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Abstract—It is known that the noncommutative Yang–Mills (YM) theory with periodical boundary condi-
tions on a torus at a rational noncommutativity parameter value is Morita equivalent to the ordinary YM the-
ory with twisted boundary conditions on a dual torus. We give a simple derivation of this fact. We describe
the one-to-one correspondence between these two theories and the corresponding gauge invariant observ-
ables. In particular, we show that under the Morita map, the Polyakov loops in the ordinary YM theory are
converted to the open noncommutative Wilson loops discovered by Ishibashi, Iso, Kawai, and Kitazawa.
© 2000 MAIK “Nauka/Interperiodica”.
¶ 1. INTRODUCTION

Noncommutative geometry deals with functions on
a deformation of ordinary space where the coordinates
do not commute:1 

(1.1)

The antisymmetric tensor θµν is called the noncommu-
tativity parameter. The deformed flat (θµν = const) and
compact space is called the noncommutative (quantum)

torus . Recently, the noncommutative geometry and,
especially, the noncommutative torus were seen to play
an important role in the M-theory compactifications [1]
and in string theory (see [2] and references therein).
The noncommutative geometry is also very useful in
compactifications of instanton moduli spaces [3]. The
way to deal with the curved quantum spaces is provided
by the Kontsevich deformation quantization.

A very intriguing subject from noncommutative
geometry is the so-called Morita equivalence [4].
Roughly speaking, it states that certain bundles on dif-
ferent noncommutative tori are dual to each other. From
the physical standpoint, this results in the equivalence
between certain noncommutative and ordinary gauge
theories. In what follows, we try to clarify this state-
ment using a set of simple examples.

¶ This article was submitted by the author in English.
1 In what follows, we use the same notation […] for the ordinary

and the star-commutator. To avoid confusion, we supply all non-
commutative quantities with the hats.

x̂µ x̂ν,[ ] 2πiθµν, µ ν, 1 … d ., ,= =

Tθ
d
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2. NOTATION

The algebra !θ of smooth functions on the noncom-
mutative torus is defined using the Moyal star product:

(2.1)

The main property of this product is its associativity. In
applications, it is useful to decompose functions on the
noncommutative torus into the Fourier components2 as

(2.2)

This corresponds to the Weil or symmetric ordering of
coordinates. The exponentials

can serve as basis elements for the algebra !θ.

A very intriguing phenomenon occurs when the θ-
tensor components become rational. We first consider
the two-torus T2,

(2.3)

2 Without losing generality, we can consider a torus of size 2π.

f  ∗ g x̂( )

=  iπθµν
∂

∂ξµ
-------- ∂

∂ην
--------- 

  f ξ( )g η( ) ξ η x̂= =
.exp

f x̂( ) f ke
ik x̂⋅

.

k Z
d∈

∑=

Ûk e
ik x̂⋅

=

x̂µ x̂ν,[ ] 2πiθeµν, µ ν, 1 2,,= =
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with the rational noncommutativity parameter θ = M/N,
where M and N are coprime integers. Then,

(2.4)

where by definition n × n' ≡ –πθµνnµ . We note that

the elements  generate the center of !θ; that is, we
have

(2.5)

for any f( ). This means that the exponentials { , k =
0|mod N} entering decomposition (2.2) can be treated as
if they were ordinary exponentials defined on ordinary
(commutative) space. The other N2 – 1 exponentials

obtained from the set { , k ≠ 0|mod N} after factoriza-
tion over the commutative part generate a closed alge-
bra under the star-commutator. This algebra is isomor-
phic to SU(N), as we will see momentarily. Therefore,
at the rational value of the noncommutativity parame-
ter, one can identify the algebra of functions on the non-
commutative torus with the algebra of matrix-valued
functions on the commutative torus.

We conclude this section by giving an explicit
matrix representation for the algebra of the noncommu-
tative exponentials (see also [5]). This representation
has been well known for many years [6, 7]. We intro-
duce the clock and shift generators

(2.6)

where ω = e2πiθ. The matrices P and Q are unitary, trace-
less, and satisfy the relations

(2.7)

Moreover,

(2.8)

It is straightforward to verify that the generators
defined as

(2.9)

Ûn Ûn',[ ]

=  2i πM
n2n1' n1n2'–

N
--------------------------- 

  Ûn n'+sin

=  2i n n'×( )Ûn n'+ ,sin

n4'

ÛNk

e
iNk x̂⋅

f x̂( ),[ ] 0=

x̂ Ûk

Ûk

Q

1

ω

ω2

ωN 1–
 
 
 
 
 
 
 
 
 

, P

0 1  0

0 1  

 

 1

1  0 
 
 
 
 
 
 
 

,= =

…

… …
…

P
N

Q
N 1, PQ ωQP.= = =

Tr P
n
Q

m( )

=  
N  if n 0 mod N and m 0 mod N ,= =

0 if n ≠ 0 mod N  or m ≠ 0 mod N .



Jn ω
n1n2/2

Q
n1P

n2, n n1 n2,( )= =
JOURNAL OF EXPERIMENTAL
satisfy commutation relations (2.4):

(2.10)

This identity can be rewritten as the Lie algebra com-
mutation relations

(2.11)

with the structure constants

(2.12)

The set of unitary unimodular N × N matrices (2.9) is
sufficient to span the SU(N) algebra.

3. THE MORITA EQUIVALENCE
3.1. The Dual Torus U(1)|θ = M/N  U(N)

To define the Morita map, we use an additional
decomposition of function (2.2) on the noncommuta-
tive two-torus

(3.1)

We then define the corresponding U(N)-valued func-
tion on the ordinary two-torus as

(3.2)

Due to the relation

(3.3)

the Morita map (3.1), (3.2) takes the star-product to the
matrix product. Obviously, a general U(N)-valued
function cannot be represented in form (3.2). It turns
out that this particular form corresponds to the func-
tions with nontrivial boundary conditions. This means
that under shifts of their arguments, these functions
transform as

(3.4)

where

(3.5)

This can be considered as a constant gauge transforma-
tion. The size 2πM/N of the dual torus can be fixed by
the requirement for the Morita map to be single-val-
ued.3 To illustrate this, we consider a torus of the size
2π(M/N)n (where n ∈  N; there are no other possibilities
if the functions of type (3.2) are required to be gauge-

3  I am indebted to K. Selivanov for this comment.

Jn Jn',[ ] 2i n n'×( )sin Jn n'+ .=

Jn Jm,[ ] f nm
k

Jk=

f nm
k

2iδn m+ k, n m×( ).sin=

f̂ e
iNk x̂⋅

f kne
in1 x̂1 in2 x̂2+

.
n1 n2, 0=

N 1–

∑
k Z

2∈

∑=

f eiNk x⋅

k Z
2∈

∑ f knein x⋅ Jn.
n1 n2, 0=

N 1–

∑=

JnJn' ein n'× Jn n'× ,=

f x1 2πM
N
----- x2,+ 

  Ω1 f x1 x2,( )Ω1
†,=

f x1 x2 2πM
N
-----+, 

  Ω2 f x1 x2,( )Ω2
†,=

Ω1 P( )M, Ω2 Q†( )M
.= =
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conjugate by a constant matrix when translated along
the torus lattice). In this case, there are functions that
obviously cannot be represented in form (3.2). These
functions are not conjugated when translated along the
vectors (2πM/N, 0) and (0, 2πM/N).

Therefore, having a set of Fourier coefficients fkn,
we can construct a function on the noncommutative
torus of the size l and a matrix-valued function with
twisted boundary conditions (3.4) on the commutative
torus of the size (M/N)l as follows:

(3.6)

3.2. Td. U(1)|θ  U(N1) × … × U(Nr)

The generalization to the d-dimensional case goes
by simple modifications of the formulas from the previ-
ous subsection. It is always possible to rotate θµν into
the canonical skew-diagonal form

(3.7)

where r is the rank of θµν. The algebra of a higher
dimensional noncommutative torus is thereby embed-
ded into a d-fold tensor product of r noncommutative
two-torus algebras and the ordinary (d – 2r)-torus com-
mutative algebra. This immediately leads to other
examples of the Morita equivalence, where some of
these noncommutative dual tori are mapped to the com-
mutative ones via (3.6). If

the Morita map results in the ordinary Yang–Mills
(YM) theory with the gauge group U(N1) × … × U(Nr).

3.3. Td. U(1)|θ  U(N)

The algebra of noncommutative exponentials can
also be realized using a set of SU(N)-valued matrices
Ωµ, µ = 1, …, d, obeying the relations

(3.8)

einx̂ ein x⋅ Jn, n1 n2 N ,<,

eiNk x̂⋅ eiNk x⋅ 1.



θµν

0 θ1

θ1– 0

0 θr

θr– 0

0d 2r– 
 
 
 
 
 
 
 
 
 

,=
…

θi

Mi

Ni

------,=

ΩµΩν e
2πiθµνΩνΩµ.=
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An explicit construction of these matrices can be found
in [8]. We define the generators Jn as

(3.9)

Then,

(3.10)

which coincides with the algebra of the noncommuta-
tive exponentials. In this case, therefore, the Morita
map takes the form

(3.11)

4. THE NONCOMMUTATIVE 
YANG–MILLS THEORY VS. 

THE ORDINARY YANG–MILLS THEORY

We now turn to physical applications of the Morita
map. One can define a noncommutative version of the
YM theory with the action

(4.1)

by simply replacing the matrix product by the Moyal
star-product in all formulas and supplementing all
quantities with the hats. Therefore, the noncommuta-
tive U(1) YM action is

(4.2)

where

For simplicity, we only consider the dual torus in this
section. The generalization to the higher dimensional
case is straightforward.

The Morita map takes noncommutative U(1) gauge
fields to the U(N) gauge fields with nontrivial boundary
conditions. In general, functions on the torus can be
gauge-conjugate when shifted by the period of the
torus,

(4.3)

Jn θνµnνnµ

ν µ<
∑ 

 
 

Ω1
n1…Ωd

nd.exp=

Jn Jm,[ ] 2i n m×( )Jn m+ ,sin=

f̂ eiNk x̂⋅ f knein x̂⋅

n N
d⊗<

∑
k Z

d∈

∑=

f eiNk x⋅ f knein x⋅ Jn

n N
d⊗<

∑
k Z

d∈

∑ .=

SYM
1

4πgYM
2

--------------- xTr FµνFµν( )d∫=

Ŝ
1

4πgNCYM
2

--------------------- x̂d F̂µν * F̂
µν

,∫=

F̂µν ∂µ Âν ∂ν Âµ– i Âµ Âν,[ ]*.–=

Aλ x lµ+( ) Ωµ x( )Aλ x( )Ωµ
1– x( )=

+ iΩµ x( )∂λΩµ
1– x( ),
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where Ωµ(x) are the elements of the U(N) group that are
known as the twist matrices. They must satisfy the con-
sistency conditions

(4.4)

The integer M entering this formula is the so-called ’t
Hooft flux. Only three types of possible boundary con-
ditions (solutions of Eqs. (4.4)) are known:

(1) twist eaters: Ωµ = const;

(2) Abelian twists;

(3) non-Abelian twists.

For more details, see the recent review [9].

The map (3.6) precisely corresponds to the first
case. It is not well understood how to realize the
Morita map corresponding to other boundary condi-
tions. Roughly speaking, when working in the Fourier
basis (2.2), one can only multiply functions with num-
bers after shifts and cannot add quantities of the form

. To do this, one needs another basis for
the functions on the noncommutative torus (cre-
ation/annihilation operators, noncommutative theta-
functions?).

Under the Morita map defined in the previous sec-
tion, actions go into actions, equations of motions go
into equations of motions, and solutions (e.g., instan-
tons) go into solutions even at the quantum level. These
properties of the Morita map can be encoded in the
identity

(4.5)

which is easy to prove using the definition

(4.6)

and property (2.8) of the clock and shift generators. In
fact, one can insert an arbitrary number of derivatives
into the integrals in (4.5) and thus obtain equivalent
gauge-invariant quantities in the noncommutative and
ordinary gauge theories. Using identity (4.5), we can
relate the correlators as

(4.7)

Ωµ x lν+( )Ων x( )

=  2πi
M
N
-----eµν 

  Ων x lµ+( )Ωµ x( ).exp

Ωµ x( )∂λΩµ
1– x( )

x̂d Âµ * Âν * … * Âλ∫
=  

1
N
---- xd Tr AµAν…Aλ( ),∫

x̂eik x̂⋅d∫ δk 0,=

$Ak n,
µ Ŝ θ M

N
-----= 

  2̂1…2̂lexp∫
=  $Ak n,

µ SYM( )exp fxd bndry conds flux, M= 21…2l,∫

JOURNAL OF EXPERIMENTAL
where  = N  and

(4.8)

Other important gauge-invariant quantities of the YM
theory are the Wilson loops

(4.9)

corresponding to a closed path C. On the torus, there
are paths from different homotopy classes, which can
be classified by winding numbers wµ around the µth
direction. The corresponding Wilson loops are called
the Polyakov loops. The simplest Polyakov loop corre-
sponds to the straight line along the µth direction,

(4.10)

where the insertion of twist matrix (3.5) is necessary to
guarantee gauge invariance.

Wilson lines were constructed in the noncommuta-
tive YM theory by Ishibashi, Iso, Kawai, and Kitazawa
[10] (see also [11, 12]). This construction goes as fol-
lows. An oriented curve C in the auxiliary commutative
two-dimensional space parametrized by the functions
ξ(σ) with 0 ≤ σ ≤ 1 is introduced. One fixes the starting
point ξµ(0) = 0 and the endpoint ξµ(1) = vµ and then
assigns to this curve a noncommutative analog of the
parallel transport operator

(4.11)

The series in (4.11) is a noncommutative analog of the
P-exponential. The star-gauge invariant quantity is then

(4.12)

where S[ , C] = 1 if the path C is closed and

(4.13)

if the path is open. Gauge invariance requires that the
endpoint coordinates must be equal to

In the simplest case, where Cµ is the straight line along
the µth direction and vµ = 2πM/N, the function S[ , Cµ]

gNCYM
2 gYM

2

2̂ x̂ F̂µν( )∗
n

d∫ ,=

2
1
N
---- xTr Fµν( )n.d∫=

W C[ ] TrP i Aµ x( ) dxµ( )
C

∫° 
 
 

exp=

WP x µ,[ ] Tr P i Aµ x( ) xµd

x

x lµ+

∫ 
 
 

Ωµe
ixµexp ,=

8 x̂ C,[ ] 1=

+ in σ1 σ2… σn

ξµ1
σ1( )d

σ1d
-------------------…

ξµn
σn( )d

σnd
-------------------d

σn 1–

1

∫d

σ1

1

∫d

0

1

∫
n 1=

∞

∑

× Âµ1
x̂ ξ σ1( )+( ) * … * Aµn

x̂ ξ σn( )+( ).

2̂ C[ ] x̂8 x̂ C,[ ]  * S x̂ C,[ ] ,d∫=

x̂

S x̂ C,[ ] i θ 1–( )µνv ν x̂µ( )exp=

v µ 2πrµ
M
N
-----, rµ 0 … N 1.–, ,= =

x̂
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goes to the twist function  under the Morita
map (3.6). Therefore, identity (4.5) allows us to obtain
the following relation between the Polyakov loops in
the ordinary YM theory and open noncommutative Wil-
son loops:

(4.14)

5. CONCLUSIONS

In this paper, we have made some comments on the
Morita equivalence between noncommutative and ordi-
nary gauge theories. We present a simple prescription,
whereby gauge fields and correlators of the gauge-
invariant observables in the U(1) noncommutative YM
theory on a torus at a rational θ-parameter value can be
identified with those in the ordinary U(N) or U(N1) × … ×
U(Nr) YM theory with nontrivial boundary conditions
on the dual torus. The size of the dual torus is deter-
mined by the requirement for the Morita map to be sin-
gle-valued. We also show that under the Morita map,
the Polyakov loops in the ordinary YM theory are con-
verted to the open noncommutative Wilson loops.4 

An open question concerns the generalization of the
Morita equivalence to boundary conditions of the non-
twist-eater type. Another interesting direction is to link
three different descriptions of the Morita equivalence:
the field theory approach using the Fourier compo-
nents, the string theory approach using T-duality and
the brane language [13, 14], and the mathematical
approach via twisted bundles over the noncommutative
torus [4, 15].
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Abstract—It is shown that the spontaneous emission of low-frequency photons in collision of atoms and mol-
ecules in a gas is very rapidly, in several free-transit intervals, radically changes the trajectories and the order
of the collisions of the particles as compared with the predictions of the equations of classical mechanics.
© 2000 MAIK “Nauka/Interperiodica”.
The model of absolute elastic interaction of mole-
cules in a gas is so deeply ingrained in classical theory
that a discussion of the question of the limits of the pre-
dictability of this model could seem inappropriate. At
the same time, the classical theory by no means reflects
all properties of real atoms and molecules, consisting of
charged particles, and cannot claim to give a universal
description of the behavior of a system of atoms and
molecules. Specifically, the classical model of colli-
sions completely neglects the quantum-mechanical
spreading of the wave packets associated with the par-
ticles [1–4], it ignores the capability of particles to
become polarized in an external electromagnetic field
(radical changes in the trajectories of particles under
the action of a thermoelectromagnetic field were
described in [5]), and finally it does not admit radiation
of electromagnetic waves by the colliding particles.
The latter limitation was pointed out in [6–8], where the
question of the radiation of low-frequency photons in a
gas at moderate temperatures was discussed.

It is obvious that the effects enumerated above
(quantum-mechanical spreading of wave packets,
action of a thermal electromagnetic field, and quantum
emission of low-frequency photons) will ultimately
destroy the regularities dictated by classical mechanics.
This makes it important to estimate the time during
which the system still follows the classical description.

The present paper is devoted to an analysis of the
influence of the emission of low-frequency photons on
the trajectory of colliding gas molecules (“photon
mechanism” of the perturbation of trajectories). We
shall estimate the time interval in which the Newtonian
predictions concerning the particle trajectories and the
sequence of particle collisions become meaningless,
and we shall show that the duration of this interval is
only several free-path intervals. In addition, we shall
1063-7761/00/9104- $20.00 © 20658
note the direct relation between the quantum effect dis-
cussed here and the problem of substantiating statistical
physics.

At moderate temperatures, T ~ 300 K, the kinetic
energy of gas molecules kT ~ (1/40) eV is small com-
pared with the energy of photons corresponding to opti-
cal transitions. However, this energy is sufficient for
emission of low-frequency (IR and microwave) pho-
tons with energy "ω ≤ kT (such low-frequency photons
correspond to frequencies ν = ω/2π < 6 × 1012 Hz and
wavelengths λ > 50 µm).

The emission of low-frequency photons can arise as
a result of two types of weakly inelastic processes. In
the first place, during collisions the electronic shells of
atoms and molecules become deformed, as a result of
which the particles acquire electric dipole moments
which vary with characteristic collision time ∆tc ≈ a/vT,
where a is the diameter of the molecules and vT is the
thermal velocity of the molecules. The collision dura-
tions ∆tc correspond to characteristic radiation fre-
quency νc = ωc/2π ≈ 1/∆tc ≈ vT/a. For air at normal con-
ditions (T = 300 K, pressure 1 bar, molecular mass
about 30) the collision duration ∆tc is estimated to be
0.5 × 10–12 s, and the characteristic radiation frequency
is estimated to be νc ≈ 2 × 1012 s–1. The corresponding
wavelength λc ≈ 0.15 mm lies in the submillimeter
range of the electromagnetic spectrum. In the second
case during collisions of molecules quantum transitions
can be excited in the vibrational or rotational spectra of
the molecules with frequencies less than νc. A large
number of such transitions lies in the microwave range
(frequencies 109–3 × 1010 s–1, wavelength 1–30 cm).

The low-frequency photons arising as a result of
weakly inelastic collisions of gas particles carry off
000 MAIK “Nauka/Interperiodica”
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momentum pph = "ω/c and thereby perturb the trajecto-
ries of the receding particles. The initial angular pertur-
bation ∆θ0 of the trajectories accompanying the emis-
sion of a single photon is proportional to the Planck
constant " and can be estimated as

(1)

where pT = mvT is the typical momentum of the thermal
motion of the molecules, and kT is the average transla-
tional kinetic energy of the molecules.

As a result of the exponential instability of the par-
ticle trajectories in a gas (a description of this instabil-
ity, responsible for the appearance of molecular chaos,
can be found in, for example, [9]) the angular deviation
∆θ increases in each collision by a factor of l/a, where
a is the particle radius and l is the average mean-free
path length. After M collisions the angular deviation ∆θ
of a relatively unperturbed trajectory is

(2)

In air at normal conditions the ratio l/a is 104, so that the
formula (2) describes the mechanism of the giant
enhancement of fluctuations in a gas: after M collisions
the angular deviation of the molecules increases by a
factor of 104M!

The situation where the angular deviation ∆θ of the
trajectory reaches the angular diameter a/l of a mole-
cule is critical: after the critical angle ∆θc ≈ a/l is
reached, the order of the collisions between the mole-
cules changes radically compared with the scenario
prescribed by Newton’s equations and the classical
model of absolutely elastic collisions. For ∆θ < ∆θc the
perturbations of the molecular trajectories are small,
whereas when the critical value ∆θc is reached the pre-
dictions based on Newton’s equations and the model of
absolutely elastic collisions become meaningless, since
for ∆θ > ∆θc the form of the particle trajectories
changes radically and no longer resembles the trajec-
tory of the unperturbed motion.

The critical number Mc of collisions corresponding
to attainment of the critical perturbation ∆θc ≈ a/l is
determined from the condition ∆θM ≈∆θc ≈ a/l:

(3)

When submillimeter, millimeter, and centimeter
range photons are emitted, the critical number of colli-
sions is surprisingly small: Mc ≤ 2. It is helpful to note
that the effect of 300-degree thermal electromagnetic
field gives comparable values: Mc ≈ 2.5 [5].

The estimates presented above mean that the “pho-
ton mechanism” for perturbation of the classical trajec-
tories, just as the action of an external thermal electro-
magnetic field, limits the applicability of the Newto-
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-----------------– 1.–=
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nian description of the motion of molecules only to
several free-path intervals of particles after the emis-
sion of a photon.

The surprising thing is not so much that Newton’s
equations are of limited applicability, so much as the
time interval during which the equations are valid is
extremely short. Here it is relevant to note that under
the conditions of the mechanism of gigantic amplifica-
tion of fluctuations which operates in the gas any, even
the weakest, factor falling outside the limits of the
Newton paradigm will be manifested in a microscopi-
cally short time. Thus, the inclusion of an additional
factor which is 1000 orders of magnitude (i.e., a factor
of 101000!) weaker than the Newtonian forces will be

manifested in only  = 1000 : 4 =
250 collisions [5]. This estimate shows that the Newto-
nian description of the trajectories of molecules of a gas
on any long observation times must be treated with
great skepticism.

The subject of the present paper has a direct bearing
on the discussion of the problem of substantiating sta-
tistical physics, the importance of which was recently
underscored by Ginzburg [10]. Zaslavskiœ [9] formu-
lated the basic question of the discussion as follows:
“Whence does chaos appear in a system of colliding
particles, making it possible to use various probabilistic
methods to describe the system?” In our view, the spon-
taneous emission of low-frequency photons can easily
play the role of the factor which introduces random per-
turbations into the Newtonian equations of motion.
Under the conditions of giant amplification of fluctua-
tions, these perturbations produce the conditions for a
transition from a dynamical to a probabilistic descrip-
tion.

The photon mechanism for perturbation of particle
trajectories is unlikely to be strongly reflected in the
statistical characteristics of a gas, such as the velocity
distribution of the particles, the correlation functions of
the positions of the molecules, and so on. However, the
photon mechanism is of fundamental importance for
solving the question of how rapidly the dynamical
description of the motion of molecules on the basis of
Newton’s equations gives way to the probabilistic
description on the basis of Boltzmann’s kinetic equa-
tion. The estimates presented above show that the tran-
sition from the reversible Newton equations to the irre-
versible kinetic equation can occur in very short times
of the order of several free-path intervals.

Thus, the quantum mechanism, giving a transition
from the Newtonian description to the coarse probabi-
listic description, is incorporated in the nature of the
phenomena itself.
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Abstract—The excitation and loss of an electron by ions in relativistic collisions with atoms are studied in first-
order perturbation theory. General expressions are obtained for the cross sections for the excitation and loss of
an electron. In the limit of nonrelativistic collision velocities these expressions pass into the well-known non-
relativistic results. It is shown that, in contradistinction to the nonrelativistic collisions, in ultrarelativistic col-
lisions the screening of the nucleus of the target atom by the atomic electrons is very important for excitation
and loss of an electron by ions even for collisions of heavy ions with light atoms. Our computational results for
the cross section for electron loss are in good agreement with existing experimental data. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The excitation and loss of electrons by incident par-
ticles in nonrelativistic collisions with atomic targets
have been studied quite intensively for the last several
decades (see, e.g., [1–3] and the literature cited there).
This work has resulted in a fairly good understanding
of these processes, especially the processes that can be
described on the basis of first-order perturbation theory
in the interaction of the colliding composite particles.
In addition, in the last few years certain approaches
which fall outside the scope of first-order perturbation
theory have been used to investigate these processes
(see, e.g., [4] and the literature cited there).

In first-order perturbation theory the excitation
(loss) of an electron by an incident particle in a colli-
sion with an atom is conventionally divided into so-
called screening and antiscreening processes (the terms
“elastic” (for an atom) and “coherent” mode are used
for the first process and “inelastic” and “incoherent”
mode are used for the second process; see, e.g., [1]). In
the first case the transition of an electron between the
states of the incident particle occurs as a result of the
interaction of this electron with the nucleus of the target
atom, screened by “passive” atomic electrons which
remain in their initial atomic state. In the second case
the process leading to the excitation (loss) of an elec-
tron by the incident particle proceeds by “direct” inter-
action of this electron with the atomic electrons, which
as a result of this undergo transitions into excited states
(including the continuum) of the atom.
1063-7761/00/9104- $20.00 © 20661
In sharp contrast to the state of the theory of nonrel-
ativistic collisions, the theory of relativistic collisions
of two composite atomic particles, each of which car-
ries an electron(s), has not been formulated even in
first-order perturbation theory (see, e.g., the discussion
in the monograph [2, pp. 133–135]). Only a few
attempts have been made to give a description of the
process leading to the loss of an electron by an ion in
relativistic collisions with atoms. One was made in [5,
6], where, essentially, only the contribution to the cross
section for the loss of an electron from an elastic mode
was estimated. The method used in these works is
based on the first-order perturbation theory for ioniza-
tion and excitation of K-shell electrons in relativistic
collisions with structureless point charges [7, 8]. In
order to take into account the fundamental difference
between collisions with a point charge and a neutral
atom the authors of [5, 6] used the well-known results
for losses of electrons by ions in nonrelativistic colli-
sions with neutral atoms, introducing in the process
certain intuitive assumptions in order to adapt this non-
relativistic case to relativistic collisions. A more com-
plete set of results obtained for the cross sections for
electron losses by this method is presented in [6],
where the cross sections for losses of an electron by
incident ions were calculated for various projectile-
ion–target-atom pairs right up to very high collision
energies corresponding to γ ≤ 1000, where γ is the
Lorentz factor.

The capture and loss of an electron by Pb ions, pass-
ing through various solid-state targets (from Be to Au)
with collision energy E = 160 GeV/au, were studied
000 MAIK “Nauka/Interperiodica”
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experimentally in [9]. The results of this experiment for
the electron loss cross sections differ substantially from
the theoretical predictions [6].

In [10] a simple semiquantitative analysis for the
contribution of screening to the total electron loss cross
section was given on the basis of first-order perturba-
tion theory. In the approach employed in [10] this part
of the total loss cross section is divided into contribu-
tions from “close” and “distant” collisions. The contri-
bution from “close” collisions to the cross section was
calculated in the approximation of a “binary” collision
between the electron of the incident ion and the nucleus
of the neutral target atom. The contribution of distant
collisions to the cross section was estimated by the
method of equivalent photons. Since the contribution of
antiscreening to the electron loss cross section in prin-
ciple cannot be studied in this manner, this part of the
loss cross section was estimated in [10] using the rela-
tion between the screening and antiscreening cross sec-
tions that follows from the so-called free collisions
approximation first introduced by Bohr (see, e.g., [1, 2]).
The estimates obtained in [10] for the loss cross sec-
tions are in reasonable agreement with experiment [9].

The present work is an attempt to give on the basis
of the first Born approximation a more accurate and
general description of the processes leading to the exci-
tation and loss of electrons by ions in relativistic colli-
sions with atoms. Our analysis is limited primarily to
ions with only one electron. The criteria for the appli-
cability of first-order perturbation theory for analysis of
electron transitions between the levels of the ion
because of the interaction with the atom can be formu-
lated as follows:

(1) ZI < ZA, where ZI is the ion charge and ZA is the
nuclear charge of the atom and

(2) ZA < v, where v is the collision velocity. This
condition (2) is applicable for any ratio of ZI and ZA,
and it holds for relativistic collisions for any possible
values of ZA.

This paper is organized as follows. A general analy-
sis of the excitation and loss of electrons by ions in rel-
ativistic collisions with atoms is given in Section 2. The
nonrelativistic-atom approximation is introduced in
Section 3, and the contributions to the cross section for
the excitation and loss of an electron from elastic and
inelastic collision modes are calculated on the basis of
this approximation. The numerical results are pre-
sented in Section 4, where they are compared with
existing experimental data [9, 11] and computational
results [6, 10].

A four-dimensional metric, determined by the met-
ric tensor gµν(µ, ν = 0, 3) with the components g00 =
−g11 = –g22 = –g33 = 1 and gµν = 0, µ ≠ ν, is used in this
JOURNAL OF EXPERIMENTAL
paper. Unless stated otherwise, atomic units are
employed.

2. GENERAL ANALYSIS

Since collisions in which the nuclei of the colliding
atomic particles (ion and atom) penetrate into one
another make a negligibly small contribution to the
cross section of atomic processes, such collisions and,
correspondingly, nonelectromagnetic forces can be
neglected in this problem. Then, in first-order perturba-
tion theory the S matrix element of the transition has the
form (see, e.g., [12])

(1)

where (x) is a four-dimensional electromagnetic
transition current for an ion in a space-time point x,

(x) is the four-dimensional potential of the electro-
magnetic field produced by an atom at the same point x,
and c is the velocity of light in vacuum. In Eq. (1) and
below summation over repeated Greek indices is
assumed. The potential is calculated from the Maxwell
equation

(2)

where (x) is the four-dimensional transition current
of the atom.

Since the nuclear and atomic energy scales are
strongly different, the contribution of Coulomb colli-
sions between ion and atom accompanied by excitation
and breakup of nuclei to the process of electron excita-
tion and loss can be neglected. Consequently, the nuclei
of the colliding particles can be treated as structure-
less point charges. In addition, simple estimates show
that in a coordinate system where the nucleus of one
of the colliding particles is initially at rest, the typical
velocity of the nucleus after a collision is much smaller
than the characteristic atomic velocity v0 ~ 1 au. On
this basis, a convenient method for calculating the
matrix element (1) is as follows. First, we calculate the

current (x) in the coordinate system KI, where the
ion is initially at rest. Second, we determine the current

(xA) in the coordinate system KA, where the atom
was initially at rest, and we find in this system the value

of the four-potential (xA). Then, using the transfor-
mation properties of the potential, we transform this
potential into the coordinate system KI and calculate
there the transition matrix elements and the corre-
sponding cross sections.

S fi
i
c
-- d4xJµ

I x( )AA
µ x( ),∫–=

Jµ
I

AA
µ

AA
µ x( ) 4π

c
------JA

I x( ),–=

JA
µ

Jµ
I

JA
µ

AA
µ
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Assuming that the ion carries only one electron, the
transition ionic current in the coordinate system KI can
be written as

(3)

where  is the current density operator. Since this
operator is local, it can be written (in the first-quantiza-
tion formalism) as

(4)

where ZI is the atomic number of the ion, RI is the coor-
dinate of the nucleus of the ion, r is the coordinate of
the electron on the ion with respect to the nucleus of
this ion, γµ are the Dirac γ matrices for the electron, and
δ(3) is a three-dimensional δ function. Since in the coor-
dinate system KI the three-dimensional velocity of the
ion is zero in its initial state and negligibly small in the

final state, the four-component quantity  appearing

in Eq. (4) can be written as  = (c, 0, 0, 0). In Eq. (4)
we neglected the nuclear spin in the nuclear part of the
current operator. The justification for this step is that
the difference between the masses of the electrons and
nuclei is extremely large (see, e.g., the discussion of the
method of equivalent photons [13]).

In Eq. (3) the wave function of the initial and final
states of the ion has the form

(5)

The indices i and f in Eq. (5) denote, respectively, the
initial and final states of the ion, pi, f is the total three-
dimensional momentum (pi = 0), εi, f is the total energy
(including the rest energy) of the ion, ψ0, n are the rela-
tive Dirac bispinors describing the initial and final
internal states of the ion, and VΙ is the normalization
volume for the plane wave describing the free motion
of the ion before and after the collision. In what follows
we shall be interested only in collisions in which the
internal state of the ion changes, n ≠ 0. For electronic
excitation the final state ψn is a discrete state of the ion.
In the opposite case the state ψn is a state in the contin-
uous spectrum of the ion, normalized appropriately,
and describes the loss of an electron by the ion.

The ansatz (5) represents the standard form of the
wave function for a free atomic system moving with
nonrelativistic velocity1 (see, e.g., [14]), where we
have neglected the difference, which is unimportant for

1 Since the plane wave exp(kx) has a Lorentz-covariant form, the
expression (5) can also be used to describe a free atomic system
moving with relativistic velocity, if the spin of the nucleus of the
atomic system is not important for the collision process.

Jµ
I x( ) d3RI d3rΨ f RI r t, ,( ) jµ

I Ψi RI r t, ,( ),∫∫=

jµ
I

jµ
I ZIv µ

I δ3 x RI–( ) cγµδ3 x RI– r–( ),–=

v µ
I

v µ
I

Ψi f, RI r t, ,( )
1

V I

---------exp ipi f, RI⋅ iεi f, t–( )ψ0 n, r( ).=
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the problem at hand, between the coordinate of the ion
nucleus and the coordinate of the center of mass of the
ion.

Substituting the expressions (4) and (5) into Eq. (3)
and performing an elementary integration over the
coordinate RI, we obtain (for n ≠ 0)

(6)

We shall call the four-component quantity

(7)

with the components

(8)

the (inelastic) form factor of the ion. In Eq. (7) αl are
the Dirac α matrices. It is easy to see from Eq. (7) that

although the quantity  itself does not possess the
transformation properties of a relativistic 4-vector, the

quantity /VI is such a vector.

We shall now calculate the potential produced by

the atom. We shall find the atomic current (xA) in the
coordinate system KA and obtain in the system the

potential (xA), where xA = (ctA, xA) is the space-time
coordinate in the system KA. Using a method which is
completely analogous to the method used above to
obtain the ion current, we obtain for the atomic 4-cur-
rent of the transition

(9)

where  are the three-dimensional momenta and

 are the total energies (including the rest energy) of
the atom, respectively, in the initial and final states, and

 is the normalization volume for the atom in the
coordinate system KA. The components of the atomic

form factor  are determined as follows:

Jµ
I x( )

cFµ
I n0  pi p f–;( )

VI

----------------------------------------=

× exp i pi p f–( ) x⋅ i εi ε f–( )t–[ ] .

Fµ
I n0  pi p f–;( ) d3rψ r( )∫–=

× exp i pi p f–( ) r⋅[ ]γµψ0 r( )

F0
I n0  pi p f–;( ) d3rψn

† r( )∫–=

× exp i pi p f–( )– r⋅[ ]ψ0 r( ), µ 0,=

Fl
I n0  pi p f–;( ) d3rψn

† r( )∫–=

× exp i pi p f–( )– r⋅[ ]α lψ0 r( ), µ l 1 2 3,, ,= =

Fµ
I
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I

JA'
µ

AA'
µ

JA'
µ

xA( ) c
FA

µ m0  Pi' P f'–;( )
V A'

----------------------------------------=

× exp i Pi' P f'–( ) xA⋅ i Ei' E f'–( )tA–[ ] ,
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Ei f,'

V A'
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µ
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(10)

Here ZA is the atomic number, NA is the number of elec-
trons in the atom (for a neutral atom NA = ZA), αl(i) are
the Dirac α matrices for the ith atomic electron, u0, m are
the wave functions describing the initial and final inter-
nal states of the atom, and xi is the coordinate of the ith
atomic electron with respect to the atomic nucleus.
Since the motion of the internal electrons in heavy
atoms is relativistic, it is assumed in the general case
that u0, m are the relativistic wave functions.

The equations (9) and (10) were obtained under the
same approximations as Eqs. (6) and (7). The only sub-
stantial difference between the form factors (7) and
(10) is that for an atom we take account of the possibil-
ity that it remains in the initial state u0 after a collision.
The zeroth components of the expressions (7) and (10)
have the familiar form of the form factors that appear in
the description of the excitation and loss of an electron
by atoms in nonrelativistic collisions (see, e.g., [1]).
The three other components of these form factors have
no analogs in the nonrelativistic theory. We note that

/  is a 4-vector.

To solve Eq. (2) it is convenient to use the four-
dimensional Fourier transform:

(11)

In Eq. (11) kxA is the scalar product of two four-dimen-
sional vectors k and xA, and k is the “spatial” part of k.
Substituting the expressions (11) into the equation for

the Fourier transform (k),

FA
0 m0  Q;( ) ZAδm0=

– d3ξ ium
† x1 … xNA

, ,( )u0 x1 … xNA
, ,( )

i 1=

NA
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× exp i– Q xi⋅( ),
i 1=

NA

∑

FA
l m0  Q;( ) d3ξ ium

† x1 … xNA
, ,( )

i 1=

NA

∏∫–=

× α l i( )exp i– Q xi⋅( )u0 x1 … xNA
, ,( ), l

i 1=

NA

∑ 1 2 3., ,=

FA
µ V A'

AA'
µ

xA( ) 1

2π( )2
------------- d4kBA

µ k( )exp ikxA–( ),∫=

JA'
µ

xA( ) c
V A'
------ d4kexp ikxA–( )∫=

× δ 4( ) k P f Pi–+( )FA
µ m0; k( ).

BA
µ

u'AA'
µ

xA( ) 4π
c

------JA'
µ

xA( ),–=
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we find

(12)

Correspondingly, we obtain for the 4-potential

(13)

In Eq. (13) the term –i0 gives the rule for handling the
singularity in the denominator (see, e.g., [12]). This
singularity appears if

Let aµν be the matrix of the Lorentz transformation
from the coordinate system KA into the coordinate sys-
tem KI. Then we have for the potential produced by an
atom in the coordinate system KI

(14)

In Eq. (14) Pi( f ) is the initial (final) 4-momentum of an
atom in the system KI, VA = /γ is the normalization

volume of the atom in the system, γ = 1/  is
the Lorentz factor, and v is the velocity of the incident
atom in the coordinate system KI (collision velocity).

The momentum transfer Q =  –  appearing in
Eq. (14) can be rewritten as

(15)

where P⊥  is the transverse (perpendicular to the colli-
sion velocity) and P|| is the longitudinal (parallel to the
collision velocity) components of the three-dimen-
sional momentum P of an atom in the system KI, and e0
and em are the energies of the electrons of the atom in
the initial (0) and final (m) (internal) states of the atom,
given in the coordinate system KA. We note that the
transverse and longitudinal components of the momen-
tum transfer Pi – Pf appear differently in the atomic
form factor in Eq. (14); this leads to the appearance of
important features in the compensation of the field of
the atomic nucleus by the fields of the atomic electrons
in ultrarelativistic collisions.

BA
µ k( ) 4π

2π( )2δ 4( ) k P f Pi–+( )
k2 i0–

-----------------------------------------------------
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µ m0; k( )
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--------------------------.=
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Pi' P f'–( )2 Pi' P f'–( )2
Ei' E f'–( )2

/c2– 0.= =
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µAA'
ν

a 1– x( )=

=  4π
exp i Pi P f–( )x–[ ]

Pi P f–( )2 i0–
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µFA
ν m0; Q( )

γV A

---------------------------.
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1 v 2/c2–

Pi' P f'

Q Pi⊥ P f⊥–
1
γ
--- Pi|| P f ||–( ) v

c2
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 =

≈ Pi⊥ P f⊥–
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γ
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Substituting the right-hand sides of Eqs. (6) and (14)
into Eq. (1) and integrating over d4x we obtain

(16)

where

(17)

We recall that the form factors  and , given by the
expressions (7) and (10), were determined in the coor-
dinate systems KI and KA, respectively.

Using the standard technique (see, e.g., [12]) for
obtaining the cross section of a process on the basis of
the known S matrix element of the transition, we obtain
for the cross section of the process in which an ion and
atom undergo the transitions ψ0  ψn and u0  um,
respectively,

(18)

where Ei and Ef = Ei + εi – εf are the total initial and final
energies of the atom in the coordinate system KI. The
summation in Eq. (18) means summation over spins of
the electrons in the ion and atom. This summation pre-
sumes averaging over the projections of the spins of the
electrons in the initial state and summation over the
projections of the spins in the final state. In Eq. (18) the
integration over the absolute value of the transverse
component q⊥  of the moment transfer extends from 0

up to a maximum value , which in our case, as
usual, can be set equal to infinity (see, e.g., [2]). The
factor (Ei + εi – εf)/Ei in Eq. (18) can be replaced by 1
to the same accuracy. The minimum value of the
moment transfer qmin = |Pi| – |Pf | appearing in Eq. (18)
can be determined from the law of conservation of
energy for the collisions considered:

(19)

S fi i
4π

VIV A

------------ 2π( )4δ 4( ) pi Pi p f P f––+( )G fi,=

G fi
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I n0; P f Pi–( )γ 1–
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--------------------------------------------------------------------------------.=
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v 2
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× d2q⊥ Fµ
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× q⊥
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2 ε f εi–( )2

c2
---------------------–+

2–

,

q⊥
max

εi c2Pi
2 MAi

2 c4++ ε f c2P f
2 MAf

2 c4,++=
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where MAi and MAf are the rest masses of the atom in
the initial u0 and final um states, respectively. Because
of the large difference between the electron and ion
masses the recoil energy of the ion in the coordinate
system KI can be neglected, and we have for the differ-
ence of the total energies of the ion before and after a
collision εf – εi ≈ εn – ε0, where ε0(n) is the energy of the
ion electron (ion) in the initial (final) internal state ψ0(n)
of the ion. Since (1) the change in the absolute value of
the three-dimensional momentum of the atom is small
compared with its initial value, Pi + Pf ≈ 2Pi, (2) the dif-
ference in the rest masses of the atom is small com-
pared with its initial rest mass, MAi + MAf ≈ 2MA, and
(3) the total energy of the atom in the coordinate system
KI is much greater than the difference between the final
and initial energies of the ion in this system, Eq. (19)
can be easily solved. As a result we have

(20)

where (MAf – MAi)c2 = em – e0 is the difference between
the final and initial energies of the atom in the coordi-
nate system KA.

It is also convenient to introduce the quantity

(21)

which for the atom plays the same role as the quantity
qmin plays for the ion.

Using the expressions (20) and (21), the expression
for the cross section (18) can be rewritten in a form that
clearly underscores the symmetry of the parameters of
the ion and atom which appear in this expression:

(22)
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The expressions (18) and (22) are the first basic result
of this work. If the ion and atom are in the ground states
initially, then it follows from Eq. (22) that the singular-
ity does not arise in Eqs. (13) and (14) and subsequent
expressions. Since our objective is to study such colli-
sions, we drop the term –i0 in Eq. (18) and subsequent
expressions.

Using the explicit form of the matrix  (see, e.g.,
[2]), the relation between the form factors in Eq. (22)
can be written in the symmetric form

(23)

Compared with the known form of the cross sections
for excitation and loss of an electron by an ion in non-
relativistic collisions with atoms, the expressions (22)
and (23) contain two types of relativistic effects. The
first one is due to the magnitude of the collision veloc-
ity v and vanishes for v/c ! 1. This type of effect
includes the retardation of the electromagnetic field,
described by the term (εf – εi)2/c2 ≈ (εn – ε0)2/c2 in the
denominators in the integrands in Eqs. (18) and (22),
the different dependence of the form factors of the ion
and atom on the transition energies εn – ε0 and em – e0,
as well as the relation between the zeroth and third
components of the form factors in the expression (23).
The second type of relativistic effect is due to the pos-
sible relativistic motion of the electrons inside an atom
and ion. Consequently, it does not vanish in the limit
v/c ! 1. It includes the relation between the spatial
components of the corresponding form factors in
Eq. (23). In the limit c  ∞ both types of relativistic
effects vanish and the expression (22) assumes the
well-known form (see, e.g., [1, 3] and the literature
cited there) of the corresponding nonrelativistic cross
sections.

If after a collision the internal state of an atom is not
detected, then it is necessary to sum over the entire set
of possible states. Then the expression (18) gives

(24)
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2 εn ε0–( )2
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----------------------–+

2–
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The summation over the atomic states in Eq. (24) also
assumes summation over the spins of the atomic elec-
trons. The cross section (24) can be represented as a
sum of contributions from the elastic (m = 0) and
inelastic (all m ≠ 0) modes. Taking account of Eq. (20),
we obtain for the contribution of the elastic mode
(screening cross section) to the cross section

(25)

Correspondingly, we have for the contribution of the
inelastic mode (antiscreening cross section) to the cross
section

(26)

3. “NONRELATIVISTIC” ATOM 
APPROXIMATION

The combination (23), where the form factors of the
ion and atom appear in the expression for the cross sec-
tion, is quite complicated. Consequently, to obtain sim-
pler expressions for the cross sections we introduce the
following approximation: we shall neglect all spatial
components of the atomic form factor. Some semiqual-
itative considerations to justify this are given below.

Let us consider the atomic form factor (10) in

greater detail. The component (m0; Q) of this form
factor is related with the static charge distribution
inside the atom. In contradistinction, the components

(m0; Q) are related with the current produced by the
atom in the rest system of the atom. In this coordinate
system such a current is related with the motion of the

electrons inside the atom. The quantity (m0; Q) can
be roughly estimated as
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where ve is the characteristic velocity of the atomic
electrons. For light and medium atoms ve ! c for all

atomic electrons, and all three components (m0; Q)

in Eq. (10) can be neglected compared with (m0; Q).
In heavy atoms the most strongly bound electrons can
possess velocities comparable in order of magnitude to
the velocity of light. However, since the relative num-
ber of such electrons is small, it can be expected that

they do not appreciably increase the value of (m0; Q).

Consequently, neglecting (m0; Q) seems to be a
quite reasonable approximation for describing colli-
sions with heavy atoms. In what follows, we shall

employ this approximation: (m0; Q) ≈ 0.

We shall call this approximation the nonrelativistic
atom approximation (NAA). The NAA destroys sym-
metry in which the form factors of the atom and ion
appear in the expression for the cross section. Conse-
quently, in general it can be expected that this approxi-
mation is more suitable for the elastic mode, when the
electron of the ion undergoes transitions and the elec-
trons of the atom does not, and correspondingly the
symmetry between the ion and atom is already
destroyed to a certain extent. Indeed, the analysis per-
formed above for the elastic atomic form factor shows
that the NAA can be used to calculate the contribution
of the elastic mode to the cross section for any possible
collision energies and ion–atom pairs.

The situation becomes more complex when the
NAA is used to calculate the inelastic mode. In the
arguments presented above in the second paragraph,
the characteristic velocity of electrons in the ground
state of an atom was studied. In collisions with heavy
ions the minimum momentum transfer

can be large compared with the typical values of the
momenta of the electrons in an atom. In such collisions
(in the inelastic mode) the velocities of the atomic elec-
trons in the final state can be much greater than their
typical velocities in the ground state of the atom. Since
we have assumed that the atomic electrons in a collision
are nonrelativistic (in the coordinate system KA), the
condition Qmin ! mec2, where me = 1 is the rest mass of

an electron, must be satisfied. Setting εn – ε0 ≈ , we
obtain the following limit on the use of the NAA for
calculating the contribution of the inelastic mode to the
cross section:

.

This condition definitely holds for collisions with any
heavy ion, for example, γ > 4.

FA
l

FA
0

FA
l

FA
l

FA
l

Qmin
em e0–
v

----------------
εm ε0–
vγ

----------------+=

ZI
2

γ @ 
ZI

2

vc
------
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There is also another important restriction on the
use of the NAA for the inelastic mode. Our analysis of
the behavior of the inelastic atomic form factor in the
limit of small momentum transverse shows that

for all transitions of atomic electrons, which make an
appreciable contribution to the inelastic mode. This
condition imposes an upper limit on the energy of col-
lisions for which the inelastic mode can be studied on
the basis of the NAA. In the present paper we are
interested, first and foremost, in the excitation and
loss of an electron by heavy ions. For collisions of
such ions with light atoms, when the contribution of
the inelastic mode to the cross section is relatively
important, the condition presented above is satisfied
for a very wide range of collision energies. For colli-
sions with heavy atoms containing a large number of
electrons, when the condition presented above may
not be satisfied even for relatively small values of γ, it
can be expected by analogy with nonrelativistic colli-
sions that the inelastic mode does not make an appre-
ciable contribution to the cross section for excitation
and loss of an electron by an ion.

Remembering that the arguments given above for
the NAA are more qualitative than quantitative, we
shall employ this approximation below in our calcula-
tions.

Neglecting all spatial components, (m0; Q) ≈ 0,
we obtain for the cross section (25)

(27)

Here q0 = (q⊥ , qmin),  = (q⊥ , qmin/γ), and αz are the
Dirac α matrices, and we employ the Dirac notation for
the electronic state vectors. In Eq. (27)

(28)

is the so-called effective charge of an atom in the
ground state. In contrast to collisions with a bare
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atomic nucleus, this charge is a function of the momen-
tum transfer and varies in the range (0, ZA).

Similarly, we have for the cross section (26)

(29)

where  = (q⊥ , Qmin).

In accordance with the expression (13) the approxi-

mation (m0; Q) ≈ 0 used to obtain the cross sections
(27) and (29) actually means that we neglected the vec-
tor potential generated by the atom in the coordinate
system KA compared with its scalar potential in the sys-
tem. Then the scalar A0 and vector A potentials of the
atom in the coordinate system KI are related by the sim-
ple relation A = (v/c)A0, and Eqs. (24) and (26) reduce
to Eqs. (27) and (29). The latter equations are the sec-
ond basic result of this paper.

3.1. Contribution of the Elastic Mode 
to the Cross Section

In this section we shall examine in greater detail the
contribution (27) to the total cross section for the exci-
tation (loss) of an electron.

The effective charge (28) can be rewritten as

(30)

where ρel(x) is the charge of the electrons in the atom.
We underscore that ρel(x) in Eq. (30) is the density cal-
culated in the coordinate system of the incident atom.
According to [15], this density can be approximated in
the form

(31)

In this expression Ai and κi are constants for a given
atom. In [15] they are tabulated for all atomic elements.
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Substituting the expression (31) into Eq. (30) and per-
forming the integration over x, the effective charge

ZA, eff( ) can be rewritten as

(32)

We note that the condition  = 1 [15] was used to
obtain the last equality in Eq. (32).

Substituting the expression (32) into Eq. (27), we
obtain

(33)

where ωn0 = εn – ε0.

If all κi are set equal to zero in Eq. (33) (i.e., the
atom is completely devoid of electrons), then this
expression is exactly the well-known form of the cross
sections for the excitation and ionization in collisions
with bare nuclei (see, e.g., [2]). In collisions with bare
nuclei, the region of small values of q⊥  (0 ≤ q⊥  &

ωn0/vγ) makes the main contribution to these cross
sections; this results in the logarithmic growth of
these cross sections with increasing γ: σn0 ~ lnγ (see,
e.g., [2]).

For collisions with neutral atoms, Eq. (33) describes
an important general feature in the screening of an
atomic nucleus by the atomic electrons in relativistic
collisions that does not occur in nonrelativistic colli-
sions. It is worth underscoring the fact that this feature
follows directly from Eq. (15) and, correspondingly, is
not contributed by the particular model (31) chosen to
describe this screening on the basis of convenience
considerations. In nonrelativistic collisions, if an ion
carrying the electron is a heavy ion (ZI @ 1) and the
atom is a light atom (with all screening constants κi of
the order of 1), then screening is not important, since

the term /v2 ~ /v2 dominates all  in the
denominator in the integrand in Eq. (33). However, for
ultrarelativistic collisions, where γ @ 1, the situation

changes substantially. In this case, the terms  can be

greater than /v2γ2 ~ v2γ2, which results in a
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large decrease of the cross section. Our calculations
(see below) confirm that, in contradistinction to nonrel-
ativistic collisions, in ultrarelativistic collisions the
screening of an atomic nucleus by atomic electrons is
important even for collisions of heavy-ion–light-atom
pairs.

Analysis of the expression (33) shows that in colli-
sions with neutral atoms with large values of γ the cross

section  approaches a constant. Thus, even for the

heaviest ions the cross section  becomes essen-
tially constant for γ & 100; for lighter ions this occurs
for smaller values of γ. This is at variance with the
results of [6], which predicts that for any ion–atom pair

 ~ lnγ at least for γ < 1000.

3.2. Contribution of the Inelastic Mode
to the Cross Section

The equation (29) can be greatly simplified by using
the so-called completeness method (see, e.g., [3] and
the literature cited there). In this method the same aver-
age energy ∆e is assigned to all possible transitions of
atomic electrons. It is well known that this approxima-
tion gives good results in describing fast (but nonrela-
tivistic) collisions at velocities appreciably higher than
the threshold velocity, starting with which the process
of energy loss by an ion in a collision with a free elec-
tron first becomes energetically possible. By analogy to
nonrelativistic collisions this method should also give
reasonable results for v ≈ c, when the kinetic energy T
of the incident free electron in the rest system of the ion
is appreciably higher than the binding energy of the
electron in the ion:

T = mec2(γ – 1) @ |ε0 |.
This condition holds for any heavy ion, starting with,
say, γ ≥ 3–4, which is quite close to the lower limit of
the region of possible values of γ, imposed by the non-
relativistic-atom approximation. The completeness
method makes it possible to use the condition that the
electronic states of an atom are complete,

(34)

in order to perform the summation over the final states
of the atom in Eq. (29). This gives

(35)
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where we have redefined  as

If the region of large (on the atomic scale) transferred

momenta  makes the main contribution to the inte-
gral on the right-hand side in Eq. (35), then only the
diagonal terms (i = j) in the double sum in the factor in
parentheses in Eq. (35) makes an appreciable contribu-
tion. The numerical value of this factor reduces in this
case simply to the number of atomic electrons ZA, and
the cross section (35) describes transitions of the elec-
tron in the ion as a result of incoherent electromagnetic
interaction with ZA “free” electrons.

Just as for nonrelativistic collisions, Eq. (35) can be
further simplified if the asymmetry of the ground state
of the atom is ignored and the wave function of this
state is written in the approximate form

(36)

where φλ(x) are single-electron orbitals. In [5] (see also
[16]) it was shown that under such conditions (for neu-
tral atoms)

(37)

Substituting the right-hand side of Eq. (37) into the
expression (35) we obtain
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Anholt [5] pointed out that

(39)

He performed the calculation [5] using two substitu-
tions:

and found that the difference between the results of
these calculations is very small. Consequently, we shall
simply set

(40)

where ZA, eff( ) is determined by Eq. (28). Then we
obtain finally for the antiscreening cross section

(41)

The completeness method and the approximation (36)
and (40) are widely used to study the loss of an electron
by an ion in nonrelativistic collisions with an atom. It is
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easy to see that the use of these approximations with
v ~ c does not touch the relativistic features in the anti-
screening cross section.

4. RESULTS AND DISCUSSION

In Table 1 the experimental data from [11] are com-
pared with the theoretical results obtained in [6] and
[10] and in the present paper. In [11] the cross sections
for the loss of an electron by Au78+ ions were measured
as these ions passed through various solid-state targets
with collision energy 10.8 GeV/au, corresponding to
γ = 12.6. Our numerical calculations are based on
Eqs. (33) and (41), where the final states of the electron
are states in the continuous spectrum of the ion and
where the summation extends over all of these states.
To describe the electronic states of the ion we used
approximate relativistic wave functions, which were
used in [8, 17] to calculate the ionization of the K shell
in relativistic collisions with point charges. Just as in
these works, we took account of the electronic transi-
tions with no change and with a change in the electron
spin. It is known (see, e.g., [7, 8, 17]) that these approx-
imate wave functions give good results even for
describing such heavy single-electron ions as lead and
gold.

To calculate the cross section (41), generally speak-
ing, it is necessary to know the parameters ∆e. As far as
we know, there are no sufficiently accurate but simple
prescriptions for choosing these parameters for multi-
electronic atoms [1, 3]. In the present work we took for
this parameter the average atomic excitation energy,
which is used in calculating energy losses by fast
charged particles (see, e.g., [18]). We note that in reality
the accuracy in determining the values of the parameter
∆e is not critical for the present calculation. For elec-
tron loss by such multiply charged ions as Au78+ and
Pb81+ in collisions with light targets, such as Be, C, and
Al, considered here, the terms with ∆e and the expres-
sion (41) are negligible even for ultrarelativistic colli-
sions, studied experimentally in [9] as well as below
(see Table 2). For collisions of Au78+ and Pb81+ with
heavier targets (Cu and so on, see Tables 1 and 2) the
antiscreening cross section is only a very small correc-
tion (about 1–3%) to the screening cross section. Since
the accuracy of our calculation of the screening cross
section taking account of the approximations made
above is estimated to be 15–20%, there is no sense in
determining the parameter ∆e more accurately for the
collisions considered here.

As follows from Table 1, for a collision energy of
10.8 GeV/au there is no appreciable difference between
the experiment and calculations, just as between vari-
ous calculations. The agreement between the computa-
tional results obtained in [6], predicting for the loss
cross section a dependence of the form σ ~ lnγ, with the
experimental results for γ ~ 10 is due to the fact that in
this experiment very heavy ions, such as Au78+, were
AND THEORETICAL PHYSICS      Vol. 91      No. 4      2000
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used. In this case the energy required to detach an elec-

tron from an ion is so high that the term /v2γ2 ~

/v2γ2 dominates all screening constants  even for
γ ~ 10, and the effective atomic charge ZA, eff in the cross
section (27) and (41) is essentially identical to the
charge of the atomic nucleus.

The situation changes substantially for ultrarelativ-
istic collisions, studied experimentally in [9], where the
cross section for the loss of an electron by a Pb81+ ion
was measured for collision energy 160 GeV/au In this
case the parameter γ = 170 is very large and for the ion–
atom pairs considered ultrarelativistic features of the
screening of the atomic nucleus by the atomic electrons
become important. The experimental data from [9] and
various theoretical calculations are compared in Table 2,
where we have included results for the loss cross sec-
tions, which were measured in a so-called ionization
experiment and which are more accurate [19]. Com-
pared with Table 1, we added several new columns of

ωn0
2

ZI
4 κ i

2

Table 1.  Experimental and theoretical cross sections for loss
(in kb) of an electron by Au78+ ions with energy 10.8 GeV/au
passing through various targets. The ions are initially in the
ground state

Atom ZA
Experi-

ment [11]
Theory 

[6]
Theory 

[10]
This 
work

C 6 0.31 0.31 0.27 0.31

Al 13 1.18 1.28 1.15 1.2

Cu 29 5.26 5.8 5.37 5.65

Ag 47 16.2 14.4 13.7 14.7

Au 79 38.2 38.8 38.0 38.5
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computational results. The data from [10], now pre-
sented in two columns, show the computational results
for the cross section for losses in collisions with bare
atomic nuclei and the corresponding neutral atoms. Our
computational results are also given in two columns.
The first one is the cross section for the loss of an elec-
tron in collisions in bare atomic nuclei, when this cross

section is proportional to . The second column gives
the computational results for collisions with neutral
atoms, using Eqs. (33) and (41).

Our results for collisions with neutral atoms are
much smaller than the results in [6] and are in quite
good agreement with the experimental data. Compared
with the calculations in [10], our results for the cross
sections are much higher, especially for collisions with
bare atomic nuclei, where the difference reaches about
30%.

The comparatively small difference between our
results for the cross section for electron loss in colli-
sions with neutral Be atoms and Be4+ ions is a conse-
quence of the contribution of the antiscreening cross
section to the total loss cross section. For collisions
with light atoms, the inelastic mode makes a large con-
tribution to the total loss cross section, reaching about
20% of the total cross section in collisions with Be
atoms. Our calculation shows that for a collision energy
of 160 GeV/au the compensation of the field of the
atomic nucleus by the fields of the atomic electrons in
screening and antiscreening processes decrease the
total cross section by approximately 35% for collisions
of Pb81+ ions with Be atoms and by approximately 50%
for collisions of Pb81+ ions with Au atoms.

In conclusion, we note that the general, fairly good
agreement between our computational data and exper-
iment gives another, though indirect, argument justi-
fying the use of the nonrelativistic-atom approxima-
tion.

ZA
2

Table 2.  Experimental and theoretical cross sections for loss (in kb) of an electron by Pb81+ ions with energy 160 GeV/au
passing through various targets. The ions are initially in the ground state

Atom ZA
Experiment 

[9]

Theory [6] Theory [10] This work

atom nucleus atom nucleus atom

Be 4 0.14 0.24 0.15 0.14 0.2 0.17

C 6 0.31 0.49 0.33 0.28 0.45 0.35

Al 13 1.3 2.0 1.6 1.1 2.14 1.4

Cu 29 6.9 9.0 7.8 5.2 10.6 6.5

Sn 50 15 25 23 15 31.5 17.6

Au 79 42 60 58 35 78.7 40.1
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5. CONCLUSIONS
In this paper the excitation (loss) of an electron by

an ion in relativistic collisions with atoms was studied.
The analysis was based on first-order perturbation the-
ory for the relativistic electromagnetic interaction
between two composite particles—an ion and an atom.
The expressions obtained for the excitation (loss) cross
sections pass in the limit c  ∞ into the well-known
nonrelativistic results. For (ultra)relativistic collisions
the expressions obtained describe an important feature
in the screening of atomic electrons of the field of the
atomic nucleus that is absent in the nonrelativistic col-
lisions. The numerical results which are based on the
expressions obtained for the cross sections are in good
agreement with existing experimental data.
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Abstract—The quantum-mechanical Aharonov–Bohm effect in the diffraction of charged particles by a toroi-
dal solenoid containing a magnetic field is investigated. The total and differential elastic scattering cross sec-
tions depend on the magnetic flux inside the solenoid, even in the presence of a “black” ring-shaped screen
which prevents charged particles from entering the region where the magnetic field is localized. Relations
describing the momentum-transfer cross section for the elastic scattering of charged particles by a toroidal sole-
noid are obtained in the eikonal approximation and in a unitary model of scattering with a sharp jump in the
partial amplitudes. The momentum-transfer scattering cross section is proportional to the average transfer of
the longitudinal momentum of the scattered particle and can be expressed in terms of a force operator. It is
shown that in the absence of a screen the momentum-transfer scattering cross section of toroidal solenoid is
indeed determined only by the part of the incident beam that intersects the inner region of the toroidal solenoid,
where the magnetic field intensity and, therefore, the Lorentz force are nonzero. At the same time, the momen-
tum-transfer cross section for the scattering of charged particles by a toroidal solenoid covered by a “black”
ring-shaped screen does not depend on the magnetic flux inside the solenoid and is identical to the momentum-
transfer cross section for diffraction by the same screen. The contribution from scattering by an opening in
the screen, which depends on the magnetic flux, is completely compensated by the contribution of the inter-
ference of the scattering amplitudes of the opening and the “black” screen. © 2000 MAIK “Nauka/Interperi-
odica”.
1. INTRODUCTION

About 40 years ago Aharonov and Bohm showed
[1–3] that a magnetic field completely screened from
the penetration of charged particles influences the inter-
ference of two coherent beams of these particles pass-
ing over the magnetic flux. The first works on the Aha-
ronov–Bohm effect suffered from a methodological
drawback because the source of the magnetic field was
an infinite cylindrical solenoid. The switch in [4, 5] and
later in [6] from an infinite solenoid to a finite toroidal
solenoid, topologically separating space into regions
with and without a magnetic field removed a number of
theoretical ambiguities and made the Aharonov–Bohm
effect a real quantum-mechanical phenomenon that can
be checked experimentally. The elegant experiments
performed by Tonomura et al. [7–10] investigating
electron diffraction by screened toroidal solenoids con-
vincingly confirmed the seemingly puzzling, and hav-
ing no a classical analog, “nonlocal” effect of a mag-
netic field on charged particles through the vector
potential.

According to [4, 5], if one of the coherent beams of
charged particles passes through the “hole” of a sole-
noid curled into a torus while the other beam passes
1063-7761/00/9104- $20.00 © 20673
outside this hole, then when a current is passed through
the closed solenoid an additional phase difference

(1)

where e is the electric charge of a particle, Φ is the mag-
netic flux confined inside the toroid (outside the toroid the
magnetic field is zero [4]) and equal to the circulation
of the vector potential

along trajectories passing around the magnetic flux (see
Fig. 1), arises between the interfering beams. The effec-
tive cross section for Fraunhofer diffraction of charged
particles by a toroidal solenoid covered by a “black,”
completely absorbing, screen Σ1 with an opening Σ2,
entirely located inside the projection of the “hole” of
the solenoid onto the plane of the screen, was calcu-
lated in [4, 5] on the basis of the relation (1) in a gauge-
invariant eikonal approximation. It was assumed that
the transverse size of the incident wave packet is large
compared with the size of the screen and the solenoid.

α eΦ
"c
-------,=
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000 MAIK “Nauka/Interperiodica”



 

674

        

V.V. LYUBOSHITZ, V.L. LYUBOSHITZ

                                                                                  
It was found that under these conditions the elastic scat-
tering amplitude possesses the structure

(2)

where (q) and (q) are the amplitudes for the dif-
fraction by continuous, completely absorbing screens
with the shapes Σ1 and Σ2, respectively, and areas S1 and
S2, and "q is the change in the momentum on scatter-
ing. According to the optical theorem, the total elastic
scattering cross section of a toroidal solenoid with a flat
ring-shaped screen oriented perpendicular to the initial
momentum "k is [4, 5]

(3)

Here k = |k|, ∆S = S1 – S2 is the total cross section for
diffraction by a “black” ring-shaped screen, identical to
the absorption cross section and equal to the area of the
screen, and S2 is the area of the opening in the screen.

For a very thin solenoid with a finite magnetic flux
Φ and a very thin “black” screen, we have

(4)

where S = S1 ≈ S2. We note that the same formula also
holds in the absence of a screen covering a thin sole-

f q( ) f Σ1
q( ) f Σ2

q( ) i
eΦ
"c
------- 

  ,exp–=

f Σ1
f Σ2

σel
4π
k

------Im f 0( ) ∆S– 4S2
eΦ
2"c
--------- 

 sin
2 ∆S.+= =

σel 4S
eΦ
2"c
--------- 

  ,sin
2

=

c

0 Toroid
Detector

c

b b

1'

2

1

a

Fig. 1. Arrangement of the interference experiment. A beam
a of particles with charge e is split at the point zero into two
coherent beams b and c; the beam b passes through the
“hole” of the toroidal solenoid with magnetic flux Φ (the
trajectory 0  1'  2), and the beam c passes outside
the toroid (the trajectory 0  1  2). Both beams
intersect and interfere at the point 2. The phase difference is
δ = 2π(Lc – Lb)/λ + eΦ/"c, where Lc is the length of the path
0  1  2 and Lb is the length of the path 0  1'  2,
λ is the de Broglie wavelength of the charged particle. The
sign of the magnetic flux depends on the direction of the
magnetic field B in the solenoid. In the configuration shown
in the figure Φ > 0.
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noid [4, 5]. Similar results were obtained subsequently
in [11, 12].

It is obvious that in the presence of a “black” screen
the wave function of the charged particles inside the
region where the magnetic field intensity is different
from zero tends to zero. Classically, the magnetic-field
dependence of the effective scattering cross section for
a charged particle is surprising under these conditions.
Thus, the Aharonov–Bohm effect is a purely quantum
phenomenon associated with the wave properties of the
microparticles.

At the same time, in the quantum theory of scatter-
ing there exists a physical quantity which is propor-
tional to the force acting on the scattering particle and
is expressed in terms of the expectation value of the
force operator with respect to the scattering state. This
is the so-called momentum-transfer scattering cross
section [13–15]. The dependence of the momentum-
transfer cross section on the magnetic flux with the
magnetic field being inaccessible to the charged parti-
cles would be completely improbable and would con-
tradict the law of conservation of momentum. In the
present work it is shown that the momentum-transfer
elastic scattering cross section of a toroidal solenoid
covered by a ring-shaped, completely absorbing, screen
does not depend on the magnetic flux inside the sole-
noid. In our view, this fact finally removes the “para-
dox” that is usually associated with the Aharonov–
Bohm effect.

2. MOMENTUM TRANSFER
AND THE MOMENTUM-TRANSFER

ELASTIC-SCATTERING CROSS SECTION

If the scattering center is irradiated by a flux of par-
ticles I, each particle possessing momentum p, then a
force F equal to the momentum transmitted to the scat-
terer per unit time in absorption and elastic scattering
processes acts on the scatterer. This force is described
by the formula [16]

(5)

where σabs is the absorption cross section, σel is the
elastic scattering cross section, p' is the momentum of
the scattered particle, and θ and φ are the polar and azi-
muthal angles.

The longitudinal force acting on a scatterer has the
form

(6)

where p = |p|, σtr is the momentum-transfer elastic scat-
tering cross section, which is defined as [16–18]

(7)

F I pσabs σel θ φ,( ) p p'–( ) Ωd∫+[ ] ,=

F ||( ) F
p
p
--- Ip σabs σtr+( ),= =

σtr σel θ φ,( ) 1 θcos–( ) Ω.d∫=
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For azimuthal symmetry, only a longitudinal momen-
tum is transferred to the scatterer, so that

where n = p/p is a unit vector in the direction of the ini-
tial momentum. Then

(8)

where f(θ) is the elastic scattering amplitude.
Let N particles with momentum p be located in the

volume V. Then the intensity I can be represented in the
form

(9)

where m is the mass of a particle. On the basis of the
formula (6), according to the third law of mechanics the
force

(10)

should act on a scattering particle located in the volume V.
In what follows we shall be interested in the contribu-
tion of elastic scattering

(11)

According to Ehrenfest’s theorem [19], on the basis
of quantum mechanics the vector fel should be regarded
as the expectation value of the operator corresponding
to the external force acting on the scattering particle. In
the case at hand the averaging must be performed over
a stationary state in the scattering problem, normalized
to the macroscopic volume V. Thus

(12)

where  is a wave function which belongs to the
continuous spectrum and is asymptotically a superposi-
tion of a plane wave and a diverging spherical wave

[18], and  is the force operator. Comparing the expres-
sions (11) and (12), we find [14, 15]

(13)

Here % is the kinetic energy of the particle. The rela-
tion (13) should be viewed as a generalization of
Ehrenfest’s theorem to the scattering state. The result
(13) was first obtained (in a somewhat different form)
in [13] on the basis of the generalized optical theorem
for the change in quantum-mechanical quantities in a
scattering process (see also [20]).

F nF ||( ),=

σtr 2π f θ( ) 2 1 θcos–( ) θcos( ),d
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--------nσtr.–=

f el
1
V
--- ψp
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------- ψp
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The operator for the force , acting on a particle
with charge e in an arbitrary external electromagnetic
field, has the form [19]

(14)

where E is the intensity of the electric field, H is the
intensity of the magnetic field,

(15)

is the velocity operator of the charged particle, and A is
the vector potential. In the absence of an electric field

(toroidal solenoid) the operator  corresponds simply to
the Lorentz force in a magnetic field. The formulas (12)
and (13) show that the momentum-transfer cross section
for elastic scattering of electrons by an unscreened tor-
oidal solenoid is different from zero only because elec-
trons penetrate into the toroid, in the region where the
magnetic field is localized. For a toroid with a “black”
ring-shaped screen, electrons do not reach the region
where the magnetic field is concentrated, and the
momentum-transfer cross section should be deter-
mined only by the form of the screen and should not
depend on the magnitude of the magnetic flux. It is
shown below that these results are confirmed by direct
calculations of the momentum-transfer cross section in
the eikonal approximation, as well as in a unitary model
of scattering with a sharp jump in the partial amplitudes
at the boundaries of the scatterer.

3. MOMENTUM-TRANSFER CROSS SECTION
FOR FRAUNHOFER DIFFRACTION

If the de Broglie wavelength of a particle is small
compared with the geometric size of the target, then by
analogy to the theory of Fraunhofer diffraction in wave
optics [21] the eikonal approach can be used to describe
scattering by small angles. The general eikonal formula
for the elastic scattering amplitude has the structure

(16)

where

(17)

Here r is a two-dimensional vector perpendicular to the
initial momentum "k and q = k' – k is the change in the
wave vector at scattering (for small scattering angles
q ⊥  k, |q| = kθ, where θ is the scattering angle). In the
presence of a magnetic field the complex parameter
S(r) acquires the additional phase factor [4, 5]

(18)
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where e is the electric charge of the particle and Az is the
projection of the vector potential onto the direction of
the initial momentum, and the integration extends over
the rectilinear trajectory of a particle.

We shall assume that small angles θ ! 1 make the
main contribution to the momentum-transfer elastic-
scattering cross section, just as in the case of the total
elastic scattering cross section.1 For small scattering
angles the element of solid angle

and

On the basis of the definition (7), using the rela-
tion (16) for the scattering amplitude we obtain as a
result the eikonal formula for the momentum-transfer
elastic-scattering cross section

(19)

At the same time the eikonal formulas for the inte-
gral elastic-scattering cross section and the total inter-
action cross section have the form [18]

(20)

For Fraunhofer diffraction by a “black” screen Σ,
whose plane is perpendicular to the initial momentum,
the partial amplitude η(r) is 1 at points inside the
screen and 0 outside the screen. Here

where S is the area of the screen. We underscore that if
the width b of the boundary layer is small compared to
the linear dimensions of the screen, the total elastic-
scattering cross section is virtually independent of the
structure of the boundary. The situation is entirely dif-
ferent for the momentum-transfer cross section. The
momentum-transfer diffraction cross section is deter-
mined completely by the character of the screen bound-
ary near which the partial amplitude η(r) changes and
to which momentum is actually transferred. If the
“black” screen possesses a diffuse boundary with effec-
tive width

inside which η(r) = 1 and outside which η(r) = 0, then,
as is obvious from the relations (19),

(21)

where L is the perimeter of the screen.

1 This is incorrect for diffraction by a screen with a sharp boundary
(see [16]).
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4. MOMENTUM-TRANSFER CROSS SECTION
FOR ELASTIC SCATTERING OF ELECTRONS

BY A TOROIDAL SOLENOID

4.1. Fraunhofer Diffraction
by a Toroidal Solenoid without a Screen

We shall calculate the momentum-transfer cross
section for elastic scattering of charged particles (elec-
trons) by an unscreened circular toroidal solenoid
whose magnetic field is perpendicular to the initial
momentum. Let R be the radius of the “hole” of the tor-
oid and b the radius of a loop of the solenoid (the radius
of the “bagel”). We shall assume that the de Broglie
wavelength of an electron is small compared with the
linear dimensions of the solenoid, i.e.,

the transverse dimensions of the incident wave packet are

Under these conditions scattering by small angles plays
the main role and the eikonal approach can be used [4, 5].

Figure 2 displays the projection of a circular toroi-
dal solenoid on a plane perpendicular to the magnetic
field and passing through the initial momentum of the
electron (the z axis). The magnetic flux inside the sole-
noid is, evidently,

(22)

where H is the magnetic field intensity. According to
the relations (17) and (18), the partial amplitude η(ρ) in
the case at hand is (compare [4, 5])

(23)

where ρ = |r| is the impact parameter.
As is well known, irrespective of the gauge of the vec-

tor potential A, the circulation of the vector potential

dl along an arbitrary contour is equal to the magnetic

flux threading this contour. Since the cross section for
scattering by any finite angle is gauge-invariant, with no
loss of generality Eq. (23) can be rewritten as

(24)

where Φ is the magnetic flux through a plane bounded
by a straight line with impact parameter ρ and a semi-
circle of infinite radius. As a result, we have

(25)
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(‡) (b)

(c)

b

R

z

p = "k

b – x

b

R

R
d = R + 2b

B

x

l 2 b
2

b x–( )2
–=

b

Fig. 2. Scattering of electrons by a toroidal solenoid. (a, b) section of a circular toroidal solenoid in a plane passing through the
symmetry axis z; R is the radius of the “hole” of the toroid, b is the radius of a loop, x is the height of a segment, cut off by the straight
lines intersecting the magnetic-field region and parallel to the z axis. A wide beam of electrons with momentum p = "k parallel to
the symmetry axis of the toroid is incident on the toroidal solenoid. The magnetic field is perpendicular to the plane of the figure: in
the upper loop it is oriented out of this plane and in the lower loop it is oriented into the plane. (c) section of a circular toroidal sole-
noid in a plane perpendicular to the symmetry axis and passing through the center of the toroid.
Here e = –|e| is the electron charge,

(26)

S(x) is the area of the hatched circular segment of
height x in Fig. 2 and Φ is the total magnetic flux inside
the toroidal solenoid, which is determined according to
the relation (22); in the configuration shown in Fig. 2
Φ > 0.

For a problem with axial symmetry the relation (19)
for the momentum-transfer cross section becomes

(27)

Substituting into the formula (27) the values of the par-
tial amplitudes (24) and (25) we find

(28)

It is easy to see that

where

(29)
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is the length of the chord of the circular segment of
height x. Using Eq. (29) an elementary integration
gives

(30)

For a very thin solenoid (b ! R) the formula for the
momentum-transfer cross section becomes

(31)

It should be underscored that the expression (31) is
valid only if

The situation where b < 1/k will be considered below
(Section 4.3).

We can see that the momentum-transfer cross sec-
tion for elastic scattering of electrons by an unscreened
toroidal solenoid is determined by the range of impact
parameters (R < ρ < R + 2b) where the electron trajec-
tories intersect the magnetic field inside the solenoid.
We note that, using Eqs. (22) and (26), the expres-
sion (28) for the momentum-transfer scattering cross
section can be rewritten as

(32)
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σtr π R x+( ) el x( )H
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2
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0

2b
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where p = "k is the modulus of the electron momentum
and l(x) is the length of the electron path in a magnetic
field and is given by Eq. (29). The quantity

(33)

is the classical angle of deflection of a charged particle
on a rectilinear path l(x) as a result of the action of the
Lorentz force

perpendicular to the momentum p and the magnetic
field H (θ0 = Fl(x)/pv). Thus, the relations (28), (30),
and (31) are of a classical character.

It has been shown in [17] that in the eikonal approx-
imation the momentum-transfer cross section for scat-
tering by a centrosymmetric potential is described by
the classical formula

(although the classical theory may not be applicable for
calculating the differential and total cross sections for
elastic scattering!). We have shown that this result is
also valid in the presence of a magnetic field.

We underscore that in contrast to the momentum-
transfer cross section the total cross section for the elas-
tic scattering of an electron by a very thin toroidal sole-
noid (b ! R) is determined primarily by the trajectories
that do not intersect the region of localization of the
magnetic field (impact parameters ρ < R; only the vec-
tor potential is different from zero along the path of the
electrons!). Using the relations (25), Eqs. (20) lead to
the result obtained in [4, 5]:

(see also Eq. (4) with S2 = πR2).

4.2. Fraunhofer Diffraction by a Toroidal Solenoid 
with a “Black” Screen

As shown in [4, 5], for a toroidal solenoid having an
arbitrary form and covered with a “black” screen with
an opening which is projected onto the “hole” of the
toroid, the diffraction pattern depends on the magnetic
flux Φ, even though charged particles do not penetrate
into the solenoid, i.e., into the region where the magnetic
field is concentrated; the dependence of the elastic scatter-
ing cross section on the magnetic field is determined by
the dimensions and shape of the opening. The total cross
section for elastic scattering by a screened toroidal sole-
noid is given by Eq. (3) (see the relation (14) in [5]).

We shall now find the momentum-transfer cross sec-
tion for elastic scattering of electrons by such a solenoid,

θ0
el x( )H

pc
-----------------=

F
e
c
--v H× ,=

σtr π θ0
2 ρ( )ρ ρd

0

∞

∫ 2π 1 θ0 ρ( )cos–( )ρ ρd

0

∞

∫≈=

σel σtot η2
2 d2r∫ 4πR2 eΦ

2"c
--------- 

 sin
2

= = =
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using the relation (19). According to the formulas (17) and
(18), the partial amplitudes η(r) in the case at hand
have the form

(34)

where, just as in Eq. (24), Φ(r) is the magnetic flux
encompassed by the closed contour consisting of the
rectilinear trajectory with impact parameter r and a
semicircle with radius tending to infinity; the impact
parameter here is a two-dimensional vector perpendic-
ular to the initial electron momentum p = "k. It is easy
to see that if the impact parameters correspond to recti-
linear trajectories passing on the outside of the screen,
then

If the impact parameters correspond to rectilinear tra-
jectories passing through an opening in the screen, then

where η2 is given by the third formula in Eqs. (25).
Since η1 and η2 are constants, according to Eq. (19) the
momentum-transfer cross section for elastic scattering
of electrons (and any charged particles) by a screened
solenoid is determined only by the trajectories which
intersect the ring-shaped screen. Since according to the
conditions of the problem the electrons do not penetrate
into the toroidal solenoid located behind the screen, the
trajectories which in the absence of the screen would
pass through the region where the magnetic field is con-
centrated correspond to the values

For trajectories intersecting the screen near its inner
boundary,

(35)

and for trajectories intersecting the screen near its outer
boundary

(36)

and inside the screen S(0)(r) = 0 while near its bound-
aries 1 > |S(0)(r)| > 0.

We can see that the quantity

(37)

appearing in Eq. (19) for the momentum-transfer cross
section, does not depend on the magnetic flux inside the
solenoid. Thus, the momentum-transfer cross section
for elastic scattering of electrons by a toroidal solenoid
covered by an impenetrable ring-shaped screen, in con-
trast to the total scattering cross section, does not
depend on the magnetic flux and is identical to the

η r( ) 1 S 0( ) r( ) i
e

"c
------Φ r( ) 

  ,exp–=

S 0( ) r( ) 1, Φ r( ) 0, η r( ) η1 0.= = = =

S 0( ) r( ) 1, Φ r( ) Φ, η r( ) η2,= = =

S 0( ) r( ) 0, η r( ) 1.= =

η r( ) 1 S 0( ) r( ) i
eΦ
"c
------- 

  ,exp–=

η r( ) 1 S 0( ) r( ),–=

dη r( )
dr

---------------
2 dS 0( ) r( )

dr
--------------------

2

,=
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momentum-transfer diffraction cross section of the
same screen. The magnitude of the momentum-transfer
cross section, as already mentioned in Section 3,
depends on the structure of the transitional layer and is
proportional to the total length of the outer and inner
boundaries of the ring (see the estimate (21)).

We note that taking account of the relation (2) for
the scattering amplitude the momentum-transfer cross
section for elastic scattering of charged particles by a
toroidal solenoid, covered by a screen Σ1 with an open-
ing Σ2, is simply the sum of the momentum-transfer
cross sections for elastic scattering by continuous
screens Σ1 and Σ2. Indeed, in calculating the momen-
tum-transfer cross section on the basis of the eikonal
formula (19) with amplitude (2) the contribution of the
interference of the amplitudes (q) and (q),
which possess the diffraction structure (16), vanishes,
since according to the condition of the problem the
derivatives dη1/dr and dη2/dr are different from zero
only near the boundaries of the corresponding regions
Σ1 and Σ2, i.e., in the nonintersecting ranges of the
impact parameters. Ultimately, the dependence on the
magnetic flux in the solenoid also vanishes.

4.3. Unitary Model of Diffraction 
by a Toroidal Solenoid

We assumed above that the small-angle range θ ! 1
makes the main contribution not only to the total cross
section for the elastic scattering but also to the momen-
tum-transfer cross section. This is correct if the de Bro-
glie wavelength λ = 2π/k is small compared to the target
size L and the width b of the transitional layer where the
partial amplitudes vary. For a very sharp target bound-
ary, so that L @ λ > b, the results obtained for the total
elastic scattering cross section by the eikonal approach
remain valid but when calculating the momentum-
transfer cross section the range of angles θ ~ 1 where
the eikonal approximation is inapplicable now plays a
large role.

To take into account the contribution of large scat-
tering angles we shall examine, following [16], the
model of diffraction of electrons by an infinitely thin
toroidal solenoid with magnetic flux Φ; this model
completely reproduces the results of the eikonal
approach for the differential scattering cross section for
small angles and for the total scattering cross section,
and at the same time it strictly satisfies the condition of
unitarity of the S matrix. In this model the amplitude for
elastic scattering of electrons by an unscreened circular
toroid with “hole” radius R @ 1/k and magnetic field in
a plane perpendicular to the initial momentum has the
form

(38)

f Σ1
f Σ2

f θ( ) i
2k
------ 1 i

eΦ
"c
------- 

 exp– 2l 1+( )Pl θcos( ),
l 0=

n

∑=
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where Pl(cosθ) are Legendre polynomials and n is the
integral part of the quantity kR @ 1. It is easy to see that
the amplitude (38) satisfies the optical theorem:

(39)

i.e.,

(see the relation (4)).

In calculating the momentum-transfer cross section
it is convenient to use the well-known relation for the
Legendre polynomials [22] and represent the scattering
amplitude (38) in the form

(40)

Since the Legendre polynomials are orthonormal, we
find [16]

(41)

The expression (41) differs substantially from the
result (31) for a solenoid with finite width b ! R, b @ 1/k.

Now let the toroidal solenoid be covered by a
“black” screen which completely absorbs electrons and
has the form of a circular ring with outer radius a and
inner radius d (a > R, d < R). Once again, we assume
that the plane of the screen is perpendicular to the initial
momentum of the electrons p = "k. Then

In the unitary model under discussion, the amplitude
for elastic scattering of electrons by a screened toroidal
solenoid can be written in the form (compare with Eq. (2))

(42)

σel
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or

(43)

where

is the amplitude for diffraction by the “black” ring [16].
Here n and m are the integer parts of the parameters ka
and kd, respectively, where n @ 1 and m @ 1.

Using Eqs. (42) and (43), we obtain for the angle-
integrated cross section for elastic scattering

(44)

We underscore that the expression (44) completely
agrees with Eq. (3) obtained in [4, 5] in the eikonal
approach (in this case S2 = πd2, ∆S = π(a2 – d2)).2 

We shall now determine the momentum-transfer cross
section for elastic scattering of electrons by a screened tor-
oidal solenoid. The elastic scattering amplitude (42)
can be represented, similarly to Eq. (40), in the form

(45)

where n > m, (n – m) @ 1. Combining in the formula for
the momentum-transfer cross section

the equivalent expressions (42) and (45) for the ampli-
tude f (θ), we find that as a result of the orthogonality of
the Legendre polynomials of different orders, the inter-
ference term containing the magnetic flux vanishes
after integration over the scattering angles. Then

(46)

This expression is, evidently, identical to the momen-
tum-transfer diffraction cross section of the “black”

2 The amplitude (42) satisfies the unitarity condition

where σel is determined according to (44), and ∆S = π(a2 – d2) is
the absorption cross section of the “black” ring.

f θ( ) f scr θ( )
i

2k
------ Pl θcos( ) 1 i

eΦ
"c
------- 

 exp– ,
l 0=

m

∑+=

f scr θ( ) i
2k
------ 2l 1+( )Pl θcos( )

l m 1+=

n

∑=

σel
π
k2
---- n 1+( )2 π

k2
---- m 1+( )2 2π

k2
------ m 1+( )2 eΦ

"c
------- 

 cos–+=

=  4πd2 eΦ
2"c
--------- 

 sin
2 π a2 d2–( ).+

4π
k

------Im f 0( ) 2πa
2

2πd
2 eΦ

"c
------- 

 cos– σel ∆S,+= =

f θ( ) i
2k
------

Pn θcos( ) Pn 1+ θcos( )–
1 θcos–

----------------------------------------------------------=

–
i

2k
------ i

eΦ
"c
------- 

  Pm θcos( ) Pm 1+ θcos( )–
1 θcos–

-----------------------------------------------------------,exp

σtr 2π f θ( ) 2 1 θcos–( ) θcos( )d

1–

1

∫=

σtr
π n 1+( )

k2
-------------------- π m 1+( )

k2
----------------------+

π
k
--- a d+( ).= =
JOURNAL OF EXPERIMENTAL 
ring; indeed, the elastic-scattering amplitude for such a
ring is described by Eqs. (42), (43), or (45) with Φ = 0.

Thus, in the unitary model of diffraction, considered
here, with sharp jumps in the partial amplitudes, just as
in the eikonal approach, the momentum-transfer cross
section for the elastic scattering of charged particles by
a toroidal solenoid, protected by a completely absorb-
ing screen which prevents the electrons from penetrat-
ing into the solenoid, does not depend on the magnetic
field inside the solenoid. The contribution of diffraction
by the opening in the screen to the momentum-transfer
cross section is compensated by the contribution of the
interference of the amplitudes for elastic scattering by
the opening and the screen itself to the momentum-
transfer cross section [see Eq. (43)].

5. CONCLUDING REMARKS

The results presented above are, in our view, of fun-
damental importance for understanding the Aharonov–
Bohm effect and are of a general character. According
to Ehrenfest’s theorem for scattering states [see the
relation (13)] the dependence of the momentum-trans-
fer scattering cross section on the magnetic field inside
the solenoid can be due only to the direct force exerted
by the magnetic field on the charged particles, and the
specific calculations confirm this conclusion. For scat-
tering of charged particles by a screened toroidal sole-
noid, the incident beam is divided by a ring-shaped
screen into two coherent parts, which go around the
magnetic flux in the solenoid, the interference between
which results in the dependence of the differential and
total elastic-scattering cross sections on the magnetic
field inside the solenoid. This is a purely quantum
effect associated with the wave properties of micropar-
ticles. But in the momentum-transfer cross section for
elastic scattering by a screened solenoid, proportional,
just as in the classical theory, to the average transfer of
the longitudinal momentum to the scattered particle, the
magnetic-flux dependence completely vanishes. At the
same time, in the absence of the screen the momentum-
transfer cross section for scattering of charged particles
by a solenoid is due only to the part of the beam that
passes through the region containing the magnetic field.
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Abstract—A closed variant of the Born approximation for calculating differential scattering cross sections in
ion-atom collisions is developed. An expression in terms of the matrix elements Jij with respect to the single-
electron states of the atom is found for the matrix element describing the target atom in the formula for the dif-
ferential cross section. The matrix elements Jij are averaged over the relative orientation of the momentum
transferred in the collision and the symmetry axis of the electronic orbitals of the target atom, using the single-
electron Rutaan–Hartree–Fock wave functions. The algebraic representation of the matrix elements Jij makes
it possible to perform calculations for atoms with any value of Z. The model developed is used to calculate the
cross sections σΣ and characteristic scattering angles θc for the process of electron loss by H– ions with energy
E = 0.1–100 MeV in targets consisting of atoms with Z = 2–54. It is shown that σΣ ∝  E–1 and θc ∝  E–1/2 for all
Z, and for fixed E the behavior of σΣ(Z) and θc(Z) is determined by the order of filling of the electronic shells
of the target atoms (the ionization potential). The computational results are analyzed and compared with the
experimental data and the results of other calculations. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

One of the basic problems in the physics of ion-
atom collisions is to establish the dependence of the
total scattering cross section for incident particles A
scattered by the atomic particles B of the target in a par-
ticular process on the atomic number Z of the target
particles and the kinetic energy E of the incident parti-
cles: σ = σ(Z, E). Here the term “atomic particles” is
understood to be atoms and their ions in the ground and
excited states.

Ordinarily, the energy behavior of the cross sections
with Z = const is studied for a limited set of targets,
which from the experimental standpoint is due to the
difficulty of producing gaseous, beam, or plasma tar-
gets with strictly controllable thickness for arbitrary
chemical elements and from the theoretical standpoint it
is due to the sharp increase with increasing Z of the dif-
ficulty of describing target atomic particles (and incident
particles). These factors play an even greater role in
explaining the absence of sufficiently complete experi-
mental and theoretical dependences of the cross sections
on the atomic number of the target with fixed kinetic
energy of the incident particles:

σ = σ(Z, E = const). (1)

It is obvious that the mutually complementary
experimental and theoretical results of investigations of
the dependences (1) make it possible to perform a pur-
poseful search for targets suitable for solving diverse
applied problems and to check or determine the range
of applicability of the theoretical models.
1063-7761/00/9104- $20.00 © 20682
A wide class of ion-atomic collision processes
involving two particles A and B can be described by the
formula

A(αi) + B(βi)  A(αf) + B(Σ). (2)

Here αi, βi and αg, βf are the initial and final states of
the particles, respectively; the symbol Σ means that all
possible final states βf of the target B, which belong to
a discrete spectrum (including the ground state) and
continuous spectrum are used in the calculation. The
formula (2) covers elastic scattering and excitation of
the particles A as well as the loss of electrons by parti-
cle A. Electron capture, charge transfer, and electron
exchange will be neglected.

We shall assume that the velocity of the incident
particles A lies in the range bounded on one side by the
condition of applicability of the Born approximation
and on the other by the requirement that the nonrelativ-
istic theory be applicable. If the interaction of the col-
liding particles in the process (2) is described by a Cou-
lomb potential, then in the closed Born approximation
(closure approximation) the differential scattering
cross section for particles A scattered by the angle ν
into a solid angle do in the center-of-mass system can
be written, using the sum rule over final states of the
target particles, in the form [1–3]

(3)

where a0 is the radius of the first Bohr orbit; m and M
are the electron mass and the reduced mass of the col-

dσα f
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do
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4a0
2

qa0( )4
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m
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2k f

ki

----- Fα f α i

A q( ) 2
M q( ),=
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liding particles;  is the atomic form factor of the

system A; ki and kf are the wave vectors of the particle A
in the center-of-mass system before and after the colli-

sion; q = kf – ki;  and  are the average (with respect
to βf) values of the corresponding vectors, which are
determined by the method indicated in [2]. The quan-
tity M(q) in Eq. (3) is the matrix element determined
for the initial state of the particle B:

(4)

where  is the wave function of the initial state of

particle B; N is the number of electrons belonging to the
particle B; rb is the radius vector of the bth electron.
The problem of obtaining the dependences (1) using
the closure approximation is related with the difficulty
of calculating the matrix elements (4) for the particles B
with a large number of electrons.

A remarkable feature of the relation (3) is that it can
be factorized into three cofactors: the first one contains
the fundamental constants m, a0, the parameters of the

problem M and ki , and the variable quantities  and ;
the second cofactor is the form factor FA (and/or the
incoherent scattering function [1, 2]) and describes
only the particle A; and, the third cofactor is the
matrix element M( ) and contains quantities charac-
terizing only the particle B. Thus, determining the
expression making it possible to calculate the matrix
element (4) solves, in principle, the problem of deter-
mining the dependences σ(Z, E) for any processes of
the type (2).

In the present paper an algebraic expression is
obtained for the matrix element (4) that makes it possi-
ble to perform calculations of the interaction cross sec-
tions of particles in processes of the type (2) for atomic
target particles with arbitrary atomic number Z. Calcu-
lations of the cross sections (1) for the range Z = 2–54

were performed for the process ( 0) + ( 1) of electron
loss by the negative hydrogen ions H– with energy E =
10 MeV.

2. THEORY

As we have seen above, the problem of calculating
the scattering cross sections in the closed variant of
the Born approximation (3) requires finding the
matrix element M(q). Let M(q) be determined for the
particle B, which in the general case can be an ion
with nuclear charge Z and N electrons. We shall write

Fα f α i

A

q k f

M q( ) ψβi
〈 | Z exp iq rb⋅( )

b 1=

N

∑–
2

ψβi
| 〉 ,=

ψβi

q k f

q

1 1
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the operator part of the matrix element M(q) in the
expanded form

(5)

We shall assume that the wave function of the parti-
cle B is a Slater determinant of single-electron wave
functions, and the particle itself at the moment of colli-
sion can be in an arbitrary state. We shall designate the
single-electron states by the index i, which represents
the entire set of quantum numbers required for a com-
plete description of the state: , where n and
l are the principal and orbital angular momentum quan-
tum numbers, and m and σ are the projections of the
orbital and spin angular momenta of the electron. The
use of the letter i to denote (–1)1/2 and the single elec-
tron state will not lead to any confusion, since a state
will be labeled by the letter i only as an index.

We substitute the expression (5) into the expression
for the matrix element M(q):

(6)

Since  is a symmetric function under the inver-
sion of the vector rb, we have

(7)

using which we obtain for the matrix element (6)

(8)

We shall now consider the matrix element in the
third term of the relation (8) under the summation sign,

Z exp iq rb⋅( )
b 1=

N

∑–
2

Z2=

– Z exp iq rb⋅( ) exp i– q rb⋅( )+[ ]
b 1=

N

∑

+ exp iq rc rb–( )⋅( ).
b c, 1=

N

∑

i| 〉 nlmσ| 〉≡
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N

∑
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expanding ψ as a Slater determinant and remembering
that the normalization factor of the function ψ is (N!)–1/2:

(9)

where the integration extends over the configuration

space of N electrons of the particle B;  is an opera-
tor which interchanges elements of the ordered set t1,
t2, …, tN, consisting of the elements 1, 2, …, N; the

symbol t in the interchange operator  indicates sub-
sequent functions with elements tk to which the action
of the operator extends, and similarly for the operator

. In Eq. (9) the interchange operators act on the
indices enumerating the single-electron states of the
particle B.

Since the single-electron wave functions are orthog-
onal to one another, in the expression (9) only the fol-
lowing terms remain different from zero:

(10)

If the bth electron with radius vector rb is fixed in the
ith state (the wave function with index ti), then the oper-

ator  will interchange the remaining N – 1 indices
of states for single-electron wave functions, each of
which depends on one of the N – 1 remaining radius
vectors different from rb. The number of ways that N – 1
electrons can be placed into N – 1 states without any
repetitions is (N – 1)!, so that

(11)

The integral over the product of N – 1 cofactors of the

form  is 1 because the single-
electron wave functions are orthonormal. The number

ψ〈 |exp iq rb⋅( ) ψ| 〉 1
N!
------=

× Ps
t( ) 1–( )sψt1

* r1( )…ψti
* rb( )…ψtN

* rN( )
s 1=
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× exp iq rb⋅( )

× Pu
ν( ) 1–( )uψν1

r1( )…ψν j
rb( )…ψνN

rN( )
u 1=

N!

∑ dτ ,

Ps
t( )

Ps
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Pu
ν( )

ψ〈 |exp iq rb⋅( ) ψ| 〉 1
N!
------ exp iq rb⋅( )∫=

× Ps
t( ) ψt1

r1( ) 2… ψti
rb( ) 2… ψtN

rN( ) 2dτ .
s 1=
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∑

Ps
t( )

ψ〈 |exp iq rb⋅( ) ψ| 〉 1
N!
------ exp iq rb⋅( ) ψti

rb( ) 2∫
i 1=

N

∑=

× Ps
t( ) ψt1

r1( ) 2… ψtN
rN( ) 2dτ .

s 1=

N 1–( )!

∑

ψt1
r1( ) 2… ψtN

rN( ) 2
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of terms consisting of products of this type is, evidently,
(N – 1)!, so that

(12)

where

(13)

It is easy to see that Ji(–q) = (q) = Ji(q), and hence
Ji is a real function. We note that the right-hand side of
the equation (13) is independent of the index b, as
should be the case, so that

(14)

We shall now consider the matrix element in the
fourth term in the formula (8) just as was done in the
derivation of the expressions (9)–(11). But, since the
exponential operator of this matrix element contains
the radius vectors of the bth and cth electrons, this
matrix element will contain two groups of terms (the
others are equal to zero because of the orthogonality of
the single electron wave functions):

(15)

The appearance of the cofactor (–1)2s + 1 ≡ –1 in the
second term in the expression (15) is due to the fact that
the terms of the Slater determinant appear in Eq. (15) as
a sum of pairwise products, differing from one another
only by one interchange (and by the complex conjuga-
tion sign).

Let us now fix the bth and cth electrons in the ith or
jth states and interchange the indices of the states for
the remaining single-electron wave functions (with the
order of the radius vectors of the electrons remaining
the same). The indices are chosen from the indices cor-
responding to the remaining N – 2 states (except the ith
and jth states). In other words we perform all possible
interchanges of the remaining N – 2 electrons over the

ψ〈 |exp iq rb⋅( ) ψ| 〉 1
N
---- Ji q( ),

i 1=

N

∑=

Ji q( ) Jii≡ ψ〈 |exp iq rb⋅( ) ψ| 〉=

=  exp iq rb⋅( ) ψi r( ) 2 V .d∫
Ji*

ψ〈 |exp iq rb⋅( ) ψ| 〉
b 1=

N

∑ Ji q( ).
i 1=

N

∑=

ψ〈 |exp iq rc rb–( )⋅( ) ψ| 〉 1
N!
------ exp iq rc rb–( )⋅( )∫=

× Ps
t( ) ψt1

r1( ) 2… ψti
rc( ) 2… ψt j

rb( ) 2

s 1=

N!

∑

… ψtN
rN( ) 2dτ 1

N!
------ exp iq rc rb–( )⋅( )∫+

× Ps
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* rc( )ψt j
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s 1=
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… ψti
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rN( ) 2 1–( )3s 1+ dτ .
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SCATTERING OF CHARGED PARTICLES BY ATOMS 685
remaining N – 2 states. The number of arrangements
without repetition is (N – 2)!. Ultimately, we find

(16)

where

(17)

The wave functions ψi(r) and ψj(r) from Eq. (17)
are either symmetric or antisymmetric with respect to
inversion of the vector r. If the states i and j have the
same symmetry under inversion of the vector r, then it
follows from Eq. (17) that Jij(q) = Jij(–q). However, if
the states i and j have the opposite symmetry, then
Jij(q) = –Jij(–q). Consequently, in any case, using Eq. (17)
we have

(18)

The right-hand side of Eq. (16) once again is inde-
pendent of the indices b and c, and consequently we
find, taking account of Eqs. (13) and (17), that

(19)

Here we used the equality

We now substitute the relations (14) and (19) into
Eq. (8):

(20)

No simplifying assumptions were made in deriving
the expression (20). However, it is obvious that the

ψ〈 |exp iq rc rb–( )⋅( ) ψ| 〉 1
N N 1–( )
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+ JiJ j Jij
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i j, 1=
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∑
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functions Jij appearing in it are simpler than the matrix
elements summed in Eq. (8).

The expression (20) can be simplified by using the
relation

(21)

which can be easily obtained noting that, on the one
hand,

(22)

while on the other hand

(23)

Adding Eqs. (22) and (23) we obtain the expression (21),
substituting which into Eq. (20) we find

(24)

(25)

We shall now find the matrix elements Jij . The wave
functions from Eq. (17) have the form [4, 5] ψi(r) =
Rnl(r)Ylm(θ, ϕ)χ(σ), where Rnl(r) is a radial wave func-
tion; Ylm(θ, ϕ) = Θlm(θ)Φm(ϕ) is a spherical function;
Φm(ϕ) = (2π)–1/2eimϕ ; and, χ(σ) is a spin function. The
presence of spin functions in the expression for Jij  leads
to the appearance of the Kronecker delta function δσσ'.

The spherical coordinates r, θ, and ϕ of the elec-
trons in the target atom are defined using the right-hand
vector triplet (x, y, z) centered on the nucleus of the
atom. The z-axis is conventionally chosen as the polar
axis and is the axis of symmetry of the single-electron

JiJ j

i j, 1=
i j≠( )

N

∑ 2 Ji J j

j i 1+=

N

∑
i 1=

N 1–

∑=

=  Ji

i 1=

N

∑ 
 
 

2

Ji
2,

i 1=

N

∑–

Ji J j

j i 1+=

N

∑
i 1=

N 1–

∑ Ji J j Ji–
j i=

N

∑ 
 
 

i 1=

N 1–

∑=

=  Ji J j

j i=

N

∑
i 1=

N 1–

∑ Ji
2

i 1=

N

∑–

=  Ji J j

j i=

N

∑
i 1=

N

∑ Ji
2 ,

i 1=

N

∑–

Ji J j

j i 1+=

N

∑
i 1=

N 1–

∑ Ji J j

j 1=

i 1–

∑
i 2=

N

∑=

=  Ji J j Ji–
j 1=

i

∑ 
 
 

i 2=

N

∑ Ji J j

j 1=

i

∑
i 1=

N

∑ Ji
2 .

i 1=

N

∑–=

M q( ) Z2 N 2ZD– D2 G– Jij
2,

i j, 1=
i j≠( )

N

∑–+ +=

D Ji, G
i 1=

N

∑ Ji
2 .

i 1=

N

∑= =
SICS      Vol. 91      No. 4      2000



686 RADCHENKO
orbitals of the target atom. In the same spherical coor-
dinate system the direction of the wave vector q is
given by the polar angle α and the azimuthal angle β.
Then the scalar product in the argument of the exponen-
tial in Eq. (17) will be

(q · r) = qr[cosθcosα + sinθsinα cos(ϕ – β)]. (26)

The relative spatial orientation of the vectors q and z
can be arbitrary, so that the differential scattering cross
sections (3) and hence the matrix elements M(q) must
be averaged over the directions q relative to the z axis.
The probability of finding the vector q inside the solid
angle dΩq = sinα dα dβ is dΩq/4π. The problem of aver-
aging M(q) must be simplified. To this end, we shall
use the approximate statistical method, according to
which the average value of M(q) is taken to be the
value obtained by averaging the matrix elements Jij

and substituting them into the formula (24) in order to
calculate M(q).

The calculation and averaging of the matrix ele-
ments Jij can be performed analytically. The integration
can be done efficiently with respect to the variables in
the following order: β, ϕ, α, θ, and r. We shall continue
to use the previous notation for the average matrix ele-
ment Jij . Omitting the laborious but essentially simple
calculations, using tabulated integrals, we present for Jij

an expression found after integrating over the angular
variables:

(27)

We note that in the integration the Kronecker symbols
δmm' and δll ' with respect to the magnetic and orbital
quantum numbers appear, and the matrix elements Jij

themselves do not depend on m, which was used in
writing down the formula (27). The single-electron
wave functions Rnl and Rn'l ', appearing in the Slater
determinant and the expression (27), can be written in
the form [5]

(28)

Substituting the functions Rnl and Rn'l in the form (28)
into the integral (27), performing the elementary integra-
tion, and using Newton’s binomial formula, we obtain
the final relation for the average matrix element Jij:

(29)

Jij
1
q
--- RnlRn'l gr( )rsin r.d

0

∞
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Rnl acr
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exp ζ cr–( ),
c
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Rn'l ' ad' r
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exp ζd' r–( ).
d
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Jij
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ζ cd ζ cd 1 xcd+( )[ ]
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---------------------------------------------- Cncd

2s 1+ xcd–( )s,
s 0=

S

∑
c d,
∑=
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where   

and  are the binomial coefficients, and the upper
limit of the summation is

(30)

The radius r in the formulas (28) is usually measured in
atomic units, as a result of which the factor a0 appears
in the expression for xcd from Eq. (29).

3. CALCULATION OF THE CROSS SECTIONS. 
ANALYSIS OF THE RESULTS

We now turn to the calculation of the sums over i
and j in Eq. (24) for M(q), using the average matrix ele-
ments Jij . It is convenient to switch from summation
over the state numbers i and j to summation over the
corresponding quantum numbers n, l, m, and σ, and to
introduce the occupation function for the state |nlmσ〉:

(31)

Let ne be the principal quantum number of the outer
shell of the particle B, i.e., the maximum value of n
from the set of occupied states. Then we obtain for the
sum D from Eqs. (24) and (25) the expression (in what
follows, Ji = Jnl)

(32)

where we took account of the fact that the matrix ele-
ments Jij do not depend on the quantum number m and
the value of the spin σ, so that here and below the numbers
m and σ are dropped from the indices of J. We find a sim-
ilar relation for the sum G from Eqs. (24) and (25).

We represent the last sum in the equality (24), using
the property (18) and the presence of the Kronecker
symbol δll' in the formula for the average matrix ele-
ments Jij = Jnl, n‘l, in the form

(33)

where

(34)

The modulus symbol for the matrix element J in
Eq. (34) is omitted since the matrix elements (29) are real.
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2
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=
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0, if the state is unoccupied.
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SCATTERING OF CHARGED PARTICLES BY ATOMS 687
In the present work the total cross sections σΣ =
 +  and the characteristic scattering angles θc of

H– ions with energy E = 0.1–100 MeV scattered by
atoms with Z = 2–54 were calculated, on the basis of the

theory described above, for the process ( 0) + ( 1) in
which one and two electrons are lost (in what follows,
the cross sections σΣ and the angles θc calculated using
the closed Born approximation will not be given any
distinguishing indices). The characteristic scattering
angle θc of the particles is the value of the angle θ for
which the function sinθdσ(θ)/dΩ , is maximum, where
θ is the scattering angle in the laboratory coordinate
system. The equation (3), summed over all possible
final states αf ≠ αi of the incident particle and written in
the laboratory coordinate system, was used to calculate
σΣ and θc. After summing over αf the squared modulus
of the form factor of the incident particle A in Eq. (3) is
replaced by the incoherent scattering function [1, 2],
which is determined by the wave function of the ground
state of the particle A. In the present work, just as in [3],
the ground state of the H– ions was described by the
Chandrasekar function.

The matrix elements (4) from Eq. (3) were deter-
mined according to Eq. (24), which, we recall, is exact
and in which the expressions (32)–(34) were used to
find the corresponding terms. Finally, the functions Jij

were calculated from Eqs. (32) and (34) and from the
analogous formula for the sum G (see Eq. (24)) using
the relation (29). We note that as q  0 the matrix ele-
ments Jii  1, and Jij  0; therefore, for the func-
tions D, G, and V for target atoms with Z in the same
limit q  0 we obtain D  Z, G  Z, and V  0
(see Eqs. (25) and (33)). A check of these limits serves
as a criterion for the correctness of the computational
algorithm and the wave-function parameters intro-
duced.

In addition, in the present work similar calculations

of the cross sections  and angles  were performed
for the same ranges of the energies E and numbers Z in
the dipole-moment approximation for describing the
target atom (the indicator cross sections and angles are
labeled with an additional index d). It is assumed in the
dipole-moment approximation that during an ion-atom
collision the atom can be treated as an electric dipole
with an effective dipole moment d. The theory for the
dipole-moment approximation is described in detail in
[6, 7], so that only the results of the corresponding cal-
culations will be presented here.

In both computational models the single-electron
states of the target atom were described by the Rutaan–
Hartree–Fock wave functions [5].

The cross sections and characteristic scattering
angles for 10 MeV H– ions as functions of Z, obtained
on the basis of both theoretical approaches, are pre-
sented in the table and in Figs. 1 and 2. The value E =
10 MeV was chosen because, in the first place, the con-

σ
10

σ
11

1 1

σΣ
d θc

d
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Characteristic angles in scattering cross sections for the pro-

cess  in which 10 MeV H– ions lose electrons on
interacting with atomic targets with atomic numbers Z = 2–54
(θc and σΣ were calculated using the theory presented in the

present paper, and the cross section  was calculated in the
dipole-moment approximation [6, 7])

Z Target 
atom

θc, 10–6 
rad

σΣ, 10–16 
cm2

, 

10–16 cm2

2 He 10.2 0.0546 0.0500
3 Li 8.12 0.199 0.464
4 Be 9.81 0.279 0.426
5 B 10.8 0.334 0.384
6 C 11.6 0.363 0.328
7 N 12.2 0.380 0.313
8 O 12.5 0.400 0.322
9 F 12.8 0.411 0.320

10 Ne 13.0 0.418 0.312
11 Na 9.28 0.604 0.684
12 Mg 11.0 0.746 0.757
13 Al 12.1 0.902 0.948
14 Si 14.0 1.01 0.887
15 P 16.6 1.10 0.888
16 S 19.0 1.19 0.916
17 Cl 22.2 1.25 0.884
18 Ar 25.1 1.31 0.867
19 K 11.4 1.60 1.41
20 Ca 12.8 1.85 1.55
21 Sc 13.8 1.92 1.39
22 Ti 14.5 1.87 1.34
23 V 15.3 2.01 1.30
24 Cr 18.4 1.89 1.26
25 Mn 16.7 2.05 1.25
26 Fe 17.4 2.09 1.23
27 Co 20.8 1.99 1.21
28 Ni 19.1 2.13 1.19
29 Cu 22.5 2.03 1.18
30 Zn 20.8 2.16 1.03
31 Ga 18.6 2.34 1.45
32 Ge 20.7 2.49 1.50
33 As 23.0 2.62 1.50
34 Se 24.6 2.75 1.52
35 Br 26.3 2.88 1.52
36 Kr 28.1 2.99 1.50
37 Rb 14.7 3.37 2.30
38 Sr 14.9 3.72 2.56
39 Y 16.4 3.91 2.26
40 Zr 17.9 4.04 1.97
41 Nb 22.8 4.01 1.86
42 Mo 24.6 4.10 2.05
43 Tc 21.9 4.36 2.03
44 Ru 27.0 4.29 2.00
45 Rh 28.2 4.37 1.97
46 Pd 33.9 4.28 1.95
47 Ag 30.4 4.50 1.91
48 Cd 27.6 4.72 2.07
49 In 27.8 4.53 –
50 Sn 24.5 5.24 2.35
51 Sb 25.4 5.46 2.38
52 Te 26.0 5.69 2.42
53 I 27.0 5.90 2.43
54 Xe 28.2 6.09 2.43

10( ) 11( )+

σΣ
d

σΣ
d
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Fig. 1. Cross section for the loss of electrons by H– ions with
energy E = 10 MeV interacting with atoms with atomic
numbers Z = 2–54: (1) calculation using the theory devel-
oped in the present paper; (2) calculation in the dipole-moment
approximation [6, 7]; (3) calculation using Eq. (54); (m) exper-
imental data for E = 10.4 MeV [8] (the result for a potassium
target is taken from [6] for E = 5.14 MeV and recalculated
for energy E = 10 MeV assuming that the cross section for
K and neighboring Ar targets have the same energy depen-
dence).

Fig. 2. Characteristic scattering angle for hydrogen atoms in
the process where H– ions with energy E = 10 MeV lose
electrons versus the atomic number Z of the target: (1) com-
putational results obtained using the theory developed in the
present paper; (2) calculation in the dipole-moment approx-
imation [6, 7]; (j) calculation in the three-particle Born
approximation for the angle θ1/2 [9]; (m) experimental data
for θ1/2 from [10].

dition v > 2Zv0 for the applicability of the Born
approximation for target atoms with large Z (here v is
the ion velocity, v0 = 2.19 × 108 cm/s, i.e., E must be
increased; see [11, 12]) must be satisfied better; in the
second place, the correction factors for calculating the
cross sections in the dipole-moment approximation
JOURNAL OF EXPERIMENTAL
play a negligible role for this value of the energy [7];
and, in the third place, for this value of the energy
experimental data are available for gas targets.

Both theoretical models show that for a fixed value
of E the cross section σΣ(Z) increases abruptly for
atoms neighboring inert gases in the first and second
groups of the periodic system. For each such transition
the cross section increases, to a first approximation, by
the same amount, so that the relative growth of the
cross section is greatest for the transition from He to Li.
This result is confirmed by the experimental investiga-
tions performed in [13] for E = 30–200 keV.

The values found in the dipole-moment approxima-
tion (Fig. 1) as well as in the free-collisions approxima-
tion [14–16] on the whole agree better with existing
experimental data for inert-gas targets than the cross
sections calculated using the theory presented in this
paper. However, the closed Born approximation is a
systematic theory, whose approximate character is due
only to the natural limitations on the velocity of the
incident particle and the use of the sum rules over the
final states of the colliding particles. The final construc-
tion of the closed Born approximation, essentially asso-
ciated with obtaining the exact algebraic expression for
the average matrix element M(q), will make it possible
to determine the accuracy and range of applicability of
this approximation. For He, Li, and Be atoms in the
ground state and containing electrons only in spheri-
cally symmetric s orbitals, the matrix elements (4) do
not depend on the relative orientation of the vectors q
and z, so that for these atoms the average matrix ele-
ments M(q) and the corresponding scattering cross sec-
tions are exact in the closed Born approximation.

The following formula is proposed in [17] for
describing the dependences (Z, E):

(35)

where Ni is the number of equivalent electrons in the

incident ion; α(Z), γ ≡ 1 are parameters; ui =  is
the average orbital velocity of the removed electron for

the incident ion; u(Z) =  is the average orbital
velocity of the outer electron for an atom in a medium
with Z; I0 = 13.6 eV; Ii is the binding energy of the elec-
tron in the ion shell; I(Z) is the ionization potential of
an atom in the medium; all velocities in Eq. (35) are in
atomic units v0. Figure 1 displays the computational
results obtained using Eq. (35) for Ni = 1, Ii = 0.754 eV,
and α(Z) = 0.75 (see [17]). The cross sections (35) with
E = 10 MeV are 2–4 times greater than the experimen-
tal values for inert-gas targets. A general comparison of
the dependence (35) with the measurement results (see
below) leads to the conclusion that the exponent γ is a
function of Z and E.

σ
10

σ
10

Niπa0
2 Zα Z( )

v γuiu Z( )
----------------------,=

Ii/I0

I Z( )/I0
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SCATTERING OF CHARGED PARTICLES BY ATOMS 689
As one can see from Fig. 2, the behavior of the func-
tion θc(Z, E = const) with increasing Z is determined by
the sequence in which the electronic shells of the target
atom are filled. However, according to the physical
model which is the basis of the dipole-moment approx-

imation, the angle  does not depend on the type of
target. Besides θc, the angles θ1/2, corresponding to the
half-width of the differential scattering cross section of
the particles at half-height were calculated using the
closed Born approximation. The calculations showed that
the theoretical dependence of the angles θ1/2 on the energy
of the H– ions and the atomic number Z of the target
does not agree with the experimental facts. The impor-
tance of this situation is indicated in [2]. The point is that
the closed Born approximation is based on the use of
the sum rules over the final states of the colliding parti-
cles, and as a result the final states which do not satisfy
the laws of conservation of energy and momentum are
automatically included in the analysis. The error arising
in the calculation of the differential scattering cross
sections as a result of the use of the sum rules will be
all the larger the smaller the average momentum trans-
ferred in a collision, i.e., when θ  0. However, the
value of dσ(θ = 0)/dΩ is used to determine the angle
θ1/2, which is why the methodological error in calculat-
ing θ1/2 is higher than for θc. For these reasons the com-
putational results for θ1/2 are not presented below.

The results of our calculations of the characteristic
scattering angles are compared in Fig. 2 with the exper-
imental values from [10] for the angles θ1/2, corre-
sponding to the half-width at half-height of the spatial-
angular distribution of hydrogen atoms, obtained in the

( 0) process of neutralization of H– ions in a CO2 tar-
get. It should be noted that in [10] the measurements of
θ1/2 were performed for a ribbon beam of particles. The
experimental values of θ1/2 do not depend, within the
limits of the measurement error, on the number Z of the
target atom ([10]; see also [9, 18]) and fall substantially
below the theoretical values of θc . This latter circum-
stance is explained primarily by the fact that the closed
Born approximation and the dipole-moment approxi-
mation are two-particle approximations, i.e., the angle θ
gives in these models the direction of motion of the
center of mass of the particles formed in the process
where the H– ion loses one or two electrons. However,
experimentally, the distribution of H0 ions is measured

for the process ( 0). Analysis of the process ( 0) in
the three-particle Born approximation [9] shows that
the form of the differential scattering cross section of
hydrogen atoms is essentially independent of the target
choice, and the computed value of the angle θ1/2 ∝ Ε−1/2

and is approximately 1.5 times lower than the experi-
mental data for a ribbon beam of particles (Fig. 2).

The energy dependences of the cross sections σΣ
and the characteristic angles θc , calculated for He and
Xe targets, are presented in Figs. 3 and 4. For target

θc
d

1

1 1
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
atoms with arbitrary Z the cross sections behave
according to a law close to σΣ ∝ Ε−1, and the angles
behave as θc ∝ Ε−1/2 (with the exception of a helium tar-
get with E < 1 MeV; see Fig. 4). The behavior θc ∝ Ε−1/2 is

10–1 10010–3

10–2

10–1

100

101

102

103

101 102

σΣ, 10–16 cm2

1

E, meV

2

3

4

1

2

3

10–1 100 101 102100

101

102

103

θc, 10–6 rad

E, meV

Fig. 3. Cross sections for loss of electrons by H– ions versus
the energy E for targets consisting of He and Xe atoms:
(1) and (2) computational results obtained using the theory
in the present paper for He and Xe atoms, respectively;
(3) and (4) calculations in the dipole-moment approxima-
tion for He and Xe atoms, respectively; (m) experimental
data for He from [8, 13, 19]; (j) experimental data for Xe
from [8, 13].

Fig. 4. Energy dependences of the characteristic scattering
angles of hydrogen particles in a process in which H– ions
lose electrons for a target consisting of He and Xe atoms:
(1) and (2) computational results obtained using the theory
of the present paper for He and Xe atoms, respectively;
(3) calculation in the dipole-moment approximation for a
He target [6, 7]; (d) experimental data for the angle θ1/2 cor-
responding to the half-width at half height of the spatial-
angular distribution of hydrogen atoms, appearing in the
scattering of H– ions scattered by a CO2 target [10].
SICS      Vol. 91      No. 4      2000
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identical to the experimental behavior θ1/2 ∝ Ε−1/2 [10, 18].
The cross sections σΣ and the angles θc found in the
present work for a He target are essentially identical to
the analogous calculations performed in [3]. For light
target atoms (He, Li) the dependence σΣ(E) agrees well
with the experimental data in the entire range of appli-
cability of the closed Born approximation with respect
to E. As Z increases, the approximate experimental

dependence  ∝ Ε–n(Z) becomes increasingly flatter,
i.e., the exponent n(Z) systematically decreases (from
n ≈ 1 for He to n ≈ 0.45 for Xe). The discrepancy
between the theoretical and experimental values for the
cross sections increases with increasing Z and decreas-
ing E. This is explained by the fact that the Born
approximation neglects the motion of the electrons in
the colliding particles and the dynamics of the ion-atom
collisions.

4. CONCLUSIONS

(1) In the variant of the closed Born approximation
developed above, the matrix element (4), responsible
for the description of target atom, reduces, as a result of
identity transformations, to an expression containing
the matrix elements Jij with respect to single-electron
states of the atom (Eqs. (20) and (24)), and averaging of
the matrix element M(q) over the directions of the vec-
tor q relative to the z-axis of the atom is performed
approximately, specifically, by substituting into Eq. (24)
the average (with respect to the relative orientation of the
vectors q and z) matrix elements Ji and Jij (Eq. (29)).
The single-electron Rutaan–Hartree–Fock single-electron
wave functions were used to average the matrix elements
Jij. Ultimately, the relation for the differential scattering
cross section was reduced to an algebraic expression,
which makes it possible to perform calculations of the
scattering cross sections of particles scattered by target
atoms with arbitrary atomic number Z. For He, Li, and
Be atoms, which in the ground state contain electrons
in spherically symmetric s orbitals, the computational
results for the matrix elements M(q) are exact within
the framework of the closed Born approximation.

(2) Systematic calculations were performed of the
cross sections σΣ and characteristic angles θc for the
process where H– ions with energies E = 0.1–100 MeV
lose electrons in collisions with atoms of a target with
atomic numbers Z = 2–54. According to the calcula-
tions, when inert gas atom targets are replaced by tar-
gets with atoms of the neighboring alkali metal the
cross section σΣ increases abruptly and the angle θc

decreases; a beam of hydrogen atoms obtained by neu-
tralizing H– ions in a lithium vapor target will possess
the best angular characteristics (if scattering of H– ions

σΣ
exp
JOURNAL OF EXPERIMENTAL 
and H0 atoms without a change in the charge is
neglected [3, 10]).
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Abstract—N three-level atoms interact simultaneously with classical and quantum fields, which are in qua-
siresonance with various atomic transitions. The classical and quantum fields exchange photons by means of
the atoms. It is shown that under certain conditions this process is collective. The number of photons in a quan-
tized mode oscillates, and the amplitude of these oscillations is proportional to N2. The frequency of the oscil-
lations is determined by the frequencies of the classical and external fields. © 2000 MAIK “Nauka/Interperi-
odica”.
1. INTRODUCTION

The dynamics of two- and three-level atoms under
the action of quasiresonance classical fields plays an
important role in many problems of quantum optics and
laser spectroscopy and has now been well studied (see,
for example, [1, 2]). At the same time, the dynamics of
quantum systems consisting of atoms interacting
simultaneously with classical and quantized fields has
been investigated much less well. In [3–9] various
physical aspects of the dynamics of a two-level atom
interacting simultaneously with classical and quantized
fields have been discussed in [3–9]. In the present paper
we examine the situation where a collection of three-
level atoms interacts with external fields.

Let a three-level atom interact simultaneously with
the classical fields I2 and I3 and a quantized mode Iq,
which are quasiresonant with respect to various atomic
transitions (see the level and field scheme in Fig. 1). It
has been shown [6–8] that under certain conditions the
exchange of photons between the classical and quan-
tized fields occurs in such physical systems. An atom
can viewed as a intermediary in such an exchange pro-
cess. In the present paper we shall discuss the situation
where N > 1 three-level atoms interact with classical
and quantized fields. Our objective is to show that the
exchange of photons becomes a collective process. A
similar problem for a collection of two-level atoms was
discussed in [10]. We note that although the number of
atoms is assumed to be quite large, at the same time it
is assumed to be much less than the Avogadro’s num-
ber. Then the back effect of the atoms on the amplitude
of the classical fields can be neglected.

We assume that all atoms are identical and we do not
discuss spatial effects. This means that the atoms are
localized in a region whose dimensions in the corre-
sponding directions are much smaller than the wave-
lengths of the fields under study. The latter condition
1063-7761/00/9104- $20.00 © 0691
can be achieved by various methods. For example, the
atoms can be placed on a plane perpendicular to the
direction of propagation of the fields (see Fig. 2).

We shall begin with a discussion of the situation
where the electromagnetic fields interact with a single
atom. The interaction of the external fields with the
atom can be described by means of the corresponding
Rabi parameters, which depend on the product of the
field amplitudes by the value of the corresponding
matrix element. Ordinarily, the Rabi parameter of a
classical field is much greater than that for a quantized
field. We shall discuss our problem precisely under this
assumption. The dynamics of our quantum system can
be “split” into two parts. On the one hand, the interac-
tion with the classical fields determines the correspond-
ing “fast” oscillations in the behavior of the quantum
system. On the other hand, a “slow” evolution of the
quantum system, determined by the interaction of the
atom with the quantized mode, is present against this
background. Using an appropriate averaging procedure
(the corresponding mathematical details were dis-
cussed in [9]), we shall derive a Hamiltonian that con-

ω

Ω2

Ω3

χ3

χ2

χ1

Fig. 1. Scheme of levels and fields (see explanation in the
text).
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692

        

ISMAILOV, KAZAKOV

                                                                                         
trols the “slow” dynamics of our system. Using the
Bargmann–Fock formalism we shall obtain a solution
for the corresponding initial problem. Then, we shall
transfer these results to the case N > 1. Finally, we shall
calculate the number of photons in the quantized mode
n(t) and we shall show that it oscillates with an ampli-
tude proportional to N2. This fact shows that the inter-
action of atoms with the quantized mode in our situa-
tion is a collective process. Of course, the results
obtained are valid only under the assumptions made,
including taking account of the above-indicated rela-
tion between the Rabi parameters of the classical and
quantized fields.

We shall briefly discuss the physical realizability of
the scheme shown in Fig. 1. It is well known that for
free atoms interacting with external fields, in the dipole
approximation, the three transitions described in this
scheme cannot simultaneously be optically open. How-
ever, it can be assumed that one of the atomic transi-
tions interacts with an external classical field in the
quadrupole approximation. A different variant of this
scheme of levels and fields obtains in three-level sys-
tems based on (asymmetric) quantum wells; here there
are no symmetric restrictions and all three atomic tran-
sitions can be optically active in the dipole approxima-
tion. We shall not distinguish these two possibilities,
we shall discuss them on the basis of a general
approach.

2. ONE ATOM

The dynamics of a three-level atom interacting with
classical and quantum fields in the manner shown in the
scheme in Fig. 1 can be described with the Hamiltonian

(1)

H ωa+a diag κ3 κ2 κ1, ,{ } ζ a+J– aJ++( )+ +=

+
0 0 µ3exp iΩ3t–( )
0 0 µ2exp iΩ2t–( )

µ3exp iΩ3t–( ) µ2exp iΩ2t–( ) 0 
 
 
 
 

1

2 4 43
2

Fig. 2. Physical scheme: (1) source of external radiation,
(2) resonator mirrors; (3) plane with pinned atoms; (4) opti-
cal components. 
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(we employ the rotating-wave approximation which is
standard in quantum optics). Here

κm, m = 1, 2, 3 are the energies of the atomic levels, Ω3,
Ω2, and ω are, respectively, the frequencies of the clas-
sical monochromatic fields and the quantized mode,
and the parameters µ3, µ2, and ζ characterize the inter-
action of an atom with these fields. The parameters µ3
and µ2 are the Rabi parameters of the classical fields.
The condition κ1 = 0 can be attained by means of a shift
along the energy scale. The Hamiltonian (1) operates in
the space F ⊗  C3, where F is a Fock space and C is the
complex plane. We are interested in the solution of the
corresponding Schrödinger equation

Let J0 = diag{1, –1, 0}. The substitution

(2)

singles out the optical frequency, and we obtain

(3)

Here and below

ν3 = ω/2 – Ω3, ν2 = –ω/2 – Ω2,

∆3 = κ3 – Ω3, ∆2 = κ2 – Ω2.

We shall discuss first the solution of the following
initial problem:

(4)

J–

0 0 0

1 0 0

0 0 0 
 
 
 
 

, J+ J–
T ,= =

i
∂Ψ t( )

∂t
-------------- HΨ t( ).=

Ψ t( ) exp iωt a+a
J0

2
-----+ 

 – Φ t( )=

i
∂Φ t( )

∂t
-------------- ζ a+J– aJ++( )

 
 
 
 
 

=

+
∆3 ν3– 0 µ3exp iν3t[ ]

0 ∆2 ν2– µ2exp iν2t[ ]
µ3exp i– ν3t[ ] µ2exp i– ν2t[ ] 0 

 
 
 
 

Φ t( ).

i
∂Ξ t( )

∂t
--------------

=  
∆3 ν3– 0 µ3exp iν3t[ ]

0 ∆2 ν2– µ2exp iν2t[ ]
µ3exp i– ν3t[ ] µ2exp i– ν2t[ ] 0 

 
 
 
 

Ξ t( ),

Ξ 0( ) E,=
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where E is the unit matrix. The matrix Ξ(t) describes
the dynamics of a three-level atom interacting only
with classical fields. Making the substitution

we find

The matrix Λ has three real eigenvalues λ1, λ2, and λ3
(we are not interested in their precise values). Gener-
ally speaking, they are different and are of the same
order of magnitude as µ3 and µ2 (or, in different terms,
R2 and R3). They are much greater than Rq, the effective
Rabi parameter of the quantized mode. We now intro-
duce the corresponding eigenvectors

em = (em3, em2, em1)T, m = 1, 2, 3,

normalized to one, so that

It follows from the form of the matrix Λ at these vectors
are orthogonal and form a basis in C3. It is easy to show
that in the general situation (when µ3µ2 ≠ 0)

em2em3 ≠ 0, em1em2em3 ≠ 0.

It follows from our arguments that the solution of
the initial problem (4) is described by the relation

(5)

where

is a unitary matrix, U–1 = UT (here we use the normal-
ization of the vectors em).

We shall decouple the dynamics of the quantum sys-
tem by substituting into Eq. (3)

(6)

Then we obtain for the function ϕ(t)

(7)

The left-hand side of Eq. (7) is proportional to Rq. This
means that this equation describes the “slow” evolution
of our system. The relation (6) describes the wave func-
tion in the form of a product of “fast” and “slow” cofac-
tors.

Ξ̃ t( ) exp diag iν3– iν2– 0, ,{ } t[ ]Ξ t( )=

i
∂Ξ̃ t( )

∂t
-------------- ΛΞ̃ t( ), Λ

∆3 0 µ3

0 ∆2 µ2

µ3 µ2 0 
 
 
 
 

.= =

em3
2 em2

2 em1
2+ + 1.=

Ξ t( ) exp diag ν3 ν2 0, ,{ } it[ ]U=

× diag– λ3 λ2 λ1, ,{ } it[ ]U 1– ,exp

U
e33 e23 e13

e32 e22 e12

e31 e21 e11 
 
 
 
 

=

Φ t( ) Ξ t( )ϕ t( ).=

i
∂ϕ t( )

∂t
------------- ζΞ 1– t( ) a+J– aJ++( )Ξ t( )ϕ t( ).=
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To describe the dynamics of a quantum system in
the leading asymptotic order (relative to the small
parameter Rq/(R2, R3)) we must average Eq. (7). Let

ν = ν3 – ν2 = ω + Ω2 – Ω3.

Then the operators Ξ–1(t)(a+J– + aJ+)Ξ(t) (we omit their
exact expressions which are complicated) have har-
monics with frequencies ±[ν ± (λm – λg)], where j, m =
1, 2, 3. Eliminating the “fast” harmonics (see the details
in [9]), we obtain the average Hamiltonian

which controls the “slow” evolution of the quantum
system. There are two possible cases.

(1) |ν ± (λm – λj) | ! µ2, 3 for some m ≠ j. In this case
we arrive (to within simple transformations) at the stan-
dard Janes–Cummings model.

(2) In what follows we shall discuss a different situ-
ation, where

|ν | ! µ2, 3. (8)

Now we have

where

We are interested in the solution of the correspond-
ing Schrödinger equation

The numbers sm = em2em3 are the eigenvalues of the
matrix S. We introduce the corresponding eigenvectors
em, m = 1, 2, 3. These vectors form a basis in C3. Then

and the functions ηm(t) assume values in a Fock space.
They are solutions of the equation

(9)

Such equations have been discussed in [8, 9]. Their
solutions were constructed using the Bargmann–Fock
formalism. The wave function is represented as an ana-
lytical function f(z) and a  d/dz, a+  z (see
details, e.g., in [11]). Let

ϕ(0, z) = (ϕ3(0, z), ϕ2(0, z), ϕ1(0, z))T

be the initial state, where the functions ϕm(0, z), m = 1,
2, 3, are the components of the vector ϕ(0, z). Then

Han ζ Ξ 1– t( ) a+J– aJ++( )Ξ t( )〈 〉 ,=

Hav ζ aexp iνt–( ) a+exp iνt( )+[ ]S,=

S Udiag e33e32 e23e22 e13e12, ,{ } U 1– , rankS 3.= =

i
∂ϕ t( )

∂t
------------- Havϕ t( ).=

ϕ t( ) ηm t( )em,
m 1=

3

∑=

i
∂ηm t( )

∂t
---------------- ζsm aexp iνt–( ) a+exp iνt( )+[ ]ηm t( ).=

ϕ 0 z,( ) Qm z( )em,
m 1=

3

∑=
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where

(Q3, Q2, Q1) = (ϕ3(0, z), ϕ2(0, z), ϕ1(0, z))U,

and the solution of the corresponding initial problem
for Eq. (9) is described by the relation

We note that the operators Ξ(t) (see the relation (5))
and exp[–iωt(a+a + J0/2)] are unitary. Using the rela-
tions (2) and (6) we arrive at the conclusion that the
wave functions Ψ(t) and ϕ(t) are related by a unitary
transformation. Next, the Fock operators a+ and a com-
mute with the matrix operators Ξ(t) and exp[–iωtJ0/2].
Therefore if the operator G is a polynomial in a+a and
has no matrix structure, then

For example, let

ϕ3(0, z) = ϕ2(0, z) = 0, ϕ1(0, z) = ψ(z),

so that only the level one is occupied initially. Then

Q3(z) = ψ(z)sinχsinτ, Q2(z) = ψ(z)cosχsinτ,

Q1(z) = ψ(z)cosτ,

and the parameters τ and χ are determined by the rela-
tions

sinχsinτ = e13, cosχsinτ = e12, cosτ = e11.

If

ψ(z) = zm/ ,

ηm t z,( )

=  exp ζsm 1 eiν t–( ) z
ν
---

ζ2sm
2 e iν t– iνt 1–+( )

ν2
------------------------------------------------+

× Qm z
ζsm 1 e iν t––( )

ν
--------------------------------– .

G〈 〉 Ψ t( ) GΨ t( ),〈 〉=

=  dz zexp zz–( )ϕ z t,( )Gϕ z t,( )d∫
=  dz zexp zz–( )ηm z t,( )Gηm z t,( ).d∫

m 1=

3

∑

m!
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i.e., the quantized mode has precisely m photons ini-
tially, we find

(10)

3. N ATOMS
We shall write out the Hamiltonian describing the

interaction of N identical three-level atoms with classi-
cal fields and the quantized mode according to the
scheme shown in Fig. 1. It operates in the space

The space J is formed by the linear combinations of
the elements f | , , …, , …, 〉 , where f ∈  F,
the numbers σk are 1, 2, or 3, and ek are the eigenvec-
tors, introduced above, of the matrix Λ. We interpret σ
as a set of N such numbers and call the vectors eσk

“components” of the wave function. We shall use below
the following convenient notations: the matrix operator
A(k) operates as a matrix operator A on the kth compo-
nent of the wave function:

We note that A(k) and B(m) commute, if m ≠ k. Our
Hamiltonian can be written in the form

The optical frequency can be singled out by the
transformation

(11)

Then

n t( )〈 〉 a+a〈 〉=

=  m ζ24 νt/2sin
2

ν2
----------------------- em1em2em3( ).

m 1=

3

∑+

J F ^
k 1=
N C3( ).⊗=

eσ1
eσ2

eσk
eσN

A k( ) f eσ1
eσ2

… eσk
… eσN

, , , , ,| 〉

=  f eσ1
eσ2

… Aeσk
… eσN

, , , , ,| 〉 .

H ωa+a
κ3 0 0

0 κ2 0

0 0 0 
 
 
 
 

k( )

ζ a+J–
k( ) aJ+

k( )+( )+







k 1=

N

∑+=

+
0 0 µ3exp iΩ3t–( )
0 0 µ2exp iΩ2t–( )

µ3exp iΩ3t( ) µ2exp iΩ2t( ) 0 
 
 
 
 

k( )







.

Ψ t( ) exp iωt– a+a J0
k( )/2

k 1=

N

∑+
 
 
 

Φ t( ).=
i
∂Φ t( )

∂t
-------------- ζ a+J–

k( ) aJ+
k( )+( )

∆3 ν3– 0 µ3exp iν3t[ ]
0 ∆2 ν2– µ2exp iν2t[ ]

µ3exp i– ν3t[ ] µ2exp i– ν2t[ ] 0 
 
 
 
 

k( )

+ Φ t( ).
k 1=

N

∑=
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The substitution

(12)

separates the “fast” and “slow” parts of the wave func-
tion. For the slow part we find

Just as in the case of one atom, the latter operator
possesses harmonics of frequencies ±[ν ± (λm – λj)], m,
j = 1, 2, and 3, and we shall discuss the case |ν | ! µ2, 3.
The averaging procedure (similar to that described
above) can be implemented in each term of this sum
separately, and we obtain

(13)

(14)

An important fact follows from this relation: the aver-
age Hamiltonian (14) is the product of the Fock opera-
tor

and the matrix operator

Therefore our problem splits into a set of one-dimen-
sional problems when the problem was written in the
basis of eigenvectors of this matrix operator. This oper-
ator is a sum of matrix operators, in which only the cor-
responding three-dimensional blocks are nontrivial and
which commute with one another. Switching to the
appropriate basis, we obtain

Substituting the latter relation into Eq. (13), we find

Φ t( ) Ξ k( ) t( )ϕ t( )
k 1=

N

∏=

i
∂ϕ t( )

∂t
------------- ζ Ξ m( ) t( )[ ] 1–

m 1=

N

∏=

× a+J–
k( ) aJ+

k( )+( ) Ξ n( ) t( )ϕ t( )
n 1=

N

∏
k 1=

N

∑

=  ζ Ξ 1– t( ) a+J– aJ++( )Ξ t( )[ ] k( )ϕ t( ).
k 1=

N

∑

i
∂ϕ t( )

∂t
------------- Havϕ t( ),=

Hav ζ aexp i– νt( ) a+exp iνt( )+[ ] S k( ).
k 1=

N

∑=

ζ aexp i– νt( ) a+exp iνt( )+[ ]

S k( ).
k 1=

N

∑

ϕ t( ) σησ t( ) eσ1
eσ2

…eσN
| 〉 .∑=

i
∂ησ t( )

∂t
---------------- ζ σ sσk

k 1=

N

∑ 
 
 

=

× aexp i– νt( ) a+exp iνt( )+[ ]ησ t( ),
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where

We note that

where

The latter equation is the same as Eq. (9) to within a
factor. Thus we can reduce the problem to a problem
which has already been solved. If initially the wave
function

then

We note that this relation includes the dependence on σ
only through |σ|.

For simplicity, here we shall discuss only one spe-
cial case of the initial problem. Let only the level 1 be
initially occupied for each atom, and let the quantized
mode contain precisely m photons. Then

where τ and χ have the same meaning as previously.

We note that the operators

(15)

are unitary, and in accordance with the relations (11)
and (12) the wave functions Ψ(t) and ϕ(t) are related by
unitary operators. Next, the Fock operator a+a com-
mutes with the operators (15). Therefore if the operator

σ sσk

k 1=

N

∑ 
 
 

.=

σ A σ( )s3 B σ( )s2 N A σ( )– B σ( )–[ ]s1,+ +=

A σ( ) δ3 σk,

k 1=

N

∑ 
 
 

, B σ( ) δ2 σk,

k 1=

N

∑ 
 
 

.= =

ϕ 0 z,( ) Qσ z( ) eσ1
eσ2

…eσN
| 〉 ,

σ
∑=

ησ t( ) exp ζ σ 1 eiν t–( )z
ν

---------------------------------- ζ2 σ 2 e iν t– iνt 1–+( )
ν2

---------------------------------------------------+=

× Qσ z
ζ σ 1 e i– ν t–( )

ν
---------------------------------– .

Qσ zm m!( ) 1/2– χsin[ ] A σ( ) χcos[ ] B σ( )=

× τsin[ ] A σ( ) B σ( )+ τcos[ ] N A σ( )– B σ( )– ,

Ξ k( ) t( ) and
k 1=

N

∏

exp iωt a+a J0
k( )/2

k 1=

N

∑+
 
 
 

–
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G is a polynomial in a+a (and does not have a matrix
structure), then

Finally, for such operators G we obtain

Setting G = a+a, we find

(16)

It was noted above that

if µ3µ2 ≠ 0. We omit the complicated explicit expres-
sions for the cofactors 

The relation (16) is the basic result of this work. It
shows that the number of photons in the quantized
mode oscillates, and the amplitude of these oscillations
is proportional to N2, where N is the number of atoms.
This fact demonstrates the collective nature of the inter-
action of atoms with the quantized field. A similar
result is valid for any choice of the initial state of the
atoms (assuming that all atoms are in the same initial
state).

4. CONCLUSIONS

We shall now discuss the results obtained. As shown
in [6–8], when a single atom interacts with classical
fields and a quantized mode simultaneously, photons
can be exchanged between the classical and quantum
modes. In the present paper we studied the interaction
of N three-level atoms with classical fields and a quan-
tized mode. We showed that in this case the exchange

G〈 〉 Ψ t( ) GΨ t( ),〈 〉=

=  dz zd exp zz–( )ϕ z t,( )Gϕ z t,( ).∫

G〈 〉 CN
A CN

B χsin[ ]2A

B 1=

N A–

∑
A 1=

N

∑=

× χcos[ ]2B τsin[ ]2A 2B+ τcos[ ]2N 2A– 2B–

× dz zd exp zz–( )ϕσ z t,( )Gϕσ z t,( )
A σ( ) A B σ( ), B= = .∫

n t( )〈 〉 m ζ24 νt/2( )sin
2

ν2
----------------------------+=

× N N 1–( ) em1( )2em2em3

m 1=

3

∑ 
 
 

2

+ N em1em2em3( )2

m 1=

3

∑ .

em1( )2em2em3

m 1=

3

∑ 
 
 

2

0,≠

em1( )2em2em3

m 1=

3

∑ 
 
 

2

, em1em2em3( )2

m 1=

3

∑ .
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of photons acquires a collective character. Specifically,
the amplitude of the oscillations of the number of pho-
tons in the quantized mode is proportional to N2. The
frequency of the oscillations is

ν = ω + Ω2 – Ω3,

where ω, Ω2, and Ω3 are, respectively, the frequencies
of the quantized mode and the classical fields, and we
assumed that |ν | ! µ2, µ3 (µ2 and µ3 are the Rabi
parameters of the classical fields). We recall that for
“ordinary” superradiation (see [12, 13]) the temporal
dynamics of the photons in the quantized mode
depends on the number of photons N. The phenomenon
described in this paper—collective transfer of photons
from classical modes into a quantized mode and vice
versa—can be understood as induced superradiation.
The calculations leading to the final result (16) demon-
strate the interference nature of this phenomenon.

An atom interacting with quasiresonance classical
fields can be viewed as an atom “dressed with a field.”
Thus we have discussed the interaction of a quantized
mode with a set of such atoms dressed with a field. For
“ordinary” superradiation the initially inverted atoms
are the source of photons in the quantized mode. In our
case the classical fields are such a source. We note that
in experiments realizing ordinary superradiation opti-
cal pumping is often used in order to prepare the initial
states of the atoms, which then generate (in a definite
time interval) a superradiation pulse. The difference of
our scheme is that the transfer of photons into the quan-
tized mode occurs when the atoms interact with classi-
cal fields and under the action of such an interaction.
The classical fields “force” the atoms to transfer pho-
tons into the quantized mode, which is what justifies
the term “induced superradiation” for this phenome-
non. We underscore that our quantum system does not
possess an additional integral of motion (in the case of
ordinary superradiation the number of excitations in the
system is an integral of motion).

In the present paper we assumed that the atoms and
their initial states are identical. It is easy to show that
these assumptions can be relaxed, taking account of the
corresponding corrections. The condition (8) is not lim-
iting from the physical standpoint.

As mentioned above, similar results are also valid
for a collection of two-level atoms [10]. However, the
situation studied in the present paper is more promising
for applications. Indeed, for three-level atoms the fre-
quency of the quantized mode is close (in optical
scales) to the difference or sum of the frequencies of
classical modes and can be quite far from the values of
these frequencies. Consequently, this physical system
must be regarded as a new source of coherent radiation.
There is no need to “prepare” specially an inverted ini-
tial state of the atoms. In this sense, here, there is a par-
allel with the well-known phenomenon of “amplifica-
tion without population inversion” [14].
 AND THEORETICAL PHYSICS      Vol. 91      No. 4      2000
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Abstract—The transmission of two bound particles through a repulsive barrier is studied. A simple mechanism
for the appearance of barrier resonances, which results in anomalous barrier transmittance as compared with
the transmission probability for structureless objects, is demonstrated. It is shown that the probabilities for two
interacting particles to tunnel from a false vacuum can be much higher than previously thought. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Quantum tunneling through a barrier is one of the
most often encountered problems in various fields of
physics. The transmission of a structureless particle
through a barrier is used as a basis for studying the
physical processes of tunneling. However, most appli-
cations involve problems of the transmission of com-
posite objects through a barrier. It is obvious that when
the spatial size of the barrier is much larger than the
characteristic size of the incident complex the transmis-
sion probability of a composite system should be essen-
tially the same as the transmission probability of struc-
tureless particles. The situation changes radically when
the size of the complex is comparable to the spatial
width of the barrier. In this case the barrier transmit-
tance can be high (see, for example, [1] and the litera-
ture cited there). The simplest mechanism arises when
only some particles of a complex interact with the bar-
rier, when the transmission probability depends on a
mass that is smaller than the mass of the complex.

A new mechanism for resonance transmittance of a
square barrier for a pair of particles bound together by
an infinite one-dimensional square potential was
recently discovered [2]. The method of expansion in
terms of the target functions (the eigenstates of the par-
ticle pair) was used but the physical picture of the trans-
mittance and convergence questions were not consid-
ered. In the present paper this effect is investigated for
other types of interactions on the basis of numerical
solutions of the initial two-dimensional Schrödinger
equation.

The physical picture of radical transmittance of a
barrier lies in the possibility of the formation of a bar-
rier resonance, since the potential energy of the system
can possess a local minimum which gives a metastable
state of the complex. This requires at least two particles
to interact with the barrier. The mechanism leading to
the formation of such a resonance state can be very eas-
1063-7761/00/9104- $20.00 © 20698
ily imagined. Let one of the particles pass through the
barrier and let the forces binding the pair together be
sufficient to hold the particles on different sides of the
barrier. Then, such a resonance state will exist as long
as one of the particles has not passed through the bar-
rier. The width of the barrier will determine the lifetime
of such a resonance. As shown below, in this case the
probability of tunneling through the barrier can reach 1.
A simple explanation of this effect is interference sup-
pression of the reflected wave, since the presence of a
barrier resonance can be simply described by an effec-
tive interaction along the variable of the motion of the
center of mass of the pair, the spatial form of the inter-
action being a local minimum at the center of the bar-
rier. Consequently, the suppression of the reflected
wave can be explained by the well-known interference
phenomenon used for antireflection in optics—the path
difference between the wave reflected from the first
peak and the wave reflected from the second peak must
be one-half the wavelength.

In the present paper an identical pair of particles
bound together by an oscillator interaction (referred to
as an oscillator below) and passing through a one-
dimensional repulsive barrier is used to demonstrate
the transmittance effect analytically and numerically.
The choice of an oscillator interaction in the pair is
made, on the one hand, because of the extreme simplic-
ity of the system, making it possible to reduce the three-
dimensional scattering of a three-dimensional pair of
particles by a one-dimensional barrier to scattering by
a one-dimensional oscillator by a one-dimensional bar-
rier. On the other hand this type of interaction is used in
the literature [3] on the probability of induced decay of
a false vacuum in collisions of high-energy particles
(see, e.g., [4, 5]). It was indicated that transitions from
a false vacuum can be explained on the basis of the
quantum-mechanical tunneling of a pair of particles
through a barrier, but a system where only one of
the particles of the oscillator interacted with the barrier
000 MAIK “Nauka/Interperiodica”
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was investigated. Here, however, it will be shown that
when two particles interact with the barrier the same
resonant transmittance effect as described in [2] arises,
and consequently the probability of the passage of a
pair can be much higher than in previously studied sys-
tems.

In the present paper three types of potential barriers
are studied. The first type is a Gaussian barrier with
parameters of the type “narrow” and “high” compared
with the characteristic size and energy of excitation of
the oscillator. This type of interaction is convenient for
explaining the effect on the basis of an adiabatic expan-
sion of a two-dimensional equation. The second type of
potential barrier studied, which has the form of a Gaus-
sian function but with parameters of type “wide” and
“high” in the sense indicated above, was chosen from
[3] in order to observe the possibility for a radical
increase of the probability of induced decay of a false
vacuum. Finally, the third type of potential barrier—a
Coulomb form—was investigated in order to call atten-
tion to the possibility of resonance transmission
through a barrier in problems of fusion of heavy nuclei.

2. EQUATIONS

Let us consider the transmission of a pair of identi-
cal particles, coupled by an oscillator interaction, with
masses m1 = m2 = m and coordinates r1 and r2 through
a potential barrier V0(x1) + V0(x2). The Hamiltonian of
this system (" = 1)

written in the coordinates of the center of mass of the
pair R = (r1 + r2)/2 and the internal variable corre-
sponding to the relative motion r = (r1 – r2), describes
the three-dimensional motion of a three-dimensional
oscillator. Since the potential barrier depends only on
one variable and the oscillator interaction is additive in
the projections r, the wave function factorizes and its
nontrivial part, describing the scattering process,
depends on only two variables. It is convenient to rep-
resent these variables in the form

The Schrödinger equation in these variables has the
form

(1)

where the energy E is given in units of ω/2, and in what
follows the potential barrier

1
4m
-------∆R–

1
m
----∆r–

mω2

4
-----------r2 V0 R r

2
---– 

  V0 R r
2
---+ 

  ,+ + +

x
mω
2

-------- x1 x2–( ), y
mω
2

-------- x1 x2+( ).= =

∂x
2– ∂y

2– x2 V x y–( ) V x y+( ) E–+ + +[ ]Ψ 0,=

V x y±( ) 2
ω
----V0

x y±
2mω

---------------- 
 =
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will be written in a form convenient for our discussions.
The equation (1) must be supplemented with boundary
conditions. Let the scattering process proceed from left
to right and let the initial state of the oscillator corre-
spond to the state n. Then the boundary conditions can
be written in the obvious form

(2)

The wave functions ϕj(x) of the oscillator correspond to
the Schrödinger equation

(3)

with energy εj = 2j + 1 (j = 0, 1, 2, …) and momenta kj =

, and N is the number of the last open channel
(E – εN + 1 < 0). In what follows we shall study an oscil-
lator consisting of bosons whose spectrum is conve-
niently enumerated from 1. Thus, everywhere below,
εj = 4j – 3 (j = 1, 2, …).

We shall determine the transmission probability Wij

and the reflection probability Dij as the ratio of the
transmitted or reflected flux density to the flux density
of the incident particles:

It is obvious that

The problem so posed of determining the transmis-
sion (reflection) probabilities requires solving the two-
dimensional differential equation (1), whose numerical
solutions will be presented below.

However, we shall first demonstrate the physical
reasons for the appearance of resonance transmittance,
which are most clearly seen on the basis of the well-
known adiabatic expansion approach, which has
proven itself well in various applications of the three-
body problem (see, for example, the review in [6]).

We introduce the basis functions Φi, satisfying the
equation

(4)

Ψ exp ikny( )ϕn x( )

– Snjexp i– k jy( )ϕ j x( ), y ∞,–
j N≤
∑

Ψ Rnjexp ik jy( )ϕ j x( ), y +∞,
j N≤
∑

Ψ 0, x ±∞.

∂x
2– x

2 εi–+( )ϕ i 0=

E ε j–

Wij Rij
2k j

ki

----, Dij Sij
2k j

ki

----.= =

Wij Dij+
j N≤
∑ 1.=

∂x
2– x2 V x y–( )+ +[

+ V x y+( ) ei y( )– ]Φi x; y( ) 0,=
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and we use them for the expansion

We substitute this expansion into Eq. (1) and project
onto a basis. We obtain the system of equations

(5)

where the effective interaction in the channel i, Ei = ei +
Pii, corresponds to the diagonal part of the interaction,
and the functions obtained by projection, Qij = 〈Φi,
∂yΦj〉  and Pij = 〈∂yΦi , ∂yΦj〉 , correspond to coupling of
the channels. The angular brackets denote integration
over the entire domain of x. From the definition of these
functions it follows that Qij is antisymmetric and Pii is
positive. As a rule, the coupling of the channels is weak
and a limited number of equations is used to describe
the scattering processes. For the discrete spectrum of
Eq. (4), a good description of scattering is obtained by
using all channels which are open with respect to
energy [6]. In our case the spectrum of Eq. (4) is only
discrete. For large |y | the effective energy Ei  ei, and
Φi(x; y)  ϕi(x), which makes it possible to rewrite
easily the boundary conditions (2) in the channel form.

The Numerov scheme (see, e.g., [7]) with step hx =
10–4 was used to solve Eq. (4) numerically. For large
values of the variable x (xmax = 6) the solution, start-
ing at zero, was matched with the exponential
asymptotic solution of Eq. (3). The quantities Qij and
Pij were constructed numerically. The numerical error
in determining these quantities did not exceed 10–8. The
solution of the system of Eqs. (5) for determining the

Ψ x y,( ) f i y( )Φi x; y( ).
i

∑=

∂y
2– ei E–+( )δij Qij∂y ∂yQij Pij ] f j+ 0,=––[

–2 –1 0
0
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Fig. 1. Effective interaction energies of a bound pair inter-
acting with a barrier for different amplitudes of the pair
potentials V : A = (a) 1, (b) 5, and (c) 10. The curves 1 show
the structureless particle approximation (the potential
2V(y)). The curves 2 show the single-channel adiabatic
approximation (E1(y)). Explanations are given in the text. 
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quantities Sij and Rij was based on constructing the fun-
damental Jost solutions (see, for example, [8]) for the
left and right semiaxes with step hy = 10–4. The asymp-
totic behavior of the solutions was assumed for ymax = 10.
To analyze the discretization error and the error due to
the finiteness of the region considered, the step was
decreased by an order of magnitude and the size ymax
was increased by a factor of 4. The analysis showed
reliability to seven significant figures in all computa-
tional results, which are presented below, obtained on
the basis of the adiabatic approximation.

A tridiagonal scheme for approximating the second
derivatives with constant steps along x and y, hx = 0.025
and hy = 0.005, was used to solve Eq. (1) numerically.
The finite sizes |ymax | = 12 and |xmax | = 7 of the region
of the numerical calculations with the indicated degree
of discretization gave an accuracy of not worse than
three decimals in all computational results, presented
below, based on Eq. (1).

3. RESULTS AND DISCUSSION

To demonstrate resonance transmittance we shall
consider transmission through a potential barrier of the
form

in the adiabatic approach. Here the amplitude A is a
parameter describing the energy height of the barrier
and σ determines the spatial width of the barrier.

In the approach chosen the quantum transmittance
of the barrier is observed even in the one-channel
approximation, i.e., in the Born–Oppenheimer approx-
imation. Figure 1 displays the functions E1(y), obtained
by solving Eq. (4) numerically with σ = 0.01 and ampli-
tudes A = 1, 5, and 10 (a, b, c, respectively). These val-
ues of the parameters were chosen to demonstrate the
appearance of a potential well, which gives the reso-
nance features of the scattering processes. For compar-
ison, the initial potential barriers with x = 0, i.e., 2V(y),
which correspond to the scattering of structureless (or
strongly bound) particles, are presented in the figure.
For convenience in making comparisons, they are
shifted by the binding energy of the pair.

Figure 2 shows the transmission probabilities of a
pair through a barrier, which were obtained by solving
Eq. (5) numerically with the corresponding to poten-
tials shown in Fig. 1. It is obvious that for A = 1 the scat-
tering of an oscillator is close to that of a structureless
particle with twice the mass. For A = 5 a resonant com-
ponent of scattering appears, and for A = 10 a distinct
resonance is observed at the energy Er ≈ 8.12, which at
the peak reaches the value W11 = 1. This behavior of the
probability leads to the term “quantum transmittance of
barriers.” For comparison, we note that the probability

V x( ) A

2σπ
--------------exp

X2

2σ
------ 

  , X x y,±= =
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of transmission through a barrier 2V(y) is approxi-
mately only 0.012.

The complete transmittance of the barrier could be
somewhat surprising. Clear analogies with optical phe-
nomena were indicated in the Introduction. In what fol-
lows we shall present simple expressions which are
valid for square barriers and in the semiclassical
approximation which show the possibility of complete
transmittance. For discussion we chose a potential,
shown in Fig. 1c, with two distinct peaks. Since the
problem of transmission through a barrier in the one-
dimensional case has been examined in many textbooks
(see, for example, [9]), here we present only a scheme
for solving the problem of transmission through a dou-
ble-peak barrier. Denoting the three regions of classi-
cally allowed motion from left to right by the numbers
1, 2, and 3 and introducing superscripts for the ampli-
tudes and probabilities of passage out of a region
marked by a left-hand index into a region marked by a
right-hand index, it is easy to obtain the expression

To simplify the expressions, the lower index for chan-
nel 1 is omitted here. Then the transmission probability
through a double-peak barrier can be expressed in
terms of the transmission probability for each peak:

(6)

where θ is the twice the phase difference (or the action
in the semiclassical approach) of the motion between
the left- and right-hand peaks. Invariance under time

R 13( ) R 12( )R 23( )

1 S 21( )S 23( )–
-----------------------------.=
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Fig. 2. Barrier transmission probabilities for a bound pair in
the structureless particle approximation (curves 1) and sin-
gle-channel adiabatic approximation (curves 2) for different
amplitudes of the pair potentials V : a = (a) 1, (b) 5, and
(c) 10. Explanations are given in the text.
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reversal gives the principle of detailed balance (see, for
example, [9]), which in our case leads to |S(21) | = |S(12) |.

For a symmetric potential (W(12) = W(23)) the trans-
mission probability W(13) reaches a maximum for θ =
2πn (n = 1, 2, …). We note that this condition in the
semiclassical approach determines the spectrum of
bound states with infinitely wide peaks. Using the rela-
tion |S(ij) |2 = 1 – W(ij) it is easy to show that for these
energies W(13) = 1, i.e., complete transmittance obtains.

The parameters of the barrier potential V were cho-
sen so that the resonance energy Er would be higher
than the energy of the second channel ε2 = 5. This is
necessary to demonstrate the assertion that inelastic
processes will not change the resonance picture of
transmittance.

Figure 3 shows the results obtained by solving
Eq. (4) numerically for the second channel with A = 10
and σ = 0.01. It is evident that the coupling functions of
the channels Q12 and P12 are approximately two orders
of magnitude smaller than the diagonal values E2. The
effective energy E2 has a more complicated form than
E1, and it can also engender additional resonances, a
correct analysis of which requires taking account of a
third channel (energies above 9).

Figure 4 shows the barrier transmission probabili-
ties for a ground-state oscillator. The elastic peak W11
remains, though it is shifted by a relatively small
amount (Er ≈ 5.58) and its width is substantially
decreased—approximately by a factor of 3. Its maxi-
mum value ≈0.94 does not reach 1 because a second
open channel is present. Here W12 and D12, shown in the
region of resonance energies in the inset, are approxi-
mately 0.03, and the complete barrier transmission

Fig. 3. Components of the second channel of the adiabatic
approximation P12 (curve 1) and Q12 (curve 2) with the
amplitude V of the pair potentials equal to 10. Explanations
are given in the text.
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probability reaches about 0.97, which shows a substan-
tial, though not 100%, transmittance. We note that the
transmission probability for the barrier 2V(y) in this
region is only about 0.0075. The quantity D11 (≈0.0007)
is very close to 0, demonstrating the above-indicated
optical effect in which the reflected wave is suppressed,
even in the two-channel case.

The second peak in Fig. 4 at energy Er ≈ 9.6 is not
reliable, since at these energies a third channel must be
taken into account.

Of course, an N-channel approximation can be con-
structed. However, there always remains the question
of the convergence of the method. Consequently, the
probabilities of transmission of a pair through a barrier,
found by solving the initial equation (1) numerically,
will be demonstrated below. As noted above, the adia-
batic approximation was required only to elucidate the
transmittance mechanisms. To show how accurately the
adiabatic approach describes scattering and resonance
transmittance the barrier transmission probabilities of a
pair in the adiabatic approximation and the results of a
numerical calculation of the initial equation (1) with
A = 10 and σ = 0.01 are presented in Fig. 5. The figure
shows small differences near the first peak; this demon-
strates the correctness of the two-channel adiabatic
approximation in this energy range.

Thus, the adiabatic approximation qualitatively
describes the dependence of the probability of trans-
mission of a pair of particles through a barrier even if
inelastic processes are possible. This shows that the
explanation of resonance transmittance of barriers in
such an approach is correct. To demonstrate resonance
transmittance effects a type of potential barrier which
can be characterized as “narrow” and “high” compared
with the rms radius and excitation energy of the oscil-
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5.0 7.5 10.0
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0
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5.0 5.5 E

1

Probabilities

2

3

2

3

E

Fig. 4. Barrier transmission probabilities for a bound pair in
the two-channel adiabatic approximation with amplitude V
of the pair potentials equal to 10: W11 (1), W12 (2), D12 (3).
Explanations are given in the text.
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lator, respectively, was chosen. The resonance transmit-
tance of barriers of this type fits well into the simple
scheme, presented in the Introduction, explaining this
effect. However, teal physical systems can possess
more complicated barriers. Examples are the ordinary
Coulomb barrier and the potential barrier of the form
(1/g2)V(g2X) with g2 ! 1 [3], arising in the study of the
probability of induced decay of a false vacuum (see,
e.g., [4, 5]). To demonstrate the resonance transmit-
tance effects for such potential barriers the results of
numerical calculations of two-dimensional equations
of the type (1) with asymptotic conditions (2) are pre-
sented below.

As stated above, the model of quantum-mechanical
transmission of an oscillator-coupled pair through a
barrier has been used to study the induced decay of a
false vacuum [3]. The case where only one of the parti-
cles interacted with the barrier was studied. On the
basis of the resonance tunneling effect we can expect a
large change in the tunneling picture when both inci-
dent particles are allowed to interact with the barrier.
The barrier used in [3], after being put into a dimen-
sionless form, is

(7)

where ω is the frequency of the oscillator and g2 ! 1 is
a parameter in the false vacuum model. It is obvious
that for constant g2 and extremely small ω we return to
the “narrow” barrier case examined above. The calcula-
tions in [3] studied the tunneling probability with g2 =
0.09, 0.06, 0.04, 0.03, 0.02, and 0.01 and fixed fre-
quency ω = 1/2. In our calculations we used the same
value of ω but larger values of g2. This is due to the

V x( ) 2

g2ω
---------exp g2X2

ω
-----------– 

  , X x y,±= =

1
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Fig. 5. Comparison of the barrier transmission probabilities
of a bound pair with the exact solution of Eq. (1) (curve 1)
and the two-channel adiabatic approximation (curve 2).
Explanations are given in the text.
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appearance of extremely (in the numerical calculation)
narrow resonances in the energy dependence of the tun-
neling probability for a bound pair tunneling through a
barrier even with g2 = 0.2. Consequently, the results of
numerical calculations of Eq. (1) with the barrier (7)
and g2 = 0.5, 0.3, and 0.2 (a, b, c, respectively) are pre-
sented in Figs. 6 and 7.

These figures also show the transmission probabili-
ties for a bound pair from the ground state into all pos-
sible states, i.e.,

for different values of g2. The sharp resonance depen-
dence of the tunneling probability shows the existence
of the barrier resonances being discussed. We note that
as g2 decreases, the first resonance shifts in the direc-
tion of high energies, but g2Er decreases.

For g2 = 0.2 the probability of resonance transmis-
sion of a pair is many times greater (~108) then the
transmission probability in the nonresonance region
(background). Consequently, the computational results
are presented in Fig. 7 in a logarithmic scale; these
results not only demonstrate the indicated high proba-
bilities but they also indicate that the background part
of the curve coincides with the probability for the trans-
mission of a structureless particle, i.e., the solution of
Eq. (1) for a barrier potential 2V(y).

We used the adiabatic approximation above to
explain the reasons for the resonance transmittance.

W W1 j,
j N≤
∑=

Fig. 6. Resonance behavior of the complete barrier trans-
mission probability for a bound pair and the barrier (7). Cal-
culation with model parameters for the false vacuum g2 =
(a) 0.5, (b) 0.3, and (c) 0.2. Explanations are given in the
text.
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However, the position of the resonances in this
approach can be found after solving a system of one-
dimensional differential equations. But, here, after the
results of the numerical calculations of the two-dimen-
sional equation (1) are presented, we shall show a sim-
ple scheme for the appearance of metastable barrier
states, which, taking account of Eq. (6), lead to barrier
transmittance. For this, we note that the potential
U(x, y) = V(x + y) + V(x – y) + x2 has a local minimum
at y = 0 (the center of mass lies at the center of the bar-
rier) and certain values x = ±x0. A maximum occurs at
x = 0. Thus there are two potential “wells” separated by
a barrier. The bound states of such a system split into
even and odd states. The splitting is determined by the
probability of penetration through the inner barrier. For
the case 2V(x = 0, y = 0) @ 1 this shift can be very small
and the spectrum of even states is determined simply by
the spectrum of an isolated “well.” To a first approxima-
tion, the position of the resonances can be described by
an oscillator spectrum of bound states with y = 0, x = x0:

(8)

Here nx and ny are oscillator quantum numbers, E0 =
2V(x0), and the frequencies ωx and ωy are determined by
the second derivatives at the point of the local mini-
mum:

Enxny
E0 2ωx 1/2 nx+( ) 2ωy 1/2 ny+( ).+ +=

ωx ∂x
2U x y,( )/2

x x0= y, 0=
,=

ωy ∂y
2U x y,( )/2

x x0= y, 0=
.=

5
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Fig. 7. Comparison of the complete barrier transmission
probabilities for a bound pair. Curves 1, exact solution for
the potential (7). Curves 2, structureless particle approxima-
tion. Calculation with parameters of the false-vacuum
model g2 = (a) 0.5, (b) 0.3, and (c) 0.2. Explanations are
given in the text.
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It is easy to obtain the parameters of the oscillator
model for the potential (7):

(9)

We note that the expressions for the frequencies ωx and
ωy do not depend on the parameter g2 and impose
restrictions on the parameters of the oscillator. In order
for U(x, y) to have a local minimum ω must be less than
1.557.

We shall now compare the positions of the reso-
nances shown in Fig. 6 with g2 = 0.2 and the computa-
tional results obtained using Eqs. (8) and (9), which
make it possible to understand the existence of small
but noticeable satellite resonances. The position of the
first resonance Er = 13.65 is described well by the
energy of an oscillator in the ground state: E00 = 13.92.
The second group of resonances corresponds to a single
excitation of an oscillator along either x or y: E01 =
18.18, E10 = 18.63. They correspond to resonances with
energies 17.24 and 17.74. The third group of reso-
nances is engendered by a double excitation, E02 =
22.45, E11 = 22.90, and E20 = 23.34, with corresponding
resonant energies: 20.58, 20.88, and 21.72. Thus, the
simple oscillator model of a metastable barrier state
gives the correct qualitative picture for the appearance
of resonances. Comparing this picture with Fig. 6
shows that the highest tunneling probabilities corre-
spond to metastable states with minimum excitation
along the center-of-mass coordinate.

The expansion near the equilibrium point does not
exhaust the possibilities of the oscillator model. The
agreement between the resonance energy and the
energy of the metastable state of an oscillator can be
improved by a simple variational procedure. For this,
we shall assume that the position of the minimum x0

and the frequencies ωx and ωy are unknown quantities,
which are determined by the minimum of the average
value of the total Hamiltonian

E0 ω 1 2 2/ω( )ln+[ ] /g2,=

ωx
2 4 2/ω( ),ln=

ωy
2 ωx

2 1.–=

H φxφy〈 | ∂x
2– ∂y

2– x2 V x y–( ) V x y+( ) φyφx| 〉+ + +=

Comparison of the positions of the first resonance with the
variational estimate

g2 Evar Er g2Erω/2

0.5 7.649 7.62 1.30

0.3 10.416 10.38 0.779

0.2 13.680 13.65 0.683
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with respect to the normalized eigenfunctions of an
oscillator in the ground state:

Varying  with respect to x0, ωx, and ωy gives a system
of three nonlinear equations, which are not presented
here because they are too complicated. Two of the three
equations can be solved analytically: x0 = x0(ωx, ωy),

ωy = . Thus, there remains to estimate numeri-

cally a function of one variable  = (ωy), whose
minimum determines the variational estimate Evar for
the first resonance. We note that the variational relation
between ωx and ωy is identical to the relation in the case
of the expansion (9). For comparison, the values of Evar

and the positions Er of the first resonances, shown in
Fig. 6, are presented in the table. Considering the
numerical accuracy indicated above, the agreement is
good.

For g2 ! 1 the variational expressions simplify and
make possible the expansion

which is identical up to O(g2) with the energy E00
obtained by a simple expansion near the minimum U(x, y).
Thus, the estimate of the resonance spectrum using
Eqs. (8) and (9) is asymptotic in the limit g2  0. Spe-
cifically, we can give the position, in the limit g2  0,
of the first resonance in units of g2, i.e., the quantity
g2Eω/2, which is used in [3]:

For ω = 1/2 this energy tends to approximately 0.472.
The trending of the resonance energy to this limit is
reflected in the fourth column in the table. A smooth
computed curve (Fig. 2 in [3]) of the transmission prob-
ability in the energy range from 1.2 to 2 is presented in
[3], where the transmission of a pair through a barrier
was investigated. It follows from the calculations pre-
sented above that when the interaction of both particles
in a pair with a potential barrier is taken into account
this curve becomes strongly nonmonotonic.

The barriers examined above had a Gaussian form.
To complete the picture we shall present below calcula-
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tions for a Coulomb barrier cut off at small and large
distances:

(10)

The cutoff at small distances is introduced in order to
simulate a nuclear Coulomb barrier, of course, within
the limitations imposed by one-dimensional scattering.
For such a cutoff the concept of “barrier height” for a
one-dimensional model of scattering makes sense. For
a stronger analogy, a barrier with width |X | = Xmin

should be small in the spatial units of the problem, i.e.,
compared with the rms size of the oscillator. The cutoff
at large distances is introduced in order to use asymp-
totic expressions of the form (2). The quantity Xmax

must be greater than 1 in order to simulate a barrier
with low transmittance. Here we chose Xmin = 0.1 and
Xmax = 5. The quantity Q determines the energy height
of the barrier. The computational results for Q = 2, 4,
and 10 are presented in Fig. 8.

In this case a distinct picture of resonance tunneling
of a bound pair is also observed. We shall not present
here an analysis of the oscillator model for the positions
of the resonances because of the strongly model nature
of the potential chosen. We indicate only the obvious
manifestations of the satellite resonances and the
clearly noticeable equidistant spacing of the main reso-
nances.

V x( )

Q/Xmin : X Xmin≤
Q/ X  : Xmin X Xmax, X≤ ≤ x y±=

Q/Xmax : X Xmax.≤
=

Fig. 8. Resonance behavior of the complete transmission
probability of a bound pair through a Coulomb-type barrier
for different values of Q. Explanations are given in the text.

5
0

Q = 2

W

E

Q = 4

Q = 10

9 13 17 21

0

0.5

0.5

0.5

1.0

0

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
4. CONCLUSIONS
The barrier transmittance mechanism examined

above for a bound pair of particles is clearly manifested
for all potential barriers investigated. On the basis of
the first observation of resonance transmittance [2] for
square barriers and non-oscillator type coupling in a
pair, it can be inferred that the resonance transmittance
of barriers for compound particles can be observed for
a very wide class of interactions. Consequently, quan-
tum transmittance effects could occur in various fields
of physics. An example is that the possibility of
describing the decay of a false vacuum by quantum tun-
neling of a pair of particles bound by an oscillator inter-
action leads to resonance barrier transmittance and
much higher decay probabilities for the false vacuum.
The resonance transmittance of a one-dimensional
truncated Coulomb barrier raises the problem of inves-
tigating the possible transmittance of a real Coulomb
barrier in the physics of merging of heavy ions.
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Abstract—Double-electron ionization of a model two-electron quantum system, describing a one-dimensional
negative hydrogen ion, by a high-intensity laser pulse is investigated by direct numerical integration of the non-
stationary Schrödinger equation. The possibility of interpreting the data obtained on the basis of the rescattering
concept is analyzed. It is demonstrated that electron–electron correlations play an important role in the descrip-
tion of double-electron ionization phenomena. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

After the discovery of the production of multiply
charged ions when a high-power laser field interacts
with individual atoms [1], numerous experiments were
performed (see, for example, [2–7]) in order to deter-
mine the mechanism for the many-fold increase in the
photoelectron yield as compared with the model where
a multiply charged ion is formed as a result of a
sequence of independent, single-electron photoioniza-
tions. However, the mechanism leading to the forma-
tion of multiply charged ions in an intense radiation
field remains unknown. The most popular model for
describing multielectronic ionization is the rescattering
model proposed in [8, 9]. According to this model the
detachment of a second electron from an atom occurs
as a result of a collision of the primary photoelectron,
which undergoes almost free oscillations in the laser field,
with the parent ion. One of the characteristic features of
the double-electron ionization effect is the formation of a
so-called “knee” in the dependence of the probability
of production of doubly charged ions on the radiation
intensity [2]. The possibility of describing the “knee”
on the basis of a rescattering model is, apparently, at
present the main argument in favor of this theory.

The rapid advance in computational techniques has
opened up new possibilities in the investigation of the
dynamics of atomic systems in strong light fields. The
numerical integration of the nonstationary Schrödinger
equation for an atom in the field of a light wave without
any simplifying assumptions makes it possible not only
to compare the computational data with the predictions
of different analytical models but also to obtain detailed
information about the flow of the process at all of its
stages, which is inaccessible for modern laboratory
experiments.

The capabilities of modern computers make it pos-
sible to simulate the dynamics of the ionization of a real
1063-7761/00/9104- $20.00 © 20706
three-dimensional helium atom [10, 11]. Such calcula-
tions require integration of a five-dimensional nonsta-
tionary Schrödinger equation, which makes it impossi-
ble to perform systematic calculations in a wide range
of laser pulse parameters. Consequently, at present, for
purposes of simulating the dynamics of double-elec-
tron ionization it is preferable to limit the analysis to the
evolution of model two-electron one-dimensional
quantum systems in a laser radiation field.

The question of the possibility of investigating the
dynamics of real atomic-molecular systems on the
basis of one-dimensional models has been discussed
many times in the literature (see, for example, [12, 13]).
Thus, qualitative agreement between the results of one-
and three-dimensional calculations of the ionization
dynamics of a single-electron quantum system with a
short-range potential in a strong laser field was demon-
strated in [13]. It was found that when calculating the
threshold for the stabilization effect not only qualitative
but also quantitative agreement with the computational
data are observed. For two-electron systems (helium
atom) qualitative agreement of the computational results
for three- and one-dimensional systems follows from a
comparison of the data obtained in [11] and [14–17],
respectively.

The evolution of another two-electron system—the
negative hydrogen ion—in a wave field is analyzed in
detail in [18–21]. However, even though a detailed pic-
ture of double ionization was obtained in [16, 20] for
the helium atom and the negative hydrogen ion, the
mechanism of photodetachment of two electrons in a
strong laser field was never completely determined. In
both [16] and [20] computer experiments were per-
formed for laser parameters corresponding to mul-
tiphoton ionization. At the same time, the appearance
of rescattering, resulting in the production of doubly
charged ions, is ordinarily attributed to tunneling ion-
000 MAIK “Nauka/Interperiodica”
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ization. Consequently, in the present work the double
ionization regime for a model negative hydrogen ion is
studied for Keldysh parameters γ ≤ 1. It is shown that
the appearance of electron rescattering by the parent
center followed by electron-impact ionization cannot
describe the double-electron ionization effect. It is pointed
out that quantum electron–electron correlations play an
important role in the process of laser action on the atom
and that in consequence single-electron wave functions
cannot be used to describe the dynamics of the dielec-
tronic system in a strong light field.

2. NUMERICAL MODEL

Following [20], the Hamiltonian of the one-dimen-
sional two-particle quantum system simulating a nega-
tive hydrogen ion was written in the form (using the
atomic system of units)

(1)

Here Ti is the kinetic energy of the ith electron,

,

is the energy of interaction of this electron with the
nucleus,

is the energy of interaction of the electrons with one
another, and α is a smoothing parameter. In the present
work, just as in [20], it is assumed that α = 0.92 Å. For
this value of the parameter α, the system contains a sin-
gle bound stationary state with ionization potential I ~
1.1 eV; the binding energy of the second electron is
EH = –11.45 eV. This value is the ionization potential of
a model one-dimensional hydrogen atom with the value
used for the smoothing parameter. More detailed infor-
mation about the structure of the energy spectrum and
wave functions of stationary states of the system under
study is contained in [20].

The interaction of the system with the field of an
electromagnetic wave was studied in the dipole approx-
imation

(2)

where ω is the frequency of the electric field of the
wave and ε(t) is the envelope of the pulse.

The nonstationary Schrödinger equation with the
Hamiltonian

(3)

was integrated for values of the laser photon energy "ω =
2 eV (ω = 0.0735) with intensities in the range P =

H0 Ti V xi( )+( ) V12 x1 x2,( ).+
i 1=

2

∑=

V xi( ) 1

α2 xi
2+

---------------------–=

V12
1

α2 x1 x2–( )2+
---------------------------------------=

W x1 x2 t, ,( ) x1 x2+( )ε t( ) ωt( ),cos=

H H0 x1 x2,( ) W x1 x2 t, ,( )+=
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1011–4 × 1014 W/cm2. In this intensity range the
Keldysh parameter

varies from 10 to 0.2, i.e., for intensities in the range
P ≥ 1013 W/cm2 ionization proceeds in a tunneling or
above-barrier regime.

All calculations were performed for a pulse with a
smooth trapezoidal shape

(4)

with leading edge duration tf = 2T and “shelves” tp = 5T,
where T = 2π/ω is the period of the optical oscillations.

Following [20], the nonstationary Schrödinger equa-
tion was integrated on a grid in the coordinates

The range of integration was chosen to be a rectangle
ξ ∈  (–ξmax, ξmax), η ∈  (–ηmax, ηmax), where ξmax = 120 Å
and ηmax = 250 Å. Such a symmetric, in contrast to
[20], spatial integration region for the nonstationary
Schrödinger equation makes it possible to perform sim-
ulation in the “passive” electron approximation. In this
approximation the effect of the field on one of the elec-
trons is “switched off,” and the interaction operator with
the electromagnetic field is written in the form [19]

(5)

The second electron is “passive:” its energy varies only
as a result of the interaction with the first, “active” elec-
tron. Thus the investigation of the dynamics of the
dielectronic system with an interaction operator in the
form (5) makes it possible to investigate the “passive”
electron approximation and to determine the contribu-
tion of energy exchange between electrons in the
dielectronic ionization phenomenon. Generally speak-
ing, energy exchange between electrons in a two-elec-
tron, strongly correlated system, such as a negative
hydrogen ion, cannot be reduced to classical (or semi-
classical) scattering of the “active” electron by the
“passive” electron. However, if the two-electron ioniza-
tion is indeed the result of scattering of a photoelectron
by the parent atom, then the “passive” electron model
should give good agreement with the results of the solu-
tion of the Schrödinger equation with the exact Hamil-
tonian (3).

The probabilities of one- and two-electron ioniza-
tion were calculated as follows using the wave func-
tion Ψ(x1, x2, t) obtained by solving the nonstationary

γ ω 2I
ε

--------------=

ε t( ) = 

ε0
πt
2t f

-------sin
2

, t t f≤

ε0, t f t t f t p+≤ ≤

ε0
π t 2t f t p+( )–[ ]

2t f

--------------------------------------sin
2

, t f t p t 2t f t p,+≤ ≤+

ξ
x1 x2+

2
----------------, η

x1 x2–

2
---------------.= =

W x1ε t( ) ωt( ).cos=
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Schrödinger equation numerically. The probability of
finding the system in the initial (unionized) state is

(6)

where ϕ0(x1, x2) is the wave function of the stationary
state of the system. The probabilities of one- and two-
electron ionization were calculated using the function

(7)

where E0 is the energy of the stationary state ϕ0(x1, x2).
Since the calculation of the two-electron wave func-

tions corresponding to the stationary states of the one-
and two-electron continuum is a separate, and difficult
problem, the one- and two-electron ionization probabil-

W0 t( ) C0 t( ) 2 Ψ x1 x2 t, ,( ) ϕ0 x1 x2,( )〈 〉 2,= =

Ψ̃ x1 x2 t, ,( ) Ψ x1 x2 t, ,( )=

– C0 t( )ϕ0 x1 x2,( )
i
"
---E0t–
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Fig. 1. Intensity dependence of the probability of finding a
system in the initial unionized state (a) and probabilities of
single (b) and double (c) ionization by the end of the laser
pulse. Solid curves, exact calculation, broken curves, calcu-
lation in the “passive” electron approximation.
JOURNAL OF EXPERIMENTAL
ities were calculated with respect to the wave function

(x1, x2, t*) using a method similar to that of [16]. The
wave functions of the one-electron continuum are dif-
ferent from zero if the coordinate of one of the electrons
is close to zero. For states belonging to the two-electron
continuum, the wave functions are different from zero
in a region far from both coordinate axes. Conse-
quently, probabilities of single- and two-electron ion-
ization are given by

(8)

In calculating W1 and W2 it was assumed that a = 5 Å,
and the time t* = 11T, which corresponds to two peri-
ods after the laser pulse ends.

3. SIMULATION RESULTS

The main result of the simulation, describing the
probability of finding the system in the initial state at
the end of the laser action, and the probability of one-
and two-electron ionization is displayed in Figs. 1a–1c.
The solid curves correspond to the exact calculation,
and the broken curves correspond to the calculations
performed in the “passive” electron approximation,
when the electric field acts only on one “active” elec-
tron. For weak fields (P ≤ 3 × 1012 W/cm2) the data
obtained on the probability of single-electron ioniza-
tion are qualitatively identical to one another, and the
probability of two-electron ionization is negligibly
small. It is important to note that because of the identity
principle it is impossible to determine which electron
leaves the system and which electron remains union-
ized. The electrons are equivalent, and a characteristic
“cross” describing the single-electron ionization
regime (Fig. 2a) arises in the spatial distribution ρ =
|Ψ(x1, x2)|2. One would think that in the “passive” elec-
tron regime only the electron on which the field acts
should predominately occur, while the probability of
ionization of the “passive” electron will be small. Our
calculations show that this is not so. For comparatively
low intensities the energy acquired by the “active” elec-
tron from the field is small, and as a result of the inter-
electronic interaction there is enough time for this
energy to be distributed between both electrons approx-
imately equally. As a result, the photodetachment of the
“active” or “passive” electron is essentially equally proba-

Ψ̃

W1 x1 x2 Ψ̃ x1 x2 t∗, ,( )
2

d

∞–

∞

∫d

a–

a

∫=

+ x2 x1 Ψ̃ x1 x2 t∗, ,( )
2

d

∞–

∞

∫d

a–

a

∫

– x1 x2 Ψ̃ x1 x2 t∗, ,( )
2

d

a–

a

∫d

a–

a

∫ ,

W2 1 W0– W1.–=
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ble. This is confirmed by the distribution |Ψ(x1, x2)|2
shown in Fig. 2b and by the temporal dynamics of the
expectation values of the coordinate of each electron in
the quantum state. These quantities are calculated using
the formula

and are presented in Fig. 3. As one can see, the oscilla-
tions of the “active” electron in the field of the wave
lead to excitation of antiphase oscillations of the “pas-
sive” electron and subsequent ionization of one of the
electrons. Similar data on the magnitude of the acceler-
ation d2xi/dt2 of the “active” and “passive” electrons,
obtained in [19], also show that energy exchange between
electrons plays an important role in the range of fields cor-
responding to single-electron ionization. Under condi-
tions of an ultrashort pulse the predominant directions
of emission of the “active” and “passive” electrons are
found to be opposite to one another (see also Fig. 2b).
We also note that for intensities P ≤ 3 × 1012 W/cm2 the
calculations of the probability of single ionization in
the “passive” electron approximation differ by not
more than 30% from the exact results.

For radiation intensities above P = 3 × 1012 W/cm2 the
passive-electron approximation gives much too high a
value for the ionization probability. For P = 1013 W/cm2

the exact calculation gives essentially complete ioniza-
tion, while in the passive-electron model the probabil-
ity of nonionization is ~5–7%. Actually, this means that
for such intensities the interelectronic exchange of
energy can no longer distribute the energy equally
between the “active” and “passive” electrons. The com-
putational results for the quantum-mechanical averages
〈xi(t)〉 with P = 2 × 1013 W/cm2, presented in Fig. 4, con-
firmed this conclusion: the dynamics of the “active”
and “passive” electrons during the pulse is completely
different. The amplitude of the oscillations of the “pas-
sive” electron is approximately an order of magnitude
smaller than the amplitude of the oscillations of the
“active” electron. We note that for exact calculations
the dynamics of the quantum-mechanical averages
〈xi(t)〉  is the same for both electrons, since the Hamilto-
nian (3) is symmetric under the interchange of variables
x1  x2.

Dielectronic ionization of the system was found in
our calculations for intensities P ≥ 2 × 1013 W/cm2. The
intensity dependence of the dielectronic ionization proba-
bility (see Fig. 1c) in the range P = 4–7 × 1013 W/cm2 dem-
onstrates a characteristic “knee” [2], usually attributed
to the rescattering of the photoelectron by the parent
atom [8, 9]. For intensities P ≥ 8 × 1013 W/cm2 the prob-
ability of dielectronic ionization increases rapidly and
saturates at a value corresponding to W2 ≈ 1. Calcula-
tions of the dynamics of the system in the “passive”
electron approximation also lead to the presence of
two-electron ionization, which, evidently, is due to
energy exchange between the electrons. Energy

xi t( )〈 〉 xi Ψ x1 x2 t, ,( ) 2 x1d x2, id∫ 1 2,,= =
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Fig. 2. Spatial structure of the wave function |Ψ(x1, x2)|2 by

the end of the laser pulse with intensity P = 3 × 1012 W/cm2:
(a) exact calculation, (b) “passive” electron approximation.
The lines of constant probability density correspond to the
values 10–4 (1) and 10–3 (2).
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Fig. 3. Time dependence of the expectation values of the
coordinates of the “active” (1) and “passive” (2) elec-
trons in the quantum state. The radiation intensity is P =
3 × 1012 W/cm2.
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exchange between electrons can be interpreted as “res-
cattering,” but such a definition of rescattering, gener-
ally speaking, is not the same as the classical interpre-
tation of the phenomenon [9]. It is also important that
the agreement between the exact calculations and cal-
culations performed in the “passive” electron approxi-
mation is observed only for 

 

P

 

 

 

≤

 

 5 

 

×

 

 10

 

13

 

 W/cm

 

2

 

, corre-
sponding to the “knee” in the dependence 

 

W

 

2

 

(

 

P

 

). For
high intensities, in the “passive” electron model the
probability of double ionization remains ~0.05–0.1,
while the exact value 

 

≈

 

1. This means that in a strong
field double ionization arises predominantly as a result
of the direct action of the field of the wave on both elec-
trons and is not associated with rescattering. One would
think that the rescattering, as understood classically [9],
could be responsible for double ionization at intensities
corresponding to the “knee” in the dependence 

 

W

 

2

 

(P).
However, this is not so. Indeed, in the tunneling ioniza-
tion regime the maximum kinetic energy of a photo-
electron, with which it returns to the parent atom in the
half-period of the field of the electromagnetic wave, is

and under our conditions with P = 3 × 1013 W/cm2 we
have Emax . 3.8 eV, which is much less than not only
the ionization potential but also the excitation poten-
tials of all states of a one-dimensional hydrogen atom.
In our view this situation makes it impossible to inter-
pret the data obtained as rescattering of a photoelectron
by the parent atom. In our calculations the ionization of
the parent atom by electron impact becomes possible
for P ≥ 1014 W/cm2, i.e., when the “passive” electron
model cannot describe the data obtained in exact calcu-
lations.

Thus, for the conditions of our calculations the
observed double ionization of a two-electron system can-
not be interpreted as photodetachment of one (outer) elec-
tron followed by electron-impact ionization of the sec-
ond (inner) electron in a half-period of the electromag-
netic wave.

Emax . 3U p 3ε2/4ω2=

0
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Fig. 4. Same as in Fig. 3 but for P = 2 × 1013 W/cm2.
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It is important to note that any attempt to describe
two-electron ionization on the basis of the concept of
rescattering actually assumes the possibility of intro-
ducing single-electron wave functions describing the
state of each electron in the ionization process. This
assumption is justified only in the self-consistent field
approximation. However, it is doubtful that this approx-
imation is correct for describing the dynamics of ion-
ization of multielectronic atoms in a strong electromag-
netic field [14, 16, 21]. An attempt to use the nonstation-
ary Hartree equations for describing photoionization of a
model one-dimensional negative hydrogen atom [21]
showed that these equations describe qualitatively cor-
rectly the dynamics of the process only in weak fields,
when the detachment of only one electron is being con-
sidered. When two-electron ionization is substantial,
the self-consistent field approximation does not
describe the dynamics of the system even qualitatively.
Consequently, the interaction between the electrons,
taken into account exactly when solving the two-parti-
cle Schrödinger equation, cannot be described as the
electrostatic interaction of two distributed charges.

The impossibility of describing the state of a two-
electron system as a product of single-particle func-
tions can be characterized quantitatively by means of
the correlation coefficient introduced in [22, 23]

where

is the density matrix of the two-particle system.
If it is assumed that in the initial state the single-

electron orbitals are equivalent, then for any moment in
time

and 

 

K

 

(

 

t

 

) 

 

≡

 

 1, i.e., the system is uncorrelated. Calcula-
tions of the time dependence of the correlation coeffi-
cient using the wave function obtained from the two-par-
ticle Schrödinger equation are displayed in Fig. 5 and
demonstrate that the correlation coefficient is substantially
different from 1, and the value of 

 
K 

 
increases in the

course of the laser action all the more rapidly the higher
the intensity of the radiation.

In summary, the data on the dynamics of ionization
of a model negative hydrogen ion, which were obtained
by comparing the exact calculations and calculations
performed in the “passive” electron approximation,
show that in the region of the “knee” in the dependence

 

W

 

2

 

(

 

P

 

) (

 

P

 

 ~ 2–5 

 

×

 

 10

 

13

 

 W/cm

 

2

 

) double ionization occurs
as a result of exchange of energy between electrons, but
this energy exchange cannot be understood semiclassi-
cally as scattering of one of the electrons by the atomic
core.

We also note that the degree of correlation of the
electronic system is also important for describing ion-

K t( ) Sp ρ2( )[ ] 1–
,=

ρ x1 x2 t, ,( ) Ψ∗ x1 ξ t, ,( )Ψ ξ x2 t, ,( ) ξd∫=

Ψ x1 x2 t, ,( ) Φ x1 t,( )Φ x2 t,( )=
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ization in strong fields (P ≥ 1014 W/cm2), when the
probability of double ionization is close to 1. One
would think that the data on the dynamics of two-elec-
tron ionization, which are presented in Fig. 1c show
that the second electron leaves the atom as a result of
the direct action of the field of the wave on it. Since the
negative hydrogen ion is a system with a weakly bound
outer electron, its double ionization should be sequen-
tial, and the dependence of the double ionization prob-
ability on the intensity will be close to the intensity
dependence of the ionization probability of a hydrogen
atom. However, calculations of the ionization probabil-
ity of a one-electron atom with the same potential and
similar pulse parameters show that this is not so (see
Fig. 6). In the intensity range investigated the ioniza-
tion probability as a function of the intensity has a pro-
nounced resonance structure, probably associated with
the appearance of multiphoton resonances between the
ground (initial) state and one of the excited states tak-
ing account of their Stark shift in the field of the elec-
tromagnetic wave. The probability of ionization does
not exceed 0.1–0.15. At the same time, the resonance
structure of the dependence W2(P) is not observed for
double ionization of the negative hydrogen ion for P ≥
1014 W/cm2, and the probability of double ionization is
close to 1. This difference in the data shows that the
description of the double ionization process for the sys-
tem under study in terms of single-electron states does
not adequately describe the picture of the process in
strong fields.

4. CONCLUSIONS

In summary, our calculations of the dynamics of the
ionization of the simplest two-electron system—a one-
dimensional negative hydrogen atom—by the field of
an electromagnetic wave show that energy exchange

0 2
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4 6 8 10

4

6

8

Time, optical cycles

Correlation coefficient

1

2
3

4

Fig. 5. Time dependence of the correlation coefficient of a two-
electron system for various values of the radiation intensities
(W/cm2): (1) 3 × 1012, (2) 1013, (3) 1014, (4) 2 × 1014. The
arrow marks the end of the laser pulse.
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between electrons plays an important role for intensi-
ties corresponding to single- and double-electron ion-
ization. At the same time, this energy exchange cannot
be interpreted on the basis of a semiclassical rescatter-
ing picture consisting of photodetachment of one elec-
tron and knocking out of the second electron by the first
electron in the process of scattering by the parent atom.
The data obtained attest to strong interelectronic correla-
tions in the system, which are manifested in the impossi-
bility of describing the dynamics of the system in a strong
field by means of single-electron wave functions.
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Abstract—The properties of the collision integral in a quantum Boltzmann-type kinetic equation are studied
under the conditions of spatially nonuniform distributions of colliding particles interacting with an external
electromagnetic field. The components of the nonlinear resonances and the velocity distribution of the excited
atoms, which are due to polarization transitions, are determined on the basis of the Kazantsev collision integral.
© 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In [1] the collision integral was found for the case of
dipole–dipole interactions in the scattering of two iden-
tical atoms in a resonant radiation field. It was found
that in addition to the standard terms the Kazantsev col-
lision integral contains terms which are proportional to
the product of the field-induced polarizations of the
colliding atoms. These terms describe the scattering
channel where the polarizations are quenched in the
collision and one of the atoms is in an excited state
while the other is in the ground state. The cross section
for such a process is equal to the product of the scatter-
ing amplitudes with and without the exchange of exci-
tation, i.e., it is related with the interference of these
two channels. The physical manifestations of the indi-
cated polarization transitions (the term which we shall
use for them) were not studied in [1], just as they are not
studied in general in the literature. One problem
addressed in the present paper is to determine their role
in the nonlinear spectroscopy of gases (Section 4).

The polarization transitions predicted by Kazantsev
are by no means specific to the conditions assumed in
[1]. In [2] it is shown that similar effects can also occur
in collisions of nonidentical polarized atoms, and as a
result of a collision the polarization of the atoms is
quenched and a polarization is generated on a third
transition. In this respect, there is an analogy with the
standard scheme of nonlinear spectroscopy: the reso-
nance interaction of a bichromatic field with neighbor-
ing transitions generates polarization on a third, forbid-
den transition (the Raman scattering schemes, two-
photon fluorescence, and two-photon absorption; see,
e.g., [3, 4]).

The situations described above raise a general ques-
tion for the theory of the kinetic equation. The problem
is that the polarizability of a buffer partner in a collision
1063-7761/00/9104- $20.00 © 20713
means that it is strongly spatially nonuniform. Indeed,
the condition

kvT @ Γ

for Doppler width kvT (k is the wave number, vT =

 is the average thermal velocity, T is the tem-
perature, and m is the mass of the atom) large compared
with the homogeneous width Γ is equivalent to the con-
dition

Therefore the scale of the spatial nonuniformity of the
external field (λ is the wavelength), transferred to the
polarized particle, is much less than the mean-free path
lfr . The ratio lfr/λ of the scales under real conditions of
nonlinear spectroscopy of gases can reach several
orders of magnitude. At the same time, in the theory of
the kinetic equation it is usually assumed that the ther-
mostat is spatially uniform even in spectroscopic prob-
lems [3, 4]. The question of the role of the spatial non-
uniformity of the distributions of the colliding particles
is analyzed in Sections 2 and 3.

2. COLLISION INTEGRAL 
FOR A SPATIALLY NONUNIFORM GAS

We shall write the collision integral S in the follow-
ing standard form (see, e.g., [3, 4])

(2.1)

(2.2)

(2.3)

2T /m

λ /2π ! v T /Γ l fr.∼

S S 1( )– S 2( ),+=

S 1( ) i
"
---Spb T r rb×( ) r rb×( )T+–{ } ,=

S 2( ) 1
i"
-----Spb T r rb×( )K+ K r rb×( )T+–{ } ,=
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where S(1) and S(2) are the removal and arrival terms, r
and rb are single-particle density matrices of the parti-
cle under study and the buffer particle, T and K are
scattering matrices [5], and Spb denotes the trace with
respect to all variables of the buffer particle. We shall
separate the translational degrees of freedom and
employ the momentum representation. Instead of the
momentum variables pa,  and pb,  in the density

matrices r(pa, ) and rb(pb, ), it is convenient to
introduce the Wigner variables

(2.4)

We now take into account the law of conservation of the
center-of-mass momentum of the colliding particles:

(2.5)

where p and p1 are the momenta of the relative motion
after and before a collision, respectively. In the nota-
tions indicated above, S(1) and S(2) can be written as

(2.6)

(2.7)

(2.8)

(2.9)

Here  denotes the trace with respect to the internal
degrees of freedom of particle b, and the matrices

pa' pb'

pa' pb'

q
pa pa'+

2
-----------------, t pa pa' ,–= =

qb

pb pb'+
2

-----------------, tb pb pb' .–= =

T papb pa1pb1( ) δ pa1 pb1 pa– pb–+( )T p p1( ),=

p µbpa µapb, p1– µbpa1 µapb1,–= =

µa

ma

ma mb+
-------------------, µb

mb

ma mb+
-------------------,= =

S 1( ) q τ,( )
i
h
---Spb qbd tbd t1δ t t1– tb–( )d∫=

× T p p tb–( )r q tb/2– t1,( )ρb qb tb,( ){

– r q tb/2+ t1,( )ρ qb tb,( )T+ p' tb p'+( ) } ,

p p
µbt µatb+

2
-------------------------, p'+ p

µbt µatb+
2

-------------------------,–= =

p µbq µaqb,–=

S 2( ) q t,( )
1
ih
-----Spb qbd qb1d tb1d q1d t1d∫=

× δ t t1– tb1–( )δ q1 qb1 q– qb–+( )

× T p1 p2( )r q1 t1,( )rb qb1 tb1,( )K+ p2' p1'( ){

– K p1 p2( )r q1 t1,( )rb qb1 tb1,( )T+ p2' p1'( ) } ,

p1 p
µat
2

--------, p2+ p1

µbt1 µatb1–
2

-----------------------------,+= =

p1 µbq1 µaqb1,–=

p1' p
µbt
2

--------, p2'– p1

µbt1 µatb1–
2

-----------------------------.–= =

Spb
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r(q, t) and rb(qb, tb) are operators with respect to these
variables.

We recall that the quantity t is the Fourier-conjugate
variable with respect to the coordinate r in the Wigner
representation rW(q, r):

(2.10)

In other words, the dependence on the variable t of the
momentum representation characterizes the spatial
nonuniformity in the Wigner representation. Therefore,
δ(t – t1 – tb) and δ(t – t1 – tb1) in the expressions (2.6)
and (2.8) indicate that the spatial nonuniformity of the
collision integral “consists of” the spatial nonuniformi-
ties of the density matrices of the colliding particles. It
is evident from the relations (2.6)–(2.9) that the argu-
ments of the density matrices T and K and the density
matrices r and rb, generally speaking, depend on t1
and tb, i.e., on the spatial nonuniformity of both collid-
ing particles. Since the diagonal and off-diagonal (with
respect to the internal quantum numbers) components
possess different spatial nonuniformities, this question
will be examined later, after the collision integral is
specified with respect to the internal degrees of free-
dom and the geometry of the external field. Here we
note that ordinarily the expression used for S corre-
sponds to a spatially uniform distribution of the buffer
particles:

(2.11)

In this case we obtain from Eqs. (2.6)–(2.9)

(2.12)

(2.13)

Here, therefore, S(1) is determined by the “forward”
scattering amplitudes. The arguments of the matrices
T(p|p1) and  in the arrival term S(2) remain dif-
ferent because of the spatial nonuniformity, but the dif-

rW q r,( ) 2πh( ) 3– r q t,( ) irt/h( )exp t,d∫=

r q t,( ) rW q r,( ) irt/h–( )exp r.d∫=

rb qb tb,( ) rb qb( ) 2πh( )3δ tb( ).=

S 1( ) q t,( )
i
h
--- 2πh( )3Spb qbd( ) T p p( )r q t,( )rb qb( ){∫=

– r q t,( )rb qb( )T+ p' p'( ) } ,

S 2( ) q t,( )
1
ih
----- 2πh( )3Spb qbd qb1d q1d∫=

× δ q1 qb1 q qb––+( )

× T p p1( )r q1 t,( )rb qb1( )K+ p1' p'( ){

– K p p1( )r q1 t,( )rb qb1( )T+ p1' p'( ) } ,

p p
µbt
2

--------, p'+ p
µbt
2

--------,–= =

p1 p1

µbt
2

--------, p1'+ p1

µbt
2

--------.–= =

K p1' p'( )
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ferences of the arguments playing the determining role
in small-angle scattering are the same:

According to the formulas (2.12) and (2.13), S(q, t)
depends on t through r(q, t) as well as through the
arguments of the scattering matrices. Therefore, even in
the simple case (2.11) the collision integral in the
Wigner representation depends nonlocally on the coor-
dinates r. With a spatially nonuniform rb the nonlocal
dependence will be stronger.

The spatial nonuniformity of the buffer particles
could be caused by their interaction with an external
electromagnetic field. From this standpoint collisions
of identical particles, when the field equally influences
r and rb, are of greatest interest. In this case µa = µb =
1/2. More complicated situations, where the atoms are
different and the field contains several spectral compo-
nents, whose frequencies are related by definite combi-
nation relations, and as a result resonance interaction
with several adjoining transitions occurs, are also pos-
sible. Such situations are indicated in [2].

The periodic nonuniformity, caused, for example,
by a monochromatic plane wave, is interesting for spec-
troscopic applications. In this case the Wigner repre-
sentation has the form

(2.14)

(sa and sb are integers), and in the momentum represen-
tation

(2.15)

Under such conditions we have for the collision inte-
grals

(2.16)

(2.17)

p1' p'– p1 p.–=

rW q r,( ) rsa
q( ) isak r⋅( ),exp

sa

∑=

rW qb r,( ) rsb
qb( ) isbk r⋅( )exp

sb

∑=

r q t,( ) 2πh( )3 ρsa
q( )δ t sahk–( ),

sa

∑=

rb qb tb,( ) ρsb
qb( )δ tb sbhk–( ).

sb

∑=

S qt( ) 2πh( )3 δ t sa sb+( )hk–[ ]Ssasb
q( ),

sasb

∑=

Ssasb

1( ) q( )
i
h
--- 2πh( )3Spb q T p p sbhk–( ){d∫

sasb

∑=

× rsa
q sahk/2–( )ρsb

qb( )

– rsa
q sbhk/2+( )ρsb

qb( )T p' sbhk p'–( ) } ,
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(2.18)

(2.19)

It is evident from the expressions presented that the
periodic spatial nonuniformity results in an analog of
the recoil effect. This is manifested in the arguments of
the scattering amplitudes and the density matrices. In
the outgoing term the difference of the right and left
arguments of the scattering amplitudes is a multiple of
the photon momentum hk.

The possibility of spatial nonuniformity through the
collision integral is determined by the same terms as in
the case of a dynamic interaction with an external field
[3, 4, 6], i.e., the ratio of hk to the width of the structure
in the distribution r(q). Let this width be Maxwellian

. Then, in the visible region of the spectrum and
at room temperature

 ~ 10–5,

and the recoil effect is negligible. However, if r(q) pos-
sesses a sharp Bennett structure with the characteristic
width mΓ/k (Γ is the homogeneous line width), then the
ratio

can be of the order of 1 for sufficiently small values

Such conditions were realized in an experimental study
of the splitting of nonlinear resonances because of the
recoil effect (see, for example, [7, 8]).

The effect of a spatial nonuniformity through the
scattering matrix is determined by other parameters,

Ssasb

2( ) q( )
1
ih
----- 2πh( )2Spb qbd qb1d q1d∫

sasb

∑=

× δ q1 qb1 q– qb–+( )

×
× T p1 p2( )rsa

q1( )ρsb
qb1( )K+ p2' p1'( ){

– K p1 p2( )rsa
q1( )ρsb

qb1( )T+ p2' p1'( ) } ,

p p
µbsa sb+( )hk

2
---------------------------------,–=

p' p
µbsa sb+( )hk

2
---------------------------------,–=

p1 p
µasbhk

2
-----------------, p1'+ p

µasbhk
2

-----------------,–= =

p2 p1

µbsa µasb–( )hk
2

--------------------------------------,+=

p2' p1

µbsa µasb–( )hk
2

--------------------------------------.–=

2Tm

hk

2Tm
---------------

hk
mΓ /k
------------- hk2

mΓ
--------=

mΓ
k

-------- 10 5– Tm.∼
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specifically, the product of k and the effective interac-
tion radius ρW (the Weisskopf radius):

For the dipole–dipole interaction ρW can be of the order
of 10–6 cm, so that in the visible region of the spectrum
(λ = 0.5 × 10–4 cm) we have

i.e., an appreciable value. Forward scattering can be
especially sensitive to this effect.

3. COLLISION INTEGRAL 
FOR TWO-LEVEL ATOMS IN THE FIELD 

OF A MONOCHROMATIC TRAVELING 
PLANE WAVE

To specify further the collision integral for a partic-
ular structure of the internal states of atoms, we shall
employ the well-known relations between the elements
of the matrices T and K and the scattering amplitudes f
(see, for example, [3, 4]):

(3.1)

(3.2)

(3.3)

Here α, α1 and β, β1 are sets of quantum numbers of the
internal motions of the particles a and b, and Eα and Eβ
are the energies of the states.

Let the external electromagnetic field, in the form of
a traveling electromagnetic plane wave, which depends
on time and coordinates as exp[–i(ωt – k · r)], where ω
and k are the frequency and wave vector, produce the

kρW 2πρW /λ .=

kρW 0.1,≈

T αβpapb α1β1pa1pb1( ) 4π2hµ( ) 1–
–=

× f αβp α1β1p1( )δ pa1 pb1 pa– pb–+( )

× i Eα Eβ Eα1 Eβ1––+( )t/h[ ] ,exp

K αβpapb α1β1pa1pb1( )

=  2πiT αβpapb α1β1pa1pb1( )–

× δ+ Eα1 Eβ1 Eα– Eβ–+( ) p1
2 p2–( )/2µ+[ ] ,

p µbpa µapb, p1– µbpa1 µapb1,–= =

µ
mamb

ma mb+
-------------------.=

m1

m n

n1

(a) (b)

Fig. 1. Scheme of the levels of the colliding atoms (a) (m1,
m) and (b) (n1, n).
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spatial nonuniformity of the gas. In such a field, as can
be easily established, the elements of the density matri-
ces, which are diagonal with respect to the principal
quantum numbers, do not depend on r, and the off-
diagonal elements are proportional to exp(±ik · r).
Therefore the numbers sa and sb in Eq. (2.15) assume
the values 0 and ±1.

We shall consider resonant dipole–dipole interac-
tion of the colliding atoms. In this case the scattering
occurs only if the interacting atoms are in states with
different energies, i.e., the scattering amplitudes
f(αβp|α1β1p1) with Eα ≠ Eβ and Eα1 ≠ Eβ1 are different
from zero [1]. At the same time, the condition Eα + Eβ =
Eα1 + Eβ1 is satisfied. We shall use the following nota-
tions: m and m1 denote the collection of quantum num-
bers, respectively, of the ground and excited states of
the particles a, n, and n1, and similarly for particle b
(Fig. 1). Having in mind the case of identical colliding
particles, we shall drop the index b in ρb.

For the conditions listed above we obtain from
Eq. (2.17) expressions for the off-diagonal and diago-
nal (with respect to the principal quantum numbers)
elements of the outgoing term of the collision integral:

(3.4)

(3.5)

S1
1( ) m1mq( ) Ssasb

1( ) m1mq( ) 2πh/iµ( )Spb

sa sb+ 1=

∑=

× qb f m1np hk/4+ m1' n'p hk/4+( )r1{d∫
× m1' mq( )r0 n'nqb( ) r1 m1m'q( )r0 n1n1' qb( )–

× f + m'n1' p hk/4– mn1p hk/4–( )

+ f m1np hk/2+ m'n1p hk/2–( )

× r0 m'mq hk/2–( )r1 n1nqb( )

– r0 m1m1' q hk/2+( )r1 n1nqb( )

× f + m1' np hk/2+ mn1p hk/2–( ) } ,

S0
1( ) m1m1' q( ) Ssasb

1( ) m1m1' q( )
2πh
iµ

---------Spb

sa sb+ 0=

∑=

× qb f m1np m1''n'p( )ρ0 m1''m1' q( )ρ0 n'nqb( ){d∫
– ρ0 m1m1''qb( )ρ0 n'nqb( ) f + m1''np m1' n'p( )

+ f m1np hk/4+ mn1p 3hk/4–( )

× r 1– mm1' q hk/2–( )r1 n1nqb( )

– r1 m1mq hk/2–( )r 1– nn1qb( )

× f + mn1p 3hk/4– m1' np hk/4–( ) } .
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Here r1(m1mq) and so on are matrices relative to the

magnetic quantum numbers. The symbol  denotes
a trace with respect to these numbers of the atom b.

The relations (3.4) and (3.5) each contain four terms
due to elastic scattering with no exchange of excitation
(the first two terms in Eqs. (3.4) and (3.5)) and with
exchange excitation (third and fourth terms). The zero-
exchange terms contain the “forward” scattering ampli-
tudes, and the arguments of the scattering amplitudes in
the diagonal and off-diagonal terms differ by ±hk/4. In
the “exchange” terms the difference of the left- and
right-hand arguments of the scattering amplitude is
equal to the photon momentum hk, i.e., scattering by a
nonzero angle is important.

The products of the zeroth harmonics of the density
matrices, corresponding to the populations, and the first
harmonics of the off-diagonal elements appear in

. The momentum arguments of the zeroth
harmonics in the “exchange” terms (the last four rows
in Eq. (3.4)) shift by ±hk/2, i.e., the analog of the recoil
effect occurs.

The diagonal argument  contains prod-
ucts of the zeroth harmonics (“zero exchange” scatter-
ing) and products of the harmonics ±1 (exchange of
excitation). The latter means that in a collision of polar-
ized particles the optical oscillations in them are
quenched and a new collision channel arises for transi-
tions of populations (polarization transitions of the par-
ticles). Thus, this result, which Kazantsev [1] obtained
for the case of levels with angular momenta 0 and 1, is
valid for arbitrary values of the angular momenta. It
will be shown below that the polarization mechanism
for transitions of the particles leads to unique effects in
the Bennett structure of the velocity distribution (Sec-
tion 4).

It follows from the expression (2.8) that under the
resonance scattering conditions considered the arrival
term for the off-diagonal element of the collision inte-
gral is strictly zero:

(3.6)

For the diagonal element of the collision integral, how-
ever, the arrival term is given by the formula

Spb

S1
1( ) m1mq( )

S0
1( ) m1m1' q( )

S 2( ) m1mq( ) 0.=

S0
2( ) m1m1' q( ) Ssaab

2( ) m1m1' q( )
sa sb+ 0=

∑ 2µ 1– Spb= =

× qbd qb1d q1δ q1 qb1 q– qb–+( )d∫
× f m1np m1''n'p1( )r0 m1''m1'''q1( )r0 n'n''qb1( ){

× f + m1'''n''p1 m1' np( )δ p1
2 p2–( )

+ f m1np mn1p1( )r0 mm'q1( )r0 n1n1' qb1( )
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(3.7)

Here the first two terms in the integrand give the contri-
bution of the scattering channels without and with
exchange of the interaction. They have the standard
form: the products of the scattering amplitudes give the
cross sections without exchange (first term) and with
exchange (second term) of the excitation. The third and
fourth terms are due to the interference of the indicated
channels and contain the product of the scattering
amplitudes without and with exchange of the excita-
tion. These terms describe the polarization transitions.
The momentum arguments of the scattering amplitudes
in them have additional shifts by the amount hk/2; this
is due to the vanishing of the polarizations in a collision
just as happens in the case of photon absorption or
emission. In addition, the terms under discussion con-
tain the sums of δ– and δ+ functions, which do not
reduce to a δ function because of the recoil effect.

Thus, even the simplest spatial nonuniformity of the
distribution of randomly colliding polarized particles,
which is introduced by a traveling monochromatic
plane wave, can result in definite phenomena which are
close to the phenomena which an external field gives
because of the dynamical interaction of particles with
the field. Under the conditions indicated at the end of
Section 2, these effects could be substantial. For a
standing electromagnetic wave expansions of the type
(2.14)–(2.16) for the density matrices and the collision
integral will contain not two but an infinite number of
harmonics. High-order harmonics will lead, respec-
tively, to large shifts by the amounts sahk and sbhk.

The formulas (3.5) and (3.7) give the collision inte-
gral for excited particles. The collision integral
S(mm'q) for particles in the ground state is obtained
from these expressions by interchanging the indices
and the sign of k:

(3.8)

We note that the expressions (3.4), (3.5), and (3.7)
implicitly contain effects which are nonlinear in the
field strength: the products r1r–1 and the populations of
the excited states depend on the radiation intensity.

+ f + m'n1' p1 m1' np( )δ p1
2 p2–( )

+ f m1np m1''n'p1 hk/2+( )r1 m1''mq1( )r 1– n'n1qb1( )

× f + mn1p1 hk/2– m1' np( )

× δ– p1 hk–( )2 p2–[ ] δ+ p1 hk+( )2 p2–[ ]+( )

+ f m1np mn1p1 hk/2–( )r 1– mm1''q1( )r1 n1n'qb1( )

× f + m1''n'p1 hk/2+ m1' np( )

× δ– p1 hk/2+( )2 p2–[ ] δ+ p1 hk/2+( )2 p2–[ ]+( ) } .

m m1, m' m1' , m'' m1'',

n n1, n' n1' , k k.–
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4. POLARIZATION TRANSITIONS 
IN A SYSTEM OF TWO LEVELS 

WITH ANGULAR MOMENTA 0 AND 1

It is well known that for large Doppler broadening
the resonance interaction of an atom with a monochro-
matic plane wave results in the formation of a sharp
structure in the distribution of the atoms over the pro-
jection of the velocity on the wave vector of the field.
This Bennett structure has been studied in detail exper-
imentally and theoretically in an enormous number of
works and is the main physical example in laser nonlin-
ear spectroscopy of gases. However, the theoretical
studies neglected polarization transitions, and therefore
it is interesting to clarify the influence of such transi-
tions on the Bennett structure and nonlinear reso-
nances. This question is analyzed below for the exam-
ple of dipole–dipole interaction of two-level atoms with
angular momenta 0 and 1 of the ground and excited
states. The collision integral for this case was found in
[1], and it will be used below.

Before proceeding to the analysis, we shall make
several preliminary remarks. One simplification made
in [1] is that the change in the velocity of the atoms in
collisions was neglected in the exchange and zero-
exchange channels. The estimates show that the real
changes in the direction of the velocity are 10–2–10–3 rad.
The possibility of a manifestation of such a change in
the velocity depends on the ratio of the Doppler and
homogeneous widths. The Kazantsev model, employed
in [1], will be used below. In the absence of any
changes in the velocity the outgoing and ingoing terms
in the collision integrals combine into a single expres-
sion, and in [1] they are presented in such a combined
form. In [1] the features of the collision integral which
are associated with the spatial nonuniformity and
which are analyzed in Sections 2 and 3 are also
neglected in [1]. However, the recoil effect is more sub-
tle than a change in the velocity, and neglecting the lat-
ter makes it natural to neglect the former.

We note two formal circumstances. Instead of using
the Wigner momentum, Kazantsev works with the
velocity v ≡ q/m. The specific values of the angular
momenta (0 and 1) permit making certain simplifica-
tions. Specifically, in describing the angular variables
of the optical electron Kazantsev uses not the spherical
functions YJM(θϕ) but rather their linear combinations
YJM ±  [9]. Finally (for J = 1), xj/r are used instead
of the spherical angles θ and ϕ, and the indices j of the
Cartesian coordinates xj are used instead of the mag-
netic numbers.

In such a Cartesian representation the density matrix
of the excited state is a tensor of rank 2, ρij(v), which is
expanded in [1] in terms of irreducible tensors:

(4.1)

Y JM*

ρij v( )
1
3
---δijη v( ) iεijlη l v( ) η ij v( ),+ +=

η ij η ji, η ii 0,= =
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where η(v), ηl(v), and ηij(v) are real, and εijl is the com-
pletely antisymmetric unit tensor. The nondiagonal ele-
ment ρ(m1mv) in the Cartesian representation is a vec-
tor whose components we shall denote by ρi(v).
Finally, the element of the ground-state density matrix
(J = 0) is a scalar, denoted below as ρ(v).

The Kazantsev collision integral has a very compli-
cated form, due in part to the fact that the anisotropy of
the collisions (wind effect) is taken into account.
According to a small number of works, where calcula-
tions are made for specific potentials [1, 10, 11], the
spectroscopic manifestations of the wind effect are
comparatively small; the line contour changes by not
more than several percent. Consequently, to distinguish
the role of the polarization transitions and to determine
their effect on the Bennett structure and nonlinear res-
onances in a simple and clear form, the wind effect is
neglected in what follows.

The kinetic equations for ρi(v) and the irreducible
tensors (4.1) with the Kazantsev collision integrals [1]
for an interaction with a traveling monochromatic
plane wave have the form

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

Here the angular brackets denote integration over the
velocity, d is the reduced dipole moment matrix ele-
ment for the transition m – m1, Ei is the Cartesian com-
ponent of the field intensity, and γ0 is the probability of
a spontaneous decay of the excited state. In [1] the
change in the velocity in a collision is neglected; this
explains the simple form of Eq. (4.6) for the ground-
state population ρ [W(v) is a Maxwellian distribution].
The set of collision frequencies characterizes the relax-
ation of the population (η), orientation (ηl), and alignment
(ηij) of the excited state as well as the polarization (ρi).

Γ i Ω kv–( )–[ ]ρi iν̃ ρ η–( ) ρi〈 〉=

+ iν ρi〈 〉 ρ ρij ρ j〈 〉–( ) i Giρ ρijG j–( ),+

γ0 ν0 ρ〈 〉+( )η ν̃0ρ η〈 〉=

– ν02Re iρk ρk*〈 〉( ) 2Re iρkGk*( ),–

γ0 ν1 ρ〈 〉+( )η i ν̃1ρ η i〈 〉=

– ν1Re εilkρk ρk*〈 〉( ) Re εilkρkGl*( ),+( )

γ0 ν2 ρ〈 〉+( )η ij ν̃2ρ η ij〈 〉=

– ν2Re i ρi ρ j*〈 〉 ρ j ρi〈 〉 2
3
---δijρk ρk*〈 〉–+ 

 

– Re i ρiG j* ρ jG j*
2
3
---δijρkGk*–+ 

  ,

η ρ+ W v( ),=

Ω ω ωm1m, Gi–
dEi

2h
--------, Γ γ0 ν .+= = =
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Kazantsev found the values of these frequencies
numerically. They are all proportional to the parameter

(4.8)

(N is the density of atoms) and are given by the follow-
ing formulas:

(4.9)

Besides the equality , the relations

(4.10)

also hold strictly, so that only 9 of the 12 parameters in
Eqs. (4.9) are independent. The dependence of νκ , ,
and  on κ (κ = 0, 1, 2) means that the model of non-
degenerate states in this case will be a poor approxima-
tion. The terms on the right-hand sides of Eqs. (4.2)–
(4.5) with the frequencies  and  are due to transfer
of excitation in collisions, and the terms with Gi are due
to the interaction with a field. We shall be interested pri-
marily in the terms with the frequencies , describing
the polarization transitions of the particles, orientation,
and alignment.

The analogy between the polarization and field
terms is interesting: the former terms are obtained from
the latter terms by making the substitution

(4.11)

Therefore, the polarization transitions are equivalent to
induced transitions in an effective field. The analogy is
strengthened by the fact that in weak fields ρi ∝  iGi, i.e.,
the effective field is proportional to the amplitude of the
external field. The big difference lies in the factor i
(phase shift by π/2), as a result of which, as will be
shown below, the nonlinear resonances possess a non-
trivial form. The indicated analogy sheds light on the
existence of the recoil effect in the collision integral,
which we discussed in Section 3.

We call attention to an important fact: the integrals
of the polarization terms over v, as one can see from
Eqs. (4.3)–(4.5), are strictly zero. Consequently,

(4.12)

Thus, the “collisions of coherences” (or polarizations)
do not influence the velocity-integrated populations

γ γ0 λ /2π( )3N=

ν 5.674γ, ν̃ 1.168γ, ν– 0.72γ,–= = =

ν0 5.30γ, ν̃0 ν0, ν0 0.783γ,= = =

ν1 7.147γ, ν̃1 1.473γ, ν1– 0.944γ,–= = =

ν2 7.623γ, ν̃2 0.273γ, ν2 0.095γ.= = =

ν̃0 ν0=

ν ν1 ν̃1, 2ν1+ ν ν̃ ,+= =

ν̃κ

νκ

ν̃ ν̃κ

νκ

Gi νκ ρi〈 〉 .

γ0 η〈 〉 2Re i ρ〈 〉 Gk*( ),–=

γ0 ν1 ν̃1–( ) ρ〈 〉+[ ] η l〈 〉 Re εilk ρk〈 〉 Gl*( ),=

γ0 ν2 ν̃2–( ) ρ〈 〉+[ ] η ij〈 〉

=  Re i ρi〈 〉 G j* ρ j〈 〉 Gi*
2
3
---δij ρk〈 〉 Gk*–+ 

  .–
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〈η〉 , orientation 〈η l〉 , and alignment 〈η ij〉; they change
only the velocity distribution, creating in them sign-
alternating elements of the structure on the excited
level. Changes in 〈η〉 , 〈η l〉 , and 〈η ij〉  are generated only
by transitions induced directly by the field. By virtue of
Eq. (4.6) the same sign-alternating structure exists in
the population ρ(v) of the lower level.

The complete Kazantsev collision integral contains
terms in addition to the terms written out in Eqs. (4.2)–
(4.5), which are due to the wind effect (specifically, the
parameter Γ in [1] is of a tensor character and depends
on the velocity; the terms coupling the equations for the
population and the alignment are also dropped). These
terms are dropped for the reasons presented above.

We shall solve the system of equations (4.2)–(4.6)
by the method of successive approximations in the
amplitude of the field. In the zeroth approximation all
atoms are in the ground state and possess a Maxwellian
velocity distribution:

(4.13)

In an approximation linear in Gi , the equation for ρi(v)

(4.14)

has the form of the standard model of strong collisions
with a purely imaginary arrival frequency iνq. The solu-
tion of Eq. (4.14) has the form (see [3, 4, 12])

(4.15)

(4.16)

The work performed by the field P(Ω) per unit time
(or the absorbed power) is given by the general formula
[3, 4]

(4.17)

In the linear approximation (4.16), we obtain

(4.18)

Therefore, the quantity Re〈L〉  describes the frequency
dependence of the power or the contour of the spectral
absorption line. The formula (4.16) determines the so-
called Rautian–Sobel’man contour [12]. If the arrival
frequency possessed a real part, the expression (4.16)
would contain (in the limit of small Doppler broaden-

η η l η ij 0,= = =

ρ v( ) W v( ) π1/2v T( ) 3–
v/v T( )2[ ] ,exp= =

v T 2T /m.=

Γ i Ω kv–( )–[ ]ρi v( ) iνq ρi〈 〉 iGiW v( ),+=

νq ν̃ ν+ 2ν1 1.888γ,–= = =

ρi v( ) iGiL Ω v,( ),=

L Ω v,( )
W v( )

Γ i Ω kv–( )–[ ] 1 iνqw–( )
----------------------------------------------------------------,=

ρi〈 〉 iGi L〈 〉 , L〈 〉 w
1 iνqw–
--------------------,= =

w
W v( ) vd

Γ i Ω kv–( )–
---------------------------------.∫=

P Ω( ) 2hωRe i ρi〈 〉 Gi*( ).–=

P Ω( ) 2hω Gi
2Re L〈 〉 .=
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ing) Dicke line narrowing. Since in our case the arrival
frequency is purely imaginary, the contour (4.16)
broadens as Γ increases and undergoes a shift. In limit-
ing cases the following approximate expressions follow
from the formula (4.16):

(4.19)

(4.20)

It is evident from the expressions presented that for low
collision frequencies the maximum of the line occurs at
the point Ω1 = –2νq. The shift occurs in the short-wave-
length direction, since νq < 0. The value of Re〈L〉  at the
maximum decreases with increasing Γ. This decrease is
monotonic, and for Γ @ kvT the contour becomes
Lorentzian with a maximum at the point Ω2 = –νq. The
contour is asymmetric in accordance with general
model conclusions [12]. Figure 2 illustrates the contour
properties listed above. The relation between Γ and νq

in the calculations were chosen according to the data
(4.9), i.e.,

Γ/νq = –3.

Thus, Dicke narrowing does not occur for resonant
dipole-dipole interactions of identical colliding parti-
cles. This factor is due to the absence of the arrival term
S(2)(m1mq) (see Eq. (3.6)). Since the forward scattering
amplitudes appear in the outgoing term S(1)(m1mq), the
conclusion drawn remains in force when the change in
velocity in a collision is taken into account. The imagi-
nary nature of the arrival frequency (in terms of the
strong-collisions model) is evidently due to the phase

L〈 〉 π1/2

kv T

--------- 1 2Γ
π1/2kv T

------------------
Ω 2νq+( )2

kv T( )2
--------------------------–– ,≈

Γ Ω  ! kv T ,,

L〈 〉 Γ i Ω νq+( )–
kv T( )2/2
Γ iΩ–

---------------------+
1–

,≈

Γ  @ kv T .

–2 0

1

2

3

4

–1 1 2
Ω/kvT

Fig. 2. Plot of the function π–1/2kvTRe〈L〉  (line contour).
The curves 1, 2, 3, and 4 correspond to Γ/kvT = 0, 0.2, 0.5,
and 1.0, respectively. 
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shift by π/2 in the exchange channel as compared with
the zero-exchange channel; this is characteristic for res-
onance processes.

The quadratic approximation is found from Eqs.
(4.3)–(4.5), if in these equations ρi and 〈ρ i〉  are taken in
the first approximation (4.14) and (4.15) and ρ and 〈ρ〉
in the zeroth approximation (4.12). The polarization
tensor Gi , which it is desirable to decompose in
terms of irreducible tensors, appears in this approxima-
tion:

(4.21)

The equations for the quantities which are quadratic in
the field have the form

(4.22)

The quantities 〈η〉 , 〈η i〉 , and 〈η ij〉  are found from
Eqs. (4.22) by integrating over v. Substituting the
expressions obtained into Eq. (4.22) gives

(4.23)

In this approximation η, η i, and η ij are proportional
to, respectively, J, Ji, and Jij and consist of identical
structural elements which differ only by the weight

G j*

GiG j*
1
3
---δij J iεijlJl Jij,+ +=

Jij J ji, Jii 0,= =

J GkGk*, Ji
i
2
---εilkGkGl*,= =

Jij
1
2
--- GiG j* G jGi*

2
3
---δijGkGk*–+ 

  .=

γ0 ν0+( )η ν̃0W v( ) η〈 〉 2JRe L iν0 L∗〈 〉 1–( )[ ] ,–=

γ0 ν1+( )η i

=  ν̃1W v( ) η i〈 〉 2JiRe L iν1 L∗〈 〉 1–( )[ ] ,–

γ0 ν2+( )η ij

=  ν̃2W v( ) η ij〈 〉 2JijRe L iν2 L∗〈 〉 1–( )[ ] .–

η v( )
2J

γ0 ν0+
----------------=

×
ν0

γ0
-----W v( )Re L〈 〉 ReL Re iν0 L∗〈 〉 L( )–+

 
 
 

,

η i v( )
2Ji

γ0 ν1+
----------------=

×
ν̃1W v( )

γ0 ν1 ν̃1–+
---------------------------Re L〈 〉 ReL Re iν1 L∗〈 〉 L( )–+

 
 
 

,

η ij v( )
2Jij

γ0 ν2+
----------------=

×
ν̃2W v( )

γ0 ν2 ν̃2–+
---------------------------Re L〈 〉 ReL Re iν2 L∗〈 〉 L( )–+

 
 
 

.
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with which they appear in the expression (4.23). The
term ReL determines the Bennett structure of an
approximately Lorentzian form with characteristic
width Γ and lying near the velocity k · v = Ω. The first
terms in the braces describe the so-called collisional
band of uniform saturation with a Maxwellian shape,
and its frequency dependence is identical to the line
contour (4.16) obtained in the first approximation.
These two elements are well known [3, 4]. The new ele-
ments which are due to the polarization transitions are
described by the terms Re(i L). In accordance
with the general results [the relations (4.12)], they do
not change the velocity integrals of the quantities and
only influence the velocity distribution. We shall write
out the explicit expressions:

(4.24)

(4.25)

(4.26)

It is evident that the main term in the expression (4.25)
is the term that is antisymmetric as a function of Ω – k · v.
The same antisymmetric term is present also in
Eq. (4.24). The ratio of the antisymmetric terms in
Eqs. (4.25) and (4.24) is , which, according to
Eq. (4.9), is −0.41, 0.50, and −0.050 for κ = 0, 1, and 2,
respectively.

Thus, the polarization transitions and the imaginary
nature of the arrival frequency (iνq) form an antisym-
metric component in the Bennett structure, and because
of the variation in the signs and the absolute values of

 its contribution is different for different irreducible
tensors.

To calculate P(Ω) to within |G|4, i.e., to determine
the first nonlinear corrections, it is necessary to find
ρi(v) in the cubic approximation. We shall not do this:
just as in other related phenomena of nonlinear spec-
troscopy, 〈ρ i〉  will not contain sharp nonlinear reso-
nances, even though a Bennett structure is present. To
determine the latter it is necessary to use one of the
variants of the probe-field method, which “probes” the
velocity distribution produced by a strong field. Let us
consider the simplest method of a counterpropagating
probe wave with the same frequency ω [7]. In this case
the nonlinear interference effects are negligible and
only the change in the velocity distribution need be

νκ L∗〈 〉

ReL
W v( )

1 iνqw– 2
-------------------------=

×
1 νqw''+( )Γ Ω k v⋅–( )w'νq–

Γ2 Ω k v⋅–( )2+
-------------------------------------------------------------------------,

νκRe iL L∗〈 〉( ) W v( )

1 iνqw– 2
-------------------------=

× w''Γ Ω k v⋅–( )w'–

Γ2 Ω k v⋅–( )2+
-----------------------------------------------νκ ,

w Ω( ) w' Ω( ) iw'' Ω( ), w' Ω–( )+ w' Ω( ),= =

w'' Ω–( ) w'' Ω( ).–=

νκ /νq

νκ
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taken into account [3, 4]. The equation for the off-diag-
onal element ρiµ, induced by the counterpropagating
wave (wave vector –k, amplitude Eiµ), has the form

(4.27)

Terms where η and ρij must be expressed using
Eqs. (4.23) of the quadratic approximation and 〈ρ iµ〉
from the linear approximation are collected on the
right-hand side. In calculating the work performed by
the probe field

(4.28)

a polarization tensor of the probe field  will arise.
We shall expand it in terms of irreducible tensors as

(4.29)

After simple transformations, we arrive at the relations

(4.30)

(4.31)

According to Eq. (4.9), the quantities γ0 + νκ do not
vary much; their difference from the average value does
not exceed 20%. The frequencies  differ in sign, and
they differ in absolute value by an order of magnitude.
This also true of the collection of frequencies . The
quantities aκ, bκ, and cκ possess spectral contours which
are independent of κ. The terms aκ describe a structure-
less band with an almost symmetric Doppler width, if

Γ i Ω k v⋅+( )–[ ]ρiµ iνqW v( ) ρiµ〈 〉– iGiµW v( )–

=  2iνqη v( ) ρiµ〈 〉– iν η v( )δij ρij v( )–[ ] ρ jµ〈 〉–

– i Giµη v( ) ρij v( )G jµ+[ ] ,

Giµ
dEiµ

2h
-----------.=

Pµ Ω( ) 2hωRe i ρiµGiµ*〈 〉( )–=

GiµGiµ*
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1
3
---δij Jµ iεijlJlµ Jijµ.+ +=

Pµ Ω( )
2hω
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× 4
3
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2
---+ 

  L〈 〉– a0 b0 c0+ +( ) L〈 〉 J Jµ




+ 1 iν L〈 〉–( )

---× a1 b1 c1+ +( )2JlJlµ a2 b2 c2+ +( )JijJijµ+[ ]




,

aκ
2

γ0 νκ+
----------------

ν̃κa Ω( )
γ0 νk ν̃k–+
---------------------------,=

bκ
2b Ω( )
γ0 νk+
----------------, cκ

2νκc Ω( )
γ0 νk+

--------------------,–= =

a Ω( ) L〈 〉 w, b Ω( )
ReL

Γ i Ω k v⋅+( )–
-------------------------------------- ,= =

c Ω( )
Re i L∗〈 〉 L( )
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-------------------------------------- .=
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νk
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Γ ! kvT. The functions b(Ω) and c(Ω) can be presented
as

(4.32)

(4.33)

For Γ ! kvT Reb(Ω) and Rec(Ω) make the main con-
tribution to the nonlinear component Pµ(Ω). It is evi-
dent from the expressions (4.32) and (4.33) that b(Ω)
will determine the symmetric part of the nonlinear res-
onance of the form Γ/(Γ2 + Ω2), and c(Ω) will deter-
mine the antisymmetric part Ω/(Γ2 + Ω2). The ratio
|c(Ω)/b(Ω) | is  in order of magnitude.

We shall now consider the polarization properties of
the nonlinear resonances. We choose for the z-axis the
direction of the wave vector. We shall consider the lin-
ear and circular polarizations, which are usually used,
and we shall introduce the following symbolic designa-
tions: we denote the linear polarizations along the x and

y axes by  and , respectively, and we denote by
“+” and “–” the clockwise and counterclockwise circu-
lar polarizations. We take JJµ as 1. The numerical val-
ues of JlJlµ and JijJijµ for the combinations of the indi-
cated polarizations in the strong and counterpropagat-
ing waves are presented in the table. Combining the
signals corresponding to different columns in the table,
we can identify the contributions of various irreducible

tensors. For example, the sum of the signals ( ) +

2( ) will contain only a scalar part, the difference
(++) – (+–) will be proportional only to the orientation,

the difference ( ) – ( ) will be proportional only
to the alignment, and so on.

We studied above the simplest nonlinear resonance
of a counterpropagating probe wave. Similar asymmet-
ric elements of nonlinear resonances also exist in the
absorption spectrum of the probe field, resonant to
adjoining transitions (e.g., m1 – l, m – g).

5. DISCUSSION

One of the main ideas of nonlinear saturation spec-
troscopy consists in describing the relaxation and non-
linear effects using additive, independent terms in the
quantum kinetic equation—the field, dynamic term

b Ω( ) L〈 〉
Γ iΩ–
---------------- 1 iνqw–( ) 1– w''

Ω
------+ ,=

c Ω( )
i
2
--- 1 iνqw– 2 w 2

Γ iΩ–
---------------- ww''

Ω
----------– 

  .=

νκ /kv T

Table

(↑↑ ) (↑→) (↑+) (++) (+–)

JJµ 0 1 1 1 1

JlJlµ 1 0 0 1/4 –1/4

JijJjiµ 2/3 –1/3 1/6 1/6 1/6
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i[V, ρ] (V is the atom–field interaction Hamiltonian)
and the collision integral S, where the thermostat is
assumed to be in an equilibrium state [3, 4, 13]. This
idea has been used as the basis for solving an enormous
number of specific problems and for interpreting many
phenomena; it has become a self-evident, common
truth. However, this important idea has turned out to be
unsound for self-broadening or, more generally, for the
interaction of a buffer gas (“thermostat”) with suffi-
ciently powerful radiation. Three types of specific non-
linear effects associated with the collision integral were
revealed in Sections 2–4. First, there is the obvious
dependence of the relaxation characteristics on the
intensity, frequency, and polarization of the field. The
second factor is more subtle: specific polarization tran-
sitions that do not exist in the absence of a field. These
transitions are of an interference nature, since they are
due to the interference of exchange and zero-exchange
scattering channels. They are unusual also in the kinetic
respect, since the number of polarization transitions per
unit time is proportional to the product of not the con-
centration of the colliding particles but rather the opti-
cal coherences induced by the field. The polarization
transitions, by virtue of their interference origin, pro-
duce sign-alternating elements in the fine structure of
the velocity distribution with a zero integral and, corre-
spondingly, asymmetric elements in the nonlinear reso-
nances of the probe field.

The third mechanism for coupling of the collision
integral with intense radiation is the field-induced spa-
tial nonuniformity of the buffer and experimental gas.
This factor, similarly to the dynamic interaction of an
atom and a field, engenders a unique recoil effect,
which is manifested through the scattering amplitude
and the density matrix of the colliding atoms.
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Abstract—It is shown on the basis of numerical simulation and an experimental investigation that a streamer
can propagate in a step manner in an electronegative gas. The experiments and most calculations were per-
formed for air under close to normal conditions. The step motion is associated with the appearance of a second-
ary ionization wave near the electrode and propagation of this wave along the channel of the streamer; this wave
maintains the channel in a conducting state and allows for the propagation of the streamer in a nonuniform
external field over distances which are inaccessible under ordinary conditions of a streamer discharge. Sim-
ulation in heated air, oxygen, and SF6 demonstrated that the phenomenon studied is common for various
gases and that the special features of its manifestation remain in a wide range of decay rates of the streamer
channel. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A streamer is the structurally simplest component of
a long spark. A strong electric field wave, on whose front
intense ionization produces plasma, creates a streamer
channel. The small specific energy release leaves the gas
in the channel essentially cold, as a result of which the
electrons produced vanish quite rapidly in electron-ion
recombination reactions and they also vanish in an elec-
tronegative medium (largely because of attachment to
neutral particles). The loss of electrons is essentially not
made up by ionization, which in a cold gas requires a
strong electric field, which, as a rule, is not attainable in
the channel behind the wave front (behind the streamer
head). The voltage drop on the channel, increasing in
time and with distance, decreases the potential and the
field of the streamer head, as a result of which streamer
growth slows down and completely stops in the gaps
with a sharply nonuniform electric field.

In the streamer process explained above there seems
to be no place for the step formation that is typical for
many manifestations of a long spark. The step develop-
ment of a spark discharge in long gaps with sharply
nonuniform electric fields is well known from experi-
ments [1–3]. Most such data refer to the so-called
leader process. The leader mechanism has been studied
in greatest detail for air, for which extensive experi-
mental data have been accumulated for lightning and
multimeter laboratory sparks. The step development of
a leader depends on the conditions, but it is always
associated with the complicated structure of the leader,
first and foremost, the processes occurring in the
streamer zone in front of the head of the leader channel.
This zone is filled with numerous streamers, succes-
sively starting from the head with frequency 1010 s–1

[3]. The streamers together form a current, which, feed-
1063-7761/00/9104- $20.00 © 0724
ing the leader, ultimately heats the channel of the leader
up to arc temperatures. The space-charge cover favors
heating. Streamers inject this charge into the streamer
zone, and as the leader channel grows the charge sur-
rounds it. The reverse field generated by such a charged
cover, by lowering the radial field on the outer surface
of the channel, whose potential is ~1–10 MV and
higher (the latter is characteristic for lightning), pre-
vents ionization expansion. This maintains the radius of
the channel at relatively small values and gives rise to a
high density of energy release, which fundamentally
distinguishes a leader from a streamer [3]. The lifetime
of the leader is essentially infinite, and it is capable of
growing to tens of kilometers; ultimately, electric fields
of the order of the fields in arcs are sufficient to main-
tain the leader channel in a conducting state.

A typical example of a step spark process is a step
leader of a negative long spark or lightning. The phe-
nomenon recorded in streak photographs as a series of
successive flashes of a channel continuously increasing
in length is actually due to the interaction of the main
channel, growing extremely slowly from the cathode,
and volume positive leaders moving toward it [3, 4].
Each next volume leader starts from the interior of the gap,
using the local intensification of the field at the ends of the
negative anode-directed streamers of the main leader,
which have still not lost their conductivity. The high-
conductivity streamer ends become polarized in an
external field approximately in the same way as small
metal rods placed in the same location (the experiment
showed that metal and plasma are completely “inter-
changeable” here). Cathode-directed streamers can be
initiated from them, just as from metal electrodes.
Then, if the field is sufficiently strong, a positive leader
can be initiated. This leader is named a volume leader
2000 MAIK “Nauka/Interperiodica”
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after the location where it appears.1 When such a vol-
ume leader reaches the main leader its channels merge
and, at the end of the wave charge-exchange process,
acquire a common potential. The rapid release of
energy accompanying charge transfer intensifies the
radiation and produces a bright flash, demonstrating an
instantaneous, step increase in the length of the main
leader by the length of the volume leader which has
grown (the latter emits much more weakly as it grows;
it is virtually indistinguishable in lightning, though it is
clearly recorded in the laboratory, where image con-
verters with light amplification are used [4]).

The present work studies a streamer, which in con-
trast to a leader does not have interacting structural
components that can produce a quasi-step structure.
Here one can talk only about growth with a truly step
nature. To observe the process the potential of the
streamer head must vary nonmonotonically, growing
repeatedly after each interval of decrease. If the artifi-
cial situation with a step voltage pulse on a gap is
neglected completely, this is possible only with initia-
tion of a secondary ionization wave. It should restore
the conductivity of the plasma in the existing channel
and consequently increase the potential of the head,
determining the velocity of the streamer.

The propagation of a secondary wave, called a sec-
ondary streamer, was observed after the streamer cov-
ered the discharge gap (see, for example, [5–7]). At the
moment of overlapping the head of the positive
streamer acquires the cathode potential and the entire
applied voltage “falls” across the channel. After the
redistribution of the surface charge of the channel is
completed, the current along it stabilizes and the field E
becomes inversely proportional to the streamer conduc-
tivity per unit length. Consequently, the strongest field
occurs near the start location, where the plasma
decayed in the longest time. If this field exceeds the
threshold, for which the ionization rate becomes
greater than the electron loss rate, a secondary ioniza-
tion wave propagating from the channel base to the
head forms [6, 7]. It has been reported that the second-
ary streamer has also been observed before the gap is
covered [5, 8].

Numerous numerical simulations (see, e.g., the cita-
tions in [3, 9]) as well as analytical works (see, e.g.,
[10, 11]) examine regimes where a streamer propagates
either with a constant velocity (ordinarily in a uniform
external field) or it possesses two distinct phases: accel-
eration and subsequent deceleration down to complete
stoppage. (If the streamer is simulated in a short time
interval, then there may not be enough time for the sec-
ond phase to occur.) At the same time, experimental
evidence [12] shows that, as the voltage across the dis-
charge gap continuously increases, the streamer can
move in a step manner with its velocity slowing to zero,

1 The much slower negative leader from the opposite plasma end
does not play any special role in the organization of a step, though
it is important for maintaining charge balance [4].
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after which the streamer once again accelerates. Obser-
vations of this phenomenon are very incomplete, and
there is no theoretical explanation for it. To detect a step
streamer the leading edges of the voltage pulses must
not be too short (longer than 10–7–10–6 s), the electrode
radii must be small (less than 1 cm), and there should be
no delay in the appearance of the first electron in the
region of the strong field after a voltage is applied to
the discharge gap. Since the repeated “revival” of the
streamer after stoppage necessarily presupposes resto-
ration of conductivity in its channel by a second wave
of ionization, in a step streamer process the latter wave
should arise regularly because of the voltage increasing
across the gap.

In this paper, we present the results of an experimen-
tal investigation of the step development of a positive
streamer in air in a sharply nonuniform electric field (the
conditions are similar to those described in [12]) and a
numerical simulation is performed for the experimental
conditions that makes it possible to determine the rea-
sons for the step nature. It is shown that a streamer is
capable of preserving a galvanic coupling between its
head and the start location for times much longer than
the lifetime of a cold streamer plasma, as a result of
which the streamer can propagate over distances that
are unattainable for previously known mechanisms of
streamer propagation. The results of the simulation of
the step development of a streamer transfer to other
gases (heated air, oxygen, SF6), which makes it possi-
ble to determine the special features of the phenome-
non under study in gases with substantially different
electron loss rates.

2. DESCRIPTION OF THE THEORETICAL 
MODEL AND THE EXPERIMENTAL 

CONDITIONS

Atmospheric-pressure air at temperature T = 300–
600 K as well as oxygen and SF6 were chosen as the
gases. The purpose of the simulation was to determine
the qualitative aspects of the process. Consequently, a
very simple one-and-half dimensional (1.5D) model of
a streamer was used [3]. In this model the radius of the
streamer channel is assumed to be constant and given a
priori, the plasma parameters are averaged over the
cross section of the channel, and the longitudinal elec-
tric field on the axis is assigned to the entire cross sec-
tion, while the radial field inside the channel is
neglected. All radial processes, including diffusion, are
neglected. As a result, the particle densities and the lon-
gitudinal electric field depend only on the axial coordi-
nate x and the time. The excess electric charge is
assumed to lie only on the surface of the channel and in
the streamer head; this makes it possible to calculate
the longitudinal electric field using simple analytical
formulas relating the excess electric charge in the com-
puted section of the channel and the electric field cre-
SICS      Vol. 91      No. 4      2000
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ated by this charge, instead of solving the Poisson equa-
tion numerically.

The 1.5D model is used because the main events to
be investigated occur for channel lengths of tens of cen-
timeters, while the recorded lengths of streamers,
reproducible in two-dimensional models, are at least an
order of magnitude shorter [3]. As is well known, the
main drawback of the 1.5D model is that the streamer
radius rs, on which the maximum field on the front of
the ionization wave and the initial density of the plasma
produced strongly depend [3, 9], is set a priori. None-
theless, the model is used quite extensively in numeri-
cal experiments when qualitative relations in the
streamer process must be given. This is due to the fact
that many important streamer parameters, including the
velocity and conductivity per unit length of the plasma
channel produced, depend not on the radius rs of the

streamer channel but rather on the product , and

since the maximum field at the wave front Emax ∝  ,
the quantitative uncertainty of the results is not so large
for m ≈ n. (For a streamer in air, ordinarily, m = 1–1.5
and n = 1–2.)

The equations of the model, the kinetic scheme for
air, and the computational method are described in
detail in [9, 13]. The numerically solved equations are
the Poisson equation, the equation of balance of
charged particles (electrons and positive and negative
ions), and neutral active particles (excited particles and
atoms), which can influence the electron balance in the
streamer channel. In the simplest form, for a single type
of active particle (excited molecules), positive and neg-
ative ions, this system of equations has the form

(1)

(2)

(3)

(4)

(5)

where Na, ne, np, nn, and n* are, respectively, the densi-
ties of the neutral molecules of the gas as a whole, all
electronegative components, electrons, positive and neg-
ative ions, and excited particles; Vk is the drift velocity

rs
nEmax

m

rs
1–

∆ϕ eε0
1– ne nn np–+( ),=

∂ne

∂t
-------- div neVe( )+ kiN ki*n∗+( )ne ka' ka''N+( )Nane–=

+ kd N kd*n∗+( )nn βeinpne– S f ,+

∂np

∂t
-------- div npVp( )+ kiN ki*n∗+( )ne=

– βeinpne βiinpnn– S f ,+

∂nn

∂t
-------- div nnVn( )+ ka' ka''N+( )Nane=

– kd N kd*n∗+( )nn βiinpnn,–

∂n∗
∂t

--------- k∗ Nne ki*n∗ ne– kq*Nn∗ ,–=
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of charged particles of the type k; ki and  are the rate
constants for electron-impact ionization of unexcited
and excited molecules;  and  are the rate constants
for dissociative and three-body attachment of electrons
to molecules; kd and  are the rate constants for elec-
tron detachment from negative ions colliding with
unexcited and excited molecules; k* and  are the rate
constants for excitation and quenching of electronically
excited molecules; βei and βii are electron–ion and ion–
ion recombination coefficients; Sf is the source of elec-
trons produced as a result of photoionization; and, ϕ is
the electric field potential.

The actual complexity of the system being solved
depends on the composition of the gas, which largely
determines the mechanisms of the decay of the plasma
in the streamer channel. In air the rate of plasma decay
at the early stage is determined by dissociative recom-
bination of electrons with complex positive ions, while
at the latter stage it is determined by three-particle
attachment of electrons to O2 molecules. The negative
ions formed in the process can lose electrons in colli-
sions with O atoms and other active particles produced
in the streamer head. Consequently, when describing
the dynamics of streamer development in air at times
comparable to or longer than the lifetime of the
streamer plasma, it is necessary to take account of the
equations of balance of complex ions (their formation
substantially accelerates electron-ion recombination) and
active particles, in collisions with which negative ions are
efficiently destroyed. As a result, about 50 components
and more than 200 ion-molecular processes are taken into
account. The kinetics of the decay of a streamer chan-
nel in SF6 is much simpler. Here the main electron loss
channel is electron attachment to molecules, and elec-
tron detachment from negative ions can be neglected, in
part because of the high binding energy of the outer
electron in negative ions and in part because of the low
density of active particles in the streamer channel. Con-
sequently, all three charged components and four reac-
tions (impact ionization, electron attachment to mole-
cules, and electron–ion and ion–ion recombination) can
be circumvented when describing the decay of a
streamer plasma in SF6.

The system of Eqs. (1)–(5) is closed and self-consis-
tently describes processes near the streamer head,
where most ionization occurs, and in the streamer chan-
nel, where the plasma decays. The system of equations
under study was solved numerically using finite differ-
ences with an adaptive grid. The computational step
was compressed in the direction of the axis near the
anode (in a region of the order of the anode radius) and
in the streamer head, and it was the same in all other
regions of the streamer.

The kinetic scheme employed in this work for cold
air is described in [9, 13]; the scheme for hot air is
described in [14]. The processes in oxygen were taken

ki*

ka' ka''
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Fig. 1. Streamer characteristics in air with a rectangular voltage pulse: (a) time variation of the streamer velocity vs and
streamer length Ls ; (b) spatial distribution of the electric field for various moments in time.
by analogy with the processes in air (with the exception
of nitrogen molecules), and the kinetic scheme for SF6

is taken from [15]. The general approach for determin-
ing the rate constants of various processes consist of the
following. The rate constants of the electron processes
(and the electron drift velocity), in the absence of
experimental data, were calculated by solving Boltz-
mann equation numerically in the two-term approxima-
tion. The rate constants of all other processes, as a rule,
were extracted from the experimental data.

The description of the experimental setup and the
results of certain measurements are presented in [12].
The experiments were performed in atmospheric-pres-
sure air at a temperature of about 300 K in a rod-plane
gap up to 130 cm long. The rod anode, 1 cm in diame-
ter, terminated with a sharp conical head, about 5 cm
long. Voltage pulses with an exponentially rising front
were applied to the gap. The initial, nearly linear sec-
tion, where the rate of growth of the voltage changed by
less than a factor of 2, was used for the measurements.
The average slope of the working section of the front
reached 3500 kV/µs. To prevent breakdown of the gap,
in most experiments the voltage across the gap was cut
off with a spark discharger 0.3–4 µs after the pulse gen-
erator was actuated.

Continuous streak photographs of streamers were
recorded, using an image converter, to measure the
velocity of the streamers. Since each streamer burst
consisted of a large number of branching streamers
developing from a needle-shaped anode, measures
were taken to prevent overlapping of many streamers,
which smeared the picture, during the recording pro-
cess. A narrow slit (1–3 cm) oriented from one elec-
trode to another was used for this. In a number of exper-
iments the streamer burst was confined between dielec-
tric barriers, which sharply decreased the number of
branchings and streamers developing in parallel. All
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
this simplified the interpretation of the streak pictures
and increased their information content.

3. COMPUTATIONAL 
AND EXPERIMENTAL RESULTS

Most publications describe the results of numerical
simulation of streamers with a constant voltage across
the discharge gap. In reality this is possible only if an
extremely steep voltage pulse with an approximately
1 ns leading edge is applied or if, because of the statis-
tical delay in the appearance of the first electron in the
strong-field region or because of the very large radius
of the anode, the streamer starts during the pulse ampli-
tude. An example of typical computational data for
such a case is displayed in Fig. 1, which reproduces the
propagation of a streamer from a 0.5 cm in radius
spherical anode with a 100 kV rectangular voltage
pulse. The medium is air at pressure p = 1 atm and tem-
perature T = 300 K. The radius of the streamer channel
was assumed to be rs = 0.05 cm.

The streamer enters an external field of less than
1 kV/cm, having propagated only 7 cm into the gap in
7 ns. Nonetheless, it continues to grow actively for at
least another 100 ns. In this time the velocity vs
decreases almost by two orders of magnitude down to
107 cm/s, which results in virtually complete stopping
of the streamer at a distance of about 25 cm from the
anode. Thus, with the exception of a short section of
about 1 cm near the anode, the entire further develop-
ment of the streamer proceeds in the deceleration
regime. The potential and field at the streamer head
decrease, and the electron density ne in the plasma pro-
duced decreases with them. As far as the old sections of
the channel closer to the anode are concerned, there is
enough time for the initially high values of ne to
decrease appreciably as a result of electron attachment
to O2 molecules and dissociative electron–ion recombi-
SICS      Vol. 91      No. 4      2000



728 ALEKSANDROV, BAZELYAN
nation. As a result, the electron density becomes more
or less uniform along the entire streamer channel. The
longitudinal electric field Ec, which in the channel does
not rise above 5 kV/cm (Fig. 1b), also varies negligibly
in space and time.

Streamer propagation on the front of the voltage
pulse is of a completely different character. It is evident
from the computational results presented in Fig. 2 and
describing the process for an anode of the same radius
at a linearly rising pulse with slope 500 kV/µs that the
streamer, starting at a voltage of about 25 kV, subse-
quently moved with acceleration up to 85 ns. This was
sufficient for the previously produced sections of the
channel to lose conductivity appreciably, hindering
transfer of the rising voltage from the anode to the
streamer head. The length of the acceleration section
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Fig. 2. Time variation of the streamer length (1) and position
of the secondary wave of ionization (2) in air at linearly ris-
ing voltage pulse with slope 500 kV/µs.
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Fig. 3. Evolution of the electric field distribution in a
streamer for air at linearly rising voltage pulse with slope
500 kV/µs.
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hardly reached 2 cm. Subsequently, the streamer velocity
decreased and at t ≈ 400 ns approached the threshold value
107 cm/s, for which streamer motion in air can still be
observed in experiments. The growth of the streamer
channel virtually ceased at a distance of 10–11 cm (this is
two times less than with a 100 kV rectangular pulse),
though the voltage across the gap by this time
exceeded 200 kV.

Such “wasteful” expenditures of voltage are due to
the change in the mechanism leading to the formation
of current in the streamer channel. If the voltage across
the gap remains unchanged, the current in the channel
is determined by delivery of charge to the newly pro-
duced sections of the streamer, which must be charged
up to the head potential ϕh:

where Cc is the capacitance per unit length of the chan-
nel. Since the streamer velocity vs is proportional to the

ionization rate νi ∝  , where m > 1 (Eh is the electric
field in the streamer head) [3], the dependence of the
current on the potential ϕh is very strong: the current
decreases rapidly as the voltage drop across the decay-
ing channel increases. Such a streamer propagation
regime cannot lead to growth of the longitudinal field in
the channel.

Conversely, when the voltage across the gap
increases, another term which does not depend on the
rate of growth of the streamer is added to the expression
for the current:

where C is the total capacitance of the streamer and ϕav
is the average potential along the streamer channel,
varying from the applied voltage U(t) in the channel
base to ϕh at the head. This second current component
additionally charges the already produced channel as
the voltage across the gap increases. If the derivative
∂ϕav/∂t is large and the second term is larger than the
first term, the total current does not change much dur-
ing deceleration and even with complete stoppage of
the streamer. In a decaying channel, where the conduc-
tivity per unit length decreases, this current can
increase the longitudinal electric field

where µe is the electron mobility. The field increases as
the conductivity decreases at a given section of the
channel. Consequently, the high-field region at first
forms near the anode, where the channel lifetime is
longer, and then it gradually advances in the direction
of the streamer head. This is manifested as the motion
of a secondary wave of intensification of the field,
accompanied by ionization, along the channel (Figs. 2
and 3). Ionization limits the amplitude of the field
wave. The field in the channel cannot rise much above

i Ccv sϕh=

Eh
m

i Ccv sϕh C
∂ϕav

∂t
-----------,+≈

Ec i πr2eneµe( ) 1–
,=
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the threshold value, because this would increase the rate of
ionization very sharply and it would increase the electron
density at this location of the channel and the plasma con-
ductivity, which in turn would weaken the field. It is evi-
dent from Figs. 3 and 4 that the field behind the wave front
is maintained somewhat lower than the threshold field
Ei ≈ 30 kV/cm for unperturbed air. This is as it should be,
because the composition of the gas mixture in the streamer
channel is altered by the production of active negative-ion
annihilators, first and foremost, O atoms [9, 13]. On
account of electron detachment from negative ions the
positive balance of electrons in a channel is maintained by
the field Eth ≈ 20–23 kV/cm (Figs. 3 and 4).

The secondary wave moves along the streamer channel
with almost constant velocity, about 2.5 × 107 cm/s in the
computational example (Figs. 3 and 4). With respect to

0
0.2

5

1011

10

15

20

25

30

0.3 0.4 0.5 0.6 0.7

1012

1013

1014

t, µs

E, kV/cm ne, cm–3

Fig. 4. Time variation of the electron density and electric
field on the streamer axis at a point 5.9 cm from the anode.
The calculations were performed for air at a linearly rising
voltage pulse with slope 500 kV/µs.
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the velocity and the effect produced, such a wave can be
interpreted as a secondary streamer.

A secondary streamer can be detected experimen-
tally most clearly by using a step voltage pulse. After
the section with a linear rise the voltage stabilizes in
time ∆t, and then it continues to grow at a comparable
rate (Fig. 5a). In the time of the pause ∆t ≈ 100 ns the
primary steamers stop, and the start of a secondary
streamer from the anode can be clearly seen in the dark-
ened, weakly emitting gap. It moves as the voltage con-
tinues to rise. Everything described above is well repro-
duced in the calculation using the 1.5D model, the
results of which for conditions close to the experimen-
tal conditions are presented in Fig. 5b.

The appearance of a secondary streamer does not
stimulate the almost stationary primary streamer. Both
the calculations (Figs. 2 and 5b) and the experimental
results (Fig. 5a) indicate this. The reaction appears only
after the second wave of ionization restores conductiv-
ity along the entire channel produced. The head poten-
tial of the primary streamer increases rapidly, and it
renews its motion along the gap primarily with a rap-
idly increasing velocity (Fig. 2), and then, just as at the
initial stage of its development, with deceleration until
it once again stops. Then the process repeats, if, of
course, voltage growth has not stopped. Step develop-
ment of a streamer, which is easily observed experi-
mentally with not too high rate of growth of the voltage,
obtains. The streak picture in Fig. 6 demonstrates this
process in the needle–plane gap with a voltage pulse
slope of about 100 kV/µs. The specially chosen slow
sweep is insufficient to obtain details of the propagation
of each individual streamer step, but a series of succes-
sive bursts of the advancing channel is recorded clearly.

A qualitatively similar picture is also obtained by
1.5D simulation (Fig. 7) for close conditions. The
streamer steps follow one another with an interval of
the order of 1 µs. The motion of a secondary wave of
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Fig. 5. Appearance of a secondary wave of ionization from the anode under the action of a voltage pulse with a stepped leading edge;
(a) streak picture of a discharge and synchronous oscillogram of the voltage pulse; (b) time variation of the computed streamer length
(1) and position of the secondary wave of ionization (2) as well as the voltage pulse shape (3) for which the calculation was per-
formed.
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ionization is not interrupted, and its velocity changes
little. The primary streamer runs away from the secondary
wave after each successive restoration of the electrical
conductivity of the plasma along the entire length of the
already produced channel, and then in the next succession
gradually slows down and stops in expectation of a new
“restoration.” Each such operation is accompanied by
rapid, approximately two-fold, increase of plasma den-
sity in the existing channel (Fig. 7c), which gives the
burst along the entire length of the channel observed in
the photographs. The monotonic growth of the electron
density between bursts results in background emission
from the streamer, which is also noted in the streak pic-
tures (Fig. 6). The process can continue indefinitely, but
it is accompanied by a large loss of voltage because the
field behind the streamer head is appreciably lower than
Eth ≈ 20 kV/cm only within the last step; then, right up
to the anode, it remains high, to maintain the plasma in
a conducting state.

The spatial length ∆L of a step depends directly on
the voltage rise rate. According to the calculations, the
streamer first stopped when its channel reached the
length ∆L ≈ 3.7 cm, when the voltage increased with rate
Ai = 100 kV/µs, and about 10 cm for Ai = 330 kV/µs. As a
result, the rate of increase of the streamer channel aver-
aged over many bursts increases, as is observed exper-
imentally. If the streamer is indeed long (Ls @ ∆L), then
with some underestimation the following estimates
hold:

The nearly linear relation between the average
velocity of the streamer and the slope of the leading
edge of the voltage pulse is confirmed by measure-
ments performed in [12].

4. FEATURES OF THE STREAMER PROCESS 
WITH A HIGH VOLTAGE RISE RATE.

RADIAL IONIZATION WAVE

The need to examine these features is obvious from
the experimental data. The streak picture displayed in
Fig. 8 for a pulse with slope Ai ≈ 3400 kV/µs shows no
traces of a secondary wave, though the streamer has
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Fig. 6. Streak picture of the step development of a cathode-
directed streamer in a 1 m long air gap at the leading edge
of a voltage pulse with an average slope of about 100 kV/µs.
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advanced from the needle anode by 75 cm during the
detection time. For half the slope the secondary wave is
appreciable, but its velocity was approximately two
times less than the velocity of the primary streamer.
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Fig. 7. Computed streamer characteristics in air at linearly
rising voltage pulse with slope 100 kV/µs: (a) streamer
length (1) and position of the front of the secondary wave of
ionization (2); (b) streamer velocity; (c) electron density in
the channel at a point 2.8 cm from the anode.
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The latter decreases little in time, so that there is not
enough time for the secondary wave to overtake the
streamer head during the detection time. The fact that
for large values of Ai the primary streamer does not
stop, but only slows down somewhat, also follows from
the 1.5D simulation results (Fig. 9). The calculation
with Ai = 3400 kV/µs gives a picture that resembles the
streak picture in Fig. 8. The velocity of the primary
streamer decreased here only to 8 × 107 cm/s, after
which it once again started to increase. This is still not
the usual deceleration of a streamer, but it is no longer
a step process.

Even though the results outwardly seem similar, the
model obviously differs from reality—the model con-
tinues to reproduce the secondary wave, while a sec-
ondary wave is not observed experimentally. This
means that there is a reason why the loss of conductiv-
ity per unit length is retarded or completely precluded:

To maintain the conductivity per unit length at a pre-
scribed level the total number of electrons Ne per unit
length of the channel must be maintained at a pre-
scribed level; a decrease of the electron density ne(r) at
a single location in the cross section of the channel is of
no significance. Consequently, not only the secondary
longitudinal wave of ionization but also the transverse
radial wave can maintain the conductivity per unit
length. As numerical simulation showed [13, 16], the
latter always exists in a streamer process. Actually, it
determines the stationary streamer radius, whose upper
limit can be estimated by the relation

where Ei is the threshold field maintaining the ioniza-
tion, U(x) is the potential of the channel at the point x,
and Ls is the length of the streamer. In order for the
radial wave to compensate the decrease in the conduc-
tivity per unit length of the channel, it must develop
with a completely definite rate during the entire
streamer propagation time. The initial radius of the
channel section under consideration, which was formed
with a much lower voltage, is of no special significance,
because (if the radial expansion process is intense) it
will still subsequently be exceeded manifold. The ini-
tial values of the expansion rate of the channel and the
density of the plasma reproduced depend on the initial
radius, but the influence disappears with time.

This circumstance makes it possible to avoid two-
dimensional calculations, which have not yet been per-
formed, and to stay within a one-dimensional model,
controlling the course of the process leading to expan-
sion in the radial direction for a fixed location in the
channel. To investigate the properties of the radial ion-

γ eNeµe, Ne 2π rne r( ) r.d
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rs x( )
U x( )

Ei Ls/rs x( )[ ]ln
----------------------------------,≈
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ization wave the potential Ux(t) was introduced for a
given location of the streamer channel as an initial
parameter in such a model. The kinetic scheme of the
radial-wave model was the same as for a longitudinal
wave of ionization. To a first approximation it was
assumed that at the moment a new section of the chan-
nel is produced the streamer head imparts to it a poten-
tial U0 = 50 kV, which then varies in time similarly to
the voltage on the gap, in our case linearly

It was also assumed that the charge per unit length for
a channel of length Ls and radius rs is determined
uniquely by its average capacitance per unit length and
the potential:
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Fig. 8. Streak picture of a streamer burst obtained by using
a slit in air with linearly growing voltage pulse with slope
3400 kV/µs.
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Fig. 9. Computed time variation of the streamer length
(1) and position of the secondary wave of ionization (2) in
air at linearly growing voltage pulse with slope 3400 kV/µs.
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The dynamics of the variation of the per unit length
conductivity of the expanding channel, taking account
of the production and loss of electrons, was monitored
for voltage pulses of different steepness. The estimates
presented below were performed with channel length
Ls = 40 cm.

It was found that a clear threshold effect is charac-
teristic for ionization expansion. As long as the growth
rate of the potential at a given location of the channel is
less than 1700–1800 kV/µs the radial expansion time of
the channel does not exceed 10–20 ns. Subsequently,
the ionization wave cannot exist because the field on its
cylindrical front decreases to the threshold value Ei .
Such a short-time additional electron production in a
radial field adds little to the previously produced elec-
trons in the streamer head. The role of radial expansion
in maintaining the per unit length conductivity of a
streamer is negligible. The situation changes radically
when the growth rate of the potential increases to Ax ≈
2000 kV/µs. Now the weakening of the field on the
front of the cylindrical wave with increasing radius,

can be compensated by the linearly growing potential
Ux(t). This is what guarantees the long-time nature of
the process. It is evident from Fig. 10 that in a time of
about 100 ns, when the potential Ux increases to 250 kV,
the radius of the conducting channel along which the
streamer current is transported increases from 0.1 cm to
1.6 cm. About 2 × 1012 electrons per centimeter of
channel length remains in the channel only as a result
of ionization in a radial field 100 ns after the production
of the channel section under study (Fig. 10). This is
even somewhat greater than the number of electrons
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Fig. 10. Time variation of the radius of the streamer channel
and electron density per unit length with ionization expan-
sion of a channel in air for a linearly growing voltage pulse
with slope 2000 kV/µs.
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produced initially on the ionization front in the
streamer head. Hence, the conductivity per unit length
of the streamer does not decrease as long as the ioniza-
tion expansion of the channel remains and the longitu-
dinal electric field in the channel does not increase.
This eliminates the reason for the creation of a second-
ary wave of ionization. A secondary wave is indeed not
observed experimentally when the rate of growth of the
voltage across the gap is high (Fig. 8).

A change in the mechanism maintaining the con-
ductivity in the channel behind the streamer head has a
beneficial effect on the development of long streamers
in a sharply nonuniform field. To maintain their growth
under the conditions considered it is possible to get
away with a much lower axial field than the threshold
field determined above (~20 kV/cm). Thus, in an exper-
iment with Ai = 3400 kV/µs, by the time the length of
the streamer channel has reached 75 cm the voltage
across the gap has increased to 600 kV. Even if the head
potential is neglected and it is assumed that the voltage
in the channel is entirely lost, then the average field
there will not exceed 8 kV/cm.

Although the ionization expansion in a radial field is
a real means for maintaining the streamer channel in a
conducting state with a high rate of rise of the voltage
across the gap, there is no need to count on this effect
for very long streamers. As the distance from the anode
increases, the growth rate of the potential at a specific
location of the channel, Ax(x), becomes increasingly
less than the slope Ai because of the voltage drop across
it. Sooner or later the value of Ax will drop below the
limiting value for which ionization expansion can still
be maintained, and this factor will no longer operate.
Then, once again, there will remain only one means for
the streamer to remain in a conducting state for a long
time—a secondary longitudinal wave of ionization,
which requires a field of about 20 kV/cm. It has not
been ruled out that now it will start not from the surface
of the anode but rather from deep inside the gap at a
location of the channel where ionization expansion
stopped first (or does not start at all).

It should be noted that everything examined above
is valid if the propagation of streamers does not sub-
stantially change the distribution of the electric field
inside the discharge gap. This is undoubtedly correct
for a single streamer, but it may not be true for a pow-
erful, strongly branched, streamer burst, for example,
such as a burst that develops from an anode with a
radius of tens of cm with an initial voltage of several
megavolts. Here the space charge of the many simulta-
neously forming streamers, which is comparable to the
anode charge, displaces the field from the near-anode
region, moving it in the direction of the cathode.
Streamers in the region of a field intensified in this
manner can advance even with complete loss of gal-
vanic coupling with the location where they started; this
is facilitated by the polarization of “young” channel sec-
tions which have still not lost their conductivity [3]. It is
 AND THEORETICAL PHYSICS      Vol. 91      No. 4      2000
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known from model investigations and experiments that
to maintain such a propagation regime the external field
must not be less than the average axial field in the
streamer channel, which in air under normal conditions
is approximately 5 kV/cm [3, 13]. The analysis of the
question of the collective development of streamers is
beyond the scope of the present paper.

5. POSSIBILITY OF OBSERVING STEP MOTION
OF A STREAMER IN VARIOUS GASES

The choice of air as a medium for simulation was
dictated only by the fact that the results can be more
easily checked experimentally. Essentially, the gas
composition is not fundamentally important. An appre-
ciable decrease in the conductivity of a streamer plasma
is characteristic not only of electronegative but also elec-
tropositive gases. The difference between them is purely
quantitative, because sooner or later any streamer chan-
nel will appreciably lose conductivity. The only question
is the length and development time of the channel. But,
the stronger the electronegative properties of the
medium are, the shorter the streamer length and the
shorter the times at which the effects being studied here
will appear.

To confirm this a long streamer with increasing volt-
age in heated air at atmospheric pressure as well as in
oxygen and SF6 with p = 1 atm and T = 300 K was sim-
ulated. All geometric parameters were the same as
before. As is well known, the effective rate of the loss
of electrons in a streamer channel decreases substan-
tially as the air is heated, because the three-particle
attachment of electrons to oxygen molecules slows
down, electron attachment is partially compensated by
detachment of electrons from negative ions, and the
electron-ion recombination slows down because of the
destruction of the complex positive ions [14]. Con-
versely, the rate of the loss of electrons in oxygen and
in the strongly electronegative gas SF6 is much higher
than in air under normal conditions because of the
intense attachment of electrons to molecules. The
results of the simulation showed (Fig. 11) that heating
air up to 600 K at a voltage pulse with the same slope
of 100 kV/µs increased the streamer length, formed in
the first step, by a factor of 6, so that the length reached
23 cm, while the duration of the step approximately
doubled. The simulation in pure oxygen, as expected,
resulted in the opposite effect. In reality step develop-
ment appeared only with a voltage rise rate of the order
of 1000 kV/µs and higher. It is evident from the com-
putational data in Fig. 12 that for such a slope of
the leading edge of the pulse the step length is only
1.5–2 cm, and the development time of the step
decreases to 40–50 ns. However, if the slope of the front
is decreased to 500 kV/cm, then there is virtually no
time for a step to form. The streamer advances contin-
uously, and the primary and secondary waves of ioniza-
tion move along the gap with virtually the same veloc-
ities, leaving behind them a channel with a field of
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about 25 kV/cm. With such a field the electron density
in the channel is maintained almost at a constant level.

Finally, in SF6 the exceedingly strong attachment
completely eliminated the possibility of step develop-
ment. The streamer plasma decayed so rapidly that no
appreciable channel section with a longitudinal field
below the threshold value (Ei/N ≈ 3.6 × 10–15 V cm2 in
SF6) could form behind the head. As a result, the steps
almost completely degenerated. Only rapidly decaying
oscillations of the velocity at the very start of the pro-
cess remained (Fig. 13a). Subsequently, the streamer
length increased uniformly, and the longitudinal field
was about 90 kV/cm along the entire length of the chan-
nel (Fig. 13). The decrease in the field was appreciable
only immediately behind the head, on a channel section
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2 3
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40

T = 600 K
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300 K

Fig. 11. Time variation of the streamer length in air at vari-
ous temperatures for a linearly growing voltage pulse with
slope 100 kV/µs.
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Fig. 12. Time variation of the streamer length in pure oxygen at
a linearly growing voltage pulse with slope 1000 kV/µs.
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Fig. 13. Time variation of the streamer length and streamer velocity in SF6 at a linearly growing voltage pulse with slope

104 kV/µs.
equal in length to several radii of the section (Fig. 13b).
Increasing the rate of growth of the voltage up to
104 kV/µs did not change the course of the process.
Such continuous advancement of the streamer in SF6
was observed experimentally and confirmed by numer-
ical calculations in [17] for a voltage pulse with a 15 ns
leading edge.

6. CONCLUSIONS

We shall now formulate the basic results of this
work. It was shown theoretically and experimentally
that with increasing voltage the streamer can propagate
in a gas gap by a step mechanism. The mechanism of
this phenomenon is explained as follows. A streamer
moving in a sharply nonuniform field slows down and
stops as a result of a large loss of voltage on the decay-
ing channel. The “revival” of the streamer is due to the
appearance of a new wave of ionization, caused by
redistribution of the electric field in the channel
because of the nonuniform decay of the plasma, near
the electrode. Moving along the streamer channel, the
new wave increases the conductivity of the channel and
the head potential, thereby creating conditions for further
advancement of the streamer. The streamer rapidly moves
away from the secondary wave of ionization and after a
certain time, comparable to the lifetime of the plasma in
the channel, once again stops because of the decay of the
channel and, consequently, the breakdown of the galvanic
coupling between the streamer head and the high-voltage
electrode. The secondary wave of ionization, reaching
the weakly conducting section of the channel, restores
the conductivity of the channel and a new step in the
motion of the streamer starts.

The longitudinal electric field in the channel behind
the front of the secondary wave is close to the threshold
field Ei , in which an equilibrium between electron pro-
JOURNAL OF EXPERIMENTAL 
duction and loss is established for the conditions under
study. A field much less than Ei is characteristic only for
the section between the fronts of the secondary and pri-
mary waves. The average velocity of the step motion of
a streamer on a section multifold greater than the step
length is directly proportional to the slope of the lead-
ing edge of the voltage pulse. For a high voltage rise
rate, the conductivity of the streamer channel can be
maintained as a result of ionization expansion of the
channel in the radial field. In air under normal condi-
tions this effect is actually noticeable with voltage rise
rates exceeding 2000 kV/µs, as a result of which the
steps are disappeared. In gases with strongly pro-
nounced electronegative properties, such as SF6, the
length of the steps becomes comparable with the
streamer radius for any actually attainable voltage rise
rate across the discharge gap, as a result of which
streamer propagation is seen to be continuous.
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Abstract—An analysis is made of particle diffusion and the field of a passive impurity in random wave fields.
A characteristic of this problem is that the statistical transport coefficients (diffusion coefficients) vanish in the
approximations normally used (delta-correlated random field or diffusion) giving the Fokker–Planck equation.
In this study perturbation theory is used in the first nonvanishing order of smallness which allows these transport
coefficients to be calculated for waves of various types. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION. CHARACTERISTICS
OF PARTICLE DIFFUSION IN RANDOM

WAVE FIELDS OF VELOCITY
AND EXTERNAL FORCES

Particle motion in rapidly varying random velocity
fields or under the action of rapidly varying random
forces is an important problem having numerous appli-
cations in mechanics, hydrodynamics, plasma physics,
and so on. It is well known that stochastic transport in rap-
idly-varying vibrational and wave fields leads to various
important physical phenomena such as Fermi accelera-
tion, stochastic plasma heating, and so on [1, 2]. These
phenomena are generally described using the Fokker–
Planck equation whose coefficients are expressed in terms
of the correlation functions of random fields and are cal-
culated using methods of averages developed for nonlin-
ear equations. Although the results thus obtained reflect
the main features of these phenomena, they do not have a
universal character or a clearly defined range of validity.

At the same time we know that a broad class of
problems can be described fairly comprehensively
using the approximation of a delta-correlated random
process, the diffusion approximation, or various gener-
alizations of these based on a functional technique with
variational derivatives (see, e.g., [3–7]). Calculations of
the transport coefficients for random wave fields indi-
cate that in many cases these may have values of the
second order of smallness relative to the values appear-
ing in ordinary variants of the theory of short-correlated
random fields. It is therefore of considerable interest to
develop a general method of deriving equations for the
statistical characteristics of stochastic particle transport
and fields and to calculate the transport coefficients tak-
ing into account terms of the second order of smallness
if the coefficients of the first order of smallness vanish.

A general method for such calculations was pro-
posed in [8] (see, also [3, 9]). This method can be used
to analyze a range of phenomena described by different
1063-7761/00/9104- $20.00 © 0736
authors using different approaches from a common view-
point, it can be used to calculate the statistical characteris-
tics of particle ensembles and fields, and also to indicate
the ranges of validity of the equations obtained.

Particle diffusion in the random velocity field u(r, t)
is usually described using the first-order differential
equation 

(1)

Particle diffusion in a field of random external forces
f(r, t) with linear friction is described by the system of
equations

(2)

We introduce some indicator functions for Eqs. (1)
and (2) 

(3)

which are described by the Liouville equations (see,
e.g., [3])

(4)

td
d r t( ) u r t,( ), r 0( ) r0.= =

td
d r t( ) v t( ),

td
d v t( ) λv t( )– f r t,( ),+= =

r 0( ) r0, v 0( ) v0.= =

ϕ r t,( ) δ r t( ) r–( ),=

ϕ r v t, ,( ) δ r t( ) r–( )δ v t( ) v–( ),=

t∂
∂ ϕ r t,( )

r∂
∂ u r t,( )ϕ r t,( ){ } ,–=

ϕ r 0,( ) δ r r0–( ),=

t∂
∂ v

r∂
∂ λ

v∂
∂

v–+ 
  ϕ r v t, ,( )

=  f r t,( )
v∂

∂ ϕ r v t, ,( )–

ϕ r v 0, ,( ) δ r r0–( )δ v v0–( ).=
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The average of the indicator function ϕ(r, t) over the
ensemble of realizations of the random field {u(r, t)}
will then describe the single-point probability density
of the particle position,

and the average of the indicator function ϕ(r, v, t) over
the ensemble of realization of the random field {f(r, t)}
will describe the joint single-point probability density
of the particle position and its velocity

We shall average equation (4) over the ensemble of
realizations of the random fields {u(r, t)} and {f(r, t)}.
As a result we obtain the open equations

(5)

containing the correlations 〈u(r, t)ϕ(r, t)〉 and 〈f(r, t)ϕ(r,
v, t)〉. We shall assume that the fields u(r, t) and f(r, t)
are Gaussian random fields, spatially uniform and
steady-state in time having zero averages and correla-
tion tensors

(6)

The correlations can then be split using the Furutsu–
Novikov formula (see, e.g., [3,6,10]) 

(7)

which holds for the Gaussian random field f(x, t) with
the arbitrary functional R[t; f(x, τ)] of it. Consequently,
Eqs. (5) may be rewritten in the form

(8)

P r t,( ) ϕ r t,( )〈 〉 u δ r t( ) r–( )〈 〉 u,= =

P r v t, ,( ) ϕ r v t, ,( )〈 〉 f δ r t( ) r–( )δ v t( ) v–( )〈 〉 f ,= =

t∂
∂

P r t,( )
r∂

∂ u r t,( )ϕ r t,( )〈 〉 ,–=

P r 0,( ) δ r r0–( ),=

t∂
∂ v

r∂
∂ λ

v∂
∂

v–+ 
  P r v t, ,( )

=  
v∂

∂
f r t,( )ϕ r v t, ,( )〈 〉 ,–

P r v 0, ,( ) δ r r0–( )δ v v0–( ),=

Bij
u( ) r r'– t t'–,( ) ui r t,( )u j r' t',( )〈 〉 ,=

Bij
f( ) r r'– t t'–,( ) f i r t,( ) f j r' t',( )〈 〉 .=

f k x t,( )R t; f y τ,( )[ ]〈 〉

=  x'd∫ t'Bkl x t; x' t',,( )
δ

δ f l x' t',( )
---------------------R t; f y τ,( )[ ] ,d∫

t∂
∂

P r t,( )
ri∂
∂ r' t'Bij

u( ) r r'– t t'–,( )d

0

t

∫d∫–=

× δ
δu j r' t',( )
---------------------ϕ r t,( )

u
,

P r 0,( ) δ r r0–( ),=

t∂
∂ v

r∂
∂ λ

v∂
∂

v–+ 
  P r v t, ,( )
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We subsequently need to use asymptotic methods to
obtain closed equations. The simplest of these methods
are the approximation that the random fields u(r, t) and
f(r, t) are delta-correlated in time, and the diffusion
approximation.

1.1. Delta-Correlated Approximation

In the approximation that the random fields u(r, t)
and f(r, t) are delta correlated in time, the correlation
tensors (6) are approximated by the expressions

(9)

where

(10)

Now taking into account the equalities

(11)

derived from (4) and (2), Eqs. (8) may be rewritten in a
closed form corresponding to the Fokker–Planck equa-
tion

(12)

(13)

=  
v i∂
∂ r'd∫ t'Bij

f( ) r r'– t t'–,( )d

0

t

∫

×
rk∂
∂ δrk t( )

δ f j r' t',( )
---------------------

v k∂
∂ ∂v k t( )

δ f j r' t',( )
---------------------+ ϕ r v t, ,( )

f

,

P r v 0, ,( ) δ r r0–( )δ v v0–( ).=

Bij r t,( ) 2Bij
eff r( )δ t t'–( ),=

Bij
eff r( )

1
2
--- tBij r t,( )d

∞–

∞

∫ tBij r t,( ).d

0

∞

∫= =

δϕ r t,( )
δu j r' t',( )
---------------------

t t'=
r j∂
∂ δ r r'–( )ϕ r t',( ){ } ,–=

δrk t( )
δ f j r' t',( )
---------------------

t t'=

0,=

δv k t( )
δ f j r' t',( )
---------------------

t t'=

δkjδ r t'( ) r'–( ),=

t∂
∂

P r t,( ) Dij
u( ) ∂2

∂ri∂r j

--------------P r t,( ),=

P r 0,( ) δ r r0–( ),=

t∂
∂ v

r∂
∂ λ

v∂
∂

v–+ 
  P r v t, ,( )

=  Dij
f( ) ∂2

∂v i∂v j

------------------P r v t, ,( ),

P r v 0, ,( ) δ r r0–( )δ v v0–( ),=
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with the diffusion tensors

(14)

In this case, the solutions of the stochastic equations (1)
and (2) are vector Markov processes whose transition
probability density is also described by Eqs. (12) and
(13). The condition for validity of the approximation
that the random fields u(r, t) and f(r, t) are delta-corre-
lated in time is evidently that the time correlation radius
τ0 of the random fields u(r, t) and f(r, t) is small com-
pared with the time scales appearing in the problem,
which requires corresponding smallness of the fluctuat-
ing parameters. 

In general, integrating Eq. (13) over r, we obtain a
closed equation for the probability density of the parti-
cle velocity:

(15)

which has a steady-state probability distribution
described by

(16)

The rate of establishment of this distribution depends
on the parameter λ. For a fairly high value of λ the
steady-state distribution (16) is established rapidly and
the time evolution of the probability density for the par-
ticle position will be described by Eq. (12) with the dif-
fusion tensor

which implies that this problem is statistically equiva-
lent to the problem of particle diffusion in a random
velocity field having the form

(17)

The transition from Eq. (13) to Eq. (12) forms the so-
called Kramers problem (see, e.g., [11]).

1.2. Diffusion Approximation

Allowance for the finite time-correlation radius of
the random fields u(r, t) and f(r, t) may be made using
the diffusion approximation. This approximation is
clearer and more physical than the formal mathematical
approximation of a delta-correlated random field. It

Dij
u( ) τBij

u( ) 0 τ,( ),d

0

∞

∫=

Dij
f( ) τBij

f( ) 0 τ,( ).d

0

∞

∫=

t∂
∂ λ

v∂
∂

v– 
  P v t,( )

v i∂
∂

Dij
f( )

v j∂
∂

P v t,( ),=

P r v 0, ,( ) δ v v0–( ),=

λ
v∂

∂ vP v( )
v i∂
∂

Dij
f( )

v j∂
∂

P v( ).–=

Dij
u( ) 1

λ2
----- τBij

f( ) 0 τ,( ),d

0

∞

∫=

u r t,( )
1
λ
---f r t,( ).=
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also holds for fairly small fluctuations of the parameters
of a stochastic dynamic system and can be used to
obtain not only the conditions of validity of the delta-
correlated approximation but can also describe new
physical effects generated by the finite time correlation
radius of the random parameters. In the diffusion
approximation it is also assumed that the influence of
random actions on time scales of the order of τ0 is neg-
ligible, i.e., on these scales the system evolves as a free
system. 

In the diffusion approximation the equations for the
corresponding probability density (8) are exact. The
corresponding simplifications of the problem are made
at the level of the functional dependence of the solution
of the problem on the fluctuating parameters. For
instance, for the problem (1) in the diffusion approxi-
mation the indicator function and its variational deriva-
tive on time scales of the order of the correlation time
radius τ0 of the random field u(r, t) are described by the
system of dynamic equations

(18)

Substituting the system (18) into the first of Eqs. (8),
we obtain the equation

(19)

where the diffusion tensor now has the form

(20)

Equation (19) with the diffusion tensor (20) holds
for all times t. In this case, however, the solution of the
problem (1) r(t) is not a vector Markov random process
since its multitime probability density does not allow
factorization using the transition probability density. In
the asymptotic case t @ τ0 the solution of the initial
dynamic system (1) in the diffusion approximation will
be a Markov random process described by Eq. (12) with
the diffusion coefficient (14), i.e., in this asymptotic
case the diffusion approximation is the same as the
approximation that the random field u(r, t) is delta-cor-
related in time. This is evidently because of the absence
of an average flux in Eq. (1).

Similarly, for the dynamic problem (2) the varia-
tional derivatives of the functions r(t) and v(t) con-
tained in Eq. (8) are described in the diffusion approx-
imation on scales of the order of the time correlation

t∂
∂ δϕ r t,( )

δui r' t',( )
--------------------- 0,=

δϕ r t,( )
δui r' t',( )
---------------------

t t'=
ri∂
∂ δ r r'–( )ϕ r t',( ){ } ,–=

t∂
∂ ϕ r t,( ) 0, ϕ r t,( ) t t'= ϕ r t',( ).= =

t∂
∂

P r t,( ) Dij
u( ) t( )

∂2

∂ri∂r j

--------------P r t,( ),=

P r 0,( ) δ r r0–( ),=

Dij
u( ) t( ) τBij

u( ) 0 τ,( ).d

0

t

∫=
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radius τ0 of the random field f(r, t) by a deterministic
system of equations derived from (2) for t ' < t,

(21)

for which the initial conditions

(22)

however contain randomnesses in the form of the sto-
chastic function r(t ').

The solution of the system (21) with the initial con-
ditions (22) has the form

(23)

Subsequently assuming that on these time scales the
action of random forces is negligible even for the parti-
cle dynamics, we can replace the value of r(t ') appear-
ing in (23) with r(t) using a simplified system of
Eqs. (2),

(24)

with the initial conditions

(25)

from which it follows that 

(26)

Using Eqs. (23) and (26), we can now write Eq. (8)
in the closed form [9]: 

(27)

td
d δrk t( )

δ f j r' t',( )
---------------------

δv k t( )
δ f j r' t',( )
---------------------,=

td
d δv k t( )

δ f j r' t',( )
--------------------- λ

δv k t( )
δ f j r' t',( )
---------------------,–=

δrk t( )
δ f j r' t',( )
---------------------

t t'=

0,=

δv k t( )
δ f j r' t',( )
---------------------

t t'=

δkjδ r t'( ) r'–( )=

δv k t( )
δ f j r' t',( )
--------------------- δkje

λ t t'–( )– δ r t'( ) r'–( ),=

δrk t( )
δ f j r' t',( )
---------------------

1
λ
---δkj 1 e λ t t'–( )––[ ]δ r t'( ) r'–( ).=

td
d r t( ) v t( ),

td
d v t( ) λv t( )–= =

r t( ) t t'= r t'( ), v t( ) t t'= v t'( ),= =

r t'( ) r t( )
1
λ
---v eλ t t'–( ) 1–[ ] ,= =

v t'( ) eλ t t'–( )v t( ).=

t∂
∂ v

r∂
∂ λ

v∂
∂

v–+ 
  P r v t, ,( )

=  
v i∂
∂

Dij
1( ) v t,( )

v j∂
∂

Dij
2( ) v t,( )

r j∂
∂

+
 
 
 

P r v t, ,( ),
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where we introduce the diffusion coefficients 

(28)

Equation (28) correctly describes the single-point
probability density for times t < τ0. In this case, how-
ever, the solution of the problem (2) {r(t), v(t)} is not a
vector Markov random process since its multitime
probability density cannot be factorized using the tran-
sition probability density. In the asymptotic case t @ τ0
the solution of the initial dynamic system (2) will be a
Markov random process. In this case, the upper limits
in the integrals (28) may be replaced by infinity. We
then obtain the Fokker–Planck equation for the single-
time probability density

(29)

with the diffusion coefficients

(30)

We note that the approximation of a delta-correlated
random field [i.e., Eq. (12)] corresponds to Eq. (27)
with the diffusion coefficients

In the absence of friction, Eq. (29) is simplified and
has the form [1]

(31)

Dij
1( ) v t,( ) τe λτ– Bij

f( ) 1
λ
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  ,d

0
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1
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0

t
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∂
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∂
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∂
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∂
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f( ) 1
λ
--- eλτ 1–[ ]v τ, 

  ,d

0

∞

∫=

Dij
2( ) v( )

1
λ
--- τ 1 e λτ––[ ] Bij

f( ) 1
λ
--- eλτ 1–[ ]v τ, 

  .d

0

∞

∫=

Dij
1( ) v( ) τBij

f( ) 0 τ,( ), Dij
2( ) v( )d

0

∞

∫ 0.= =

t∂
∂ v

r∂
∂

+ 
  P r v t, ,( )

=  
v i∂
∂

Dij
1( ) v( )

v j∂
∂

Dij
2( ) v( )

r j∂
∂

+
 
 
 

P r v t, ,( ),

P r v 0, ,( ) δ r r0–( )δ v v0–( )=
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with the diffusion coefficients 

(32)

For a fairly high value of the parameter λ this problem
is similar to the Kramers problem for the delta-corre-
lated approximation of the random force field f(r, t). In
this case, the probability density of the particle position
will be described by Eq. (19) which is statistically
equivalent to a transition to the dynamic equation (1)
with the velocity field (17). 

We introduce the new field (r, t) with unit disper-
sion such that

where the dispersion of the velocity field is

We shall assume that this random field has a wave ori-
gin and thus its correlation tensor has the structure

(33)

where the spectral function  is such that

 = 1and ω = ω(k) > 0 is the dispersion curve

for the wave motion.
For acoustic waves, e.g., we have ω(k) = ck where c

is the sound propagation velocity, for gravitational

waves at the surface of a deep liquid ω(k) = , for
internal gravitational waves in a stratified medium we

have ω(k) = N /k, where N is the Brunt–Vaisala
frequency, and for Rossby waves in the atmosphere and
the ocean ω(k) = –βkx/k2, where βis the gradient of the
Coriolis force in the y direction, and so on.

Let us assume that the spectral function satisfies the

condition Φij(0) = 0 where Φij(ω) = δ(ω –

ω(k)) (we shall subsequently assume that the stronger
condition Φij(ω)/ω2  0 is satisfied where ω  0).
For the correlation function of the random wave field

(r, t) we then have

(34)

and consequently neither the approximation of a delta-
correlated velocity field nor the diffusion approxima-
tion for the most interesting case t @ τ0 give the final
result since the diffusion coefficients vanish. In order to

Dij
1( ) v( ) τBij

f( ) vτ τ,( ),d

0

∞

∫=

Dij
2( ) v( ) τ τBij

f( ) vτ τ,( ).d

0

∞

∫=

ũ

u r t,( ) σuũ r t,( ),=

σu
2 Bii

u( ) 0 0,( ).=

Bij
u( ) r t,( ) kFij

u( ) k( ) k r⋅ ω k( )t–{ } ,cosd∫=

Fij
u( ) k( )

kd Fii
u( ) k( )∫

gk

k2 kz
2

–

kFij
u( ) k( )d∫

ũ

Bij
u( ) 0 t,( ) td

0

∞

∫ 0=
JOURNAL OF EXPERIMENTAL
obtain the final result we need to allow for terms of a
higher order of smallness. For the case t & τ0 the diffu-
sion coefficients are nonzero although the particle
behavior over this time period does not have a universal
character and depends strongly on the model of the ran-
dom velocity field.

However, we note that in the general case of the sto-
chastic problem (2) of particle diffusion in a random
force field having a wave nature whose correlation
function is similar to (33), i.e., 

(35)

Eqs. (19) and (31) with the diffusion coefficients (30)
and (32) have the same meaning as before since in this
case the diffusion coefficients do not vanish. Substitut-
ing Eq. (35) into (32) and integrating over time, we find
that the diffusion coefficient is nonzero,

because of the existence of “wave–particle” resonance:

Let us assume that the maximum of the spectral
function Fij(k) corresponds to a certain wave number
kmand the maximum of the spectral function Φij(ω)cor-
responds to the frequency ωm. We define the spatial and
temporal correlation scales as l ~ 2π/km, τ0 ~ 2π/ωm. In
this case the value of ε = σuτ0/l for real wave fields is
generally small and may be considered as the funda-
mental small parameter of the problem, i.e., ε ! 1. We
shall also assume that over the entire range where the
spectrum of the velocity field is determined, the ine-
quality σuk ! ω(k) is valid. This last condition is respon-
sible for the absence of resonances between the differ-
ent components of the velocity field. 

The existence of maxima of the spectral functions
Fij(k) and Φij(ω)by no means implies the presence of a
quasi-regular component in the random velocity field.
These exist because the velocity field itself is the result
of differentiating (over space and time) other auxiliary
wave fields (for example, the potential fields for the
potential velocity field or the displacement fields of the
interface, and so on). Naturally, if the spectral functions
are very “narrow”, i.e., they have a delta-shaped form
relative to the central frequency (wave number), the
problem can be preliminarily simplified by dynamic
averaging over fast oscillations having the central fre-
quency (wave number) of the initial stochastic equa-
tions. However, for most geophysical wave problems
this situation does not occur.

Note that the hypothesis of statistical spatial unifor-
mity generally has limited validity and is not valid, for
example, for waves in atmospheric or oceanic
waveguides, in analyses of transport by bounded wave
packets, and so on. We shall subsequently confine our
analysis to a Gaussian statistically uniform wave veloc-

Bij
f( ) r t,( ) kd Fij

f( ) k( ) k r⋅ ω k( )t–{ } ,cos∫=

Dij
1( ) v( ) kFij

f( ) k( )δ k v⋅ ω k( )–( ) 0,≠d∫∼

k v⋅ ω k.( )=
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ity field, focusing our attention on the fundamental
aspects of the problem. In order to obtain specific quan-
titative results we need to consider statistical models of
the wave field to within quadratic terms. In this case,
average transport (Stokes drift) and particle diffusion
generally occur and these were analyzed for various
particular cases in [12–14], for example, using an
approach proposed by Taylor [15]. Our aim is to apply
a more general and systematic approach to this class of
problems, which is valid for waves of different types
and can be used to obtain various generalizations of
transport theory based on the Fokker–Planck equation.
This approach can be applied to calculate various sta-
tistical characteristics of particle ensembles transported
by wave flows and to analyze effects associated with
clustering and formation of coherent structures in
impurity density fields based on methods of statistical
topography [5–7]. 

We shall subsequently analyze in greater detail the
diffusion of a passive impurity (particles and impurity
concentration density fields) in a random velocity field
having a wave nature for which, as we have already
seen, the diffusion approximation is equivalent to the
approximation of a delta-correlated velocity field and
yields zero diffusion coefficients. 

2. DIFFUSION OF A PASSIVE IMPURITY
IN A RANDOM VELOCITY FIELD

The diffusion of a passive impurity in a random
velocity field u(r, t) is described by a linear first-order
partial differential equation which is the equation of
continuity for the density of a conservative impurity:

(36)

where  is the random wave vector field, statisti-
cally uniform in space and steady-state in time, having the
average value  = 0 and the correlation tensor 

In this case, the total impurity mass is conserved, i.e., 

The linear first-order partial differential equation (36)
can be solved using the method of statistics. Introduc-
ing characteristic curves (particle trajectories) whose
dynamics is described by Eq. (1)

(37)

t∂
∂ σu r∂

∂ ũ r t,( )+ 
  ρ r t,( ) 0,=

ρ r 0,( ) ρ0 r( ),=

ũ r t,( )

ũ r t,( )〈 〉

ũi r t,( )ũ j r' t',( )〈 〉 Bij r r'– t t'–,( )=

Bii 0 0,( ) 1=( ).

M M t( ) rρ r t,( )d∫ rρ0 r( )d∫ M0.= = = =

d
dt
-----r t( ) σuũ r t,( ), r 0( ) r0,= =
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we can write (36) in the form

(38)

This formulation of the problem corresponds to a
Lagrangian description whereas the initial dynamic
equation (36) corresponds to a Eulerian description. 

The solution of the system of Eqs. (37) and (38)
depends on a characteristic parameter, the initial value
r0, which will be denoted by the vertical bar:

(39)

The first of the equalities (39) may be considered to
be an algebraic equation for the parameter r0 for which
the solution r0 = r0(r, t) exists since the divergence
j(t |r0) = det||jik(t |r0)|| is nonzero where

Consequently, the solution of the initial equation (36)
may be written as the equality

(40)

which establishes a link between the Lagrangian and
Eulerian characteristics. 

The delta function on the right-hand side of equal-
ity (40) is an indicator function for the position of a
Lagrangian particle and consequently, after averaging
it over an ensemble of realizations of the random veloc-
ity field { } we obtain the well-known relationship
between the simultaneous probability density of the parti-
cle position in the Lagrangian description P(t, r|r0) =
〈δ(r(t |r0) – r)〉 and the average density in the Euler
description (see, for e.g., [10])

(41)

3. LAGRANGIAN DESCRIPTION 

We introduce the notation for the indicator function
of the coordinate of a Lagrangian particle,

(42)

and also the first and second variational derivatives needed
for the subsequent calculations of the statistical averages:

(43)

td
d ρ t( ) σu

∂ũ r t,( )
∂r

------------------ρ t( ),–=

ρ 0( ) ρ0 r0( )=

r t( ) r t r0( ), ρ t( ) ρ t r0( ).= =

jik t r0( )
∂ri t r0( )

∂r0k

-------------------.=

ρ r t,( ) r0ρ0 r0( )δ r t r0( ) r–( ),d∫=

ũ r t,( )

ρ r t,( )〈 〉 r0ρ0 r0( )P t r r0,( ).d∫=

ϕ r t,( ) δ r t( ) r–( ),=

δϕ r t,( )
δũi r' t',( )
--------------------- σuSi r t, ; r' t',( ),=

δ2ϕ r t,( )
δũi r' t',( )δũ j r'' t'',( )
--------------------------------------------- σu

2Sij r t, ; r' t', ; r'' t'',( ).=
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For the indicator function, we have the stochastic
Liouville equation

(44)

which may be rewritten in the form of an integral equa-
tion

(45)

Thus, for the first variational derivative (43), bearing in
mind that this is only nonzero for t ≥ t ', we obtain the
stochastic integral equation

(46)

where the action of the operator  on the func-
tion f(r) is described by the formula

(47)

Similarly, for the second variational derivative we
obtain the stochastic integral equation

(48)

We now average Eq. (44) over the ensemble of real-
izations of the field { }. For the Lagrangian prob-
ability density of the particle position P(r, t) = 〈ϕ (r, t)〉 ,
using the approach from [3–6] and taking into account
the Furutsu–Novikov formula (7) we then obtain 

(49)

P(r, 0) = δ(r – r0).

t∂
∂ ϕ r t,( ) σu rk∂

∂
ũk r t,( )ϕ r t,( ){ } ,–=

ϕ r 0,( ) δ r r0–( ),=

ϕ r t,( ) δ r r0–( )=

– σu rk∂
∂ τ ũk r τ,( )ϕ r τ,( ).d

0

t

∫

Si r t, ; r' t',( ) L̂i r r',( )ϕ r t',( )θ t t'–( )=

– σu rk∂
∂ τ ũk r τ,( )Si r τ, ; r' t',( ).d

0

t

∫

L̂i r r',( )

L̂i r r',( ) f r( )
ri∂
∂ δ r r'–( ) f r( ){ } .–=

Sij r t, ; r' t', ; r'' t'',( )

=  L̂i r r',( )Si r t', ; r'' t'',( )θ t t'–( )θ t' t''–( )

=  L̂ j r r'',( )Si r t'', ; r' t',( )θ t t''–( )θ t'' t'–( )

– σu rl∂
∂ τ ũk r τ,( )Sij r τ, ; r' t'; r'' t'',,( ).d

max t' t'',{ }

t

∫

ũ r t,( )

t∂
∂

P r t,( ) σu
2

rk∂
∂ r'd∫–=

× t'Bki r r'– t t'–,( ) Si r t, ; r' t',( )〈 〉 ,d

0

t

∫
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Integrating Eq. (49) with respect to time over the range
(t1, t) where t1 < t, we obtain the equality

(50)

We now average Eq. (46) over the ensemble of real-
izations of the field { }. For  we
then obtain the equation

(51)

For the function  we use the
approximate expression

(52)

which corresponds to neglecting the third-order varia-
tional derivatives in (48). Using this approximation and
equality (50), we can write Eq. (51) as a closed integral
equation:

(53)

Solving Eq. (53) for  by the method
of successive approximations in terms of the parameter

 to within small terms (in this case the time argu-

P r t,( ) P r t1,( )– σu
2

rl∂
∂ τ r''d∫d

t1

t

∫–=
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0

τ
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– σu
2
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0

t
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∫
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+ σu
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∫
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ments ti of the functions P(r, ti) may be replaced by t),
we have

(54)

Substituting (54) into (49), we can integrate over all
spatial variables and obtain a third-order equation in r
(in which we can omit terms with first-order derivatives

proportional to ):

Si r t, ; r' t',( )〈 〉 L̂i r r',( )∫
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(55)

Equation (55) is not generally an equation for the
probability density since it may lead to negative quan-
tities in the range of low values. At the same time, its
solution accurately describes the statistical moments
and in this sense is a generalization of the Fokker–
Planck equation. Now using the spectral representation
of the velocity field (33) and its properties, we can inte-
grate with respect to time in the coefficients of the
equation and for large time values (t @ τ0) Eq. (55) may
be written in the form
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(56)

where ω1 = ω(k1), ω2 = ω(k2). 
Equation (56) is the Fokker–Planck equation describ-

ing the probability density of the position of a particle
transported by a statistically uniform Gaussian wave
velocity field.

For isotropic fluctuations of the field  Eq. (56)
is simplified and has the form

(57)

which corresponds to the Gaussian random vector pro-
cess r(t) with the average 〈r(t)〉  = r0 and the dispersion 

(58)

where N is the dimensions of space and DN is the diffu-
sion coefficient,

(59)

In this case, the spectral tensor of the wave velocity
field has the structure

(60)

where Fs(k) and Fp(k) are the solenoidal and potential
components of the spectral tensor, respectively, ω(k) ≡
ω(k), and consequently we obtain the following expres-
sion for the diffusion coefficient:

(61)

For an anisotropic medium spatial asymmetry of the
vector process r(t) appears. Its average and dispersion
are described by the expressions
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As we can see, the diffusion coefficient is propor-
tional not to the dispersion of the velocity field but to its
square. This is because no “wave–particle” resonances
appear in this problem, which leads to a reduction in the
order of dispersion of the random particle drift velocity.
This problem is similar to the problems involving the
oscillations of a Kapitza pendulum or the vortex drift of
charged particles in a rapidly varying electric field [1],
where the dominant effect is also quadratic.

4. EULER DESCRIPTION

We shall now give a statistical description of the
Euler representation. For simplicity, we shall assume
that the initial distribution of the density field is con-
stant, ρ0(r) = ρ0 = const and consequently the random
function ρ(r, t) will be statistically uniform in space,
i.e., all its single-point statistical characteristics will not
depend on the spatial point r.

We shall introduce an indicator function similar to
the function (42) in the Lagrange description,

(63)

and the first and second variational derivatives:

(64)

For the indicator function ϕ(r, t; ρ) using Eq. (36)
we obtain the stochastic Liouville equation (see, e.g.,
[4–7]), which we write in the form

(65)

where

(66)

Equation (65) may be rewritten as an integral equa-
tion 

(67)
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------------------------- σuSi r t; r' t'; ρ,,( ),=
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Thus, for the first variational derivative (64) we obtain
the stochastic integral equation 

(68)

where

the operator is described by formula (47) and

the action of the operator (r, r'; ρ) on the function
f(r; ρ) is described by the formula

(69)

Similarly, for the second variational derivative we
obtain the stochastic integral equation

(70)

We shall subsequently proceed as in the Lagrange
description. We shall average Eq. (65) over the ensemble
of realizations of the field { }. Then for the Euler
probability density P(t; ρ) = 〈ϕ (r, t; ρ〉}, taking into
account the Furutsu–Novikov formula (7), we obtain 

(71)

We shall now average Eq. (68) over the ensemble of
realizations of the field { }. For 
we then obtain 

(72)
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M̂i r r'; ρ,( ) f r; ρ( ) = 
∂δ r r'–( )

∂ri

---------------------- 1 ρ∂
∂ ρ+ 

  f r; ρ( ).

Sij r t, ; r' t', ; r'' t'', ; ρ( )

=  N̂i r r'; ρ,( )S j r t', ; r'' t'', ; ρ( )θ t t'–( )θ t' t''–( )

+ N̂ j r r''; ρ,( )Si r t'', ; r' t', ; ρ( )θ t t''–( )θ t'' t'–( )

+ σu τ N̂ r τ""  ρ;,( )Sij r τ, ; r' t', ; r'' t'', ; ρ( ).d

max t' t'',{ }

t

∫

ũk r t,( )

t∂
∂

P t; ρ( ) σu
2 r'd∫ t'

∂Bki r r'– t t'–,( )
∂rk

-----------------------------------------d

0

t

∫=

× 1 ρ∂
∂ ρ+ 

  Si r t; r' t',,( )〈 〉 ,

P 0; ρ( ) δ ρ ρ0–( ).=

ũk r t,( ) Si r t; r' t'; ρ,,( )〈 〉

Si r t; r' t'; ρ,,( )〈 〉 N̂i r r'; ρ,( )P t'; ρ( )θ t t'–( )=

– σu
2 τd

t'

t

∫ r'' t''
rk∂
∂

Bkj r r''– τ t''–,( )d

0

t

∫d∫

× Sij r τ ; r' t'; r'' t'', ; ρ,,( )〈 〉
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For the function  we use the
approximate expression

(73)

which corresponds to neglect of the third-order varia-
tional derivatives in (70). Using this approximation,
Eq. (72) may be written in the form of a closed integral
equation:

(74)

Solving Eq. (74) for  by the
method of successive approximations for the parameter

 to within small terms [in this case, the time argu-

+ σu
2 τd

t'

t

∫ r'' t''
∂Bkj r r''– τ t''–,( )

∂rk

-------------------------------------------d

0

t

∫d∫

× 1 ρ∂
∂ ρ+ 

  Sij r τ ; r' t'; r'' t'', ; ρ,,( )〈 〉 .

Sij r t; r' t'; r'' t'', ,,( )〈 〉

Sij r t, ; r' t', ; r'' t'', ; ρ( )〈 〉

=  N̂i r r'; ρ,( ) S j r t', ; r'' t'', ; ρ( )〈 〉 θ t t'–( )θ t' t''–( )

+ N̂ j r r''; ρ,( ) Si r t'', ; r' t', ; ρ( )〈 〉 θ t t''–( )θ t'' t'–( ),

Si r t, ; r' t', ; ρ( )〈 〉 N̂i r r'; ρ,( )P t; ρ( )θ t t'–( )=

– σu
2 N̂i r r'; ρ,( ) τ r''d t''

∂Blj r r''– τ t''–,( )
∂rl

------------------------------------------d

0

τ

∫∫d

t'

t

∫

× 1 ρ∂
∂ ρ+ 

  S j r τ ; r'' t'', ; ρ,( )〈 〉

– σu
2 τ r''d t''

∂
∂rl

------Blj r r''– τ t''–,( )d

0

τ

∫∫d

t'

t

∫

× N̂i r r'; ρ,( ) S j r t'; r'' t''; ρ,,( )〈 〉

– σu
2 τ r''d t''

∂
∂rl

------Blj r r''– τ t''–,( )d

t'

τ

∫∫d

t'

t

∫

× N̂i r r''; ρ,( ) Si r t''; r' t'; ρ,,( )〈 〉

+ σu
2 τ r''d t''

∂Blj r r''– τ t''–,( )
∂rl

------------------------------------------d

0

τ

∫∫d

t'

t

∫

× 1 ρ∂
∂ ρ+ 

  N̂i r r'; ρ,( ) S j r t'; r'' t'', ; ρ,( )〈 〉

+ σu
2 τ r''d t''

∂Blj r r''– τ t''–,( )
∂rl

------------------------------------------d

t'

τ

∫∫d

t'

t

∫

× 1 ρ∂
∂ ρ+ 

  N̂ j r r''; ρ,( ) Si r t''; r' t', ; ρ,( )〈 〉 .

Si r t; r' t', ; ρ,( )〈 〉

σu
2
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ments ti of the functions P(ti; ρ) may be replaced by t]
and integrating with respect to r'' we obtain for t > t '

(75)

where the operator  is given by

(76)

Substituting (76) into (71) and integrating with
respect to r ', we obtain 

Si r t; r' t', ; ρ,( )〈 〉

=  T̂ i r t; r' t', ; ρ,( )P t; ρ( )θ t t'–( ),

T̂ i r t; r' t', ; ρ,( )

T̂ i r t; r' t', ; ρ,( )
∂δ r r'–( )

∂ri

----------------------
ρ∂

∂ ρ=

+ σu
2 ∂δ r r'–( )

∂ri

----------------------
ρ∂

∂ ρ τ t''d

0

τ

∫d

t'

t

∫

×
∂Blj 0 τ t''–,( )

∂rl∂r j

-------------------------------- 1 ρ∂
∂ ρ+ 

 
ρ∂

∂ ρ

+ σu
2 ∂2δ r r'–( )

∂ri∂rl

------------------------ τ t''
∂Blj 0 τ t''–,( )

∂rl

--------------------------------
ρ∂

∂ ρ ρ∂
∂ ρd

0

τ

∫d

t'

t

∫

+ σu
2 ∂3δ r r'–( )

∂ri∂r j∂rl

------------------------ τ t''Blj 0 τ t''–,( ) ρ∂
∂ ρd

0

τ

∫d

t'

t

∫

+ σu
2 ∂2δ r r'–( )

∂ri∂rl

------------------------ τ t''
∂Blj 0 τ t''–,( )

∂r j

--------------------------------
ρ∂

∂ ρ ρ∂
∂ ρd

0

τ

∫d

t'

t

∫

– σu
2 τ t''

∂Blj 0 τ t''–,( )
∂rl∂r j

-------------------------------- 1 ρ∂
∂ ρ+ 

 d

0

t'

∫d

t'

t

∫

× ∂δ r r'–( )
∂ri

----------------------
ρ∂

∂ ρ ρ∂
∂ ρ

– σu
2 ∂2δ r r'–( )

∂ri∂r j

------------------------ τ t''
∂Blj 0 τ t''–,( )

∂rl

-------------------------------- 1 ρ∂
∂ ρ+ 

 
ρ∂

∂ ρd

t'

τ

∫d

t'

t

∫

– σu
2 ∂δ r r'–( )

∂ri

---------------------- τ t''
∂2Blj 0 τ t''–,( )

∂rl∂r j

----------------------------------d

t'

τ

∫d

t'

t

∫

× 1 ρ∂
∂ ρ+ 

 
ρ∂

∂ ρ ρ∂
∂ ρ.

t∂
∂

P t; ρ( ) σu
2 t'

∂2Bki 0 t',( )
∂rk∂ri

------------------------- ∂2

∂ρ2
--------ρ2P t; ρ( )d

0

t

∫–=

– σu
4 t'

∂2Bki 0 t',( )
∂rk∂ri

-------------------------d

0

t

∫ τd

0

t'

∫ t''d

τ

t

∫
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(77)

Now using the spectral representation (33) and inte-
grating with respect to time in the coefficients of the
equation for long times, we obtain the final equation

(78)

where N is the spatial dimension and

(79)

Equation (78) is valid for isotropic and nonisotropic
fluctuations of the velocity field. Consequently, in ran-
dom isotropic compressible wave fields the probability
distribution P(t; ρ) is lognormal in this approxima-
tion and the impurity field should become clustered (see

×
∂2Blj 0 t'' τ–,( )

∂rl∂r j

---------------------------------- ∂2

∂ρ2
--------ρ2 ∂2

∂ρ2
--------ρ2P t; ρ( )

+ σu
4 t'

∂3Bki 0 t',( )
∂rk∂ri∂rl

-------------------------d

0

t

∫ τd

0

t'

∫ t''d

t'

t

∫

×
∂Blj 0 t'' τ–,( )

∂r j

-------------------------------- ∂2

∂ρ2
--------ρ2 ∂

∂ρ
------ρP t; ρ( )

– σu
4 t'

∂4Bki 0 t',( )
∂rk∂ri∂rl

-------------------------d

0

t

∫ τd

0

t'

∫ t''Blj 0 t'' τ–,( )
∂2

∂ρ2
--------ρ2P t; ρ( )d

τ

t

∫

– σu
4 t'

∂3Bki 0 t',( )
∂rk∂ri∂rl

-------------------------d

0

t

∫ τd

0

t'

∫ t''d

τ

t

∫

×
∂Blj 0 t'' τ–,( )

∂r j

-------------------------------- ∂2

∂ρ2
--------ρ2P t; ρ( )

+ σu
4 t'

∂2Bki 0 t',( )
∂rk∂ri

-------------------------d

0

t

∫ τd

0

t'

∫ t''d

t'

t

∫

×
∂2Blj 0 t'' τ–,( )

∂rl∂r j

---------------------------------- 1
∂

∂ρ
------ρ+ 

  ∂2

∂ρ2
--------ρ2 ∂

∂ρ
------ρP t; ρ( ).

t∂
∂

P t; ρ( ) D̃N
2( ) ∂2

∂ρ2
--------ρ2P t; ρ( )=

+ D̃N
3( ) ∂2

∂ρ2
--------ρ2 ∂

∂ρ
------ρP t; ρ( ),

D̃N
2( ) σu

4 π
2
--- k1k1kk1ik1l k1 j k2 j–( )Fki k1( )d∫=

×
k2d

ω2
2

--------Flj k2( )δ ω1 ω2–( ),∫
D̃N

3( ) σ– u
4 π
2
--- k1k1kk1ik1lk2 jFki k1( )d∫=

×
k2d

ω2
2

--------Flj k2( )δ ω1 ω2–( ).∫
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[4–7]). In this case, for the coefficient  allowing for
formula (60) we obtain 

For the case of an anisotropic velocity field the solu-
tion of Eq. (78) is expressed in terms of the Airy func-
tion of the density logarithm. In this case, for low values
of ρ the solution of the equation has negative values. How-
ever, the range of high densities and consequently the
moments of the field ρ(r, t) are described correctly.
Some change in the distribution function at high densi-
ties does not impede clustering of the impurity field. 

5. CONCLUSIONS

Thus, allowance for the first nonvanishing correc-
tions to the equation for the probability density of dif-
fusing particles and the field of a passive conservative
impurity in random wave fields yields nonzero trans-
port coefficients. For compressible anisotropic wave
velocity fields average particle transport (Stokes drift)
occurs and the probability distribution of the position of
Lagrangian particles becomes anisotropic. In this case,
the field of a passive conservative impurity also under-
goes clustering. However, it should be noted that these
processes take place on different spatial scales which is
expressed by different powers of the wave vectors ki in
the diffusion coefficients in Eqs. (56) and (78). For
instance, small-scale fluctuations of the velocity field
have a substantially stronger influence on impurity
clustering in the Euler description compared with the
diffusion of Lagrangian particles. If the wave field has
a fairly broad spectrum, for example, exponentially
damped at fairly high wave numbers, as is characteris-
tic of turbulence, it is possible for divergence to appear
in the expressions for the diffusion coefficients (79). In
this case, the contribution of resonance effects to the
diffusion coefficient (59) can be calculated. 

D̃N
2( )

D̃N
2( ) σu

4 π
2N
-------

k1d

ω2 k1( )
---------------k1

4Fp k1( )∫=

× Fs k1( ) N 1–( ) Fp k1( )+[ ] k2δ ω1 ω2–( ).d∫
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Abstract—A study is made of a complete set of neutrino–electron processes in a magnetized plasma. It is

shown that processes involving neutrinos in the initial and final states    and ν  νe–e+ have
kinematic amplification in the ultrarelativistic limit. Relatively simple expressions are obtained for the proba-
bility and average neutrino energy–momentum loss which are convenient for quantitative analysis. It is
observed that the total contribution of νe processes did not depend on the chemical potential of the magnetized
electron–positron plasma. © 2000 MAIK “Nauka/Interperiodica”.

νe+− νe+−
1. INTRODUCTION

Over the last few decades one of the most rapidly
developing physical sciences has been cosmoparticle
physics which lies at the junction between the physics
of elementary particles, astrophysics, and cosmology
[1, 2]. The most important stimulus to its development
was understanding the important role of quantum pro-
cesses in the dynamics of astrophysical objects and also
in the early universe. However, the extreme physical
conditions existing inside these objects and, specifi-
cally, the presence of a hot dense plasma and strong
electromagnetic fields should have a strong influence
on quantum processes. As a result, studies of the inter-
actions of elementary particles in an external active
medium have attracted ongoing interest. 

So far, essentially one-dimensional problems have
been solved in astrophysical calculations of processes
such as supernova explosions, and analyses of the influ-
ence of the active medium on quantum processes have
only contained the plasma contribution. However, seri-
ous arguments have been put forward to suggest that
the physics of supernovas is considerably more com-
plex. In particular, we need to allow for rotation of the
shell and also for the possible existence of a strong
magnetic field, with these two phenomena being inter-
related. In fact, the magnetic field generated during the
collapse of a supernova nucleus may reach the critical

Schwinger value Be = /e . 4.41 × 103 G.1 The pres-
ence of rotation may increase the magnetic field by an
additional factor of 103–104 [3].

In astrophysical phenomena such as stellar collapse,
the absence of strong magnetic fields is an exotic rather

1 We use the natural system of units c = " = 1. Everywhere in the
article e > 0 is the elementary charge.

me
2

1063-7761/00/9104- $20.00 © 20748
than a typical case. It is appropriate to discuss the fol-
lowing set of questions.

(1) Which can be considered to be the more exotic
object: a star possessing a magnetic field or a star with-
out such a field? As far as we know from astrodynam-
ics, a star without a magnetic field should be taken as
an exotic rather than a typical case. In exactly the same
way the presence of a primary magnetic field may be
considered natural for a presupernova. As we know, a
primary magnetic field of 100 G leads to the generation
of a field on the scale of 1012–1013 G during the collapse
process as a result of the conservation of magnetic flux. 

(2) Which can be considered to be the more typical
case: a star possessing rotation or a star without rota-
tion? Evidently a star without rotation appears to be the
more exotic object.

(3) Which type of collapse looks more exotic: com-
pression without or with an angular velocity gradient?
Since the velocities at the edge of a compressible astro-
physical object may reach relativistic scales, compres-
sion with differential rotation, i.e., with an angular
velocity gradient, seems more probable.

All these factors are required to achieve the Bisno-
vatyi-Kogan scenario for the rotational explosion of a
supernova [3]. The main component of this scenario is
that the initially poloidal magnetic field lines of a field
of 1012–1013 G are twisted and compacted as a result of
the angular velocity gradient to form an almost toroidal
field of 1015–1017 G. 

We stress that this field is in fact a very dense
medium having the mass density

(1.1)ρ B2

8π
------  . 0.4 1010 

g

cm3
--------- B

1016 G
---------------- 

  2

,×=
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which is comparable with the characteristic mass density
of the shell of an exploding supernova, 1010–1012 g/cm3.
Thus, in detailed studies of astrophysical processes
such as supernova collapse it is absolutely essential to
take into account the influence of the complex active
medium including the plasma and the magnetic field. 

We know that neutrino physics plays a decisive role
in astrophysical cataclysms such as supernova explo-
sions and coalescence of neutron stars, and also in the
early universe. Consequently, studies of neutrino inter-
actions and in particular neutrino–electron processes in
an external active medium are of considerable interest.
At the same time, an investigation of neutrino processes
under such extreme physical conditions is interesting
from the conceptual viewpoint since it affects funda-
mental problems of quantum field theory.

The first studies of neutrino–electron processes in
an external electromagnetic field were devoted to the
“synchrotron” radiation of neutrino pairs, e  eν
[4] and neutrino creation of electron–positron pairs,
ν  νe–e+ [5]. The analysis was made under condi-
tions of a so-called relatively weak magnetic field when
the initial particle energy is the dominant parameter,
E2 @ eB; in fact, this limit corresponds to the crossed
field approximation. In our studies [6, 7] the ν  νe–e+

process was investigated for arbitrary values of the
magnetic field and in particular in the strong field limit
E2 @ eB when an electron and a positron can only be
created in states corresponding to the Landau ground
level. A canonical neutrino–electron interaction chan-
nel, νe–  νe– scattering, was investigated in [8]
under conditions of a degenerate electron plasma tak-
ing into account the influence of a relatively weak mag-
netic field.

In the present study we show that a correct analysis
of the neutrino propagation process in a hot dense
plasma in the presence of a strong magnetic field
requires us to consider the complete set of neutrino–elec-

tron processes. Specifically, in addition to the  

 scattering reactions which also take place in the
absence of a field, and the ν  νe–e+ pair creation
process which is only possible in a magnetic field, we
also need to take into account the “exotic” process
when a neutrino captures an electron–positron pair
from the plasma: νe–e+  ν. This process is only
allowed when both a magnetic field and a plasma are
present. Then only the probability of the process
summed over all initial states of the plasma electrons
and positrons is physically meaningful. The probability

of the    scattering channels is defined sim-
ilarly as the sum over all e– or e+ initial states. The total
probability of neutrino interaction with an electron–
positron plasma in a magnetic field is made up of the
probabilities of these processes. 

The article is constructed as follows. In Section 2 we
describe the concept of a strongly magnetized electron–

ν

νe+−

νe+−

νe+− νe+−
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positron plasma and justify the feasibility of these
physical processes occurring under the physical condi-
tions during stellar collapse. In Section 3 we obtain the
total amplitude of the neutrino–electron processes
under conditions of a strongly magnetized electron–
positron plasma in the local ννee interaction limit
derived from the standard model of electroweak inter-
actions. A kinematic analysis is made and it is shown
that those neutrino–electron processes in which a neu-

trino is present in the initial and final states:  

 and ν  νe–e+ exhibit kinematic amplification.
Section 4 is devoted to a detailed description of the pro-
cedure for calculating the probability of the ν  νe–e+

process in a strongly magnetized electron–positron
plasma. In Section 5 we give the probabilities of other
νe processes and obtain the total probability of neutrino
interaction with a magnetized e–e+ plasma. In Section 6
we calculate the average energy and momentum losses
of a neutrino propagating through a magnetized
plasma. In Section 7 we calculate the characteristics of
the integral action of a neutrino on a magnetized
plasma: the volume density of the energy transferred

from the neutrino to the plasma per unit time, , and
the volume density of the force acting on the plasma
from the neutrino. An analysis is made of possible
astrophysical manifestations of neutrino–electron pro-
cesses under these extreme physical conditions. It is
shown that these processes may be important for a
detailed description of the evolution of astrophysical
objects.

2. WHAT WE UNDERSTAND BY STRONGLY 
MAGNETIZED e–e+ PLASMA

Here we are talking of conditions where, among all
the physical parameters characterizing an electron–
positron plasma, the field parameter is the dominant
one. These conditions can be characterized simply by
the relationship: eB @ µ2, T2, where µ is the chemical
potential of the electrons and T is the plasma tempera-
ture. In order to find a better substantiated relationship
we compare the energy densities of the magnetic field
B2/8π and the electron–positron plasma.

As we know, a magnetic field changes the statistical
properties of an electron–positron gas [9]. Taking into
account degeneracy of the transverse momentum, the
dependences of the concentration and energy density of
an electron–positron gas on the chemical potential and
temperature are described by the following sums over
Landau levels:

(2.1)

νe+−

νe+−

     

%̇

n n
e

– n
e

+–=

=  
eB

2π2
-------- p Φ p µ T, ,( ) Φ p µ T,–,( )–[ ] ,d

0

∞

∫
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(2.2)

(2.3)

Here we used the approximation of an ultrarelativistic
electron–positron gas since astrophysical processes are
characterized by fairly high neutrino and plasma elec-
tron energies E @ me. Thus, we shall neglect the elec-
tron mass wherever this causes no misunderstandings.

In a strong field and specifically, when the condition

 – µ @ T is satisfied, in practice only the Landau
ground level is filled. From (2.1) and (2.2) we then
obtain

(2.4)

(2.5)

Thus, a more exact condition that the electron–positron
plasma is strongly magnetized may be written in the
form

(2.6)

Selecting values of the physical parameters typical of a
supernova shell as scales in the relationship (2.6), we
rewrite this in the form

(2.7)

where 

(2.8)

ρ is the total plasma density in the shell, and Ye is the
ratio of the number of electrons to the number of bary-
ons. It can be seen that the plasma magnetization con-
dition is definitely satisfied.

% %
e

– %
e

++=

=  
eB

2π2
-------- p p Φ p µ T, ,( ) Φ p µ T,–,( )+[ ] ,d

0

∞

∫

Φ p µ T, ,( )
p µ–

T
------------ 

 exp 1+
1–

=

+ 2
p2 2keB+ µ–

T
-------------------------------------- 

 exp 1+
1–

.
k 1=

∞

∑

eB

n
eBµ
2π2
----------,=

% eBµ2

4π2
------------

eBT2

12
------------.+=

B2

8π
------ @ 

π2n2

eB
----------

eBT2

12
------------.+

0.8 1032× B3
2

 @ 1.7 1030×
ρ12

2 Y0.1
2

B3
---------------- 1.1 1027B3T5

2 
erg

cm3
--------- 

 × ,+

B3
B

103Be

--------------, ρ12
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3. NEUTRINO–ELECTRON PROCESSES
IN A STRONGLY MAGNETIZED PLASMA

3.1. Total Amplitude

Calculations will be made for the relatively small

momentum transfers |q2| ! , where mW is the W
boson mass. An analysis shows that when studying the
processes in a magnetized plasma we need to add the

conditions  @ eB and  @ eBT, eBµ. Weak neu-
trino–electron interaction can then be described in the
local limit by the effective Lagrangian

(3.1)

where gV = ±1/2 + 2sin2θW, gA = ±1/2. Here the upper
signs refer to an electron neutrino (ν = νe) when
exchange with both Z and W bosons contributes to the
process and the lower signs corresponds to muon and
tau-neutrinos (ν = νµ, ντ) when only exchange with a Z
boson contributes to the Lagrangian (3.1). 

The Lagrangian (3.1) is written assuming massless
neutrinos and consequently the absence of mixing in
the lepton sector. A generalization to the case of mass-
possessing neutrinos with mixing can be found, e.g., in
[10]. However, it should be noted that the kinematics of
charged particles is a magnetic field is such that all
interaction processes of high-energy neutrinos with
electrons become insensitive to lepton mixing and are
possible even in the massless neutrino limit. This
implies that the flavor of an ultrarelativistic neutrino is
conserved in these processes in a magnetic field to

within terms of the order /  regardless of the lep-
ton mixing angles which makes the question of neu-
trino mixing irrelevant.

The total amplitude for neutrino–electron processes
is obtained directly from the Lagrangian (3.1) where
known solutions of the Dirac equation in a magnetic
field must be used for an electron and positron. As we
know (see, e.g., [11]), these solutions for the Landau
ground level may be expressed in the following form
[the magnetic field is directed along the z-axis and the
vector potential is taken in the form A = (0, xB, 0)]:

(i) for an electron of energy ω and “momentum” ky, kz
2

(3.2)

2 Here kz is the kinetic momentum along the z-axis, and ky is the
generalized momentum which determines the position of the cen-
ter of a Gaussian packet along the x axis, and x0 = –ky/eB, see
(3.4).

mW
2

mW
2 mW

3

+
GF

2
------- eγα gV gAγ5+( )e[ ] νγα 1 γ5+( )ν[ ] ,=

mν
2 Eν

2

ψk
eB( )1/4

π2ωLyLz( )1/2
------------------------------------=

× i ωt kyy kzz––( )–[ ] ξ2

2
-----– 

  u k ||( ),expexp
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(ii) for a positron of energy ω' and “momentum”
, 

(3.3)

where k||( ) is the electron (positron) energy–momen-
tum vector in the Minkowski (0,3) plane. Here and sub-
sequently Lx, Ly, and Lz are auxiliary parameters which
determine the normalization volume V = LxLyLz, ω =

, ω' = , m is the electron mass, and
ξ and ξ' are dimensionless coordinates which describe
the motion along the x-axis:

(3.4)

The bispinor amplitudes have the form

(3.5)

where Ψ =  corresponds to a state whose spin is

directed opposite to the field. It is interesting to note
that the bispinor amplitudes (3.5) are exactly the same
as the solutions of the free Dirac equation for an elec-
tron and positron having momenta directed along the
z-axis. This separation of bispinor amplitudes which do
not depend on the spatial coordinate x is only typical of
the Landau ground level. 

Using the Lagrangian (3.1) and the wave functions
(3.2), (3.3), and (3.5), we write the S-matrix element of
the process ν  νe–e+ in the following form (the
amplitudes of the other neutrino–electron processes are
then obtained by crossing transformations):

(3.6)

where q = p – p' is the change in the four-vector of the
neutrino momentum, q⊥ is the projection of the vector q

ky' kz'

ψk'
eB( )1/4

π2ω'LyLz( )1/2
-------------------------------------=

× i ω't ky' y kz' z––( )–[ ] ξ '2

2
------– 

  u k ||'( ),expexp

k ||'

m2 kz
2+ m2 kz'

2
+

ξ eB x
ky

eB
------+ 

  ,=

ξ' eB x
ky'

eB
------– 

  .=

u k ||( )
1

ω m+
------------------

ω m+( )Ψ
kzΨ– 

  ,=

u k ||'( )
1

ω' m–
-------------------

ω' m–( )Ψ
kz'Ψ– 

  ,=

0
1 

 

S i
GF

2
------- 2π( )3

2EV2E'V2ωLyLz2ω'LyLz

--------------------------------------------------------------------=

× δ ω ω' q0–+( )δ ky ky' qy–+( )δ kz kz' qz–+( )

×
q⊥

2

4eB
----------–

iqx ky ky'–( )
2eB

---------------------------– 
  u k||( ) ĵ gV gAγ5+( )u k ||'–( )[ ] ,exp
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on the plane perpendicular to the vector B,  =  +

, ja = γα(1 + γ5)ν(p) is the Fourier transform of
the current of left neutrinos. Note that in this approxi-
mation where the field is the largest energy parameter

of the problem, the exponential factor exp(– ) in
the amplitude (3.6) differs little from unity and may be
omitted. Direct calculations using the bispinors (3.5)
and taking into account the conservation laws in (3.6)
give

(3.7)

where ϕαβ = Fαβ/B,  = εαβµνϕµν are the dimension-

less tensor and the dual tensor of the magnetic field, and

 =  –  = ( ). Inside the parentheses the ten-
sor indices are contracted systematically, for example

( ) = jα qλ. 

Expression (3.7) and thus the total amplitude (3.6)
for an arbitrary neutrino–electron process contain sup-
pression associated with the relative smallness of the
electron mass. This suppression is not random and
reflects the angular momentum conservation law. For
example, in the ν   e–e+ process the total spin of a
neutrino–antineutrino pair in the center-of-inertia sys-
tem is one whereas the total spin of an electron–
positron pair in the Landau ground level is zero. Conse-
quently, the amplitude of the process would be zero for
massless particle and contain suppression in the relativ-
istic limit under study. However, an analysis shows that
when integration is performed over the phase volume

kinematic regions exist where  ~ m and this suppres-
sion disappears for some neutrino–electron processes.

3.2. Kinematic Analysis

All neutrino–electron processes determined by the
Lagrangian (3.1) can be divided into two groups. 

1. Processes in which a neutrino is present in the initial

and final states:   , ν  νe–e+, νe–e+  ν
and similar antineutrino processes. 

2. Processes involving creation or absorption of a
neutrino–antineutrino pair e–e+  ν , ν   e–e+,

e  eν , and eν   e. 
It can be seen from (3.7) that the square of the

amplitude of each neutrino–electron process contains

the factor m2/ . However, the value of  =  – 
differs fundamentally for processes of the first and sec-
ond types. For processes with a neutrino–antineutrino

q⊥
2

qx
2

qy
2 ν p'( )

q⊥
2 /4eB

u k ||( ) ĵ gV gAγ5+( )u k ||'–( )[ ]
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2m

q||
2

---------
qz
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------- gV jϕ̃q( ) gA jϕ̃ ϕ̃q( )+[ ] ,

ϕ̃αβ
1
2
---

q||
2 q0

2 qz
2 qϕ̃ ϕ̃q

jϕ̃ ϕ̃q ϕ̃αβϕ̃βλ

ν

q||
2

νe+− νe+−

ν ν
ν ν

q||
2 q||

2 q0
2 qz

2
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pair we have q = p + p' (p and p' are the four-momenta
of a neutrino and an antineutrino, respectively), and

consequently q2 > 0. Since  =  + , where both

terms are positive, the value of can only be small

when both q2 and  are small which is only possible
in a small region of phase space. This implies that

almost everywhere in phase space  ~ E ~ T @ m
which leads to reduction of the probability by a factor
m2/T2 ! 1.

At the same time, we have q = p – p' for processes
involving neutrinos in the initial and final states and

consequently q2 < 0 and the value of  may be small
over a fairly wide region of phase space. Calculations
confirm that kinematic amplification is achieved for
these processes, leading to the disappearance of the fac-
tor m2/T2 in the probabilities.

Hence, neutrino interaction with a strongly magne-
tized electron–positron plasma is determined by the
processes νe–  νe–, νe+  νe+, ν  νe–e+, and
νe–e+  ν. Figure 1 shows kinematic regions in
momentum space of a finite neutrino for the processes
described above in a convenient frame of reference
where the momentum of the initial neutrino is perpen-
dicular to the magnetic field. The main contribution to
the probability comes from regions near the parabola

 = 0 where this kinematic amplification takes place. 

q||
2 q2 q⊥

2

q||
2

q⊥
2

q||
2

q||
2

q||
2

I

II

III

0.5

–1.0

–0.5

0

0.5

1.0

II

1.0 1.5 p'⊥ /E

p'z/E

Fig. 1. Kinematic regions in momentum space of a final
neutrino: I—for the ν  νe–e+ pair creation process; II—
for the νe–  νe–, νe+  νe+ scattering channels;
III—for the νe–e+  ν pair capture process. The lines

correspond to  = 0,q||
2
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4. PROBABILITY OF THE ν  νe–e+ PROCESS

We express the probability of neutrino creation of an
e–e+ pair per unit time in the form

(4.1)

where 7 is the total interaction time, dΓ is an element
of the particle phase volume,

(4.2)

The electron and positron distribution functions

(4.3)

allow for the presence of a plasma; here µ and T are the
chemical potential and temperature of the electron–
positron gas. To be general, we also allowed for the
possible presence of a quasiequilibrium neutrino gas
described by the distribution function . In general,
the question of the accuracy of the description of the
state of a neutrino gas under conditions of stellar col-
lapse or another astrophysical process using an equilib-
rium distribution function and also the determination of
this function is a complex astrophysical problem (see,
e.g., [12]). Quite clearly, the approximation of an equi-
librium neutrino Fermi gas using the distribution func-
tion 

(4.4)

where µν and Tν are the chemical potential and the tem-
perature of the neutrino gas, should give satisfactory
results inside the neutrinosphere. Outside the neutrino-
sphere, where an outgoing neutrino flux forms and the
neutrino momenta become asymmetric, a factorization
of the local distribution is usually assumed

(4.5)

where the energy distribution is assumed to be approx-
imately equilibrium, the function Φ(ϑ , R) determines
the neutrino angular distribution, ϑ  = cosα, α is the
angle between the neutrino momentum and the radial
direction in the star, and R is the distance from the cen-
ter of the star. An analysis shows [12] that in the vicin-
ity of the neutrinosphere the function Φ(ϑ , R) differs
negligibly from unity. In order to calculate the proba-

W ν νe–e+( )
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1
7
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e
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e
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-------------------, dΓ

e
+

d2k'LyLz

2π( )2
--------------------,= =

dΓν'
d3 p'V

2π( )3
--------------.=

f
e

–

1
ω µ–( )/T[ ]exp 1+
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-------------------------------------------------,=
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bility we shall use the neutrino distribution function in
the form (4.4), neglecting the asymmetry. Later in Sec-
tion 7 when analyzing possible astrophysical manifes-
tations of these neutrino–electron processes, we shall
also allow for asymmetry in the distribution function
(4.5) for the initial and final neutrinos. 

Substituting (3.6) into (4.1) and integrating using
δ-functions with respect to d2k' [where, as is usually the
case δ3(0) = 7LyLz/(2π)3], we obtain

(4.6)

where we need to substitute ω' = ,  =
qz – kz. It is easy to see that the expression in the inte-
grand in (4.6) does not depend on ky and consequently
integration over ky essentially determines the degree of
degeneracy of an electron having a given energy [see
footnote to Eq. (3.2)]

(4.7)

Integrating over the electron momentum in (4.6)
taking into account (4.7) we obtain the probability of
the ν  νe–e+ process in the form of the following
integral over the final neutrino momentum:

(4.8)

In this expression the electron and positron energies ω
and ω' appearing in the distribution function  are

determined by the conservation law ω + ω' – q0 = 0 and
are given by

(4.9)

Expression (4.8) is a generalization of Eq. (3.2) from
our study [7], where we investigated the neutrino–elec-
tron process ν  νe–e+ in a high-intensity purely
magnetic field, to the case where electron–positron and
neutrino gases are present. 
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Further integration over the final neutrino momen-
tum can be conveniently performed in a reference
frame where the initial neutrino momentum is perpen-
dicular to the magnetic field pz = 0. For the case of a
purely magnetic field we could convert to this system
without any loss of generality by performing a Lorentz
transformation parallel to the field. In fact, we can see
that, besides the statistical Fermi factors, the value of
EW determined from Eq. (4.8) only contains invariants
with respect to this transformation (including the sign
of the argument of the θ function). However, we now
have an isolated reference frame, the plasma rest sys-
tem, in which the distribution functions (4.3) and (4.5)
are formulated. In order to convert to a system where
pz = 0 we express these functions in a relativistically
invariant form:

(4.10)

Here we introduce the four-vector of the plasma veloc-
ity v α, v2 = 1 which in its rest system is v α = (1, 0) and
the distribution functions (4.10) are exactly the same as
the functions (4.3) and (4.5). In the system pz = 0 we
have

where θ is the angle between the vectors of the initial
neutrino momentum and the magnetic field induction in
the plasma rest system.

In Eq. (4.8) it is convenient to convert the dimen-
sionless cylindrical coordinates in the space of the final
neutrino momentum vector p':

Here E⊥  is the energy of the initial neutrino in the sys-
tem pz = 0 which is related to its energy E in the plasma
rest system by E⊥  = Esinθ. In terms of the variables ρ,
ζ, expression (4.8) is rewritten in the form
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(4.11)

where we need to substitute in the distribution func-
tions (4.10)

and also introduce the notation 

Note that the expression in the integrand in (4.11)
exhibits a gain which completely compensates for the
reduction by the smallness of the electron mass. The
main contribution then comes from the region near the
upper limits of the integrals over ρ, ζ corresponding to

the values  ~ m. Converting to the new integration
variables β and x = E⊥ (1 – ρ2)/4Tsinθ in Eq. (4.11) and

isolating the leading contribution ~ /m2, we trans-
form the expression for the probability to the form
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where

Integrating (4.12) with respect to the variable β
using the relationship

(4.13)

where a = x(1 + u) and converting to the plasma rest
system, we finally obtain

(4.14)

where ε = E/Tν. The dependence of the probability
(4.14) on the electron–positron gas concentration n =

 –  is defined in terms of its chemical potential

[see (2.4)]. Note that the formula for the probability
(4.14) holds for hot (µ ! T) and cold (µ @ T) plasmas.
For low-density electron–positron and neutrino gases
(T, µ, Tν, µν  0), Eq. (4.14) reproduces our result
[6, 7] for the probability of the process ν  νe–e+ in
the strong magnetic field limit eB @ E2sin2θ without a
plasma:

(4.15)
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In the absence of a neutrino gas (Tν, µν  0) the
expression for the probability (4.14) for a hot electron–
positron plasma (T  ∞) has the form WB/4 as we
indicated in [7] since the statistical factors for an elec-
tron and positron in this limit are 1/2.

5. TOTAL PROBABILITY OF NEUTRINO 
INTERACTION WITH A MAGNETIZED 

ELECTRON–POSITRON PLASMA

As we noted in the Introduction, the influence of the

   scattering and νe–e+  ν pair capture
channels on the neutrino propagation process in a
plasma should be taken into account in terms of the
probabilities summed over initial electron and/or
positron states. Thus, the probabilities of scattering
processes should be defined as

(5.1)

Similarly for the pair capture process 

(5.2)

It can be seen from Fig. 1 that the scattering and pair
capture processes correspond to infinite kinematic
regions since the initial electrons and positrons can for-
mally have any energy. Convergence of the integrals is
ensured by the distribution functions.

The expressions (5.1) and (5.2) are integrated by the
same scheme as that described above for the ν  νe–e+

pair creation process. An important factor for the inte-
gration will be that the energy imparted from the neu-
trino to the active medium q0 = E – E ' is not positive-
definite. For the probability (per unit time) of neutrino
scattering on magnetized plasma electrons we have

(5.3)
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Taking into account the distribution functions (4.10),
the probability of scattering at positrons is obtained
from (5.3) by substituting η  –η. For the pair cap-
ture channel we have

(5.4)

As we have already noted, only the total probability
of neutrino interaction with an electron–positron
plasma is physically meaningful:

(5.5)

It was found that this quantity has a substantially sim-
pler form:

(5.6)

where

(5.7)

and significantly, the dependence on the chemical
potential µ of the electron–positron gas, which was
present in the probabilities of the various processes,
was cancelled in the total probability. At present, a
physical cause of this reduction is unknown. Possibly
some property involving the completeness of this set of
processes in relation to electrons is manifest. 
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For a sparse neutrino gas the probability (5.6) is
expressed in terms of the dilogarithm Li2(x):

(5.8)

where Lin(x) is an nth-order polylogarithm:

(5.9)

The relative contributions of the plasma and the
magnetic field to the process of neutrino interaction
with the active medium are illustrated in Fig. 2 which
gives the ratio of the probabilities of neutrino interac-
tion with a magnetized plasma and a pure magnetic
field Rw = WB + pl/WB for the angle θ = π/2 as a function
of the ratio of the neutrino energy to the plasma temper-
ature. It can be seen that as the temperature increases,
the interaction probability increases.
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 exp–
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Fig. 2. Ratio of the probabilities of neutrino interaction with
a magnetized plasma and a pure magnetic field, Rw =
WB + pl/WB for θ = π/2 as a function of the ratio of the neu-
trino energy to the plasma temperature. 
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The probability (5.6) determines the partial contri-
bution of these processes to the opacity for neutrino
propagation in a medium. An estimate of the mean free
path associated with neutrino–electron processes gives

(5.10)

This should be compared with the neutrino mean free
path as a result of interaction with nucleons, which is of
the order of a kilometer at density ρ ~ 1012 g/cm3. At
first glance the influence of neutrino–electron reactions
on the neutrino propagation process is negligible. How-
ever, the mean free path does not exhaust the neutrino
physics in the medium. Other important quantities in
astrophysical applications are the neutrino energy and
momentum losses. Of particular importance is the
asymmetry of the neutrino momentum loss caused by
the influence of an external magnetic field. Many
attempts have been made to calculate these asymme-
tries caused by neutrino–nucleon processes associated
with the problem of the high proper velocities of pul-
sars (see [13] and the references therein). As we shall
show, despite the relatively low probability of neu-
trino–electron processes, their contribution to the
asymmetry may be comparable to the contributions of
neutrino–nucleon processes.

6. AVERAGE LOSSES OF NEUTRINO 
ENERGY AND MOMENTUM

In studies of these neutrino–electron interactions in
a magnetic field and/or plasma [5, 8], the analysis has
usually been confined to calculation of the probabilities
and cross sections of processes. As we have noted, not
only the probabilities of the processes are of practical
interest for astrophysics but also the average loss of
neutrino energy and momentum in the medium3 which
is determined by the four-vector

(6.1)

where E and p are the energy and momentum of the ini-
tial neutrino, q is the difference between the momenta
of the initial and final neutrinos, q = p – p', and dW is
the total differential probability of all the processes
specified in (5.5). The zeroth component Q0 is associ-
ated with the average energy lost by a single neutrino
per unit time and the spatial components Q are associ-
ated with the loss of neutrino momentum per unit time.

For a purely magnetic field the four-vector of the
losses Qα was calculated in our studies [6,7]. In this
case, the losses are caused by the only possible process
in the absence of plasma, pair creation during motion of
a neutrino in a strong magnetic field ν  νe–e+. In the

3 In general a neutrino can lose and acquire energy and momentum
so that we shall subsequently understand “loss” of energy and
momentum in the algebraic sense.
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strong magnetic field limit for the zeroth and z-compo-
nents of the vector Qα we obtained (the field is directed
along z)

(6.2)

It can be seen from Eq. (6.2) in particular that even for
an isotropic neutrino momentum distribution the aver-
age momentum loss will be nonzero (proportional to
gVgA) because of parity nonconservation in weak inter-
action. As we showed in [6,7] in fields of ~103Be the
integral asymmetry of the neutrino emission caused by
the component Qz and determined by the expression

A = /  could reach the scale of ~1% required
to explain the observed intrinsic pulsar velocities [14]
as a result of the ν  νe–e+ process only.

In the presence of a magnetized plasma our calcula-
tions yield the following result for the same compo-
nents of the loss four-vector:

(6.3)

where the function F2(z) was determined in expression
(5.7), and the plus or minus signs correspond to the
zeroth and z components. Our result for the loss four-
vector obtained for the case of a purely magnetic field
(6.2) is reproduced from Eq. (6.3) in the low-density
plasma limit (T, Tµ, µν  0).

In order to illustrate the relationship between the
contributions of the plasma and the magnetic field to
the four-vector of the neutrino energy and momentum
losses in an active medium we shall consider the sim-
pler situation of a low-density neutrino gas and rewrite
Eq. (6.3) for the angle θ = π/2 in the following form:

(6.4)

It can be seen from a comparison of (6.4) with Eq. (6.2)
for θ = π/2 that the function ^(E/T) is the ratio of the
components of the loss vector in a magnetized plasma
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and in a purely magnetic field. Figure 3 gives a graph of
the function ̂ (E/T). It can be seen that at E = E0 . 3.4T
there is a unique “window of transparency” when a
neutrino does not exchange energy and momentum
with a magnetized plasma. The negative values of the
function ^(E/T) at lower energies imply that the neu-
trino captures energy from the plasma and acquires
momentum in the opposite direction to the magnetic
field. At energies higher than E0 the neutrino imparts
energy to the plasma and also momentum in the direc-
tion of the field. This may have extremely interesting
astrophysical consequences. 

7. INTEGRAL ACTION OF NEUTRINOS
ON A MAGNETIZED PLASMA

As an illustration of the application of our results to
astrophysical conditions we estimate the volume

energy density lost by neutrinos per unit time  and
the component ^z (parallel to the field) of the volume
density of the force acting on the plasma from neu-
trinos

(7.1)

where dnν is the initial neutrino density: 

(7.1)

Here the angular distribution of the initial neutrinos is
taken into account in the function Φ(ϑ , R), ϑ  = cosα,

%̇

%̇ ^z,( ) nν
1
E
---Q0 z, ,d∫=

dnν
d3 p

2π( )3
------------- Φ ϑ R,( )

E µν–( )/Tν[ ] 1+exp
----------------------------------------------------.=

0
–8

2 4 6 8

–6

–4

–2

0

2

E/T

^

Fig. 3. The function ^(E/T) introduced in (6.4) and deter-
mining the dependence of the components of the four-vector
of the neutrino energy and momentum losses in a magne-
tized plasma on the ratio of the neutrino energy to the
plasma temperature.
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α is the angle between the neutrino momentum and the
radial direction in the star, and R is the distance from
the center of the star. At the same time, the similar func-
tion Φ(ϑ ', R) should be introduced in the statistical fac-
tor 1 –  when integrating over the momenta of the
final neutrino. In a supernova shell the neutrino angular
distribution is close to isotropic [12] so that in the
expansion of the function Φ in terms of ϑ , we can con-
fine ourselves to the lowest Legendre polynomials and
this function can be uniquely expressed in terms of the
average values 〈ϑ〉  and 〈ϑ 2〉  (which depend on R) as fol-
lows:

(7.2)

Neutrinos leaving the central region of a star at high
temperature enter the peripheral region where a strong
magnetic field is generated and the temperature of the
electron–positron gas is lower. In this case the spectral
temperatures for different types of neutrino differ [12, 15]:

(7.3)

The action of a neutrino on a plasma leads to the estab-

lishment of thermal equilibrium  = 0. When analyz-
ing this equilibrium we need to take into account the

contributions to  made by all processes of neutrino
interaction with the medium. As we have noted, the
probability of the β processes νe + n  e– + p is sub-
stantially higher than that for neutrino–electron pro-
cesses so that these dominate in the energy balance.
The energy transferred per unit time per unit plasma
volume as a result of these processes involving only
electron neutrinos may be expressed in the form

(β) . @(  – T)/T.

From this it follows that as a result of neutrino heating
the plasma temperature should be very close to the
spectral temperature of the electron neutrinos (T .

). However, the contribution to  made by other
types of neutrino whose spectral temperatures exceed

, has the result that the plasma temperature is

slightly higher (T * ). It is therefore meaningful to

make separate estimates of the contributions to ( , ̂ z)
made by neutrino–electron processes involving νe and
all other neutrinos and antineutrinos.

We stress that the appearance of the force density ̂ z

in expression (7.1) is caused by interference between
the vector and axial-vector coupling in the effective
Lagrangian (3.1) and is a macroscopic manifestation of
parity nonconservation in weak interactions. At first
glance, the main contribution to ^z should be made by
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We obtained the following expression for the vol-
ume density of the neutrino energy losses and the force
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where 

(7.7)

(7.8)

(7.9)

Formulas (7.5)–(7.10) demonstrate in particular that
the action of each individual neutrino fraction on an
electron–positron plasma goes to zero when thermody-
namic equilibrium is established between this fraction
and the plasma τi = 1, 〈ϑ〉  = 0, 〈ϑ 2〉  = 1/3.

We show that the main contribution to the neutrino
action on the plasma is made by µ and τ neutrinos and
antineutrinos. In fact the function ψ(τi) (7.10) increases
rapidly as the difference between the spectral tempera-
ture of the neutrinos and the plasma temperature
increases. For example, at temperatures (7.4) we have
ψ(1.25) . 0.824 for electron antineutrinos and ψ(2) .
38.47 for µ and τ neutrinos and antineutrinos. This fac-
tor leads to compensation for the smallness of the con-
stant gV(νµ, τ) and makes the contribution νµ, τ,  not
only comparable with the contribution of the electron
neutrinos and antineutrinos but also dominant. 

As we have noted, the contribution of neutrino–
electron processes to the energy action of a neutrino on
the plasma is small compared with the contribution of
β processes and leads to a small departure from equilib-
rium between electron neutrinos and the plasma so that
the total contribution of β processes and all νe pro-

cesses to the value of  is zero. 

For the force action of a neutrino on the plasma par-
allel to the magnetic field described by ^z in Eqs. (7.5)–
(7.10) the total contribution of all types of neutrino is
given by

(7.10)
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(7.11) was independent of the chemical potential of an
electron–positron plasma. 

The force density (7.11) should be compared with
the recent result for a similar force caused by β-pro-
cesses [16]. Under the same physical conditions our
value of the force as a result of neutrino–electron pro-
cesses is of the same order of magnitude and, which is
particularly important, of the same sign as the result of
[16]. Thus, the role of neutrino–electron processes in a
high-intensity magnetic field may be significant in
addition to the contribution of β processes.

Note that the force density (7.11) is five orders of
magnitude lower than the density of the gravitational
force and thus negligibly influences the radial dynam-
ics of the supernova shell. However, when a toroidal
magnetic field [3] is generated in the shell, the force
(7.11) directed along the field can fairly rapidly (within
times of the order of a second4 lead to substantial redis-
tribution of the tangential plasma velocities. Then in
two toroids in which the magnetic field has opposite
directions, the tangential neutrino acceleration of the
plasma will have different signs relative to the rota-
tional motion of the plasma. This effect can then lead to
substantial redistribution of the magnetic field lines,
concentrating them predominantly in one of the tor-
oids. This leads to considerable asymmetry of the mag-
netic field energy in the two hemispheres and may be
responsible for the asymmetric explosion of the super-
nova [17] which could explain the phenomenon of high
proper pulsar velocities [14]. In our view it is interest-
ing to model the mechanism for toroidal magnetic field
generation taking into account the neutrino force action
on the plasma both via neutrino–nucleon and neutrino–
electron processes. 

8. CONCLUSIONS

As we know, in existing systems for numerical mod-
eling of astrophysical cataclysms such as supernova
explosions and coalescing of neutron stars, where the
physical conditions being studied can be achieved in
principle, the neutrino–electron interaction effects
studied by us were neglected. However, in detailed
analyses of these astrophysical processes it may be
important to allow for the influence of an active
medium such as a magnetized e–e+ plasma on quantum
processes involving neutrinos.

In the present study we have investigated the entire
range of neutrino–electron processes in a magnetized

plasma. In addition to canonical    scatter-
ing and   e–e+ annihilation reactions we have
also considered exotic processes of synchrotron radia-
tion and pair absorption, e  e , and also neutrino
radiation and absorption of an electron–positron pair by
a neutrino ν  νe–e+. We have shown that among this

4 We know that the cooling stage of a supernova shell, known as the
Kelvin–Helmholz stage, lasts for around 10 s.

νe+− νe+−

νν

     νν
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entire range processes involving neutrino pair creation
and absorption are kinematically suppressed for the
case of relatively high neutrino energies Eν @ me and
hot dense plasmas T, µ @ me. The total probability of all
processes including neutrinos in the initial and final
states does not have this suppression. In addition, we
observed that the total probability of these processes
and also the average neutrino energy and momentum
losses do not depend on the chemical potential of the
e−e+ plasma whereas the contributions of the various
processes do contain this dependence. This is a new and
unexpected result.

We assume that these results will be useful for a
detailed analysis of the dynamics of supernova explo-
sion.
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Abstract—An equation is derived for the dynamics of the spin magnetic moment in a polarized Boltzmann gas
allowing for spin loss processes. The general form of the T matrix for collisions between two spin 1/2 particles
allowing for inelastic processes is used. It is shown that the rate of spin loss depends on the degree of polariza-
tion of the gas. As a result, the damping of deviations of the magnetic moment from the average becomes aniso-
tropic where the degree of anisotropy depends on the amplitude of the zero-angle scattering of atoms. © 2000
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, among spin-polarized gases, of particu-
lar importance are vapors of alkali metals (rubidium,
cesium) at temperatures close to room temperature.
These gases are good donors for transferring the elec-
tron polarization of an alkali metal atom to the nuclear
spin of He3, which can give high concentrations of
polarized helium. For its part, polarized He3 is a unique
object for investigating fundamental phenomena in
nuclear physics and also for medical applications [1, 2].
From our point of view alkali metal vapor is also of
independent interest. This is because in these gases,
which are typical Boltzmann gases, it is possible for
weakly damped spin waves to propagate in the pres-
ence of polarization [3]. It has been assumed so far that
the only propagating collective mode in a Boltzmann gas
is a sound wave. The parameters characterizing the spin
wave spectrum in a Boltzmann gas may be expressed in
terms of the exact scattering matrix of the atoms. In alkali
metal vapor, unlike He3, electron spin loss processes

accompanying collisions of atoms (   ) become
important.

In the present study we derive equations for the
dynamics of the spin magnetic moment in a polarized
Boltzmann gas allowing for spin loss processes. It was
found that the rate of spin loss depends on the degree of
polarization of the gas. As a result, the damping of small
deviations of the magnetic moment from the average
becomes anisotropic where the degree of anisotropy
depends on the amplitude of the inelastic zero-angle
scattering of the atoms.
1063-7761/00/9104- $20.00 © 20761
2. OPERATOR NOTATION
OF THE COLLISION INTEGRAL

The collision integral for the Wigner matrix is con-
veniently written in the following invariant form [4]:

(1)

Here f(p) is the Wigner function (the matrix in the par-
ticle internal-state space), p is the particle momentum
(for conciseness the dependence of f on the x coordinate
is not given explicitly), f1 = f(p1) (p1 is the momentum
of an impinging particle), Tr implies that the trace is
taken over the momentum and quantum numbers of the
particle internal state (Tr1 refers to an impinging parti-
cle), T is the scattering t matrix, “+” denotes Hermitian
conjugation; Dirac notation is used for the matrix ele-
ments, and finally

where P and P ' are the relative momenta of the collid-
ing particles:

and E = P2/4m, E' = P'2/4m are the corresponding ener-
gies (m/2 is the reduced mass of the colliding particles).
The product ff1 is the direct product of the operators
forming the operator in the variable space of two parti-
cles so that f and f1 can be considered to commute. Note
that the first term on the right-hand side of Eq. (1) only
contains integration over the momentum of the impinging
particle p1 whereas the second term contains additional

St f p( ) 2π( )3
"

2Tr1 p〈 | iTf f 1– if f 1T+ p| 〉+=

+ 2π( )4
"

2Tr1 p〈 |Tf f 1∆ P E,( )T+ p| 〉 .

∆ P E,( ) δ P P'–( )δ E E '–( ),=

P p p1, P'– p' p1' ,–= =
000 MAIK “Nauka/Interperiodica”
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integration over the scattered particle momentum p' since
the T matrix is a two-particle operator:

Note that Eq. (1) belongs to a system which is degener-
ate in terms of internal quantum numbers, i.e., all the
energy levels Eα are the same.

Let us assume that  is an operator which is multi-
plicative in relation to the momentum variable like the
Wigner matrix, i.e., 

(ψ is the atomic wave function). We are dealing with

the average value of , i.e., the quantity 

Using the kinetic equation for the Wigner matrix

(2)

we obtain an equation for the average value of A:

× (3)

Here  is the complete trace in the combination of
both spaces, including integration over momenta.
When the particle numbering is changed, the T matrix
remains the same:

(ξ = {α, p}). Thus, in (1) we can replace A with A1 and
therefore with

Then, instead of (1) we can write the more symmetric
formula:

(4)

The formula is further transformed by replacing

(the symbol […, …] denotes a commutator) and, using
a generalized optical theorem at the energy surface [5]:

Here g, g', h is the complete set of quantum numbers of
the particle state, including the momentum, the asterisk

Tαα1α'α1'
p p1– p' p1'–,( ) T αp α1 p1 α' p' α1' p1', ,( ).=

Â

Âψ Aαβ p( )ψβ p( ).=

Â

A Â〈 〉〈 〉 Tr Â f( ).= =

td
d f St f p( ),=

d A〈 〉〈 〉
dt

------------------ Tr A St f( )[ ] i 2π( )3
"

2–= =

T̂r ATf f 1( ) T̂r Af f 1T+( )–[ ]

+ 2π( )4
"

2T̂r ATf f 1∆ P E,( )T+[ ] .

T̂r

T ξ ξ1 ξ' ξ1',,( ) T ξ1 ξ ξ1' ξ', ,( )=

Ã A A1+( )/2.=

d A〈 〉〈 〉
dt

------------------ i 2π( )3
"

2 T̂r ÃTf f 1( ) T̂r Ã f f 1T+( )–[ ]–=

+ 2π( )4
"

2T̂r ÃTf f 1∆ P E,( )T+[ ] .

ÃT Ã T,[ ] T Ã+=

Tgg' Tg'g
*– 2πi δ Eg Eh–( )TghTg'h

* .∫–=
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is the complex conjugation sign, Eg is the total particle
energy in state g and it is assumed that Eg = . Finally
we obtain

(5)

If [ , T] = 0, both sides of the equality (5) are zero
which implies that the average value of the quantity
conserved during collisions is constant.

At first glance, the right-hand side of (3) is not nec-
essarily real. However, by means of a completely simi-
lar transformation this can be reduced to the form

(6)

The half-sum of the right-hand sides of the last two
equalities is the trace of the Hermitian operator (the

operator  is Hermitian like the operator of the observ-
able quantity) and is therefore real. A different proce-
dure can also be adopted, simply taking the real part of
the right-hand side of (3) and writing 

(7)

Since the operators f and A are diagonal in terms of
momentum, the first term on the right-hand side con-
tains the T matrix of zero-angle scattering.

3. RELAXATION OF THE MAGNETIC MOMENT 
IN A POLARIZED GAS

The relaxation of the magnetic moment in a polar-
ized gas is described by Eq. (7) in which the spin mag-
netic moment of the atom (in units of "/2)  = σ
appears as the operator A, where σ is the vector of the
Pauli matrices. The magnetic moment per unit volume
of gas is then

(8)

(having in mind integration over momenta and summa-
tion over the quantum numbers of the internal atomic
state). In the present study, only the spin moment, i.e.,
atoms in the S state is being considered.

The relaxation of the magnetic moment as a result of
collisions of spin 1/2 atoms is determined by relativistic
interactions which do not conserve spin. The scattering
matrix T then has the following form [6]:

(9)

Eg'

d A〈 〉〈 〉
dt

------------------ 2π( )3
"

2T̂r i Ã T,[ ] f f 1( )–=

+ 2π( )4
"

2T̂r Ã T,[ ] f f 1∆ P E,( )T+{ } .

Ã

d A〈 〉〈 〉
dt

------------------ 2π( )3
"

2T̂r i Ã T+,[ ] f f 1( )–=

+ 2π( )4
"

2T̂r Tf f 1∆ P E,( ) T+ Ã,[ ]{ } .

Ã

d A〈 〉〈 〉
dt

------------------ 2π( )3
"

2Re T̂r i Ã T,[ ] f f 1–( ){ }=

– 2π( )4
"

2Im T̂r
Ã T,[ ]

i
--------------- f f 1∆ P E,( )T+

 
 
 

.

m̂

M f m̂〈 〉〈 〉=

T T0 Qijσi
1σ j

2.+=
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Here T0 is the elastic scattering matrix which conserves
spin ([T0,  + ] = 0) and 

The main contribution to T0 is made by ordinary elastic
collisions allowing for exchange (see [3]). Strictly
speaking, spin-conserving relativistic corrections also
make some contribution. The only spin nonconserving
term is the last term on the right-hand side of (9). 

In this particular case the structure of the Wigner
matrix has the following form:

where n0(p) is the Maxwell momentum distribution
function with the normalization

(n is the local particle density). In the equilibrium state
in a polarized gas neglecting spin damping we have

(10)

As usual, averaging using f0(p) should give the same
results as the exact function f(p) so that

In order to obtain an equation for the dynamics of
the magnetic moment, we need to find the commutator

(11)

where

(12)

Symmetrization is implied with respect to the indices
enclosed in parentheses. In Eq. (11) the particle num-
bering is changed for clarity: instead of the unnum-
bered (dominant) and first (perturbing) particle, we
now have the first and second. Formulas (11) and (12)
yield an expression for the first term in Eq. (7):

(13)

Here the particle numbering is that normally used in
kinetics, the angular brackets denote integration over
momenta or, more accurately, the trace over the momen-
tum variables, and Q0 denotes the amplitude of zero-angle
inelastic scattering. 

m̂ m̂1

Qii 0, Qij Q ji.= =

f p( )
n0 p( )

2
------------- R p( ) Si p( )σi+[ ] ,=

n0 p( ) pd∫ N=

f f 0

n0 p( )
2

------------- 1 Miσi+[ ] .= =

R p( ) 1, S p( ) M.= =

σi
1 σi

2+( )/2 T,[ ] 2iKipqσp
1σq

2,=

Kijk εis Qj k( )s.=

iT̂r σ̃i T,[ ] f f 1( )– 2 εis Q0
j k( )sS jSk

1 .=
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The second term is calculated similarly and has the
form

(14)

Thus, the complete equation for relaxation of the mag-
netic moment M has the form

(15)

In order to calculate the functions R(p, t) and S(P, t)
which determine the dynamics of the magnetic moment,
we need to use the kinetic equation (2). The function
f (p, t) can then be conveniently expressed in the form

(16)

where φ is a small correction to the function f0 having
the same structure:

The equation then has the form

Here Coll0 is the collision integral describing purely
elastic scattering where the spin is conserved (scatter-
ing matrix T0) and coll is the relaxation component of
the collision integral which only contains a small
inelastic component of the T-matrix [see (9)]. As a
result of this factor only the main component of the
Wigner function f0 remains within the coll.

The operator Coll0(f0 + φ) can be expressed as fol-
lows:

where J(φ) is the linearized collision operator since
Coll0(f0) ≡ 0. Taking this factor into account, the kinetic
equation has the form

(17)

We note that the elastic collision operator J is Her-
mitian with a suitably determined scalar product (see,
e.g., [3]). It has an eightfold degenerate zero eigenvalue
which corresponds to the laws of conservation of parti-
cle number, energy, momentum, and spin (three com-
ponents each). These eight functions form a linear

Im T̂r
Ã T,[ ]

i
--------------- f f 1∆ P E,( )T+

 
 
 

=  4 Re Qqr RSi
1 R1Si+( )Qqr*〈 〉[–

– Qqr RSr
1 R1Sr+( )Qqi*〈 〉 ] .

dMi

dt
---------- 16π3

"
2Re εis Q0

j k( )sS jSk
1{=

+ 4π Qqr RSi
1 R1Si+( )Qqr*〈 〉[

– Qqr RSr
1 R1Sr+( )Qqi*〈 〉 ] } .

f f 0 φ,+=

φ
n0 p( )

2
------------- ρ p( ) si p( )σi+[ ] .=

td
d

f 0 φ+( ) Coll0 f 0 φ+( ) st f 0( ).+=

Coll0 f 0 φ+( ) J φ( ),=

td
d

f 0 φ+( ) J φ( ) st f 0( ).+=
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space to which the function f0 is assigned. The division
(16) is assumed to be such that the function φ is orthog-
onal to the kernel (zero proper subspace) of the opera-
tor J. Finally the equation for φ has the form:

Here  is the projection operator on the subspace
orthogonal to the kernel J. 

Since the relaxation of the magnetic moment is a
relatively slow process, the time derivative can be
neglected in the last equation:

The operator J–1 is the inversion of J on the subspace
orthogonal to the kernel. For the vector component φ
we then obtain

where tr is the trace over the spin variables (but not over
the momenta).

The operator of elastic collisions in a polarized gas
J analyzed in detail in [3] has the form

A similar expression for the integral operators Jn (n =
1, …, 5) in terms of the elastic scattering T-matrix is
given in the Appendix.

We recall that in an unpolarized gas the nonzero

eigenvalues of the operator  are of the order of the
gas kinetic collision frequencies νs although they differ
for the scalar J1 and vector J2 components of the
Wigner function. For a polarized gas the spectrum of

the operator  changes substantially. The most impor-
tant change is the appearance of eigenvalues of the
order νex (the operator J5), known as the “exchange”
frequency [3] which is far higher than the gaskinetic
frequency νs at least at room temperature.

The vector component of the operator coll(f0) has
the form

Here we have

(18)

(19)

The tensors Aik = Aik(p) and Bijk = Bijk(p) are expressed
in terms of the T matrix of the dissipative collision pro-
cess which does not conserve spin (but conserves the
particle number) Qpqσpσq . The tensor Aik is propor-
tional to the cross section of the dissipative process

td
dφ

J φ( ) P̂coll f 0( ).+=

P̂

φ J 1– P̂coll f 0( ).–=

s p( ) tr J 1– P̂coll f 0( )σ–[ ] ,=

Ĵ ρ
s 

 
  J1 MJ3

MJ4 J2 M J5×+ 
 
  ρ

s 
 
 

.=

Ĵ

Ĵ

tr coll f 0( )σi[ ] AikMk BijkM jMk.+=

Aik p( ) 128π4
"

2Re QqrQqr* δik QqkQqi*–[ ] ,=

Bijk 16π3
"

2Re εis Q0
j k( )s[ ] .=
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while the tensor Bijk is proportional to the real part of
the amplitude of zero-angle scattering. For the small
correction s we can now give the estimate:

(20)

The bar over A and B indicates that the corresponding

values are exposed to the action of the operator .
Using Greek subscripts in this last formula indicates a
transition to the cyclic components of vectors and ten-
sors since, in a polarized gas, the elastic collision oper-
ator J is diagonalized in this basis [3]. 

The value of να for the longitudinal component has
the order of the gaskinetic collision frequency νs whereas
for the transverse component it is considerably higher than
the “exchange” frequency νex = 16π3"2nReT0

1 (T0 is the
amplitude of zero-angle elastic scattering). As a result
of this factor we have νex @ νs and thus only corrections
which include νs are taken into account [3]. Substitut-
ing Eq. (20) into Eq. (15), we obtain the damping of the
magnetic moment:

(21)

Here we have

In this case we find

It follows from symmetry concepts that Eq. (21) can
only contain odd powers of the vector components of
the magnetic moment Mα . Consequently, the rate of
damping of the magnetic moment may be expressed by
the formula

(22)

Here γ(M) may be expressed in the form

(23)

where

1 Here unlike previous studies [3] the factor |M| is not introduced in
the definition of νex.

sα  . 
Aαβ

να
--------Mβ

Bαβγ

να
----------MβMγ.

βγ
∑+

β
∑

P̂

Ṁα– aτβAατ Mβ AατbτβγMβMγ+=

+ aσκaτβBατσMβMκ aσκbτβγBατσMβMγMκ+

+ aτβBατσMβMσ bτβγBατσMβMγMσ+

+ Aατ Mτ aσκ BατσMκ Mτ BατσMσMτ+ +

+ aτβbσϕχBατσMβMϕ Mχ bσϕχBατσMτ Mϕ Mχ.+

aαβ
Aαβ

να
--------, bαβγ

Bαβγ

να
----------.= =

M n0 p( )S p( ) pd∫ n0 p( ) S0 s p( )+[ ] p.d∫= =

Ṁα γ M( )Mα .–=

γ M( ) A 1 a+( ) bB abB+( )M2+=

=  γ0 γ1 M( ),+

γ0 s 1–( ) A 1 a+( ), γ1 M( ) bB abB+( )M2.= =
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The value of γ0 ~ A (s–1) determines the damping of the
magnetic moment in an unpolarized gas and is propor-
tional to the cross section of the corresponding process
[see (14)]. The small parameter a allows for the influ-
ence of elastic collisions on the spin relaxation process
and is of the order of magnitude

This parameter is the ratio of the cross section for
inelastic scattering to that for elastic scattering. Then,
we have

where  (s–1) ~ C |M |ReQ0 (Q0 is the inelastic compo-
nent of the T matrix for zero-angle scattering). Here C
is a constant having dimensions of frequency determined
by the first term on the right-hand side of Eq. (15). Since
a ! 1, the second term in Eq. (23) can simply be
replaced by bBM2 and then 

(24)

For a small deviation of the magnetic moment m
from the steady-state average M0 we have the following
equation:

(25)

It can be seen from Eq. (25) that the rate of relaxation
of the longitudinal components of the magnetic
moment differs from the transverse components (γ0 +
3γ1)/(γ0 + γ1) times as a result of the second term on the
right-hand side of the formula.

4. EQUATION FOR THE DYNAMICS
OF THE MAGNETIC MOMENT

The dynamics of the magnetic moment in a polar-
ized Boltzmann gas allowing only for elastic collisions
was analyzed in detail in our previous study [3]. Using
the microscopic equations obtained there taking into
account the results of the present study which allow for
inelastic processes, we can write the complete macro-
scopic equation for the dynamics of the magnetic
moment:

(26)

a
A
νs

----  ! 1.∼

γ1 bBM2 γn
0γn

0

νs

-----,∼ ∼

γn
0

γ1 bBM2 γn
0γn

0

νs

-----.∼ ∼

dmi

dt
--------- γ0 γ1+( )mi– 2γ1

Mi
0Mk

0

M0
2

---------------mk.–=

∂Mi

∂t
---------

x j∂
∂

D0

∂Mi

∂x j

--------- 1
2
---

x j∂
∂

D1Mi
∂M2

∂x j

----------+ +

+
x j∂
∂

D2εiklMl

∂Mk

∂x j

---------- γ M( )Mi.–=
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Microscopic expressions for the coefficients D0, D1,
and D2 may be obtained by comparing solutions of the
linearized Eq. (26) with similar solutions obtained
using the kinetic equation [3]. We then obtain

(27)

(28)

(29)

Here we have

where U is the operator of the transformation from Car-
tesian components of the vector s to cyclic components.
The operators J± act in the vector subspace of the
Wigner functions where they are diagonal with respect
to the cyclic components s, and it is implied that J2 and
J5 act on the cyclic components of the vectors as on the
initial Cartesian components (see Appendix);  indicates
multiplication by the particle velocity (considered as an
operator); 〈f+| and 〈f||| are the eigenfunctions of the trans-
verse and longitudinal components of the magnetic
moment (for further details see [3]). Formulas (27)–(29) in
principle solve the problem of the microscopic calculation
of diffusion coefficients in a polarized Boltzmann gas. 

We shall now estimate the coefficients D0 and D2
using their microscopic representations (27), (28) and
earlier estimates [3]:

(30)

(31)

Here D = (kv)2/νs is the coefficient of spin diffusion in
an unpolarized gas. 

From the general Eq. (26) we can then easily obtain
a linearized equation for the dynamics of small pertur-
bations of the magnetic moment mα = Mα – 〈Mα〉 (these
components are more conveniently analyzed using
cyclic coordinates):

(32)

In this basis the tensors D and γ are diagonal. We then
have

D0 Re f +〈 |v̂ J+
1– v̂ f +| 〉 ,=

D2

Im f +〈 |v̂ J+
1– v̂ f +| 〉

M
-----------------------------------------,=

D1

f ||〈 |v̂ J ||
1– v̂ f ||| 〉 D0–

M2
----------------------------------------------.=

Ĵ ||
ρ
s 

 
  J1 MJ3

MJ4 J2 
 
  ρ

s 
 
 

,=

J± U± J2 M J5×+( )U±
1– J2 iMJ5,+−= =

v̂

D0 . 
D

1 M2 νex/νs( )2+
--------------------------------------,

D2 . 
D νex/νs( )

1 M2 νex/νs( )2+
--------------------------------------.

∂mα

∂t
---------- Dαβ∆mβ+ γαβmβ.–=

D00 D0 D1M2
 . D 1 cM2+( ),+=
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Here D is the diffusion coefficient in an unpolarized
gas, which is of the order of magnitude of 〈v2〉/3νs, and
c is a dimensionless constant. As we showed earlier,

since the factor |U|a0/"〈v〉  is the so-called “Born
parameter” [3] which is usually large in classical gases.
An estimate of the values of D± and D00 for moderately
small |M | gives [3]

(33)

These results yield the well-known dispersion relation-
ship for spin waves. The frequency and damping of the
spin waves are determined by the imaginary and real
parts of D, respectively.

For the tensor γ we have

(34)

Note that the frequencies γ0 and γ1 are much lower than
the gaskinetic collision frequency νs but their interrela-
tionship may be arbitrary.

5. CONCLUSIONS

The operator notation of the collision integral using
the generalized optical theorem [Eq. (7)] has been used
to obtain a universal equation for the dissipation of the
magnetic moment of degenerate systems: a general
form of the T matrix is used for the collision of two spin
1/2 particles allowing for elastic processes [6]. The
explicit form of the equation only contains the inelastic
component of the T matrix since its elastic component
T0 commutes with the spin operator. Nevertheless, the
role of elastic processes in spin relaxation is not lost
and is observed as a result of their influence on the non-
equilibrium particle velocity distribution function. 

The main result of the study is the equation for the
dynamics of the macroscopic magnetic moment in a
polarized gas allowing for spin relaxation (7). The left-
hand side of the equation has the same form as the Leg-
gett equation [7] while the right-hand side describes the
damping of the magnetic moment. For the coefficients
D0, D1, and D2 on the left-hand side of the equation we
obtained microscopic expressions containing elements
of the T matrix for elastic scattering (27)–(29) whereas
in the Leggett study these coefficients are phenomeno-
logical. The microscopic expressions for the diffusion
coefficients in gases obtained in [8] differ from (27)–
(29) because of differences in the form of the collision
integral used (s-wave scattering is used in [8]). Never-

D± D0 iMD2 . D
1 iM νex/νs( )+−

1 M2 νex/νs( )2+
--------------------------------------.±=

νex/νs U a0/" v〈 〉  @ 1,∼

Re D±

D00
--------------  . 

νs

νex
------- 

 
2 1

M2
-------  ! 1,

Im D± . 
kv( )2

3νex M
-------------------.±

γ± γ0 γ1, γ00+ γ0 3γ1.+= =
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theless, if a suitable substitution of the parameters is
made: µ  νex/νs (Leggett) and Ωintτ⊥   νex/νs [8],
the spin wave spectrum is the same in all three cases.

A microscopic approach to calculating the diffusion
coefficients and spin dynamics in quantum gases for an
arbitrary T-matrix was also used in [9]. However, the
estimates of the diffusion coefficients in the Boltzmann
limit made in [9] do not agree with the results of the
present study [see (27)–(29)]. In particular, our condi-
tion νex/νs @ 1 which determines the possibility of spin
wave propagation in a Boltzmann gas is reduced in [9]
to the gas “quantization” condition (the de Broglie
wavelength is much greater than the scattering wave-
length) which makes it impossible for spin waves to
propagate in a Boltzmann gas. A more detailed compar-
ison between the results of the present study and [9]
requires separate analysis.

Note that the rate of damping of the magnetic
moment γ in a polarized gas depends on its magnitude.
This is a consequence of the deviation of the Wigner
matrix from the equilibrium (diagonal) matrix as a
result of inelastic collisions which impair the conserva-
tion of spin. The perturbed Wigner matrix is generally
off-diagonal with respect to the spin variables so that
the rate of relaxation γ(M) depends not only on the
cross section of the dissipative process but also on the
real part of the amplitude of zero-angle scattering, a
factor which is impossible in the pure balance form of
the Boltzmann equation. The damping of small pertur-
bations of the magnetic moment in a polarized gas is
anisotropic as was first noted by Snider [10]. It is there-
fore possible to explain the observed discrepancy
(approximately an order of magnitude) between the
observed rate of relaxation of the magnetic moment in
polarized Rb vapor and the calculations of the correspond-
ing relaxation cross section [2]: σ ~ 10–17 cm2 according to
[1, 11] (experimental) and σ ≤ 10–18 cm2 according to [12]
(calculated). 

It has been shown that it is generally inadequate to
describe the relaxation of the magnetic moment merely
using the cross section, since the rate of the longitudi-
nal and transverse relaxation of the moment depends
not only on the cross section but also on the real part of
the amplitude of inelastic zero-angle scattering (34)
where the relationship between them (γ0 and γ1) is
unknown a priori and may be determined experimen-
tally using the ratio of the rates of damping of the polar-
ization in the longitudinal and transverse directions rel-
ative to the polarization vector of the gas. Note that the
anisotropy of the diffusion coefficients in a polarized
Boltzmann gas may be very high [see (33)] while the
anisotropy of the polarization damping factor varies in
the range 1–3.

ACKNOWLEDGMENTS

This work was supported in part by the Russian Foun-
dation for Basic Research (project no. 99-02-16304).
 AND THEORETICAL PHYSICS      Vol. 91      No. 4      2000



DYNAMICS OF THE MAGNETIC MOMENT 767
APPENDIX

The operators Jn (n = 1, …, 5) have the form [3]

Here we have

and the coefficients A0–A4, t1, and t2 are expressed
directly in terms of the elements of the elastic-scatter-
ing T matrix [3].

J1 ρ( ) 32π4
"

2 p' p1 p1' W p p1 p' p1', ,( )ddd∫=

× A0 ρ p'( ) ρ p1'( ) ρ p( )– ρ p1( )–+[ ] ,

J2 s( ) 32π4
"

2 p' p1 p1' W p p1 p' p1', ,( )ddd∫=

× A1s p1'( ) A2s p'( ) A3s p1( )– A0s p( )–+[ ] ,

J3 s( ) 32π4
"

2 p' p1 p1' W p p1 p' p1', ,( )ddd∫=

× A3M s p'( ) s p1'( ) s p( )– s p1( )–+[ ] ,

J4 ρ( ) 32π4
"

2 p' p1 p1' W p p1 p' p1', ,( )ddd∫=

× M A1ρ p'( ) A2ρ p1'( ) A0ρ p1( )– A3ρ p( )–+[ ] ,

J5 s( ) 32π4
"

2 p' p1 p1' W p p1 p' p1', ,( )ddd∫=

× A4 s p1'( ) s p'( )+[ ] 16π3
"

2 p1 f 0( )d∫ p( ) f 0( ) p1( )+

× Re t1

p p1–
2

--------------
p p1–

2
--------------, 

  t2

p p1–
2

--------------
p p1–

2
--------------, 

 –

× s p( ) s p1( )–[ ] .

W p p1 p' p1', ,( ) f 0( ) p1( )δ p p1 p'– p1'–+( )=

× δ p p1–( )2/4m p' p1'–( )2/4m–[ ] ,
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Abstract—Cavitation in the liquid helium isotopes of 3He and 4He is considered. It is shown that the dissipative
processes play an important role in the growth of the stable phase nucleus in the normal liquid 3He. This leads
to the lack of the quantum behavior of cavitation in this system down to 2 mK, which is in contrast to the ther-
mal–quantum crossover in the cavitation of the superfluid 4He at 600 mK. Below 180 mK, the dissipative 3He
kinetics is of the Knudsen type. The high value (600 mK) for the transition into the quantum kinetic behavior
in 4He is related to the compressibility of a liquid, which leads to a noticeable emission of sound with cavitation.
The recent experiments on quantum cavitation in the liquid helium isotopes 3He and 4He are discussed. © 2000
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At low temperatures, the first-order phase transition
associated with the formation of droplets of a stable
phase occurs via quantum tunneling through the poten-
tial barrier originating from the positive interfacial ten-
sion between the phases. Such a macroscopic underbar-
rier motion is associated with the flow of the metastable
fluid towards the droplet due to the mass difference
between the stable and metastable liquids [1]. The
growth of the droplet in the metastable phase is also
accompanied by dissipative effects due to the lack of
equilibrium in the medium during droplet evolution [2].
Direct experimental observations of the dissipation
effects accompanying the kinetics of the first-order
phase transition are absent so far.

Recently, there was an experiment on the kinetics of
the first-order phase transition at the cavitation in
superfluid 4He [3] and normal liquid 3He [4]. In the
experiment [5], the large pressure oscillations in helium
are produced by focusing ultrasonic waves at the center
of the cell that has four windows providing an optical
access in two (perpendicular) directions. The method is
used to obtain a negative pressure region in the bulk of
the liquid in order to avoid the surface nucleation. The
cavitation is found to be a stochastic process. A signif-
icant cavitation rate is observed near the spinodal pres-
sure.

The investigation of cavitation has a long history.
First of all, this involves the investigation of the cross-
over from thermal to quantum behavior. According to
the first estimates [6] of the cavitation rates at which
bubbles nucleate in a liquid 4He, it has been expected
that quantum nucleation should dominate over the ther-

¶This article was submitted by the authors in English.
1063-7761/00/9104- $20.00 © 0768
mally activated one at temperatures (below ≈0.3 K) and
that for this temperature range the pressure providing a
noticeable nucleation rate or the tensile strength should
be about P ≈ –15 atm. Later, Maris and Xiong [7]
attracted attention to the possibility that before this
pressure can be achieved, the liquid 4He becomes
unstable against the long-wavelength density fluctua-
tions once the square of the sound velocity becomes
negative. The extrapolations of the sound velocity into
the negative pressure range and some numerical calcu-
lations suggest that the sound velocity at the pressure P
vanishes as

with the exponent ν close to 1/3–1/4. The critical pres-
sure Pc, i.e., the pressure at the spinodal point, was esti-
mated as Pc = –8 to –9 atm at absolute zero for 4He. For
liquid 3He, it was expected that Pc = –2 to –3 atm [8].
According to [9], the crossover temperature T* from
thermal to quantum behavior must be about 125 mK for
3He and 220 mK for 4He. The analysis is based only on
the thermodynamic properties of 3He and 4He, i.e., on
the chemical potentials and surface energies. The
kinetic properties of the system (relaxation processes)
were not involved.

The above result for T* was also supported by the
description of homogeneous and inhomogeneous
states of liquid helium within the density–functional
method [10]. In addition, the liquid–vapor phase dia-
gram in 3He and 4He was analyzed with the help of this
method [10] in the vicinity of the spinodal line. The
spinodal pressures Pc = –9 atm for liquid 4He and
Pc = −2 to –3 atm for liquid 3He were found. Monte

c P( ) P Pc–( )ν∝
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Carlo simulation of the critical behavior of liquid 4He
at a negative pressure in the vicinity of the spinodal
curve [11] was performed.

Dissipation [2] and sound emission [12] strongly
affect the underbarrier nucleation kinetics [13].
Recently, the dissipation effects in liquid 3He have also
been considered within the density–functional method
using the hydrodynamic description for a metastable
fluid [14].

The nucleation of bubbles in 4He at negative pres-
sures and temperatures down to 65 mK has been stud-
ied experimentally [5]. The results are consistent with
the idea that nucleation is a result of the quantum tun-
neling through the potential barrier below 0.6 K. The
quantum nucleation of bubbles occurs at a negative
pressure (Pc = –9.23 bar, which is close to the spinodal
pressure, although only 0.29 bar above). For normal
3He, although the observed cavitation threshold is
smaller and agrees with the prediction (Pc = –3.1 bar),
the results are too preliminary to assert the quantum
regime of the cavitation above 40 mK.

Here, we emphasize two points that permit us to
understand the disagreement between theory [9] and
experiment [5]. First of all, it is the energy dissipation
during the underbarrier motion of a nucleus of the sta-
ble phase in normal 3He that reduces the quantum
nucleation rate. The second point is that the experi-
ments are performed near the spinodal line, and the
sound velocity vanishes at P = Pc. In this case, the
kinetic energy of a growing bubble K decreases, and the
crossover temperature T* increases [12, 13]. This may
be one reason why T* equals 0.6 K in 4He [4, 5] and not
0.2 K, as predicted in [7].

2. DISSIPATION AND SOUND EMISSION
IN THE THEORY OF QUANTUM CAVITATION

We discuss the rate at which the bubbles can nucle-
ate via quantum fluctuations in the normal 3He and
superfluid 4He at negative pressures and sufficiently
low temperatures. The energy dissipation due to viscos-
ity and the sound emission due to compressibility of a
fluid are involved in the bubble growth kinetics. Due to
viscosity, the quantum cavitation kinetics in 3He differs
qualitatively from that in 4He and corresponds to the
dissipative tunneling in the overdamped regime. The
compressibility results in increasing the cavitation rate
and is essential in both liquids, especially, for the small
critical bubbles responsible for the experimentally
observable rates of the quantum cavitation.

All the calculations of the cavitation rate and tensile
strength in the region of the quantum tunneling regime
have been performed within the framework of the Lif-
shits–Kagan theory [1] of the first-order phase transi-
tions. However, this theory neglects the compressibility
of the metastable liquid; in other words, the sound
velocity is taken to be infinite in the liquid. Clearly, a
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
more realistic theory of the quantum cavitation must
involve the effect of the finite compressibility, espe-
cially, in the vicinity of the instability point at which the
sound velocity vanishes.

To investigate quantum-mechanical tunneling
between the metastable and stable states of a condensed
medium and to calculate the rate at which cavities
nucleate, we use the formalism based on the finite
action solutions (instantons) of equations continued to
the imaginary time. This approach [15], elaborated for
describing quantum-mechanical tunneling in the sys-
tems with a macroscopic number of degrees of free-
dom, was used for incorporating the influence of
energy dissipation in a metastable condensed medium
on the quantum kinetics of the first-order phase transi-
tions at low temperatures [2].

The rate of the quantum nucleation can be written as

(1)

where the prefactor Γ0 is the rate at which cavitation is
attempted per unit volume and unit time. According to
the general notions of the nucleation kinetics, the pref-
actor Γ0 can be evaluated approximately as an attempt
frequency ν0 multiplied by the number of centers at
which independent cavitation events can occur.

In turn, the exponent S is the critical value of the
effective Euclidean action [2]:

(2)

where β = T–1 is the inverse temperature. The path R(τ),
which is defined in the imaginary time τ, satisfies the
periodic boundary conditions R(–β"/2) = R(β"/2). It
should be emphasized that all parameters of the effec-
tive action are unambiguously associated with the cor-
responding parameters in the classical equation of
growth:

(3)

The correspondence can readily be settled by analyti-
cally continuing (|ωn|  –iω) the Euler–Lagrange
equation (δSeff /δRτ = 0) for the effective action to real
time, which gives the classical equation of growth. The
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770 BURMISTROV, DUBOVSKIŒ
substitution |ωn|  –iω of the Matsubara frequencies
with the real ones must be performed in the frequency
representation of the corresponding equations.

In the classical equation (3) for the growth of the
supercritical droplet, we assume there is a limit for the
low growth rate of the droplet and expand the rate in
powers of the growth rate. The growth rate-independent
term corresponds to the potential energy of the bubble.
The linear term in the growth rate describes the energy
dissipation, the second-order term corresponds to the
kinetic energy of the droplet, and the third-order term
can be attributed to the sound emission with the change
of the bubble volume. Thus, it is clear that the first two
terms in Eq. (2) can be referred to as the potential
energy U(Rτ) and the kinetic energy with the mass
M(Rτ) of the bubble. The other terms are nonlocal in
time and are due to the energy dissipation D(Rτ, Rτ')
during the bubble growth and the sound emission C(Rτ, Rτ')
originating from the finite compressibility. The energy
dissipation is connected with the vortex γ1(R) [2, 13] as

(4)

and γ1(R) is unambiguously determined by the friction
coefficient

(4a)

We would like to make an important remark concerning
the behavior of the friction coefficient µ1(R) as a func-
tion of the bubble radius and temperature. In the hydro-
dynamic approximation, the bubble radius must be
much larger than the mean free path l(T) of excitations
in the medium surrounding the bubble. Since the mean
free path increases rapidly at low temperatures (in par-
ticular, l(T) ∝  1/T2 for 3He), the crossover from the
hydrodynamic R @ l regime to the ballistic or Knudsen
regime with R ! l must occur. Depending on whether
the hydrodynamic or ballistic regime occurs, we arrive
at the general expression for the friction coefficient
µ1(R):

where η is the viscosity coefficient and

(4b)

is a dimensionless function of the ratio of the bubble
radius to the mean free path of excitations in the liquid.
The numerical factor a is of the order of unity, depends
on the specific features of the interaction of excitations
with the bubble surface, and can be calculated explic-
itly using the kinetic equation.

It should be noted that the friction coefficient µ1(R)
in the ballistic R ! l regime is independent of the mean
free path l(T) since η ~ ρcl, where ρ is the density of the

D Rτ Rτ',( ) γ1 Rτ( ) γ1 Rτ'( )–( )2
=

µ1 R( ) ∂γ1 R( )/∂R( )2
.=

µ1 R( ) 16πηRf R/l( ),=

f x( )
1, x @ 1

ax, x ! 1



=
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liquid. In this case, γ1(R) does not depend on the tem-
perature:

(5)

This ballistic regime with the temperature-independent
γ1(R) is the only possible underbarrier motion of the
nucleus because the opposite case (where R > l) implies
a large critical radius Rc within the whole range of tem-
peratures outside a close vicinity of Tλ. The large criti-
cal radius Rc leads to a negligible decay rate of the
metastable liquid and to the impossibility of recording
it experimentally. Thus, for the underbarrier motion of
the cavity, we can always assume the validity of Eq. (5).

The second nonlocal term in Eq. (2),

(6)

is responsible for the excitation and emission of sound
waves in the course of the underbarrier growth of a bub-
ble and γ3(R) is determined by the kinetic coefficient
µ3(R):

The corresponding coefficient µ3(R) is given by

which leads to

(7)

It is interesting to note that in contrast to the term with
the Ohmic dissipation D(Rτ, Rτ') related to the dissipa-
tive function that is proportional to the square of the
first-order time derivative, the term C(Rτ, Rτ') due to the
finite compressibility of the fluid medium gives a neg-
ative contribution into the effective action [Eq. (2)].
This results in enhancing the quantum nucleation rate
compared with the one calculated in the framework of
the Lifshits–Kagan model [1] of an incompressible
fluid. Some hints for this conclusion can be seen from
the fact that the finiteness of the sound velocity limits
the region of the bubble environment that can be dis-
turbed and set into motion. The size of this region is
approximately equal to Λ = cτ, where τ is the typical
time of growth. In some sense, one can say that the total
kinetic energy of the fluid flowing away from the
expanding bubble becomes smaller than for the incom-
pressible fluid where the perturbation induced by the
formation of the bubble extends instantaneously to
infinity.

The kinetic energy can be described in terms of the
variable mass of the bubble:

(8)
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MANIFESTATION OF DISSIPATION AND COMPRESSIBILITY 771
It can be attributed to the kinetic energy of the fluid that
flows away from the bubble. In the case of cavitation,
the potential energy can be represented as

(8a)

where α is the liquid–gas surface tension.
Equations (1) and (2) with the coefficients (4)–(8)

allow us to calculate the rate of the underbarrier motion
of the bubble. It should be emphasized that all parame-
ters of the effective action are unambiguously associ-
ated with the corresponding parameters in the classical
equation of growth (3).

3. THE MANIFESTATION OF COMPRESSIBILITY 
IN THE EXPERIMENT ON QUANTUM 

CAVITATION IN SUPERFLUID 4HE

Recently [5], cavitation was studied in superfluid
4He and normal liquid 3He experimentally. The investi-
gation of cavitation in these liquids is related to the pos-
sibility of avoiding impurities, which usually manifest
themselves as centers of cavitation. On the other hand,
these liquids have essentially different properties;
namely, 4He is a superfluid liquid and 3He is a normal
viscous Fermi liquid in the experimental range of tem-
peratures from 40 to 1000 mK. The cavitation process
is induced by sound pulses at a frequency ω close to
1 MHz and is focused in the center of the experimental
cell. The pulses create oscillations of local pressure
within several bars of the static pressure. The typical
size of the acoustic focus is ~0.12 mm and the size of
the experimental cell is 8 mm. The above-mentioned
limiting temperature (40 mK) is connected with ther-
mal radiation due to these sound pulses with a short
duration between 30 and 70 µs and a repetition rate in
the range 0.1–1 Hz.

The cavitation process is observed to be stochastic.
For the invariant temperature and pressure parameters,
some sound pulses of a given amplitude produce cavi-
tation and some pulses of the same amplitude do not.
Applying several sound pulses and counting the num-
ber of cavitation events, one can determine the proba-
bility Σ of cavitation as a function of the applied voltage
and temperature. According to [5], it is shown that the
cavitation probability in 4He depends on temperature
only above about 400 mK. One of the difficulties in
interpreting the experiment is related to the fact that the
maximum of the sound attenuation exists in the system
in this temperature range. An increase of the sound
attenuation results in the fact that a larger voltage is
needed to produce the same pressure swing at the
acoustic focus where cavitation occurs. After the cor-
rection, the cavitation voltage is found to be indepen-
dent of the temperature up to 600 mK. Above this tem-
perature, the voltage decreases as T increases, corre-
sponding to a thermally activated nucleation. This
experimental result can be interpreted as a crossover

U R( ) 4π
3

------PR
3

4πα R
2
,+=
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from the quantum cavitation below 600 mK to the ther-
mally activated cavitation. It should be emphasized [5]
that the stochastic behavior of the nucleation process
combined with the temperature-independent behavior
of the voltage at which the cavitation occurs is in con-
trast to the assumption that the spinodal pressure is
achieved, because this pressure cannot result in the sto-
chastic behavior of the cavitation process.

There is one more difficulty in interpreting the
experiment. The temperature of the cell that is mea-
sured in the experiment [5] may be different from the
temperature in the focus where the cavitation occurs.
The point is that the acoustic wave is adiabatic in the
first approximation; consequently, the temperature and
pressure oscillate at the focus. Within the adiabaticity
assumption, the temperature in the focus of the sound
wave can readily be estimated [5]. At temperatures
below 0.7 K, phonons make the dominant contribution
into the entropy per unit mass [16]:

(9)

In the isentropic process, the temperature is therefore
proportional to the velocity of sound c. It was shown
experimentally [5] that near the spinodal at P = –9.23 bar,
the sound velocity is 74 m/s, which is lower than that at
zero pressure (c = 238 m/s) by a factor of three. As a
result, the local instantaneous temperature T must be
reduced at the focus by the same factor with respect to
the static temperature Tstat of the cell [5].

This interpretation is consistent only if the follow-
ing two conditions are fulfilled. The first condition is
related to the well-known fact that the nonlinear effects
arise very early in an alternating field [17]. The typical
field in which the nonlinear effects arise is proportional
to the exponential

(10)

where ω is the sound frequency, τ0 is a typical time of
the underbarrier motion, and V is the sound amplitude.
In the experiment [5], ω = 1 MHz, and in the experi-
mentally analyzed vicinity of the spinodal line, τ0 can
be estimated as τ0 = 10–10 s–1. Thus, in the experiment
range where ωτ0 ! 1, the nonlinear effects can be
neglected. The second condition is much more severe,
meaning that T entering Eq. (9) follows local variations
of the pressure in space and time in the sound wave.
The conditions can be represented as

(11)

These conditions are essentially equivalent. The second
inequality can be obtained from the first by multiplying
it by the velocity of sound c. The second condition
means that the sound wavelength λ must be much
larger than the mean free path l. In the experiment [5],
the opposite condition is fulfilled within the entire tem-
perature range. The size of the acoustic focus is

S Sph≈ 2π2
T

3

45ρ3
c

3
-----------------.=

V Ṽ ωτ0{ } ,exp=

ωτ  ! 1 or l ! λ .
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772 BURMISTROV, DUBOVSKIŒ
~0.12 mm, and this distance is much less than the mean
free path lph for the phonon–phonon scattering, which

equals 1.3 mm at 0.7 K. According to [16],  ≈ 6 ×
106T7 s (with T measured in K), lph . cτph, with the
value c = 74 m/s near the spinodal line used in the esti-
mate. Moreover, lph increases as T–7 with a decreasing
temperature and becomes about 15 mm at T = 0.5 K,
which exceeds the size of the experimental cell of
8 mm. The other scattering processes, in particular, the
phonon–roton and roton–roton scatterings, are ineffi-
cient at low temperatures for the relaxation to a local
equilibrium because of freezing rotons. Thus, the local
temperature T in the sound wave cannot follow the vari-
ations of the pressure in the sound wave in this range of
temperatures, with the entropy S in Eq. (9) being con-
served. The local temperature in the focus of the sound
wave is therefore equal to the temperature outside the
focus; i.e., T* = 0.6 K at the crossover point from ther-
mal to quantum behavior of the kinetics of bubble
nucleation.

We are now able to compare the thermal–quantum
crossover temperature T* obtained experimentally with
the calculations. We start from the simplest estimate
that can be obtained from the first two terms of Eq. (2).
These two terms are the potential and kinetic energy of
the growing cavity and correspond to the Lifshits–
Kagan analysis [1]. In the case of cavitation, the cross-
over temperature reduces to the following equation
with the known parameters:

(12)

The substitution of the 4He data ρ = 0.095 g/cm3, α =
0.37 erg/cm2, and the experimental value P = –9.5 bar
near the spinodal line gives T* = 0.15 K. The estimate
used is a thin-wall approximation where the bubble is
assumed to have a sharp surface of radius R forming the
boundary between an empty interior and the bulk liquid
surrounding the bubble. A more elaborate calculation
for the bubbles with a radius that is comparable with the
interface thickness [9] uses the density–functional
approximation for the energy of the metastable liquid
and gives T* = 0.2 K. The insignificant difference
between these two approximations is not surprising
because they both are based on the same value of the
surface energy α [1, 9]. The difference between these
two opposite estimates is less than the experimental
value, which, as is emphasized, should be taken as T* =
0.6 K instead of T* = 0.2 K, as was assumed in [5]. The
results are insensitive to the inclusion of the third term
D(Rτ, Rτ') in Eq. (2), which describes dissipation,
because the dissipation in 4He is negligible at low tem-
peratures. Moreover, this leads to lowering T* and to a
deviation of its value from the experimental result T* =
0.6 K. However, the term involving C(Rτ, Rτ') in Eq. (2)
leads to the opposite and important effect of increasing

τph
1–

T*
256"

405π 6
-------------------- P

3/2

α ρ
------------.=
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T*. If we consider the term with C(Rτ, Rτ') in Eq. (2) as
a perturbation, we obtain the following expression for
effective action Seff in Eq. (2) at the low-temperature
limit:

(13)

This expression differs from that for Seff in [1] only by

the factor (1 – /c), where  = (2/3)5/2(|P|/ρ)1/2 is the
rate of the underbarrier growth of the cavity. Substitut-
ing the data ρ = 0.095 g/cm3, P = –9.5 bar, and c =

74 m/s, we obtain /c = 0.48; hence, T* increases
approximately twofold and equals T* = 0.4 K. We
assert that the tendency of increasing T* due to a finite
compressibility of 4He and the underbarrier sound
emission during cavitation is the reason for the high
value of T* observed experimentally. The manifesta-
tion of the phenomenon is strongly related to a high

value of the ratio /c, which approximately equals 1/2.
The high value is directly related with the experimental
conditions [3, 5] of the cavitation taking place in the
vicinity of the spinodal pressure. For P = 0, this ratio is
only about 0.1. In any case, more elaborate consider-
ations should be used in analyzing the phenomenon

because the leading approximation in /c ! 1 is
assumed for the derivation of Eq. (2).

4. THE MANIFESTATION OF DISSIPATION 
IN THE EXPERIMENT ON QUANTUM 
CAVITATION IN NORMAL FLUID 3He

We now turn to the analysis of the experiments on
quantum cavitation in liquid 3He. This is a normal vis-
cous Fermi liquid within the experimental range of
temperatures from 40 to 1000 mK [4]. The simplest
estimate for T* in Eq. (12) gives T* = 0.09 K for ρ =
0.054 g/cm3, α = 0.16 erg/cm2, and the pressure P =
−3.1 bar near the spinodal of 3He. A more accurate cal-
culation for the bubbles with radii comparable to the
interface thickness uses the density–functional approx-
imation for the energy of the metastable liquid and
gives T* = 0.125 K [9]. However, the crossover to the
quantum behavior is not observed experimentally until
T = 0.04 K [4].

Both the above estimates are based on the first two
terms in the effective action Seff in Eq. (2), which
include only the potential and kinetic energies in differ-
ent approximations and ignore the fact that liquid 3He
is viscous. The viscosity η behaves as T–2 with the tem-
perature since 3He is a Fermi liquid and η ~ ρvFlF,
where ρ is the density of 3He, vF is the Fermi velocity,
and lF ~ vFτF is the mean free path. Here, τF is the col-

Seff
5 2π2

16
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Ṙ

AND THEORETICAL PHYSICS      Vol. 91      No. 4      2000



MANIFESTATION OF DISSIPATION AND COMPRESSIBILITY 773
lision time for excitations in the Fermi liquid and τF ~
D"εF/T2, where εF is the Fermi energy, D ~ (pFa0/")–2

is a dimensionless coefficient, and a0 is the scattering
length [18]. Using the expression for the Fermi

momentum pF = "(3π2ρ/m)1/3 and εF = /2m*, with m
being the mass of the 3He atom and m* being the effec-
tive mass such that m*/m = 3.08, and substituting ρ =
0.054 g/cm3 near the spinodal, we obtain pF/" = 0.68 ×
108 cm–1. If we put D ~ 0 0.15, we obtain τF = 1.2 ×
10−12T–2 s (with T expressed in K), which differs from
the value for τF obtained from the viscosity [16] only by
a factor of 1.3 due to the difference between the density
of 3He near the spinodal line (ρ = 0.054 g/cm3) and the
density ρ = 0.082 g/cm3 at pressure P = 0. For lF, we
have

(14)

We see that lF, is about 0.5 Å at a temperature of T =
1 K. In this case, lF ! Rc, because Rc ~ 10 Å according
to [1] (see also the introduction to [19]). Upon lowering
the temperature, the mean free path lF grows drastically
as T–2 and lF becomes ~50 Å at T = 0.1 K for lF @ Rc.
Thus, within the temperature range 1–0.1 K, the behav-
ior of the nucleation of bubbles varies from the hydro-
dynamic type to the ballistic one. We can introduce [2]
the temperature Tl at which the mean free is path lF .
Rc, and the hydrodynamic nucleation type is replaced
by the ballistic one:

(15)

For cavitation in 3He near the spinodal, Tl = 0.18 K. At
this point, we go over from one type of dissipation in
the system to another. Above T > Tl, the nucleation is
governed by the hydrodynamic flow of viscous Fermi
liquid (4b) (with Rc/lF @ 1) and for T < Tl the ballistic
propagation of excitations in the Fermi liquid occurs
(4b) (with Rc/lF ! 1). For T > Tl, the viscosity η enters
the dissipation at the bubble nucleation. Inserting the
above estimate into the expression for η, we obtain
from [16] η = α0/T2, with α0 ~ 10–6 pois. For T < Tl, the
dissipation is governed by η/lF.

We see that near the spinodal in 3He, Tl is higher
than T*, which is about 0.1 K according to the estimate
without the dissipation processes at nucleation being
taken into account. The involvement of dissipation only
reduces T*. In any case, therefore, the quantum cavita-
tion is accompanied by the dissipation of the Knudsen
type. We can now compare the value of the effective
action Seff [Eq. (2)] in the dissipationless case (13) with

pF
2

lF . A/T
2
,

A "
43π2

2
-------- m*

m
------- 

 
2–
Dρ
m

3
--------,=

lF . 0.5 10
8–
T

2–
cm T  in K( ).×

Tl A/Rc.=
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the one involving the dissipation, Sdiss ≈ µ1 . For T <
Tl (Rc /lF ! 1), this ratio is q = Skin/Sdiss ~

0.05(P/ρ)1/2  ~ 0.08 for the above-mentioned values
P and ρ near the spinodal of 3He. This estimate means
that the growth of the bubble is accompanied by a
strong dissipation corresponding to the overdamped
quantum regime, and the thermal–quantum crossover

temperature is T* = "U0/Sdiss, with U0 = (16/27)πα
being the height of the potential barrier. For the dissipa-
tion of the Knudsen type, we thus obtain T* as

(16)

where s is a coefficient that depends only on the dissi-
pation type. In what follows, we see that for the ballistic
propagation of excitations in the metastable environ-
ment, s = sb ≈ 1.2 and T* becomes about 2 mK. Note
that " does not enter into the expression for T* in Eq. (16)
because pF/" depends only on the density ρ, i.e.,
approximately pF/" = (3π2ρ/m)1/3. The absence of " in
T* is related to the overdamped ballistic regime of dis-
sipation. In this case, the dissipation is proportional to
η/l, which is of the order ρvF and is proportional to ".
Thus, " does not enter T* because of the purely quan-
tum nature of the dissipation in the Fermi liquid. A for-
mal reduction of the dissipation ("  0) leads to a
dissipationless behavior, where " enters again in T*.

To determine sb, we can use only two terms of the
effective action Seff[Rτ] in Eq. (2), namely, the potential
energy U(Rτ) and the nonlocal dissipative term D(Rτ, Rτ'),
because the term with the kinetic energy is small in the
case of a strong dissipation and is proportional to q ~
0.08. We can reduce Seff[Rτ] to the dimensionless action
sb(t) (see, e.g., [2]):

(17)

The numerical calculation of (17) gives s = sb ≈ 1.2.

5. CONCLUSIONS

We would like to emphasize the qualitative feature
whereby the normal liquid 3He differs from the super-
fluid 4He [2], namely, the dissipation of energy in the
course of quantum cavitation for normal 3He. In the
absence of dissipation, only the kinetic energy K of the
motion of the metastable liquid governs the underbar-
rier dynamics of the growing bubble. The kinetic
energy can be described in terms of the variable mass

Rc
2

v F
1–

Rc
2

T* s
1– m*

3
5π

-------- "
pF
----- P

2

ρα
-------,=

sb xτ[ ] τ xτ
2

1 xτ–( )d

1/2t–

1/2t
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+
πt

2

4
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xτ
2

xτ'
2
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πt τ τ'–( )[ ]sin
2
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∫
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of the bubble M(R) = 4πρR3 as K = M /2 [1]. The
underbarrier motion of the bubble in 4He corresponds
to the dynamic motion indicated above if we disregard
phonon excitations. Anyway, this is true at low temper-
atures. In 3He, we must also take the viscous motion of
the normal Fermi liquid into account. This leads to the
appearance of the term with the energy dissipation in
the bubble expansion equation.

The growth rate of the bubble is determined by the
interplay of the kinetic energy K and the energy dissi-
pation. It should be emphasized that there are no free
parameters in 3He that can determine the relative con-
tribution of these two terms. The kinetic energy K is of

the order M(R) /2 and should be compared with

µ(R)R  from the energy dissipation. The ratio of K to

the energy dissipation is of the order /vF ! 1. The last
condition is connected with the approximate relation
vF ~ c, and vF differs from the velocity of sound c only

by a numerical coefficient of about 2/( π1/3). Our
consideration assumes a slow growth rate of the bubble:

 ! c. We would like to emphasize that the dynamics
of the subbarrier motion of the bubble is governed by
the energy-dissipation power rather than by the kinetic
energy K. This implies the overdamped regime of quan-
tum cavitation. Accordingly, we have the exponent

µ(Rc)  in the growth rate instead of ,
as in the absence of dissipation. In addition,

Thus, because of dissipation, the crossover temper-
ature T* decreases and becomes lower than the temper-
ature of the 3He transition into superfluidity. This man-
ifests itself as T* because of the lack of dissipation in
the superfluid state. This is why the crossover from
thermal to quantum behavior was not found [4].

For the understanding of the experiments on quan-
tum cavitation in superfluid 4He [3], it is important to
incorporate compressibility and sound emission into
the equation of the bubble growth. The point is that the
experiments are performed near the spinodal line, and
the sound velocity vanishes at P = Pc. In this case, the
kinetic energy K decreases and T* increases. This is the
reason why T* equals 0.6 K in 4He [3, 5] and not 0.2 K,
as predicted in [9].
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Ṙ

Ṙ
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Abstract—A new mechanism is proposed for collapse in hydrodynamics associated with the “breaking” of
vortex lines. The collapse results in the formation of point singularities of the vorticity field, i.e., a generalized
momentum curl. At the point of collapse the vorticity |W| increases as ((t0 – t)–1 and its spatial distribution for
t  t0 approaches quasi-two-dimensional: in the “soft” direction contraction obeys the law l1 ∝  (t0 – t)3/2

whereas in the other two “hard” directions it obeys l2 ∝  (t0 – t)1/2. It has been shown that this collapse scenario
takes place in the general case for three-dimensional integrable hydrodynamics with the Hamiltonian * =

dr. © 2000 MAIK “Nauka/Interperiodica”.W∫
1. INTRODUCTION

The problem of collapse in the hydrodynamics of an
ideal incompressible fluid as a process involving the
formation of a singularity over a finite time is one of the
central problems in the theory of developed hydrody-
namic turbulence. It is well known that power-type sin-
gularities produce power tails in the short-wavelength
region in the turbulence spectrum and consequently
collapses are important from the point of view of the
Kolmogorov spectra [1]. Classical examples of these
spectra are the Phillips spectrum [2] for wind waves
and the Kadomtsev–Petviashvilli spectrum of acoustic
turbulence [3]. In the first case “whitecaps” or surface
tips appear as singularities while in the second case,
these are density discontinuities (shock waves).

The problem of collapse in hydrodynamics has been
around for a long time. For example, in 1981 Saffman
[4] considered this problem as one of the key issues in
hydrodynamics (see also [6] and the literature cited
there) although it seems to us that L.F. Richardson and
A.N. Kolmogorov must have understood the impor-
tance of this problem. Despite the long history of this
problem, no significant understanding of the nature of
collapse in hydrodynamics has yet been obtained,
although a fairly large number of numerical experi-
ments have now indicated that it does exist (as will be
discussed below). As for theory, no important results
have been achieved and no common viewpoint exists
on the actual object, collapse in incompressible hydro-
dynamics: the view has been put forward that collapse
is generally impossible (see, for example Section 7.8 of
the book [5] and the literature cited there). The only
exception in our view is a study by Zakharov in 1988
[7] (a more detailed study appeared in 1999 [8]) in
which he constructed a systematic theory of the col-
1063-7761/00/9104- $20.00 © 20775
lapse of two antiparallel vortex filaments of finite but
small thickness in the quasi-two-dimensional approxi-
mation where the flow is mainly two-dimensional and the
dependence along the third coordinate is slow (see [9]).

Considerable progress in studying hydrodynamic
collapse can be attributed to numerical modeling of the
Euler equations. A considerable number of numerical
experiments indicate that the vorticity |W| goes to infin-
ity at various points over finite time. It follows from
[10–13] that |W| increases at the point of collapse as
(t0 – t)–1 where t0is the time of collapse. According to
[10, 13], the spatial scale of the collapsing distribution
decreases as (t0 – t)–1/2. In a recent study Kerr [14]
reports anisotropy of the collapsing region. An analysis
of the numerical data yielded two scales, one decreas-
ing as the square root: l1 ∝  (t0 – t)1/2 and the other
decreasing linearly with time: l2 ∝  t0 – t. It should be
noted that in most known numerical experiments the
initial flow possessed some symmetry or was close to
symmetric resulting in the appearance of several singu-
larities. For instance, Kerr [10] examined the evolution
of two antiparallel vortex tubes when collapse is attrib-
uted to Crow instability [15] which at the nonlinear
stage leads to reconnection of vortex lines even when
viscosity is taken into account. Consequently, collapse
was observed at two symmetric points. 

In this paper, study we propose a new mechanism
for the formation of collapse associated with “break-
ing” of the continuous distribution of vortex lines.
Importantly this mechanism is not related to any sym-
metry of the initial distribution and collapse can occur
at a single isolated point. Probably, it is this type of col-
lapse that was recently observed in the numerical cal-
culations [16]. The mechanism can be naturally incor-
porated into the classical catastrophe theory [17]. Col-
000 MAIK “Nauka/Interperiodica”
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lapse is represented as a process of caustic formation
for a solenoidal vector field of the vorticity. Under-
standing how collapse occurs directly in a Euler
description is not easy. This is primarily related to a
hidden symmetry of the Euler equation, i.e., the rela-
beling symmetry (for more details see the reviews [18,
19]). This symmetry generates a vector quantity which
is conserved at each Lagrangian point, a Cauchy invari-
ant which is expressed in terms of the velocity curl and
the Jacobi matrix of the mapping from Eulerian to
Lagrangian variables and for this reason is strongly
nonlocal in terms of liquid velocity. The Cauchy invari-
ant, however, is known as an invariant characterizing
the frozenness of vortex lines into the fluid while all the
conservation laws for vorticity: the Kelvin theorem,
Ertel invariant, and the Hopf topological invariant char-
acterizing the knotted nature of the flow, are a simple
consequence of this invariant. The frozenness of the
vortex lines implies that liquid particles are attached to
a given vortex line and never leave it. The frozen-in
property can only be destroyed as a result of viscosity,
i.e., beyond the limits of ideal hydrodynamics. Thus,
the next natural step in the description of vortex motion
was to introduce a mixed Lagrangian–Eulerian descrip-
tion where the main object is the vortex line [20, 21].
Each vortex line is numbered by its (two-dimensional)
Lagrangian marker and the third coordinate is the
parameter determining the curve. This representation
which we call the vortex line representation is the key
for describing collapse in hydrodynamics as the forma-
tion of the caustic of a solenoidal field of velocity curl.

This article is set out as follows. In Section 2 we
introduce the concept of vortex lines and explain its
meaning. Section 3 is devoted to three-dimensional
integrable hydrodynamics which we introduced in [20].
Its Hamiltonian is unusual and is expressed in terms of
the modulus |W|:

(1)

This model can be integrated using the vortex line rep-
resentation and the inverse scattering method. In the
vortex line representation, the Hamiltonian (1) is
decomposed into the sum of the Hamiltonians of non-
interacting vortex lines. The dynamics of each vortex
line is described by an exactly integrable one-dimen-
sional Landau–Lifshitz equation for a Heisenberg fer-
romagnet or its gauge-equivalent analog, a nonlinear
Schrödinger equation. Integrable hydrodynamics is
thus the hydrodynamics of free vortex filaments. For
the hydrodynamics of free particles—zero-pressure
hydrodynamics (see, for example, [22]) and for integra-
ble hydrodynamics the appearance of a caustic-type
singularity is typical. For zero-pressure dynamics the
density in the caustic goes to infinity. The density, how-
ever, is a scalar characteristic unlike the solenoidal vec-
tor field W . This last factor imposes specific constraints
on the field structure near the singularity. It is shown in
Section 4 that the structure of the singularity is strongly

* W r.d∫=
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anisotropic and acquires a pancake shape. The spatial
distribution near the point of collapse at t  t0
approaches quasi-two-dimensional: compression in the
“soft” direction obeys the law l1 ∝  (t0 – t)3/2 while in the
two other “hard” directions it obeys l2 ∝  (t0 – t)1/2. At
the point of collapse the vorticity lies in the “pancake”
plane and its value |W| increases as (t0 – t)–1. This
behavior is consistent with the general position. In the
degenerate case considered in the last part of the article
we consider the collapse of a topologically nontrivial
axisymmetric vorticity distribution, known as a Hopf
mapping, when any two vortex lines are singly linked.
In this case, at the point of collapse the two eigenvalues
of the Jacobi matrix go to zero and as a result the vor-
ticity at the point of collapse appears to have a stronger
singularity: |W| ∝  (t0 – t)–2. The conclusions are devoted
to a discussion of numerical experiments to observe
collapse for Euler hydrodynamics and their consistency
with the theory presented here.

2. VORTEX LINE REPRESENTATION

We shall analyze hydrodynamic equations 

(2)

where *{W} is the Hamiltonian of the system, W(r, t) =
curl p(r, t) is the generalized vorticity field which com-
prise the curl of the canonical momentum p. The vector
field

(3)

is none other than the liquid velocity. By definition,
divv = 0, i.e., we are dealing with an incompressible
medium. If the Hamiltonian is the same as the kinetic
energy of the fluid 

expression (3) gives the ordinary relationship W =
curl v between the velocity v and the vorticity W, and
Eq. (2) is transformed into the Euler equation for the
vorticity W: 

An important property of the Eqs. (2) is that the vortic-
ity is frozen into the liquid so that all Lagrangian particles
remain on their oun natural vortex line for t > 0. It is there-
fore natural to introduce a mixed Lagrangian–Euler
description in terms of vortex lines where each vortex line
is numbered by its (two-dimensional) Lagrangian label ν
ascribed to some two-dimensional manifold 1, and the
parameter s determining each vortex line has the meaning

∂W
∂t

-------- curl curl
δ*
δW
-------- W× ,=

v curl δ*/δΩ( )=

*
p2

2
----- rd∫

W r1( ) W r2( )⋅
8π r1 r2–

---------------------------------- r1 r2,dd∫∫= =

∂W
∂t

-------- curl v Ω×[ ] , div v 0.= =
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of a Eulerian variable. In the vortex line representation
W has the form [20]

(4)

Here each vortex line ν corresponds to the closed curve
r = R(s, ν, t) so that Rs = ∂R/∂s is its tangential vector.
The quantity Ω0(ν), being a Lagrangian invariant, char-
acterizes the power of each vortex line. Incidentally,
without limiting the generality, this function can be
assumed to be equal to unity which is achieved by suit-
ably redefining the markers ν and replacing the orienta-
tion of the lines with the opposite in those regions of the
manifold 1 where Ω0(ν) < 0. Thus, in the following
analysis we shall omit the factor Ω0(ν) in the corre-
sponding formulas. For an arbitrary vortex-line topol-
ogy, (4) can be generalized to give 

(5)

where W0(a) is a Cauchy Lagrangian invariant charac-
terizing the frozenness. In this case, the condition
divaW0(a) = 0 guarantees that the field W(r, t) is trans-
verse: divW(r) = 0. In expression (5) the vector
(W0(a)∇ a)R(a, t) = b is the tangential vector to the vor-
tex line at the point

(6)

The parameter s in the representation (4), for example,
may be the element of the vortex line arc of the initial
field W0(a) and the components of the vector a trans-
verse to this line may be taken as the parameter ν.

After integrating over the variables a in (5), the vec-
tor W(r, t) is expressed in terms of the Jacobian of the
mapping (6) J = det ||∂R/∂a|| and the Cauchy invariant
W0(a):

(7)

It is important to stress that in this expression the Jaco-
bian is not assumed to be unity: J ≠ 1. Nevertheless, this
does not contradict the condition of incompressibility
of the velocity field.

The equations of motion for the vortex lines are
obtained after substituting (5) into the frozen-in Eq. (2)
[20, 21]: 

(8)

This equation of motion describes the transverse
dynamics of the vortex lines since any motion along the
curve does not lead to its change. In particular, this
explains why no constraints attributable to the condi-
tion of incompressibility are imposed on the Jacobian J.
Note that on going over from a Eulerian description to
a completely Lagrangian one, the Jacobian is J ≡ 1. On
going over to a mixed Lagrange–Eulerian description

W r t,( ) Ω0 ν( )d2ν δ r R s ν t, ,( )–( )∂R
∂s
------- s.d∫∫=

W r t,( ) δ r R a t,( )–( ) W0 a( ) ∇ a⋅( )R a t,( )d3a,∫=

r R a t,( ).=

W R( ) 1
J
--- W0 a( ) ∇ a⋅( )R a( ).=

W0 a( ) ∇ a⋅( )R a t,( ){ }[
× Rt a t,( ) v R a t,( ) t,( )–{ } ] 0.=
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in accordance with the equations of motion (6), the
motion of Lagrangian particles along the vortex lines is
eliminated in the mapping (6). For this reason the Jaco-
bian is not necessarily unity. This point is principal and
as we shall see subsequently, mainly explains why col-
lapse is possible in hydrodynamics.

Equation (8), as was shown in [20, 21], can be writ-
ten in the Hamiltonian form 

(9)

This equation describes the motion of vortex filaments
for systems with an arbitrary Hamiltonian, a functional
which depends only on Ω(r, t). 

It is useful to bear in mind that the expressions for
such important characteristics of the system such as its

momentum P = dr and the angular moment M =

r × p]dr being transformed by integration by parts to

a form where the vorticity W = curl p appears instead of
p, and then rewritten in terms of vortex lines, has the
following form:

(10)

(11)

The tildes in these relationships imply that the equali-
ties are obtained to within the integrals over an infi-
nitely distant surface. We can see here that the momen-
tum and angular moment of the system are made up of
the momenta and angular moments of each vortex fila-
ment where the momentum of a closed line is the ori-
ented surface area stretched onto a contour. 

It is readily confirmed that when R shifts by the con-
stant vector R0,

R  R' = R0 + R,

the momentum P remains unchanged while the angular
momentum M undergoes the well-known transforma-
tion:

M  M' = [R0 × P] + M. (12)

3. INTEGRABLE HYDRODYNAMICS

In this and the next two sections we shall show how
and why collapse can occur in three-dimensional inte-
grable hydrodynamics. This model was introduced in

W0 a( ) ∇ a⋅( )R a t,( ){ } Rt a( )×[ ]

=  δ* W R{ }{ }
δR a( )

-------------------------------
W0

.

p∫
[∫

P
1
2
--- r Ω×[ ] rd∫∼ d2ν 1

2
--- R Rs×[ ] s,d∫⋅

1

∫=

M
1
3
--- r r Ω×[ ]×[ ] rd∫∼

=  d2ν 1
3
--- R R Rs×[ ]×[ ] s.d∫⋅

1

∫
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our previous paper [20]. Its Hamiltonian is expressed in
terms of the modulus W(r, t):

(13)

and the equations of motion are the same as the frozen-
in equation (2) with the generalized velocity

where t = W/Ω is the unit vector tangential to the vortex
line. Assuming that all the vortex lines are closed,
selecting their labeling such that Ω0(ν) = 1, and substi-
tuting the representation (4) into (13), we can easily see
that the Hamiltonian is decomposed into the sum of the
Hamiltonians of the vortex lines:1

(14)

Here the integral over s is the length of a vortex filament
having the index ν. The equation of motion for the vec-
tor R in accordance with (9) will be local with respect
to all variables, it does not contain interactions with
other vortices:

(15)

As a result of this factor, not only are the total energy,
momentum, and angular moment of the system con-
served but also the corresponding geometric invariants
of each vortex line: its length 

momentum

and angular momentum 

Equation (15) is invariant with respect to the substi-
tutions s  (s, t). Thus, it can be solved for Rt to
within the shift along the vortex filament, a transforma-
tion which does not change the vorticity W. This
implies that in order to find W it is sufficient to find any
single solution of the following equation derived from
(15)

(16)

for a certain value of β. The equation thus obtained for
t as a function of the filament length l (dl = |Rs|ds) and
time t (for β = 0) reduces [20] to an integrable one-

1 We note that this property is common for all systems for which
the Hamiltonian has the form * = (τ, (τ∇ )τ, (τ∇ )2τ, …)|W|dr.
To illustrate the idea of vortex line collapse we selected the sim-
plest example (13) from this class which also has a specific phys-
ical meaning.

* W r( ) r,d∫=

v curl t,=

F∫

* R{ } d2ν ∂R
∂s
------- s.d∫∫=

Rs Rt×[ ] t t ts×[ ]×[ ] .=

* ν( ) Rs ν( ) s,d∫=

P ν( ) 1
2
--- R ν( ) Rs ν( )×[ ] s,d∫=

M ν( ) 1
3
--- R ν( ) R ν( ) Rs ν( )×[ ]×[ ] s.d∫=

s̃

Rs  · Rt t ts×[ ] βRs+=
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dimensional Landau–Lifshitz equation for a Heisen-
berg ferromagnet:

(17)

where t are functions of the filament length l and time t.
This equation is then gauge-equivalent to the nonlinear
Schrödinger equation [23] 

(18)

and may be reduced to it using the Hasimoto transfor-
mation [24]:

where κ(l, t) is the curvature and χ(l, t) is the line tor-
sion.

This system with the Hamiltonian (13) is directly
related to hydrodynamics. As we know [25, 26], the
local approximation for a thin vortex filament, assum-
ing that the filament thickness is small relative to the
characteristic longitudinal scale gives the Hamiltonian
(4) for a single filament. This approximation essentially
involves replacing the logarithmic interaction with a
constant. When the thicknesses of the vortex fragments
are small compared with the spacing between them, the
Hamiltonian of the vortex filaments in the same
approximation will be the sum of the Hamiltonians
which gives the Hamiltonian (13) in the “continuous”
limit. 

Thus, we have a model of three-dimensional exactly
integrable hydrodynamics, the hydrodynamics of free
vortices. Each vortex is then a nonlinear object having
its own internal dynamics. As we shall see below, sin-
gularities may appear in this model. This is caused by
the intersection of vortex lines, a phenomenon similar
to wave breaking in gasdynamics.

3.1. Steady-State Vortices

We shall now consider the simplest solutions of
equation (15), the steady-state propagation of a closed
vortex line: Rt = V ≡ const. In this case, the velocity V
is determined from the solution of the equation

(19)

It is easy to verify that this equation follows from the
variational principle

(20)

i.e., the solution (19) is a steady-state Hamiltonian
point with fixed momentum P(ν). Equation (19) is eas-
ily integrated. It is easy to see that (19) can be rewritten
in terms of the binormal b and the curvature of the
curve κ in the form

∂t
∂t
------ t ∂2t

∂l2
--------× ,=

iψt ψll 2 ψ 2ψ+ + 0=

ψ l t,( ) κ l t,( ) i χ l̃ t,( ) l̃d

l

∫ ,exp=

Rs V×[ ] t t ts×[ ]×[ ] .=

δ * ν( ) V P ν( )⋅–( ) 0,=
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(21)

whence we have

(22)

The fact that the velocity V is constant in this expres-
sion implies constant curvature κ, i.e., the vortex line is
a ring of radius r = 1/κ, and 

(23)

In this case, the direction of motion of the ring is per-
pendicular to its plane. It is interesting to note that the
exact answer for the velocity of a thin vortex ring ([27])
having the thickness d ! r agrees with (22) to within
logarithmic accuracy (~ r/d)) which, as has been
noted, specifically distinguishes this model from the
Euler equation. 

It is also interesting that this solution in the form of
a ring is stable, and is Lyapunov stable. The momentum
P of the vortex ring is an oriented area stretched to the
vortex contour:

where S is the area and n is its normal. Since the Hamil-
tonian of the filament is the same as its length, the max-
imum momentum or, which amounts to the same thing,
the maximum area for a contour of fixed length is
clearly achieved for a closed contour in the form of a
circle. This is evidence of the Lyapunov stability of the
solution (22) in the form of a vortex ring.

4. COLLAPSE

The solution (22), (23) can be used to write the sim-
plest mappings R = R(ν, s, t). 

Let us assume that all the closed vortex lines have
the same orientation, for example, along the z-axis, and
have the form of circles. Since, as will become clear
subsequently, collapse in this model is a purely local
phenomenon, in order to construct the mapping we can
confine our analysis to some vortex tube which may be
represented as a torus. Let us assume that the annular
vortex lines are distributed continuously inside the
tube. Each vortex line inside the tube will be numbered
by the two-dimensional parameter ν which will cover
all points in the tube cross section at t = 0. As the
parameter s, the third independent variable, we take the
arc element s: ds = rdφ, where φ is the polar angle about
the z-axis. The desired mapping can then be written
using (22) in the form

(24)

In this formula ex, ey, and ez are the unit vectors of the
corresponding axes. 

t V×[ ] κ t b×[ ] ,=

V κb.=

V 1/r.=

(log

P Sn,=

R R0 ν( ) r ν( ) φexcos+=

+ r ν( ) φeysin V ν( )tez.+
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For this mapping it is easy to check that the transfor-
mation Jacobian varies linearly with time:

(25)

Here A(ν, s) is a coefficient which depends linearly on
the velocity derivatives with respect to ν, and J0 is the
initial value of the Jacobian. 

The time dependence of J (25) implies that for each
fixed pair ν and s there always exists a time t = (ν, s)
(t > 0 or t < 0) when the Jacobian goes to zero:

We take t0 to denote the minimum value of the function
t = (ν, s) for t > 0. Let us assume that this minimum is
achieved at a certain point a = a0 [here we denoted the
point (ν1, ν2, s) as a]. Quite clearly, for t = t0 we have

or

(26)

since

It is also clear that for t = t0 the tensor of the second
derivatives of J with respect to a 

will be positive definite at the point a = a0. From this we
can clearly see how the Jacobian behaves in the small
vicinity of a = a0. The expansion of the Jacobian near
this point (in the general situation) for t  t0 has the
form

(27)

where

These are the principal terms of the Jacobian expan-
sion.2

Geometrically this expansion corresponds to a fairly
simple pattern. The surface J = J(a, t) is deformed with
time so that its minimum reaches the plane J = 0 at t =
t0 at the point a = a0, where contact takes place with the
surface J = J(a, t). Quite clearly for smooth mappings

2 For example, the term containing the mixed derivative with
respect to time and the spatial coordinate is generally a small cor-
rection to the first term (27).

J
∂ X Y Z, ,( )

∂ ν1 ν2 s, ,( ) )
----------------------------- J0 ν s,( ) A ν s,( )t.+= =

t̃

J ν s t, ,( ) 0.=

t̃

∂ t̃
∂a
------

a a0=

0=

∇ aJ a t,( )
a a0= 0,=

∇ aJ a t,( )
a a0=

∂J a t,( )
∂t

------------------- ∂ t̃
∂a
------

a a0=

+ 0.=

2γij
∂2J

∂ai∂a j

---------------,=

J a t,( ) α t0 t–( ) γij∆ai∆a j …,+ +=

α ∂J a t,( )
∂t

-------------------
t t0= a, a0=

– 0, ∆a> a a0.–= =
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780 KUZNETSOV, RUBAN
in the general situation the surfaces J = J(a, t) and J = 0
contact at an isolated point. In degenerate situations
contact can occur at several points simultaneously or
even on an entire curve. The degenerate case also
includes the situation when two eigenvalues of the

Jacobi matrix  simultaneously go to zero at the point
of collapse (we shall analyze this example in the next
section). The following terms of the expansion need to
be retained in the appropriate directions in (27). We
reiterate that all these terms do not apply to the general
situation.

In accordance with (7) vanishing of the Jacobian at
the point of contact implies the appearance of a singu-
larity for the vorticity at t = t0:

(28)

Importantly the numerator in this fraction, a vector tan-
gential to the vortex line, does not vanish due to its geo-
metric meaning at the point of contact (this is again the
nondegenerate case). Thus, at the point of contact the
vorticity goes to infinity as (t0 – t)–1 and the size of the
collapsing distribution in the coordinates a narrows as

.

This type of collapse occurs as a result of vortex line
flipping when one vortex overtakes another. In the
three-dimensional nondegenerate case this always
occurs first at an isolated point. 

As will become clear from the following, for this
type of collapse the dependence (28) for W(r, t)
obtained for a particular distribution is in fact a com-
mon answer which is suitable not only for integrable
hydrodynamics but can also be applied to other systems
of the type (2) which allow a quasi-inertial collapse
regime. What criteria must be satisfied by the Hamilto-
nian of a specific system so that we can confirm that
quasi-inertial collapse is achieved at least under some
initial conditions or such collapse is completely impos-
sible in this system? The answer to this question is as
yet unknown and offers an extensive field of activity for
future investigations.

4.1. Nonsteady-State Vortices

We shall now analyze integrable hydrodynamics in
more general case when the closed vortex lines are not
circles. In this case, each vortex contour must be set in
correspondence with a specific vortex ring. The obvi-
ous procedure is to introduce the (average) direction n

and also the average area of the contour S = π  using
an expression for the vortex line momentum:

The position R0 of the ring center then varies linearly
with time. The corresponding average vortex velocity
V0 of the closed vortex line must then be directed along

Ĵ

W r t,( )( )
Ω0 ν( )Rs

α t0 t–( ) γij∆ai∆a j+
--------------------------------------------------.=

t0 t–

r0
2

P nS.=
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the momentum in order to satisfy the angular momen-
tum conservation law. The average velocity is generally
a function of the fundamental integrals of motion of the
line which do not depend on the choice of origin. These
are the Hamiltonian (i.e., the length L), the momentum,
and the projection of the angular momentum on the
direction of momentum. A λ fold increase in the size of
the contour should then lead to a λ fold reduction in
velocity:

(29)

The exact form of the function U(ξ, η), where the first
argument defines the measure of “crumpledness” of the
vortex line and varies in the range 0 ≤ ξ ≤ 1 and the sec-
ond defines the measure of mirror asymmetry, is as yet
unknown to us. In a more or less reasonable approxima-
tion which does not lead to excessive errors, we can
assume that U(ξ, η) ~ U(1, 0) = 1.

After introducing the average characteristics, we

can express R(ν, s, t) as the sum of (ν, s, t) and δr(ν,
s, t):

(30)

where the average value of R = R(ν, s, t) is given by

(31)

and φ' is the polar angle in the plane perpendicular to
the local z'-axis directed along the unit vector n, the
relationship between r0 and V0 is given by formula (29).
The vector function δr(ν, s, t) describes the deviations

(generally, fairly large) from the average (ν, s, t). 
The separation of the average and oscillatory

motion for each vortex contour introduced by relations
(29)–(31) shows that the mapping R = R(ν, s, t) for
each fixed value of a = (ν, s) is a linearly increasing
function of time with nonlinear oscillations which are
described using the Landau–Lifshitz equation (17) or
its gauge-equivalent analog (18). The linear depen-
dence reflects the fact that this model is a free vortex
model. Thus, collapse occurs as a result of the “incur-
sion” of one vortex onto another where as a result of the
continuity of W between the two “outer” vortices the
vorticity goes to infinity. A similar situation is obtained
for the model of the formation of large-scale structures
in the universe studied in [22]. This model is based on
the assumption of an initially dust-like mass distribu-
tion when its behavior may be described using hydro-
dynamic equations for the density ρ and velocity ν at
zero pressure:

(32)

(33)

V0
8

π2
----- P

L3
-----U

16π2P2

L4
------------------ M P⋅

L5
-------------, 

  .=

R̃

R ν s t, ,( ) R̃ ν s t, ,( ) δr ν s t, ,( ),+=

R̃ ν s t, ,( ) R0 r0 φ'ex'cos r0 φ'ey' ,sin+ +=

Ṙ0 V0n,=

R̃

ρt div ρv+ 0,=

td
dv vt v ∇⋅( )v+ 0.= =
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Integrating this system in terms of Lagrangian vari-
ables shows that all the particles are free, moving at
constant velocity:

(34)

and the density ρ is expressed in terms of the initial
value ρ0 and the Jacobian of the mapping (34):

(35)

The appearance of large-scale (fairly high-density)
structures in this model is attributable to breaking, as a
result of density singularities the Jacobian J of the map-
ping (34) vanishes. In general, these structures have a
pancake shape and may be considered as protogalaxies.
A formula similar to (35), as we have seen, is obtained
for the vorticity W [see (7)]. However, there is one dif-
ference from (35) associated with the vector nature of
the field W, its transverseness. This is perhaps the only
difference although it is an important one.

In this problem we are interested in the structure of
the singularity at t  t0 but t < t0, i.e., in a certain
sense at the initial stage of collapse but not at its
advanced stage which is undoubtedly of value for astro-
physical applications but remains far from clear for
incompressible hydrodynamics when allowance must
be made for viscosity on small scales.

4.2. Singularity Structure

We shall analyze in greater detail the structure of the
collapsing region in the general situation. First it
becomes clear from the reasoning put forward above
that the distribution for the vorticity near the singularity
at t  t0 will be defined by the previous expression
(28). Second, the singularity structure will be mainly
determined by the Jacobian, the denominator in (28).
The numerator (W0(a) · ∇ a)R, a vector tangential to the
vortex line, should be taken at the point a = a0 and t =
t0 and assumed to be constant.

In accordance with (28), the Jacobian contains a
positive-definite symmetric matrix γij. This matrix for
t < t0 is assumed to be nondegenerate: all its eigenval-
ues are positive and it can be reduced to diagonal form.
It then follows directly that compression in all three
principal directions in a space will obey the same law

la ∝  . Thus, near the singular point W will have
the self-similar asymptotic form:

(36)

where η = ∆a/  is a self-similar variable in a
space. However (36) does not imply that compression
will be the same in r space.

The fact that the Jacobian vanishes at the point of
collapse implies that one of the eigenvalues of the

r a v a( )t,+=

ρ r t,( )
ρ0 a( )

J
-------------.=

t0 t–

W r t,( )
Ω0 ν( )Rs

t0 t–( ) α γijη iη j+( )
------------------------------------------------,=

t0 t–
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Jacobi matrix vanishes (in the nondegenerate situa-
tion). As we can see, near the point of collapse this
eigenvalue (we denote this by λ1) is the same as the
Jacobian (27) apart from a constant factor (the product
of two other eigenvalues λ2λ3). 

We express the Jacobi matrix  as an expansion in

terms of the eigenvectors of the direct |ψ(n)〉  = λn|ψ(n)〉
and conjugate 〈 |  = λn〈 | spectral problems:

(37)

Here the two sets of the eigenvectors of the direct and
conjugate spectral problems are mutually orthogonal:

Near the point a = a0 the two eigenvalues λ2, 3 can be
considered to be constant and 

Here, for simplicity we positioned the origin at the
point a = a0. The eigenvectors can be considered to be
constant in this vicinity. 

We then expand the vectors x and ∇ a in (37) in the
corresponding bases, denoting the corresponding pro-
jections by Xn and An:

The vector a is then written in terms of the projection
An as follows:

As a result, (37) is rewritten in the form

(38)

(39)

Here we have

It then follows directly that in the second (X2) and third
(X3) “hard” directions compression takes place exactly

as in the auxiliary a space, i.e., ∝  and in the “soft”
X1 direction it takes place as τ3/2. Thus, in the new self-
similar variables ξ1 = X1/τ3/2, ξ2 = X2/τ1/2, ξ3 = X3/τ1/2

Ĵ

Ĵ

ψ̃ n( ) Ĵ ψ̃ n( )

Jik

∂xk

∂ai

--------≡ λnψi
n( )ψ̃k

n( ).
n 1=

3

∑=

ψ̃ n( ) ψ m( )〈 〉 δnm.=

λ1
J

λ2λ3
-----------≡

α t0 t–( ) γijaia j+
λ2λ3

------------------------------------------.=

Xn x ψ n( )〈 〉 ,
∂

∂An

--------- ψ̃ n( ) ∇ a〈 〉 .= =

aα ψα
n( ) ψ̃ n( ) 2

An.
n

∑=

A1∂
∂X1 τ ΓmnAmAn,+=

A2∂
∂X2 λ2,

A3∂
∂X3 λ3.= =

Γmn γαβψα
n( )ψβ

m( ) ψ̃ n( ) 2
ψ̃ m( ) 2

λ2λ3( ) 1– ,=

τ α t0 t–( ) λ2λ3( ) 1– .=

τ
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782 KUZNETSOV, RUBAN
integrating the system (39) gives a linear dependence
on η for ξ2, ξ3 and a cubic dependence for ξ1:

(40)

(41)

Relationships (40) and (41) together with (36) deter-
mine the implicit dependence of W on the time and
coordinates. The existence of two different self-similar-
ities shows that as t approaches t0, the spatial distribu-
tion of W becomes severely flattened in the first direc-
tion, becoming pancake-shaped. The direction of the
field W is then determined from the compressibility
condition: divW = 0. In the principal order this imposes
a constraint on the direction of the tangential vector Rs

at the point of collapse:

(42)

Quite clearly, the gradient from J for t  t0 in the
principal approximation is determined by the soft
direction:

The contribution from other directions is small in terms
of the parameter τ.

It then follows as a result of (42) that the vector Rs

and thus the field W are orthogonal to the soft direction,
i.e., lie in the “pancake” plane which is consistent with
the transverseness of the motion of these vortex lines
[see (8)].

5. EXAMPLE OF COLLAPSE
IN THE DEGENERATE CASE

In the previous section we have considered collapse
in the nondegenerate situation when only one eigen-
value of the Jacobi matrix vanishes at the point of con-
tact. We shall now consider an example of collapse
when two eigenvalues of the Jacobi matrix vanish
simultaneously at the point of collapse. Here we are
dealing with an initial vorticity distribution with a non-
trivial vortex line topology with a degree of linkage of
one. This special distribution is constructed using a
Hopf mapping. Several equivalent methods are avail-
able to search for the corresponding field W. We shall
use a method indicated in [28].

Following this study, we express the field W in terms
of the n field (n2 = 1]:

(43)

ξ1 1 Γ ijη iη j+( )η1
1
2
---Γ

1i
η iη1

2 1
3
---Γ11η1

3,+ +=

i j, 2 3,,=

ξ2 λ2η2, ξ3 λ3η3.= =

Rs a0 t,( ) ∇ 1/J( )⋅( ) …+ 0.=

∇ J τ 3/2–

ξ1∂
∂J

e1.≈

Ωα r( ) 1
32
------eαβγ n ∂α ∂γn×[ ]⋅( ),=
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where we shall assume that the n field is smooth and
has the value n = e at infinity r  ∞. 

It is easy to confirm that each point n = n0 on the unit
sphere 62 corresponds to a vortex line in accordance
with (43). Expressing the unit vector n in terms of the
spherical angles θ and ϕ, we can write W in the form

(44)

such that the variables ϕ and cosθ appear as Clebsch
variables. Thus, in this case each vortex line coincides
with the intersection of two surfaces, ϕ = constant and
cosθ = const, i.e., the inverse image of the point on the
sphere 53 is a closed vortex line. The Hop index N of
the mapping 53  62 is the (integer) number of link-
ages of the two vortex lines, i.e., the inverse images of
two points on a unit sphere. The Hopf mapping (with
the index N = 1) is constructed using the following for-
mula:

(45)

where σ are the Pauli matrices. 

Then expressing the vector n and substituting into
(43), we obtain [see (29)]

(46)

The field lines of this field are circles, as was shown in
[29], where any two lines are singly linked. For these
reasons the formation of a singularity is inevitable. This
field has no singular points and its absolute value only
depends on |a|. The unit vector t(a) is defined every-
where which is extremely convenient from the point of
view of using our model. For t we have the following
dependence:

(47)

The velocity of each ring is related to the binormal b(ν)
and the radius r(ν) by

The radii of the rings r(ν) and their orientations b(ν) are
integrals of motion. Only the positions of the ring cen-
ters vary and this motion takes place at a constant
velocity for each ring. 

In this problem, instead of the variables ν and s, it is
convenient to use the variables a in which the mapping
R(a, t) can be expressed in the form

(48)

W 1
16
------ ∇ ϕ ∇ θcos×[ ] ,=

n s⋅( ) U e s⋅( )U†, U
1 i a s⋅( )+
1 i a s⋅( )–
---------------------------,= =

W0 a( ) e 1 a2–( ) 2a e a⋅( ) 2 e a×[ ]+ +

1 a2+( )3
----------------------------------------------------------------------------.=

t a( ) e 1 a2–( ) 2a e a⋅( ) 2 e a×[ ]+ +

1 a2+( )
----------------------------------------------------------------------------.=

V ν( ) b ν( )/r ν( ).=

R a t,( ) a tV a( ),+=
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COLLAPSE OF VORTEX LINES IN HYDRODYNAMICS 783
where the velocity V(a) is expressed in terms of the tan-
gential vector t by

(49)

We can then calculate the Jacobian 

(50)

We note that the velocity of each ring is constant along
the field line. Hence, the determinant of the matrix
∂V(a)/∂a determining the coefficient at t3 in the expres-
sion for the Jacobian J is zero. As a result, J has a qua-
dratic dependence in terms of the time t:

The formation of a singularity corresponds to vanishing
of this expression. The coefficients c1 and c2 determine
the time of collapse t0 which is the minimum positive
root of the equation

Calculations using formulas (47), (49), and (50) yield
the expressions

(51)

(52)

where a3 is the projection of the vector a on the e axis. 

Analyzing this expression, we can show that at t < 1
the minimum of the Jacobian should be sought on the
symmetry axis, i.e., for a1 = 0, and a2 = 0. In this case,
we have

(53)

from which it can be seen that a singularity occurs for
t0 = 1, a3 = 1, and the Jacobian vanishes along the qua-
dratic asymptotic form. Thus, in this example we have
|Ω|max ∝  (t0 – t)–2. It is also easy to confirm that the
Jacobi matrix at the point of contact has two eigenval-
ues whose eigenvectors lie in the plane perpendicular to
the e axis. Near the collapse the field W is directed
along the e vector. Compression in this direction is lin-
ear in time l3 ∝  (t0 – t) whereas in the perpendicular
plane it is faster, obeying the law l1, 2 ∝  (t0 – t)3/2. As a
result, the structure of the singularity is highly elon-
gated along the axis of anisotropy. 

V a( ) t a( ) t a( ) ∇ a⋅( )t a( )×[ ] .=

J a t,( ) det Î t
∂V a( )

∂a
--------------- 

 + .=

J 1 tc1 a( ) t2c2 a( ).+ +=

J a t0,( )
a

min Jmin t0( )≡ 0.=

V a( ) 2–

1 a2+( )2
---------------------=

× e a×[ ] 1 a2–( ) 2a e a⋅( ) 2ea2–+( ),

J a t,( )

=  
1 a2+( )3

8ta3 1 a2+( )– 4t2 1 a3
2 a1

2– a2
2–+( )+

1 a2+( )3
----------------------------------------------------------------------------------------------------------------,

Jaxis

1 a3
2–( )2

4 t a3–( )2+

1 a3
2+( )2

--------------------------------------------------,=
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6. CONCLUDING REMARKS

Analyzing a hydrodynamic model with the Hamil-

tonian * = dr we have reached the conclusion

that each vortex line in this system moves indepen-
dently of the others. This property makes it possible for
a singularity to form in the dependence of the general-
ized vorticity field W(r, t) over a finite time from
smooth initial data. A typical singularity of this type
resembles an infinite thickening of the vortex lines near
a certain point. Collapse therefore has a purely inertial
origin in integrable hydrodynamics. Assuming that this
type of collapse can occur in Euler hydrodynamics, the
asymptotic form of the vorticity near the singularity,
the vortex breaking point, will be defined in the nonde-
generate case by formulas (28) or (36), which is clear
from general concepts, i.e., the curl of the velocity goes
to infinity as (t0 – t)–1. This dependence at the singular
point is observed in almost all numerical experiments,
including those cited in [6,10–14]. However, not all
experiments refer to the numerical integration of the
Euler equation for continuous distributions. The first
numerical experiments [6] (for the development of this
trend, see [12]) referred to the collapse of two antipar-
allel vortex filaments which, as was shown in [15] are
linearly unstable with respect to transverse perturba-
tions. A theory of collapse for thin vortex filaments as
the nonlinear stage of Crow instability was developed
by Zakharov [7, 8] (see also [9]). Its conclusions show
good agreement with the numerical experiments down
to distances comparable with the size of the filament
core. In this case, the distance between the vortex fila-

ments decreases as . At shorter distances the
cores of the vortex filaments lose their circular shape.
They become flat and the filament attraction process is
slowed [30, 31]. This tendency is observed in the Kerr
numerical experiments [10] which in our view are the
most advanced for reconnection problems where,
unlike [6], the collapse of two antiparallel but continu-
ously distributed vortices is considered. In addition to a
natural reduction in the average distance between the
distributed vortices, these experiments first revealed the
formation of two singularities at two symmetric points
(obviously we can only talk of singularities quite arbi-
trarily, in the measure of numerical possibilities). As
the time of collapse is approached, an explosive
increase in the maximum vorticity was observed
according to the law (t0 – t)–1. According to recent
reports by Kerr [14], an analysis of numerical data gave
two scales, one of which decreases as the square root:
l1 ∝  (t0 – t)3/2 and the other decreasing linearly with
time: l2 ∝  t0 – t. 

In [11] a successful attempt was made to observe
collapse for an initial condition possessing low sym-
metry. The initial vorticity was concentrated near a
cylinder and it was angularly modulated so that the
simplest symmetries were absent. In this experiment,

W∫

t0 t–
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in which the best space–time resolution has been
achieved so far, an isolated collapsing region was
observed with increasing vorticity at the center obey-
ing the law (t0 – t)–1.

Consequently the result of all existing numerical
experiments for ideal hydrodynamics are consistent
with the concept of collapse as the process of formation
of a caustic of the nondivergent field of the velocity
curl. Complete agreement is obtained with the behavior
of the vorticity maximum. For the spatial structure of
the collapsing region the agreement is only qualitative,
as is indicated by the results of [30, 31] where compres-
sion of the vortex core was observed at the initial stage
of reconnection (neglecting viscosity) and also the Kerr
results. All this suggests that the collapse scenario pre-
sented here as the thickening of the vortex lines near
some point is quite plausible. We reiterate that if this
scenario occurs, the behavior of the vorticity near the
singular point is determined by Eqs. (28) or (36). The
structure of this region should be strongly anisotropic:
in one of the directions perpendicular to the vorticity
the compression is faster (∝τ 3/2) than in the other two
directions (∝τ 1/2). The distribution becomes close to
two-dimensional, highly reminiscent of tangential dis-
continuity. The flow rate in this region is approximated
to a high degree of accuracy by the linear dependence:

i.e., the flow is shear flow. According to the existing
classification [32], this type of collapse is weak: the
energy entering the singularity (allowing for the viscos-
ity) tends to zero as the viscosity ν decreases. It is inter-
esting to note that the rate of energy dissipation

~ dr from the collapsing region also tends to zero

for the viscosity ν  0.
It should also be noted that unlike the free vortex

model considered above, in the actual Eulerian hydro-
dynamics the vortex lines interact in pairs in accor-
dance with the Hamiltonian

(54)

From the point of view of studying the problem of
collapse it is fundamentally important that the interac-
tion function (the Green’s function of the Laplace oper-
ator) has a singularity for equal arguments R(ν, s) 
R(µ, ξ). If such a singularity did not exist and the inter-
action function was completely regular, any initial vor-
tex line distribution topologically equivalent to some
smooth field W0(a), including a very singular one,
would generate a fairly smooth velocity field v(r).
Thus, an arbitrary initial singularity of the generalized
vorticity field could not be “disappeared” in the follow-
ing times and could only be transported by the liquid
flow. Since the equations of motion of an ideal medium
are reversible in time, it follows that a singularity also
could not form from smooth initial data within a finite

v ⊥ ΩmaxX1,∼

Ω2∫

*Euler
1

8π
------

Rs ν s,( ) Rξ µ ξ,( )⋅
R ν s,( ) R µ ξ,( )–
---------------------------------------------d2ν sd2µd ξ .d∫∫=
JOURNAL OF EXPERIMENTAL 
time. Thus, the existence of vortex line collapse and its
possible types in systems with quadratic Hamiltonians
with respect to W depends on the asymptotic form of
the interaction function G(r1, r2) (more accurately on it
derivatives), for r1  r2. For example, for a better
understanding of the problem of collapse in hydrody-
namics, it is meaningful to study those systems for
which the interaction functions have the asymptotic
forms G ∝  |r1 – r2|–q where the exponent q is not neces-
sarily equal to unity.

How does the viscosity influence the structure of the
collapsing region and especially the post-collapse
stage? How does this type of collapse influence the
structure of the turbulent spectra? This is by no means
a complete list of the most important topics requiring
investigation. It is also interesting to make a numerical
check of our hypothesis on the inertial character of col-
lapse directly for ideal hydrodynamics both in terms of
Euler variables and in the vortex line representation.
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Abstract—It is shown that the driving force of a ferroelastic phase transition is internal pressure. The pressure
gives rise to symmetric deformation, whose energy accumulates as pressure increases and, at the phase transi-
tion point, is partially transferred into the energy of antisymmetric deformations. © 2000 MAIK “Nauka/Inter-
periodica”.
Ferroelastics are attracting a great deal of attention
as high-temperature superconductors. They are also of
interest because they have extensive applications in
acoustooptic and acoustoelectric devices. Nonetheless,
a great deal remains unclear in the nature and mecha-
nisms of ferroelastic phase transitions (FPT). The phe-
nomenological description of FPT employs the sponta-
neous strain tensor and artifically chosen order param-
eters, one of which is considered to be critical [1]. If the
order parameter and the spontaneous deformation
transform under symmetry operations identically, then
the ferroelastic is said to be proper. For a proper FPT
one component of the spontaneous strain tensor can be
taken as the critical parameter [2]. The order parameters
and the strain tensor are essentially determined by the dis-
placements of the atoms accompanying a change in exter-
nal conditions, and it is strange that the force giving rise to
these displacements and being the true reason for the tran-
sition has still not been studied. Consequently, such an
approach cannot give the correct physical description of a
FPT.

The physics of a proper FPT with lowering of sym-
metry down to triclinic, usually followed by amor-
phization, as shown for the example anorthite and
quartz [3, 4], is of special interest. For such FPT, char-
acterized by two macroscopic parameters which break
symmetry, there are no analytic solutions in the litera-
ture.

In this connection, in the present paper we develop
a model of a proper FPT in which internal pressure,
which is the driving force of the transition, is intro-
duced. As an example illustrating this model we con-
sider the monoclinic-triclinic proper FPT in Sr-anorth-
ite ((Sr, Ca)Al2Si2O8), induced by cationic exchange of
Ca and Sr. This ferroelastic was chosen because the
experimental values of the elastic moduli [5] and the
composition dependences of the unit cell parameters
[6] are available for it.
1063-7761/00/9104- $20.00 © 20786
The FPT is usually described by a linear strain ten-
sor, which has the Lagrangian form

Since the internal spontaneous deformation increases at
a phase transition, the nonlinear terms may have to be
taken into account in the strain tensor. When the nonlin-
ear terms are taken into account this tensor is said to be
finite and has the form

where the vector u = x – x0 determines the displacement
of the point whose coordinate is x0 before the deforma-
tion and x after the deformation. The indices i, j, and k
correspond to Cartesian coordinates, and each one runs
through the values 1, 2, and 3. For convenience in com-
paring with experiment, we shall express the compo-
nents of the strain tensor in terms of the lattice param-
eters. The corresponding expressions for the compo-
nents of the linear tensor are presented in explicit form
in [7]. We obtain the relations for the components of the
finite tensor, which can be expressed in terms of the
components eij in the Voigt notations as follows:

eij
1
2
---

∂ui

∂x0 j

----------
∂u j

∂x0i

---------+ 
  .=

Eij
1
2
---

∂ui

∂x0 j

----------
∂u j

∂x0i

---------
∂uk

∂x0i

---------  
∂
 
u

 
k 

∂
 

x
 

0

 

j

 ---------- 

k

 ∑  + +  
 
 
 

,=

E1 e1 e1
2/2 e6

2/2,+ +=

E2 e2 e2
2/2,+=

E3 e3 e3
2/2 e4

2/2 e5
2/2,+ + +=

E4 e4 e2e4,+=
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E6 e6 e2e6.+=
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(‡)
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Fig. 1. Illustration of the differences between the dependences of the components of the linear ei (triangles) and finite Ei (circles)
strain tensors on the content of Ca. The curves were obtained using the unit cell parameters of Sr anorthite [6]: (a) i = 3; (b) i = 5.

0

Substituting into the formulas obtained the experimen-
tal lattice parameters for Sr anorthite [6] we found that
there is a large difference between the corresponding
components of the linear and finite strain tensors
(Fig. 1). Therefore, to decrease the error the finite strain
tensor must be used when calculating the FPT.

A systematic physical description of a FPT requires
analysis of the displacements of the atoms and forces
giving rise to these displacements. To a first approxima-
tion these forces can be expressed in terms of the iso-
tropic internal pressure pi . In order to close the system,
the equations must also describe the internal pressure
as a function of some thermodynamic parameters. To a
first approximation it can be assumed that this pressure
is a linear function of the cationic composition. Then
the system of equations describing the FPT will have
the form

(1)

where G(Em, pi) is the Gibbs potential, Em are the com-
ponents of the strain tensor, m = 1, 2, …, 6, A1 is a linear
coefficient, and N is the molar fraction of the substitut-
ing cations.

The Gibbs potential of a crystal, to which the exter-
nal pressure pext is applied, is expressed in the form

where F is the free energy and V ≈ E1 + E2 + E3 is the
relative change in the unit-cell volume. It would be log-

∂G Em pi,( )
∂Em

-------------------------- 0,=

pi A1N ,=

G F pextV ,+=
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ical to use the same expression for the Gibbs potential
of the ferroelastic also, where the internal pressure pi
giving rise to spontaneous deformation is present:

(2)

The internal pressure can be produced for various
reasons: change in the cationic composition Ca–Sr,
change in the degree of ordering Al–Si, disruptions of
the crystal structure on grain boundaries and on dislo-
cations, and temperature. Making use of the term piV in
Eq. (2), we introduced the action of a thermodynamic
parameter on the linear terms in the expansion of the
Gibbs energy in terms of the strain tensor. The action of
thermodynamic parameters on the quadratic and higher
powers in the expansion of the Gibbs potential in the
strain tensor is taken into account in the free energy.
Thus, we assume that the proposed Gibbs potential can
completely describe a proper FPT. To calculate this
transition it is necessary to choose an expansion for the
free energy. Since the component E4 of the finite tensor
is maximal and destroys the symmetry of the mono-
clinic crystal we chose, following [2], it as the critical
order parameter. The expansion of the part of the free
energy in terms of the critical parameter E4, according
to the Landau theory, has the form

(3)

where A4 = ( pic – pi)A0 the coefficient vanishes at the
critical internal pressure pic, while all other coefficients
remain constants. The component E6 of the finite strain
tensor also breaks symmetry, but since it is much

G F piV .+=

F4
1
2
---A4E4

2 1
4
---B4E4

4 1
6
---C4E4

6,+ +=
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smaller than E4 near the phase transition, we shall
assume it to be noncritical, i.e., we write the expansion
of the part of the free energy in terms of the parameter
E6 in the form

(4)

where the coefficients A6 and B6 are constants which do
not depend on the cationic composition Ca–Sr. To sim-
plify the main behavior of the FPT in the analytic form,
in order to describe the interaction of the parameters
with the same symmetry, E4 and E6, we took only one
bilinear term, dropping by the biquadratic terms,

(5)

As the solution of Eqs. (1) show, the linear-quadratic
interaction of symmetric components with antisym-
metric components accompanying cationic exchange
results only in a small additional contribution to the lin-
ear dependence of the coefficient A4 in Eq. (3), and con-
sequently, for simplicity, we drop it. The interaction of
the symmetric components is expressed by the standard
quadratic elastic strain:

(6)

where the indices k, l = 1, 2, 3, 5. Now the total free
energy is

(7)

Solving the system of Eqs. (1), we find the dependences
of the components of the spontaneous-strain tensor on
the internal pressure with increasing Ca content. The
four symmetric components are linear functions of the
internal pressure:

(8)

(here the coefficients are expressed in terms of the elas-
tic moduli). The antisymmetric components E4 and E6
are zero in the monoclinic phase with pi < pi0 . In the tri-
clinic phase, with pi ≥ pi0, the analytic expressions for
E4 and E6 near a phase transition have the form

(9)

where K = B4/C4, L = A0( pi0 – pi)/C4, and

(10)
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where S = A6/3B6 and Q = A4–6E4/2B6. Here the internal
pressure at which a transition occurs,

(11)

differs from the critical pressure as a result of the inter-
action of the components E4 and E6. We attained agree-
ment between theory and experiment by adjusting the
coefficients in Eqs. (8)–(10) (Fig. 2).

Finally, the proposed model can explain the mecha-
nism of a proper FPT, consisting in the fact that in the
monoclinic phase, with increasing internal pressure,
the elastic energy of the crystal accumulates as a result
of the symmetric components Ei , while the elastic
energy for the antisymmetric components remains
zero. When the pressure pi0 is reached, part of the
energy of the symmetric components is released into
the deformation of antisymmetric components. Thus it
can be said that the internal pressure is the driving force
that destabilizes the crystalline structure with respect to
the antisymmetric components near the point of the
phase transition pi0 . Similar arguments were presented
in [8], where the mechanical stresses in a triatomic mol-
ecule accompanying distortion of the shape of the mol-
ecule under pressure from linear to bent were calcu-
lated. It is evident on this basis that the effect of the
symmetric components of the strain tensor cannot be
ignored, as done previously, because they participate in
the phase transition.

It is interesting to note that the internal and external
pressures at which a FPT occurs differ by almost an
order of magnitude. According to our model, from
Eq. (11) pi0 ≈ 0.5 GPa, and the external pressure for this
transition is 3.2 GPa [9]. This difference is probably
due to the fact that the external pressure changes the
elastic moduli as a result of the anharmonicity of the
interatomic potentials, while the internal pressure, in
the presence of cationic exchange, acts directly on the
chemical bonds and consequently changes the elastic
constants more effectively.

The introduction of internal pressure elucidates a
common mechanism of the influence of a change in the
cationic composition Ca–Sr, Al–Si ordering and tem-
perature on a phase transition. The replacement of Sr
atoms at lattice sites by smaller Ca atoms gives rise to
compression of the lattice, which is equivalent to the
action of an internal pressure, which varies linearly
with the Ca concentration. The effect of Al–Si ordering
on a phase transition can be studied similarly. Since the
Al and Si atoms also differ in size and do not occupy
their positions in the presence of disorder, an additional
internal pressure of the disordered structure arises. As a
result, the phase transition point depends linearly on the
concentration of the disordered cations Al–Si. A tem-
perature increase results in expansion of the lattice,

pi0 pic

A4–6
2

A6A0
------------,+=
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Fig. 2. Comparison of model (solid lines) and experimental (triangles) dependences of the components of strain tensors on the inter-
nal pressure. Here the internal pressure is measured from the Sr phase of the crystal, where  pi = 0.
which is equivalent to the action of a negative internal
pressure, varying linearly with temperature. The ther-
mal internal pressure for a α–β transition in quartz was
studied in [10].

In conclusion, analytic expressions describing a
proper FPT were obtained. The internal pressure was
introduced in these expressions as the driving force of
the transition. It was shown that the internal pressure
destabilizes the crystal structure of the ferroelastic with
respect to antisymmetric components of the strain ten-
sor near the phase transition point. It was also estab-
lished that the transition energy is reached as a result of
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
the symmetric components, and consequently their
contribution cannot be neglected, as done previously.
Moreover, the introduction of internal pressure made it
possible to represent clearly a common micromecha-
nism by which the cationic composition Ca–Sr, Al–Si,
ordering and temperature affect the phase transition.
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Abstract—An investigation is made of the absorption spectra of a GaAs(82 Å)/Al0.07Ga0.93As(37 Å) superlat-
tice at 10 K in electric fields between 0 and 60 kV/cm. By comparing the experimental absorption spectra with
calculations of the energies and oscillator strengths of transitions between states of the Wannier–Stark ladder it
is established that in strong electric fields above-barrier states do not form a structureless continuum but a fan
of states. Intersection of electric-field-localized electron states with the fan of above-barrier states leads to
broadening, splitting, and nonmonotonic changes in the intensity of an intrawell transition band. The additional
absorption band observed can be attributed to intrawell transitions between states in the left and right quantum
wells of the superlattice. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In a one-dimensional isolated quantum well with fairly
high walls, as a result of size quantization only a finite
number (which depends on the wall height) of discrete
electron states localized within the quantum well can
exist. When quantum wells (an infinite number) combine
to form a periodic superlattice, the discrete electron levels
are transformed into subbands whose width depends on
the period d of the superlattice and the transmission
(material, thickness, and height) of the barriers. When
a fairly strong (of the order of 104 V/cm) external elec-
tric field F is applied to the superlattice, the subbands
are split into a fan of states

(1)

with absolutely identical (both for electrons and for
heavy and light holes) spacings between the levels eFd,
forming a so-called Wannier–Stark ladder [1–3]. Fig-
ure 1a shows a schematic diagram of the left side of a
superlattice in an electric field for high (dashed lines)
and shallow (solid lines) barriers. The dependence of
the electron energy levels on the electric field for the
two lowest subbands of superlattices with high barriers
is shown schematically in Fig. 1b. The wave functions
Ψ1m(z) and Ψ2m(z) corresponding to the energy levels
E1m(F) and E2m(F) in fairly strong electric fields are
localized predominantly in the mth quantum well. This

Em
j F( ) E j 0( ) meFd ,+=

m 0 1 2 … ∞,±, ,±,±,=
1063-7761/00/9104- $20.00 © 20791
implies that the density of the electron wave function
has a maximum in the mth quantum well (Fig. 1a)
although in the nearest-neighbor wells it is not infi-
nitely low.

Since each of the j subbands is transformed into a
Wannier–Stark fan, for specific electric fields Fc the

energy levels of the  and  states formed
from different i and j subbands may be the same, i.e., 

(2)

As a result of resonant interaction between electrons
having the energy (2), these are localized simulta-
neously in the pth and kth quantum wells of the super-
lattice. The formation of bonding and antibonding
states as a result of the mixing of wave functions of two
different subbands having the same energies leads to
their repulsion (Fig. 1b) [4]. Consequently, for a mono-
tonically varying electric field instead of a linear depen-

dence of the energies of the  electron states of the
type (1) near resonant fields Fc we can observe numer-
ous anticrossings (Fig. 1b) where the magnitude of the

repulsion  may be determined by the differ-
ence |p – k | and the barrier height. 

As the height of the barriers between the quantum
wells decreases, the number of subbands of localized
states decreases so that at a fairly low barrier height
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only one subband of “subbarrier” electron states may
remain (this case is shown by the solid lines in Fig. 1a).
The energies of the electron states of the second and
subsequent subbands (shown by the dashed lines in Fig. 1)
are above the barriers. The wave functions correspond-
ing to the second and higher subbands will not be more
localized in the quantum well. The qualitative differ-
ence between the wave functions of the subbarrier
states and the localized wave functions is that their den-
sity in the barriers is higher than or comparable to their
density in the quantum well, and the antinodes and
nodes of the oscillating component of the wave func-
tion are not rigidly attached to the position of the wells
and the superlattice barriers.

It is usually assumed that these subbands of “above-
barrier” states form an infinite structureless continuum,
which is evidently valid for an infinite periodic super-
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Fig. 1. (a) Dependence on the coordinate z of the potential
of a GaAs/AlxGa1 – xAs superlattice with the period d sur-
rounded by wide Al0.3Ga0.7As barriers in an external elec-
tric field F for small (solid lines) and large (dashed lines) x.
The thin horizontal segments show the electron energy lev-
els forming a Wannier–Stark ladder with the interlevel spac-
ing eFd: Ψ1m(z) and Ψ2m(z) are the amplitudes of the wave
functions of the states forming the first (solid lines) and sec-
ond (dashed lines) subbands of states localized in the mth
quantum well. (b) Dependence on F of the energies of the
localized electron states from the first and second size-quan-
tized subbands.
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lattice [5–10]. In this case, in order to facilitate analysis
of the absorption spectra it is tempting to simplify their
energy structure substantially by using a shallow super-
lattice with a barrier height such that only the states of
one lowest subband are localized. In an electric field
this subband would be transformed into a Wannier–
Stark ladder and the ladder of above-barrier states
shown in Fig. 1b would be transformed into a structure-
less continuum. In weak fields this continuum could
lead to oscillations of the energy position and the
absorption intensity as a result of Franz–Keldysh oscil-
lations [11]. In fields F ≥ 104 V/cm “anticrossings”
between localized and above-barrier states should be
suppressed as a result of the structureless property of
their continuum.

However, it has been noted in some studies [12, 13]
that in excitation spectra in shallow single quantum wells,
at least some transitions involving above-barrier states
form fairly narrow lines with a high oscillator strength
instead of the structureless bands predicted for the contin-
uum. The unusual position, oscillator strength, and narrow
width of the corresponding lines can be attributed to the
excitation of excitons formed from a particle (electron)
localized in a quantum well in a size-quantized level
and a free above-barrier particle of opposite polarity
(hole) pulled into the well by the Coulomb attraction
force. Resonant interaction between subbarrier and
above-barrier states in an InGaAs/GaAs superlattice
leading to singularities in the reflection spectrum was
observed in [14]. In [15, 16] nonmonotonic displace-
ments, splitting, and oscillations of the singularity
amplitude were observed in the reflection spectra of a
shallow GaAs/AlGaAs superlattice in electric fields
between 20 and 70 kV/cm caused by anticrossings of
subbarrier and above-barrier states. The results of all
these studies indicate that in an electric field above-bar-
rier states may be transformed into a fan of partially
localized states. The wave functions of these states are
a hybrid of localized and delocalized states: their den-
sity has a well-defined maximum in one of the quantum
wells and far from this well gradually acquires the char-
acter of a delocalized wave function. 

Real superlattices consist of a finite number of
quantum wells N ≈ 10–100 rather than an infinite num-
ber. States forming the lowest subband of N levels in
the absence of a field are transformed with increasing
field F into a set of N states each localized within only
one of the N quantum wells. The lowest state is local-
ized in the left outermost (first) well, the next states in
terms of energy are localized in the second left and sub-
sequent (positioned to the right) quantum wells such
that the highest subband state is localized in the right
outermost (Nth) well of the superlattice (Fig. 1a). In
strong electric fields the lowest states are characterized
by wave functions which decay exponentially (without
oscillations) in the thick left barrier. States localized in
central quantum wells in the same electric fields are not
sensitive to the left outermost thick barrier so that the
corresponding wave functions have an almost Bessel
 AND THEORETICAL PHYSICS      Vol. 91      No. 4      2000
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wave function with an oscillating component posi-
tioned to the left of the maximum. As a result, the spac-
ing between the energy levels at the edges and at the
center of the subband differ and differ appreciably from
eFd. The finite length of the superlattice leads to loss of
periodicity and additional localization of states in the
outermost quantum wells [17, 18]. These edge states do
not have any contribution from interaction with absent
wells on the left or right. The number of these states is
2–5 so that we can assume that those “equidistant”
states of the Wannier–Stark ladder which are not sensi-
tive to the influence of edge barriers are merely local-
ized in the central N – 5 quantum wells of the super-
lattice.

2. SAMPLES AND EXPERIMENTAL RESULTS

We investigated a superlattice (Fig. 2) grown by molec-
ular beam epitaxy on an n-type GaAs (001) substrate 2,
consisting of 30 GaAs(82 Å)/Al0.07Ga0.93As(37 Å) layers
surrounded on the left and right by 450 and 350 nm
thick Al0.3Ga0.7As insulating layers 3 and 4 (outer bar-
riers). A window 5 around 1 mm in diameter was etched
into the substrate. This allowed focused 50 W radiation
from a halogen lamp 6 (Fig. 2) to pass through the
superlattice and allowed the transmission spectra to be
recorded with 0.1 meV resolution using a 600 mm
spectrometer 7 and an optical multichannel analyzer 8.
A dc voltage U was applied to the substrate and a semi-
transmitting gold contact deposited on a protective
GaAs layer, creating electric fields in the range between
–60 and +15 kV/cm in the superlattice. The sample S
was attached to a sapphire substrate mounted in the ring
of an optical helium cryostat 9 cooled to 8–10 K. 

Figure 3 gives absorption spectra of a shallow
superlattice in the exciton resonance region measured
under halogen lamp illumination at temperatures below
10 K and various bias voltages U applied to the semi-
transmitting contact on the upper surface of the sub-
strate. It can be seen from the figure that at positive bias
voltages between +1.2 and –0.7 V the spectrum exhibits
a high-intensity heavy exciton line HHX around 1 meV
wide and a lower-intensity light exciton line, LHX
above which extend structureless continuums. As the
reverse bias voltage increases, the intensity of the exci-
ton absorption lines decreases by two orders of magni-
tude and in addition to the HHX exciton line broadened
by a factor of 2–3, several new lines appear. As the neg-
ative voltage increases, the spacing between the lines
increases and they move apart in different directions
with different derivatives, forming a fan. This behavior
may be attributed to the formation of a Wannier–Stark
ladder of electron Ee(F), heavy Eh(F), and light El(F)
hole states in accordance with Eq. (1) between which
the interband optical transitions 

(3)
"ωp k– Ee 0( ) Eh l, 0( )– p k–( )eFd ,+=

p k, 3 4 … 27 28,, , , ,=
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Fig. 2. Sample S consisting of a superlattice 1 grown by
molecular beam epitaxy on a substrate 2 (with an etched
window 5 up to 1 mm in diameter) between two buffer lay-
ers 3 and 4. A transverse voltage U was applied via leads to
gold contacts deposited on the substrates and coating layer.
Radiation from a halogen lamp 6 passed through the sample
S located in an optical cryostat 9 at a temperature of around
10 K was analyzed using a spectrometer 7 and a multichan-
nel detector 8.
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Fig. 3. Absorption spectra of a thirty-layer GaAs(82 Å)/
Al0.07Ga0.93As(37 Å) superlattice at various bias voltages U in
the range between +1.2 and –2.0 V and temperature of 8 K;
HHX and LHX are the absorption lines of an exciton with a
heavy and a light hole; hh0 are intrawell electron–hole tran-
sitions; hh–1(lh–1) are transitions between an electron and a
heavy (light) hole localized in the nearest right well; hh+1
are transitions between an electron and a heavy hole local-
ized in the nearest left well; EedgHedg are intrawell transition
in the outer (first and thirtieth) wells of the superlattice.
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lead to the formation of a fan of absorption lines. In this
case, some of the observable lines may be interpreted as
transitions between electrons and heavy holes localized
in the neighboring quantum well on the right or left (the
lines hh–1 and hh+1 in Fig. 3) or a heavy hole localized
in the second quantum well on the right (the hh–2 line).
Interpretation of the line lh–1 presents no significant dif-
ficulties: this corresponds to transitions between elec-
trons and light holes localized in the neighboring quan-
tum well to the right.

However, the field dependence of the line hh0 which
should correspond to intrawell transitions between
electrons and heavy holes localized in the same well
(i.e., p = k, p, k = 3, 4, …, 27, 28), differs substantially
from the very simple relationship (3) according to
which the position of the hh0 line should not depend on
the electric field, and the transition intensity in accor-
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Fig. 4. (a) Contour pattern of experimentally measured absorp-
tion spectra of a thirty-layer GaAs(82 Å)/Al0.07Ga0.93As(37 Å)
superlattice at bias voltages in the range between +1.2 and
−4.6 V and a temperature of 8 K. (b) Theoretically calcu-
lated energies of transitions between states of electrons and
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trons and heavy holes in outer wells (squares), transitions
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left quantum well (diamonds). The size of the symbols is
proportional to the oscillator strength of the corresponding
transitions. 
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dance with [19] should increase monotonically in fairly
high fields. Nonmonotonic variations of the energy and
intensity of the intrawell transitions can be seen more
clearly in Fig. 4a which shows the contour pattern of
the absorption spectra of this superlattice in the spectral
range between 1.525 and 1.555 eV at bias voltages
between +1.2 and –4.6 V. At a forward bias between 1.2
and 0.7 V the spectrum only reveals two high-intensity
lines HHX and LHX of delocalized heavy and light
excitons. At biases between 0.7 and –0.7 B we observe
a fan of fairly narrow lines (of the order of 1 meV) hh–1,
hh–2, hh–3, hh+1, hh+2 corresponding to interwell transi-
tions between electron and heavy hole states of the
Wannier–Stark ladder whose position and intensity are
significantly altered by Coulomb interaction between
them [20–22]. It can be seen from Fig. 4a that the center
of the fan is approximately situated at the point (+0.7 V;
1.545 eV, i.e., is shifted by 0.7 V as a result of the built-in
field of the Schottky diode. The hh0 line corresponding to
“intrawell” transitions has a large width of ≈5 meV and is
shifted toward lower energies by almost 10 meV as the
field increases. The shift of the hh0 line toward lower
energies which contradicts Eq. (3) for p – k = 0 may be
partly attributed to a “quantum-bounded Stark shift”
quadratic with respect to the field, which leads to
“intrawell polarization.” However, the nonmonotonic
variations of the intensity, half-width, and position of
the hh0 band with increasing bias voltage which are a
consequence of intersections with lines of as yet
unknown nature ab–1, ab–2, and ab–3, remain unex-
plained. They cannot be attributed to oscillations or fluc-
tuations of the electric field in the superlattice (for exam-
ple, as a result of the formation of domains [23, 24]) since
under the same conditions the other lines undergo a
monotonic shift and change in intensity. In addition, the
nature of the EedgHedg line is unclear. This could be
ascribed to intrawell transitions between electrons and
light holes but it is then unclear why it is not shifted
parallel to the hh0 line and even intersects it.

The most probable reason for the large inhomoge-
neous width, nonmonotonic shift, and change in the
intensity of the hh0 line are “anticrossings” of localized
states with higher electron or hole states causing its
position and amplitude to change appreciably. How-
ever, we can only sufficiently reliably identify an inter-
section with the lh–1 line corresponding to recombina-
tion of an electron with a light hole localized in a neigh-
boring well on the right. However, it is predicted that a
shallow quantum well will only have one subband of
localized electrons and light holes and the other sub-
bands will be higher than the level of the barriers so that
the possibility and consequences of their intersection
with the hh0 line require special theoretical analysis.
The comparisons between the experimental results and
corresponding calculations presented below show that
the nonmonotonicity of the position, intensity, and pro-
file of the hh0 line may be attributed to anticrossings
with above-barrier states of the shallow superlattice
AND THEORETICAL PHYSICS      Vol. 91      No. 4      2000
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Fig. 5. Dependence of the transmission T of a seven-layer GaAs(82 Å)/Al0.07Ga0.93As(37 Å) superlattice with an insulating
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show the corresponding potentials for electrons in a field of 60 kV/cm. The maxima of the dependence T(Ee) coincide with the
allowed electron energy levels ENm in the electric field.
while the EedgHedg line is attributed to intrawell transi-
tions in the outer right or left wells of the superlattice in
which the size-quantized energies of the electrons and
holes are shifted upward because of the contribution of
high and/or wide outer insulating barriers.

3. CLASSIFICATION OF ELECTRON
AND HOLE STATES IN AN ELECTRIC FIELD

It is noted in [25] that if for an electron of energy E
incident on a superlattice from left to right, the latter is
characterized by the transmission T(E), the generalized
density of electron states ρ(E) in the superlattice is pro-
portional to its transmission T(E) which can be calcu-
lated by the transfer matrix method over a wide range
of electric fields [26]. By analyzing the positions of the
maxima of the calculated density of electron or hole
states for various values of the electric field F, we can
construct a fan of energy levels of electrons, heavy and
light holes as a function of F and calculate the energies
of the transitions between them.

The sample was simulated by asymmetric superlat-
tices consisting of seven GaAs quantum wells 82 Å
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
wide, separated by six Al0.07Ga0.93As barriers 37 Å wide
and 54.6 meV high for electrons or 41.1 meV for holes.
One of the outer barriers coincided with the interwell
barriers, another thick Al0.3Ga0.7As barrier had a height
of 214 (162) meV for the electrons (or holes) (see inset
to Figs. 5a and 5b). These asymmetric structures could
allow for the influence of the outer barriers on the
energy structure of states localized near them. Figure 5
shows the electron transmissions of model superlattices
calculated by the transfer matrix method for Al0.3Ga0.7As
barriers positioned to the left and right. The calculations
allow for the Stark quantum-size effect (for transitions
between electrons and holes in the same quantum well)
and all anticrossings as a result of resonant overlap of
the wave functions of electrons localized in different
quantum wells (but neglecting Coulomb interaction
between them). The maxima of the superlattice trans-
mission T(E) coincide with the allowed energy states of
electrons or holes in the superlattice at the correspond-
ing electric fields F. It can be seen from Fig. 5 that as
the field increases, all the energy levels are shifted
toward higher energies with different slopes so that in
fields greater than 10–15 kV/cm, some of the subbarrier
and above-barrier states intersect, undergoing repulsion
SICS      Vol. 91      No. 4      2000
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~ ~
(anticrossing). In fairly strong fields the energy levels
may be expelled by the electric field above the levels of
the outer barriers, causing substantial smearing of the
maxima of the transmission curves (Fig. 5b). Neverthe-
less, over the entire range of fields for states sensitive to
the high left-hand barrier (Fig. 5a) discrete maxima can be
clearly observed not only for the subbarrier but also for the
above-barrier states and their mutual anticrossing. 

Figures 6 and 7 give the amplitudes of the wave
functions of several electron states localized in the left
and right parts of the superlattice calculated in electric
fields of 10 and 30 kV/cm using the transfer matrix
method. We shall first consider the profile of the elec-
tron wave functions in weak fields (10 kV/cm). It can
be seen from Fig. 6 that in the lowest state the electron
is localized in the outer left (n = 1) quantum well and
its wave function Ψ1(z) has a single extremum and no
node. In higher energy states the electron is localized
(has a “principal” maximum of the wave function) in
the nth quantum well and its wave function Ψn(z) has
n – 1 additional extrema of lower amplitude localized
in quantum wells positioned on the left and n – 1 nodes
localized in barriers to the left of the nth quantum well.
As the energy of the states increases and the maximum
of the wave function shifts toward quantum wells posi-
tioned on the right, the profile of the wave function
gradually stabilizes so that at the middle or right of the
superlattice the wave functions are simply shifted by a
JOURNAL OF EXPERIMENTAL 
period of the superlattice d, i.e., Ψn(z) = Ψn – 1(z – d) =
Ψn + 1(z + d). In a superlattice consisting of 30 quantum
wells 30 states with these wave functions form the low-
est electron subband.

It can be seen from Fig. 6 that at the middle or right
of the superlattice the energy levels of the subbarrier
states are almost equidistant in accordance with Eq. (1).
However, a more detailed analysis shows that the
energy levels corresponding to electron localization in
the outer left or right quantum well of the superlattice
(edge states) are higher than that predicted by Eq. (1)
by the amounts δEL and δER (of the order of a few meV).
This occurs because the wave functions penetrate fairly
deeply into the wide high edge barriers which gives a
larger contribution to the potential energy of the edge
states compared with the contribution of the thin shal-
low interwell barriers. It will be shown below that as a
result, transitions involving edge states are several meV
higher than transitions between states at the center of
the superlattice described by Eq. (1). Note that the equi-
distance of the energy levels is also destroyed because
the shift of the energy levels deviates from linear with
respect to the field as a result of the anticrossing of the
states (see Fig. 1) although the shifts of the edge states
δEL and δER are of a different nature and large.

It is shown in Fig. 5a that subbands of above-barrier
delocalized states (in a field of 10 kV/cm in the energy
AND THEORETICAL PHYSICS      Vol. 91      No. 4      2000
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range above 120 meV) are positioned above localized
states. These appeared from the second or higher sub-
barrier size-quantized subbands which can be clearly
observed in a zero electric field in Fig. 5. As the electric
field increases, the positions of the energy levels and
the profile of the wave functions changes radically
since, in fields higher than 10 kV/cm, the above-barrier
states are determined to a considerable extent by the
potential of a wide triangular quantum well bounded on
the left by a wide Al0.3Ga0.7As potential barrier and
below and to the right by the sawtooth bottom of the
superlattice tilted by the electric field. The wave func-
tions of the above-barrier states have an oscillating
character although unlike the subbarrier states, the
period of the oscillations no longer correlates with the
period of the superlattice, and their extrema and nodes
no longer coincide with the wells and barriers. The
above-barrier electron is no longer localized in one of
the quantum wells but is uniformly smeared over many
wells and barriers of the superlattice. As the state
energy increases the region of the superlattice over
which the electron is smeared increases and as a result
the amplitude of the wave function decreases. Thus, in
the right part of the superlattice where the bottom of
each quantum well is shifted upward by 350–400 meV
by the electric field, only the wave functions of the
localized states have any appreciable amplitude and the
amplitude of the above-barrier states is incommensura-
bly small. It can be seen from Fig. 6a that as a result of
resonant mixing of the wave function of the E17 state
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localized in the seventh quantum well with the wave
function of the lowest above-barrier state Eab1, the
amplitude of the resultant wave function differs sub-
stantially from the wave functions of the other states.
This may lead to a reduction in the contribution of elec-
trons localized in the seventh well to the optical transi-
tions involving them.

The energy gap between the states of the subbarrier
and above-barrier subbands which can be observed
clearly in zero electric field (Fig. 5) begins to decrease
with increasing field so that in fields of the order of
15 kV/cm the gap disappears completely and the
above-barrier and subbarrier states become mixed (the
curve corresponding to 15 kV/cm in Fig. 5a). As a
result, in an electric field of 30 kV/cm (Fig. 7) at ener-
gies higher than 120 meV, states having features of
above-barrier states alternate with subbarrier states
localized predominantly in a single quantum well. It
can be seen from Fig. 7 that the difference in the profile
of the wave functions of the above-barrier and subbar-
rier states decreases as a result of their mixing and the
main criterion becomes the position of the maximum
extremum: if this is positioned at the right edge of the
wave function, this is a subbarrier states whereas for
other positions of the maximum we can talk of the sub-
barrier nature of the corresponding state. As will be
demonstrated below (see Figs. 6 and 8), in some fields
where anticrossing of two or more states is observed,
the wave function can simultaneously have features of
several types of states. 
SICS      Vol. 91      No. 4      2000
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0

Figure 8 shows the energy levels and squares of the
modulus of the corresponding wave functions of heavy
holes in the left and right parts of the superlattice in an
electric field of 10 kV/cm. A comparison with Figs. 6
and 7 shows that in the lower states heavy holes, unlike
electrons, are almost completely localized in one of the
quantum wells. The set of these states H11, H12, H13,
and so on forms the first subband of localized subbar-
rier states. We recall that in zero electric field the heavy
holes have not one but two subbands of localized sub-
barrier states. The wave functions of states from the
second subband are characterized by the fact that they
have two extrema and one node within a single quan-
tum well and the probability of finding a hole outside
this well is low. Typical examples of the wave functions
of holes corresponding to the second subband of sub-
barrier states are shown by the dashed lines in Fig. 8
and are denoted by H21, H23, H24, and so on. It can be
seen that in a field of 10 kV/cm states from the first and
second subbands are not separated by a gap as in zero
field but are mixed, although they can be classified
according to the form of the wave functions. The
JOURNAL OF EXPERIMENTAL
energy levels of the holes and electrons are also almost
equidistant except for the edge states localized in the
outer left and right quantum wells of the superlattice
shifted upward by the values of δEL and δER of the
order of a few meV. The states H14 and H22 from the
first and second subbands are almost the same in a field
of 10 kV/cm so that the wave functions describing them
have characteristic features of the first and second sub-
bands, respectively. As a result, the extrema of the wave
function are approximately half those for states in the
absence of anticrossing which leads to a corresponding
reduction in the oscillator strengths of transitions involv-
ing the H14 and H22 states in the field F = 10 kV/cm. 

In addition to subbarrier states, heavy holes also
have above-barrier states whose wave functions are
more uniformly smeared over many quantum wells and
have extrema away from the right edge. Examples of
these states and their corresponding wave functions are
given by the dot-dash lines in Fig. 8a. The subbarrier
states may undergo an anticrossing with the above-bar-
rier states so that the corresponding energy levels devi-
ate from Eq. (1) and the wave functions change their
 AND THEORETICAL PHYSICS      Vol. 91      No. 4      2000
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profile and amplitude. Figure 8a shows that in the
energy range 87 ± 2 meV two above-barrier and two
subbarrier states undergo an anticrossing with the result
that the amplitude of the combination of the wave func-
tions of the latter is reduced significantly. The wave
function of this state is a superposition of the wave
functions of the above-barrier and subbarrier states
where the hole is localized simultaneously in one of the
quantum wells and above several barriers. 

Note that the transformations of the wave functions
under conditions of anticrossing of subbarrier and
above-barrier states is not an exclusive characteristic of
heavy holes. They may also occur in the case of anti-
crossings of electron states in corresponding electric
fields. 

Using the energy levels thus calculated and their
wave functions in the range of electric fields between 0
and 60 kV/cm, we can calculate all possible combina-
tions of intrawell and interwell transitions and the cor-
responding matrix elements of the transitions and thus
construct a theoretical fan of transitions involving edge
states, mixing of subbarrier and above-barrier states
and the associated nonequidistance of their position. 

Figure 4b gives the calculated energies of transitions
between various states of electrons, heavy and light
holes in a GaAs(82 Å)/Al0.07Ga0.93As(37 Å) superlat-
tice in electric fields between 0 and 60 kV/cm (neglect-
ing Coulomb interaction between electrons and holes).
The overlaps of the wave functions of the states calcu-
lated at the same time were used to determine the oscil-
lator strengths of the corresponding transitions. The
size of the symbols in Fig. 4b is proportional to the esti-
mated oscillator strengths. Figure 4b can be used to
determine the contribution of various transitions to the
absorption spectrum of the superlattice allowing for
their intensity. Each symbol may be ascribed a transi-
tion involving different types of states in accordance
with the classification given above. All the transitions
are divided into three groups: the open circles give the
energies and oscillator strengths of transitions between
electrons and heavy holes in quantum wells located at
distances of more than two periods from the outer
quantum wells. Intrawell transitions in wells far from
the edge form the hh0 absorption band up to 2–3 meV
wide. This nonuniform width is attributed to the non-
equidistance of the distribution of electron and hole
states shown in Figs. 5–8 for wells positioned at differ-
ent distances from the outer barriers: the energies of the
intrawell transitions at the center of the superlattice are
minimal whereas in a quantum well at a distance of
between 1 and 5 periods from the edge of the superlat-
tice the transition energies increase monotonically as
the edge barrier is approached. It can be seen from Fig. 4b
that the inhomogenous broadening depends nonmono-
tonically on the electric field, increasing further in the
presence of a crossing (or more accurately anticrossing) of
the hh0 band with other lines of comparable intensity (for
example, in fields of 23–32 and 38–42 kV/cm). In fields
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
of 18–20 kV/cm the hh0 band splits in two as a result of
the anticrossing of localized and above-barrier electron
states.

In the range of fields between 4 and 13 kV/cm inter-
well transitions between electrons and holes localized
in neighboring quantum wells form two lines hh–1 and
hh+1 of lower intensity. It can be seen from Fig. 6 that
in this range of fields above-barrier and subbarrier
states do not undergo anticrossings so that the positions
of the lines vary linearly with the field and the hh–1 and
hh+1 lines are considerably narrower than hh0. The line
lh–1 shown by the diamonds is attributed to interwell
transitions between electrons and light holes localized
in neighboring wells on the right. It is parallel to the hh–1
line and shifted relative to the latter by around 9–10 meV
which is equal to the difference between the energy lev-
els of the light and heavy holes. 

The line EedgHedg shown by the squares is attributed
to intrawell transitions between electrons and heavy
holes localized in outer right and left wells of the super-
lattice. As we have discussed, the edge electron and
hole states in the quantum wells nearest to the insulat-
ing barriers are shifted upward by several meV relative
to the levels predicted in accordance with Eq. (1) with
the result that the transitions associated with these edge
states are also shifted upward by around 5–8 meV.

4. CONCLUSIONS

In a shallow superlattice bounded on both sides by
high insulating barriers in a fairly strong electric field
the above-barrier subbands form a fan of states instead
of the assumed structureless continuum. As a result of
the influence of the high edge barriers the energy level
distribution of the electrons and holes localized by the
electric field departs from the Wannier–Stark ladder
and becomes non-equidistant. Anticrossings of the fan
of non-equidistant subbarrier states with the fan of
above-barrier states leads to inhomogeneous broaden-
ing of the band of intrawell transitions, and nonmono-
tonic variation of its width and intensity with respect to
the field. Transitions involving edge states differ by
5–8 meV from transitions in wells near the center of the
superlattice, are characterized by elevated oscillator
strength and form an additional line EedgHedg.
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Abstract—Measurements of the microwave surface impedance Zs(T) = Rs(T) + iXs(T) and the complex con-
ductivity σs(T) in the ab-plane of high-quality high-Tc YBCO, BSCCO, TBCCO, and TBCO single crystals are
analyzed. Experimental data of Zs(T) and σs(T) are compared with calculations based on a modified two-fluid
model that includes a temperature-dependent quasiparticle scattering and a unique temperature variation of the
density of superconducting carriers. We describe the agreement and disagreement of our analysis with the
salient features of the experimental data. We review the existing microscopic models based on unconventional
symmetry types of the order parameter and on novel quasiparticle relaxation mechanisms. © 2000 MAIK
“Nauka/Interperiodica”.
¶ 1. INTRODUCTION

High-precision microwave measurements of the tem-
perature dependence of the surface impedance Zs(T) =
Rs(T) + iXs(T) of high-Tc superconductors (HTSC’s)
considerably advance our understanding about the pair-
ing of the superconducting electrons in these materials.
In particular, in 1993, the linear T-dependence of the pen-
etration depth λ(T) – λ(0) ∝ ∆ Xs(T) ∝  T observed below
25 K in the ab-plane of high-quality YBa2Cu3O6.95

(YBCO) single crystals [1] gave rise to productive
investigations of the order parameter of HTSC’s. This
linear variation of λ(T) at low T has by now been
observed not only in orthorhombic YBCO single crys-
tals [2–14] and films [15–18] but also in tetragonal
Bi2Sr2CaCu2O8 (BSCCO) [19–22], Tl2Ba2CuO6 + δ
(TBCO) [23, 24], and Tl2Ba2CaCu2O8 – δ (TBCCO)
[10] single crystals. This temperature dependence does
not agree with the nearly isotropic superconducting
gap, and it is now considered as a strong evidence for
the d-wave pairing in these materials [25–35] in spite of
the fact that the experimental data are not sensitive to
the phase of the superconducting order parameter.
Later research has shown that ∆λab(T) can be linear at
low T for models invoking the proximity effect between
normal and superconducting layers [36] or assuming
the anisotropic s-wave pairing [37–39]. However, none
of these theories can give an explanation for the sub-
stantially different slopes of ∆λab(T) at low T in the

¶ This article was submitted by the authors in English.
1063-7761/00/9104- $20.00 © 20801
YBCO samples grown by different methods [40] and
for certain features such as a bump [9, 11, 16, 41] or a
plateau [8, 10, 12], which are observed in the interme-
diate temperature range 0.4 Tc < T < 0.8 Tc. Models con-
taining a mixed (d + s) symmetry of the order parameter
[42–56] hold some promise for a successful description
of these experimental features, but this would require
additional theoretical investigations.

Another important feature of the microwave
response of HTSC crystals is the linear variation with
temperature of the surface resistance Rs(T) in the ab-plane
at low temperatures. At frequencies about 10 GHz and
below, the T-dependence of Rs(T) in BSCCO, TBCO,
and TBCCO single crystals is linear over the range 0 <
T & Tc/2 [19, 21–23]. For YBCO crystals, ∆Rs(T) ∝  T
for T & Tc/3 and Rs(T) displays a broad peak with a val-
ley at higher temperatures [4–14, 57–61]. This peak can
be understood as a competition between an increase in
the quasiparticle lifetime and a decrease in the quasi-
particle density as the temperature is lowered. The suf-
ficiently slow decrease in the quasiparticle density is
indicative of a highly anisotropic or unconventional
order parameter, resulting in a very small or vanishing
energy gap, while the increase in the quasiparticle life-
time is attributed to the presence of inelastic scattering,
which can be due (i) to the exchange of antiferromag-
netic spin fluctuations [62], which would naturally lead
to the d-wave pairing, or (ii) to a strong electron–phonon
interaction [63–65] within the anisotropic s-wave pairing
model [66, 67]. Moreover, there have been suggestions of
unconventional states for describing the charge carriers in
000 MAIK “Nauka/Interperiodica”
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the CuO2 planes like the marginal Fermi liquid [68, 69]
and the Luttinger liquid [70, 71]. However, to fit the data
of YBCO, the inelastic scattering rate must decrease
with temperature much faster than predicted by any of
these microscopic models. Further, the d-wave model
with point scatterers does predict a finite low-tempera-
ture and low-frequency limit, which is independent of
the concentration and the strength of the scattering cen-
ters [72]. Therefore, the latter model does not explain
the very different values of the observed residual sur-
face resistance Rres ≡ Rs (T  0) on different sam-
ples. Furthermore, the value of this universal surface
resistance is much lower than the Rresvalues obtained
from experiments. There is no microscopic theory
explaining the linear temperature dependence of ∆Rs(T)
up to Tc/2 in crystals with a nonorthorhombic structure
and the shoulder of Rs(T)observed on YBCO [9, 11]
for T > 40 K.

In the absence of a generally accepted microscopic
theory, a modified two-fluid model for calculating Zs(T)
in HTSC single crystals has been proposed indepen-
dently in [73, 74] and then further developed in [8, 40,
61, 75]. Our phenomenological model has two essential
features that make it different from the well-known
Gorter–Casimir model [76]. The first is the introduction
of the temperature dependence of the quasiparticle
relaxation time τ(t) (with t ≡ T/Tc) described by the Gru-
neisen formula (electron-phonon interaction), and the
second feature is the unique density of superconducting
electrons ns(t), which gives rise to a linear temperature
dependence of the penetration depth in the ab-plane at
low temperatures:

(1)

where n = ns + nn is the total carrier density and α is a
numerical parameter in our model.

The goal of this paper is to demonstrate the power
of our model in describing the general and distinctive
features of the surface impedance Zs(T) and the com-
plex conductivity σs(T) in the superconducting and nor-
mal states of different HTSC crystals (whose doping
level corresponds to the highest Tc) at various frequen-
cies. Section 2 describes the systematization of the
Zs(T) measurements, including the analysis that is used
to extract σs(T) from the measured values of Zs(T). Sec-
tion 3 compares experimental data of Zs(T) and σs(T)
over the entire temperature range with calculations
based on our modified two-fluid model. In the conclu-
sion, we compare the concepts of our model with
results of microscopic theories. We hope that this can
be a helpful guide for future investigations of micro-
wave properties of HTSC’s from a microscopic point of
view.

λ2 0( )

λ2 t( )
------------

ns t( )
n

----------  . 1 α t,–=
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2. ANALYSIS OF EXPERIMENTAL RESULTS

2.1. Surface Impedance

The surface impedance in the ab-plane of HTSC’s,
expressed in terms of the complex conductivity σs =
σ1 – iσ2, obeys the local equation

(2)

The impedance components are

(3)

(4)

where ϕ = 1 + (σ1/σ2)2. It is obvious that Rs < Xs for
T < Tc .

For temperature T < Tc and with σ1 ! σ2, Eqs. (3)
and (4) reduce to

(5)

The surface impedance components are measurable
quantities. The real part of the surface impedance, the
surface resistance Rs, is proportional to the loss of the
microwave power. It is caused by the presence of “nor-
mal” carriers. In the centimeter wavelength band, typi-
cal values of the surface resistance in the ab-plane of
HTSC single crystals are between 0.1 and 0.3 Ω above
the transition temperature Tc . When T is decreased
through Tc, the surface resistance abruptly drops but
does not seem to approach zero as T  0. In conven-
tional superconductors (like Nb), Rs(T) decreases expo-
nentially upon decreasing the temperature below Tc/2,
approaching a constant residual surface resistance Rres
as T  0. Rres is due to the presence of various defects
in the surface layer of the superconductor. Therefore, it
is generally accepted that lowering Rres leads to improv-
ing the sample quality. In high-quality HTSC’s, there is
no plateau in Rs(T) for T ! Tc . However, we extrapolate
the value of Rs(T) to T = 0 K and denote it by Rres . The
origin of the residual surface resistance observed in
HTSC crystals remains unclear. It is known that Rres is
strongly material and sample dependent and is approx-
imately proportional to the square of the frequency. At
present, very small values (Rres ≈ 20 µΩ at frequencies
≈10 GHz) are observed in YBCO single crystals [9, 14].

The imaginary part of the surface impedance, the
reactance Xs, is mainly determined by the supercon-
ducting carriers and is due to nondissipative energy
stored in the surface layer of the superconductor.
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In the table, we summarize the main features of the
temperature dependence of the surface impedance of
high-quality YBCO, BSCCO, TBCO, and TBCCO sin-
gle crystals whose residual surface resistance in the
ab-plane (Rres) is less than one milliohm at the fre-
quency ≈10 GHz with the Rs(Tc) values about 0.1 Ω.
There is good reason to believe that the temperature
behavior of the electrodynamic parameters of these crys-
tals is adequately related to the intrinsic microscopic
properties of the superconducting state of HTSC.

To illustrate the data of the table, we show in Fig. 1,
as an example, experimental data of Rs(T) and Xs(T) in
the ab-plane of a BSCCO single crystal at 9.4 GHz
[22]. In this figure, Rs(T) = Xs(T) for T ≥ Tc, which cor-
responds to the normal skin-effect condition. Knowing

Rs(Tc) =  ≈ 0.12 Ω, we obtain the resistivity
ρ(Tc) ≈ 40 µΩ cm. In the normal state (above Tc), the
temperature dependence of Rs(T) = Xs(T) is adequately

described by the expression 2 /ωµ0 = ρ(T) = ρ0 +
bT. For the BSCCO crystal in Fig. 1, ρ0 ≈ 13 µΩ cm and
b ≈ 0.3 µΩ cm/K. The insets in Fig. 1 show Rs(T) and
λ(T) = Xs(T)/ωµ0 for T < 0.7 Tc plotted on a linear scale.
The extrapolation of the low-temperature sections of these
curves to T = 0 K yields the estimates Rres ≈ 0.5 mΩ and
λab(0) = 2600 Å for this crystal.

The experimental curves of ∆λab(T) for YBCO,
TBCO, and TBCCO crystals are also linear in the range
T < Tc/3. It is important to note different slopes of the
∆λ(T) ∝  T curves for T ! Tc . In particular, in YBCO
crystals fabricated by different techniques, the slopes of
∆λab(T) differ by almost one order of magnitude [8, 9, 13].
The reasons for such a discrepancy are still unclear.

At frequencies about 10 GHz and below, the linear
dependence ∆Rs(T) ∝  T in BSCCO (Fig. 1), TBCCO,
and TBCO single crystals may actually extend to the
temperatures ~Tc/2. This property, which is common
for all HTSC crystals with the tetragonal structure, is
not characteristic of YBCO. As noted previously, all
microwave measurements on high-quality YBCO sin-
gle crystals show a broad peak in the Rs(T) curve cen-
tered near 30–40 K up to the frequencies ≈10 GHz. The
peak shifts to higher temperatures and diminishes in
size as the frequency is increased. In higher quality
YBCO crystals, the peak amplitude increases and Rs(T)
reaches its maximum at a lower temperature [14].

The underlying origin of this YBCO feature has
remained unclear. The simplest idea is that the absence
of this peak in crystals with tetragonal structure might
be caused by their “poor” quality, as is the case with
YBCO doped with Zn [2, 4, 58]. However, this conclu-
sion is probably incorrect because (i) there is a suffi-
ciently large set of experimental data indicating that
Rs(T) is a linear function of T for BSCCO, TBCO, and
TBCCO, and (ii) the peak in Rs(T) was also detected in

ωµ0ρ Tc( )/2

Rs
2 T( )
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the YBCO crystals [7, 10, 60] with the parameters Rres

and ρ(Tc) that would characterize the quality of these
crystal as being “poor” compared to those of, for exam-
ple, TBCCO [10] or BSCCO [21]. Results for the latter
crystals are shown in Fig. 2. The more probable cause
of the peak, however, is the presence of an additional
component in the YBCO orthorhombic structure,
namely, the CuO chains that lead to a mixed (d + s)
symmetry of the order parameter in YBCO. The elec-
trons of the chains form an additional band, contribut-
ing to the observed T-dependence of Zs(T). This contri-
bution seems to result in another distinctive feature of
YBCO, namely, a plateau or a bump (see table) on the
λab(T) curve, which has been observed in high-quality
YBCO single crystals [8–12] and films [16, 41]. How-
ever, recent measurements of ∆λab(T) in the YBCO
crystals [14] grown in a high-purity BaZrO3 crucible do
not show such features in the intermediate temperature
range. The authors of [14] argue that the disagreement
with the results of [9] arises from a problem related
with the surface of the crystal. The last observation still
lacks a convincing explanation.

Finally, another feature in the T-dependence of the
impedance of high-quality YBCO crystals was
detected: a noticeable increase of Rs(T) with an increas-
ing temperature (a shoulder) at temperatures larger than
the peak (30 K). It turns out that this shoulder is repro-
ducible in the experiments [9, 11]. Similarly, an expla-
nation of this observation is lacking.
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Fig. 1. Surface resistance Rs(T) and reactance Xs(T) in the
ab-plane of a BSCCO single crystal at 9.4 GHz. The insets
show linear plots of λ(T) and Rs(T) at low temperatures.
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Surface impedance Zs(T) = Rs(T) + iXs(T) in the ab-plane of high-Tc single crystals at frequencies ~10 GHz

HTSC

Superconducting state, T < Tc
Normal state 
1.5Tc > T ≥ Tclow temperatures 

4 K < T ! Tc

intermediate temperatures 
T ~ Tc/2

T  Tc

Orthorhombic 
structure 
YBCO 

Tc ≈ 92 K

∆Rs(T) ∝ T, ∆Xs(T) ∝  T 
at T & Tc/4; 
Essentially different 
slopes 
of ∆λ(T) ∝  T [1–14]

Broad peak in Rs(T) at 25 < T < 45 K 
[4–14, 57–60]
Peculiarities:
1. Shoulder [9, 11] in Rs(T) at T > 40 K;
2. Bump [9] or plateau [8, 10] 
on the curves of Xs(T) at 50 < T < 80 K

Different slope 
of λ(T) [3–14]

Normal 
skin-effect

Tetragonal structure
BSCCO

Tc ≈ 90 K [19–22] 
TBCO 

Tc ≈ 80 K [23, 24] 
TBCCO 

Tc ≈ 110 K [10, 12]

∆Rs(T) ∝  T, T & Tc/2
∆Xs(T) = ωµ0∆λ(T) ∝  T, T & Tc/3

Rapid growth 
of Rs(T) and Xs(T)

Rs(T) = Xs(T) = 

∆ρ(T) ∝  T
ωµ0ρ T( )/2
2.2. Complex Conductivity

Equations (2)–(4) allows us to express the real and
imaginary parts of the complex conductivity σs = σ1 –
iσ2 in terms of Rs and Xs as

(6)

Above the superconducting transition temperature,
the mean free path l of current carriers is shorter than the

σ1

2ωµ0RsXs
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Fig. 2. Comparison of the temperature dependence of the
surface resistance Rs(T) of BSCCO and YBCO single crys-
tals at 14.4 GHz. Experimental data are taken from [21]
(BSCCO at 14.4 GHz) and [8] (YBCO at 9.4 GHz, scaled
by ω2 to 14.4 GHz). The inset shows the linear T-depen-
dence of Rs at low T for both materials and a broad peak of
Rs(T) for YBCO.
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skin depth δn in the normal state (for T ≥ Tc, l ! δn), which
corresponds to the conditions of the normal skin effect.
Equations (2)–(4) and (6) also apply to the normal state of

HTSC’s, where Rn(T) = Xn(T) =  with
σn ≡ σ1 (T > Tc) and σ2 ! σ1 at microwave frequencies.

The components σ1(T) and σ2(T) are not measured
directly but can be derived from measurements of Rs(T)
and Xs(T) using Eq. (6).

2.2.1. Low-temperature region (T ! Tc). When
Rs(T) ! Xs(T), Eq. (6) reduces to

(7)

It then follows from Eq. (7) that for low and inter-
mediate temperatures, σ1/σ2 = 2Rs/Xs ! 1. The incre-
ments ∆σ1(T) and ∆σ2(T) depend on the increments
∆Rs(T) and ∆Xs(T) relative to the respective quantity:

(8)

It follows from Eq. (8) that the dominant changes of
σ2(T) are determined mainly by the function Xs(T) =
ωµ0λ(T), which reflects the T-dependence of the mag-
netic field penetration depth.

The T-dependence of the real part of the conductiv-
ity, σ1(T), is determined by the competition between the
increments ∆Rs/Rs and ∆Xs/Xs.

In conventional superconductors, the quantity Xs(T)
(@Rs) is practically T-independent (∆Xs ≈ 0) at temper-
atures T ≤ Tc /2, and Rs(T) decreases exponentially and
approaches the residual surface resistance Rres as T  0.
By subtracting Rres from the measured Rs(T), we obtain,
using Eqs. (7) and (8), the temperature dependence of

ωµ0/2σn T( )
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σ1(T) predicted by the BCS theory: σ1 = 0 at T = 0 and,
for T ≤ Tc/2, ∆σ1(T) shows an exponentially slow
growth with an increasing temperature. We note that
the smallest value of Rres detected in pure Nb is at least
two orders of magnitude smaller than the smallest value
of Rres measured in YBCO. The extremely small values
of the surface resistance in Eq. (8) indicate that the
increment ∆σ1(T) is always positive in classical super
conductors (∆σ1(T) > 0), at least in the temperature
interval T < 0.8 Tc , before the maximum of the BCS
coherence peak is reached.

For HTSC single crystals, the T-dependence of
∆σ1(T) is radically different from that predicted by the-
ories of the microwave response of conventional super-
conductors. For T < Tc , the increments ∆Rs(T) and
∆Xs(T) in HTSC’s are not small; in addition, ∆Xs(T) @
∆Rs(T). Although Rs(T) < Xs(T), ∆Rs/Rs is not necessar-
ily greater than 3∆Xs/Xs in Eq. (8) or positive at all tem-
peratures. When that occurs, σ1(T) increases with a
decreasing temperature. The function σ1(T) is maxi-
mum at some T = Tmax, and then σ1(T) becomes smaller
with a decreasing temperature. σ1(T) has a peak if the
value of Rres is sufficiently small as T  0:

(9)

If inequality (9) is satisfied, Tmax is a finite tempera-
ture, while for Rres being equal to the right-hand side
of (9), Tmax shifts to 0 K. If Rres is such that (9) is not
satisfied, σ1(T) decreases at low temperatures as the
temperature is increased, which is quite different from
that observed in conventional superconductors.

Thus, the shape of σ1(T) for T ! Tc depends on the
value of the residual surface resistance Rres , whose ori-
gin and accurate value are unknown. For this reason,
the shapes of the σ1(T) curves are not determined
unambiguously for T ≤ Tc/2, unlike the functions Rs(T)
and Xs(T), which are directly measured in experiments.

If we linearly extrapolate Rs(T) to T = 0 and attribute
the resulting value Rs(0) to the residual surface resis-
tance (Rs(0) = Rres) and then substitute the temperature-
dependent difference Rs(T)–Rres into the numerator of
the first expression in Eq. (7), the result is that the σ1(T)
curve has a broad peak for HTSC materials. Near T = 0,
σ1(T) increases linearly with T from zero, reaches a max-
imum at Tmax, and then decreases to σ(Tc). This procedure,
however, ignores the possibility of intrinsic residual
losses. Therefore, some authors (see, e.g., [14, 21, 59])
associate residual losses in HTSC single crystals with a
residual normal electron fluid. This implies that the
source of the residual loss is in the bulk of the sample,
although it is probably not intrinsic. If this contribution
is excluded from the complex conductivity of the
superconductor, one obtains σ1(T = 0)  0, as can be
seen in Fig. 3 from the measurements taken at 13.4,

Rres

Xs 0( )
3

------------
∆Rs T( )
∆Xs T( )
-----------------.<
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22.7, and 75.3 GHz in [14]. The peak of σ1(T) shifts to
higher temperatures, and its size diminishes as the
experimental frequency is increased. In YBCO single
crystals, the temperature Tmax at which the maximum of
σ1 occurs is close to the temperature at which the peak
of Rs(T) occurs.

Finally, one can procure σ1(T) from measurements
of Rs(T) and Xs(T) for T > 0 without any concern about
Rres . In this case, σ1(0) is not determined uniquely.
Whether σ1(T) has a peak depends on the validity of
condition (9). The curves at 1 and 2 GHz in Fig. 3 were
obtained using Eq. (6) without subtracting any residual
losses.

2.2.2. Temperatures close to Tc (T  Tc).
Equations (7) and (8) do not apply near Tc. In this tem-
perature range, it is necessary to use the general local
relations (2)–(4) and (6).

The conductivity σ2(T) in the ab-plane of HTSC
crystals abruptly drops to very small values in the nor-
mal state. The expression [Tc/σ2(0)]dσ2(T)/dT at T = Tc

that defines the slope of λ2(0)/λ2(T) at T = Tc varies
between –2 and –4 for different crystals.

The real part of the conductivity, σ1(T), does not
show a coherence peak near T = 0.85Tc, as predicted by
BCS. Usually, the real part of the conductivity of HTSC
single crystals has a narrow peak near Tc, which
increases with decreasing the frequency [21, 23, 24].

1.14 GHz
2.25 GHz
13.4 GHz
22.7 GHz
75.3 GHz

0 20
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2

3

4
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40 60 80
T, K

σ1, 107Ω–1m–1

Fig. 3. Real part of the conductivity σ1(T) of YBCO single
crystal at different frequencies [14]. The data (symbols) are
the courtesy of the Vancouver group (D.A. Bonn). Solid line
is the T-dependence of σ1(T) at 1.14 GHz calculated using
the modified two-fluid model and taking the inhomoge-
neous broadening of the superconducting transition into
account (δTc = 0.4 K in Eq. (21), see Section 3.3).
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The width of the narrow peak of σ1(T) coincides with
the width of the Rs(T) transition at microwave frequen-
cies. A possible explanation of the sharp peak just
below Tc is an inhomogeneous broadening of the super-
conducting transition [77–79] or the fluctuation effects
[24, 80, 81].

3. MODIFIED TWO-FLUID MODEL

As was shown in [65], high Tc values (Tc ~ 100 K),
the temperature dependence of the resistivity, the fre-
quency dependence of the momentum relaxation time,
and other properties of the normal state in optimally
doped HTSC’s are well described within the frame-
work of the Fermi-liquid approach involving strong
electron–phonon coupling (SC) [63]. The SC model
also explains some of the features of the superconduct-
ing state of HTSC’s. It follows from the Eliashberg the-
ory that the distinctive property of superconductors
with strong coupling is that the gap in the spectrum of
electronic excitations is smeared. Strictly speaking,
there is no gap whatsoever at T ≠ 0 [82, 83]. This leads
to breaking of Cooper pairs, smearing of the peak in the
density of states at "ω = ∆(T) due to the inelastic scat-
tering of electrons by thermally excited phonons, and
suppression of coherence effects. As a result, the ampli-
tude of the coherence peak decreases and, according to
[84, 85], virtually disappears at frequencies around
10 GHz if the electron–phonon coupling constant
exceeds unity. Moreover, the quasiparticle generation
mechanism is radically different from that of the BCS
model. The quasiparticles are generated without jumps
across the energy gap and can be in states with all ener-
gies down to "ω = 0. These states can be classified as
gapless, and the quasiparticles can be treated [65] as
normal current carriers in the two-fluid model. Thus, it
is not surprising that an important consequence of the
SC model is the nonexponential behavior of Rs(T) [86]
and λ(T) [87]. Power-law temperature dependences
were also predicted by the two-fluid Gorter–Casimir
(GC) model [76]; near Tc, they proved to be quite close
to the results of calculations performed in the SC
model. In particular, the curves λ2(0)/λ2(T) calculated
by the SC model [88–91] proved to be sufficiently close
to the function ns(t)/n = 1 – nn(t)/n = 1 – t4 in the GC
model. At T = Tc, the slopes of these curves are in agree-
ment with those measured with different YBCO single
crystals and are equal to –3 [4] or –4 [5, 8, 10]. The
experimental fact that there is no BCS coherence peak
in the conductivity of HTSC crystals indicates the
necessity of taking the strong coupling effects near Tc

into account and the feasibility of interpreting HTSC
properties at microwave frequencies in terms of a two-
fluid model.

Complex conductivity σs is a basic property of super-
conductors. In accordance with the GC model [76], the
JOURNAL OF EXPERIMENTAL
expressions for the components of σs = σ1 – iσ2 are

(10)

At temperatures T ≤ Tc , the total carrier concentra-
tion is n = ns + nn , where ns, n are the fractions of the
superconducting and normal carrier densities (both
have the same charge e and effective mass m). The real
part σ1 is determined solely by the normal component,
while both components (normal and superconducting)
contribute to the imaginary part σ2. In the GC model,
the relaxation time τ of normal carriers is independent
of the temperature. This is acceptable if we assume that
the behavior of normal carriers in superconductors is
similar to that of normal carriers in normal metals at
low temperatures. Scattering of electrons at very low
temperatures is due to impurities and is independent of
the temperature. Therefore, the temperature depen-
dence of the real part of the conductivity (10) in the GC
model is determined entirely by the function nn(T) with
ns(T) = n – nn(T) only.

For sufficiently low frequencies (ωτ)2 ! 1, the
expressions of the conductivity components in Eq. (10)
transform into simple relations

(11)

where λ =  is the London penetration depth
of a static magnetic field.

Penetration of alternating fields into superconduc-
tors is controlled by the frequency-dependent skin
depth. Using complex conductivity (11), one obtains
the complex skin depth δs by generalizing the corre-
sponding expression for a normal conductor:

(12)

With an increasing angular frequency ω, the skin
depth Reδs decreases; therefore, the London penetra-
tion depth λ gives the upper bound for the penetration
of the electromagnetic field into a superconductor. In
the GC model, the λ value diverges near Tc as λ(t) =

λ/(2 ) and the function σ2(t)/σ2(0) = 4(1 – t) tends
linearly to zero at T = Tc with a slope equal to –4. At the
same time, at T = Tc , the skin depth Reδs, defined by
Eq. (12), crosses over to the skin depth δn for a normal
conductor.
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3.1. Scattering and Surface Resistance
of HTSC Single Crystals

In conventional superconductivity, one assumes that
the mean free path does not vary with the temperature
below Tc. In a normal metal at much higher tempera-
tures than the corresponding Tc of a conventional super-
conductor, the electron scattering rate is proportional to
T [92]. Since the transition temperatures of HTSC’s are
much larger than those of conventional superconduc-
tors, it stands to reason that temperature affects the
electron scattering rate of the quasiparticles of HTSC’s
below Tc but is limited to a constant rate at low temper-
atures. Therefore, if a two-fluid model is to be success-
ful in explaining transport properties of HTSC’s, it is
natural to include a temperature variation of τ into that
model.

To obtain an expression for τ(T), we rely on the
analogy between the “normal fluid” component in the
superconducting state and charge carriers in a normal
metal. According to Mathissen’s rule, the reciprocal
relaxation time at temperatures below the Debye tem-
perature Θ is

(13)

The first term on the right-hand side is due to impurity
scattering and is independent of temperature, and the
second is due to the electron–phonon scattering and is
proportional to T5.

From Eq. (13), we express τ(T) as

(14)

where β is a numerical parameter (β ≈ τ(Tc)/τ(0)), pro-
vided this ratio is much less than unity. It must be
pointed out, however, that this approximation is not
always satisfied.

Equation (14) corresponds to the low-temperature
limit of the Bloch–Grüneisen formula, which includes
impurity scattering and can be presented over a wide
temperature range by the expression

(15)

where κ = Θ/Tc . For T < Θ/10 (κ > 10t), Eq. (15)
approaches the form of Eq. (14). For T > Θ/5 (κ < 5t), we
obtain from Eq. (15) the linear T-dependence 1/τ(t) ∝  t.
Examples of 1/τ(t) for different parameters of β, κ, and
τ(Tc) are shown in Fig. 4.

For ωτ(Tc) ! 1, which is normally satisfied at
microwave frequencies in HTSC’s, the parameter
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ωτ(Tc) is obtained from measurements of Rs(Tc) and
Xs(0):

(16)

At frequencies ≈10 GHz, the value of ωτ for the best
HTSC crystals is of the order of 10–3 at T = Tc and
remains less than unity at all temperatures T < Tc , as is
discussed in what follows. In the two-fluid model,
therefore, the expressions of the conductivity compo-
nents in Eq. (10) turn into the simple form (11).

All experimental data of Rs(T) for high-quality
HTSC single crystals can be elucidated by our two-
fluid model with τ(T) given by Eqs. (14) or (15).

Measurements of Rs(T) of YBCO single crystals at
frequencies of order or less than 10 GHz are analyzed
first. The values of σ2(T)/σ2(0) = λ2(0)/λ2(T) = ns(T)/n
measured in the same experiments and those of
σ1(T)/σ(Tc) obtained from Eq. (11) are substituted into
Eq. (3). We then use the relation nn(T)/n = 1 – σ2(T)/σ2(0),
which is obtained from the experimental data, and take
τ(T) from Eqs. (14) or (15).

Setting β = 0.005 and κ = 9 in Eq. (15) and taking
the experimental values σ2(T)/σ2(0) from Fig. 11 (see
below) and ωτ(Tc) = 7.5 × 10–4 at 1.14 GHz, we find
from Eqs. (11) and (3) the T-dependence of Rs(T),
shown by the curves in Fig. 5. These curves match the
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Fig. 4. Scattering rate of quasiparticles calculated form
Eq. (14), dotted line: β = 0.005, and Eq. (15), solid line: β =
0.005, κ = 9; dashed line: β = 0.02, κ = 4. The triangles are
calculated from 1/τ = [1 – λ2(0)/λ2(T)]/[µ0σ1(T)λ2(0)], with
σ1(T) and λ(T) at 1.14 GHz and λ(0) = 1600 Å in the ab-
plane, with the currents parallel to the a-direction of the
YBCO crystal [14]. The inset shows the low-temperature
parts of the curves. The circles are from Fig. 8 of [14].
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data of [14] over the entire temperature range. The
same result is obtained using Eq. (14) instead of
Eq. (15), with β = 0.005. For κ @ 1 and T & Tc, Eqs. (14)
and (15) are identical.

It follows from Eqs. (5) and (11) that for αt ! 1 [see
Eq. (1)], a rough estimate of the temperature tm at which
Rs(T) is maximum is obtained from the relation β .
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Fig. 5. Experimental Rs(T) data of YBCO single crystal [14]
at 1.14 GHz (circles) and 2.25 GHz (squares). Solid curves
are calculations using Eqs. (3), (11), and (14). The dashed
curves are calculated at 1.14 GHz with the term t5 replaced
by t4 in the numerator of Eq. (14); the dotted curves, with t6.
The inset shows a linear plot of Rs(T) at low temperatures at
1.14 GHz.
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Fig. 6. Comparison between the calculated (solid line) and
measured (squares) surface resistance Rs(T) of YBCO single
crystal at 10 GHz. Experimental data are from [9].
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4 . The value of τ(0) is found from the slopes dRs/dT
and dXs/dT of the experimental data of Rs(T) and Xs(T)
as T  0 (ωτ(0) < 1):

(17)

With Eqs. (16) and (17), the parameter β ≈ τ(Tc)/τ(0)
is determined from the surface impedance data. As β
increases, the maximum and minimum of Rs(T) change
into an inflection point with horizontal tangent; for
larger β, the maximum of Rs(T) disappears com-
pletely [74].

The linear growth of Rs(T) with T at low tempera-
tures (inset in Fig. 5) is a direct consequence of the lin-
ear change of λ(T) near T = 0, which is proportional to
the coefficient α in Eq. (1), and is the result of a con-
stant scattering rate at low temperatures, as shown in
Fig. 4.

The dashed and dotted curves shown in Fig. 5 are
the calculated Rs(T) values at 1.14 GHz, with t5

replaced by t4 (dashed curve) and by t6 (dotted curve) in
Eq. (14). The best fit of the experimental data is 1/τ(t) ∝  t5.
Moreover, Eq. (15) enables us to incorporate the
shoulder of Rs(T) obtained with YBCO single crystals
in [9, 11]. This is shown in Fig. 6, which contains mea-
surements (squares) of Rs(T) at 10 GHz taken from [9]
and calculations (solid line) of Rs(T) based on Eqs. (11)
and (3) with ωτ(Tc) = 4 × 10–3, σ2(T)/σ2(0) obtained
from the same experimental data [9], β = 0.02, and κ = 4
in Eq. (15).

The calculated curves in Figs. 5 and 6 are very close
to the experimental data and display the following com-
mon and unique features of Rs(T) for T < Tc and ωτ < 1
of high-quality YBCO single crystals fabricated by dif-
ferent methods: (i) the linear temperature dependence
of the surface resistance, ∆Rs(T) ∝  T, caused by the lin-
ear variation of ∆Xs(T) ∝  ∆λab(T) ∝  T at temperatures
T ! Tc and by the limit τ(T)  const at low tempera-
tures; (ii) the broad peak of Rs(T) in the intermediate
temperature range due to the rapid decrease of the relax-
ation time τ(T) ∝  T–5 with an increasing temperature; and
(iii) the increase in Rs(T) in the range Tc/2 < T < Tc (Fig. 6)
caused by the crossover from T–5 to T–1 of τ(T) in Eq. (15),
which occurs in Fig. 6 at a lower temperature than in
Fig. 5. The behavior of 1/τ(T) for these two YBCO
crystals is shown in Fig. 4.

Up to this point, we did not take the residual surface
resistance Rres of the samples into account. In the
YBCO crystals, whose data are plotted in Figs. 5 and 6
scaled to the same frequency (10 GHz), the resistance
is Rres < 50 µΩ. Rres/R(Tc) < 10–3 is so small that Rres was
neglected even at T ! Tc. In most HTSC crystals that
were investigated, however, Rres/R(Tc) > 10–3 (see, e.g.,
Figs. 1 and 2). Therefore, it is important that Rres is
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added to the calculated Rs(T) values when comparing
the latter with the experimental data.

Figure 7 compares the measured Rs(T) and Xs(T) of
BSCCO, plotted in Fig. 1, with the results of calcula-
tions based on Eqs. (3) and (4). In this case, we added
the constant Rres = 0.5 mΩ to the calculated values of
Rs(T). The calculations are based on measurements of
σ2(T)/σ2(0) obtained in the same experiment and are
plotted in the inset to Fig. 13 (see below), with the
parameters ωτ(Tc) = 0.9 × 10–2, β = 2 and κ = 3 in
Eq. (15). It is clear that the agreement between the cal-
culated and experimental curves is good throughout the
temperature interval 5 ≤ T ≤ 120 K.

Another reason for including Rres is the ratio
Rres/R(Tc) ∝ ω 3/2. Figure 8 is based on the experimental
data of BSCCO single crystal measured in [21] at three
frequencies: 14.4 (ωτ(Tc) = 0.7 × 10–2), 24.6, and
34.7 GHz. The solid curves are the calculations at these
frequencies obtained from Eqs. (11) and (3) using τ(T)
from Eq. (15) with β = 0.1 and κ = 4. The comparison
procedure is different from that discussed above for
YBCO crystals because Rres ∝ ω 2 is added to the calcu-
lated Rs(T) values. The inset of Fig. 8 shows a linear
plot of the measured and calculated surface resistance
at low temperatures. We emphasize that at temperatures
below Tc/2, the value of ∆Rs(T) is proportional to T.

In the millimeter and shorter wavelength bands, the
condition ωτ < 1 may not be satisfied in the supercon-
ducting state of the purest HTSC single crystals
because of the fast growth of τ(T) with decreasing
T < Tc . In analyzing the experimental data of Zs(T) and
σs(T), therefore, it is natural to not only take Rres into
account but also to use the more general Eq. (10) of the
two-fluid model to replace Eq. (11). The Rs(T) data of
[14] at the frequencies of 13.4, 22.7, and 75.3 GHz are
shown in Fig. 9 with the calculated Rs(T) values
(obtained on the same YBCO crystal that was used in
Fig. 5). We used τ(Tc)/τ(0) ≈ β = 5 × 10–3 in Eq. (14) for
all curves shown in Fig. 9 (the same as previously used
in Fig. 5) and added Rres = 0.3 mΩ to Rs(T) [Eq. (3)] at
75.3 GHz only. The conductivity components σ1(T) and
σ2(T) involved in Eq. (3) are obtained from the experi-
mental data of σ2(T)/σ2(0) at 1.14 GHz [14] (shown in
Fig. 11) and from Eq. (10).

Figure 10 shows another example. The experimental
Rs(T) data (squares) of a TBCO single crystal (Tc = 78.5 K)
[23] are compared with the results of calculations based
on Eqs. (3), (10), and (15). The curve representing the
theoretical values Rs(T) + Rres is plotted using β = 0.1,
κ = 5.5, ωτ(Tc) = 1.7 × 10–2, Rres = 0.8 mΩ, and with
σ2(T)/σ2(0) shown in the inset (circles) of Fig. 10.
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3.2. Temperature Dependence
of the Superconducting Electron Density

In the previous section, we accentuated that the
modified two-fluid model describes all features of the
surface resistance Rs(T) of different HTSC’s over a
wide frequency range with only one parameter (k). This
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14.4 GHz
24.6 GHz
34.7 GHz
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20
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40 60 80 100
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400
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T, K

T, K

Rs, mΩ

20

Rs, Ω

Fig. 7. Comparison between the calculated (solid lines) and
measured surface impedance (symbols) of BSCCO single
crystal (see Fig. 1). A constant Rres = 0.5 mΩ is added to the
values of Rs(T)obtained from Eq. (3).

Fig. 8. Experimental data of the BSCCO single crystal [21]
at various frequencies: 14.4 GHz (circles), 24.6 GHz (trian-
gles), and 34.7 GHz (squares). The solid curves are the cal-
culated [Rs(T) + Rres]-functions, with the respective Rres
value of 0.29, 0.85 and 1.7 mΩ. The inset shows the linear
temperature dependences of the surface resistance at low
temperatures.
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was done using the measured (known from the same
experiment) T-dependences of the superconducting

electron density . However, we think that our
phenomenological model would be incomplete unless
simple formulas are available that correctly describe
the measurements of ∆λab(T). Figures 10 (the inset), 11,
and 12 show σ2(T)/σ2(0) = λ2(0)/λ2(T) = ns(T)/n in the
ab-plane of TBCO, YBCO, and BSCCO single crystals
from [23, 14, 21], respectively. All of these quantities
change linearly with temperature at low temperatures
and can be approximated by the function [73]

(18)

where α is a numerical parameter. For t ! 1, Eq. (1) fol-
lows from Eq. (18). For the cited experiments, the val-
ues of α fall into the range 0.4 < α ≤ 0.9. Near Tc , we
obtain λ(t) ∝  ns(t)–1/2 ∝  (1 – t)–α/2, which is also in rea-
sonably good agreement with the experimental data.
However, Eq. (18) yields an infinite value of the deriv-
ative dσ2(t)/dt ∝  (1 – t)α – 1 at t = 1 for α < 1.

An approximation for ns(t)/n proposed in [75] is
close to Eq. (18),

(19)

and is shown by solid lines in Figs. 11 and 12. Equation

(19) insures that the slope of  = 5α – 6 at
Tc is finite and negative for α < 1.2.

However, the above functions for ns(t) in their sim-
plest forms (18) and (19) do not account for all features
in λ2(0)/λ2(T) detected recently in YBCO crystals (see

λab
2– T( )

ns/n 1 t–( )α ,=

ns/n 1 α t– 1 α–( )t6,–=

λ2 0( )/λ2 t( ) Tc

13.4 GHz
22.7 GHz
75.3 GHz

0 20

10–4

40 60 80

10–3

10–2

10–1

T, K

Rs, Ω

Fig. 9. Comparison between the calculated (lines) and mea-
sured [14] (symbols) surface resistance Rs(T) of the YBCO
single crystal at 13.4, 22.7, and 75.3 GHz. We assumed
Rres = 0.3 mΩ for 75.3 GHz, zero for the other frequencies.
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table) in the intermediate temperature range [8–11].
Moreover, the slope of these curves at T ! Tc requires
that α > 1 in Eq. (18), which would lead to a zero slope
of the σ2(T)/σ2(0) curve T = Tc . Therefore, we have
added an additional empirical term to the right-hand
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σ 2
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2(
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Fig. 10. Surface resistance Rs(T) of a TBCO single crystal
at 24.8 GHz taken from [23]. Solid curve is the calculated
[Rs(T) + Rres]-function with Rres = 0.8 mΩ. The inset shows
the measured [23] (circles) and calculated results of
σ2(T)/σ2(0) (solid line) using Eq. (18) with α = 0.9.
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Fig. 11. Plots of Eq. (18) (dashed line, α = 0.42) and
Eq. (19) (solid line, α = 0.47), showing the fit to the empir-
ical σ2(T)/σ2(0). The experimental data (circles) are from
[14] at 1.14 GHz. The inset shows the temperature depen-
dences of σ2(T)/σ2(0) at various frequencies calculated
from Eqs. (10), (19) and (14).

0
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side of Eq. (18) without violating the particle conserva-
tion condition ns + nn = n:

(20)

where 0 < δ < 1 is the weight factor. For δ ! 1 and α > 1,
the dominant contribution to σ2(T) throughout the rele-
vant temperature range is still due to the first term on
the right-hand side of Eq. (20), while the second is
responsible for the finite slope of σ2(T)/σ2(0) at T = Tc ,

ns/n 1 t–( )α 1 δ–( ) δ 1 t4/δ–( ),+=

0 20

0.2

40 60 80 100

0.4

0.6

0.8

1.0

T, K

σ2(T)/σ2(0)

Fig. 12. Comparison between the calculated (solid curve:
Eq. (19), α = 0.74; dotted line: Eq. (18), α = 0.7) and mea-
sured [21] (symbols) of the σ2(T)/σ2(0) values of BSCCO
single crystal [75].
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40 60 80 100 1200
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σ2(T)/σ2(0)

Fig. 13. Comparison between the calculated (solid line) and
measured (circles) values of σ2(T)/σ2(0) of the YBCO sin-
gle crystal [8]. The inset shows the measured and calculated
values with Eq. (20) used for the temperature dependences
of σ2(T)/σ2(0) of the BSCCO crystal shown in Fig. 1.
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which is equal to –4 in accordance with the GC model.
As δ increases, the second term on the right-hand side
of Eq. (20) becomes more essential. The experimental
curve of σ2(T)/σ2(0) derived from the Rs(T) and Xs(T)
measurements of the YBCO crystal in [8] is properly
described by Eq. (20) with δ = 0.5 and α = 5.5 (Fig. 13).
This calculation reflects the characteristic features of
the experimental data, namely, the linear section of ns
and the positive second derivative (α > 1) in the low-tem-
perature region, the plateau in the intermediate tempera-
ture range, and the correct value of the slope near Tc.

Using Eq. (20) with α = 2 and δ = 0.2, we can also
describe the T-dependence of σ2(T) of BSCCO crystals
(Figs. 1 and 7), plotted in the inset to Fig. 13.

3.3. The Real Part of the Conductivity

Since the measurements and calculations of Rs(T),
Xs(T), and σ2(T) are in good agreement and consistent
with σ1(T) in the range T < Tc , the modified two-fluid
model can be a powerful tool in describing the electro-
dynamic properties of HTSC’s. The only feature that
has not been investigated by this model is the behavior
of Zs(T) and σs(T) in the temperature range near Tc .
A spectacular display is the narrow peak in the real part
of the conductivity (see Fig. 3).

The narrow peak near Tc can be described by an
effective medium model [79, 93] that takes the inhomo-
geneous broadening of the superconducting transition
into account. We assume that different regions of a given
specimen experience transitions to the superconducting
state at different temperatures within the T-range δTc . If
the dimension of each of these regions is smaller than

0 20

1

14.4 GHz

σ1, 106Ω–1m–1

2

3

4

5

6

7

40 60 80 100
T, K

34.7 GHz

Fig. 14. Experimental data of σ1(T) at 14.4 and 34.7 GHz of
the BSCCO single crystal [21] (symbols) and the calcula-
tions of σ1(T) (lines) using Eqs. (14), (21), and (6), with
sample inhomogeneities taken into account (δTc = 2 K).
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the magnetic field penetration depth (microscopic-scale
disorder), the distribution of the microwave currents
over the sample is uniform and the calculation of the
effective impedance Zeff of the sample reduces to two
operations: adding the impedances Zs of all regions in
the specimen (with different Tc) that are connected in
series along a current path and averaging over the sam-
ple volume. As the result, we obtain

(21)

where the distribution function f (Tc) is such that the
fraction of the sample volume with critical tempera-
tures in the range Tc < T < Tc + dTc equals f (Tc)dTc . In
the simplest case, f (Tc) is a Gaussian function. In the
experiments of [14], the width of the superconducting
resistive transition was approximately 0.4 K, which we
equate to the width of the Gaussian distribution f (Tc).
Using general relations (6) with the effective imped-
ance components obtained from Eq. (21), we calculate

 near Tc and plot it together with the experimen-
tal data for YBCO in Fig. 3. The overall agreement is
good.

In the framework of the discussed approach, 
displays a narrow peak at T* = Tc – δTc. It is easy to

Zs
eff T( ) Rs

eff T( ) iXs
eff T( )+=

=  Zs T Tc,( ) f Tc( ) Tc,d

δTc

∫

σ1
eff T( )

σ1
eff T( )

0 20

4

40 60 80

8

12

16

T, K

σ1, 106 Ω–1m–1

Fig. 15. Comparison of the experimental T-dependence of
σ1(T) (open circles) of the TBCO single crystal at 24.8 GHz
[23] with the one calculated using the modified two-fluid
model (solid line) and taking the inhomogeneous broaden-
ing of the superconducting transition into account (δTc = 2.5 K
in Eq. (21)).
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check that the relative peak amplitude is approximately
equal to

(22)

where γ = δTc/[Tcωτ(Tc)], implying that the peak
decreases with the decrease of the superconducting
resistive transition width. Usually, experiments yield
γ > 1 (e.g., the data of [14] give γ ≈ 7 at 1.14 GHz);
therefore, the peak amplitude should be inversely pro-
portional to the frequency.

In calculating the σ1(T) curves for other specimens,
we also applied the above procedure to incorporate cor-
rections caused by the inhomogeneous broadening of
the superconducting transition. We adjusted the previ-
ous calculations of Rs(T) (Figs. 7, 8, and 10) and σ2(T)
(Figs. 10, 12, and the inset to Fig. 13) by substituting

the resulting  into Eq. (6) for the conductivity
σ1. The resulting curves for BSCCO and TBCO are
shown in Figs. 14–16.

4. DISCUSSION AND CONCLUSION

We have presented a summary of measurements of
the surface impedance Zs(T) = Rs(T) + iXs(T) of high-
quality YBCO, BSCCO, TBCO, and TBCCO crystals
in the superconducting and normal states (table). For

σ1 T∗( ) σ Tc( )–
σ Tc( )

-----------------------------------
γ if γ 1>

γ2 if γ 0.1,<



≈

Zs
eff T( )

0 20

0.5

40 60 80 100

1.0

1.5

T, K

σ1, 107Ω–1m–1

Fig. 16. The conductivity σ1(T) of the BSCCO single crystal
at 9.4 GHz extracted from the surface impedance measure-
ments of Fig. 1 and the calculation based on the modified
two-fluid model, which takes the inhomogeneous broaden-
ing of the superconducting transition into account (δTc =
4.5 K). σ1(T) does not have a broad peak at low tempera-
tures in this particular case.
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frequencies &10 GHz, the common features of all these
materials are the linear temperature dependence of the
surface resistance (∆Rs(T) ∝  T) and that of the surface
reactance (∆Xs(T) ∝ ∆λ ab(T) ∝  T) at temperatures T ! Tc;
their rapid growth as T  Tc; and their behavior in the
normal state corresponding to a linear T-dependence of

∆ρab(T), with Rs(T) = Xs(T) = . There are
differences between the T-dependence of Zs(T) in
BSCCO, TBCCO, or TBCO single crystals with tetrag-
onal lattices and in YBCO crystals with an orthorhom-
bic lattice. The linear resistivity region extends to near
Tc/2 for the tetragonal materials and terminates near or
below T < Tc/3 for YBCO. At higher temperatures,
Rs(T) of YBCO has a broad peak. In addition, the λab(T)
curves of some YBCO single crystals have unusual fea-
tures in the intermediate temperature range.

We describe all of the above features of Zs(T) and

σs(T) = σ1(T) – iσ2(T) = iωµ0/  of high-quality
HTSC crystals by generalizing the well-known GC
two-fluid model as follows.

(i) We introduce a temperature dependence of the
relaxation time of the quasiparticles in accordance with
the Bloch–Grüneisen law. We find that the Rs(T) curves
in different HTSC crystals are well described using
Eqs. (14) or (15) for 1/τ(T). In the latter equation, there
is only one fitting parameter, κ = Θ/Tc , while the other
parameter β = τ(Tc)/τ(0) ! 1 can be estimated directly
from the experimental data with the help of Eqs. (16)
and (17). The absence of the broad peak of Rs(T) in tet-
ragonal HTSC single crystals is due to a less rapid
increase of τ(T) with decreasing the temperature. In
other words, the value of β is smaller for YBCO crys-
tals than for BSCCO, TBCO, or TBCCO. For the latter
crystals, the residual losses Rres are usually large and
they have to be taken into account.

(ii) We replace the well-known temperature depen-
dence of the density of superconducting carriers in the
GC model (ns = n(1 – t4)) by one of the functions in
Eqs. (18), (19) or (20). All of these functions change
linearly with temperature for t ! 1 (see Eq. (1)). This
permits one to extract the common and distinctive fea-
tures of Xs(T) and σ2(T) from different HTSC crystals.

It also follows from the equations of the modified
two-fluid model that at low temperatures (t ! 1) and
low frequencies (ωτ(0) < 1), all curves of Zs(T) and
σs(T) have linear regions: σ1 ∝ α t/β, since nn/n ≈ αt and
τ ≈ τ(0) ≈ τ(Tc)/β. Furthermore, ∆σ2 ∝ –αt. In accor-
dance with Eq. (5), we then have Rs ∝ α t/β and ∆Xs ∝
∆λ ∝ α t/2. As the temperature increases, the curve of
σ1(t) passes through a maximum at t & 0.5 if the ine-
quality (9) is valid. This peak is due to the superposition
of two competing effects, namely, the decrease in the
number of normal carriers as the temperature decreases
(for t < 1) and the increase in the relaxation time (which
saturates at t ~ β1/5) where the impurity scattering starts

ωµ0ρ T( )/2

Zs
2 T( )
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
to dominate. The features in the Xs(T) and σ2(T) curves
for YBCO single crystals in the intermediate tempera-
ture range (plateau [8] or bump [9]) can also be
described within the framework of our modified two-
fluid model if we take into account the modification of
ns(t) described by Eq. (20) with 0 < δ ≤ 0.5. In HTSC
single crystals, the narrow peak in the real part of the
conductivity σ1(T) occurring near Tc can be explained
in terms of an effective medium model, where the
strong electron–phonon coupling of the quasiparticles
and the inhomogeneous broadening of the supercon-
ducting transition are taken into account.

It is natural to compare the tenets of our phenome-
nological model with the results of microscopic theo-
ries. As was shown in [40] and [61], the simple formula
(1), which defines the linear low-temperature depen-
dence of the magnetic field penetration depth in the ab-
plane of HTSC crystals, is consistent with the d-wave
model [25–27] in the strong (unitary) scattering limit
[31]. Besides, there is nothing foreign in introducing
the function 1/τ(T) ∝  T5 for the purpose of characteriz-
ing scattering in the superconducting state of HTSC.
A similar temperature dependence of the relaxation
rate of quasiparticles follows from the SC model if the
phonon corrections to the electromagnetic vertex are
taken into account [94].

In the framework of our modified two-fluid model,
the linear low-temperature dependence of the real part
of the conductivity σ1(T) is consistent with a constant
scattering rate, as it is in a normal metal. While the
assumption of a Drude form of the conductivity is sup-
ported by the d-wave microscopic analysis [31], it was
shown that in the usual impurity scattering models, pair
correlations lead to a strong temperature dependence of
the scattering time (neglecting vertex corrections),
namely, τ(T) ∝  T in the unitary limit or τ(T) ∝  1/T in the
Born limit. An attempt to resolve this problem in [16]
by choosing an intermediate scattering rate has not pro-
vided satisfactory results yet. Very recently, the authors
of [95] and [96] argued that the experimental observa-
tion σ1(T) ∝  T could be explained by the generalized
Drude formula σ1(T) ∝  nqp(T)τ(T) if the quasiparticle
density varies as nqp(T) ∝  T (as indeed happens for the
d-wave pairing) and if the effective quasiparticle scat-
tering time τ(T) saturates at low T. Various possible
physical mechanisms of the temperature and energy
dependence of τ are discussed in [95, 96]: scattering
from the “holes” of the order parameter at impurity
sites and scattering from extended defects. These
mechanisms may provide the required saturation of
τ(T) at low T. As was discussed recently in [97], the ver-
tex corrections can also modify the low-temperature
conductivity. However, the temperature dependence
has not been investigated yet.

Nevertheless, the microscopic models aimed at
investigating the microwave response using a pure d-
wave order parameter symmetry cannot account for the
linear section of the Rs(T) curves extending to Tc/2 (at
the frequencies 10 GHz and below) in tetragonal HTSC
SICS      Vol. 91      No. 4      2000
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single crystals, for the observation of radically different
values of the slopes of σ2(T) for T ! Tc (corresponding
to α > 1 in Eq. (20)) observed on YBCO crystals [8–12],
and for unusual features of σ2(T) in the intermediate
temperatures range.

Recently, observations of unusual microwave prop-
erties of HTSC materials have caught the attention of a
number of researchers [43–47, 55, 56]. These observa-
tions are tentatively attributed to the mixed (d + s) wave
symmetry of the order parameter. Most studies deal
with the low-temperature variation of the London pen-
etration depth and its relation to an order parameter of
mixed symmetry. In particular, it was shown in [55] that
the low-temperature properties of λ(T) can be used to
distinguish between a pure d-wave order parameter and
one with the (s + id) symmetry, having a small subdom-
inant s-wave contribution in systems connected with a
tetragonal lattice. Moreover, additions of impurities
suppress the d-wave symmetric part to the benefit of the
s-wave part. As a result, a variety of low-temperature
dependences of λ(T) can occur for various impurity
concentrations. This allows one, in principle, to deter-
mine whether the order parameter of a superconductor
with an orthorhombic lattice pertains to the (s + id) or
the (s + d) symmetry [53]. In [46], the (d + s) model was
generalized by taking the normal state anisotropy into
account. This is the realistic approach to high-Tc

cuprates with an orthorhombic distortion, since recent
microwave conductivity data suggest that a substantial
part of the ab-anisotropy of λ(T) is a normal state
effect. It was shown that such an anisotropy affects not
only the ab-anisotropy of the transport coefficients but
also the density of states and other thermodynamic
quantities. The possible temperature variation of the
penetration depth λ(T) was analyzed recently in [56] in
the framework of the (d + s) model of hybrid pairing.
The slope of ∆λ(T) ∝  T for T ! Tc and its dependence on
the ∆s/∆d admixture in the gap function were analyzed
quantitatively, with the impurity scattering taken into
account. However, the quantitative comparison of the
latter calculation with the experimental data has not been
performed yet. More interesting discoveries in this field
of research can be expected in the near future.
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Abstract—Quasi-steady states of pairs of like-charged quasi-particles can be formed because the electronic
structure of compounds exhibiting high-temperature superconductivity has various important characteristics: a
quasi-two-dimensional electron spectrum, clearly defined nesting of constant-energy lines, and the presence of
a logarithmic singularity of the density of states in the immediate vicinity of the Fermi level. Thus, a situation
is achieved where, in an extensive region of the Brillouin zone adjacent to the Fermi level, the principal values
of the tensor of the reciprocal effective masses have opposite signs and differ appreciably in absolute value. As
a result, the nature of the Coulomb correlation interaction between charge carriers of the same sign (holes in
p-cuprates) varies: effective attraction may predominate, leading to the formation of long-lived states of relative
motion of quasi-particles which form a pair having a quasi-momentum approximately equal to twice the Fermi
quasi-momentum typical of this direction (focused pairs). Assuming that the correlation interaction is short-
range (screened Coulomb interaction attenuated by filling of states inside the Fermi contour), we determine the
energies and envelope functions of the relative motion of a hole pair which correspond to the density-of-states
maxima of the pairs attributable to these quasi-steady states. The dependence of these quantities on the polar
angle in the plane of the conducting layer reflects the symmetry of the electronic structure of the compound in
the normal state and is generally consistent with a mixture of states assigned to s and d types of orbital symme-
try. The quasi-steady state as a function of the doping level of the system agrees qualitatively with the concen-
tration dependence of the temperature for the appearance of a pseudogap observed in p-cuprates at below-opti-
mum doping levels. An estimate of the pair concentration above which a gain in correlation energy occurs gives
a value which corresponds to the onset of effective pair overlap (for which the characteristic spatial scale is a
few or a few tens of interatomic distances). © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The high-temperature superconductivity (HTSC) of
a fairly broad class of compounds has not yet received
a generally accepted interpretation. It is usually
assumed that the properties of HTSC compounds in the
superconducting and normal states are mainly deter-
mined by two characteristics: the quasi-two-dimen-
sional nature of the electronic structure and the strong
electron–electron interaction. It can be confirmed that
the HTSC state is produced by pair electron correla-
tions; however the reason for the appearance of bound
states of electron or hole pairs in HTSC compounds
remains unclear. Electron–phonon interaction hole pair-
ing, which forms the basis of the Bardeen–Cooper–Schri-
effer (BCS) theory and imposes a substantial constraint
on the superconducting transition temperature, can
hardly be responsible for HTSC since in some HTSC
compounds the binding energy is an order of magnitude
higher than obtained in principle from the BCS theory,
so that the average size of a Coulomb pair is compara-
ble with the average distance between the pairs. The
formation of such compact composite quasi-particles
1063-7761/00/9104- $20.00 © 20817
composed of two fermions cannot be specifically attrib-
uted merely to electron–phonon interaction under any
reasonable assumptions on the intensity of this interac-
tion. There is thus reason to assume that the formation
of electron or hole pairs in HTSC compounds is
directly attributable to the specific characteristics of
their electron subsystem. 

An extensive and the most well-studied group of
cuprate HTSC compounds mainly exhibits hole type
( p-type) conductivity (La2 – xSrxCuO4, YBa2Cu3O7,
Bi2Sr2CaCu2O8, and many others); some HTSC cuprates
(such as Nd2 – xCexCuO4) have electron (n-type) conduc-
tivity. All other known HTSC compounds also gener-
ally have hole-type conductivity. The type of conduc-
tivity and carrier concentration are associated with
deviations from stoichiometric composition (stoichio-
metric HTSC compounds are dielectrics) and the pres-
ence of dopants. These two factors determine the dop-
ing level of a particular compound. 

All known HTSC compounds have a layered crystal
structure; moreover fairly convincing experimental
facts indicate that in cuprate compounds the HTSC
000 MAIK “Nauka/Interperiodica”
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state occurs as a result of carrier pairing in CuO2 layers
[1]. Arguments have also been put forward to indicate that
the superconducting transition temperature in p-type
HTSC cuprates only depends on the hole concentration
in the CuO2 layers [2] whereas the charge screening in
the conducting layers is determined by the total carrier
concentration. The layered structure of HTSC cuprates
allows these to be considered as natural superlattices in
which the lateral conductivity is determined by the
properties of the CuO2 layers which function as unique
quantum wells separated by barrier layers [3]. These
quantum wells can be, for example, isolated CuO2 lay-
ers in La2 – xSrxCuO4 and Nd2 – xCexCuO4 compounds;
double CuO2 layers separated by a layer containing Y
atoms in YBa2Cu3O7; triple CuO2 layers separated by
layers containing Ca atoms in Bi2Sr2CaCu2O8. Thus,
layers containing La, Ce, Ba, and Bi atoms play the role
of barriers and reservoirs at the same time and when
these are doped, for example, with Sr atoms in
La2 − xSrxCuO4, Ce in Nd2 – xCexCuO4, and oxygen in
YBa2Cu3O7 and Bi2Sr2CaCu2O8 carriers enter the CuO2
layers. The relative influence of the layers on each other
is small [1] since HTSC compounds can be considered
to be quasi-two-dimensional electron systems. How-
ever, the atomic composition of the layers positioned
between the CuO2 layers has an appreciable influence
on the superconducting transition temperature [4]. The
introduction of dopants into p-type cuprate compounds,
for example, Sr into an La2 – xSrxCuO4 crystal or the for-
mation of oxygen vacancies, for example, by the
removal of oxygen from a YBa2Cu3O7 crystal is accompa-
nied by transitions of electrons from the d-shell of the Cu
atoms to restore broken chemical bonds (to divalent Sr
which has replaced trivalent La in La2 – xSrxCuO4 or to the
chemical bond of a Ba atom in YBa2Cu3O7 – x which is
unsaturated as a result of the formation of an oxygen
vacancy). In this case, the hole localized mainly at the
copper atom and the negative charge of the restored
chemical bond are positioned on the straight, almost
parallel, c axis of the structure. This configuration min-
imizes the Madelung energy of the crystal and is there-
fore a stabilizing factor which significantly compen-
sates for the increase in elastic energy associated with
the defect structure of the reservoir layers.

The migration of electrons in HTSC cuprates is in
fact limited by the CuO2 layers; in the direction of the
c axis perpendicular to these layers the normal-state
conductivity is substantially lower than that parallel to
the layers. The constant-energy surfaces of the electron
dispersion law in zones containing the Fermi surface
are thus slightly corrugated cylinders whose axis coin-
cides with the c axis [5]. The smallness of the matrix
elements of the single-electron Hamiltonian linking the
atoms in neighboring CuO2 layers compared with the
matrix elements between the atoms inside the layer
means that the electron subsystem of HTSC cuprates
can be considered to be almost two-dimensional (2D).
JOURNAL OF EXPERIMENTAL
The cross section of the constant-energy surfaces with
the plane perpendicular to the c axis determines a fam-
ily of constant-energy lines (isolines) in the 2D Bril-
louin zone (in compounds having tetragonal symmetry
this is a square of side length 2π/a where a is the period
of the crystal lattice in the plane of the CuO2 layer).
One of the isolines, the Fermi contour, corresponds to
the Fermi surface.

The distribution of isolines in the 2D Brillouin zone
is determined by the interaction of atoms in the CuO2
layers with each other and with atoms belonging to
neighboring layers. In p-type HTSC compounds with
an optimum doping level (i.e., for that carrier concen-
tration which gives the maximum superconducting
transition temperature Tc) the Fermi contour deter-
mined experimentally [6–10] using angular-resolved
photoemission spectroscopy (ARPES) at T > Tc is a
square with rounded corners. A change in doping level
corresponds to a transition of the Fermi contour from
one isoline to another, which means that ARPES can be
used to study the character of the isolines in a fairly
large region of the Brillouin zone. If the doping level is
below the optimum (underdoped HTSC compounds),
over a wide range of concentrations at temperatures
above a certain value T* > Tc the isoline corresponding
to the Fermi contour is also a square with rounded cor-
ners. The Fermi contour also has this profile when the
carrier concentration is above the optimum (overdoped
HTSC compounds); in this case, the Fermi contour
remains in the form of a square with rounded corners as
far as the temperature Tc, at which a superconducting
gap appears in the spectrum of elementary excitations.
Thus, the Fermi contour of p-type HTSC cuprates has
relatively long almost rectilinear sections which are
parallel because of the crystal symmetry (Fermi con-
tour nesting). In this context it should be noted that in
n-type HTSC cuprates such as Nd2 – xCexCuO4 no nest-
ing of the Fermi contour occurs, the contour is close to
a circle [8,9]. If the doping level x (for example, the
atomic concentration of dopant or oxygen vacancies) is
such that it corresponds to the superconducting phase at
low temperatures (T < Tc), then at T > Tc the HTSC
compound behaves as a metal and the area of the region
of the Brillouin zone inside the Fermi contour is deter-
mined by the atomic concentration 1 + x in accordance
with the Luttinger theorem [6, 9, 10]. 

Another important characteristic of HTSC cuprates
[11] is that in p-type compounds a Van Hove logarith-
mic singularity is situated in the immediate vicinity of
the Fermi surface, whereas in n-type compounds it is
substantially lower than the Fermi level [11]. This sin-
gularity corresponds to the saddle point of the electron
dispersion law at which the electron (or hole) energy as
a function of the 2D quasi-momentum passes through a
maximum in one direction and a minimum in the other,
perpendicular, direction. Thus, in a certain vicinity of
the saddle point the principal values of the 2D tensor of
the reciprocal effective masses have different signs and
 AND THEORETICAL PHYSICS      Vol. 91      No. 4      2000
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also have large absolute values, i.e., in p-type HTSC
cuprates this vicinity occupies a fairly extensive part of
the 2D Brillouin zone. 

The explanation of the nature of pairing and the
establishment of the symmetry of the order parameter
are closely interrelated and form an extremely impor-
tant stage in constructing the theory of high-tempera-
ture superconductivity. Unfortunately, numerous
experimental data for various HTSC cuprates which
can be used as the basis to assess the symmetry of the
order parameter cannot always be satisfactorily
matched [12]. There is some experimental evidence
that in p-type HTSC cuprates the pairing possibly cor-
responds to  orbital symmetry [13]. Experimen-

tal data relating to n-type HTSC compounds (specifi-
cally Nd2 – xCexCuO4) tend to suggest s-wave pairing or,
more accurately, indicate the absence of any zeros of
the order parameter [14]. However, an STM/STS study
of the excitation spectra in Nd2 – xCexCuO4 single crys-
tals specifically indicates anisotropy of the order
parameter and this anisotropy is characterized by
d-wave symmetry [15]. An analysis of various experi-
mental data [12] indicates with a fairly high degree of
certainty that the order parameter is a spin singlet and
may be approximately represented as a linear combina-
tion of orbital s- and d-wave functions. Similar anisot-
ropy of the order parameter in HTSC cuprates may be
indirectly evidenced by experimental data on the
Raman electron spectra of the HTSC crystals
Bi2Sr2CaCu2O8 + δ and Tl2Ba2CuO6 + δ [16] and also
tunnel spectroscopy data for Nd1.85Ce0.15CuO4 – δ [5].
The angular dependence of the superconducting gap
obtained in [5] ∆(ϑ) = ∆0 + ∆1cos4ϑ , where ∆0 ≈
2.2 meV, ∆1 ≈ 1.5 meV agrees with the conclusion
reached in [13] on the basis of measurements of the
angular dependence of the upper critical field: ∆(ϑ) has
four maxima and four minima in the range of variation
of the direction of the quasi-wave 2D vector 0 ≤ ϑ  < 2π. 

Much experimental data [17] for a large number of
very different underdoped HTSC compounds indicate
that a gap exists (a so-called pseudogap since there is
still a certain number of excitations within this gap) in
the spectrum of elementary excitations at Tc < T < T*.
In overdoped HTSC compounds this pseudogap is evi-
dently absent. There is a definite link between the
pseudogap and the superconducting gap. For instance,
NMR experiments carried out for a large group of
HTSC cuprates [17] show that the pseudogap and
superconducting gap in these compounds have the
same symmetry and energy scale and for various
cuprates exhibit a universal dependence on the doping
level. The fact that the width of the pseudogap and the
superconducting transition temperature for an opti-
mally doped crystal have the same energy scale, unre-
lated to the antiferromagnetic exchange energy or the
Fermi energy, is interpreted as meaning that this is the
same energy scale which forms the basis of the pairing

d
x

2
y

2–
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interaction [17]. The formation of a pseudogap in
underdoped Bi2Sr2CaCu2O8 + δ HTSC single crystals as
the temperature decreased from T* to Tc was observed
using ARPES [18]. The pseudogap on the Fermi con-
tour appears at T = T* at four points at the centers of the
sides of a square with rounded corners and as the tem-
perature decreases further, it extends toward the cor-
ners. Thus, the Fermi contour is discontinuous and
comprises four arcs (rounded edges of a square) which
are not interconnected and gradually decrease with
decreasing temperature. At T = Tc the Fermi contour
disappears completely and is replaced by a supercon-
ducting gap, and this gap evidently has zeros (or is min-
imal) at those points where the Fermi contour last dis-
appeared. No phase transition associated with the pres-
ence of a pseudogap is observed. At present there is no
common and generally accepted viewpoint on the
nature of the pseudogap. In particular, it is assumed that
at T = T* Cooper pairs appear and the phase coherence
between them appears, not when they are formed but at
a substantially lower temperature T = Tc [19, 20]. There
is reason to assume [21] that the formation of the
pseudogap can be attributed to the subsequent (with
decreasing temperature) formation of a superconduct-
ing state rather than a dielectric (antiferromagnetic) one
since the problem of identifying the nature of the
pseudogap in HTSC compounds is undoubtedly closely
related to the problem of understanding the hole pairing
mechanism in p-type HTSC cuprates.

The observed anisotropy of the pseudogap and the
order parameter in HTSC cuprates is apparently also
related to the symmetry of the Fermi contour and the
characteristics of the electronic structure near the Fermi
level. Despite the fact that the electrons in HTSC
cuprates are strongly correlated, from a certain doping
level the carriers can provide fairly effective screening
so that the electronic structure of these compounds at
energies close to the Fermi level can be fairly accu-
rately described using a band scheme [11]. The results
of band calculations [22] broadly show satisfactory
agreement with the existing experimental data, repro-
ducing the observed profile of the Fermi contour in p-
and n-type cuprate HTSC compounds. The simplest
approximation of nearest (in the CuO2) plane neighbors
in a strong coupling scheme leads to ideal (at half fill-
ing) nesting of the Fermi contour, which has the form
of a square oriented in the 〈110〉  directions. However,
the real interactions in the CuO2 layer are such that in
addition to nearest neighbors, it is fundamentally
important to allow for interactions in the next few coor-
dination spheres. For example, as a result of allowing
for interaction between atoms in the first, second, and
third coordination spheres with quite specific relation-
ships between the corresponding matrix elements of the
single-electron Hamiltonian [23], the Fermi contour
acquires the form of a square with rounded corners with
the sides oriented in the 〈100〉  directions. This profile of
the Fermi contour is consistent with the experimental
SICS      Vol. 91      No. 4      2000
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data obtained using ARPES for a whole range of p-type
HTSC cuprates. In addition, it is also consistent with
the fact that the vector determining the antiferromag-
netic structure of stoichiometric HTSC cuprates is also
directed along 〈100〉  rather than 〈110〉  as is deduced
from the nearest neighbor approximation. The physical
reason for this rotation of the Fermi contour through the
angle π/4 and the corresponding rearrangement of the
isolines is clearly interaction between atoms of the
CuO2 layer and atoms of the reservoir layers. In fact,
the chemical bonds between nearest neighbors in these
layers are oriented in the 〈110〉  directions whereas in
the CuO2 layer, the chemical bonds are oriented in the
〈100〉  direction so that by creating a strained state in the
CuO2 layers, the reservoirs in fact fix the electronic
structure in the bands associated with the atoms of the
CuO2 layer. 

A change in the sign of one of the effective masses
has the result that when pair correlations are taken into
account, the Coulomb interelectron interaction ensures
effective attraction of electrons or holes [24]. It thus
becomes possible in principle for quasi-steady states of
like-charged carrier pairs to form. These states may be
considered as various composite quasiparticles which
alter the character of the statistics in the system. In par-
ticular, if the characteristic spatial scale of the correla-
tion in the pair is comparable with or smaller than the
average distance between the pairs and the lifetime of
the quasi-steady state is fairly long, these composite
quasiparticles can be considered to be Bose particles to
a rough approximation, for example to estimate the
ground-state energy.

In the present study, taking into account the real
electronic structure of cuprate HTSC compounds we
investigate the pair correlations in the electron sub-
system, which are manifest as quasi-steady states of
hole pairs, i.e., we solve the problem of two quasiparti-
cles similar to the Cooper problem.

2. CORRELATION ENERGY

Since the characteristic spatial scale of the quasi-
steady states is in any case appreciably greater than the
interatomic distance, it is natural to use the method of
envelope functions to describe correlation effects. In
this case, the electron dispersion law ε(k) should be
considered to be a known function of the 2D quasi-
momentum k and an electron in a crystal can be consid-
ered to be a free quasiparticle having a complex disper-
sion law. The envelope function of this quasiparticle is
a plane wave |kα〉 ; here the spin quantum number α has
values of ±1/2 (subsequently denoted as ↑  and ↓ ).

Using the electron creation operators  in the sin-
gle-particle states kα, the state of a system of N parti-
cles can be obtained from the vacuum state |vac〉

(2.1)

ĉkα
+

| 〉 ĉkα
+ vac| 〉 ,

kα
∏=
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where the product contains exactly N electron creation
operators in various given single-particle states. In par-
ticular, (2.1) is the wave function of the ground state of
the system in the absence of interaction between elec-
trons if the electron quasi-momenta in the product (2.1)
fill the inner region of the 2D Brillouin zone bounded
by the Fermi contour.

As a result of the pair short-range interaction U(r)
between the electrons, the contribution of the pair cor-
relations to the system energy is a determining factor
compared with the contribution of higher-order correla-
tions [25, 26]. In order to make approximate allowance
for the pair correlations, we define a basis constructed
from the envelope functions of electron pairs [27]. We
shall assume that the state formed by N/2 singlet-cou-
pled electron pairs is the ground state. We shall also
assume that the Schrödinger equation with the potential
U(r) is solved for any pair of electrons. In the orbital
part of the envelope function of the pair which, depend-
ing on the spin state of the pair, is either symmetric (for
singlet pairing) or antisymmetric (for triplet pairing)
with respect to permutation of the electron position
vectors, we can explicitly isolate a cofactor correspond-
ing to the motion of the center of inertia of the pair:

(2.2)

Here K = k1 + k2 and R = (r1 + r2)/2 are the quasi-
momentum and position vector of the center of inertia,
respectively, and k = (k1 – k2)/2 and r = r1 – r2 are the
quasi-momentum and position vector of the relative
motion of the electrons forming the pair, respectively.
In the case of singlet pairing considered below the
envelope function of the relative motion is ϕKk(–r) =
ϕKk(r). The vector k can be considered to be the initial
quasi-momentum of a particle having a reduced effec-
tive mass scattered at the potential U(r). 

We express (2.2) in the form

(2.3)

Here |k1k2〉  is the product of two plane waves having the
quasi-momenta k1 = K/2 + q and k2 = K/2 – q without
any factors which depend on the spin variables

(2.4)

S is the normalization area in the plane of the conduct-
ing layer. The Fourier transform  of the enve-
lope function of the relative motion of the pair electrons
should possess specific symmetry with respect to per-
mutation of the initial (k) and final (q) quasi-momenta:

 = . The functions  form a
complete orthonormalized system. 

The case of Cooper pairs having optimal zero total
momentum and a large momentum of relative motion

Ψ r1 r2,( )
1

S
-------ϕKk r( ) iKR( )exp Kk| 〉 .≡=

Kk| 〉 K
2
---- q+ K

2
---- q–, ϕ̃K k q,( ).

q

∑=

ϕ̃K k q,( )
1

S
------- r2 ϕKk r( ) iqr–( )exp ,d∫=

ϕ̃K k q,( )

ϕ̃K k q,( ) ϕ̃K* k q,( ) ϕ̃K k q,( )
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will not be considered, even though this pairing is not
sensitive to the profile of the Fermi surface. This pair-
ing only occurs in the presence of effective attraction. 

When the Fermi contour has rectilinear sections, an
alternative structure of electron or hole pairs with a
high overall momentum (of the order of the distance
between the parallel sections of the Fermi contour) is
obtained. In the presence of effective attraction, the for-
mation of such a pair, like a Cooper pair, corresponds
to an energy minimum. However, this pairing can also
occur under conditions of repulsive interaction when a
negative light component of the effective mass appears
on a large part of the Fermi contour. It is shown below
that this case is achieved in cuprate high-temperature
superconductors. The formation of such an isolated pair
corresponds to an energy maximum. At concentrations
of these pairs above a certain critical level, their forma-
tion becomes energetically favorable as a result of sup-
pression of the correlations between these boson pairs
compared with the correlations between unpaired fer-
mions. 

We shall determine the creation operator of an elec-
tron pair [27] having the quantum numbers K and k:

(2.5)

and we denote by {F} the region of k-space bounded by
the Fermi contour. Then, if the vectors k1 = K/2 + k and
k2 = K/2 – k belong to {F}, the wave function of the sys-
tem of noninteracting electrons can be expressed in the
form

(2.6)

Expression (2.6) contains the vectors k1 and k2 corre-
sponding to all the different points of the set {F}. The
vectors K/2 ± k can be obtained in principle by various
methods. For instance, the vector k1 = K/2 + k may
appear in pairs with different K. Thus only those cofac-
tors corresponding to all different k1 and k2 should be
retained in the product over Kk (formally this condi-
tions is automatically satisfied in (2.6)). Thus, for each,
generally speaking, vector K a certain set of points
should be excluded from the corresponding region of
definition of the vector k in order to ensure that the
number of electrons in the system is constant. 

We write the wave function of the ground state of
the system of interacting electrons in the form

(2.7)

Kk| 〉 ÂKk
+

vac| 〉 ,=

ÂKk
+ ϕ̃K k q,( )ĉK /2 q↑+

+ ĉK /2 q↓–
+ ,

q

∑=

F| 〉 ĉk1↑
+ ĉk2↓

+ vac| 〉
k1k2

∏=

=  ĉK /2 k↑+
+ ĉK /2 k↓–

+ vac| 〉 .
Kk

∏

0| 〉 ÂKk
+

vac| 〉
Kk

∏=
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provided that K/2 ± k ∈  {F}. Since the summation vari-
able q in the definition of the pair creation operator is in
no way bounded, a contribution in (2.7) is made by sin-
gle-electron states belonging to the inner and outer
regions relative to the Fermi contour.

When no scattering takes place at the potential U(r)
(which in, particular, corresponds to the single-electron
approximation), it is clear that

(2.8)

for any K so that the ground state is the same as (2.6) as
should be the case. 

Since the identity  ≡ |vac〉  is obtained for
any k, the electron pair creation operator can be
expressed as 

(2.9)

having isolated the term corresponding to the forward
scattering amplitude. The ground state of the system
has the form

(2.10)

where αK(k, q) = / , α ≡ .
In fact, a systematic permutation of pairs of electron
creation and annihilation operators having the same
quasi-momenta and spins does not lead to any change
in the sign of the wave function; in addition, in the sum
in (2.10) we obtain q ≠ k since no nonzero contractions
of the operators exist. Since by definition K/2 ± k ∈
{F}, then conversely K/2 ± q ∉  {F} since otherwise the
product of the creation operators in (2.9) would contain
a term identically equal to zero. Thus, the operators

 and  create holes inside {F} while the

operators  and  create electrons outside
{F}. We can confirm that the wave function of the
ground state (2.10) is normalized to unity: 〈0|0〉  = 1.

Systematically multiplying the (commuting) opera-
tors, (2.10) can be expressed in the form |0〉  = α{1 +

}|F〉  where the operator  may be written as the sum

ϕKk r( )
1

S
------- ikr( ), ϕ̃K k q,( ) δqkexp

ĉkα ĉkα
+ vac| 〉

ÂKk
+ ϕ̃K k k,( ) ---





=

+ ϕ̃K k q,( )ĉK /2 q↑+
+ ĉK /2 q↓–

+ ĉK /2 k↓– ĉK /2 k↑+

q k≠
∑





× ĉK /2 k↑+
+ ĉK /2 k↓–

+ ,

0| 〉 α 1 αK k q,( )
q k≠
∑+





Kk

∏=

--× ĉK /2 q↑+
+ ĉK /2 q↓–

+ ĉK /2 k↓– ĉK /2 k↑+




F| 〉 ,

ϕ̃K k q,( ) ϕ̃K k k,( ) ϕ̃K k k,( )
Kk∏

ĉK /2 k↑+ ĉK /2 k↓–

ĉK /2 q↑+
+ ĉK /2 q↓–

+

Ĝ Ĝ
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 =  +  + …, where the first term contains all

possible quadruplets of the operators  

 , the second term contains quadratic
combinations of these quadruplets, and so on. For
example, 

(2.11)

describes the states of a system with a hole pair inside

{F} and an electron pair outside {F}, the operator 
corresponds to states with two hole pairs and two elec-
tron pairs, and so on. 

From the energy of the ground state (2.10) of a sys-

tem of electrons having the Hamiltonian , E0 =

〈0| |0〉  we can isolate the electron energy in the Har-

tree–Fock approximation, EHF = 〈F| |F〉; the correla-
tion energy of the electron system Ecorr = E0 – EHF is
expressed in the form

(2.12)

In order to calculate the average in (2.12) we shall

confine ourselves to the simplest approximation  ≈

 which is linear with respect to the parameters

αK(k, q). Since in the Hartree–Fock approximation  = 0,

the expression  =  +  + … can be considered

as an expansion of the operator  in powers of the
parameters αK(k, q) in a certain sense similar to the gas

parameter in the kinetic theory of gases. In this case  ≈

 corresponds to the self-consistent field approxi-
mation for electron and hole pairs whereas the term

 allows for pair interaction between isolated pairs.

The correlation correction to the kinetic energy has
the form

(2.13)

Here the first term in braces is the kinetic energy of an
electron pair excited outside {F}, and the second term
is the kinetic energy of a pair inside {F}. If, as is usu-
ally the case, the energy of a pair as an elementary exci-
tation is measured from twice the chemical potential, it
is clear that the second term in (2.13) corresponds to the
kinetic energy of a hole pair inside {F}. 

Ĝ Ĝ
1( )

Ĝ
2( )

ĉK /2 q↑+
+ ĉK /2 q↓–

+

ĉK /2 k↓– ĉK /2 k↑+

Ĝ
1( )

 = αK k q,( )ĉK /2 q↑+
+ ĉK /2 q↓–

+ ĉK /2 k↓– ĉK /2 k↑+

Kkq

∑

Ĝ
2( )

Ĥ

Ĥ

Ĥ

Ecorr

F〈 |Ĝ+
Ĥ EHF–( )Ĝ F| 〉

1 F〈 |Ĝ+
ĤĜ F| 〉+

---------------------------------------------------.=

Ĝ

Ĝ
1( )

Ĝ

Ĝ Ĝ
1( )

Ĝ
2( )

Ĝ

Ĝ

Ĝ
1( )

Ĝ
2( )

Tcorr α 2 αK* k q,( ) ε K
2
---- q+ 

  ε K
2
---- q– 

 +




Kkq

∑=

– ε K
2
---- k+ 

  ε K
2
---- k– 

 +



αK k q,( ).
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Calculations of the correlation energy produced by
the electron–electron interaction give a bilinear expres-
sion in terms of the scattering amplitudes Ucorr = U(h – h) +
U(e – e) + U(h – e), where

(2.14)

is the interaction energy of holes forming a pair inside
{F},

(2.15)

is the interaction energy of electrons forming a pair out-
side {F}. Here

(2.16)

is the Fourier transform of the 2D potential of the elec-
tron–electron interaction. The potential U(r) should be
understood as the result of averaging the three-dimen-
sional screened Coulomb potential along the c-axis of
the structure (averaging with corresponding envelope
functions). Since the thickness of the conducting layer
has atomic dimensions, the result of the averaging may
be taken to be the potential at z = 0 (z-axis parallel to c).
Thus, for estimates we can use an expression of the
type

(2.17)

where r0 is the screening radius and r is the 2D position
vector. Bearing in mind that the thickness of the barrier
layers separating the conducting layers also has atomic
dimensions, we can neglect the screening characteris-
tics in two-dimensional systems. Hence, for hole con-
centrations typical of HTSC compounds the screening
radius can be estimated in the Thomas–Fermi approxi-
mation:

(2.18)

Here g(µ) is the density of states at the Fermi level per
unit volume.

We shall not give an explicit expression for the
energy U(h – e) of the electron–hole interaction in pairs
inside and outside {F} which in principle leads to elec-
tron and hole pairing; also, we shall not give the terms
in Ucorr which are linear with respect to the pair scatter-
ing amplitudes and the electron occupation numbers in
the {F} state since, in the very simple approximation
used here, these contributions to the correlation energy
cannot influence the envelope functions of the relative
motion of the electron and hole pairs.

Summation over κ (unlike the sums over q and k
which correspond to certain specific ranges of values of

U h h–( ) α 2 αK k κ– q,( )Ũ κ( )αK* k q,( )
Kkqκ
∑=

U e e–( ) α 2 αK* k q κ–,( )Ũ κ( )αK k q,( )
Kkqκ
∑=

Ũ q( )
1
S
--- r2 U r( ) iqr–( )expd∫=

U r( )
e2

r
---- r

r0
----– 

  ,exp=

r0 4πe2g µ( )[ ] 1/2–
.=
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these vectors for each quasi-momentum of the pair K)
is performed over the entire Brillouin zone. In (2.14)
the vector k plays the role of an independent variable
whereas the vector q determines the state of the internal
motion of a hole pair. Conversely, in (2.15) the indepen-
dent variable is q and k should be considered to be the
quantum number relating to the internal state of an
electron pair. For the hole-type conductivity of a HTSC
compound it is usually convenient to convert from an
electron to a hole representation where the Fermi con-
tour defines the region  which adds {F} to the
complete Brillouin zone.

3. EQUIVALENT HAMILTONIAN
OF A HOLE PAIR

In order to write the equivalent Hamiltonian of a
hole pair having the quasi-momentum K, we shall use
expression (2.13) in which the second term in braces,
taken with the opposite sign, has the meaning of the
kinetic energy of a hole pair and (2.14) which describes
the direct screening Coulomb interaction of holes form-

ing the pair. We set k   = –i∇  and express the

equivalent Hamiltonian in the form  =  where
the kinetic energy operator of the pair is

(3.1)

Converting to the r-representation in (2.14), we have

(3.2)

Here summation over κ is performed, as we have noted,
assuming that this variable covers the entire Brillouin
zone. Conversely, summation over the variable k is
bounded by a certain region {K} typical of each quasi-
momentum of the pair K which should correspond to
those hole quasi-momenta k1 and k2 which in accor-
dance with (2.6) are situated in the region {F}, i.e., out-
side the Fermi contour for the holes. The compact
region {K} is thus a certain set of points belonging to
that part of the 2D Brillouin zone not filled with holes.
The dimensions and shape of the regions {K} depend
on the position of the vector K relative to the Fermi con-
tour.

Let ΞK be the area of the region {K} of permissible
values of the quasi-wave vector of the relative motion
for given K. Then, if this region is fairly large, we can
approximately assume 

(3.3)

F{ }

k̂

Ĥ T̂ Û+

T̂ ε K
2
---- i∇– 

  ε K
2
---- i∇+ 

  .+=

ϕ̃Kq k κ– q,( )Ũ κ( )ϕ̃Kq* k q,( )
K k,
∑

=  
1
S
--- r2d r'2 ϕKq r'( )U r'( )ϕKq* ik r r'–( )[ ] .expd∫∫

k

∑

1
S
--- ik r r'–( )[ ]exp

k K{ }∈
∑ ΞKa2δ r r'–( ),≈
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
where the coefficient of the delta function is of the
order of magnitude of the ratio of ΞK to the area of the
2D Brillouin zone (a is the interatomic distance in the
plane of the conducting layer). Thus, the potential
energy operator of the holes forming a pair can be given
as

(3.4)

The factor ΞKa2 < 1 can be considered to be a certain
correlation attenuation factor [28] attributable to the
Pauli principle.

If the region {K} is small, the sum in (3.3) contains

a few oscillating terms and the operator  becomes
essentially nonlocal. The Fourier components appear-
ing in the kernel of this operator may have different
signs at similar points in r-space and for this reason,
when analyzing the interaction between holes which
leads to the formation of quasi-steady states of hole
pairs, we can confine ourselves to pairs having quasi-
momenta K for which the region of permissible values
of the vector k is fairly large (note that these regions are
situated near almost rectilinear sections of the Fermi
contour). In this case, the equivalent Hamiltonian of a
hole pair having the quasi-momenta K has the form

(3.5)

The probabilities of the filling of hole states in the
range {F} are determined by the scattering amplitudes

. Here, as we noted above k ∈  {F} and q ∈
. In general, the scattering amplitudes are largest

when k and q are situated in the immediate vicinity of
the Fermi contour. Assuming that the characteristic
width ∆k of the most probable hole distribution band
adjacent to the Fermi contour in the region {F} is deter-
mined by the potential (2.17) where the value of the
argument corresponds to the average distance between
the hole  = p–1/2, where p is the concentration of 2D
holes, we can easily confirm that

(3.6)

where vt(µ) is the component of the hole velocity per-
pendicular to the Fermi contour. Using an anisotropic
approximation of the dispersion law for order-of-mag-
nitude estimates we can obtain vt(µ) ~ "kF/m where
kF = (2πp)1/2 is the value of the Fermi wave vector, and
m is a certain characteristic effective mass. As an esti-
mate for the density of states we can use the expression
g(µ) ≈ m/π"2d, where d is the distance between neigh-
boring conducting layers. Also using the notation a* =
"2/me2, we have

(3.7)

ÛK ΞKa2U r( ).≈

Û

ĤK ε K
2
---- i∇– 

  ε K
2
---- i∇+ 

  ΞKa2U r( ).+ +=

ϕ̃K k q,( )

F{ }

r

∆k
e2

" v t µ( ) r
---------------------- r

r0
----– 

  ,exp≈

∆k
1

2πa∗
----------------- 2

a∗ dp
----------------– 

  .exp∼
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Assuming that all important scattering processes
leading to the formation of quasi-steady states take
place in a band of width ∆k adjacent to the Fermi con-
tour, we can take the intersection of this band and the
region {K} determined above as the region of determi-
nation of the quasi-momentum of the relative motion.
Figure 1 illustrates the principle of determining this
region of permissible values of k1 and k2. The region
thus determined will then be denoted by {K} as before
and its area by ΞK since for most vectors K/2 we can
assume that the width of the region {K} is the same
as ∆k. 

The region {K} is a narrow strip (Fig. 1a) if K/2 is
located near an almost rectilinear section of the Fermi
contour and the length of this strip lK depends on the
orientation of the vector K, i.e., lK = lK(ϑ), where ϑ  is
the polar angle of the vector K. It is easy to establish

(a)

K –k2 + K
–k1 + K

–k3 + K

–k1 –k2

–k3

∆k

k1 k3k2

EF

Q

K

EK

k1k2

(b)

Fig. 1. Determination of regions of permissible values of the
quasi-momenta ki of holes forming a pair having the quasi-
momentum K for constant-energy lines having the form of
squares with rounded corners (a) and for circles (b).
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that in p-type HTSC cuprates where the Fermi contour
is a square with rounded corners [6–10], lK reaches a
maximum when the direction of K coincides with the
directions of the kx and ky coordinate axes parallel to the
long, almost rectilinear parts of the Fermi contour. As
ϑ  increases from 0 to π/4, the value of lK decreases,
reaching a minimum at ϑ  = π/4. Thus, lK(ϑ) is a peri-
odic function having the period π/2. Near the rounded
corners of the square, the area of the region {K} is small
and this region may have a fairly complex profile. In
this case, the effective interaction between the holes
forming the pair is small so that the formation of quasi-
steady states is exclusively attributed to the fact that the
isolines near the Fermi contour have long almost recti-
linear sections. The area of the region {K} can then be
estimated as ΞK ≈ lK∆k; together with lK(ϑ) it depends
on the polar angle of the vector K. 

The explicit form of the function lK(ϑ) is determined
by the structure of the constant-energy lines near the
Fermi contour. When the constant-energy lines are
squares with rounded corners, neglecting the rounded
edges, i.e., assuming that the constant-energy lines are
simply squares, we can write lK(ϑ) explicitly as lK(ϑ) =
2kF(1 – . Here kF is half the side of the square
forming the Fermi contour 0 ≤ ϑ  ≤ π/4. Bearing in mind
that ∆k ! kF , for 0 ≤ ϑ  ≤ π/4 we can approximately
write lK(ϑ) ≈ Kx – Ky; for π/4 ≤ ϑ  ≤ π/2 however, we
have lK(ϑ) ≈ Ky – Kx. Thus, lK(ϑ) is determined for 0 ≤
ϑ  ≤ π/2 and the values of this function for an arbitrary
polar angle can be obtained from the periodicity condi-
tion: lK(ϑ  + π/2) = lK(ϑ) . 

It can be seen from Fig. 1a that the value of K should
be larger than Q. Then, first all pairs of particles having
the wave vectors ki and –ki + K corresponding to the
rectilinear section with energy εK have the same total
momentum K. In addition, each state in the layer ∆k
having energy higher than εK (for example, having the
wave vector k3) has a partner with εF < ε < εK (with k4 =
–k3 + K) to ensure the same total wave vector K. Thus,
a given K corresponds to a macroscopic number of
states with the area Ξ . For a given doping level there is
an optimum value of the four vectors K perpendicular
to each side of the Fermi contour. For the vector K
equal to Q the corresponding area is zero.

Consequently, when the Fermi contour has rectilin-
ear sections, hole pairs apparently focused in momen-
tum space (focused pairs) are formed. This focusing
corresponds to the macroscopic filling of one state for
given K at the same energy. This focusing cannot be
achieved for example for a Fermi contour in the form of
a circle (see Fig. 1b). 

The formation of an electron pair (inside the Fermi
contour for the holes) corresponds to a different value
of K and different values for the binding energy
because of the lack of symmetry of the constant-energy
profiles and the effective masses relative to the Fermi
contour. This evidently results in a lack of symmetry of

ϑ )tan
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the states below and above the Fermi level in the super-
conducting phase which should be observed as asym-
metry, V  –V, of the tunnel characteristics, and
Andreev reflection characteristics.

Figure 2 shows the 2D Brillouin zone of a crystal
possessing tetragonal symmetry and shows the distri-
bution of the isolines calculated in the strong coupling
approximation allowing for interaction in the first, sec-
ond, and third coordination spheres. The dimensionless
parameters of the dispersion law 

(3.8)

were selected so that [23] the profile of the isolines
reflected the observed profile of the Fermi contour of
HTSC cuprates [6–10]: t1 = 0.50, t2 = –0.15, t3 = 0.10.
The Brillouin zone is centered at the point (π/a, π/a) in
reciprocal space. The point M at the center of the square
is the absolute maximum of the electron band (mini-
mum of the hole band) and m and m' are the absolute
and side minima (maxima) of the electron (hole) bands.
The saddle points S are connected by the isoline (sepa-
ratrix) separating the families of closed constant-
energy lines. 

Near the half-filling isoline there is a fairly exten-
sive region {S} embracing the saddle points in which
the principal values of the tensor of reciprocal effective
masses have different signs (light region in Fig. 2). This
region should have vectors K/2 which in principle can
correspond to relatively long-lived quasi-steady states.

The width of the most probable hole distribution
band in accordance with (3.7) increases with increasing
hole concentration. Thus, as p increases and, under
conditions of isoline nesting, the number of hole pairs
capable of forming quasi-steady states can increase. An
increase in the hole concentration generally leads to a
nonmonotonic dependence lK( p): if the isolines have
relatively long, almost rectilinear sections in a fairly
large part of the Brillouin zone, initially as p increases,
the function lK( p) can increase slowly or remain almost
constant. A further increase in the hole concentration
brings the Fermi level to severely distorted isolines,
causing an abrupt decrease in the regions {K} or even
transferring them outside the region {S} so that lK( p)
becomes a fairly rapidly decreasing function, as is illus-
trated in Fig. 3 for the dispersion law (3.8). This figure
gives the average length of the {K} band 〈lK〉  as a func-
tion of the hole energy in the region {S} where the
effective mass components have different signs. Also
plotted for comparison are data for the dispersion law
obtained in the strong coupling approximation allowing
only for the interaction of nearest neighbors (dashed
curve). It can be seen that the dispersion law (3.8) cor-
responds to isoline nesting in the region {S} over a
wide range of energy. Thus, as the doping level is varied
when the Fermi level systematically passes from one
isoline to another, the nesting conditions for the Fermi

E kx ky,( ) 2 2t1 kxacos kyacos+( )–=

– 4t2 kxa kya – 2t3 2kxacos 2kyacos+( )coscos
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
contour are conserved over a fairly wide range of con-
centrations. Figure 3 clearly shows the asymmetry of
the dispersion law relative to the type of doping: nest-
ing conditions are only observed for p-type cuprates.
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Fig. 2. Distribution of constant-energy lines and singular
points in the 2D Brillouin zone of a crystal with tetragonal
symmetry. The light regions correspond to different signs of
the principal values of the reciprocal effective mass tensor
of the dispersion law (3.8). 
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Fig. 3. Dependence of the characteristic length of the band
of permissible quasi-momentum values of holes forming a
pair on the hole energy in the Brillouin zone corresponding
to different signs of the principal values of the reciprocal
effective mass tensor. The solid curve gives the 2D disper-
sion law (3.8). Also plotted for comparison is the similar
dependence corresponding to the simplest dispersion law
with tn = 0 for n ≥ 2 (nearest-neighbor approximation,
dashed curve).
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However, the simplest dispersion law which only
allows for nearest neighbors is symmetric with respect
to the type of doping although, exhibiting ideal nesting
at half filling, it leads to an abrupt decrease in the value
of 〈lK〉  with increasing distance from the center of the
zone.

The area ΞK(p) as a function of the hole concentration
thus has the form of a curve with a maximum (Fig. 4). 

In the effective mass approximation we need to con-
fine ourselves to the second derivatives in the expansion
of the equivalent Hamiltonian (3.5) in powers of ∇ ; the
coefficients of the expansion of the kinetic energy oper-
ator form the tensor of reciprocal reduced effective
masses for the point K/2. Transforming this tensor to a
diagonal form (i.e., suitably selecting the directions of
the k1 and k2 coordinate axes), we have

(3.9)

where  are the principal values for the effective
masses relating to the point K/2. 

Provided that ∆k ! K/2 ~ kF we can assume that
ε(K/2) approximately coincides with the Fermi level:
ε(K/2) ≈ µ. Then, if we stipulate that the energy of the
hole pair is measured from the value 2µ, the equivalent
Hamiltonian (3.5) may be expressed as

(3.10)

It has been noted that for quasi-momenta K for
which relatively long-lived quasi-steady states of hole
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Fig. 4. Area of the region of permissible values of the quasi-
momenta ΞK(p), and the values lK and ∆k for holes forming
a pair as a function of the hole concentration (schematic). 
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pairs can appear, the reduced effective masses  and

 have different signs.

4. QUASI-STEADY STATES OF HOLE PAIRS

In the effective mass approximation, the envelope
functions of the free motion of a hole pair can be
selected in the form of plane waves where the energy of
this pair is expressed in terms of the components of the
quasi-wave 2D vector q1 as

(4.1)

here /m = 1/  are the principal values of the ten-
sor of the reciprocal effective masses (the dimension-

less parameters  in the region {S} have different
signs), m is a parameter having dimensions of mass, l =
1, 2. The energy measured from twice the chemical
potential 2µ can therefore have either sign. Thus, the
spectrum of the operator (3.10) in the region {S} is not
bounded.

Since the real interaction between holes is screened
Coulomb interaction (2.17), we can approximately
assume that the holes interact by means of the short-
range singular potential 

(4.2)

The relative motion of a hole pair is infinite, as
should be the case for a continuous spectrum. This does
not eliminate the possible formation of relatively long-
lived states assigned to the continuous spectrum and
manifest as fairly well-defined density-of-states max-
ima. The resulting quasi-steady state is characterized
by the energy E0 corresponding to the density-of-states
maximum and the finite lifetime τ. We can therefore
assume [29] that this state corresponds to the complex

energy  = E0 – iΓ with the damping Γ = "/τ and is
observed as the pole of the scattering amplitude at

energy E = . 
The wave function corresponding to the scattering

has the form

(4.3)

where the Fourier transformation of the scattered wave
for scattering at the δ-potential is expressed as 

(4.4)

Here we have
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the sign function  provides the necessary condi-
tion for  to correspond to a diverging (or
damped) wave,

(4.5)

The real and imaginary parts of the function (4.5) are
expressed as

(4.6)

(P is the symbol denoting the principal value of the
integral), 

(4.7)

The denominator of the scattering amplitude gener-
ally does not go to zero since it is a sum of two indepen-
dent functions. An exception may be the case when one
of the functions and specifically  goes identi-
cally to zero. The poles of the scattering amplitude
determined from the equation 

(4.8)

then correspond to bound states. For wK > 0 this situa-
tion for a hole pair can occur near the maximum M of
the hole band. 

If equation (4.8) has a solution for some (complex)

value ω =  and  ≠ 0, then provided that

 is fairly small and positive, a quasi-steady

hole-pair state appears. Near the point  the function
BK1(ω)can be expressed as (the prime denotes differen-
tiation with respect to ω)

(4.9)

The scattering amplitude is expressed in the form

(4.10)
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Here  = "2 /2m is the energy of the quasi-steady
state, E = "2ω/2m, and the damping has the form 

(4.11)

For fairly large ω, (4.6) is a monotonically increas-
ing function; in accordance with the definition (4.7) we
have BK2(ω) > 0 which gives a solution of equation
(4.8) corresponding to positive damping of the quasi-
steady state.

In order to identify the nature of the possible solu-
tion of equation (4.8) we consider the region {K} near
the almost rectilinear section of the Fermi contour and
assume for simplicity that the point K/2 is close to one
of the symmetric points of the Brillouin zone, for exam-
ple, adjacent to the axis of symmetry. Then the direc-
tion of one of the principal axes of the reciprocal effec-
tive mass tensor (the k1 axis) is almost parallel to the
rectilinear section of the Fermi contour; the direction of
the second principal axis (k2) is then almost perpendic-
ular to the Fermi contour. Since the directions of the
rectilinear section of the constant-energy line and the k1
axis almost coincide, the corresponding effective mass

 = m/  has a high absolute value; it can be seen
from Fig. 2 that this is positive. Conversely the effective

mass  = m/  along the k2 axis is negative and

 < 0. For estimates we can assume that  = –1,

 ≡ ν ! 1. 

It follows from the definition (4.7) that for any ω > 0
and ν = 0 we have the equality BK2(ω) = 0 and in order
to obtain a finite damping value we need to go outside
the effective mass approximation. For ν ! 1 there is
consequently a specific range of ω in which the quasi-
steady state damping is weak. It follows directly from
the definition (4.7) that this region corresponds to ω ≥
ν /4, where lK is the previously determined character-
istic size of the region {K} along the Fermi contour. It

can also be seen that for ω < ν /4 we have to within
logarithmic accuracy BK2 ~ ν–1/2 so that under the

assumption ν ! 1 the damping (4.11) for ω < ν /4 is
definitely large.

The function BK1(ω) cannot be represented as a
combination of elementary functions although for

fairly high energies and specifically for ω – ν /4 @
(∆k)2/4 this function may be approximately expressed
as

(4.12)
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It can be confirmed that this expression qualitatively
reflects the behavior of the function (4.6) for all ω ≥
ν /4, i.e., in that range of energies which corresponds
to fairly weak damping of the quasi-steady state. We
obtain the energy of this state which depends on the
quasi-momentum of the pair K in the form

(4.13)

or, taking into account (3.7),

(4.14)

Thus, the energy of the quasi-steady state is
expressed in terms of the parameters of the electron
spectrum of the HTSC compound and its doping level.
Assuming that in p-type HTSC cuprates an extensive
vicinity of the saddle point corresponds to relatively
weak dispersion of the hole band [11], i.e., a fairly high
effective mass m, we can assume for a rough estimate
that the effective Bohr radius a* is of the same order of
magnitude as the interatomic distance: a* ~ a ~ d. In
this case, for a hole concentration corresponding to a
half-filled band pa2 = 1, the exponential factor in (4.14)
is around 2 × 10–2 and the effective Rydberg e2/2a* is
around 2.5–3.0 eV. Consequently, the quasi-steady
energy is mainly determined by the parameter lK which
for long almost rectilinear sections of the Fermi con-
tour may reach values of the order of π/a. In these
cases, the quasi-steady state energy may be between 10
and 100 meV. It follows from (4.14) that longer regions
{K} produced by nesting near the Fermi contour play a
dominant role in its formation: a decrease in lK leads to
an abrupt reduction in the energy of this state.
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Fig. 5. Character of the wave function of the relative motion
of the pair (5.1) corresponding to a diverging (light region)
and damped (dark region) wave. The lines separating these
regions are caustics.
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5. WAVE FUNCTION OF HOLE PAIR

The function of the relative motion of the pair (4.4)
corresponding to a diverging wave has the following
form in the r-representation:

(5.1)

Here  is a Hankel function and K0(z) is a Mac-
donald function. Thus, the plane x, y is divided into four

sections, two of which 0 < |y | < |x |/  correspond to
waves diverging from the origin; in the other two sec-

tions |x |/  < |y | < ∞ the wave function (5.1) is damped

(Fig. 5). The lines y = ±x/  dividing these sectors are

caustics near which  has a logarithmic singular-
ity.

The function  and the linearly independent

function  corresponding to a wave converging
toward the center are eigenfunctions of the equivalent
Hamiltonian (3.10) with the singular potential (4.2)
relating to complex eigenvalues. Thus, in order to study
the spatial distribution of the hole density at an arbi-
trary time we need to solve a time-dependent equation
with the Hamiltonian (3.10). However, such an exhaus-
tive solution cannot be obtained by separating the time
and space variables [29]. Consequently, in order to
make a qualitative analysis of the nature of the wave
function over the quasi-steady state lifetime of a hole
pair, we can use the adiabatic approximation [30]
which separates the “fast” motion along y and the
“slow” motion along x. In fact, for t ≤ τ the quasi-steady
state can be considered to an almost steady state having

the energy ; in addition, as a result of the extremely
strong anisotropy of the effective masses when m1 =
m/ν, m2 = –m, and ν ! 1 a similar approximate separa-
tion of the motion along x and y becomes possible. 

We express the envelope function which is a solu-
tion of the Schrödinger equation with the Hamiltonian
(3.10) in the form ψ(x, y) = ϕ(x, y)Φ(x) where the func-
tion ϕ(x, y) which depends on x and on the parameter is
one of the solutions of the equation

(5.2)
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where n numbers the eigenvalues Vn(x) of the operator
on the left-hand side of (5.2). Quite clearly, at least one
of these eigenvalues which we shall denote by V0(x) is
nonnegative. We shall confine ourselves to this case and
write the equation for Φ(x) = Φ0(x): 

(5.3)

where the effective potential for the slow motion is 

(5.4)

Since  > 0, the function Φ0(x) corresponds to the
continuous spectrum, i.e., may be expressed as a linear
combination of converging and diverging waves. Con-
versely for any U(x, y) > 0 and any x the function of the
one-dimensional motion ϕ0(x, y) corresponds to the
steady state of the discrete spectrum and may be nor-
malized by the condition

(5.5)

This implies that in a certain region of the x axis and for
a specific energy the envelope function Φ0(x) may
increase sharply which corresponds to the quasi-steady
state [29].

Characteristic features of the function ϕ0(x, y) can
be established if we express the interaction in (5.2) in
the form of the separable potential

(5.6)

where the function f(x) is assumed to be bounded and
normalized to unity. The characteristic spatial scale for
this function is the screening radius r0 and the parame-
ter U0 = (2πe2/r0)ΞKa2. Assuming for simplicity that
f(y) = (2r0)–1 for |y | < r0 and f(y) = 0 for |y | > r0, we can
easily find ϕ0(x, y) for |y | > r0, i.e., outside the radius of
action of the potential (5.6):

(5.7)

Here we have γ(x) = /". We assume that the
potential U(x, y) leads to a single discrete level as in
(4.2). The position of this level can then be approxi-
mately estimated as [31]
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ν "
2

2m
------- ∂2

∂x2
--------– V0* x( )+ Φ0 x( ) EΦ0 x( ),=

V0* x( ) V0 x( ) ν "
2

2m
-------

∂ϕ0 x y,( )
∂x

--------------------- 
 

2

y.d

∞–

∞

∫+=

V0* x( )

ϕ0 x y,( )[ ]2 yd

∞–

∞

∫ 1.=

U x y,( ) U0r0
2 f x( ) f y( ),=

ϕ0 x y,( ) γ x( )[ ]1/2 γ x( ) y–( ).exp=

2mV0 x( )

γ x( )
2mr0

2

"
2

------------U0 f x( ).≈

r0
2

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
obvious if it is satisfied:

(5.9)

In fact, 2πe2/r0 and "2/2m  have the same order of
magnitude and the inequality ΞKa2 ! 1 is satisfied by
definition. 

The function (5.7) is normalized so that its exact
form for |y | < r0 is unimportant for the following esti-
mates. Assuming that f(x) varies rapidly [between
(1/2)r0 and zero] on the scale r0 (this characteristic
scale of the preexponential factor in (5.7) characterizes
the localization of the quasi-steady state along the
x-axis), it follows from (5.7) that for |x | ≤ r0 the charac-
teristic scale along the y axis for the function ϕ0(x, y) is
γ–1(0) = "2/2mr0U0 ~ r0/ΞKa2 @ r0. We can assume that
during the lifetime of the quasi-steady state the hole
pair is localized in the region |x | ≤ r0, |y | ≤ r0/ΞKa2.
These inequalities determine the size of the region in
r-space in which the motion of the two holes can be
considered to be essentially correlated. Thus, the corre-
lation length for a hole pair having the quasi-momen-
tum K is anisotropic. 

A consequence of the crystal symmetry is that all
the wave functions  corresponding to the set of
vectors  (  is the transformation from the crystal
symmetry group which converts the vector K to its
equivalent) which form the star of the vector K are
equivalent. Hence the wave function of the pair reflect-
ing the crystal symmetry should be expressed as the lin-
ear combination

(5.10)

where the choice of coefficients  is determined by
the irreducible representation of the Γ crystal symmetry
group whose basis function is (5.10). This function cor-
responds to zero quasi-momentum of the pair since

 = 0.

For crystals possessing tetragonal symmetry (C4m

2D symmetry group) all the elements of the star of the
arbitrary vector K can be divided into two sets. One of
these, which includes the vector K, contains the vectors

 which are interrelated by reflections relative to the
kx and ky coordinate axes; the second is generated sim-
ilarly by a vector obtained from K as a result of reflec-
tion from the diagonal of the square representing the
2D Brillouin zone. The trivial representation A1g corre-

sponds to the coefficients  which are the same for
all the star vectors. For the B1g representation the coef-

ficients  have the same absolute values and differ
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in sign for the vectors  belonging to different
groups. Taking into account the explicit form (4.4) of
the functions  we can easily confirm that with a
suitable choice of coordinates all the vectors  from

the first set correspond to k2 = ν  –  whereas the

vectors of the second set correspond to k2 = ν  – .
Thus, the function (5.10) corresponding to the irreduc-
ible representation A1g for ν ! 1 has the form

(5.11)

and exhibits complete symmetry with respect to all
transformations of the crystal symmetry group, i.e., can
be arbitrarily assigned to the s-type of orbital symme-
try. For the function corresponding to the irreducible
representation B1g for ν ! 1 we have

(5.12)

and this function can be arbitrarily assigned to d-type
orbital symmetry. 

We shall consider a pair with given K. Its character-
istic dimensions along the x and y axes in r-space are r0

and r0/ΞKa2, respectively. Thus, in k-space the dimen-
sions of the pair along the kx and ky axes are of the order

of magnitude  and ΞKa2/r0, respectively. The area in
k-space assigned to a single pair with given K can be
estimated as ΞK(a/r0)2 ~ ΞK since at hole concentrations
corresponding to less than half filling we can assume
r0 ~ a. Consequently, over the entire range of determi-
nation of the quasi-momentum of the relative motion of
the pair {K} there is in fact only one pair. This conclu-
sion naturally holds for the normalized correct wave
function of the pair (5.10) which corresponds to zero
quasi-momentum. The correlation length can then be

estimated as ξ ~  and has upper and lower con-
straints: ξm ≤ ξ ≤ ξM; here ξM ~ (Ξ(0))–1/2 and the mini-
mum value of ξm is determined by the largest length lK

of the almost rectilinear section of the Fermi contour
for a given doping level. Quite clearly the correlation
length may be of the order of magnitude of only a few
interatomic distances.

The formation of a quasi-steady hole pair state
results in the removal of the quasi-momenta of the
holes k1, k2 ∈  {K} so that the density of single-particle
states near the Fermi level decreases, which may be
interpreted as the formation of a pseudogap in the spec-
trum of single-particle excitations.

The energy of the pair (4.13) forming a quasi-steady
state for given K includes the kinetic energy of the rel-
ative motion of the holes and their Coulomb interaction
energy. Let us assume that Npair holes pairs forming
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such a state has appeared in the system. The correlation
energy of these quasiparticles can be estimated as the
sum of the energy of the noninteracting pair gas E0Npair

where E0 = (e2r0/2π)(Ξa)2 is a certain average value of
(4.13), and the pair interaction energy E(B). The latter
can be estimated in the first order with respect to the
hole concentration if we consider the Npair hole pairs as
a weakly nonideal Bose gas [32]:

(5.13)

Here npair is the pair concentration, the energy parame-
ter of the interaction can be estimated as U(B) ≈
4π(2e)2 , and the inclusion in (5.13) of the second
power of the correlation attenuation factor allows for
the fact that processes of simultaneous scattering of two
holes in states already filled with other holes should be
excluded. In the absence of pairing, 2Npair holes may be
considered as a weakly ideal Fermi gas since in this
case (4.13) gives

(5.14)

(for estimates we use the expression for the energy of a
weakly nonideal Fermi gas with short-range repulsion
between particles [32] in the first order in terms of the
particle concentration). Here the energy parameter of
the interaction between two holes is estimated as U(F) ≈
4πe2  and the correlation attenuation factor as in
(3.10) appears in the first order since we only allow for
the relative scattering processes of two holes. Since
Ξa2 ! 1, it is clear that E(B) ! E(F) and the formation of
a quasi-steady state of hole pairs is energetically favor-
able when E0Npair < E(F), which can be rewritten as

(5.15)

Bearing in mind that Ξ–1/2 is the characteristic size of
the quasi-steady state in the plane of the conducting
layer, we can interpret inequality (5.15) as follows: the
formation of this hole pair state leads to a reduction in
the ground-state energy when their two-dimensional
concentration begins to exceed a value of the order of
Ξ, i.e., when the pairs begin to overlap in r space.

The gain in energy E0 corresponding to the forma-
tion of a hole pair with repulsive interaction and nega-
tive effective mass is compensated by a reduction in the
positive contribution to the energy for a finite pair con-
centration as a result of the attenuation of the interpair
correlations compared with the positive contribution to
the energy made by the correlations of holes not cou-
pled to form pairs (fermions).

The basis for using the conclusion that the correla-
tion energy is positive in the model of a weakly non-
ideal gas with short-range repulsion [32] is as follows.
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All the properties of cuprate HTSCs are determined by
a low concentration of holes in the doping, since dielec-
tric correlations are conserved up to optimum doping.
The screening radius r0 is determined by the high con-
centration of metallic forephase carriers if the correla-
tion dielectric length is substantially greater than r0. 

In this approach the superconducting state must be
described as the Bose condensation of these focused
pairs. The superconducting order parameter will be

determined by the anomalous mean , i.e.,
will correspond to a state of the type [33, 34] with a
nonzero total pair momentum. However, under the
same conditions for the profile of the Fermi surface for
which focused pairs may appear, it is also possible for
electron–hole pairs to appear, having the order parame-

ter  and the total momentum K1 close to K.
Making the necessary allowance for both the parame-

ters  and  should lead to the

appearance of a parameter , which for
K ≈ K1 corresponds to Cooper pairing. The role of the
order parameter in doping corresponding to the super-
conducting region may be played by the near antiferro-
magnetic order. At present there is some evidence that
a new type of ordered state (“hidden” order parameter)
may exist in this region. Such a state may be electron–
hole pairing with an imaginary order parameter for
which, as we know [35], closed spontaneous currents
appear [36].
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Abstract—It is shown that experimental results on the influence of various factors in the formation efficiency
and structure of cholesteric liquid-crystal dispersions of nucleic acids cannot be consistently described using
conventional theories of liquid crystal formation. A new model is proposed for the interaction of nucleic acid
segments which allows for a change in the particular structure of the solvent hydrogen bonds in the presence of
nucleic acid molecules. The conclusions of the model agree with existing spectroscopic and structural investi-
gations of DNA dispersions. According to our model, interaction between nucleic acid molecules and solvent
modifies proton tunneling processes in the latter, leading to effective interaction between the nucleic acids.
A theoretical analysis of the model is made using a pseudospin formalism in which the effective interaction
potential of the nucleic acid segments is calculated. It is shown that this potential may lead to nematic order-
ing for small distances between the nucleic acid molecules (R ≤ 30 Å) and cholesteric ordering for large dis-
tances. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A well-developed method exists for preparing liq-
uid-crystal dispersions of nucleic acids [1–3] (relevant
experimental data are also presented in our previous
study [4]). Usually, rigid segments of double strand
DNA or RNA molecules having lengths of the order of
one or two persistent lengths (i.e., up to 1000 Å) are
used to prepare dispersions. Aggregation of these seg-
ments in an aqueous solution is induced by adding var-
ious chemical agents which create osmotic pressure
(for example, ethylene or polyethylene glycol) and pos-
itive counterions which partially compensate for the
negative charge of the phosphate groups of the nucleic
acids (NA).

As a result of the action of these agents at a disper-
sion density corresponding to the average spacing
between the NA molecules R ≈ 50 Å a macroscopic
cholesteric structure forms having a helix pitch of the
order of a few micron (which corresponds to a molecu-
lar angle of relative rotation of the long axes of the mol-
ecules of the order of a degree). The cholesteric struc-
ture remains stable up to distances R around 30 Å (in
the range 50–30 Å the pitch of the macroscopic helix
varies negligibly, increasing from 2.4 to 2.5 µm) and at
shorter distances (R ≤ 30 Å) the molecules exhibit par-
allel ordering. 

This factor (the small angle ϕ of relative rotation of
the molecules in neighboring quasi-nematic cholesteric
layers) cannot be explained in terms of purely steric
1063-7761/00/9104- $20.00 © 0832
forces of interaction between macromolecular seg-
ments. In fact, an elementary geometric analysis shows
that as a result of the mutual impermeability of the rigid
macromolecular segments (steric constraints) these
should be packed in layers in each of which the axes of
the NA molecular helixes should be parallel. With this
packing of the rigid helixes, the neighboring layers
must rotate relative to each other through the angle 

(1)

where d is the diameter of a macromolecular (20 Å for
DNA) and h is the pitch of the double helix (36 Å for
DNA). Even this primitive estimate (which for exam-
ple, neglects the fact that the thickness of the quasi-
nematic layer should be greater than d) gives for the
angle ϕ ≈ 10° whereas a more accurate analysis (see,
for example [5] and also the recent review [6]) gives an
even larger difference from the experimental data. By
allowing for dispersion or electrostatic forces of attrac-
tion in addition to steric repulsion (see [7–12]) we can
obtain the angle ϕ ≈ 1° which agrees in principle with
the experimental data for liquid-crystal NA dispersions
although all the system parameters must be specially
selected for this purpose. 

In Section 3 we give a more comprehensive analysis
of existing theories of liquid-crystal ordering and show
that these do not give a unified consistent description of
the complete set of experimental data for NA disper-
sions. The next section is devoted to a description of the
experimental data. In our view, the main disadvantage

ϕ d/h( ),arctan=
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of the existing theories (or more accurately, their appli-
cations to aqueous NA dispersions) is that they neglect
the specific properties of the solvent, water, in which
the liquid-crystal NA dispersions are formed. The liter-
ature devoted to the study of the influence of NA on the
water surrounding them is quite extensive (this research
is briefly summarized in Section 4). 

Interaction between NA molecules and solvent
(water) leads to substantial modification of the struc-
ture of hydrogen bonds in the nearest aqueous environ-
ment of the NA segments. Then, as a result of modifi-
cation of the structure of the hydrogen bonds effective
interaction takes place between the NA segments. The
radius of this interaction does not exceed the character-
istic depth of “penetration” of the hydrogen bond mod-
ification ξ ≤ 50 Å although these scales determine all
the characteristic features of the behavior of the liquid-
crystal NA dispersions. In Section 5 we describe our
model of the formation of liquid-crystal dispersions in
aqueous NA solutions. According to our model, inter-
action between NA and solvent changes the structure of
the hydrogen bonds and the probability of proton tun-
neling along them, leading to interaction between the
NA molecules. In a certain range of system parameters
and external conditions these interactions of an entropic
nature may compete with van der Waals, steric, and elec-
trostatic forces. For a theoretical description of the model
we use a pseudo-spin formalism in which the pair interac-
tion potential is calculated. Finally, the concluding sec-
tion of the study is devoted to a discussion of the main
consequences of our model and the possibilities for
refining and checking it.

2. PROPERTIES OF LIQUID-CRYSTAL 
DISPERSIONS OF NUCLEIC ACIDS

A considerable amount of experimental data has
been accumulated so far on the conditions of formation,
types, and properties of liquid-crystal phases and dis-
persions of nucleic acids [13, 14]. It is well established
that linear, double strand, rigid DNA or RNA mole-
cules of low molecular mass (≤106) form liquid-crystal
phases in concentrated aqueous–polymer or aqueous–
salt solutions. On transition from the isotropic to the
liquid-crystal phases the parameters of the secondary
NA structure change negligibly. In order to obtain liq-
uid-crystal dispersions two conditions need to be satis-
fied: the negative charges of the phosphate groups must
be compensated (using cations of metal salts dissolved
in water) and a sufficient density of macromolecular
segments must be created (using a neutral polymer with
respect to the nucleic acids, such as polyethylene gly-
col). 

According to theoretical estimates and experimental
data [13, 14] positively charged ions and polycations
can screen up to 80% of the positively charge phos-
phate groups of macromolecules, providing the degree
of neutralization needed to compensate for the NA seg-
ments in an aqueous salt solution. Importantly all the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
parameters of the linear secondary structure are con-
served even in a complex (NA macromolecule + cat-
ion). As the polyethylene glycol concentration (or the
molecular mass) varies, the osmotic pressure created by
the polyethylene glycol and consequently the density of
the macromolecular segments also varies.

Instead of the density, we can use the average dis-
tance between the centers of mass of the macromole-
cules R. A liquid-crystal structure forms for R ≤ 50 Å
(for larger R an isotropic solution exists). This type of
structure is identified in particular from the presence of
a high-intensity band in the circular dichroism spec-
trum in the absorption region of nitrous bases (λmax ≈
2600 Å). From the circular dichroism and various other
optical data [3, 13, 14] we can conclude that in the
range 30 Å < R < 50 Å the NA dispersions have a cho-
lesteric structure with an almost constant helix pitch
p = 2.4–2.5 µm whereas for large R a transition takes
place to the isotropic phase. Finally, fairly dense disper-
sions (R < 20 Å) form a hexagonal close-packed crystal
phase (in this case, the circular dichroism band van-
ishes which indicates that the long axes of the mole-
cules exhibit parallel, i.e., nematic, orientation). 

Figure 1 gives the logarithm of the osmotic pressure
Π created by polyethylene glycol as a function of the
average distance R between the nucleic acids for DNA
and RNA. The region of existence of the cholesteric
(denoted by the arrows in the figure) correlates with the
kink on the dependence of logΠ on R.

It is conventionally assumed (for further details see
the following section) that direct interactions between
macromolecules, which are usually considered to be
steric, dispersion, and electrostatic forces, are responsi-
ble for the formation of liquid-crystal dispersions.
However, a detailed analysis of the experimental data
on NA dispersions shows that they are poorly described
in the conventional scheme which thus requires new
components at the least. Below we shall briefly men-

1

2

25
6.0

R, Å
30 35 40 45 50

6.4

6.8

7.2

logè [din /cm2]

Fig. 1. Dependence of the osmotic pressure on the average
distance between NA molecules for DNA (1) and RNA
(2) molecules.
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tion such experimental facts, referring to our special
study on this topic for details [4].

2.1. Cholesteric Phases of DNA and RNA [15]

In the range 30 Å < R < 50 Å rigid segments of the
double strand, right-handed-helix form B-DNA form a
liquid-crystal dispersion. This dispersion is character-
ized by anomalous optical activity which is manifest in
the circular dichroism spectrum as a high-intensity neg-
ative band. The negative sign of the anomalous band
indicates that right-handed helix B-DNA molecules
form liquid crystals with a left twist. However, the rela-
tionship between the sign of the circular dichroism and
the direction of the cholesteric helix is not completely
unique. This is because the dichroism of these systems
is mainly determined by interaction between the light
wave and the π-electrons of base pairs. Thus, the sign
of the circular dichroism reflects the order of the
dipoles of the corresponding electron transitions rather
than the order of the rigid molecular cores. This obser-
vation on the relationship between the sign of the circu-
lar dichroism and the direction of the cholesteric helix
implies strong coupling between the electron dipole
moments and the orientations of planes of base pairs.
This statement also illustrates a common property of all
chiral systems. There are infinitely many parameters
characterizing the chiral breaking of symmetry (in the
same way that an infinite set of spherical harmonics
defines the breaking of spherical symmetry). Various
macroscopic properties of the system can generally
depend on various chiral order parameters. In particu-
lar, the sign of the chirality cannot be determined
uniquely. For example, for the case of purely steric
forces a formula of the type (1) which gives right-
handed cholesteric packing of right-handed helix mol-
ecules is only valid under the condition h ! l (l is the
length of the macromolecular segment). In the case h ≈ l
steric forces produce a left-handed cholesteric helix.1 

If a dispersion of rigid segments (having the same
ratio l/d, where l is the length of the rigid macromolec-
ular segment and d is the diameter) of the right-handed,
double strand A-form of RNA forms under the same
conditions (polyethylene glycol concentration, temper-
ature, type of cations, and so on), a right-handed cho-
lesteric liquid-crystal dispersion is obtained. These
facts are difficult to explain merely in terms of modifi-
cation of the direct interaction between rigid macromo-
lecular segments. At the molecular masses used to form
liquid-crystal dispersions the entire difference between
the B form of DNA and the right-handed double strand
structure of A-RNA can be reduced to the replacement
of a single base, i.e., the replacement of methyluracil
(thymine) by uracil. Under these conditions we can

1 This purely geometric fact is a particular case of the general prop-
erty of chiral objects noted in the review [6] whereby a chiral
object can be continuously converted into its mirror image with-
out being converted into an achiral object along the path (in chiral
order parameter space). 
JOURNAL OF EXPERIMENTAL
only expect a small modification of the direct interparticle
interaction rather than the fundamental rearrangement of
the entire structure observed experimentally [15]. 

2.2. Damage to the Cholesteric Structure by Heating 
and Modification of DNA Molecules [16, 17]

The process of formation of liquid-crystal disper-
sions of DNA as a result of phase exclusion in polymer-
containing solutions is reversible and reproducible.
However, both the sign of the cholesteric helix and the
properties of the cholesteric are very sensitive even to a
small change in the external conditions or modification
of the DNA molecules. For example, it was established
in [16] that the circular dichroism band characteristic of
a cholesteric dispersion formed by DNA segments
150 base pairs long disappears when the system is
heated to temperatures at which [18] no substantial
changes take place in the secondary structure of the
DNA B-form (or other double strand polynucleotides),
the optical and electronic spectra, and other properties
of individual molecules. It is therefore natural to
assume that the direct intermolecular interaction cannot
change substantially. Nevertheless, the structure of the
dispersion changes fundamentally [16]. 

Similarly, it was shown in [17] that in cases of quite
negligible (from the viewpoint of molecular properties)
modification of the DNA molecule (a single change per
102–103 base pairs) the cholesteric helix is destroyed
and nematic ordering occurs.

2.3. Immiscibility of Right-Handed Cholesteric RNA 
Dispersions and Left-Handed DNA Dispersions [4, 13]

For classical low-molecular liquid crystals the mis-
cibility in any proportions of mesophases with their
textures conserved is conventionally used (see, e.g.,
[9]) in the classification of liquid crystal types to assign
them to a single group. If this method is applied to a
mixture of a left-handed cholesteric DNA dispersion
and a right-handed cholesteric RNA dispersion, the for-
mation of a mixed liquid crystal would be predicted. 

For a mixed liquid crystal any property which
depends on the order parameter, such as the circular
dichroism, is determined by minimizing the free energy
of the mixture. We denote the circular dichroism of the
mixture by A and that of the components by A1 and A2,
respectively. As a result of a difference between A and
A1 and A2, the mixed liquid crystal has excess free
energy which can be expressed as follows in the princi-
pal (harmonic) approximation in the sense of the Lan-
dau theory: 

(2)

where x is the mixture concentration, and α1 and α2 are
the phenomenological coefficients of the Landau

∆F
1
2
---α1 1 x–( ) A A1–( )2 1

2
---α2x A A2–( )2

,+=
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Fig. 2. Circular dichroism spectra of NA molecules and dye: (a) dye added to cholesteric phase of dispersion; (b) NA molecules
treated with dye and then the cholesteric phase is obtained. Curve 1, cd = 6.8 × 10–6 M, curve 2, cd = 27.2 × 10–6 M, and curve 3
was obtained after washing out the dye (cd = 0).
expansion of the free energy which generally differ for
both mixture components. 

Minimizing ∆F with respect to A gives the depen-
dence of the circular dichroism of a mixed liquid crys-
tal on the concentration2 

(3)

In order to check equation (2) for a mixed DNA +
RNA dispersion the authors of [4] determined the com-
pensation point A(x) = 0 (we note that the signs of A2
and A1 differ) and then (at this point in terms of concen-
tration) formed polymer chelate crosslinks (bridges)
between the molecules. The corresponding bridges
have a molecular mass considerably lower than the
molecular mass of the DNA or RNA segments. In addi-
tion, the concentration of these bridges is low. Thus, for
a mixed liquid crystal it should be predicted that the
compensation point does not change as a result of this
chemical cross-linking, i.e., A(x) = 0. However, the
experiment [4] contradicts this, showing that as a result
of cross-linking we have A(x) ≠ 0. The only possible
consistent description of this result (see [4]) dictates the
conclusion that left- and right-handed cholesteric dis-
persions of DNA and RNA do not mix, i.e. the DNA
and RNA molecules form independent liquid crystals.

2.4. Circular Dichroism Band of Dyes
in Nucleic Acid Dispersions [4, 19]

Extremely important information on the structure of
cholesteric dispersions can also be obtained by study-
ing the circular dichroism of dye molecules incorpo-

2 We note that the trivial linear dependence A(x) = A1(1 – x) + A2x
is only obtained from (2) in the particular case α1 = α2.

A x( )
α2A2x α1A1 1 x–( )+

1 x–( )α1 xα2+
---------------------------------------------------.=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
rated into the nuclei acid molecules by some method.
Such investigations were reported in [4, 19] using two
types of dye: daunomycin (D) and mitoxanthrone (M).

If the dye molecules are added directly to a choles-
teric dispersion formed from double strand DNA mole-
cules, i.e. a complex (DNA–dye) is formed, two bands
appear in the circular dichroism spectrum of the choles-
teric dispersion. One of these lies in the DNA absorp-
tion band, the other lies in the absorption band of the
dye. Both bands have the same negative signs which
corresponds to the incorporation (intercalation) of dye
molecules between nucleic acid base pairs. 

If these dyes are added to linear double strand DNA
molecules and then a cholesteric phase is formed from
the DNA–dye complexes as a result of phase exclusion,
the results are different. When molecules of dye D are
added, there is a critical concentration  at which the
signs of the bands in the circular dichroism spectrum
lying in the absorption regions of the DNA and the dye
undergo an abrupt inversion, i.e., two positive bands
appear in the circular dichroism spectra, not negative
bands as in the first case. However, if the dye is
“washed out” of the DNA–dye complex in the choles-
teric dispersion thus formed [by adding a surface-active
agent such as sodium dodecyl sulfate (SDS)], the band
corresponding to the dye disappears in the circular
dichroism spectrum although the band in the DNA
absorption region remains unchanged, i.e., keeps its
positive sign. This result shows that both “classical”
cholesteric dispersions having a negative band in the
circular dichroism spectrum and dispersions having a
positive band can be formed from the same DNA
molecules. Figure 2 shows circular dichroism spectra
of NA dispersions treated with a dye: adding the dye to
the cholesteric phase (Fig. 2a, two negative circular
dichroism bands are observed) and adding the dye to

cd*
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the isotropic phase (Fig. 2b). Curve 3 was obtained
after washing out the dye. The circular dichroism band
is then absent and the intrinsic NA band remains posi-
tive.

It should also be stated that this effect is only
observed for dye D and its analogs, not for dye M. Dye
M induces no inversion of the band in the circular
dichroism spectrum of cholesteric DNA dispersions
under any conditions and, other conditions being equal,
the absorption band of this dye only retains the negative
band. However, if dye M is added to a cholesteric DNA
dispersion “inverted” by the addition of dye D, the
appearance of a positive band may also be observed in
the absorption band of dye M. This result shows once
again that two different types of cholesteric DNA dis-
persions may be obtained depending on the method of
formation. These results indicate that the behavior
exhibits unique hysteresis which is consistent with the
possibility of a first-order cholesteric–nematic confor-
mational phase transition in DNA dispersions dis-
cussed in Section 5.

Summarizing the experimental data presented in
this section we can state that the properties of liquid-
crystal NA dispersions differ substantially from the
properties of classical low-molecular liquid crystals. This
difference suggests that the formation of structure of NA
dispersions depend on some additional component of the
system which is not significant (or plays a passive, auxil-
iary role) in low-molecular liquid crystals. 

3. CONVENTIONAL DESCRIPTION 
OF CHOLESTERIC ORDERING

Any systematic theory of condensed structures
formed by rigid segments of NA molecules (as in the
theory of any liquid or liquid-crystal phases) can only
be constructed numerically using direct ab initio quan-
tum-mechanical calculations of atom–atom potentials.
Quite clearly, these calculations are laborious and, even
with the latest supercomputers, can only be made for a
relatively small (for macroscopic condensed systems)
number of particles (several thousand). In addition, it is
difficult to use the results of calculations made for spe-
cific values of the parameters to analyze the behavior of
the system when these parameters vary and in any case,
these calculations are, so to speak, too detailed if we are
interested in qualitative behavioral characteristics
(which are important for numerous physical and bio-
physical applications of condensed NA structures). 

However, there is an approach which has proved
successful in the theory of low-molecular liquid crys-
tals in which the liquid crystal structure is determined
in the mean field approximation by competition
between dispersive (van der Waals) attraction and steric
repulsion. These contributions dominate in cholesteric
liquid crystals, although in this case in order to deter-
mine the pitch of the cholesteric helix we need to allow
for the first nonvanishing contribution to the expansion
JOURNAL OF EXPERIMENTAL
of the pair interaction energy in terms of multipole
moment in chiral systems, i.e., dipole–quadrupole
interaction [20].

These types of interactions clearly play a dominant
role in the structures of condensed phases formed by
rigid segments of NA molecules. However, in the case
of DNA molecules the existence of nonuniformly dis-
tributed charges of phosphate groups and condensed
counterions leads to additional anisotropic interactions
of an electrostatic nature (see, for example [7]). In [11]
the authors also considered the contribution of dipole–
dipole forces which in cases of helix ordering of the
dipole moments can also lead to cholesteric ordering of
the molecules.

In any case, the complete pair interaction of two
rigid segments of NA molecules is usually described in
a fairly local approximation as follows:

(4)

where r12 is the distance between the centers of mass of
molecules 1 and 2, ϕ12 is the angle between the long
axes of the molecules (as is usually the case in mean
field theory for cholesterics [9], we assume that mole-
cules 1 and 2 lie in parallel quasi-nematic planes). 

The functions J12 and I12 depend on the main types
of forces acting between molecules 1 and 2. For exam-
ple, when van der Waals interactions predominate we

have J12 ∝  1/ ; I12 ∝  1/ , and for electrostatic inter-

actions J12 ∝  1/ ; I12 ∝  1/ . In the more general
case, interaction between multipoles of the same polar-
ity always leads to an even function of the angle ϕ12
whereas multipoles of different parity (i.e., chiral inter-
action) lead to an odd function of ϕ12. Thus, the formal
multipole expansion of the pair interaction has the form

(5)

For a macroscopic description of the structure we
need to find the molecular distribution function (when
only the orientational order of the condensed phases is
being analyzed this is the orientational distribution
function f(ϕ)). In the mean-field approximation this
distribution function can be obtained by minimizing the
free energy, which has the standard form

(6)

where T is the temperature, ρ is the density, F0 is the
component of the free energy of the isotropic phase
which does not depend on the orientational order, the

V12 r12 ϕ12,( ) J12 r12( ) 2ϕ12( )cos=

+ I12 r12( ) 2ϕ12( ),sin

r12
6

r12
7

r12
4

r12
5

V12 V0 r12( )= J2m r12( ) 2mϕ12( )cos[
m 1=

∞

∑+

+ I2m r12( ) 2mϕ12( )sin ] .

F F0 ρT f ϕ( ) f ϕ( )ln ϕd∫+=

+
1
2
---ρ2

f ϕ1( ) f ϕ2( )V12 r1d r2d ϕ1d ϕ2,d∫
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second term in (6) allows for a reduction in the entropy
of the system as a result of the orientational order; the
last term is associated with direct pair interaction
between the macromolecular segments, and this pair
interaction V12 is defined by expressions (1) or (2).

This procedure for I12 ≠ 0 (or I2m ≠ 0) leads to cho-
lesteric twisting of the structure for any system densi-
ties [i.e., any (r12)] and was discussed in detail in the lit-
erature (see, for example, [7, 9, 11, 20]). Some very
serious practical and fundamental theoretical claims
can be put forward for this procedure. For low-molecu-
lar systems using a certain number of unknown (phe-
nomenological) parameters the mean-field theory put
forward above can fairly accurately describe the exper-
imental data, for example, the dependence of the helix
pitch on the temperature or concentration of chiral
impurities. However, the number of fitting parameters
of the theory is by no means small (four or five) and,
worse still, for various types of experimental data it is
sometimes necessary to use a completely different set
of fitting parameters. For condensed NA phases even
this fitting of the experimental data (see previous sec-
tion) is not feasible with a natural choice of fitting
parameters. The theoretical basis of the multipole
expansion (1) or (2) also has serious shortcomings
since it assume that the intermolecular distances r12 are
much larger than the characteristic size of the mole-
cules (d2l)1/3 (d is the diameter and l the length) which
is not satisfied in most real condensed phases.

We also note that in the approach described above
the solvent participates fairly passively and specifically
as a carrier of electrostatic or dispersive interactions
although even in this simplified model, anomalous
compensation of the chirality by the solvent may occur
subject to the condition [12]

(7)

where εm is the permittivity of the solvent, and εl and εt

are the longitudinal and transverse permittivities of the
interacting chiral and anisotropic molecules.

The condition (7) clearly cannot be satisfied at arbi-
trary frequencies and thus the sign of the chirality can
only change (and go to zero) if equation (7) is satisfied
at frequencies which make the main contribution to the
dispersion forces (for example, near the fundamental
absorption band of the NA and solvent molecules in the
infrared) and if, in addition, all three permittivities
depend weakly on frequency in this region. If this is not
the case, in this theory the solvent plays no significant
role in the intermolecular reactions responsible for the
formation of liquid-crystal order in the NA condensed
phase.

Interaction between NA molecules associated with
fluctuations of their profile is also discussed in some
studies (see, for example [21]). However, this interac-
tion can only be significant for fairly long NA mole-
cules when l is considerably greater than the persistent
length.

εm εlεt,=
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4. INFLUENCE OF NUCLEIC ACID MOLECULES 
ON PROPERTIES OF SURROUNDING WATER

The literature contains numerous data which indi-
cate that on small scales (≤50 Å) the solvent around NA
molecules (usually an aqueous salt) is in many respects
a structured system [22–24]. We know [25] for exam-
ple, that when ice melts no more than 15% of the hydro-
gen bonds are broken. This structure occurs as a result
of the presence of a network of hydrogen bonds in the
water whose molecules interact with base pairs of NA
segments and phosphate groups. Below we present
experimental data which suggest that the packing of
NA molecules during the formation of liquid-crystal
dispersions is related to the properties of the water mol-
ecules situated between NA molecules which converge
during the phase separation process. 

The role of water in the stabilization and “reflec-
tion” of the structure and conformation of nucleic acids
has been the subject of study and discussion for some
time [22, 26]. We know that water molecules forming
hydrogen bonds with NA molecules form a hydrate
shell around the latter, which has a complex structure.
It was shown in [27, 28] that the hydration schemes of
RNA and DNA molecules differ substantially. From
this it follows that when the interaction of nucleic acids
with the solvent is taken into account, the difference
between the liquid-crystal dispersions of DNA and
RNA noted in Section 2 does not appear absolutely
inexplicable. The difference between the structure of
the hydrate shells of the A form of RNA and the B form
of DNA is particularly noticeable near the narrow
groove of the NA molecule where the 2'-hydroxyl
group is positioned in A-RNA [27, 28].

Quantum-chemical calculations [29] show that the
first hydration shell of water around NA molecules con-
sists of 10–11 water molecules per NA monomer. The
next 8–9 water molecules have different infrared spec-
troscopic characteristics from water molecules in the
first hydration shell and from normal bulk liquid water.
Direct quantum-chemical calculations [30] qualita-
tively confirm the spectroscopic data. It follows from
these calculations that around 20 water molecules form
a layer filling the so-called main groove of the double
strand DNA molecule. The water molecules in this
layer as it were screen the polar groups of base pairs
entering the main groove in the ratio of approximately
one “localized” water molecule per base pair. The water
molecules in the next hydration shells form hydrogen
bridges with the first shell although the orientation of
these hydrogen bonds is more or less random.

Consequently, the relative influence of the solvation
water and the NA molecules extends to scales which
depend very much on the property being considered. If
the orientation order of the hydrogen bonds does not
penetrate more than a few angstroms into the bulk, the
correlation length characterizing the NA-induced
change in the frequency of proton tunneling along the
SICS      Vol. 91      No. 4      2000
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system of hydrogen bonds may exceed 102 Å. Note that
a similar trend has been thoroughly investigated in
numerous studies of the spectra of the so-called disjoin-
ing pressure in thin water films (see, e.g., the review
[31] and the literature cited there). Numerical modeling
of the behavior of water in porous matrices [32] also
indicates that the properties of water are modified sub-
stantially in small volumes. For example, under certain
conditions (degree of hydration, temperature, and pore
size) the dynamic structure factor of water in small
pores is similar to that for supercooled liquids near the
glass phase transition [32], for example, a so-called
boson peak is observed. Since the characteristic pore
sizes discussed in [32] are of the order of the typical
intermolecular distances for NA dispersions similar
“glass” behavior of water may be envisaged in disper-
sions.

An important characteristic of our case (liquid-crys-
tal NA dispersions) is that unlike the generally uniform
and smooth surfaces used to study the properties of
water in thin planar capillaries, the surface of a rigid
NA segment of the order of 150 base pairs long is fun-
damentally heterogeneous because of its very structure.
The heterogeneity of the macromolecules leads to non-
uniform binding of water molecules with base pairs
(and thus leads to a nonuniform change in the proton
tunneling energy, which is in fact a source of anisotro-
pic interaction forces which strongly influence the
structure of the liquid-crystal dispersion). Quantum-
chemical calculations and spectroscopic experimental
data can be used to estimate the binding energy of a
water molecule with various NA groups. For example,
it is stated in [33] that a water molecule may be bound
with two neighboring base pairs simultaneously (e.g.,
with an N7 atom and NH2 group of adenine, with an O2
atom and NH group of thymine, and with N7 and O6 or
N3 atoms and an NH2 group of guanine). The highest
binding energy (−12.6 kcal/mol) is obtained for N7 and
O6 atoms of guanine, and the weakest binding is between
water and thymine (−9.5 kcal/mol). These energies nev-
ertheless exceed the characteristic scales of intermolec-
ular interaction in bulk water (6.7 kcal/mol).

Thus, to summarize the experimental observations
listed in this section we can conclude that on scales
between 10 Å and 50 Å the properties of water around
NA molecules differ substantially from the bulk prop-
erties. On the smallest scale (up to 10 Å) a relatively
stable (static) network of hydrogen bonds appears in
the water. On larger scales (up to 50 Å) the network of
hydrogen bonds is more mobile although the nature of
the proton tunneling still differs from the bulk process.
The properties of the NA hydrate shells are influenced
by various factors (which from the point of view of the
secondary structure of these nucleic acids are relatively
weak) listed in Section 2.

A specific feature of the dispersion of nucleic acids
is the presence of an aqueous solvent. It is well known
(see, e.g., [34]) that for NA molecules at short distances
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so-called hydration forces play an important role.
These forces decay exponentially with distance. The
corresponding characteristic length λh for DNA under
natural conditions is of the order of a few angstroms.3

However, the detailed nature of these forces is not very
clear. In any case, it is assumed that pure entropy effects
will make a substantial contribution to the hydration
forces. Water molecules ordered in some way around
the surface of NA molecules have a lower entropy than
the water surrounding (at large distances from the sur-
face) interacting molecules. This separation of water
molecules into internal and external relative to the
interacting surfaces is only unique for the geometry of
a planar capillary or film. For a liquid-crystal NA dis-
persion the separation of water molecules into external
and internal has a quite different meaning. We also note
that water molecules have fairly large dipole moments.
Hence the short-range hydration interactions under
conditions where the structure of the hydrogen bonds is
frozen-in to a certain extent can be modified by long-
range dipole–dipole forces.

It is important to note that the total entropy of a sys-
tem consisting of NA molecules, water, and salt ions
increases as the average distance between the NA mol-
ecules decreases (the density increases) [21, 34]. At the
same time, the degree of order of rigid segments of NA
molecules can only increase under compression. Simi-
larly the degree of adsorption of counterions on NA
molecules increases as the system is compressed. Con-
sequently both macromolecules and counterions make
a negative contribution to the total entropy and thus the
only component of the system that can increase the
entropy of the system is water.

In order to describe this contribution theoretically
we recall that in accordance with the experimental data
noted in this section, the first few shells of water sur-
rounding the NA molecules differ substantially from
the more distant shells. On the basis of these data we
can assume that the nearer (internal) water first pos-
sesses a certain order (or more accurately frozen-in
property) in the orientations of the hydrogen bonds
which lowers its entropy and second proton tunneling
along these hydrogen bonds in the nearer water is pos-
sibly made easier and in this case, the proton distribu-
tion becomes more uniform, thus increasing the
entropy. The total effect can, in principle, have any
sign.

The estimates made in [34] give an excess entropy con-
tribution to the free energy of the order of 0.3 kcal/mol
under normal conditions and at room temperature,

3 In fact there are two different ranges of parameters. At short dis-
tances (between 3 and 7 Å) the repulsion forces increase expo-
nentially with decreasing water concentration (dehydration) or,
which is equivalent, the average intermolecular distance with the
characteristic length λh ≈ 3 Å. At larger distances between inter-
acting molecules λh ≈ 6 Å such an exponential dependence on
distance occurs, for example, as a result of screening of Coulomb
and van der Waals interactions by counterions.
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which is substantially lower than the characteristic
energy of the hydrogen bond in bulk water although
summation over all molecules in the nearest neighbor-
hood to the NA molecules may give an appreciable
effect. In the following section we describe a simple
model which allows for this change in the probability
of proton tunneling and we propose a formalism which
can be used to calculate the entropy interaction of rigid
NA segments which occurs as a result of modification
of the network of hydrogen bonds and as a result of pro-
ton tunneling in this structure.

5. MODEL OF PSEUDOSPIN INTERACTION 
OF NUCLEIC ACID MOLECULES

Using a method first developed by Blinc [35], each
hydrogen bond can be set in correspondence with a

two-level system, i.e., the pseudospin  such that

(8)

where the z-axis is directed along the bond, and ±ε/2 is
the proton energy in two of its possible states relative to
the oxygen ions of water and the vector of state |µ〉
determines the wave function of the two-level system.
If in the immediate vicinity of the NA segments we
have a specific structure of hydrogen bonds of water,
this implies that we have a certain graph (network) hav-

ing the pseudospin operators  defined at the vertices,
where i is the number of the vertex and α is the projec-
tion of the pseudospin on the local reference axis in the
vertex i (i.e., α = x, y, z). Consequently in this case the
solvent is not a passive carrier of interaction between
molecules but has an intrinsic structure and internal
degrees of freedom. In order to describe this structure
in space we can introduce a local Frenet reference point
at each point, i.e., three orthonormalized vectors vj (or
the matrix Xij = (vi)j). The topology of this network,
which resembles the structure of the hydrogen bonds of
ice, is consistent with the Bernal–Fowler rules [25], and
specifically: (1) there are two protons in the vicinity of
each oxygen atom; (2) each proton may be associated
with a single hydrogen bond. 

Segments of nucleic acids positioned in this net-
work Xij cause unavoidable deformation which then
influences the surrounding molecules leading to their
effective anisotropic interaction. 

Thus, taking into account the experimental data pre-
sented in the previous section we can confirm that in water
shells “nearer” to the NA molecules there is a relatively
stable network of hydrogen bonds, in which the orienta-
tional correlations decrease exponentially (exp(–r/λ0))
with distance, and pseudospin ordering which also
decreases exponentially with distance ∝ exp(–r/λs) where

Ŝ

S
z µ| 〉 ε

2
--- µ| 〉 ,±=

Si
α
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the corresponding pseudospin length λs may exceed λ0
several times.4 

The assumptions put forward above on the network
of hydrogen bonds surrounding the NA molecules can
be reformulated using a simple phenomenological
model. We shall first consider the region of scales of the
order λ0 where orientational ordering of the hydrogen
bonds occurs. A DNA or RNA molecule is chiral so that
the orientation of the network of hydrogen bonds
induced by this molecule may have a specific degree of
chirality, i.e., twist. However, twisting of the network of
hydrogen bonds leads to deformation energy. Thus, at
distances of the order of λ0, competition occurs
between the NA-induced chirality and the deformation
of the bond network. The induced chirality gives the
following contribution to the system energy:

(9)

where ωij is the skew-symmetric twist matrix of the
local reference frame vi of the network of hydrogen

bonds (see, e.g., [36]),  is the equilibrium twist
matched with the chiral NA molecules, and αch is a phe-
nomenological coefficient which determines the chiral-
ity of the network of hydrogen bonds induced by the
hydration forces (in accordance with the experimental
data discussed above this coefficient depends on the
average intermolecular distance R in the dispersion
according to the law exp(–R/λh)).

At the same time, the nonuniform distribution of the
local reference frame orientations in the network of
hydrogen bonds may lead to elastic deformation of the
latter:

(10)

where (having in mind the qualitative nature of the
model) we assumed elastic isotropy of the network of
hydrogen bonds and the elastic modulus αel depends on
R as does αch. 

The two expressions (9) and (10) may be simplified
still further if we assume that the twist only changes
substantially in one direction linking the centers of
mass of the molecules. In this case, the twist matrix is
reduced to the angle of rotation θ about this direction.
Then the energies (9) and (10) reduce to

(11)

(the z-axis is selected in the direction indicated above).
The equilibrium angle of twist θ0 induced by the NA

4 Note that the correlation lengths λ0 and λs of the pseudospin
order generally differ from the characteristic scales of decrease of
the hydration forces λh discussed in the previous section.
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molecules should depend on z according to the “choles-
teric” law [9]:

(12)

(q0 is the NA-induced wave vector of the twist modula-
tion; it is natural to assume that q0 is related to the helix
pitch h of the secondary structure of the NA molecules,
i.e., q0 ~ 1/h).

A simple procedure for minimizing the energy (11)
under the condition (12) gives the criterion for the
absence of twist:5 

(13)

In the opposite case (αch > 2αel ) the network of
hydrogen bonds becomes chiral and may then induce
cholesteric ordering of the NA molecules. This induced
ordering may enhance the “bare” cholesteric order
associated with direct interactions between NA mole-
cules (steric, van der Waals, and electrostatic) and may
attenuate it. 

We considered the region of scales where R ≤ λ0. On
large scales λs ≥ R > λ0 the elasticity of the network of
hydrogen bonds αel and the induced chirality αch may
be neglected. Thus, at these distances there is no mean-
field effective interaction between NA segments occur-
ring as a result of deformation of the network of hydro-
gen bonds. Nevertheless (as we noted in Section 4) on
these scales the properties of the water surrounding the
NA molecule are modified substantially and specifically,
the frequency of proton tunneling along the hydrogen
bonds and in consequence, the tunnel splitting energy ε
which appears in Eq. (8) in the pseudospin representa-
tion of the hydrogen bonds, are modified. 

As we know [37, 38] in the pseudospin formalism
the system of hydrogen bonds of water may be repre-
sented by a Hamiltonian having the following form:

(14)

In terms of its physical meaning the x-component of the
pseudospin defines the dipole moment operator, the
y-component determines the local current operator, and
the x-component determines the tunneling operator.
The coefficients of the pseudospin Hamiltonian (14)
are expressed in terms of the proton tunneling energy
along a particular hydrogen bond (numbered l) and the
matrix elements of the proton interaction at neighbor-
ing hydrogen bonds, the operators Sx, Sy, Sz possess the

5 Note that even in the absence of any twist of the network, the
chirality of the system leads to different energies of excitation of
the fluctuations of different directions of twist, i.e., the fluctuation
interaction remains chiral even in an achiral structure.
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commutation relationships of Pauli matrices and for
solid ferroelectrics for which the pseudospin formalism
is also used [37] we usually have Ω > J1 > J2 ~ J3. How-
ever, for water (and in particular for the “nearer” water
surrounding the NA molecules) this relationship between
the parameters of the Hamiltonian is not proven and thus
we retained all the terms in (14).

The next important step is to allow for interaction
between the pseudospin system and the NA molecules.
We shall consider two molecules having centers of
mass at points r1 and r2. Then as a result of interaction
between these molecules and the nearer water the fol-
lowing terms are added to the Hamiltonian (14)

(15)

Here δJj is the change in the corresponding parameters
of the pseudospin Hamiltonian (14) describing modifi-
cation of the tunneling in hydrogen bonds as a result of
interaction between molecules of the nearer water and
segments of NA molecules. By calculating the partition
functions of a system with the Hamiltonian (14) and
(15) using some approximation, we can find the contri-
bution to the free energy which depends on the difference
between the coordinates of the NA molecules r1 – r2,
which has the meaning of the effective interaction
between macromolecules produced by a change in the
proton tunneling energy in the nearer water surround-
ing the macromolecules. However, bearing in mind the
qualitative and highly approximate nature of our
model, we express the final answer to within a numeri-
cal factor:

(16)

Here R = |r1 – r2| is the distance between the centers of
mass of rigid segments of NA molecules, l is the length
of a segment of NA molecule, and ϕ is the angle
between the long axes of the segments.

The physical meaning of Eq. (16) is fairly clear.
This is in fact a reduction in the entropy of the gas of
pseudospin excitations in the nearer water surrounding
the NA molecules. 

Summing all the interactions taking place between
NA molecules in an aqueous–salt solution and bearing
in mind the actual smallness of the angle of relative
rotation of the long axes of the molecules, we can
express the total pair potential in the following form:

(17)
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Here v0(R) is the isotropic part of the pair interaction,
v1(R) is the anisotropic achiral part which occurs as a
result of conventional (van der Waals, electrostatic, and
steric) forces, v1(R) decreases according to a power law
(∝ R–n) with the intermolecular distance R, and the
anisotropic anharmonic chiral contribution to the
energy v2(R) has a similar nature (and dependence on R).
The negative achiral contribution ∝ U1(R) occurs as a
result of entropy hydration forces (16) and thus
decreases exponentially with R and the following term
of the expansion in terms of ϕ from (17) proportional to
U2(R) exhibits similar behavior. Finally, the chiral
interaction ∝ Γ(R) is associated with the mean-field
deformation of the orientation of the network of hydro-
gen bonds in the nearer water. The function Γ(R) [and
also U1(R) and U2(R)] decrease exponentially with
increasing R. 

In principle, we can analyze the complete phase dia-
gram of the system obtained by minimizing the poten-
tial (17). However, this type of detailed study is hardly
justified at the present time since the theory includes
too many unknown parameters [a minimum of 12 since
we should define the potential amplitude and exponent
or exponential function for each of the contributions
appearing in (17)]. However, we note that in our model
[the potential (17)] all the unusual (with respect to clas-
sical liquid crystals) properties of liquid-crystal NA
dispersions described in the previous sections are given
a qualitatively natural description. For this we need to
add to the conventional theories of liquid-crystal order
two new ingredients associated with the properties of
an aqueous–salt solvent: these are the chiral mean-field
interaction which is caused by deformation of the net-
work of hydrogen bonds and also the entropy contribu-
tion from pseudospin excitations which occur in the
water nearer to the macromolecules as a result of mod-
ification of the proton tunneling energy along the
hydrogen bonds. We also note that the energy (17) con-
tains a contribution proportional to ϕ3 which may cor-
respond to a first-order conformational phase transition
(which is manifest in particular in the conformational
hysteresis described in Section 2).

6. CONCLUSIONS

The main result of our study is the conclusion that
an analysis of the entire combination of available
experimental data and quantum-chemical calculations
for NA dispersions shows that the aqueous–salt solvent
plays an important role in the formation and properties
of the solvent. A new model is proposed for the interac-
tion of NA segments which allows for a change in the
particular structure of the hydrogen bonds of the sol-
vent in the presence of NA molecules. We used this
model to derive the pair interaction potential (17) with
which we can describe the complete set of experimental
data known for aqueous–salt NA dispersions.
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The principal new element of our theory is that (17)
allows for entropy and orientational interactions
between macromolecules in a gas of pseudospin excita-
tions [terms containing the coefficients U1(R), U2(R),
and Γ(R) in (17)]. It is important to note that the qua-
dratic contribution with respect to the angle made to the
energy by the pseudospin excitations is negative, which
leads to relative rotation of the long axes of the NA
molecules (i.e., ϕ ≠ 0) in neighboring quasi-nematic
layers.

Consequently, allowance for modification of the
solvent properties in the presence of NA molecules
yields a fundamentally new picture of the formation of
liquid-crystal NA dispersions. In our scheme the
appearance of cholesteric ordering is associated with a
phase transition between ϕ ≠ 0 and ϕ = 0 states of the
system which takes place at those densities for which 

(18)

It is interesting to note that fairly rough estimates
using Eq. (16) allowing for dipole–dipole forces for
v1(R) give the value R ~ 20 Å from (18) which is con-
sistent with the experimental data on the disappearance
of cholesteric ordering at short distances.

Another scenario simulating the same nematic
behavior of the structure has clearly not been elimi-
nated. This is that, as the density of the dispersion
increases, solidification of the dispersion must occur at
fairly short distances (R ≤ 20 Å) which is incompatible
with the cholesteric twist of the molecules (since ϕ ≠ 0
creates twist deformation which increases proportion-
ately as the fourth power of the system size [36]).

However, if this solidification transition is merely a
weak first-order transition, there should be an apprecia-
ble region of pre-transition fluctuation phenomena
which lead to an increase in the pitch of the cholesteric
helix (similar effects are known for a cholesteric–smec-
tic phase transition, see, e.g., [9]).

It is easy to understand that this fluctuation contri-
bution to the pitch of the cholesteric helix should be
proportional to the correlation length for a phase tran-
sition involving partial or complete solidification and
consequently in the mean field approximation we have 

(19)

Here p0 is the pitch of the cholesteric helix outside the
fluctuation region, i.e., for R – Rc @ Rc where Rc is the
critical intermolecular distance at which the dispersion
solidifies. Bearing in mind the highly anisotropic form
of the rigid segments of nucleic acid molecules (d ≈ 20 Å,
l ≈ 500 Å), we can naturally expect partial rather than
complete solidification of the cholesteric dispersion
accompanied by the formation of a so-called discotic
liquid crystal, i.e., a system which is liquid in the direc-
tion of preferential orientation of the long axes of the
macromolecules and is characterized by a two-dimen-
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sional hexagonal lattice in the perpendicular plane. The
possibility of a phase transition to the discotic rather
than the solid phase is also indicated by the absence of
higher Bragg reflections in experiments [3] and by the
conservation of appreciable fluidity in the dispersion
even at R ≈ 20 Å.6 

If as a result of a fluctuation increase the helix
pitch (19) exceeds the size of the system before a cho-
lesteric–nematic phase transition takes place according
to the estimate (18), at this point the anomalous circular
dichroism band interpreted experimentally as a choles-
teric–nematic transition will disappear. 

In principle we can hope that both scenarios for
vanishing circular dichroism [as a result of a choles-
teric–nematic phase transition (18) induced by hydra-
tion forces or as a result of a fluctuation increase in the
pitch of the cholesteric helix (19)] can be distinguished
experimentally. For a direct cholesteric–nematic phase
transition the corresponding mean-field index of the pre-
transition untwisting of the cholesteric is 0.5 whereas
the fluctuation contribution (19) gives a faster increase
in pitch (the index is 1.5). Unfortunately, the available
experimental data cannot be used for a quantitative
comparison with these theoretical predictions because
the accessible range of variation of the NA concentra-
tion is less than one order of magnitude (see, e.g., [40])
where the authors discussed the possibility of fluctua-
tion untwisting of the cholesteric dispersion of NA dur-
ing complete solidification, i.e., a cholesteric–crystal
phase transition). The dependence of the helix pitch on
the length l of the rigid NA segments can also be
checked. A theory based only on direct electrostatic
interactions in accordance with [7] for an equilibrium
angle between neighboring quasi-nematic layers gives
ϕeq ∝  1/l whereas our entropy fluctuation effects asso-
ciated with water [see Eqs. (16), (17)] give the depen-
dence ϕeq ∝  1/l2. 
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