep-
arates into two domains, each of which corresponds to
the first configuration [11], as a result of relaxation. The
parameters of a stable equilibrium structure a and b
depend on the cutoff radius R. Table 2 presents data on
the relaxation of samples for different values of R. The
period along the axis of a molecule is always c = 2.554 Å.
The density of the sample is ρ = 1.155 g/cm3.

Molecular-dynamics simulation of a polyethylene
crystal in the united-atoms model has shown [11] that
the potential energy does not have a local minimum for
an orthorhombic structure for any value of the cell
parameters. The numerical experiment reveals the
appearance of this minimum only in a model of poly-
ethylene in which the CH2 group is represented by three
spatially separated force centers. Thus, the possibility
of the existence of an orthorhombic structure in poly-
ethylene is due to the presence of side groups and not
the form of the backbone of the chains.

3. APPROXIMATE ANALYTICAL DESCRIPTION 
OF A TWIST POINT DEFECT

WITH STRETCHING IN A CHAIN
OF A POLYMER CRYSTAL

We shall consider the simplest description of the
dynamics of a twist defect with stretching in the chain
of a polymer crystal in the immobile-neighbors approxi-
mation using the continuum model.

The effective substrate potential generated for the
nth atom by immobile neighbors in a stable equilibrium
monoclinic lattice of a polymer crystal in the “united”
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
atoms model should have two wells with different min-
ima at the points (φn, ψn): (0, 0) and (π, π). Here φn is
the angle in a cylindrical coordinate system whose axis
is directed along the axis of a molecule, ψn = (2π/c)un

(un is the longitudinal displacement from the position
of equilibrium).

Numerically, the substrate potentials obtained by
calculating the energy of the crystal with all molecules
secured except one, which can move and rotate (as a
whole) along the axis. In the stable equilibrium config-
uration of the crystal the function

(3)

with A ≈ 0.274 kJ/mole and B ≈ 0.865 kJ/mole approx-
imates the substrate potential with an error of less than
10% of its maximum value. The level lines of the func-
tion (3) are shown in Fig. 3.

Adding a term C(1 – cos4φn) with C = –0.067 kJ/mole
to the potential (3) decreases the error to 2%. We shall
discuss in Section 5, after presenting the results of the
molecular-dynamics simulation, how this addition can
influence the dynamics of a defect.

In our analysis we neglect the dependence of the
potential V on the third coordinate—transverse dis-
placements vn, since for long-wavelength waves (with
characteristic scale much greater than the distance
between the atoms of a chain) the transverse displace-
ments of the atoms are much smaller than the longitu-
dinal displacements (see Appendix A). The conse-
quences (except for a small change in the form of the
analytical solution) of taking account of the depen-

V φn ψn,( ) A 1 φn ψncoscos–( ) B 1 2φncos–( )+=

a(a)

b

(b)

Fig. 2. Possible equilibrium configurations for planar zigzag
packing: (a) stable, (b) unstable (the period of the transverse
section of the molecules is shown; the arrows show the
direction from the nearest atom of the molecule under the
plane to the nearest above the plane).

Table 2.  The parameters a and b (in Å) of the equilibrium
crystalline configuration for different cutoff radii R

Parameter R = 1.8r0 R = 2r0

a 3.998 3.980

b 7.994 7.966
SICS      Vol. 91      No. 3      2000
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dence of the potential on this coordinate will be dis-
cussed in Section 5. Here we shall confine our attention
to the main interaction of the two basic degrees of free-
dom of an atom.

The rigid-bond condition determines the relation
between the longitudinal and transverse displacements
u and v of the atoms (see Fig. 1). Switching to the con-
tinuum approximation (which is justified because of the
relative weakness of the intermolecular interaction) and
neglecting dispersion and nonlinearity, which are due
to intramolecular interactions (see [17] for a more
accurate continuum description), we obtain the
Lagrangian system

(4)

where the constants are related with the parameters of
the numerical model of the crystal by the relations (see
Appendix B)

(5)

(6)

(7)

Here Iφ, Iψ and Kφ, Kψ are, respectively, the inertial and
stiffness parameters of the chain—“torsional” (with

L = 
dx
l0s0
-------- Iφ

φt
2

2
----- Iψ

ψt
2

2
------ Kφ

φx
2

2
-----– Kψ

ψx
2

2
------ V φ ψ,( )––+ ,∫

Iφ m
l0c0

2
-------- 

 
2

, Iψ m
l0s0

π
-------- 

 
2

,= =

s0 = θ0/2( ), c0 = θ0/2( )cossin( );

Kφ l0
2 β 9γ+( ),=

Kψ
2l0s0

2

πc0
----------- 

 
2

Kθ.=

0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
ψ/2π

φ/2π

Fig. 3. Level lines of the potential surface (3) for a substrate,
generated by immobile neighboring chains, in the (φ, ψ)
plane. The broken line shows the “orbit” of the zeroth ana-
lytical approximation (Lφ/Lψ  0) in the solution of the
system of equations (8).
JOURNAL OF EXPERIMENTAL 
respect to φ) and “longitudinal” (with respect to ψ). For
our numerical values of the crystal parameters, Iφ/Iψ ≈
1.08 and Kφ/Kψ ≈ 0.29.

Thus, we have obtained a very simple model for two
coupled fields with different “stiffness characteristics”
and “inertial properties,” and the relation between them
is due only to the anharmonicity of the external sub-
strate potential.

The Lagrangian (4) with the potential function (3)
corresponds to coupled equations describing the evolu-
tion of the fields φ and ψ:

(8)

It is easy to see that the variables φ and ψ in the lin-
earized equations of the system separate and give two
branches of the dispersion curve with two sound veloc-

ities: torsional sound vφ =  ≈ 7.63 km/s and lon-

gitudinal sound vψ =  ≈ 14.70 km/s. In the con-
tinuum model of a chain without a substrate these are
the maximum propagation velocities of small-ampli-
tude disturbances along φ and ψ, respectively.

Let us assume that the system of equations (8) pos-
sesses a solution in the form of a topological solitary
nonlinear wave moving with velocity v ≥ 0 in a direc-
tion of positive values of x, i.e., in the form of “cou-
pled” kinks

where the functions φ and ψ are such that as time t var-
ies from –∞ to +∞ they vary from π to 0. Then this wave
corresponds to a kink of twisting by 180° and stretching
by a half-period of the chain. When such a wave passes
along the chain all particles will move in turn into the
position of the nearest neighbor in the direction of neg-
ative values of x.

If a solution of this form exists, then the problem
consists simply of finding the correct “orbit” in the φψ
plane. The exact solution of such a problem is known
for identical stiffness and inertial parameters of the
fields for a number of simple polynomial potentials
V(φ, ψ) (see [18] and the references cited there, as well
as [19]). In our case successive approximations to the
solution can be found assuming that the kink width Lφ
with respect to φ is much smaller than the kink width Lψ
with respect to ψ. Indeed, the “torsional” stiffness Kφ of
the chain is approximately 3.4 times smaller than the
longitudinal stiffness Kψ, and the substrate is stiffer
for φ than for ψ because of the presence of the large
term B(1 – cos2φn) in the potential. In the limit
Lφ/Lψ  0 the orbit will approach the broken line
shown in Fig. 3. For a finite value of the parameter the
first approximation to the solution can be obtained by
assuming that in the equation for φ the kink with
respect to ψ is “infinitely wide” and setting ψ  π/2.
The equation for ψ can be solved in two regions: for x –
vt < 0, replacing φ by 0, and for x – vt ≥ 0, making the

Iφφtt Kφφxx A φ ψ 2B 2φsin+cossin+– 0,=

Iψψtt Kψψxx A ψ φcossin+– 0.=

Kφ/Iφ

Kψ/Iψ

φ φ x vt–( ), ψ ψ x vt–( ),= =
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substitution φ  π and matching the solutions at the
point x – vt = 0 (this method of solving a similar system
of equations was proposed in [5]). In our case all three
equations reduce to the sine-Gordon equations. After
matching the solutions we obtain

(9)

(10)

and the kink velocity v must be less than the lowest of
the velocities vφ and vψ. We can see that the parameter
Lφ/Lψ ≈ 0.152 is indeed small.

When the term C(1 – cos4φn) is included in the
potential the form of the kink with respect to φ will be
the solution not of a simple but rather a double sine-
Gordon equation.

In what follows we shall seek the solution in the
form φ = φ1 + φ2 + … ψ = ψ1 + ψ2 + …, refining the
form of the kinks. However, it is important to note that
this procedure, even though it leads to the dependence
of the form of the kink with respect to φ on the param-
eters Lψ and vψ and the form of the kink with respect to
ψ on the parameters Lφ and vφ, it cannot change the
maximum velocity of a kink. In the opposite approxi-
mation (the case of identical stiffness and inertial
parameters of the field [19]) the exact solution also
admits arbitrary subsonic velocities of coupled waves.

Thus, if the interaction V(φ, ψ) is such that there
exists an “orbital” solution in the form of a coupled sol-
itary wave φ – ψ, then for the potential (3) with a small
value of the parameter Lφ/Lψ the form of this wave is
given approximately by Eqs. (9) and (10) and the veloc-
ity v < vφ < vψ.

In summary, a twist defect with stretching (no
breaking of covalent bonds (Fig. 4)) can move along the
chain with subsonic velocity v < vφ < vψ, maintaining
localization and not disrupting the crystal structure out-
side the region of the defect. This means that for veloc-
ities that are not too close to the sound velocity the

φ1 2
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dynamics of defects should be of a soliton character (as
v  vφ the discreteness and the intramolecular non-
linearity can no longer be neglected, since the solitons
are too “narrow”).

4. RESULTS OF MOLECULAR-DYNAMICS 
SIMULATION OF THE BEHAVIOR

OF TWIST DEFECTS WITH STRETCHING IN A 
POLYMER CRYSTAL

The following time scales are characteristic for the
system under study: the travel time of longitudinal
sound over one period of the chain is approximately
1.7 × 10–2 ps, the width of a defect along ψ is about
0.58 ps, the travel time of “torsional” sound over the
width of a defect along the φ coordinate is approxi-
mately 0.17 ps.

In the molecular-dynamics experiment, for one of
the molecules of a crystal, which has relaxed and
cooled down to 0.01 K, we set the atomic displace-
ments and velocities according to the approximate ana-
lytic formulas (9) and (10) and observed the evolution
of a defect for a prolonged time (of the order of hun-
dreds of picoseconds).

Our analytical approximation (9) and (10) seems to
be very rough: kinks “are not coupled.” But it turns out
that for a static kink the approximation fits the experi-
mentally observed curves (Fig. 4) with an error of less
than 0.5% of the magnitude of the jump.

In the numerical experiment we followed the posi-
tion xcm and velocity vcm of the center of mass of a chain
with a defect, which were easily converted to the dis-
placement and velocity of a defect: xdef = –N1[xcm – xcm(t =
0)] and vdef = –N1vcm (N1 = 399 is the number of atoms

0 80 160 240 320 400

0.2

0.4

0.6

0.8

1.0

n

φn/π, ψn/π

φn
π

------ ψn
π

-------

Fig. 4. Static twist point defect with stretching in a chain in
a polymer crystal: the coordinates of the atoms in a chain
with a defect in a cylindrical coordinate system with the axis
directed along the axis of the molecule (see Fig. 1): the
steeper curve is for the angle φn/π (φ in radians), the more
gently sloping curve is for ψn/π = (2/c)un (un is the longitu-
dinal displacement from the position of equilibrium); the
form of the defect after relaxation of the crystal in 15 ps is
shown, and the difference of the curves shown from the ana-
lytical solution (9) and (10) does not exceed 0.005.
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in a chain with a defect). With this conversion, because
of the thermal vibrations of the atoms (for sample tem-
perature of the order of several Kelvins) high-fre-
quency oscillations are superposed on the true value of
the velocity of a defect. These oscillations have no rela-
tion to the velocity, and we filtered them out to make
the picture clearer.

4.1. Dynamics of Twist Defects with Stretching
in a Chain on a Substrate, Generated

by Stationary Neighboring Chains

We shall now describe the results of a simulation of
the evolution of twist defects with stretching with ini-

1
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4

0 50 100 150 200
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t, ps

xdef /(c/2)

Fig. 5. Dynamics of defects in a chain on a substrate gener-
ated by stationary neighboring chains: displacement of
defects (in half-periods of the chain) with velocities (1) 0.9,
(2) 0.45, (3) 0.2, and (4) 0.1 of the velocity of the lower (tor-
sional) sound as a function of time.
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vdef /vφ

Fig. 6. Dynamics of defects in a polymer crystal: variation
of the average velocity of defects with time with immobile
(dashed lines) and mobile (solid lines) neighboring chains;
the initial velocities of the defects are 0.45, 0.2, and 0.1 times
the velocity of lower (torsional) sound (the sharp cutoffs at
the end of the plots are not a physical effect; they are due to
the averaging procedure).
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tial velocities of approximately 0.9, 0.45, 0.2, and 0.1
times the velocity of the lower (torsional) sound (6.875,
3.437, 1.514, and 0.757 km/s) in a crystal in stable
equilibrium (Fig. 2a) with clamped neighboring mole-
cules.

As expected, soliton-type mobility of defects is clearly
observed in the numerical experiment (see Fig. 5): they
move along the chain with constant average velocity,
traversing in 200 ps 4378, 4003, 2194, and 937 CH2
groups (half-periods of the chain), respectively. By
analogy with the dynamics of pure vacancies, one
would expect that the defects would retain their initial
velocities. However (Figs. 6 and 7), only two of the
slowest defects retain their velocities. The velocity of
fast defects decreases in the first 7 ps to 0.43 (from 0.9)
and 0.39 (from 0.45) from the velocity of sound, and in
the next 193 ps it slowly decreases to 0.34 and 0.33,
respectively.

This picture strongly resembles the evolution of
pure vacancies in the presence of mobile neighboring
chains [11], when the energy of high-velocity vacan-
cies was transferred to neighboring chains because of
the stronger interaction, and the intensity of the interac-
tion with phonon modes of the surrounding molecules
decreased sharply with decreasing velocity of the
vacancy, so that the (first) limit of the velocity spectrum
of purely stretching solitons (approximately 0.6 times
the upper (longitudinal) sound) in the presence of
mobile neighboring chains arose.

For the propagation of a twist defect with stretching,
the energy of a nonlinear wave in the coordinate ψ is
transferred into phonon modes φ (or, possibly, other
modes; see the discussion in Section 5) because of the
interaction of the fields φ and ψ. Conversely, the energy
of the nonlinear wave in the coordinate φ is transferred

0 50 100 150 200
0.2

0.4

0.6

0.8

t, ps

vdef /vφ

1

2

Fig. 7. Dynamics of a defect with initial velocity 0.9 times the
velocity of lower (torsional) sound in a polymer crystal:
variation of the average velocity with time with (1) immobile
and (2) mobile neighboring chains (the sharp cutoffs at the end
of the plots are not a physical effect; they are due to the aver-
aging procedure).
AND THEORETICAL PHYSICS      Vol. 91      No. 3      2000



DYNAMICS OF TORSIONAL POINT DEFECTS 521
into phonon (or other) modes ψ. The intensity of this
interaction, just as the interaction of a purely stretching
soliton with the phonon modes of neighboring mobile
chains, decreases sharply with decreasing velocity of
the wave, and the (second) limit of the velocity spec-
trum of twist solitons with stretching (~0.34 times the
lower (torsional) sound) arises even with immobile
neighboring chains. For initial defect velocities much
higher than this limit the defect slows down (with large
oscillations of even the average velocity; see Fig. 7,
curve 1). These oscillations are still noticeable with the
initial velocity of the defect 0.45 times the “torsional”
sound (above the limit where the velocity decreases;
see Fig. 6, upper curve), but they are no longer notice-
able for slow defects, whose initial velocities are
remain unchanged.

4.2. Dynamics of Torsional Defects with Stretching 
in a Chain Surrounded by Mobile Neighboring Chains

The simulation results for the evolution of torsional
defects with stretching with initial velocities of the
order of 0.9, 0.45, 0.2, and 0.1 times the velocity of
lower (torsional) sound in a crystal in stable equilib-
rium (Fig. 2a) with all mobile molecules are very close
to the results obtained for a sample in which the neigh-
boring chains are clamped.

Soliton-type mobility of defects is observed in the
numerical experiment: they move steadily along the
chain; the corresponding plot is very similar to Fig. 5,
the only difference being that the tangents of the slope
angles of the curves are smaller (see Figs. 6 and 7 for
the velocities) and the average velocities fluctuate
somewhat and decrease slightly even for the two slow-
est defects.

Deformations (along the axis of the molecule and
along the angle) accompanying a defect during motion
along a chain (“shadows”) arise on the mobile neigh-
boring chains near a defect. The form of the “shadows”
can be determined analytically in perturbation theory
for a purely stretching defect [20]. In the numerical
experiment we took as the initial condition the atomic
displacements and velocities using the analytical for-
mulas (9) and (10) only on a chain with a defect. It is
probably because the initial conditions are not com-
pletely “correct” that the velocities of the defects in the
steady state with mobile neighbors turned out to be less
than for immobile neighbors.

The oscillations of the magnitude and the hardly
noticeable additional decrease of the velocities (Fig. 6)
are the only direct consequences of the mobility of the
neighboring chains in the crystal. It is obvious why this
effect is so weak: the velocities of the defects are low,
and the interaction of the defects with the phonon
modes of neighboring chains become substantial, as we
saw in [11], only for velocities higher than the first limit
~0.6vψ ≈ 1.2vφ. It is interesting that near this first
boundary (with initial defect velocity 0.9vφ) friction on
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
the phonon modes of neighboring mobile chains is still
so large that the velocity of a defect decreases much
more rapidly than for stationary neighboring chains, and
it decreases immediately down to the value of the lower
second boundary, after which it stops decreasing and no
longer fluctuates (Fig. 7, curve 2).

5. DISCUSSION

In the present paper it was found by molecular-
dynamics simulation that the dynamics of twist point
defects with stretching in a (cold) polymer crystal is of
a soliton character: defects retain their initial velocities
if they lie below a certain value (~0.34 times the veloc-
ity of the lower (torsional) sound—the theoretical limit
of the spectrum). The motion of a twist defect with
stretching in a chain in a polymer crystal with veloci-
ties below torsional sound is essentially independent
of whether the surrounding chains are mobile or
immobile.

In [21] the upper limit of the velocity spectrum of
twist solitons with stretching remained unnoticed in the
molecular-dynamics study of defects in a close model
of polyethylene with united atoms because the evolu-
tion of the solitons was followed for only a short time
(in the time available the solitons could traverse only
several tens of CH2 groups). In [4, 9] it was found for
other values of the parameters of the model crystal
(with immobile neighboring chains) by a numerical-
variational method (it was found that a numerical extre-
mum of the Lagrangian of the system exists for solu-
tions in the form of a solitary wave only for velocities
below a certain limit), but the reason why this limit
appeared was not discussed.

We believe that the reason is as follows: because the
fields φ and ψ interact with one another energy is trans-
ferred from the nonlinear wave in the coordinate ψ into
phonon modes φ (or modes localized near a kink) and,
conversely, energy is transferred from the nonlinear
wave in the coordinate φ into phonon modes ψ (or
modes localized near a kink).

We note that, of course, for the sine-Gordon equa-
tion no localized linear modes other than a translational
mode exist. However, in our analytical approximation
we actually “separated” the kinks, and only because of
this our equations all reduce to the sine-Gordon equa-
tions. In addition, in our theoretical analysis we con-
fined our attention to the simplest potential for the
interaction of the fields (3), which, however, approxi-
mates a real substrate to within about 10%. To increase
the accuracy to 2%, a term C(1 – cos4φn) with C =
−0.067 kJ/mole must be added; this leads to a double
sine-Gordon equation in the variable φ. Finally, multi-
ple harmonics can effectively be added to the main term
in (3) when the transverse displacements of atoms in
the zigzag plane are taken into account.

For the perturbed sine-Gordon equation, however, it
is known that, just as in the nonintegrable ϕ4 model, the
SICS      Vol. 91      No. 3      2000
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energy of the directed motion of a defect can be trans-
ferred not only to phonon but also to localized modes,
which can be excited “around” a nonlinear wave (for
certain types of perturbations see [22]; for the double
sine-Gordon equation the form of these modes was
obtained in [23]).

Thus, because the energy of a nonlinear wave is dis-
sipated into linear modes of the system an effective
friction arises, and the magnitude of this friction
decreases sharply with decreasing velocity of the wave,
so that a limit of the velocity spectrum of a twist soliton
with stretching appears even with stationary neighbor-
ing chains. The friction against the phonon modes of
neighboring mobile chains [11] is much smaller than
the interaction of the torsional and longitudinal degrees
of freedom of a defect, and consequently it is this inter-
action that limits the velocity of a defect in a cold poly-
mer crystal.

Of course, the “orbital” analytical approximation in
Section 3 cannot describe such a transfer of energy
from a nonlinear wave into linear modes of the system.
Further study of the evolution of the interacting fields is
required (analytical “nonorbital” and numerical).
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APPENDIX A

Possibility of Ruling Out Transverse Displacements 
of Atoms of a Flat Trans-Zigzag for Long Wavelengths 
in a Model with Absolutely Rigid Bonds between Atoms

The condition for the interatomic bonds to be rigid
gives in the linear approximation

(A.1)

where un and vn are the local Cartesian coordinates of
the atoms (see Fig. 1), and the third coordinate wn forms
a triplet with them.

If we confine our attention to waves with long wave-
lengths and switch from a discrete set {un(t)} to a field
u(x, t) (and similarly for v and w), then Eq. (A.1)
becomes

We can see that v ~ (c/4L)u (c is the period of the chain
and L is the characteristic scale of variation of u). Thus,
for long wavelengths the coordinate v can be neglected
in the zeroth approximation.

c0 v n 1+ v n+( ) s0 un 1+ un–( ),≈

v x t,( )
s0

2

2c0
--------l0ux x t,( ).≈
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APPENDIX B

Relation between the Constants of the Analytical Model 
and the Parameters of the Numerical Model 

of the Crystal

The inertial constants (5) can be easily obtained by
writing the kinetic energy of an atom in cylindrical
coordinates (z, r, φ) with r = const.

To express the constant Kψ in terms of Kθ, we shall
write the increment to the angle θn in the linear approx-
imation:

It is independent of w (in the linear approximation).
Using Eq. (A.1) it becomes

(B.1)

Switching to the variable ψn = (2π/ c)un, we obtain from
the formula (1) for the deformation energy of the
valence angle U3(θn – θ0) and the relation (B.1) the
expression (7) for Kψ.

To obtain the constant Kφ we note that the conforma-
tional angle τn between the atomic planes [nth, (n +
1)st, (n +2)nd] and [(n – 1)st, nth, and (n + 1)st] with
slow variation (for long-wavelength waves) is τn = π –
χn, χn ! 1. The angle χn in the linear approximation
does not depend on un and vn and is equal to

In a cylindrical coordinate system with r = const this
difference can be easily represented in terms of the dif-
ference of the angles φj:

(B.2)

Using the harmonic (in the small angle χn) approxima-
tion of the potential U4(τn) of the conformational angle
and switching to the continuum approximation, we
obtain from Eqs. (2) and (B.2) the relation (6) between
Kφ and the constants β and γ for the numerical potential.
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Abstract—The magnetic anomalies due to the interaction of the energy levels of a rare-earth ion in a strong
magnetic field are studied experimentally and theoretically for the van-Vleck paramagnet PrVO4. A maximum
is discovered in the differential susceptibility dM/dH in a field Hc ≈ 45 T, where the lower energy levels cross.
The magnetocaloric effect in pulsed fields is calculated assuming the magnetization process to be adiabatic.
This effect is characterized by the absence of initial heating of the sample when the field is turned on and strong
cooling as Hc is approached. It is shown that in PrVO4, which is an enhanced nuclear magnet, the hyperfine
interaction plays an extremely important role for the magnetic anomalies associated with crossover. For another
van-Vleck paramagnet, HoVO4, it is shown that a second crossover occurs near 310 T and the magnetocaloric
effect is calculated. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Recently, we began experimental and theoretical
investigations of magnetic anomalies occurring in
strong and superstrong magnetic fields as a result of the
interaction of the energy levels of a rare-earth ion for
paramagnets with the tetragonal structure of zircon
RXO4, X = P, V. In [1] magnetic susceptibility anoma-
lies and the magnetocaloric effect for YbPO4 in fields
up to 400 T, obtained by an explosive method [2], were
investigated. A wide peak in the differential susceptibil-
ity dM/dH in a field Hc ≈ 280 T was observed. This peak
is due to the crossing of energy levels (crossover) of
magnetic ions in the field and a jump on the magnetiza-
tion curve. Assuming the magnetization process to be
adiabatic in pulsed fields, the magnetocaloric effect,
characterized by a nonmonotonic field dependence and
accompanied by substantial cooling of the crystal near
Hc , was calculated. In [1] it was shown for YbPO4 that
crossover is very sensitive to the crystal field parame-
ters and investigation of the anomalies due to them
yields important information about the crystal field,
which, as is well known, remains one of the main fac-
tors determining the physical properties of rare-earth
compounds.

The quite low tetragonal symmetry of zircon (space

group  = I41/amd) and the absence of nonequiva-
lent positions for the rare-earth ion give rise to the rich,
weakly degenerate spectrum of the rare-earth ion and
the large magnetic anisotropy along and perpendicular
to the tetragonal axis of the crystal. Crossing or conver-
gence of energy levels of the rare-earth ion in a mag-
netic field occurs, as our calculations in [3] showed, for

D4h
19
1063-7761/00/9103- $20.00 © 20524
all rare-earth vanadates and phosphates with zircon
structure. For different rare-earth zircons with the field
oriented along various crystallographic directions, one
or two crossovers can occur in average fields—up to
40 T (e.g., in DyVO4, TmVO4, and TbVO4), high
fields—up to 100 T (e.g., in PrVO4, ErVO4), and
superhigh fields—up to 300–500 T (e.g., in NdVO4,
TmVO4). At lower temperatures crossover is accompa-
nied by a jump on the magnetization curve. The charac-
ter of this jump is substantially different in isothermal
and adiabatic regimes for different rare-earth zircons
and is determined by the specific nature of the interac-
tion of the energy levels. The interaction of energy lev-
els in a magnetic field is accompanied by anomalies not
only of the magnetic but also magnetoelastic proper-
ties, as we showed in our study of the magnetostriction
of DyVO4 [4]. Several works study crossover near 12 T
for field orientation along the tetragonal axis in the sin-
glet paramagnet HoVO4: the Zeeman effect is mea-
sured in [5] and calculated in [6], anomalies arising in
the elastic constants as a result of crossover are inves-
tigated in [7], and special features of the magnetiza-
tion curves, specifically, the strong character of the
jumps at low temperatures down to 0.1 K, have been
studied in detail in static fields [8] and at T = 4.2 K in
pulsed fields [9].

2. EXPERIMENTAL RESULTS

In the present paper we continue the investigation of
crossover phenomena for another zircon—praseody-
mium vanadate PrVO4. The measurements were per-
formed at 4.2 K by the induction method in pulsed
000 MAIK “Nauka/Interperiodica”
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magnetic fields up to 400 T, obtained by an explosive
method [2], on a PrVO4 single crystal. The field rise
time in the pulse was 15 µs. These measurements are
single measurements and the measuring coils and sam-
ples are destroyed after each pulse. The signal in the
measuring coils relative to the magnetic field cannot be
completely compensated. Thus, the signal induced in
the measuring coils can be written in the form

(1)

where the first term corresponds to the signal from the
sample and the second term corresponds to the decom-
pensation signal of the coils. The signals V1 and V2 ~
dH/dt from the measuring and “field” coils (about 8000
points) were recorded during the field pulse with an
interval of 0.002 µs. These data make it possible to cal-
culate the curves V1(H)/V2(H), which, assuming the
decompensation signal to depend on the magnitude of
the field, are proportional, to within the constant K, to
the differential susceptibility of the sample dM/dH =
(dM/dt)/(dH/dt), and to perform time-averaging of the
signal in order to decrease the high-frequency fluctua-
tions of the background. The discreteness of the signal
measurements with step 0.002 µs can in principle result
in cutoff of the sharp peaks of the signal dM/dH, which,
as our analysis showed, does not exceed in our case
20% of the height of the peak. Sometimes, an oscillat-
ing signal, whose nature is not clear and which was
removed when the data were processed, is induced in
the measuring coils during a pulse.

The experimental and theoretical curves of dM/dH
for a PrVO4 single crystal with magnetic field along the
[001] tetragonal axis are presented in Fig. 1. The sharp
maximum of the susceptibility at Hc ≈ 45 T is due to, as
will be shown below, to the crossing of the low energy
levels of the Pr3+ ion. The large magnitude of the signal
in fields below the crossover field on the experimental
curve (dM/dH)exp, in contrast to the computed curve
(dM/dH)cal , is due to the decompensation of the coils
and the large measurement error for weak fields.

3. CALCULATION AND DISCUSSION

Hamiltonian. To calculate the Zeeman effect and
the magnetic characteristics in a strong magnetic field,
we used a Hamiltonian that includes the crystal field
Hamiltonian HCF , the Zeeman term Hz , and the hyper-
fine interaction Hamiltonian HN:

(2)

V1 H( ) dM
dt

-------- K
dH
dt
-------,+∼

H HCF Hz HN ,+ +=

HCF B0
2C0

2 B0
4C0

4 B0
6C0

6++=

+ B4
4 C4

4 C 4–
4+( ) B4

6 C4
6 C 4–

6+( ),+

Hz gJµBHJ, HN HQ HHF HIZ,+ += =

HQ IPI( )= , HHF JAI( ), HIZ gIµBHI.= =
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Here  are irreducible tensor operators,  are crys-
tal-field parameters, gJ is the Landé factor, P is the qua-
drupole hyperfine interaction tensor, A is the magnetic
hyperfine interaction tensor, and gI is the nuclear g fac-
tor [10–12]. The hyperfine interaction for PrVO4 was
described in [13] using a spin Hamiltonian of the form

(3)

We used such a form for HN for quantitative calcula-
tions with the values of the hyperfine parameters deter-
mined in [13].

In [13] the structure of the lower levels of PrVO4
was established by means of fluorescence and Raman
and infrared spectroscopy investigations. In the accor-
dance with this structure, a singlet lies 35 cm–1 above
the ground singlet state of the Pr3+ ion and a doublet lies
~84 cm–1 above the ground state. The positions of all
other levels of the 3H4 multiplet were determined in this
work by an extrapolation procedure employing the
symmetry properties of the Hamiltonian of a tetragonal
crystal field and the experimental NMR data. The data
obtained for the energies and wave functions of the Pr3+

ion enabled the authors to describe the measurements
of the nuclear magnetic resonance spectrum and the
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Fig. 1. (1) Experimental and theoretical (2) isothermal and
(3, divided by 22) adiabatic differential susceptibilities
dM/dH of a PrVO4 single crystal for magnetic field along
the [001]-axis at T = 4.2 K.
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low-temperature initial magnetic susceptibility. How-
ever, the values of the crystal field parameters are not
presented in [13]. The crystal field parameters in PrVO4
were proposed in [14]. They were determined from
measurements of the magnetization in the temperature
range 4–40 K and in magnetic fields up to 5 T with field
orientation along and perpendicular to the tetragonal
axis, using spectroscopic information from [13]. We
note that the wave functions that they give for all mul-
tiplet levels and the positions of the upper levels differ
substantially from those proposed in [13]. The cross-
over field with these parameters is found to be 86.5 T,
which is much greater than our experimentally deter-
mined value Hc ≈ 45 T.

Using the data in [13] for the splitting of the ground
state multiplet of the Pr3+ ion, the magnetic susceptibil-
ity data [13, 15], and the magnetization curves [14] as
well as our value of the crossover field T, we deter-
mined the crystal field parameters for the ion Pr3+ in
PrVO4. These parameters describe well all known
experimental data for PrVO4, and they reproduce the
wave functions proposed in [13]. These parameters are
not presented in the present work, since they differ
from the parameters established reliably for other rare-
earth vanadates (e.g., for HoVO4 in [6]) by an amount
greater than is considered to be admissible for measure-
ments of parameters in the rare-earth series. The
approximate character of the structure of the upper part

Fig. 2. Zeeman effect for PrVO4 with H || [001] (the four
lowest levels of the ground state multiplet are shown). Inset:
Formation of a gap with crossover for field disorientation by
5° from the tetragonal axis.
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of the multiplet of the Pr3+ ion in PrVO4 [13] makes it
impossible to give more accurate values for these
parameters at the present time. It is interesting that
quite small variations of the crystal-field parameters do
not change the physical essence of the phenomena
examined in the present work.

Zeeman effect and magnetization curves. Figure 2
shows the variation of the spectrum of the Pr3+ ion for
field orientation along the tetragonal axis neglecting the
hyperfine interaction (Zeeman effect). The total split-
ting of the multiplet is ~550 cm–1; only the four lowest
levels are presented in the figure. It is evident that cross-
ing of the lower energy levels is observed in fields T. The
symmetry of these levels is such (in the J, MJ represen-
tation the wave function of the lowest singlet level is the
state |4; 2S〉 , while for the excited singlet the state is |4;
4S, 0〉 , i.e., a mixture of the states |4S〉  and |0〉) that in a
field H || [001] may cross without the formation of a
gap. It is obvious that the calculation of the Zeeman
effect in different bases—multiplet, term, or configura-
tion—gives the same result: there is no gap at Hc, since
the symmetry of the crossing levels, taking account of
mixing with respect to the quantum numbers L, S, and J,
does not change. Repulsion of these levels near cross-
over and gap formation are obtained when the hyper-
fine interaction in a magnetic field is taken into account.
It will be shown below that when the hyperfine splitting
of the electronic levels, which results in a large change
of the electronic specific heat, and the nuclear specific
heat are neglected, the magnetocaloric effect in pulsed
fields cannot be calculated correctly. The large role of
the hyperfine interaction in van-Vleck paramagnets,
which are enhanced nuclear magnets and which PrVO4,
studied in the present work, is, is well known (see,
e.g., [16]).

A disorientation of the field by several degrees
results in an interaction of the first and second levels,
the appearance of a small gap near Hc, and a shift of Hc

to higher values. For disorientation angle 5° the gap is
~0.2 cm–1, and the shift is Hc ≈ 1 T (see inset in Fig. 2).
A calculation of the Zeeman effect for H || [110] shows
the presence of crossover in fields ≈290 T. The magne-
tization curves along the main crystallographic direc-
tions for T = 4.2 K are shown in Fig. 3. The magnetiza-
tion jumps correspond to crossings of the lower energy
levels. The magnitude of the jump (~2.5µB) is much
larger for H || [001] than for H || [110] (~0.5µB). The fig-
ure also shows the adiabatic magnetization curves for
initial temperature T0 = 4.2 K, which were calculated
taking account of the magnetocaloric effect. It is evi-
dent that for field directions characterized by crossover
the adiabatic magnetization curves can be steeper than
the isothermal curves. This attests to cooling of PrVO4
as the crossover field is approached. For H || [100] the
adiabatic and isothermal magnetization curves are
identical; this is characteristic for the van-Vleck char-
acter of the magnetization in the “easy” direction.
AND THEORETICAL PHYSICS      Vol. 91      No. 3      2000



ENERGY LEVEL CROSSING AND MAGNETIC ANOMALIES 527
Magnetocaloric effect. The adiabatic magnetiza-
tion curves must be calculated in order to interpret
magnetization processes in pulsed fields with quite
short pulse durations. As investigations of magnetiza-
tion processes in rare-earth dielectric paramagnets, per-
formed in [17] on Gd3Ga5O12, show (see references in
[17]), if a strong magnetic field is turned on sufficiently
rapidly (with rates much higher than 103 T/s) the mag-
netization process occurs without hysteresis and there-
fore without heat exchange with the surrounding
medium through the surface of the sample. It is obvious
that the presence of hysteresis will indicate that the pro-
cess is irreversible and hence various temperature
regimes exist as the field is switched on and off. In our
experiment the field was switched on at a rate higher
than the upper estimates, made in [17], for satisfaction
of the adiabaticity condition. Consequently, we con-
sider the process of magnetization of the PrVO4 single
crystal to be adiabatic. We note that if the field is
switched on too rapidly, the magnetization can lag the
field even in a paramagnet; this once again leads to the
appearance of hysteresis.

To calculate the magnetic characteristics the Hamil-
tonian (2) was diagonalized numerically for each value
of the field from 0 to 400 T with step ∆H = 0.01 T in
order to determine the spectrum and wave functions of
the Pr3+ ion and the “elementary” magnetocaloric
effect ∆T was calculated with the field varying from H
to H + ∆H:

(4)

Here CH is the total specific heat of a sample per for-
mula unit, including the specific heat of the lattice

(for a zirconium lattice the Debye temperature is TD =
275 K [18], ν = 6), and the electronic Cel and nuclear Cn
magnetic specific heats, calculated for each value of the
field and temperature on the basis of the electronic (tak-
ing account of the hyperfine interaction) and nuclear
spectra of the rare-earth ion using the standard formula

(5)

The parameters of the hyperfine interaction spin Hamil-
tonian, which were determined for PrVO4 in [13], were
used for the calculations. The computed dependences
of the specific heat of the sample on the magnetic field
for field orientation along the tetragonal axis are pre-
sented in Fig. 4 for T0 = 4.2 K. It is evident that the
nuclear specific heat plays a large role close to cross-
over, where the temperature becomes comparable to the
nuclear multiplet splitting, i.e., as temperature
decreases to tenths of a Kelvin (see Fig. 5). The lattice

∆T T
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specific heat is negligibly small in this temperature
range. The electronic subsystem makes the main contri-
bution to the specific heat. The maxima in the curve
Cel(H) are Schottky anomalies. The dependence Cel(H)

Fig. 3. Isothermal (solid lines) and adiabatic (dashed lines)
magnetization curves for PrVO4 at T0 = 4.2 K: (1) H || [001],
(2) H || [100], (3) H || [110].

Fig. 4. Field dependences of the (1) nuclear, (2) electron,
and (3) total specific heats of PrVO4 with adiabatic magne-
tization along the tetragonal axis, T0 = 4.2 K. Inset: Frag-
ment of the Zeeman effect for the two lowest levels taking
account of the hyperfine interaction.
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is not symmetric with respect to Hc . This asymmetry is
due to the different magnitudes of the hyperfine split-
ting of the two lower levels of the Pr3+ ion and can be
easily understood from the inset in Fig. 4.

Thus, with adiabatic magnetization the PrVO4 sam-
ple cools from T0 = 4.2 to T ≈ 0.17 K near the crossover
field Hc and then heats up to T ≈ 1.5 K (Fig. 5). For
H > Hc the temperature does not increase to the initial
value. This is due to the different rate of change of the
magnetic part of the entropy of the system before and
after crossover. The magnetocaloric effect close to Hc is
symmetric with respect to Hc. However, a further
increase of the field results in a large decrease of
(∂M/∂T)H, since the possibilities for decreasing the
magnetic part of the entropy are exhausted (all elec-
trons at these temperatures are in the bottom energy
level and further lowering of this level with increasing
field cannot change the entropy), and in a slower
increase of the temperature. It is interesting to note that
this asymmetric character of the magnetocaloric effect
vanishes as the initial temperature increases above
T01 ≈ 10 K. Above this value of T0 the minimum tem-
perature which is reached with H = Hc is not small
enough in order for the mechanism described above to
come into play. As T0 increases further above T02 ≈ 22 K
the character of the magnetocaloric effect changes even
more (see Fig. 5), since the character of the adiabatic
magnetization curves changes substantially—the impor-

Fig. 5. Adiabatic magnetization curves and magnetocaloric
effect for PrVO4 with H || [001] for different initial temper-
atures T0 = (1) 4.2, (2) 10, (3) 22, and (4) 24 K.
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tant section near the crossover field almost vanishes. We
note that the height of the peak in the susceptibility
decreases, but the width of the peak does not change—
the peak remains narrow. The quantity T02 is deter-
mined by the energy gap between the ground and
excited singlets for H = 0. Both characteristic tempera-
tures T01 and T02 are determined by the electronic struc-
ture, formed by the crystal field, of the rare-earth ion.
All this means that investigation of the temperature
dependences of the magnetic anomalies with crossover
should yield important information about the crystal
field.

The computed magnetocaloric effect concerns the
electronic subsystem of the compound under study.
Whether or not the temperature of the sample decreases
to the computed values depends on the spin-lattice
relaxation time. According to estimates made for rare-
earth van-Vleck dielectric paramagnets in a recent
review [16, pp. 354, 378] (see also the citation in [16]),
this time is 10–9–10–10 s. However, the variance in the
spin-lattice relaxation times is quite large for the com-
pounds studied at low temperatures. According to some
estimates made in [19] they can be 10–2–10–3 s. If the
spin-lattice relaxation times for T & 1 K are such, then
the electronic subsystem is decoupled from the lattice
under magnetization conditions in pulsed fields with
rapid buildup of the field and it is impossible for the
electronic subsystem to cool down, shedding heat into
the lattice. In this case the larger width of the peak in
the experiment than in theory can be interpreted as
information about the spin-lattice relaxation times.

Magnetic susceptibility. We now return to the dis-
cussion of Fig. 1, where it is evident that the peak in the
isothermal differential susceptibility, calculated at 4.2 K,
is wider than the experimental peak. This shows that the
PrVO4 sample cools down below T0 = 4.2 K. The sus-
ceptibility maximum calculated assuming the magneti-
zation process to be adiabatic is narrower than the
experimental peak. We note that if the hyperfine split-
ting of the electronic levels is neglected, the maximum
becomes even narrower (approximately by a factor of 2).
The hyperfine quadrupole interaction contributes to the
width of the peak because of the lifting of the degener-
acy of the energy levels even in zero field; the effect cal-
culated with existing hyperfine interaction parameters
[13] is three orders of magnitude weaker than the effect
due to the hyperfine magnetic interaction. Taking into
account a possible disorientation of the field in an
experiment by several degrees relative to the tetragonal
axis gives negligible broadening of the peak and a shift
of the peak in the direction of high fields. The reasons
why the width of the peak does not correspond to the
differential susceptibility dM/dH, calculated assuming
the magnetization process to be adiabatic, which for
pulse duration ~15 µs is difficult to doubt, as discussed
above, are still not clear. By analogy to HoVO4, one
reason could be, for example, the complicated structure
of the peak, which in the situation where it is not
AND THEORETICAL PHYSICS      Vol. 91      No. 3      2000
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resolved results in broadening. The fine structure of the
peak at crossover in HoVO4, consisting of the presence
of two peaks and resulting in a total width of the peak
of at least 1.5 T (in an isothermal regime at 0.1 K), has
been observed in measurements in static [8] and pulsed
[9] fields. The nature of such a profile of the peak has
not been definitely established; the authors of [8, 9]
conjecture either the influence of mechanical stresses in
the sample or the existence of nonequivalent positions
for the rare-earth ion. The fine structure of the peak in
the differential susceptibility at crossover in PrVO4 is
attributed in [20] to the possibility of spin ordering in a
magnetic field.

Magnetic anomalies at crossover in HoVO4. As
mentioned in the introduction, crossover in HoVO4 in
fields ≈11.8 T oriented along the tetragonal axis and the
associated anomalies in various properties of the crys-
tal have been investigated in a number of works. How-
ever, the magnetocaloric effect was not discussed in
any of these works. The magnetocaloric effect in pulsed
fields for HoVO4 was calculated with the crystal-field
and hyperfine interaction parameters from [6]. The
Zeeman effects for PrVO4 and HoVO4 are very similar;
the differences are only qualitative, for example, the
gap separating the excited level from the ground state
singlet is different (21 cm–1 for HoVO4 and 35 cm–1 for
PrVO4) and, consequently, the crossover field is differ-
ent (11.8 T for HoVO4 and 45 T for PrVO4). This sug-

Fig. 6. Adiabatic (solid line) and isothermal (dotted line)
magnetization curves and magnetocaloric effect in PrVO4
with T0 = 4.2 K and H || [001], calculated taking account of
the hyperfine interaction.
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gests that the magnetocaloric effect, its evolution as a
function of the initial temperature of the sample, and
the behavior of the characteristics determining the
effect (such as the specific heat) will be similar in
PrVO4 and HoVO4. Our calculations confirm this. As
an example, the isothermal and adiabatic magnetization
curves (the latter being steeper than the isothermal
curve) and the magnetocaloric effect for T0 = 4.2 K and
direction of the field along the tetragonal axis, which
were calculated taking account of the hyperfine interac-
tion, are displayed in Fig. 6. It is evident from Fig. 6
that in HoVO4 with the field oriented along the tetrago-
nal axis a second crossover occurs in a field ~310 T, in
which the magnetization of the compound increases
from the nominal value to 10µB/ion. For the hyperfine
interaction parameters used, the temperature at the first
crossover decreases to ~0.03 K and then increases to
~0.2 K; at the second crossover it decreases to ~0.08 K
and then once again tends to a constant value ~0.13 K.

4. CONCLUSIONS

We call attention once again to the substantially dif-
ferent form of all anomalies associated with crossover
in the singlet paramagnets PrVO4 and HoVO4 and in the
paramagnet with the Kramers ion YbPO4 [1]. In PrVO4
and HoVO4 the susceptibility peaks are much narrower
than in YbPO4, the magnetocaloric effect is anoma-
lous—there is no initial increase of sample temperature
when the field is switched on. The differences are due
to the different character of the magnetization of these
compounds. In PrVO4 and HoVO4 the magnetization
before crossover is very small, and the magnetic sus-
ceptibility is of van-Vleck origin; in YbPO4 the magne-
tization up to the moment of crossover is quite large,
and the Curie term is the main term in the magnetic sus-
ceptibility. For singlet van-Vleck paramagnets PrVO4
and HoVO4 the hyperfine interaction, which modifies
the electronic specific heat and forms a nuclear specific
heat through the hyperfine splitting of the electronic
and nuclear spectra, plays a very important role near the
crossover field.

ACKNOWLEDGMENTS

This work was partially supported by the Russian
Foundation for Basic Research (project no. 00-02-
17756).

REFERENCES

1. Z. A. Kazeœ, N. P. Kolmakova, R. Z. Levitin, et al.,
Pis’ma Zh. Éksp. Teor. Fiz. 65, 691 (1997) [JETP Lett.
65, 720 (1997)].

2. A. I. Pavlovskiœ, N. P. Kolokol’chikov, and O. M. Ta-
tsenko, Megagauss Physics and Techniques, Ed. by
P. Turchi (Plenum, New York, 1980), p. 1.
SICS      Vol. 91      No. 3      2000



530 KAZEŒ et al.
3. Z. A. Kazeœ, N. P. Kolmakova, V. V. Platonov, et al., in
Abstracts of 3rd International Conference on f-Ele-
ments, Paris, 1997, p. 396.

4. Z. A. Kazeœ, N. P. Kolmakova, A. A. Sidorenko, and
V. V. Snegirev, in Abstracts of 7th European Magnetic
Materials and Applications Conference, Zaragoza,
1998, p. 214.

5. J. E. Battison, A. Kasten, M. J. M. Leask, and J.
B. Lowry, Phys. Lett. 55, 173 (1975).

6. B. Bleaney, J. F. Gregg, P. Hansen, et al., Proc. R. Soc.
London 416, 63 (1988).

7. T. Goto, A. Tamaki, T. Fujimura, and H. Unoki, J. Phys.
Soc. Jpn. 55, 1613 (1986).

8. P. Morin, J. Rouchy, and Z. Kazei, Phys. Rev. B 51,
15103 (1995).

9. Z. A. Kazeœ and Yu. F. Popov, Fiz. Tverd. Tela (St. Peters-
burg) 36, 2099 (1994) [Phys. Solid State 36, 1146
(1994)].

10. B. G. Wybourne, Spectroscopic Properties of Rare-
Earths (Interscience, New York, 1965), p. 236.

11. B. Bleaney, in Hyperfine Interactions, Ed. by A. J. Free-
man and R. B. Frankel (Academic, New York, 1967; Mir,
Moscow, 1970).

12. A. Abragam and B. Bleaney, Proc. R. Soc. London 387,
221 (1983).
JOURNAL OF EXPERIMENTAL 
13. B. Bleaney, R. T. Harley, J. F. Ryan, et al., J. Phys. C 11,
3059 (1978).

14. R. R. Andronenko, S. I. Andronenko, and A. N. Bazhan,
Fiz. Tverd. Tela (St. Petersburg) 36, 2396 (1994) [Phys.
Solid State 36, 1302 (1994)].

15. M.-D. Guo, A. T. Aldred, and S.-K. Chan, J. Phys. Chem.
Solids 48, 229 (1987).

16. L. K. Aminov, B. Z. Malkin, and M. A. Teplov, in Hand-
book on the Physics and Chemistry of Rare Earths, Ed.
by K. A. Gschneidner, Jr. and L. Eyring (Elsevier, Amster-
dam, 1996), vol. 22, p. 295.

17. R. Z. Levitin, V. V. Snegirev, A. V. Kopylov, et al.,
J. Magn. Magn. Mater. 170, 223 (1997).

18. A. Kasten, H. G. Kahle, P. Klofer, and D. Schafer-Sie-
bert, Phys. Status Solidi B 144, 423 (1987).

19. S. A. Altshuler and B. M. Kozyrev, Electron Paramag-
netic Resonance in Compounds of Transition Elements
(Nauka, Moscow, 1972; Halsted, New York, 1975).

20. K. Amaya, in Recent Advances in Magnetism of Transi-
tion Metal Compounds (World Scientific, Singapore,
1993), p. 327.

Translation was provided by AIP
AND THEORETICAL PHYSICS      Vol. 91      No. 3      2000



  

Journal of Experimental and Theoretical Physics, Vol. 91, No. 3, 2000, pp. 531–536.
Translated from Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 118, No. 3, 2000, pp. 610–616.
Original Russian Text Copyright © 2000 by Shuty

 

œ

 

, Sementsov.

                                                                

SOLIDS
Structure
Nonlinear Regimes of Resonance Precession 
of the Magnetization in a (111) Iron–Garnet Film

A. M. Shutyœ* and D. I. Sementsov**
Ul’yanovsk State University, Ul’yanovsk, 432700 Russia

*e-mail: shut@mail.ru
**e-mail: sements@quant.univ.simbirsk.su

Received March 22, 2000

Abstract—The special features of precessional motion under ferromagnetic resonance conditions with perpen-
dicular magnetization of the film are investigated on the basis of a numerical solution of the equations of motion
of magnetization in a (111) type iron garnet film. Several nonlinear magnetization precession regimes exist for
fixed values of the crystallographic and induced anisotropies. Depending on the value of the magnetizing field
and the amplitude of the microwave field, precession occurs around the normal to the film with the third har-
monic of the fundamental frequency making a small or large contribution to the nutation motion and with a
small or large amplitude of the precession angle. Precession regimes around one of three symmetric directions
different from the direction of the normal are possible. Narrow ranges of the static field, where dynamical
bistability and regimes with a period which is a multiple of the period of the microwave field are realized,
exist. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The nonlinear dynamics of the magnetization in
magnetically ordered crystals is of interest because of
the diversity of the nonlinear effects that arise when a
dissipative spin system is exposed to a high-frequency
field and also because of the possibility of attaining
large precession angles and realizing dynamical chaos
and various statistical and dynamical self-organizing
structures [1–6]. One of the main manifestations of the
nonlinear dynamics of magnetization for large angles
of uniform precession is frequency doubling, which
occurs with a linearly polarized high-frequency field.
For precession in a transverse microwave field, as a
rule, the analysis is confined to a given nonlinear effect.
However, according to the analysis in this paper, as a
result of a definite symmetry, associated with the crys-
tallographic symmetry, of the magnetic anisotropy field
in a material, primarily the higher-order harmonics of
the fundamental precession frequency are manifested
in the precessional motion of the magnetic moment.
The interest in the behavior of the magnetization for
large precession angles is also due to problems associ-
ated with the application of such precession for modu-
lating laser radiation, whose efficiency is determined
by the precession angle [7–9]. In the present paper the
special features of the dynamics of the precessional
motion of the magnetization in a nonlinear ferromag-
netic resonance regime in a film with cubic symmetry
and with the normal oriented along the crystallographic
axis [111] and the direction of the magnetizing field are
investigated.
1063-7761/00/9103- $20.00 © 20531
Energy is transferred to spin waves from uniform
precession with transverse magnetization by two mech-
anisms [3, 10]. The first mechanism involves a three-
magnon process in which a magnon with the wave vec-
tor k = 0 is annihilated and two magnons with wave
vectors k and –k and frequency ωk = ω, where ω is the
frequency of uniform precession, appear. The second
mechanism involves a four-magnon process in which
two magnons with k = 0 vanish and two magnons with
wave vectors k and –k and frequency ωk = ω appear.
Consequently, to attain large angles of uniform pre-
cession the precession frequency must equal the
minimum frequency of the spin-wave spectrum,
associated with the frequency of spin waves with k =
0 and direction along the magnetizing field, i.e., it is
the ferromagnetic resonance frequency. Then neither
mechanism for energy transfer from uniform preces-
sion to spin waves is realized. It is shown in [4, 11] that
precession angles φ ≈ 20–25° have been attained at the
ferromagnetic resonance frequency in an iron-garnet
film Y2.9La0.1Fe3.9Ga1.1O12 grown on a gadolinium–gal-
lium garnet substrate.

2. GENERAL EQUATIONS AND RELATIONS

Epitaxial iron garnet films are single-crystal layers
with a cubic lattice. We shall assume that the crystallo-
graphic axis [111] is aligned with the x axis and the nor-

mal to the surface of the film and the axes  and

 are aligned with the y and z axes; the polar angle
θ and the azimuthal angle ψ of the magnetization vector
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M are measured from the x and y axes, respectively. We
shall describe the dynamical behavior of the magneti-
zation in external static H and varying h magnetic
fields, which we shall assume are orthogonal to one
another (H ⊥ h), by the equations of motion of the mag-
netization written in spherical coordinate systems [10]:

(1)

where γ is the gyromagnetic ratio, λ is the damping
parameter, and F is the free-energy density. Solving these
equations makes it possible to find the precession fre-
quency of the magnetic moment relative to its equilibrium
orientation and the time dependence of the angles ψ and θ
with a fixed geometry of the applied fields and time
dependence of the external field. The resonance frequency
ωr is determined by the expression

(2)

where the values of the second derivatives of the free-
energy density are taken for the equilibrium values θ0
and ψ0, obtained from the conditions
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Fig. 1. Free energy density versus (a) the polar angle for the
azimuthal direction ψ = 0 and (b) the azimuthal angle for the
polar direction θ = 40° for the magnetizing field H = (1) 260,
(2) 265, (3) 270, (4) 275, (5) 280 Oe.
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For our orientation of the crystallographic axes the
free-energy density is given by the expression

(3)

where Ku and K1 are the constants characterizing the
growth-induced and crystallographic anisotropies. Sub-
stituting Eq. (3) into Eq. (1) we can find the resonance
frequency for an arbitrary orientation of the equilib-
rium magnetization.

As follows from the relations presented, together
with the orientation and magnitude of the magnetizing
field and the induced and crystallographic anisotropy
fields, the polarization, amplitude, and initial phase of
the microwave field also have a large effect on the
dynamics of the magnetization in the precessional
motion. For small amplitudes of the microwave field
(h ! H) linear ferromagnetic resonance, for which the
precession angles are small and the time dependences
θ(t) and ψ(t) can be found from the linearized (with
respect to the deviations of the magnetization from the
equilibrium position) equations of motion, occurs at the
frequency ω ≈ ωr. As the amplitude of the microwave
field and, correspondingly, the precession angle
increase, the contribution of the higher harmonics of
the fundamental precession frequency to the indicated
dependences increases and the nutation motion of the
vector M becomes substantial. In this case the linear
approximation is no longer adequate for solving Eqs. (1).

A detailed analysis of the special features of the pre-
cessional motion of magnetization taking account of all
parameters determining the state of the magnetization
in the film is possible only on the basis of numerical
methods for solving Eqs. (1). As a simplification, the static
field H is assumed to be perpendicular to the surface of the
film, and the magnitude of the field is chosen to be such
that for given values of the constants Ku and K1 the equi-
librium orientation of the vector M is in the direction of
the normal (θ0 = 0). Then the resonance precession fre-
quency is ωr = γHeff(0), where the effective field is deter-
mined, according to Eq. (2), by the expression

(4)

The high-frequency field is assumed to be linearly
polarized and lying in the yz plane, i.e., h ⊥  H. In this case
several regimes of precessional motion of the magnetiza-
tion occur, and their realization is determined by the mag-
nitude of the static field H and, correspondingly, the fre-
quency range of the ferromagnetic resonance.

To understand the special features of the preces-
sional motion of the vector M it is necessary to know
the energy relief given by the function F(θ, ψ). Figure 1
shows the free energy density as a function of the polar
and azimuthal angles. The function F(θ) was con-
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Fig. 2. Projections mα = Mα /M on the (a) xz and (b) zy planes of the magnetic moment, whose initial orientation is changed by
the microwave field and which reaches one of the four stationary dynamical regimes characterized by a small precession amplitude.
The amplitudes of the microwave field are h = (0) 0.04 and (1–3) 1.5 Oe; the orientation angles are ψh = (1) 0°, (2) 200°, and (3) 270°.
structed for the azimuthal direction ψ = 0, for which the
function F characteristically has two local minima. The
projection of the [001] crystallographic axis, which
makes an angle θ = 54.7° with the normal to the film, is
oriented in the direction ψ = π (i.e., in the direction of
the continuation of the indicated direction). The func-
tion F(ψ) was constructed for the polar direction θ =
40°, close to one of the vocal minima of the free energy
with ψ = 0. The function F(ψ) has a period equal to
2π/3 in correspondence with the arrangement of the
magnetizing field and the three {100} type crystallo-
graphic axes. The curves 1–5 correspond to various val-
ues of the magnetizing field. The calculation of these
dependences, just as for the subsequent analysis,
employed values of the parameters that are close to
those of a real iron-garnet film with the indicated com-
position: 4πM = 214.6 G, γ = 1.755 × 107 (Oe s)–1, λ =
3 × 106 s–1, Ku = K1 = –103 ergs/cm3 [11]. It follows
from the curves presented that for the direction ψ = θ =
0 (the vector M is parallel to the normal to the film)
with magnetizing field H > H0 the function F(θ)pos-
sesses a local minimum which becomes more pro-
nounced as H increases. The value of the field H0 can
be found from Eq. (4) with ωr = 0. For the structure
chosen H0 = 254 Oe. Besides the indicated minimum in
the direction of the normal, there are also three local
minima that correspond to the angles ψ = 0°, 120°, and
240° and θ ≈ 35–41°. As the magnetizing field
increases, the minima slowly shift toward the normal
and become less pronounced, vanishing for H ≈ 275 Oe.
Analysis shows that for sufficiently low resonance fre-
quencies and weak magnetizing fields (for the experi-
mental film ωr < 4 × 108 s–1, H < 275 Oe) the precession
axis is aligned along the normal only for small ampli-
tudes of the microwave field (h ≤ 0.04 Oe). Then the
precession amplitude is several degrees (φ ≈ 2°). The
form of the magnetization trajectory for h ≈ 0.04 Oe is
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
now substantially different from a circle because the
vector M undergoes a nutation motion with the third
harmonic of the precession frequency predominating.
As the amplitude of the microwave field increases, the
magnetization in the precessional motion tilts toward
one of three directions (depending on the orientation of
the field h in the yz plane and the initial phase of this
field), which are determined by the corresponding local
minima of the free-energy density with θ ≠ 0. Over
times of the order of 200–500 ns precession of the mag-
netization along a stationary trajectory with average
amplitude 〈φ〉 & 3° is established near the indicated
direction.

3. NUMERICAL ANALYSIS

The results of solving Eqs. (1) numerically that
characterize the dynamics of the precessional motion in
the experimental film are presented below. Figure 2
shows the projections of the magnetic moment, mα =
Mα /M, α = x, y, z, on the xz and zy planes. The micro-
wave field changes the initial orientation of the mag-
netic moment, as a result of which one of the four sta-
tionary dynamical regimes described above is estab-
lished. The resonance precession frequency is chosen
to be ωr = 1.12 × 108 s–1, which corresponds to the static
field H = 260 Oe. The amplitude of the microwave field
is h = 0.04 Oe (curve 0), 1.5 Oe (curves 1–3) and its ini-
tial phase is 0; the orientation angle, measured from the
y axis, is ψh = 0°, 200°, and 270° (the curves 1–3). For
precession of the magnetic moment around the normal
(the curve 0) the initial phase and orientation of the
high-frequency field are irrelevant. The dashed curves
in the figure separate three sectors, corresponding to the
initial orientational angles ψh of the high-frequency
field h for which precession of the vector M around the
corresponding direction is established. For an initial
SICS      Vol. 91      No. 3      2000
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Fig. 3. (a) the angle 〈ψ〉  versus the orientation of a microwave field with amplitude h = 0.5 Oe (dashed curve) and 1.5 Oe (solid curve)
in steady precessional motion and (b) projection of the trajectory of the vector M on the yz plane with a precession regime established
near one of the three distinguished directions.

ψh
phase π, i.e., when the initial sign of the field h changes,
the distinguished regions of the angles ψh shift by 180°.

Figure 3a shows the dependence of the average azi-
muthal angle 〈ψ〉  of the vector M(t) in stationary pre-
cessional motion near one of the three distinguished
directions on the orientation ψh of a microwave field
with amplitude h = 0.5 Oe (dashed curve) and 1.5 Oe
(solid curve). The establishment of a magnetization pre-
cession regime with microwave field orientation close to
the boundary of the sectors is shown in Fig. 3b (the
curves 1–3) for the angles ψh = 85°, 87°, 88° (h = 0.5 Oe)
and ψh = 99°, 100°, 101° (h = 1.5 Oe). At first, a hop by
240° occurs at the boundary between the sectors, and
precession in the position 3 replaces precession in the
position 1. As the angle ψh increases further, a transi-
tion occurs to the missed position 2, where the dynam-
ical regime is secured up to the next change in the angu-
lar sectors. When the amplitudes of the microwave field
become sufficiently large ((h * 1 Oe), a hop by 240°
occurs and the magnetization goes around the position 2
along the open trajectory and is drawn by the high-fre-
quency fields to the next position 3. As the angle ψh

increases, the envelope of the trajectory becomes spiral-
shaped and magnetization precession in the position 2 is
established. In weak fields (h & Oe) a hop by 240°
occurs without the magnetization going around the
position 2. The precession regimes described above are
due to the character of the arrangement of the four min-
ima of the free energy F(θ, ψ) for weak static fields
(H > H0).

As the static field H increases further, the three min-
ima of the function F(θ, ψ) which lie at an angle with
respect to the normal vanish and precession occurs only
JOURNAL OF EXPERIMENTAL 
with the axis oriented in the direction of the normal to
the sample. Figure 4 shows for various values of the
static field H and the high-frequency field h = 1.5 Oe
the projections of the stationary trajectories of the pre-
cession of the magnetic moment on the yz plane. The
orientation ψh and the initial phase of the microwave
field in the cases considered do not affect the estab-
lished precessional motion of the magnetization. In the
dynamical regime arising immediately after the regime
with four possible axes of precessional motion the mag-
netization goes around the three distinguished direc-
tions described above and resonance precession with
maximum average amplitude 〈φ〉 ≈ 30° (curve 1) is
established as a result. The form of the trajectory of the
vector M shows that for the prescribed ferromagnetic
resonance geometry the third harmonic of the reso-
nance frequency ωr predominates in the nutation
motion of the magnetic moment, and its contribution to
the motion of the magnetization is greatest precisely in
the dynamical regime characterized by the maximum
precession angle 〈φ〉. For static fields in the range
283.4 Oe & H & 284.5 Oe bistability occurs, for which
a second stationary orbit with a small amplitude 〈φ〉 ≈
10° (curve 2) is present together with the above-
described stationary orbit of precession motion of the
magnetization (curve 1). Fluctuations of the parameters
of the microwave field, the initial phase of the field, and
the deviation of the initial orientation of the magnetiza-
tion vector away from the direction along the normal
influence the realization of one of the two dynamical
states. For static fields in the range 284.5 Oe < H < 285 Oe
a small stationary orbit of precessional motion becomes
the only orbit. Bifurcations leading to regimes with a
complicated trajectory with period T = 2πl/ωr arise in
AND THEORETICAL PHYSICS      Vol. 91      No. 3      2000
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Fig. 4. Projections, on the yz plane, of the stationary precession trajectories of the magnetic moment for the static field H = (1) 283,
(2) 284, (3) 285, (4) 290, (5) 350, (6) 400, (7) 600 Oe.
very narrow ranges of the fields H; specifically, l = 4 for
trajectory 3. As H increases further (Fig. 3c) and for a
fixed amplitude H of the microwave field the precession
amplitude at first increases very little (curves 4 and 5)
and then decreases (curves 6 and 7), and the form of the
trajectory approaches a circle, i.e., the contribution of
the higher harmonics of the resonance frequency to the
nutation motion of the magnetization decreases.

For a quantitative estimate of the contribution of
various harmonics of the resonance frequency to the
nutation motion of the magnetization, we shall repre-
sent the time-dependent precession angle φ(t) in the
form of the series

(5)

The contributions of the first three harmonics for sev-
eral values of the static field H are presented in table. It
is evident that under ferromagnetic resonance condi-
tions in a (111) type sample the third harmonic makes
the largest contribution among the higher order har-
monics (n > 0). For sufficiently strong static fields, H @
H0, and small precession amplitudes the angle φ(t) is
determined, to a high degree of accuracy, by the con-
stant angle φ0 ≡ 〈φ〉 and the higher order harmonics can
be neglected in the description of the motion of the

φ t( ) φnωe
iωnt

.∑=
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magnetization. The average precession angle φ0 in this
case can be approximately found from the expression

(6)

where the complex diagonal χ = χ' – iχ'' and off-diago-

nal χa =  – i  components of the high-frequency
susceptibility tensor, determining the linear relation
between the high-frequency fields and the magnetiza-
tion, are, under resonance conditions (ω = ωr),

where ∆ = λ2 + 4γ2M2 [10]. Thus, the expression (6) for
the precession amplitude with H = 500, 600, and 700 Oe
gives, respectively, φ0 = 17.510, 12.431, and 9.639°,
which shows the high degree of accuracy of the results
obtained from Eq. (6) for strong static fields.

The above analysis of resonance precessional
motion of a magnetic moment in a (111) type iron-gar-
net film showed that there exist several nonlinear
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Table

H, Oe φ0, deg φω/φ0 φ2ω/φ0 φ3ω/φ0

283 30.108 2.50 × 10–2 1.38 × 10–2 3.62 × 10–1

300 11.463 3.20 × 10–2 4.42 × 10–2 1.13 × 10–1

400 16.904 1.98 × 10–3 1.25 × 10–2 5.03 × 10–2

500 15.721 1.09 × 10–3 6.29 × 10–3 2.89 × 10–2

600 12.228 7.24 × 10–4 4.94 × 10–3 1.65 × 10–2

700 9.629 4.13 × 10–4 4.94 × 10–3 1.02 × 10–2
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regimes determined by the parameters of the magnetiz-
ing and high-frequency fields and by the crystallo-
graphic anisotropy field in the sample. It was shown
that for sufficiently low resonance frequencies and
weak magnetizing fields the precession axis is aligned
in the direction of the normal only for small amplitudes
of the microwave field; in the opposite case the magne-
tization tilts toward one of the three directions around
which precessional motion with average amplitude
〈φ〉 & 3° is established. As the magnetization field and,
correspondingly, the ferromagnetic resonance fre-
quency increase, a precession regime, characterized by
the maximum amplitude 〈φ〉 ≈ 30° and a large contribu-
tion of the third harmonic of the fundamental preces-
sion frequency ωr to the nutation motion of the mag-
netic moment, is realized around the normal to the field.
In higher static fields there exists a range where dynam-
ical bistability occurs; i.e., two stationary orbits of the
precessing magnetic moment that differ strongly in
amplitude (〈φ〉1≈ 30° and 〈φ〉2≈ 10°) exist. Bifurcations
resulting in regimes with a complicated trajectory,
whose period is a multiple of the period of the micro-
wave field (T = 2πl/ωr), were observed.
JOURNAL OF EXPERIMENTAL
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Abstract—The purpose of this work is to establish the relation between the magnetic, electric, and magne-
totransport properties and the oxygen nonstoichiometry of the compounds Ba2(FeMo)Ox (5.88 ≤ x ≤ 6.01). The
investigations established the behavior of the magnetization, resistance, and magnetoresistance of samples in
this series. It is shown that the behavior of the magnetization can be described by assuming that the iron ions
become divalent (Fe3+  Fe2+) as a result of the reduction of the samples and the molybdenum ions become
hexavalent (Mo5+  Mo6+) as a result the oxidation of the samples. It is established that there are two con-
tributions to the magnetoresistance which arise as result of magnetic ordering of the intragranular interlayer and
intergranular transfer of spin-polarized charge carriers. It is inferred that electric transport in samples of this
series is determined by percolation processes between granules with metallic conductivity separated by a
dielectric interlayers. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The discovery of “colossal magnetoresistance”
stimulated the search for new materials with a large
magnetoresistance effect in weak magnetic fields. Such
materials are required for information storage and pro-
cessing devices. In manganites a large magnetoresis-
tance effect is, as a rule, attained in comparatively large
magnetic fields (H ≈ 5 kOe). Recently there have
appeared reports that perovskites of the type
Sr2(FeMo)O6 manifest a large magnetoresistance effect
in weak magnetic fields at room temperature [1–3].
This effect was explained by intergranular transfer of
spin-polarized charge carriers. The results obtained on
epitaxial thin films have confirmed this conclusion [4].
It has turned out that the magnetoresistance effect in
epitaxial films is positive, while polycrystals manifest a
negative effect, i.e., the electric resistance of samples
decreases in a magnetic field. A magnetoresistance
effect attributable to intergranular tunneling of spin-
polarized electrons is also observed in manganites.
Ordinarily, an effect of this type increases monotoni-
cally with decreasing temperature, while the intragran-
ular magnetoresistance effect is strongest near phase-
transition temperatures. The nature of the intergranular
magnetoresistance effect is a subject of debate [5–8].
Consequently, further investigations are required.

The objective of the present work is to establish the
relationship between the magnetic, electric, and mag-
netotransport properties and the oxygen nonstoichiom-
etry of the compounds Ba2(FeMo)Ox (5.88 ≤ x ≤ 6.01).
1063-7761/00/9103- $20.00 © 20537
2. EXPERIMENTAL PROCEDURE
The Ba2(FeMo)Ox sample was prepared from

oxides and carbonates of the corresponding elements
using the standard ceramic technology in an inert-gas
atmosphere. The materials BaCO3, Fe2O3, Mo2O3, and
MoO2 were taken in stoichiometric proportions and
ground in an agate mortar. Next, the powder was com-
pressed under a pressure of 6 kbar into tablets, which
were synthesized in an argon flow at 1000°C for 3 h and
then cooled at a rate of 100°C/h. X-Ray diffraction
data, obtained in Co Kα radiation, for a sample after
synthesis showed the presence of one phase with per-
ovskite structure. The oxygen content in the composi-
tion obtained by this method was determined according
to the mass loss after reduction in a hydrogen flow to
barium oxide and metallic iron and molybdenum.

The samples were reduced at temperature 900°C in
evacuated quartz ampullae in the presence of pulver-
ized metallic tantalum, which served as an oxygen get-
ter. To oxidize the samples, pulverized LaMnO3.1 was
placed into the ampulla. The oxygen content was deter-
mined according to the mass loss of the sample after
reduction or according to the mass increase after oxida-
tion. After each treatment x-ray diffraction analysis was
performed on the samples to determine the unit-cell
parameters and to monitor the single-phase composi-
tion of the samples.

The magnetic susceptibility was measured by the
bridge method and the resistance was measured by the
standard four-contact method. The magnetization was
determined with a vibrating coil magnetometer.
000 MAIK “Nauka/Interperiodica”
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3. RESULTS AND DISCUSSION

The chemical formula for the sample after synthesis
was determined to be Ba2(FeMo)O5.99. According to the
x-ray diffraction data all samples were characterized by
cubic symmetry of the unit cell. The x-ray diffraction
patterns contained superstructural peaks due to order-
ing of the iron and molybdenum ions in a NaCl struc-
ture. The cell parameter a of the Ba2(FeMo)O5.99 sam-
ple was found to be 8.068 Å. Oxidation decreased the
volume of the cubic unit cell. The parameter a for the
Ba2(FeMo)O6.01 sample was 8.066 Å. The unit-cell vol-
ume was observed to increase with oxidation of the
composition Ba2(FeMo)O5.99. The parameter a for the
composition Ba2(FeMo)O5.88 was 8.086 Å.
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Fig. 1. Magnetization versus the external magnetic field for
Ba2(FeMo)Ox (5.88 ≤ x ≤ 6.01) at 8 K. 

Fig. 2. Dynamic magnetic susceptibility versus temperature
for Ba2(FeMo)Ox (5.88 ≤ x ≤ 6.01). 
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Magnetization measurements (Fig. 1) showed that
the Ba2(FeMo)O5.99 sample possesses a magnetic
moment 3.5 Bohr magnetons per formula unit (µB/for-
mula unit) at 8 K. The Curie temperature TC, which for
this sample is 324 K, was determined from the temper-
ature dependence of the dynamic susceptibility (Fig. 2).
When the Ba2(FeMo)O5.99 sample was reduced the mag-
netic moment and the Curie temperature decreased. For
the composition Ba2(FeMo)O5.88 the magnetic moment
was approximately 2.7µB/formula unit, and TC decreased
to 318 K. When the sample Ba2(FeMo)O5.99 was oxi-
dized the magnetization increased but no appreciable
changes were observed in TC. The magnetic moment of
the composition Ba2(FeMo)O6.01 was found to be
3.6µB/formula unit, while the Curie temperature
remained unchanged—324 K.

The resistivity for the sample Ba2(FeMo)O5.99 at liq-
uid nitrogen temperature was of the order of 10–3 Ω cm
(Fig. 3a). For all samples except Ba2(FeMo)O5.96 the
resistivity decreased after reduction, and for the
Ba2(FeMo)O5.88 sample the resistivity was of the order
of 10–4 Ω cm. The resistivity of the composition
Ba2(FeMo)O5.96 was essentially identical to that of
Ba2(FeMo)O5.99. For all reduced samples the resistivity
increased negligibly with increasing temperature in the
entire experimental temperature range. A kink was
observed in the temperature dependence of the resistiv-
ity near the Curie temperature.

A strong increase in the resistivity was observed
when the sample Ba2(FeMo)O5.99 was oxidized. In this
case, the resistance increased by 4 orders of magnitude
with a negligible change in the oxygen content from
5.99 to 6.01. The temperature dependence of the resis-
tivity also changed. Up to temperature 325 K for
Ba2(FeMo)O6.00 and 254 K for Ba2(FeMo)O6.01 the
resistivity of the samples increased with temperature.
However, under further heating the resistivity of the
samples decreased.

The magnetoresistance was calculated as MR =
{[ρ(H = 0) – ρ(H = 9 kOe)]/ρ(H = 0)} × 100%. The tem-
perature dependence of the magnetoresistance is shown in
Fig. 3b. For all samples except Ba2(FeMo)O5.96 the mag-
netoresistance at liquid-nitrogen temperature was 20–
25% and decreased with increasing temperature to
approximately 1%. Then, a peak was observed in the
magnetoresistance, reaching 3–4%, at the Curie tem-
perature. The composition Ba2(FeMo)O5.96 demonstrate
a decrease of the magnetoresistance to 4% at 77 K, while
the magnitude of the peak MR at TC remained in the
range 3–4%. With further reduction of this sample the
magnetoresistance once again reached 20–25% at liquid-
nitrogen temperature. An interesting feature in the behav-
ior of the magnetoresistance can be seen by analyzing its
temperature dependence. The magnetoresistance of the
more highly oxidized sample Ba2(FeMo)O6.01 remained
constant near 20% in the range from 77 K right up to
 AND THEORETICAL PHYSICS      Vol. 91      No. 3      2000
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Fig. 3. (a) Electric conductivity and (b) magnetoresistance versus temperature for Ba2(FeMo)Ox (5.88 ≤ x ≤ 6.01). 
185 K. However, as the oxygen content in the samples
decreases, the low-temperature magnetoresistance effect
decreases with increasing temperature more rapidly,
even though the difference in the Curie temperature is
very small.

Investigations of the field dependences of the mag-
netoresistance effect at liquid-nitrogen temperature
established that the magnetoresistance saturates in
fields up to 3 kOe (Fig. 4). Magnetization saturation
was observed in approximately the same magnetic
field.

Comparing the behavior of the compound
Ba2(FeMo)Ox (5.88 ≤ x ≤ 6.01) with that of manganites
with perovskite structure shows that the compositions
Ba2(FeMo)Ox possess a smaller region of oxygen non-
stoichiometry. When our experimental samples were
reduced they retained a single-phase composition up to
the oxygen parameter x = 5.88, while manganites
retained a single-phase composition when the index x
decreased from 3.0 to 2.66 [9]. Therefore, the
Ba2(FeMo)Ox (5.88 ≤ x ≤ 6.01) retains a single-phase
composition with variation of the oxygen content in
only a 2% range, while for manganites with perovksite
structure this range is approximately 11%.

Nuclear magnetic resonance investigations of
Ba2(FeMo)O6 showed that the iron ions are in a triva-
lent state and the molybdenum ions are in a pentavalent
state [10].

We assume that two opposing factors influence the
change in the cell volume in our experimental compo-
sitions: when the compositions were reduced oxygen
atoms were removed and iron ions became divalent. In
addition, when one oxygen atom is removed two iron
ions must become divalent in order for the sample to
remain electrically neutral. The first process decreases
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
the cell parameter, while the second process should
increase the cell parameter, since the radius of the ion
Fe2+ is much larger than that of Fe3+. According to the
experimental data, the cell volume increases on reduc-
tion. This shows that a decrease of the average oxida-
tion state of the iron ions has a somewhat stronger
effect on the change in the cell parameter.

It can be inferred that the oxidation of Ba2(FeMo)O6
is analogous to the oxidation of LaMnO3 type perovs-
kites. Then, when the samples are oxidized the valence
state of the molybdenum ions changes (Mo5+ 
Mo6+) and cationic vacancies appear. Both processes
decrease the cell volume. As mentioned earlier, for our
samples the cell parameter decreased on oxidation.

The spontaneous magnetic moment for the stoichio-
metric composition Ba2(FeMo)O6 is determined by the
antiparallel ordering of the magnetic moments of the iron
ions Fe3+(3d5) and the molybdenum ions Mo5+(4d1). In
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Fig. 4. Field dependences of the magnetoresistance of a
Ba2(FeMo)O5.99 sample at various temperatures. 
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this case the spontaneous magnetic moment of a sto-
ichiometric compound is 4µB/formula unit at 0 K. This
value is somewhat higher than the value 3.6µB/formula
unit at 8 K, which we obtained for the composition
Ba2(FeMo)O6.01. Apparently, the strong hybridization
of the orbitals of the Fe and Mo ions with the 2p orbitals
of the oxygen ions decreases the effective magnetic
moment of these ions.

Reduction of the sample Ba2(FeMo)O5.99 decreases
the spontaneous magnetic moment per formula unit as
result of a change in the electronic configuration of
some iron ions from Fe3+(3d5) to Fe2+(3d6). The mag-
netic moment of Fe2+(3d6) ions is smaller than that of
Fe3+(3d5) ions. Hexavalent molybdenum ions are dia-
magnetic. Consequently, oxidation of Ba2(FeMo)O6
should increase the spontaneous magnetic moment.
The decrease in the Curie temperature on reduction of
the samples is probably due to the fact that the
exchange interaction Fe2+–O–Mo5+ is weaker than the
exchange interaction Fe3+–O–Mo5+.

Reduction increased the electric conductivity of the
samples (Fig. 3a) despite the appearance of oxygen
vacancies, which are structural defects and should limit
the mobility of charge carriers. This tendency could be
due to the disruption of the ordering of the Fe3+ and
Mo5+ ions. In strongly reduced samples we observed a
large decrease of the intensity of superstructural lines,
which are due to ordering of iron and molybdenum
ions. It is well-known that perovskites containing only
Fe3+ ions are good dielectrics. When the oxygen con-
tent exceeded the value corresponding to the stoichio-
metric composition the resistance increased sharply.
The form of the temperature dependence of the resistiv-
ity (Fig. 3a) can be interpreted assuming that the con-
ductivity of strongly oxidized samples is due to perco-
lation processes. Apparently, the samples consist of a
main metallic phase and dielectric interlayers. At some
locations the dielectric interlayers are weakened, which
results in percolation conductivity along the metallic
phase. When the samples are oxidized the surface com-
position of the granules probably changes radically
first. This is confirmed indirectly by the fact that
strongly oxidized samples became brittle.

Investigations of the magnetotransport properties
shows that strongly oxidize samples are most promis-
ing for practical applications, since the magnetoresis-
tance effect in such samples remains large at compara-
tively high temperatures. This tendency is probably due
partially to the percolation character of the electrical
conductivity of these samples. The magnetoresistance
effect and the magnetic properties are correlated with
one another. The more the exchange interactions in
Ba2(FeMo)Ox are weakened, the more rapidly the mag-
JOURNAL OF EXPERIMENTAL 
netoresistance effect decreases with increasing temper-
ature. The maximum of the magnetoresistance effect
near the Curie temperature is probably due to the same
processes as in metallic Tl2Mn2O7 with pyrochlore
structure [11]. In Tl2Mn2O7 the conductivity type like-
wise remains unchanged at the point TC, but the magni-
tude of the magnetoresistance effect is several times
larger [11]. This could be due to the fact that
Ba2(FeMo)O6 is a ferrimagnet, while Tl2Mn2O7 is char-
acterized by parallel ordering of the magnetic moments
of all manganese ions. It is well-known that ferrimag-
netic spinels of the type MnFe2O4 also manifest a max-
imum magnetoresistance effect near the Curie temper-
ature, though its value is very small even compared
with the analogous quantity for Ba2(FeMo)O6 type fer-
rimagnets.

The reasons for the sharp decrease of the magne-
toresistance effect in the compositions Ba2(FeMo)O6
are not known. A complex of spectrometric investiga-
tions is now being conducted in order to determine the
nature of the unusual behavior of this compound.
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Abstract—A theoretical model making it possible to calculate the characteristics of metal–insulator–size-
quantized film tunneling junctions in a wide range of voltages is proposed. The conditions for observing a geo-
metric resonance in the differential tunneling conductivity are modeled, and the influence of temperature on the
resonance oscillatory structure is investigated. It is shown that the geometric resonance is not the only possibil-
ity for manifestation of standing waves in real nonuniform films. For one polarity of the voltage resistance peaks
which are stable with respect to temperature smearing can appear. Moreover, quantization of the spectrum as a
whole changes the behavior of the curve σ(V), shifting its minimum by a finite amount relative to zero voltage.
It is inferred that this effect, which does not require any special conditions in order to appear, can serve as an
indication of the presence of standing waves in one of the electrodes. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The observation of size-quantization of electron
waves in thin metallic films is one of the most remark-
able achievements of electron tunneling spectroscopy
[1, 2]. In the course of these investigations, the idea that
effects of this kind are impossible in the characteristics
of tunnel junctions changed. The problem was that even
negligible changes in thickness (of the order of several
angstroms, which are unavoidable in real films) should
change the position of the energy levels by an amount
comparable to the splitting between the levels and in
consequence the effect under study should unavoidably
be washed out. However, as shown in [1], because the
thickness d of a nonuniform polycrystalline film can
vary only discretely, d = Na (a is the lattice constant and
N is an integer), so-called commensurate levels, whose
energies do not depend on the thickness, exist in thin
films. Subsequent detailed experimental investigations
made it possible not only to show, very reliably, the
existence of commensurate levels in various materials
(Au, Mg, Pb, Bi) but also to determine, on the basis of
the data obtained, a variety of electronic characteristics
of an experimental film [2–4]. For example, the posi-
tion of certain singular points, located far from the
Fermi level, was found in [4], and the slope of the dis-
persion curves near these points was also found. Size-
quantization under conditions of high hydrostatic pres-
sures (up to 10 kbar) was investigated in [5, 6]. Thus,
by the beginning of the 1980s the effect under discus-
sion was already a well-studied phenomenon and was
described in detail in a number of monographs [7–9] as
a promising method for investigating the electronic
characteristics of solids. On the other hand, despite
such a much-promising beginning, it must now be
stated that the hopes were by no means fully justified.
In our view, the effect has not found the expected appli-
1063-7761/00/9103- $20.00 © 20541
cations in studying new materials, such as, for example,
metal-oxide compounds. We believe that the main rea-
son for this situation is that all preceding investigations
were limited to the use of simple theoretical construc-
tions, capable of predicting primarily only the locations
of the experimental features on the voltage scale. In the
present paper we present a theoretical model, which, in
our view, gives the most complete possible description
of the experimental situation. It makes it possible to
calculate in a wide range of voltages (of the order of
several volts) the characteristics of a tunneling contact,
taking account of all two-dimensional bands of the
quantized electrode that lie below the Fermi level and
all bands of any importance above the Fermi level.

2. FORMULATION OF THE MODEL

Let us consider a tunneling contact in which one
electrode is an ordinary Fermi metal. For simplicity, we
assume that the second electrode is made of the same
material, but because its thickness L is small (several
hundreds of angstroms) size-quantization occurs in it,
i.e., the wave number kz in a direction perpendicular to
the plane of the barrier and therefore the kinetic energy
component Ez in this direction can assume only discrete
values [7]:

(1)

(the generally accepted notation is used in this expres-
sion). The electronic spectrum of the size-quantized
electrode is quasicontinuous and consists of two-

Enz
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dimensional bands—planes perpendicular in reciprocal
space to the axis kz:

(2)

where k|| is the component of the wave vector parallel to
the tunneling plane and varies continuously. We shall
assume that the potential barrier separating the elec-
trodes in the tunneling structure is a trapezoid with
heights φ1 and φ2 and thickness d. When a bias voltage
V is applied to one of the electrodes the form of the bar-
rier changes as

(3)

Let us apply a bias voltage V to the size-quantized film
and calculate the contribution Jn(V) of the nth band to
the total tunneling current J(V). We note that the trans-
mittance of the tunneling barrier depends only on the
perpendicular component of the kinetic energy Ez and
does not depend on the parallel component E||, so that
all electrons in the nth band which have the same per-
pendicular energy component Enz possess the same tun-
neling probability P(Enz, V). For a trapezoidal barrier [10]

(4)

where Ad = 4 d/3h (the barrier height φ and the
energy Enz in this formula are measured from the con-
duction band bottom). We shall assume that tunneling
is elastic and specular, i.e., the component k|| of the
wave vector parallel to the barrier and the total energy
E of the tunneling electron are conserved. We note that
under these conditions the electrons lying in the recip-
rocal space of the initial electrode in the same plane
knz = const will lie in the reciprocal space of the oppo-
site electrode also in the same plane  = const (when

the Fermi energies are the same  = , their ener-

gies are related by the relation  = Enz + eV). We note
that although the spectrum of the opposite electrode is
continuous, only the electrons lying in the plane 
can participate in the tunneling process and contribute
to the reverse tunneling current, since allowed states in
the plane Enz exist only for them in the first electrode.
Thus, even though the spectrum of the opposite elec-
trode is continuous on the whole, the spectrum of the
tunneling electrons consists of two-dimensional bands.
In contrast to “real” stationary bands of the quantized
electrode, when a voltage is applied these “imaginary”

εn k || Enz,( ) Enz

πk ||( )2

2m
---------------,+=

φ z V,( ) φ1 φ2 eV– φ1–( )z/d .+=

P1 Enz V,( )
Ad

φ2 eV– φ1–
-----------------------------–





exp=

--× φ2 eV– Enz–( )3 φ1 Enz–( )3
–[ ]





,

2m

knz'

EF1
EF2

Enz'

Enz'
JOURNAL OF EXPERIMENTAL
bands will move along the -axis, satisfying the rela-

tion  = /". The number of electrons
in the nth band is

(5)

where f(Enz , E||, T) is the Fermi distribution function
(the factor of 2 takes account of the fact that each state
is doubly spin-degenerate). Since all electrons belong-
ing to the same band have the same group velocity vnz,
we find the contribution of the nth band to the current
incident on the plane of the junction as

(6)

Multiplying this expression by the barrier transmit-
tance P(Enz , V) and by the probability that the final state
in the opposite electrode is not occupied, we find the
contribution of the nth band to the direct tunneling cur-
rent:

(7)

Similar arguments for the reverse current lead to the
expression

(8)

For simplicity we shall assume that the group velocities

are approximately the same (this assumption is obvious
for small bias voltages, and for large eV, since the
reverse current decreases rapidly with increasing volt-
age, it does not lead to a noticeable error). The tunnel-
ing current Jn from the nth band is the difference
between the direct and reverse currents:

(9)
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where C = e/π"2. Differentiating the expression
obtained with respect to the voltage, we find the contri-
bution of the nth band to the differential tunneling con-
ductivity

(10)

where

Figure 1 (curve 1, negative bias voltages) displays
the dependence σn(V) for the band Enz lying below the
Fermi level EF. Its behavior can be understood by tak-
ing account of the fact that the first term, σ1n(V), in
Eq. (10) is determined by the change in the transmit-
tance of the tunneling barrier and can grow monotoni-
cally when a bias voltage V is applied. The increase in
the first term, σ2n(V), is due to the decrease in the num-
ber of reverse electrons tunneling into the band under
study. This decrease is due to the fact that, as already
noted, the plane  on which the reverse electrons are

located moves, as voltage increases, along the -axis.
A region populated with the largest number of reverse
electrons—the section of this plane by the Fermi
sphere—decreases in size. For voltage eV ≈ EF – Enz,
which corresponds to the plane indicated moving out-
side the Fermi sphere, the reverse current virtually van-
ishes, and the term due to this current in the conductiv-
ity decreases abruptly to zero. If the plane Enz lies at a
distance Emz – EF @ kT from the Fermi surface, then the
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contribution of this band to the conductivity can be
assumed to be zero since the population of the band is
small (Fig. 1, curve 2, negative voltages).

When a negative voltage is applied to the massive
electrode the “imaginary” bands of the massive elec-
trode move toward the center of the Brillouin zone,  =
Enz – eV, while the planes from which the reverse elec-
trons tunnel are stationary. As a result of this motion,
the dependence of the barrier transmittance on the bias
voltage P2(Enz ,V) in this case differs somewhat from
Eq. (4):

(11)

Arguments similar to those presented above yield an
expression for the contribution of one band to the tun-
neling current:

(12)
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Fig. 1. Contribution of the two-dimensional band to the dif-
ferential conductivity: 1, Enz < EF (Enz = 0.7 meV, EF =
1.2 meV); 2, Emz > EF (Enz = 1.35 meV). Positive polarity
corresponds to electron tunneling from the massive elec-
trode into the band under study, negative polarity corre-
sponds to tunneling from the band. The parameters of the
square barrier are: d = 10 Å, ϕ1 = ϕ2 = 1 eV. The temperature
T = 77 K. The computational step h = 1 meV.
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Differentiating Eq. (12) with respect to the voltage V
we find an expression for the tunneling conductivity:

(13)

where
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Fig. 2. Differential conductivity σ(V) of a metal–insulator–
quantized film, uniform over the thickness L = 500 Å, tun-
neling contact. It is assumed that the electrodes are made of
a hypothetical metal with EF = 4 eV and lattice constant a =
2 Å. The height of the square potential barrier ϕ1 = ϕ2 = 4 eV,
the thickness d = 10 Å. Curve 1 corresponds to T = 4.2 K,
curve 2 corresponds to T = 77 K (curve 2 is shifted upwards
relative to curve 1 by 0.005 arb. units). The computational
step h = 2 meV.
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If the “imaginary” band of the massive electrode with
V = 0 intersects the Fermi sphere, Enz < EF, then right up
to voltages eV ≈ Enz the dependence σn(V) is a mono-
tonically decreasing function (Fig. 1, curve 1, positive
polarity). This is a consequence of the fact that the indi-
cated plane moves, when a voltage is applied, in the
direction opposite to the -axis, and the barrier trans-
mittance of electrons lying on it decreases. As the cen-
ter of the Brillouin zone is approached, eV = Enz, the
differential conductivity tends towards minus infinity.
It is obvious that for eV > Enzthe “imaginary” band van-
ishes and the contribution to the differential conductiv-
ity becomes zero. If the “imaginary” band does not
cross the Fermi surface initially, Emz > EF, then it
remains essentially empty right up to voltages eV ≈
Emz – EF, and consequently its contribution to the con-
ductivity is negligibly small. At the moment this band
touches the Fermi surface, eV = Emz – EF, electrons start
to occupy it, and this is reflected in the conductivity as
a jump, whose sharpness depends on the temperature,
after which the contribution to the conductivity, just as
in the preceding case, becomes a monotonically
decreasing function.

We note that Eqs. (10) and (13), though compli-
cated, contain only elementary functions, i.e., we are
dealing with a very unusual case where the calculation
of the tunneling conductivity does not require any inte-
gration. This situation makes it possible to take into
account the contributions from all bands lying below
the Fermi level and all bands of any importance above
the Fermi level, whose number n in real nonuniform
metallic films can be very large:

(14)

Figure 2 shows curves of the differential conductiv-
ity calculated for a square potential barrier ϕ1 = ϕ2 = 4 eV
(ϕ = φ – EF) with thickness d = 10 Å (curve 1 corre-
sponds to temperature T = 4.2 K, and curve 2 corre-
sponds to T = 77 K). It is assumed that both electrodes
are made of the same metal with EF = 4 eV, but one
electrode consists of a thin ideal uniform metallic film
of thickness d = 500 Å, while the geometric dimensions
of the second electrode make it possible to assume that
its electronic spectrum is continuous. For definiteness,
we assume that the positive polarity corresponds to
electron tunneling from the massive electrode. As
expected, features occur along the entire curve σ(V)
(curve 1, Fig. 2). As temperature increases, these fea-
tures wash out and an oscillatory structure is observed
along the curve σ(V), and the amplitude of the oscilla-
tions increases with the voltage (curve 2, Fig. 2).

Figure 3 (curve 1) shows a section of the differential
conductivity calculated for positive polarity. A number
of sharp conductivity dips, which appear at the moment
the “imaginary” band approaches the center of the Bril-
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louin zone, are also noticeable on this section together
with a step structure. We note that this result in itself is
very unusual, since it is well known that electrons
located close to the Fermi surface make the over-
whelming contribution to the tunneling current, but as
eV approaches Enz the contribution from the nth band,
which is negligibly small compared with the contribu-
tion of the lower-lying bands to the tunneling current,
decreases so rapidly that the corresponding term in the
differential conductivity σ(V) is larger than all other
terms in Eq. (14). The fact that the contribution from
the lower-lying bands is negligibly small is reflected in
the fact that the corresponding dips in the conductivity
are, as a result, extremely narrow in voltage even
though their amplitudes are infinitely large. At first
glance, the possibility of observing these features
experimentally is very problematic, since any of three
factors—temperature, modulation, and finite life-
time—can completely wash out the effects under dis-
cussion. However, as one can see from Fig. 3 (curve 2),
the resistance peaks are essentially unaffected by the
temperature, while the structure which consists of wide
steps and dominates at low temperatures completely
vanishes at high temperatures. Thus, paradoxically, the
temperature smearing should make it possible to
observe sharp resistance peaks, since it washes out the
structure which consists of wide conductivity steps and
dominates at low temperatures. The finite lifetime of
the quantized states, τ = "/Γ, was taken into account by
replacing in Eq. (13) Enz by Enz + iΓ and calculating the
real part of the tunneling conductivity Re[σ(V)]. The
calculations showed that the resistance peaks gradually
decrease as Γ increases, and they vanish completely for
Γ = 3 meV (Fig. 3, curve 3).

Figure 4 shows the computational results for the
tunneling conductivity of a nonuniform film, whose
thickness L varies from 470 to 530 Å around an average
value , satisfying the Gaussian distribution,

Following [3], it was assumed that α = 1/6. We can see
on curve 1 that, in complete agreement with the discus-
sion presented above, the oscillator structure remained
only in voltage ranges centered around the values 0.178
and 0.777 V, for which the geometric-resonance condi-
tion (1) is valid, respectively, for the values S/Q = 2/3
and S/Q = 5/7 (S/Q is an irreducible fraction) [3, 7]. As
expected, the resonance structure corresponding to
S/Q = 5/7 is much less pronounced than the structure
corresponding to S/Q = 2/3. For other bias voltages on
the tunnel junction the contributions from various val-
ues of the thickness L mutually cancel. It should be
noted that the commensurate states are most strongly
manifested when they lie outside the Fermi sphere. For
positive voltages two resonance series appear in Fig. 4
(curve 1); for negative voltages only one series appears.
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Fig. 3. A branch of the curve of the differential conductivity
σ(V), corresponding to electron tunneling from the ordinary
electrode into a quantized film which is uniform over the
thickness L = 500 Å. It is assumed that the electrodes are
made of a hypothetical metal with EF = 1 eV and lattice con-
stant a = 2 Å. The height of the square potential barrier ϕ1 =
ϕ2 = 2 eV, and the thickness d = 10 Å. Curve 1 corresponds
to T = 4.2 K, Γ = 0; curve 2 corresponds to T = 77 K, Γ = 0;
curve 3 corresponds to T = 77 K, Γ = 3 meV (curves 1 and 2
are shifted upwards by 0.04 and 0.02, respectively). The
computational step h = 0.5 meV.
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Fig. 4. Differential conductivity σ(V) of a metal–insulator–
quantized film (nonuniform over thickness) tunneling con-
tact. It is assumed that the electrodes are made of a hypo-
thetical metal with EF = 4 eV and lattice constant a = 2 Å.
The film thickness varies from 470 to 530 Å and satisfies the
Gaussian distribution W(L) ∝  exp{–[α(L – )/ ]2}, L =
500 Å, and α = 1/6. The parameters of the square potential
barrier are: d = 10 Å, ϕ1 = ϕ2 = 4 eV. Curve 1, T = 4.2 K,
curve 2, T = 77 K (curve 2 is shifted upwards relative to
curve 1 by 0.01 arb. units). The computational step h =
2 meV.
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The high sensitivity of the computed curves to the tem-
perature smearing, which makes it impossible to
observe the resonance structure at nitrogen tempera-
tures (Fig. 4, curve 2), is another unexpected result. We
indicate one other feature in the behavior of σ(V): cal-
culated for a symmetric square barrier, assuming the
Fermi energies are the same on both sides of the tunnel
junction, this curve is strongly asymmetric. Its mini-
mum is shifted along the voltage axis by the amount
Vsh. Such shifts of the differential conductivity curve
were investigated in detail in [10, 11] and were attrib-
uted exclusively to the asymmetry of the potential bar-
rier. It was shown in [12] that together with the asym-
metry of the potential barrier the difference in the Fermi
energies of the materials of the edges of the tunneling
junction can also result in an asymmetry in the differ-
ential conductivity. We underscore once again that in
our case  = , the potential barrier is square, ϕ1 =
ϕ2, and therefore the effect under discussion is entirely
due to the presence of size-quantization in one of the
electrodes. This large-scale effect is stable with respect
to an increase of temperature (see Fig. 4, curve 2). In
our view, of all the effects associated with the presence
of the electronic standing waves, the latter promises to
be the simplest to detect.

3. CONCLUSIONS
A theoretical model making it possible to calculate

the voltage-dependence of the tunneling current and
tunneling conductivity for a tunnel junction where size-
quantization occurs in one of the electrodes was pro-
posed. The minimal number of working parameters
used in the model (the height ϕ and thickness d of the
barrier, the Fermi energy EF, and the lattice constant a
of the size-quantized electrode) gives hope that it can
be used successfully in experimental investigations. It
was shown that together with the well-known oscilla-
tory structure, which is due to two-dimensional reso-
nance bands, additional effects can appear in the tun-
neling conductivity. For example, the presence of indi-
vidual two-dimensional bands with tunneling of
electrons from the quantized electrode can be mani-
fested in the form of sharp isolated resistance peaks in
the curve σ(V). Moreover, the differential conductivity
σ(V) should be, on the whole, asymmetric relative to
zero voltage and possess a minimum shifted along the

EF1
EF2
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voltage axis by the amount Vsh. A negative feature of
these new effects is that they are insensitive to the tem-
perature. As far as the last effect is concerned, being
large-scale with respect to voltage it should be sensitive
to modulation smearing and to smearing due to the
finiteness of the lifetime. On this basis there is every
reason to believe that the observation of the latter effect
is a necessary indication of two-dimensional quantiza-
tion in experimental samples.
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Abstract—Tunneling experiments were performed on ceramic samples with the composition La0.6Sr0.4MnO3,
manifesting negative magnetoresistance. Two types of contacts were studied: symmetric (break junction type)
and asymmetric ceramic–insulator–metal contact. A high magnetic-field sensitivity of the conductivity σ(H) of
the contacts was observed even when only one of the electrodes was magnetic. The effect was explained by the
existence of spin-polarized localized states in the tunneling barrier. Their appearance was attributed to the for-
mation of an oxygen-depleted, magnetically two-phase state of localized ferromagnetic nanoregions in an anti-
ferromagnetic dielectric matrix in the near-contact region. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Manganese oxides R1 – xAxMnO3 (R = La, Pr, Nd
ions and ions of other trivalent rare-earth elements, A =
divalent Ca, Sr, Ba, Pb ions (see [1–4])) are the most
widely studied materials whose resistive properties are
highly sensitive to magnetic fields. The relationship
between the magnetic and electric characteristics of
these manganites is largely determined by the dopants
A and the oxygen stoichiometry. For sufficiently high
degrees of doping (x = 0.2–0.6), as temperature
decreases, the compounds R1 – xAxMnO3 transform into
the ferromagnetic phase, where they manifest metallic-
type conductivity. The magnetoresistive effect in such
compounds (up to 100% in a 6 T field) is observed near
the ferromagnetic transition. It is usually determined as
the relative change in the resistance ∆ρ/ρ(0) = [ρ(H) –
ρ(0)]/ρ(0), where ρ(0) and ρ(H) are the resistivities,
respectively, in a zero magnetic field and in a field H.

The properties of R1 – xAxMnO3 samples are also
very sensitive to a change in the oxygen stoichiometry.
Specifically, the composition La0.8Ca0.2MnO3 – δ is fer-
romagnetic with δ = 0 but antiferromagnetic with δ =
−0.2 [5]. The magnetization of samples with low oxy-
gen content exhibits, on cooling in zero field, a peak
characteristic for the spin-glass state. As the oxygen
deficiency increases, the samples demonstrate intensifi-
cation of coercivity [6]. In systems with an oxygen defi-
ciency (polycrystalline La0.67Ba0.33MnO3 – δ [7] or
1063-7761/00/9103- $20.00 © 20547
La0.67Pb0.4MnO3 – δ films [8]) the magnetoresistive
effect intensifies as the oxygen content decreases.

The anomalies observed in [6] for the magnetic
properties are similar to those observed in ferromag-
netic granules embedded in a nonmagnetic matrix. This
enabled the authors of [6] to assume that such mangan-
ites contain small ferromagnetic clusters (≤70 Å in
size) in a nonferromagnetic matrix. As is well known
[1], the model of a magnetically two-phase state of
lanthanum manganites is an attempt to explain the
nature of the colossal magnetoresistive effect near the
Curie temperature. For oxygen-stoichiometric com-
pound La0.6Sr0.4MnO3 the magnetically two-phase state
can arise as a result of electronic phase separation. The
existence of this state is confirmed by the fact that the
spontaneous magnetization at 4.2 K of the compound
La0.7Sr0.3MnO3 is, according to the data of [9], less than
expected for total ferromagnetic ordering. Specifically,
it is 95% of the latter. The investigations performed in
[10, 11] also attest to the possible appearance of a mag-
netically two-phase state. This makes it possible to
explain a variety of properties of the single crystal
La0.7Sr0.3MnO3 which are manifested near the Curie
temperature [12]: sharp increase of the thermal expan-
sion coefficient, maximum of the modulus of negative
volume magnetostriction, and growth of the resistivity.
The distinguishing feature of the behavior of such spin
glasses—the presence of a susceptibility peak in weak
fields (H ≤ 100 Oe)—is observed in investigations of
000 MAIK “Nauka/Interperiodica”
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the properties of the manganite series
R0.7Ca0.3 − xSrxMnO3 (R = Pr, x = 0.10, 0.05, 0; R = Nd,
x = 0) [13].

The weak binding of oxygen with the lattice and the
ease with which oxygen diffuses have very important
consequences for the formation of near-surface layers
in manganite compounds as well as the formation of a
transition contact layer between the material and the
film deposited on it. Such an oxygen-deficient layer can
also occur on intergrain boundaries of a polycrystalline
material, which will also influence magnetoresistive
effects in the samples. The most informative investiga-
tions of the electric properties of such near-surface lay-
ers can be performed by studying the tunneling effect in
these materials. In the last few years electron tunneling
has been used to study the low-field magnetoresistive
effect in polycrystalline structures of doped manganites
[14, 15] and junctions based on epitaxial films [16].
A spin valve has been realized in tunneling experi-
ments [17] on contacts with lanthanum manganite elec-
trodes with different coercive fields. Current flow in
such magnetic structures is explained by the spin-
dependent probability of tunneling of charge carriers
[18] between ferromagnetic electrodes. However, such
an approach neglects the possible influence of states
inside the tunneling barrier on the character of the tun-
neling.

In the present work the magnetoresistive effect was
observed on symmetric tunneling contacts
La0.6Sr0.4MnO3–La0.6Sr0.4MnO3. The asymmetric con-
tacts La0.6Sr0.4MnO3–Pb showed a similar sensitivity to
magnetic fields. Ceramic materials are used because
high-quality tunneling contacts can be obtained by
breaking thin ceramic plates [19]. The high degree of
texture (i.e., the orientation of the ceramic microcrys-
tals in one direction) is very important. It was achieved,
as described in Section 2, by preparing compact
ceramic plates with a small thickness (≤0.1 mm). As a
rule, for a transverse breaking of such plates only one
microcrystal–microcrystal tunneling contact (or Shar-
vin microcontact; in the latter case the resistance of the
contact makes it possible to estimate its area) forms.

The simplicity of our technological technique made
it possible to prepare many tens of tunneling contacts,
making it possible to greatly expand the experimental
possibilities. It was shown that a large spin-dependent
tunneling magnetoresistive effect is possible even when
one of the contacts is a nonmagnetic metal. The magni-
tude of the magnetoresistive effect in the contacts
La0.6Sr0.4MnO3–Pb reached 15%, while in symmetric
contacts it was 10–30% (for H ≤ 100 Oe). The observed
magnetoresistive effect can be explained by assuming
that the spin-dependent electron tunneling occurs
through states (or clusters of states) that possess a defi-
nite magnetic moment and are localized inside the bar-
rier.
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2. EXPERIMENT

Samples of lanthanum manganite La0.6Sr0.4MnO3,
which were prepared by solid-phase synthesis using
chemically pure oxides La2O3 and MnO2 and the car-
bonate SrCO3, served as the experimental objects. Flat
samples of a textured ceramic, whose grains are aligned
in the direction of the transport current, are convenient
for fabricating high-quality tunneling contacts (espe-
cially by the break junction method). Plates of such a
ceramic with the dimensions 1 × 0.1 × 0.01 cm3 were
obtained by compressing the La0.6Sr0.4MnO3 powder
between two flat steel anvils under 30–40 kbar pres-
sure. Copper wires, 0.1–0.2 mm in diameter, glued par-
allel to one another on the surface of an anvil were used
as a band support for the powder being compressed. As
a result of pressure treatment, the powder was com-
pressed into dense plane-parallel plates with thickness
d ≤ 0.1 mm.

Samples with current and potential contacts consist-
ing of silver paste were annealed at T = 1000°C for 6 h.
The room-temperature resistance of the initial plates
was 0.8–2 Ω . The transition resistance of the current
and potential contacts was R ≈ 10–7 Ω cm2. The temper-
ature dependence of the resistance of the plates had a
characteristic maximum near 360 K, associated with an
insulator–metal phase transition. The measurements of
the magnetization of the samples were performed in
static magnetic fields up to 10 kOe by the weighing
method. Under magnetization hysteresis was observed
with coercivity field Hc ≈ 100 Oe at 77 K (Fig. 1, inset (b)).

The tunneling junctions were prepared by two meth-
ods. Ceramic–nonmagnetic metal type junctions were
produced by pressing a drop of lead into the ceramic
surface. Symmetric junctions were produced by break-
ing a thin textured ceramic plate. A La0.6Sr0.4MnO3 plate
with current and potential contacts was placed on a tex-
tolite substrate and covered with a thick (thickness d ~
0.5 mm) layer of lacquer. After the lacquer polymer-
ized, the substrate was bent until the ceramic broke.
The moment of breaking was monitored according to
the change in the resistance of the plate. A thick layer
of lacquer eliminated possible shifts of the contact
edges, and as a result its electric characteristics were
highly stable. The resistance of the finished tunneling
contacts was 100–300 Ω .

3. RESULTS AND DISCUSSION

Figure 1 shows the temperature dependence of the
resistance of the experimental ceramic in magnetic
fields H = 0 and H = 100 Oe at T = 77 K. Substantial
hysteresis was observed (Fig. 1, inset a) in the magnetic
field dependences of the resistance of the ceramic plate.
In a H = 100 Oe field the resistance of a plate decreased
by 3–4%.

At low temperatures the conductivity σ(V) of both
types of tunneling structures (symmetric and asymmet-
AND THEORETICAL PHYSICS      Vol. 91      No. 3      2000
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ric) was characterized by a linear dependence on the
bias voltage V (see inset in Figs. 2 and 3). The appear-
ance of such a linear background in the tunneling
curves is attributed at present to resonance electron tun-
neling through localized states in the tunneling barrier.
The Coulomb interaction of electrons (and holes) in
localized levels results in the formation of a “soft” Cou-
lomb pseudogap, when the density of localized levels in
the barrier g(ε) ~ |ε| [20]. In this case the differential
conductivity of a tunneling contact, which is propor-
tional to the density g(ε), acquires the form σ(V) = σ0 +
γ|V | [21, 22]. Here σ0 is the conductivity of the contact
at zero voltage and γ is a constant. The fact that such
characteristics reflect electron tunneling processes is
confirmed by the observation of an energy gap ∆Pb of
lead in the asymmetric junction La0.6Sr0.4MnO–Pb (see
inset in Fig. 2). Even though the smearing of the gap
features of Pb, which is associated in all probability
with injection of spin-polarized electrons into the
superconductor (see, for example, [23, 24]), is strong,
the observed ratio R(V = 0)/R(V > ∆) ≈ 4 of the contact
resistances is quite large, indicating that the tunneling
mechanism of current flow through the manganite–lead
structure predominates.

In the presence of resonance tunneling of electrons
through localized states the conductivity of the contact
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Fig. 1. Temperature dependence of the resistance of the
ceramic La0.6Sr0.4MnO3 in zero and finite magnetic fields.
Inset: (a) Field dependence of the resistance of the sample,
(b) field dependence of the magnetization of the sample.
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σ ~ σcNloc, where σc = e2/π" is the conductivity quan-
tum and σc = 77.5 × 10–6 Ω–1 [25]. This relation makes
it possible to estimate the number Nloc of localized
states in the plane of the section of the experimental
contacts according to the characteristic interval ∆σ in
which a linear dependence of σ(V) on the bias voltage
V is observed (Figs. 2 and 3). For ∆σ ~ 0.1 Ω–1 we
obtain the estimate Nloc ≥ 103.

The conductivity of a La0.6Sr0.4MnO–Pb contact is
highly sensitive to magnetic fields for T > Tc of lead
(Fig. 2) and with a lead electrode in the superconduct-
ing state (not shown in the figure). In the latter case a
voltage V > ∆Pb was applied to the contact. The experi-
ments demonstrated that the character of the magne-
toresistive effect in La0.6Sr0.4MnO3–I–Pb contacts does
not depend on the state (superconducting or normal) of
the lead electrode.

Figure 3 shows the dependence σ(H) for a symmet-
ric contact La0.6Sr0.4MnO3–La0.6Sr0.4MnO3. It is evident
that according to the form of the signal (“butterfly”)
and the magnetic-field sensitivity of the tunneling con-
ductivity this characteristic is virtually identical to the
curve σ(H) for an asymmetric La0.6Sr0.4MnO3–Pb con-
tact (Fig. 2). There is a definite similarity between these
curves and the dependence R(H) for the ceramic
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Fig. 2. Conductivity σ of a tunnel junction La0.6Sr0.4MnO3–
Pb versus the magnetic field. Inset: (a) Manifestation of an
energy gap of lead and (b) σ(V) = dI/dV at T = 20 K.
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La0.6Sr0.4MnO3 (Fig. 1, inset a). However, the tunneling
magnetoresistive effect is approximately an order of
magnitude stronger.

The effect of a magnetic field on the conductivity
σ(V) of a symmetric La0.6Sr0.4MnO3–La0.6Sr0.4MnO3 con-
tact is shown in Fig. 4. In a field H = 100 Oe the con-
ductivity curve σ(V) simply shifted upwards relative to
the curve recorded in zero field. The maximum relative
field sensitivity of the conductivity was observed for
V = 0 and decreased with increasing voltage (see inset
in Fig. 4).

The conductivity σ(H) of the experimental tunnel-
ing junctions has a characteristic minimum (corre-
sponding to the peak in the resistivity ρ(H)) in weak
magnetic fields. For tunneling junctions with electrodes
made of ferromagnetic materials (Fig. 3) the existence
of such a peak is explained by the spin-valve effect [17,
26–28]. As is well known [23, 28], spin is conserved in
elastic tunneling of electrons. Consequently, the
strength of the tunneling current depends on the relative
orientation of the magnetic moments M1 and M2 of the
electrodes. The resistance of the contact is smallest
when the magnetic moments M1 and M2 are parallel to
one another and largest if the moments are antiparallel.
In the latter case the channel for current flow with con-
servation of the orientation of the electron spin is
closed.
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Fig. 3. σ(H) for a La0.6Sr0.4MnO3–La0.6Sr0.4MnO3 con-
tact. Inset: Tunneling conductivity σ(V) at T = 40 K.
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Let the coercive fields of the electrodes Hc1 and Hc2
be different and let Hc1 > Hc2. Then the antiparallel ori-
entation of the magnetization vectors M1 and M2 of the
electrodes is attained in magnetic fields Hc1 < |H | < Hc2.
In this range the resistance of a tunneling contact is
maximum, R = R↑↓ . In the opposite case, for |H | @ Hc2,
Hc1, the magnetization vectors of the electrodes are ori-
ented parallel and the contact resistance reaches its
minimum value (R = R↑↑ ).

However, a break junction type contact is, according
to the method used to fabricate it, a symmetric (in the
sense of the magnetic properties of the plates) tunnel
contact, whereas in the asymmetric contact
La0.6Sr0.4MnO3–Pb lead is not a magnetic material. At
the same time the behavior of the conductivity σ(H) of
these two, at first glance completely different, struc-
tures is completely identical (Figs. 2 and 3). This shows
that the mechanism magnetoresistance in both cases is
of the same nature.

In this connection we note that the data presented in
Figs. 2 and 3 demonstrate a characteristic dependence
of the magnetoresistance of tunneling junctions with
impregnations of small ferromagnetic clusters in the
insulating layer [20, 30]. Thus, in [29] a Co–Al2O3–Co
tunneling contact contained a layer of inclusions of Co
nanoparticles in aluminum oxide. In the experiment of
[30] the tunneling structure was fabricated on the basis
of a thin granular film, which consisted of a nonuni-
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Fig. 4. Tunneling conductivity of a La0.6Sr0.4MnO3–
La0.6Sr0.4MnO3 contact in the magnetic fields H = 0 and
H = 100 Oe at T = 77 K. Inset: Normalized conductivity versus
the bias voltage on a contact in a magnetic field H = 100 Oe.
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form magnetic medium consisting of magnetically hard
ferromagnetic Co80Pt20 nanoparticles in a SiO2 matrix.

On the basis of the behavior of the magnetoresis-
tance in the cases of [29, 30] one can imagine that a
phenomenon close to the spin-dependent tunneling
transition of electrons through localized ferromagnetic
centers in the barrier can also occur in our contacts. The
most obvious reason for the appearance of ferromag-
netic nanoparticles in the barrier layer, both a metal
(Pb) in direct contact with La0.6Sr0.4MnO3 and a sym-
metric contact, is an oxygen-depleted region in
La0.6Sr0.4MnO3 in the contact region. According to [6],
for an average oxidation state of Mn ions of less than
three in this region the magnetization M of the near-
contact layer should decrease relative to the value of M
in the interior volume, and the region itself will repre-
sent a structure consisting of ferromagnetic inclusions
in a dielectric matrix. The coercivity field of such a
magnetically two-phase near-barrier layer (in our case
Hc1 ≈ Hc2 ~ 30 Oe, Figs. 2 and 3) can differ appreciably
from that of electrodes, which, as follows from mea-
surements of the magnetization loop of La0.6Sr0.4MnO3,
is approximately 100 Oe (Fig. 1).

The conductivity σ(H) of the contacts is lowest in an
external field H = Hc1 ≈ Hc2 (Figs. 2 and 3). At this point
the magnetization of the electrode sections next to the
tunneling contact (and also of the ferromagnetic inclu-
sions in the barrier) is zero, i.e., for tunneling electrons
there is no fixed spin orientation. If |H | > Hc1 ≈ Hc2, then
the magnetization vectors of the ferromagnetic inclu-
sions in the barrier rotate together with the magnetiza-
tion vectors of electrodes in the same direction as the
field increases, so that the conductivity σ(H) increases
(Figs. 2 and 3). This picture is suitable for describing
the symmetric and asymmetric contacts investigated in
the present work.

We shall now examine a symmetric contact in
greater detail (Fig. 3). If the coercive fields of the elec-
trodes are essentially the same (Hc1 ≈ Hc2), then the tun-
neling magnetoresistive relation following from the
spin-dependent electron tunneling model [26, 27]
becomes ∆R/R↑↑  = (R↑↓  – R↑↑ )/R↑↑  = P2, where P is the
polarization of the electron spins at the boundaries of a
tunneling contact. The maximum magnetoresistive
effect (50%) for such a symmetric contact is attained
with P = 1.

For the observed ratio ∆R/R↑↑  ≈ 0.3 (Fig. 3) this
gives for La0.6Sr0.4MnO3 the value P = 0.55 for the polar-
ization of the electrons. We note that such an analysis
of the tunneling curves of the junctions
La0.67Sr0.33MnO3–SrTiO3–La0.67Sr0.33MnO3 [16] and
La0.7Sr0.3MnO3–SrTiO3–La0.7Sr0.3MnO3 [17] at T = 4.2 K
leads, respectively, to P ≈ 0.54 and P ≈ 0.83, which
agrees with our results. The small discrepancy between
the values of P [16, 17] and our value could be due to
the state of the interface in the experimental tunneling
contacts [33, 34], since the tunneling electrons “feel”
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only the near-surface electrode layer whose this is sev-
eral tens of angstroms. In addition, there is a tempera-
ture dependence of the polarization [31], determined by
the constant α, which depends on the material and is
different for the interior volume or the surface (P(T) =
P0(1 – αT3/2)). Ordinarily, α is larger for the latter
because the exchange interaction decreases at the sur-
face of the sample [32].

Returning to Fig. 4, we note that the observed
dependence of the magnetoresistance on the bias volt-
age V on the contact (inset in Fig. 4) agrees with the
results of [29] (see also [34]). The magnetoresistive
ratio on the junctions CoFe–Al2O3–Co in the classical
work [26] decreases almost by a factor of 20 over a
range of 0.7 V, whereas for Co–Al2O3–Co samples [29]
containing a layer of Co nanoparticle inclusions in alu-
minum oxide it decreases in the same voltage range by
only a factor of 2, and on (Au–Cr)–thin granular
Co36Al22O42 film junctions its value is essentially inde-
pendent of the voltage. This discrepancy is due to the
complicated structure of the junction, because of which
the voltage is redistributed between the granules and
the electrodes. A possible explanation could lie in the
fact (see [29]) that the strong dependence of the magne-
toresistance on V in classical junctions is due to the fine
structure in the spin-polarized density of states. How-
ever, in junctions with ferromagnetic microregions in
an insulating interlayer this fine structure can wash out
as a result of tunneling through resonance levels in the
barrier.

In [26, 27] the analysis was based on the concept of
direct (i.e., elastic) tunneling. In our case, however, a
“linear background” γ|V |, σ(V) ≈ σ0 + γ|V | (insets in
Figs. 2 and 3) is observed in the conductivity σ of the
contacts; this background indicates that resonance tun-
neling of electrons through a system of localized states
in the barrier makes a large contribution to the current.
In principle, both parameters, σ0 and γ, could have been
functions of the magnetic field H. But, experimentally
(Fig. 4), the dependence of the slope γ of the tunneling
curves on the field H is very weak, so that the result can
be represented as the ratio [σ0(H = 0) – σ0(H)]/[σ0(H) +
γV], i.e., the quantity ∆σ/σ should decrease as the volt-
age V on the contact increases. The inset in Fig. 4 dem-
onstrates this dependence.

The parameter γ, determining the slope of the linear
background directly, is due to resonance tunneling of
electrons through localized states [21, 22]. Its indepen-
dence on the magnetic field shows for our experimental
contacts the resonance processes make virtually no
contribution to the spin-polarized electron tunneling.

It is well known that localized states located at the
center of the tunneling barrier make the dominant con-
tribution to resonance tunneling of electrons [21, 25].
According to what has been said above, such states do
not contribute to the observed spin-polarized tunneling
of electrons. Consequently, the dependence σ(H) is
entirely determined by electron tunneling through
SICS      Vol. 91      No. 3      2000
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localized states located at the edges of the tunneling
barrier close to the contact electrodes.

4. CONCLUSIONS

The experimental results show that spatially nonuni-
form magnetic states consisting of ferromagnetic
microregions in an antiferromagnetic matrix can occur
in the near-surface layers of lanthanum manganite. The
explanation of this magnetoresistive effect in such tun-
neling contacts could also involve the formation of a
band of localized states in the insulating interlayer.
Localized levels located at the center of the tunneling
barrier contribute to resonance tunneling of electrons
and lead to a “linear background” γ|V | in the conductiv-
ity σ(V) of a contact. Tunneling through such states
makes no contribution to the magnetoresistive effect (in
any case, in weak magnetic fields H ≤ 100 Oe). How-
ever, localized states at the junction edges possess a
definite magnetic moment, so as to ensure functioning
of the tunneling spin valve.
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Abstract—Experimental data are presented for the temperature dependence of the conductivity of Cu : SiO2
metal-insulator composite films containing 3-nm Cu granules. At low temperatures in the concentration range
17–33 vol % Cu, all of the conductivity curves have a temperature dependence of the form σ ∝  exp{–(T0/T)1/2},
while at higher temperatures a transition is observed to an activational dependence. A numerical simulation of
the conduction in a composite material shows that an explanation of the observed temperature dependence must
include the Coulomb interaction and the presence of a rather large random potential. The simulation also yields
the size dependence and temperature dependence of the mesoscopic scatter of the conductivities of composite
conductors. It is shown that a self-selecting percolation channel of current flow is formed in the region of strong
mesoscopic scatter. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Recently there has been a considerable heightening
of interest in the study of the electrical properties of
granular nanostructures—island metal films and metal-
insulator structures containing conducting granules
several nanometers in size, separated by thin insulating
gaps. If the density of granules in such a structure is not
too high, a regime of tunneling conduction is realized
in it. The most important circumstance is that for metal-
lic granules of the order of several nanometers in size,
their charge energy Ec = e2/2C (C is the capacitance of
a granule) amounts to around 100 meV, which is con-
siderably higher than the energy of thermal noise, even
at room temperature. For this reason, macroscopic
charge quantization effects are observed at high tem-
peratures [1]. For comparison, the structures fabricated
for single-electron electronics by electron lithography
contain metallic islands with minimum dimensions of
the order of tens of nanometers, which corresponds to a
working temperature range of the order of a few
Kelvins [2]. For this reason, granular nanostructures are
being considered as a basis for the creation of new
nanoelectronic devices capable of operating at room
temperature [3]. 

Electron transport processes in granular metallic
films and metal-insulator nanostructures are largely
determined by the random character of these media.
Indeed, it is in principle impossible to control precisely
the size and position of the individual metallic gran-
ules, and the charge energies and tunneling resistances
between granules therefore have a certain scatter. Fur-
thermore, in such structures there are fluctuations of the
potential of the individual granules [4]. For this reason
the electrical properties of such structures must be
1063-7761/00/9103- $20.00 © 0553
described using statistical approaches. Statistical
approaches have been developed in a number of studies
[4–6]. It has been shown [6] that the value of the ran-
dom potential in the structure determines the equilib-
rium density of positively and negatively charged parti-
cles. The density of single-particle excitations in a ran-
dom granular medium was considered in [7], and it was
shown that it has a dip (the Coulomb gap) near the
Fermi level, the shape of this dip depending on the
value of the random potential. In [8] the charge energies
of the granules were calculated with allowance for the
random environment and finite size of the particle.
Although some progress has been made, the theory of
transport phenomena in granular media is not yet com-
plete. In particular, there is as yet no generally accepted
explanation for the experimental temperature depen-
dence of the conductivity. For example, some authors
attribute the behavior lnσ ~ T–1/2 that is widely observed
in experiment [9] to structural features of the composite
material [5, 10], while others point to an important role
of the Coulomb interaction between charged granules
[6, 11]. There have also been indications that it is nec-
essary to take into account the multiparticle excitations
in the theoretical treatment of the conduction of granu-
lar structures at low temperatures [12]. Moreover, it
remains an open question as to how much the statistical
character of the media affects the reproducibility of the
electrical characteristics of granular conductors, the
sizes of the conductors and the temperatures for which
one can observe a strong mesoscopic scatter of the elec-
trical characteristics. 

In this paper we report an experimental study of the
temperature dependence of the conductivity of Cu : SiO2
composite films obtained by the method of simulta-
neous magnetron sputtering of two sources. The exper-
2000 MAIK “Nauka/Interperiodica”
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10 nm

Fig. 1. Transmission electron micrograph of a composite film with a copper concentration of 27 vol %. 
imental data are analyzed on the basis of a numerical
model of hopping conduction. The model is based on a
representation of the electrical conduction by means of
single-electron hops; the single-electron density of
states is constructed with allowance for the Coulomb
interactions between charged granules. We believe that
neglecting the multiparticle excitations is justified, since
we are not considering the case of very low temperatures
here and, as was shown in [12], taking multiparticle exci-
tations into account does not lead to a new type of temper-
ature dependence of the conductivity but only modifies the
parameter T0 of the law σ ∝  exp{–(T0/T)1/2} at low tem-
peratures. 

The results of the simulation are in good agreement
with the experimental data; moreover, approximation
of the experimental temperature dependence of the
conductivity by the calculated dependence made it pos-
sible to determine the values of several microscopic
parameters of the composite material and their depen-
dence on the concentration of the metallic phase. The
model constructed here can also be used to study the
dependence of the amplitude of the mesoscopic scatter
of the conductivity of composite conductors as a func-
tion of the dimensions of the conductors and the tem-
perature.

2. TECHNOLOGY OF FABRICATION
OF COMPOSITE CONDUCTORS

To obtain amorphous SiO2 films containing copper
clusters we used the method of joint magnetron sputter-
ing. The sputtering was done on an Alcatel SCM-450
apparatus with the chamber pumped down beforehand
to 10–5 Pa. As a source of SiO2 we used a planar mag-
netron with a quartz target, which was sputtered in an rf
discharge. A dc voltage was applied to the second mag-
netron, which had a copper target. Both targets were
JOURNAL OF EXPERIMENTAL 
100 mm in diameter and were made of high-purity
materials (99.999%). The sputtering was done in an
atmosphere of high-purity argon at a pressure of 0.3 Pa.
As in [13], the substrate holders were rotated during
deposition of the films, so that the substrates were alter-
nately found above the Cu and SiO2 targets. The neces-
sary copper concentration in the film was set by chang-
ing the rate of deposition of the SiO2 in the interval
0.42–3.3 nm/min at a constant copper deposition rate of
0.53 nm/min. The rotational velocity of the substrate
holders was 8 rpm, so that less than one monolayer of
material was deposited in each revolution of the sub-
strate above the sources. The volume concentration of
copper in the samples studied was 17–33 vol %. 

Figure 1 shows a typical transmission electron
micrograph of a Cu : SiO2 composite film with a cop-
per concentration of 27 vol %. The presence of metallic
clusters with a characteristic size of 3 nm is evident. We
note that the films grown were not subjected to addi-
tional annealing, and cluster formation occurred in
them directly during deposition. Analysis of the result-
ing films by x-ray photoelectron spectroscopy [14]
showed that the copper in the film was found in the
unoxidized state. Furthermore, studies of the fine struc-
ture of the x-ray absorption edge [15] show that the
clusters have close to a crystalline structure, but a small
fraction of the Cu atoms remain dispersed in the insu-
lating matrix. It has been shown that the structure of the
clusters become less dense as the volume concentration
of Cu decreases. A study of the films by the small-angle
x-ray scattering technique yielded a more precise value
of the average size of the granules. For example, for
films with a Cu concentration of 27 vol % the average
granule size determined by that technique was 1.6 nm.
The scatter of the granule size in these films, according
to the transmission electron microscope and small-
angle x-ray scattering data, is 20–30%. 
AND THEORETICAL PHYSICS      Vol. 91      No. 3      2000
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To study the temperature dependence of the conduc-
tivity of composite films we prepared a series of sam-
ples with different volume concentrations of Cu. The
films were 200 nm thick; Au/Cr contacts 400 × 400 µm
in area were deposited on top, with the gap between
contacts varied over the interval 5–200 µm.

3. TEMPERATURE DEPENDENCE
OF THE CONDUCTIVITY

The temperature dependence of the conductivity
was measured in the temperature range 30–300 K in an
Oxford 450 closed-cycle helium cryostat by means of a
V7-49 precision electrometer. The current-voltage
characteristics of the samples with different gaps
between contacts had a linear initial segment at all tem-
peratures in the range studied, and the value of the dif-
ferential conductivity obtained from the slope of this
linear segment did not depend on the size of the gap.
This confirms the Ohmic properties of the contacts
between the metal and the composite film. The temper-
ature dependence of the conductivity was measured at
a voltage corresponding to the linear part of the current-
voltage characteristics. 

Figure 2 shows the experimental temperature depen-
dence of the conductivity for four samples with different
Cu concentrations, plotted on a scale of lnσ versus 1/T 1/2.
As we see in this plot, at low temperatures the conductivity
of all the samples studied follows a σ ∝  exp{–(T0/T)1/2}
law, in good agreement with the published data avail-
able [5, 11]. At the same time, at higher temperatures a
smooth increase of the exponent in the power law
occurs, in the direction of an activational dependence.
Here the boundary temperature at which the transition
from one temperature dependence to the other occurs
increases with decreasing concentration of the metallic
phase. The dashed lines in Fig. 2 show the linear (on a
scale of lnσ versus 1/T1/2) approximations of the exper-
imental temperature dependence of the conductivity.
The parameters T0 of these approximations are listed in
table.

4. MODELING OF THE TEMPERATURE 
DEPENDENCE OF THE CONDUCTIVITY

4.1. Construction of the Model

For analysis of the experimental data obtained, we
constructed a numerical model of the conductivity of a
composite material. In this model a composite material
is represented as a set of metallic spheres randomly sit-
uated in a cube of a specified volume; the radius r of the
spheres is Gaussian-distributed about its mean value r0:

(1)

where ξ is the width of the distribution. 

ρ r( ) 1

2πξ
--------------

r r0–( )2

2ξ2
-------------------–

 
 
 

,exp=
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Another parameter of the random distribution of
spheres is the minimum admissible distance between
them, ∆min. For a numerical realization of the quasi-ran-
dom arrangement we used the following method: first
the spheres were analyzed in a regular cubic lattice, and
then each sphere was randomly assigned an initial
velocity, and its motion was calculated with allowance
for collisions, with the remaining spheres being
assumed immobile. The effective radius of each sphere

was taken as  = ri + ∆min/2, which guaranteed that
the distance between spheres was not smaller than ∆min.
In addition, all of the collisions were assumed to be
completely inelastic, i.e., after each collision the veloc-
ity of the sphere was again assumed random. The cal-
culation was terminated when each sphere had under-
gone a large number of collisions (several hundred),
and then the resulting arrangement was used as a ran-
dom realization. 

Of course, the arrangement of the granules in a real
composite material is not completely random; a certain
correlation can be present in their relative position on
account of the way these granules were grown. In the

ri
eff
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Fig. 2. Experimental temperature dependence of the conductiv-
ity of composite films on the scale of lnσ versus 1/T1/2. 

Results of a fitting of the experimental temperature depen-
dence of the conductivity of composite films by the calcu-
lated dependence 

cCu, vol % kT0, meV e ∆min, nm ∆φ, eV

17 1464 6.6 0.6 0.12

24 1248 6 0.54 0.11

27 1048 6 0.52 0.1

33 702 6 0.5 0.09
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proposed model the parameter 

 

∆

 

min

 

 is introduced for
taking such correlations into account, and the depen-
dence of the electronic properties of the material on the
value of this parameter will be demonstrated below. 

For describing the electrical properties of the result-
ing system of metallic spheres the Hamiltonian of the
system is written as

(2)

Here 

 

Q

 

i

 

 is the charge on the 

 

i

 

th sphere, which can take
one of three values: –

 

e

 

, 0, and 

 

e

 

, where 

 

e

 

 is the charge
of the electron (for simplicity we are neglecting multi-
ply charged states of the spheres); (

 

φ

 

i is the so-called

random potential [4, 6] on granule i, and  is the
inverse matrix of the capacitance coefficients and the
coefficients of the electrostatic induction of the system
[16]. In the simplest approximation, when the distance
between spheres is much larger than the size of the
spheres, the diagonal elements of this matrix are equal
to the reciprocal of the capacitance of a metallic sphere
of radius r embedded in an insulator with dielectric

constant e:  = 1/eri, and the off-diagonal elements

can be written as  = 1/edij, where dij is the distance
between the centers of the ith and jth spheres. However,
this extremely simple approximation is poorly suited to
the case of a composite material with a relatively high
concentration of the metallic phase, since the character-
istic distances between granules are comparable to the
dimensions of these granules, and one must take into
account the corrections due to the polarization of the

granules. The matrix  is calculated using the dipole
approximation described in [8]. It follows from [8] that
taking the polarization of the spheres into account leads
to a decrease in their charge energy Ec in comparison
with the value for an isolated sphere of radius r: Ec0 =
Q2/2er; taking the polarization into account also modi-
fies the dependence of the Coulomb interaction of the
charged spheres (the off-diagonal elements of the

matrix ) on the distance between spheres. Further-
more, the values of the charge energies of the spheres
have some scatter due to the random distribution of the
spheres surrounding them.

The random potential φi that appears in Eq. (2) and
serves as a source of diagonal disorder in the system is
ordinarily attributed to the electric fields of defects and
charged states in the matrix and at the granule/insulator
interfaces. We note that, unlike [6], we do not attribute
the random potential to fluctuations of the size and
shape of the granules. The random potential here is
understood to mean the potential of an external (with
respect to the system of metallic spheres) electric field;
only such a potential can give rise to charged granules
in the ground state of the system. In the given model the

H φiQi
1
2
--- Cij

1– QiQ j.
i j,
∑+

i

∑=

Cij
1–

Cii
1–

Cij
1–

Cij
1–

Cij
1–

random potential is assumed to be uniformly distrib-
uted over a specified range ∆φ: –∆φ/2 < φi < ∆φ/2.

4.2. Ground State and Spectrum
of Single-Particle Excitations

The first step in the modeling of the conductivity of
a composite material is to find the ground state of the
system described by Hamiltonian (2). Because of the
presence of the random potential, some of the metallic
particles in this state may be charged. In our model the
ground state of the system was determined by minimiz-
ing Hamiltonian (2) with respect to all possible pair-
wise permutations of electrons between the metallic
spheres. The procedure was repeated many times until
pairwise permutations that lowered the total energy of
the system were no longer found. 

Let us construct the spectrum of single-particle
excitations of the system, taking the energy of the
ground state as the zero of energy. The energy of a sin-
gle-particle excitation is defined as the energy required
to transport an electron or hole from infinity to one of
the spheres. This energy is the value of Hamiltonian (2)
calculated for a system with one “extra” electron or
hole in comparison with the ground state. Here a sphere
having charge 0 in the ground state supplies one level
to each of the electron and hole densities of states, a
sphere having charge +e supplies a twofold degenerate
level to the electron density of states, and a sphere hav-
ing charge –e supplies a twofold degenerate level to the
hole density of states. Furthermore, it must be taken
into account that each metallic sphere actually repre-
sents not an isolated energy level but a spectrum of lev-
els, with a density of the form ρ(E) = θ(E – Ei) [11],
where Ei is an energy level obtained by the method
described above. The total electron or hole density of
states will thus have the form

(3)

where  = {1, 2} is the degeneracy of the electron or
hole level mentioned above. 

Figure 3 shows the results of a calculation of the
density of states (3) for a monodisperse system contain-
ing 103 spheres, for different values of the scatter ∆φ of
the random potential. The inset in this figure gives the
dependence of the fraction of charged granules in the
ground state as a function of the scatter ∆φ of the ran-
dom potential. It is seen that charged granules arise in
the ground state when the random potential becomes
comparable to the charge energy of the particles. At
such values of the random potential a parabolic Cou-
lomb gap is formed in the density of states, after which
the form of the density states changes little as the scat-
ter of the random potential is increased further.

ρe h, E( ) θ E Ei
e h,–( )gi

e h, ,
i

∑=

gi
e h,
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4.3. Modeling the Temperature Dependence
of the Conductivity

In the single-particle approximation the probability
of a tunneling transition of the electron (or hole)
between any two granules i, j is determined by the dis-
tance dij between them, the single-particle energy levels
Ei, Ej, and the temperature. For this probability we used
the expression [17]

(4)

where γ0 is a constant, χ is the tunneling transparency
of the insulator (we have used the value χ = 108 cm–1 for
SiO2), and N(∆ij) is the equilibrium Planck distribution
of phonons with energy ∆ij = Ej – Ei:

(5)

where k is Boltzmann’s constant and T is the tempera-
ture. To find the total current between granules i and j
we must sum the rates of all possible electron and hole
transitions i  j and j  i (with the opposite sign)
with the density of states (3) taken into account. For
example, the rate of the electron transition i  j is

(6)

Here  are the single-particle energy levels of elec-
trons on granules i, j, and f(E) is the Fermi distribution:
f(E) = 1/(exp((E – EF)/kT) + 1) (the Fermi level EF is
zero in our case, since the numbers of electrons and
holes are always equal, and the density of states is sym-
metric about the zero of energy). For holes the rate of
the transition i  j is written in an analogous way, but

with the electron energy levels  in (6) replaced by

the hole levels . The total current between granules
i and j is the sum of the electron and hole currents (here
we are neglecting the generation-recombination current
that arises in the presence of creation and annihilation
of electron-hole pairs, since this current is small in the
weak-field regime):

(7)

It is easily seen that this current is zero in a state of equi-
librium. However, an external electric field disturbs this
equilibrium, and in the linear approximation the current
between granules can be written in the form [17]

(8)

where Ui , Uj are the potentials of granules i, j in the
external field, and the coefficient Rij , which has the
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meaning of the electrical resistance of the junction, is
given by

(9)

where 

 

Γ

 

e

 

0

 

 and 

 

Γ

 

h

 

0

 

 are the electron and hole transition
rates in the absence of an electric field. Thus, in a weak
electric field the problem reduces to one of calculating
the conductivity of a network of resistances. We note
that the above scheme for calculating the conductivity
is a modification of the approach used for describing
impurity conductivity in semiconductors [17]. 

The Ohmic contacts to the composite material were
modeled as follows: all the spheres found in a certain
layer near one of the faces of the cube were assigned an
external applied potential 

 

U

 

, while the spheres in a
layer near the opposite face were assigned zero poten-
tial. The potentials of all the rest of the spheres and the
currents between them were found by numerical solu-
tion of the system of Kirchhoff’s equations, and the
total current through the sample was found by summing
the elementary currents in one cross section. In that
way we have calculated the total conductivity of the
system at the given temperature. 

Figure 4 shows the temperature dependence of the
conductivity of a system of 10

 

3

 

 spheres; the curves
were calculated for the same values of the amplitude of
the random potential as for the density of states in Fig. 3.
We see that at 
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 ~ 
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 the temperature dependence of
the conductivity at low temperatures has the form
ln
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. At small 
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 the temperature dependence
has an activational character. 

Figure 5 illustrates how the temperature dependence
of the conductivity of a composite material depends on
the variance of the size of the spheres in the absence of
a random potential and at an amplitude of the random
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 Calculated density of single-particle excitations for
various values of 

 

∆φ

 

; 
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min

 

 = 0.5

 

r

 

, 

 

e

 

 = 5, metal concentration
20 vol %. Inset: Dependence on 

 

∆φ

 

 of the fraction of
charged spheres in the ground state. 
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Fig. 4. Calculated temperature dependence of the conduc-
tivity for various values of ∆φ; ∆min = 0.5r, e = 5, metal con-
centration 20 vol %. 
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Fig. 5. Calculated temperature dependence of the conduc-
tivity for various values of the variance of the size of the
spheres (the solid curve is for 0%, the dashed curve for 20%,
and the dotted curve for 30%) in the absence of a random
potential and for an amplitude of the random potential equal
to 1.5Ec0; ∆min = 0.5r, e = 5. 
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concentration 20 vol %. Inset: plot of lnσ versus ∆min at a
fixed temperature. 
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potential of 1.5Ec0 (here Ec0 is understood to mean the
energy of an isolated sphere of average radius r0). We
see in the figure that an rms deviation of the sphere size
of the order of a few tens of percent has a smaller influ-
ence on the form of the temperature dependence of the
conductivity than does the random potential, and can-
not by itself account for the T–1/2 law observed experi-
mentally. Since the real scatter of the particle size in the
investigated composite films, according to microscopy
data, is not over 20–30%, we shall henceforth assume
that the system of spheres is monodisperse and devote
our attention mainly to the effect of the random poten-
tial on the conductivity. We note that in calculating the
temperature dependence shown in Fig. 5 we used the
approximation of point charges in calculating the off-
diagonal elements of the matrix Cij , i.e., the scatter in
the size of the spheres was taken into account only in
the values of their charge energies Eci . This is because
of the great computational difficulties that arise when
the polarization is taken into account in a system of
metallic particles of different sizes, but one expects that
taking the polarization into account will not alter our
main conclusion that the variance of granule size has
only a weak effect on the form of the temperature
dependence of the conductivity. 

Figure 6 shows a series of curves of the conductivity
versus temperature as calculated for different values of
the spacing parameter ∆min at an amplitude of the ran-
dom potential ∆φ = 1.5Ec0 in the case of zero variance
in the size of the spheres. The inset to this figure shows
the dependence of the conductivity on ∆min at a fixed
temperature. It is seen in the figure that the conductivity
depends exponentially on ∆min, while this parameter
has only a weak effect on the form of the temperature
dependence of the conductivity. The exponential char-
acter of the dependence of the conductivity on ∆min is
expected according to Eq. (4), where the distance
between granules appears in the argument of the expo-
nential function.

4.4. Mesoscopic Scatter of the Conductivity

Since the position of the granules in the structure
has a random character and the potential on them is a
random quantity, the electrical properties of the struc-
ture as a whole can, in principle, fluctuate as one goes
from one random realization of the sample to another.
To estimate the scale of the mesoscopic fluctuations of
the conductivity due to the random character of the
medium and to assess its dependence on the macro-
scopic parameters of the system as a whole, we did a
series of calculations of the temperature dependence of
the conductivity for samples containing different num-
bers of spheres. The results of these calculations are
presented in Fig. 7 in the form of a plot of the rms devi-
ation of the common logarithm of the conductivity ver-
sus the inverse temperature and the size of the sample
(the number of spheres). As we see in the figure, for
 AND THEORETICAL PHYSICS      Vol. 91      No. 3      2000
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samples containing ~100 spheres the mesoscopic scat-
ter of the conductivity relative to its value is an order of
magnitude at a temperature of 30 K, whereas for sam-
ples containing ~1000 spheres this scatter on average is
not more than a factor of 1.5–2. At room temperature
the mesoscopic scatter of the conductivity is a factor of
1.5–2 for samples containing ~100 spheres and not over
10–20% for samples containing ~1000 spheres. 

Figure 8 shows the distribution of the current over
the sample, as calculated in the region of large mesos-
copic scatter (T = 30 K, 125 spheres) and for the same
structure at T = 300 K (the region of small scatter). It is

Number of spheres 125
500 1000 1700
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0.8

0.6

0.4

0.2

0
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40 0.01
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1/T, 1/K

Mesoscopic
region

L, nm 50

Fig. 7. Amplitude of the mesoscopic scatter of the conduc-
tivity as a function of the size of the sample and the temper-
ature. 
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seen that in the first case practically all of the current is
concentrated in one chain of several spheres, and, con-
sequently, the electrical conductivity of the sample as a
whole is determined by the parameters of this chain. As
the temperature increases, current flow over the entire
cross section of the sample occurs, and the conductivity
of the structure is the result of an averaging of the
parameters of all the spheres contained in it. 

We note that if the potentials of the spheres in the
system are changed in some way, then the position of
the conducting chain described above can also change,
and that can cause the conductivity of the system as a
whole to jump to a new value. Such a redistribution of
the potential can be caused, e.g., by an external electric
field applied by means of a third (gate) electrode added
to the system. It could also be caused by an electric field
produced by granules not belonging to the chain (float-
ing gate) if their charge state is changed. This might be
the explanation for the memory effect observed in com-
posite materials [18].

5. COMPARISON OF THE CALCULATIONS
WITH EXPERIMENTAL DATA

To compare the results of the numerical simulation
with the experimental data, model calculations were
done in the region of macroscopic conduction, where
the conductivity fluctuations are small (see Fig. 7). Fur-
thermore, the calculated temperature dependence was
averaged over 10 random realizations. The minimum
distance ∆min between granules, the amplitude ∆φ of the
random potential, and the dielectric constant e of the
film were used in these calculations as adjustable
parameters, and the variance of the granule size was not
taken into account. With these parameters a simulta-
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Fig. 8. Distribution of the current over a sample consisting of 125 spheres at temperatures of (a) 30 and (b) 300 K; the field direction
is indicated by arrows. 
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neous fitting of both the temperature dependence of the
conductivity and the dependence of the conductivity on
the volume concentration of Cu was done. The fitting of
the temperature dependence of the conductivity yielded
the values of ∆φ and e, and an independent fitting of the
dependence of the conductivity on the concentration of
the metal yielded the value of ∆min in each case. 

The curves of the experimental and calculated tem-
perature dependence of the conductivity are shown in
Fig. 9, and the values of the parameters giving their best
fit are listed in the table. As we see in the figure, at high
concentrations of the metallic phase in the films there is
practically total agreement between the calculated and
experimental curves of the temperature dependence of
the conductivity, whereas for films with Cu concentra-
tions of 17 and 24 vol % there is a divergence in the
high-temperature region. As we see from the table, the
amplitude of the random potential ∆φ depends weakly
on the concentration and is equal in order of magnitude
to Ec0 (Ec0 ≈ 100 meV for a sphere of radius 1.5 nm).
The minimum distance between granules, ∆min, which
is a measure of the “anticorrelation” in the positions
of the granules, falls off monotonically as the concen-
tration increases. The values obtained for e are some-
what greater than the characteristic value for pure SiO2

(  = 4). This disagreement is indicative of the pres-
ence of a small amount of dissolved metal in the matrix.
This explanation is confirmed by the results of separate
measurements of the capacitance of capacitors filled
with a dielectric in the form of a SiO2 film having a cop-
per content of 0–5% (at these concentrations the copper
does not form clusters). The measured values of the
dielectric constant lay in the range 4–5. 

The observed divergence of the calculated and
experimental curves at high temperatures in the case of
low concentrations may be due to the circumstance that
in such films the clusters do not have a dense structure
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Fig. 9. Results of a fitting of the experimental temperature
dependence of the conductivity by the calculated depen-
dence: the solid curves are experimental, the dotted curves
theoretical. 
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and possibly have a broader size distribution. In addi-
tion, it follows from the results presented above that as
the concentration decreases, there is an increase in the
relative fraction of the metal dissolved in the matrix,
which may cause the real structure of the material to
deviate from the model structure. 

6. CONCLUSION

The numerical model proposed in this paper for the
conduction of a composite material, based on the con-
cept of single-electron hops between metallic granules
of nanometer size, has enabled us to describe the exper-
imentally observed temperature dependence of the con-
ductivity of Cu : SiO2 films with copper concentrations
of 17–33 vol %. Approximation of the experimental
data by the calculated results has yielded an estimate of
such parameters of the material as the value of the ran-
dom potential of the granules, the average distance
between Cu granules, and the fraction of dissolved
metal in the matrix. We have shown that in order to
explain the experimentally observed universal low-
temperature law σ ∝  exp{–(T0/T)1/2} it is necessary to
take into account the Coulomb interaction between
charged granules and also the presence of a rather large
random potential, which brings about charge exchange
between the initially neutral granules in the ground
state of the system. The deviation from this law at
higher temperatures is also satisfactorily described in
the framework of the proposed model. We have ana-
lyzed the influence of the variance of the granule size
on the conductivity of a composite material and found
that the existing scatter in the granule size in the exper-
imental samples has a weak effect on the form of the
temperature dependence of the conductivity. 

We have also carried out a numerical investigation
of the dependence of the amplitude of the mesoscopic
scatter of the conductivity of composite conductors on
their size and temperature. These studies showed that a
strong (severalfold) scatter of the conductivity should
be expected for conductors less than ~40 nm in size at
temperatures ~30 K and for conductors smaller than
~20 nm at room temperature. We have also shown that
in the region of strong mesoscopic scatter of the con-
ductivity a percolation channel for the current is
formed, i.e., a chain of granules along which more than
90% of the total current flows. The position of this
channel can in principle be controlled by applying an
external electric field (e.g., using an additional, third
(gate) electrode), and that opens up a way of creating
devices for nanoelectronics (such as, e.g., a transistor or
memory cell) based on composite materials. 
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Abstract—Nonmonotonic temperature dependence of the thermopower and resistivity of the multilayer mer-
cury cuprate HgBa2Ca4Cu5O12 are observed in the temperature range 77–300 K under hydrostatic pressures of
up to 10 kbar. The data obtained agree qualitatively with our results for HgBa2Ca2Cu3O8 [V. F. Kraidenov et al.,
Fiz. Nizk. Temp. 16, 1016 (1990), 20, 76 (1994), 19, 835 (1993) [Sov. J. Low Temp. Phys. 16, 593 (1990), 20,
64 (1994), 19, 597 (1993)]]. Experiments are carried out to check the applicability of the new “correlated
polaron” model to the description of the normal state of HTSCs. It is shown that the model proposed by
J. B. Goodenough and J. S. Zhou [Phys. Rev. B 49, 4251 (1994), 51, 3104 (1995)] is suitable for use as a work-
ing hypothesis for describing research on the temperature dependence of the thermopower, including its behav-
ior under pressure. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Two of us (E.S.I. and V.F.K.) have previously inves-
tigated the temperature dependence of the ther-
mopower α(T) and resistivity ρ(T) in the Y-123 and
Y-124 systems in the temperature range 77–300 K
under hydrostatic pressures of up to 15 kbar [1–3]. For
Y-123 the measurements were made for different oxy-
gen concentrations (YBa2Cu3Ox). We have analyzed
our results in the framework of the model proposed in
[4], which allows one to determine a number of the
parameters of the normal state. However, that model
cannot answer many questions and, in particular, can-
not explain the main feature of α(T)—a broad maxi-
mum at T ≈ 140 K or the linear dependence ρ(T) ∝  T at
T > Tc. Most important, the model used in [4] did not
take into account the possible mechanisms of high-Tc

superconductivity and their relation to the normal state
of superconductors with a high superconducting transi-
tion temperature Tc. 

In papers [5, 6] published in 1994–1995 the phe-
nomenological concept of “correlated polaron” was
proposed in order to explain the features of the trans-
port properties of high-Tc superconducting copper
oxides. This is a nonuniform charge state that takes
place in thermodynamically distinguishable phases
with localized and mobile carriers in a variable-valence
system. The use of this new concept makes it possible
to understand, from a unified point of view, many prop-
erties of the normal state of HTSCs, including the exist-
ence of stripes, and the transport properties, including
the maximum on the α(T) curve at T = 140 K. This con-
cept has aroused great interest and is under active
development. As was pointed out in [7], “Recently a
growing number of experiments have provided indica-
1063-7761/00/9103- $20.00 © 20562
tions of the key role of polarons … in doped perovs-
kites…” 

In the model proposed in [5] it is assumed that the
occurrence of high-Tc superconductivity in copper
cuprates can be understood in the framework of the
hypothesis that a “thermodynamically distinguishable
phase” arises in which the HTSC state is realized. This
phase is stable near the crossover of two types of behav-
ior of the carriers. The authors of the model mention
three characteristic features of the normal state of this
phase: (1) an anomalously large compressibility of the
Cu–O bonds in the CuO2 planes; (2) the existence of
mobile stripes with a high concentration of holes;
(3) appreciable rise of the thermopower, with a maxi-
mum of α(T) in the region 100 K < Tmax < 150 K [8]. 

It is stated in [5, 6] that the existing theories of high-
Tc superconductivity, including the Fermi-liquid, Hub-
bard, weak electron-phonon interaction, and standard
polaron models, do not give a complete description of
the normal state of a HTSC (see the references cited in
[5]); the normal state of the superconducting phase is
characterized by a strong dependence of α0 on doping
and by the presence of a maximum of δα. 

The temperature at which the maximum is observed
(140 K) suggests a coupling of the holes with optical
vibrations of the lattice. There arises a vibronic reso-
nance of two types of bonding (ionic and covalent),
which can be characterized as a polaron. There is rea-
son to suppose that on cooling (T < 300 K), the polarons
in the normal state condense into a polaron liquid.
Superconductivity is brought about by a strong elec-
tron-lattice interaction, the so-called vibronic stabiliza-
tion, which is associated with the dynamic Jahn–Teller
effect. 
000 MAIK “Nauka/Interperiodica”
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From an analysis of the well-known Mott formula
describing the thermopower one can say that: (1) the
value of the thermopower depends on the details of the
carrier dispersion relation E(k) at the Fermi energy EF;
(2) the interaction of the carriers with other excitations
changes the sign of the dispersion relation near EF and
causes the values of the width δα and temperature Tmax
of the maximum to depend on the interaction energies.
It follows, in view of the behavior of α(T) in
La2 − xSrxCuO4 for x ≥ 0.15, that the superconducting
phase should have a dispersion relation E(k) with a sub-
stantial nonmonotonicity near EF. Such a picture for
E(k) was discussed in [5] in terms of the polaron-liquid
concept. The formation of a gap leads to growth of the
effective mass of the carriers. 

For Tc < T < 300 K in the interval of concentrations
x corresponding to the superconducting composition,
α0(T) is strongly dependent on doping and weakly
dependent on T. The temperature dependence is mainly
determined by the maximum δα. In the underdoped
case there is only the monotonic dependence α0(T), and
for overdoping there is only the maximum δα(T). 

In the case of heavy doping, perturbations of the
periodic potential in the CuO2 layer due to defects in
the apical oxygen sites suppress the thermopower peak
and superconductivity [6]. 

The authors of [5, 6] performed a series of experi-
mental studies expressly to test their theory. They
mainly studied model systems based on single-layer
La2CuO4 with variable concentrations of oxygen and
the strontium dopant and also the systems Y-123 and
Y-124. They measured α(T) and ρ(T) at temperatures
from 4 to 300 K and above. Experiments were also
done under hydrostatic pressure in a fixed-pressure
low-temperature chamber [9]. The experimental results
[6, 10–12] were analyzed in the light of the theory
described above, and rather good agreement was dem-
onstrated. Thus another model featuring polarons of a
special type (or mobile nonuniform charge states on a
mesoscopic scale) has come into being; it explains
many known experimental results and to a certain
extent ties in with the generally accepted knowledge
base for the other models. 

Our previous papers [1–3] on yttrium systems
showed the same features in α(T) as were later
observed in [10, 12]: rather large absolute values of α,
a broad maximum on the α(T) curve, dependence of α
and ρ on the pressure and the degree of oxidation. It
should be noted that there is a detailed quantitative
agreement of the α(T) curves obtained under pressure
for Y-124 samples not containing nonstoichiometric
oxygen. Of course, the data of our studies [1–3] have
been refined by the detailed and careful measurements
made for the purpose of testing the concept of anoma-
lies in the transport properties [5, 6]. 

We wish to point out that the value of studying the
thermopower over a wide temperature interval and
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
under hydrostatic pressure was correctly foreseen by us
at that time. It was clear that the maximum in the tem-
perature dependence of the thermopower, which we
observed in all the HTSCs that we studied, derives from
some specific properties, and the effect of pressure on
this maximum might clarify considerably the interrela-
tionships involved. 

Recently we have published the results of our mea-
surements of α(T) and ρ(T) under hydrostatic pressure
for samples of the phase Hg-1223 [13] with the opti-
mum oxygen concentration and the highest values of Tc

known at the present time. These data were confirmed
in [14]. In the present paper we report analogous mea-
surements for the phase Hg-1245, which differs from
Hg-1223 by the presence of three types of CuO2 layers
and which has certain features in the pressure depen-
dence Tc(P) [15]. The main features in α(T) are mani-
fested in the region of the normal state, permitting a
comparison with the correlated polaron theory for the
system of layered mercury cuprate HTSCs. The results
are discussed in relation to the experimental data on
yttrium HTSCs. The theory of [5, 6] is itself subject to
divided opinion, and a detailed comparison with it
would be extremely desirable.

2. MEASUREMENTS AND RESULTS
Samples. Ceramic samples of mercury HTSCs

were prepared by the technology described in [16]. Our
sample consisted 90% of the HgBa2Ca4Cu5O12 + δ phase
and 10% of the HgBa2Ca3Cu4O8 + δ phase. The tetrago-
nal lattice parameters were a = 3.849(4) Å and c =
22.151(5) Å. 

The sample was in the form of a half cylinder 3 mm
in diameter and 3 mm in height, with a transverse cross-
sectional area of 3.5 mm2. The heater and heat sink
were mounted to the sample using silver paste, which
was then dried for several hours at 60°C. 

Thermopower. The measurements were made in
the temperature interval 77–300 K under hydrostatic
pressure up to 10 kbar. The method of longitudinal heat
flow with a constant power delivered to the heater [17]
was used. The temperature drop across the sample
ranged from 0.1 K at atmospheric pressure to 0.04 K at
the highest pressure. The temperature was measured by
a (Cu + 0.1%Fe + 0.017%Li)–Cu thermocouple. The
thermopower of the sample was determined relative to
that of copper. The correction to the thermopower for
copper was taken from published data and from our
measurements of αCu relative to the Y-123 supercon-
ducting sample. The pressure dependence of αCu was
not taken into account as it would introduce a negligible
correction. 

The overall trend of the α(T) curve at all pressures
follows the typical dependence for the majority of
HTSCs (see, e.g., [1, 10]). As the temperature is low-
ered from 300 K the thermopower α increases linearly
at a rate of 7.7 × 10–2 µV/K2, passes through a maxi-
SICS      Vol. 91      No. 3      2000
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Fig. 1. (a) Temperature dependence of the thermopower for the Hg-1245 sample at different pressures: (s) 4.3 kbar, (j) 6.4 kbar,
(n) 9.5 kbar; (b) enlargement of the part of these curves in the interval from 165 to 215 K. 
mum at T ≈ 190 K, and falls off sharply near Tc (Fig. 1).
A comparison with the data for single crystals shows
that the thermopower of the ceramic corresponds to the
contribution from the CuO2 layers [18]. 

The insufficient single-phaseness of our samples
does not alter the qualitative picture observed in the
α(T) curve, and from a quantitative standpoint we esti-
mated the extraneous contribution to be 3–4% of the
measured value in the Hg-1245 phase. 

The first kink in the region of the superconducting
transition occurs at T ≈ 132–134 K, which indicates that
traces of the Hg-1223 phase may be present. From this
kink to 113 K the thermopower decreases linearly at a
low rate, passing through the superconducting transi-
tion of the Hg-1234 phase. At 113 K the sharp super-
conducting transition of the Hg-1245 phase begins,
ending at T ≤ 100 K. The width of the transition accord-
ing to the linear part of the drop is approximately 6 K.
A linear extrapolation to pressure P = 0 by the least-
squares method gives a value Tc0 = 110 K. As the pres-
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Fig. 2. Plot of the resistivity of the Hg-1245 sample versus
temperature at P = 0. 
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sure is increased, Tc increases at a rate of dTc /dP =
0.19 K/kbar. 

In the range from Tc to 300 K the value of α
increases very weakly with increasing pressure. For
cuprate superconductors the thermopower is usually
written in the form

α(T) = α0 + δα(T),

where α0 ≈ α300 is the part of the thermopower that
depends weakly on temperature, and δα(T) is the part
that includes the broad maximum. 

In the region of the monotonic behavior of α(T) the
thermopower at 300 K is equal to 25 µV/K, and

and near the maximum

The behavior of Tmax under pressure is difficult to esti-
mate. For all the samples from the papers cited above,
Tmax shifts to lower temperatures. Such behavior is
most clearly observed in Y-123 and La–Sr–Cu–O
[1, 10]. 

Resistivity. The resistivity ρ was measured by the
usual four-contact scheme. The potential leads were
made of copper wire 50 µm in diameter, attached by
means of silver paste at a distance of 1.2 mm apart. At
room temperature and atmospheric pressure ρ300 =
1.55 × 10–3 Ω cm. Measurements of ρ under pressure
were not made. 

The ρ(T) curve is shown in Fig. 2. The resistivity
falls off linearly in the temperature interval 290–230 K.
Extrapolation to ρ = 0 gives a value of 70 K for the
T-axis intercept. As the temperature is decreased fur-
ther to T = 113 K the resistivity decreases, the ρ(T)
curve being convex downward and close to the extrap-
olated straight line. The superconducting transition

dα300/dP 2 10
–3×  µV/K kbar,=

d δαln
dP

---------------- 4 1±( ) × 10
–3

 kbar 1– .=
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begins at 113 K and ends at approximately 100 K. The
temperature width of the steep linear drop of ρ is ∆Tc =
6 K. The midpoint temperature of the superconducting
transition is 110 K, in agreement with the value
obtained from the thermopower measurements. The
form of the ρ(T) curve is not entirely typical for cuprate
HTSCs. A similar dependence has been observed in
Hg-1223 [13, 19], although the curve had an upward
convexity. 

It may be that the two different slopes of the two
parts of the ρ(T) curves observed in the Hg-1223 phase
[13] are analogous to the results of [1] for Y-124 sam-
ples, and the temperature at which the change in slope
occurs is correlated with Tmax for δα.

3. DISCUSSION OF THE RESULTS

The main difference between our experimental
results on the thermopower of mercury HTSCs [13] and
those in the present study for the optimally oxidized
samples with a high value of Tc is that the maximum of
δα is not very high and is strongly broadened, and the
positive values of dα/dP are an order of magnitude
smaller than in the yttrium samples. The maximum δα
for the Hg-1245 phase has a relative value δα/α0 =
0.27, while for Hg-1223 it is δα/α0 = 0.55. The position
of the maximum, Tmax, was shifted by approximately
50 K to higher temperatures, and the absolute value of
α300 increased substantially. For the Hg-1223 phase at

 we have dlnδα/dP = 3.8 × 10–3 kbar–1, while for
Hg-1245 the derivative dlnδα/dP = 4.0 × 10–3 kbar–1

and is almost independent of temperature. 
The absolute value of α0(300 K) for Hg-1223 is

approximately the same as for YBa2Cu3O6.9. The value
of Tc agrees with the experimental results [20]. The
signs of the derivatives dTc/dP and dδα/dP are positive
and correspond to the theory of [5, 6], according to
which the value of Tc is determined by the curvature of
the dispersion curve E(k) at E = EF, which increases
under pressure [10]. The changing gap for E > EF
increases the value of δα(T), so that it increases under
pressure. 

The presence of a maximum of δα at Tmax ≈ 140 K
is attributed in the theory [5, 6] to optical phonons par-
ticipating in the formation of vibrons. The published
values of the vibrational frequencies in CuO2 corre-
spond approximately to such a binding energy [21]. For
Y-124 there is a 431 cm–1 mode. In Hg-1223 the value
of Tmax is 158 K [13], while in Hg-1245 this value rises
to 195 K, and it is not yet clear which vibrations in the
given material can correspond to this temperature. All
of the modes investigated in [21] are shifted to higher
frequencies under pressure. Granted, the shift is small
and, on account of the broadening of the maximum, is
hard to observe at low pressures. However, experiments
on lightly and optimally doped Y-123 and La–Sr–Cu–O

Tc
max
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samples have shown that the shift of Tmax is quite notice-
able and is in the opposite direction: dlnTmax/dP = –1.2 ×
10–2 kbar–1 in Y-123 [1]. 

According to [15, 22],  = 111–113 K for
Hg-1245. If these numbers refer, as in our case, to the
center and not to the start of the superconducting tran-
sition, then our sample is very close to optimally doped

(Fig. 3). The empirical relation α300 = f(Tc/ ) for

cuprate HTSCs from [22] gives Tc/  = 1 and α300 =
3–5 µV/K. Our measurements gave a value α300 =
25 µV/K, which is six times greater than the expected
result. This is all the more surprising because in
Hg-1223 one has α300 = 5 µV/K [13], which corre-
sponds to the universal dependence. The maximum of
δα in Hg-1245 is also strongly shifted to higher temper-
atures. The absolute value of α in its temperature
dependence for Hg-1245 is reminiscent of the analo-
gous dependence for the “yttrium” HTSCs with a car-
rier concentration considerably below δopt, such as, e.g.,

in YBa2Cu3O7 – δ with δ = 0.4 (Tc = 65.9 K,  = 129 K,
αmax = 31.7 µV/K, α300 = 22 µV/K). In Hg-1245 this
may be due to a sharp decrease in the hole concentra-
tion in the CuO2 layer [15]. Such a decrease can give
rise to nonuniformity of the potential in the middle
CuO2 layer and is very similar to the data for
La2 − xSrxCuO4 (α300 = 25 µV/K) from [6]. 

Data on the pressure derivative for yttrium samples
are given in [10–12]. For both YBa2Cu3Ox and
YBa2Cu4O8 samples there are no major discrepancies
with our data [1–3]. The main difference between these
samples and purely layered ones lies in the influence of
the orthorhombicity (the Cu–O chains), which has been
used to explain the behavior of α(T) in YBa2Cu4O8 [12]. 

The shift of  on the α(T) curve for the Hg-1245
phase is very likely due to the vibronic spectrum, which

determines  for δα(T). The Hg-1245 phase has
five CuO2 layers of three different types, each type hav-
ing different carrier concentrations [15]. This can com-
plicate the picture set forth in [12] and can lead to a

Tc
max
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max

Tc
max

Tc
max

Tc
max

Tc
max

0 2 4 6 8
108

110

112
T, K

P, kbar

Fig. 3. Pressure dependence of the superconducting transi-
tion temperature Tc of the Hg-1245 sample, as estimated
from the center of the linear drop of the thermopower α(T). 
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growth of the frequency ωvibr . This is evidenced by the
curves of Tc versus the tetragonal lattice parameter a for
samples with different numbers of layers n: the
Hg-1245 layer has a smaller parameter a than do
phases with smaller n [23]. In mercury HTSCs the
parameter a is intimately related to the amount of non-
stoichiometric oxygen in the samples and, hence, to the
carrier concentration. There can be an additional effect
from the defects that exist in all phases of mercury
HTSCs and can disrupt the periodic potential of the
CuO2 layer. This last, we believe, has more of an influ-
ence on the absolute value of δα(T) and its change
under pressure. All of the above reasoning in the com-
parison with theory can also be applied to the behavior
of ρ(T) obtained for all our samples at temperatures
between Tc and 300 K, where we see a growth ρ ∝  T. 

It should be noted that the absolute values of ρ(T)
for Y-HTSCs [1, 9] decrease under pressure (with
increase of Tc). For YBa2Cu3O6.6 samples the same val-
ues of the derivative dlnρ/dP = –0.01 kbar–1were found
in [1] and [6]. 

The signs of the derivatives dTc/dP and dδα/dP
should be the same for each sample [5, 6]. However, in
experiments on yttrium HTSCs [10] and in our samples
this correlation of the signs was not observed (dTc/dP > 0,
while dδα/dP < 0). The signs were the same only for
the yttrium sample with concentration x = 6.7 at a pres-
sure of 17 kbar in the interval from Tc = 70 K to approx-
imately 120 K [10]. 

It is apropos to mention some specifics of the
approach of [5, 6] to the interpretation of the transport
JOURNAL OF EXPERIMENTAL 
properties. It was assumed that the HTSC state arises in
a so-called thermodynamically distinguishable phase
that can be stable near the crossover at which the char-
acter of the carrier behavior changes from localized to
collectivized. This occurs through the trapping of holes
into clusters of “short” Cu–O bonds: the clusters are
thereby stabilized, so that, according to [5], one can
speak of a “second electronic phase.” In the Cu–O2
planes, clusters consisting of five or six copper ions,
which are called “correlated polarons,” are stabilized
on account of the fact that besides the local lattice
deformation there occurs a sharp decrease in the Hub-
bard effective correlation U in a certain small region of
real (coordinate) space. The question of whether or not
this formation corresponds to a renormalized quasipar-
ticle cannot be answered in the framework of the phe-
nomenological approach [5, 6]. However, the phenom-
enological picture is partially confirmed by a proposed
[24] microscopic approach to the problem. Mobile
polarons in the normal state condense into mobile
stripes. In this picture, the presence of stripes brings
about a superconducting pairing. 

4. CONCLUSION 

We have measured the thermopower and resistivity
of the Hg-1245 phase as functions of temperature and
pressure in the region of the normal state. The qualita-
tive picture of α(T) agrees with the results of our mea-
surements of the Hg-1223 phase. The absolute value of
α(T) in the Hg-1245 phase in the normal state is six
times as large as in the Hg-1223 phase. 
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The results described here on the thermopower and
resistivity of two phases of the mercury cuprate HTSCs
HgBa2Cax – 1CuxO2x + 2 – δ (x = 3.5) under hydrostatic
pressure over a wide temperature interval of the normal
state are in agreement with the model of [5, 6] and
allow one to generalize that model to multilayer HTSC
systems with high Tc. 

We made a comparative analysis of the results
which we obtained previously for yttrium HTSCs [1–3]
with the implications of the correlated polaron model
and the experimental results of the authors of that
model for the same HTSCs. It was found that the
majority of our results are in rather good agreement
with both the model and the experiment done by the
authors of that model. 

At the same time, there are a number of experimen-
tal results that disagree in the two groups of studies and
that have not been analyzed in terms of the model of
[5, 6]. These include the direction of pressure effects on
Y-123 samples, the downward shift of the temperature
Tmax of the broad maximum under pressure, and the
high value of α300 for Hg-1245. 
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Abstract—The electronic structure of the A-15 compounds is investigated with allowance for the Hubbard
energy as the largest energy parameter. The conditions for the onset of Cooper instability are obtained. The
dependence of the superconducting transition temperature on the degree of filling of the d and p shells of the
transition elements and nontransition elements is determined. The relation between the transition temperature
and the energy of a hop along the chains is established, permitting a comparison with experiment. A qualitative
explanation is given for the empirical results of Matthias. © 2000 MAIK “Nauka/Interperiodica”.
1. STATEMENT OF THE PROBLEM

According to BCS theory, which is based on the
usual phonon mechanism, the various properties of
superconductors are represented by universal relations
containing Tc as a scale parameter. There are several
properties of superconducting compounds with the
A-15 structure which disagree with a phonon mecha-
nism or which are at least atypical for it. These include
the everywhere positive curvature of Hc2(T), the low-
degree power-law behavior of the resistance (T or T 2),
and the anomalous values of the dimensionless ratios
2∆0/Tc and 2∆C/γTc [1]. The impossibility of explaining
these facts without using a rather strong electron-elec-
tron interaction indicates that the role of the Coulomb
interactions is substantial in comparison with the usual
electron-phonon interaction [2]. 

It is even more difficult to explain the dependence of
the superconducting transition temperature Tc on the
position of the Fermi level. Table 1 gives the values of
the superconducting transition temperature for all of
the known superconductors with the A-15 structure.
Listed for each compound in Table 1 are the average
number nd of d electrons per A cation of the transition
element, and the average number np of p electrons per B
anion in the investigated compounds A3B. In the lower
part of the table is the dependence of Tc on (3nd + ),

where  is the average number of d electrons per tran-
sition element D in the configurations A3D. The exper-
imentally observed value of Tc in Kelvin is written in
brackets after the corresponding element. Membership

nd'

nd'
1063-7761/00/9103- $20.00 © 20568
in a particular subgroup, corresponding to a given value
of 3nd + np (or 3nd + ) is determined for each individ-
ual compound A3B (or A3D) on the assumption that the
s shell of the A cation is empty and the s shell of the B
anion is completely filled. As to the number  for the
elements D of one of the transition groups, its s shell is
assumed to be unfilled. 

All superconducting compounds of the type A3B are
naturally divided into two groups of eight subgroups,
each of which corresponds to a certain number 5 =
2nd + np, with 14 ≤ 5 ≤ 28. For a specified number of
electrons per unit cell, (3nd + np) or (3nd + ), one
observes anomalies due to the possibility of an increase
in Tc on going to a B element with a larger number of
nucleons. The change in Tc as a function of the number
of electrons per unit cell obeys the relations discovered
by Matthias [3]. The superconducting transition tempera-
ture has two sharp peaks: at 3nd + np . 16.8 (Tc = 20.1) and
at 3nd +  . 25.7 (Tc = 12.7). 

These relations cannot be explained from the stand-
point of a purely electron-phonon interaction. How-
ever, they can be understood on the basis of the strong-
coupling approximation with allowance for the strong
electron-electron repulsion within the same atom—the
so-called generalized Hubbard–Emery model [4, 5]. 

Our problem is to investigate the influence of the
electron-electron coupling parameters on the supercon-
ducting transition temperature in compounds with the
A-15 structure for A3B compounds (with a nontransi-

nd'

nd'

nd'

nd'
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tion element). In the compounds studied, the distance
between atoms of the metal and nonmetal (≈2 Å) is the
same as in the CuO2 layers of high-Tc superconductors.

2. GENERAL RELATIONS

Let us assume that the Hubbard energy is large for
both the p and d electrons. In the ladder approximation
the condition for the onset of the Cooper instability is
the same as the requirement that there be a nontrivial
solution of the system of homogeneous equations for
the two-particle vertex part Γα, β, which is calculated for
zero total frequency, momentum, and spin:

(1)

Direct calculations show that the Hubbard energy is the
largest energy parameter for both the d and p electrons,
and we therefore treat it as infinite below. The zeroth
vertex part gα, β; γ, δ(p) is calculated by Dyson’s method. 

In the simplest case, when the lower Hubbard sub-
band for both the p and d electrons is filled, we have

(2)

The indices α, λ in the odd positions differ only in the
sign of the spin projection from the indices β, ν in the
even positions. The coefficients gα and gβ are equal to
±1 or 0 and are determined by the product of the struc-
ture constants corresponding to the given transitions
[6]. The vertex part turns out to be proportional to the
matrix of the hopping integrals tβ, ν(p), in terms of
which the inverse single-particle Green’s function is
expressed:

(3)

Here eγ is the energy of the single-particle transitions γ,
and fγ is the so-called end factor, equal to the sum of the
initial and final occupation numbers corresponding to
the given transition. This last equation corresponds to
the zero-loop approximation and will be used in writ-
ing the equations of state. 

This same equation is conveniently used for calcu-

lating the products tγ, λ(p) :

(4)

Γα β, T gα β; γ δ,, p( )G ω–
γ λ, p–( )Gω

δ ν, p( )Γλ ν, .
ω p,
∑–=

gα β; λ ν,, p( ) δα λ, gα tβ ν, p( )– δβ λ, gβtα λ, p( ).–=

Gω
1– p( )[ ] γ λ, δγ λ, iω eγ–( ) f γbγ

2tγ λ, p( ).–=

Gω
λ ν, p( )

tγ λ, p( )Gω
λ ν, p( )

λ
∑

=  
1

bγ
2 f γ

---------- iω eγ–( )Gω
γ ν, p( )

1

f γbγ
2

----------δγ ν, .–
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Substituting (4) and (2) into the basic Eq. (1) and
neglecting the nonlogarithmic terms, we find

(5)

The indices α, λ in the odd positions in the definition of
the vertex parts Γ refer to final states with a positive
spin projection. The indices β, ν in the even positions
in the definition of the vertex parts Γ refer to final states
with a negative spin projection. As to the crystal indices
(p, d), the vertex parts Γα, β and Γλ, ν in Eqs. (1) and (5)
should be assumed diagonal in these indices. 

Since the single-particle Green’s functions do not
depend on the spin indices, we rewrite Eq. (5) in the
form

(6)

Γα β, Tgα
eα

bα
2 f α

------------ G ω–
α λ, p–( )G ω–

β ν, p( )Γλ ν,

ω p,
∑–=

– Tgβ
eβ

bβ
2 f β

----------- G ω–
α λ, p–( )Gω

β ν, p( )Γλ ν, .
ω p,
∑

Γn 2γn

en

bn
2 f n

-----------T G ω–
n m, p–( )Gω

n m, p( )Γm,
ω p m, ,
∑–=

Table 1

3nd + np
A3B (A is a transition element, 
B is a nontransition element) 

14 Zr3Sn(0.94), Zr3Pb(0.76)
15 Ti3Sb(5.8), Zr3Sb(0)
16 V3Al(11.65), V3Ga(16.5), V3In(13.9)
16 Nb3Al(18.55), Nb3Ga(20.3), Nb3In(9.2)
16.75 Nb3Al0.75Ge0.25(20.10)
17 V3Si(17.1), V3Ge(6.1), V3Sn(3.8), Nb3Si(16.5)
17 Nb3Ge(6.9), Nb3Sn(18.0), Nb3Bi(9.6), Ta3Sn(5.8)
18 V3As(0), V3Sb(0.8), V3Bi(0)
18 Nb3Sb(1.95), Nb3Bi(3.05), Ta3Sb(0.66)
19 Nb3Te(2.5), Cr3Ga(0), Mo3Al(0.58), Mo3Ga(0.76)
20 Cr3Si(0), Cr3Ge(0), Mo3Si(1.3)
20 Mo3Ge(1.43), Mo3Sn(0), W3Si(0)
22 Mo3O(4.5), W3O(0.4–3.35)
24 Cr3O(0)

3nd + A3D (A and D are transition elements) 

21 Ti3Ir(4.3)
22 Ti3Pt(0.49), Zr3Au(0.92)
23 Ti3Au(<0.015), Zr3Au(0.92), V3Os(5), Nb3Os(0.95)
24 V3Rh(1.075), V3Ir(1.7), Nb3Ir(1.71)
25 V3Ni(0), V3Pb(0.082), V3Pt(3.2), Nb3Pt(9.8), 

Ta3Pt(0.4)
25 Mo3Tc(14), Mo3Re(15)
25.7 Nb3Pt0.3Au0.7(12.7)
26 V3Au(3.14), Nb3Au(10.8), Ta3Au(0.51–10)
26 Cr3Ru(3.3), Cr3Os(4.24), Mo3Os(11.76)
27 Cr3Rh(0.072), Cr3Ir(0.17), Mo3Ir(8.5)
28 Cr3Pt(<0.3), Mo3Pt(4.5)

nd'
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Table 2

Interval γπ fπ gπ Interval γp fp gp

0 < nπ < 1 1 1 – 3nπ/4 1 4 0 < np < 1 1 1 – 5np/6 1 6

1 < nπ < 2 3/4 (2 + nπ)/12 3/2 3 1 < np < 2 3/2 (4 – np)/18 3 9

2 < nπ < 3 –3/4 (6 – nπ)/12 3/2 4 2 < np < 3 2/3 (5np – 6)/36 2 4

3 < nπ < 4 –1 (3nπ – 8)/12 1 1 3 < np < 4 –2/3 (24 – 5np)/36 2 9

Interval γσ fσ gσ Interval γp fp gp

0 < nσ < 1 1 1 – nσ/2 1 2 4 < np < 5 –3/2 (np – 2)/18 3 6

1 < nσ < 2 –1 nσ/2 1 1 5 < np < 6 –1 (5np – 24)/6 1 1

bπ
2 bp

2

bσ
2 bp

2

where the dimensionless coefficients γn and the sums of

the squares of the genealogical coefficients  are eval-
uated for each particular group of transitions (see Table 2).
In order to integrate over the momentum variable p, we
decompose all of the matrix elements of each Green’s
function G±(±p) with respect to the normal coordinates:

(7)

(8)

where the normal coordinates are defined in terms of
the matrix elements appearing in the definition of the
single-particle Green’s function (3):

(9)

(10)

bn
2

Gω
dd( ) p( ) A λ– p( )

1

iω ξp
λ–

-----------------,
λ ±=

∑=

Gω
pp( ) p( ) Aλ p( )

1

iω ξp
λ–

-----------------,
λ ±=

∑=

Gω
dp( ) p( ) B λ– p( )

1

iω ξp
λ–

-----------------,
λ ±=

∑=

Gω
pd( ) p( ) Cλ p( )

1

iω ξp
λ–

-----------------,
λ ±=

∑=

Aλ p( )
1
2
---=

× 1 λ( )
ξp

p ξp
d–

ξp
p ξp

d–( )2
4 f pbp

2 f dbd
2 tp

2+
---------------------------------------------------------------------sgn+ ,

Bλ p( ) λ( )
f dbd

2tp

ξp
p ξp

d–( )2
4 f p f dbp

2 bd
2 tp

2+
---------------------------------------------------------------------,sgn=

Cλ p( )
f pbp

2 tp*

f dbd
2tp

----------------Bλ p( ).=
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Here we have introduced the notation

(11)

One notices that for specified branch number λ and
quasimomentum p the coefficients Aλ(p), Bλ(p), and
Cλ(p) of the decomposition are related by

(12)

After substituting decompositions (10) and (11) into
Eq. (6) and using relation (12), one can show that the
products of four Green’s functions vanish from the final
condition. The final form of the solvability condition
contains only a sum of the diagonal matrix elements:

(13)

This equation must be supplemented by the equations
of state, which relate the average occupation numbers
np and nd with the energy difference r = ep – ed and the
chemical potential µ = –(ep + ed)/2:

(14)

(15)

where [np, d] is the integer part of np, d, nF(ξ) is the Fermi
function, and gn is the degree of degeneracy of the
n-particle states. All of the coefficients specified for
each whole-number interval of the np and nd values are
given in Table 2.

ξp
p d,

ep d, f p d, bp d,
2 tp

p d, ,+=

ξp
± 1

2
--- ξp

p ξp
d ξp

p ξp
d–( )2

4 f p f dbp
2 bd

2 tp
2+±+[ ] .=

Aλ p( )A λ– p( ) Bλ p( )Cλ p( ).=

γd

ed

bd
2 f d

----------- A λ– p( )( )2 γp

ep

bp
2 f p

----------- Aλ p( )( )2
+

p λ,
∑–

× 1

ξp
λ-----

ξp
λ

2T
------ 

 tanh 1.=

nd nd[ ] g nd[ ] 1+ bd
2 f d A λ– p( )nF ξp

λ( )( ),
p λ,
∑+=

np np[ ] g np[ ] 1+ bp
2 f p Aλ p( )nF ξp

λ( )( ),
p λ,
∑+=
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3. EQUATIONS OF STATE

Let us discuss the phase diagram of the supercon-
ducting state in the variables nd , np. According to band
calculations [2] the d states of the A cations are split by
the crystalline field into four sublevels. The lower xy
state is separated from the (xz, yz) states by at least 3/2 eV
(the π band). In turn, the next, (3z2 – r2), state is sepa-
rated from the (x2 – y2) state by 1 eV (the σ band). Then
the distance between the (xz, yz) and (3z2 – r2) states is
of the same order of magnitude. Thus it is necessary to
consider the sequential filling of the xy, (xz, yz), (3z2 – r2),
and (x2 – y2) states with the simultaneous filling of the
p shells of the B anions of the nontransition element. In
the compounds under study the B atoms are found at
the corners of the cube, and it is therefore necessary to
take into account the threefold degeneracy of the p or t
states and also the twofold degeneracy of the eg states
of the B atoms. 

Our problem is to study the influence of the elec-
tron-electron coupling parameters on the superconduct-
ing transition temperature in compounds with the A-15
structure for compounds A3B (with a nontransition ele-
ment). Below we use a simple model in which only the
hops to a neighboring site are taken into account.
Accordingly, for the description of the compounds
under study we have a Hamiltonian of the Emery–Hub-
bard type:

(16)

Here (λ), (ν) and (λ), (ν) are creation
and annihilation operators for electrons of the d and p
shells, respectively, and µ = {x, y, z} and λ denote three
types of p states and two t2g states, respectively. 

As we see from Table 1, a finite value of the super-
conducting transition temperature Tc is observed under
the condition np + 3nd ≤ 14. Therefore, the filling of the
lower xy subband, for which nd ≤ 2 and np ≤ 6, is not of
interest. 

In considering the filling of the degenerate (xz, yz)
subbands we make use of the circumstance that the
hopping integral J ≈ 1 eV along the chain is consider-
ably greater than the energy of hybridization between
the p and d electrons while, of course, remaining

Ĥ tr r',
λ λ', d̂r σ,

+ λ( )d̂r' σ, λ'( ) H.c.+[ ]
r r' r r'≠, ,
∑=

+ tr r',
ν ν', p̂r σ,

+ ν( ) p̂r' σ, ν'( ) H.c.+[ ]
r r' r r'≠, ,
∑

+ tr r',
λ ν, d̂r σ,

+ λ( ) p̂r' σ, ν( ) H.c.+[ ]
r r' r r'≠, ,
∑

+ ed d̂r σ,
+ λ( )d̂r σ, λ( )

r σ λ, ,
∑ ep p̂r σ,

+ ν( ) p̂r σ, ν( ).
r σ ν, ,
∑+

d̂r σ,
+

p̂r σ,
+ d̂r σ, p̂r σ,
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smaller than the Hubbard energy. If it is assumed that
the Hubbard energy is the largest energy parameter,
then the energy of the excitations has the usual form,
but with a hopping integral τ that depends on the den-
sity of π electrons [4]:

(17)

Here τ = Jπ fπ is the product of the hopping integral
and the sum of the squares of the genealogical coeffi-

cients  and the end factor fπ (  and fπ are given in
Table 2 for each whole-number interval of nπ). 

Let us consider the start of the filling of the π-(xz, yz)
subband: 0 < np < 2. If the Hubbard energy is assumed
infinite, then the equation of state can be written for
each whole-number interval in [nd] < nd < [nd + 1] as
follows:

(18)

Here gd is the degree of degeneracy of the lowest
([nd] + 1)-particle state and is also given in Table 2. 

One notices that the p electrons are strongly hybrid-
ized only with the e electrons. The hopping energy
itself, for hopping between nearest anions, is of the
order of |t | ≈ 2 × 10–2 Ry = 0.3 eV. The Hubbard energy
of the p electrons is at least five times as large as the
hopping energy |t |, so that we can again use the “Hub-
bard I” approximation [4]:

(19)

Here the three branches of the spectrum ξp depend on
an additional parameter, the tetragonal anisotropy
parameter b:

(20)

Here and below nF(ξ) is the Fermi distribution, and b < 1. 

At a fixed energy difference ep – ed the system of
equations (18) and (20) determine the average occupa-
tion numbers nd and np for the region 0 < nπ < 2, 0 <
np < 3. The equations in the remaining regions, 0 < nπ < 2,
3 < np < 6, 2 < nπ < 4, and 0 < np < 6 can be obtained
from (14), (15) by the particle-hole symmetry transfor-
mation

nπ  4 – nπ, np  6 – np, ep, d  –ep, d .

According to Eqs. (14) and (15), the equation of
state can be written for each whole-number interval nπ
as follows:

ξp 2τ pz ed.+cos=

bπ
2

bπ
2 bπ

2

nd nd[ ] gd f dKd, Kd+ nF ξp( ).∑= =

np np[ ] 3gp f pK p, K p+
1
3
--- nF ξp( ).∑= =

ξp
k( ) t– gp

2 f p 1 b–( ) pkcos b pscos
s x y z, ,=

∑+ .=

nπ gπ f π
1( ) nF ξp

1( )( ), f π
1( )

p

∑ 1
3nπ

4
--------,–= =
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(21)

After the substitution e = –cosθ we obtain the follow-
ing equation of state for T = 0:

(22)

For the p electrons we have

(23)

We further assume that b = 1, and after the substitution
e = –cos(β/2) we obtain the following equation of state
for T = 0:

(24)

At a fixed energy difference ep – ed the system of Eqs. (21)
and (22) determines the average occupation numbers nπ
and np for the region {0 < nπ < 2, 0 < np < 3}. The equa-
tions in the remaining regions {0 < nπ < 2, 3 < np < 6},
{2 < nπ < 4, 0 < np < 6} can be obtained from (21), (22)
by means of the particle-hole symmetry transformation

nπ  4 – nπ, np  6 – np, ep, d  –ep, d .

ξp
1( ) 2 f π

1( )Jπbπ
2 pz ed, 0 nπ 1,< <+cos=

nπ 1 gπ f π
2( ) nF ξp

2( )( ), f π
2( )

p

∑+
2 nπ+

12
--------------,= =

ξp
2( ) 2 f π

2( )Jπbπ
2 pz ed, 1 nπ 2.< <+cos=

nπ nπ[ ] gπ f π
θ
π
---.+=

np gp f p
1( ) nF ξp

1 λ,( )( ),
p λ,
∑=

f p
1( ) 1

5np

6
--------, 0 np 1,< <–=

np 1 gp f p
2( ) nF ξp

2 λ,( )( ),
p λ,
∑+=

f p
2( ) 4 np–

18
--------------, 1 np 2,< <=

np 2 gp
4
3
--- f p

3( ) nF ξp
3 λ,( )( ),

p λ,
∑×+=

f p
3( ) 5np 6–

36
-----------------, 2 np 3,< <=

ξp
1( ) bp

2 f p 2t px b pycos pzcos+( )+cos[ ] ep,+×=

ξp
2( ) bp

2 f p 2t py b pzcos pxcos+( )+cos[ ] ep,+×=

ξp
3( ) bp

2 f p 2t pz b pycos pxcos+( )+cos[ ] ep.+×=

np np[ ] gp f p
β βsin–

2π
--------------------.+=
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According to Eq. (13), the contribution to the equa-
tion for Tc for each type of excitation is determined
independently [6–9]. The equation for Tc has the form

(25)

where Sp and Sd are the contributions for the p and d
types of excitations, respectively. 

In Eq. (25) we have introduced the factors
[1 − gpfp(β – sinβ)/2π] and (1 – gπfπα/π), which take
into account the vanishing of the effective value of the
hopping upon the complete filling of the band (α = π for
the π band, and β = 2π for the p electrons), which cor-
responds to localization of the electronic excitations
upon the complete filling of the lower Hubbard band.
We note that fπ(α = π) = 1/gπ, fp(β = 2π) = 1/gp (see
Table 2). 

For the π excitations we have

(26)

where ω = πT(2k + 1), k = 0, ±1, ±2, ±3, …. 

For the p excitations we calculate Sp in an analogous
way:

(27)

where the density of states ρ(e) in an isotropic model
has the form

(28)

The dimensionless scattering amplitudes γπ and γp for
the excitations in expressions (26) and (27) were calcu-
lated by Dyson’s method [7], and the genealogical

coefficients ,  and the degrees of degeneracy gπ, gp

are given in Table 2.

4. INFLUENCE OF THE p ELECTRONS

It follows from Eq. (25) that the transition tempera-
ture is determined by two terms, each of which depends
on either the p or the d electrons. To describe the influ-
ence of the p electrons, let us consider the variation of
Sp as a function of temperature and the degree of filling
β of the band. One can calculate Sp as follows. After
summation over n and the substitution

µ = –2fpt cos

1 Sp 1 gp f p
β βsin–

2π
--------------------– 

  Sd 1 gπ f π
α
π
---– 

  ,+=

Sd

γπ

π
-----T ϕ

Jπ ϕcos

ω2 2Jπ f πbπ
2 t ϕ eπ+cos( )2

+
------------------------------------------------------------------,d

π–

π

∫
ω
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γp

3
-----T ρ e( ) e

te

ω2 2J p f pbp
2
e ep+( )2

+
------------------------------------------------------,d

1–

1

∫
ω
∑=

ρ e( )
2
π
--- 1 e

2– .=

bπ
2 bp

2

bp
2 β

2
---
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we obtain

(29)

Let us assume that T ! fpt . We write the expression
for Sp as a sum of two terms:

where

(30)

(31)

As a function of T the quantity Sp0 tends toward a finite
limit as T  0. In fact, making the substitution

we obtain

(32)

where lnγ = C ≈ 0.577 (C is Euler’s constant). 

We also write the expression for Sp1 for low temper-
atures to an accuracy up to terms of order O(1). Then

(33)
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--------------=
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and, ultimately,

(34)

We see that Sp consists of two parts, one of which 
is the factor multiplying the logarithm, while the other

 plays the role of a correction to unity in the BCS
formula for the transition temperature:

(35)

where

We note that F(β) is an odd function of the argument
π – β, F(0) = –π/2, F(π) = π/2, and for β ≈ 0.124 it has
a minimum equal to F(0.124) ≈ –1.5815. The function
F(β) does not depend on the number of the subband,
i.e., on the character of the dependence of the end fac-
tors fp on α. The value of Ψp, on the other hand, is
largely determined by the number of the subband. The

maximum value of  depends on the number of the
subband and for the first band has the value x = 0.007
(for np = 0.97), while for the second (1 < np < 2) and
third (2 < np < 3) bands it has the value x = 0.021 (for
np = 1.899 and np = 2.725, respectively). 

The coefficient multiplying the logarithm of the
temperature is given by

The maximum of  in the first band (0 < np < 1) has
the value x = 0.019 at np = 0.97, while in the second
(1 < np < 2) and third (2 < np < 3) bands the maximum

of  has the values x = 0.0589 at np = 1.806 and at
np = 2.56, respectively. Therefore, if the d electrons are
not taken into account, one would expect that the tran-
sition temperature in the first band (0 < np < 1) is of the
order of 

Sp . 
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6πf pbp
2
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----------– 

  10 22– t,≈exp≈
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Fig. 1. Dependence of the transition temperature on the concentration for p electrons. 
while in the second (1 < np < 2) and third (2 < np < 3)
bands the transition temperature is of the order of

Thus when only the p excitations are taken into
account, the transition temperature Tc does not exceed
0.5 × 10–7t. The dependence of Tc on the p-electron con-
centration np is shown in Fig. 1.

5. INFLUENCE OF THE d ELECTRONS
The value of Sd can be calculated in an analogous

way. After summation over ωn = πT(1 + 2n) in (6) and

the substitution µπ = –2fπJπ cosθ we have

(36)

We shall assume that T ! Jπfπ . We write the expres-
sion for Sd as a sum of two terms:

where

(37)

Tc t
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  10 7– t.≈exp≈
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--------------------------------------------------------------------- ,
JOURNAL OF EXPERIMENTAL
(38)

As a function of T the quantity Sd0 tends toward a finite
limit as T  0:

(39)

For Sd1 we obtain in a similar way

(40)

and, ultimately,

(41)

We see that Sd consists of two terms, one of which (Sd1)
determines the factor multiplying the logarithm, while
the other (Sd0) plays the role of a correction to unity in
the BCS formula for the transition temperature. It is
easy to see that the factor
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2

------------------=

× ϕcos ϕ 1

ϕcos θcos+ T /Jπ f πbπp2+
---------------------------------------------------------------------d

π–

π

∫ .

Sd0 . Sd0 T( )
T 0→
lim

γπ θcot

πf πbπ
2

---------------- x
xtanh

x
-------------- 1

1 x+
------------– 

 d

0

∞

∫–=

=  
γπ θcot

πf πbπ
2

---------------- 4γ
π
------  . 0.819

γπ θcot

4πf πbπ
2

------------------.–ln–

Sd1 . 
γπ θcot

πf πbπ
2

----------------
2Jπbπ

2 f π θsin
2

T
--------------------------------- 

  ,ln–

Sd Sd0 Sd1+
γπ

πf πbπ
2

---------------= =

× π 2θ–( ) θ
8γJπbπ

2 f π θsin
2

πT
------------------------------------- 

 lncot– .

S1 . 
γπ θcot

πf πbπ
2

----------------–
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Fig. 2. Dependence of the transition temperature on the concentration for d(π) electrons.
multiplying the logarithm is positive for θ > π/2,
increases monotonically with increasing θ for θ > π/2,
and at θ = π takes the value S1 ≈ 0.1 for nd = 1 and S1 ≈ 0.2
for nd = 2. In absolute value Sd0 is not greater than 0.06
for all values of nd in the region where S1 > 0. Therefore
the transition temperature in the region nd > 1 can exceed
the maximum value of the transition temperature for
the region nd < 1 by an order of magnitude. According
to a numerical calculation, the maximum transition
temperature in the region nd < 1 does not exceed 10–6t,
while in the region nd > 1 the maximum transition tem-
perature does not exceed 10–3t (Fig. 2).

6. SUPERCONDUCTING TRANSITION 
TEMPERATURE AS A FUNCTION

OF THE OCCUPATION NUMBERS np AND nd

Let us write the resulting equation for Tc. We have

(42)

The superconducting region at T = 0 is determined by
the condition that the coefficient multiplying the loga-
rithm of the dimensionless temperature vanishes, i.e.,
by the condition

(43)

which is sketched in Fig. 3. 
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π
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  ,
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As is seen in Fig. 3, in the regions where µπ > 0 and
µp > 0 superconductivity always exists for T = 0. We
note that, although superconductivity is mainly deter-
mined by the influence of the π excitations, there exist
regions of np values in which the superconducting state
at T = 0 does not arise at any values of nd . Figure 3
shows the largest possible existence regions of the
superconductivity but does not give any idea of the val-
ues of the transition temperature. It follows from
Eq. (42) and the discussion in Sections 2 and 3 that the
superconducting transition temperature Tc is mainly
determined by the π excitations, and it is clear that for
3 < nd < 5 the values of Tc can reach higher values than

0
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3

4
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6

2 3 4 5 6

np

nd

µπ = 0 µπ = 0 µπ = 0
µπ = 0

µp = 0

µp = 0

µp = 0

µp = 0

µp = 0

µp = 0

Fig. 3. Phase diagram for the existence of superconductivity
at T = 0. The superconducting regions are shaded. 
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Fig. 4. Transition temperature as a function of the concen-
tration of p and d electrons. Shown are the level lines of the
transition temperature, at intervals of ∆Tc = 0.0005t starting
at 0.0002t. The straight lines are the lines of electrical neu-
trality of the compounds with the highest values of Tc. 
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for 2 ≤ nd ≤ 3 and 5 ≤ nd ≤ 6. The combined effect of the
p excitations and π excitations can lead to an increase
in the transition temperature by approximately an order
of magnitude. The results of a numerical calculation of
the transition temperature as a function of the degree of
filling of the bands, i.e., of np and nd, are presented in
Fig. 4. The calculation was done under the assumption
that the hopping integrals for the p and d electrons are
the same. Figure 4 shows level lines of the transition
temperature, at intervals of ∆Tc = 0.0005t starting at
∆Tc = 0.0002t. We note that these transition tempera-
tures are observed only if 3 < nd < 5. The highest possi-
ble transition temperature obtained in our calculation is
0.0064t. Figure 4 shows the lines of electrical neutrality
corresponding to compounds with the highest experi-
mentally observed transition temperatures: V3Ga, V3In,
Nb3Al, Nb3Ga, Nb3Al0.2Ge0.8, V3Si, and Nb3Sn. As one
moves along the electrical-neutrality lines 3nd + np = ρ
on the nd, np phase diagram, the chemical potential is
fixed, while the parameter r = ep – ed formally varies
from –∞ to +∞. For all of these compounds the lines of
electrical neutrality pass through regions with values of
Tc close to the maximum possible value.

7. FEATURES OF THE ONE-DIMENSIONAL 
MOTION ALONG THE CHAINS

It can be noted that in addition to the Cooper singu-
larity our model also has the Peierls instability, which
arises on account of the logarithmic integration of the
diagram of the zero-sound type (see Fig. 5c). 

At zero temperature and zero energy transfer the
polarization operator depends only on the momentum
++++++ + + + + +
+

+

+

+

+
+++++++ + + + + +

– – – – ––––––––

– – – – – – – – – – – ––

–

–

––=

= – – +

(a) (b)

(c)

(d) (e)

–

Fig. 5. Sudakov equations. The plus and minus signs denote motion parallel and antiparallel to the  x-axis. The arrows  and  indicate
the directions of the spin projection. 
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transfer q and the position of the Fermi level µπ =

2fπJπ cosθ:

(44)

It follows that the logarithmic divergence arises under
the condition

i.e., at a momentum transfer equal to twice the Fermi
momentum. 

If we ignore the additional features due to umklapp
processes at q = π or µπ = 0, then taking the parquet dia-
grams into account will lead to the well-known Suda-
kov equations [10], which for one-dimensional systems
and low Hubbard energies were obtained by Dzya-
loshinskiœ and Larkin [11]. 

In our case, “backscattering” occurs only for excita-
tions with opposite spin projections. For this reason it
is sufficient to consider two amplitudes: one of them,
Γ1, corresponds to any collision with no change in the
spin direction, while the other, Γ2, is the amplitude for
“backscattering” with a change in the sign of the spin
projection:

(45)

Here

is a logarithmic variable that depends on the Fermi
energy eF and on the temperature T or the product of the
momentum p times the Fermi velocity vF. Under the
condition of completely nesting κ = 1, so that the con-
tribution of the Cooper and zero-sound diagram cancel
each other halfway. For κ = 0 we obtain the ladder
equations that were used in the present study. Solving
the equations in the two limiting cases, we establish the
connection between the transition temperature in the
case of complete nesting and the value which was
obtained in the previous sections. 

Differentiating the equations with respect to the log-
arithmic variable τ, we obtain the following system:

(46)

bπ
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For κ = 1 the system has a solution that satisfies the

condition 2  –  = g2 > 0:

(47)

It can be noted that the zeroth vertex part does not
depend on the momentum direction: g1 = g2 = g. From
this we find the relation between the bare vertex part |g |
and the arbitrary constant τ0:

(48)

The transition temperature in the case of complete nest-
ing is found from the condition τ = τ0:

(49)

To solve the system of differential equations for κ = 0
it is sufficient to multiply these equations together. The
solution of the resulting equation has the familiar lad-
der form:

(50)

From this equation we find the transition temperature
as the condition for a singularity to appear at τ =
1/(2|g |):

(51)

Thus the transition temperature in the presence of nest-
ing is related to the superconducting transition temper-
ature in the absence of nesting as

(52)

As expected, the presence of nesting, which leads to the
Peierls instability, lowers the temperature of the super-
conducting transition. If the system contains small
amounts of impurities, then the zero-sound anomaly
due to nesting vanishes, while the Cooper instability

does not vanish, since here Tc2 ≈ Tc1. The value of  can
be obtained formally by proceeding from the ladder
approximation, where the calculations in the absence of
nesting are done to a higher accuracy than in the par-
quet approximation. Thus the transition temperatures
found in the present study for compounds with the A-15
structure are in good agreement with the experimen-
tally observed values.
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8. CONCLUSIONS
In summary, the proposed mechanism gives a qual-

itatively correct explanation for the empirical Matthias
rules, which are reflected in the existence of a sharp and
nonmonotonic dependence of the transition tempera-
ture on the average number of electrons in incompletely
filled shells. The onset of the Cooper instability at a
fixed position of the Fermi level is due to the possibility
of a change in sign of the scattering amplitude for the
entire Fermi surface at once. A calculation of the scat-
tering amplitude for all values of the Fermi energy
allows one to find the dependence of the superconduct-
ing transition temperature for the entire concentration
region within which the Cooper instability can exist.
The change in sign of the scattering amplitude occurs
once and only once between the center and the bound-
aries of the Brillouin zone. Accordingly, boundaries of
the superconducting region arises within each whole-
number interval of variation of np and nd . Thus one can
explain the cause of the nonmonotonic dependence of
the superconducting transition temperature on the num-
ber of conduction electrons. The numerical values
obtained for the highest possible transition temperature
are somewhat higher than those observed in experi-
ment. However, taking into account the features due to
the motion along the one-dimensional chains lowers
JOURNAL OF EXPERIMENTAL 
the transition temperature and results in quantitative
agreement with experiment. 
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Abstract—The mechanism of formation of –U centers in high-Tc superconductors (HTSCs) is considered. It is
shown that the transition from the insulator to the metallic state on doping passes through a certain range of
dopant concentrations in which it becomes possible for local transitions of singlet electron pairs to occur from
oxygen ions to two neighboring cations (a –U center), while single-electron transitions are still forbidden. Con-
duction arises in such systems at a concentration of –U centers exceeding the percolation threshold for the orbit-
als of singlet hole pairs. A phase diagram constructed on the basis of the proposed model for the HTSC com-
pounds of the Ln-214 class is in complete agreement with experiment. The mechanisms of formation and relax-
ation of free hole carriers are considered. It is shown that a distinctive feature of the normal state of HTSCs is
the dominant contribution of electron–electron scattering to the charge carrier relaxation processes. It is con-
cluded from the analysis presented that HTSCs comprise a special class of solids in which a nonstandard mech-
anism of superconductivity, different from the BCS mechanism, is realized. © 2000 MAIK “Nauka/Interperi-
odica”.
1. INTRODUCTION

In the 13 years since the discovery of high-Tc super-
conductivity [1] there have been many models pro-
posed (see the review [2]) that might explain the nature
of the ground state and the anomalous properties of
these compounds. However, the lack of any decisive
experiment makes it impossible to decide in favor of
any one of them. 

In the present paper we show that the mechanism
responsible for the many anomalous properties of these
compounds (including the high-Tc superconductivity)
is apparently the interaction of the electrons with the
so-called –U centers [3]. To do this, we consider how
the insulator-metal transition occurs in HTSCs upon
doping. We show in the framework of a simple ionic
model that this transition must pass through a certain
range of dopant concentrations in which it becomes
possible, within individual microclusters consisting of
several unit cells, for local transitions of singlet elec-
tron pairs to occur from oxygen ions to a pair of neigh-
boring cations (a –U center), while the single-electron
transitions are still forbidden. We believe that it is this
range of concentrations that corresponds to the HTSC
region, in which the electron–electron attraction is due
to the interaction of the electron pairs with –U centers
[4–11]. Conduction in such a system arises at a concen-
tration of –U centers exceeding the percolation thresh-
old for the orbitals of the singlet hole pairs. We consider
the questions of which parts of the crystal structure
form the –U centers and in what range of concentra-
tions does an infinite percolating cluster connecting the
–U centers exist, and on these considerations we con-
1063-7761/00/9103- $20.00 © 20579
struct the phase diagram of Ln-214 compounds. Com-
parison of the resulting phase diagram with the phase
diagrams of the Ln-214 compounds that have been
studied in detail should, we believe, be the decisive
experiment for choosing the mechanism responsible
for the unusual properties of HTSCs. We conclude with
a discussion of the formation and relaxation of hole car-
riers in HTSCs.

2. MECHANISM OF FORMATION
OF –U CENTERS IN HTSCs

There are some rather weighty grounds for assum-
ing that the electron spectrum of the insulator phases of
the various HTSC compounds in the neighborhood of
EF can be best approximated by the model of a charge-
transfer (CT) insulator [12], i.e., an insulator with a gap
due to charge transfer. In such a model (Fig. 1a) the
upper, empty band, formed by the unfilled orbitals of
the cations, is separated by a gap from the 2p valence
band, formed mainly by oxygen states. The gap ∆CT in
the spectrum is due to the transfer of an electron from
the oxygen to a neighboring cation and has a value of
1.5–2 eV for all HTSCs [13]. 

What is the mechanism for the insulator–metal
phase transition in doped HTSCs? As an example, let us
consider the HTSC compounds of the Ln-214 type. For
them the value of ∆CT in the framework of a simple
ionic model is given by a relation among three quanti-
ties [14]:

∆CT ∆EM Ap Id,–+≈
000 MAIK “Nauka/Interperiodica”
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where Id is the second ionization potential of copper, Ap

is the electronegativity of oxygen in relation to the for-
mation of O2–, and |∆EM | is the difference between the
electrostatic Madelung energies of the configuration in
which the oxygen and copper ions are found in the
states Cu2+ and O2– and the configuration in which they
are in the states Cu1+ and O–. Since Id ~ 20 eV and
∆CT ~ 1.5–2 eV, the balance between these three quan-
tities is rather delicate. It can be altered by heterovalent
doping, e.g., the doping of La2CuO4 by divalent Sr or of

1
O2p

Cu3d10

∆ëí

Fig. 1. (a) Electron spectrum of a CT insulator in the vicinity
of EF; (b) modification of the electron spectrum of a CT
insulator upon doping; 1 is pair level of a –U center.

1 2

3
Sr (Ba, Ce) Cu

(a)

(b)

(c)

(d)

Fig. 2. Different types of M2Cu2On clusters in cuprates. On
the left are fragments of the crystal structure, and on the
right are the corresponding projections on the CuO2 plane.
The Sr (Ba, Ce) ions can be located on either side of the
CuO2 plane. In Nd2 – xCexCuO4 the apical oxygen ions are
absent. (a, b) Two types of clusters forming –U centers at the
inner Cu ions (M = Cu for Ln-214); (c) a cluster “interme-
diate” between a and b, for which a –U center does not form;
it corresponds to an insulating phase; (d) an M2CuOn cluster
on which a normal-phase nucleus forms: (1) –U centers;
(2) localization regions of the doped carriers; (3) a
“nucleus” of the metallic phase. 

(a) (b)
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Nd2CuO4 by tetravalent Ce. The doped carriers (in any
case at small x) are localized [15–17] near the dopant
ion: either on the oxygen orbitals (as holes in
La2 − xSrxCuO4) or on the copper orbitals (as electrons
in Nd2 – xCexCuO4). Here it important to note that the
admixture of both electrons (on the Cu orbitals) and
holes (on the O orbitals) will lead to the same result: a
decrease of |∆EM | and, hence, a lowering of ∆CT for the
other pairs of copper and oxygen ions found in the
neighborhood of the doped carrier. At a certain critical
concentration xc the gap ∆CT vanishes throughout the
entire crystal. Thus it becomes possible for electron
transitions to occur from the oxygen to the copper, and
the substance is transformed into an ordinary metal. 

This is the general picture of the transition from a
CT insulator to a metallic state on doping in the frame-
work of the ionic model. However, we suppose that in
HTSC compounds the transition from the insulator to
metal on increasing x first passes through a special
stage or, more precisely, through a concentration region
x0 < x < xc in which two-electron transitions can occur
from the oxygen ions to certain pairs of neighboring
cations, while the single-electron transitions are still
forbidden. 

Let us consider a cluster Cu2M2On, where the Cu
ions are “built into” the CuO2 plane and where M = Cu
in the CuO2 plane for Ln-214, M = Cu (in chains) for
YBa2Cu3O7, and M = Bi for Bi-2212 and Bi-2223. The
condition for the formation of –U centers at the Cu ions
in the CuO2 plane is the presence of a localized doped
carrier in the neighborhood of each M ion (in YBCO
and BSCCO the doped carriers are localized in the
CuO3 chains and in the BiO planes, respectively). In
Ln-214 there are two possible types of such clusters
(Fig. 2), in which the projections of the dopant ion on

the CuO2 plane are at distances of either 3a or ,
where a is the lattice constant in the CuO2 plane. In
both of these cases the presence of a doped carrier in
the neighborhood of each M ion decreases ∆CT for the
neighboring Cu ion and creates conditions (i.e., forms
a local minimum of the potential energy) for the simul-
taneous transition of two electrons to the internal Cu
ions from the oxygen ions surrounding this pair. We
note immediately that in the intermediate case, when

the M ions are found at a distance , pairs of neigh-
boring Cu ions such that doped carriers would be local-
ized in the neighborhoods of the adjacent cations do not
appear, and a –U center is not formed. 

The lowering of ∆CT for a given Cu ion owing to the
presence of a single hole around the neighboring Cu ion
can be estimated by taking into account the interaction
between nearest neighbors only and the fact that this
hole is “distributed” (Fig. 3) over twelve nearest oxy-
gen ions (the first and second coordination spheres).1

1 This assumption agrees with the experimentally determined solu-
bility limit of the dopant (see below).

a 5

a 8
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Then the lowering of the energy of the 3d10 state for the
given Cu ion is ∆E ≈ (1/4)e2/r ~ 1.8 eV. Here it is
assumed that on three of the twelve oxygen ions the
hole “sees” the unscreened Cu ion located at a distance
r = a/2 ≈ 2 Å from them (e is the charge of an electron
and a is the lattice constant in the CuO2 plane). Thus,
on account of the doping, the energy of these states is
below the bottom of the conduction band by ∆E ≈
1.8 eV, which is approximately 0.1–0.2 eV smaller than
∆CT ≈ 1.9–2.0 eV for La2CuO4. 

An additional lowering of the energy of the 3d10

state of Cu is achieved on account of the formation of a
bound state of two electrons on neighboring Cu ions in
the presence of two holes in the nearest-neighbor envi-
ronment of this pair. Such a lowering of the energy can
occur for the bonding orbital of a singlet hole pair, as
takes place in the H2 molecule. Here this analogy is
more appropriate, since the distance between electrons
on Cu ions is approximately 3.8 Å and is close to the
quantity R0ε∞ ~ 3.6 Å, where R0 ≈ 0.8 Å is the distance
between nuclei in the H2 molecule, and ε∞ ≈ 4.5 [18] is
the high-frequency dielectric constant. Therefore the
additional lowering of the density ∆EU on account of
the transition of two electrons to neighboring copper
ions in our case can be estimated from the relation

∆EU ~ ∆ /  ≈ 0.23 eV, where ∆  = 4.75 eV is
the binding energy in the H2 molecule. This estimate,
however, is too low, since the oxygen ions effectively
screen the repulsive interaction of the electrons on Cu
and weakly screen the electron-hole attraction. 

Thus it can be assumed that ∆CT, which has a value
of to 1.5–2.0 eV for doped cuprates, is depressed for
two-electron transitions to neighboring Cu ions. In this
case it appears that the holes occupy mainly the πpx, y
orbital [19], bringing about in a natural way a bonding
character of the orbital of the hole pair on account of the
geometry of the bonds in the CuO2 plane, so that holes can
be found in the space between Cu ions (Fig. 4). 

It follows from the foregoing analysis that upon the
creation of a local minimum of ∆CT (on account of dop-
ing) it is possible for electronic bound states to arise on
pairs of neighboring Cu ions, i.e., the formation of a −U
center can occur.2 In that case the singlet hole pair will
be localized in the vicinity of the –U center at a distance
~a/2. The localization region of the hole pair will be
limited by the condition such that the position of the
pair level coincides with the top of the valence band
(the energy of the pair level becomes higher as the
localization region of the hole pair increases). 

2 In Ba1 – xKxBiO3 the –U centers are formed on neighboring Bi
cations in the presence of three K ions in the eight cells surround-
ing each of them, i.e., each hole depresses ∆CT ≈ 2 eV by approx-
imately 0.6 eV. The smaller influence of a hole in Ba1 – xKxCuO3
in comparison with La-214 is explained by the proximity of the Bi
ion to the K ion, which is negatively charged (in relation to Ba).

EH2
ε∞

2
EH2
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Conduction can occur in such a system if these
localization regions of the hole pairs form a percolating
cluster, or, in other words, when the threshold of classi-
cal percolation is exceeded for the orbitals of the hole
pairs of the –U centers. The delocalization region of the
hole carriers in a cluster of –U centers is also limited by
the condition such that the position of the pair level
coincides with the top of the valence band. This mech-
anism will cause the pair level to be pinned precisely at
the top of the valence band (Fig. 1b) for x < xover , where
xover corresponds to the transition to the “overdoped”
region. In that case the localization regions of the carri-
ers will overlap substantially, and the pair level will
sink below the top of the valence band. 

On the other hand, if the M ions are located at a dis-
tance of 2a (Fig. 2d), for the inner Cu ion the gap ∆CT

vanishes for single-electron transitions as well.3 Such a
fragment is a nucleus of the metallic (nonsuperconduct-
ing) phase. At the corresponding concentrations the
entire crystal undergoes a transition to the normal metal
state. For this state there is a single-band electronic
spectrum in the vicinity of EF. In La2 – xSrxCuO4 the
charge carriers in the normal metal phase will be elec-
trons, since the filling of the band ρ < 1/2 on account of
the doping by divalent Sr, while in Nd2 – xCexCuO4 they
will be holes, since ρ > 1/2 on account of the doping by
tetravalent Ce.

3 In Ba1 – xKxBiO3 this occurs in the presence of four K ions in the
eight cells surrounding a Bi ion.

Fig. 3. The localization region of a doped hole in the CuO2
plane (shaded) includes 12 oxygen ions: (×) copper ions,
(s) oxygen ions, (j) Cu ions for which ∆CT is lowered by
1.8 eV by the presence of a hole at three nearest-neighbor
oxygen ions. 

Fig. 4. The formation of bonding orbitals of a singlet hole
pair of a –U center from πpx, y orbitals of oxygen.
SICS      Vol. 91      No. 3      2000
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3. PHASE DIAGRAM OF HTSC COMPOUNDS
OF THE Ln-214 TYPES

Let us now construct the phase diagram of the
HTSC compounds Ln-214, starting from the following
postulates: 

(1) The –U centers are formed on pairs of neighbor-
ing Cu ions belonging only to clusters with L = 3 and

L = . 

(2) The orbitals of hole pairs are found in the imme-
diate vicinity of these ion pairs at a distance ~a/2. 

(3) The conduction in the system arises upon perco-
lation of the –U centers. 

(4) The localized doped carriers cannot be found at
a distance of less than 2a. 

This last postulate follows from the existence of sol-
ubility limits for dopants in the Ln-214 lattice, xlim =
0.2–0.25 [20–22], the exceeding of which results in

5

(a) (b)

Fig. 5. A construction illustrating the method of determining

the percolation thresholds of units of length L =  in a
square lattice: (a) correct determination of the percolation
threshold of units of length L when the distance between
atoms is not less than L; (b) determination of the percolation

threshold for L =  in the presence of units with L = 2
gives a lowered value of xp because of the superposition of
circles. The triple lines indicate units with  L = 2. The regions
of overlap of the circles are shaded.

5

5

Concentration values determining the boundaries of the per-
colation regions for various L

L2 xp xm State

16 0.0371 0.0625 Insulator

13 0.0456 0.0769 "

10 0.0593 0.100 "

9 0.0659 0.111 HTSC

8 0.0742 0.125 Insulator

5 0.118 0.200 HTSC

4 0.148 0.250 Metal
JOURNAL OF EXPERIMENTAL 
decomposition of the single-phase state and/or disrup-
tion of the oxygen stoichiometry. The existence of a
solubility limit, we believe, is due to the presence of a
repulsive interaction of the localized doped carriers.
This repulsion will in turn affect the distribution of the
dopant ions if they have a high enough mobility at the
heat-treatment temperature. We therefore assume that
the dopant ions (more precisely, their projection on the
CuO2 plane) cannot be located at distances L < 2a. 

Under this assumption the threshold of two-dimen-
sional (2D) percolation for –U centers in a square lat-
tice can be determined in the following way. Suppose
we have a square mesh with a cell parameter a = 1, with
a fraction x of the mesh points (sites) occupied by
atoms, and we are to determine the percolation thresh-
old for units of length L (i.e., pairs of atoms located at
a distance L). For this we place each occupied site at the
center of a circle of radius L/2 (Fig. 5). The sum of the
areas of the circles constructed around these atoms is
S = xπL2/4. For a square lattice, percolation sets in
when S ≥ 0.466 [23]. It follows that the concentration
corresponding to the percolation threshold is

Here we are assuming that the distribution of the atoms
over sites is random and that L is the shortest distance
between atoms at the given concentration. Otherwise
there will be superpositions of circles (Fig. 5b) and xp

will be larger than that obtained from the above rela-
tion. Then the percolating cluster will include units of
length L and smaller (connecting sites found at shorter
distances). The maximum number of units of length L, xm,
can be achieved for an ordered arrangement of the atoms
in the square lattice with a constant L, i.e., xm = 1/L2. The
values of xp and xm for different L are given in Table 1.
Also indicated, in the right-hand column, is the state
(insulator, ordinary metal, or HTSC) that would corre-
spond to the given value of L in the case of an ordered
distribution of the dopant. 

Figure 6a shows the percolation region for units of
various lengths L (the corresponding value of L2 is
given to the left of each rectangle in the figure). The
left-hand side of each rectangle corresponds to the
threshold of 2D percolation for units of length L in the
case of a random distribution of the atoms in the
absence of units with lengths shorter than L. The right-
hand side corresponds to the points xm. The heavy lines
indicate the percolation regions for units with L = 3 and

L =  (i.e., clusters containing –U centers). It is in
these regions that high-Tc superconductivity is realized,
according to the proposed model. 

As we shall see below, the relationship between
order and disorder in the distribution of the atoms over
sites plays a very large role and determines all of the
features of the phase diagrams of HTSC compounds of
the Ln-214 type. The tendency toward ordering is due,
we think, to the difference of the ionic radii of Ln and

xp 0.593/L
2
.=

5
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the dopant. It should be largest for the pair La/Ba and
smallest for Nd/Ce. The degree of ordering should also
increase with increasing x (decreasing L). When we
talk about ordering of the dopant, we will mean the for-
mation of a large number of ordered clusters (less than
100 Å in size), separated by narrow regions (domain
walls) with a random distribution of the dopant.4 Thus
only short-range order is present in the system. It is
assumed that when xm is exceeded there is a transition
to a random distribution of atoms over sites, with the
formation of an infinite percolating cluster with a
smaller L. 

Let us now consider the different concentration
intervals in Fig. 6a, assuming that not more than two
types of units coexist at each point x > 0.1. 

(1) 0.20 < x < 0.25. Here 2D percolation occurs via
units with L = 2 (i.e., via clusters of normal (nonsuper-
conducting) metal). 

(2) 0.148 < x < 0.20. In this interval the 2D percola-
tion threshold for units with L = 2 depends on the

degree of ordering of the dopant atoms with L = . In

the presence of ordering of the atoms with L =  the
L = 2 percolation sets in at x = 0.2, whereas in the case
of a random distribution, percolation for L = 2 is achieved
at x = 0.148. Therefore, this region corresponds either to
high-Tc superconductivity or to a mixed state of a HTSC
and a normal (nonsuperconducting) metal. 

(3) 0.125 < x < 0.148. Here there is “pure” 2D per-

colation via units with L = . This region corresponds
to high-Tc superconductivity. 

(4) 0.118 < x < 0.125. In the presence of ordering of

the atoms with L =  the onset of percolation with L =

 occurs at x = 0.125, while in the case of a random

distribution of the atoms with L =  and L = , per-

colation for L =  is achieved at x = 0.118. This
region corresponds to an insulator in the first case and
to a HTSC in the second. 

(5) 0.111 < x < 0.118. This is the region of “pure”

2D percolation with L = , and here an insulating
state is realized. 

(6) 0.10 < x < 0.111. In the case of ordering of the
atoms with L = 3 (more precisely, in the absence of pairs

with L = ), 2D percolation with L = 3 sets in at x = 0.10,
while in the case of a random distribution of the atoms

with L = 3 and L =  there is no 2D percolation. In this
case the percolating cluster will include regions with

L = 3 (HTSC) and with L =  (insulator), and conduc-
tion is possible only in cases of 3D percolation (with
Josephson tunneling between CuO2 planes and/or with
tunneling between clusters with L = 3). 

4 Subject to the restriction L ≥ 2.

5
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(7) 0.066 < x < 0.10. In this interval there is no 2D per-
colation with L = 3. 3D percolation (and superconductiv-
ity) can still occur for x > 0.077, while for x < 0.077 there
is no 3D superconductivity. 

For comparison, Figs. 6b–6d shows the experimen-
tal phase diagrams of La2 – xBaxCuO4 [24], La2 – xSrxCuO4
[25], and Nd2 – xCexCuO4 [26]. The difference between the
phase diagrams of La2 – xBaxCuO4 and La2 – xSrxCuO4 is
that the dip in Tc occurs at xk = 0.125 in the first case and
at xk = 0.115 in the second. Comparing Figs. 6a and 6b–6d,
we can easily see that all of the extremal points on the
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Fig. 6. (a) Boundaries of the percolation regions for units
with different L. The left-hand side of each rectangle corre-
sponds to the threshold of 2D percolation for units of length L
(in the case of a random distribution of circles of radius L/2
over sites and in the absence of units with lengths shorter
than L). The right-hand side of each rectangle is the point of
the maximum number of units of length L, corresponding to
an ordered distribution of atoms in a square lattice with con-
stant L. To the left of each rectangle is the corresponding
value of L2. The height of the rectangles qualitatively
reflects the growth of the number of units with as L
decreases; (b)–(d) experimental phase diagrams Tc(x) for
Ln-214 HTSCs. The triangles on the diagrams indicate
compositions for which superconductivity is not observed
down to 4.2 K: (b) La2 – xBaxCuO4 [24], (c) La2 – xSrxCuO4
[25], (d) Nd2 – xCexCuO4 [26].
SICS      Vol. 91      No. 3      2000
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experimental phase diagrams practically coincide with
the boundaries of the percolation regions for units
with different L. The difference in the values of xk for
La2 – xBaxCuO4 and La2 – xSrxCuO4 is naturally attributed
to the high degree of ordering in the La/Ba sublattice in
comparison with La/Sr, as a result of which the perco-

lation threshold for units with L =  is shifted to x =

0.125—the point of maximum ordering for L = . 

The maximum of Tc at x ≈ 0.15 is due to the onset
(for x > 0.148) of clusters of the normal metal inside the
superconducting phase. Therefore, the superconductiv-
ity in this region is “weakened” in proportion to the
ratio of the superconducting and normal phases. This is
confirmed [27] by measurements of the volume of the
“Meissner phase” as a function of magnetic field. Those
measurements show that whereas for x = 0.15 this quantity
is practically independent of field, for x > 0.15 the volume
of the superconducting phase is noticeably decreased
by a magnetic field. At the same time, in low fields the
volume of the Meissner phase increases up to x ≈ 0.2
[20, 27], which attests to ordering of the dopants with

L = . 

In Nd2 – xCexCuO4 (Fig. 5b), because of the small
difference in the sizes of the Nd and Ce ions, there is
practically no ordering of Ce. Therefore 2D percolation

can occur only for x > 0.118 (with L = ). However,
because of the absence of ordering the percolating clus-
ter will also include regions with L = 2, and the perco-

lation threshold for L =  is shifted to the percolation
threshold for L = 2. This agrees with the experimental
phase diagram. 

Let us now discuss the region x < 0.12 for
La2 − xBaxCuO4 and La2 – xSrxCuO4 (the underdoped
region) in special detail. It follows from Fig. 6 that for
x < 0.077 even 3D percolation does not occur, and only
“traces” of superconductivity can be observed. This
conclusion agrees with the results of [28], it was
observed that 3D superconductivity did not occur in
La2 – xSrxCuO4 for x ≤ 0.08. As we have said, it would
be hard to expect 2D percolation (in any case for
La2 − xSrxCuO4) in the interval 0.08 < x < 0.12 either, on
account of the proximity of the percolation regions for
three different types of units with L2 = 8, 9, and 10.
Here there will most likely be 3D percolation and/or
tunneling between clusters with L = 3. This conclusion
explains the results of [29], where in La2 – xSrxCuO4 for
x < 0.15 a logarithmic divergence of the resistivity was
observed as T  0, with suppression of the supercon-
ductivity by a magnetic field. 

The proposed model offers another way of interpret-
ing the results of experiments on the observation of a
pseudogap in HTSCs in the underdoping and optimal
doping regions [30–32]. It follows from the experiment
that the pseudogap has the value and symmetry of the

5

8

5

5

5
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superconducting gap but collapses at T* > Tc (where T*
increases with decreasing x). 

We assume that the observed pseudogap is actually
the superconducting gap but that it arises at T > Tc as a
result of large fluctuations of the number of particles
due to transitions of electrons between pair levels and
the band. The point is that, unlike an ordinary super-
conductor with an electron-phonon interaction, where
the superconducting gap closes on account of thermal
excitations which decrease the number of states to
which the electron pairs can be scattered (the interac-
tion with real phonons), in our case the mechanism
leading to suppression of the gap is the filling of –U
centers by electrons (the interaction with real bosons).
Therefore the fluctuational decrease of the population
of electron pair levels will tend to increase the “super-
conducting” interaction and can lead to a fluctuational
“turning on” of superconductivity (a second-order tran-
sition) at T* > Tc > Tc0 (here Tc0 is the equilibrium value
of Tc) [33]. Such large fluctuations can occur in under-
doped and optimally doped samples when an apprecia-
ble fraction of the –U centers belong to small isolated
clusters. As x decreases, an ever-larger fraction of the
−U centers are found in small clusters, and the relative
fluctuations of the number of particles increase (i.e., T*
increases). On the other hand, in the “overdoped” sam-
ples, when practically all of the copper ions belong to
the infinite percolating cluster, such large fluctuations
become impossible. 

We can thus conclude that all of the features observed
on the phase diagrams of Ln-214 HTSCs are only a reflec-
tion of the geometrical relationships in a square lattice and
the competition between order and disorder in the distri-
bution of the dopant ions. The agreement of the calcu-
lated phase diagram with the experimental diagrams
confirms the conclusion that the superconductivity in
Ln-214 is due specifically to the investigated fragments
containing pairs of neighboring Cu ions in the CuO2
plane and is convincing evidence in favor of the pro-
posed model of high-Tc superconductivity. 

4. MECHANISM OF RELAXATION 
OF HOLE CARRIERS IN HTSCs

It follows from the above discussion that for x > x0,
two-electron transitions can occur to certain pairs of
neighboring copper ions, while single-electron transi-
tions are still forbidden. The pair level of the –U center
formed on a pair of neighboring Cu ions is located at
the top of the valence band and is essentially a pair res-
onance state. The transition of electrons from the oxy-
gen ions to these –U centers will give rise to additional
hole carriers in a certain neighborhood of the –U center
and will lead to the onset of hole conduction of the perco-
lation type at a dopant concentration x > xp (x0 < xp < xc).
We stress that for xp < x < xc the state is not the ordinary
metallic state (which arises only for x > xc) but is an
intermediate state (the –U phase) in which doping gives
 AND THEORETICAL PHYSICS      Vol. 91      No. 3      2000
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rise to –U centers, and the hole carriers that arise can
effectively interact with one another at these centers.
We assume that it is this concentration range xp < x < xc

that corresponds to the HTSC region on the phase dia-
gram. Let us now consider the kinetics of the hole car-
riers in the –U phase. 

Since the mechanism described leads to the appear-
ance of a pair electron level located near the top of the
oxygen valence band in the electron spectrum of the ini-
tial insulator phase, its hybridization with the states of the
oxygen band causes both the itinerant and localized states
to be broadened. As the two-particle hybridization
increases, the broadening of the pair level is [9, 10]

(here V is the hybridization constant, D is the density of
states in the valence band, and T is the temperature).
The corresponding broadening of the itinerant states is

The broadening of the itinerant states causes a smear-
ing of the features in the density of states of the oxygen
valence band and leads to its energy independence in
the interaction region (an analog of the “marginal”
Fermi liquid [34]). 

The occupation η of the pair states and the hole con-
centration n in the valence band are determined by the
equality of the rates of transitions from the band to the
pair level and back. If N is the concentration of –U cen-
ters, then 2Nη = n. The frequency of transitions from
the pair level to the band is equal to NηΓ  ∝ Tη. The rate
of the reverse process is determined by the frequency of
electron–electron scattering and is proportional to
γ2(1 – η) ∝  T2(1 – η). Hence

where the constant T0 is independent of temperature.
Hence n ∝  T in the low-temperature region, while at
high T it approaches a constant (equal to 2N). This result
agrees with the data of Hall measurements [35, 36] on
YBa2Cu3O7. 

Thus, on account of the interaction of the electrons
with –U centers, the distribution of hole carriers is non-
degenerate in the sense that the chemical potential µ = 0
for holes is zero for all T, whereas the condition of
degeneracy is that µ > 0. When one takes into account
the nondegenerate character of the distribution (the
absence of Pauli exclusion) and the high concentration
(1021–1022 cm–3), it is expected that the predominant
contribution to the relaxation process will be from elec-
tron–electron scattering (in this case, the scattering of
hole carriers on one another). However, since the inter-
action of two holes in a system with –U centers corre-
sponds to an effective attraction, this is not ordinary
Coulomb scattering. In the present case the main mech-
anism for electron–electron scattering is analogous to

Γ 4πkT DV( )2≈

γ Γ T .∝ ∝

η T
T0 T+
---------------,=
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that [37] which takes place in metals and alloys with a
strong electron–phonon interaction. In those sub-
stances, for the electrons found in a layer with a thick-
ness of about kΘD (ΘD is the Debye temperature) on the
Fermi surface, the effective electron–electron interaction
responsible for the attraction, involving the exchange of
virtual phonons, is much greater than the screening of the
Coulomb repulsion. Therefore the main channel of
electron–electron scattering in the present case will
also be due to the exchange of virtual phonons. The
contribution from these processes [37] becomes sub-
stantial at T < ΘD. Here the electron–electron scattering
amplitude is independent of the energy E of the parti-
cles being scattered for E ! kΘD and falls off sharply
for E ~ kΘD. For E > kΘD only the Coulomb interaction
contributes to the scattering amplitude. A contribution of
electron–electron scattering to the resistivity ρ (ρ = AT2)
greater than the electron–phonon contribution has been
observed experimentally in Al [38] at T < 4 K and in
superconductors with the A15 lattice [39] at T < 50 K.
Here the amplitude A was more than an order of mag-
nitude larger than the value calculated on the assump-
tion of a Coulomb scattering mechanism. 

Thus the main contribution to the hole carrier relax-
ation processes in HTSCs is from hole–hole scattering
at a –U center due to the exchange of a virtual boson
with energy Ω . Since Ω ~ 0.1–1 eV, the temperature
interval in which there is a substantial contribution
from scattering processes involving a virtual boson is
broadened to T ~ 103 K. 

The temperature dependence of the resistivity ρ(T)
in this model can be obtained from the Drude formula:
ρ = m*(ν/n)e2 (where m* is the effective mass of the
holes, and ν is the hole carrier scattering frequency).
For Ω @ E the scattering amplitude is independent of
the particle energy E. The scattering frequency ν will
therefore be determined by the hole concentration and
the statistical factor in the scattering cross section, i.e.,
the volume of phase space accessible to the particles
being scattered, which is proportional to E1 + E2 (here
E1 and E2 are the energies of the scattering particles
measured from the top of the oxygen band), i.e.,

For steady conduction one has E1 ~ E2 ~ γ ∝  T, ν ∝  nT ∝
T2, and thus ρ(T) ∝  T. A dependence of this form is
observed experimentally for optimally doped samples
of YBa2Cu3O7, La2 – xSrxCuO4, Bi2Sr2CaCu2Oy, etc. 

In overdoped HTSCs the additional carriers cause
the pair level to sink below the top of the valence band
by an amount δE. Then, as a result of the degeneracy of
the hole carriers at low temperatures, n ceases to
depend on T for γ ! δE. The temperature-dependent
part of the resistivity in this case takes the form

ν n E1 E2+( ).∝

ρ T( ) γ2
T

2
.∝ ∝
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A dependence of this kind is observed experimentally
in a number of HTSCs in the “overdoped” regime. As T
increases, when γ becomes of the same order as δE, a
transition to a linear ρ(T) dependence is observed. 

The predominant contribution of the electron–elec-
tron interaction to the scattering processes will affect
both the frequency dependence and temperature depen-
dence of the optical conductivity σopt :

(here ω is the frequency of the radiation and ν is the
“optical” relaxation frequency). For electron–electron
scattering (at a concentration n ~ 1022 cm–3) the colli-
sion frequency ν ≥ 1015 s–1. Therefore, in the IR range
we have ν @ ω, and the formula for the optical conduc-
tivity takes an even simpler form:

For optical relaxation we have E1 ~ ω, E2 ~ γ ∝  T, and
ν ∝  nω for ω @ Γ and ν ∝  nT for ω ! Γ. Hence σopt ∝
ω–1 for ω @ Γ and σopt ∝  T–1 for ω ! Γ. These results
are in complete agreement with the data of various
experiments [40, 41].

5. CONCLUSION

We have presented an elementary model for the
modification of the electron spectrum of a HTSC upon
doping, wherein the transition from an insulator to a
metallic state passes through a certain range of dopant
concentrations in which transitions of singlet electron
pairs can occur from the oxygen ions to two neighbor-
ing cations (a –U center), while the single-electron
transitions are still forbidden. We believe that it is this
range of concentrations that corresponds to the region
of high-Tc superconductivity, when the electron–elec-
tron attraction is due to the scattering of electron pairs
on –U centers. Conduction arises in the system as a
result of percolation via –U centers,5 or, more precisely,
via πpx, y orbitals of singlet hole pairs. The aforemen-
tioned features of the electron spectrum give rise to
qualitatively new properties of the system (a nondegen-
erate distribution of hole carriers, a predominant contri-
bution of electron–electron scattering to energy relax-
ation processes), which are responsible for the unusual
behavior of HTSCs in the normal state. Starting from
the proposed model we have constructed the phase dia-
gram of HTSC compounds of the Ln-214 class and
obtained complete agreement with experiment. Based
on the analysis presented here, one can conclude that
HTSCs are indeed a special class of solids in which a

5 Interestingly, the percolating cluster in the case of doped HTSCs of
the Ln-214 class is reminiscent of a Little “polymer” [42], while in
the case of the HTSCs YBa2Cu3O7 and Bi2Sr2CanCun + 1Oy (where
the doping holes are found in a plane parallel to the CuO2 plane) it
resembles a Ginzburg “sandwich” [43].

σopt en/m*( ) ν/ ω2 ν2
+( )[ ]=

σopt en/m*ν .=
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nonstandard mechanism of superconductivity, different
from the BCS mechanism, is realized. 
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Abstract—A variational method is proposed to find the magnetic field dependence of the magnetization of type-
II superconductors in the mixed state by a self-consistent technique. This model allows for suppression of the
order parameter to zero at the centers of Abrikosov vortices and also for the magnetic field dependence of the
order parameter. The results can be applied to the entire range of fields Hc1 ≤ H ≤ Hc2 for any values of the Gin-

zburg–Landau parameter κ > 1/ . It is shown that in weak fields where κ @ 1 the behavior of the magnetiza-
tion can be described exactly in the London approximation provided that the correct value of Hc1 is used. Near
the second critical field this dependence shows good agreement with the well-known Abrikosov result. It is also
shown that using the concept of isolated vortices and applying the principle of superposition of the fields and
currents generated by these vortices to calculate the magnetization gives inaccurate quantitative results even in
fairly weak fields. By going beyond these concepts, it was possible to allow more accurately for the influence
of the vortex cores on the magnetization behavior in the intermediate range of fields Hc1 ! H ! Hc2 and to iden-
tify the range of validity of various approximations used widely in the literature. © 2000 MAIK “Nauka/Inter-
periodica”.

2

1. INTRODUCTION

The magnetization of type-II superconductors is a
fundamental electromagnetic characteristic. It can be
used to find various important parameters of the super-
conductor such as the lower Hc1 and upper Hc2 critical
fields, and the Ginzburg–Landau parameter κ [1–3]. An
enormous number of experimental and theoretical stud-
ies have been devoted to magnetization (see, for exam-
ple, the reviews [4, 5]). In this context it is important to
obtain formulas for the magnetization of superconduc-
tors which would be suitable for quantitative calcula-
tions over a wide range of external magnetic fields. This
problem has been discussed in the literature for some
time (see, for example, [2–15]). Until recently, how-
ever, there was no convenient and reliable approach
which could be applied to calculate the magnetization
of a type-II superconductor analytically over the entire
range of external fields Hc1 ≤ H ≤ Hc2.

The problem of calculating the magnetic moment M
of a superconductor can be solved most easily in weak
fields H ! Hc2. Here the cores of the Abrikosov vortices
occupy only a small part of the volume and M(H) is
obtained for κ @ 1 using the London approximation
where the modulus of the order parameter is assumed
to be constant to calculate the local fields and currents
outside the core [1–3]. In the London model the depen-
dence of the magnetization M of an ideal isotropic
superconductor on the magnetic field H in the range
1063-7761/00/9103- $20.00 © 20588
Hc1 ! H ! Hc2 can be described using the Fetter for-
mula [6]:

(1)

In this formula and subsequently we use a system of
units [3] in which all the distances are normalized to the
London depth of penetration of the magnetic field λ, the

magnetic field is normalized to Hc  (where Hc is the
thermodynamic critical field), the order parameter is
normalized to its equilibrium value, and the vector
potential is normalized to "c/2eξ, where " is Planck’s
constant, c is the velocity of light, e is the electron
charge, and ξ is the coherence length. The dimension-
less values of the local magnetic field, the vector poten-
tial, and the order parameter are denoted by h, a, and f.
Note that in this system of units the flux quantum is
Φ0 = 2π/κ and Hc2 = κ. The lower critical field Hc1 can-
not be calculated self-consistently in the London
model. For this reason, Hc1 appears in Eq. (1) as a
parameter and for κ @ 1 may be written in the form [3]

(2)

The constant ε is determined by the structure of the
order parameter at the vortex core and its value ε ≈ 0.50
was determined by Hu [7] by means of a numerical
solution of the complete Ginzburg–Landau system of

4πM– Hc1
1

4κ
------ 2κ H Hc1–( )[ ] 1.34+ln{ } .–=

2

Hc1
1

2κ
------ κ ε+ln( ).=
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equations (see also [8]). The Fetter dependence (1) dif-
fers for H  Hc1. In the immediate vicinity of Hc1 the
magnetization in the London model can be obtained
numerically [14] or analytically using an approxima-
tion which only allows for vortex interaction with near-
est neighbors in the vortex lattice [3]. In order to extend
the validity of the London approximation, various
approaches have been developed which make partial
allowance for the contribution of the vortex cores to the
free energy of the superconductor (see [5, 13]). 

The London model cannot be applied in strong
fields because the vortex density is high in this case.
The behavior of the magnetization near the second crit-
ical field is described by the well-known Abrikosov
expression [3]:

(3)

where, for a triangular vortex lattice, we have βA = 1.16. 
In [10, 11] Clem proposed a fairly simple varia-

tional model which allows for the structure of the order
parameter near the center of the vortex. The following
trial function was used for the modulus of the order
parameter:

(4)

where r is the distance from the center of the vortex, ξν
and f∞ are variational parameters characterizing the
spatial distribution of the order parameter. This model
was used to obtain a formula for Hc1 [10,11] which for
κ @ 1 may be expressed in the form (2) where ε ≈ 0.52
which shows good agreement with the results of [7, 8].

Hao and Clem then generalized this variational
model to the case of a regular vortex lattice and
obtained a unified formula for M(H) which can be
applied over the entire range of fields Hc1 ≤ H ≤ Hc2
[11]. One of the most important conclusions of this
study is that, even in weak fields, the influence of the
vortex cores cannot be neglected and consequently the
London model cannot generally give an exact result
[11,12]. In the range of fields near Hc2 the dependence
M(H) obtained in [11] is almost the same as the Abri-
kosov result (3). This theory was subsequently general-
ized to the case of anisotropic superconductors [16].
The model proposed in [11] has been widely used in the
literature. The formula for the magnetization has been
actively used to analyze experimental data from mea-
surements of the magnetic moment of various super-
conductors such as: YBa2Cu3O7 – δ [17], YBa2Cu4O8
[18], Bi2Sr2Ca2Cu3O10 [19], (Tl,Pb)Sr2Ca2Cu3O9 and
Tl2Ba2Ca2Cu3O10 [20], HgBa2Ca2Cu3O8 + δ [21, 22],
Hg0.8Pb0.2Ba1.5Sr2Cu3O8 – δ [23], and Nd1.85Ce0.15CuO4 – δ
[24].

In the present paper we show that several errors
were made in the derivation of the formula for M(H) in

M
H Hc2–

4πβA 2κ2 1–( )
-----------------------------------, Hc2 H  ! Hc2,–=

f
f ∞r

r2 ξν
2+

--------------------,=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
[11]. For example, the expression for the free energy of
the vortex lattice F was formulated using the principle
of superposition of the fields and currents of isolated
vortices, which can only be applied in weak fields. At
the same time, also in the calculations of F the transi-
tion was made from summation over the reciprocal vor-
tex lattice to integration. The error associated with this
transition and also using an inaccurate value of Hc1 in
(1) led these authors [11] to the erroneous conclusion
that the London model is incorrectly formulated for
κ @1 even in weak fields. Unfortunately, this statement
is now accepted by a whole range of researchers. Addi-
tionally, the dependences of the variational parameters
ξν and f∞ on the magnetic induction given in [11]
(which determine the behavior of the magnetization to
a considerable extent) were not obtained self-consis-
tently and do not follow from the expression used for
the free energy, but are simply convenient approxima-
tions.

Here we use a variational model to obtain a self-
consistent derivation of the expression for M(H). In this
case, the spatial distribution of the order parameter was
simulated using the trial function (4) and the unit cell of
the regular vortex lattice was replaced by a circular one
(Wigner–Seitz approximation). The formula obtained
for M(H) can be applied over the entire range of fields
Hc1 ≤ H ≤ Hc2 for any values of the Ginzburg–Landau

parameter κ > 1/ . The result for the magnetization
in weak fields for κ @ 1 agrees with the London depen-
dence (allowing for the exact value of Hc1) whereas in
strong fields it shows good agreement with the Abriko-
sov result. The formula obtained for the magnetization
can easily be generalized to the case of anisotropic
superconductors where the vortices are oriented along
one of the principal axes of the crystal. For this orienta-
tion a scaling transformation exists which can be used
to calculate the magnetization of an anisotropic super-
conductor from an isotropic one simply by changing
the notation of κ [11]. This aspect is considered in Sec-
tion 2.

We also discuss the correctness of the approxima-
tion of isolated vortices in the mixed state of a super-
conductor. It is shown that even in weak fields, when
the density of vortex filaments is still low, using the
principle of superposition of the fields created by sepa-
rate vortices leads to appreciable quantitative errors in
calculations of the magnetization. 

2. WIGNER–SEITZ APPROXIMATION

In weak fields the distances between the neighbor-
ing vortex filaments are many times the dimensions of
the vortex cores. This means that the vortices can be
considered as independent interacting objects (see, for
example, [1–3, 13, 25, 26]). Thus, in weak fields the
principle of field superposition is satisfied: the self-
induced field of each filament is assumed to be the same
as that of an isolated filament and the local field at an

2
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arbitrary point in the superconductor is the sum of the
fields of all the filaments. The energy of the vortex lat-
tice is expressed as the sum of the self-energies of the
filaments and the energies of their pairwise interaction
[3, 25]. A particular case of this approach is the London
approximation which neglects the influence of the spa-
tial variation of the order parameter in the core of each
filament on its field which is valid when κ @ 1.

In strong fields the vortex concentration is high and
for this reason the concept of independent filament
interactions becomes meaningless (see, e.g., [3]). How-
ever, as was shown in [27], the local magnetic field in
the regular vortex lattice can still be represented as the
sum of terms interpreted as contributions from isolated
unit cells. In strong fields however, calculation of these
contributions is a nontrivial problem. Moreover, this
approach is artificial since the vortices are no longer
isolated objects and their properties are determined by
the lattice as a whole. In this case, it is far simpler to
calculate the local magnetic field distribution and the
order parameter in an isolated lattice unit cell. The area
of the cell is uniquely related to the magnetic induction
and the existence of translational invariance in the sys-
tem yields the boundary condition that the current den-
sity at the cell boundary is zero. This method can also
be used to obtain the well-known Abrikosov result for
the magnetization in fields near Hc2. This approach is
also convenient for numerical solutions of the Gin-
zburg–Landau equation over the entire range of exter-
nal fields Hc1 < H < Hc2 [28, 29]. 

An important simplification in this case is the
Wigner–Seitz approximation, i.e., replacing the hexag-
onal vortex cell with a circle of the same area. In [9] the
Wigner–Seitz approximation was applied to find the
magnetization in weak fields when κ @ 1 and the
results show good agreement with the London model.
This approximation has frequently been used in numer-
ical calculations of vortex structures [30–34]. It has
been found that in Ginzburg–Landau theory [30] and in
microscopic superconductivity theory [34] the approx-
imation of a circular cell yields good results not only in
weak fields but also near Hc2. 

In the present paper we propose a variational model
to obtain analytic expressions for the magnetization in
the Wigner–Seitz approximation. Instead of solving the
complete system of Ginzburg–Landau equations, we
use the trial function (4) to model the distribution of the
order parameter in a Wigner–Seitz cell and the corre-
sponding local magnetic field is calculated from the
second Ginzburg–Landau equation. The fact that
expression (4) contains two variational parameters
means that the vortex shape at the center of the cell can
be varied widely for an arbitrary induction. 

We shall calculate the magnetic field distribution in
a Wigner–Seitz cell. For the case of cylindrical symme-
JOURNAL OF EXPERIMENTAL 
try the second Ginzburg–Landau equation for the mag-
netic field can be expressed in the form [3]

(5)

Equation (5) allowing for (4) has the solution

(6)

where In is an nth-order Bessel function of an imagi-
nary argument, Kn is an nth-order Macdonald function,
and α and β are constant coefficients. The values of the
constants α and β can be determined from the condi-
tions for quantization of the magnetic field flux through
the Wigner–Seitz cell Φ = 2π/κ and zero superconduct-
ing current j = roth at its interface. This gives:

(7)

(8)

where we introduce the notation ρ = , R =

 is the cell radius, B = 2π/κAcell is the magnetic
induction, and Acell is the cell area. We stress that this
result can be applied for any κ and in particular for κ ~ 1
when Hc1 ~ Hc2 and the concept of independent fila-
ments is only valid in a narrow range of fields near Hc1. 

The free energy density of the vortex lattice may be
expressed in the form

F = Fcore + Fem,

where Fcore is the energy density associated with the
change in the order parameter near the centers of the
vortices, and Fem is the electromagnetic energy density
[3, 11]. In Ginzburg–Landau theory Fcore and Fem are
given by the expressions [3]

(9)

(10)

where γ is the phase of the order parameter and integra-
tion is performed over the cell area. We shall find the
dependence of F on the variational parameters and the
magnetic induction. For the electromagnetic energy
density using the second Ginzburg–Landau equation
from (10) we can easily obtain: Fem = Bh(0), where h(0)
is the magnetic field at the center of the vortex filament
[11]. If we substitute Eqs. (4) and (6)–(8) into this for-
mula, we have 

(11)
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Fig. 1. Curves of ξν(B) (a) and f∞(B) (b) for κ = 100; (1) obtained using the Wigner–Seitz approximation, (2) obtained using the
isolated vortex approximation, (3) using the Hao–Clem continuous approximation, and (4) using formulas (24) given in [11]. 
The expression for Fcore is derived from Eqs. (4) and (9)
and was calculated by Hao and Clem [11]:

(12)

Thus, we have obtained the dependence of the free
energy density of the vortex lattice on the magnetic
induction and the variational parameters ξν and f∞. In
order to achieve self-consistency in the theory the
dependences ξν(κ, B) and f∞(κ, B) should be obtained
by numerically minimizing the function F(κ, B, ξν, f∞)
with respect to ξν and f∞. Figures 1a and 1b gives the
curves ξν(B) and f∞(B) plotted for the case κ = 100
(curves 1). The numerical calculations show that for
arbitrary values of κ they can be approximated by the
following formulas:

(13)

(14)

where the constant is s = 0.985 and ξν0 is the value of
the parameter ξν at B = 0. This value is obtained from
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the condition ∂F/∂ξν = 0 for B = 0:

(15)

from which it follows that ξν0 ≈ /κ for κ @ 1. 

The magnetic field H is determined from the condi-
tion for minimum Gibbs thermodynamic potential G =
F – 2BH:

(16)

For the magnetization we then have

(17)

The magnetization can be conveniently expressed in
the form M = Mcore + Mem where the terms

(18)

are the contributions made to the total magnetization by
the energy associated with the change in the order
parameter at the vortex core and the electromagnetic
energy. 

For Mem using Eq. (11) we then obtain the following
expression:

(19)
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The relationship for –4πMcore from [11] still holds and,
in accordance with (9), has the form

(20)

The dependences ξν(κ, B) and f∞(κ, B) are determined
by Eqs. (13) and (14). According to Eq. (17), we have
H(B) = B – 4πM. Thus we obtained the implicit depen-
dence M(H).

We shall consider the limiting case κ @ 1. Then, in
the range of fields H ! Hc2 the variational parameters

can be assumed to be constant: ξν = ξν0 = /κ ! 1,
f∞ = 1 and it also follows from (20) that Mcore can be
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Fig. 2. Curves of –4πM(H) over the entire range of fields
Hc1 ≤ H ≤ Hc2 for κ = 100 obtained using different approx-
imations: (1) Wigner–Seitz approximation; (2) London
approximation [using the Fetter formula (1)] allowing for
the exact value of Hc1, and (3) Abrikosov approximation for
strong fields.

Fig. 3. Curves of –4πM(H) in weak fields Hc1 ≤ H ≤
0.05Hc2 for κ = 100 obtained using different approxima-
tions: (1) Wigner–Seitz approximation, (2) isolated vortex
approximation, (3) Hao–Clem continuous approximation,
(4) London approximation [using the Fetter formula (1)]
allowing for the exact value of Hc1.
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assumed to be constant. In this case, Eqs. (19) and (20)
can be expanded in powers of ξν and we obtain the
well-known expression [9]:

(21)

This expression holds as far as Hc1 where the Fetter
dependence (1) diverges. If H @ Hc1, we find R ! 1. In
this case, the expression for –4πM can be expanded not
only in powers of ξν but also in powers of R and we
obtain expression (1) with Hc1 in the form (2) with ε ≈
0.52.

Figure 2 gives the curve of –4πM(H) calculated
using Eqs. (19) and (20) for κ = 100 (curve 1). Figure 3
gives this curve in weak fields (curve 1). In weak fields
the dependence is the same as the Fetter curve (Fig. 2,
curve 2, Fig. 3, curve 4). In strong fields it shows good
agreement with the Abrikosov result (3) (Fig. 2,
curve 3). Note that the Abrikosov expression fairly
accurately describes the behavior of the magnetization
as far as fields of around 0.4Hc2. In fields close to Hc1
where the Fetter formula cannot be applied, our depen-
dence agrees with the calculations [14] for the London
model. Thus, in order to calculate the magnetization in
weak fields for κ @ 1 we can use the London approxi-
mation provided that we allow for the correct value of
Hc1. In fact, in weak fields in the London approxima-
tion, the influence of the structure of the order parame-
ter inside the cores of vortex filaments on the self-
energy of each filament can be taken into account by
introducing the exact value of Hc1. At the same time
when κ @ 1 the structure of the order parameter has a
negligible influence on the filament interaction energy
because the distances between neighboring filaments
are many times greater than their core dimensions. Our
result agrees with the conclusion reached by Hao and
Clem [11, 12] that the London approximation is inac-
curate even in weak fields for κ @ 1. The authors of [11]
used an inexact value of Hc1 in the Fetter expression (1)
(which is equivalent to using an inexact value of the
self-energy of an isolated vortex). In addition, an
approximation for the electromagnetic energy was used
in [11]. We shall show that the error associated with this
approximation is also significant.

Figure 4 gives the curve M(H) for κ = 5 (curve 1).
Note that in this case the magnetization can only be
described using the approximation of independent vor-
tices near Hc1. As for large κ, the Abrikosov depen-
dence (3) (Fig. 4, curve 2) remains valid as far as fields
around 0.4Hc2. 

The upper critical field in the variational model is
defined as the field at which the order parameter in the
entire superconductor becomes zero. According to the
approximation (14), f∞ (and thus the order parameter) is
zero for H ≈ 0.985κ. This value is fairly close to the true

4πM B( )– Hc1
1

2κ
------

K1 R( )
I1 R( )
-------------- 1

2I1
2 R( )

---------------++=

– B O ξν
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value Hc2 = κ. The small difference between Hc2 and κ
can be attributed to the approximate nature of the vari-
ational model. As a result, the values of the first and
second critical fields calculated using this model cannot
be identically equal to the true values Hc1 and Hc2.
Thus, although the value of the lower critical field is
fairly close to the exact value Hc1, it still differs from it.
The same applies to the upper critical field. 

For practical application of the formula for the mag-
netization, we can set s = 1 in (14). This leads to better
agreement between the dependence obtained and the
Abrikosov expression (3) for H  Hc2. In fields
below Hc2 our result remains the same. Small differ-
ences from the Abrikosov result for H  Hc2 can be
explained by the fact that the variational model uses a
circular vortex cell.

Thus, in the asymptotic limits of weak and strong
fields this dependence of the magnetization on the mag-
netic field agrees with the well-known results: the Lon-
don dependence (1) (for κ @ 1) and the Abrikosov

result (3) (in a wide range of values κ > 1/ ). In this
model the values of the first and second critical fields
are fairly close to the true values of Hc1 and Hc2. This
suggests that this dependence accurately describes the
behavior of the magnetization of type-II superconduc-
tors in the mixed state. 

The magnetic properties of anisotropic supercon-
ductors are described by Ginzburg–Landau equations
with an effective mass tensor. The variational model
can easily be generalized to this case if the vortices are
oriented along one of the principal axes of the crystal xi,
i = 1, 2, 3. Note that these directions of the external
magnetic field are usually used in experimental studies.
It was shown in [35] (see also [11]) that in this case, the
anisotropic Ginzburg–Landau equations can be trans-
formed to the isotropic form by means of a simple scal-
ing transformation. In order to obtain the dependence
of the magnetization on the external field in the aniso-
tropic case from the known dependence for an isotropic
superconductor, we need to replace the Ginzburg–Lan-

dau parameter κ with  = κ , where uα =

mα/ , and mi are the effective masses in the
direction of the xi axis (here the vortices are directed
along the xα axis). The case of arbitrary orientation of
the vortex filaments relative to the principal axes is
studied in [24]. 

3. APPROXIMATION OF ISOLATED VORTICES

The field h0 generated by an isolated vortex is a
decreasing solution of the Ginzburg–Landau equation (5)
over large distances. If the order parameter in the entire
superconductor is distributed according to Eq. (4), tak-
ing into account the flux quantization condition, we can

2

κ̃ α uα
1/2–

m1m2m3
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find the dependence of the field h0 on the distance from
the vortex axis r from (5) [11]:

(22)

Note that this formula is a particular case of Eq. (6) for
B  0.

The trial function (4) was used in [11, 12] to model
the distribution of the order parameter in each unit cell
of a regular vortex lattice. In these studies the local mag-
netic field over the entire range of fields Hc1 < H < Hc2 was
obtained from the sum of the contributions of isolated
cells. These contributions should be calculated from the
second Ginzburg–Landau equation for a given periodic
distribution of the order parameter. Instead it was assumed
in [11] that each contribution at an arbitrary point in the
superconductor is given by Eq. (22) which is valid for an
isolated vortex. In this approximation the local mag-
netic field hl(r) may be obtained by the simple superpo-
sition:

(23)

This approach retains the concept of vortices as isolated
objects. We shall therefore call it the “isolated vortex
approximation.”

As in the case of the London approximation, the
approach described above should only remain exact in
weak fields. Unlike the Wigner–Seitz model, this
approximation can be used to study various vortex lat-
tice configurations and also to study the vortex state
near the surface. We shall analyze the range of validity
of this approach. To do this we shall calculate the super-
conductor magnetization in this approximation over the
entire range of external fields Hc1 ≤ H ≤ Hc2 and we shall
compare this with known results. 

As before, the electromagnetic energy density in
this case is determined by the formula Fem = Bh(0) and
the magnetic field at the center of the vortex h(0) is

h0 r( )
f ∞K0 f ∞ r2 ξν
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κξνK1 f ∞ξν( )
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hl r( ) h0 r ri–( ).
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Fig. 4. Curves of –4πM(H) in fields Hc1 ≤ H ≤ Hc2 for κ = 5
obtained using various approximations: (1) Wigner–Seitz
approximation; (2) Abrikosov result (3). 
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made up of the self-induced field of the vortex and the
fields generated by all the other vortices. In this case,
for Fem for a triangular lattice we have 

(24)

where df = (4π/Bκ )1/2 is the vortex lattice constant.
Using Eq. (24), we find the dependence of the magne-
tization on the magnetic field. The values of the varia-
tional parameters are determined by numerical minimi-
zation of the free energy density. However, this proce-
dure using Eq. (24) directly is difficult since in strong
fields we need to have thousands of terms in each of the
single sums to achieve the required accuracy. In the
Appendix, Eq. (24) is transformed to a more suitable
form for the numerical calculations.

A numerical minimization of the free energy gives
the dependences ξν(B) and  f∞(B) plotted in Figs. 1a and
1b for κ = 100 (curves 2). The corresponding curve
−4πM(H) is plotted in Fig. 3 (curve 2) and Fig. 5
(curve 1) for κ = 100. In this case, the value of the sec-
ond critical field Hc2 is higher than the correct value,
being approximately 1.29Hc2. Thus, in this approxima-
tion the behavior of the magnetization near Hc2 does not
agree with the Abrikosov result because the concept of
isolated vortices becomes meaningless here as a result
of the substantial overlap of the vortex cores. 

For comparison the Fetter curve (1) is plotted in
Fig. 3 (curve 4) and Fig. 5 (curve 3). In weak fields the
dependence M(H) in the isolated vortex approximation
is almost the same as the corresponding curve in the
London approximation (for κ = 100 as far as fields H ≈

Fem
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Fig. 5. Curves of –4πM(H) in fields Hc1 ≤ H ≤ Hc2 for κ =
100 calculated using various approximations: (1) isolated
vortex approximation; (2) Hao–Clem continuous approxi-
mation, (3) London approximation [using the Fetter formula
(1)] allowing for the exact value of Hc1. 
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0.02Hc2 which is approximately 80Hc1). At the same
time, a comparison of the magnetization curves (Fig. 3,
curves 1 and 2) shows that even in fairly weak fields
H ≈ 0.05Hc2 for κ = 100, when the spacings between
the vortices are still large, the error associated with
using the isolated vortex approximation is quite appre-
ciable and is around 10%. This is because, in accor-
dance with formula (17), the magnetization is deter-
mined by the difference between two numbers, each
many times greater than the magnetization itself. Thus,
even small corrections to Fem may be significant.

To conclude this section we note that for H ! Hc2
we have calculated the free energy of a square vortex
lattice in the isolated vortex approximation. As was to
be predicted, this was higher than the free energy of a
triangular lattice. Thus, in the London approximation a
triangular lattice is thermodynamically more favorable
than a square one.

4. CONTINUOUS APPROXIMATION

In [11] a transition was made to summation over the
reciprocal lattice to calculate the free energy Fem, fol-
lowed by a transition to the continuous limit, i.e., the
sum was approximated by an integral. For κ @ 1 the
following approximations were given in [11] for ξν(B)
and f∞(B):

(25)

It can be seen from (25) that f∞ = 0 for B = Hc2 = κ. A
numerical check shows that the formulas (25) do not
follow from the expression for the free energy density
in the continuous approximation [11]. Minimizing F in
terms of the parameters ξν and f∞ gives the curves ξν(B)
and f∞(B) plotted in Figs. 1a and 1b for the case κ = 100
(curves 3). The dependences (25) are also plotted in
these figures (curves 4).

It can be seen from Figs. 1a and 1b that in the field
Hcr ≈ Hc2/2 the dependences ξν(B) and f∞(B) exhibit an
abrupt jump. This jump leads to a small jump in the
magnetization M(H) which is nevertheless incorrect
from the physical point of view (Fig. 5, curve 2). Such
an abrupt change in ξν(B) and f∞(B) occurs because in
addition to the absolute minimum of the free energy, a
local minimum occurs near the field Hcr. As B varies, the
absolute and local extrema abruptly change places. It can
be seen from Figs. 1b (curve 3) and Fig. 5 (curve 2) that
the field for which the order parameter in the supercon-
ductor becomes zero differs from the true value Hc2 = κ.
For κ = 100 this difference is approximately 6.6%. 

More significantly, using this approximation for Fem

gives an error in the behavior of M(H) in weak fields.
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Thus, the difference between the values of the magne-
tization obtained using the continuous approximation
(Fig. 3, curve 3) and the self-consistent (Wigner–Seitz)
and London approaches (Fig. 3, curves 1 and 4) is
around 10% for H ≈ 0.01Hc2, κ = 100. It can be seen
from Fig. 3 that a similar difference does not occur
when the isolated vortex approximation is used system-
atically (curve 2). Using the approximations (25) barely
alters the behavior of the magnetization in weak fields
although it eliminates the jump in M(H) and more accu-
rately describes the behavior of the magnetic moment
near Hc2. 

Consequently, the difference between the magneti-
zation in weak fields in the Hao–Clem model and the
magnetization in the London approximation for κ @ 1
is a result of the inaccuracy of the approximation [11]
for the electromagnetic energy.

5. CONCLUSIONS

Thus, we have used a variational model which
allows for the structure of the order parameter inside
the vortex core and the dependence of the modulus of
the order parameter on the magnetic field to determine
the magnetization of a homogeneous isotropic type-II
superconductor in the mixed state over the entire range
of magnetic fields Hc1 ≤ H ≤ Hc2. The model has been
generalized to the case of anisotropic superconductors
when the filaments are oriented along one of the princi-
pal axes of the crystal. In weak fields when κ @ 1 our
results agree with the predictions of the London model,
while in fields near the second critical value they agree
with the well-known results obtained by Abrikosov.
The proposed model is self-consistent and can be
applied for a quantitative description of the magnetiza-
tion of type-II superconductors. We have also analyzed
the accuracy of representing the mixed state as a set of
isolated vortices for κ @ 1. We have shown that calcu-
lating the magnetization using these representations
yields appreciable quantitative errors in weak fields. 
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APPENDIX

Electromagnetic Energy Density of a Vortex Lattice
in the Isolated Vortex Approximation

We shall express the field b created by a single vor-
tex array in a convenient form for numerical calcula-
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tions. We introduce coordinates centered on the axis of
one of the vortices with the x-axis perpendicular to the
plane in which the vortex array lies, the y-axis lying in
this plane and orthogonal to the vortices, and the z-axis
directed along the vortex axes. In this case, using (22)
we obtain

(A.1)

Let us perform Fourier transformation of a summand in
Eq. (A.1) with respect to the coordinate y:

Having integrated this expression with respect to y,
using known formulas for the definite integrals of the
Bessel functions [36] and the relationships

we can obtain

(A.2)
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(A.3)

Although this formula is fairly cumbersome, it is more
convenient for numerical calculations than Eq. (24)
since only a few terms (several tens) need be taken into
account in the double sums on the right-hand side of
Eq. (A.3).
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Abstract—Multiple-quantum spin dynamics is studied using analytic and numerical methods for one-dimen-
sional finite linear chains and rings of nuclear spins 1/2 coupled by dipole–dipole interactions. An approxima-
tion of dipole–dipole interaction between nearest neighbors having the same constants is used to obtain exact
expressions for the intensities of the multiple-quantum coherences in the spin systems studied, which are ini-
tially in thermal equilibrium and whose evolution is described by a two-spin two-quantum Hamiltonian. An
approximation of nearest neighbors with arbitrary dipole–dipole interaction constants is used to establish a sim-
ple relationship between the multiple-quantum dynamics and the dynamics of spin systems with an XY Hamil-
tonian. Numerical methods are developed to calculate the intensities of multiple-quantum coherences in multi-
ple-quantum NMR spectroscopy. The integral of motion is obtained to expand the matrix of the two-spin two-
quantum Hamiltonian into two independent blocks. Using the nearest-neighbor approximation the Hamiltonian
is factorized according to different values of the projection operator of the total spin momentum on the direction
of the external magnetic field. Results of calculations of the multiple-quantum dynamics in linear chains of
seven and eight nuclear spins and a six-spin ring are presented. It is shown that the evolution of the intensities
of the lowest-order multiple-quantum coherences in linear chains is accurately described allowing for dipole–
dipole interaction of nearest and next-nearest neighbors only. Numerical calculations are used to compare the
contributions of nearest and remote spins to the intensities of the multiple-quantum coherences. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

As a result of the local nature of the main spin–spin
interactions, NMR spectroscopy in solids can only be
used to obtain structural information on the nearest
neighborhoods of the nuclei being studied which
restricts the scope for studying structural characteris-
tics at distances greater than 6 Å [1]. In multiple-quan-
tum NMR spectroscopy, various multiple-spin transi-
tions are excited between the Zeeman levels of a system
of interacting spins in an external magnetic field which
in principle can be used to obtain information on the
structure at considerably greater distances. In this case,
information on the nuclear spin distribution in the solid
is extracted by determining the number N(τ) of spins
correlated as a result of spin–spin interactions at the
end of a preparation period of duration τ when the sys-
tem is exposed to a specially selected sequence of rf
pulses which ensure the appearance and evolution of
various multiple-quantum coherences [2]. Multiple-
quantum NMR has been successfully used to study pro-
ton distributions in liquid crystals [3], in simple organic
systems [2], and in light-sensitive polymer mixtures
[4]. The time evolution of the multiple-quantum coher-
ences has proved to be very sensitive to the spatial
dimension of the system of interacting nuclear spins
1063-7761/00/9103- $20.00 © 20597
[5], which opens up new prospects for structural inves-
tigations. 

The main theoretical method for interpreting multi-
ple-quantum NMR experiments is the statistical theory
[2]. According to [2], for a fairly long irradiation time
the probability of the excitation of all possible multiple-
spin transitions is the same. Determining the intensities
of the multiple-quantum coherences then simply
reduces to a combinatorial problem. In a group of N
interacting nuclear spins (S = 1/2) the number of transi-
tions responsible for multiple-quantum coherence of

order n is . According to the Stirling formula [6]
this expression for N > 6 is accurately approximated by
the Gaussian function 22N(πN)–1/2exp(–n2/N). By
approximating the experimentally observed depen-
dence of the multiple-quantum coherence intensities on
the time τ [2] (the multiple-quantum coherence profile)
by a Gaussian curve, we can find the number of spins
N(τ) coupled by spin–spin interactions. In a small clus-
ter the value of N(τ) corresponds to the number of
nuclear spins contained in it. However, in solids with a
macroscopically large number of spins this definition
becomes meaningless. The initial hypothesis of the sta-
tistical theory [2] that the probabilities of excitation of
various multiple-quantum coherences are the same for

C2N
N n–
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long times of excitation of the system by a series of
pulses (compared with the time determined by the
spin–spin interactions) remains unclear. Although the
experimental data for spin systems with a small number
of spins (6 < N < 8) agree qualitatively with the predic-
tions of the statistical theory [7], a more detailed anal-
ysis of multiple-quantum NMR experiments revealed
substantial discrepancies [8]. An experimental investi-
gation [9] of the profiles of multiquantum coherences
showed that in some cases, these profiles are in fact
described by Gaussian curves and in other cases, the
multiple-quantum coherences decay exponentially, as
was noted in [8]. It should be stressed that it is very dif-
ficult to uniquely determine the correspondence
between the profiles of multiple-quantum coherences
and the predictions of the statistical theory since we are
dealing with experimental signals obtained for long
excitation times when the imperfections of the pulse
sequences used and relaxation processes are important
factors. 

The phenomenological theory [10, 11] of multiple-
quantum NMR spectroscopy, like the theory of the
NMR line shape in systems with chemical exchange
[12], has played an important role in understanding var-
ious aspects of multiple-quantum dynamics. In this the-
ory, multiple-spin, multiple-quantum dynamics is con-
sidered as multipositional exchange of coherences in
Liouville space. A hopping model [10, 11] was used to
describe some features of multiple-quantum NMR
experiments. However, an explanation of the oscillating
nature of multiple-quantum dynamics was outside the
scope of phenomenological theory.

Multiple-quantum coherences form at times t > 
(ωloc is the characteristic frequency of the spin–spin
interactions). Hence, perturbation theory methods can-
not be used effectively to study multiple-spin, multiple-
quantum dynamics. This leaves us with numerical
methods of multiple-quantum NMR and exactly solv-
able models. 

A numerical analysis of the evolution (growth) of
multiple-quantum coherences is extremely difficult
since for a system of N spins the density matrix con-
tains 4N elements. Numerical solutions describing the
growth of multiple-quantum coherences have been
obtained for systems containing up to six spins by diag-
onalizing the Hamiltonian [13]. An iterative method
[14] was used for a numerical study of the growth of
multiple-quantum coherences in a nine-spin system.
However, the accuracy of the results obtained in [14]
for long times requires additional verification.

Multiple-spin multiple-quantum dynamics is simpli-
fied appreciably in one-dimensional spin systems. Thus,
an experimental investigation [1, 15] of multiple-quantum
NMR in calcium hydroxyapatite Ca5(OH)(PO4)3 contain-
ing quasi-one-dimensional chains of hydroxyl-group pro-
tons opened up a new direction for the evolution of theo-
retical methods of analyzing multiple-spin multiple-

ωloc
1–
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quantum dynamics. Since the constant of the dipole–
dipole interactions of neighboring nuclear spins in a
chain is 20 times the maximum constant of dipole–
dipole interactions of neighboring chains, we can
assume that in calcium hydroxyapatite the main contri-
bution to the intensity of the multiple-quantum coher-
ences is made by the nuclear spins of one-dimensional
linear chains. It is also significant that the dipole–dipole
interaction of the spins decreases with distance r as r–3

and thus the dipole–dipole interaction of the next near-
est neighbors is eight times weaker than the interactions
of the nearest neighbors. This gives rise to the problem
of multiple-quantum NMR of one-dimensional linear
chains of nuclear spins in which only nearest neighbors
interact. This problem was solved exactly in the ther-
modynamic limit when the number of spins in the chain
is N  ∞ at high [16, 17] and low [18] temperatures. 

Problems involving multiple-quantum NMR of
finite linear chains and rings of nuclear spins when
allowance is only made for spin–spin interactions of
nearest neighbors belong to the exactly solvable one-
dimensional models [19] and their solution can be used
to study multiple-quantum dynamics of various clusters
of nuclear spins.

In the present paper we use analytic and numerical
methods to study multiple-quantum spin dynamics for
one-dimensional linear chains and rings of nuclear
spins. For these systems which are initially in thermal
equilibrium, whose evolution is described by a two-
spin, two-quantum Hamiltonian [2], we obtain exact
formulas for the intensities of multiple-quantum coher-
ences when allowance is only made for nearest-neigh-
bor interactions and the constants of these interactions
are assumed to be the same. It is shown that in the near-
est-neighbor approximation (for arbitrary dipole–
dipole interaction constants) the multiple-quantum
dynamics can be reduced by means of a simple trans-
formation to spin dynamics described by the flip-flop
Hamiltonian [20]. Thus, an example which can be
achieved experimentally was constructed for the first
time when as a result of dipole–dipole interaction of
nuclear spins in a solid, only the part responsible for
flip-flop processes remains. This implies that multiple-
quantum dynamics is closely related to the dynamics of
systems of nuclear spins with an XY Hamiltonian [19,
21, 22]. Numerical methods have also been developed
to calculate multiple-quantum coherences in multiple-
quantum NMR spectroscopy in solids. These are imple-
mented using an integral of motion which can expand
the matrix of the dipole–dipole interactions into two
independent blocks. In order to obtain a numerical
solution of the problem of multiple-quantum NMR in
the nearest-neighbor approximation, the two-spin two-
quantum Hamiltonian is factorized in terms of different
values of the operator of the total spin momentum on
the direction of the external magnetic field. Numerical
solutions of the problem of multiple-quantum NMR are
obtained for linear chains consisting of seven and eight
spins, and a ring of six spins. It is shown that in these
AND THEORETICAL PHYSICS      Vol. 91      No. 3      2000
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linear chains the time evolution of the zeroth- and sec-
ond-order multiple-quantum coherences is described
allowing only for dipole–dipole interaction of nearest
and next-nearest neighbors. The contributions of near-
est and remote spins to the intensities of multiple-quan-
tum coherences of various orders are compared on the
basis of the numerical calculations.

2. INTENSITIES OF MULTIPLE-QUANTUM 
COHERENCES IN SOLIDS

Multiple-quantum NMR spectroscopy in solids uses
a two-dimensional NMR experiment in which a prepa-
ration period of duration τ, free evolution over the time
interval t1, a mixing period τ, and detection are system-
atically carried out [2]. In the preparation period the
system is exposed to a sequence of pulses which leads
to the appearance and evolution of multiple-quantum
coherences. We shall assume that the exciting sequence is
periodic and that one period contains eight rf pulses [2]:

(1)

where ∆, ∆' = 2∆ + tp are the time intervals between

pulses (tp is the pulse duration), X and  are resonant
pulses having the phase difference π which flip the
spins by 90° about the x axis of coordinates rotating at
the pulse carrier frequency [23]. Then the average
Hamiltonian * determining the dynamics of the
nuclear spin system may be written in the form [17]

* = *+2 + *–2, (2)

where

(3)

In (3)  are the raising and lowering spin angular
momentum operators of spin j. The dipolar coupling
constant Djk between spins j and k is given by 

(4)

where rjk is the distance between spins j and k, θjk is the
angle between the internuclear vector rjk and the exter-
nal magnetic field H0, and γ is the gyromagnetic ratio.
In one-dimensional linear chains, the angle θjk is the
same for all spin pairs. We shall subsequently assume
that for these chains θjk ≡ 0. The distance between near-
est neighbors rii + 1 can generally differ for different
spins. However, in order to find an exact solution, we
shall assume that they are the same.

∆
2
--- X– ∆'– X– ∆– X– ∆'– X– ∆– X–
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∆
2
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--- D jkI j

± Ik
± .

j k<
∑–=
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D jk
γ2

"

2r jk
3

--------- 1 3 θ jkcos
2

–( ),=
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Assuming that a system of nuclear spins is initially
in thermal equilibrium with the lattice, at the end of the
preparation period, apart from terms which do not
depend on τ, in the high-temperature approximation the
density matrix ρ(τ) is given by:

(5)

where Iz is the projection of the total spin angular
momentum on the z direction of the external field H0.
Following [17], we expand the density matrix ρ(τ) as a
series:

(6)

where ρn(τ) is the contribution to ρ(τ) made by multi-
ple-quantum coherences of order n. Special experimen-
tal methods are used to separate the signals from the
multiple-quantum coherences of various orders [2, 24,
25]. These methods can be described by introducing the
offset field ∆ω over the evolution period of the system.
Assuming that ωloc ! |∆ω| (ωloc is the local dipole fre-
quency determined by the dipole–dipole interaction),
we find that the density matrix ρ(τ + t1) at the end of the
free evolution period has the form 

(7)

Taking into account Eq. (7), we rewrite Eq. (6) as follows:

(8)

During the mixing period the multiple-quantum coher-
ences are transformed into longitudinal magnetization.
Over this period we use a multipulse sequence which
changes the sign of the Hamiltonian (2) as in time-
reversal experiments in a system of interacting nuclear
spins [26, 27]. This sequence ensures that different con-
tributions to the multiple-quantum coherence of a given
order n have the same phases. At the end of the mixing
period the density matrix has the form

(9)

In this case, the longitudinal polarization Iz(τ, t1) is
defined as follows [17]:

(10)

ρ τ( ) i*τ–( )Iz i*τ( ),expexp=

ρ τ( ) ρn τ( ),
n

∑=

ρ τ t1+( ) i∆ωt1Iz( )ρ τ( ) i∆ωt1Iz–( ).expexp=

τ τ t1+( ) in∆ωt1( )ρn τ( ).exp
n

∑=

ρ 2τ t1+( ) i*τ( ) i∆ωt1Iz( ) i– *τ( )expexpexp=

× Iz i*τ( ) i– ∆ωt1Iz( ) i– *τ( ).expexpexp

Iz τ t1,( ) Tr Izρ 2τ t1+( ){ }=

=  Tr ρ τ( ) i∆ωt1Iz( )ρ τ( ) i∆ωt1Iz–( )expexp{ }

=  einφTr ρm τ( )ρn τ( ){ }
n m,
∑

=  einφδ m n,– Tr ρ n– τ( )ρn τ( ){ }
n m,
∑
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where δ–m, n is the Kronecker delta and φ = ∆ωt1. Thus,
the intensity of the multiple-quantum coherence of
order n is determined using the formula

(11)

3. MULTIPLE-QUANTUM NUCLEAR MAGNETIC 
RESONANCE IN NUCLEAR SPIN RING 

SYSTEMS

We shall consider a ring of N nuclear spins in an
external magnetic field H0 perpendicular to the plane of
the ring. It follows from Eq. (2) that the Hamiltonian of
this system is given by

(12)

where b = –Djj + 1/2. It is assumed that the cyclicity con-

dition, i.e.,  =  ( j = 1, 2, …, N) is satisfied in this
system. In order to diagonalize the Hamiltonian (12)

we need to convert from the spin operators  to the

fermion operators , Ψk which is achieved by means
of the Jourdan–Wigner transformation [19]:

(13)

Here,  is the projection operator of the spin angular

momentum of nucleus n on the z axis (Iz = ).

In the fermion representation, the Hamiltonian * (12)
may be rewritten as follows:

(14)

The Hamiltonian (12) does not commute with Iz, but it
is easy to check that 

(15)

The integral of motion exp(iπIz) may be used to repre-
sent the Hamiltonian * as two blocks having dimen-
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n
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sions of 2N – 1 × 2N – 1.1 It is convenient to introduce the
operator 

(16)

which has an integer-value spectrum (0, 1, 2, …, N). It
is easy to check that in the fermion representation we
have 

(17)

and using Eq. (17), the formula for * (14) can be trans-
formed to give

(18)

In accordance with Eq. (15), * is divided into two
blocks, *–1 and *1 for eiπM = –1 and eiπM = 1 (for odd
and even eigenvalues of the operator M). The block *–1
has the standard form [19]:

(19)

needed for its diagonalization. At the same time, the
block *1 in accordance with (18) does not have the
standard form [19] since the interaction of fermions 1
and N has the opposite sign relative to the interaction of
the remaining fermions. For an odd number of spins N
we can reduce *1 to the standard form. Transforming

to the new fermion operators :

(20)

we obtain from (18) for odd N

(21)

Multiple-quantum NMR in systems with even N
requires a different approach and will be analyzed
below.

3.1. Multiple-Quantum Nuclear Magnetic Resonance
in Rings with an Odd Number of Spins

For odd N the diagonalization of * is performed in
two stages which we shall illustrate using the example

1 This division of the Hamiltonian was used in [28] to derive ana-
lytic formulas for multiple-quantum coherences for N = 2 and 3.

M
N
2
---- Iz,–=

M Ψk
+Ψk,

k 1=

N

∑=

* b ΨnΨn 1+ Ψn 1+
+ Ψn

++( )
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+ Ψ1

+.+
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ΨN 1+ Ψ1,=
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+
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N

∑=
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of the diagonalization of *–1. Performing the Fourier
transformation 

(22)

we rewrite *–1 using the fermion creation and annihi-

lation operators  and ak in the form

(23)

At the second stage we need to perform the Bogoly-
ubov transformation [29]:

(24)

The diagonal representation of *–1 in terms of the fer-

mion operators Dk and  is written as follows:

(25)

The Hamiltonian block *+1 can be diagonalized in
exactly the same way. For eiπM = –1 the projection oper-

ator of the total spin angular momentum  on the z
axis in the fermion representation has the form

(26)

Equation (26) determines the initial condition for the
equation for the density matrix σ–1(t) (" = 1)

(27)

whose solution may be expressed as

(28)

where

(29)

(30)
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(31)

The structure of Eqs. (29)–(31) suggests that 
describes a zeroth-order multiple-quantum coherence

and  and  describe multiple-quantum
coherences of the second and “minus” second orders.
The intensities of these coherences are determined by
Eq. (11) and are given by

(32)

Similar formulas are obtained for the block *1 of the
Hamiltonian * as a result of which the intensities of
the multiple-quantum coherences (32) are doubled. The
sum of the intensities of the multiple-quantum coher-
ences does not depend on time [1,30] which follows
directly from Eqs. (6) and (11). Normalizing this sum
to unity, we finally obtain

(33)

As in the thermodynamic limit N  ∞ in linear chains
[16, 17], the profile of the multiple-quantum coher-
ences in the rings only consists of lines corresponding
to multiple-quantum coherences of the zeroth and
plus/minus second orders. The intensities of the multi-
ple-quantum coherences averaged over the irradiation
time T are determined using the formulas 

(34)

3.2. Multiple-quantum Nuclear Magnetic Resonance 
in Rings with an Even Number of Spins

In order to analyze multiple-quantum coherences in
rings with an even number of nuclear spins N we again
consider the Hamiltonian * in the spin space (12). Let
us assume that 1, 2, …, N is the numbers of spins in the
ring. We perform a unitary transformation U of the
Hamiltonian * which is a composition of π pulses
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which flip even-numbered spins through 180° about the
x axis:

(35)

where  is the projection operator of the spin angular
momentum of nucleus k on the x axis. As a result, the

transformed Hamiltonian  has the following struc-
ture:

(36)

and the initial density matrix has the form

(37)

Equations (36) and (37) show that the problem of mul-
tiple-quantum dynamics is reduced to the dynamics of
spin systems with an XY Hamiltonian solved in [21].
Using [21], we can obtain a solution for the density
matrix  of a system with the Hamiltonian (36) and

the initial condition (37). The density matrix  con-

sists of blocks  corresponding to even and odd
eigenvalues of the operator M [21]:

(38)

where the single-fermion energies (in frequency units)

 for odd (α = o) and even (α = e) eigenvalues M are
respectively given by [21]: 

(39)

It is easy to check that the sum over j in Eq. (38) is non-
zero (and equal to N) only when k – k' = ±π. Also bear-
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ing in mind that  = –  (α = o, e) we write the den-

sity matrix  in the form

(40)

Performing a transformation inverse of (37), 

(41)

we express the density matrix σα(τ) describing the mul-
tiple-quantum dynamics of a ring having an even num-
ber of nuclear spins, in the form

(42)

where

(43)

(44)

(45)

Here  describes transitions between Zeeman lev-
els of the spin system in an external magnetic field
which are responsible for zeroth-order multiple-quan-
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tum coherence and  and  describe multi-
ple-quantum coherences of plus/minus second order.
The intensities of the multiple-quantum coherences are
determined by Eq. (11) as before and in normalized
form are given by

(46)

(47)

The profile of the multiple-quantum coherences again
consisted of only three lines corresponding to multiple-
quantum coherences of zeroth and plus/minus second
orders. It is interesting to note that in all arguments in
the Eqs. (46) and (47) the cosine may be replaced by a
sine without changing the intensities of the multiple-
quantum coherences. Despite the difference between
Eqs. (33) and (46), (47) for the intensities of multiple-
quantum coherences in rings with even and odd num-
bers of nuclear spins, the intensities of the multiple-
quantum coherences averaged over the excitation time
are the same for both cases and are determined by
Eqs. (34).

4. MULTIPLE-QUANTUM NUCLEAR
MAGNETIC RESONANCE IN LINEAR CHAINS 

OF NUCLEAR SPINS

The Hamiltonian of the system of nuclear spins in
linear chains only differs from the Hamiltonian of ring
systems in that there is no interaction of nuclear spins 1
and N at the ends of the chains:

(48)

We perform the transformation U of the Hamiltonian (48)

(49)

applying selective π pulses which flip the spins in even
positions through 180° about the x-axis of the rotating
reference frame. As a result, we obtain

(50)
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The initial density matrix σ(0) = Iz is then transformed 

(51)

A solution of the equation for the density matrix σ(t) of
a spin system with the Hamiltonian (50) subject to the
initial condition (51) may be obtained by generalizing
the analytic solution obtained in [22]. Thus, we find

(52)

where the fermion operators βk are related to the spin
operators by 

(53)

and the single-fermion energies (in frequency units) are
determined using the formula 

(54)

It is convenient to replace the wave vector k with k =

π − . We then have
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Taking into account Eq. (55), we can rewrite Eq. (52)
for the density matrix  as follows:
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After performing a transformation the inverse of
Eq. (49), we obtain the density matrix σ(t) describing
the multiple-quantum dynamics of a one-dimensional
linear chain of nuclear spins in the form

(57)

where

(58)

(59)

(60)

According to Eq. (11), the normalized intensities of the
zeroth- and plus/minus second-order multiple-quantum
coherences, which only occur in a linear spin chain
when allowance is made for nearest-neighbor interac-
tions, are given by 

(61)
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In the thermodynamic limit when N  ∞, by replac-
ing summation with integration in Eqs. (61), we arrive
at the formulas

(62)

where F0(x) is the zeroth-order Bessel function. The
formulas (62) are the same as those obtained in [16, 17]
by a method valid only for N @ 1. The intensities of the
multiple-quantum coherences averaged over the excita-
tion time T for a linear chain having an odd number of
nuclear spins are given by

(63)

Similar formulas for a linear chain having an even num-
ber of nuclear spins have the form

(64)

and agree with the expressions obtained for N  ∞ in
[16, 17]. Unlike rings in linear chains the average inten-
sities of the multiple-quantum coherences differ for
even and odd N.

5. RELATIONSHIP 
BETWEEN MULTIPLE-QUANTUM DYNAMICS 

OF SPIN SYSTEMS AND DYNAMICS 
DESCRIBED BY AN XY HAMILTONIAN

A study of the multiple-quantum dynamics of spin
systems in rings having an even number of nuclear
spins N and in finite linear chains carried out in Sec-
tions 3.2 and 4 demonstrates a clear relationship
between multiple-quantum dynamics and the dynamics
of systems with an XY Hamiltonian [31]. Although in
multiple-quantum NMR all possible transitions are
excited between the Zeeman levels of a multiple-spin
system in an external magnetic field [2], in the approx-
imation of nearest-neighbor interaction multiple-quan-
tum dynamics is closely related to the dynamics deter-
mined by the XY Hamiltonian when all the transitions
are merely attributable to flip-flop processes [20]. Let
us assume that the initial density matrix of a linear
chain consisting of N spins is 

Then, as a result of the time evolution described by the
two-spin, two-quantum Hamiltonian [see (48)], at the
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end of the preparation period the density matrix σ(t) is
given by 

(65)

and all multiple-quantum coherences of odd orders
evolve in the system [24]. At the same time, by per-
forming the transformation (49) we obtain

(66)

where the Hamiltonian  is given by Eq. (50). In this
case, at the end of the preparation period only multiple-
quantum coherences of plus/minus first order appear.
The exact solutions obtained above can explain this fac-
tor. If the term in the expression for the density matrix

(56) contains raising  and lowering  operators with
odd or even l and l', it is responsible for zeroth-order
multiple-quantum coherence. If the parity of l and l' dif-
fers, the term obtained after transforming (49) becomes
responsible for multiple-quantum coherence of
plus/minus second order. 

The approximation of nearest-neighbor interactions
does not necessarily lead to an exactly solvable model.
If the spacings between the spins and thus the dipole–
dipole interaction constants differ, the methods pro-
posed above do not lead to exactly solvable problems of
multiple-quantum dynamics. In this case, in principle
multiple-quantum coherences of all even orders may
occur.

We propose a simple experiment to demonstrate the
relationship between multiple-quantum dynamics and
the dynamics determined by the XY Hamiltonian. For
this we need to study the multiple-quantum dynamics
of benzene molecules dissolved in a liquid-crystal
matrix [32], by exposing the system to a sequence of

pulses (1). The initial condition σ(0) =  is created by
cross polarization [33] between the 13C nucleus and a
proton associated with it in the benzene. A similar pro-
cess can be used to measure the polarization of the first
proton at time τ which is not too large so that interac-
tions with next-nearest neighbors can be neglected. In
this multiple-quantum experiment the polarization of

the first proton  is determined by 

(67)

Performing the transformation (35) in (67) we find

(68)

where  is an XY Hamiltonian. The experimentally

observed signal  can be compared with the simi-
lar theoretical result for the dynamics in a nuclear spin
ring with an XY Hamiltonian, obtained in [21]. This
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relationship between multiple-quantum dynamics and
the dynamics of a system with an XY Hamiltonian
allows us to create an effective XY Hamiltonian in a
solid. A completely different method was used to solve
the analogous problem for liquids [34]. 

6. NUMERICAL ANALYSIS 
OF MULTIPLE-QUANTUM NUCLEAR 
MAGNETIC RESONANCE IN RINGS

AND LINEAR CHAINS

In order to make numerical calculations for the
intensities of multiple-quantum coherences it is conve-
nient to use the formula

(69)

derived directly from Eq. (11). The prime after the sum-
mation sign in Eq. (69) implies that summation is
merely limited to states i, j for which the projections
Mi , Mj of the total spin momentum on the z axis satisfy 

(70)

In order to make calculations using Eq. (69) we need to
find the density matrix 

(71)

where the orthogonal matrix C (CCT = E) diagonalizes
the Hamiltonian of the system:

(72)

In order to diagonalize the Hamiltonian * we used the
integral of motion exp(–iπIz) (15) which divides the
matrix * into two blocks of dimensions 2N – 1 × 2N – 1.
More effective factorization can be achieved in linear
chains in the approximation of nearest-neighbor inter-
actions when, however, the dipole–dipole interaction
constants of the pairs differ. For this we need to perform
the transformation (49) and factorize the matrix of the

Hamiltonian  (50) into blocks of dimensions  ×

 (k = 0, 1, 2, …, N) in terms of eigenvalues of the

operator Iz which commutes with . For the following
calculations we need to perform a transformation the
inverse of Eq. (49). The accuracy of the calculations was
monitored by checking the normalization condition

 = 1 and comparing the numerical solutions in
the approximation of nearest-neighbor interactions with
the analytic solutions presented in Sections 3 and 4.

Figure 1 gives time dependences of the multiple-
quantum coherences of a linear chain of seven nuclear
spins coupled by dipole–dipole interaction. For τ = 0 only
zeroth-order multiple-quantum transitions occurred in
the system. In the initial period of evolution multiple-
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Fig. 1. Time dependences of the intensities of multiple-quantum coherences in a linear chain of seven spins coupled by dipole–dipole
interaction, b = –Dii + 1/2 = 2π × 1475 s–1: (a) intensities of multiple-quantum coherences of zeroth J0(t) and second J2(t) + J–2(t)
orders; (b) intensities of multiple-quantum coherences of fourth J4(t) + J–4(t) and sixth J6(t) + J–6(t) orders. The horizontal straight

lines give the time-averaged multiple-quantum coherence intensities  = T–1 , T = 1 ms.Jn Jn τ( ) τd
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Fig. 2. Time dependences of the intensities of multiple-quantum coherences in a linear chain of seven spins coupled by dipole–dipole
interaction of nearest and next-nearest neighbors, b = –Dii + 1/2 = 2π × 1475 s–1: (a) intensities of multiple-quantum coherences of
zeroth J0(t) and second J2(t) + J–2(t) orders; (b) intensities of multiple-quantum coherences of fourth  J4(t) + J–4(t) and sixth J6(t) +
J–6(t) orders. 
quantum coherences of plus/minus second order appear
and the multiple-quantum dynamics at this stage can be
described as exchange between multiple-quantum
coherences of zeroth and plus/minus second orders. For
0 < τ < 0.2 ms the multiple-quantum dynamics of a
seven-spin system is fairly accurately described by the
analytic solution (61) obtained in the nearest-neighbor
approximation. For τ > 0.1 ms fourth-order multiple-
quantum transitions occur and for τ > 0.4 ms sixth-
order transitions. Figure 2 shows the multiple-quantum
dynamics of a seven-spin system for the case when only
nearest- and next-nearest-neighbor interactions are
taken into account. A comparison of Figs. 1a and 2a
shows that allowance for dipole–dipole interaction of
JOURNAL OF EXPERIMENTAL 
nearest and next-nearest neighbors is quite sufficient
for quantitative agreement between the multiple-quan-
tum dynamics of zeroth- and second-order coherences
and the similar dynamics allowing for all dipole–dipole
interactions in the system, at least as far as time τ ≈ 1 ms.
Small differences in the dynamics of fourth- and sixth-
order multiple-quantum coherences (Figs. 1b and 2b)
are insufficient to obtain structural information outside
the limits of two “coordination spheres” in quasi-one-
dimensional systems. In two-dimensional and three-
dimensional systems the small contribution made by
various remote nuclear spins to the intensity of the mul-
tiple-quantum coherences is compensated by the large
number of these spins. Thus, multiple-quantum NMR
AND THEORETICAL PHYSICS      Vol. 91      No. 3      2000
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Fig. 3. Time dependences of the intensities of multiple-quantum coherences in a ring of six spins coupled by dipole–dipole interac-
tion, b = –Dii + 1/2 = 2π × 2253.6 s–1: (a) intensities of multiple-quantum coherences of zeroth J0(t) and second J2(t) + J–2(t) orders;
(b) intensities of multiple-quantum coherence of fourth J4(t) + J–4(t) and sixth J6(t) + J–6(t) orders. 
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Fig. 4. Time dependences of the intensities of multiple-quantum coherences in a ring of six spins coupled by dipole–dipole interac-
tion of nearest and next-nearest neighbors, b = –Dii + 1/2 = 2π × 2253.6 s–1: (a) intensities of multiple-quantum coherences of zeroth
J0(t) and second J2(t) + J–2(t) orders; (b) intensities of multiple-quantum coherences of fourth J4(t) + J–4(t) and sixth J6(t) + J–6(t)
orders. 

Fig. 5. Time dependences of the intensities of multiple-quantum coherences in a linear chain of eight spins coupled by dipole–dipole
interaction, b = –Dii + 1/2 = 2π × 1475 s–1: (a) intensities of multiple-quantum coherences of zeroth J0(t) and second J2(t) + J–2(t)
orders; (b) intensities of multiple-quantum coherence of fourth J4(t) + J–4(t) and sixth J6(t) + J–6(t) orders. The horizontal straight

lines give the multiple-quantum coherence intensities averaged over irradiation time  = T –1 , T = 3 ms.Jn Jn τ( ) τd
0
T∫
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS      Vol. 91      No. 3      2000



608 DORONIN et al.
may be potentially extremely useful for obtaining
structural information in solids.

Unlike one-dimensional linear chains in ring sys-
tems information on the contributions of remote spins
to the intensity of multiple-quantum coherences can be
obtained from the profiles of the multiple-quantum
coherences. Figure 3 shows the evolution of multiple-
quantum coherences in a six-spin ring. Similar multi-
ple-quantum dynamics allowing for dipole–dipole
interaction of nearest and next-nearest neighbors is
shown in Fig. 4. Here there are clear differences even
between the multiple-quantum dynamics of the zeroth-
and second-order coherences plotted in Figs. 3a and 4a.
The reason for this is whereas in a linear chain the
dipole–dipole interaction of the first and fourth spins is
3.375 times weaker than that of the first and third spins,
in a six-spin ring the ratio of the similar dipole–dipole
interactions is only 1.5. Hence the contribution of
remote spins in a ring is more significant than that in
chains. At the same time, in rings it is possible in prin-
ciple to extract fine structural information associated
with the interactions of remote spins. Figure 5 gives
dependences of the multiple-quantum coherence inten-
sities in a linear eight-spin system. Qualitatively the
multiple-quantum dynamics of an eight-spin system
does not differ from the similar dynamics of a seven-
spin system. In the table the intensities of the multiple-
quantum coherences averaged over the excitation time
are compared with the predictions of the statistical the-
ory [2] for an eight-spin linear chain.

It can be seen from the table that the predictions of
the statistical theory [2] agree qualitatively with the
result of a numerical analysis. The intensity of the
eighth-order multiple-quantum coherence is negligible
and has an insignificant influence on the multiple-quan-
tum dynamics in an eight-spin chain.

7. CONCLUSIONS

We have studied analytic and numerical methods of
analyzing the multiple-quantum dynamics of one-
dimensional systems of nuclear spins in solids. In the
approximation of nearest-neighbor interactions the
multiple-quantum dynamics of linear chains and rings
with an even number of spins was directly related to the
dynamics of systems with an XY Hamiltonian. This fac-
tor leads to new experimental methods of studying mul-
tiple-quantum dynamics and new numerical methods
for interpreting the experimental results. In an experi-

Table

Number of multiple-
quantum coherence 0 2 4 6

Statistical theory [2] 0.393 0.244 0.056 0.004

Results of numerical 
calculations

0.436 0.243 0.032 0.007
JOURNAL OF EXPERIMENTAL
mental study of multiple-quantum dynamics in quasi-
one-dimensional systems of hydroxyl protons of cal-
cium hydroxyapatite [15] it was found that the
observed one-dimensional cluster consists of approxi-
mately twelve spins [15]. It is therefore extremely rele-
vant to make a numerical study of multiple-quantum
dynamics in linear chains consisting of between twelve
and twenty spins. The solution of this problem requires
significant development of new approaches to the
numerical methods used for calculations in multiple-
quantum dynamics.
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Abstract—The two-electron wave function and charge distribution are obtained in a symmetric double quan-
tum dot in a weak variable electric field. It is shown that the action of a variable field under resonance conditions
when the perturbation frequency is close to the frequency of the quantum transition leads to the appearance of
electron density oscillations between the dots having the characteristic form of beats. However, the Coulomb
repulsion between the electrons strongly “quenches” the amplitude of the beats even in a resonant variable field.
© 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Various low-dimensional nanostructures, which have
recently attracted increasing attention among researchers,
are attractive mainly from the point of using their func-
tional possibilities. The question of controllably influenc-
ing the electron dynamics in quantum structures using var-
ious external actions then arises.

The possibility of achieving so-called controlled
tunneling in double quantum-well heterostructures by
exposing the electron to a strong variable electric field
has been reported [1–5] and the electron distribution in
a double quantum dot and electron transport in the pres-
ence of a variable electric field were studied in [6].
Charge oscillations in tunnel-coupled quantum wells
and dots and terahertz emission accompanying these
oscillations were observed experimentally in [7–10]. 

It should be noted that the theoretical studies cited
above [1–6] only considered the single-electron
dynamics which may appreciably distort the true pat-
tern, especially for systems of quantum dots where the
Coulomb interaction between the electrons is already
significant, and generally leads to a Coulomb blockade
effect. The aim of the present paper is to study the influ-
ence of Coulomb interaction on the electron dynamics
in a double quantum dot in the presence of an external
variable field.

2. BASIC APPROXIMATIONS

We shall consider a symmetric double quantum dot
with two electrons in an external variable electric field
whose intensity varies with time as %%%%(t) = %%%%sin(ωt). To
simplify the calculations to some extent we shall
assume that the size of each quantum dot is so small
that the characteristic Coulomb interaction energy is
1063-7761/00/9103- $20.00 © 20610
much lower than the characteristic energy of the quan-
tum transition in an isolated quantum dot:

where R is the size of the quantum dot, m is the effective
mass, and e is the permittivity of the medium. Esti-
mates show that this inequality is satisfied for quantum
dots having dimensions not exceeding tens of nanome-
ters. Such quantum dots are obtained, for example, by
ion implantation followed by deposition, and are gener-
ally close to spherical [11–13]. 

Tunnel coupling between quantum dots leads to
splitting of the electron energy levels in isolated dots by
the amount ∆ which is small compared with the transi-
tion energies in an isolated quantum dot. According to
estimates, the ratio of these energies may be lower than
or of the order of 10–2, giving a value of approximately
10–2 eV or lower for the splitting energy ∆ which is of
the same order of magnitude as the thermal energy at
room temperatures. 

We shall also assume that the probability of electron
“dumping” to upper levels of the isolated quantum dot
is low, for which we impose the constraint that the
amplitude of the variable electric field and its frequency
satisfy the inequalities

Taking into account all the relationships given above
between the energy parameters of the problem, we con-
clude that only two levels obtained as a result of split-
ting of the ground-state energy level in an isolated dot
are “involved” in the electron dynamics. We take the
energy origin midway between these levels, and then
the level energies will be ±∆/2. The single-electron
wave functions of the steady states corresponding to
these levels are denoted by χ0, 1(r). 

e2

eR
------ ! 

"
2π2

mR2
-----------,

e%R ! 
"

2π2

mR2
-----------, ω ! 

"π2

mR2
----------.
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The functions χ0, 1(r) are respectively even and odd
with respect to the coordinate z [we take the axis of the
double quantum point as the z coordinate axis and
assume that the function χ0(r) is everywhere positive
while χ1(r) is only positive in the region z > 0]. Using
χ0(r) and χ1(r) we can then construct two other
orthonormalized functions:

which will be almost completely localized at the left
and right quantum dots, respectively. For the subse-
quent calculations we shall neglect the product of the
functions ΨL(r)ΨR(r), assuming that this is small.

3. SELECTION RULES 
FOR QUANTUM TRANSITIONS

We shall begin with calculations of the spectrum
and wave functions of the steady states of a two-elec-
tron system for %%%% = 0 for which we find the eigenfunc-
tions and eigenvalues of the Hamilton operator

(1)

where (r) is the single-electron Hamilton operator
in a double quantum dot (its eigenfunctions χ0, 1(r) and
eigenvalues ±∆/2). As a result of using the two-level
approximation in the single-electron problem the

eigenfunction Ψ(r1, r2) of the operator (r1, r2) will be
a superposition of four orthonormalized vectors
χi(r1)χ j(r2) (i, j = 0, 1) with various expansion coeffi-
cients.

As a result of solving the equation

(2)

we arrive at the following expressions for the energies
Ej and wave functions of the steady states:

(3)

(4)

ΨL r( )
χ0 r( ) χ1 r( )–

2
--------------------------------, ΨR r( )

χ0 r( ) χ1 r( )+

2
--------------------------------,= =

Ĥ r1 r2,( ) Ĥ0 r1( ) Ĥ0 r2( ) e2

e r1 r2–
---------------------,+ +=

Ĥ0

Ĥ

ĤΨ j r1 r2,( ) E jΨ j r1 r2,( ),=

E0 3, U V2 ∆2+ , E1 2,+− U V ;+−= =

Ψ0 3, r1 r2,( )
ε0 3, V ∆+ +

2 ε0 3, ∆+( )2 V2+
---------------------------------------------=

× ΨL r1( )ΨL r2( ) ΨR r1( )ΨR r2( )+( )

–
ε0 3, V– ∆+

2 ε0 3, ∆+( )2 V2+
---------------------------------------------

× ΨL r1( )ΨR r2( ) ΨR r1( )ΨL r2( )+( ),

Ψ1 2, r1 r2,( ) =  
ΨL R, r1( )ΨR r2( ) ΨR L, r1( )ΨL r2( )–

2
------------------------------------------------------------------------------------.
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Here ε0, 3 = E0, 3 – U, and U and V are the two-particle
(pair) matrix elements of the Coulomb interaction oper-
ator:

It follows from Eqs. (4) that the wave functions of
the zeroth, second, and third steady states are symmet-
ric with respect to exchanges of the particles, whereas
the wave function of the first steady state is antisym-
metric. Here we do not write the spin part of the wave
function because Coulomb interaction like the external
electric field does not lead to spin flipping. The spin
component, being symmetric for the first state and anti-
symmetric for the remaining states, conserves its form
and can thus be omitted.

We shall now introduce the external electric field
with the result that an additional term appears in the
Hamiltonian (1)

(5)

this being the energy of the interaction of the electrons
with the external field.

We express the wave function of the system in a
variable field as a linear combination of the wave func-
tions obtained for the steady states (4) with time-depen-
dent coefficients:

(6)

Substituting the Eq. (6) into the Schrödinger equation
yields a system of equations for the four expansion
coefficients:

(7)

V
e2

2e
------ dr1dr2∫=

×
ΨR

2 r1( ) ΨL
2 r1( )–( ) ΨR

2 r2( ) ΨL
2 r2( )–( )

r1 r2–
-------------------------------------------------------------------------------------------,

U
e2

2e
------ dr1dr2∫=

×
ΨR

2 r1( ) ΨL
2 r1( )+( ) ΨR

2 r2( ) ΨL
2 r2( )+( )

r1 r2–
-------------------------------------------------------------------------------------------.

Ŵ r1 r2,( ) e%%%% r1 r2+( ) ωt( ),sin=

Ψ r1 r2 t, ,( ) C j t( )Ψ j r1 r2,( ) i
E j

"
-----t–

 
 
 

.exp
j 0=

3

∑=

i"
dC0

dt
--------- W02 t( )C2 iω20t–( ), i"

dC1

dt
---------exp 0,= =

i"
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dt
--------- W20 t( )C0 iω20t( )exp=

+ W23 t( )C3 iω32t–( ),exp
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dC3

dt
--------- W32 t( )C2 iω32t( ),exp=
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where ωij = (Ei – Ej)/" and Wij(t)are the matrix elements

of the operator  where

(8)

for n = 0, 3 and all the other matrix elements Wij go to
zero. The vector L connects the origin positioned mid-
way between two identical quantum dots and the center
of the “right” quantum dot (to be specific we assume
that the dots are spherical).

The matrix elements Wij determine the so-called
selection rules for transitions in a four-level spectrum (3).
The expressions (8) show that in our system under the
action of a variable electric field of frequency ω: it is
only possible to have two transitions: between the
ground and second excited states (0  2) and
between the second and third excited states (2  3).

Transitions from or to the first excited state are
impossible. The reason for this is the different symme-
try of the wave functions of the first state and all the
other states relative to particle exchanges and since the

perturbation operator (r1, r2) is symmetric with
respect to exchanges, it cannot lead to transitions
accompanied by a change in the symmetry of the wave
function. Thus, the coefficient C1 remains constant, as
follows from the second equation in the system (7), and
is defined only by the initial condition.

In addition to the selection rules determined by the
specific structure of the wave functions of the steady
states, there are also additional selection rules for the
direction of the electric field vector %%%%. It can be seen
from expressions (8) that in order to achieve 0  2
and 2  3 transitions the vector %%%% must have a non-
zero projection on the axis of the double quantum dot.
In the opposite case when %%%% ⊥  L, all the transitions are
forbidden.

Ŵ

Wn2 W2n

2 εn V ∆+ +( )

εn ∆+( )2 V2+
--------------------------------------e%%%% L ωt( )sin⋅= =

     
     

Ŵ
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V/∆

η /η(0)

Fig. 1. Dependences of the resonant Rabi frequency for the
(1) 0  2 and (2) 2  3 transitions on the Coulomb
energy.
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4. ELECTRON DENSITY OSCILLATIONS

We obtain solutions of Eqs. (7) in the so-called res-
onance approximation, when the frequency of the
external field is close to the frequency of one of the
transitions (see, for example, [14]). We shall assume
that the external field is sufficiently weak for the ine-
quality |Wij | ! "ω to be satisfied. We shall begin with
the case ω ≈ ω20 and we shall introduce the deviation
from resonance δ = ω – ω20 which we shall assume to
be small compared with the frequency ω. In Eqs. (7) we
can only retain resonant harmonics as a result of which
we find C3 ≈ const and the remaining pair of equations
for C0 and C2 are the standard evolution equations for a
two-level system in a weak resonant external field.

As is well-known [14], the solution of the equa-
tions (7) in this case describes periodic transitions
between two states coupled by the variable field (in our
case, between the ground and second excited states) at
the Rabi frequency

(9)

where the parameter η defines the Rabi frequency in
strict resonance and is given by

(10)

For the initial condition corresponding to a 100%
ground-state population we have 

(11)

These expressions are also well known from the theory of
resonant excitation of a two-level system [14]. 

New here is the expression for the frequency η,
which depends explicitly on the parameters character-
izing the interelectron Coulomb interaction and the
steady-state energy spectrum of the system. In the sin-
gle-frequency case the Rabi frequency in strict reso-
nance is determined only by the perturbation amplitude
and does not depend on the structure of the single-elec-
tron spectrum. Allowance for Coulomb interaction
abruptly changes the situation and the dependence of
the Rabi frequency on the pair interaction parameters is
fairly significant, as can be seen from Fig. 1 (curve 1).

In particular, for noninteracting particles in the limit

for V  0 the frequency η(0) = e%%%% · L/"  has a
maximum, decreasing with increasing characteristic
Coulomb energy V. The decrease in η compared with
η(0) as a function of V is determined by the level split-
ting energy ∆ (on scales V ~ ∆ the frequency decreases
appreciably). For quantum dots having dimensions of
several nanometers [11–13] and distances between dots

ν δ2/4 η2+ ,=

η e%%%% L⋅
"

--------------- 1 V2/∆2+ V /∆–

2 1 V2/∆2+
-------------------------------------------.=

C0 t( ) νt( ) i
δ

2ν
------ νt( )sin–cos i

δ
2
---t 

  ,exp=

C2
η
ν
--- i

δ
2
---t 

  νt( ).sinexp=

2
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no exceeding their size, the ratio 

 

∆

 

/

 

V

 

 becomes fairly
small (of the order of 0.1) which leads to a reduction in
the Rabi frequency by more than order of magnitude.

For the case of the other possible transition 2

 

  3

 

the two equations for the coefficients 

 

C

 

2

 

 and 

 

C

 

3

 

 can be
retained in Eqs. (7) and the coefficient 

 

C

 

0

 

 can be con-
sidered to be almost constant. The solution of these
equations is exactly the same as the previous case for the
0 

 

 

 

2 transition and yields exactly the same structure
of the expression for the Rabi frequency (9) and the
same solutions (11) in which we now merely need to
substitute 

 
C

 
0

 
  

 
C

 
2

 
 and 

 
C

 
2

 
  

 
C

 
3

 
 (assuming that the

second level is initially completely filled).

The only difference will be the specific dependence of
the resonant Rabi frequency 

 

η

 

 on the parameters of the
energy spectrum. Instead of Eq. (10) we will now have

(12)

In accordance with (12) the resonant Rabi frequency
for the 2

 

  3

 

 transition of an interacting two-electron
system is always higher than the Rabi frequency for a
system of noninteracting electrons (see Fig. 1, curve 

 

2

 

)
and as 

 

V 

 

increases, the graph of the ratio 

 

η

 

/

 

η

 

(0) reaches

a constant whose value is .

Unlike the 0

 

  

 

2transition for which the Rabi fre-
quency decreases monotonically as the characteristic
Coulomb energy 

 

V increases and may decrease arbi-
trarily strongly as far as zero, for the 2  3 transition
the Rabi frequency does not change substantially,
remaining close to its value in the complete absence of
interaction. As has been noted, the maximum increase
in the Rabi frequency relative to this value may be a

factor of .

However, it should be noted that under real condi-
tions at temperatures below or around room tempera-
ture, and for the sizes of quantum dots noted above the
thermal energy is considerably lower than the Coulomb
energy V and consequently the probability of 2  3
transitions will be almost zero because of the negligible
population of these levels. Conversely, the 0  2
transition will be quite feasible so that the following
discussion of the electron dynamics will be made for
this case. 

We shall now analyze the spatial distribution of the
charge in a double quantum dot and its variation with
time. For this we shall use the wave function (6) in
which we set C1 = C3 = 0 and for C0 and C2 we use
Eqs. (11). We shall calculate the quantity of charge
concentrated, for example, in the left quantum dot QL(t)
as a function of time. Bearing in mind that the wave
function will be strictly symmetric with respect to par-
ticle exchanges and also that the functions ΨL(r) and
ΨR(r) will be almost completely localized in “their”

     

     

η e%%%% L⋅
"
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2 1 V2/∆2+
--------------------------------------------.=

     

2

     

     

2
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quantum dots, we shall determine the charge QL(t) as an
integral over the region z < 0 from the single-particle
distribution density multiplied by –2e

 

.

As a result, we obtain the following expression for

 

Q

 

L

 

(

 

t

 

) [naturally the charge 

 

Q

 

R

 

(

 

t

 

) in the right quantum
dot can be obtained as –2

 

e – Q

 

L

 

(

 

t

 

)

 

]:

(13)

where 

 

A

 

(

 

t

 

) and 

 

ϕ

 

(

 

t

 

) are slowly varying functions of
time given by 

(14)

The dependence 

 

Q

 

L

 

(

 

t

 

) exhibits a characteristic beat
form. Fast oscillations of charge between the quantum
dots which take place at a frequency close to that of the
external electric field are modulated in amplitude by a
slower function  A ( t ) of frequency  ν .

The functions 
 

A
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t
 

) and 
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) have the simplest form
in the two limiting cases: 

 

δ

 

 = 0 and 
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Eq. (14) gives: 
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For all other intermediate cases the dependences A(t)
and ϕ(t) are more complex and have the form shown in
Fig. 2. It can be seen that as δ decreases and the ratio
η/ν increases, the envelope of A(t) differs increasingly

from sinusoidal. For η/ν > 1/  the curve of A(t) at the
point νt = π/2 has a minimum instead of a maximum,
which progresses with increasing δ and in the limit
η/ν  0 falls to zero, doubling the envelope frequency. 

QL t( )

=  e 1 1 V2/∆2+ V /∆–

1 V2/∆2+
-------------------------------------------A t( ) ϕ t( ) ωt+[ ]sin– ,–

A t( ) 2
η
v
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η2
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----- νt( )sin

2
– ,=

ϕ t( )cot
δ

2ν
------ νt( ).tan=
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2
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Fig. 2. Beat amplitude in the absence of interelectron inter-
action for various values of the ratio η/ν: η/ν = (1) 0.1,

(2) 1/ , (3) 0.85, and (4) 0.999.2
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The function eA(t) describes the amplitude of the
charge oscillations for the case of noninteracting parti-
cles. The maximum value of the function A(t) is

ηδ/( ν2) for 0 < η/ν ≤ 1/  and 1/  for 1/  ≤
η/ν ≤ 1. The maximum quantity of charge flowing from
one quantum dot to another in the absence of interpar-
ticle interaction Qmax(0) may be defined as the product
of the maximum of the function A(t) and twice the elec-
tron charge 2e. The dependence of Qmax(0) on the ratio
η/ν is plotted in Fig. 3. Far from resonance (η ! δ) very
little charge tunnels from one dot to another, keeping
the equal populations of both quantum dots constant (in
terms of –e). As resonance is approached, the ampli-
tude of the charge oscillations increases and from η/ν =

1/  these oscillations are the most intensive, at certain

times the charge in one quantum dot is –e(1 + 1/ ). 

Coulomb interaction between the electrons changes
the amplitude of the envelope: now, in accordance with
Eq. (13) the amplitude acquires an additional factor
which is equal to the ratio of the Rabi frequency for the
interacting electrons (10) to the Rabi frequency in the
absence of interaction η(0). The maximum quantity of
charge flowing from one quantum dot to another for
V ≠ 0 is now also determined by this factor:

(15)

The frequency ratio η/η(0) whose dependence on the
Coulomb energy V was discussed above (see Fig. 1)
thus accurately determines the ratio of the maximum
charges Qmax(V)/Qmax(0). 

2 2 2 2

2

2

Qmax V( ) Qmax 0( ) η
η 0( )
-----------.=

0 0.5 1.0

0.5

1.0

1.5

η /ν

Qmax(0)/e

Fig. 3. Maximum quantity of charge oscillating between
quantum dots in the absence of interaction. From η/ν =

1/  the curve reaches a constant value of .2 2
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Consequently, on the basis of (15) and Fig. 1 we can
confirm that the quantity of charge tunneling between
quantum dots will always be smaller for interacting
particles than in the absence of interaction. Moreover,
as soon as the typical Coulomb energy V exceeds the
level splitting energy ∆, the amount of flowing charge
falls rapidly and for V @ ∆ we can assume that no tun-
neling takes place between the quantum dots. As has
been noted for quantum dots having dimensions of a
few nanometers, the ratio η/η(0) is less than or of the
order of 0.1 which reduces the quantity of tunneling
charge by more than an order of magnitude.

The sharp drop in the amplitude of the charge oscil-
lations and their slowing in a weak variable electric
field is another manifestation of the so-called Coulomb
tunneling blockade. A reduction in the sizes of the
quantum dots accompanied by convergence of the elec-
trons leads to fairly strong interelectron repulsion
forces, which cannot be overcome in weak electric
fields even in a resonance regime.
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Abstract—An analysis is made of the dependence of the geometric shape of the chaotic layer near the separa-
trix of a nonlinear resonance of a Hamiltonian system on the parameters of this system. A separatrix algorithmic
mapping, which describes the motion near the separatrix in the presence of an asymmetric perturbation having
an arbitrary degree of asymmetry. The separatrix algorithmic mapping is an algorithm containing conditional
transfer instructions, is considered. An analytic procedure is derived to reduce the separatrix algorithmic map-
ping to the unified surface of the cross section of the initial Hamiltonian system (mapping synchronization pro-
cedure). It is observed that in the case of the high-frequency perturbation λ  +∞ (where λ is the ratio of the
perturbation frequency to the frequency of small phase oscillations at resonance), the chaotic layer is subjected
to strong bending in the sense that during motion near the separatrix the amplitude of the energy deviations rel-
ative to the unperturbed separatrix value is much larger than the layer width. However, the synchronized sepa-
ratrix algorithmic mapping ensures an accurate representation of the phase portrait of the layer for both low and
high values of the parameter λ provided that the amplitude of the perturbation is fairly small. This is demon-
strated by comparing the phase portraits obtained using the synchronized separatrix algorithmic mapping with
the results of direct numerical integrations of the initial Hamiltonian system. © 2000 MAIK “Nauka/Interperi-
odica”.
1. INTRODUCTION

The theory of the chaotic layer [1–5] in Hamiltonian
dynamics has applications in the most diverse fields of
physics and mechanics (see, for example, [5, 6] and the lit-
erature cited there). The most important characteristic of
the chaotic layer is its width. Problems associated with
estimating this have been studied in detail in [4, 5, 7, 8].
However, the geometric profile of the layer and how it
is influenced by the parameters of the dynamic system
have been very little studied (except for the role of mar-
ginal resonances [4, 5, 9]). The procedure for synchro-
nization of the separatrix mapping [9] (reducing it to
the unified surface of the cross section) can be used to
obtain real phase portraits of the motion near the separa-
trix and thus to assess the real profile of the chaotic layer.
In the present study the synchronization procedure is
derived for the general case of an asymmetric perturbation
and is applied to analyze the layer geometry.

1.1. Hamiltonian of the Problem

The equations for a nonlinear pendulum with peri-
odic perturbations are an important paradigm in various
fields of modern physics and mechanics, ranging from
plasma physics [10, 11] to the dynamics of orbital [12]
and spin-orbit [13,14] resonances in the motion of
celestial bodies. 
1063-7761/00/9103- $20.00 © 20615
We shall consider the Hamiltonian

(1)

where τ = Ωt + τ0. The first two terms are the Hamilto-
nian of the pendulum while the last two are the periodic
perturbations. The variable ϕ is the deviation of the
pendulum from the equilibrium position, p is its conju-
gate momentum, τ is the phase angle of the perturba-
tion, and τ0 is its initial value. The value of Ω is the per-
turbation frequency, and ̂ , &, a, b, and k are constants.
The Hamiltonian of the unperturbed pendulum is then
denoted by H0, i.e.,

The number k is assumed to be integer or half-integer. 
The Hamiltonian (1) is present in many problems in

mechanics and physics. The case of a symmetric per-
turbation a = b and k = 1 has been studied in the greatest
detail. In this case, the Hamiltonian is reduced to the
form of the Hamiltonian of a pendulum with a modu-
lated frequency of small oscillations. In particular, it
corresponds to a pendulum with a vertically oscillating
suspension point [15]. 

The case with an arbitrary nonzero value of k and
zero a or b has been studied as the problem of particle

H
& p2

2
---------- ^ ϕcos–=

+ cos kϕ τ–( ) b kϕ τ+( ),cos+

H0
& p2

2
---------- ^ ϕ .cos–=
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motion in the field of two plane waves [16–19]. The
case of k = 1/2 and special values of a, b defines an
approximate description of motion in orbital 3/1 reso-
nance in satellite systems [12, 20]. The case k = 1, b =
–a/7 corresponds to the problem of the rotational
motion of a nonspherical satellite in synchronous spin–
orbit resonance in an elliptic orbit [13, 14]. 

The reason for the universal nature of the Hamilto-
nian (1) is that a nonlinear pendulum is a model of non-
linear resonance under very general conditions [4–6]. 

1.2. Separatrix Mapping

Motion near a pendulum separatrix or a nonlinear
resonance separatrix in the symmetric case a = b (and
k = 1) was considered by Chirikov in [4, 5]. He showed
that this motion is effectively described by some map-
ping known as a “whisker mapping.” Now the term
“separatrix mappings” is more commonly used for this
type of mapping. The description of motion using a
mapping affords certain advantages both in qualitative
analyses of motion and in computer analyses.

The usual separatrix mapping (in the form [4, 5])
has the form

(2)

where w denotes the relative (to the value on the sepa-
ratrix) pendulum energy w = H0/^ – 1 and τ is the
phase of the perturbation as above. The constants λ and
W are parameters: λ is the ratio of the perturbation fre-
quency Ω to the frequency ω0 = (^&)1/2 of the small
pendulum oscillations, and 

(3)

where  = A2(λ) + A2(–λ),

is the Melnikov–Arnold integral [4–6]; the functions

 (k = 0, 1, 2, …) are analyzed in the Appendix.
The notation ε is subsequently used for a/^.

A single iteration of the separatrix mapping (2) cor-
responds to a single period of the pendulum rotation or
a half-period of its oscillation. 

An important property of the separatrix mapping in
the form (2) is that it represents the motion asynchro-
nously [9–11]: the action variable is mapped for ϕ = ±π
whereas the phase angle of the perturbation is mapped
for ϕ = 0. This property follows from the derivation
procedure [4–6] for the separatrix mapping (2). Abdul-
laev and Zaslavsky [10, 11] derived a “shifted” separa-
trix mapping in which the phase angle of the perturba-

wn 1+ wn W τn,sin–=

τn 1+ τn λ 32
wn 1+
-------------- mod 2π( ),ln+=

W
a
^
-----λα2

c λ( ),=

α2
c λ( )

A2 λ( ) 4πλ πλ 2⁄( )exp
πλ( )sinh

----------------------------=

αk
c λ( )
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tion can be taken at an arbitrary cross section. In this
case, the action variable is mapped for ϕ = ±π as in the
usual separatrix representation.

In order to completely describe the motion around a
separatrix we need to find a procedure for synchroniz-
ing the mapping to the surface of the cross section ϕ = 0,
i.e., for the position of the pendulum in stable equilib-
rium. In fact, the cross section ϕ = ±π (for the position
of the pendulum in unstable equilibrium) does not com-
pletely represent the dynamic behavior since the angle
of the pendulum during oscillations does not reach ±π.

The procedure for synchronizing an ordinary sepa-
ratrix mapping (case of a symmetric perturbation) to
the surface of the cross section ϕ = 0 was described in
[9]. As was noted in that article, desynchronization of
the separatrix mapping leads, in particular, to asymme-
try of the phase portraits relative to the lines τ = 0 or
τ = π (see for example Fig. 1 in [21], Fig. 6 in [22], or
Fig. 3b in [23]).

In the present study the synchronization procedure
is derived for the general case of an asymmetric pertur-
bation (1). Synchronization confers meaning to com-
parisons of cross-section surfaces obtained by numeri-
cal integration with the corresponding phase portraits
of a separatrix mapping. Such comparisons provide
direct information on the range of validity of the sepa-
ratrix mapping in parameter space. By means of such
comparisons we confirm that the separatrix mapping
can be applied over a wide range of values of the
parameter λ, both for low-frequency and for high-fre-
quency perturbations, provided that their amplitudes
are fairly small.

2. SEPARATRIX ALGORITHMIC MAPPING

The separatrix mapping for an asymmetric perturba-
tion differs from that for the symmetric case since the
energy increments differ for the forward and backward
motion of the pendulum. Following [20, 24], we write
the separatrix mapping in the asymmetric case in the
form of an algorithm which we shall call a separatrix
algorithmic mapping: 

(4)

In this mapping the sign of the upper index of W alter-
nates on each iteration if wn < 0 (i.e., during oscilla-

tions); W± implies W+ or W– and  implies W– or W+,
respectively. The value of ∆n + 1τ, approximately equal
to λ ln(32/|wn + 1|) [as is assumed for the ordinary sepa-
ratrix mapping (2)], is determined more accurately
below, while W+ and W– are the values of the parameter
W for the forward and backward motion, respectively.
Here the motion is called forward (or backward respec-
tively) if the change of ϕ with time is positive (nega-

if wn 0 and W< W± , then W  := W+− ;=

wn 1+ wn W τn,sin–=

τn 1+ τn ∆n 1+ τ mod 2π( ).+=

W+−
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tive). Any functions having the indices + or – subse-
quently denote forward and backward motion, respec-
tively. 

The separatrix algorithmic mapping may be written
in a more detailed “expanded” form if we introduce
numbering of W as for the variables τ and w; however
we stress that W is a parameter which can only have two
values W+ and W–. The separatrix algorithmic mapping
in expanded form is as follows:

(5)

The essence of the algorithm (4), (5) is that it takes into
account the alternation of the values of the parameter
W. These alternate when the direction of motion
changes. The algorithm (4), (5) does not contain the
condition wn > 0 (case of rotation) because in this case
the direction of motion remains unchanged.

The logarithmic expression for the phase increment
in the ordinary separatrix mapping (2) is a fairly rough
approximation. Thus, using (2) we can only predict an
exact representation of the phase portraits of the motion
for very small values of the perturbation amplitude W.
If the perturbation is not weak, in order to improve the
accuracy of the separatrix algorithmic mapping (4), (5),
the logarithmic approximation of the phase increment
should be replaced by its exact value. The analytic
expressions for this differ in regions of oscillation and
rotation and have the form [9]

(6)

where K(k) is a complete elliptic integral of the first
kind. The first line in Eq. (6) corresponds to the oscilla-
tions of a model pendulum while the second corre-
sponds to its rotations. 

By using this separatrix algorithmic mapping we
can rapidly reproduce the cross sections of the phase
space of the system near the separatrix. Using this map-
ping gives a relative advantage of two or three orders of
magnitude in terms of calculation speed. However, its
use not only involves an increase in calculation speed.
More importantly, this theory gives a direct analytic
description of the phase space of a system: an analysis
of the separatrix mapping allows us to precalculate the
locations of resonance and chaos boundaries [24], and
the appearance of marginal resonances [9] by means of
compact analytic expressions. For instance, when the
values of the parameters of the separatrix algorithmic

if wn 0 and Wn< W–, then Wn 1+  := W+,=

if wn 0 and Wn< W+, then Wn 1+  := W–;=

wn 1+ wn Wn 1+ τn,sin–=

τn 1+ τn ∆n 1+ τ mod 2π( ).+=

∆n 1+ τ

=  

2λK 1
wn 1+

2
------------+ 

 
1/2

 
  , wn 1+ 0<

2λ 1
wn 1+

2
------------+ 

 
1/2–

K 1
wn 1+

2
------------+ 

 
1/2–

 
  , wn 1+ 0,>
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
mapping are known, it is easy to find the conditions of
Hamiltonian intermittency [9] which are the same as
the conditions for the appearance of marginal reso-
nances.

3. SYNCHRONIZATION PROCEDURE
In order to find the cross section of phase space for

ϕ = 0 we need to calculate the energy increment not in the
time limits (–∞, +∞) as are used to derive the ordinary sep-
aratrix mapping but in the limit (–∞, 0) or (0, +∞). We first
give various formulas required for the motion at the
unperturbed separatrix:

(7)

(8)

The plus sign in these expressions corresponds to the
forward motion of the pendulum while the minus sign
corresponds to the backward motion. 

We shall calculate the required energy increment:

The derivative is given by the Poisson bracket:

(9)

where τ = Ωt + τ0, η = b/a. The value of ∆H0 is
expressed in terms of the Melnikov–Arnold (MA) inte-
grals (see Appendix). For the case of forward motion
we have

(10)

The derivation of the expression for backward motion
is similar. We shall subsequently calculate the change
in the pendulum energy H0 relative to the line of the
unperturbed separatrix H0 = ^ = const, in accordance
with the definition of the relative energy w = H0/^ – 1
given above. In general for the increment of the relative
energy w we have

(11)

where

(12)

(13)
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(14)

(15)

Formulas (14) and (15) for δ are valid for calculating
the changes in H0; i.e., the relative energy is defined as
w = H0/^ – 1 (see above). They will be different for the
changes in the total energy H; i.e., if w = H0/^ – 1. In
this last case, the derivation is slightly simpler since

The expressions for W± remain the same as for the H0

case but the expressions for δ± change and have the
form

(16)

(17)

Everywhere subsequently we take the definition of w in
terms of H0; i.e., Eqs. (16) and (17) are not used for the
calculations in this article. We also note that all the for-
mulas are given here for arbitrary integer or half-integer
values of the parameter k, but all the computer experi-
ments described below are given for k = 1. Construction
of the cross sections for k ≠ 1 requires separate analysis;
the case of a separatrix algorithmic mapping with k =
1/2 was considered in [20]. 

The value of the relative energy on the surface ϕ = 0
when its value wn on the surface ϕ = ±π is known, is
given by the algebraic summation of wn and the calcu-
lated increment ∆±wn:

(18)

where wn + 1 is the next iteration of the nonsynchronized
separatrix algorithmic mapping. The phase portrait of
the separatrix mapping is synchronized by replacing
the pair (wn, τn) with ( , τn). 

In other words, the procedure (18) synchronizes the
separatrix algorithmic mapping (4) where the index of
δ (“+” or “–”) is the same as for the instantaneous value
of W. In the specific case of the ordinary separatrix
mapping (symmetric perturbation), quantities having
the indices “+” and “–” are equal to each other. The
algorithm (4) together with the synchronization proce-
dure (18) can be used to construct synchronized phase
portraits of the motion near the separatrix of the Hamil-
tonian (1). 

δ± k λ η, ,( )
λ B2k λ( ) ηB2k λ–( )–[ ] 1 η+ +

λ A2k λ( ) η A2k λ–( )+[ ]
-------------------------------------------------------------------------,=
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dt
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δ+ k λ η, ,( )
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----------------------------------------------,=
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2

------------------------ δ± W± τn,cos–=

w̃n
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The new variable  is dynamic. The separatrix
algorithmic mapping can be written in terms of the new
(“synchronized”) variables , τ. The change of vari-
ables w, τ  , τ is canonical. However, the new
mapping is implicit. Since it is merely of theoretical
interest and not very suitable for practical calculations,
we shall confine ourselves to writing the mapping in
terms of the new variables merely in the symmetric
case a = b:

(19)

In practice, it is clearly easier to iterate a nonsynchro-
nized mapping and by thus calculating wn, wn + 1, and τn,
go over to the variables  and τn using Eq. (18). 

To conclude this section, we note that the synchro-
nization parameter δ can be determined not only analyt-
ically but also by means of a direct numerical estimate
of the MA integrals in Eqs. (14), (15) or (16), (17). We
shall consider the case k = 1. The primitives of the inte-

grand expressions in the formulas for  and 
(quantities in terms of which δ is expressed, see their
integral representations in the Appendix) as a function of
the independent variable t oscillate at t  +∞ and the
amplitude of the oscillations is nonzero in the limit. In

the Appendix the analytic representations of  and

 are given in accordance with the agreement that
in the limit when the upper limit of integration tends to
infinity (t  +∞) the mean is taken for the primitive.
This implies that for the numerical integration the
upper limits of integration should be taken as certain
nonarbitrary discrete values given in Table 1 in the
Appendix.

4. SYNCHRONIZATION
FOR A SYMMETRIC PERTURBATION

We shall consider the case of a symmetric perturbation
(we also assume k = 1) in greater detail. We recall that this
corresponds to the ordinary separatrix mapping (2).
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In this case, the expression for the synchronization
parameter δ has the form

(20)

This is the same for the forward and backward motion.

The functions  and  are determined in the
Appendix. Using the recurrence formulas given in the
Appendix we find

(21)

where ψ(z) = Γ '(z)/Γ(z) is the digamma function (see
Appendix), and i is the imaginary unit. This expression
was given earlier in [9] without derivation. The depen-
dence of the synchronization parameter δ on λ, Eq. (21),
is plotted in Fig. 1 (curve 1). We note the existence of a
central plateau and the steep slopes to ±∞ in the low-
and high-frequency limits.

δ λ( )
β2

s λ( ) 2/λ+

α2
c λ( )

---------------------------.=

α2
c λ( ) β2
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1
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  πλ
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1
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2
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Fig. 1. Curve 1, synchronization parameter δ(λ) (21) for a
symmetric perturbation and k = 1 in the Hamiltonian (1).
Curve 2, synchronization parameter δ(λ) (23) for the Hamil-
tonian (22).
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Fig. 2. Phase plane of separatrix mapping (2) with λ= 0.5,
W = 0.181.
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We shall compare the phase portraits of the separa-
trix algorithmic mapping with the cross sections of the
phase space of the initial Hamiltonian calculated
directly (by numerical integration). By way of example
we consider the case of a relatively low-frequency per-
turbation: λ = 0.5. In Figs. 2 and 3a the behavior of the
same system is shown represented by nonsynchronized
and synchronized separatrix mappings. Here and
everywhere subsequently the figures only show the
principal chaotic layer. Note that the asymmetry rela-
tive to the line τ = π which is quite appreciable in Fig. 2
had disappeared in Fig. 3a, i.e., this asymmetry is an
artifact of the desynchronization of the initial separatrix
mapping.

Figure 3b shows the same phase plane as in Fig. 3a
but obtained by direct numerical integration of the sys-
tem with the Hamiltonian (1). The values of the param-
eters in the Hamiltonian (1) correspond to the values of the
separatrix mapping parameters λ = 0.5 and W = 0.181 and
specifically ^ = 1, & = 2, a = b = 0.05, and Ω = 2–1/2.
Here and subsequently integration is performed by the
eighth-order Dormand–Prince method [25] with a con-
trolled step size. The local accuracy of the integrator is
set to 10–10.

The calculated values of the variables w and τ were
taken directly at the unified cross section surface ϕ = 0.

–0.4

–0.2

0

0.2

0.4

w̃

–0.2

–0.4

0

0.2

0.4

0 1.57 3.14 4.71 6.28
τ

w

(a)

(b)

Fig. 3. (a) As Fig. 2 but synchronized to the unified plane of
the cross section ϕ = 0; δ = 0.929. (b) Cross section obtained
by direct numerical integration. In Fig. 3b the synchroniza-
tion sign (tilde) in the notation of the w axis is omitted since
no analytic synchronization procedure is used in integration
and the values of w and τ are obtained directly at the unified
surface of the cross section ϕ = 0.
SICS      Vol. 91      No. 3      2000



620 SHEVCHENKO
The phase plane in Fig. 3b can be compared directly
with the phase plane of the synchronized separatrix
mapping in Fig. 3a. It can be seen that the behavior of
the real system (1) is well described by the phase por-
trait of the synchronized separatrix mapping. The accu-
racy of the agreement along the -axis is better than
0.03. The small differences disappear as the amplitude
a = b of the perturbation decreases. 

Figures 4 and 5 give another two examples of the
phase portraits of a synchronized separatrix mapping
for cases of low- and high-frequency perturbations
(λ being 0.1 and 10, respectively, where the amplitude
of the perturbation ε in the initial Hamiltonian is 0.01
and 1, respectively). Numerical integration gives almost
identical cross sections so that the figures giving the
results of integration are not included here. The accu-
racy of the agreement along the -axis is better than
0.001 in the first case and better than 0.002 in the sec-
ond. The accuracy of the agreement between the ampli-
tudes of the layer bending is better than 0.001 in both
cases.

The case of an asymmetric perturbation is consid-
ered in Section 6.

w̃

w̃

0.050

0.025

0

–0.025

–0.050
0 1.57 3.14 4.71 6.28

τ

w̃

Fig. 4. Phase plane of synchronized separatrix mapping (2),
(18) with λ = 0.1, W = 0.00797, δ = 4.99.

0.10

0.05

0

–0.05

–0.10
0 1.57 3.14 4.71 6.28

τ

w̃

Fig. 5. Phase plane of synchronized separatrix mapping (2),
(18) with λ = 10, W = 0.000379, δ = –232.5.
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5. SYNCHRONIZATION 
FOR A DIFFERENT TYPE OF PERTURBATION

As an example of a nonlinear resonance with a per-
turbation different to that considered earlier [see the
Hamiltonian (1)] we consider the following Hamilto-
nian:

(22)

Holmes and coworkers analyzed this model in a study
of separatrix splitting [26]. 

An important difference from the case of the Hamil-
tonian (1) is that the synchronization formula here is
the same for variations of H0 and H since the perturbing
term degenerates to zero for ϕ = 0. We obtain (the der-
ivation is similar to that given in Section 3)

(23)

and the separatrix algorithmic mapping has the univer-
sal form (4). In this case, it reduces to the simple form:

(24)

The dependence of the synchronization parameter δ on
λ, Eq. (23), is shown in Fig. 1 (curve 2). The qualitative
difference from curve 1, Eq. (21), is that for λ  0 the
value of δ(λ) does not go to +∞ but tends to zero. 

Figure 6 shows the behavior of the system (22) with
the parameters λ = 0.5, ε = 0.02 represented using the
synchronized separatrix algorithmic mapping (24),
(18) with the corresponding parameters λ = 0.5, W =
0.0949, δ = –0.303, Eq. (23). The phase portrait for the
backward direction of motion (Fig. 6b) is simply a shift
of the phase portrait for the forward direction (Fig. 6a)
along the τ-axis by π. The results of finding the cross
section ϕ = 0 by direct numerical integration are visu-
ally the same as Fig. 6 (the accuracy of the agreement
along the -axis is better than 0.01) and are not given
here.

6. BENDING OF THE CHAOTIC LAYER
IN THE HIGH-FREQUENCY

PERTURBATION LIMIT

Figures 4 and 5 (examples corresponding to low and
high perturbation frequencies) clearly show that the

H
& p2

2
---------- ^ ϕ aϕ τ .sin+cos–=

W λ( ) W+ λ( )≡ W– λ( )–=

=  
a
^
-----α1

c λ( )
a
^
----- 2π

πλ /2( )cosh
----------------------------,=

δ λ( ) δ+ λ( )≡ δ– λ( )
β1

s λ( )

α1
c λ( )

-------------= =

=  
1
2
--- πλ

2
------

1
π
--- πλ

2
------Imψ 1 iλ+

4
-------------- 

  ,cosh–sinh

if wn 0, then W  := W ;–<
wn 1+ wn W τn,sin–=

τn 1+ τn ∆n 1+ τ mod 2π( ).+=

w̃
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chaotic layer is strongly bent. This bending is only
observed for the synchronized mapping; the chaotic
layer of the nonsynchronized separatrix mapping
always completely encloses the line w = 0. Figure 1
(curve 1) shows that the synchronization parameter
δ(λ), Eq. (21), goes steeply to ±∞ in the low- and high-
frequency perturbation limits. However, this does not
yield any conclusions on the geometry of the chaotic
layer. The energy amplitude of the layer bending is
measured by the product δW [see Eq. (18)]. From
Eqs. (12)–(15) for k = 1 we have: for a symmetric per-
turbation (η = 1) if λ = 0, then δ+W+ = δ–W– = 4ε, if
λ = +∞, then δ+W+ = δ–W– = 0; for a perturbation hav-
ing maximum asymmetry (η = 0) if λ = 0, then δ+W+ =
δ–W– = 2ε and if λ = +∞, δ+W+ = δ–W– = 0. Thus, in the
high-frequency perturbation limit the energy amplitude
of the layer bending always tends to zero. 

Nevertheless, qualitatively the layer bending effect
cannot be considered to be weak. We shall analyze the
ratio of the amplitude of the layer bending and its half-
width. In the high-frequency perturbation limit the lat-
ter is given by the product λW [4, 5]. Thus, for energies
w > 0, which correspond to rotations of the model pen-
dulum, the unknown ratio is δ+/λ for forward motion
and δ–/λ for backward motion. For any value of the
asymmetry parameter the absolute values of these
quantities increase without bound if λ  +∞. For
energies w < 0, which correspond to oscillations of the
model pendulum, a rougher estimate (since the for-
ward and backward motion alternates) of the unknown
ratio is δ+/λ for forward motion and δ–W–/δ+W+ for back-
ward motion (without loss of generality it is implied
here that the parameter η is contained within the limits
0 ≤ η ≤ 1).

Thus, in the case of a high-frequency perturbation
the chaotic layer is subjected to strong bending in the
sense that during motion near the separatrix the ampli-
tude of the energy deviations relative to the unperturbed
separatrix value is much greater than the layer width. 

In accordance with Eq. (18), as a result of synchro-
nization the line of the unperturbed separatrix w = 0 is
transformed into the curve  = δ±W±cosτ. If the cha-
otic layer is relatively thin (λW± ! δ±W±), in natural
polar coordinates ρ, τ (where ρ ≡  + 2, i.e., the zero
point of the relative pendulum energy is taken to be its
rest state in the lower equilibrium position) the line of
the layer is a Pascal limaçon: ρ = 2 + δ±W±cosτ.

For the Hamiltonian (22) the conclusions on the
nature of the layer bending in the high-frequency per-
turbation limit are qualitatively similar.

The case of a low-frequency perturbation is not con-
sidered here because no reliable estimates of the layer
width are available for it. 

From these approximate formulas for the ratio of the
bending amplitude of the chaotic layer to its half-width,
it follows that when the perturbation has the maximum
possible asymmetry (η = 0) the layer bending effect

w̃

w̃
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begins to become appreciable (the amplitude becomes
greater than the width) for the forward and backward
motion if λ ≈ 8. Thus, this last value was selected to
construct the phase portraits of the separatrix algorith-
mic mapping. 

Figure 7 shows the behavior of the system (1) with
the parameters λ ≈ 8, ε = 1, η = 0, k = 1 using the rep-
resentation of the synchronized separatrix algorithmic
mapping (4), (18) with the corresponding parameters
λ = 8, W+ = 0.00561, W– = 6.82 × 10–14, δ+ = –62.3,
δ− = 2.96 × 1012 [Eqs. (12)–(15)]. The results of finding
the cross section ϕ = 0 by direct numerical integration
are similar to those obtained using the synchronized
separatrix algorithmic mapping (the accuracy of the
agreement along the  axis is better than 0.04, and the
accuracy of the agreement between the layer bending
amplitudes is better than 0.01) and are not given here. 

Thus, the bending effect is in fact present and corre-
sponds to the predicted value for the forward and back-
ward motion. The theoretical bending amplitudes for a
thin chaotic layer (δ+W+ = –0.35, δ–W– = 0.20) show
good agreement with those observed (with an accuracy
better than 0.01).

In this last example the perturbation parameter is
large ε = 1, but nevertheless the synchronized separa-
trix algorithmic mapping very accurately represents the
real motion. We shall now explain why this synchro-
nized separatrix algorithmic mapping is so efficient.

w̃

0.2

0

–0.2

–0.4

–0.4

–0.2

0

0.2

0 1.57 3.14 4.71

w̃

6.28
τ

(a)

(b)

Fig. 6. Phase plane of synchronized separatrix algorithmic
mapping (24), (18) for the Hamiltonian (22) with the param-
eters λ = 0.5, ε = 0.02; (a) forward motion, (b) backward
motion as defined in text.
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The first of the two terms in the final expression (18)
for the procedure for reducing the phase pattern of the
motion to the unified surface of the cross section ϕ = 0
is the average of two successive values of w. The struc-
ture of the formula thus resembles taking the average
(first term) with a certain correction (second term
describing the layer bending effect). This division is
formal. No approximation is used here. Both terms
appear in the course of the exact derivation of the syn-
chronization procedure. 

The synchronized separatrix algorithmic mapping is
free from any averaging effects. It may seem that these
may appear and influence the accuracy of the mapping
and the synchronization procedure since oscillating
terms of amplitude of order ε are neglected in the
numerical determination of the MA integrals (see
Appendix). In fact, the primitives of the MA integrals
An and Bn for any n oscillate at infinity with nonzero
amplitude. We shall first consider the case of the
Hamiltonian (1) and the definition of the relative
energy in terms of H0: w = H0/^ – 1. As we can easily
see, the initial expression for the increment H0 [see (9)]
contains the MA integrals in the form of sums A2k – 1 +
A2k + 1 and B2k – 1 + B2k + 1. The primitives of the MA inte-
grals in these sums oscillate at infinity in antiphase and
therefore compensate for each other. (The absence of
oscillations can be clearly seen from the presence of the
cofactor p(t) in the initial integrand expression; this

0.50

0.25

0

–0.25

–0.50

0.50

0.25

0

–0.25

–0.50
0 1.57 3.14 4.71 6.28

τ

(a)

(b)

w̃

Fig. 7. Phase plane of synchronized separatrix algorithmic
mapping (4), (18) for the Hamiltonian (1) with the parame-
ters λ = 8, ε = 1, η = 0, k = 1; (a) forward motion, (b) back-
ward motion.
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suppresses oscillations at infinity.) The final expres-
sions for the parameters of the separatrix algorithmic
mapping and the synchronization (12)–(15) were
obtained using recurrence formulas (A.10) and (A.11)
by means of which these sums are transformed in the
MA integrals A2k and B2k. The primitives of the last inte-
grals oscillate at infinity. This “acquisition” of oscilla-
tions in the final expression is essentially a mathemati-
cal artifact which occurs as a result of using the recur-
rence formulas (A.10) and (A.11) which are derived
using averaging. These oscillations have no relation to
the accuracy of the nonsynchronized separatrix algo-
rithmic mapping nor to the accuracy of the synchroni-
zation procedure.

When the relative energy is defined in terms of H
(w = H/^ – 1) the oscillations of the energy increment
in the nonsynchronized separatrix algorithmic mapping
are real [since there is no cofactor p(t) in the integrand
expression in the initial formula for the increment].
However, in the synchronized separatrix algorithmic
mapping these oscillations compensate for each other,
as we can easily see, when the increments of H are
summed on intervals between τn – 1 and +∞ and
between −∞ and τn .

Finally, for the Hamiltonian (22) the situation with
the oscillations of the energy increment is quite similar
since it is determined by the presence or absence of the
cofactor p(t) in the initial integrand expressions. The
apparent difference is that the integrals in the final for-
mulas for the parameters of the separatrix algorithmic
mapping and the synchronization (23) (specifically, the

integrals  and ) are proper although in reality,
when the relative energy is defined in terms of H, oscil-
lations of the energy increments do occur in the non-
synchronized separatrix algorithmic mapping. The
“loss” of oscillations here like their “acquisition” in the
case of the Hamiltonian (1) in the previous example can
be explained by the fact that the MA integrals were sub-
jected to transformations using averaging.

On the whole, no real oscillations of the energy
increments occur in the case of a synchronized separa-
trix algorithmic mapping and this mapping is free from
averaging effects.

For perturbations ε ~ λ–1 and above the standard
Poincaré–Melnikov method of calculating exponen-
tially small effects associated with separatrix splitting
generally requires corrections [27, 28]. In the two
examples given above (Figs. 5 and 7) the perturbation
is large (ε = 1). In the last case, however, the perturba-
tion is completely asymmetric (η = 0) and for this rea-
son (see [27]) the correction is zero. For a perturbation
of arbitrary asymmetry the correction factor for the sys-
tem (1) according to the Simó [27] hypothetical for-
mula is 

α1
c β1

s

f x( ) xsinh
x

------------- ,=
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where 

(here x may be either a real or an imaginary number
depending on the signs of a and b). In the case of Fig. 5,
the correction factor to the separatrix mapping parame-

ter W is f( ) = 1.368. 

This correction merely influences the layer width
but not its bending amplitude since the bending has no
relation to the separatrix splitting effect (in fact, the
product δW contains no MA integrals of the first kind),
i.e., this correction should be made to W and not to δW.
In the case shown in Fig. 5 the layer width is very small
compared with the bending amplitude and allowance
for the correction negligibly influences the general
form of the phase portrait. 

Thus, our comparisons of the cross sections of the
phase space obtained using the separatrix algorithmic
mapping and direct numerical integration show that the
synchronized separatrix algorithmic mapping correctly
represents the near-separatrix motion both at high and
low values of the relative perturbation frequency λ. 

7. CONCLUSIONS

In the present article we have derived a procedure
for synchronizing a separatrix algorithmic mapping
describing motion near the separatrix of a nonlinear
resonance in the presence of an asymmetric perturba-
tion [20, 24] to the unified cross section surface of an
initial Hamiltonian system. This procedure is valid for
the particular case of a symmetric perturbation, i.e., for
an ordinary separatrix mapping. This choice of cross-
section surface gives a complete description of the
phase space of the motion near the separatrix. It is
found that in the limit of a high perturbation frequency
the principal chaotic layer undergoes strong bending:
during motion near the separatrix the amplitude of the
energy deviations relative to the unperturbed separatrix
value is greater than the layer width (their ratio tends to
infinity for λ  +∞). However, a comparison with the
results of direct numerical integration shows that the
synchronized separatrix algorithmic mapping gives
(both at high and low perturbation frequencies) a cor-
rect representation of the phase portrait of the motion
near the separatrix if the perturbation amplitude is
fairly small. 

To conclude we note that the synchronized separa-
trix algorithmic mapping describes motion of the sys-
tem on the “phase perturbation angle—energy devia-
tion” plane for a fixed resonant phase angle ϕ = 0.
When the Poincaré cross sections are constructed
numerically in applied problems, a different plane is
usually used, i.e., the “resonant phase angle—momen-
tum” plane for a fixed perturbation phase angle, for
example 0 (mod2π). Can we construct a second type of

x 2ε1ε2≡ 2ab
^

-------------=

2
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cross section using separatrix mapping? To quite a
good approximation, this is in fact possible. The proce-
dure is again an algorithm containing conditional
transfer instructions. This algorithm was described
in [20, 24].
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APPENDIX

Melnikov–Arnold Integrals

In the Appendices to [4, 5] a detailed description is
given of functions of the type 

(A.1)

where

(A.2)

(separatrix solution of the unperturbed equation for a
nonlinear pendulum), the parameter λ is any real num-
ber, and n is a real parameter n ≥ 0. Everywhere subse-
quently we confine ourselves to the case of integer val-
ues of n ≥ 0. Following the terminology adopted in [4, 5]
the functions (A.1) will be called Melnikov–Arnold
integrals (MA integrals). They can be written in the fol-
lowing form:

(A.3)

In order to synchronize the separatrix mapping we need
to introduce the related functions 

(A.4)

which we shall call MA integrals of the second kind.
(The functions An are therefore MA integrals of the first
kind.) We also introduce the auxiliary functions

(A.5)

An λ( )
n
2
---φ t( ) λ t– 

 cos t,d

∞–

∞

∫=

φ t( ) 4 t( ) π–exparctan=

An λ( ) 2 n t( ) λ t–sinharctan[ ]cos t.d

0

∞

∫=

Bn λ( ) n t( ) λ t–sinharctan[ ]sin t,d

0

∞

∫=

αn
c λ( ) An λ( ) An λ–( ),+=

αn
s λ( ) An λ( ) An λ–( ),–=

βn
c λ( ) Bn λ( ) Bn λ–( ),+=

βn
s λ( ) Bn λ( ) Bn λ–( ).–=
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The upper indices c and s indicate that the expression in
the integrand contains the cosine or sine of λt respec-
tively according to the following equivalent formulas:

(A.6)

(A.7)

(A.8)

(A.9)

The primitives in the integrands in the integral repre-

sentations for An , Bn, , , ,  as functions of
the independent variable t oscillate for t  +∞ and the
amplitude of the oscillations may be nonzero in the
limit depending on the parity of the parameter n. Thus,
determining the numerical values of the MA integrals
should follow a specific formal agreement. According
to the traditional natural agreement for An [4, 5] the
numerical values of all these MA integrals are taken to
be averages in the limit when the upper limit of integra-
tion for their integral representations tends to infinity.
For example, we therefore assume here that A0 = 0. 

In [4, 5] the MA integrals of the first kind with any
real values of n were estimated analytically by means
of residue theory. If we confine ourselves to natural val-
ues of n, the MA integrals of the second kind of interest
to us and also those of the first kind are most easily
determined by induction. We shall first consider func-
tions of the first kind. The induction for An in terms of
An – 1 and An – 2 for any natural n ≥ 2 is described by the
Zhirov recurrence formula (see Appendices in [4, 5]).
Thus, if A0 and A1 are known, the expression for An is
obtained by induction:

(A.10)

Deriving the recurrence formula for Bn similar to the
derivation for An (by integrating by parts) for the func-

αn
c λ( ) 4 n t( )sinharctan[ ]cos λ t( )cos t,d

0

∞

∫=

αn
s λ( ) 4 n t( )sinharctan[ ]sin λ t( )sin t,d

0

∞

∫=

βn
c λ( ) 2 n t( )sinharctan[ ]sin λ t( )cos t,d

0

∞

∫=

βn
s λ( ) 2– n t( )sinharctan[ ]cos λ t( )sin t.d

0

∞

∫=

αn
c αn

s βn
c βn

s

A0 λ( ) 0,=

A1 λ( )
α1

c λ( ) α1
s λ( )+

2
--------------------------------,=

…

An λ( )
2λ

n 1–
-----------An 1– λ( ) An 2– λ( ).–=
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tions of the second kind we have similar formulas:

(A.11)

The induction bases in Eqs. (A.10), (A.11) are A0, B0,
A1, and B1. The last two functions are expressed in

terms of , , , and . Using tabular integrals
from [29] or [30], we have the following expressions
for these four functions:

(A.12)

(A.13)

(A.14)

(A.15)

In these expressions ψ(z) = Γ'(z)/Γ(z) is the digamma
function and i is the imaginary unit. The real part of the
digamma function of imaginary argument is given by
the series [31]: 

(A.16)

where y is any real number, C ≈ 0.577216 is the Euler
constant.

Formulas (A.11) together with Eqs. (A.14) and
(A.15) express the MA integrals of the second kind of
any natural order n in terms of special functions. 

How can the MA integrals be estimated with pre-
scribed accuracy by numerical integration, for exam-
ple, to check the formulas given above? In addition to
selecting a suitable quadrature scheme to improve the
accuracy we also need to increase the upper limit of
numerical integration. A direct monotonic increase
would lead to oscillations of the results in some cases
because of the nature of the MA integrals described
above. This can be avoided by selecting the upper limit
of integration successively equal to the values of t for
which the oscillating component of the primitive
(selected assuming λt @ 2π) goes to zero. This reason-
ing gives values for the upper limits of numerical inte-
gration and these are given in the table. 

In Table 1 the number M implies any sufficiently
large natural number (the values of M =5–6 are usually

B0 λ( )
1
λ
---,–=

B1 λ( )
β1

c λ( ) β1
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2
-------------------------------,=
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2
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πλ /2( )cosh
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α1
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2π
πλ /2( )sinh

---------------------------,=

β1
c λ( ) 2Re ψ i

λ
2
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  ψ i
λ
4
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 – 2 2,ln–=

β1
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4
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Upper limits of numerical integration to estimate Melnikov–Arnold integrals

n An(λ) (λ) (λ) Bn(λ) (λ) (λ)

Odd * *

Even * *

αn
c αn

s βn
c βn

s

π M 1/2+( )
λ

---------------------------- π M 1/2+( )
λ

---------------------------- πM
λ

-------- πM
λ

--------

πM
λ

-------- πM
λ

-------- π M 1/2+( )
λ

---------------------------- π M 1/2+( )
λ

----------------------------
sufficient to ensure four significant digits in the result);
the asterisk indicates that the upper limit of integration
can be any fairly large positive real number (since oscil-
lations of nonzero amplitude at infinity do not occur in
the corresponding cases).
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Abstract—An analysis is made of the dynamic stability of soliton solutions of the Hamilton equations describ-
ing plane waves in nonlinear elastic composite media in the presence and absence of anisotropy. In the aniso-
tropic case two two-parameter soliton families, fast and slow, are obtained in analytic form; in the absence of
anisotropy there is a single three-parameter soliton family. It is shown that solitons from the slow family in an
anisotropic composite and solitons in an isotropic composite are dynamically stable if their velocities lie in a
certain range known as the range of stability. The analysis of stability is based on the spectral properties of the
“linearized Hamiltonian” *. It is shown that the operator * is positively semidefinite on some linear subspace
of the main solution space from which stability follows. Problems of instability of the fast soliton family in the
anisotropic case and representatives of soliton families whose velocities lie outside the range of stability in the
presence and absence of anisotropy are discussed. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
Recently so-called composite materials have contin-

ued to attract interest in the theory of elasticity and its
applications. As is indicated by their name, these mate-
rials consist of various substances capable of mixing at
the macrolevel. A method of averaging the fundamental
equations of the model (see, for example, [1]) is used to
study large-scale processes having a characteristic
scale substantially exceeding the inhomogeneity scale.
In this case, it is found that the properties of a compos-
ite described by averaged equations reveal substantial
differences compared with those of the component
materials. In particular, a typical case is the appearance
of dispersion despite the fact that no dispersion occurs
in any of the elastic materials forming the composite [1].
Consequently, a composite consisting of elastic materi-
als with a nonlinear equation of state is a dispersive
medium in which waves resulting from the interaction
of nonlinear and dispersion effects, including solitons,
can propagate. The possibility of observing solitons in
practice is naturally related to the dynamic stability of
these waves.

The literature relating to the study of soliton stabil-
ity by modern methods in various problems in nonlin-
ear physics is fairly extensive. Without claiming to give
any kind of complete review of this topic, we shall con-
fine ourselves to mentioning various studies in this
field. An analysis of orbital stability based on a geomet-
ric approach to the study of Hamiltonian systems was
first developed in [2, 3] where the authors analyzed the
nonlinear stability of solitons of the Korteweg–de Vries
equation and the alternative Benjamin–Bona–Mahony
equation. The application of similar methods to study
soliton solutions of various other model equations can
be found in [4] (Benjamin–Ono equation), [5] (nonlin-
1063-7761/00/9103- $20.00 © 20626
ear Klein–Gordon equation and nonlinear Schrödinger
equation), [6] (so-called equation for moderate wave-
lengths), [7] (generalized Boussinesq equation), [8, 9]
(Kawahara equation), [10] (family of generalized
Korteweg–de Vries equations), and [11] (asymptotic
stability of solitons of Korteweg–de Vries equations). A
discussion of general aspects of the stability and insta-
bility of solitons in hydromechanics and plasma is
reported in [12, 13]. 

Soliton structures in elastic media are found, for
example, in geometrically nonlinear media where dis-
persion occurs as a result of stretching and bending
effects (see, for example, [14]). The only results on the
dynamic stability of solitons in elastic media known to
the author are results on the stability of solitons in non-
linear elastic strings [7] and plane loop solitons in elas-
tic inextensible thin rods [15,16].

In the present study we investigate the dynamic sta-
bility of solitons in nonlinear elastic composites in the
presence and absence of anisotropy. For our study of
stability we follow a method which was definitively
developed in [17]. Dynamic (orbital) stability of
boundary states (solitons) in Hamiltonian systems hav-
ing symmetries automatically occurs if the “linearized
Hamiltonian” [defined as * by Eq. (2.7) in the present
article] is nonnegative over the entire functional space
of the solutions of the system. However, for the general
position, the operator * has at least one negative eigen-
value. If this value is unique and simple, soliton stabil-
ity will also occur for specific properties of the soliton
solution in translationally invariant Hamiltonian sys-
tems [17]. 

The present article is organized as follows. In Sec-
tion 2 we give the basic equations describing plane
000 MAIK “Nauka/Interperiodica”



        

STABILITY OF SOLITONS IN NONLINEAR COMPOSITE MEDIA 627

                                                                                                               
waves in nonlinear anisotropic elastic composites, we
present the Hamiltonian form of the basic equations,
we consider symmetries in the anisotropic and isotropic
cases, give the conserved quantities, and obtain soliton
solutions. Two families of solitons are obtained in the
anisotropic case. These families are parametrized by
the propagation velocity and shear. In the absence of
anisotropy there is a single family which depends on an
additional parameter, the angle of rotation in the wave
plane. Section 3 is devoted to the spectral properties of
the operator *. It is shown that for certain ranges of
velocities of the slow soliton family in an anisotropic
medium and for the soliton family in the absence of
anisotropy (the so-called range of stability), the opera-
tor * is positive definite on a certain closed linear sub-
space of the entire functional space of the solutions of
the basic equations. This implies orbital stability
(dynamic shape stability) of these soliton families for
these ranges of velocities. Evidence of stability is pro-
vided in Section 4. In Section 5 we give a brief formu-
lation of the results and discuss problems of instability
of the fast soliton family in the anisotropic case and
representatives of soliton families whose velocities lie
outside the range of stability in the presence and
absence of anisotropy.

2. FORMULATION OF THE PROBLEM

2.1. Basic Equations

We shall consider plane wave motion in an inhomo-
geneous nonlinear elastic medium (composite) when
the displacements wα, strains uα = ∂wα/∂x, and particle
velocities vα, α = 1, 2, 3 depend on a single spatial vari-
able, the Cartesian coordinate x = x3, and the time t. We
are interested in incompressible elastic media when u3

and v3 are constant. These constants may be set equal
to zero without limiting the generality. 

Although the motion of a nonlinear elastic body is
described by a hyperbolic system of equations [18], the
existence of an internal inhomogeneous material struc-
ture at the macrolevel leads to wave dispersion [1]. For
an elastic medium we shall assume that the nonlinear-
ity, anisotropy, and dispersion are small and repre-
sented by terms of the same order of magnitude. The
system of basic equations can then be written in the
form [19]

(2.1)

∂ui

∂t
-------

∂v i

∂x
--------– 0,=

ρ0

∂v i

∂t
--------

x∂
∂ ∂Φ

∂ui

------- 
 – m

∂2ui

∂x3
---------+ 0,=

i 1 2.,=
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Here ρ0 is the average density of the material, Φ is the
elastic potential which is given by

The constants g > 0 and κ characterize the anisotropy
and nonlinearity, respectively. An expression for the
constants f, g, and κ is given in [18]. A dispersion term
with m > 0 appears in the equations of motion [second
pair of equations in (2.1)], for example in cases when a
homogeneous, elastic, easily deformable medium con-
tains uniformly distributed rods having sufficient bend-
ing rigidity and positioned parallel to the x axis [19].

The equations (2.1) may be written in the Hamilto-
nian form:

(2.2)

where

w = {u1, u2, v1, v2}t is an unknown vector function, the
prime denotes the variational derivative δ/δw = {δ/δu1,
δ/δu2, δ/δv1, δ/δv2}t, and ( is a skew-symmetric oper-
ator:

2.2. Conserved Quantities and Symmetries

Quite clearly, the Hamiltonian E is constant on
account of the system (2.2). In addition, it is easy to see
that the functional 

is also an invariant. Another formally conserved quan-
tity is the vector functional

Φ 1
2
--- f u1

2 u2
2+( )=

+
1
2
---g u2

2 u1
2–( ) 1

4
---κ u1

2 u2
2+( )2

.–

t∂
∂

w (E' w( ),=

E
1
2
--- v 1

2 v 2
2 µ1u1

2 µ2u2
2+ + +

∞–

∞

∫=

–
κ

2ρ0
-------- u1

2 u2
2+( )2 m

ρ0
----- ∂xu1( )2 m

ρ0
----- ∂xu2( )2+ + dx,

µ1 f g–( )/ρ0, µ2 f g+( )/ρ0,= =

(

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0 
 
 
 
 
 

x∂
∂

.=

Q u1v 1 u2v 2+[ ] xd

∞–

∞

∫=

A w x.d

∞–

∞

∫=
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The system of Eqs. (2.2) has additional conserved
quantities in the particular case of degeneracy of the
anisotropy. We shall subsequently make separate anal-
yses of the anisotropic g ≠ 0 and isotropic g = 0 cases.

2.2.1. Anisotropic case. Equations (2.1) and (2.2),
and also the functions E, Q, and A are invariant with
respect to the group of translations

The functional Q is a conserved quantity as a result of
the translational invariance (2.1). 

2.2.2. Isotropic case. In this case we have the addi-
tional rotational symmetry

where S1 denotes a circle and the matrix ! = diag(a, a)
is a partitioned diagonal matrix with the blocks

As a result of the rotational symmetry, the following
quantity is formally conserved

The Hamiltonian E and functional Q are also invariant
with respect to the rotation group.

2.3. Soliton Solutions

The soliton solutions of the system (2.1) are travel-
ing waves which decay rapidly at infinity. After substi-
tuting into (2.1) w = w(ξ), where ξ = ξ – Vt (V is the
constant wave propagation velocity) and integrating
once, using the conditions of decay at infinity we obtain 

(2.3)

The dots here denote differentiation with respect to the
variable ξ. The Eq. (2.3) for isolated waves are written
in the equivalent form:

(2.4)

In equation (2.4) the vector function φV = { , , ,

}T,  = –V  denotes soliton solutions (2.3).

For µi > 0, κ > 0 Eqs. (2.3) have soliton solutions.
As in the previous paragraph we consider the anisotro-
pic and isotropic cases separately.

T s( )w w x s+( ) s∂x( )w x( ), s R.∈exp= =

G ϕ( )w !ϕ( )w, ϕ S
1
,∈exp=

a 0 1

1– 0 
 
 

.=

U
1
2
--- y1v 2 y2v 1– u2w1 u1w2–+[ ] x,d

∞–

∞

∫=

∂xyi ui, ∂xwi v i.= =

v i Vui,–=

m
ρ0
----- u̇̇i µi V2–( )ui

κ
ρ0
-----ui u1

2 u2
2+( ).–=

E' φV( ) VQ' φV( )+ 0.=

u1
c u2

c v 1
c

v 2
c v i

c ui
c
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2.3.1. Solitons in the presence of anisotropy. In
this case, Eqs. (2.3) have two families of soliton solu-
tions:

(2.5)

Each of the families (2.5) is a two-parameter one, the
parameters being the velocity V and the shear s along
the ξ coordinate. We shall subsequently call the first
family of solitons in (2.5) slow since these exist in the
lower velocity range and we shall call the second fast.

2.3.2. Solitons in an isotropic material. In the
absence of anisotropy µ1 = µ2 = µ we have additional

rotational symmetry: if φV = { , , , }T is a
soliton solution of Eqs. (2.3), then exp(!ϕ)φV , ϕ ∈  S1

is also a soliton solution. Thus, it is sufficient to con-
sider only the specific case with fixed ϕ:

(2.6)

The family of solitons represented by Eq. (2.6) is a
three-parameter one, the third parameter being the
angle of rotation ϕ.

By virtue of Eq. (2.4), the behavior of the functional
E(w) = VQ(w) near w = φV is completely determined by
the spectral properties of the self-conjugate operator

(2.7)

We shall discuss these properties in the following sec-
tion. 

3. SPECTRAL PROPERTIES 
OF THE OPERATOR *

The operator * has the form

(3.1)

u1
c 2ρ0κ

1– µ1 V2–( ) 2ρ0m 1– µ1 V2–( )ξ ,cosh
1–±=

u2
c 0, at 0 V2 µ1,< <=

u1
c 0,=

u2
c 2ρ0κ

1– µ2 V2–( ) 2ρ0m 1– µ2 V2–( )ξ ,cosh
1–±=

at 0 V2 µ2.< <

u1
c u2

c v 1
c v 2

c

u1
c 2ρ0κ

1– µ V2–( ) 2ρ0m 1– µ V2–( )ξ ,cosh
1–±=

u2
c 0, at 0 V2 µ.< <=

* E'' φV( ) VQ'' φV( ).+=

*

H1 0 V 0

0 H2 0 V

V 0 1 0

0 V 0 1 
 
 
 
 
 

,=

H1 µ1
3κ
ρ0
------u1

c2 κ
ρ0
-----u2

c2 m
ρ0
----- d2

dξ2
--------,–––=

H2 µ2
3κ
ρ0
------u2

c2 κ
ρ0
-----u1

c2 m
ρ0
----- d2

dξ2
--------.–––=
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It follows from Eq. (3.1) that the eigenvalue problem 

reduces to two independent problems:

(3.2)

and the third and fourth components  are determined
using the formulas 

As before, we shall discuss the anisotropic and isotro-
pic cases separately. 

3.1. Spectrum in Anisotropic Case

For the slow soliton family (  = 0) the spectral
problem (3.2) has the form

(3.3)

The differential operators on the left-hand sides of
Eqs. (3.3) are Sturm–Liouville operators and the corre-
sponding eigenvalue problems are investigated using
general theory. In the first equation in (3.3) we have for

ν = 0 the antisymmetric eigenfunction χ1 = ∂ξ . This
means that there is a single simple eigenvalue ν– < 0
and the positive spectrum ν is isolated from zero:

For the lowest state ν– we have

(3.4)

It follows from (3.4) that

whence λ– < 0, λ+ > 0. For the continuous spectrum λ
of the first problem (3.3) we have 

*χ λχ , χ χ1 χ2 χ3 χ4, , ,{ } T ,= =

H1 V2–( )χ1 λ V2λ
λ 1–
------------– 

  χ1,=

H2 V2–( )χ2 λ V2λ
λ 1–
------------– 

  χ2,=

χ

χ3 4, Vχ1 2, / λ 1–( ).=

u2
c

µ1 V2–
3κu1

c2

ρ0
--------------–

m
ρ0
----- d2

dξ2
--------–

 
 
 

χ1 νχ1,=

µ1 V2–
κu1

c2

ρ0
----------–

m
ρ0
----- d2

dξ2
--------–

 
 
 

χ2 ν1χ2,=

ν λ V2λ
λ 1–
------------– 

  , ν1 = λ V2λ
λ 1–
------------ 2

g
ρ0
-----–– 

  .=

u1
c

ν ν+ 0.>≥

λ V2λ
λ 1–
------------– ν–.=

λ±
1 V2 ν–+ +

2
---------------------------

1
2
--- 1 V2 ν+ +( )2

4ν–– ,±=

λ V2λ
λ 1–
------------ µ1 V2 0.>–≥–
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From this we obtain 

i.e., the continuous spectrum λ is positive and nonzero. 
The lowest state of the second spectral problem (3.3)

is a simple eigenvalue ν1 = 0 with the symmetric

eigenfunction . The positive spectrum of ν1 is non-
zero. For the eigenvalues λ corresponding to ν1 = 0 we
have

For the continuous spectrum similar to the previous
case we obtain 

Thus, for the slow soliton family in the anisotropic
case the spectrum of the operator * is organized as fol-
lows: 

(i) there is exactly one simple negative eigenvalue;
(ii) the kernel of the operator * is one-dimensional

and pulled onto the eigenvector ∂ξφV ;

(iii) the positive spectrum of * is nonzero.
We shall subsequently consider the spectrum of the

operator * for the fast soliton family (  = 0). For this
family the spectral problem (3.2) has the form

(3.5)

The lowest state of the first spectral problem in (3.5) is

ν1 = 0 with the eigenfunction χ1 = . The positive
spectrum of ν1 is isolated from zero. For the eigenval-
ues λ corresponding to ν1 = 0 we have

λ
1 µ1+

2
-------------- 1 µ1–( )2 4V2+ 0,>–>

u1
c

λ V2λ
λ 1–
------------ 2g

ρ0
------–– 0,=

λ±
1 V2 2g/ρ0+ +

2
-----------------------------------=

± 1
2
--- 1 V2 2g+ +

ρ0
---------------------------- 

 
2 8g

ρ0
------– 0.>

λ
1 µ2+

2
-------------- 1 µ2–( )2 4V2+ 0.>–>

u1
c

µ2 V2–
κu2

c2

ρ0
----------–

m
ρ0
----- d2

dξ2
--------–

 
 
 

χ1 ν1χ1,=

µ2 V2–
3κu2

c2

ρ0
--------------–

m
ρ0
----- d2

dξ2
--------–

 
 
 

χ2 νχ2,=

ν λ V2λ
λ 1–
------------– 

  , ν1 λ V2λ
λ 1–
------------ 2

g
ρ0
-----+– 

  .= =

u2
c

λ V2λ
λ 1–
------------ 2

g
ρ0
-----+– 0,=
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from which it follows that λ– < 0, λ+ > 0. The positive
and nonzero nature of the continuous spectrum for the
first spectral problem in (3.5) is demonstrated as in the
previous cases.

The analysis of the second spectral problem is
exactly the same as the first spectral problem for the
slow family of solitons. As a result for the spectrum of
the operator * for the fast family we have:

(i) two simple negative eigenvalues λ where the

eigenvalue λ– corresponds to the eigenfunction  =

{ , 0, V–1(1 + 2g ) , 0}T;

(ii) a one-dimensional kernel pulled to the zero
eigenvector ∂ξφV ;

(iii) a positive spectrum isolated from zero. 
Thus, for the fast family there is an additional unsta-

ble direction  compared with the slow family. The
existence of this unstable direction presumably leads to
instability of the fast soliton family. The question of
instability is discussed in greater detail in Section 5. 

3.2. Spectrum in the Isotropic Case

In the isotropic case µ1 = µ2 = µ the spectral problem
(3.2) degenerates:

(3.6)

Studying (3.6) as in the previous case, we find that the
first eigenvalue problem has a simple negative eigen-
value, a simple zero eigenvalue with the eigenfunction

χ1 = ∂ξ  and a positive nonzero spectrum. The second
problem in (3.6) gives a simple zero eigenvalue with

the eigenfunction χ2 =  and a positive nonzero spec-
trum. Summarizing we find that in the isotropic case
the spectrum of the operator * consists of:

(i) a simple negative eigenvalue;
(ii) a double zero eigenvalue with the eigenfunctions

∂ξφV and !φV ;

λ±
1 V2 2g/ρ0–+

2
-----------------------------------=

± 1
2
--- 1 V2 2g–+

ρ0
--------------------------- 

 
2 8g

ρ0
------+ ,

χ–
0

u2
c λ–

1– u2
c

χ–
0

µ V2–
3κu1

c2

ρ0
--------------–

m
ρ0
----- d2

dξ2
--------–

 
 
 

χ1 νχ1,=

µ V2–
κu1

c2

ρ0
----------–

m
ρ0
----- d2

dξ2
--------–

 
 
 

χ2 νχ2,=

ν λ V2λ
λ 1–
------------– 

  .=

u1
c

u1
c
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(iii) a positive part of the spectrum isolated from
zero. 

The existence of an additional eigenvalue compared
with the anisotropic case is caused by the appearance of
additional rotational symmetry. 

We then introduce the notation: for x = {x1, x2, x3,
x4}T, z = {z1, z2, z3, z4}T,

and we consider the properties of the bilinear form
〈*y, y〉  for the slow soliton family in the anisotropic
case and for the isotropic case.

3.3. Properties of the Bilinear Form 〈*y, y〉
for a Slow Soliton Family in an Anisotropic Medium 

and for Solitons in an Isotropic Medium

We shall analyze the bilinear form 〈*y, y〉  in the
functional space X which is defined as follows:

where H1(R) is the Sobolev space of quadratically inte-
grable functions together with the derivatives, and
L2(R) is the space of quadratically integrable functions
on the real R-axis. The space X is chosen because it is
the space of least smoothness where the Hamiltonian E
is continuous. 

In the following analysis a key role will be played
by the positivity of 

which has the form

for the slow soliton family in the anisotropic case and

for solitons in the isotropic case. Thus, we have d(V) > 0
when V2 > µ1/2 for the anisotropic case and V2 > µ/2 for
the isotropic case. For conciseness we shall subse-
quently call the range of the parameter V where d(V) > 0
the stability range. It follows from the spectral proper-
ties of the operator * that the bilinear form 〈*y, y〉  is
not positively semidefinite in the entire space X because
the negative spectrum of the operator * is not empty.
Nevertheless, for d(V) > 0 this bilinear form is nonneg-
ative definite on the linear subspace

x z,〈 〉 x1z1 x2z2 x3z3 x4z4+ + +( ) ξd

∞–

∞

∫=

y y1 y2 y3 y4, , ,{ } T X∈=

=  H1
R( ) H1

R( ) L2
R( ) L2

R( ),×××

d V( ) ∂Q φV( )/∂V ,=

d V( ) 2V2 µ1–( )
2 ρ0m

µ1 V2–
---------------------=

d V( ) 2V2 µ–( )
2 ρ0m

µ V2–
-------------------=

L y X Q' φV( ) y,〈 〉 0=,∈{ } ,=
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tangential to the manifold Q(w) = Q(φV) at the point
w = φV. Moreover we have 

〈*y, y〉  ≥ c〈y, y〉 , y ∈ L1, (3.7)

where c is a certain positive constant which depends on
the velocity V,

for the slow family in the anisotropic case and

for the isotropic case. In order to prove (3.7) we note
that the condition

after differentiation once with respect to velocity yields

(3.8)

where e > 0 is a fairly small number which depends on
V [we recall that the case d(V) > 0 is being considered].
We then express the vector function ∂VφV in the form

(3.9)

where  is a single negative eigenvector of *:

P is a positive half-space of *; for p0 ∈  P we have
〈*p0, p0〉  ≥ δ〈p0, p0〉, δ is a certain positive constant,
and b1 = 0 in the anisotropic case. From Eqs. (3.8) and
(3.9) we have

(3.10)

We then represent the vector y ∈  L1 as

(3.11)

It follows from (3.9) and (3.11) for y ∈  L1 that

(3.12)

Then using (3.10), (3.11), (3.12), and the Cauchy–Bun-
yakovsky inequality, we obtain for y ∈  L1 

(3.13)

L1 L y ∂ξφV,〈 〉∩ 0= =

L1 L y ∂ξφV,〈 〉 0= y !φV,〈 〉 0=,{ }∩=

E' φV( ) VQ' φV( )+ 0=

*∂VφV ∂VφV,〈 〉 Q' φV( ) ∂VφV,〈 〉–=

=  ∂VQ φV( )– d V( ) e,–<–=

∂VφV a0χ– b0∂ξφV b1!φV p0,+ + +=

p0 P,∈

χ–

*χ– λ–χ–, χ– χ–,〈 〉 1,= =

*p0 p0,〈 〉 a0
2 λ– e.–<

y aχ– p, p P.∈+=

0 Q' φV( ) y,〈 〉 *∂Vφ y,〈 〉= =

=  a0aλ– *p0 p,〈 〉 .+

*y y,〈 〉 a2 λ–– *p p,〈 〉+=

≥ a2 λ–– δ p p,〈 〉 ,+
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and also

(3.14)

We then multiply (3.13) by e/2|λ–|  and add to (3.14).
As a result we obtain

(3.15)

where 

From (3.15) and the orthogonality condition 〈 , p〉 = 0
we then directly obtain the estimate (3.7).

Inequality (3.7) can be made even stronger and spe-
cifically we have the inequality

(3.16)

where ||· || denotes the norm in X space:

To prove (3.16) we note that the definition of
yields

(3.17)

Here and subsequently in the isotropic case we should
write µ instead of µ1 and µ2. Multiplying both sides
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of (3.7) by 1 – ε, where ε is fairly small and using
(3.17), we obtain

(3.18)

From (3.18) we directly obtain (3.16) with the choice

4. ANALYSIS OF STABILITY

We shall determine soliton orbits, i.e., families of
solutions, which depend on the parameters of the sym-
metry group. In the anisotropic case we shall call the
soliton orbit φV a single-parameter family of all shears
T(s)φV . Similarly, in the isotropic case the soliton orbit
is defined as the two-parameter family T(s)G(ϕ)φV .
A small perturbation of the soliton may lead to the
appearance of a soliton at a different velocity and in the
isotropic case a soliton formed as a result of a perturba-
tion may correspond to a different angle ϕ. Thus, it is
quite clear that the physical stability of the solitons will
be orbital stability where one of the elements of the
orbit is transferred to an element of the same orbit. In
other words, a soliton is called stable if for any e1 > 0,
δ1 > 0 exists such that if ||w(0) – φV|| < δ1, then 

for the slow soliton family (2.5) in the anisotropic case
and 

for the soliton family (2.6) in the isotropic case. Here
w(t) denotes a continuous solution of the basic equa-
tions (2.2) in time on an arbitrary segment t ∈  [0, T)
with the initial value w(0).1

We note that for the groups of shifts T(s) and rota-
tions G(ϕ) there are optimal shifts s(w) and rotations
ϕ(w) which minimize the distances from the soliton

1 The existence and uniqueness of the Cauchy problem for (2.2)
occurs in classes of smooth functions. For the present stability
analysis it is sufficient to confine ourselves to continuous func-
tions with respect to time having values in X.

*y y,〈 〉 ε *y y,〈 〉 1 ε–( )c y y,〈 〉+≥
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∫
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+ 1 ε–( )c
3ε
4
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2 y4
2+( )





dξ .

c1 min 1 ε–( )c 5ε µ1 V2–( ),–[=

1 ε–( )c ε µ2 V2–( ) 1 ε–( )c 3ε/4 εm/ρ0,+,– ] .

w t( ) T s( )φV–
s R∈
inf

t 0>
sup e1<

w t( ) T s( )G ϕ( )φV–
ϕ S∈
inf

s R∈
inf

t 0>
sup e1<
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orbits to the vector functions w. These shifts and rota-
tions satisfy [15, 17]

(4.1)

in the anisotropic case and

(4.2)

in the isotropic case.
Orbital stability of these soliton families occurs if

the Hamiltonian E(w) has a local minimum near w = φV

subject to the condition Q(w) = Q(φV) [17], more accu-
rately if the following inequality is satisfied

(4.3)

for the anisotropic case with s(w) from (4.1) and

(4.4)

for the isotropic case with s(w), ϕ(w) from (4.2) for low
values of the norms on the right-hand sides of (4.3),
(4.4), and c2 = const > 0. We shall prove this statement.
We shall subsequently confine ourselves to the isotro-
pic case, in the anisotropic case all the reasoning is sim-
plified because of the absence of additional rotational
symmetry.

Following [17], we shall assume that the family φV

is orbitally unstable. There then exists a series of initial
data wn(0) and δ2 > 0 such that 

where wn(t) are solutions of (2.2) with the initial data
wn(0). We select the series of instants tn when

(4.5)

As a result of the continuity of the conserved function-
als E and Q, we have

We then select the auxiliary series vn such that Q(vn) =
Q(φV) and 

It then follows from (4.4) that for fairly small δ2 
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ϕ S∈
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s R∈
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ϕ S∈
inf

s R∈
inf

t 0>
sup δ2,≥
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From this it follows that

which contradicts (4.5).
Thus, in order to determine the orbital stability of

these soliton families, it remains for us to establish the
validity of inequalities (4.3) and (4.4) which are
obtained for V2 > µ1/2 and V2 > µ/2, respectively. As
before, we shall confine our analysis to the isotropic
case: inequality (4.3) is a particular case of (4.4).

We perform the expansion

(4.6)

where a1 = const and 〈Q '(φV), y〉  = 0. We then have

From this it follows that 

We then introduce the notation

and perform the expansion

Since R'(φV) = 0 and Q(w) = Q(φV), we obtain

It is easy to see from (4.6) and (4.2) that

i.e., y ∈  L1. As a result of (3.16) we have

Having then noted that

we arrive at (4.4).
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5. DISCUSSION OF RESULTS
In the present paper we have obtained the following

results on the nonlinear dynamic stability of the soliton
families (2.5) and (2.6):

(i) in an anisotropic material solitons in the slow
family (2.5) are stable for velocities V in the range µ1/2
< V2 < µ1;

(ii) in the absence of anisotropy solitons in the fam-
ily (2.6) are stable in the velocity range µ/2 < V2 < µ.

The operator * for the fast soliton family in the

anisotropic case has an additional unstable direction 
which corresponds to perturbations of the zeroth com-

ponent  of the fast soliton family; we can assume that
these perturbations will destroy the soliton in the fast
family over the entire velocity range of its existence.

Unlike the situation typical of hydromechanics
when the solitons are arranged such that amplitude
growth takes place together with an increase in velocity
and a reduction in soliton “width”, in an elastic medium
we have a decrease in amplitude and increase in soliton
“width” with increasing velocity. This is responsible
for the different behavior of the quantity Q conserved
as a result of the translational invariance in hydrody-
namics and elasticity theory; in hydrodynamic models
it is an increasing function of velocity whereas in elas-
ticity theory models it either decreases (see, for exam-
ple [15]) or has different behavior on various velocity
intervals (as in the case considered in the present
study). This factor ensure that the global and local sta-
bilities of the soliton families are equivalent in hydro-
mechanics in the sense that if the elements of a family
from a small velocity interval are stable, the entire fam-
ily is stable. For the case of an elastic medium consid-
ered in the present study the situation is different: sta-
bility of solitons on these velocity intervals (range of
stability) does not imply stability on additional inter-
vals. Moreover, it seems that solitons in the slow family
in the anisotropic case for 0 < V2 < µ1/2 and solitons in
the absence of anisotropy for 0 < V2 < µ/2 will be unsta-
ble. The physical substantiation for this assumption is
that a soliton propagating at lower velocity (and thus
having a larger amplitude) is destroyed by the resis-
tance formed as a result of the elastic response of the
medium. To overcome this resistance the soliton must
have a fairly high velocity, in this case a velocity whose
square exceeds µ1/2 in the anisotropic case or µ/2 in
isotropic materials.

The mathematical substantiation of the assumption
that solitons having velocities outside the stability
range are unstable is as follows. In [17] sufficient insta-
bility conditions were formulated for Hamiltonian sys-
tems of the form (2.2). The only violation of these con-
ditions in this case is the purely formal fact that the
operator ( is not reversible on the functional space X.
A similar situation occurs for generalized Korteweg–de
Vries equations with higher-order nonlinearity. In [10]

χ–
0

u1
c
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the difficulty associated with the irreversibility of ( in
proving the instability of solitons of the generalized
Korteweg–de Vries equation was overcome using the
properties of an invariant similar to A in Section 2.2 in
the present study. Strict proof of the instability of soli-
tons in an elastic composite having velocities outside
the stability range will be the subject of forthcoming
investigations.
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Abstract—The fractional symmetric Fokker–Planck and Einstein–Smoluchowski kinetic equations that
describe the evolution of systems influenced by stochastic forces distributed with stable probability laws are
derived. These equations generalize the known kinetic equations of the Brownian motion theory and involve
symmetric fractional derivatives with respect to velocity and space variables. With the help of these equations,
the linear relaxation processes in the force-free case and for the linear oscillator is analytically studied. For a
weakly damped oscillator, a kinetic equation for the distribution in slow variables is obtained. Linear relaxation
processes are also studied numerically by solving the corresponding Langevin equations with the source given
by a discrete-time approximation to white Levy noise. Numerical and analytical results agree quantitatively. ©
2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The study of the evolution of various systems under the
influence of external stochastic forces constitute a large
section of statistical physics. It has a great variety of appli-
cations in physics, chemistry, biology, economy, and soci-
ology (see, e.g., [1–3]). The best known problem is the
description of Brownian motion. In the classical formula-
tion, Brownian motion manifests itself as an unceasing
chaotic motion of small macroscopic particles in a liquid
or a gas. This is explained by atoms nudging one another
and, hence, reveals the atomic structure of continuous
medium in which the motion occurs.

The achievements of the theory of probability serve
as a mathematical basis for the kinetic theory of
Brownian motion. They are as follows:

(i) the Central Limit Theorem, which justifies that
the stochastic force acting on a Brownian particle is
Gaussian;

(ii) the theory of Markovian stochastic processes; an
important assumption used in the kinetic description of
Brownian motion is that the behavior of the particle at a
given instant depends only on the instantaneous values of
the physical parameters, but not on their previous history;

(iii) studies of stochastic Gaussian processes, and pri-
marily, the work of Bachelier (1900), who was the first
to study a continuous stochastic Gaussian process with
independent increments, and the work of Wiener (1927),
who gave a rigorous mathematical formulation of this
process and studied the properties of its sample paths.

¶This article was submitted by the authors in English.
1063-7761/00/9103- $20.00 © 20635
The basic equations of the kinetic theory of Brown-
ian motion are the Fokker–Planck equation for the
probability density function (PDF) f (x, v, t) in the
phase space of coordinates and velocities, and the Ein-
stein–Smoluchowski equation for the PDF f (x, t) in real
space. The relaxation in the phase space can occur in
two steps: the first is the “fast” stage, at which relax-
ation over velocities occurs and a Maxwellian PDF is
established, and the second is the “slow” diffusion
stage, at which relaxation in the real (coordinate) space
occurs. If the physical conditions in the system are such
that the two relaxation stages can be separated, it is pos-
sible to pass from the Fokker–Planck equation to the
Einstein–Smoluchowski equation and describe the sys-
tem at the diffusion stage with a simpler equation. The
transition to the diffusion stage is discussed in more
detail by Chandrasekhar in [4], where a brilliant pre-
sentation of the classical Brownian motion theory is
given, and also in monograph [3], which contains a
modern presentation of the Brownian motion theory
including the motion in nonlinear open systems.

In the second half of the 1980s, the term “Levy
motion” started to become widely used in statistical
physics, in particular, in anomalous diffusion problems,
where the characteristic displacement of diffusive par-
ticle grows as tµ µ ≠ 1/2 (the case where µ = 1/2 corre-
sponds to classical Brownian motion). The Levy anom-
alous diffusion appears in different areas of physics,
including turbulence [5], solid and amorphous state
physics [6], chaotic dynamics [7], plasma physics [8],
etc. It is also worthwhile mentioning nonphysical areas,
e.g., biology and physiology [9], and the theory of
000 MAIK “Nauka/Interperiodica”
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finance [10]. Levy motion can be considered as a gen-
eralization of Brownian motion. The mathematical
foundation of this generalization is provided by
remarkable properties of stable probability laws, whose
theory was begun in the works by Levy and Khintchine
[11]. From the limit theorem point of view, the stable
probability laws are a generalization of the widely used
Gaussian law. Namely, the stable laws are the limiting
the probability laws of (properly normalized) sums of
independent identically distributed (i.i.d.) random vari-
ables [12]. Therefore, these laws (similarly to the Gaus-
sian one) occur when the evolution of a physical system
or the result of an experiment is determined by a sum of
a large number of identical independent random fac-
tors. An important distinction of stable PDFs is a
power-law tail decreasing as |x |–1 – α, x  ∞, where α
is the Levy index, 0 < α < 2. Hence, the PDF moments
of the order q ≥ α diverge.

The above-mentioned properties of stable PDFs
allow one to obtain a simple intuitive basis for anoma-
lous diffusion in the framework of the model of inde-
pendent random “jumps” [6]. However, in order to con-
struct a consistent theory of Levy motion, it is neces-
sary to obtain kinetic equations that generalize those of
Brownian motion, namely, the Fokker–Planck and the
Einstein–Smoluchowski equations. It is clear from very
simple arguments that these equations must contain
fractional space and/or time derivatives. During the last
two decades, several monographs solely devoted to the
theory of fractional calculus have appeared, see, e.g.,
[13], and an extensive treatment of fractional-order dif-
ferential equations applied to heat and mass transfer
has been given [14]. Different forms of diffusion (for
example, equations with fractional derivatives) were
proposed [15–20]. These equations were used, in par-
ticular, in the description of anomalous diffusion on
random fractals [21, 22] and in chaotic Hamiltonian
systems, for which the orders of fractional space and
time derivatives are determined by delicate properties
of the phase space [7, 23]. We also refer to [24], where
the general description of the fractional relaxation-
oscillation and fractional diffusion-wave phenomena
was provided using a simple adaptation of a mathemat-
ical approach to the fractional calculus.

Our paper deals with fractional generalizations of
the classical Fokker–Planck and Einstein–Smolu-
chowski equations describing the respective relaxation
in the phase space and in real space [44]. We follow the
classical approach [4] in deriving kinetic equations for
Brownian motion and also the approach of [25], where,
as far as we know, the fractional kinetic equation for the
phase space PDF was proposed for the first time.
Throughout the paper, we restrict ourselves to a one-
dimensional coordinate space and two-dimensional
(coordinate plus velocity) phase space. In addition, we
restrict ourselves to symmetric fractional kinetic equa-
tions, that is, those involving symmetric fractional
derivatives (see below).
JOURNAL OF EXPERIMENTAL
First, we derive kinetic equations with symmetric
fractional derivatives, which generalize the Fokker–
Planck and Einstein–Smoluchowski equations in the
case of Levy motion. These equations are called the
fractional symmetric Fokker–Planck equation (FSFPE)
and the fractional symmetric Einstein–Smoluchowski
equation (FSESE), respectively. Second, we use these
equations in studying classical problems of linear
relaxation, namely, relaxation in a force-free case and
relaxation of a linear Levy oscillator.

It is worthwhile to note that the force-free relaxation
in a spatially homogeneous case and the relaxation of a
linear oscillator were first studied in [26]. In this paper,
the equations for characteristic functions were obtained
by solving the corresponding Langevin equations and
by subsequently averaging the Liouville equation over
the phase space density. The linear oscillator was also
considered in [27] with the help of a fractional kinetic
equation for the diffusion stage of relaxation. Using the
FSFPE and FSESE, we study in detail both the “fast”
and the “slow” stages of a linear relaxation and demon-
strate a transition from the first level of description (the
use of FSFPE) to the second one (the use of FSESE).

We next consider two limiting cases for the oscilla-
tor, namely, an overdamped and a weakly damped
oscillator. Both these cases are very important in study-
ing the Levy motion in nonlinear open systems. We
propose a new kinetic equation for the weakly damped
linear oscillator and study its solutions. We also solve
numerically the Langevin equations that correspond to
fractional kinetic equations. We demonstrate numerical
results for the linear relaxation problems that are solved
analytically, and show a close agreement between the
kinetic theory results and the numerical modeling.

The paper is organized as follows. In Section 2, we
derive fractional generalizations of the Fokker–Planck
and Einstein–Smoluchowski equations following the
approaches of [4] and [25]. In Section 3, we investigate
relaxation in real space for force-free Levy motion and
for the Levy linear oscillator. In Section 4, we investi-
gate both relaxation problems in the phase space. In
Section 5, we consider relaxation for the overdamped
and weakly damped limits of the Levy oscillator. Con-
clusions and a discussion are presented in Section 6.

2. FRACTIONAL FOKKER–PLANCK
AND FRACTIONAL

EINSTEIN–SMOLUCHOWSKI EQUATIONS

The derivation of the Fokker–Planck equation is
usually based on the finiteness assumption for the sec-
ond moment of the PDF. Since this assumption breaks
down for stable PDFs, we find that the classical
approach used by Chandrasekhar [4] can be adopted for
a derivation not using the finiteness of the second
moment. A similar treatment was undertaken in [28],
where the discussion of [29] was adopted for the pur-
 AND THEORETICAL PHYSICS      Vol. 91      No. 3      2000
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pose of obtaining a kinetic equation in coordinate
space.

2.1. Fractional Fokker–Planck Equation

Similar to the Brownian motion theory, the initial
equations in our approach are as follows:

(1) the integral equation for the PDF f (x, v, t) of the
Markovian stochastic process in the phase space,

(2.1)

where Ψ(x, v; ∆x, ∆v, ∆t) is the transition probability,
that is, the probability for the coordinate x to acquire
the increment ∆x and for the velocity v the increment
∆v during the time interval ∆t;

(2) the Langevin equations

(2.2)

where ν is the friction coefficient (which is assumed to
be independent of v), F is the regular external force,
and A(t) is the fluctuation component of the external
force.

Following traditional assumptions in the theory of
Brownian motion [4], one then obtains the expressions
for the coordinate and velocity increments during the
time interval ∆t that is larger than the characteristic
time intervals of A(t) but smaller than the time intervals
during which physical parameters change appreciably:

(2.3)

Here

is a nonstationary stochastic process that is assumed to
be a homogeneous Gaussian process with independent
increments possessing a PDF

(2.4)

The Central Limit Theorem serves as a mathemati-
cal justification of this assumption. In accordance with
the above, we generalize the Chandrasekhar approach
by generalizing the Central Limit Theorem to i.i.d. vari-
ables with infinite variances. We recall that Levy and
Khintchine [11] discovered a class of stable probability
laws. These are limiting laws for the probability laws of
normalized sums of i.i.d. random variables. Each stable
law with a characteristic Levy index (0 < q < 2) pos-
sesses finite moments of the orders q, 0 < q < α, but infi-
nite moments of higher orders. The Gaussian law is
also a stable one with the characteristic index α = 2, and
it possesses moments of all orders. Returning to

f x v t ∆t+, ,( ) ∆x( )d ∆v( )d∫∫=

× f x ∆x– v ∆v– t, ,( )Ψ x ∆x– v ∆v– ; ∆x ∆v ∆t, ,,( ),

dx
dt
------ v= ,

dv
dt
------- νv– F A t( ),+ +=

∆x v∆t, ∆v νv F–( )∆t– B ∆t( ).+= =

B ∆t( ) A t'( ) t'd

t

t ∆t+

∫=

w B ∆t( )( ) 1

4πD∆t
--------------------- B ∆t( )( )2

4D∆t
---------------------– 

  .exp=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Eq. (2.4), we note that in the theory of stochastic pro-
cesses, the corresponding generalizations of a homoge-
neous Gaussian process B(t) with independent incre-
ments are stable Levy processes L(t) with the character-
istic function (we restrict ourselves to symmetric stable
laws) [30]

(2.5)

where D > 0 and (D∆t)1/α is called the scale parameter.
At α = 2, one recovers the Gaussian process B(t). The
above statements justify the expediency of the general-
ization B(∆t)  L(∆t) in Eqs. (2.3).

With Eqs. (2.3) and (2.5), the transition probability
in Eq. (2.1) is

where δ is the Dirac delta-function and

(2.6)

is the transition probability in the velocity space.
We insert Eq. (2.6) in Eq. (2.1), expand the left- and

the right-hand sides into series in ∆t, and let ∆t  0.
As a result, we obtain

(2.7)

We now turn to the physical space by making the
inverse Fourier transform with respect to the velocity
on the right-hand side of Eq. (2.7). We treat each term
in the square brackets separately. The first and the sec-
ond terms, being “classical,” are transformed trivially,
yielding –F(x, t)∂f/∂v and ν∂(vf )/∂v, respectively. The
last term can be written as

(2.8)

where  is the characteristic function.
We use the symmetric fractional derivative of an

arbitrary order α > 0 that can be defined, for a “suffi-
ciently well-behaved” function φ(v), v ∈  R, as the
pseudo-differential operator characterized by its Fou-
rier representation,

On the left-hand side, we adopt the notation introduced
in [19].

ŵL k ∆t,( ) eikL〈 〉 D k 2∆t–( ),exp= =

Ψ x v ; ∆x ∆v,,( ) ψ x v ; ∆v,( )δ ∆x v∆t–( ),=

ψ x v ∆v, ,( )
kd

2π
------

∞–

∞

∫=

× i– k ∆v νv∆t F∆t–+( ) D k α∆t–[ ]exp

∂f
∂t
----- v

∂f
∂x
------+ ∆v( )d f x v ∆v– t, ,( )∫–=

× kd
2π
------ ik∆v–( ) ikF– ikv v ∆v–( ) D k α+ +[ ] .exp

∞–

∞

∫

D
κd

2π
------e iκx–

∞–

∞

∫–
kd

2π
------e ikv– k α f̂ κ k t, ,( ),

∞–

∞

∫

f̂ κ k t, ,( )

dα

d v α-------------φ v( ) k αφ̂ k( ), v k R, α 0.>∈,–÷
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To treat this kind of fractional derivatives properly,
we recall the definition of the left and right Liouville
derivatives on the infinite axis [13],

(2.9)

where 0 < α < 1. For α ≥ 1,

(2.10)

n = [α] + 1, where the square brackets denote the inte-
ger part. Derivatives (2.9)–(2.10) are characterized by
their Fourier representation as

where

Thus, the symmetric fractional space derivative can be
written as

(2.11)

where α ≠ 1, 3, ….
We now return to Eq. (2.7) and write the kinetic

equation for the PDF f (x, v, t) in the phase space as

(2.12)

where the last term is defined through Eqs. (2.9)–
(2.11). This is a fractional Fokker–Planck equation for
Levy motion. For α = 2, this is the standard Fokker–
Planck equation for Brownian motion.

We note that Eq. (2.12) becomes meaningless when
α is an odd integer. That is why the particular case
α = 1 must be treated separately in our range of interest
0 < α ≤ 2. However, if one uses the Fourier transform
over velocity in solving a particular problem, this case
is not singled out.

2.2. Fractional Einstein–Smoluchowski Equation

Along with the relaxation parameter 1/ν, the
description of Brownian motion involves another relax-
ation parameter that characterizes diffusion in real
space. If the characteristic time of this process is much

$+
αφ v( )

1
Γ 1 α–( )
--------------------

vd
d φ ξ( ) ξd

x ξ–( )α-------------------
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v
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$–
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∞
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dv n
--------- ξn α– 1– φ v ξ+−( ) ξ ,d

0

∞
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$±
α φ v( ) ik+−( )αφ̂ k( ), α 0,≥÷

ik+−( )α k α iαπ
2

--------- ksgn+− 
  .exp=

dα

d v α-------------φ v( )

=  
1

2 πα 2⁄( )cos
------------------------------- $+

αφ v( ) $–
αφ v( )+[ ] ,–

∂f
∂t
----- v

∂f
∂x
------ F

∂f
∂v
-------+ + ν

v∂
∂

vf( ) D
∂α

∂ v α------------ f ,+=
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greater than 1/ν, it is possible to pass from the Fokker–
Planck equation for the PDF f (x, v, t) to the Einstein–
Smoluchowski equation for a simpler PDF f (x, t).

As in deriving the fractional symmetric Einstein–
Smoluchowski equation in the previous subsection, we
follow the reasoning used in the theory of Brownian
motion.

Instead of Eq. (2.1), an integral equation in the coor-
dinate space serves as an initial one,

where ψ(x; ∆x, ∆t) is the transition probability, that is,
the probability for the coordinate x to square the incre-
ment ∆x during the interval ∆t.

In the kinetic theory of Brownian motion, the transition
to the Einstein–Smoluchowski equation corresponds to
neglecting the term dv/dt in Langevin Eq. (2.2) [2]. Thus,
instead of two equations, we have a single Langevin
equation,

(2.13)

and instead of Eqs. (2.3), we obtain

where L(t) is a stable process with a symmetric PDF
and characteristic function (2.5), as before. We now
obtain the fractional symmetric Einstein–Smolu-
chowski equation

(2.14)

In what follows, we give examples of relaxation pro-
cesses governed by Eqs. (2.12) and (2.14). In all cases,
in order to obtain the solutions, we pass to the characteris-

tic functions  with respect to the coordinate of the

FSESE and to the characteristic function  with
respect to the coordinate and the velocity of the FSFPE.

3. SOLUTIONS
TO THE FRACTIONAL SYMMETRIC

EINSTEIN–SMOLUCHOWSKI EQUATION

In this section, we consider two simple examples of
relaxation processes governed by FSESE, namely,
relaxation in a force-free case and relaxation of the
Levy linear oscillator.

3.1. Force-Free Relaxation

Setting F = 0 in Eq. (2.14), we seek the solution with
the initial condition

f x t ∆t+,( )

=  ∆x( ) f x ∆x– t,( )ψ x ∆x; ∆x ∆t,–( ),d∫

dx
dt
------ F

ν
---

1
ν
---A t( ),+=

∆x F∆t ν⁄ L ∆t( ) ν ,⁄+=

∂f
∂t
-----

x∂
∂ F

ν
--- f 

 –
D

να----- ∂α

∂ x α----------- f .+=

f̂ κ t,( )

f̂ κ k t, ,( )

f x t 0=,( ) δ x x0–( ).=
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The characteristic function of the solution is

(3.1)

In the force-free case, the random process x(t) is there-
fore a non-stationary Levy stable process with indepen-
dent increments and with the scale parameter (Dt)1/α/ν.
In the real space, the Levy stable PDFs are expressed in
terms of the Fox’ H functions [31]. This representation
of all stable PDFs was achieved in [32]. Mathematical
details on H functions are presented in [33, 34]. In the
present paper, we do not consider the real space repre-
sentation for an arbitrary α, however.

Because the variance and higher moments of integer
orders diverge for stable PDFs, the moments of frac-
tional orders can be used as statistical means character-
izing the properties of these processes [26, 35]. To
guarantee the reality, the moments must be defined for
the modulus of the stochastic variable. For the force-
free relaxation, the fractional-order moments are there-
fore given by

(3.2)

for 0 < α < 2, and by

(3.3)

for α = 2 and an arbitrary q, where

The coefficient C(q; α) can be evaluated using the gen-
eralized function theory [26] as

(3.4)

Equations (3.2)–(3.4) have a direct physical conse-
quence for the description of anomalous diffusion. For
ordinary Brownian motion, the characteristic displace-
ment δx(t) of a particle can be written through the sec-
ond moment as

One can note from Eqs. (3.3) that for the normal diffu-

sion, (t; q, 2) ∝  t1/2 at any q, and therefore, any order

f̂ κ t,( ) iκ x0
D

να----- κ α t–
 
 
 

.exp=

Mx t; q α,( ) x x q f x t,( )d

∞–

∞

∫=

=  Dt( )1/α /ν( )q
C q; α( ), 0 q α< <

∞, q α ,≥



Mx t; q 2,( )
Dt( )q/2

ν2
-----------------C q; 2( )=

C q; α( ) x2 x2
q x1d

2π
-------- ix1x2– x1

α–( ).exp∫d

∞–

∞

∫=

C q; α( )
2

πq
------ πq

2
------ 

  Γ 1 q+( )Γ 1 q
α
---– 

  ,sin=

0 q α .< <

δx t( ) Mx
1/2 t; 2 2,( )= t1/2.∝

Mx
1/q

of the moment can serve as a measure of the normal dif-
fusion rate,

if one is interested in the time dependence of the char-
acteristic displacement, but not in the value of the pref-
actor. We remind the reader that the time dependence
alone, without the prefactor, usually serves as an indi-
cator of normal or anomalous diffusion [6]. In analogy
with the Brownian case, it follows from Eqs. (3.2) that

the quantity (t; q, α) for 0 < α < 2 and any q < α
can serve as a measure of the anomalous diffusion rate,

(3.5)

This describes a fast anomalous diffusion, or superdiffu-
sion, as the second moment Mx(t; 2, α) diverges. We note
that in order to extract the scaling form for the second
moment, the “walker” was enclosed in an “imaginary
growing box” in [27]. This formal procedure leads to the
diffusion scaling t2/α for the variance, which is consistent
with Eq. (3.5), and it was implemented numerically. How-
ever, it seems that a more physically relevant procedure
must take the finite velocity of a diffusive particle into
account. This problem is beyond the scope of our paper.
We only mention an extensive recent discussion on this
interesting and important theme [36, 37].

The numerical simulation results for the Langevin
equation (2.13) are shown in Figs. 1 and 2. Here and in
what follows, the stochastic source A(t) is represented
in numerical simulation as a discrete approximation of
a “white Levy noise”, that is, as a stationary sequence of
independent identically distributed variables having a
symmetric stable PDF with the Levy index α and with the
scale parameter equal to 1. To obtain the sequence, we
use the generator based on the inversion method [38]
and the Gnedenko limit theorem [12]. This generator
was described in our recent papers [39] and [40] in
more detail. The time interval between the terms of the
sequence is equal to unity. In the force-free problem,
we estimate the moments Mx(t; q, α) numerically by
averaging realizations of x(t). The total number of real-
izations is equal to 500, each of a length of 512.

In Fig. 1, we show Mx(t; q, 1) versus t at a different
q in a log-log scale. For q < α = 1, the dependence is
well fitted by the straight line whose slope allows us to
define the diffusion exponent. For q ≥ α, the theoretical
value of the moment is infinite, and in numerical simu-
lation the moment strongly fluctuates, and it is there-
fore impossible to obtain the diffusion exponent.

In Fig. 2, we show the exponent µ involved in the
relation Mx(t; q, α) ∝  tµ versus the Levy index α of the
discrete approximation of the white noise. The order q
of the moment is equal to 0.25, which is smaller than
the smallest value α = 1 used in numerical simulation.
The theoretical dependence 0.25/α is shown by the dot-
ted line. The values of µ obtained in simulations are
shown by black dots. Close agreement between the the-
ory and numerical simulations is obvious.

δx t( ) Mx
1/q t; q 2,( ) t1/2,∝≈

Mx
1/q

δx t( ) Mx
1/q t; q α,( ) t1/α , 0 q α 2.< < <∝≈
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3.2. Relaxation of the Linear Levy Oscillator

Setting F = –ω2x in Eq. (2.14), we seek the solution
with the initial condition

f (x, t = 0) = δ(x – x0).

5

2

lnMx

lnt
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5
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q = 0.25

q = 0.5

q = 1.0

q = 2.0

Fig. 1. Force-free relaxation in the FSESE framework. The
moment Mx versus t at different values of the moment expo-
nent q. The Levy index α is 1.

0.15

1.0

µ

α
1.5 2.0

0.20

0.25

Fig. 2. Force-free relaxation in the FSESE framework.
The exponent µ of the time dependence of the moment
Mx(t; q, α) ~ tµ versus the Levy index α. The moment order
is q = 0.25. The theoretical dependence 0.25/α is depicted
by the dotted line. Numerical results are depicted by black
dots.
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The characteristic function of the solution is

(3.6)

where

This result was recently obtained in [27].
It can be seen that the relaxation of the oscillator,

contrary to the force-free case, is not a Levy stable pro-
cess with independent increments. It can be named a
“stable-like” or a “Levy-like” process, because the
exponent of the characteristic function involves |κ|α, but
the scale parameter for the oscillator, (Dosc(t))1/α, does not
increase as t1/α, which is a manifestation of the Levy stable
process with independent increments, see Eq. (2.5). The
process x(t) behaves as a Levy stable one only asymp-
totically for short times,

t ! τx = ν/αω2.

On the other hand, for t @ τx, the process x(t)
becomes asymptotically stationary with a stable PDF
that does not depend on t and with the Levy index α and
the scale parameter

(3.7)

We also note that for the Brownian oscillator only,
the stationary solution has the Boltzmann form

(3.8)

In what follows, we return to the problems related to
stationary solutions of fractional kinetic equations.

It is convenient to define fractional moments after
subtracting from a stochastic quantity x its regular part
containing the initial condition, that is, x0exp(–ω2t/ν).
Thus, the moments are

(3.9)

where C(q; α) is the same as in (3.4).
Numerical simulations of the linear oscillator relax-

ation involve solution of Langevin equation (2.13) with
the external force F = –ω2x and the calculation of the qth
order moments. In Fig. 3, we present the results
obtained for various values of ω by averaging over 300
realizations, each of length 4096. The Levy index α is
equal to 1, and the order of the moment is 0.25. The val-
ues obtained in the numerical simulation are depicted
by black dots, whereas the solid line indicates the val-
ues estimated from Eq. (3.9). The vertical mark indi-
cates the value τx , after which the random process x(t)

f̂ κ t,( ) iκ x0e ω2
t /ν– Dosc t( ) κ α–{ } ,exp=

Dosc t( )
D

αω2να 1–
---------------------- 1 e αω2

t /ν––( ).=

Dosc
1/α t ∞=( )

D

αω2να 1–
---------------------- 

  1/α
.=

f st x; α 2=( ) νω2

2πD
----------- νω2

2D
---------– x2

 
 
 

.exp=

Mx t; q α,( ) x x0 ω2t ν⁄–( )exp–
q

=

=  Dosc
q/α t( )C q; α( ),
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becomes stationary. For t > τx, the moment tends to a
constant value that can be estimated from Eqs. (3.7)
and (3.9). Numerical results demonstrate close agree-
ment with theoretical estimates on both the non-station-
ary and stationary stages of the evolution.

4. SOLUTIONS TO THE FRACTIONAL 
SYMMETRIC FOKKER–PLANCK EQUATION

In this section, as in the previous one, we consider
the same examples of relaxation processes, but gov-
erned by FSFPE.

4.1. Force-Free Relaxation

Setting F = 0 in Eq. (2.12), we seek the solution of
FSFPE with the initial condition

For clarity, it is expedient to consider the space-homo-
geneous relaxation first.

4.1.1. Space-homogeneous force-free relaxation.
The solution for the characteristic function with respect
to the velocity is

(4.1)

where

and “ff ,” means “force-free.” The space homogeneous
relaxation in a force-free case was first considered in
[26]. The relaxation process is not a Levy stable pro-
cess with independent increments, but, following the
terminology used in the previous section, it can be
called a stable-like, or Levy-like process, since its char-
acteristic function (4.1) involves |k |α in the exponent,

but  is not a linear function of t, and hence, the

scale parameter  does not scale as t1/α.
A stable process with independent increments arises
for short times, t ! τv = 1/αν, when the exponent in
(4.1) can be expanded in a power series. With the accu-
racy up to linear terms in t inclusively, we obtain the
Levy stable process. On the other hand, for t @ τv , the
stochastic process v(t) becomes asymptotically station-
ary with a stable PDF that is independent of t and with
the Levy index α and the scale parameter

(4.2)

Here it seems expedient to discuss the problems
related to stationary solutions of fractional kinetic
equations. In the classical theory of Brownian motion,
the equilibrium Maxwell PDF over velocity is reached
as t  ∞. It is characterized by the temperature T of

f x v t 0=, ,( ) δ x x0–( )δ v v 0–( ).=

f̂ k t,( ) ikv 0e ν t– k α D ff
v( ) t( )–{ } ,exp=

D ff
v( ) t( ) D/αν( ) 1 e αν t––( )=

D ff
v( ) t( )

D ff
v( ) t( )( )1/α

D ff
v( ) t ∞=( )( )1/α D

αν
------- 

 
1/α

.=
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the surrounding medium. There exists a relation
between the parameter D of the PDF of the random
source in the Langevin equations, see Eq. (2.2), and the
friction coefficient ν such that

D νkBT /m,=

0.5
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lnt
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lnMx

Fig. 3. Relaxation of a linear oscillator in the FSESE frame-
work. The qth order coordinate moment versus time in a
twice logarithmic scale. The numerical simulation results
are depicted by black dots, the moment obtained from the
FSESE is shown by the solid line. Vertical marks indicate
the coordinate relaxation time.
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where m is the mass of the Brownian particle and kB is
the Boltzmann constant. The temperature T is a measure
of the mean kinetic energy of the Brownian particle,

(4.3)

Equation (4.3) is an example of fluctuation-dissipa-
tion relations. In this case, the source A(t) in the Lan-
gevin equation is called the source of internal fluctua-
tions. Relation (4.3) may not be satisfied, as it takes
place, e.g., in auto-oscillation systems. One then says
that A(t) is a source of external (relative to the system)
fluctuations in Eq. (2.2). However, the Maxwell–Boltz-
mann exponential form of stationary solutions is pre-
served [2]. As for the Levy motion, the fluctuation-dis-
sipation relations cannot be satisfied, because of the
infinite squared velocity 〈v2〉  = ∞ for 0 < α < 2. There-
fore, we can only speak of A(t) as of a source of external
fluctuations. Moreover, it follows from the example
considered in this subsection and from the linear oscil-
lator example considered above that the stationary solu-
tions do not possess the Maxwell–Boltzmann form but
rather a more general form of stable distributions. At
present, there is no theory of equilibrium state based on
stable PDFs. Perhaps, it can be constructed with the
help of Tsallis’ statistics and his generalizations, see
recent review [41] and references therein.

We also write the qth order fractional moment of the
velocity,

(4.4)

where  is determined above. This formula is
compared with the results of numerical simulations at
the end of Subsection 4.1.

4.1.2. Space-inhomogeneous force-free relax-
ation. We turn to the force-free relaxation in the general
case, which is governed by Eq. (2.12) with F = 0. The

solution for the characteristic function  can be
obtained by the method of characteristics. For Brown-
ian motion, where α = 2, one can make an analytical
Fourier transformation [4]. For an arbitrary α, 0 < α < 2,
the analysis becomes rather complicated. However,
since we already have some information about the
velocity relaxation, we study the evolution of a simpler
function,

whose characteristic function is

(4.5)

Ekin〈 〉 m v 2〈 〉
2
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kBT

2
---------.= =
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q
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=  D ff
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f x t x0 v 0,,( ) v f x v t x0 v 0, , ,( ),d∫=

f̂ κ k 0= t x0 v 0,,,( )

=  iκ x0 iκ
v 0

ν
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,exp
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where

The random coordinate is a stable-like process. For
prolonged times t @ τv , we obtain

(4.6)

and the characteristic function (4.5) coincides with the
solution of the Einstein–Smoluchowski equation in the
force-free case. In the prolonged time limit, therefore,
the random process x(t) becomes an α-stable process
with independent increments and with the Levy index
α and the scale parameter (Dt)1/α/ν . One can see that
the space-inhomogeneous relaxation occurs in two
stages, namely, the “fast” stage, at which a stationary
stable velocity PDF is established after the time period
τv , and the “slow” diffusion stage, whose characteristic
relaxation time τx can be defined as

where L is an external scale of the system. For suffi-
ciently large systems, τx @ τv .

For the coordinate, we also write the qth order frac-
tional moment that is estimated in the numerical simu-
lations given in what follows,

(4.7)

Numerical simulation of the force-free relaxation
process described by FSFPE involves solving Langevin
equations (2.2) with F = 0 and estimating the moments
Mv(t; q, α) and Mx(t; q, α). The results are shown in
Figs. 4, 5.

Figure 4 has an illustrative purpose. It shows typical
velocity trajectories (at the left) and coordinate trajec-
tories (at the right) for various values of the Levy index.
We set ν = 0.03 and, thus, the velocity relaxation time
τv is equal to 20 for α = 1.7, 26 for α = 1.3, and 33 for
α = 1.0, respectively. In most of the realizations pre-
sented here, the process v(t) is stationary. Large outli-
ers that are clearly seen in the velocity realizations
appear to be due to the power law asymptotic behavior
of the stable PDFs of the velocity. With the Levy index
decreasing (from top to bottom), the asymptotic behav-
ior becomes flatter, leading to the growth of the outlier
amplitudes. Large outliers of the velocity, in their turn,
lead to large jumps in the trajectories x(t), that is, the
Levy flights, see illustrations on the right.

In Fig. 5, we depict the velocity moments Mv (at the
left) and coordinate moments Mx (at the right) versus
time at different values of the friction coefficient v . The

D ff
x( ) t( )

D

να----- τ 1 e ντ––( )α
.d
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t

∫=

D ff
x( ) t ∞( ) Dt

να------

τ x νL( )α /D,≈

Mx t; q; α( ) x x0–
v 0

ν
------ 1 e ν t––( )–

q
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Fig. 4. Force-free relaxation in the FSFPE framework. The typical trajectories of the velocity (at the left) and of the coordinates (at
the right) for various values of the Levy index α. The friction coefficient ν is 0.03.
moments are obtained by averaging over 50 realiza-
tions, each of length 4096. The moment exponent q is
equal to 0.25 for the velocity and of the coordinate, the
Levy index is equal to 1.3. The moments estimated by
numerically solving the Langevin equations are shown
by black dots, whereas the moments estimated with
Eqs. (5.5) and (4.7) are shown by solid lines. The verti-
cal mark indicates the relaxation time τv . At the inter-
vals greater than τv , the random process v(t) becomes
stationary and the velocity moment tends to the con-
stant value D/αν. At the same time, it follows from the
right-hand figures that the process x(t) remains non-sta-
tionary, and the moment of the coordinate tends to a lin-
ear (in a twice logarithmic scale) asymptotic regime,
which has a slope q/α and is shown by the dotted line
in the right-hand figures. From Fig. 5, we can make
conclusions about the agreement between the theoreti-
cal results obtained for the force-free relaxation by
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
solving FSFPE and the results obtained by numerically
solving the Langevin equations.

4.2. Relaxation of the Linear Levy Oscillator

Setting F = –ω2x in Eq. (2.12), we seek the solu-
tion of FSFPE with the initial condition f (x, v, t = 0) =
δ(x – x0)δ(v – v0).

Making the Fourier transform and using the method
of characteristics, we obtain the characteristic function

f̂ κ k t, ,( ) iω2x0e ν t /2– 2k
ν1
------

ν1t
2

-------sinh–




exp=

+
κ

ν1ω
2

----------- ν
ν1t
2

-------sinh ν1
ν1t
2

-------cosh+ 
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Fig. 5. Force-free relaxation in the FSFPE framework. The velocity moments (at the left) and the coordinate moments (at the right)
versus time in a twice logarithmic scale. Black dots indicate the numerical simulation results for the Langevin equations, the solid
line indicates the moments obtained from the FSFPE. The moment order q is 0.25. The Levy index α is 1.3. Vertical marks show the
velocity relaxation time τv and the time 5τv . The dotted lines in the right-hand figures indicate the theoretical values q/α of the
straight-line asymptotic regime (in a log-log scale) for the moment of the coordinate.
(4.8)+ iv 0e ν t /2– 2κ
ν1
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ν1t
2

-------sinh

–
k
ν1
----- ν

ν1t
2

------- ν1
ν1t
2

-------cosh–sinh 
  D τe αντ /2–d

0

t

∫–
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where ν1 = (ν2 – 4ω2)1/2. This expression is valid for ν2 –

4ω2 > 0. If ν2 – 4ω2 < 0, we introduce ω1 = 

× 2κ
ν1
------

ν1τ
2

-------- k
ν1τ
2

--------cosh
ν
ν1
-----

ν1τ
2

--------sinh– 
 +sinh

α
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and make the following changes:

In the aperiodic case, ν = 4ω2, evidently,

Setting α = 2 and using the first and the second
derivatives of the characteristic function at κ = k = 0, we
can obtain the means and the variances of the velocity
and coordinates for the Brownian oscillator. These for-
mulas are given in [4]. The expressions for the means
are also valid for all α greater than unity.

We now turn to more complicated fractional
moments,

(4.9)

where

and C(q; α) is the same as in previous sections. Equa-
tions (4.9) are compared with the results of numerical
simulations at the end of Section 5.

Equation (4.8), in principle, allows one to study the
stationary solution, which is defined by

(4.10)

where

ν1t/2( )cosh ω1t( ),cos

ν1t/2( )sinh /ν1 ω1t( )/2ω1,sin

ν1t( )/ν1 2ω1t( )/2ω1.sinsinh

ν1t/2( )cosh 1, ν1t/2( )/ν1 t/2,sinh

ν1t( )/ν1 t.sinh

Mv q( ) v q〈 〉 Dosc
v( ) t( )( )q/α

C q; α( ),= =

Mx q( ) x q〈 〉 Dosc
x( ) t( )( )q/α

C q; α( ),= =

Dosc
v( ) t( ) D τ αντ

2
----------– 

  ν1τ
2

--------cosh
ν
ν1
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ν1τ
2

--------sinh–
α
,expd

0

t

∫=

Dosc
x( ) t( )

D

να----- τ αντ
2

----------– 
 expd

0

t

∫=

×
ν1τ
2

-------- 
 exp

ν1τ
2

--------– 
 exp–

α

,

f st x v,( )
κd

2π
------

∞–

∞

∫=

× kd
2π
------ iκx– ikv–( ) f̂ st κ k,( ),exp

∞–

∞

∫

f̂ st κ k,( ) D τe αντ /2–d

0

∞

∫–




exp=

× 2κ
ν1
------

ν1τ
2

-------- 
 sinh k

ν1τ
2

-------- 
  ν

ν1
-----

ν1τ
2

-------- 
 sinh–cosh+

α





.

A simple analytic expression can be obtained for the
stationary solution in the case where α = 2 only. How-
ever, Eq. (4.10) allows one to derive some conclusions
for simpler stationary PDFs, namely,

and

Both stationary PDFs are stable with the Levy index α
and with the scale parameters expressed as integrals
over τ, see Eq. (4.9).

Although the linear oscillator, as we see, admits an
exact solution, the general formulas are not easy to ana-
lyze analytically. Therefore, it is instructive to consider
two limiting cases, namely, an overdamped and a weakly
damped oscillator. Both cases are also very important in
problems related to the nonlinear oscillator.

5. LIMIT CASES OF THE LEVY OSCILLATOR

5.1. The Overdamped Levy Oscillator, ω/ν ! 1

We consider the relaxation of the moments for an
overdamped oscillator. We first turn to the velocity
relaxation. It follows from Eq. (4.9) that we can restrict
ourselves by the zero-order approximation in ω/ν. We

then obtain  and τv that obviously coincide with

 and τv or the force-free case. The conclusion is
that the velocity relaxation for the overdamped oscilla-
tor in the leading order in the small parameter ω/ν is the
same as in the force-free case.

We next consider space relaxation, which differs
from the force-free case. We obtain from Eq.(4.9) in the
first order in ω/ν,

(5.1)

It follows from Eq. (5.1) that for t @ τv = 1/αν, the sec-
ond term in the brackets gives a negligibly small contri-
bution, and therefore,

(5.2)

which coincides with the result obtained in the FSESE
framework. Thus, we conclude that at time intervals
greater than the velocity relaxation τv , the overdamped
oscillator can be described with the help of a simpler
kinetic equation, namely, the FSESE. For the over-
damped oscillator, the relaxation process occurs in two
stages: the fast velocity relaxation stage, at which a sta-

f st x( ) v f st x v,( )d

∞–

∞

∫ κd
2π
------e iκx– f̂ st κ k 0=,( )

∞–

∞

∫= =

f st v( ) x f st x v,( )d

∞–

∞

∫ κd
2π
------e ikv– f̂ st κ 0= k,( ).

∞–

∞

∫= =

Dosc
v( ) t( )
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v( ) t( )
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x( ) t( )

D

να----- τ e ω2τ /ν– e ντ––( )
α
.d

0

t

∫≈

Dosc
x( ) t @ τv( )

D

αω2να 1–
---------------------- 1 e αω2τ /ν––( ),≈



646 CHECHKIN, GONCHAR
tionary stable velocity PDF is established during the
time interval τv , and the slow diffusion stage, at which
the stable PDF is established in real space during the
time interval τx = ν/αω2.

5.2. The Weakly Damped Levy Oscillator, ω/ν @ 1

In this case, the theory of the Brownian oscillator
provides us with the method of simplifying the kinetic
description [2]. It is based on the method of slowly
varying amplitudes, or the van-der-Pol method, which
is frequently used, e.g., in radiophysics [42, 43]. In this
approach, the solution of the Langevin equations

(5.3)

is sought in the form

where the amplitudes  and  are slowly varying dur-
ing the period 2π/ω. The evolution equation for the PDF
f( , , t) is given by

(5.4)

where

The detailed derivation of Eq. (5.4) is presented in the
Appendix and is analogous to that of FSFPE. If, as
usual, the initial condition is

the solution for the characteristic function is

(5.5)

We also obtain the fractional moments

(5.6)

where

dx
dt
------ v ,

dv
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------- ω2x– νv A t( )+–= =

x x̃ ωt( ) ṽ
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v ṽ ωt( ) ωx̃ ωt( ),sin–cos=
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x̃ ṽ
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∂t
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2
---

x̃∂
∂

x̃ f( ) ν
2
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ṽ∂
∂

ṽ f( )+=

+ Dx̃
∂α f

∂ x̃ α----------- Dṽ
∂α f

∂ ṽ α------------,+

Dx̃ D 2ω( )α , Dṽ⁄ D 2α .⁄= =
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f̂ κ k t, ,( ) iκ x0e ν t– /2 ikv 0e ν t /2–+




exp=
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2Dṽ
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Mṽ t; q α,( ) Dosc
ṽ( ) t( )( )q/α

C q; α( ),=

Mx̃ t; q α,( ) Dosc
x̃( ) t( )( )q/α

C q; α( ),=

Dosc
ṽ( ) 2Dṽ

αν
---------- 1 e αν t /2––( ),=
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It follows from the last equations that unlike in the case
of the overdamped Levy oscillator, the coordinate and
the velocity of the weakly damped oscillator possess
equal relaxation times,

For the weakly damped oscillator, it is therefore impos-
sible to divide the relaxation process into the fast and
slow stages. At time intervals greater than τ, the random
processes  and  become stationary with stable
PDFs. The characteristic function of the stationary state
is determined from Eq. (5.5) as

and the PDF retains the Maxwell–Boltzmann form for
α = 2 only.

Numerical simulations of the linear oscillator relax-
ation involve solving Langevin equations (2.2) with the
external force F = –ω2x and subsequently calculating
the velocity and coordinate moments. The results are
shown in Figs. 6–8.

Figure 6 has an illustrative character. It shows the
typical trajectories of the velocity (at the top) and of the
coordinate (at the-bottom) for the overdamped oscilla-
tor (at the left) and for the weakly damped oscillator (at
the right), respectively. The frequency value is equal to
0.003 and 0.3 for the overdamped and weakly damped
oscillators, respectively. The friction coefficient is
equal to 0.03 and the Levy index is 1.3. The trajectories
shown in the figures have a single large outlier. This
allows us to visually demonstrate the difference in the
behavior of the two kinds of oscillators: the relaxation
process for the overdamped oscillator (at the left)
resembles the force-free relaxation and is radically dif-
ferent from the rapidly oscillating behavior of the
velocity and coordinates of the weakly damped oscilla-
tor (at the right).

In Fig. 7, we show the velocity moments Mv (at the
top) and coordinate moments Mx (at the bottom) versus
t for the overdamped oscillator (at the left) and for the
weakly damped oscillator (at the right), respectively.
The oscillation frequencies ω are equal to 0.01 and 0.1
for the overdamped and the weakly damped oscillators,
respectively, the friction coefficient is 0.03. The order
of the moment is 0.25 and the Levy index is 1.3. The
moments obtained by numerical simulation are shown
by black dots, whereas the theoretical values, see
Eq. (4.9), are shown by a solid line. The numerical val-
ues are obtained by averaging over 200 realizations,
each of length 1024. The vertical marks indicate the
velocity relaxation time τv = 1/αν and the coordinate
relaxation time τx = ν/αω2 for the overdamped oscilla-
tor, and also the relaxation time τv = τx = 2/αν for the

Dosc
x̃( ) 2Dx̃

αν
--------- 1 e αν t /2––( ).=

τv τ x τ 2/αν .= = =

x̃ t( ) ṽ t( )

f̂ st κ k,( )
2Dx̃

αν
--------- κ α–

2Dṽ

αν
---------- k α– 

  ,exp=
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weakly damped oscillator. Both theoretical and numer-
ical curves reach a “plateau” at intervals greater than
the relaxation times. This implies that the processes
v(t) and x(t) become stationary. The figures demon-
strate an important difference between the overdamped
and the weakly damped oscillators: for the overdamped
oscillator, the coordinate relaxation time is much
greater than the velocity relaxation time, whereas for
the weakly damped oscillator both times are the same.
From Fig. 7, we also conclude that there is close quan-
titative agreement between theoretical results obtained
by solving FSFPE and the numerical solution of the
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0 4 6
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Fig. 8. Relaxation of the linear oscillator in the FSFPE
framework. The velocity moments versus time in a twice
logarithmic scale for different truncation parameters Amax
for the stable PDFs of the noise in the Langevin equations.
The parameters used in simulations are as follows: ω =
0.05, ν = 0.01, q = 0.25, and α = 1.3. Amax is 1600, 300, and
50 for the cases (a), (b), and (c), respectively.
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corresponding Langevin equations. In this respect, it is
worthwhile to draw one’s attention to the coincidence
of the theoretical curve with numerical dependence in
the nonstationary parts.

To estimate the influence of the power-law asymp-
totic behavior on the evolution of the moments, we
replace the stable PDFs in the Langevin equation by the
“truncated” ones, in which large values of random
quantities are cut off. In Fig. 8, the velocity moments
versus time are depicted for the weakly damped oscil-
lator in a log-log scale. The oscillator frequency is 0.05,
the friction coefficient is 0.01, the order of the moment
is 0.25, and the Levy index is 1.3. The moments are
obtained by averaging over 1500 realizations, each of
length 2048, thus the total number of points is 3 × 106.
The mode with the maximum value (that is, the most
probable value) is of the order N1/α. In the figure, the
moments obtained numerically are shown by black
dots. The Langevin source A(t) is modeled as the effect
of independent random variables possessing a trun-
cated stable PDF, that is |A(t)| < Amax = 1600, 300, 50 for
the respective variants (a), (b), and (c). The solid lines
indicate the moments estimated analytically from the
FSFPE. It is seen that the role of large outliers increases
as time increases, because large values become more
and more probable. Therefore, the discrepancy between
theoretical results and numerical simulations using the
truncated PDF grows with time. As the truncation
parameter decreases, the discrepancy increases. Thus,
it is clearly seen that the discrepancies are most essen-
tial at the stationary stage of the evolution.

We have already mentioned that our studies demon-
strate a good quantitative agreement between the the-
ory based on the FSFPE and the numerical simulations
based on the Langevin equations. To show this fact
more precisely, we estimated the velocity and coordi-
nate moments by averaging over 50 × 103 realizations
with the total number of points 108, which is much
larger than in simulations presented in Fig. 7. It is seen
that the numerical results strictly repeat all the bends of
the theoretical curves at the nonstationary stage of the
evolution.

6. RESULTS

The main results are as follows.
(1) We have obtained the fractional symmetric Fok-

ker–Planck equation and the fractional symmetric Ein-
stein–Smoluchowski equation. These equations gener-
alize the Fokker–Planck and Einstein–Smoluchowski
equations for Brownian motion. The FSFPE describes
a linear relaxation in the phase space of systems influ-
enced by stochastic forces distributed with symmetric
stable laws. The FSFPE contains a fractional velocity
derivative instead of a second-order derivative. The
FSESE describes relaxation in real space. It contains a
fractional space derivative.

(2) Using the kinetic equations obtained, we consid-
ered the linear relaxation processes for two problems:
 AND THEORETICAL PHYSICS      Vol. 91      No. 3      2000
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the force-free relaxation and the relaxation of the linear
oscillator. We have obtained general analytic solutions
of the FSFPE and FSESE and the expressions for the
fractional velocity and coordinate moments.

(3) For both problems, we solved numerically the
Langevin equations with random sources that are dis-
crete approximations to white Levy noises. After aver-
aging many realizations, we estimated the fractional
moments and compared the numerical results with the
results of analytical solutions to the kinetic equations.
The analytical and numerical results appear to be in a
quantitative agreement.

(4) In studying the relaxation of the linear oscillator,
it is expedient to distinguish between the two variants:
the overdamped oscillator with ω/ν ! 1 and the weakly
damped oscillator with ω/ν @ 1. Both cases are of spe-
cial importance in nonlinear generalizations of the the-
ory presented. We study in detail, both analytically and
numerically, each of the limiting cases, and point out
substantially different properties of the relaxation pro-
cesses in the two cases.

(5) The relaxation of an overdamped oscillator
occurs in two stages, which are described in the FSFPE
framework: the “fast” stage, at which a stationary stable
PDF over velocity is established during the time inter-
val τv = 1/αν and the “slow” diffusion stage, at which a
stationary stable PDF in the real space is established
during the time interval τx = ν/αω2. At the diffusion
stage, the relaxation of the overdamped oscillator can
be described in the FSESE framework.

(6) For the weakly damped Levy oscillator, we have
derived a kinetic equation for the PDF depending on
slowly varying (at the period of oscillations) variables.
This equation contains fractional derivatives over the
velocity and the coordinate. The relaxation process
cannot be divided into two stages. On the contrary, the
velocity and the coordinate relax during the same time
interval τ = 2/αν.
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APPENDIX

Kinetic Equation for the Weakly Damped Levy 
Oscillator

We start from Eqs. (5.3) and look for the solution in
the form

(A.1)
x x̃ ωt( )cos

ṽ
ω
---- ωt( ),sin+=

v ṽ ωt( )cos ωx̃ ωt( ),sin+=
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where the amplitudes  and  are slowly varying over
the period 2π/ω. The choice of solution (A.1) is equiv-
alent to the condition

We insert (A.1) in (5.3) and, after averaging the period,
obtain the Langevin equations for  and ,

(A.2)

where

(A.3)

It follows from Eqs. (A.2) that the Langevin sources
 and  do not contain the “fast” time 2π/ω.

Therefore, it follows from Eqs. (A.3) that A(t) can be
represented as

(A.4)

where a(t) and b(t) are random stationary functions that
are related to  and  as

(A.5)

Equations (A.4) and (A.5) have the following meaning
[42]. According to Eqs. (A.2) and (A.3), the random
force influences the oscillator by means of slowly vary-
ing components  and  [or a(t) and b(t)] only.
Therefore, if one considers the random influence on the
weakly damped oscillator, the main components of the
random force are singled out by Eq. (A.4). Furthermore, if
A(t) is a stationary Gaussian process, then the expression
for the correlation function of this process shows that the
one-point PDFs of A(t), a(t), and b(t) coincide [43] with
each other. We assume that the conclusion about identical
PDFs of A(t), a(t), and b(t) is also valid for (symmetric)
stable PDFs, even though the proof of this statement is not
so trivial as in the Gaussian case. It follows from this coin-
cidence that the processes

(A.6)

x̃ ṽ

ωt( )cos
d x̃
dt
------ ωt( )sin

ω
------------------dṽ

dt
-------+ 0.=

x̃ ṽ

d x̃
dt
------

ν
2
--- x̃+ Ax̃ t( ), dṽ

dt
-------

ν
2
---ṽ+ Aṽ t( ),= =

Ax̃ t( )
1

2π
------ t'A t'( ) ωt'( ),sind

t 2π/ω–

t

∫–=

Aṽ t( )
ω
2π
------ t'A t'( ) ωt'( ).cosd

t 2π/ω–

t

∫=

Ax̃ t( ) Aṽ t( )

A t( ) a t( ) ωt( )cos b t( ) ωt( ),sin–≈

Ax̃ t( ) Aṽ t( )

a t( ) 2Aṽ t( ), b t( ) 2ωAx̃ t( ).–= =

Ax̃ t( ) Aṽ t( )

L ∆t( ) t'A t'( ),d

t

t ∆t+
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La ∆t( ) t'a t'( ),d

t

t ∆t+

∫=

Lb ∆t( ) t'b t'( )d

t

t ∆t+

∫=
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also have identical PDFs, and thus, with Eq. (2.5) taken
into account, the PDFs of La and Lb are given by

(A.7)

We also define the processes

(A.8)

which in accordance with (A.5) are related to La and Lb as

(A.9)

Now, with the help of Eqs. (A.7) and (A.9), we are able
to obtain the characteristic functions  and 

and their PDFs  and ,

(A.10)

where

(A.11)

The equation for f( , , t) is derived similarly to the
FSESE. The initial equation is

(A.12)

where Ψ is the transition probability. For the incre-
ments ∆  and ∆ , we obtain from Eqs. (A.2)

(A.13)

where the PDFs for  and  are given by Eqs. (A.10)
and (A.11). We now construct Ψ. From the structure of
Eqs. (A.13), it follows that

(A.14)

w La b,( ) kd
2π
------ ikLa b,– D k α∆t–( ).exp

∞–

∞

∫=

Lṽ ∆t( ) t'Aṽ t'( ),d

t

t ∆t+

∫=

Lx̃ ∆t( ) t'Ax̃ t'( )d

t

t ∆t+

∫=

La ∆t( ) 2Lṽ ∆t( ), Lb ∆t( ) 2ωLx̃ ∆t( ).–= =

ŵ Lx̃( ) ŵ Lṽ( )

w Lx̃( ) w Lṽ( )

ŵ Lx̃( ) Dx̃– k α∆t( ),exp=

ŵ Lṽ( ) Dṽ– k α∆t( ),exp=

Dx̃
D

2ω( )α--------------, Dṽ
D

2α-----.= =

x̃ ṽ

f x̃ ṽ t ∆t+, ,( )

=  ∆ x̃( )d ∆ṽ( ) f x̃ ∆ x̃– v ∆ṽ– t, ,( )d∫∫
× Ψ x̃ ∆ x̃– v ∆ṽ– ; ∆x ∆ṽ ∆t, ,,( ),

x̃ ṽ

∆ x̃
ν
2
--- x̃∆t+ Lx̃ ∆t( ),=

∆ṽ ν
2
---ṽ∆t+ Lṽ ∆t( ),=

Lx̃ Lṽ

Ψ x̃ ∆ x̃– v ∆ṽ– ; ∆ x̃ ∆ṽ ∆t, , ,( )

=  Ψx̃ x̃ ∆ x̃– ; ∆ x̃ ∆t,( )Ψṽ ṽ ∆ṽ– ; ∆ṽ ∆t,( ),
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where

(A.15)

Inserting Eqs. (A.14) and (A.15) in Eq. (A.12), expand-
ing into a power series in ∆t and letting ∆t go to zero,
we arrive at

(A.16)

Transforming the terms in the right-hand side as
described in Section 2, we arrive at the differential
equation for f( , , t), see (5.4).
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  Dṽ k α∆t– 
  .exp

∂f
∂t
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