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Abstract—The excitation and propagation of acoustic waves along curvilinear boundaries between two media
are investigated. Formal high-frequency asymptotic expressions practicable for approximate calculations in the
case of media with slightly different velocities are derived. Dispersion equations and wave excitation coeffi-
cients at weak-contrast boundaries are investigated numerically. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

High-frequency asymptotic expansions are practica-
ble for efficient calculations of acoustic fields. In calcu-
lations, the common practice consists in keeping only
the highest-order term of an asymptotic expansion (see,
e.g., [1]). However, the accuracy of such approximate
formulas may appear inadequate for some specific
parameter values. In particular, the asymptotic formula
for a wave concentrated near a curvilinear boundary
separating two media includes, along with the fre-
quency, a parameter proportional to the difference of
sound velocities. For media with slightly different
sound velocities, the standard asymptotic formulas may
appear inappropriate for determining the acoustic
fields. In this case, other approximate formulas with
wider range of applicability are required. The new
approximate formulas can be constructed in the form of
asymptotic expansions in two (or more) parameters.

This paper considers waves concentrated near a cur-
vilinear interface between two media. For these waves,
such an additional parameter is the difference between
the wave slownesses in the contacting media. Depend-
ing on the relationship between the parameters, one can
distinguish cases of strong contrast and weak contrast.
In the first case, two types of waves can be revealed.
The waves of the first type resemble creeping waves
traveling along the convex side of the boundary, and the
waves of the second type behave as whispering gallery
waves traveling along the concave side. Both types of
waves are adequately described by standard asymptotic
expansions. In the case of weak contrast, waves of a
mixed type are formed. They satisfy a more compli-
cated dispersion relation. New approximate formulas
are derived for describing these waves. These formulas
proved to be asymptotically uniform in the parameter
characterizing the contrast of the media.

The first part of this paper repeats the results
obtained earlier [2]. The second part considers the exci-
tation of waves traveling along the boundary between
two media by the ray field incident on the boundary.
First, the excitation coefficients of the waves of the first
1063-7710/04/5004- $26.00 © 20363
type are calculated for the case of a strong contrast.
Then, the wave excitation at a weak-contrast boundary
is considered and, proceeding to the asymptotic limit of
a strong contrast, the excitation coefficients of the
waves of the second type are determined. If the sound
velocity in the medium on the concave side of the
boundary exceeds the velocity in the medium on the
convex side, the approximate formulas allow sewing
together with the asymptotic expansion for the head
wave of the refraction type, which was obtained earlier
[3]. For the case of an inverse relationship between the
velocities in the media, the effect of the exponentially
weak tunneling of the incident wave into the whisper-
ing gallery waves is revealed. In the final part of the
paper, results of a numerical analysis of the dispersion
equation for waves of the mixed type are presented and
the excitation coefficients of such waves are calculated.

2. STATEMENT OF THE PROBLEM

Let a smooth surface S be the interface between two
acoustic media Ω1 and Ω2. We assume that medium Ω2
is convex and that the sound velocities are constant in
both media. Without a loss of generality, we can con-
sider the velocity in the first medium to be equal to
unity. Let us introduce a piecewise constant slowness
by the formula

The stationary wave field (factor exp(–iωt) is omitted
everywhere) satisfies the Helmholtz equations

N r( )
1, r Ω1,∈
N , r Ω2.∈




=

∆u r( ) ω2u r( )+ 0, r Ω1,∈=

∆u r( ) ω2N2u r( )+ 0, r Ω2.∈=
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At the boundary S, the field satisfies the continuity con-
ditions for pressure and normal displacements:

(2.1)

Here, n is the normal to the boundary and κ is the den-
sity ratio of the acoustic media.

We search for waves concentrated near the surface S
and satisfying the radiation condition at infinity.

Two types of waves can be expected to propagate
along the boundary. Waves of the first type travel along
the boundary with a wave number ω and, within the
region Ω1, they resemble creeping waves. We represent
them in the form of the formal asymptotic expansion

(2.2)

Here, we introduced geodesic coordinates (s, α, n), so
that s is the arc length of the geodesic line at the bound-
ary S, and performed the extension of the normal

(2.3)

The exponent q determines the extension of the normal
in the region Ω2 and, as will be shown below, its mag-
nitude depends on the asymptotic order of the differ-
ence N – 1.

Waves of the second type are mainly concentrated in
the region Ω2, and their wave number is ωN. We repre-
sent these waves in the form of the formal expansion

(2.4)

where the extension of the normal is performed accord-
ing to the formula

The procedure for determining the functions ϕ and
Uj consists of a substitution of the expansions into the
Helmholtz equations and boundary conditions (2.1),
after which the terms of the same orders in the large
parameter are equated. We restrict our consideration to
the highest terms of asymptotic expansions (2.2) and
(2.4).

3. STRONG CONTRAST

Knowledge of the asymptotic order of the quantity
N – 1 is important for constructing asymptotic expan-
sions (2.2) and (2.4). First, we assume that N – 1 =
O(1).

u
n +0→
lim u, ∂u

∂n
------

n +0→
lim

n 0–→
lim κ ∂u

∂n
------

n 0–→
lim .= =

u = iωs iω1/3ϕ s α,( )+( ) U j s ν1 α, ,( )ω j /3– .
j 0=

∞

∑exp

ν1

ω2/3n, n 0,>

ωqn, n 0.<



=

u i ωN( )s i ωN( )1/3ϕ s α,( )+( )exp=

× U j s ν2 α, ,( ) ωN( ) j /3– ,
j 0=

∞

∑

ν2

ωN( )qn, n 0,>

ωN( )2/3n, n 0.<



=

Consider the waves of the first type. Substituting
expansion (2.2) in the Helmholtz equation for the
region Ω1 and equating the coefficients multiplying
equal powers of the wave number ω, we obtain a recur-
rent system of equations

(3.1)

which is a standard system for creeping waves [4]. The
radius of curvature of the geodesic line, ρ, and the
divergence h depend on surface coordinates s and α,
and the prime denotes the derivative with respect to s.

Carrying out similar rearrangements in the region
Ω2, in the highest order (ω2) we obtain the equation

from which it follows that exponent q in Eq. (2.3) must
be equal to unity. In this case, we have the following
recurrent formulas:

(3.2)

The boundary conditions at n = 0 yield the relation-
ships

(3.3)

Here, j = 0, 1, …, and we set U–1 ≡ 0.

Equations (3.1) and (3.2), conditions (3.3), and radi-
ation conditions for ν1  ±∞ determine the recurrent
system of the Sturm–Liouville problems. The solution
to the first equation of system (3.1), which satisfies the
radiation condition, has the form

(3.4)

Here, w1() is the Airy function and ξ(s, α) and A0(s, α)
are (for the moment) arbitrary functions. The solutions
U0 and U1 to Eqs. (3.2) are the exponential functions

(3.5)

The minus sign in Eq. (3.5) corresponds to the radiation
condition in the region Ω2 for ν1  –∞. For N < 1, the
branch of the radical function is specified so as to

obtain D = i .

+0U0 0, +0U1 +1U0+ 0, …= =

+0
∂2

∂ν1
2

-------- 2
ν1

ρ
----- ϕ'– 

  , +1+ 2i
∂
∂s
----- i

h'
h
----,+= =

∂2U0

∂n2
------------ ω2 N2 1–( )U0+ 0,=

}0U0 = 0, }0U1 = 0, }0U2 2ϕ'U0 0,  … ,=–  

}

 

0

 

N

 

2

 

1–

 

( ) ∂

 

2

∂ν1
2

--------+ .=

U j s +0 α, ,( ) U j s 0– α, ,( ),=

∂U j 1– s +0 α, ,( )
∂ν1

-------------------------------------- κ
∂U j s 0– α, ,( )

∂ν1
--------------------------------.=

U0 A0 s α,( )w1 ξ ν–( ),=

ν 2/ρ( )1/3ν1, ξ 21/3ρ2/3ϕ'.= =

U j B j iDν1–( ), Dexp N2 1– , j 0 1.,== =

1 N2–
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Substituting (3.4) and (3.5) in boundary condi-
tions (3.3), we obtain that B0 = 0 and

(3.6)

To determine the dependence of amplitude A0 on s,
we consider the equations in the following order. Using
Eqs. (3.5), we exclude the interior of the region Ω2 from
consideration. For ν1 > 0, function U1 must satisfy the
inhomogeneous Airy equation

the boundary condition (here and below, the dot
denotes the derivative of the function)

and the radiation condition for ν1  +∞. Fot this
Sturm–Liouville problem to be solvable, the right-hand
side of the equation must satisfy a certain compatibility
condition. Eliminating the inhomogeneity from the
boundary condition and using the results of paper [4],
we can represent the solvability condition in the form

In the final form, the field of the wave of the first
type in the region Ω1 is expressed by the approximate
formula

(3.7)

Waves of the second type can be considered in a
similar manner. We give only the final formula for the
field in the region Ω1:

(3.8)

Parameter η is determined from the dispersion equation

(3.9)

(here, v  is the Airy function exponentially decreasing at
+∞) and is real. When N > 1, waves (3.8) travel along
the boundary without attenuation. When N < 1, the field
becomes an oscillatory function of n, which corre-
sponds to waves outgoing from the boundary. In this

w1 ξ( ) 0.=

+0U1 +1U0,–=

U1
ν1 +0→
lim i

2
ρ
--- 

 
1/3 1

Dκ
--------A0ẇ1 ξ( ),–=

A0'
1
6
---ρ'

ρ
---- 1

2
---h'

h
---- 1

ρDκ
-----------–+ 

  A0+ 0.=

u A0 0( ) iωs i
ω
2
---- 

 
1/3 ξ sd

ρ2/3
--------

0

s

∫ 1
Dκ
-------- sd

ρ
-----

0

s

∫+ +
 
 
 

exp=

× R1/6H1/2w1 ξ ν–( ),

where R ρ 0 α,( )/ρ s α,( ), and=

H h 0 α,( )/h s α,( ).=

u A0 0( ) RH i ωN( )s ωDn ∫–




exp=

+ i
ωN
2

-------- 
 

1/3 η sd

ρ2/3
---------

0

s

∫ i
κN
D

------- sd
ρ
-----

0

s

∫+




.

v η( ) 0=
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case, the attenuation is nonzero and is described by the
factor

(3.10)

4. AN ASYMPTOTICALLY LOW CONTRAST

Formulas (3.7) and (3.8) are valid for D = O(1).
They also remain valid for smaller D if D > O(ω–1/3).
For D = O(ω–1/3), expansions (3.7) and (3.8) loose their
asymptotic nature, because the orders of the two last
terms in the exponents become coincident. All further
terms omitted in the formulas are also of the same
order.

To obtain asymptotic formulas for waves concen-
trated near a curvilinear boundary between media
with slightly different parameters, we introduce a
coefficient δ, such that D2 = ω–2/3δ, and assume that
δ = O(1). In this case, the extension of the normal in
the regions Ω1 and Ω2 must be performed using iden-
tical exponents q = 2/3, so that formulas (2.2) and
(2.4) become similar.

Consider the formal expansion (2.2). In the region
Ω1, the recurrent system of equations remains the same
as in the case of D = O(1) for waves of the first type.
Equating the terms with identical powers of ω in the
Helmholtz equation for the region Ω2, one can easily
obtain the recurrent system

In the highest order, the solution is the Airy function
satisfying the radiation conditions at ν1  –∞:

(4.1)

Using the boundary conditions for the field u, we
find

(4.2)

To find the dependence of amplitude A0 on arc
length s, one must, as in the case of D = O(1), consider
the equations in the following order and formulate the
conditions of their solvability. Substituting Eqs. (3.4)
and (4.1) in the equation for U1, multiplying the result
by the solution to the adjoint problem

κN

1 N2–
------------------- sd

ρ
-----

0

s

∫–
 
 
 

.exp

+0 δ+( )U0 0, +0 δ+( )U1 +1U0+ 0, …= =

U0 B0v ξ d– ν–( ), d
ρ
2
--- 

 
2/3

δ.= =

B0 A0

w1 ξ( )
v ξ d–( )
---------------------,=

w1 ξ( )
ẇ1 ξ( )
--------------

1
κ
---v ξ d–( )

v̇ ξ d–( )
---------------------.=

W ν( )
w1 ξ ν–( ), ν 0,>

κ
w1 ξ( )

v ξ d–( )
---------------------v ξ d– ν–( ), ν 0,<







=
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and integrating, we find the solvability condition in the
form of the differential equation in A0 [2]:

Here, we introduced the function

In the final form, the asymptotic formula for waves con-
centrated near the boundary can be written in the high-
est order as (n > 0)

(4.3)

In asymptotic formula (4.3), parameter ξ is determined
from dispersion equation (4.2) and is a function of a
point at the boundary S.

A similar procedure can be used for constructing the
formal asymptotic expansion in the parameter  = ωN.
In the highest order, we obtain for n > 0:

(4.4)

Parameter η is determined from the dispersion equation

(4.5)

We note that expansion (4.3) passes into (4.4)

when ω is replaced by , ξ by η + , and d by . In
the case of asymptotically small contrasts, such
replacements result in formulas differing in the terms
of order O(ω–1/3).

It can be easily verified that formulas (4.2) and (4.3)
give an asymptotic uniform in d for waves of the first
type and that formulas (4.5) and (4.4) are uniform for
waves of the second type. Indeed, let D = O(1). Then,
parameter d becomes large and the Airy functions in the
dispersion equation (4.2) can be replaced with their
asymptotic formulas. Assuming that ξ = O(1) and
replacing the Airy function v (ξ – d) in Eq. (4.2) with its
asymptotic, we obtain the equation

A0'
1
6
---ρ'

ρ
---- 1

2
---h'

h
---- 1

2
---Q'

Q
-----+ + 

  A0+ 0.=

Q 1 κ–( )ξ κ d+( )w1
2 ξ( ) 1 κ–

κ
------------ẇ1

2 ξ( ).+=

u A0 0( ) iωs i
ω
2
---- 

 
1/3 ξ

ρ2/3
-------- sd

0

s

∫+
 
 
 

exp=

× R1/6 H
Q 0 α,( )
Q s α,( )
-------------------w1 ξ ν–( ).

ω̃

u C0 0( ) iω̃s i
ω̃
2
---- 

 
1/3 η

ρ2/3
-------- sd

0

s

∫+
 
 
 

exp=

× R1/6 H
P 0 α,( )
P s α,( )
------------------w1 η d̃ ν–+( ),

P s α,( ) η 1 κ–( ) d̃+( )w1
2 η d̃+( )=

+ κ 1– 1–( )ẇ1
2 η d̃+( ), d̃ N 4/3– d .=

w1 η d̃+( )
ẇ1 η d̃+( )
------------------------

1
κ
---v η( )

v̇ η( )
------------.=

ω̃ d̃ d̃

κ dw1 ξ( ) iẇ1 ξ( )+ 0,≈
from which we find

where ξ° is the root of Eq. (3.6). One can easily ascertain
that the exponents in Eqs. (4.3) and (3.7) coincide. In
addition, the quantity Q asymptotically grades into

κd (ξ°) and ceases to depend on s. Thus, formula (4.3)
grades into asymptotic formula (3.7) for large d and
ξ = O(1).

Now we consider asymptotic formula (4.4). Setting
η = O(1) in Eq. (4.5) and replacing the Airy function

w1(η + ) with its asymptotic, we obtain the equation

from which we have

where η° is the root of Eq. (3.9). Function P(s, α) can
be represented in the form

In addition, we have

Thus, asymptotic formula (4.4) grades into (3.8) in
which

5. WAVE EXCITATION BY AN INCIDENT FIELD

Consider the excitation of waves studied in the fore-
going sections. It is clear that waves of the first type
originate in the Fock zone, near the point at which the
tangent ray is incident on the boundary S. In addition to
the normal, we also extend the coordinate s and seek the
solution in the form

(5.1)

Here, ρ0 is the radius of curvature of the geodesic line
on S at the light–shadow boundary. 

Substitute representation (5.1) in the Helmholtz
equation and equate the terms with identical powers of
the large parameter ω. In the highest order, we obtain a
parabolic equation. Applying the Fourier transforma-

ξ ξ° i

κ d
-----------– …,+=

w1
2

d̃

d̃v η( ) κ v̇ η( )– 0,≈

η η° κ

d̃
------- …,+ +=

P
d̃
κ
---w1

2 η d̃+( ).≈

w1 η d̃ ν–+( )/w1 η d̃+( )

≈ d̃ν–( )exp ωDn–( ).exp=

A0 0( ) C0 0( )w1 d̃ 0( ) η+( ).=

u iωs( ) U j σ ν,( )ω j /3– ,
j

∑exp=

σ ω1/32 1/3– ρ0
2/3– s.=
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tion to this equation, we obtain the Fourier transform

(ξ, ν, α) in Ω1 in the form

Within the small neighborhood of the light–shadow
boundary, the incident field has, in the highest order, the
form of a plane wave with some amplitude A(α). As is
known [4], the Fourier transform of such a field is

Consider the case of the strong contrast D = O(1).
We find

Amplitudes  and  are determined from the bound-
ary conditions (2.1). In the highest order, the acoustic

field does not penetrate into the region Ω2, so that  =

0. The formula for the amplitude  appears to be the
same as in the case of an acoustically soft boundary [4]:

This results in the following asymptotic representation
of the field in the region Ω1:

(5.2)

The integral in expression (5.2) can be calculated by
the residue theorem. For asymptotically large values of
coordinate σ, the main contribution to the integral is
made by the pole nearest to the real axis. This contribu-
tion must be sewed together with the asymptotic repre-
sentation (4.2) of the first wave. Comparing the ampli-
tudes, we determine the excitation coefficient

(5.3)

Here, ξ° is the root of the dispersion equation (3.6).

Consider now the case of an asymptotically small
contrast D = O(ω–1/3). Using substitution (5.1) and per-
forming calculations as above, we obtain

(5.4)

Calculating the residues at zeros of the denominator in
Eq. (5.4) (they coincide with the roots of the dispersion
equation (4.2)) and sewing together with asymptotic

U0
ˆ

U0
ˆ A0

ˆ ξ α,( )w1 ξ ν–( ), ν 0.>=

A α( ) 1

π
-------v ξ ν–( ), ν 0.>

U0
ˆ B0

ˆ ξ α,( )e iDωn– , n 0.<=

A0
ˆ B0

ˆ

B0
ˆ

A0
ˆ

A0
ˆ A α( )

π
------------ v ξ( )

w1 ξ( )
--------------.–=

us A α( )
π

------------eiωs eiσξ v ξ( )
w1 ξ( )
--------------w1 ξ ν–( ) ξ .d

∞–

+∞

∫–≈

A0 0 α,( ) 2A α( ) πiv ξ°( )/ẇ1 ξ°( ).–=

A0
ˆ ξ α,( )

=  
A α( )

π
------------ κ v̇ ξ d–( )v ξ( ) v ξ d–( )v̇ ξ( )–

κ v̇ ξ d–( )w1 ξ( ) v ξ d–( )ẇ1 ξ( )–
---------------------------------------------------------------------------------.–
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expression (4.3), we find the coefficients of wave exci-
tation

(5.5)

Formula (5.5) holds for waves represented by both
expansion (4.3) and expansion (4.4). It is not difficult to
verify that it grades into Eq. (5.3) for waves of the first
type with increasing parameter δ.

To find the excitation coefficients of the second-
type waves described by Eq. (3.8), we apply the sub-
stitutions given at the end of the previous section to
Eq. (5.5):

after which we proceed asymptotically to D = O(1).
Replacing the Airy function w1 with its asymptotic, for
N > 1 we obtain an exponentially small amplitude

(5.6)

For the case N < 1, we obtain

(5.7)

Thus, in the case of a strong contrast, the incident field
excites the waves of the first type, but these waves rap-
idly decay. Excitation of the waves of the second type
is exponentially weak for N > 1, but, being excited,
they propagate practically without attenuation. For
N < 1, the excitation coefficients of the waves of the
second type appears to be of the order of O(ω–1/2), but
these waves decay along the boundary according to
Eq. (3.10).

Asymptotic representations (5.6) and (5.7) are valid
for N ≈ 1, in which case the point of incidence of the
tangent ray is close to the point of incidence of the ray
incident on the surface S at the angle of total reflection.
Asymptotic representation (5.7) agrees well with the
results of paper [3]. In addition, the phase factor of the
highest-order term in ω meets the phase difference of

waves traveling along the segment A'A and the arc 
in the region Ω2 (see Fig. 1). Indeed, setting N = 1 + ω,

we find τ1 = |A'A| = ρ0sinψ ≈ ρ0 (1 – ε/4) and τ2 =

N| | = Nρ0ψ ≈ ρ0 (1 – 11ε/12). The highest-

A0 0 α,( ) A α( ) 2 πi
Q 0 α,( )
-------------------.=

C0 0( ) A α( ) 2 πi
P 0 α,( )
------------------w1 η N 4/3– d+( ),=

C
2 πiκ

X3/2
---------------- 2

3
---X3– Xη°– κ– 

  ,exp∼

X
ωρ
2

------- 
 

1/3 N2 1–

N2/3
-------------------.=

C
2 πiκ

Y3/2
---------------- 2i

3
-----Y3– iYη°– iκ– i

π
4
---– 

  ,exp∼

Y
ωρ
2

------- 
 

1/3 1 N2–

N2/3
-------------------.=

BA

)

2ε
BA

)

2ε
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order term in the exponent in Eq. (5.7) yields iY3 ≈

–iω ρ0 ε3/2 ≈ iω(τ2 – τ1).

Asymptotic representation (5.6) also can be inter-
preted geometrically. The highest-order term in the
exponent of this representation corresponds to the tun-
neling of the wave propagating along the ray located a
distance (N – 1)ρ0 from the boundary S (see Fig. 2).

2
3
---–

2
3
--- 2

A' A

B

n
s

Ω2

Ω1

ψ

Fig. 1. Geometric interpretation of asymptotic representa-
tion (5.7).

Ω2

B' B

A

n
s Ω1

Fig. 2. Geometric interpretation of asymptotic representa-
tion (5.6).
Consider the wave traveling in the region Ω2 with an
angular factor iωNρ0ψ = iωNs. Note that such a wave
depends in the highest order on the radius r according
to the law

Now we mentally continue this wave beyond the
boundary S. At r = ρ0N, the factor governing the depen-
dence on the angle ψ coincides with the phase factor of
the wave traveling along the ray B'B in the region Ω1. In
this case,

which coincides with half of the exponent in Eq. (5.6).
Thus, the exponential factor in Eq. (5.6) describes an
acoustic wave tunneling from point B to point A and a
similar whispering gallery wave tunneling from the
region Ω2 to the region Ω1.

6. NUMERICAL ANALYSIS OF THE FORMULAS 
FOR A SMALL CONTRAST

In the case of small contrast values δ = O(1), a study
of the coefficients of wave excitation and dispersion
equations requires a numerical analysis. We limit our
consideration to media of equal densities, κ = 1. Disper-
sion equation (4.2) has an infinite number of solutions.
As was mentioned earlier, with increasing parameter d,
the roots of the dispersion equation are grouped into
two semi-infinite sequences. One of them corresponds
to the waves of the first type and tends to zeros of the
Airy function w1 that lie on the ray arg(ξ) = π/3. We
number these roots as –1, –2, –3, … Another sequence
of roots of Eq. (4.2) corresponds to the waves of the

V r( ) ωN 1
ρ0

l
----- 

 
2

– ld

ρ0

r

∫±
 
 
 

.exp=

V ρ0N( ) ω 1 N 2–– N 1–( )arccos–( )±=

≈ ω 2
3

------- 1 1
N
----– 

  3/2

,±
1

–10 –5

Imξ

1
2

3

–1

–2

–1

–2

1

3

3

4

2

0 5 d

Fig. 3. Imaginary parts of solutions ξj of dispersion equation (4.2) as functions of parameter d.
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1

–10 –5

|C|

1
2

3

–1

–2

–1

–2

1

3

3

4

2

0 5 d

5

2

Fig. 4. Magnitudes of excitation coefficients as functions of parameter d.
second type and, with d  ±∞, tends to zeros of the
function v  that lie on the negative half-axis η. We num-
ber these roots as 1, 2, 3, …. The imaginary parts of the
solutions to the dispersion equation characterize the
wave attenuation and are of special interest. Figure 3
shows the evolution of Imξ with increasing parameter
d for solutions ξ–2, ξ–1, ξ1, ξ2, and ξ3.

Figure 4 shows the coefficients of wave excitation.
In the case of the waves of the first type, the excitation
coefficients depend only slightly on the contrast. For
small positive values of parameter d, the excitation
coefficients of the waves of the second type exceed the
excitation coefficients of the waves of the first type. As
the parameter d increases, the excitation coefficients
exhibit characteristic maxima and then exponentially
decay, which agrees well with the tunneling effect
described by Eq. (5.6). Simultaneously, the imaginary
parts of exponents η also decrease, i.e., the wave atten-
uation becomes weaker. For negative values of d, the
excitation coefficients of the waves of the second type
decrease with increasing contrast according to a power
law, which agrees well with Eq. (5.7).
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Abstract—Using ST-cut quartz crystal plates as an example, a new type of normal modes of acoustic vibrations
is described. The modes propagate along the x axis with a velocity close or equal to that of longitudinal bulk
waves propagating in the same direction and have a longitudinal component of elastic displacement no less than
two orders of magnitude greater than the two other components (the shear-horizontal and shear-vertical ones)
throughout the whole plate thickness. The domain of existence of the quasi-longitudinal modes consists of a set
of limited zones that contain the “allowed” values of the plate thickness H/λ (H is the plate thickness and λ is
the wavelength) and are separated by “forbidden” zones corresponding to common Lamb modes. The closeness
(or coincidence) of the velocities of a quasi-longitudinal mode in the plate and a longitudinal bulk wave in an
unbounded crystal is a necessary but not sufficient condition for the existence of the aforementioned type of
modes in ST,x quartz. © 2004 MAIK “Nauka/Interperiodica”.
† The study of the spectrum of acoustic vibrations in
solid-state structures of different geometry, materials
composition, anisotropy, and piezoelectric properties is
one of the most important issues of physical acoustics.
By now, about ten types of acoustic vibrations [1] are
known to exist in isotropic bodies, single crystals,
piezoelectric crystals, layered media, periodic (Bragg)
structures, and thin plates with free boundaries. They
include bulk waves (longitudinal and transverse ones),
surface waves (Rayleigh, shear-horizontal, Gulyaev–
Bleustein electroacoustic, Sezawa, and Love waves),
leaky waves (fast and slow pseudo-surface waves), nor-
mal modes (Lamb and shear-horizontal waves), and
boundary (Stoneley) waves. At certain conditions, one
type of wave may smoothly transform to another. For
example, with a change in the propagation direction on
a free surface of a piezoelectric crystal, a Rayleigh
wave with an elliptic polarization may degenerate into
a linearly polarized Gulyaev–Bleustein wave, and a
pseudo-surface wave, into a two-partial Rayleigh or
one-partial longitudinal wave. When the thickness of
the plate increases, the low-order Lamb modes trans-
form to a Rayleigh wave, and shear-horizontal (SH)
waves, to a wave of the same polarization propagating
in the bulk of the solid [1]. The conditions of such wave
transformations are very specific and require definite
combinations of elastic, piezoelectric, and other prop-
erties of the propagation medium and its crystallo-
graphic orientation [2].

† Deceased. This paper proved to be the last written by Ivan
Vladimirovich Anisimkin shortly before his tragic death as a
result of a terrorist attack on December 9, 2003, in Moscow.
1063-7710/04/5004- $26.00 © 200370
The fact of existence of a new type of acoustic wave
belonging to the family of normal acoustic modes was
reported in [3]. The present paper is devoted to their
close investigation. Unlike the well-known SH and
Lamb modes, the new modes are neither elliptic nor
shear-horizontal ones: they have a quasi-longitudinal
polarization, i.e., are polarized along the propagation
direction. Such modes represent a degeneration of cer-
tain Lamb modes, which occurs when their velocity
approaches the velocity of a longitudinal bulk wave
propagating in the same direction in an unbounded sin-
gle crystal.

NUMERICAL CALCULATIONS

It is well known that the propagation of normal
modes in thin plates is characterized by a dispersion.
Their velocity v n (n is the mode order) depends on the
ratio of the thickness H of the plate to the wavelength λ
[1]. In the framework of this study, the dispersion
curves were calculated for the first 13 Lamb modes
along the x axis of ST-cut quartz. The calculation was
performed by the method of approximation of multi-
layer matrices with the use of software developed at
McGill University (Canada) [4] and the materials con-
stants from [5]. The results of calculation are shown in
Fig. 1. The dotted lines in this figure indicate the veloc-
ities of purely longitudinal vL, quasi-shear-horizontal
vQSH, and quasi-shear-vertical vQSV bulk waves, which
propagate in the same direction in an unbounded crystal
and have energy fluxes directed along the wave vector.
From Fig. 1, one can see that, at certain values of the
04 MAIK “Nauka/Interperiodica”
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plate thickness H/λ, the dispersion curves of higher-
order normal modes tend to the longitudinal wave
velocity vL = 5744.43 m/s while some of the curves
exhibit flat portions (weak-dispersion zones) and por-
tions with a nonmonotone velocity decrease (flexures).
Similar dispersion features were observed earlier for
Lamb modes in plates made of cubic [6, 7] and tetrag-
onal [8] crystals, but no analysis was performed for the
elastic displacements of normal modes in the regions
corresponding to different behavior of the dispersion
curves.

Such an analysis is performed in this study for
quartz plates (quartz is a crystal belonging to the trigo-
nal system). The analysis shows that, as the relative
width of the plate, H/λ, varies, the elastic polarization
of all modes undergoes considerable changes: the par-
tial components of the resulting displacements of these
modes increase, decrease, or even completely disap-
pear throughout the whole plate thickness. The change
in the polarization of modes correlates with the devia-
tion of their propagation velocity v n from the velocities
of three bulk waves, vL, vQSH, and vQSV in the same
direction. In the weak dispersion regions, where the
mode velocities v n approach the velocity of the longitu-
dinal bulk wave vL in an unbounded piezoelectric crys-
tal, some of the higher-order modes are transformed
from three-partial elliptic to linearly polarized longitu-
dinal ones, for which the longitudinal displacement
component U1 predominates over the other two compo-
nents (shear-horizontal U2 and shear-vertical U3 ones).

Figure 2 shows the displacements of the second-
order Lamb normal mode over the cross section of the
plate for the plate thickness values H/λ = 0.01, 1.1, and
0.65. At H/λ = 0.01, the dispersion curve of the mode
has the first flat portion (Fig. 1), where the mode veloc-
ity v2 = 5703.2 m/s almost coincides with the velocity
of the longitudinal bulk wave vL = 5744.43 m/s while
the longitudinal displacement component U1 is three
to four orders of magnitude greater than the compo-
nents U2 and U3 throughout the whole plate thickness
(Fig. 2a). This means that the mode under consider-
ation is a wave with an almost purely longitudinal
polarization. The quasi-longitudinal nature of the mode
is retained for H/λ varying within ±10% (at least)
around the value specified above.

The same mode has an entirely different polariza-
tion when H/λ = 1.1, which corresponds to the second
flat portion of the dispersion curve (Fig. 1) with the
mode velocity approaching vQSH, i.e., the velocity of
the fast bulk wave of the shear-horizontal polarization.
In this case, the shear-horizontal displacement compo-
nent U2 becomes dominant, although no complete
degeneration of the mode into a linearly polarized wave
takes place, because the longitudinal U1 and vertical U3
components are comparable on both surfaces of the
plate (Fig. 2b).

The polarization of the second mode acquires an
even more complex character at the plate thickness
ACOUSTICAL PHYSICS      Vol. 50      No. 4      2004
H/λ = 0.65, when the velocity of the mode, v 2, differs
from both the longitudinal velocity vL and the trans-
verse velocities vQSH and vQSV of bulk waves (Fig. 1).
In this case, the elastic displacement of the mode is
formed as a sum of the longitudinal U1 and vertical U3
components, and the shear-horizontal component U2
is close to zero throughout the whole plate thickness
(Fig. 2c): the mode becomes elliptically polarized in
the sagittal plane.

Similar changes in the elastic polarization are
observed with varying plate thickness H/λ for the
sixth Lamb mode. Namely, the degeneration of this
mode into a quasi-longitudinal normal mode also
occurs at the coincidence of the mode velocity v 6 =
5741.80 m/s with the velocity of the longitudinal bulk
wave vL = 5744.43 m/s. However, this effect takes
place for other values of the plate thickness: H/λ =
1.1433–1.5 (Fig. 3).

All other 11 modes considered in this study did not
undergo any degeneration into quasi-longitudinal
waves: they remain two- and three-partial even when
the velocities v n and vL are equal. Therefore, the close-
ness (equality) of the velocities is not a sufficient con-
dition for the existence of normal modes of a quasi-lon-
gitudinal type, at least not in ST,x-cut quartz.

The characteristics of the modes of the new type
were calculated by using the sixth Lamb mode propa-
gating in a quartz plate with H/λ = 1.4851 as an exam-
ple. The electromechanical coupling coefficient of the
mode, K2, was determined as in the case of surface
acoustic waves: K2 = –2(vm – v 0)/v 0, where v 0 and vm

are the mode velocities for the plate with free surfaces
and the plate with one metallized surface, respectively.

The value of  calculated in this way was found to be
0.073%.
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Fig. 1. Dispersion curves for the first 13 Lamb modes in an
ST,x-cut quartz plate.
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The temperature coefficient of delay (TCD) of the
mode was calculated by the method described in [9], as
a total differential of the temperature variations of den-
sity, elastic moduli, and the linear expansion coefficient
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Fig. 2. Distribution of the elastic displacement components
of the second Lamb mode over the depth ı3 of the ST,x-cut

quartz plate:  is the amplitude of the longitudinal com-
ponent of the mode on the plate surface; the plate thickness
is H/λ = (a) 0.01, (b) 1.1, and (c) 0.65.

U1
surf
of the plate along the propagation direction and across
the plate thickness. This quantity was found to be equal
to 20.2 × 10–6°ë–1, which closely coincides with the
TCD of the longitudinal bulk wave (19.7 × 10–6°ë–1).
The latter was calculated by a direct differentiation of
the velocity vL = (C11/ρ)1/2 with respect to temperature
t: TCDL = αX – (dvL/dt) = –0.5[αX + (1/C11)(dC11/dt)],
where αX is the linear expansion coefficient along the x
axis of quartz and C11 is the elastic modulus. The coin-
cidence of the temperature characteristics of the quasi-
longitudinal mode in a thin plate bounded by two free
surfaces and the longitudinal bulk wave in an
unbounded crystal presumably testifies to the almost
complete identity of the two waves. In particular, this
coincidence points to the possibility of representing the
velocity of the quasi-longitudinal mode in the form
v n = vL = (C11/ρ)1/2.

The sensitivity (relative velocity variation ∆v n/v n)
of the quasi-longitudinal mode to variations in the den-
sity ρ, elastic moduli Cij, and thickness H/λ of the plate
was studied by the method described in [9], by sequen-
tially varying one of the aforementioned parameters of
the quartz plate within ±1% around its tabular value.
Unlike the common Lamb modes [10], the quasi-longi-
tudinal mode, like the longitudinal bulk wave, proved to
be sensitive to variations of only the density ρ and the
elastic modulus C11. This fact again points to the possi-
bility of representing the mode velocity in the form of
a simple analytical expression v n = (C11/ρ)1/2.
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Fig. 3. Distribution of the elastic displacement components
of the sixth (quasi-longitudinal) Lamb mode over the depth

ı3 of the ST,x-cut quartz plate:  is the amplitude of the

longitudinal component of the mode on the plate surface;
the plate thickness is H/λ = 1.4851.
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EXPERIMENT

An experimental verification of the existence of
quasi-longitudinal modes was carried out using a sam-
ple schematically represented in Fig. 4. The sample
had the form of a plate made of ST-cut quartz crystal
(OAO Gudvill, Aleksandrov, Russia). The plate was
0.3 ± 0.03 mm thick and was optically polished on both
sides. One side of the plate carried a pair of Al/Cr inter-
digital transducers with a thickness of 100 nm and
16 pairs of fingers. The period, aperture, and distance
between transducers were 202 µm, 12 mm, and
26.2 mm, respectively. The transducers were oriented
normally to the ı axis, along which the mode excitation
occurred. The relative thickness of the plate was H/λ =
1.485: according to calculations, at this thickness, the
sixth-order mode should be transformed to the quasi-
longitudinal normal mode. The velocities of modes of
different orders were measured, and the elastic polar-
ization of modes was investigated.

Figure 5 shows the amplitude–frequency character-
istics of the Lamb modes that were measured by an HP
8753 ES network analyzer. The vertical axis in Fig. 5
represents the mode amplitude in decibels (a scale fac-
tor of 10 dB), and the horizontal axis, the frequency in
megahertz (a scale factor of 7.3 MHz). Owing to the
narrow passband of the transducers, modes of different
orders were well resolved. A number of modes that had
a small electromechanical coupling coefficient K2 were
not observed in the experiment and not revealed by the
analyzer. The identification of modes was performed
according to the propagation velocity v n. The value of
the velocity was determined from the central frequency
of the mode fno and the period of the interdigital trans-
ducers λ: v n = fnoλ. The experimental velocity values
were found to coincide with the calculated values
within ±5%. For example, for the sixth (quasi-longitu-
dinal) mode (marker 1 in Fig. 5), the measured and cal-
culated velocity values were 5800 and 5741.80 m/s,
respectively.

The polarization of normal modes on the plate sur-
face was qualitatively determined from the measure-
ment of absorption under the effect of liquids of equal
mass (378 mg) with different values of shear viscosity
η. As liquids under test, we used deionized water (with
ρ = 1000 kg/m3, η = 1.003 mPa s, and sound velocity
v l = 1497 m/s) and glycerin (ρ = 1260 kg/m3, η =
1450 mPa s, and v l = 1930 m/s). The measurements
were performed as follows. First, the amplitude of each

mode,  (dB), was determined under the conditions
corresponding to free surfaces of the plate (Fig. 5).
Then, a drop of deionized water, 378 µl in volume, or a
drop of glycerin, 300 µl in volume, was placed on one
of the plate surfaces by a microdispenser. After this, the

mode amplitudes  (dB) were measured anew. The
difference between the amplitudes before and after the

application of liquid,  – , determined the desired

An
o

An
l

An
o An

l
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absorption coefficient αn for a given mode. The use of
liquids with identical masses equalized the effect of the
load and made it possible to study the absorption αn

only as a function of viscosity.

The method of determining the elastic polarization
of modes from the absorption αn is based on two exper-
imental facts: it is well known [11] that the presence of
a vertical displacement component U3 in a wave whose
velocity v n exceeds the sound velocity in the liquid v l
leads to a reradiation of the elastic mode energy into the
liquid and to its strong absorption in the propagation
direction. Therefore, a weak attenuation of the normal
mode under the effect of each of the two liquids under
test should testify to the smallness of the vertical dis-
placement component U3 of this mode on the plate sur-
face. It is also known [3, 12] that waves with a large
shear-horizontal displacement component U2, even in
the absence of the vertical component U3, experience a

H

λk
1

2
3

Fig. 4. Experimental sample used for studying the normal
modes under the effect of a liquid: (1) the quartz plate,
(2) the interdigital transducers, and (3) the drop of the liquid
under test; H is the thickness of the plate, λ is the period of
the transducers (the wavelength), and k is the wave vector.

MARKER 1
28.714188 MHz

CH1 S21 LOB 10 dB/REF –71.9 dB

Sn0

Av
64 9

↑

1:–50.106 dB 28.714 188 MHz
4 Nov 2003 11:54:51

START STOP
7.000 MHz 80.000 MHz

Fig. 5. Amplitude–frequency characteristics of the Lamb
modes in the ST,x-cut quartz plate with free surfaces. The
plate thickness is H/λ = 1.485; marker 1 indicates the quasi-
longitudinal mode.
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strong absorption under the effect of liquids with a high
dynamic viscosity. Therefore, a weak absorption of the
mode of interest under the effect of glycerin should tes-
tify to the smallness of both vertical component U3 (no
reradiation into the liquid) and shear-horizontal compo-
nent U2 (a weak sensitivity to viscosity) of the displace-
ment at the plate surface. Thus, in our experiments, the
mode that shows a weak absorption under the effect of
both water and glycerin should be the mode with a pre-
dominantly longitudinal polarization U1, i.e., the quasi-
longitudinal mode.

The results of measuring the absorption coefficient
αn are shown in Fig. 6. One can see that, of all modes
excited, only the sixth-order mode experiences a weak
absorption with both water and glycerin. According to
the measurements, this mode has a velocity of 5800 m/s,
which is close to that of the longitudinal bulk wave
(5744.43 m/s). Therefore, according to the results of
calculation and experiment, precisely this mode is iden-
tified as the quasi-longitudinal one.

CONCLUSIONS

Numerical calculations and experiments show that a
new type of normal modes occurs in thin plates of
ST,ı-cut quartz at certain values of relative thickness
H/λ. These modes propagate with a velocity close or
equal to that of the longitudinal bulk wave vL in the
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20
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Fig. 6. Absorption coefficient αn of the Lamb normal modes
in the ST,x-cut quartz plate under the effect of (h) water and
( ) glycerin. The plate thickness is H/λ = 1.485; the drop
mass is 378 mg.
same direction and have a predominantly longitudinal
polarization. The domain of existence of quasi-longitu-
dinal modes consists of a set of bounded zones contain-
ing the “allowed” values of the plate thickness H/λ and
separated by the “forbidden” zones of common Lamb
modes. The closeness (or coincidence) of the velocity
of the quasi-longitudinal mode in a plate and the veloc-
ity of the longitudinal bulk wave in an unbounded crys-
tal is a necessary but not sufficient condition for the
existence of such a mode in ST,x quartz. A further devel-
opment of this study should be the search for the suffi-
cient condition of the existence of this mode and its com-
prehensive theoretical and experimental investigation in
isotropic, anisotropic, and piezoelectric materials.
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Abstract—A stable formation of long thin filaments involving heavy particles (heavier than water) suspended in
water in an acoustic resonator was observed. The filaments consisted of regularly spaced thin disks formed by coa-
lescent particles. The particles in the disks were tightly packed forming almost solid structures. The disks were
arranged perpendicularly to the filament axis and were spaced at half-sound-wavelength intervals. The diameter
of the disks was about half-wavelength. The length of the filaments was about hundreds of the sound wavelength.
Experiments were performed with particles of different natures and sizes. The filaments were not destroyed under
wide variations of sound frequency, acoustic power, length of resonator, size and configuration of the mirror, or its
angle of rotation. The particles suspended in water not only visualized the acoustic field but also affected its con-
figuration. The formation of filaments was explained by a nonthermal self-focusing of sound in the resonator,
which was caused by the decrease in sound velocity in the region of maximum concentration of particles due to
coagulation in the inhomogeneous sound field. © 2004 MAIK “Nauka/Interperiodica”.
Nonlinear acoustic effects in liquids have long
attracted the attention of researchers. These effects can
appear, for example, in the coagulation [1, 2] and levi-
tation [3] of particles suspended in liquid. A phenome-
non of special interest is the self-focusing in acoustic
fields (see, e.g., [4, 5]). A thermal self-focusing occurs
because of the heating of liquid by ultrasound, which
leads to a decrease in its velocity, bending of wave
fronts toward the heated area, and a further increase in
temperature. This effect is possible in any liquid except
for water, where the sound velocity increases with tem-
perature up to 74°ë. Nevertheless, it was found that, in
water, one can observe phenomena combining the
properties of coagulation, levitation, and self-focusing
determined by an entirely different mechanism, which
manifests itself at much lower sound intensities than
thermal self-focusing in other liquids.

EXPERIMENTAL

Figure 1 shows a schematic diagram of the experi-
ment. A concave spherical piezoceramic transducer
(transmitter) of curvature radius R = 26 mm and diam-
eter 27 mm was placed in a rectangular quartz cell of
size 30 × 30 × 100 mm filled with water. The transducer
produced a sound wave at a frequency of 2.5 MHz
along the long side of a cell. A planar metallic mirror
parallel to the short side of the cell was placed at a dis-
tance L from the transducer. An illuminator either illu-
minated the whole cell or provided visualization of the
fine spatial structure by focusing the light into a narrow
beam (~1 mm in diameter). Observations were made
1063-7710/04/5004- $26.00 © 20375
from above and from the cell side. The Q factor of the
acoustic resonator formed by the transmitter, mirror,
cell walls, and water surface, was approximately equal
to 3. In the experiment, we controlled the amplitude and
phase of the signal that appeared at the transducer as a
result of the combination of the continuous signal from
the generator and the reflected sound.

To obtain a fine-disperse suspension, we used quartz
and corundum abrasive powders with particles 30 and
70 µm in size, respectively, in concentrations on the
order of 5–20 g/l.

R

L

2

3

4

1

Fig. 1. Schematic diagram of the experiment: (1) cell,
(2) transmitter, (3) mirror, and (4) illuminator.
004 MAIK “Nauka/Interperiodica”
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Fig. 2. Formation of filaments at medium acoustic power W = 1 W. Corundum particles of diameter 70 µm.
The experiments consisted in studying changes in
the formation of filaments of coalescent particles
depending on the power of the signal fed to the trans-
mitter. For every experimental situation, there was an
initial power (on the order of 0.1 W), above which the
formation of one or several filaments of coalescent par-
ticles was observed. The filaments consisted of regu-
larly spaced thin disks formed by coalescent particles.
The particles in the disks were so tightly packed that
they formed a solid structure. The disks were arranged
perpendicularly to the filament axis and were spaced at
a distance of half the sound wavelength from each
other. The diameters of the disks were about one sound
wavelength. The filament length exceeded hundreds of
sound wavelengths.

Figure 2 shows the picture obtained by a uniform
illumination of the whole cell. At the left, one can see a
transmitter and at the right, a mirror. The figures in the
photograph correspond to centimeters. Figure 3 dis-
plays a part of this picture on an enlarged scale. One can
see two filaments: the first begins from the mirror in the
right part of the photograph and extends practically to
the transmitter, and the second is located near the trans-
mitter. The acoustic power of the transmitter was about
1 W. At lower powers, only one filament was observed.
The transverse dimension of the filament was about
half the wavelength of sound in water (~0.3–0.5 mm).
The filament was not homogeneous: it consisted of thin
disks formed by coagulated particles. The thickness of
the disks was comparable with the particle diameter
(for fine quartz powder, the thickness considerably
exceeded the particle size). The disks were located at
antinodes of velocity of a standing sound wave, the first
disk being spaced at a quarter-wavelength from the mir-
ror. The filament usually began from the mirror and
ended practically near the transmitter; i.e., its length
was hundreds of sound wavelengths. In Fig. 3 it can be
seen that, in addition to the stationary filament, flows of
particles in a transverse direction are observed (the par-
ticles in the photograph are smeared due to their move-
ment during exposition). The filament was very stable,
it did not fail during several hours of observation. Its
characteristic features were that, first, the disk sizes
were approximately equal and, second, they did not
increase when more particles were added to the water.
This means that the potential wells in which the parti-
cles are located are equal and completely filled.

The formation of filaments in all cases led to a con-
siderable (on the order of 20%) change in the signal
amplitude at the transducer. The phase of the signal also
changed. This allows us to conclude that the particles
not only visualized the acoustic field but also actively
modified it.

In pure water, no changes were observed in the
transducer impedance with an increase in the electric
power. Air bubbles, which were produced with the exci-
tation of acoustic field in the cell, hovered over the
whole volume of the cell without localization, which
differs radically from the situation with heavy particles
suspended in water.

In certain conditions, a simultaneous rotation of two
parallel filaments about a longitudinal axis located
between the filaments with a frequency of several hertz
took place. In this case, the amplitude of the signal at
the transducer was modulated with the same frequency.
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With a further increase in the power applied to the
transmitter, a considerable number of filaments were
formed with their origins at both mirror and transmitter
(Fig. 4). The topology of filaments was approximately
the same as in the case of one filament, except that they
were shorter. One can also see that, at a distance of
about 30 mm from the transmitter (which is somewhat
greater than its radius of curvature R), greater disks are
formed with approximately a double diameter com-
pared to other disks of the filament. In the experiment,
the acoustic power radiated by the transducer reached
several tens of watts. 

The process of filament formation may be conven-
tionally divided in two stages. At the first stage, the fil-
aments were rapidly formed (within several seconds).
At the second stage, within several minutes (for coarse
powder, tens of seconds), changes in the distribution of
particles and flows outside the filaments took place.
During both these stages, the signal at the transducer
was subjected to amplitude modulation with a modula-
tion depth of about 20% and a frequency from tens to
several hundreds of hertz. For fine powder, this modu-
lation proceeded when the particles outside the filament
area did not yet reach the cell bottom. For coarse pow-
der, the modulation continued for some time after the
major part of the powder mass outside the filaments fell
at the bottom. The modulation frequency depended on
the size of powder particles and on the applied power:
the frequency usually increased with the power.

For fine quartz powder, we could observe for a long
time that, besides the filaments, particles suspended
over the whole volume were located in axially symmet-
ric thin regions spaced at a distance of about half a
wavelength. A detailed observation of this picture was
made by using a focused beam of light, which illumi-
nated a certain layer of the region under study (the illu-
minator could be moved in the vertical and horizontal
directions). The observation was conducted with a
microscope focused at the illuminated area. This
method of visualization made it possible to see fine
details not shadowed by unilluminated regions of the
cell. Therefore, in Fig. 5, we schematically represent
the whole picture studied by parts. Suspended particles
located at the antinode surfaces of particle velocity
(curved lines in Fig. 5) are displayed in areas 3. This
arrangement is also observed at sound intensities at
which the filaments have not yet formed. Area 4 is the
filament, in which the particles are coagulated into
disks of a practically solid structure. The places of the
location of disks in area 4 are the geometric extension
of the places of location of particles in area 3. Area 5
represents longitudinal flows of water with particles.

The kinetics of the filament formation were as fol-
lows. After stirring the particles and switching on the
sound, the particles from area 4 began to move radially
along curved lines toward the center, where the filament
was formed. Then, in several seconds, the filament
growth terminated and, in an area of diameter 3–4 sound
ACOUSTICAL PHYSICS      Vol. 50      No. 4      2004
wavelength around the filament, the formation of longi-
tudinal flows of particles was observed, which later
moved radially away from the center. Then, all the par-
ticles, except for those gathered in the filament, fell to
the bottom of the cell.

At a slight slope of the mirror relative to the vertical
axis, the kinetics changed. At first, the radial motion of
particles to the center also took place, but only on one
side; on the other side of the filament in the course of its
formation, only longitudinal flows of particles were
observed. Then, after the filament was formed, the par-
ticles from the side of longitudinal flows passed
through the filament, keeping close to the disks from
the side of the mirror, and then moved radially from the
center. With coarse corundum particles, the picture of
the phenomenon was about the same, but the process of
the formation of a visible stationary picture was much
faster because of the higher density and greater size of
the particles; for the 70-µm corundum powder, it took
several seconds.

Fig. 3. Formation of filaments at medium acoustic power
(a fragment).
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Fig. 4. Formation of filaments at high acoustic power W = 20 W. Corundum particles of diameter 30 µm.

1 3 5 4 2

Fig. 5. A filament and the coagulation of fine particles of the quartz powder: (1) transmitter, (2) mirror, (3) region of coagulation,
(4) filament, and (5) longitudinal flows.
A distinctive feature of the phenomena studied was
that they were extraordinary stable to changes in exper-
imental conditions. The formation of a filament could
be observed with various distances between the mirror
and transducer, from several millimeters to about triple
the radius of curvature of the mirror (70 mm). The fila-
ment stability also manifested itself in the fact that the
filament was not destroyed with changes in the fre-
quency of sound. The change in frequency corre-
sponded to several intermode distances of the resonator.
When the mirror was rotated through greater angles (on
the order of 10°) in both the horizontal and vertical
planes, the filament appeared as if it was tied to the mir-
ror: it rotated with the mirror without being destroyed.
The formation of filaments occurred with various sizes
and materials of the mirror. Furthermore, filaments
were formed after a plane mirror was replaced by a con-
vex cylindrical one with the directrix lying in either the
ACOUSTICAL PHYSICS      Vol. 50      No. 4      2004
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horizontal or vertical plane. In this case, everywhere,
except for the filament, intense flows of small particles
were clearly visible (until the particles dropped to the
bottom of the cell).

The fact that the formation of long thin filaments
consisting of coalescent particles in an acoustic resona-
tor was not observed previously can presumably be
explained as follows. Experimental conditions in the
present study differ from the conditions in other stud-
ies, for example in [1, 2], in that we used a spherical
transducer, which made it possible to produce more
inhomogeneous fields in the resonator.

THEORY

The phenomena observed in our experiment can be
qualitatively explained in the following way. In pure
water, the acoustic field consists of the near field of the
transmitter and a field of standing waves. Away from
the transmitter, this field in the cross section has a form
close to Gaussian with a maximum lying on the axis. As
is shown in [3], spherical particles of radius R located
in the standing wave experience a mean acoustic force
applied in the longitudinal direction r:

(1)

where k is the wave vector of sound; E is the energy
density of standing waves; and ρ, c and ρ0, c0 are the
density and sound velocity of longitudinal waves for a
particle and water, respectively. For particles heavier
than water, from Eq. (1) it follows that they should
gather in antinodes of velocity. In a standing wave, the
whole space of the resonator represents potential wells
(velocity antinodes) divided by long barriers, the wells
being deeper and the barriers higher for higher energy
densities. Thus, the particles first fall to the nearest
wells and then move along them to the places where the
total force acting on them (acoustic and gravitational,
with consideration for buoyancy force) is equal to zero;
that is, they are drawn to the region near the maximum
energy density. The locus where this condition is satis-
fied for not too high powers of the transmitter resem-
bles a circle with the center (for particles heavier than
water) lying slightly below the symmetry axis. Figure 6
shows the transverse profile of the total force acting on
a particle for one of the wells for six equidistant levels.
The second line from above (a straight line) corre-
sponds to the distribution of the force in the middle of
the cell height. The asterisks show the points where the
total force acting on the particles vanishes. As the par-
ticles gather near these circles, the sound velocity in
these areas decreases, because, as is known, for exam-
ple, from [7], the sound velocity in a liquid with sus-
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ρ0 2ρ+
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ρc0
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2ρc2
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,sin=
ACOUSTICAL PHYSICS      Vol. 50      No. 4      2004
pended particles of volume concentration α is deter-
mined by the expression

(2)

where c and c0 are the sound velocities in the mixture
and in pure water, and β and β0 are the compressibili-
ties of particles and water, respectively. According to
Eq. (2), the velocity Ò reaches its minimum (for
quartz, at α ≈ 20%, and for corundum, at α ≈ 30%) and
then grows. In this case, the wave fronts are curved so
that, in the regions with large numbers of particles, the
energy density increases. The circle shrinks to a disk of
small diameter, which is determined by the inverse pro-
cesses: by the local heating of water, which leads to an
increase in sound velocity, violation of resonance con-
ditions for water oscillation between the disks consist-
ing of solid particles, and the growth of the sound
velocity after the concentration α exceeds the value
minimizing Eq. (2). Note that Eq. (2) may be satisfied
only qualitatively, since it was derived for the case of
uniformly suspended particles, which in our case is not
true. The particles gather into thin disks near these cir-
cles also due to the mutual attraction in the field of the
sound wave [3]. With a further increase in the power

c
c0

1 α
ρ ρ0–

ρ0
--------------+ 

  1 α
β β0–

β0
--------------+ 

 
------------------------------------------------------------------------,=

*

*

* *

–1.0 –0.5 0 0.5 1.0
X, arbitrary units

Fig. 6. Calculation of the transverse profile of total force
acting on a particle in various cross sections of the field.
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produced by the transmitter, the strong inhomogeneity
of the near field leads to the situation where the condi-
tion of equilibrium for suspended particles becomes
also fulfilled in other regions, near the mirror and near
the transmitter. In this case, new filaments of a similar
configuration, which is determined not by the initial
distribution of the field but by the developing nonlinear
processes, are formed. The experiment showed that the
particles do not necessarily constrict into one filament
but may split in two filaments rotating around an axis
over the aforementioned circles. In addition, in the pro-
cess of equilibrium establishment (until the particles
outside the filaments fall to the bottom), due to the
interaction with the flows of particles, oscillations of
filaments as a whole are possible, which results in sim-
ilar oscillations of the voltage at the transducer.

Thus, the phenomenon observed in the experiment,
namely, the stable formation of thin long filaments con-
sisting of suspended heavy particles, is qualitatively
explained by a special type of self-focusing of sound
due to the decrease in its velocity by the particles that
appear in the region of maximum acoustic energy den-
sity. This phenomenon may be useful for the concentra-
tion of sound energy in an acoustic resonator with low
electric power supply, as well as for the separation of
particles suspended in a liquid.
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Abstract—An approximate method is proposed for calculating the acoustic field produced by a finite-
height cylindrical piezoceramic transducer with allowance for the radiation from the ends of its inner vol-
ume that is filled with an elastic medium characterized by an arbitrary Poisson’s ratio. Structural features
of the transducer (the presence of a sealing compound and an inner baffle) are taken into account. Good
agreement is obtained between calculations and experiment for two transducers (a short one with a height-
to-radius ratio h/a ≈ 1 and a long one with h/a ≈ 3) whose inner cavities are filled with either water or foam
plastic. © 2004 MAIK “Nauka/Interperiodica”.
Water-filled cylindrical piezoceramic transducers
[1] are widely used in designing transmitting hydro-
acoustic arrays. The inner cavity of such a transducer
may contain an acoustic baffle, which has the form of a
cylinder made of a material with a wave resistance
smaller than that of water. Exact methods for calculat-
ing the parameters of such transducers with allowance
for their structural features (the presence of a sealing
compound, an inner baffle, etc.) do not exist. The theo-
retical models developed in some publications describe
some idealized cases. For example, a rigorous solution
was obtained in [2] to the problem of sound radiation
caused by axisymmetric vibrations of a finite open tube
whose wall thickness was small compared to its other
dimensions. In [3], the acoustic properties of an array of
open cylindrical piezoceramic shells were calculated
by solving an infinite system of equations of shell
vibration. However, the use of these results for analyz-
ing the behavior of real transducers is difficult. An
approximate method was proposed in [4] for calculat-
ing the field produced by a cylinder of finite height with
allowance for the radiation from the ends of its inner
volume filled with an isotropic elastic medium with an
arbitrary Poisson’s ratio. The method is based on the
results reported in [5, 6]. In [5], expressions were
obtained for calculating the input impedance of a radi-
ally excited solid elastic cylinder of finite height. It was
assumed that the lateral surface of the cylinder was
excited by a force uniform along the cylinder height
and that, for the height-to-radius ratio h/a ≥ 1 in the
region before the first resonance, the axial displacement
at the ends weakly depends on the radius, so that, under
the transformation of radial vibrations to longitudinal
ones, they vibrate as one-sided flat pistons without a
baffle. The validity of these assumptions was confirmed
1063-7710/04/5004- $26.00 © 20381
by the results obtained in [6], where it was shown that
the exact values obtained in [2] for the active and reac-
tive components of the radiation resistance of a thin
water-filled cylinder coincide with these results in posi-
tions of resonances and maximal values.

In this paper, we use the aforementioned approaches
to determine the acoustic characteristics of a water-
filled cylindrical transducer or a transducer with a
foam-plastic inner baffle (Fig. 1). In solving this prob-
lem, we do not take into account the interaction
between the ends of the inner cavity and the outer lat-
eral surface of the cylinder, which is considered as an
opaque cylinder enclosed in perfectly rigid, semi-infi-
nite cylindrical baffles. In addition, we ignore the con-
tributions of the ends of the thin-walled cylindrical
transducer and the gap between the cylinder and the
inner baffle to the total radiation field.

(a) (b) (c)

1 2 1 2 3 1 2 4

〈h〉 〈h〉 〈h〉

∅ 〈 2b〉
∅ 〈 2a〉 ∅ 〈 2a1〉 ∅ 〈 2a1〉

Fig. 1. Types of transducers under study: (a) a water-filled
cylinder, (b) a cylinder with an inner baffle, and (c) a com-
pound water-filled cylinder. (1) Piezoceramic ring,
(2) water, (3) inner baffle, and (4) sealing compound.
004 MAIK “Nauka/Interperiodica”
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To clarify the principle of calculation, we follow the
previous publication [4] and first consider a simplified
model (Fig. 2). If we assume that the piezoceramic cyl-
inder and the ends of the inner cavity vibrate with
velocities  and , respectively, the pressures pu and
pw produced in the far field at any angle α are expressed
by the formulas [2, 7, 8]

(1)

(2)

where a and b are the inner and outer radii of the cylin-
der and (ρc)wat is the wave resistance of water. In
Eq. (2), for ka ≤ 2 we set δ = 0, which, to sufficient
accuracy, corresponds to the radiation from a flat piston
without a baffle; for ka > 2, we have δ = 1 and, in this
case, the pressure produced by a piston without a baffle
coincides with the pressure produced by a piston in a
perfectly rigid baffle [2].
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Fig. 2. Determination of the radiation field of a cylindrical
transducer with an inner cavity.
Now, we obtain an expression for the pressure pro-
duced by the transducer in the direction α = 90°:

(3)

The factor “2” that appears before pw is explained
by the fact that the radiation is produced by both ends
of the inner cavity. From Eq. (3) with allowance for
Eqs. (1) and (2), we obtain

(4)

where

(5)

is the pressure produced by a cylinder enclosed in per-
fectly rigid cylindrical baffles. The factor a1/a is intro-
duced to allow for the decrease in the radius of the end
surface of the inner cavity (see Fig. 1c) or baffle (Fig. 1b)
relative to the radius of the piezoceramic element of the
transducer.

Formula (4) involves the ratio of the particle veloc-
ity  to the radial velocity of the outer cylindrical sur-

face of the transducer . If the cylinder is thin-walled

[9, 10], its inner surface vibrates with velocity . The

ratio /  and the specific input impedance Zinp of the
radially excited elastic cylinder are determined on the
basis of refined expressions derived in [4–6]. Assuming
for generality that the ends are loaded with different
impedances ZI and ZII, we represent Zinp in the form

(6)

Dividing the impedance components by the wave resis-
tance of water, we obtain

(7)
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In Eqs. (1), (2), (4), (7), and (8), k and kl are the wave
numbers in water and in the baffle, v  is Poisson’s
ratio of the elastic medium filling the inner cavity (or
the baffle), m = ρcl /(ρc)wat is the relative wave resis-
tance of the medium, and J0 and J1 are Bessel func-
tions.

From Eqs. (6)–(8), we derive the expressions for the
active and reactive components of the input impedance
Zinp = Rinp + iXinp in the case of identical loads at the
ends of the cavity, which corresponds to Fig. 2; i.e., we
set ZI = ZII = ZT , where ZT = RT – iXT is the impedance
of a flat piston without a baffle:

(9)

(10)

The ratio between particle velocities that appears in
Eq. (4) is determined as

(11)

where
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To calculate the dependences pr(ka) as functions of the
wave radius in water, we introduce the following rela-
tions in Eqs. (9)–(11):

(12)

where cl is the velocity of longitudinal waves in the
baffle.

Expression (5) for Pu involves the radial particle
velocity . For a piezoceramic transducer, its value is

Im
ẇ
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Fig. 3. Frequency dependences of (a) the pressure produced
by a cylindrical transducer along its radius and (b) the sum
of reactive impedance components of the transducer–inner
cavity system. The numbers near the curves indicate the
ratio of the inner radius of the piezoceramic ring a to its
height h.
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Fig. 4. Influence of the ratio a1/a (from 1 to 0.6) on the dependence pr(ka) for the cases of a (a) water-filled and (b) foam-plastic-
filled inner cavity. The numbers near the curves show the ratio a1/a.
determined from the theory of transducers [11] accord-
ing to the formula

(13)

where

(14)

is the sum of the specific impedances of the transducer
itself ZMC, its inner cavity Zinp, and the outer cylinder
surface (of area Sb) – zs; B is a coefficient that depends
on the constants of piezoelectric ceramics, the thick-
ness of the piezoceramic ring, and the voltage supplied
to the transducer. In subsequent calculations, we
assume that B = 1. According to [12], we write the
expression for ZMC in the form

(15)

where mcer = (ρc)cer/(ρc)wat is the relative wave resis-
tance of piezoelectric ceramics, Q is the Q factor of the
transducer in air, ε = a/b is the ratio of the inner radius
of the transducer to its outer radius (of piezoceramics),

and (ka)0 =  is the resonant wave radius of the

piezoceramic ring in air.
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With allowance for Eqs. (13) and (14), the quantity
 can be represented as

(16)

Formulas (4), (5), and (9)–(16) allow us to calculate
the radiation field of the cylinder and to analyze the
dependences Pr(ka) by varying the parameters of the
transducer and the inner cavity. To reveal the general
trends, we plotted a family of curves normalized to
unity for different ratios a/h at a1/a = 1 (Fig. 3a). Cal-
culations were performed with the following parame-
ters: the ratio of the velocity in piezoceramics to the
velocity in water ccer/cwat = 2.33, mcer = 16.8, Q = 20,
and the parameters of the foam plastic (see [13]) m =
0.35 and v  = 0.3. Let us indicate two resonances in the
characteristic of pr: one of them, at (ka)2, is caused by
radial vibrations of the piezoceramic cylinder, and the
other, at (ka)1, corresponds to lower frequencies and is
mainly determined by the vibrations of the inner cylin-
drical cavity. As the relative height of the cylinder h/a
increases, the low-frequency resonance shifts to the left
along the ka axis and its level decreases relative to the
pressure level reached at the main (radial) resonance
frequency (ka)2. The positions of both resonances are
governed by the function ΣX (Fig. 3b), i.e., by the sum
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Fig. 5. Characteristics of (1) pressure pr(ka) and (2) ratio pr/pu (upper plots) and the dependences ΣX(ka) (lower plots) for
(a, c) transducer no. 1 and (b, d) transducer no. 2 (see table).
of the reactive impedance components of the trans-
ducer–inner cavity system (see the second term in the
denominator of expression (16)). From Fig. 3, one can
see that, at certain values of (ka)1, when the pressure
characteristic pr(ka) has its first maximum, the quantity
ΣX reaches its minimum. Near (ka)2, the second reso-
nance is observed at ΣX ≅ 0.
ACOUSTICAL PHYSICS      Vol. 50      No. 4      2004
The positions of the maxima of pr depend on the
ratio a1/a (Fig. 4). As a1/a decreases, the frequency
characteristic of pressure begins to exhibit an additional
resonance (see Fig. 4a), which (as will be shown below)
is caused by the change in the contribution of the radi-
ation of the cavity end to the total radiation field of the
transducer. In the case of a cavity with an inner foam-
Dimensions of the transducers and their elements

Parameters a (cm) b (cm) h (cm) ε a/h a1 (cm) b1 (cm) h1 (cm)

Transducer no. 1 5.1 5.7 16.5 0.89 0.31 3.75 7 20.3

Transducer no. 2 16.75 19.25 18.5 0.87 0.9 15 20.5 23
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Fig. 6. Experimental frequency dependences of pressure pr (Pa × m/V) produced by (a) transducer no. 1 and (b) transducer no. 2
along the radius when the cavity is filled with (1, 1a) water or (2) foam plastic.
plastic baffle, this effect does not occur (Fig. 4b). (Note
that the curves in Fig. 4 are not normalized and the
absolute values of pressure pr can be estimated; for the
cases of water and foam plastic, these values are almost
the same.)

Let us analyze the characteristics pr(ka) for two cases
of cylindrical transducers: a long transducer (no. 1) with
a/h = 0.31 and a short transducer (no. 2) with a/h ≅  1.
For these specific transducers, we compare theory and
experiment. The dimensions of the transducers and
their components are given in the table.

We compare the characteristics pr(ka) with the ratio
pr/pu between the pressure produced by a transducer
with an inner cavity and the pressure produced by a cyl-
inder in perfectly rigid cylindrical baffles (i.e., without
considering the ends of the cavity), which was calcu-
lated by Eq. (6) (see the upper plots in Fig. 5). One can
see that, in the low-frequency region near the first reso-
nance, for the long cylinder (transducer no. 1), the
aforementioned ratio is pr/pu ≥ 1. This means that the
predominant radiation is that from the ends of the cav-
ity in the direction α = 90° (along the radius). In the
region of the second resonance, the dependence pr(ka)
reproduces the behavior of the characteristics of pr/pu,
which testifies to the negligibly small influence of the
cavity properties on the total radiation field. (In calcu-
lating the characteristic pr(ka), we used the value a1/a =
0.73, which corresponds to the geometric dimensions
of the transducer (see table).) Hence, for the long cylin-
der, when a1/a < 1, the frequency characteristic of
sound radiation exhibits two humps. The first of them
occurs at ΣX = 0, and the second, in the case when the
effect of the cavity becomes insignificant. In this case,
radiation of a cylinder in perfectly rigid cylindrical baf-
fles predominates in the main resonance region. Note
that, at a1/a = 1, the pressure curve exhibits only one
resonance. For the short cylinder (transducer no. 2), the
characteristic pr(ka) exhibits the first and second reso-
nances in the region of ΣX ≅ 0 and the characteristic of
pr/pu does not affect to any considerable extent the pres-
sure value near the second resonance, unlike the case of
transducer no. 1.

Experimental frequency characteristics of pressure,
pr(f), produced by transducers nos. 1 and 2 with differ-
ent relative heights and different materials filling their
inner cavities (water or foam plastic), are presented in
Fig. 6. To compare them with the calculated depen-
dences pr(ka), it is necessary to recalculate the scale of
the f axis (given in kHz) to the scale of the ka axis
through a coefficient å, i.e., to set ka = Mf. A numerical
analysis showed that, for both cases of inner cavity fill-
ing (water or foam plastic), good agreement between
the calculated and experimental characteristics of pr
(see Figs. 4–7) is achieved when the value of å is
approximately equal to the ratio of the inner radius of
the piezoceramic transducer to its height: å ≅  a/h.

The results obtained in this paper may serve for esti-
mating the characteristics of transducers with geomet-
ACOUSTICAL PHYSICS      Vol. 50      No. 4      2004
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Fig. 7. Pressure produced along the radius by (a, c) transducer no. 1 and (b, d) transducer no. 2 (pressure is normalized to unity):
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ric parameters within the limits of a/h = 0.2–1.0 and ε =
a/b = 0.8–0.9 and with a wave radius of ka ≤ 3.
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Abstract—The study of the effect of a perfectly conducting plane placed at a certain distance from the sur-
face of a potassium niobate crystal on the characteristics of the generalized Rayleigh and Gulyaev–
Bleustein surface waves is continued. In addition, the effect of an infinitely thin conducting layer applied
to the surface of the piezoelectric on the characteristics of these waves is analyzed. It is found that a varia-
tion in the conductance of this layer can produce a result that completely differs from the result obtained
when a perfectly conducting plane is moved toward the surface, although the extreme states of these actions
(electrically open and short-circuited surfaces) are identical. A possible physical explanation of this differ-
ence is proposed. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Until recently, it was believed that, for surface
acoustic waves (SAWs) propagating in piezoelectric
crystals, an electrical short-circuiting of the surface
does not affect the wave type but causes insignificant
changes in the wave structure and reduces the wave
velocity. This statement was corroborated by numerous
calculations and experiments [1, 2]. However, a number
of recent publications reported that it is not always
valid for strong piezoelectrics [3–6]. In particular, it
was theoretically predicted that there exist crystallo-
graphic orientations for which metallization of the sur-
face of a semi-infinite potassium niobate crystal [3, 4]
or a piezoelectric structure based on it [5] can produce
an unusual phenomenon, namely, an increase in the
velocity of the surface acoustic waves. The possibility
of this effect was also demonstrated experimentally for
the Rayleigh SAWs propagating along the X axis of the
Y + 128°-cut lithium niobate crystal [6]. The lithium
niobate crystals were specially processed, after which
lithium ions were found to be partially replaced by pro-
tons in a thin surface layer. To explain the effect of the
SAW velocity increase by the metallization of the sur-
face, a hypothesis was put forward: it was presumed
that either the type of the surface wave changes or
hybrid coupled waves are generated.

A work is also known [7] that theoretically analyzes
the effect of a perfectly conducting plane placed a dis-
tance d apart from the surface of a Y-cut potassium nio-
bate crystal on the characteristics of generalized surface
acoustic waves propagating in the X + 15° direction.
Another unusual phenomenon was predicted, namely, it
1063-7710/04/5004- $26.00 © 20388
was shown that, as this plane is moved away from the
piezoelectric surface, the structure of the wave may sig-
nificantly change and a generalized Gulyaev–Bleustein
wave may transform into a generalized Rayleigh wave.

This paper continues the analysis of the behavior
of the characteristics of SAWs propagating in Y – X +
15°-cut potassium niobate under a smooth variation of
the electrical boundary conditions. The boundary con-
ditions can be varied in two ways: by moving the per-
fectly conducting plane away from the piezoelectric
surface or by changing the conductance of an infinitely
thin conducting layer applied to the potassium niobate
surface. Results obtained with these methods of
smoothly transforming an electrically short-circuited
surface into an electrically open surface are compared.
A specific feature of our calculations is that the absolute
value of the determinant of the matrix of boundary con-
ditions was minimized using the representation of the
velocity as a complex quantity [8]. Its real part is the
phase velocity, while the imaginary part allows for the
attenuation associated with either the leaky nature of
the wave being analyzed [8] or the presence of the con-
ducting layer. The calculations employed materials
constants of potassium niobate borrowed from [9].

It should be noted that, in our opinion, the general-
ized Gulyaev–Bleustein waves must be distinguished
from the generalized Rayleigh waves. By a “general-
ized Gulyaev–Bleustein wave,” we mean a piezoactive
surface wave with three mechanical displacement com-
ponents, whose polarization ellipse is closest to the
crystal surface [7]. If this ellipse is closest to the sagittal
004 MAIK “Nauka/Interperiodica”
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plane, the wave will be referred to as a generalized Ray-
leigh wave.

1. CHARACTERISTICS OF SAWS
IN A PERFECTLY CONDUCTING PLANE–
VACUUM–PIEZOELECTRIC STRUCTURE

Let us consider in more detail the results of analyz-
ing the effect of an infinitely thin, perfectly conducting
plane placed a distance d apart from the free surface of
a piezoelectric material on the characteristics of gener-
alized surface acoustic waves. As shown in [7], as the
distance d increases from 0 to ~0.1λ, where λ is the
wavelength, the surface of the piezoelectric crystal
smoothly goes over from the electrically short-circuited
state to the electrically free state. As a result of the the-
oretical analysis, the velocity and mechanical particle
displacement components of the generalized surface
waves propagating in an Y – X + 15°-cut potassium nio-
bate crystal were determined as functions of the nor-
malized vacuum gap d/λ. The phase velocity and the
normalized components u1/u, u2/u, and u3/u (u =

) of the mechanical displacement on the
surface of the piezoelectric versus the normalized vac-
uum gap d/λ are plotted in Figs. 1 and 2, respectively.
Here, the x1 axis coincides with the wave propagation
direction, the x3 axis is orthogonal to the surface, and
the x2 axis lies on the surface and is orthogonal to the
propagation direction. An analysis of the plots shows
that, in this crystallographic situation, two branches of
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Fig. 1. Phase velocity of the generalized Gulyaev–Bleustein
SAW—generalized Rayleigh wave (branch 1) and the gen-
eralized Rayleigh wave (branch 2) in a Y – X + 15°-cut
potassium niobate crystal versus the vacuum gap d/λ
between the perfectly conducting plane and the surface of
the crystal; dots 3 and 4 refer to the fast and slow quasi-
shear bulk waves.
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the solution are possible. As can be seen in Fig. 2
(curve 1), the first branch refers to the generalized
Gulyaev–Bleustein wave when the surface is short-cir-
cuited, because the second component u2 of the
mechanical displacement in this wave is much greater
than the first u1 and third u3 components. The second
branch of the solution (curve 2) refers to the general-
ized Rayleigh wave, in which the first u1 and third u3

components of the mechanical displacement are the
greatest. Further analysis of the plots given in Fig. 2
shows that, as the distance d increases from 0 to λ, the
generalized Gulyaev–Bleustein wave (curve 1)
smoothly transforms into the generalized Rayleigh
wave. As for the second branch of the solution, which
refers to the generalized Rayleigh wave (curve 2), its
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Fig. 2. Normalized mechanical particle displacement com-
ponents (a) u1/u, (b) u2/u, and (c) u3/u of the (1) generalized
Gulyaev–Bleustein and (2) Rayleigh SAWs in a Y – X +
15°-cut potassium niobate crystal on its surface versus the
vacuum gap d/λ between the perfectly conducting plane and
the crystal surface; dots 3 and 4 refer to the fast and slow
quasi-shear bulk waves.
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structure remains almost unchanged, but its damping
constant grows with increasing distance d. At d =
0.002λ, this wave ceases to be a propagating wave and
the second solution disappears. Figures 3 and 4 show
the distributions of normalized mechanical displace-
ment components throughout the thickness of the crys-
tal at different gaps d for the first and second branches,
respectively. Both waves are seen to be relatively
strongly localized near the surface. However, on
branch 1 (Fig. 3), when the gap is d/λ ∈ [10−8, 10–3], the
greatest component is u2, which decreases with increas-
ing d/λ and, at d/λ =10–2, the component u3 becomes the
greatest. This behavior also corroborates the above con-
clusion that the generalized Gulyaev–Bleustein wave
smoothly transforms into the generalized Rayleigh
wave. As for branch 2 (Fig. 4), the distribution of the
displacement amplitude in depth remains almost
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Fig. 3. Normalized mechanical particle displacement com-
ponents u1/u, u2/u, and u3/u of the generalized Gulyaev–
Bleustein wave in a Y – X + 15°-cut potassium niobate crys-
tal on its surface versus the depth x3/λ of the crystal for dif-
ferent values of the vacuum gap between the perfectly con-
ducting plane and the crystal surface: d/λ = (a) 10–8, (b) 10–3,
and (c) 10–1.
unchanged over the entire range of the gap d. Figures 1
and 2 also show the velocities and normalized compo-
nents of the mechanical displacement for the fast and
slow quasi-shear waves propagating in the same direc-
tion.

Thus, potassium niobate has a crystallographic ori-
entation, for which the motion of a perfectly conduct-
ing plane away from the crystal surface may lead to a
smooth transformation of the generalized Gulyaev–
Bleustein wave into the generalized Rayleigh wave.

2. CHARACTERISTICS OF SAWS
IN A THIN CONDUCTING LAYER–

PIEZOELECTRIC STRUCTURE

Now let us consider the other possibility of a smooth
variation of electrical boundary conditions, namely, let
us study the behavior of the velocity and mechanical
displacement components of the surface Rayleigh and
Gulyaev–Bleustein waves as a function of the conduc-
tance of an infinitely thin conducting layer applied to
the surface of potassium niobate crystal. As in the pre-
vious case, we study the X + 15° direction of propaga-
tion on an Y cut potassium niobate crystal. Figure 5
shows the phase velocity of SAWs versus the conduc-
tance of the thin conducting layer. The curve was
obtained by numerically solving the boundary-value
problem specified by standard elasticity and electrostat-
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Fig. 4. Normalized mechanical particle displacement com-
ponents u1/u, u2/u, and u3/u of the generalized Rayleigh
wave in a Y – X + 15°-cut potassium niobate crystal on its
surface versus the depth x3/λ of the crystal for different val-
ues of the vacuum gap between the perfectly conducting
plane and the crystal surface: d/λ = (a) 10–8 and (b) 10–3.
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ics equations and standard mechanical and electrical
boundary conditions, which are described in detail in
[10]. Figure 6 shows the normalized components of the
mechanical displacement of particles on the surface of
the piezoelectric versus the conductance of the layer. It
can be seen that, in this case, the solution also has two
branches. An analysis of the results shows that, as in the
previous case, for a short-circuited surface, the first
branch refers to the Gulyaev–Bleustein wave, because
u2/u > u1/u and u2/u > u3/u (Fig. 6). As the conductance
decreases, the velocity and the damping constant of this
wave increase up to σs = 10–6 S when the wave ceases
to be a propagating wave and, subsequently, the first
branch of the solution disappears. Presumably, this
branch, on the electrically open surface, transforms into
a fast quasi-shear bulk wave (V = 4531 m/s) with the
polarization (–0.133; 0.991; 0) (Figs. 5 and 6). As for
the structure of the wave on the surface of the crystal, it
remains almost unchanged (Fig. 6); i.e., the type of
wave remains the same. Figure 7 shows the distribution
of the normalized components of the mechanical parti-
cle displacement in the depth of the crystal for different
surface conductivities. It can be seen that the second
component u2 of the mechanical displacement remains
the greatest over the entire range of conductance varia-
tion. As for the penetration depth (δ) of the wave under
study, it increases as the surface conductance decreases
and reaches δ ≈ 500λ at σs = 10–6 S. This fact supports
the assumption made above that this wave can be trans-
formed into a fast quasi-shear bulk wave.

The second branch of the solution (curve 2 in Fig. 5)
refers to the generalized Rayleigh wave, because the
second component u2 of the mechanical displacement
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Fig. 5. Phase velocities of (1) generalized Gulyaev–
Bleustein and (2) Rayleigh SAWs propagating in the direc-
tion X + 15° of a Y-cut potassium niobate crystal versus the
conductance of the thin layer on the crystal surface; dots 3
and 4 refer to the fast and slow quasi-shear bulk waves.
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in this case is the smallest, as shown in Fig. 6. As the
conductance decreases, the structure of the wave
remains almost unchanged. Figure 8 shows the distribu-
tions of normalized components of the mechanical par-
ticle displacement in the depth of the crystal for differ-
ent surface conductivities. It can be seen that the wave
is strongly localized and its third component of
mechanical displacement, u3, is always the greatest.
The velocity of this wave increases with the conduc-
tance and, at high layer conductivities (electrically
short-circuited surface), it proves to be higher than at a
zero surface conductance (electrically open surface). In
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Gulyaev–Bleustein and (2) Rayleigh SAWs in a Y – X +
15°-cut potassium niobate crystal on its surface versus the
conductance of the thin layer on the crystal surface; dots 3
and 4 refer to the fast and slow quasi-shear bulk waves.
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this case, the electromechanical coupling coefficient
K2 = 2∆v /v  becomes negative.

Figure 5 also shows that a situation is possible in
which, at a certain conductance of the surface layer
(σs = 5.8 × 10–6 S), two piezoactive waves propagate
with the same phase velocity in the same direction.
However, these waves differ in the degree of their
localization and in the magnitude of their mechanical
displacement components, both on the surface of the
crystal and in its depth (Figs. 6, 7b, 8b). It should also
be noted that the generalized Gulyaev–Bleustein wave
features a noticeably higher attenuation than the gen-
eralized Rayleigh wave (Fig. 9). The smooth behavior
of the characteristics of the waves under study versus
the surface conductance in the region where the
curves in Fig. 5 intersect rules out a wrong transition
from one type of the solution to another. A comparison
of Figs. 1 and 5 also shows that, when the perfectly
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Fig. 7. Normalized mechanical particle displacement com-
ponents u1/u, u2/u, and u3/u of the generalized Gulyaev–
Bleustein wave in a Y – X + 15°-cut potassium niobate crys-
tal versus the depth x3/λ of the crystal for different values of
surface conductance: σs = (a) 10–1, (b) 5.8 × 10–6, and
(c) 10–6 S.
conducting layer is moved toward the surface, the
maximum velocity of the generalized Gulyaev–
Bleustein wave is 3851 m/s; when the conductance of
the surface layer is varied, the corresponding velocity
value is 4500 m/s.

Thus, the study performed above leads us to a com-
pletely unexpected conclusion. It was found that a vari-
ation in the conductance of the layer applied to the
piezoelectric surface can produce a result different
from that obtained when a perfectly conducting plane is
moved toward the surface, although the initial and ter-
minal states of these actions (electrically open and elec-
trically short-circuited surfaces) are fully identical. The
analysis has shown that, unlike the case of moving a
perfectly conducting plane away from the surface of the
piezoelectric, the variation of the conductance of a thin
layer applied to the surface does not lead to a transfor-
mation of the type of waves under study. In this case, a
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Fig. 8. Normalized mechanical particle displacement
components u1/u, u2/u, and u3/u of the generalized Ray-
leigh wave in a Y – X + 15°-cut potassium niobate crystal
versus the depth x3/λ of the crystal for different values of
surface conductance: σs = (a) 10–1, (b) 5.8 × 10–6, and
(c) 10–8 S.
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situation is realized in which a metallization of the sur-
face causes an increase in the velocity of surface acous-
tic waves.

CONCLUSIONS

A theoretical analysis of generalized surface acous-
tic waves propagating in a Y – X + 15°-cut potassium
niobate crystal has shown that different methods of
bringing a semi-infinite crystal from the state with an
electrically short-circuited surface to the state with an
electrically open surface may produce different results.
If this transition is realized by moving a perfectly con-
ducting plane away from the surface of the crystal, a
transformation of the generalized Gulyaev–Bleustein
wave into the generalized Rayleigh wave is possible. As
a result, the velocity of the wave increases; i.e., the
wave is characterized by a positive electromechanical
coupling coefficient defined in terms of the relative
velocity variation. Conversely, if the transition between
the states is accomplished by varying the conductance
of a thin layer applied to the piezoelectric surface, no
transformation of the wave type is observed. However,

2
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1

2

4

6

8

10

10–1
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Attenuation, dB/λ
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0
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Fig. 9. Attenuation per wavelength for the (1) generalized
Gulyaev–Bleustein and (2) Rayleigh SAWs propagating in
the X + 15° direction of an Y-cut potassium niobate crystal
versus the conductance of the thin layer applied to the crys-
tal surface.
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the velocity of the generalized Rayleigh surface wave
for the electrically short-circuited surface proves to be
greater than that for the electrically open surface, and
the electromechanical coupling coefficient defined in
terms of the relative velocity variation looks as if it
were negative.

Presumably, the reason why the above methods of
changing the crystal state from an electrically short-cir-
cuited one to an electrically open state produce differ-
ent results is as follows. When the conducting surface
is moved away from the surface of the piezoelectric
crystal, an external force must do work to increase the
total energy of the surface wave and change its polar-
ization. Conversely, when the conductance of the thin
surface layer is varied, the external force seems to be
absent and the polarization of the wave does not
change.
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Abstract—A focused acoustic antenna array is considered in a strongly inhomogeneous stationary medium.
An opportunity is indicated to determine the coordinates of a number of objects by active location. It is
assumed that, in insonifying the objects by a wave with an arbitrary wave front, they scatter spherical waves
and are sufficiently separated in distance and angle to be resolved by the same array in a homogeneous
medium. The procedure of determining the coordinates of the objects involves a wave front inversion for dis-
tinguishing between the signals from different objects. The coordinates are determined by estimating the
parameters for each individual object. The parameter estimation procedure is shown to provide a high effi-
ciency of extracting the argument of a complex signal. The results of the numerical modeling and solution of
the problem are presented. © 2004 MAIK “Nauka/Interperiodica”.
A focused antenna array is especially efficient when
its aperture is large and the number of receiving ele-
ments is great. However, such arrays are very sensitive
to inhomogeneities of the medium. The inhomogene-
ities can be sufficiently smooth to cause no substantial
energy loss due to multiple scattering but, at the same
time, they can dramatically spoil the image produced
by a focused array of large aperture. In [1], a method
was proposed for eliminating the distortions caused by
wave propagation through a thin layer with rather
intense inhomogeneities. The layer thickness was
assumed to be so small that the distortions were inde-
pendent of the range and angle of the objects. The
method can be also applied to a focused array. In [2], a
problem was considered on acoustical imaging by an
array positioned in a thick layer of inhomogeneous
medium where the signals of objects with different
coordinates underwent different distortions. However,
this consideration was based on the assumption that all
objects were in the far field of the array, and the speci-
ficity of a focusing array was neglected. The present
paper considers an array placed in a thick layer of inho-
mogeneities, so that different distortions are obtained
for different objects.

The imaging of objects by an array placed in a thick
inhomogeneous layer is based on the concept that dif-
ferent objects can be distinguished from each other by
the wave front inversion (WFI) [3]. In acoustics, the
WFI procedure consists of two steps. In the first step, a
single array element is used to transmit a pulse. This
pulse passes through the inhomogeneous medium,
reaches the objects, and undergoes scattering by them.
It is assumed that the field scattered by each object is a
spherical wave. These waves pass through the inhomo-
geneous medium again and arrive at the array. The sec-
1063-7710/04/5004- $26.00 © 20394
ond step consists of memorizing the signals that arrived
at the array and then transmitting them in the form of
signals that are complex conjugated, that is, time-
inverted with respect to the received signals. As a result,
waves with an inverted wave front are transmitted into
the medium. Upon passing through the same medium
again, the WFI waves compensate the newly accumu-
lated distortions by the old ones and arrive at the objects
in the form of spherical waves.

These waves are scattered by the objects again and
arrive at the array through the inhomogeneous medium.
The latter signal differs from the previous one in that a
signal of doubled level arrives from each object
because, upon scattering, the waves again acquire fac-
tors that are determined by the scattering strengths of
the objects. This procedure constitutes the basis of
detecting every individual scattered signal by the WFI
method.

At first the strongest signal is extracted. The corre-
sponding procedure is described in detail and experi-
mentally illustrated in [3]. The procedure consists of
multiply using WFI (iterations). At each iteration, the
received signals acquire additional factors that are
equal to the amplitudes of the corresponding scattered
signals. As a result, in every consecutive iteration, the
strongest signal becomes enhanced in comparison with
the remaining signals. In this way, one can select a sin-
gle signal by performing a required number of itera-
tions. This signal is memorized for its subsequent pro-
cessing to determine its parameters.

In [2], a WFI method for eliminating the strongest
signal and, by multiple iterations, selecting the signal
next in intensity is described and numerically illus-
trated. The method also allows one to estimate the level
004 MAIK “Nauka/Interperiodica”



        

FOCUSED ANTENNA ARRAY IN A STRONGLY INHOMOGENEOUS MEDIUM 395

                                                               
of the eliminated signal. Now, the WFI procedure is
performed with the difference between signals of two
iterations: first, the initial iteration multiplied by the
amplitude of the signal to be eliminated and, second,
the subsequent iteration in which the signal to be elim-
inated predominates. The value of the multiplying fac-
tor that determines the amplitude of the signal to be
eliminated is chosen to minimize the level of the differ-
ence signal averaged over the array, because this level
strongly depends on the extent to which the strongest
signal is suppressed. Now, the second-in-intensity sig-
nal becomes the strongest one. After a number of itera-
tions, this signal proves to be governing, and it is mem-
orized for subsequent processing. The procedure can be
repeated until all the signals are detected whose param-
eters have to be estimated.

One can find a more detailed description of the sig-
nal separation process in [2]. Here we do not consider
this process, because it is the same for both ordinary
and focused antenna arrays. To obtain true amplitudes
of all signals in the case at hand, a number of additional
iterations are required, as compared to the case consid-
ered in [2].

Let us consider the procedure for estimating the
parameters [4, 5] of already detected signals produced
by individual objects. Numerical modeling is advanta-
geous to illustrate the processing technique.

Let a linear array have 256 receiving and transmit-
ting elements spaced at 0.5λ (λ is the wavelength). Let
us suppose that pulses with a monochromatic carrier
are transmitted, many periods of the carrier fitting
within the pulse duration. Such signals can be treated as
monochromatic ones. Let the objects meet the condi-
tions for the WFI method to be successful. These
objects scatter regular spherical waves when they are
excited by an arbitrary wave field. The distances sepa-
rating the objects are supposed to be sufficient to reli-
ably distinguish between them in a medium without
inhomogeneities. Let us specify the positions of the
objects and the corresponding amplitudes of the scat-
tered waves according to Table 1.

In Table 1, n is the ordinal number of the object, Wn
is the amplitude of the scattered signal (in arbitrary
units), and Un is the spatial frequency of the object posi-
tion (in units of quantization). The spatial frequency (in
the quantization units) is related to the angle θn at which
the object is seen from the array (the angle between the
direction to the object from the array center and the nor-
mal to the array aperture at the array center) according
to the formula [6]

(1)

where L is the length of the array. The distances to the
objects are presented in the Rn row of the table (in units
of L). The lower row shows the parameter that deter-
mines the wave front curvature for the wave scattered
by the object. This parameter is expressed as values yn

θn( )arcsin
λ
L
---Un,=
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that are the numbers of a set of functions describing the
phase front of a spherical wave (see below).

Note that, in the case of a strongly inhomogeneous
medium, one cannot use the ordinary technique [6, 7]
for processing the signals of a focused array to obtain
the parameters of the signals received. Figure 1 shows
the result of such a processing of a signal separated
from other ones by WFI in the absence and presence of
inhomogeneities of the medium. The ordinary process-
ing procedure is based on the concept that the waves
received by the array have spherical wave fronts.
Hence, the ordinary processing of the signals received
by a focused array is performed in two steps. In the first
step, the sphericity of the wave front is eliminated; in
the second step, the spatial frequency of the resulting
harmonic signal is determined as a function of the coor-
dinate (ordinal number) of a receiving element of the
array. (Such a procedure is completely described in
[7].) However, in our case, the wave front produced by
each object has a complicated unpredictable shape
because of the influence of the inhomogeneities. There-
fore, the ordinary processing of the signals of a focused
array cannot serve to obtain the array field of view sim-
ilar to that in a homogeneous medium. Figure 1 illus-
trates this fact. Hence, other ways of signal processing
should be found for focused antenna arrays.

For this purpose, let us consider the structure of the
signals received by a focused array in an inhomoge-
neous medium. Such signals, as functions of spatial
coordinate x, have the form

(2)

Here, An(x) represents the signals received by the
array in a homogeneous medium and Fn(x) represents
the phase changes introduced by the medium into the
signals. These changes are assumed to be much greater
than π.

Suppose that the signal sources are in the near field
of the array, so that, for a homogeneous medium, the
signals at the array can be represented as spherical
waves [6]:

(3)

Af x( ) An x( ) iFn x( )( ).exp
n

∑=

An x( ) Wn i
2π
L

------xUn Sn x( )+ 
  .exp=

Table 1

n 1 2 3

Wn 6 2 0.5

Un 12 38 57

Rn 6.15L 8.9L 16L

yn 24 16 8
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(e) (f) (g) (h)
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Fig. 1. Field of view of a focused array in range (vertical) versus angle (horizontal) coordinates. The upper (a–d) and lower (e–h)
rows of data correspond to the homogeneous and inhomogeneous media, respectively. The whole signal is shown in plots (a) and
(e). The remaining plots show the signals reflected by individual objects and separated by the WFI procedure: (b, f) the first, (c, g)
second, and (d, h) third signals.
Here, Wn is the wave amplitude; Un is the spatial fre-
quency; and Sn(x) is a function taking into account the
sphericity of the wave front:

(4)

where Rn is the distance to the nth object.
To determine the value of Rn both with the ordinary

processing of the focused-array signal (like in a homo-
geneous medium) and with the parameter estimation
procedure, one should exhaust the set of functions that
describe the shape of the phase front of the spherical
wave. The set of admissible distances R is related to a
set of integers y starting from zero [7–9]:

(5)

This way of forming the set of distances results in a
uniform distribution of the ranges selected by the array
from set (5).

According to Eq. (2), each selected signal is
described by the function

(6)

The main idea of constructing the system for esti-
mating the parameters of objects consists in extracting
the argument of function (6). Such a technique was
used in our earlier studies [8, 9]. The technique under-
lies the method of separating multiplicatively related
signal spectra [11], i.e., the method of a complex cep-

Sn x( ) 2π
λ

------ x 0.5L–( )2 Rn
2+ Rn,–=

R y( ) 0.5L( )2 0.4 0.2y+( )2–
2 0.4 0.2y+( )

-------------------------------------------------------.=

Qn x( ) Wn i
2π
L

------xUn iSn x( ) iFn x( )+ + 
  .exp=
strum. In [11] it is shown that the role of extracting the
arguments of complex signals is not restricted to select-
ing the spectra of the arguments obtained or the loga-
rithms of the complex signals. This procedure offers
another opportunity, which has so far remained unno-
ticed: the opportunity to efficiently estimate the param-
eters of the signal. It is important that the estimation can
be also performed if the spectra of logarithms of the
signals cannot be separated.

The arguments of all detected signals Qn(x), as cal-
culated according to [10], are shown in Fig. 2. The fol-
lowing features can be noticed in this figure: a general
slope that increases as the spatial frequency of the sig-
nal increases, a bend of the wave front (Fig. 2a), and
signal distortions that are governed by the quantity
Fn(x).

From the argument of function (6), one should esti-
mate the angular position of the source and the distance
from the source to the array. This problem can be
solved in two steps: first, the angular positions of the
sources are determined, and, second, the distances are
estimated. First of all, let us estimate the angular posi-
tion of the source, because such an estimate allows
one to compensate for the slope of the argument of
function (6), this slope masking the curvature of the
wave front. To do so, we multiply Eq. (6) by a factor of
the form

(7)M x H,( ) i
2π
L

------xH 
 exp ,=
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where the overbar denotes complex conjugation and H
is the parameter whose value is varied. For each nth sig-
nal, the product of quantities (6) and (7) can be
expressed as

(8)

Equation (8) shows that the slope is minimal at H =
Un. To confirm this statement, one can consider the
standard deviation of quantity (8):

(9)

The minimum of deviation (9) is reached at the
value of H that can serve as the estimate of Un. In the
numerical experiment carried out, this estimate for n = 1
differs by unity from U1 presented in Table 1; for other
values of n, the estimate coincides with the value pre-
sented in Table 1. The difference can be greater or
smaller, depending on the specific shape and level of
the noise realization used in modeling the inhomoge-
neous medium. One can attain better accuracy by intro-
ducing a filtration of random noise into the estimation
procedure. Figure 3 shows the flowchart of this kind of
signal processing. The filter shown rejects the lower
frequencies, at which the noise occurs in argument (8).

Thus, one parameter of the signal is estimated.
Then, by multiplying Eq. (6) by Eq. (7) with the substi-
tution of H = Un, we obtain the basis for determining
the second parameter: the curvature of the wave front at
the array. Equation (6) is then reduced to

(10)

The argument of function (10), as a function of the
array receiver’s number, is a sum (additive mixture) of

En x H,( ) 2π
L

------x Un H–( ) Sn x( ) Fn x( ).+ +=

σn H( ) En x H,( )2 En x H,( )
x

∑ 
 
 

2

–
x

∑ 
 
 

.=

AFn x( ) Wn iSn x( ) iFn x( )+( ).exp=
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the regular wave field Sn(x), which has the form of
Eq. (4), and random noise. It would be advantageous to
subtract the noise from this mixture. Unfortunately, one
cannot perform such a subtraction, because the form of
noise is unknown. However, we know the admissible
form of the regular signal. Let us give such a form to the
regular signal that is depends on a single numerical
parameter. To do so, let us use the set of distances (5)
that depends on parameter y. In view of the above con-
siderations and Eq. (4), the regular signal can be
expressed as

(11)

where R(yn) is defined for a set of integer numbers yn
according to Eq. (5). The set of regular functions (11) is
composed in view of the ability of the array to distin-
guish between the waves that have different curvatures
of the wave front. The waves that can be resolved in
their front curvatures over the array aperture have num-
bers y differing by more than one [7]. This fact means
that, among all admissible functions (4) within the
ranges at hand, a single function can be found that coin-
cides with one of functions (11) to the accuracy of the
array. If one subtracts the regular signal with yn close to
the true value from the argument of Eq. (10), only noise
will remain in this argument. The noise is independent
of what exactly is subtracted from the argument, and,
hence, the trial method can be used to arrive at the situ-
ation when pure noise remains in the argument of
Eq. (10). In this case, the mean square of the argument
must be minimum. This can be done by considering the
following function:

(12)

In Eq. (12), function E(x, Un) is defined by Eq. (8). The
last term of Eq. (12) accounts for the initial phase.

RSn x yn,( ) = 
2π
λ

------ x 0.5λ–( )2 R yn( )2+ R yn( )–( ),

PSn x yn,( ) E x Un,( ) RS x yn,( )– RS 0 yn,( ).+=



398 ZVEREV
–10
–200 –100 0 100 200

–5

0

5

10

(b)

–5
–200 –100 0 100 200

0

5

10

15

(c)

–15
–200 –100 0 100 200

–10

–5

0

5

(a)

A
rg

um
en

t (
in

 u
ni

ts
 o

f 
2π

)

Receiver number

Fig. 4. Function (12) versus parameter y. The limiting values of the parameter correspond to the upper and lower parts of the plots.
The center of the plots corresponds to the parameter value at which the least mean square of function (12) is obtained; i.e., only
noise remains in the signal. The plots refer to n = (a) 1, (b) 2, and (c) 3.

1000

2000

10 20 300

500

1000

10 20 30 10 20 30

1000

3000

2000

(‡) (b) (c)

σ(
y)

y
0 0

Fig. 5. Mean square of function (12) versus the parameter y for n = (a) 1, (b) 2, and (c) 3.
Figure 4 presents function (12) for all three desired
signals, with three values of parameter yn in each case.
The figure shows how the fraction of the regular sum-
mand in Eq. (12) varies when functions from the set
depending on parameter yn are added. To estimate the
parameter, let us use Eq. (12) to construct the expres-
sion for the standard deviation (as in Eq. (10)) and then
find the minimum of this expression as a function of yn.
Such a dependence is shown in Fig. 5.

The results of signal processing are graphically rep-
resented in Fig. 6. The fluctuations of the arguments are
shown for each signal. These fluctuations are caused by
the inhomogeneities of the medium that influence the
process of wave propagation. The fluctuations are
found by subtracting the values of functions (11) from
the arguments of function (10). The dotted curves show
the true values of the same functions that were specified
in the modeling. In the regions where the dotted curves
cannot be seen, they fully coincide with the solid
curves. The same figure also shows the array fields of
view, which are determined as a result of dividing
Eq. (6) by the exponential of the fluctuations found.
Using such plots, one cannot refine the signal parame-
ters, namely, the angle and distance. As these parame-
ters change, the pattern of the array field of view is
shifted as a whole, without deformations. The patterns
do not change if one substitutes the true arguments
shown by the dotted curves in Fig. 6 for the values
found. Nevertheless, the patterns of the array field of
view are quite different in Figs. 6 and 1. The latter fact
indicates that some inaccuracy exists in our signal pro-
cessing.

The source of the inaccuracy is known. If one
divides Eq. (6) by the noise defined as an exponential
function rather than by the exponential of the true value
of the argument, the field of view of the focused array
will have the same pattern as the one shown in Fig. 1 for
the homogeneous medium. In so doing, one excludes
the procedure of determining the argument without
phase jumps and precisely this procedure causes the
inaccuracy. For the processing to yield the same pat-
terns as in Fig. 1 (without inhomogeneities), one should
improve the procedure of extracting the argument with-
out π-periodic phase jumps. The source of errors in this
method, along with the ways to improve the accuracy,
are considered in [10]: one should increase the fre-
ACOUSTICAL PHYSICS      Vol. 50      No. 4      2004
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quency of quantization. In the case of the focused array,
these recommendations mean an increase in the num-
ber of receiving elements of the array. Figure 6 con-
firms the validity of this recommendation: the signal
(Fig. 6d) of the lowest frequency has the best shape, and
the high-frequency signal (Fig. 6f) is the worst. The
point is that the accuracy is influenced by the ratio of
the quantization frequency to the full width of the sig-
nal spectrum [10] rather than by the quantization fre-
quency itself. This ratio takes the highest value for the
lowest-frequency signal.

The parameters of the objects determined by the
WFI procedure of separating individual signals are
summarized in Table 2.

Table 2

n 1 2 3

Wn 6 2 0.5

Un 12 38 57

Rn 6.15L 8.9L 20L

yn 24 16 6
ACOUSTICAL PHYSICS      Vol. 50      No. 4      2004
The values shown in Tables 1 and 2 nearly coincide
in spite of the strong inhomogeneities that cause ran-
dom object-independent distortions of the phases of
signals received by the array (the value of the distor-
tions is much greater than π). The only difference
occurs in determining the curvature of the wave front
(range) for the farthest (third) signal.

The method proposed allows one to determine the
parameters of the objects in a thick layer of a medium
with strong large-scale inhomogeneities to a high accu-
racy. The consideration presented above also shows the
efficiency of the procedure consisting in taking a com-
plex logarithm of multiplicatively related signals to
estimate their parameters. The technique allows one to
distinguish between multiplicatively related signals
with overlapping spectra of their logarithms. The sig-
nals can be separated on the basis of using the structure
of one of them. One of the signals should be defined by
a certain parameter.
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Abstract—On the basis of theoretical results describing the propagation of short acoustic pulses in relaxation
media, the temporal characteristics of a signal that carry the information on the first five moments of the relax-
ation time spectrum (RTS) are determined. The measurement of these characteristics forms the basis of the pro-
posed variant of pulsed acoustic spectroscopy of relaxation media. An experimental setup was developed in
which short acoustic pulses were excited by a neodymium glass laser. Test measurements of RTS moments for
an acetic acid, the liquid with a single relaxation time, are carried out. © 2004 MAIK “Nauka/Interperiodica”.
Traditionally, acoustic spectroscopy of relaxation
media was based on the determination of the phase
velocity and attenuation coefficient as functions of
frequency for harmonic signals. These data make it
possible to determine the dispersion jump and the
mean relaxation time in a medium. Theoretical foun-
dations of pulsed spectroscopy were recently formu-
lated in [1], where relaxation properties of a medium
were determined from the evolution of the shape of a
short pulse during its propagation. The consideration
of the change in the pulse shape makes spectroscopy
more informative: it becomes possible to characterize
the relaxation properties of a medium in more detail
by determining not only the first but also other
moments of the relaxation time spectrum (RTS) of the
medium.

The change in the shape of a short signal in a
medium with an arbitrary RTS is determined in [1]
from the low-frequency and high-frequency asymptot-
ics of the fundamental solution describing the propaga-
tion of a δ-pulse. Generally, the RTS g(τ) is determined
as a weighting function in the dispersion relation for a
relaxation medium:

where 〈τ〉  is the mean relaxation time in the medium
and ∆ = (c∞ – c0)/c∞ is the dispersion jump of the phase

k ω( ) ω
c∞
----- 1

∆
τ〈 〉

-------- τg τ( )
1 iωτ–
------------------ τd∫+ 

  ,=
1063-7710/04/5004- $26.00 © 20401
velocity. The high-frequency asymptotics of the funda-
mental solution have the form

(1)

where t' = t – x/c∞, β = α∞x, α∞ = ∆/c∞〈τ〉 , and 〈τ n〉  is the
moment of the RTS function of the nth order. The low-
frequency asymptotics satisfy the condition β @ 1 and
have the form

(2)

Thus, as a short forerunning pulse propagates in a
relaxation medium, a relaxation tail is formed behind it,
which then transforms into a long pulse of Gaussian
form, the body of the signal (Fig. 1). If the duration of
the forerunner is short compared to the minimal relax-
ation time, it propagates without changing its shape
with a velocity c∞. This pulse undergoes exponential
attenuation with distance with an attenuation coeffi-
cient α∞. The body of pulse propagates with a velocity
c0 and, at a distances of α∞x @ 1, its evolution is similar
to the evolution of a signal in a conventional viscous
medium; i.e., its amplitude decreases and its duration

G t x,( ) δ t'( ) β τ 1–〈 〉θ t'( ) ---+=

– β τ 2–〈 〉 1
2
---β2 τ 1–〈 〉 2

– 
  t'θ t'( ) …+ β–( ),exp

G t x,( )

=  
1

2 πβ τ2〈 〉
------------------------- 1 β τ3〈 〉

t3

3

d

d
– 

  t x/c0–( )2

4β τ2〈 〉
------------------------–
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grows as a root of the distance traveled. From these
results it follows that:

(i) by measuring the time of arrival of the forerunner
and the body of the signal (by their maxima), it is pos-
sible to determine the velocities c∞ and c0 and the dis-
persion ∆;

(ii) by measuring the forerunner amplitude at two
distances, it is possible to determine the attenuation
coefficient α∞ and, hence, the mean relaxation time 〈τ〉 ;

(iii) by measuring such characteristics of the body of
the signal as the amplitude Ab, the jump Af at its front,

the front derivative , the duration Tb, and the asym-
metry ξ, it is possible to determine four more moments
of the RTS from the expressions

(3)

where Ti and Td are the rise and fall times, respectively,
and Ti + Td = 2Tb. All five moments of the RTS, 〈τ n〉 ,
where n = –2…3, are determined from the signal
parameters in the time domain. If the forerunner has a
finite duration, a more precise determination of 〈τ〉  can
be achieved using the spectral approach, in which α∞ is
computed from the frequency spectra of the signal at
two distances (compare with statement (ii)).

The solution given by Eqs. (1), (2) is obtained for a
one-dimensional case disregarding the diffraction. In
fact, the signal is recorded at distances satisfying the
condition c0Tbx/a2 > 1, where a is the initial radius of

A f'

Tb 2 β τ2〈 〉 ,=

ξ
Td Ti–( )

Tb

---------------------
3
2
--- τ3〈 〉

β τ2〈 〉( )
3

-------------------------,= =

A f

Ab Tb( )
---------------- πβ τ 1–〈 〉 β–( ),exp=

A f'

A f

------
1
2
---β τ 1–〈 〉 τ 2–〈 〉

τ 1–〈 〉
------------,–=

–2
(t – x/c∞)/τ

0 2 4 6 8

c∞
c0

A'f

Af

Ap

Ab

Ti Td

Fig. 1. Characteristics of the signal in a relaxation medium.
the sound beam, i.e., beyond the projection zone for the
pulse body. If we assume that the transverse distribu-
tion of the field in the sound beam is Gaussian and the
signal is recorded at the beam axis, we can eliminate
from the signal the influence of diffraction by using the
transformation

(4)

A flow chart of the experimental setup for studying
relaxation properties of liquids is shown in Fig. 2. A
short acoustic pulse is excited in liquid by a mercury
photoacoustic generator 4 consisting of two parallel-
aligned glass plates, the space between which is filled
with mercury. The thickness of the plates and the size
of the gap between them are chosen to avoid distortion
by multiple reflection in recording the signal in a time
window of 0–4 µs. The signal is excited through the
absorption of the radiation of a YAG:Nd3+ laser 1 in
mercury, the duration and energy of the laser pulse
being 30 ns and 30 mJ, respectively. The energy of the
laser pulse is monitored by a photodiode gauge 9. To
reduce the diffraction divergence of the sound beam,
the diameter of the laser beam is increased by a tele-
scope. For smoothing out the nonuniformity of the laser
radiation, the mercury generator is covered with a light-
scattering plate. The intensity distribution behind the
light-scattering plate is measured by scanning the beam
with an 8-digit photodiode gauge with a sensitive ele-
ment 1 × 1 mm in size. The measurements show that the
distribution of radiation approaches the Gaussian distri-
bution and that the beam diameter is 11 mm. With these
parameters of laser radiation, the amplitude of the
acoustic pulse at the output of the mercury generator
did not exceed 3 atm and its duration was 35 ns. The
vessel for the liquid studied is a tube (5), in which a pis-
ton (6) with a built-in diaphragm pressure gauge and a

pd t' x,( ) p t'( ) 2
c∞x

a2
-------- p t( ) t.d

∞–

t'

∫–=

YAG

10

PC

1
23

4

7

5

6

DISA

ADC

8

9

Fig. 2. Flow chart of the experimental setup for investigat-
ing the relaxation properties of liquids.
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Table 1.  Characteristics of the signal in acetic acid according to the waveforms shown in Fig. 3

Distance, mm tp, µs tb, µs Ti, ns Td, ns ξ Af/Ab Af/Af, 106 s–1

33.3 30.609 30.880 434 578 0.286 0.68 3.3

42.4 38.902 39.327 479 694 0.365 0.40 6.4

Table 2.  Moments of the RTS for acetic acid: results of measurements at a temperature of 35°C

Distance, mm 〈τ 2〉1/2, ns 〈τ 3〉1/3, ns 〈τ –1〉–1, ns 〈τ –2〉–1/2, ns

33.3 136 ± 7 97 132 ± 9 113 137

42.4 137 ± 7 110 124 ± 9 102 128
preamplifier can freely move. At the top, the tube is
closed by the mercury photoacoustic generator (4). By
moving the piston, it is possible to detect the signal at
distances within 2–10 cm with an accuracy of 0.2 mm
in gauge positioning. The strong dependence of the
RTS on temperature (〈τ〉  ~ exp(W/kT), where W is the
activation energy of the relaxation transition) requires
a thermostating of the liquid under investigation and
an accurate measurement of its temperature. The tem-
perature of the liquid is monitored to within 0.1°C
with a mercury thermometer built into the tube 5. The
sensor of the pressure gauge is a piece of a PVDF film
9 µm thick and 2 × 2 mm in area. To provide the
acoustic matching, the PVDF film is loaded with a
glycerin layer, whose impedance is close to the
impedance of polyvinylidene fluoride. The signal
from the gauge is fed to a wide-band amplifier (7) and
then to an A/D converter (8) to save the signal in the
memory of a computer (10). The sampling frequency
is 200 MHz, and the word length is 8 bit. The data pro-
cessing channel, including the gauge, the amplifier,
and the A/D converter, provides an undistorted mea-
surement of the signal in the range of 0.05–100 MHz
(by the 3-dB level) with the flatness of the frequency
response within 0.35 dB.

In this paper, we present the results of the test mea-
surements aimed at determining the accuracy of mea-
surement of the RTS moments and revealing the short-
comings of both the method and the experimental setup
realizing it. The testing was carried out with a simple
liquid whose relaxation properties are well understood:
concentrated acetic acid. This liquid is characterized by
a single relaxation time τ0 corresponding to the mono-
mer–dimer molecular transition. The RTS and its
moments have a simple form: g(τ) = δ(τ – τ0) and 〈τ n〉 =

. In addition, for a medium with a single relaxationτ0
n
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time, the exact expression for the fundamental solution
is known:

(5)

where I1(t) is the Bessel function of an imaginary argu-
ment. This relation makes it possible to determine at
what distances asymptotic representation (1), (2) ade-
quately describes the evolution of the pulse shape. The
detection of the signal in acetic acid was performed at
a temperature of 35°C, which corresponds to a relax-
ation time τ0 = 140 ns and a dispersion ∆ = 1.79% [2,
3]. To increase the signal-to-noise ratio, the signal was
stored and averaged over 50 realizations. Figure 3
shows the averaged waveforms of signals recorded in
acetic acid at three distances from the source (curves 1).
The same figure displays the transformed waveforms,
in which the influence of diffraction is eliminated
according to Eq. (4) (curves 2), and their approxima-
tions obtained using the exact expression (5) (curves 3)
and asymptotics (1), (2) (curves 4). The velocity c∞ and
the absorption coefficient α∞, which are completely
determined by the dynamics of the forerunner, are cal-
culated from the waveforms obtained for the distances
of 22.4 and 33.3 mm, at which the forerunner is clearly
observed. The calculations give the values c∞ = 1089 ±
3 m/s and α∞ = 108 ± 5 m–1. The remaining calculations
were performed for the distances of 33.3 and 42.4 mm,
at which the maximum of the signal body is clearly
seen. The signal characteristics for these distances are
given in Table 1, where tp and tb designate the arrival
times of the forerunner and body of the pulse, respec-
tively. At the initial moment, the signal body is ahead
of the forerunner by a distance d = β0∆/α∞, where β0 =
2〈τ –2〉 /〈τ –1〉2. Therefore, the calculation of the velocity
c0, unlike the calculation of c∞, cannot be performed
using the absolute value of the time of arrival. Deter-
mining c0 from the difference in tb for two distances, we

G0 x t,( )

=  δ t'( ) θ t'( ) β
t'τ0
------- I1 2 βt'/τ0( )+ β–( ),exp
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Fig. 3. Waveforms of the signals that traveled the distances x = (a) 22.4, (b) 33.3, and (c) 42.4 mm in acetic acid and their approx-
imations.
obtain c0 = 1069 ± 9 m/s (the relative error has become
greater because the path length was reduced by a factor
of three). The corresponding dispersion and the first
moment are ∆ = 1.83 ± 0.02% and 〈τ〉  = 158 ± 8 ns. The
values of higher moments calculated from Eqs. (3) are
given in Table 2. The large error in calculating the
moment 〈τ –2〉 is explained by the considerable inaccu-
racy in determining the derivative . This moment can
be computed with higher accuracy (the second value in
Table 2) by using the relation (1 – β0/β)∆ = (tb – tp)/tb.
In this case, the error is determined by the errors in
measuring 〈τ –1〉  and α∞, and proves to be equal to 7%.

A f'
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An appreciable error in calculating 〈τ 3〉  is caused by the
fact that, at the distances under consideration, asymp-
totics (1), (2) give a too rough approximation of the
shape of the pulse body, as one can see from the com-
parison of curves 3 and 4 in Fig. 3. The results obtained
in our study suggest that the proposed method of pulsed
acoustic spectroscopy should be promising for studying
the relaxation properties of liquids.
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Abstract—The principle of an a priori use of symmetries is proposed as a new approach to solving nonlinear
problems on the basis of a reasonable complication of mathematical models. Such a complication often causes an
additional symmetry and, hence, opens up possibilities for finding new analytical solutions. The application of
group analysis to the problems of nonlinear acoustics is outlined. The potentialities of the proposed approach are
illustrated by exact solutions, which are of interest for wave theory. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The mathematical models of physical processes
that are constructed on the basis of general concepts
(from first principles) often have a rather complex
form. Examples of such models are the systems of
equations of mechanics of continua or electrodynam-
ics, which are difficult to solve in the general form by
common analytical and numerical methods, especially
if the nonlinearity, inhomogeneity, hereditary and
other properties of real media are taken into account.
Therefore, it is expedient to simplify as much as pos-
sible the model equations with due regard for the
specificity of the problem under study. It is seemingly
evident that, for simpler models, an appropriate
method of solution can be most readily found. The
simplification is achieved by neglecting the less
important features of a given phenomenon and con-
centrating on its most important properties. A compre-
hensive description of the ideas underlying this
approach was given by A.A. Andronov, A.A. Vitt, and
S.É. Khaœkin in their classical monograph on the the-
ory of oscillations [1]. A historically significant exam-
ple of applying these ideas to the wave theory is the
development of the method of a slowly varying profile
by R.V. Khokhlov [2, 3]. This method considerably
extended the possibilities for the analytical solution of
nonlinear wave problems [4].

Another approach, namely, a complication of the
model with the aim to find the desired solutions of a
simpler problem, seems to be logically absurd. How-
ever, sometimes a complex model proves to be more
simple to analyze. An example of such a “useful” com-
1063-7710/04/5004- $26.00 © 200406
plication in acoustics is the Burgers equation (see, e.g.,
[4] and the notation accepted there):

The presence of the additional “viscous” term propor-
tional to the higher (second-order) derivative on the
right-hand side of this equation surprisingly does not
complicate the initial first-order equation but, on the
contrary, provides the possibility to solve the problem.
With the transformation

the Burgers equation can be linearized and reduced to
the heat conduction equation for U. Then, by passing to
the limit Γ  0, one obtains a physically correct solu-
tion to the problem of interest for the “nonviscous”
medium.

Evidently, this example is accidental and does not
give any general approach. However, the experience
gained from the group classification of differential
equations shows that, in many cases, a complication of
the initial model supplies it with new symmetries. By
contrast, a simplification may lead to the loss of a num-
ber of symmetry properties inherent in the more general
model and to the loss of physically important solutions.

A well-known regular and effective method of sym-
metry determination is the theory of continuous Lie
groups [5, 6]. The conventional method of using Lie
groups for finding analytical solutions to differential
equations is as follows. Specific equations or systems
of equations are considered. For them, symmetry

∂V
∂z
------- V

∂V
∂θ
-------– Γ∂2V

∂θ2
---------.=

V 2Γ ∂
∂θ
------ U ,ln=
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groups are calculated. Then, these groups are used to
construct exact particular solutions, conservation laws,
and invariants. A more complicated and interesting
problem is the group classification of equations involv-
ing unknown parameters or functions. The group clas-
sification is understood as the choice of such parame-
ters (or functions) at which the allowed group is wider
than the symmetry group of the initial general equation.
Many equations with physically interesting solutions
have already been obtained in this way (see, e.g., [7–
10]). The approach described above can be called an
a posteriori one, because it is based on analyzing given
systems of equations.

In this paper, we propose a fundamentally new and
fairly simple approach providing new symmetric
models. The approach is based on a reasonable com-
plication of a given model without any loss of its phys-
ical content. The basis of the approach, which we call
the principle of an a priori use of symmetries, is the
N.H. Ibragimov’s theorem on projections of equiva-
lence groups (see Section 4.2).

For a better understanding of the problem, we begin
by describing the standard methods of the group analy-
sis of differential equations by adapting it to the models
of nonlinear wave theory and nonlinear acoustics.

2. A BRIEF DESCRIPTION OF THE METHODS
OF GROUP ANALYSIS

2.1. Calculation of the Symmetries
of Differential Equations

Consider the second-order partial differential evolu-
tion equation:

(1)

Definition. A set of G reversible transformations of
variables t, x, and u that is given by the formulas

(2)

and depends on a continuous parameter a is called the
single-parameter group allowed by equation (1), or the
symmetry group of Eq. (1), if Eq. (1) retains its form in
terms of the new variables , , and  and also if G
contains all inverse transformations, the identity trans-
formation

and compositions of any two sequential transforma-
tions, i.e.,

ut F t x u ux uxx, , , ,( ),
∂F

∂uxx

---------- 0.≠=

t f t x u a, , ,( ), x g t x u a, , ,( ),= =

u h t x u a, , ,( ),=

t x u

t t, x x, u u,= = =

t f t x u b, , ,( )≡ f t x u a b+, , ,( ),=
=

x g t x u b, , ,( )≡ g t x u a b+, , ,( ),==

u h t x u b, , ,( )≡ h t x u a b+, , ,( ).==
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Thus, the group G is allowed by Eq. (1) if transfor-
mation (2) of the group G transforms any solution u =
u(t, x) to Eq. (1) into a solution  = ( , ) to the
equation

(3)

where F is the same function as that involved in Eq. (1).

According to the Lie theory, the determination of
the symmetry group G is equivalent to calculating its
infinitesimal transformation

(4)

which is obtained from the general formulas (2) by
expanding them in a Taylor series with respect to the
parameter a and retaining only the linear terms.
According to Lie, it is convenient to introduce a symbol
of transformation (4) in the form of a differential oper-
ator:

(5)

The action of this operator on any differentiable func-
tion J(t, x, u) is given by the formula

(6)

Operator (5) is also called the infinitesimal operator or
the generator of the group G.

Transformation (2) corresponding to operator (5) is
found as a solution to the Lie equations

(7)

with the initial conditions

Now, let us return to Eq. (3). Expressions for the
derivatives , , and  involved in Eq. (3) are
obtained by transformation (2) considered as a simple
change of variables. Then, expanding the expressions
for these derivatives in a series with respect to parame-
ter a, we obtain an infinitesimal form of the transforma-
tions:

(8)

u u t x

ut F t x u ux uxx, , , ,( ),=

t t aτ t x u, ,( ), x x aξ t x u, ,( ),+≈+≈
u u aη t x u, ,( ),+≈

X τ t x u, ,( ) ∂
∂t
----- ξ t x u, ,( ) ∂

∂x
------ η t x u, ,( ) ∂

∂u
------.+ +=

X J( ) τ t x u, ,( )∂J
∂t
------ ξ t x u, ,( )∂J

∂x
------ η t x u, ,( )∂J

∂u
------.+ +=

d t
da
------ τ t x u, ,( ),

dx
da
------ ξ t x u, ,( ),= =

du
da
------ η t x u, ,( )=

t
a 0= t, x

a 0= x, u
a 0= u.= = =

ut ux uxx

ut ut aς0 t x u ut ux, , , ,( ),+≈

ux ux aς1 t x u ut ux, , , ,( ),+≈
uxx uxx aς2 t x u ut ux utx uxx, , , , , ,( ),+≈
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where the functions ς0, ς1, ς2 are given by the following
prolongation formulas:

(9)

Here, Dt and Dx denote the total derivatives with respect
to t and x:

Substituting expressions (4) and (8) into Eq. (3), we
obtain

Therefore, by virtue of Eq. (1), Eq. (3) leads to the con-
dition

(10)

where ut is replaced by F(t, x, u, ux, uxx) in the expres-
sions for ς0, ς1, ς2.

Equation (10) determines all infinitesimal symme-
tries of Eq. (1) and therefore is called the determining
equation. It can be represented in a convenient compact
form as

(11)

Here, X denotes the prolongation of operator (5) to the
first- and second-order derivatives:

Determining equation (10) (or its equivalent (11)) is
a homogeneous linear second-order partial differential
equation in the unknown functions τ, ξ, and η. There-
fore, the set L of all solutions to the determining equa-
tion forms a vector space. Moreover, it is closed with
respect to applying a commutator; i.e., the space L
together with operators X1, X2 ∈ L also contains their
commutator [X1, X2] = X1X2 – X2X1. This property
means that the set of all solutions of the determining
equation forms a Lie algebra. In particular, if L is a
finite-dimensional space Lr with a basis X1, …, Xr , we

have [Xi, Xj] = Xk, where  are the numbers called
structural constants of the Lie algebra Lr .

Note that Eq. (10) should be identically satisfied
with respect to all variables involved in it, i.e., t, x, u, ux,
uxx, and utx, which should be considered as six indepen-

ς0 Dt η( ) utDt τ( )– uxDt ξ( ),–=

ς1 Dx η( ) utDx τ( )– uxDx ξ( ),–=

ς2 Dx ς1( ) utxDx τ( )– uxxDx ξ( ).–=
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∂
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k

dent variables. As a result, the determining equation
falls into a system of several equations, and we obtain
an overdetermined system (it contains more than three
equations and three unknown functions: τ, ξ, and η).
Hence, the determining equation can almost always be
easily solved. To simplify the calculations, we use the
following lemma.

Lemma. In the case of an equation of the type of
Eq. (1), the symmetry transformation (2) has the form

(12)

This means that infinitesimal symmetries can be sought
in the form

(13)

Proof. In Eq. (10), we separate the terms containing
the variable utx. According to prolongation formulas (9),
utx is involved only in ς2, namely, in its last term
utxDx(τ). Since the determining equation (10) is identi-
cally satisfied with respect to all variables t, x, u, ux, uxx,
and utx, we can conclude that Dx(τ) ≡ τx + uxτu = 0,
which yields τx = τu = 0. Thus, we have τ = τ(t), and
generator (5) takes the form of Eq. (13), which proves
the theorem. Thus, prolongation formulas (9) can be
represented in the form

(14)

2.2. Exact Solutions Obtained
by Using Symmetry Groups

The methods of group analysis open two main ways
to constructing exact solutions: by group transforma-
tions of the known solutions and by finding invariant
solutions.

Group transformations of the known solutions.
This way is based on the fact that a symmetry group
transforms any solution of the equation under investi-
gation to a solution of the same equation. Namely, let
Eqs. (2) represent a group of symmetry transformations
for Eq. (1) and let the function

be a solution to Eq. (1). Since transformation (2) is a
symmetry transformation, solution (12) can be repre-
sented in terms of the new variables

Replacing , , and  according to Eqs. (2), we obtain

(15)

t  = f t a,( ), x = g t x u a, , ,( ), u = h t x u a, , ,( ).

X τ t( ) ∂
∂t
----- ξ t x u, ,( ) ∂

∂x
------ η t x u, ,( ) ∂

∂u
------.+ +=

ς0 Dt η( ) uxDt ξ( )– τ' t( )ut,–=

ς1 Dx η( ) uxDx ξ( ),–=

ς2 Dx ς1( ) uxxDx ξ( )–=

≡ Dx
2 η( ) uxDx

2 ξ( )– 2uxxDx ξ( ).–

u Φ t x,( )=

u Φ t x,( ).=

u t x

h t x u a, , ,( ) Φ f t x u a, , ,( ) g t x u a, , ,( ),( ).=
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Solving this equation for u, we obtain a single-parame-
ter (with the parameter a) family of new solutions to
Eq. (1). Hence, any known solution can serve as a
source of a multiparameter class of new solutions on
the condition that the differential equation under con-
sideration allows a multiparameter symmetry group. In
the following section, the procedure described above is
illustrated in application to the Burgers equation taken
as an example.

Invariant solutions. If the group transformation
transforms the solution into itself, we obtain the so-
called invariant solution. When the infinitesimal sym-
metry (5) of Eq. (1) is known, the invariant solution is
obtained as follows. Two independent invariants, J1 =
λ(t, x) and J2 = µ(t, x, u), are calculated by solving the
equation X(J) = 0 (see Eq. (6)) or its characteristic sys-
tem of equations

(16)

Then, one of the invariants is expressed as a function of
the other:

(17)

Equation (17) is solved for u, and the resulting expres-
sion is substituted into Eq. (1). As was shown by Lie,
one obtains an ordinary differential equation for the
unknown function φ(λ) of a single variable. This proce-
dure reduces the number of independent variables by
one. A further simplification can be achieved by consid-
ering invariant solutions generated by two infinitesimal
symmetries.

3. BURGERS EQUATION USED AS AN EXAMPLE

The methods described in the previous section are
illustrated below in application to the Burgers equation
[11] taken as an example:

(18)

3.1. Calculation of the Infinitesimal Symmetries

The determining equation (10) has the form

(19)

where ς0, ς1, ς2 are given by Eqs. (14). Let us separate
the terms involving uxx and set them equal to zero. Tak-
ing into account that ut should be replaced by uux + uxx
and substituting the expressions

(20)

dt
τ t x u, ,( )
--------------------- dx

ξ t x u, ,( )
---------------------

du
η t x u, ,( )
----------------------.= =

µ φ λ( ).=

ut uux uxx.+=

ς0 ς2– uς1– ηux– 0,=

Dx
2 ξ( ) Dx ξ x ξuux+( )=

=  ξuuxx ξuuux
2 2ξ xuux ξ xx,+ + +

Dx
2 η( ) Dx η x ηuux+( )=

=  ηuuxx ηuuux
2 2η xuux η xx+ + +
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into ς2, we arrive at the equation

From this equation, we obtain two other ones: ξu = 0
and 2ξx – τ'(t) = 0. Hence, ξ only depends on t and x and
has the form

(21)

From Eq. (21) it follows that (ξ) = 0. Now the
determining equation (19) is reduced to the form

and falls into three equations:

(22)

The first equation of Eqs. (22) yields η = σ(t, x)u + µ(t, x),
and the second equation of Eqs. (22) takes the form

which yields

Thus, we have

(23)

Finally, the substitution of Eq. (23) into the third equa-
tion of Eqs. (22) yields

From this equation, we obtain τ'''(t) = 0 and p''(t) = 0
and, therefore,

Taking into account Eqs. (21) and (23), we finally arrive
at the following general solution to the determining
equation (19):

This solution contains five arbitrary constants Ci. This
means that the infinitesimal symmetries of the Burgers
equation (18) form a five-dimensional Lie algebra

2ξuux 2ξ x τ' t( )–+ 0.=

ξ 1
2
---τ' t( )x p t( ).+=

Dx
2

ux
2ηuu

1
2
---τ' t( )u

1
2
---τ'' t( )x p' t( ) 2η xu η+ + + + ux+

+ uη x η xx η t–+ 0=

ηuu 0,=

1
2
---τ' t( )u

1
2
---τ'' t( )x p' t( ) 2η xu η+ + + + 0,=

uη x η xx η t–+ 0.=

1
2
---τ' t( ) σ+ 

  u
1
2
---τ'' t( )x p' t( ) 2σx µ+ + + + 0,=

σ 1
2
---τ' t( ), µ–

1
2
---τ'' t( )x– p' t( ).–= =

η 1
2
---τ' t( )u–

1
2
---τ'' t( )x– p' t( ).–=

1
2
---τ''' t( )x p'' t( )+ 0.=

τ t( ) C1t2 2C2t C3, p t( )+ + C4t C5.+= =

τ t( ) = C1t2 2C2t C3, ξ+ +  = C1tx C2x C4t C5,+ + +

η C1t C2+( )u– C1x– C4.–=
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“stretched” over the following linearly independent
operators:

(24)

3.2. Solutions Obtained Using a Symmetry Group

One can easily find the group transformation (12)
that is allowed by the Burgers equation by solving the
Lie equations for the basic infinitesimal symmetries (24).
For generators (24), the Lie equations (7) have a “trian-
gular” form

(25)

which is convenient for a sequential integration with
the use of the initial conditions (see Eqs. (7)).

For example, let us consider the generator X5 from
Eqs. (24). For this case, the Lie equations (25) have the
form

The integration of the first of these equations yields

According to the initial condition for the Lie equations,
we require that  = t at a = 0. Then, we determine the
value of the constant C1 (constant with respect to the
variable a in the Lie equations): C1 = –1/t. Thus, we
have

(26)

Substituting Eq. (26) into the second Lie equation we
obtain

(27)

Equations (26) and (27) determine a special group of
the projective transformation (the Möbius transforma-
tion) on the plane. Substituting Eqs. (26) and (27) into
the third Lie equation, we arrive at an inhomogeneous
linear equation

X1
∂
∂t
-----, X2

∂
∂x
------, X3 t

∂
∂x
------ ∂

∂u
------,–= = =

X4 2t
∂
∂t
----- x

∂
∂x
------ u

∂
∂u
------,–+=

X5 t2 ∂
∂t
----- tx

∂
∂x
------ x tu+( ) ∂

∂u
------.–+=

d t
da
------ τ t( ),

dx
da
------ ξ t x,( ), du

da
------ η t x u, ,( ),== =

d t
da
------ t2,

dx
da
------ t x, du

da
------ x tu+( )– .== =

t
1

a C1+
---------------.–=

t

t
t

1 at–
--------------.=

x
x

1 at–
--------------.=

du
da
------

t
1 at–
--------------u

x
1 at–
--------------+ + 0.=
Integrating this equation with the initial condition  =
u at a = 0, we obtain

(28)

Using projective transformations (26)–(28) and
applying Eq. (15) to any known solution u = Φ(t, x) of
the Burgers equation, we obtain the following single-
parameter family of new solutions:

(29)

Expression (29) has an important physical meaning.
It describes the interaction of the signal u = Φ(t, x) with
the linear part of a sawtooth wave profile. For example,
if a high-frequency train of a quasi-harmonic signal
occurs on the rear “slope” of the sawtooth profile,
whose steepness decreases in the course of the wave
propagation (negative values of the constant a), the
amplitude of the signal and its frequency decrease. By
contrast, on the steepening front slope of the low-fre-
quency wave (the constant a is positive), the signal is
amplified and its frequency increases. These phenom-
ena were described theoretically and observed in exper-
iments (see [12, 13]).

Example 1. One can obtain a multitude of new solu-
tions by choosing any invariant solution as the initial
one u = Φ(t, x). For example, let us take a solution that
is invariant with respect to a shift along the x coordinate
axis and is generated by the operator X2 from Eqs. (24).
In this case, the invariants are λ = t and µ = u, and
Eq. (17) takes the form u = φ(t). The substitution of this
expression into the Burgers equation leads to a trivial
solution in the form of a constant: u = k. According to
Eq. (29), this solution is transformed to the following
single-parameter family of solutions:

which are used in nonlinear acoustics to describe the
smooth parts of sawtooth wave profiles [4].

Example 2. From the physical point of view, one of
the most interesting solutions is the stationary solution

obtained from the condition of invariance with respect
to the time translation group generated by the operator
X1. The substitution into the Burgers equation leads to
an ordinary differential equation

(30)

Integrating this equation once, we obtain Φ' + Φ2/2 =
C1, and integrating it again for different values of the

u

u u 1 at–( ) ax.–=

u
ax

1 at–
--------------

1
1 at–
--------------Φ t

1 at–
-------------- x

1 at–
--------------, 

  .+=

u
k ax+
1 at–
---------------,=

u Φ x( )=

Φ'' ΦΦ'+ 0.=
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constant, namely, C1 = 0, C1 = ν2 > 0, and C1 = –ν2 < 0,
we obtain

(31)

Note that the Galilean transformation, i.e.,  = t,
 = x + at,  = u – a, which is generated by the operator

X3, maps X1 into the sum X1 + cX2. Correspondingly, it
maps the stationary solution into a travelling wave u =
u(x – ct), which is easily obtained from solutions (31).

As is known, the solution in the form of a hyperbolic
tangent describes a single shock wave with a finite
shock wave thickness [4, 14]. The profiles of the two
other stationary waves given by Eqs. (31) contain sin-
gularities, and, therefore, these solutions are rarely used
in physical problems.

Example 3. If we apply transformation (29) to sta-
tionary solutions (31), we obtain new nonstationary
solutions:

(32)

Example 4. Let us find invariant solutions for the
projective group generated by the operator X5. In this
case, the characteristic system of equations (16) can be
represented as

Solving this system, we find two invariants: λ = x/t and
µ = x + tu. Thus, the general expression (17) for the
invariant solution takes the form

(33)

Substituting this expression into Burgers equation (18)
we obtain Eq. (30) for Φ(λ). Hence, the general solu-
tion is obtained from Eqs. (31) by replacing x with λ.
The corresponding invariant solutions are found by
substituting the result obtained for Φ(λ) into Eq. (33).
For example, using the second formula from Eqs. (31)
and assuming that ν = π, we arrive at the solution

(34)

This solution was obtained earlier by R.V. Khokhlov
from physical considerations (see, e.g., Paragraph 4,

Φ 2
x C+
-------------, Φ ν C

ν
2
---x+ 

  ,tanh= =

Φ ν C
ν
2
---x– 

  .tan=

t
x u

u
ax

1 at–
--------------

2
x C 1 at–( )+
--------------------------------,+=

u
1

1 at–
-------------- ax ν C

νx
2 1 at–( )
----------------------+ 

 tanh+ ,=

u
1

1 at–
-------------- ax ν C

νx
2 1 at–( )
----------------------– 

 tan+ .=

dt

t2
----- dx

tx
------

du
x tu+
--------------.–= =

u
x
t
--–

1
t
---Φ λ( ), λ+

x
t
--.= =

u
1
t
--- x– π C

πx
2t
------+ 

 tanh– .=
ACOUSTICAL PHYSICS      Vol. 50      No. 4      2004
Chap. 9 in [14]). Note that formula (34) can also be
derived from the second formula of Eqs. (32) by setting
ν = –πa and assuming that a tends to infinity.

Example 5. Solutions invariant with respect to the
dilation group generated by the operator X4 are often
called self-similar solutions in the literature. In this
case, the characteristic system of equations

yields the invariants λ = x/  and µ = u. Hence, the
invariant solution should be sought in the form

As a result, we obtain an equation [4] for determining
self-similar solutions to the Burgers equation:

(35)

Integrating this equation once, we obtain

At C = 0, this equation is easily integrated and yields a
solution that vanishes at ±∞ (see Paragraph 4, Chap. 9
in [14] or Sect. 11.4 in Vol. 1 of [10]):

where B is an arbitrary constant and erf is the error
function.

Example 6. The construction of exact solutions
may be based not only on the basic infinitesimal sym-
metries (24) but also on their linear combinations. For
example, consider the operator

(36)

The characteristic system of equations yields the fol-
lowing invariants:

Thus, the invariant solution has the form

Substituting this expression into the Burgers equation,
we arrive at the following equation for Φ(λ):

(37)

dt
2t
----- dx

x
------ du

u
------–= =

t t

u
1

t
-----Φ λ( ), λ x

t
-----.= =

Φ'' ΦΦ'
1
2
--- λΦ' Φ+( )+ + 0.=

Φ'
1
2
--- Φ2 λΦ+( )+ C.=

u
2

πt
---------

x2

4t
-----– 

 exp

B erf
x

2 t
--------- 

 +
--------------------------------, erf z( ) 2

π
------- s2–( )exp s,d

0

z

∫= =

X1 X5+ 1 t2+( ) ∂
∂t
----- tx

∂
∂x
------ x tu+( ) ∂

∂u
------.–+=

λ x

1 t2+
-----------------, µ tx

1 t2+
----------------- u 1 t2+ .+= =

u
tx

1 t2+
-------------–

1

1 t2+
-----------------Φ λ( ), λ+

x

1 t2+
-----------------.= =

Φ'' ΦΦ' λ+ + 0.=
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Integrating Eq. (37) once, we obtain

When the constant is C1 = 0, the solution to this equa-
tion can be expressed in terms of the Bessel functions:

where C is the second constant.

4. METHOD OF THE A PRIORI USE
OF SYMMETRY

In Section 3, we described examples of using sym-
metry groups. However, in many problems, a symmetry
group is absent or is insufficiently wide to solve the
given model equation. The method proposed below is
aimed at constructing models with an elevated symme-
try without the loss of the physical contents of the ini-
tial model. The essence of the method is as follows.

If the model contains “arbitrary elements” and
allows a sufficiently wide equivalence group (see Defi-
nition 2 in Sect. 4.2 of this paper), the symmetry group
is determined as a suitable subgroup of the equivalence
group. Otherwise, the nonlinear model under consider-
ation is generalized by means of its “immersion” into a
wider model in a “reasonable” way, i.e., so as not to
lose the initial physical meaning but, at the same time,
to achieve the desired expansion of the equivalence
group. In this case, the nonlinearity of the model is
essential, because it provides the necessary flexibility
in choosing the model and ensures the generality of the
method.

4.1. Immersion and the Application
of Laplace Invariants

Consider the Earnshaw equation (see, e.g., [15])

(38)

which describes the one-dimensional motion of a com-
pressible gas in terms of the Lagrange variables. The
physical meaning of the variables are as follows: v  is
the displacement of particles of the medium, c is the
velocity of sound, and γ is the adiabatic exponent in the
equation of state.

Equation (3) can be linearized by the hodograph
transformation:

(39)

i.e., the Lagrangian coordinate ξ and time t are consid-
ered as functions of the new independent variables x
and y, which are the first derivatives of the desired func-

Φ'
1
2
--- Φ2 λ2+( )+ C1.=

Φ 2
d

dλ
------ λ J1/4

λ2

4
----- 

  C λY1/4
λ2

4
----- 

 + ,ln=

∂2v

∂t2
--------- c2 1 ∂v

∂ξ
-------+ 

  γ 1+( )– ∂2v

∂ξ2
---------– 0,=

x v ξ , y v t, ξ X x y,( ), t u x y,( );= = = =
tion v. The corresponding linearized equation has the
form

(40)

At a small acoustic Mach number |v x| = |x|, Eq. (40) can
be approximated by a simpler equation

(41)

However, neither Eq. (40) nor its simplified version (41)
are solvable because of the lack of a sufficiently wide
symmetry group.

Therefore, we choose an approximating equation
not for the simplicity of its form but for the presence of
symmetry sufficient to make it solvable. Namely, we
consider a hyperbolic equation

(42)

generalizing Eqs. (40) and (41) and undertake a search
for such a function ψ(x) that, first, coincides with the
corresponding function in the initial equation at small
|x| and, second, opens up a possibility to find a general
solution to Eq. (42). Let us choose ψ(x) so as to make
Eq. (42) allow the widest possible symmetry group.

It is well known that the hyperbolic equation

(43)

allows the widest possible symmetry group [16, 17]
and, hence, can be solved by reducing it to a conven-
tional wave equation if the Laplace invariants [18] for
Eq. (43),

(44)

are equal to zero. Therefore, we calculate the Laplace
invariants of Eq. (42) by rewriting it in terms of the
characteristic variables

(45)

With these variables, Eq. (42) takes the canonic form of
Eq. (43),

(46)

with the coefficients

(47)

∂2u

∂x2
-------- c2 1 x+( ) γ 1+( )– ∂2u

∂y2
--------– 0.=

∂2u

∂x2
-------- c2 1 γ 1+( )x–[ ] ∂2u

∂y2
--------– 0.=

∂2u

∂x2
-------- c2ψ2 x( )∂

2u

∂y2
--------– 0=

∂2u
∂α∂β
-------------- A α β,( ) ∂u

∂α
------- B α β,( )∂u

∂β
------ P α β,( )u+ + +  = 0

h
∂A
∂α
------- AB P, k–+ ∂B

∂β
------ AB P,–+= =

α c ψ x( ) xd∫ y, β– c ψ x( ) xd∫ y.+= =

∂2u
∂α∂β
--------------

ψ' x( )
4cψ2 x( )
-------------------- ∂u

∂α
------- ∂u

∂β
------+ 

 + 0,=

A B
ψ' x( )

4cψ2 x( )
--------------------, P 0,= = =
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where x is expressed through α and β according to
Eqs. (45), namely:

(48)

From Eqs. (47) and (48), we obtain

Using this relation, we calculate the Laplace invari-
ants (44) for Eq. (46):

(49)

Hence, the conditions h = k = 0 are reduced to a single
equation, the solution to which is

Thus, Eq. (42) with the widest possible symmetry
group has the form

Comparing it with Eq. (41), we see that the constants
should be set as l = 1 and s = (γ + 1)/4. As a result, we
obtain the desired solvable equation

(50)

which approximates Eq. (40) with a sufficient accuracy
for ε|x| ! 1.

To solve Eq. (50), we represent it in the canonical
form of Eq. (46):

(51)

According to the general theory, Eq. (51) is reduced to
the simplest wave equation wαβ = 0 by the substitution
w = (α + β)u. Therefore, the general solution to Eq. (51)
is given by the formula

(52)

with two arbitrary functions Φ1 and Φ2. Now, we return
to variables x, y in Eq. (52). Formulas (45) yield

The substitution of these expressions into Eq. (52)
with the changing of the inessential sign in the arbi-

x Ψ 1– z( ), z
α β+

2c
------------- Ψ x( ) ψ x( ) x.d∫≡= = =

∂A
∂α
-------

∂A
∂x
------

zα

zx

---- 1
2cψ x( )
------------------∂A

∂x
------ ψ''

8c2ψ3
-------------- ψ'2

4c2ψ4
--------------–

∂B
∂β
------.= = = =

h k
1

8c2ψ4
-------------- ψψ''

3
2
---ψ'2– 

  .= =

ψ x( ) l sx+( ) 2– , s l, const.= =

∂2u

∂x2
-------- c2 l sx+[ ] 4– ∂2u

∂y2
--------– 0.=

∂2u

∂x2
-------- c2 1

ε
2
---x+

4– ∂2u

∂y2
--------– 0, ε γ 1+

2
------------,= =

∂2u
∂α∂β
--------------

1
α β+
------------- ∂u

∂α
------- ∂u

∂β
------+ 

 + 0.=

u α β,( ) 1
α β+
------------- Φ1 α( ) Φ2 β( )+[ ]=

α 2c
ε 1 εx/2+( )
---------------------------- y+ , β– 2c

ε 1 εx/2+( )
---------------------------- y– ,–= =

α β+
4c

ε 1 εx/2+( )
----------------------------.–=
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trary functions provides the following general solu-
tion to Eq. (50):

(53)

Summarizing, we conclude that solution (53) was
found by way of “immersion” of the model of interest
given by Eq. (38) into the more general model

(54)

However, it should be emphasized that the possibility
of constructing solution (53) essentially depends on the
accidental fact that Eq. (38) and its generalization (50)
are linearized by transformation (39). Therefore,
although this example clearly illustrates the idea of
immersion and shows how the generalization of a
model can make it solvable, it still does not provide any
practical method for selecting the most symmetric
equations from the generalized model. Such a method
is discussed in the following section using a specific
example.

4.2. Method Based on the Theorem on Projections

The theorem on projections was proved by N.H. Ibra-
gimov in 1987 [19] and then used in the group classifi-
cation problems [20] as the basis for the preliminary
group classification (see also [21–23]).

Now, we proceed to the main examples illustrating
the potentialities of the proposed approach. These
examples are of interest by themselves, because new
nonlinear equations are considered. Their physical con-
tent is discussed in the following section.

We begin with the nonlinear equation

(55)

It allows a three-dimensional Lie algebra with the basis

(56)

Hence, Eq. (55) is not rich in invariant group solutions.
Their class is limited to the travelling-wave solutions
that are constructed using the translation generators X1
and X2, and the self-similar solutions constructed using
the dilation generator X3.

Therefore, we use the immersion approach and con-
sider two types of models generalizing Eq. (55). The
first of them has the form

(57)

u x y,( ) ε 1 εx/2+( )
4c

----------------------------=

× Φ1
2c

ε 1 εx/2+( )
---------------------------- y+ 

  Φ2
2c

ε 1 εx/2+( )
---------------------------- y– 

 + .

∂2v

∂t2
--------- c2ψ2 ∂v

∂ξ
------- 

  ∂2v

∂ξ2
---------– 0.=

∂
∂t
----- ∂u

∂x
------ u

∂u
∂t
------– βu, β– const 0.≠= =

X1
∂
∂t
-----, X2

∂
∂x
------, X3 t

∂
∂t
----- x

∂
∂x
------– 2u

∂
∂u
------.+= = =

∂
∂t
----- ∂u

∂x
------ P u( )∂u

∂t
------– F x u,( ),=
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and, as the second, we take

(58)

Calculations show that the second generalization is
more appropriate and is the source of a symmetry group
much richer than that of Eqs. (55) and (57). Therefore,
we use model (58) to illustrate the main tenets of the
a priori symmetry method.

Definition 2. A group of transformations (2) is
called an equivalence group if each equation of the
given family (in the case under consideration, family (58)
with any functions Q, F) is transformed to an equation
of the same family; i.e.,

where, generally speaking, the functions , and  do
not coincide with Q and F. The generators of the equiv-
alence group have the form

(59)

where

They form a Lie algebra, which is called the equivalence
algebra and is denoted as Lε. In operator (59) and its
coordinates, the functions Q and F are considered as new
variables along with the physical variables t, x, and u.

As was shown by L.V. Ovsyannikov [8], the equiv-
alence algebra can be found using the infinitesimal Lie
technique (see Section 2.1) by determining the equiva-
lence group as the group allowed by the following
extended system of equations equivalent to the family
of equations of type (58):

(60)

Despite the fundamental similarity to the classical Lie
theory, considerable technical differences occur between
the calculation of infinitesimal symmetries and that of
generators (59) of the equivalence group. Detailed cal-
culations can be found in [20, 21].

Using this approach, one can obtain by calculation
that, for Eq. (58), generators (59) of the equivalence
group have the coordinates

(61)

∂
∂t
----- ∂u

∂x
------ Q x u,( )∂u

∂t
------– F x u,( ).=

∂
∂ t
----- ∂u

∂x
------ Q x u,( )∂u

∂ t
------– F x u,( ),=

Q F

Y ξ1 ∂
∂t
----- ξ2 ∂

∂x
------ η ∂

∂u
------ µ1 ∂

∂Q
------- µ2 ∂

∂F
------,+ + + +=

ξ i ξ i t x u, ,( ), η η t x u, ,( ),= =

µi µi t x u Q F, , , ,( ), i 1 2.,= =

utx Qutt– Quut
2– F– 0, Qt 0, Ft 0.= ==

ξ1 C1t ϕ x( ), ξ2+ ψ x( ),= =

η C1 C2+( )u λ x( ),+=

µ1 = ϕ' x( )– C1 ψ' x( )–[ ] Q, µ2+  = C2 ψ' x( )–[ ] F,
where ϕ, ψ, and λ are arbitrary functions of x. This
means that Eq. (58) has an infinite-dimensional algebra
Lε with the basis

(62)

Note 1. Analogously, Eq. (57) can be shown to have
a seven-dimensional algebra Lε stretched over the oper-
ators

(63)

The following calculations are based on the theorem
on projections, which was mentioned at the beginning
of Section 4.2. We introduce the notation X and Z for
the projections of generator (59) of the equivalence
group onto the physical variables t, x, and u and the
variables x, u, Q, and F of arbitrary elements, respec-
tively:

(64)

(65)

Substituting Eqs. (61) into Eqs. (64) and (65), we
obtain the projections correctly determined in the sense
that the coordinates of X only depend on t, x, and u
while the coordinates of Z depend on x, u, Q, and F:

(66)

(67)

As applied to Eq. (58), the theorem on projections is
formulated as follows.

Y1 ϕ x( ) ∂
∂t
----- ϕ' x( ) ∂

∂Q
-------,–=

Y2 ψ x( ) ∂
∂x
------ ψ' x( )Q

∂
∂Q
-------– ψ' x( )F

∂
∂F
------,–=

Y3 λ x( ) ∂
∂u
------, Y4 t

∂
∂t
----- u

∂
∂u
------ Q

∂
∂Q
-------,+ += =

Y5 u
∂

∂u
------ F

∂
∂F
------.+=

Y1
∂
∂t
-----, Y2

∂
∂x
------, Y3

∂
∂u
------,= = =

Y4 t
∂
∂t
----- u

∂
∂u
------ P

∂
∂P
------, Y5 u

∂
∂u
------ F

∂
∂F
------,+=+ +=

Y6 x
∂
∂t
----- ∂

∂P
------, Y7– x

∂
∂x
------ P

∂
∂P
------– F

∂
∂F
------.–= =

X pr t x u, ,( ) Y( ) ξ1 ∂
∂t
----- ξ2 ∂

∂x
------ η ∂

∂u
------,+ +≡=

Z  = pr x u Q F, , ,( ) Y( ) ξ2 ∂
∂x
------ η ∂

∂u
------ µ1 ∂

∂Q
------- µ2 ∂

∂F
------.+ + +≡

X C1t ϕ x( )+[ ] ∂
∂t
----- ψ x( ) ∂

∂x
------+=

+ C1 C2+( )u λ x( )+[ ] ∂
∂u
------,

Z ψ x( ) ∂
∂x
------ C1 C2+( )u λ x( )+[ ] ∂

∂u
------+=

+ ϕ' x( )– C1 ψ' x( )Q–( )+[ ] ∂
∂Q
------- C1 ψ' x( )–( )F

∂
∂F
------.+
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Theorem on projections. Operator X defined by
formula (66) represents the infinitesimal symmetry of
equation (58) with the functions

(68)

if and only if the system of equations (68) is invariant
with respect to the generator Z defined by formula (67);
i.e., if

(69)

where the variables Q and F should be replaced by the
functions Q(x, u) and F(x, u) according to Eqs. (68). In
view of Eq. (67), Eqs. (69) can be represented in the
form of a system of linear first-order partial differential
equations for the functions Q(x, u) and F(x, u):

(70)

Note 2. This theorem is analogously formulated for
Eq. (57) by replacing operators (62) with operators (63)
and also replacing Eqs. (68) with

Example 1. Let us choose the constants and func-
tions involved in Eq. (61) as

i.e., choose Y' ∈ Lε of a specific form:

(71)

Then, by solving the system of equations (70), we
obtain the functions

(72)

where Φ and Γ are arbitrary functions of the same argu-
ment. From the theorem on projections, it follows that,
in addition to the evident time transfer generator X0 =
∂/∂t, Eq. (58) of the form

(73)

allows one more operator

(74)

Q Q x u,( ), F F x u,( )= =

Z Q Q x u,( )–[ ] 0, Z F F x u,( )–[ ] 0,= =

ψ x( )∂Q
∂x
------- C1 C2+( )u λ x( )+[ ] ∂Q

∂u
-------+

+ ψ' x( ) C1–[ ] Q ϕ' x( )+ 0,=

ψ x( )
∂F
∂x
------ C1 C2+( )u λ x( )+[ ] ∂F

∂u
------ ψ' x( ) C2–[ ] F+ +  = 0.

P P u( ), F F x u,( ).= =

C1 1, ϕ x( ) 0, ψ x( ) k x,–= = =

C2 0, λ x( ) 0,= =

Y' t
∂
∂t
----- x k–( ) ∂

∂x
------ u

∂
∂u
------ F

∂
∂F
------.–+ +=

Q Φ u
x k–
----------- 

  , F
1

x k–
-----------Γ u

x k–
----------- 

  ,= =

∂
∂t
----- ∂u

∂x
------ Φ u

x k–
----------- 

  ∂u
∂t
------–

1
x k–
-----------Γ u

x k–
----------- 

 =

X' t
∂
∂t
----- x k–( ) ∂

∂x
------ u

∂
∂u
------.+ +=
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From the equation X'(J) = 0, we determine the invari-
ants

The invariant solution u = (x – k)G(λ) to Eq. (73) should
satisfy the ordinary differential equation

The particular case of interest is that of Eq. (73) with
linear functions Φ and Γ, when a quadratic nonlinear
term appears on the left side of Eq. (73):

(75)

This case is considered separately in Section 5.
Example 2. Now let us consider an equation with

two additional symmetries. For this purpose, we take
two equivalence generators forming a two-dimensional
algebra. We again take the first of them in the form
given by Eq. (71), while to determine the second gener-
ator Y'', we set

in Eqs. (61); i.e. we choose

Operators Y' and Y'' commute and, hence, form an Abe-
lian Lie algebra. Applying the theorem on projections
to both these operators, i.e., in fact, solving Eqs. (70)
with the coordinates of the operator Y'' and with the
functions Q and F in the form of Eqs. (72), we obtain

where A, B = const.
According to the theorem on projections, the equa-

tion

(76)

allows two additional operators:

(77)

In particular, we can find a solution that is invariant
with respect to the two-parameter symmetry group with
two generators (77). For this purpose, it is necessary to

λ t
x k–
-----------, µ u

x k–
-----------.= =

λG'' Φ G( )G'( )' Γ G( )+ + 0.=

∂
∂t
----- ∂u

∂x
------ α u

k x–
-----------∂u

∂t
------– β u

k x–( )2
------------------.–=

C1 0, C2 1, ϕ x( ) ψ x( ) λ x( ) x k–= = = = =

Y'' x k–( ) ∂
∂t
----- ∂

∂x
------+ 

  u x k–+( ) ∂
∂u
------ 1 Q+( ) ∂

∂Q
-------.–+=

Q 1– A
u

x k–
-----------– 

  , Fexp+
B

x k–
----------- u

x k–
----------- 

  ,exp= =

∂
∂t
----- ∂u

∂x
------ 1 A

u
x k–
-----------– 

 exp– 
  ∂u

∂t
------+

=  
B

x k–
----------- u

x k–
----------- 

 exp

X' t
∂
∂t
----- x k–( ) ∂

∂x
------ u

∂
∂u
------,+ +=

X'' x k–( ) ∂
∂t
----- ∂

∂x
------+ 

  u x k–+( ) ∂
∂u
------.+=
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solve the system of equations X'(J) = 0, X''(J) = 0. From
the first equation, we obtain two invariants

and the second equation yields

Substituting the values of µ and λ into these expres-
sions, we obtain the invariant solution in the form

The constant L is determined by substituting the solu-
tion into Eq. (76).

Example 3. Now, let us consider Eq. (57) and apply
the theorem on projections to the combination Y = Y3 +
Y5 + Y6 + Y7 of the basis operators (63), i.e., to the equiv-
alence operator

Using formulas similar to Eqs. (64) and (65), we obtain
the projections

(78)

(79)

Solving the equations Z[P(u) – P] = 0, Z[F(x, u) – F] =
0 (compare with Eqs. (69) and see Note 2), whose spe-
cific form is

we obtain

where K = const.
Hence, the equation

(80)

of the form of Eq. (57), allows not only the operator
X0 = ∂/∂t but also an additional operator X determined
by Eq. (78). We use this operator to construct the invari-
ant solution. Determining the invariants λ = t – x and
µ = (u + 1)/x of the operator X, we arrive at the invariant
solution

λ x k–
t

-----------, µ u
t
---,= =

µ Lλ λ λ
1 λ–
------------ 

  , Lln+ const.= =

u x k–( ) L
x k–

t x– k+
------------------- 

 ln+ .=

Y x
∂
∂t
----- x

∂
∂x
------ 1 u+( ) ∂

∂u
------ 1 P+( ) ∂

∂P
------.–+ +=

X x
∂
∂t
----- x

∂
∂x
------ 1 u+( ) ∂

∂u
------,+ +=

Z x
∂
∂x
------ 1 u+( ) ∂

∂u
------ 1 P+( ) ∂

∂P
------.–+=

1 u+( )dP
du
------- 1 P+( )+ 0, x

∂F
∂x
------ 1 u+( )∂F

∂u
------+ 0,= =

F Γ x
1 u+
------------ 

  , P
K

1 u+
------------ 1,–= =

∂
∂t
----- ∂u

∂x
------ 1 K

1 u+
------------– 

  ∂u
∂t
------+ Γ x

1 u+
------------ 

 =

u xΦ λ( ), λ t x.–= =
Substituting it into Eq. (80), we obtain the ordinary dif-
ferential equation

(81)

Note that, for small values of u, Eq. (80) is a good
approximation with an additional symmetry for the
models described by equations of the type of Eq. (55).

5. DERIVATION OF EQUATIONS
AND DISCUSSION OF THE PHYSICS

OF PROCESSES

Model (55) appears in several problems. Let us first
consider the oscillations of a compressible gas inside a
cylinder with a cross section S. The cylinder is closed
with a moving piston of mass m. The bottom of the cyl-
inder is fixed at x = 0 (the x coordinate is measured
along the generatrix, from the bottom upwards). The
piston can perform oscillations with a displacement ζ
relative to its mean position at x = H. The system of
equations describing the piston motion with allowance
for the nonlinear gas movements has the form

(82)

Here, ρ and c are the density of the gas and the sound
velocity in it and p(t) is the form of any of the two
acoustic pressure waves propagating toward each other.
The arguments contain the time shift determined by the
length H of the resonator and by the nonlinear proper-
ties of the gas:

Using the method [24] of transforming functional equa-
tions of the type of Eq. (82) to differential evolution
equations, for the region near the acoustic resonance
ωH/c = π + ∆ (where ∆ is a small frequency detuning),
we obtain [25]

(83)

In Eq. (83), we used the dimensionless quantities:

where t1 is the “slow” time describing the settling of
steady-state oscillations in the resonator and mg = ρSH
is the mass of gas in the cylinder. It is evident that, by
changing the variables and renaming the constants as

Eq. (83) can be transformed to Eq. (55).
Approximate solutions to Eq. (83) were obtained in

[25] for the problem statements of physical interest.
However, some exact solutions also have important

K Φ'/Φ( )' Φ'+ Γ Φ( ).=

ρc
∂ζ
∂t
------ p t–( ) p t+( ),

m
S
----∂2ζ

∂t2
--------– p t+( ) p t–( ).+= =

t± t
H
c
---- 1 ε p

c2ρ
--------– 

  .±=

∂
∂ξ
------ ∂U

∂T
------- ∆∂U

∂ξ
------- πεU∂U

∂ξ
-------–+ βU .–=

U
p

c2ρ
--------, ξ ωt π, T+

ωt1

π
--------, β 1

π
---

mg

m
------,= = = =

t ξ ∆T , T– x, u πεU ,= = =
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physical meanings. For example, let us consider the
exact solution obtained by using the dilation operator
X3 from Eqs. (56). The corresponding invariants and the
self-similar form are expressed as

The substitution of the last expression into Eq. (55)
leads to an ordinary differential equation

Its particular solution, which in the limit β  0 takes
the form of the solution u = –x/t for Riemann waves, is

(84)

By analogy with the known procedure of constructing a
sawtooth signal [4], in which the periodically continued
solution u = –x/t is used to describe smooth linear por-
tions of the profile (see the dashed curves in Fig. 1), we
continue solution (84) with a period of 2π. The shock
fronts are localized at the points

whose coordinates are calculated from the condition
that the period-average value of the function u(x, t) be
zero.

As shown in Fig. 1, the inclusion of a low-frequency
dispersion (β ≠ 0) leads to an asymmetric distortion of
the waveform. The duration of the compression phase
proves to be shorter, and the duration of the rarefaction
phase, longer. The curves shown in Fig. 1 are plotted for
β = 3 and two dimensionless distances x = 0.2 and 0.5
(curves 1, 1' and 2, 2', respectively). Evidently, the con-

struction is valid up to the distances x ≤ 3 /πβ.

The waveform distortion shown in Fig. 1 is similar
to that observed in experiments with high-intensity dif-
fracted beams. The same behavior is predicted by the
theory [26, 14]. Therefore, the second physical problem
associated with model (55) belongs to the theory of
nonlinear acoustic beams [26]. Let us consider the
Khokhlov–Zabolotskaya equation in the form (see
p. 346 in [14])

(85)

λ xt, µ ux2, u x t,( ) 1

x2
-----Φ λ( ).= = =

ΦΦ'' Φ'2 λΦ''– Φ' βΦ–+ + 0.=

Φ λ( ) λ–
β
6
---λ2, u x t,( )+

β
6
---t

2 t
x
--.–= =

tn π 2n 1+( ) 3
βx
------

3
βx
------ 

 
2 π2

3
-----– ,–+=

n 0 1± 2± …,, , ,=

3

∂
∂τ
----- ∂p

∂x
------

ε
c

3ρ
-------- p

∂p
∂τ
------–

1
c
---∂p

∂τ
------ ∂Ψ

∂x
--------

1
2
--- ∂Ψ

∂r
-------- 

 
2

+ 
 –

+
∂p
∂r
------∂Ψ

∂r
-------- p

2
---∆⊥ Ψ+

c
2
---∆⊥ p.=
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Equation (85) describes circular beams for which the
relations

are valid, where ε = (γ + 1)/2 is the nonlinear parameter
and Ψ is the eikonal. In a homogeneous medium, the
distance traveled by a wave is measured along some
straight line, while in an inhomogeneous medium, x
may be measured along the ray representing the axis of
the beam [27]. Limiting our consideration to the near-
axis region, in Eq. (85) we set

(86)

where f and q' are known functions describing the
behavior of the refraction index in the medium. Deter-
mining the eikonal from Eq. (86),

we reduce Eq. (85) to the form

(87)

∆⊥
∂2

∂r2
-------

1
r
--- ∂

∂r
-----, τ+ t

x
c
--–

1
c
---Ψ x r,( )–= =

∂Ψ
∂x
--------

1
2
--- ∂Ψ

∂r
-------- 

 
2

+
r2

2
---- f x( ) q' x( ),+=

Ψ r2

2
----Φ x( ) q x( ), Φ' Φ2+ + f ,= =

∂
∂τ
----- ∂p

∂x
------

f
Φ
----ν∂p

∂ν
------ 1

c
---∂p

∂τ
------ ν2

2
----- f

Φ2
------ q'+ 

 –
ε

c3ρ
-------- p

∂p
∂τ
------– Φp+ +

=  
c
2
---Φ2 ∂2 p

∂ν2
--------

1
ν
---∂p

∂ν
------+ 

  ,

u

10

–10

0

–π

1'

2'

1

2

t

π

Effect of a low-frequency dispersion on the wave distortion
process. The profiles are plotted for the distances x = (1, 1')
0.2 and (2, 2') 0.5. The solid curves are described by the
self-similar solution (84) for β = 3. The dashed curves are
plotted with allowance for the nonlinearity alone (β = 0, the
dispersion is absent) and are presented for the sake of com-
parison with the profiles shown by the solid curves.
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where ν = rΦ(x). In the nonlinear geometric acous-
tics approximation, the right-hand side of Eq. (85) or
Eq. (87) is assumed to be equal to zero. This approxi-
mation can be refined by taking into account the dif-
fraction corrections, if we use the following model for
the right-hand side of Eq. (87):

(88)

where a is the initial beam width. Note that, for a trans-
verse structure described by the Bessel function

J0( ν/a), representation (88) proves to be exact. Now,
varying the right-hand side of Eq. (87) according to
Eq. (88) and letting ν tend to zero, we obtain an equa-
tion describing the field of an acoustic beam near its
axis:

(89)

In particular, for a focused wave, setting Φ = 1/(x – k)
and q' = 0 (k is the focal distance), we reduce Eq. (89)
to Eq. (75), in which u = p(x – k), α = ε/c3ρ, and
β = c/a2.

By the change of variables

Eq. (89) is reduced to a simpler form

(90)

where

In the general case, when all characteristics of the
medium, including the nonlinearity parameter, may
depend on the x coordinate, the generalized equation
can be written in the form

(91)

Equation (91) also takes into account the possibility of
a more complex nonlinear response of the medium
that cannot be described by a common quadratic non-
linearity.

If in Eq. (91) we set

∂2 p

∂ν2
--------

1
ν
---∂p

∂ν
------+ 

  2

a2
----- p,–

2

∂
∂τ
----- ∂p

∂x
------

q' x( )
c

------------∂p
∂τ
------–

ε
c3ρ
-------- p

∂p
∂τ
------– Φ x( )p+

=  
c

a2
-----Φ2 x( )p.–

t c τ 1
c
---q x( )+ , u

ε
c3ρ
-------- Φ x( ) xd∫( ),exp= =

∂
∂t
----- ∂u

∂x
------ Q x( )u

∂u
∂t
------–

Φ2 x( )
a2

--------------u,–=

Q x( ) Φ x( ) xd∫–( ).exp=

∂
∂t
----- ∂u

∂x
------ Q x u,( )∂u

∂t
------– F x u,( ).=

Q
α

k x–
-----------, F–

β
k x–( )2

------------------u,–= =
it takes the form of Eq. (75) and describes the focusing
of a beam in a homogeneous medium. The invariant
solution corresponding to operator (74) is

The function G(λ) satisfies the equation

(92)

The exact solution to Eq. (92) at α = 0 is expressed in
terms of the Bessel functions

and, at β = 0, it has the form

Evidently, the two problems discussed above are not
the only ones that lead to models (55), (57), and (58).
For any distributed linear system with a low-frequency
dispersion described by the law

a corresponding differential equation of the form

(93)

can be written. If the nonlinearity is weak, the nonlinear
term is added to the evolution equation in an additive
way, and Eq. (93) is transformed to, for example,
Eq. (55).

Note that the “general” form (91) is still specific
enough. Its symmetry properties reflect the physics of
the processes under study with a higher accuracy than,
for example, the symmetries of the simplified model (55)
or the most general model

which could be studied by the proposed method with-
out any strong limitations on the class of problems
under consideration.

6. CONCLUSIONS

The present study is based on the seemingly para-
doxical statement that it is expedient to analyze nonlin-
ear problems by way of their “immersion” into the class
of more general and, hence, more complex models. The
experience in studying the theory of nonlinear oscilla-
tions and waves on the basis of physically justified sim-
plification of models seems to contradict the proposed
approach based on the a priori use of symmetries.
However, behind the external differences, one can dis-
cover the single nature of the two approaches. Evi-
dently, the higher-symmetry model should contain
more exact solutions. How one could obtain a higher

u k x–( )G λ( ), λ t
k x–
-----------.= =

λG'' α GG'( ) '– βG+ 0.=

G λ C1J1 2 βλ( ) C2Y1 2 βλ( )+ ,=

λ α D1– D2 G D1+( ) α G D1+( ) G D1+ .ln–+=

k ω( ) ω
c
----

β
ω
----,–=

∂2u
∂t∂x
----------- βu–=

∂2u
∂t∂x
----------- G x t u

∂u
∂t
------ ∂2u

∂t2
--------, , , , 

  ,=
ACOUSTICAL PHYSICS      Vol. 50      No. 4      2004



PRINCIPLE OF AN A PRIORI USE OF SYMMETRIES 419
symmetry? On the one hand, one can follow the con-
ventional simplification method by rejecting the ele-
ments of the model that violate its symmetry (neglect-
ing some of the terms in the equation or modifying
them in some way). On the other hand, one can comple-
ment the model to make it more symmetric by compli-
cating the initial model. If the complex model allows a
suitable exact solution, the necessary simplification can
be performed at the last step of calculation, i.e., in the
final formulas.
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Abstract—By the example of the problem of the motion of a semi-infinite string lying on an elastic base, a
method for describing wave localization near inclusions is proposed for the case of a cubic nonlinearity of the
base. The method applies the perturbation technique to the amplitude of a localized mode. The nature of the
divergences is revealed, and the secular terms are found to belong to one of two types: inphase or antiphase with
the localized wave. It is shown that a combination of the renormalization method and multiscale method pro-
vides a convergence of the solutions, which are sought for in the form of power series in the amplitude of the
localized mode. It is found that the localization process is determined by the type of the discrete spectrum, type
of the nonlinearity, and type of dispersion. The nonlinearity of the elastic base produces two characteristic
effects. First, the frequency of the localized wave becomes dependent on the wave amplitude. Second, the sys-
tem can generate traveling waves at multiple frequencies, which withdraw energy from the localized wave and
cause it to decay. The decay behavior is determined by the minimum frequency of these traveling waves
(because it must be higher than the cutoff frequency). The lifetime of the localized wave as a function of the
mass of a dynamic inclusion exhibits a number of maxima. In particular, the first maximum corresponds to the
minimum amplitude of the traveling wave at the triple frequency. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION AND FORMULATION
OF THE PROBLEM

As is known, in elastic bodies that have an infinite
boundary with a continuous eigenfrequency spectrum
displaced from zero, a discrete spectrum may appear if
the body contains dynamic inclusions [1–8]. When a
time-harmonic force acts on such a body, resonance
phenomena may be observed. The reason is that the fre-
quency of the perturbing force may coincide with fre-
quencies of the discrete spectrum. Investigations into
wave processes evolving in displaced-spectrum sys-
tems are presently very topical [9–15]. In particular,
deceleration of an elastic wave traveling near mass
inclusions has been reported by many authors [1, 2, 7,
16]. The effect was accompanied by the localization of
the strain wave, which sometimes caused the structure
to lose its stability and even collapse. The deceleration
of the wave near inclusions is explained within the lin-
ear theory by the fact that the spectrum of modes, in
which the propagating elastic wave can be expanded,
contains standing waves localized near the inclusions.
It is intuitively clear that nonlinear effects must distort
the localization effect through changes in the “trapped”
frequencies, generation of modes at multiple frequen-
cies, interaction with the continuous spectrum, and so
on. At small wave amplitudes, these effects must be
insignificant. That is why the localization effect is
observed in practice. Nevertheless, the effect of nonlin-
earity on the trapped modes in systems of elastic bodies
1063-7710/04/5004- $26.00 © 20420
has attracted considerable interest. In particular, one of
the most important issues is the question as to how the
amplitude of the elastic wave affects the frequency of
the trapped modes. Another important issue is the esti-
mation of the life time of a trapped mode.

To study these effects, this paper considers a nonsta-
tionary motion of a semi-infinite string that lies on a
base with a stiffness k and a cubic nonlinearity and has
a lumped mass M at its end (Fig. 1). As the load P(ξ, τ),
we use a point force P0δ(ξ – ξ0)δ(τ), where δ is the
Dirac delta-function, ξ is the spatial coordinate, and τ is
the time. Wave processes in the string are described by
the Klein–Gordon equation with a cubic nonlinearity
and a delta-like right-hand side:

(1)

The initial and boundary conditions can be represented as

(2)

(3)

(4)

Here, T is the string tension, ρ is its linear density, and
the term νy3 is the nonlinear contribution of the elastic
base. Equation (4) is nothing but Newton’s second law
written for the lumped mass inclusion M. When M >
0, the inclusion decelerates the reflected wave and
absorbs part of its energy proportional to M. These

T yξξ ρyττ– ky– νy3– P0δ ξ ξ0–( )δ τ 0–( ).=

y ξ 0,( ) yτ ξ 0,( ) 0,= =

y ∞ τ,( ) yξ ∞ τ,( ) 0,= =

T yξ ξ 0=
Myττ( )ξ 0== .
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effects are convenient to study by changing to the
dimensionless variables and constants:

(5)

(6)

Then, we have

(7)

(8)

It is this nonlinear problem that will be studied in this
paper.

TRAPPED MODES OF OSCILLATION
IN A SEMI-INFINITE STRING

WITH A LUMPED MASS

First, it is necessary to find a solution to the corre-
sponding linear problem with ε = 0, because we will use
it in constructing the nonlinear solution in terms of the
perturbation theory. In this case, Eqs. (7) and (8) have
the form

(9)

(10)

To determine the physical origin of the localization
effect, let us analyze the problem using the method of
expansion in eigenfunctions. We will also use this method
below to analyze the nonlinear problem. The eigenfunc-
tions are found from the auxiliary spectral problem

(11)

(12)

We assume that functions u and ux are finite at infinity.
At frequencies below the boundary frequency (ω < 1),

a solution to Eq. (11) has the form u = ,
which, being substituted into boundary condition (12),
yields the equation for eigenfrequency of the linear

problem,  –  = 0. The solution to this
equation is

(13)

u
ρT
P

-----------y, x
k
T
---ξ , t

k
ρ
---τ ,= = =

m
M
ρ
----- k

T
---, ε νP2

kρT
----------.= =

uxx utt– u– εu3– δ x x0–( )δ t( )=

u x 0,( ) ut 0 x,( ) 0= =

u ∞ t,( ) ux ∞ t,( ) 0= =





ux x 0=
mutt( )x 0= .=

uxx utt– u– δ x x0–( )δ t( ),=

ux x 0=
mutt x 0=

.=

uxx 1 ω2–( )u– 0,=

ux x 0=
mω2u

x 0= .–=

qe 1 ω2– x–

1 ω0
2– mω0

2

ω0
1
m
---- m2 1

4
---+ 1

2
---– .=
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Formula (13) describes a function decreasing from ω = 1
at m = 0 to ω = 0 as m  ∞. The corresponding eigen-
function has the form of the standing wave

(14)

Therefore, it is the presence of the discrete trapped fre-
quency ω0 in the spectrum that causes the wave local-
ization effect.

At frequencies above ω = 1, the solution to spectral
problem (11), (12) has the form

(15)

Eigenvalues ω form a continuous spectrum, which
occupies the entire axis from 1 to ∞. The discrete fre-
quency ω0 is separated from the lower boundary ωb = 1
(referred to as the cutoff frequency) of the continuous
spectrum by a certain nonzero region.

Therefore, we seek a solution to the original prob-
lem (9), (10) in the form of an expansion in terms of the
eigenfunctions:

(16)

Eigenfunctions (14), (15) are orthogonal with weight
1 + mδ(x). This property can be used to obtain equa-
tions for q(t) and p(ω, t). In fact, by multiplying Eq. (9)

by [1 + mδ(x)]  and integrating the result with

u qe
mω0

2
x–
.=

u p ω2 1– x( )cos
mω2

ω2 1–
------------------- ω2 1– x( )sin– .=

u x t,( ) q t( )e
mω0

2
x–

p ω t,( )
1

∞

∫+=

× ω2 1– x( )cos
mω2

ω2 1–
------------------- ω2 1– x( )sin– ω.d

e
mω0

2
x–

P0 δ(τ)

ξk ξ0

M

Fig. 1. Schematic diagram of a semi-infinite string with a
lumped mass M at its end. The spring lies on a base with a
stiffness k and is loaded by point force P0δ(ξ – ξ0)δ(τ).
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respect to x from 0 to ∞, we obtain (with allowance for
the boundary conditions)

(17)

The solution to this equation at q(x0) = (x0) = 0 has the
form

(18)

where H(t) is the Heaviside step function. The equation
for p is derived in a similar manner:

(19)

Its solution has the form

(20)

Expressions (16), (18), and (20) completely determine
the evolution of the wave. As t  ∞, the integral in
Eq. (16) approaches zero and the wave is determined by
the first term alone:

(21)

This expression shows that the localized wave performs
harmonic oscillations at a trapped frequency (13),
which depends on the mass of the inclusion alone.
Next, let us study how the nonlinearity changes the
localization effect.

NONLINEAR EFFECTS

Let us seek a solution to the system of equations (7),
(8) in the form of a power series in ε:

(22)

q̇̇ t( ) ω0
2
q t( )+

2mω0
2e

mω0
2
x0–

1 2m2ω0
2+

------------------------------δ t( ).–=

q̇

q t( )
2mω0e

mω0
2
x0–

1 2m2ω0
2

+
------------------------------ ω0 t x0–( )sin– H t x0–( ),=

ṗ̇ ω2 p+
2ω
π

------- 1

m2ω4 ω2 1–+
----------------------------------–=

× ω2 1– ω2 1– x0( )cos[

– mω2 ω2 1– x0( )sin ]δ t( ).

p ω t,( ) 2/π–

m2ω4 ω2 1–+
----------------------------------=

× ω2 1– ω2 1– x0( )cos[

– mω2 ω2 1– x0( )sin ] ω t x0–( )sin H t x0–( ).

u x t,( )
2mω0

1 2m2ω0
2+

-------------------------e
mω0

2
x x0+( )–

–=

× ω0 t x0–( )sin H t x0–( ).

u x t,( ) u0 x t,( ) εu1 x t,( ) ε2u2 x t,( ) ….+ + +=
Substituting expression (22) into Eqs. (7) and (8) and
equating the coefficients of equal powers of ε, we
obtain

(23)

(24)

(25)

Each of these linear equations can be solved by the
technique described above; specifically, by expanding
the solution in eigenfunctions of the corresponding
spectral problem. In this procedure, secular terms will
appear beginning already with u1. Let us analyze them
in more detail.

It can easily be seen that the secular terms are pro-
duced by the right-hand sides of Eqs. (24), (25), etc.,
which originate from the cubic nonlinearity. Solution (16),
(18), (20) to Eq. (23) was found in the previous section.
It consists of undamped and damped wave components:

(26)

where  is the undamped “trapped” term (21), which

describes the localized wave, and  is the damped
term, which describes the traveling waves. Therefore,

term  on the right-hand side of Eq. (24) can be repre-
sented as

(27)

The term  = (x)sin3ω0t gives rise to secular terms,
because sin3ω0t = (3/4)sinω0t – (1/4)sin3ω0t. The term
containing sinω0t causes the resonance and gives the
specific solution of the form  ~ tcosω0t. This diver-
gence can be removed using, for example, the renor-
malization technique [17].

The term 3  does not cause any divergence,

because  ~ cos2ω0t.

The term 3  may cause a logarithmic diver-
gence of the solution, which can also be removed by the
renormalization technique [16] (causing the phase to
logarithmically increase with time). Below we ignore
this effect because it is much weaker than the effect that
causes the frequency renormalization (in this case, the
phase grows with time as a linear function).

u0xx u0tt– u0– δ x x0–( )δ t( )=

u0x x 0=
mu0tt x 0=

,=



u1xx u1tt– u1– u0
3=

u1x x 0=
mu1tt x 0=

,=



u2xx u2tt– u2– 3u0
2u1=

u2x x 0=
mu2tt x 0=

=



……………………………………………………

u0 x t,( ) ũ0 x t,( ) û0 x t,( ),+=

ũ0

û0

u0
3

u0
3 ũ0

3
3ũ0

2û0 3ũ0û0
2 û0

3.+ + +=

ũ0
3 A0

3

ũ1

ũ0
2 û0

ũ0
2

ũ0 û0
2
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The last term does not cause a divergence and can

therefore be neglected just as the term 3  Now let
us consider the next order of the perturbation theory.
The equation for u1 has the form

(28)

Here, for the sake of simplicity, we omit all terms that
cause no divergence or can be removed through fre-
quency renormalization (or by changing the phase).
The solution for u1 also consists of two components:
localized, , and traveling, , ones. It can also be
found using the eigenfunction expansion (see Eqs. (14)
and (15)). The property that they are orthogonal with
weight 1 + mδ(x) allows us to separate equations for 

and . The  solution is a correction to the localized

and renormalized wave ;  determines traveling
waves among which there are waves at the triple fre-
quency:

(29)

This term produces a new divergence in the second-

order term in ε, because  ~ –cos2ω0t. Term u1 con-

tains –sin(ω0t – x) and it in turn produces

secular terms  ~ –tsinω0t. This divergence cannot be
removed through the frequency renormalization,
because it has a different phase. It can only be removed
by the multiscale method [16] or by the Krylov–Bogo-
lyubov–Mitropol’skiœ method, which allow for the
amplitude variation of the localized wave in time. Due
to the nonlinearity, the localized wave produces travel-
ing waves at the triple frequency (only when ω0 > 1/3)
with an amplitude on the order of ε. Therefore, the
energy E withdraws from the localized wave at a rate of
~ε2 (i.e., E ~ ε2t), and the amplitude of the localized wave
must decrease with a characteristic time of t0 ~ ε–1/2. If
1/5 < ω0 ≤ 1/3, the localized wave will excite the trav-
eling wave only at a frequency that is five times higher
with an amplitude of ε2. The energy will decrease as ε3t,
and the maximum lifetime of the localized wave will
therefore be on the order of ε−1/3 (secular terms will be
present in the equation for ). In the general case, if

(30)

the maximum lifetime can be estimated as

(31)

On the other hand, with increasing m, the lifetime of the
localized mode must decrease, because t0  0 as
m  ∞. Therefore, the dependence of t0 on m at large
m becomes nonmonotonic and contains narrow and

ũ0
2

û0

u1xx u1tt– u1–
1
4
---A0

3 x( ) 3sin ω0t.–=

ũ1 û1

ũ1

û1 ũ1

ũ0 û1

û1 3ω0t 3ω0( )2 1– x–( ).sin∼

u0
2 u0

2

3ω0( )2 1–

ũ2

ũ3

1
2n 1+
--------------- ω0

1
2n 1–
---------------,≤<

t0 ε 1/ n 1+( )– .∼
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sharp peaks that refer to resonances at ω0 ~ 1/(2n + 1).
After this preliminary consideration, let us proceed to a
quantitative description of the processes under study.

RENORMALIZATION OF THE FREQUENCY
OF A TRAPPED MODE

Let us study each type of divergence separately,
one by one. At first, let us analyze the strongest diver-
gence, namely, the divergence of the localized wave
itself. The undamped trapped mode (21) immediately
causes solution (22) to diverge as tsinω0t, because
(u1/u0)|t → ∞  ∞. The expression for u2 already con-
tains terms like t2sinω0t and so on. Thus, it is insuffi-
cient to merely seek a solution to the original nonlinear
system of equations in the form of expansion (22),
because the frequency of the trapped mode depends on
the amplitude of the localized wave. Therefore, follow-
ing the general renormalization theory [16], it is neces-
sary to introduce a new renormalized time s according
to the formula

(32)

and substitute it into the general solution. Then we
should choose κ1, κ2, etc. so as to make all secular terms
equal to zero. If this can be done, we obtain a conver-
gent renormalized solution (otherwise, it is necessary to
use another, stronger method to provide the conver-
gence, for example, the multiscale method or the Kry-
lov–Bogolyubov–Mitropol’skiœ method [16]). Let us
perform this procedure. From Eqs. (23), we have

(33)

(34)

Here, for the sake of simplicity, we neglect the Heavi-
side step function H(t – x0) and the damped component
(because it produces no secular terms of the type we
study). By substituting Eq. (33) into Eq. (24), we obtain

(35)

Let us seek a solution to this equation with the corre-
sponding boundary and initial conditions in the form

(36)

t s 1 εκ1– ε2κ2– …–( )=

u0 x t,( ) A0e
mω0

2
x–

ω0t,sin–=

A0

2mω0

1 2m2ω0
2

+
--------------------------e

mω0
2
x0–

.=

u1xx u1tt– u1–

=  
3A0

3

4
---------e

3mω0
2
x–

ω0t
1
3
--- 3ω0tsin–sin 

  .–

u1 x t,( ) q1 t( )e
mω0

2
x–

p1 ω t,( )
1

∞

∫+=

× ω2 1– x( )cos
mω2

ω2 1–
------------------- ω2 1– x( )sin– ω.d
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By substituting Eq. (36) into Eq. (35), multiplying it by

(1 + mδ(x)) , and integrating the result from 0 to
∞ with respect to x, after some algebra we obtain

(37)

(38)

The solution to Eq. (37) with the corresponding initial
conditions has the form

(39)

Substituting Eqs. (32), (33), and (39) into Eq. (22) and
collecting terms with equal powers of ε, we obtain

(40)

As can be seen from Eq. (40), to eliminate the secular
term scosω0s, we must set

(41)

Changing from variable s back to variable t, it is easy to
obtain the zero-order (with respect to ε) expression for
u. In this case, the actually renormalized quantity
proves to be the frequency of trapped oscillations. Con-
tinuing the calculations in the subsequent orders in ε we
can describe the evolution of the localized wave with
any accuracy. Here we present the final expression for
u in the first order:

(42)

e
mω0

2
x–

q̇̇1 t( ) ω0
2
q1 t( )+ B ω0t

1
3
--- 3ω0tsin–sin 

  ,–=

B
3A0

3

2
---------

4m2ω0
2

1+

2m2ω0
2

1+
--------------------------.=

q1 t( ) B
2ω
------- t ω0t ---cos=

–
1

6ω0
--------- ω0t 5 2ω0tcos+( )sin H t x0–( ).

u = A0e
mω0

2
x

ω0ssin ε B
2A0ω0
---------------- κ1ω0– 

  s ω0scos+




–

–
B

12ω0
2A0

------------------- ω0s 5 2ω0scos+( )sin




O ε2( ).+

κ1
B

2A0ω0
2
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3m2 4m2ω0

2 1+( )

2m2ω0
2

1+( )
3

----------------------------------------e
2mω0

2
x0–

.= =

u x t,( )
2mω0

2m2ω0
2

1+
--------------------------e

mω0
2

x x0+( )–
ω*tsin–=

× 1 ε
m2 2m2ω0

2
1/2+( )

2m2ω0
2

1+( )
3

-------------------------------------------e
2mω0

2
x0–

–

-----× 5 2ω*tcos+( ) O ε2( )+ ,
where

(43)

Thus, the trapped oscillation frequency becomes
dependent on parameter ε, i.e., on the wave amplitude
(because, in this case, ε = νP2/kρT). The renormalized
trapped frequency ω∗  increases with ε as a linear func-
tion according to Eq. (43). The damped waves being
neglected, the amplitude of the trapped wave is
described by expression (42).

ATTENUATION OF THE LOCALIZED WAVE: 
MULTISCALE METHOD

Now, let us describe another key phenomenon:
attenuation of the localized wave. As we already noted,
the nature of this phenomenon is as follows. If the fre-
quency of the localized wave satisfies the condition ω0 >

1/3 or, as follows from (13), if 0 < m < 6 , the local-
ized wave excites traveling waves at the triple fre-
quency with an amplitude ε. These waves withdraw
energy from the localized wave, which leads to its
decay with a characteristic time t ~ ε–2 (because the
energy withdrawal rate is ~ε2). Let us describe the
effect quantitatively, using the multiscale method [17].
Consider new time scales Tn:

. (44)

Then, (d2)/(dt2) = D0 + 2εD0D1 + ε2(2D0D2 + ) + …,
where Dn ≡ d/dTn. Let us seek a solution to the original
equation (7) in the form

(45)

By substituting expressions (44) and (45) into Eqs. (7)
and equating the coefficients of equal powers of ε, we
obtain

(46)

(47)

ω* ω0 1 ε
3m

2
4m2ω0

2
1+( )

2m2ω0
2 1+( )3

-----------------------------------------e
2mω0

2
x0–

+=

+ ε2 3
16
------

m4ω0
2

2m2ω0
2 1+( )6

-------------------------------- 14m2ω0
2 1+( )

-----× 2m2ω0
2

1/2+( )e
4mω0

2
x0–

O ε3( )+ .

2

T0 t, T1 εt, T2 ε2t …,= = =

D1
2

u u0 T0 T1 T2 …, , ,( ) εu1 T0 T1 T2 …, , ,( )+=

+ ε2u2 T0 T1 T2 …, , ,( ) ….+

u0xx u0T0T0
– u0– δ x x0–( )δ t( )=

u0x x 0=
mu0T0T0 x 0=

=



u1xx u1T0T0
– u1– u0

3 2u0T0T1
+=

u1x x 0=
mu1T0T0 x 0=

=
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(48)

Let us limit our study to the elimination of the secular
terms in the second order alone without considering
other orders. We also neglect the phase variation of the
localized wave under the action of traveling waves,
because this effect is weaker (~ε) than that taken into
account by the frequency renormalization. In this sim-
plified case, the zero-order solution for the localized
wave can be written as

(49)

The substitution of Eq. (49) into Eqs. (47) yields the
equation for traveling waves at the triple frequency:

(50)

The term containing sinω0T0, which we have already
studied, is omitted here for simplicity. The technique
described above can be used to obtain the expression
for undamped traveling waves (the remaining terms are
neglected for simplicity):

(51)

where the proportionality coefficient C is

(52)

It is clear that the condition ω0 > 1/3 is associated with
the possibility of exciting waves with a wavelength of

2π/ . The substitution of Eqs. (49) and (51)
into Eqs. (48) yields

(53)

All the remaining terms, which do not contribute to the
divergence, are ignored. The solution to this equation
contains a localized wave whose divergent part has the
form

(54)

u2xx u2T0T0
– u2– 3u0

2u1=

+ 2u0T0T2
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2u1T0T1
+ +
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=
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2
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ω0T0.sin=
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4
------e

3mω0
2
x–

3ω0T0.sin–=

u1 CA3 3ω0T0 3ω0( )2 1– x–( ),sin=

C
1
48
------ 1

3mω0
2( )2

3ω0( )2 1–+
-----------------------------------------------------.=

3ω0( )2 1–

u2xx u2T0T0
– u2– 2ω0e

mω0
2
x–

ω0T0cos=

× A' T2( ) 3C
8ω0
---------A5 T2( )e

mω0
2
x–

3ω0( )2 1– x( )sin+ .

ũ2 constT0 3ω0T0e
mω0

2
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sin–∼

× A' T2( ) 1
4t*
--------A5 T2( )+ ,
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where

(55)

The condition for the secular term to vanish yields the
equation that describes the attenuation of the localized
wave:

(56)

At A(0) = A0, its solution has the form A(T2) =

A0/ . Changing back to the variable t, we
obtain

(57)

(58)

Evidently, t0 has the meaning of the characteristic life-
time of the localized mode. Figure 2 shows ε2t0 versus
the dimensionless mass of inclusion at x0 = 0.75. This
curve reaches its maximum value of 93 at m = 0.47 and
minimum value of 12.8, at m = 6.8. As ω0  0, the
lifetime tends to zero and the localization effect disap-
pears. When ω0  1/3, the lifetime t0 grows without
limit. This means that, when ω0  1/3, we must allow
for the energy withdrawn by traveling waves of the next
order, namely, waves with an amplitude ε2 and a five-
fold frequency 5ω0. As a result, the lifetime will be a
nonmonotonic function of m  ∞ and it will contain
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Fig. 2. Decay time versus the dimensionless mass m of the
inclusion at x0 = 0.75.
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a number of sharp peaks (the higher the index of the
excited mode, the higher and narrower the peak is). In
the region m < 8.4, one can use formula (58).

Now, let us write the final expression for the local-
ized wave in the principal order of the asymptotic
expansion in ε by taking into account all the above
effects:

(59)

(60)

(61)

The lifetime of this mode is rather long. In particular, at

ε = 0.02, the characteristic lifetime is t0 ~ 105 . For
example, at ρ ≈ 1 kg/m and k ≈ 108 kg m/s2, we have
t0 ≈ 10 s. For the localization effect to occur, the mass
of the inclusion must be small enough. In particular,
for T ~ 104 kg m/s2, m = 5 corresponds to 0.05 kg.

CONCLUSIONS
The following conclusions can be drawn from the

above study. The cubic nonlinearity of the elastic base
does not eliminate the localization effect and does not
distort the form of the localized waves, but causes two
characteristic phenomena. First, the frequency of the
localized wave becomes dependent on the wave
amplitude (formula (61)). Second, the system can pro-
duce traveling waves at multiple frequencies (3ω0,
5ω0, 7ω0, …), which withdraw energy from the local-
ized wave and cause it to decay. The character of the
decay is determined by the position of the minimum
frequency of the traveling waves relative to the cutoff
frequency. In particular, in terms of the dimensionless
variables, in which the cutoff frequency is equal to 1,
the traveling wave at the triple frequency is excited

when the condition ω0 > 1/3 or m > 6  is satisfied. In
this case, the localized wave decays as t–1/4. If 1/5 < ω0 <
1/3, then u0 ~ t−1/6; if 1/7 < ω0 < 1/5, then u0 ~ t–1/8; and

u x t,( )

=  u0 t( )e
mω0

2
x–

ω* t x0–( )[ ] H t x0–( )sin– O ε( ),+

u0 t( )
mω0

m2ω0
2

1/2+
---------------------------- e

mω0
2
x0–

1 t/t0+4
---------------------,=

ω* ω0 1
3ε

4ω0
2

---------
4m2ω0

2
1+

2m2ω0
2 1+

--------------------------u0
2 O ε2( )++ .=

k/ρ

2

so on. The behavior of the lifetime of the localized
mode versus the mass of the dynamic inclusion exhibits
a number of maxima. In particular, the first maximum
corresponds to the minimum amplitude of the traveling
wave at the triple frequency (Fig. 2).
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Abstract—The orientation behavior of homogeneous planar layers of nematic liquid crystals with open and
closed ends in the field of compressional deformations caused by an acoustic effect is studied. The mecha-
nisms determining the connection of the optical response of a nematic liquid crystal (the variable component
of an optical signal and its spectrum) with the acoustic parameters (the oscillation amplitude and frequency,
and the amplitude of sound pressure) and the layer thickness are revealed. The factors responsible for the
mechanism and modes of acoustooptic conversion are considered. It is demonstrated that, by varying the
layer thickness, it is possible to implement different modes of signal conversion. The possibility of designing
a new modification of a sound receiver based on a nematic liquid crystal and the specific features of this
design are discussed. Its advantages over conventional sound pressure receivers based on nematic liquid crys-
tals are indicated, in particular, the absence of limitation of the frequency of the received signal in the low-
frequency range. © 2004 MAIK “Nauka/Interperiodica”.
An investigation of the optical properties of an
anisotropic liquid in a plane capillary under the effect
of periodic deformations is interesting not only by itself
from a scientific point of view [1–4] but is also impor-
tant practically, in connection with the development of
acoustooptic devices on the basis of liquid crystals for
various purposes [5–7]. Physical situations correspond-
ing to the problems of the development of various mod-
ifications of such devices can be classified according to
the type of boundary conditions at the ends of a capil-
lary filled with a liquid crystal (closed or open ends),
the type of deformation (shear or compression) deter-
mined by the acoustic action, and the initial orientation
of the molecules of the liquid crystal in the layer (pla-
nar, twist structure, homeotropic, etc.). The most
advanced studies are those of the distortion of the
homeotropic macrostructure of a layer of a nematic liq-
uid crystal and its optical response under the condi-
tions, where one of the plates forming a capillary is
motionless and the other oscillates in the layer plane,
and in this case an oscillating flow of a nematic liquid
with a linear profile of velocity is realized between the
capillary plates [2]. As for the changes of the orienta-
tion state of the homogeneous macrostructure of a nem-
atic liquid crystal in the case of the oscillation of this
plate in the direction of the normal to the layer and its
periodic compression, these aspects for both cases of
homeotropic and planar arrangement of molecules in
the layer are studied mainly for the ultrasonic fre-
quency range, where the viscous wavelength in a nem-
atic liquid crystal is considerably smaller than the layer
thickness [2–9].
1063-7710/04/5004- $26.00 © 20427
This paper presents the results of an experimental
study of the influence of periodic compressional defor-
mations on macroscopically homogeneous planar lay-
ers of nematic liquid crystals in capillaries with differ-
ent boundary conditions at the ends in the frequency
range, where the sound wavelength λ, viscous wave-
length λvis, and orientation wavelength λor correlate
with the layer thickness d0 and the layer length L in
such a way that the following inequalities are valid:

(1)

Let us consider a planar layer of a nematic liquid
crystal in a plane capillary with open ends in the coor-
dinate system with its origin x = 0, z = 0 at the center of
the lower boundary of the layer and the z axis directed
along the normal to the layer (Fig. 1a). The layer has a
preferred optical axis (the director n) lying in its plane
and directed along the x axis. The values of the refrac-
tion indices of such a “plate” of a uniaxial crystal are
given by the optical indicatrix in the form of an ellipsoid
of revolution about the principal symmetry axis O'O'
[11]. In the initial unperturbed state, the planar layer is
birefringent, ∆n = n0 – ne, where n0 and ne are the indi-
ces of light refraction with the polarization vector E
perpendicular and parallel to the optical axis, respec-
tively. We preset an external action on the nematic layer
by the motion of the lower boundary of the capillary in
the form ξz(t)|z = 0 = ξ0zsinωt. Here ξz, ξ0z, and ω/2π are
the particle displacement, its amplitude, and the fre-
quency of oscillations.

λvis ! L ! λ , λor ! d0 ! λvis.
004 MAIK “Nauka/Interperiodica”
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Fig. 1. Schemes of experiments on the effect of a periodic compressional deformation on planar layers of a nematic liquid crystal
in a capillary with (a) open and (b) closed ends: (1) plate, (2) substrate, (2') membrane, (3) source of sensing radiation, and
(4) spacer. (c) Radial distribution of the velocity of motion of the nematic liquid in a capillary with closed ends and a membrane
with a thickness of 0.1 cm and a radius of 1 cm. E = 1011 Pa, ν = 0.3. (d) The conversion characteristic.
The appearance of the following effects is possible
in this physical situation:

(i) periodic variation of the layer thickness d(t) = d0 +
ξz(t) caused by compression due to the boundary oscil-
lation;

(ii) periodic spreading of the nematic liquid along
the layer towards its ends and in the opposite direction
(“streaming”);

(iii) development of orientation instability in the
oscillating flow of the nematic liquid when the oscilla-
tion amplitude exceeds a certain threshold value.

Let us give some estimates to understand the general
pattern of the phenomenon and determine the individ-
ual contributions of the aforementioned factors.

The periodic variation of the layer thickness due to
the oscillations of one of its boundaries leads to oscilla-
tions of the optical path and, hence, to oscillations of the
phase difference between the interfering ordinary and
extraordinary waves, which manifests itself in oscilla-
tions of light intensity at the output of the system formed
by the polarizer (P), the nematic layer, and the analyzer
(A) shown in Fig. 1a. This effect can be evaluated pro-
ceeding from the classical formula of crystal optics [11],
which in the physical situation under investigation in the
case of crossed polarizers P and A has the form

(2)

Here, k0 is the wave number of light and I0 and I(t) are
the intensities of light transmitted through polarizer P
and analyzer A, respectively. The polarization vector of
light transmitted through polarizer P and incident upon
the nematic layer, E, makes an angle of π/4 with the
director. Expanding the function sin2[constd(t)] into the
Taylor series in particle displacement ξz(t) and restrict-

m I t( )/I0 0.5∆nk0d t( )[ ] .sin
2

= =
ing the consideration to the terms of the second order,
we obtain

(3)

From Eq. (3) it follows that the variable component of
the optical signal can be connected with the oscillation
amplitude by both linear and quadratic dependences, if
the initial thickness of the layer of a nematic liquid
crystal is such that one of the conditions given below is
satisfied:

(4)

or

(5)

The spectral distribution of the optical signal also
depends on the layer thickness: either it is represented
by even m2i and uneven m2i + 1 harmonics (at d0i ≅ π (i +
0.5)/∆nk0) or it is the sum of only even harmonics m2i

(at d0i ≅ π i/∆nk0). It is necessary to note one more essen-
tial fact following from Eq. (3): the coefficients at ξz(t)

and (t) do not depend on the layer thickness but are
determined by the anisotropy of the nematic liquid
crystal and the light wavelength 2π/k0.

The second effect manifesting itself in the planar
layer of a nematic liquid crystal under the conditions of
its periodic compression is connected with the inhomo-
geneity of the distribution of streaming velocity of the
nematic liquid over the layer thickness, which causes a
director rotation in the plane xz through the angle ϕ ~
∂Vx/∂z. The component of the flow velocity along the x
axis is equal to Vx = [6ξ0zωxz(d – z)/d3]cosωt. This

m I t( )/I0 0.5∆nk0d0( )2sin≈=

+ 0.5∆nk0 ∆nk0d0( )ξ z t( )sin

+ 0.5 ∆nk0( )2 ∆nk0d0( )ξ z
2 t( )cos O ξ z

3 t( )[ ] .+

∆nk0d0[ ]cos 0,=

∆nk0d0( )sin 0.=

ξ z
2
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leads to a periodic variation of birefringence ∆n(t) and
an oscillation of the phase difference between ordinary
and extraordinary waves. In this case, the intensity of
light after analyzer A that is crossed with respect to the
vector E is

(6)

From of the form of the function ∆n(t) = (n0 –
ne)cosϕ(t) = (n0 – ne)[1 – ϕ2(t)] it follows that
(i) although the angle ϕ(t) increases with the growth of
the oscillation amplitude, the period-average value of

 decreases, which leads to the attenuation of the
optical effect connected with the streaming of the nem-
atic liquid; (ii) the variable component of the optical
signal, which is connected with the effect of streaming,

is proportional to  at small oscillation amplitudes,
and the oscillation of light intensity occurs with a dou-
bled frequency; and (iii) the value of ∆n(t) is connected
with the coordinate x of the sensing point of the optical
signal via the velocity Vx determining the rotation angle
of the director ϕ(t) due to the streaming.

According to [1], the angle ϕ(t) = (α3cosΨ/α2)ϕ0(t),
where Ψ is the angle between the director and the vec-
tor of streaming velocity, α2 and α3 are the Leslie coef-
ficients of viscosity, and ϕ0(t) is the angle of the director
rotation under the same conditions of streaming but in
the layer of a nematic liquid crystal with a homeotropic
orientation of molecules. In the case of a nematic liquid
crystal, the Leslie coefficients of viscosity are such that
the ratio α3/α2 is within 0.01–0.1 [1]. Therefore, the
optical effect connected with the director oscillation is
sufficiently small. Moreover, it follows from the form
of the function Vx(x) that the value of ϕ(t) is maximal at
the open ends of the layer and decreases towards its
center. This allows one to assume that a region must
exist near the center, where the optical effect caused by
the director oscillation may be ignored. Let us evaluate
the dimensions of this region in a layer with an axial
symmetry and a radius R at an arbitrary value of the
angle Ψ between the director and the vector of the flow
velocity. The optical phase difference ∆Φ of ordinary
and extraordinary waves, which accompanies the direc-
tor oscillation in the case of streaming, with allowance
for the change of molecule orientation over the layer

thickness is equal to ∆Φ = 0.5∆nk0 (t)dz. Assum-

ing that ∆Φ ≤ 0.01 rad and expressing the angle ϕ(t)
through the angle ϕ0(t) = [6Rα2ξ0z(d – 2z)/γd3]sinωt
[12], we determine the critical radius R1 of the region,
where the contribution of the effect caused by the
streaming of the nematic liquid to the modulation of
optical radiation is minimal:

(7)

The effect of orientation instability of a homoge-
neous planar macrostructure of nematic liquid crystals

m I t( )/I0 0.5∆n t( )k0d0[ ] .sin
2

= =

ξ0z
2

ξ0z
2

ϕ2

0

d∫

R1 0.1γd3/2/α3ξ0z 3∆nk0( )1/2 Ψ.cos≤
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in oscillating flows of different types has been dis-
cussed many times in detail in the literature [13, 14].
This effect is known to manifest itself in the appearance
of stationary spatially-modulated structures (one- or
two-dimensional) when the oscillation amplitudes
exceed a certain threshold value. The consequence of
this effect is a change in the spatial characteristics of the
luminous flux after its transmission through a layer of a
nematic liquid crystal. However, this phenomenon is of
a local character and, according to theoretical predic-
tions [14], a region exists in the layer plane where this
instability does not occur. In the general case, the radius
of this region R2 depends in a very complex way on the
frequency and amplitude of oscillations, on the angle Ψ
between the director and the vector of the flow velocity,
on the layer thickness, and on the viscoelastic con-
stants of the nematic liquid crystal. However, in the
geometry under consideration (Fig. 1a), the radius R2
can be estimated using the following approximate
expression [14]:

(8)

Here, K1 and K2 are the Frank’s constants of elasticity,
which correspond to transverse flexural and torsional
deformations [1].

The estimates given above concern the physical sit-
uation given in Fig. 1a, i.e., a layer of a nematic liquid
crystal with open ends. As analysis shows, a change in
the boundary conditions at the capillary ends does not
influence the general pattern of the phenomenon, and
the “set” of competing mechanisms and their basic laws
persist in a capillary with closed ends. As for some
quantitative discrepancies, the most significant one is
connected with the mechanism of streaming of the
nematic liquid. For example, in the geometry shown
schematically in Fig. 1b, the nematic layer is “com-
pressed” between (1) a massive plate and (2') a flexible
membrane and placed into a sound field of the form
P(t) = P0exp(–iωt). The pressure in the sound wave
incident upon such a cell deflects the thin membrane in
the middle and compresses the liquid at the center of
the layer; as a result, the compression gradient causes
streaming of the nematic liquid. According to [15], the
radial transfer of liquid particles in the layer, Ur, which
initiates the director rotation through the angle
ϕ ~ ∂Ur/∂z is determined by the expression

(9)

Here, A = EH3/12(1 – ν2), E is Young modulus, ν is
Poisson’s ratio of the membrane material, H is the
membrane thickness, ρ and c are the density and sound
velocity in the nematic liquid crystal, and f(r) is the
function describing the radial distribution of Ur in the
cell (Fig. 1c). From Eq. (9) it follows that, in a capillary
with closed ends, the velocity of spreading of the nem-
atic liquid reaches its maximum at a distance of 0.7R

R2 d2 1 K1K2/α2α3ω
2 d/2π( )4+[ ] 1/2

/ξ0z Ψ.sin∼

Ur 36P0Rz d z–( )/d2ρc2 1 36Ad/ρc2R4+( )[ ]=

× f r( ) ωt.cos
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Fig. 2. (a) Intensity of the variable components of an optical signal with the frequencies f, 2f, 3f, 4f, 5f, and 6f versus the amplitude
of oscillations at a frequency of 120 Hz for a capillary with open ends in the case of readout within a region with the radius r < 4 cm;
the layer thickness is 50 µm. (b) Oscillograms of the acoustic (the lower curve, frequency f) and optical (the upper curve, frequency
5f) signals; the layer thickness is 50 µm, and the frequency is 120 Hz. (c) Oscillation amplitude corresponding to the position of the
first maximum of the variable component of the spectrum at the frequency f versus the oscillation frequency; the layer thickness is
50 µm.
from the layer center rather than at its edges, which is
characteristic of a capillary with open ends.

The ideas discussed above provide an opportunity to
separate independent competing physical effects (peri-
odic variation of the optical path, oscillation of the
director, and orientation instability) in the experiment
and determine the optimal conditions for their measure-
ment. Performing the measurements within the region
with the radius r < R1, R2, it is possible to minimize the
contribution of the effect connected with the director
oscillation due to streaming into the modulation of the
sensing optical radiation, to eliminate the influence of
the orientation instability, and to detect the oscillations
of the intensity of the luminous flux that are caused by
the periodic variations of the optical path in the layer.
Let us estimate the values of the radii R1 and R2 at the

oscillation amplitude  = 1/∆nk0 when the modula-
tion depth of the sensing radiation is 100% for typical
values of the materials constants of the nematic liquid
crystal and typical cell parameters. Assuming α2 = –0.8 P,
α3 = –10–2 P, ∆n = 0.2, Ψ = π/4, K1 = 5.5 × 10–7 dyn,
K2 = 4 × 10–7 dyn, and k0 = 1.5 × 105 cm–1, for ω = 1.9 ×
103 s–1 we obtain values of R1 and R2 equal to 0.6 and
0.9 cm, respectively, at a layer thickness of 65 µm, and
1.4 and 3 cm for a layer thickness of 100 µm. The cal-
culation demonstrates that, at the oscillation amplitude

 within the region with the radius R1, the correction
connected with the spreading of the nematic liquid
crystal does not exceed 1% of the optical effect caused
by the periodic variation of the optical path under the
conditions of the quasi-linear conversion determined by
Eq. (4). It is essential that, at ξ0z < , the contribution
of spreading to the modulation is even less significant,

since the effect connected with it is proportional to 

ξ0z'

ξ0z'

ξ0z'

ξ0z
2

and the effect caused by the oscillation of the optical
path is connected with ξ0z by a linear dependence.

Two series of experiments were conducted using
nematic liquid crystals filling plane capillaries with dif-
ferent boundary conditions. The schemes of experi-
mental setups are given in Figs. 1a and 1b. We used
nematic liquid crystals of the H-8 type, i.e., an eutectic
mixture of MBBA (4-mexibenzylidene-4'-butylaniline)
and EBBA (4-ethoxybenzylidene-4'-butylaniline), in
which the nematic phase occurs within 12–54°C. To
form planar boundary conditions, the internal surfaces
of the plates forming the capillary were cleaned chem-
ically, and a coating of polyvinyl alcohol was applied to
them and then polished thoroughly in one direction.
The layer thickness in the experiments varied within
50–100 µm. Observation of the orientation state of the
nematic liquid crystal in the capillary was conducted by
the polarization-optical method using the known
schemes [1, 11].

In the first series of experiments, a nematic liquid
crystal filled a capillary formed by (1) a thick plate
(glass) and (2) a massive substrate (titanium) with a
light-reflecting surface (the scheme in Fig. 1a). Here
the plate is motionless and the substrate, being rigidly
connected with an electrodynamic driver fed by a gen-
erator, performs piston-type vibrations along the nor-
mal to the layer plane. The amplitude of these substrate
oscillations is detected by a contact accelerometer. The
voltage supplied from the generator to the driver and its
frequency are monitored with the help of a voltmeter
and a frequency meter. The optical part of the setup
consists of (3) a light source (a polarization illuminator
or an LG-59 laser), polarizing filters (polarizer P and
analyzer A), and a photomultiplier connected with a dc
voltmeter and a spectrum analyzer.

In the second series of experiments, a capillary with
closed ends and filled with a nematic liquid crystal had
ACOUSTICAL PHYSICS      Vol. 50      No. 4      2004
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an axial symmetry (R = 1.2 cm). It was formed by (1) a
thick plate (glass) and (2') a thin membrane (phosphor
bronze) with a light-reflecting surface (the scheme in
Fig. 2b). This cell was connected through the mem-
brane with a small-volume chamber, where an acoustic
radiator and a receiver of sound pressure were located.
As in the first series of the experiments, the information
readout was performed in polarized light and in the
reflection mode, but the optical part of the setup was
designed using different devices, i.e., a light-emitting
diode as a light source and a photodiode with a photo-
current amplifier as a light sensor.

In both series of the experiments, the optical
response of the planar nematic layer to periodic com-
pressional deformation was measured within the fre-
quency range of 0.1–1.5 kHz by detecting the constant
and variable components of the luminous flux transmit-
ted through the polarizer P–nematic layer–analyzer A
system, and the readout was conducted only within the
region determined by the condition r < R1, R2, where the
contribution of the effect caused by the oscillation of
the optical path to the modulation was dominant.

Let us discuss the results of these measurements.
Figure 2a shows a typical family of curves 1–6 obtained
in the first series of experiments. These curves illustrate
the change in the intensity I of the spectral components
of an optical signal with the frequencies f, 2f, 3f, 4f, 5f,
and 6f in the course of an increase in the oscillation
amplitude when the thickness of the nematic layer is
inconsistent with both conditions (4) and (5). One can
see that the content and weight of spectral components
depend on the oscillation amplitude: at small oscilla-
tion amplitudes, the harmonic with the frequency of the
acoustic signal is dominant, but as the amplitude grows,
harmonics with higher numbers arise and their overlap-
ping occurs. Note that uneven harmonics prevail over
even ones. It is essential that the amplitude depen-
dences of all harmonics have a periodic and attenuating
character, the first maximum of each subsequent har-
monic coinciding with the first minimum of the preced-
ing one; i.e., an increase in the level of acoustic excita-
tion leads to a pump-over of energy from one harmonic
to another. Figure 2b presents an example of oscillo-
grams of an acoustic driving signal and an optical
response. Variation of the oscillation frequency at a
constant layer thickness leads only to a change in the

oscillation amplitude  corresponding to the posi-
tion of the first maximum of the harmonics (Fig. 2c).

From the experimental data given in Fig. 2a, one can
see that, in the most general case of an arbitrary initial
layer thickness d0, the connection of the spectral com-
ponents of an optical signal with the oscillation ampli-
tude is nonlinear and has a periodic attenuating charac-
ter, both even and uneven harmonics being present in
the spectrum, which agrees with the estimates given
above.

It is of interest to verify experimentally the implica-
tions that complement the generalized expression (3).

ξ0
max
ACOUSTICAL PHYSICS      Vol. 50      No. 4      2004
According to Eqs. (4) and (5), at a certain initial layer
thickness d0, such limiting cases are realized in which
not only the spectrum of an optical signal changes but
also its relation to the acoustic signal. This confirms the
experimental data obtained with samples of a nematic
liquid crystal with a thickness d0 of 65 and 100 µm,
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Fig. 3. Optical response of a planar layer of a nematic liquid
crystal to a periodic compressional deformation in a capil-
lary with different boundary conditions at r < 0.5 cm.
(a) Dependence of the variable components of the spectrum
of an optical signal with the frequencies f (a layer thickness
of 100 µm, the quasi-linear conversion mode) and 2f (a
layer thickness of 65 µm, the nonlinear conversion mode)
on the oscillation amplitude (notations 1 and 2, respec-
tively) for a capillary with open ends; the normalization is
performed with respect to the maxima of the first and sec-

ond harmonics  = 2.8 V and  = 2 V and the cor-

responding oscillation amplitudes  = 0.1 µm and

 = 0.13 µm; the frequency is 300 Hz. (b) Relation of

the variable components of an optical signal, m1 and m2, to
the sound pressure amplitude for a capillary with closed
ends and a nematic layer thickness of 100 and 65 µm (nota-
tions 1 and 2, respectively); the frequency is 430 Hz.
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which satisfies conditions (4) and (5), respectively
(Fig. 3a). The optical signal readout was performed
when the condition r < R1, R2 was satisfied. It is impor-
tant to note that, in the case of a layer thickness of
100 µm, when Eq. (5) is valid, even and uneven har-
monics are present in the spectrum and the harmonic
with the frequency f prevails, its relation to the oscilla-
tion amplitude being linear (notation 1 in Fig 3a). A
transition to a layer thickness of 65 µm satisfying con-
dition (4) manifests itself in the change of the optical
signal spectrum (it contains only even harmonics and
the harmonic with the frequency 2f predominates) and
leads to a quadratic amplitude dependence of the sec-
ond harmonic m2 (notation 2 in Fig. 3a). To make the
representation and comparison of data more conve-
nient, the values of m1, m2, and ξ0z are normalized to the

values of , , and  corresponding to the
first maxima of the oscillating functions m1(ξ0z) and
m2(ξ0z). Thus, according to theoretical estimates, we
observed two types of relation between the acoustic and
optical signals: linear and quadratic.

Let us consider the results of the second series of
experiments. A layer of a nematic liquid crystal in a
capillary with closed ends is positioned in a sound field
(the scheme in Fig. 1b). In the general case of arbi-
trarily selected values of the initial layer thickness, the
optical response of the nematic liquid crystal to sound
pressure in a wave repeats the laws observed in a simi-
lar situation for a capillary with open ends in the case
of vibration of its lower supporting plate. The laws
characteristic of the limiting cases examined above,
which are determined by the selection of the initial
thickness of the nematic layer, are also repeated. For
example, in the case of validity of condition (4) (d0 ≅
65 µm), the signal spectrum contains only even har-
monics, and the harmonic with the frequency 2f related
to the amplitude of sound pressure by a quadratic
dependence predominates (notation 2 in Fig. 3b). In the
case of the layer thickness of 100 µm satisfying condi-
tion (5), the signal spectrum (both even and uneven har-
monics are present in it, the latter clearly prevailing)
and the character of its connection with the amplitude
of sound pressure change. As measurements showed,
the harmonic with a frequency f demonstrates a linear
dependence on the sound pressure amplitude (notation 1
in Fig. 3b).

The above consideration shows that, independent of
the type of boundary conditions at the ends of the cap-
illary filled with a nematic liquid and independent of
the form of the external acoustic action (particle dis-
placement or sound pressure), the modulated optical
signal has a discrete spectrum containing a series of
harmonics whose relative weight depends on the oscil-
lation amplitude. It is also found that, in the case of sig-
nal readout within a limited region with the radius r <
R1, R2, it is possible to implement different modes of
acoustooptic conversion determined by the oscillations

m1
max m2

max ξ0z
max
of the optical path under periodic compression of the
nematic layer in the direction of the z axis (i.e., nor-
mally to the layer plane) at the frequencies satisfying
condition (1), at a planar orientation of molecules of the
nematic liquid crystal in the layer plane. The conver-
sion mode depends on the choice of the initial thickness
of the nematic layer, which determines the initial value
of the optical phase difference ∆Φ and, hence, presets
the position of the working point on the conversion
characteristic I/I0(∆Φ) (Fig. 1d). The interesting situation
for practice is the one where, according to condition (4),
at the layer thickness d0i = π(0.5 + i)/∆nk0) correspond-
ing to the optical phase difference ∆Φi = 0.5π + iπ, a
quasi-linear mode of conversion is implemented. In this
case, the conversion coefficient at ξz(t) is determined
only by the values of birefringence of the nematic liq-
uid crystal and the wavelength of sensing radiation.
This mechanism indicates a unique opportunity to
design a new type of receiving linear element on the
basis of nematic liquid crystals, which are free of
restrictions connected with the conversion mechanism
for the upper limiting frequency of the periodic com-
pressional deformation inducing the optical effect.
Such a restriction can be introduced only by a violation
of the condition f ! c/2πL corresponding to the
assumption that, in the process of compression of the
layer, the nematic liquid crystal behaves as an incom-
pressible liquid. However the influence of this factor
can be eliminated if, in modeling a receiver, we provide
soft boundary conditions at the edges of the layer of a
nematic liquid crystal so that, in the case of its compres-
sion, the spreading of the nematic liquid would occur
instead of its uniform compression. It is evident that
such conditions are realized in a capillary with open
ends. In this connection, the functional scheme given in
Fig. 1a is preferable for modeling. Moreover, it pro-
vides an opportunity to obtain a higher sensitivity. Let
us make some estimates using a characteristic common
for modeling acoustic devices employing nematic liq-
uid crystals [2], namely, using the amplitude of particle
displacement , at which the modulation depth of
sensing radiation under the conditions of quasi-linear
conversion is 1%. The value of  = 0.005 µm follows
from the experimental data obtained for a capillary with
open ends at the layer thickness satisfying Eq. (4),
when a quasi-linear conversion mode is implemented
near the points Ai on the curve of the conversion char-
acteristic. This is almost one order of magnitude lower
than the value of the same parameter for the most
advanced model of a sound receiver employing a nem-
atic liquid crystal, which operates using the effect of
polarization modulation of light due to a periodic shear-
ing deformation with a homeotropic orientation of mol-
ecules in the nematic layer [2]. As for a receiving ele-
ment with closed ends that is designed according to the
scheme given in Fig. 1b, its sensitivity is l/ξ0 times
lower than that of an element with open ends. This is

ξ0*

ξ0*
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connected with the fact that, in a receiving element with
closed ends, the optical effect depends not only on the
oscillation amplitude ξ0 but also on the deflection l of
the membrane 2' under the action of the alternating
sound pressure P(t) in a wave. According to [15], the
maximal displacement of a membrane of radius R at its
center is connected with the oscillation amplitude ξ0 in a
wave by the following expression: l = 3dωξ0/c(1 +

36dA/ρc2R4). In the case of the value of  = 0.005 µm,
which is the “threshold” for the observation of the opti-
cal effect, the membrane deflection is only 2.4 × 10–6

µm. This estimate is obtained for a nematic layer with
a thickness of 100 µm and a frequency of 430 Hz for a
membrane with the parameters given in the caption of
Fig. 1c.

It is necessary to note that the restrictions connected
with the self-noise of a nematic liquid crystal and the
noise of sensing radiation affect the threshold value of

 in real conditions. The noise of a nematic liquid
crystal that is caused by surface and volume fluctua-
tions of orientation in the sound frequency range does
not exceed 10–10I0. As for the noise of the laser source
that is caused by the quantum nature of light, according
to our data, the noise level for a typical laser like LG-79
is 10–2I0. Therefore, in modeling a sound receiver, it is
necessary to make arrangements for a correct selection
of optical parts and the utilization of optimal readout
schemes. For example, it is possible to employ the
scheme of differential connection of photodiodes,
which provides an opportunity to reduce the noise level
down to a value of 10–4I0 [5].

Expression (3) allows one to conclude that the con-
version mode preset by the position of the working
point on the conversion characteristic depends not only
on the optical anisotropy, the wavelength of sensing
radiation, and the conversion index i but also on the
nematic layer thickness. Therefore, providing for a pre-
cise control of the layer thickness in the design of a
receiving element, which gives an opportunity to preset
the values of the phase difference ∆Φi in the course of
the device operation, it is possible not only to control
the conversion modes but also to provide adaptation to
changes in the operation conditions, which may be con-
nected, for example, with a temperature variation.
Although nematic liquid crystals with a very large opti-
cal anisotropy (∆n = 0.17–0.22) and a weak tempera-
ture dependence of ∆n have been already synthesized,
the implementation of this opportunity is of certain
interest. It is also necessary to stress that the flexibility
of controlling the device parameters can be useful for
solving the problems related to various nonlinear oper-
ations with received acoustic signals (frequency multi-
plication, squaring, etc.). It is essential that these oper-
ations can be conducted simultaneously and indepen-
dently, together with a simultaneous reception of

ξ0*

ξ0*
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signals in the linear mode by a single receiving ele-
ment.

In conclusion, one more advantage of a sound
receiver employing a nematic liquid crystal with a pla-
nar orientation of molecules should be mentioned. The
receiver performs a conversion of a periodic compres-
sional deformation of a nematic layer into oscillations
of the optical path and a modulation of sensing radia-
tion by a direct transformation of the external acoustic
action into the oscillatiory motion of the supporting
plate of the capillary without employing any intermedi-
ate mechanical links (coupling rods, transitional elastic
layers, levers, etc.), which are necessary for conven-
tional sound receivers based on nematic liquid crystals.
This provides an opportunity to simplify the design of
a receiving element and develop a model that is techno-
logically advanced in comparison with the known mod-
els and compatible with modern optical devices.
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Abstract—Sound scattering by a fairly sparse school of bladder fish is studied in a free medium, near an
interface, and in a waveguide. The air bladder of a fish is approximated by a prolate spheroid with an axial
ratio of 1:10. Characteristics of the back reflection of sound by a school of fish are calculated for various
angles of irradiation, variable number of fish in the school, and various velocities of fish with respect to each
other. © 2004 MAIK “Nauka/Interperiodica”.
It is well known [1, 2] that the scattering of acoustic
signals by a bladder fish is mainly determined by the
reflecting characteristics of its air bladder. The air blad-
der is often approximated by a perfectly soft prolate
spheroid [2] with a corresponding size and axial ratio.
As calculations show, the soft tissues surrounding the
bladder can affect the reflected signal only at rather
high frequencies [1, 3].

This paper studies sound scattering by a physical
model of a fairly sparse fish school; i.e., it considers
several (rather than one) scatterers located close to each
other and to a boundary between two media. According
to [7], the total reflected signal is formed not by the
interaction of scatterers but by the interference of sig-
nals reflected by individual scatterers if the distance
between the scatterers is three or more times greater
than the size of the largest scatterer. This criterion was
accepted in the calculations. In addition, the school of
fish was assumed to be located near one of the bound-
aries: water–air or water–bottom. For simplicity, the
boundaries were assumed to be plane and ideal, the air
was replaced by vacuum, and the bottom was assumed
to be perfectly rigid. This model allows one to perform
the calculations using imaginary scatterers and imagi-
nary sources [7].

The scattering characteristics of individual fish,
which were approximated by soft prolate spheroids,
were computed using the series expansions in angular
and radial spheroidal functions [4–6]. The use of imag-
inary sources and scatterers makes it possible to elimi-
nate the interface and consider a free medium, in which
real and imaginary sources and scatterers are located.

A source and a receiver form a combined system
located in the far-field zone (Fraunhofer zone) of a fish
school. Therefore, the directions from the centers of all
scatterers to the center of the combined source–receiver
system are parallel to each other.
1063-7710/04/5004- $26.00 © 20434
A school of six fish of different length is schemati-
cally represented in Figs. 1a and 1b. Figure 1a corre-
sponds to a side view, and Fig. 1b shows the top view.
Figure 1c displays the side view of a school of three
fish. As indicated above, the scatterers are represented
by prolate spheroids simulating the air bladders of the
fish.

It is easy to show that, as applied to three fish, the
total value of the angular characteristic ΨΣ(θ0, 0) in the
direction to the real source is given by the expression

where the plus sign refers to the Neumann condition (a
perfectly rigid bottom) and the minus sign refers to the
Dirichlet condition (a perfectly soft surface); the func-
tions Ψ1(θ0, 0), Ψ2(θ0, 0), and Ψ3(θ0, 0) are the angular
characteristics of real scatterers, and the functions
Φ1(θ0; π), Φ2(θ0; π), and Φ3(θ0; π) are the correspond-
ing angular characteristics of imaginary scatterers. The
angles α and β are measured with respect to the inter-
face and characterize the angular positions of the cen-
ters of the second and third scatterers; the angles θ0 and
ϕ0 represent polar and azimuthal spherical angles (with
a polar X axis) of the combined system located at a dis-
tance R in the Fraunhofer zone with respect to the
school. The angles θ0 and ϕ0 remain constant and do not

Ψ θ0; 0( )Σ Ψ1 θ0; 0( ) 2ikl1 θ0sin–[ ]exp=

+ Ψ2 θ0; 0( ) 2ikl2 α θ0–( )cos–[ ]exp

+ Ψ3 θ0; 0( ) 2ikl3 β θ0–( )cos–[ ]exp

+ Ψ1 θ0; 0( ) 2ikl1 θ0sin[ ]exp

+ Ψ2 θ0; 0( ) 2ikl2 α θ0+( )cos–[ ]exp

+ Ψ3 θ0; 0( ) 2ikl3 β θ0+( )cos–[ ]exp 2Φ1 θ0 π,( )±
± 2Φ2 θ0 π,( ) 2ikl2 α θ0coscos–[ ]exp

± 2Φ3 θ0 π,( ) 2ikl3 β θ0coscos–[ ]exp ,
004 MAIK “Nauka/Interperiodica”
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depend on Z (even when fish move relative to each
other in the school) for the following reasons:

(i) the distance R in real situations is three to four
orders of magnitude greater than the size of the school
and, hence, than the displacements of fish in the school,
which are used in the calculations;

(ii) the rotation axes of spheroids are always parallel
to the X axis.

In the analytical solution, R is assumed to be equal
to ∞; as a result, a plane wave is incident on the school.

The distance Z is measured from the interface for
both real and imaginary scatterers. The signal reflected
from the school, with fish moving within it, depends on
the variations in distances between individual fish
(because of their motion with different velocities) and
on the changes in the distances between real and imag-
inary scatterers.

Figure 2 shows the values of the modulus |ΨΣ(θ0; 0)|
of back reflection for the angle θ0 = 30° (as a function
of Z) for six (curve 1) and three (curve 2) fish moving
away with the same velocity from the boundary
between water and a perfectly rigid bottom, where Z is
the distance in meters along the normal to the boundary.

In the school of three species, the fish have wave
sizes C = 100, 65, and 15; in the school of six fish, one
fish has a wave size C = 100 (the largest one), two fish
have a size C = 65, and three fish have a size C = 15.
Straight lines 3 and 4 refer to the schools of six and
three fish, respectively, in a free medium. Figure 3
shows the moduli of the back reflection |ΨΣ(θ0; 0)| for a
school of three fish, one of which does not move (C =
100) and two others (C = 65 and C = 15) move along
the Z axis (the water–vacuum boundary) with different
velocities (curve 1). Curve 2 refers to the same type of
motion of the fish, but in a free medium.

Since the air bladder is three to four times smaller
than the size of the fish, for the largest air bladder,
whose length is 0.8 m (C = 100), the minimal distance
between the individual fish increased with time.

Unlike the previous study [8], where only vertical
movement of fish relative to each other was analyzed,
here we consider the general case, when both horizon-
tal and vertical relative motion of fish in the school
takes place. As applied to two fish, the geometry of the
problem is displayed in Fig. 4.

The notation used in Fig. 4 is as follows: α and α'
are the initial and running values of the angle for the
center of the second fish relative to the boundary; l10
and l1, l20 and l2 are the initial and running values of the
distances from the origin O to the centers of the first and
second fish, respectively; ∆l2x and ∆l2z are the running
displacements of the second fish along the X and Z axes
with respect to its initial position; and ∆l is the running
vertical displacement of the first fish. The angles α and
β are connected with the z coordinate by the relations
z2 = l20sinα and z3 = l30sinβ, where l30 is the initial dis-
tance from the center of the third fish to the origin O.
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Fig. 1. Schematic representation of a school of fish.
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Fig. 2. Modulus of the back reflection |ΨΣ(θ0; 0)| for
schools of (1) six and (2) three fish (θ0 = 30°) for vertical
movement of fish.
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The moduli of the back reflection |ΨΣ(θ0; 0)| for
this kind of fish movement in a school of six fish
located near a perfectly rigid (curve 1) or perfectly
soft (curve 2) medium are shown in Fig. 5 (θ0 = 30°)
and Fig. 6 (θ0 = 60°).

An analysis of the calculations shows that

(i) for a vertical displacement along the Z axis (with-
out horizontal displacement along the X axis), the mod-
ulus of the back reflection |ΨΣ(θ0; 0)| varies periodically
for equal and different velocities of individual fish
movements in the school;

(ii) for a simultaneous motion in the vertical (along
the Z axis) and horizontal (along the X axis) directions,
the periodic character of variation of |ΨΣ(θ0; 0)| disap-
pears;

|ΨΣ(θ0, 0)|
θ0 = 60°

Z, m

1

2

0.050

0.038

0.025

0.013

0

Fig. 3. Modulus of the back reflection |ΨΣ(θ0; 0)| for a
school of three fish (θ0 = 60°) moving along the Z axis with
different velocities.
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Fig. 5. Modulus of the back reflection |ΨΣ(θ0; 0)| (θ0 = 30°)
for a school of six fish moving along the X and Z axes near
(1) a perfectly rigid or (2) a perfectly soft boundaries.
(iii) the value of |ΨΣ(θ0; 0)| is almost independent of
the type of the ideal interface (perfectly soft or perfectly
rigid);

(iv) a fish school located near a boundary between
liquid and an ideal medium gives a greater reflected sig-
nal (averaged over Z) in the direction to the source, as
compared to a free medium, because of the multiple
reflection of sound by the boundary; in actual condi-
tions, this excess should vanish, because the real
boundary is not even and smooth and the lower bound-
ary (the bottom) is far from being perfectly rigid;

(v) the oblique angles of irradiation (θ0 = 30° and
θ0 = 60°), which were used in the calculations, are of
the greatest practical interest, because, in the case of the
normal incidence on the boundary (θ0 = 90°), the reflec-
tion of sound by a school is masked by a strong signal
reflected from the boundary, and the selection of the
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Fig. 4. Schematic representation of the displacement of two
fish with respect to the boundary, along the X and Z axes.
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Fig. 6. Modulus of the back reflection |ΨΣ(θ0; 0)| (θ0 = 60°)
for a school of six fish moving along the X and Z axes near
(1) a perfectly rigid or (2) a perfectly soft boundaries.
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desired signal (from the school) on the background of
the boundary is not always possible even by using
pulsed signals modulated in amplitude or frequency.

If the influence of tissues and bones of fish on the
reflected signal is taken into account, the physical
model of each individual fish becomes more complex.
However, the problem is quite solvable in this case as
well [3, 9, 10].
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Abstract—Statistical characteristics of an acoustic field that are based on the data of simultaneous measure-
ments of pressure and acoustic velocity vector are investigated. Conditions of the formation of vector–phase
characteristics of acoustic field are formulated in relation to the dispersion properties of the medium. Cross-
correlation functions of the components of the vector field are presented. Expressions for the characteristic
functionals of vector–phase relationships in acoustic fields and, in particular, for the acoustic energy flux are
derived with the use of functional methods. Algorithms of space–time processing of the energy flux vector and
the optimum measurement algorithm for a Gaussian vector–phase field are considered. The signal-to-noise ratio
is determined as the quality index of vector reception algorithms, and its relation to the corresponding parameter
of scalar pressure field measurements is revealed. Indices of relative efficiency of vector algorithms are deter-
mined depending on the dispersion characteristics of the medium (the flux algorithm) and the dimension of the
input vector of observations (the optimum algorithm). © 2004 MAIK “Nauka/Interperiodica”.
The investigation of statistical properties of vector–
phase (V–Ph) characteristics of acoustic fields has
attracted considerable interest in recent decades from
both scientific and applied points of view, with reference
to the development of both systems for studying acoustic
waveguides and algorithms for measuring V–Ph fields.
Here, the term V–Ph field means the four-component
field that combines the acoustic pressure field (scalar)
and the particle velocity field (vector).

The purpose of this paper is to study the probability
structure of the V–Ph characteristics of an acoustic field
and to analyze some algorithms of their measurement
and space-time processing, which can be considered as
an extension of paper [1] discussed in review [2].

As is known, the equations of acoustics of continu-
ous media in the adiabatic approximation describe the
pressure field P( , t) and the particle velocity field

( , t) related through the Euler equation

(1)

These two fields together completely describe an
acoustic medium and are related, in addition to Eq. (1),
by the equations of continuity and state:

(2)

x

V x

ρ0
∂
∂t
-----V x t,( ) ∇ xP x t,( );–=

V x t,( ) ρ0
1– ∇ xP x τ,( ) τ , V x1 ∞–( )d

∞–

t

∫– 0.= =

∂
∂t
-----ρ x t,( ) ρ0divV x t,( )+ 0;=

p x t,( ) c2ρ x t,( ).=
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Here, as usual, the density is ρ0 = const (for a homo-
geneous and nonstratified medium), c is the sound
velocity, and ρ( , t) is the variable acoustic field of
density.

Equations (1) and (2) are known to allow the intro-
duction of potential Ψ( , t)

, (3)

which is a field characteristic that cannot be measured
directly. Wave equations for P, , and Ψ follow from
Eqs. (1) and (2). In the context of the algorithmic pro-
cedures suggested below, we can consider the measur-
able random fields P and  related through Eq. (1) as

the coordinates of the full vector  of the acoustic state
of the medium in the four-dimensional phase space (p;
V1; V2; V3). The linear independence of the components

of vector (A1…AL) ≡ A(p; V1; V2; V3)1 imposes certain
physical conditions on the acoustic characteristics of
the medium in which sound propagates. To ensure
matching with Eq. (1), the condition has the form

(4)

where DetUkl is the Gramian and Ukl = (Ak, Al) ≡
( , t)Al( , t)d dt is the matrix of scalar products

of the acoustic vector  in the phase space .
With this condition, the system of equations of linear
acoustics (1), (2) defines the space–time evolution of
the four-component vector .

x

x

p x t,( ) ρ0
∂
∂t
-----Ψ x t,( ); V x t,( ) ∇ xΨ x t,( )–= =

V

V

A

A

DetUkl 0; k l,≠ 1…L,=

Ak∫ x x x

A p ν,( )

A p ν,( )
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For the case  ≡ (p, ν1), we have in particular
(ν1 ≡ ν):

(4a)

where (·, ·) ≡  is the scalar product.

We have the relationships

, (5)

where V and T are the average potential and kinetic
energies in volume V0 × T0:

(5a)

The sum E = T + V makes the total energy; V = T = 

for oscillatory motion. Correspondingly, (P, P) = ρ0c2E

and  = . Similarly, we have

(5b)

where  = Ugr , ε is the average energy of a unit
volume, and Ugr is the group velocity. Correspondingly,
we have

(5c)

From Eqs. (4) and (5), we obtain

(6)

When c2 ≠ , i.e., in systems with dispersion of any

origin, DetA ≠ 0, so that components P and  appear
linearly dependent only for c = Ugr , i.e., in systems
without dispersion (for example, in an unbounded
medium).

In particular, for plane traveling waves p =

F , where k0 is the unit propagation vector

normal to the wave front, we obtain the relationship

(7)

Hence, the field of a plane traveling wave is completely
determined by the pressure field p and direct measure-
ments of the particle velocity field are unnecessary.

However, for V–Ph characteristics of acoustic fields
of the general-type (for which Eq. (7) is unsatisfiable),

A A

Det p p,( ); p ν,( )
ν p,( ); ν ν,( )

,

… x tdd∫

p p,( ) 2ρ0c2V ; ν ν,( ) 2ρ0
1– T= =

V
1

2ρ0c2
------------- p2 x t,( ) x t;dd

V0 T0×
∫=

T
ρp

2
----- ν2 x t,( ) x t.dd

V0 T0×
∫=

1
2
---E

ν ν,( ) ρ0
1– E

P ν,( ) p x t,( )ν x t,( ) x tdd

V0 T0×
∫ S x( ) x,d

V0

∫= =

S x( ) ε x( )

p ν,( ) UgrE.=

DetA p p,( ) ν ν,( ) p ν,( ) ν p,( )–≡  = c2 Ugr
2–( )E2.

Ugr
2

ν

t
1
c
---k0x– 

 

n x t,( ) k0

ρ0c
-------- p x t,( ).=
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a direct measurement of fields p and  becomes neces-
sary to obtain a complete description. This statement is
physically obvious because it is known that the solution
to the wave equation in a bounded domain depends, in
addition to external sources, on pressure fields (mono-
pole fields) and normal components of particle velocity
(dipole fields) everywhere on the bounding surface. In
these conditions, measurement of vector (p, ) forms
the necessary base for a complete description of the
V−Ph characteristics of an acoustic field in a bounded
domain. An additional physically obvious point is that
the passage to the description in terms of vector (p, )
is expedient for neighborhoods of radiation sources, in
the Fresnel diffraction region, where Eq. (7) also
becomes invalid. Measurement of general-type acous-
tic fields with the use of the vector description offers
physical possibilities for selecting the plane-wave con-
tributions and a direct observation of the group velocity
Ugr immediately from the measured parameters ε and δ
(see Eq. (5)); i.e., possibilities for observing the disper-
sion structure of the propagation channel. In the appli-
cation context, it is clear that the change to the vector
description must be justified by its practical suitability
for designing decision algorithms.

Now, we proceed to the matter of this paper.
Averaging Eq. (1) over an ensemble of realizations,

we obtain for the first statistical moments ap = MP and

 = 

(8)

where M stands for the ensemble expectation. Central-
ity of field p (ap = 0) causes centrality of field  (  = 0)
and centrality of all statistical moments of the vector
field p, .

For the second statistical moments (correlation
functions), we have the relationships

(9)

ν

ν

ν

aν MV

ap x t,( ) Mp x t,( );=

aν x t,( ) ρ0
1– ∇ xap x τ,( ) τ ,d

∞–

t

∫–=

ν aν

ν

Bpν x t/y τ, ,( ) ρ0
1– ∇ yBpp x t/y ε,,( ) ε,d

∞–

τ

∫–=

Bpp x t/y τ, ,( ) Mp x t,( )p y τ,( ),=

Bνiν j
x t/y τ,,( ) ρ0

2– ∂2

∂xi∂y j

---------------Bpp x σ/y ε, ,( ) σ ε,dd

∞–

τ

∫
t

∫=

Bνiν j
x t/y τ, ,( ) Mν i x t,( )ν j y τ,( ),=

Bνi ν j, x t/y τ, ,( )

=  ρ0
1– ∂

∂xi

-------Bpν j
x σ/y τ, ,( ) σ; i j,d

∞–

t

∫– 1 2 3., ,=
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The differential form of relationships (9) appeared for
the first time in the well known paper by Eckart [4] (see
also [1–3]).

For statistically stationary fields of pressure, i.e., for
Bpp( , t/ , τ) ≡ Bpp( , , τ – t), two relationships fol-
low from Eqs. (9):

(10)

which means that the steady-state property is extended
to mutual statistical moments.

The moment functions form a sufficient base for
describing the Gaussian fields p, . In the general
case, for example, in describing the energy flux fields

( , t) = p( , t) ( , t), these relationships are insuf-
ficient even if p and  are of Gaussian type. This case
requires analyzing the whole of the probability struc-
ture with the use of probability density functionals
(PDF) or characteristic functionals (CF) of the four-
dimensional fields (p, ). In this approach (see [4, 5]),
the CF is the continual Fourier transform of the PDF.
According to the procedure used in [6, 7], we introduce
the simultaneous PDF  of fields p and ,

where µ and  are the respective field realizations. For
, we have the representation

(11)

where {·/·} is the conditional probability density

functional of field  for a given field p and Wp{·} is the
unconditional PDF of field p. Proceeding from Eq. (1),
we obtain

(12)

where D{·} is the delta-functional (a continual analog
for the multidimensional delta-function) with the prop-
erties [8]

(12a)

x y x y

Bpν x y τ t–, ,( ) ρ0
1– ∇ yBpp x y σ, ,( ) σd
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τ t–

∫–=

=  Bνp x y t τ–, ,( ),

Bνi ν j, x y τ t–, ,( ) ρ0
2– ν ∂2

∂xi∂y j

---------------Bpp x y σ, ,( ) σ,d

∞–

ν

∫d

∞–

τ t–

∫=

n

S x x n x
n

n

W p n, µ n,{ } n
n

W p n,

W p n, µ n,{ } Wn/ p ν/µ{ } W p µ{ } ,=

Wn/ p

n

Wn/ p n/µ{ } D n ρ0
1– ∇µ τd

∞–

t

∫+
 
 
 

,=

D r{ } Γ ρ( )d

Dr

∫ 1;=

D r r–{ } G r{ } Γ ρ( )d

D
r

∫ G r{ } .=
In Eqs. (12a), the continual integrations are carried out
over functional space  with functional volume mea-

sure dΓ(ρ), and G  is an arbitrary functional.

From Eqs. (11) and (12) it follows that

(13)

Relationship (13) holds for arbitrary statistical proper-
ties of field p. 

In particular, the simultaneous CF  of fields p

and  follows from Eq. (13) as the Fourier transform:

 (14)

where θp is the CF of the field of pressure, α = α( , t),

and  = ( , t).

Formulas (13) and (14) give a complete probability
description of vector field (p, ). Any moment func-
tion is obtained from Eq. (14) by variational differen-
tiation with respect to functional arguments. We illus-
trate this general scheme using the determination of
the CF of the random field of acoustic power flux S =
p  as an example.

Using Eq. (1), we obtain

(15)

Introducing a singular kernel

(15a)

we represent Eq. (15) as the quadratic form

(16)

where kernel  =  is symmetric and super-

script “+” means Hermitian conjugation. In the opera-
tor form, Eq. (16) has the form

(17)

Dr

r{ }

W p n, µ n,{ } D n ρ0
1– ∇ xµ τd

∞–

t
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θp n,

n
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1– divxb τd
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x

b b x
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n

S x t,( ) ρ0
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S x t,( )
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∫
Vr

∫

KS
ˆ 1

2
--- K̂ K̂

+
+[ ]

S K̂S p p,( ).=
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Performing the calculations according to Eqs. (11)–(13),
we obtain

(18)

Passing to the CF in Eq. (18), we obtain (x is a vector
function)

(19)

where  and θp are the CF of fields  and p, respec-
tively.

Functional T  has the form

(19a)

The integral appearing in Eq. (19) is a continual inte-
gral; in the case of functional θp with a Gaussian struc-
ture, it allows an explicit calculation. After some calcu-
lation (see [6, 7]), we obtain

(20)

where  =  is again a symmetric kernel; the
scalar product is determined, according to Eq. (15a), in
the –t space; DF is the Fredholm determinant of ker-

nel  + 2i ; and  is the unit kernel.
For the Gaussian structure of centered field p,

i.e., for

(21)

(  is the correlation kernel), we calculate continual
integral (20) to finally obtain

(22)

The moment functions of the field of flux  are
obtained from Eq. (22) with the use of a routine proce-
dure of variational differentiation [7]. For the two first
moments of the field S, we obtain

(23)

WS s{ } D s K̂Sε ε,( )–{ } W p ε{ } Γ ε( ).d

Dε
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θs x{ } θ p η{ } T x η,{ } Γ η( ),d
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1
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Dε

∫
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Î K̂0 Î0
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--- B̂ppη η,( )–exp=

B̂pp
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1/2– 2i x K̂S,( )B̂pp{ } .=
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MSl x t,( ) Mp x t,( )ν l x t,( ) Bpνl
x t/x t, ,( )≡=

=  ρ0
1– ∂

∂xl

-------Bpp x t/x τ, ,( ) τ ,d
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t

∫–
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(24)

From Eqs. (23) and (24) we derive the covariance func-
tion of flux :

(25)

Combining Eqs. (25) and (9), we obtain a useful iden-
tity

(26)

Certainly, one can obtain expressions (23)–(26)
without variational differentiation, by directly averag-
ing the fourth moments of fields p and  under the
assumption of their Gaussian structure. However, for
higher moments, calculations become laborious even
for Gaussian fields. In the case of non-Gaussian fields
p, the use of Eq. (20) is preferable. It is clear that the
closed expression (22) for the CF of field  becomes
the base for designing the optimum algorithms of
space–time processing in measuring the energy fluxes S
of a V–Ph acoustic field.

Now we proceed to analyzing algorithms and their
quality indices (the signal-to-noise ratio) in the case of
the vector reception (measurements of fields p and )
in comparison with the conventional algorithm based
on measuring only the scalar field of pressure. We con-
sider two kinds of algorithms:

(i) the suboptimum algorithm for measuring energy
fluxes ( , t) = p( , t) ( , t) and

(ii) the optimum algorithm for measuring fields p
and  on the basis of studying the likelihood ratio and
analyzing the indicated signal-to-noise ratio.

In the first case, we limit our consideration to evalu-
ative calculations adapted to the physical features of
flux propagation in an acoustic medium with consider-
able spatial dispersion.

In the second case, we perform a more comprehen-
sive analysis based on the Gaussian statistical proper-
ties of measured V–Ph fields p and .

MSl x t,( )Sσ x' t',( ) BSlSσ
x t/x' t', ,( )=

=  Bpp x t/x' t', ,( )Bνlνσ
x t/x' t', ,( )
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For measuring the lth component of energy (power)
flux, the simplest (suboptimum) procedure is the
weightless processing:

(27)

Integration in Eq. (27) is carried out either in space–
time domain (x, t) or in wave vector–frequency domain
( , ω). The sign ~ denotes the four-dimensional Fou-
rier spectrum. Using the Euler equation (1) in the spec-
tral representation we obtain

(28)

where

Since estimate Zl is a random quantity (process, field),
its mean value and variance in the model of a stationary
and homogeneous random field can be determined
from Eq. (28):

(29)

(29a)

where

To obtain evaluative results of interest, we determine
the lower edge of variance  from the Cauchy–
Schwarz inequality:

(30)

If we assume that the final goal of algorithm (27) con-
sists in selecting the plane-wave component of fields p
and  (signal S) against the background of noise field
N of a general type (i.e., noise caused by different phys-
ical mechanisms) and consider (p, )- and p-measure-
ments by rejecting the effects of signal processing in
time ~(∆Ft)1/2 in both cases, we obtain the following
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expression for the indicated (postdetection) signal-to-
noise ratio used as the quality index:

(31)

where we assumed that signal S travels along the hori-
zontal axis of a sea waveguide.

Combining Eqs. (30) and (31), we obtain an estima-
tor for the lower edge of relative efficiency of the algo-
rithms of two types:

(32)

From Eq. (32) together with Eqs. (30) and (28), we
obtain

(33)

where cph/N is the phase velocity of noise N. In the case

of an ideal waveguide, i.e., for UgrlN = c2, Eq. (33)
gives

(34)

where 〈UgrlN〉  is the effective group velocity averaged

over ( , ω) space.
Finally, we obtain the estimator

(35)

It is obvious that the strength of inequality (32) is deter-
mined by the dispersion structure of the laws governing
the propagation of noise fields. One can easily see that

the same estimator (35) for relative efficiency  can
be obtained independent of the mechanisms of noise
field generation and propagation by using relation-
ship (5) between the energy E of field (p, ) and the
energy flux.

In the presence of sea noise including noise gener-
ated by vibrating structures, noise of hydrodynamic
(pseudo-sound) origin, noise of gravity-capillary
waves, and dynamic noise of sea surface, we have Ugr =

 < c, we obtain

(36)
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It is clear that the feasibility of inequality (36) depends
on the dispersion structure of propagating noise fields.
This fact closely relates the problem of algorithmic use-
fulness of energy flux measurements to the physical
mechanisms of generation and propagation of sea
noise.

In conclusion we consider the optimum algorithm of
V–Ph processing of (p, ) fields, which follows from
analyzing the likelihood ratio for Gaussian signals S
and Gaussian noise N. We will carry out the analysis in
space–frequency domain.

In the case of V–Ph reception of Gaussian fields
Uk( , ω), where  ∈  X, ω ∈ Ω , and k = 1…L, the like-
lihood ratio has the form

(37)

where

(37a)

 and  are the cross-correlation spectra of signals

and noise,  = ,
and superscript * means complex conjugation.

One can easily see that, in the case of a signal S gen-
erated by a point source and propagating through a

determinate waveguide, the cross-spectrum  can be
factorized:

(38)

where Gk (k = 1…L) is a component of Green’s vector

function and  = FS  =  is
the power of the source of signal S that is located at a
point .

Using Eqs. (37) and (38), we obtain a factorized rep-

resentation for :
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and

(39a)

Representation for the likelihood ratio Λ follows from
Eqs. (37)–(39):

(40)

Structurally, this representation corresponds to space–
time processing in the form of weighting summator–
quadrator–averager. The corresponding signal-to-noise
ratio at the quadrator input has the form

(41)

Relationships (37)–(41) are known fairly well. We
specify these expressions using the vector field Uk in
the sourcewise (integral) representation

(42)

where Zk (k = 1…L) is some vector kernel. Using
Eq. (42) to represent signal and noise fields in the form

, (42a)

we reduce Eq. (41) to the equivalent form
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(39a)), using Eq. (43), and performing some transfor-
mations, we obtain

(44)

where

The integral term in Eq. (44) is obviously the signal-to-
noise ratio at the output of space–frequency processing
channel that is optimum in the sense of the likelihood
ratio structure when the field supplied to its input is a
Gaussian field W = WS + WN, where W is some scalar
field related to the V–Ph field Uk according to Eq. (42).
We can see from Eq. (44) that, in comparison with the
measurement of scalar W, the measurement of vector Uk
leads to an increase in the signal-to-noise ratio at a fre-
quency ω by a factor of L2, where L is the dimension of
the input vector of observations.

Now, we apply the general results obtained above to
the formulated acoustic problem of measuring the
V−Ph fields of signal and noise, p and ν.

In this case, it is sufficient to formally set [U0, U1,
U2, U3] ≡ [p, ν1, ν2, ν3], where p is the pressure field and

[ν1, ν2, ν3] is the particle velocity field. As above, all

components of vector  are additive mixtures of signal
and noise.

We take into consideration the relationship between
fields p and  related through the Euler equation (1):

(45)

Then, representing formally

(46)

and comparing Eqs. (46) and (42), we obtain an expres-
sion for the vector kernel:

(47)

In this connection, scalar field W introduced above (see
Eq. (42)) is represented as the sum of signal and noise
pressure fields given by Eq. (46): p = pS + pN. Corre-
spondingly, using formal substitutions    and

Q ω( )

=  L2 WS* r ω,( )RW
N r/r ω,( )WS r ω,( ) r r,dd

X

∫
X

∫

R̂W
N

B̂W
N[ ]

1–
; BW

N r/r ω,( ) MWN* r ω,( )WN r ω,( ).= =

U

n
U

n

νk r ω,( ) 1
jωρ0
------------ ∂

∂rk

------- p r ω,( ).=

pS N, r ω,( ) δ c r–( )pS N, r ω,( ) r,d∫=

νk
S N, r ω,( ) j

ωρ0
--------- ∂

∂ρk

--------δ r r–( )pS N, r ω,( ) rd∫=

Z1 r/r ω,( ) Z0 r/r ω,( ) Z1 r/r ω,( ) Z2 r/r ω,( ),,,[≡

Z3 r/r ω,( ) ] δ r r–( ) j
ωρ0
--------- ∂

∂ρ1
--------δ r r–( ),,≡

j
ωρ0
--------- ∂

∂ρ2
--------δ r r–( ) j

ωρ0
--------- ∂

∂ρ3
--------δ r r–( ), .

BW
N Bp

N

   in Eq. (44), we obtain the final expression
for the signal-to-noise ratio at a frequency ω at the
quadrator input (spatial processing) in the case of the
V–Ph measurement of field p, :

(48)

Taking into account the fact that the integral in Eq. (48)
coincides with the signal-to-noise ratio at the quadrator
input in the case of measuring only the scalar field of
pressure, we obtain a simple relationship

(49)

where L is, as earlier, the dimension of the input obser-
vation vector (p, ν1, ν2, ν3). In the context of Gaussian
fields, result (49) is obviously the potential (upper) esti-
mate of the signal-to-noise ratio for the optimum (in the
sense of the likelihood ratio) processing in the case of
the V–Ph reception of acoustic fields p,  related
through Eq. (1).

In the analysis of the signal-to-noise ratio defined by
the formula

(50)

where ES and EN are the power spectra of signal and
noise, the use of the above procedure gives the follow-
ing result:

(51)

which coincides with Eq. (49) while Qp(ω) weakly
depends on frequency.

The passage to the indicated signal-to-noise ratio at
the quadrator–averager output is performed using stan-
dard procedures. The result is

(52)

where ∆F is the input frequency band, T is the averag-
ing time, and parameter  is determined in Eqs. (49)
and (51).

Comparing the relative increments of the signal-to-
noise ratio for the algorithm of flux measurement (35)

RW
N Rp

N

n
Qp n, ω( )

=  L
2

pS* r ω,( )Rp
N r/r ω,( )pS r ω,( ) r r.dd

X

∫
X

∫

Qp n, ω( ) L2Qp ω( ),=

n

Q
ES

EN

------

ES ω( ) ωd

∞–

∞

∫

EN ω( ) ωd

∞–

∞

∫
----------------------------,= =

Qp n, L2

1 L2QP ω( )+[ ] 1–
QP

2 ω( ) ωd

∞–

∞

∫

1 L2QP ω( )+[ ] 1–
QP ω( ) ωd
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∞
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----------------------------------------------------------------------,=

Qp n,
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2 2
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2 2
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Qp ∆FT[ ] 1/2,≅=
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and likelihood-ratio algorithm of V–Ph measurement of
fields p,  (see Eq. (49)), we obtain

(53)

for Gaussian statistical characteristics of V–Ph fields.

Since result (35) refers to the suboptimum algo-
rithm (27) and result (49) refers to the optimum algo-
rithm (37), it is clear that certain prospects appear in
investigating algorithms of measuring energy fluxes on
the basis of analyzing non-Gaussian structures in the
likelihood ratio for the flux algorithm. Such an investi-
gation may start from the above expressions (see
Eq. (22)) for the CF of the energy flux as the field char-
acteristic of non-Gaussian structure even if the V–Ph
field formed by pressure field p and particle velocity 
is Gaussian.

n

c
UgrlN〈 〉

----------------- η p
p n, L2≤ ≤

ν
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Abstract—Results of an experimental study of the effects of amplitude-dependent internal friction (nonlinear
loss, resonance frequency shift, and sound-by-sound damping) in an acoustic bar resonator made of sandstone
are presented. The measurements were carried out for the first five longitudinal modes of the resonator. The ana-
lytical description of the observed effects is performed within the framework of the phenomenological equa-
tions of state that include hysteretic and dissipative components of nonlinearity. The parameters of the hyster-
etic and dissipative components of sandstone nonlinearity are obtained from a comparison of the experimental
data with analytical dependences describing the nonlinear effects. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Results of experimental studies of nonlinear acous-
tic effects in microinhomogeneous media (polycrys-
talline metals [1–5] and rocks [6–10]) testify to the
fact that such media are characterized by strong
acoustic nonlinearity, which usually includes a hyster-
etic component and sometimes a dissipative compo-
nent. One of the most important distinctive features of
these two components consists in the fact that they
vary with the frequency of acoustic action in different
ways: the hysteretic component usually decreases
with increasing frequency while the dissipative com-
ponent increases [3–5, 9]. Along with the amplitude
difference between the hysteretic and dissipative com-
ponents, this fact offers a possibility to distinguish
between their contributions to different nonlinear
effects and to carry out experiments so as to empha-
size the contribution of one or another nonlinear com-
ponent to a particular observed effect. A detailed
experimental study of nonlinear effects facilitates the
determination of the physical mechanisms of acoustic
nonlinearity in different media and the construction of
models for such media, which, in turn, provides the
basis for the development of nonlinear acoustic meth-
ods for the diagnostics of structure and state of a
medium.

In this paper we present the results of experimen-
tal and theoretical studies of the effects of amplitude-
dependent internal friction (nonlinear loss, reso-
nance frequency shift, and sound-by-sound damp-
ing) in a bar resonator made of sandstone with a
grain size of about 0.2–0.3 mm. The analytical
description of the observed phenomena is performed
within the framework of the phenomenological equa-
1063-7710/04/5004- $26.00 © 20446
tions of state that include the hysteretic and dissipa-
tive components of nonlinearity. On the basis of
these equations, an adequate rheological model of
sandstone is proposed.

DESCRIPTION OF THE EXPERIMENT

We experimented on a sandstone bar resonator of
length L = 27 cm and diameter 2 cm. Figure 1 shows the
flow chart of the experiment. Resonator 1 was driven by
a low-frequency (LF) piezoelectric ceramic radiator 2
which was glued to a mass load 3 on one side and to the
bar end on the other side. To the other, free, bar end, we
glued a high-frequency (HF) piezoelectric ceramic

1

2

3

5

4

6

Fig. 1. Flow chart of the experimental setup.
004 MAIK “Nauka/Interperiodica”
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radiator 4 used for radiating ultrasonic pulses and an
accelerometer 5 used for measuring LF pump waves.
Near the LF pump wave radiator, we glued an acceler-
ometer 6 responding to the longitudinal (along the bar)
component of acceleration; this accelerometer was
used for receiving ultrasonic pulses that passed through
the bar and for measuring their amplitudes. Thus, the
bar was an acoustic resonator with hard and soft bound-
aries. The natural frequencies of such a resonator are

given by the expression Fp = (2p – 1), where C0 is

the velocity of the longitudinal wave in the bar and p is
the mode number. Table 1 shows the resonance fre-
quencies Fp and the Q-factors Qp of the first five longi-
tudinal modes of the resonator under the conditions of
low-amplitude excitation, when nonlinear effects are
absent. These resonance frequencies correspond to the
velocity of the longitudinal wave C0 ≅ 2.3 × 105 cm/s.
The errors in measuring the frequencies and amplitudes
of LF and HF waves were ±0.5 Hz, ±5 × 10–2 dB, and
±1.6 × 10–1 dB, respectively.

Before the measurements, reference experiments
with a glass bar were carried out. These experiments
revealed no nonlinear effects (even for higher LF
wave amplitudes). This means that the effects of
amplitude-dependent internal friction and their
amplitude–frequency behavior were caused exclu-
sively by the physical (i.e., material) nonlinearity of
the sample under investigation rather than by the geo-
metric one.

NONLINEAR RESONANCE
FREQUENCY SHIFT AND NONLINEAR 

ABSORPTION OF LF WAVE

In the first series of observations, pump radiator 1
excited in resonator 2 LF acoustic vibrations at one of
the first five longitudinal modes, and we measured the
nonlinear resonance frequency shift ∆Fnl and the atten-
uation coefficient µnl as functions of the amplitude [1–
4, 6]. Figure 2 shows the strain amplitude εm at reso-
nance versus the electric voltage U across the pump
radiator for different excitation frequencies. One can
easily see that the functional dependence εm = εm(U) is
nonlinear, which is indicative of an amplitude-depen-
dent loss. Figure 3 shows the curves for the relative
nonlinear resonance frequency shift ∆Fnl/Fp and the
relative nonlinear attenuation coefficient µnl/µp, where
µp = (ΩpQp)–1 and Ωp = 2πFp. From these curves it fol-

lows that ∆Fnl/Fp ~  and µnl/µp ~ ; the relative
quantities ∆Fnl /Fp and µnl /µp noticeably decrease with
increasing mode number p (at εm = const). Note that
the quadratic variation of the quantities ∆Fnl /Fp and
µnl /µp with εm were observed also for lead [3], zinc
[4], and marble [6].

C0

4L
------

εm
2 εm

2
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For each resonator mode, the amplitude depen-

dences ∆Fnl/Fp ~  and µnl/µp ~  can be described
within the framework of the phenomenological equa-
tion of state [6]

(1)

(2)

where σ, ε, and  are the longitudinal stress, strain, and
strain rate of the bar; E is the Young modulus; α is the
coefficient of viscosity; ρ is the density; γi represents
the parameters of hysteretic nonlinearity; and εm is the
strain amplitude. The two latter parameters satisfy the

conditions |γi | ! 1 and |γi| @ 1. For such a resonator,
expressions for ∆Fnl/Fp and µnl/µp have the form [6]

(3)

εm
2 εm

2

σ ε( ) E ε f ε ε̇,( )–[ ] αρε̇ ,+=

f ε ε̇,( ) 1
3
---

γ1ε
3, ε 0, ε̇ 0;>>

γ2– ε3 γ1 γ2+( )εm
2 ε, ε 0, ε̇ 0;<>+

γ3– ε3, ε 0, ε̇ 0;<<

γ4ε
3 γ3 γ4+( )εm

2 ε, ε 0, ε̇ 0,><–







=

ε̇

εm
2

∆Fnl/Fp b1εm
2 , µnl/µp– a1Qpεm

2 ,= =

10–6

120

εm

U, dB

1
2
3
4
5

140 160

10–5

10–7

10–8

Fig. 2. Amplitude of a wave in the resonator versus the
voltage amplitude across the pump radiator (in decibels
relative to 1 µV). The straight line corresponds to the func-
tion εm ~ U.

Table 1

P 1 2 3 4 5

Fp, Hz 2110 6170 10240 14010 18180

Qp 73 56 64 69 74
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where a1 = (γ1 + γ2 – γ3 – γ4), b1 = (γ1 + γ2 – γ3 –

γ4) + (γ1 – γ2 – γ3 + γ4) , and Qp = . Comparing

the experimental curves of Fig. 3 with expressions (3),
we can determine the coefficients a1, b1 and the param-
eters γ1 – γ3, γ2 – γ4. Table 2 lists the corresponding val-
ues for each mode number p.

From Table 2, one can see that the increase in the
resonator excitation frequency by a factor of 9 (from
2 kHz to 18 kHz) results in a significant decrease (by a
factor of about 10 and 13, respectively) in the coeffi-
cients a1 and b1 (and the parameters γ1 – γ3 and γ2 – γ4

1
16π
--------- 1

32
------





3
4
---



 C0

2

αΩ p

-----------

Table 2

P 1 2 3 4 5

a1 × 10–9 13.4 4.8 2.9 2.7 1.4

b1 × 10–9 70.4 29.6 15.2 14 5.3

(γ1 – γ3) × 10–10 16 6.9 3.4 3.1 1.1

(γ2 – γ4) × 10–10 3.5 1.1 0.74 0.7 0.42
as well). Similar regularities were observed for lead [3]
and zinc [4]. Thus, the experimental results show that,
in such polycrystalline media, the effective parameters
γ1 – γ4 are frequency-dependent. In this context, the
hysteretic equation of state (1) should be modified in
such a way as to include the frequency dependence of
the nonlinear parameters γ1 – γ4.

To illustrate the frequency dependence of the
parameters of hysteretic nonlinearity, we use the results
of paper [11]. This paper suggests a rheological model
of a microinhomogeneous medium in the form of a one-
dimensional chain of stiff linear elastic elements and
relatively compliant nonlinear viscoelastic defects. In
our consideration, we assume that each such defect is
characterized by hysteretic nonlinearity (2), relaxation
frequency W = ς1E/η1, and dimensionless parameter
ς1 ! 1. The latter parameter determines the relative
elasticity of the defect in comparison with the elasticity
of the linear stiff elements, so that the equation of state
of the hysteretic defect has the form

(4)

where ξ is the strain and η1 is the coefficient of viscos-
ity. In the case of a low defect concentration, the equa-
tion of state of the medium has the form [8]

σ ξ( ) ς1E ξ f ξ ξ̇,( )–[ ] η 1ξ̇ ,+=
(5)

σ ε( ) E ε R ε( )N ς1 W,( ) ς1d Wd

0

1

∫
0

∞

∫– ς1R f R ε( )( )[ ] N ς1 W,( ) ς1d Wd

0

1

∫
0

∞

∫– ,=

ς1R f R ε( )( )[ ] N ς1 W,( ) ς1d Wd

0

1

∫
0

∞

∫  ! R ε( )N ς1 W,( ) ς1d Wd

0

1

∫
0

∞

∫  ! ε ,
where R(ε) =  and N1 = N1(ς1, W)

is the distribution function describing the distribution
of hysteretic defects in the parameters ς1 and W. In this
case, expressions for ∆Fnl/Fp and µnl/µp coincide in
form with Eqs. (3); however, the corresponding coeffi-
cients now depend on frequency Ωp and distribution
function N1 = N1(ς1, W):

(6)

(7)

These expressions show that a relaxation of hyster-
etic defects has two consequences: first, the coeffi-

W
ς1
----- ε τ( )e W t τ–( )– τd
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0

1

∫
0

∞

∫=

× 2a1 Ωp/W( ) b1 1 Ωp/W( )2–[ ]+{ } dς1dW .
cients determining the resonance frequency shift and
the nonlinear loss in a microinhomogeneous medium
become dependent on frequency and, second, each
such coefficient appears to be a linear combination of
frequency-independent coefficients a1 and b1 deter-
mined in Eqs. (3). According to Eqs. (6) and (7), static
coefficients of nonlinearity, a1(0) and b1(0), of the
microinhomogeneous medium are related to nonlinear-
ity parameters a1 and b1 of a single hysteretic defect by
the formulas

Using Eqs. (6) and (7) and the experimental results
(Table 2), we can attempt to determine the distribution
function of defects N1 = N1(ς1, W) so as to bring the

a1 0( ) a1

N1 ς1 W,( )
ς1

3
------------------------ ς1 W ,dd

0

1

∫
0

∞

∫=

b1 0( ) b1

N1 ς1 W,( )
ς1

3
------------------------ ς1 W .dd

0

1

∫
0

∞

∫=
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Fig. 3. (a) Relative nonlinear resonance frequency shift and (b) attenuation coefficient as functions of wave amplitude at resonance.

The straight lines correspond to functions Fnl/Fp ~  and µnl/µp ~ .εm
2 εm

2
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a1(F)/a1(F1)
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10
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Fig. 4. Parameters (a) a1(F)/a1(F1) and (b) b1(F)/b1(F1) as functions of frequency F.
experimental and analytical results in correspondence.
To solve this problem, we assume for simplicity that
ς1 = const, so that the distribution function of defects
depends only on the relaxation frequency W. Applying
the enumerative technique to power functions N1 =
N1(W), we succeeded in finding such a distribution. Fig-
ure 4 shows the experimental points together with the
dependences for normalized coefficients a1(Ωp)/a1(Ω1)
ACOUSTICAL PHYSICS      Vol. 50      No. 4      2004
and b1(Ωp)/b1(Ω1) calculated for the following distribu-
tion function:

(8)

where n1 = (W)dW is the concentration of hyster-

etic defects. One can see that the analytical calculation

N1 W( ) n1W 2– / Wa
1– Wb

1––( ),=

Wa 12.5 103 s 1– , Wb× 12.5 106 s 1– ,×= =

N10

∞∫
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with the use of this distribution of hysteretic defects in
relaxation frequencies agrees well with the experimen-
tal data; in this case, a1(0) = 1.3 × 108 and b1(0) = 1.3 ×
1010.

Using distribution function (8), we can additionally
determine the ratio of the defect concentration n1 to the

εm

1
2
3
4
5

10–5

10

–30
10–610–7

n = 2

0

–10

–20

χ, dB

1

0 20

Q1, 2, 3(F) × 102

F, kHz

1 2

3

40 60

2

–1

Fig. 5. Inverse Q-factor Q–1 as a function of frequency F:
loss due to (1) hysteretic, (2) dissipative, and (3) both hys-
teretic and dissipative defects.

Fig. 6. Coefficient of nonlinear attenuation of the pulse ver-
sus the pump wave amplitude. The straight line corresponds

to the function χ(εm) ~ .εm
2

parameter ς1. From equation of state (5), we obtain the
expression for the Q-factor of the resonator

(9)

Substituting Eq. (8) in Eq. (9), we find

(10)

Figure 5 shows the inverse Q-factor, Q–1, versus fre-
quency F for n1/ς1 = 5 × 10–2 together with the experi-
mental points. It can be seen that the analytical calcula-
tion for this value of n1/ς1 agrees well with the experi-
mental results. With this parameter value, we can
estimate the ratios of the coefficients a1 and b1 to the

square of the relative elasticity of defects as a1/  =

2.6 × 109 and b1/  = 2.6 × 1011.

NONLINEAR ATTENUATION
OF AN ULTRASONIC PULSE

UNDER THE ACTION OF AN LF WAVE

In the second series of observations, we observed
and investigated the sound-by-sound damping related
to the dissipative nonlinearity of sandstone. In this case,
in parallel with the excitation of the LF pump wave,
weak ultrasonic pulses were excited in bar 2 by HF
radiator 4. After passing through the bar, the pulses
were received by accelerometer 6, whose signals were
fed to a spectrum analyzer to measure their amplitudes
U2(εm). With increasing strain amplitude εm of the pump
wave, the amplitude of the received pulse U2(εm)
noticeably decreased. Figure 6 shows the coefficient of
nonlinear attenuation χ(εm) = ln[U0/U2(εm)] (U0 is the
pulse amplitude in the absence of the pump wave) of
the pulse at the frequency f = 180 kHz versus the strain
amplitude εm (at resonance) for different frequencies of
resonator excitation. It is seen that coefficient χ(εm) is
independent of frequency Fp for all five resonator
modes and is a quadratic function of strain amplitude

εm, i.e., χ(εm) ~ . Similar dependences were observed
for ultrasonic pulses at different frequencies. Figure 7
shows experimental points for the coefficient of nonlin-
ear attenuation of the pulse as a function of frequency f
(for a constant strain amplitude εm = 3.3 × 10–6 at the
first mode of the resonator). For frequencies ranging
from 40 to 400 kHz, this function is approximately the
power function χ(εm) ~ fn, where n ≅ 1/2.

Comparing Figs. 3 and 4 with Figs. 6 and 7, we see
that the hysteretic and dissipative components of non-
linearity of sandstone (and other polycrystalline mate-
rials as well) are qualitatively different, because the first
component decreases with increasing frequency Fp of

Qp
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the pump wave and the second is independent of fre-
quency Fp and increases with increasing frequency f of
the pulse. From this fact, we can conclude that the ori-
gins of the hysteretic and dissipative components of
sandstone nonlinearity are different and independent. It
should be noted that a small amplitude variation of a
weak ultrasonic pulse in the field of an intense LF pump
wave is also possible in a medium with a hysteretic
nonlinearity. However, in this case, the dependences of
the coefficient χ(εm) on the frequencies Ωp and ω should
differ from the dependences observed in the experiment.
Calculations show that, for a resonator with a hysterestic
relaxation nonlinearity given by Eq. (5), the coefficient
χ(εm) is determined by the expression

We substitute the values of the parameters γ1–γ3 and
γ2–γ4 at the frequency of the first mode of the resonator
(Table 1) and the distribution function given by Eq. (8)
into the above expression. Using the values found ear-

lier, namely, n1/ς1 = 5 × 10–2, a1/  = 2.6 × 109, and

b1/  = 2.6 × 1011, we obtain

From the numerical analysis of these integrals, it
follows that, as the frequencies Ωp and ω increase, the
coefficient χ(εm) decreases down to zero and may

χ εm( )
5γ1 γ2– 5γ3– γ4+( )εm
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-------------------------------------------------------=
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become negative. For example, at εm = 3.3 × 10–6 and
Ωp = Ω1, the value of χ(εm) decreases from 6.5 × 10–5

(at f = 40 kHz) to –1.8 × 10–7 (at f = 400 kHz), and at
f = 84 kHz, we have χ(εm) = 0. Hence, in such a resona-
tor, at high frequencies (f > 84 kHz), an increase
(although a relatively small one) in the amplitude of an
ultrasonic pulse rather than a decrease should occur;
i.e., an amplification of sound by sound rather than
attenuation. In this case, at the frequency f = 180 kHz,
the value of χ(εm) is as small as about –10–5, which (in
absolute value) is five orders of magnitude smaller than
the experimental value (see Fig. 6). All this contradicts
the results of the experiment and allows us to neglect
the contribution of hysteretic nonlinearity to the atten-
uation of an HF pulse in the field of an LF wave that
occurs due to the dissipative nonlinearity. In this con-
text, an analytical description of sound-by-sound
damping requires, in general, another model and
another equation of state than those considered above.
However, we can again use a similar rheological model
of microinhomogeneous medium [11] by assuming
that, in addition to hysteretic defects, the medium also
includes other defects characterized by dissipative non-
linearity. Here we assume that each dissipative defect
can be described by the nonlinear differential equation
of second order

(11)

where ς2, η2, µ, and m are the relative elasticity, the
coefficient of viscosity, the parameter of dissipative
nonlinearity, and the reduced (to unit length) mass of
the defect. From this equation, one can obtain the equa-
tion of state of the medium and derive the expressions
for the coefficients of linear β(ω) and nonlinear χ(εm)
attenuation of the pulse:
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where λ2 = 4w2 – d2, w = (ς2E/m)1/2 is the defect reso-
nance frequency, d = η2/m is the damping parameter of
the defect, and N2 = N2(w) is the distribution function of
dissipative defects in resonance frequencies. (Here we
again assume that ς2 = const.) It is obvious that S = 2 for
the sandstone sample under investigation. Fitting the
distribution function N2 = N2(w), one can achieve a cor-
respondence between the analytical coefficient of non-
linear attenuation (14) as a function of frequency ω and
the experimental data. Figure 7 shows coefficient (14) for
N2(w) = n2w–1/ln(w2/w1), w2 ≤ w ≤ w1, w1 = 4 × 107 s–1,
w2 = 109 s–1, d = 5 × 109 s–1, εm = 3.3 × 10–6, and

µn2/  = 2.5 × 1010. It can be seen that these parameter
values provide the agreement between analytical calcu-
lations and experimental data. From Eq. (14), using the
value of linear attenuation β . 0.7 measured at a fre-
quency f = 180 kHz, we can estimate the ratio of the dis-
sipative defect concentration to parameter n2 as ς2:

n2/ς2 = 2.4 × 10–1. With this value, we obtain µ/  =
1011.

Finally, in the same way as it was shown that hyster-
estic nonlinearity does not influence the sound-by-
sound damping, we can show that the dissipative non-
linearity does not influence the LF effects of resonance
frequency shift and the nonlinear loss in the resonator.
For this purpose, it is necessary to compare (assuming
that ε = εmsinΩt) the hysteretic and dissipative compo-
nents of nonlinearity. The numerical analysis shows
that, when F < F* ≅ 300 kHz, the hysteretic nonlinear-
ity predominates over the dissipative one and, hence, in
the frequency range F ! Fnl, the nonlinear loss µnl/µp

and the resonance frequency shift ∆Fnl/Fp are deter-
mined by the hysterestic nonlinearity. In the same way,
we can determine the boundary frequency Flin, below

ς2
3

ς2
2

–0.6

104 106

log(f/1 Hz)
105

–1.2

–1.8

–2.4

logχ

Fig. 7. Coefficient of nonlinear attenuation of the pulse ver-
sus the frequency f for εm = 3.3 × 10–6.
which the linear loss in the resonator is mainly deter-
mined by the hysteretic defects and above which, by the
dissipative ones. Curve 2 in Fig. 5 represents the fre-
quency dependence of the linear loss of the resonator,

(F) = β(F)C0/πFL, that is caused by the dissipative
defects. The point of intersection of curves 1 and 2
yields Flin ≅ 45 kHz. Near this frequency, the Q-factor

of the resonator is determined by the total loss  =

 + . Curve 3 in Fig. 5 represents the frequency

dependence of the total linear loss  due to the hys-
teretic and dissipative defects (at n1/ς1 = 4.4 × 10–2).
One can see that curve 3 agrees even better (than
curve 1) with the results of measuring Qp. Using the
refined value of the parameter n1/ς1 = 4.4 × 10–2, we
obtain refined values of the ratios of coefficients a1 and
b1 to the square of the relative elasticity of hysteretic

defects: a1/  = 2.9 × 109 and b1/  = 2.9 × 1011. From
curve 3 of Fig. 5, it also follows that, in a fairly wide
frequency range (approximately from 2 to 60 kHz), the
linear damping decrement of the sandstone sample
under investigation is almost frequency-independent,
its Q-factor (in this frequency range) being approxi-
mately equal to 65. This result agrees well with the pre-
vious experimental observations of practically fre-
quency-independent behavior of the Q-factors (in a
wide frequency range) of many solids, including rock
and metals [12–15]. Outside this range, the Q-factor
Q(ω) of such media should (and does) depend on the
frequency ω: at low frequencies, it decreases with
increasing ω and, at high frequencies, it increases, so
that at medium frequencies, one has Q(ω) ≈ const [12–
15]. Precisely this kind of dependence is shown in
Fig. 5 (curve 3).

CONCLUSIONS

In this paper, we presented the results of experimen-
tal studies of the amplitude and frequency dependences
of nonlinear effects (nonlinear loss, resonance fre-
quency shift, and sound-by-sound damping) in a sand-
stone bar resonator. The analysis of the experimental
amplitude–frequency behavior of these effects showed
that the acoustic nonlinearity of sandstone includes two
components: LF hysteretic and HF dissipative ones.
Both components exhibit a cubic amplitude depen-
dence, but they have different frequency dependences.
The explanation of this fact is based on the assumption
that sandstone contains two types of defects, one of
which is characterized by a hysteretic nonlinearity and
the other, by a dissipative nonlinearity, and the defects
of these types are characterized by different relaxation
and resonance frequencies. The analytical description
of the measured dependences was performed within the
framework of the rheological model of a microinhomo-
geneous medium containing such defects. We derived

Q2
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Qp
1–

Q1
1– Q2

1–

Qp
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equations of state of media with such defects and deter-
mined the expressions for the nonlinear loss, the reso-
nance frequency shift, and the nonlinear attenuation
coefficient of a weak ultrasonic pulse under the action
of an intense LF pump wave. We fitted the distribution
functions of both types of defects in relaxation and res-
onance frequencies to match the analytical calculations
with the experimental results and determined the effec-
tive parameters of the nonlinearity of sandstone. It was
shown that, at frequencies F ! 45 kHz and F < 300 kHz,
the linear loss and nonlinearity of sandstone, respec-
tively, are mainly determined by hysteretic defects, and
at F @ 45 kHz and F > 300 kHz, by dissipative ones.

From the experimental and theoretical results
obtained in this paper (and earlier [3–7, 9]) it follows
that hysteretic and dissipative components of acoustic
nonlinearity of many microinhomogeneous media are
caused by different kinds of defects characterized by
the corresponding nonlinear relaxation and resonance
properties. In polycrystalline metals and rocks, such
defects may be, for example, dislocations or dislocation
clusters, microcracks, and grain boundaries. These
defects may differ from one medium to another, and
acoustic measurements alone are insufficient for deter-
mining exactly which defects are responsible for the
manifestations of nonlinearity in the medium. For this
purpose, it is necessary to use the physical models of
the known defects and the corresponding equations of
state. Nevertheless, the above technique is quite appro-
priate for both qualitative and quantitative determina-
tion of the rheological properties and nonlinearity
parameters of these defects, which can be used for clas-
sification and diagnostics of different microinhomoge-
neous media.
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Abstract—Most of our understanding of dolphin echolocation has come from studies of captive dolphins per-
forming various echolocation tasks. Recently, measurements of echolocation signals in the wild have expanded
our understanding of the characteristics of these signals in a natural setting. Measuring undistorted dolphin
echolocation signals with free swimming dolphins in the field can be a challenging task. A four hydrophone
array arranged in a symmetrical star pattern was used to measure the echolocation signals of four species of
dolphins in the wild. Echolocation signals of the following dolphins have been measured with the symmetrical
star array: white-beaked dolphins in Iceland, Atlantic spotted dolphins in the Bahamas, killer whales in British
Columbia, and dusky dolphins in New Zealand. There are many common features in the echolocation signals
of the different species. Most of the signals had spectra that were bimodal: two peaks, one at low frequencies
and another about an octave higher in frequency. The source level of the sonar transmission varies as a function
of 20 , suggesting a form of time-varying gain but on the transmitting end of the sonar process rather than
the receiving end. The results of the field work call into question the issue of whether the signals used by captive
dolphins may be shaped by the task they are required to perform rather than what they would do more naturally.
© 2004 MAIK “Nauka/Interperiodica”.
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1 INTRODUCTION

Most of our understanding on echolocation signals
used by different species of dolphins has come from
research with captive animals (Au, 1993). From these
studies, we have learned that dolphins emit high-fre-
quency click signals with peak frequencies as high as
100–130 kHz and with bandwidths between 30–55 kHz.
The signals are emitted in a beam that is directed for-
ward and slightly upwards with respect to the longitu-
dinal axis of the animals. The 3-dB transmission beam-
width can vary from 10–16°, depending on the species.
Another important characteristic of the transmission
system is that signals measured off the axis of the beam
are distorted in comparison to signals measured along
the beam axis. Finally, the spectrum of the signals may
depend on the source level; the higher the source level,
the greater the center frequency of the signals [1, 2].

Accurate measurements of echolocation signals
used by free-ranging dolphins in the wild can be diffi-
cult to obtain because the echolocation beam pattern is
relatively narrow. If echolocation signals are not mea-
sured close to the axis of the animal’s beam, the signals
will be distorted. It is also extremely difficult to deter-
mine the distance of a moving dolphin from the record-
ing hydrophone in order to determine the source level
(sound pressure level 1 m from the dolphin) of the sig-
nals. We have successfully overcome these problems by
using a short base line array of four hydrophones
arranged as a symmetrical star shown schematically in
Fig. 1. The array structure resembles the letter “Y”,
with each 45.7 cm long arm separated by an angle of

1 This article was submitted by the author in English.
1063-7710/04/5004- $26.00 © 20454
120°. A spherical hydrophone was connected to the end
of each arm with a fourth hydrophone connected at the
geometric center of the “Y.” The range of an echolocat-
ing dolphin can be determined by measuring the differ-
ence in the time of arrival between the center hydro-
phone and the other hydrophones. The range of the
echolocating dolphin can be determined with Eq. (1) [3]:

, (1)

where τ0i is the arrival time difference between the cen-
ter hydrophone and the ith hydrophone.

Calibration measurements obtained with the array
and a simulated dolphin signal indicate only a 12%
error in the range estimation at 25 m, which translated
to a propagation loss error of only 1.1 dB. An underwa-
ter housing connected to the back of the hydrophone
mounting plate contained an amplifier and line-driver
for each of the hydrophones. A CCD video camera in an
underwater housing was mounted next to the center
hydrophone. A multiconductor cable, 77 m in length,
consisting of five coaxial lines and two dc power lines
connected the array to an adjustable amplifier–filter
box containing a power supply.

The symmetrical star array has been used to mea-
sure the echolocation signals of the Atlantic spotted
dolphin, Stenella frontalis, in the Bahama sand banks
[3]; white-beaked dolphin, Lagenorhynchus albirostris,
in the waters of Iceland [4]; killer whale, Orcinus orca,
in British Columbia [5]; and dusky dolphin, Lageno-
rhynchus obscurus, in the water of Kaikoura, New
Zealand [6]. With the exception of the killer whale,

R
c2 τ01

2 τ02
2 τ03

2+ +( ) 3a2–
2c τ01 τ02 τ03+ +( )

---------------------------------------------------------=
004 MAIK “Nauka/Interperiodica”



        

ECHOLOCATION SIGNALS OF WILD DOLPHINS 455

            
echolocating dolphins in the wild typically emit broad-
band, short duration click signals (<80 µs) with a bimo-
dal spectrum; a low-frequency peak occurs between
30–50 kHz and a high-frequency peak between 80–
120 kHz. Approximately 70–80% of the signals mea-
sured in the field have been bimodal. Killer whales emit
echolocation signals that are twice as long in duration
and with a frequency content approximately half that of
the other dolphins studied.

Echolocation signals were digitized with two
Gage-1210, 12-bit dual simultaneous sampling data
acquisition boards that were connected to a “lunch box”
computer via two EISA slots. The data acquisition
system operated at a sample rate of 500 kHz with a
pretrigger capability. When the computer signaled the
Gage-1210 to collect data, four channels of acoustic
signals were simultaneously and continuously digitized
with the results going into separate circular memories
on each Gage-1210 board. When an echolocation sig-
nal was detected by the center hydrophone, it triggered
the data acquisition board. Two hundred pre-trigger
points and two hundred post-trigger points were col-
lected for each channel and downloaded into the com-
puter. A total of 80 clicks could be downloaded for each
episode before the data had to be stored on the hard
drive. A specially constructed ISA board was also used
to measure the time interval between the clicks being
acquired and to cause a light emitting diode to flash
indicating that clicks were being captured. The inter-
click interval data was also downloaded and stored on
the hard drive. The time of capture (to the closest 18 ms
interval of the computer timing system) of each click
was also saved and stored on the hard drive. The clock
on a portable VCR was synchronized to the computer’s
clock, so that the video images could be synchronized
with the acoustic data.

During field measurements, with the exception of
the killer whale, animals often milled about 30–50 m
from our boat and made “runs” towards the array, con-
tinuously echolocating as they approached. Killer
whales often foraged along the steep cliffs in the
Johnstone Strait of British Columbia, Canada. We
would position our boat about 100–150 m directly in
their path and they rarely deviated from their path
except to veer to one side if the array was in their path
so as to not strike the array. The range of an echolocat-
ing dolphin was determined by measuring the differ-
ences in the time of arrival between the signal at the
center and the three other hydrophones. Only signals in
which the center hydrophone detected the largest
amplitude or were within 3 dB of the highest amplitude
signals were analyzed. The 3-dB criterion is applicable
at ranges of about 5–15 m. As the dolphin approaches
within 4 m of the array, the angles between the dolphin
and the various hydrophones could increase signifi-
cantly if the animal approaches along the midline of the
array. However, in most cases, the dolphins tend to
approach the array at some oblique angle, so that the
angles between the dolphin and the different hydro-
ACOUSTICAL PHYSICS      Vol. 50      No. 4      2004
phones tended not to be very large and the 3-dB crite-
rion could be used as an approximation. The video
images were used only under special conditions since
the quality of the images varies according to lighting
and visibility conditions. Also, when dolphins
approached the array obliquely, they would be out of
the camera’s view for various portions of their “run.”

WAVEFORM AND SPECTRUM

Echolocation click trains can be highly variable and it
is difficult to understand the reasons for these variations.
Therefore, echolocation signals should be described sta-
tistically in order to understand their basic characteris-
tics. Variations also occur when measuring signals from
captive dolphins in highly controlled situations [7] as
well as in the wild. The best way to have a glimpse of
such variations is to look at the spectra of a click train
displayed in a waterfall format. Four examples of click
trains are shown in Fig. 2, two examples each for Orcinus
orca [5] and for Lagenorhynchus obscurus [6]. The
waterfall display of Fig. 2a for the killer whale shows
fairly stereotypical spectra with some slight variations,
while Fig. 2c shows much greater variation. The same is
true for signals of the dusky dolphin shown in Figs. 2b
and 2d. Note that the frequency scale for the dusky dol-
phin displays is twice as high as that for the killer whale.
Similar waterfall displays also exist for the white-beaked
and Atlantic spotted dolphins.

Representation echolocation signal waveforms and
spectra are shown in Fig. 3. The Atlantic spotted dol-
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Fig. 1. Symmetrical star array used to measure echolocation
signals of dolphins in the field.
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Fig. 2. Waterfall display of the spectra of four several click trains: (a, b) fairly stereotype clicks from the killer whale and dusky
dolphin, respectively; (c, d) click trains with considerable variations for the killer whale and dusky dolphin, respectively.
phin, the killer whale, and the dusky dolphin all emitted
three basic types of signals. The first signal type had a
single primary low-frequency peak in its spectrum,
while the two other signal types had bimodal spectra,
some with a dominant low-frequency peak and some
with a dominant high-frequency peak. The signals with
a single low-frequency peak in the spectrum usually
occurred 8–15% or less of the time. The bimodal sig-
nals occurred between 75 and 89% of the time. The
white-beaked dolphin also emitted mainly bimodal sig-
nals; however, the single low-frequency peaked signal
was rarely observed with this species. The presence of
bimodal signals is obvious in the waterfall displays of
Fig. 2, and the bimodality contributes to the broadband
nature of the signals.

The waveforms and, consequently, the spectra for all
the species are very similar except for the specific peak
frequencies and signal duration. The axiom that a click is
a click seem to be appropriate here and may be related to
the notion that there are not many different ways to pro-
duce clicks and the mechanism for click production is
probably the same for most odontocetes. The signals
used by the killer whale are unique among delphinid
being about an octave lower in frequency with durations
that are twice as long as for the other species.

TIME-VARYING GAIN

The source levels as a function of range for the four
delphinid species are shown in Fig. 4 as scatter plots.
The solid line through each scatter plot is the best fit of
the equation

, (2)

where R is the range of the dolphin from the array and
K is a constant that provided the best fit of the equation
with the data. The values of the constant K for the dif-
ference species are

(3)

SL K 20 Rlog+=
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Fig. 3. Representative waveforms and spectra of the four species of dolphins being considered.
The r2 values are the square of the correlation coeffi-
cient between the data points and the solid line in each
plot. The r2 values varied from 0.52 to 0.74, showing a
strong correlation between the 20  curve and the
scattered data points.

Au and Benoit-Bird [8] attributed this variation in
the source level as a form of time-varying gain. Since
the receiving or hearing sensitivity of dolphins is prob-
ably fixed and not subject to manipulation, dolphins
have evolved to have a time-varying gain implemented
in the transmission phase of the echolocation process
rather than in the receiving phase as for technological
sonars and for some bats [9]. For single sonar targets,
an optimal time-varying gain function should vary as a
function of 40 , compensating for the two-way
spherical spreading loss. However, if the target is a fish

Rlog

Rlog
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school, then the received echo level (RL) of the school
can be expressed as [10]

(4)

where SL is the source level, R is the range, SV is the
scattering coefficient, and V is the volume factor within
the joint transmission and receiving beam of the dol-
phins. If Eq. (3) for the source level is inserted into
Eq. (4), the received echo level will be independent of
range. Therefore, dolphins hunting for a fish school
with their echolocation system will have an ideal time-
varying gain function to keep the echo level relatively
constant independent of the range of the school. The
ideal situation will not always apply since dolphins also
have a specific integration time associated with their

RL SL 20 R SV 10 V ,log+ +log–=
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auditory system so that only a portion of the echoes will
be effective in the detection process.

SPECTRAL CHARACTERISTICS

Since most of the signals measured in the wild had
bimodal spectra, it is more appropriate to describe the
signal spectra by their center frequency rather than
peak frequency. Center frequency is defined as that fre-
quency which divides the energy in a frequency spec-
trum into two equal parts; it is defined mathematically
as [11]

(5)

where S(f) is the Fourier transform of the echolocation
signal and f is the instantaneous frequency. Histograms
of center frequency for the four species are shown in
Fig. 5. Also shown are the mean and standard deviation
of the center frequency for each species.

The dolphins in the genus Lagenorhynchus had the
highest center frequencies of the four species discussed
here. Most of the signals of the white-beaked dolphin
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had center frequencies between 90 and 110 kHz. Most
of the signals of the dusky dolphin had center frequen-
cies between 80 and 100 kHz, about 10 kHz lower than
that of the white-beaked dolphin. This seems rather odd
since the white-beaked dolphin is much larger than the
dusky dolphin and is almost twice as heavy. One would
expect the center frequency of the dusky dolphin to be
higher than what was observed. The signals of the
Atlantic spotted dolphin tended to spread out in fre-
quency with the center frequencies between 40 and
110 kHz and a peak in the histogram between 50 and
60 kHz. Although the Atlantic spotted dolphin is
slightly smaller than the white-beaked dolphin, its cen-
ter frequencies were also lower than the white-beaked
dolphin. The killer whale echolocation signals had the
lowest center frequency, with most of the energy
between 40 and 50 kHz.

The width of a spectrum can be defined by the 3-dB
bandwidth or the root-mean-square (rms) bandwidth
about the center frequency. The 3-dB bandwidth for
bimodal spectra can often provide a misrepresentation
of the width of the signal since the bandwidth might
cover only the frequency range about the peak fre-
quency. The rms bandwidth is probably a better mea-
sure of the width of signals with bimodal spectra. His-
tograms of rms bandwidth typically indicate a broader
bandwidth than the 3-dB bandwidth [3]. It is a measure
ACOUSTICAL PHYSICS      Vol. 50      No. 4      2004
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Fig. 5. Histogram of center frequency for the four species of dolphins being considered. The mean and standard deviations are also
shown for each species.
of the frequency width about the center frequency and
is defined mathematically as [11]

(6)

where f0 is the center frequency given in Eq. (6). Histo-
grams of rms bandwidth for the echolocation signals of
the four species discussed here are shown in Fig. 6
along with the appropriate means and standard devia-
tions.

The echolocation signals emitted by the two
Lagenorhynchus species were the widest, followed by
the signals emitted by Orcinus orca. The histograms of
both Lagenorhynchus species are extremely similar,
showing that most of the signals had rms bandwidths
between 40 and 50 kHz. The average rms bandwidths
were also very similar at 42.8 kHz for the white-beaked
dolphin and 43.9 kHz for the dusky dolphin. The band-
width histogram for the Atlantic spotted dolphin
showed that most the signals had a bandwidth between
25 and 50 kHz, with a mean of 36.4 kHz. The signals of
the killer whale were more tightly spaced with most of
the signals having a bandwidth between 20 and 25 kHz.

An appropriate way to define the relative width of a
signal is to determine the Q of the signal. The Q or qual-
ity factor of a signal is defined as

(7)
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where ∆f is the bandwidth of the signal and is equal to
β if the rms bandwidth is used and f0 is the center fre-
quency defined by Eq. (5). Using the average center fre-
quency and rms bandwidth, the Q values for the differ-
ent species are as follows:

(8)

These Q values are relatively low and are indicative of
the broadband nature of the echolocation signals used
by dolphins. The killer whale had the lowest Q value or
the broadest bandwidth relative to the value of the cen-
ter frequency.

DISCUSSION AND CONCLUSIONS

One of the most important results from the field
measurements of echolocating dolphins with a short
base line array is the discovery of a time-varying gain
function for the dolphin echolocation system. The
results indicate that, as dolphins close in on a target, the
source level of the echolocation signal decreases con-
tinuously by 6 dB for every halving of the range. This
reduction in source level with decreasing range to the
array is a form of dynamic time-varying gain control
for the dolphin’s echolocation system. Instead of the
receiving gain being manipulated, the output level of
the system is manipulated. In conventional sonar sys-
tems, the amplitude of the emitted signal is held con-
stant while TVG is applied to the receiver. TVG occurs
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Fig. 6. Histogram of rms bandwidth for the four species of dolphins being considered. The mean and standard deviations are also
shown for each species.
in bats during the reception phase because their hearing
sensitivity decreases via a middle ear muscle contrac-
tion just prior to a signal being transmitted and recovers
in a 40  manner [9]. The middle ear of dolphins is
extremely complex and its role in hearing and how it
functions is unclear [12]. The ossicular chain is stiff-
ened and tightly bound together with sheaths and annu-
lar ligaments, and the ossicles are denser and more
massive than for terrestrial mammals of similar size.
These adaptations work against any effective middle
ear reflex, so that another means of gain control would
be needed.

In order to maintain a constant echo level for a sin-
gle prey item as a dolphin closes in, the gain of the
sonar system should vary as 40  rather than
20 . However, many dolphin species forage on fish
schools [13]. Sonar echoes from a fish school would be
similar to volume reverberation, consisting of the sum
of many individual echoes reflecting from individual
fish. The amplitude of echoes from volume reverbera-
tion increases with decreasing range as a function of
20  [11]. Therefore, as a dolphin closes in on a fish
school, the amplitude of the echoes will remain con-
stant as the animal dynamically and progressively
reduces the amplitude of the outgoing signal at a rate of
20 . When a dolphin closes in on a single prey, the
echo level will increase as the distance between dolphin
and prey decreases, but not as rapidly as in a situation
where there is no gain control.

The dynamic control of the echolocation source
level is probably not the result of a cognitive process,
but rather a natural consequence of how echolocation

Rlog

Rlog
Rlog

Rlog

Rlog
clicks are produced. Dolphins typically emit echoloca-
tion clicks at a rate that allow the echoes to return to the
animal before the next click is emitted [7]. Conse-
quently, the repetition rate increases as an animal closes
on a target [14, 15]. The clicks are produced within the
nasal system of the dolphins by manipulating the air-
flow through the phonic lips, previously referred to as
the dorsal bursae/monkey lips complex [16, 17]. Dol-
phins initially pressurize their nasal system [18] and
then emit a click train with the clicks occurring at rela-
tively low repetition rate and the animal continually
adjusting the rate as targets are located [19]. If the dol-
phin chooses to keep the amount of acoustic energy
emitted relatively constant or within certain limits for
each pressurization cycle, then the amplitude of the sig-
nal can be high when the repetition rate is low but must
continually decrease as the repetition rate increases.
The data in Fig. 4 are consistent with the notion that
there is a coupling between repetition rate and source
level.

An advantage of having a coupling between source
level and target range, and subsequently click repetition
rate, is that the relative size of a target can be inferred
from the reception of a few echoes. The source level of
the echolocation signals is coupled to the target range,
so that, for a given range, the source level is predictable
within some small variation, making comparison of the
level of a specific echo with levels of echoes from pre-
vious experience relatively simple. The range of a tar-
get does not need to be accounted for, but is automati-
cally factored in by the coupling of source level and
repetition rate of the signals. At long ranges, scanning
of the beam by the dolphin, an effective method at short
ranges, will not be useful in determining the size of a
ACOUSTICAL PHYSICS      Vol. 50      No. 4      2004
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target because the amount of area a sonar beam covers
can be much larger than the target. However, a dolphin
can still determine the relative size of a target by the
levels of the echoes.

The predominance of echolocation signals with
bimodal spectra is another interesting finding from
measurements of echolocation signals in the field. The
only captive animal that showed a preference for emit-
ting bimodal signals was a false killer whale in which
77% of the signals had bimodal spectra [2]. The reason
for the lack of bimodal signals in captive animal exper-
iments may be associated with the use of relatively high
source levels by some of the dolphins. It seems that, as
the source levels of the echolocation signals approach
the maximum level for a specific dolphin, the signals
tend to be unimodal with a single high-frequency peak
[3, 6].

The source levels results given in Fig. 3 seem rather
baffling since one would expect a larger animal to pro-
duce higher intensity signals than a smaller one. If the
killer whale results are momentarily disregarded than
the largest of the three dolphins indeed produced the
highest source level and the smallest produced the low-
est amplitude signals. The killer whale source levels
were almost 9 dB lower than that of the white-beaked
dolphin. However, it would be more appropriate to con-
sider the source energy flux density since the dolphins
auditory system integrates and responds to the energy
in acoustic signals [7]. An appropriate means to con-
sider this issue is to consider the role of the signal
waveform in contributing to the energy flux density.
Let p(t) = As(t) be the waveform of an echolocation
click where A is the peak amplitude and s(t) is the nor-
malized form factor describing the shape of the signal
in the time domain such that the maximum value of
|s(t)| is equal to and less than one. The energy flux den-
sity can now be defined as

(9)

In Eq. (9), there is a contribution to the energy flux den-
sity from both the amplitude of the signal and the nor-
malized waveform. Considering the representative sig-
nals shown in Fig. 4, the signal of the killer whale is
approximately twice as long as those of the white-
beaked dolphin and the normalized waveform contribu-
tion for the killer whale is approximately 6 dB greater
than for the white-beaked dolphin. Therefore, the
source energy flux density of the white-beaked dolphin
is only about 3 dB greater than that of the killer whale.
Prey type will probably also affect the level of the
echolocation signals used by any dolphins. Killer
whales in Johnstone Strait prefer to forage on Chinook
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salmon of lengths that are between 0.6–0.8 m long [5,
20]. These fish are probably much bigger than the her-
ring and cod that white-beaked dolphins are known to
prey on and would have much larger target strength.
The dorsal aspect target strength for an individual fish
is given by Love [21] as

(10)

where L is the length of the fish and λ is the wavelength
of the sonar signal. The difference in target strength of
a Chinook salmon and the prey of the white-beaked
dolphin can be expressed as

(11)

where Ls is the length of a Chinook salmon and Lh is the
typical length of a herring prey, f0La is the average cen-
ter frequency of the white-beaked dolphin (94.9 kHz),
and f0Oo is the average center frequency of the killer
whale (50.9 kHz). If we assume that the typical Chi-
nook salmon prey is about 3–4 times larger than the
white-beaked dolphin prey, then the difference in target
strength for a single fish in the dorsal aspect will be
between 9 and 12 dB higher for the orca. On a single
fish basis, echoes in the killer whale situation could be
greater by about 6 to 9 dB than those for the white-
beaked dolphin. However, the white-beaked dolphin
typically forage on schools of fish while the killer
whales in British Columbia forage on individual
salmon, so that it is highly conceivable that the echo
levels for both species might be very similar.

It is difficult to generalize about the properties of
echolocation signals used by dolphins in the field from
the results associated with only four species of odonto-
cetes. Research performed with wild dolphins seems to
suggest that the signal waveform and spectrum are
slightly different than what have been measured in con-
trolled experiments with captive dolphins. In order to
gain sufficient data to make some generalizations, more
species need to be measured in the field. There are
approximately 65 species of odontocetes, and this
paper discussed results from just 4 species. However,
future efforts to record echolocation signals with wild
dolphin should be performed with an array of hydro-
phones, so that source levels and on-axis signals can be
measured.
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Abstract—A physical and a mathematical models of the dolphin’s source of echolocation clicks have been
recently proposed. The physical model includes a bottle of pressurized air connected to the atmosphere with an
underwater rubber tube. A compressing rubber ring is placed on the underwater portion of the tube. The ring
blocks the air jet passing through the tube from the bottle. This ring can be brought into self-oscillation by the
air jet. In the simplest case, the ring displacement follows a repeated triangular waveform. Because the acoustic
pressure gradient is proportional to the second time derivative of the displacement, clicks arise at the bends of
the displacement waveform. The mathematical model describes the dipole oscillations of a sphere “frozen” in
the ring and calculates the waveform and the sound pressure of the generated clicks. The critical parameters of
the mathematical model are the radius of the sphere and the peak value and duration of the triangular displace-
ment curve. This model allows one to solve both the forward (deriving the properties of acoustic clicks from
the known source parameters) and the inverse (calculating the source parameters from the acoustic data) prob-
lems. Data from click records of Odontocetes were used to derive both the displacement waveforms and the size
of the “frozen sphere” or a structure functionally similar to it. The mathematical model predicts a maximum
source level of up to 235 dB re 1 µPa at 1-m range when using a 5-cm radius of the “frozen” sphere and a 4-mm
maximal displacement. The predicted sound pressure level is similar to that of the clicks produced by Odonto-
cetest. © 2004 MAIK “Nauka/Interperiodica”.
1 1. INTRODUCTION

In our previous publications, we have suggested that
the clicking source of dolphins is driven by the air pres-
sure created in the upper respiratory tract either by lungs
or by air sac muscles [1–3]. The essential feature of this
suggestion is the formation of an air jet through the nasal
passage that is blocked by a sphincter (a muscle plug, a
lip). A physical model of the nasal passage was imple-
mented (Fig. 1). The model consists of (1) a displace-
ment sensor attached to (2) a rubber ring, which is put on
(3) a rubber tube opened at one end and attached to a
high-pressure gas bottle at the other end [1–3]. The rub-
ber ring blocks the air passage through the tube. When
the air pressure in the tube increases, the rubber ring
begins to perform typical self-oscillations during which
the tube is periodically opened for short periods of time
(Fig. 1). The displacement sensor (see Fig. 1) measures
the movements of the ring whose surface shows different
displacement waveforms. In the simplest case, the dis-
placement waveform is triangular. The oscillating ring is
the source of acoustic clicks, which are time-locked to
the bends of the displacement curve. This observation is
in accord with the acoustic Euler equation stating that the
pressure gradient is proportional to the second time
derivative of the displacement [4].

1 This article was submitted by the authors in English.
1063-7710/04/5004- $26.00 © 20463
A simple mathematical model (MM) based on this
physical model has been developed [1–3]. The model is
based on the assumption that the ring does not move
except for a small spherical portion that performs the
above-mentioned self-oscillations. It is also assumed

To the atmosphere

1

2

3

Fig. 1. Schematic view of the underwater part of the physi-
cal model: (1) a displacement sensor, (2) a rubber ring, and
(3) a rubber tube. The excess air pressure is delivered to the
right end of the tube. The left end is connected to the atmo-
sphere. In the state of the model shown in the figure, the
expanding forces inside the tube prevail over the compress-
ing forces of the ring.

From the
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that the sphere has no mass. Under these assumptions,
the sphere (thereafter called the “frozen sphere”) moves
in accord with the observed displacement waveform of
the ring. The acoustic pressure caused by the sphere
displacement (which represents an acoustic dipole) at
an angular frequency ω = 2πf can be expressed by the
formula [4]

(1)

Here, a is the radius of the “frozen sphere,” r is the dis-
tance from the center of the sphere to the observation
point, k = ω/c is the wave number, c and ρ are the speed
of sound and the density of tissue around the source, α
is the angle between the dipole axis and the direction to
the observation point, and ξ(ω) is the Fourier transform
of the sphere displacement waveform. At this stage of
analysis, we assume that the density and the speed of
sound propagation in the biological tissue around the
delphinid sound source are equal to the corresponding
parameters of water, which is at least approximately
true [5]. In addition, we disregard the possible distor-
tion of the acoustic click due to the diffraction by the
complex structures of the air sacs and passages and the
melon [10]. Some comments on these assumptions is
given below.

The pressure waveform of the radiated acoustic
click is computed by means of the inverse Fourier trans-
form of the click amplitude spectrum density taken
from Eq. (1). The computed acoustic clicks are indeed
time-locked to the bends of the displacement curve,
which agrees well with the physical model [3].

p r t,( ) iρω2a3ξ ω( )=

× ikr 1–( ) α ika–( ) ikr iωt–( )expexpcos

2 2ika– ka( )2–( )r2
------------------------------------------------------------------------------------------------.

C
lic

k 
so

un
d 

pr
es

su
re

Duration

Pe
ak

-t
o-

pe
ak

 v
al

ue

Time, ms
0 0.05 0.10 0.15 0.20 0.25

Fig. 2. Calculated click waveform and the definition of the
peak-to-peak value and duration of the click in the mathe-
matical model. The duration of the triangular displacement
is 1 ms and the maximum of sphere displacement is 2 mm.
In this paper we further explore the influence of the
critical parameters of the mathematical model on the
peak-to-peak value of sound pressure, the duration of
the simulated clicks, and the maximum (peak) of their
amplitude spectral density (SDP). The critical parame-
ters of the MM are the radius of the “frozen sphere” and
the duration and maximum (height) of the displacement
triangle (MSD). The results of simulation are compared
with experimental data for different species of Odonto-
cetes. Here, we consider only the forward problem
(deriving the properties of acoustic clicks from the
known source parameters). The inverse problem (calcu-
lating the source parameters from acoustic data) will be
the subject of another paper.

2. RESULTS OF THE SIMULATION STUDY

Let us first examine the waveform of the acoustic
click. Figure 2 depicts the calculated click waveform
and the definition of the peak-to-peak value and dura-
tion of the click for the case when the displacement
waveform of the frozen sphere is a triangle. The click
has a short positive peak (phase of compression) and a
large short negative peak (phase of rarefaction) fol-
lowed by a prolonged positive peak (the second phase
of compression). This click resembles the simplest
click waveform (the “typical”, “standard” or “direct”
click) observed in different species of Odontocetes [6–
10] mostly in tanks. However, recently, an observation
of the “standard” waveform from killer whales (Orci-
nus orca) in open water has been reported [11].

The “standard” dolphin’s click also comprises two
compression half-waves separated by a rarefaction
half-wave with a higher peak value. Clicks recorded in
water contain several oscillations at a frequency
roughly corresponding to the frequency of the spectral
density peak. The missing first compression half-wave
in our mathematical model is due to the ideal triangular
displacement waveform. 

From Fig. 3, the sound pressure level at 1-m range
and re 1 µPa (the source level) of the acoustic click can
be assessed for different radii of the “frozen sphere”
and different maxima of sphere displacement (MSD).
For example, the source level (SL) can be as small as
150 dB at a radius of a = 0.5 cm and MSD = 0.1 mm.
When the radius of the “frozen sphere” is as big as a =
5.0 cm and the MSD runs up to 2 mm, the SL can reach
almost 230 dB.

We note that Eq. (1) is valid provided that the dis-
placement maximum h is much less than the radius of
the “frozen sphere” a (h ! a) and the wavelength λ
(h ! λ) [4]. In our case, the maximal value of the MSD
is h = 2 mm and the minimal value of the radius a is
3 mm. Hence, the maximal value of h at a = 3 mm
should not exceed 1 mm. In the assessment of the sec-
ond condition, the wavelength should be the minimal
one, which corresponds to the high-frequency bound-
ary of the click spectrum. It implies that, when h ! 2
ACOUSTICAL PHYSICS      Vol. 50      No. 4      2004
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mm, the condition h ! λ will be fulfilled in the entire
frequency range.

The influence of the sphere radius on the click sound
pressure level or source level is much more pronounced
than the influence of the MSD, which is easily seen
from Eq. (1). A tenfold MSD change (from 0.2 mm to
2.0 mm) results in an approximately 25-dB increase in
the SL, while a tenfold increase in the sphere radius
causes an approximately 50-dB growth of the SL.

Figure 4 depicts how the peak spectral density of the
click (SDP) depends on the frozen sphere radius. The
SDP shifts to the low frequency range when the sphere
radius increases. The most pronounced change in the
SDP is observed for 0.3 cm < a < 1.5 cm. The SDP is
decreased from 120 kHz down to 30 kHz within this
range of radii. The graph in Fig. 4 allows an assessment
of the radius of the “frozen sphere” (or sizes of equiva-
lent biological structures presumably responsible for
the click radiation) on the basis of the observed SDP for
different Odontocetes species. The results of such an
assessment are shown in Fig. 4 by the numbered circles,
and these results are also presented in the table.

We selected the data for eight species to span the
whole range in size and weight of the toothed whales:
from one of the smallest toothed whale with the highest
SDP (Harbor porpoise [12]) to the biggest one with the
lowest SDP (Sperm whale [18]). Our MM predicts that
the radius of the frozen sphere (or its biological corre-
late) varies from 0.25 to 3.5 cm, i.e., by about a factor
of 13.

We assume that the assessment of the SDP based on
averaging the spectral density is trustworthy, because a
superposition of many standard clicks with different
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Fig. 3. Source level (SL) of the calculated clicks as a func-
tion of the maximum displacement (MSD) and the radius of
the frozen sphere (shown as a parameter of the set of
curves). The duration of the triangular displacement of the
sphere is 1000 µs.
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delays and peak values results in a rippled SDP but not
in a shift of the bandwidth and the SDP itself.

The duration of the simulated click (Fig. 5) varies
almost proportionally to the “frozen sphere” radius:
from 5 µs at a = 0.3 cm to 53 µs at a = 5.0 cm. The esti-
mates of the standard click duration for six species of
Odontocetes (measured from recorded signals) and dif-
ferent sphere radii (from the table) are indicated by cir-
cles in Fig. 5. The experimental data for comparison
were chosen among the clicks radiated in the frontal
direction (zero azimuth and elevation angles).

3. DISCUSSION

Let us first compare the waveform of a simulated
click and the actual acoustic clicks of Odontocetes.

The “standard” or “direct” click of dolphins consists
of two half-waves of compression separated by a half-
wave of rarefaction whose peak value is higher than
that of compression half-waves. The first positive half-
wave of the modeling click is very small due to the use
of the ideal triangular displacement of the “frozen”
sphere. Besides, the actual clicks of Odontocetes (con-
trary to the modeling click) have no such abrupt front
with which the rarefaction phase of the modeling click
begins. An abrupt front in the actual dolphin clicks
would imply a large acceleration of the biological cor-
relate of the “frozen” sphere that would require high air
pressure in the nasal passages. Actually, this pressure is
rather small, and a smoothing of the click waveform
should occur if the sphere under consideration has a
mass not equal to zero.
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Fig. 4. Peak of the spectral density (SDP) for the calculated
click versus the frozen sphere radius. The sphere displace-
ment waveform is a triangle at a fixed MSD = 2.0 mm and
duration of 1000 µs. The circles indicate the spectral peak
measurements of the Odontocetes clicks fitted to the model:
(1) Harbor porpoise [12], (2) Atlantic bottlenose dolphin
[10], (3) Beluga whale [15, 16], (4) Narwhal [17], (5) Killer
whale [11], and (6) Sperm whale [18].
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Assessment of the radii of the frozen sphere from the peaks of the spectral density of clicks (SDP) for different toothed whales

Species Limits of the SDP (kHz) Radius of the equivalent 
sphere (cm) Ref.

Harbor porpoise 120–140 0.25 (extrapolation) [12]

Atlantic bottlenose dolphin 110–130 0.30 [13]

Risso’s dolphin 47.9 0.77 [14]

Beluga whale 100–115 0.35 [15, 16]

Narwhal 40 1.00 [17]

Killer whale 20–30, 40–60 1.3, 0.75 [7]

Killer whale in a tank 14–20 2.35 [11]

Male Sperm whale 10–12 3.50 [18]
Most of the clicks recorded in water deviate from
the standard waveform, because they are formed “by a
large number of internally reflected pulses that arrive
very close together soon after the arrival of the direct
pulse, since the melon region is close to the air sacs and
the areas of the scull that could reflect acoustic energy
into the melon region” [10]. Acoustic clicks recorded in
directions that deviate from the longitudinal axis of the
dolphin body also contain some oscillations with fre-
quencies roughly corresponding to the peak of click’s
spectral density [10].

The analysis of Fig. 3 shows that the range of the
peak values of clicks in our model varies from 150 dB
to 230 dB as the radius of the “frozen” sphere increases
from 0.5 cm to 5.0 cm and the maximum of the triangu-
lar displacement of the sphere varies from 0.2 mm to
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Fig. 5. Duration of the simulated click in microseconds as a
function of the radius of the frozen sphere in centimeters.
The duration of the triangular displacement is 1000 µs, and
the maximum displacement of the frozen sphere is 2 mm.
The circles indicate the durations of the dolphin’s standard
clicks: (1) Atlantic bottlenose dolphin [10, 13], (2, 3)
Risso’s dolphin [14], and (4, 5) Killer whale [11].
2 mm. At the comparison of these simulation data with
actual ones, it is necessary to take into account that the
concept of the source level of dolphins [10] includes
both the source of clicks and the biological structures
(skull bones, melon, air bags, etc.) participating in the
formation of the time and spatial structure (directivity)
of the click in water. Au [10] has summarized the data
on the source level for clicks recorded in tanks and in
open water for various species of sea and freshwater
dolphins. According to these data, the source level var-
ies from 151 dB for the Hector dolphin to 228 dB for
the false killer whale and the Atlantic and Pacific bot-
tlenosed dolphins. This is in a very close agreement
with the simulated data shown in Fig. 3 for the sound
sources of sizes typical of Odontocetes.

The maximal value of the SL among Odontocetes
(235 dB) is also observed for the Sperm whale [18].
The values of the radius of the sphere and the maximum
of the sphere displacement (MSD) corresponding to
this SL are not depicted in Fig. 3. However, by the
assessment based on the peak of the spectral density
(10–12 kHz), the radius of the equivalent sphere for the
Sperm whale is close to 3.5 cm (Fig. 4). To fit this
radius estimate with the estimate of the sphere radius
based on the SL, it is necessary that the maximum of
the triangular sphere displacement be approximately
equal to 4 mm.

It is important to take into account that the SL of
Odontocetes may considerably vary depending on the
echolocation conditions. Babkin and Dubrovsky [19]
reported on a gradual increase in the SL by 27 dB at the
detection of a target by the Black Sea Tursiops on the
background of random noise with an evenly growing
level. It also has been shown that, when the target range
increased up to 600 m, the level of the click radiation
increased on the average by 52 dB: from 170 up to
222 dB [20]. Au and Pawloski [21] have found a
change in the source levels by up to 12 dB for a Tursi-
ops truncatus discriminating targets against the back-
ground of a masking noise.

As it was already mentioned, the source level in our
model grows by no more than 25 dB when the maxi-
mum of the triangular displacement of the sphere
ACOUSTICAL PHYSICS      Vol. 50      No. 4      2004
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increases from 0.2 to 2 mm. Meanwhile, the Black Sea
bottlenose dolphin increased the SL of clicks up to 52 dB
with an increase in the target range to 600 m [20]. To
explain this increase within the framework of the pro-
posed model, it is necessary to admit an opportunity for
the Odontocetes to change somehow the radius of the
equivalent sphere, i.e., the size of the muscular plug or
“lip” performing the dipole oscillation at radiation of a
click. According to Fig. 3, such a change allows a vari-
ation of the SL by 50 dB. It is possible that the Odonto-
cetes use both possibilities, namely, change both the
maximum of the displacement and the size of the equiv-
alent sphere.

Au et al. [11] reported on the radiation of acoustic
clicks by the Killer whale with a click spectrum con-
taining two pronounced peaks: a low-frequency one
with a maximum between 20 and 30 kHz and a high-
frequency one with a maximum located between 40 and
60 kHz. The simultaneous emission of low- and high-
frequency clicks may testify in favor of the assumption
that Odontocetes, either simultaneously or with a delay
about the duration of a click, “use” two different equiv-
alent spheres: a larger one for the radiation of low-fre-
quency clicks and a smaller one for the radiation of
high-frequency clicks. A possible mechanism for this
could be to switch the sound production between the
two nasal plugs, which in most delphinids have very
different sizes [22]. This assumption, however, needs
an additional analysis.

4. CONCLUSIONS

The development of a simulation model of the
acoustic click radiation by Odontocetes is presented in
this paper. The simulation model is based on the math-
ematical model of the source of acoustic clicks that was
developed and described earlier [1–3]. A software in
MathCAD was created to study influence of the critical
parameters of the mathematical model (the radius of the
“frozen” sphere and the maximum of its triangular dis-
placement) on the sound pressure reduced to 1 m (the
source level) and the position of the spectral density
peak of the click and its duration.

A comparison of the model predictions with experi-
mental data for various species of Odontocetes is car-
ried out.

It is shown that the waveform of the simulated click
generally meets the waveform of the “direct” or “stan-
dard” click of the Odontocetes. It consists of the first
peak of compression, the peak of rarefaction, and the
second peak of compression. Such clicks are observed
in directions close to the longitudinal axis of the animal
body (at zero azimuth and elevation angles). For a
closer agreement of the simulation model with its bio-
logical prototype, it is necessary to take into account
the mass of the oscillating (“frozen”) sphere and to
compare the pressure of the air necessary for creating
the required displacement of the sphere with the mea-
ACOUSTICAL PHYSICS      Vol. 50      No. 4      2004
sured values of air pressure in the nasal passages of
Odontocetes.

Although the range of the radii of the “frozen”
spheres (0.25–5.00 cm) and the maxima (MSD) of the
sphere displacement (0.2–2.0 mm) were chosen arbi-
trarily, i.e., proceeding from the feasible sizes of the
biological structures responsible for the generation of
the clicks, the range of source levels predicted by our
model (150–230 dB) satisfactorily agrees with those
observed for various species of Odontocetes.

The maximal changes in the SL (up to 52 dB)
observed with an increase in the range of a target to
600 m [20] cannot be explained by a change in sphere
displacement alone. It is necessary to assume that, in
addition, the animals are able somehow to change the
size of the biological equivalent of the “frozen” sphere.

The model of the click generation predicts the size
of the sound generating structures throughout a broad
size range of Odontocete species. These predictions
should be compared with anatomical data of the struc-
tures inferred to be involved in the click generation.
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Abstract—Echolocation abilities of a dolphin (Tursiops truncatus ponticus) were investigated in laboratory
conditions. The experiment was carried out in an open cage using an acoustic control over the behavior of the
animal detecting underwater objects in a complicated acoustic environment. Targets of different strength were
used as test objects. The dolphin was found to be able to detect objects at distances exceeding 650 m. For the
target location, the dolphin used both single-pulse and multipulse echolocation modes. Time characteristics
of echolocation pulses and time sequences of pulses as functions of the distance to the target were obtained.
© 2004 MAIK “Nauka/Interperiodica”.
In the literature, ample data can be found on the
echolocation ability of dolphins to detect and identify
underwater objects under laboratory experimental con-
ditions. Experiments were carried out in both closed
pools and open water. It was shown that dolphins easily
detect and identify underwater objects in a pool even in
a complicated acoustic environment (reverberation and
signals of other animals). In open cages, the echoloca-
tion signals of dolphins were investigated under differ-
ent acoustic conditions (with receding objects against a
background of natural man-made acoustic noise). A
review of the results obtained in laboratory experiments
in an open cage can be found in [1]. The comparison of
the acoustic activity of animals in laboratory experi-
mental conditions with that of animals in the sea shows
that the repertory of acoustic activity in natural condi-
tions is much richer than in laboratory experiments [2].
Presumably, the laboratory conditions and the poor
selection of methods used in experiments reduce the
acoustic repertory required for a dolphin to solve the
simple problems proposed by the researchers.

The goal of this investigation is to study the behav-
ior of a dolphin (Tursiops truncatus ponticus) in a com-
plicated acoustic environment. The problems to be
solved include the development of the experimental
procedure for studying the detection of underwater
objects at maximal distances from the experimental
cage and the investigation of the echolocation radiation
used by a dolphin for detecting objects against the nat-
ural acoustic background.

Papers concerned with echolocation describe the
motor reactions and signals produced by a dolphin dur-
ing the experiments. The first investigations of the
behavior of dolphins in a complicated acoustic environ-
ment were performed with Phocaena phocaena [3]. In
1063-7710/04/5004- $26.00 © 20469
the experiments, the eyesight of the animals was func-
tionally excluded using rubber suckers. It was shown
that the smaller the diameter of wires, the greater the
number of collisions of the animal with them. The per-
centage of correct passages through the barrier was
practically 100% if barriers were made of wires with
diameters from 4 down to 2.8 mm and 90% if barriers
were made of wires with diameters from 2.8 down to 0.5
mm. In the case of a wire 0.2 mm in diameter, the per-
centage of correct passages was only 46%. An echolo-
cation situation typical of detecting bottom foodstuffs
was artificially created in [4] by strewing stones of
characteristic size varying from 5 to 30 mm over the
pool bottom. The dolphin detected the targets posi-
tioned at 30 cm from the bottom quite easily and from
a long distance. When detecting the targets against the
background of stones causing an intense reverberation,
the dolphin started from diving to a depth and then
moved toward the targets very slowly near the bottom.
To reduce the bottom reverberation, the dolphin inson-
ified the target at a small angle relative to the bottom
rather than in the downward direction.

In the separating-net experiments on distinguishing
between simple geometrical shapes [5], the animal,
when solving more difficult problems, often lay on one
side upon reaching the net end (i.e., at the point where it
had to make the decision) and insonified the objects in
this position. The author of paper [5] explains this behav-
ior by the directional pattern of the dolphin’s echoloca-
tion system. The width of the directional pattern in the
vertical plane is smaller by a factor of two than the width
in the horizontal plane, and, hence, the dolphin used the
favorable conditions to solve the problem.

It was pointed out that, approaching an object, the
dolphin not only changed the position of it’s whole
004 MAIK “Nauka/Interperiodica”
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body with respect to the target but also actively turned
it’s head. From experiments [6], it was found that,
approaching an object, the dolphin activated the motion
of the rostrum so that the rostrum end circumscribed an
ellipsoidal trajectory in the vertical plane. In view of the
fact that the shape and spectrum of the echolocation
pulse appreciably depend on the angle with respect to
the longitudinal axis of the rostrum, the dolphin can
insonify the objects of interest with different pulses by
varying this angle; the greater this angle, the lower the
frequency corresponding to the peak of the pulse spec-
trum is. In the case of echolocating an unfamiliar
object, the number of scanning motions can reach 57
[6]. After 10–15 echolocation series, the number of
such motions decreased to 2–3.

Experiments in which dolphins distinguished spher-
ical targets [7] showed a statistically reliable increase in
the repetition rate of echolocation pulses with increas-
ing complexity of the problem. In addition, the repeti-
tion rate of echolocation pulses was related to the com-
plexity of the echolocation problem. For relatively sim-
ple problems, no statistically significant increase of the
repetition rate occurred.

In distinguishing pairs of objects, the peak of the
spectrum of location clicks was shifted [8, 9]. In these
experiments, dolphins correctly distinguished metallic
spheres and cylinders at distances not exceeding 24 m.
The study of the trajectory of the animal approaching a
target revealed no changes in motor reactions depend-
ing on the target type [10].

A large series of laboratory experiments on the
simultaneous target detection by two animals was car-
ried out in open waters [11, 12]. The maximum range
of detection was 80 m. The mean level of sound pres-
sure was 220.2 dB (relative to 1 µPa, reduced to 1 m)
for the first dolphin, and 222 dB for the second one.
Typical signals had a duration of 40 µs and were char-
acterized by energy spectra with peaks between 120
and 130 kHz. The pulse-to-pulse temporal interval
exceeded the time of signal propagation from the ani-
mal to target and back to the animal by a value varying
from 30 to 50 ms.

When a dolphin detects underwater objects at dis-
tances below 120 m, the pulse-to-pulse temporal inter-
val exceeds the time required for the sounding pulse to
travel to the target and return back, and the duration of
this interval depends on whether or not the object of
detection is available [13–15]. The maximal pulse-to-
pulse interval measures 150 ms, and the spectral peaks
of all radiated pulses appear to be relatively stable and
fall within 120–130 kHz.

In open waters, the animal correctly detected a
(steel) sphere 10 cm in diameter at a distance of 120 m
and the target with a strength of 1.6 dB (a corner reflec-
tor) at a distance as long as 600 m [16].

When the acoustic environment becomes more
complicated, the dolphin switches the sonar mode from
the single-pulse mode to the multipulse mode (the radi-
ation of pulse bursts) [17]. In a burst, the pulse-to-pulse
interval is shorter than the double time of signal propa-
gation to the target. On the contrary, the burst-to-burst
interval is longer than the double time of signal propa-
gation to the target.

The most variable acoustic repertory is characteris-
tic of the Delphinapterus leucas; however, a compari-
son analysis [18] showed that, in identical experimental
conditions, the echolocation signals of the Tursiops
truncatus appear to be more stable.

The experience shows that the measurements of dol-
phin’s signals must take into consideration the follow-
ing factors: the spatial volume of the signal, the hydro-
phone position with respect to reflecting surfaces, the
azimuth-dependent variation of the signal envelope and
spectrum, and the body of experimental acoustic data.

Laboratory experiments on echolocation must
ensure that the measured parameters of echolocation
pulses showed either experiment-to-experiment repro-
ducibility or reproducibility in similar experiments. A
laboratory experiment refines the results of acoustic
observations of animals in natural conditions and yields
unambiguous interpretation of the measured results.
However, depending on the experimental method, the
data can become more variable, and a statistical pro-
cessing of large bodies of bioacoustic data not only
appears to be complicated but also smoothes out mea-
sured data. Considerable contributions to the measure-
ment error are made by the narrow directivity pattern of
radiation and the azimuth-dependent pulse structure
characterized by an asymmetric shift of the spectral
peak in both the vertical and horizontal planes. It is
clear that the narrower the target and the point of pulse
measurement to the dolphin, the greater the accumu-
lated error. If the animal changes the spectral-time
structure of echolocation pulses on purpose, the statis-
tical processing yields an ambiguous interpretation of
data on the acoustic behavior of a dolphin in the course
of the detection and identification of targets. This is
especially true for the experiments in closed pools;
these experiments showed that dolphins are capable of
advisedly changing the spectral-time structure of
echolocation pulses. In the experiments [10–15] on
detecting underwater objects in open waters, the animal
was fixed in space. In these experiments, the animal
could not change the depth when the object of detection
changed its depth and the distance to the animal. The
search duration and the decision time were also rigidly
preset by the experimenter (the beginning and end of
echolocation were also preset). No changes in the spec-
tral-time structure of pulses radiated by the dolphin
were observed in these experiments.

EXPERIMENTAL TECHNIQUE

Based on the analysis of earlier experiments, an
experimental technique was developed that provided
the separation of echolocation series into the signals
ACOUSTICAL PHYSICS      Vol. 50      No. 4      2004
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Fig. 1. Experimental geometry: (H1, H2) hydrophones, (Pl) platform, (T) target, and (B) boat; h is the depth of the bay and L is the
distance to the target.
produced by the animal in the presence and the absence
of the object of detection. The dolphin was allowed to
select the duration of insonifying the coverage sector,
the decision time, and the orientation of the body rela-
tive to the object of detection, which significantly
decreased the volume of acoustic data for further pro-
cessing. The experimental procedure corresponds to the
technique of alternate selection under successive stim-
ulus presentation with an acoustic control over the ani-
mal’s behavior during the experiment. The technique
developed includes the measurement of the parameters,
such as the animal orientation in the cage relative to the
coverage sector, the alternate selection (yes/no) under
successive stimulus presentation, and the motor reac-
tion of the animal to both target presence and target
absence. The corroboration of the animal’s reaction to
all conditional sensory stimuli, including the zero stim-
ulus (corresponding to the target detection problem), is
described in the literature as the method of the forced
yes/no choice [19] used in psychoacoustic experiments.

Figure 1 schematically shows the geometry of the
experiment. The experimental compartment was sup-
plied with a special window looking toward the bay.
Unlike the cage nets, the window of size 2 × 3 m was
shielded with a net with a 25 × 25-cm mesh. The com-
partment was equipped with the starting manipulator-
annunciator at a distance of 1 m from the window and
two reaction-token manipulators at distances of 1.5 m
to the right and to the left of the starting manipulator. In
the direction perpendicular to the window looking out
to the bay, along the line of the animal’s starting posi-
tion, a rope was tightened, along which a boat moved
with an operator on board. To a distance of 250 m, the
boat could be moved to any position along the rope. For
experimenting at distances from 300 to 700 m, buoys
were placed at every 50 m. In the experiment with dis-
tances below 250 m, the depth of the bay measured h =
4 m, and in the experiment with distances up to 700 m,
the depth in the cage measured h = 6 m and then grad-
ually increased to 15 m.

The receiving hydrophone was positioned on the
line of the animal’s starting position, in the middle of
the water layer at a distance of 50 m from the cage.
Both preamplifier and hydrophone were mounted on an
anchored floating platform. For the hydrophone we
ACOUSTICAL PHYSICS      Vol. 50      No. 4      2004
used a 5-mm-diameter transducer whose average sensi-
tivity was 7 µV/Pa. The preamplifier with a gain equal
to 5 was used as the matching device between the
acoustic transducer and a 60-m-long cable. Via this
cable, the signal from the preamplifier was fed to the
amplifier and the recording system.

The above depths and the distance to the receiving
point were chosen reasoning from the fact that the
structure of the sounding pulse varies only slightly
within ±2° at the level of 0.7 of the directional pattern
of the dolphin’s acoustic field. For the dolphin positions
at depths of 0.5, 1, 1.5, 2, 3, and 3.5 m, the respective
delays of specular returns were 26.6, 53, 80, 106.5, 159,
and 186 µs. The maximal grazing angle of specular
returns was 7° and occurred for the dolphin position at
a depth of 3.5 m.

In the experiments on target detection at distances
up to 700 m, the receiving hydrophone was placed in
the middle of the layer at a depth of 3 m. For the dolphin
at depths below 5.5 m, the maximal delay of the specu-
lar return was 437 µs.

The wind-induced deviation of the receiving point
from the axis (for the animal oriented toward the boat)
was no greater than ±2 m. In the horizontal plane, the
displacement of the receiving point relative to the direc-
tional pattern was no greater than ±2.5°. The wind force
was in fact unidirectional, so that the platform with
hydrophones and the boat were displaced in the same
direction. The actual displacement of the hydrophone
in the horizontal plane was even smaller, because the
tape recording was performed only during periods of
calm.

Figure 2 shows the block diagram of the receive-
record system. We recorded the signals of the dolphin
by an MP-3 tape-recorder and photographed the signal
patterns obtained on the screen of an S1-33 oscillo-
scope by an RFK-5 camera. In the case of the oscillo-
scope measurements, hydrophone H1, which was
closer to the animal, turned on the scanning procedure
of the oscilloscope, and hydrophone H2 was used for
actual imaging of the signal on the oscilloscope screen
and on the tape recorder. The flatness of the amplitude-
frequency characteristic of the receiving channel was
better than 3 dB in the frequency band of 0.5–200 kHz.
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At the end of every experimental run, we supplied a
calibration signal of frequency 100 kHz or a one-period
signal with a 10-µs duration to the preamplifier. This
calibration signal recorded on the magnetic medium
provided the possibility of controlling the whole of the
receiving channel beginning from the preamplifier. To
avoid false behavioral reactions of the animal, we con-
trolled the behavior of the dolphin using the channel of
hydrophone H1 equipped with a power amplifier PA
and a loudspeaker LS. The second channel of the tape-
recorder was used to record the report of the experi-
ment. The experimenter communicated with the opera-
tor via a radio channel.

We guided the animal’s behavior using the annunci-
ator, which generated acoustic signals and transmitted
them to water via a radiator (this annunciator served
simultaneously as the starting manipulator). The
annunciator used four signals (F1, F2, F3, and F4) with
a carrier frequency of 50 kHz and respective modula-
tion frequencies of 0.5, 1, 1.5, and 2 kHz. These signals
were also fed to the loudspeaker, which indicated the
correct operation of the annunciator. We carried out two
experiments a day. The duration of an experiment was
about two hours.

Five to ten minutes before the beginning of the
experiment, we slightly fed the animal in the experi-

PA

LS

A

CS

PrA
H1

MP-3 SR V

RFK

S1-33

H2

1

2
PrAA

Fig. 2. Block diagram of the receive-record system: H1 is
the synchronizing hydrophone, H2 is the measuring hydro-
phone, PrA is the preamplifier, A is the amplifier, CS is the
channel switch, MP-3 is the tape recorder, V is the voltme-
ter, SR is the selective receiver, S1-33 is the oscilloscope,
LS is the loudspeaker, RFK is the camera, and PA is the
power amplifier.
mental cage. In the experiments, we used the following
test order:

(1) as the experimenter produced the signal F1, the
animal stood at the start position near the manipulator
M1 in the surface layer and oriented the body at an
angle of 90° to the direction of search;

(2) via the radio channel, the experimenter informed
the operator about the distance at which the boat should
be located, the kind of target to be used, and the target
depth in the current experiment;

(3) in accordance with the protocol of the experi-
ment, the target was either submerged in water to the
specified depth or left at the surface;

(4) the tape-recorder was turned on for operation in
the recording mode, and the experimenter gave the sig-
nal F2, which meant the start of search;

(5) on signal F2, the dolphin turned toward the
searching sector, went under water and started the loca-
tion process;

(6) one to three seconds after making a decision, the
dolphin pushed the corresponding manipulator;

(7) if the task was fulfilled correctly, the experi-
menter gave signal F3 to inform the animal about the
success; otherwise, the experimenter gave signal F4;

(8) the tape-recorder was turned off.
In the experiment, the dolphin received a food fee

for 3 to 10 correctly fulfilled successive tasks, which
made it possible to increase the number of tests in one
experiment without degrading the food motivation. In
one experiment, the number of tests varied from 100 to
200. The duration of every task and the whole of the
experiment depended only on the animal participating
in the experiment.

We used nine different targets (shapes) in the exper-
iments. The reflectance of the shapes used (i.e., the tar-
get strength) was calculated from the experimentally
measured sound pressures of radiated and reflected sig-
nals in the sea for different distances to the target.

As the radiator, we used a piezoelectric transducer
100 mm in diameter, which was composed of a set of
transducers oriented in one plane. As the receiver, we
used an omnidirectional piezoelectric receiver 5 mm in
diameter. The measurements were carried out for dis-
tances of 2, 4, 5, 7, 9, and 11 m from the radiator and
receiver. For every kind of target, the distances were
selected taking into account the reflected signal ampli-
tude. The calculated results for every target were aver-
aged over 10 measurements. We tested the following
shapes: a duralumin sphere 100 mm in diameter, Sh5 (a
target strength T = –27 dB); a hollow cylinder 120 mm
in diameter, 400 mm in height, and with 10-mm thick
walls, SH6 (T = –14 dB); the same but filled cylinder,
Sh7 (T = –15 dB); a corner reflector Sh8 composed of
triangular hollow plates, 200 mm on a side and 5 mm in
thickness, made of 0.2-mm thick tin (T = –1.6 dB); and
a pair of similar reflectors Sh9 with a distance of 0.5 m
between their centers (T = 0 (1) dB). (In the case of the
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pair of reflectors, the directional pattern is very narrow,
which causes an increase in the measurement error.)

For small targets Sh1 to Sh4 (steel spheres of
respective diameters 2, 2.7, 4.1, and 4.5 cm), no mea-
surements of target strength were performed.

EXPERIMENTAL RESULTS

The detection of shapes at limiting distances
depends on different factors, such as the acoustic back-
ground of the environment, the energy performance of
the radiating system, the frequency range, the target
strength of the object of detection, the performance of
the receiving system, the method of animal training,
and the experimental procedure.

For objects of large geometrical size and, conse-
quently, great target strength, the detection range could
be more than 600 m. The data obtained with the objects
of great target strengths showed a good test-to-test
reproducibility in one experiment; however, the results
can vary from one experiment to another, depending on
the season the experiment was carried out (in summer
or in autumn). This fact is obviously related to temper-
ature stratification and signal attenuation in water, and
this dependence will be the stronger, the greater the dis-
tance to the located object is. For shapes Sh5 to Sh9, the
respective maximum detection ranges (with a probabil-
ity of true detection of 0.98) were not less than 100,
300, 450, and 650 m. The dolphin’s acoustic activities
were recorded for all targets and different target depths.
In the case of target Sh9, the signals were recorded only
for distances shorter than or equal to 600 m.

The processing of phonograms showed that, when
detecting underwater objects, the dolphin varied the
signal amplitude depending on the distance to the
object of detection. Figure 3 shows the sound pressure
level as a function of the distance to the target. The
points of this function were obtained as average levels
of peak-to-peak sound pressures of signals measured in
all experiments with object Sh9 (the realizations corre-
sponded to both the presence and absence of the
object). As can be seen, the level of the signal’s sound
pressure increases practically linearly with the distance
to the object of detection. In our experiments, the min-
imal acoustic pressure of pulses measured 170 dB (the
corner reflector at a distance of 5 m from the animal)
and could be as great as 222 dB for limiting distances
(a pair of corner reflectors at a distance of 650 m from
the animal). The linear increase in the amplitude of the
signal’s acoustic pressure with distance to the object is
a general tendency. In particular cases, the sound pres-
sure level of the signal varied depending on the target
strength and acoustic environment.

Searching for an object, the dolphin not only varies
the sound pressure level of the radiated signal but also
changes the pulse distribution in time (the temporal
pulse sequence). Figure 4 shows the pulse sequences
radiated by the animal during one test for different dis-
ACOUSTICAL PHYSICS      Vol. 50      No. 4      2004
tances from the located object. It can be seen that pulse
sequences appear to not be equidistant in time and
depend on the distance to the object, which is especially
pronounced for large distances (exceeding 100 m). For
distances to the object of detection below 100 m, the
duration of the pulse-to-pulse interval depends on the
animal–object distance and satisfies the inequality T >
2L/C, where C is the velocity of sound in water and L is
the distance to the object.

For distances to the located object above 100 m, the
temporal sequences of pulses radiated by the animal
become nonequidistant in time and, for this reason,
require a more detailed consideration.

Figure 5 shows the dynamics of the echolocation
sequence variation versus the order number of a pulse-
to-pulse interval in the pulse sequence. The interval
number in the pulse sequence order is plotted as the
abscissa, and the duration (in milliseconds) of the
pulse-to-pulse interval is shown as the ordinate. All
sequences shown correspond to situation YY (the target
is present, the animal’s reaction is correct) for different
distances between the dolphin and the object of detec-
tion. Every dot shows the actual variation of the period
between pulses in one test. The heavy line corresponds
to the time required for the signal to travel to the target
and return back (calculated by the formula Tcalc =
2L/C).

In the case of the animal–target distance of 10 m, the
pulse sequence in time is nonequidistant and the pulse-
to-pulse intervals exceed the time of signal propagation
to the target and back by a factor of 2–3. With the object
of detection receding to a distance of 50 m, the first
pulse-to-pulse interval appears to be much greater than
the estimated time of signal propagation to the target
and back, while subsequent pulse-to-pulse intervals
exceed the estimated time (66.7 ms) by 20–40 ms. For
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Fig. 3. Sound pressure level of dolphin’s echolocation sig-
nals as a function of the distance to the object of echoloca-
tion. The sound pressure level of the signal in dB (peak-to-
peak) relative to 1 µPa reduced to 1 m is plotted as the ordi-
nate, and the distance to the object of detection is plotted as
the abscissa.
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a distance to the object of 100 m, the pulse-to-pulse
interval varies between 170 and 280 ms, which exceeds
the estimated time (133.3 ms) by 50–140 ms. For the
target at distances exceeding 150 m, the behavior of the
pulse-to-pulse intervals drastically changes: pulse sub-
sequences (groups or bursts) appear in which the pulse-
to-pulse intervals are much shorter than the estimated
time. The dynamics of pulse-to-pulse interval variation
with the distance to the target increasing from 150 m to
600 m (Fig. 5) shows a considerable increase in burst-
to-burst intervals, the pulse-to-pulse intervals in a burst
being much smaller than the estimated time. With
increasing distance to the target, the duration of bursts
increases due to the correspondingly increased number
of pulses in a burst, and the burst-to-burst time intervals
exceed the estimated time of signal propagation to the
target and back.

The results obtained are evidence of the availability
of two operating modes in the animal’s radiating sys-
tem: the single-pulse mode and the mode of transmit-
ting pulse groups (bursts). An intermediate echoloca-
tion mode occurs for animal–target distances between
120–150 m, where the pulses are transmitted as a com-
bination of separate pulses (the single-pulse mode) and
pulse pairs (bursts). In bursts of two pulses, the pulse-
to-pulse interval varies from one burst to another
between 50 and 150 ms, while, for the single-pulse
mode, the pulse-to-pulse interval varies from 220 to
450 ms.

Switching to the mode of echolocation with pulse
bursts definitely occurs at a dolphin–target distance
of 200 m; for this distance, bursts are composed of
3−5 pulses with pulse-to-pulse intervals of 10–50 ms.
The number of pulses in a burst usually increases at the

Distance 50 m

100 m

160 m

250 m

400 m

500 m

600 m

0 1 2 3 s

Fig. 4. Pulse sequences radiated by the dolphin detecting
underwater objects in a natural acoustic environment for
different distances. For every test, the complete fragment is
shown.
end of the whole series of echolocation pulse sequence.
As the distance to the object of detection increases, the
number of pulses in a burst also appreciably increases.
For distances from 300 to 600 m, the difference
between pulse-to-pulse intervals appeared to be so
great that we were forced to use two scales: one (lower)
for pulse-to-pulse intervals in bursts and the other
(upper) for the interval between the last pulse of a burst
and the first pulse of the next burst. As follows from
Fig. 5, the pulse-to-pulse interval in long bursts varies
from 12 to 50 ms, and the interval between the last
pulse of a burst and the first pulse of the next burst can
be as long as 1200–1400 ms (for the target at a distance
of 600 m).

Figure 6 shows the dynamics of temporal pulse
sequence in bursts. The pulse-to-pulse interval in a
burst is plotted as the ordinate, and interval number in
sequence is plotted as the abscissa. The graphs corre-
spond to the following situations: YY when the target is
present and the reaction is correct, NY when no target
is present and the reaction is correct, YN when the tar-
get is present and the reaction is incorrect, and NN
when no target is present and the reaction is incorrect.
Figures marking the curve correspond to the number of
the burst in the whole series of pulses in one test. From
the curves given in Fig. 6, one can see that the pulse
sequence in bursts can be both equidistant and nonequi-
distant; in other words, pulse-to-pulse intervals in
bursts appear to be modulated. The pulse-to-pulse
interval modulation can both vary significantly from
one burst to another (see the NY–Sh8 case) or almost
replicate one another (the first and second bursts in the
YY–Sh8 and NN–Sh9 cases). The equidistant pulse
sequences with minimum pulse-to-pulse interval
appear mainly in the last burst of the whole pulse series
(the third burst with a pulse-to-pulse interval of 1.7–2 ms
in the YN–Sh9 case and the second burst with a pulse-
to-pulse interval of 2–3 ms in the NY–Sh9 case). The
number of bursts in a test depends on the situation. For
example, in the case of the target being present and suc-
cessfully detected (YY–Sh8), the number of bursts
(two) appears to be smaller than in the case of the target
being absent and incorrectly detected (NN–Sh9, four
bursts). In the majority of cases, pulses in bursts appear
to be nonequidistant.

Thus, the measured temporal distributions of pulses
in sequences show the availability of two echolocation
modes: the single-pulse mode and the multipulse mode
(pulse bursts). 

Figure 7 shows typical oscillograms of pulses radi-
ated by a dolphin searching for a target at different dis-
tances. In the oscillograms in Figs. 7a–7c, the first pulse
is the echolocation pulse of the dolphin and the second
pulse corresponds to the reflection from the water–air
boundary.

The set of features that allow one to distinguish the
echolocation pulse of the animal being tested among
other possible pulses is as follows. Every sounding
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Fig. 5. Dynamics of the temporal pulse sequence versus the pulse-to-pulse interval number in the YY situation (the target is present,
the reaction is correct). The heavy line shows the time required for the signal to travel to the target and return back. The pulse-to-
pulse interval is plotted as the ordinate, and the interval number in sequential order is plotted as the abscissa.
pulse has a companion pulse (reflected from the water–
air boundary). The position of this companion on the
time axis relative to the main pulse depends on the
ACOUSTICAL PHYSICS      Vol. 50      No. 4      2004
depth of the animal position, the hydrophone depth, and
the distance from the receiving point to the dolphin.
Each reflected pulse changes the phase of the wave to
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Fig. 6. Dynamics of the temporal pulse sequence in bursts for targets Sh8 and Sh9 versus the pulse-to-pulse interval number in
sequential order for targets Sh8 and Sh9 and different situations: (YY) the target is present and the reaction is correct, (NY) no target
is present and the reaction is correct, (YN) the target is present and the reaction is incorrect, and (NN) no target is present and the
reaction is incorrect. The pulse-to-pulse interval in the burst is plotted as the ordinate, and the interval number in sequential order
is plotted as the abscissa.
the value opposite to the phase of the main pulse. The
temporal structure of the reflected pulse varies depend-
ing on the grazing angle, because the spectral-time
structure of a dolphin’s acoustic radiation depends on
the azimuth. Pulses that the dolphin radiates detecting
targets at distances of 650 (Fig. 7a), 500 (Fig. 7b), and
400 m (Fig. 7c) have nearly identical oscillograms in
the form of 30-ms-long decaying structures. For com-
parison, Fig. 7d shows the pulse of the dolphin locating
a fish at a distance of 0.7 m. The duration of the main
oscillation of this pulse measures 20 µs.

DISCUSSION

The results obtained can be summarized using a sit-
uation-dependent analysis of all pulse sequences
recorded during all experiments on target detection.
Prior to the data processing, we needed to find a param-
eter that is invariant with respect to switching between
the echolocation modes. To generalize the single-pulse
and multipulse echolocation modes, we introduce the
concept of an overlapping factor defined as the ratio of
the pulse-to-pulse or burst-to-burst interval to the cal-
culated time of signal propagation to the target and
back: K = Texp/Tcalc. In this formula, the denominator
Tcalc is known and depends on the distance between the
dolphin and the target and the numerator Texp is
obtained from the experimental data. In the case of the
single-pulse echolocation mode (for distances of 120–
150 m), the determination of the time Texp is relatively
obvious. In the case of the multipulse echolocation
mode, the time is determined as Texp = Σti + tk, where Σti
is the sum of pulse-to-pulse intervals in a burst (the
burst duration) and tk is the interval between the last
pulse of the burst and the first pulse of the next burst.
The pulse sequence characterized by an overlapping
factor much smaller than unity can be classified as a
burst of pulses. In the case of an overlapping factor of
about 0.5–0.7, some uncertainty appears. In this case,
the discrimination between a single-pulse sequence and
a pulse burst (especially a pulse pair) is hardly possible.
We eliminated from further processing the tests in
ACOUSTICAL PHYSICS      Vol. 50      No. 4      2004
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which the dolphin radiated a single burst of pulses (the
overlapping factor was always smaller than unity).
Records with uncertain pulse sequences were either not
included in calculations or processed more elaborately.
In the case of elaborate processing, we must first exam-
ine whether the questionable pulse belongs to the pulse
sequence radiated by the dolphin employed in the
experiment, whether this pulse was radiated by another
animal, or whether it is a reflection from random obsta-
cles. Figure 8 shows the results of processing the data
obtained in the experiments in which the dolphin
detected targets Sh6, Sh7, Sh8, and Sh9 at distances
exceeding 120 m. The dots correspond to data averaged
over 5 to 60 measurements. The scatter of these values
is omitted, because it is insignificant in this case.
Depending on the distance to the target, the burst-to-
burst interval varies from 220 to 1400 ms (Fig. 8a). The
line of measured times Texp (the heavy line in Fig. 8a)
lies noticeably higher than the line of calculated times
Tcalc (the light line in Fig. 8a). The mean burst duration
varies from 50 to 210 ms depending on the distance to
the object of detection (Fig. 8b). The winding behavior
of this curve can be considered as evidence of the fact
that certain data arrays correspond to situations in
which the object of detection was predominantly
present or predominantly absent. Nevertheless, the ten-
dency of varying the pulse burst duration depending on
the distance to the object of detection is evident. Figure
8c shows the number of bursts radiated by the dolphin
versus the distance to the object. The experimental pho-
nograms (Fig. 8c) were processed separately for the sit-
uations with the target present and the situations with the
target absent. The mean number of bursts in the situation
with the target present is much smaller and varies from 2
to 4 bursts. The number of bursts depends on the diffi-
culty of the problem solved by the dolphin. In the sit-
uation with the target absent, the dolphin inspects the
coverage sector more thoroughly and varies not only
the parameters of the radiated bursts but also the burst-
to-burst intervals.

Figure 8d shows the number of pulses in the bursts
(from 2 to 14) versus the distance to the target. Every
dot in the plot was obtained as an average of several
measurements (from 5 to 30). In the same acoustic
environment, the number of pulses can significantly
vary and depends on the success of the previous tests.
After unsuccessful previous tests, the animal inspects
the coverage sector more thoroughly, which manifests
itself in an increase in the burst duration and in the
number of bursts in the whole pulse series. In situations
with the object being absent, when the search occurs at
long distances (550–600 m), the pulse number in bursts
can be as high as 30.

Thus, the results of processing allow the interpreta-
tion of the pulse bursts as separate signals characterized
by the following parameters: amplitude, duration, pulse
number, and variation of the pulse-to-pulse interval.
The burst-to-burst intervals are longer then the time
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Fig. 7. Oscillograms of pulses radiated by the dolphin:
(a−c) the typical signals of the dolphin detecting a target at
distances of (a) 650, (b) 500, and (c) 400 m and (d) a typical
pulse produced by the dolphin locating a fish at a distance
of 0.7 m. In every oscillogram, the first pulse is the dol-
phin’s signal and the second pulse is the reflection from the
water–air boundary. The time scale is 10 µs per division.
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Fig. 8. Characteristics of the echolocation signals of the dol-
phin detecting objects at large distances: (a) the duration of
the burst-to-burst interval versus the distance to the object
(the light line corresponds to the calculated time of signal
propagation to the target and back, the circles correspond to
experimental data); (b) the burst duration versus the dis-
tance to the object; (c) the burst number versus the distance
to the object (the dotted circles correspond to situations
with no target and the dots correspond to situations with the
target present); and (d) the pulse number in a burst versus
the distance to the object. The objects of detection are Sh7,
Sh8, and Sh9. Every dot is obtained as the average over 6 to
20 tests. The distance to the object of detection is plotted as
the abscissa in all graphs. The ordinate corresponds to
(a) the burst-to-burst interval (in milliseconds), (b) the burst
duration (in milliseconds), (c) the mean burst number, and
(d) the mean pulse number in a burst.
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Fig. 9. Dynamics of the mean overlapping factor versus the distance to the object of detection for all targets from Sh1 to Sh9 and
different situations: (a) YY (the target is present and the reaction is correct), (b) (no target is present and the reaction is correct),
(c) YN (the target is present and the reaction is incorrect), and (d) NN (no target is present and the reaction is incorrect). The over-
lapping factor is plotted as the ordinate, and the distance to the object of detection (in meters) is plotted as the abscissa in all graphs.
required for a burst to travel to the target and return
back.

The revealed regularity offers a possibility of con-
structing the generalized curve of the overlapping fac-
tor as a function of the distance to the object. Figure 9
shows the dynamics of the mean overlapping factor for
every situation with all targets used in the experiments
(from Sh1 to Sh9). In the YY situation, the mean over-
lapping factor varies within 1.2–1.9 and the regression
line is practically horizontal with a characteristic value
of 1.6–1.7. In the YN situation, the overlapping factor
varies within 1.3–1.6, i.e., errors in the situation with
the target present are seemingly related to the task
solved by the animal previously, but not with solving
the current task. The NY situation (the absence of the
target and a correct reaction of the animal) shows that
the overlapping coefficient tends to increase, but does
not exceed the value of 2.5. The maximum scatter in
data for the mean overlapping coefficient (from 1.1 to
3.0) was obtained in the NN situation, i.e., when the tar-
get is absent in the coverage sector but the animal
decides that the target is present. 

The experimental results showed that the dolphin is
able to detect objects at large distances. Phonograms of
the acoustic behavior of the animal detecting targets at
distances up to 600 m were obtained. Characteristics of
temporal pulse sequences were estimated as functions
of the distance to the object of detection. The behav-
ioral data of the acoustic experiment showed that, in the
case of target Sh9, the maximum detection range can
definitely exceed the results obtained. The detection of
this target at distances of 650 and 700 m was observed,
but no records for these signals were obtained because
of bad weather conditions.

The characteristics obtained for the signals of the
Tursiops truncatus ponticus solving detection problems
in a complicated acoustic environment showed that the
results of full-scale observations of animals at liberty
[2] can be modeled in laboratory experiments. The
method of alternate choice under a successive stimulus
presentation with an acoustic control over the animal’s
behavior during the experiment allows one to obtain
reliable behavioral and acoustic reactions of the animal.
Combining the experimenter’s acoustic response to the
animal’s behavioral reactions with partial food rein-
forcement makes it possible to control the animal’s psy-
chophysiological state during the experiment. The body
of acoustic information obtained in one test appears to
be much smaller and can easily be interpreted on fur-
ther processing. The number of pulses radiated by the
dolphin depends on geometrical dimensions of the tar-
get and on the distance to the target. Indeed, the smaller
the volume of space examined by one acoustic pulse,
the greater the pulse number required for detecting the
target in the water column.

In closing, I thank N.A. Dubrovsky for supporting
the experiments described in this paper. Expert discus-
sions of current experimental results have made it pos-
sible to arrive at a conclusion that the modeling of a dol-
phin’s acoustic behavior in a laboratory experiment is
quite practicable. However, the adequacy of the meth-
ods used in laboratory acoustic experiments is still a
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topical problem of physiological experiments with
superior animals.
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Abstract—A mathematical model of the auditory analysis of periodicity of sound and its envelope is proposed.
The model consists of a sequence of mathematical transformations that describe the signal processing stages.
The following parameters and properties of the auditory system are taken into account: the crude analysis of
the input acoustic signal accurate to the width of the aural critical band; the frequency dependence of the width
of the aural critical band; the spectrum of the input signal analysis by a set of 3500 filters closely spaced in fre-
quency; the absolute audibility thresholds at a given frequency; the time-domain analysis of both the output sig-
nals of each filter and the envelope profile with the help of the periodicity function; the pulsed activity of audi-
tory neurons; the ability of the auditory system to memorize the spectral–time images of the signal and its indi-
vidual parameters; the ability of the auditory system to form the perception of the loudness of sound, to
memorize and compare the loudness of sound at different time moments, and to conclude which of them is
higher or lower or whether they are equal accurate to a certain threshold; the dependence of the critical modu-
lation bandwidth on the modulation frequency; and the dependence of the audibility thresholds of amplitude
modulation on the modulation frequency. By an example of processing amplitude-modulated signals with var-
ious carrier-to-envelope frequency ratios, the model is shown to give a satisfactory explanation of their pitch
and auditory estimate of the envelope period. © 2004 MAIK “Nauka/Interperiodica”.
This paper describes a mathematical model of the
auditory analysis of both periodicity of sound and its
envelope. The model consists of a sequence of mathe-
matical transformations that describe the functions of
the blocks of the diagram given in [1].

According to the block diagram of the model, the
input acoustic signal p(t) is applied to 3500 parallel
tightly overlapping frequency filters Φn1–Φnk whose cen-
ter frequencies fk are spaced uniformly on a logarithmic
frequency scale. The frequency band transmitted by these
filters is equal to the aural critical band ∆Fcr [2, 3]. If the
signal’s spectral components are spaced apart by a fre-
quency interval wider than the aural critical band, the lis-
tener perceives them separately and uses the spectral
analysis mechanism. If spectral components of the input
signal are concentrated within a single aural critical band,
they are perceived together as a single signal or, to be
more precise, as a sum of the input signal’s spectral com-
ponents with the corresponding amplitudes and phases.
The model implies that, in the latter case, the energy of
the signal is distributed over all the tightly frequency-
overlapping filters within the aural critical band in accor-
dance with the response of the “auditory filter” and that
the time-domain sound analysis mechanism is applied.
The frequency interval ∆fadj between two adjacent filters
inside a single critical band is calculated by the formula

∆fadj = ∆Fcr(f)/nf, (1)
1063-7710/04/5004- $26.00 © 20480
where f is the frequency in hertz and nf is the number of
filters that fall into a single aural critical band (nf =
3500/24 ≈ 146, because the number of nonoverlapping
aural critical bands that cover the aural frequency band
is 24 [2]).

An experimental dependence of the aural critical
band ∆Fcr(f) on frequency is given in [2, 3]. In the
present paper, we approximate it as follows:

(2)

(3)

(4)

The amplitude-vs-frequency responses of the filters
are borrowed from [4, 5], where filters called the “audi-
tory filters” are described by the formula

W(g) = (1 + pg)1/2e–pg/2, (5)

where p is the signal’s sound pressure and g = |f – fk|/fk
is the relative difference between the signal frequency
fk and the current frequency f. When the frequency fk of
the input signal of the kth filter is equal to its center fre-

∆Fcr f( ) 40 f( ) for f 250,≤log=

∆Fcr f( ) f / f 1.4+( )log=

for 250 f 1000 and for f 3000,>< <

∆Fcr f( ) f / f( )log 2.4+[ ] for 1000 f 3000.≤ ≤=
004 MAIK “Nauka/Interperiodica”
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quency, the amplitude-vs-frequency response of this fil-
ter can be represented as

Wk(gk) = (1 + ukgk)1/2 , (6)

where uk = α[pk(fk) – pa(fk)] is the difference between
the intensity αpk(fk) of the spectral component αpa(fk)
of the input signal pa(fk) at the input of the kth filter and
the intensity αpk(fk) of the spectral component of the
signal at the same frequency at its audibility threshold
αpk(fk), gk = |f – fk|/fk is the relative difference between
frequencies f and fk, and α is the coefficient of propor-
tionality.

Because the frequency response of the filters
depends on the parameter uk, which in turn depends on
the parameter pa(fk), their behavior must be calculated
with allowance for the frequency dependence of the
absolute audibility thresholds pa(fk). An averaged
experimental frequency dependence of these thresholds
is given in [2] and is approximately described by the
following five expressions in various frequency bands
with x =  and ∆x = |x – x0|:

(7)

(8)

(9)

(10)

(11)

Expressions (7)–(11) allow one to approximately
calculate the absolute audibility thresholds pa(f), which
will differ from the averaged experimental values by no
more than 1.2 dB in the frequency range from 20 Hz to
12 kHz and by no more than 4 dB at frequencies above
12 kHz. The 0-dB level is arbitrarily set at 2 kHz.

According to the block diagram of the generalized
model of auditory analysis of sound periodicity [1], a
positive constant quantity A1 = min|p(t)| equal to the
absolute value of the minimum input signal is added to
the input signal, which makes all values of the above
signals positive while retaining the time profile αpk(t)
of the spectral component of the input signal at the
input of the kth filter. As was shown in [6], the time pro-
file of the input signal is stored in the receptor poten-
tials of the hair cells of the Corti organ.

The pulsed nature of the auditory neural network
activity was simulated as follows. In the absence of a
signal at the input of the model, only a spontaneous
pulsed activity is observed at the outputs of the filters

e
ukgk /2–

f( )log

pa f( ) dB, 14.0∆x 51x 140,+–=

where x0 2.0 and 20 f 1000;< <=

pa f( ) dB, 3.3∆x,=

where x0 3.3 and 1000 f 3000;< <=

pa f( ) dB, 3.0 f∆x,=

where x0 3.4 and 3000 f 12000;< <=

pa f( ) dB, 951.56∆x,=

where x0 4.00688 and 12000 f 15000;< <=

pa f( ) dB, fx, where 15000 f 20000.< <=
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Φn1–Φnk, the pulse-to-pulse intervals being distributed
by the Poisson law

pm, n = (Ym/m)e–Y, (12)

where pm, n is the probability that event A occurs m
times in n independent trials and Y = np.

The density Ds of the spontaneous pulsed activity
(firing rate) of human auditory nerve fibers per one
aural critical band can be estimated from their total
number (30000), the number of aural critical bands
(24) that cover the audible frequency band, and the
known average spontaneous firing rate (50 pulses per
second) for a single fiber. Thus, one aural critical band
is covered by 1250 = 30000/24 auditory nerve fibers,
and the average spontaneous firing rate of the human
auditory nerve per one aural critical band is Ds = 1250 ×
50 = 62500 pulses per second. Note that a human with
normal hearing does not perceive the spontaneous fir-
ing rate of the auditory neurons.

Let αpk(ωk, t) be the input signal of the kth filter and
Dk0(ωk) be the density of the pulsed activity at the out-
put of this filter at the audibility threshold. Then the fre-
quency and time dependence of the pulsed activity den-
sity Dk(ωk, t) at the outputs of the filters Φn1–Φnk can be
represented as

Dk(ωk, t) = Dk0(ωk)[A1 + αpk(ωk, t)]. (13)

The distribution of the pulsed activity density
Dk(ωk, t) at the outputs of the set of filters Φn1–Φnk at a
particular instant can be considered as an instantaneous
power spectrum of the input signal, while the variation
of this spectrum in time is the spectral–time image of
the input signal, which is sometimes referred to as its
“full description” [7]. The full description was memo-
rized and the output of each filter was analyzed with the
periodicity function Pk(τ) [8], Pk(τ) = Sk(τ)/Sk(τ = 0),
where

(14)

τ is the delay, Ts is the length of the analyzed signal, t is
the current time, ε ! max[Dk(ωk, t)], and χ(r) = 1 at r ≤ 0
and χ = 0 at r > 0; r = [|Dk(ωk, t) – Dk(ωk, t + τ)| – ε].
The period of the signal is extracted from the highest
maximum of the periodicity function at the shortest
nonzero delay τ. The extracted maxima of the periodic-
ity function in the frequency channels are multiplied by
uk (see expression (6)) with f = 1/τ.

If the level of the spectral component of the input
signal at the filter’s center frequency fk was lower than
the level of this signal component at the audibility
threshold, pulsed activity was generated at the output of
the filter, which simulated the spontaneous firing rate of
the auditory nerve, whose pulse-to-pulse intervals com-
plied with the Poisson law.

Sk τ( )

=  1/Ts( ) χ Dk ωk t,( ) Dk ωk t, τ+( )– ε–[ ]
0

Ts

∫ t,d
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It is assumed that the density of the spontaneous
pulsed activity at the filters’ outputs gradually
decreases from the initial value Ds in the absence of the
signal to zero as the density of the forced (under the
action of the signal) pulse rate in this frequency channel
approaches a particular value D1 = C1Ds. Let C1 ≈ 1.5.

It can easily be shown that, at moderate intensities
(20–40 dB), the loudness L(t) of sound reproduces its
envelope M(t) accurate to a constant coefficient. Let
p(t) be an amplitude-modulated (AM) signal

(15)

where dm is the modulation index, M(t) = 1 + dmsin(Ωt)
is the envelope of the input signal p(t), sin(ωt) is the
carrier oscillation, Ω is the modulation frequency, and
ω is the carrier frequency. The percent AM modulation
is dmp = dm × 100%.

According to Stevens’s law, the loudness L(t) of
sound is satisfactorily described by the expression

(16)

where C is a constant coefficient, p(t) is the acoustic
pressure, and a is the intensity-dependent exponent. At
moderate sound intensities (20–40 dB), the coefficient
is a = 1 and expression (16) can be written as

(17)

because the loudness of a constant-amplitude sinusoi-
dal signal is constant after a certain time after the pulse
is turned on, i.e., C2 = Csin(ωt), where C2 is a constant
factor.

Thus, at moderate intensities, the loudness of sound
is proportional to the envelope M(t) of the input signal
p(t). Taking this fact into account, we form the envelope
M(t) of the input signal by calculating the function L(t)
based on the assumption that the loudness of sound is
determined by the total pulsed activity of auditory neu-
rons due to the input signal.

A number of experimental data show that the loud-
ness of an acoustic pulse reaches its steady state within
25 to 200 ms after it is turned on. The loudness stabili-
zation time constant of 100 ms is used most often [9].
Let us calculate L(t) from the sum of pulse activity den-
sities at the outputs of the system of filters Φn1–Φnk for
each time moment over the time interval Tsum = 5 ms.

It may seem that the summation time interval should
be equal to 100 ms. In this case, the envelope frequen-
cies higher than 10 Hz will not be fully represented in
the function L(t), because this summation acts as a low-
pass filter.

p t( ) 1 dm Ωt( )sin+[ ] ωt( ),sin=

L t( ) Cp t( )a,=

L t( ) C2 1 dm Ωt( )sin+[ ] C2M t( ),= =
With expression (13) for the pulsed activity density
Dk(ωk, t) at the output of the kth filter, the function L(t)
can be represented as

(18)

where ti = i∆t, i = 0, 1, …, im; im = Ts/∆t; ∆t is deter-
mined by the necessary accuracy of calculating L(ti), Ts
is the length of the input signal; f1 = 20 Hz, f2 = 20 kHz;
km = 3500; j = 0, 1, …, jm; jm = Tsum/∆t1; t1j = j∆t1; and
∆t1 ≈ 0.01Tsum.

If frequency and time are continuous variables,
expression (18) can be represented as

(19)

The function M(t) ≈ L(t) is applied to the set of tightly
overlapping modulation filters Φm1–Φml, which are con-
ventionally called the auditory filters for the envelope.
The presence of modulation filters [10] and auditory fil-
ters, as well as the existence of the aural critical band
and aural critical modulation-frequency band [11],
allow us to assume that the auditory mechanism of ana-
lyzing the envelope periodicity also uses the spectral–
time processing and, moreover, its operating principle
is similar to that of the auditory analysis of the period-
icity of sound. The procedure is such that, if the spectral
components of the input signal are concentrated within
one aural critical modulation-frequency band, they are
combined with allowance for their amplitudes and
phases and the energy of the total signal is distributed
over the set of modulation filters that fall within the
aural critical modulation-frequency band according to
the shape of the auditory filters for the envelope.

If the spectral components of the envelope occupy
several aural critical modulation-frequency bands, they
are processed in each band separately. Let us represent
the shape of the auditory filters for the envelope as

(20)

where gm = β|fm – fml|/fml is the relative difference
between the current amplitude-modulation frequency
fm and the frequency fml of the envelope’s frequency
component in the lth frequency channel for the enve-
lope, β = ∆Fcrm /∆fm, 0.7, and ∆fm, 0.7 is the bandwidth
of the modulation filter Wm(gm) measured between its
0.7 points relative to its maximum response at the cen-
ter frequency fml. The coefficient β is introduced to
make the experimental bandwidth ∆Fcrm(fm) equal to
∆fm, 0.7, and pm = (dmp – pml) is the difference between
the depth dmp of modulation caused by the lth spectral
component of the envelope at the frequency fml and the

M ti( ) L ti( )∼

=  2π/ T sum ω2 ω1–( )[ ] Dk ωk ti t1 j+,( ),
k 1=

km

∑
j 0=

jm

∑

M t( ) L t( )≈ 2π/ TsTk ω2 ω1–( )[ ]=

× D ω t t1+,( ) ω t1.dd

ω1

ω2

∫
0

Tsum

∫

Wm gm( ) 1 pmgm+( )1/2e
pm– gm/2

,=
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AM audibility threshold pa( fml) at the same AM fre-
quency fml.

An experimental dependence of the AM threshold
versus the frequency fm is reported in [11]. Because the
dependence of the AM threshold pmn(fm) of the AM
noise versus the AM frequency significantly differs
from that for the tone AM, pmt(fm), these modulation
functions (in terms of the modulation percentage) are
approximated by expressions (21)–(25) for AM noise
and AM tone separately:

(21)

(22)

(23)

(24)

(25)

An experimental dependence of the critical modula-
tion audibility bandwidth ∆Fcrm versus the modulation
frequency fm is reported in [12]. It is approximated by
expressions (26)–(28) for different modulation fre-
quency bands:

(26)

(27)

(28)

Let us estimate the number nfm of the auditory filters
for the envelope that covers one aural critical modula-
tion-frequency band from the deviation of the modula-
tion frequency that is reliably detected by the auditory
system. This deviation is 0.07 at a modulation fre-
quency of 1 Hz [8]. Thus, nfm = 1/0.07 ≈ 14. The fre-
quency spacing between adjacent modulation filters is
calculated as

(29)

The output signal of each frequency channel for the
envelope, M1(t) ≈ L1(t), is processed by the periodicity
function Pl(τ1) = Sl(τ1)/Sl(τ1 = 0), where

(30)

Here, τ1 = j1∆τ1 is the delay; j1 = 0, 1, …, jm; jm =
Tl /∆τ1 ≈ 100; Tl is the period of the spectral component
in the lth frequency channel; and ε1 ! max[Ll(t)]. The
period of the signal Ll(t) was calculated from the high-
est maximum of the periodicity function Pl(τ1) at the
shortest nonzero delay r1. The values of the selected
maxima of the periodicity function were multiplied by
pm for the particular frequency channel fml and projected
onto a common frequency axis.

pmn f m( ) 3.00 3.00 f m–( )2 0.2×  for f m 3,<+=

pmn f m( ) 3.00 0.06 f m for f m 3,≥+=

pmt f m( ) 2.5 3.0 f m–( )2 0.2×  for f m 3.0,<+=

pmt f m( ) 2.5 f m 3.0–( )2 0.1×+=

 for 3 Hz f m< 11,≤

pmt f m( ) = 3.1 f m 11.0–( ) 0.007×  for f m 11.>+

∆Fcrm f m( ) 0.33 f m for f m 17,≤=

∆Fcrm f m( ) 0.23 f m for 17 f m 30,≤<=

∆Fcrm f m( ) 5.00 0.025+ f m for f m 30.≤=

∆ f maf ∆Fcrm f m( )/nfm.=

Sl τ1( ) 1/Ts[ ] χ Ll t( ) Ll t τ1+( )– ε1–[ ] t.d

0

Ts

∫=
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The output signals of the auditory filters and audi-
tory modulation filters in each frequency channel were
processed by the periodicity function individually, the
result of this analysis for each frequency channel hav-
ing its individual abscissa (the frequency or delay axis)
and ordinate (from 0 to 1). Therefore, to combine the
results of analyzing the periodicity of sound, they were
displayed on (projected onto) a common frequency axis
from 0.01 Hz to 20 kHz. The lower boundary of 0.01 Hz
of perceiving the AM frequency was found experimen-
tally. If two maxima overlapped, their values were
summed at each frequency individually.

The first 6–7 thus selected highest maxima dis-
played on the common frequency axis were regarded as
an estimate of the periodicity of the input signal. It was
shown [13] that the auditory system cannot discrimi-
nate more than 6–7 maxima of a complex periodic
sound.

Now, let us consider several examples of using the
model proposed above to process the AM signal p(t) =
[1 + dmsin(Ωt)]sin(ωt) given by Eq. (15) for different
ratios of the carrier frequency ω to the modulation fre-
quency Ω.

Example 1. Let an AM signal given by Eq. (15) be
supplied to the model. When the carrier frequency ω is
an integer multiple of the modulation frequency Ω, i.e.,
ω/Ω = N, where N is an integer greater than or equal to
10, the spectrum of the signal consists of three spectral
components, the amplitude of the central component
sin(ωt) being equal to 1 and the amplitudes of the side
components sin(ω – Ω, t) and sin(ω + Ω, t) being equal
to 0.5dm. If these spectral components fall within the
same aural critical band, the model processes the input
signal as a sum of the three spectral components of the
input signal. The energy of this signal will be distrib-
uted over the auditory filters tightly spaced in one aural
critical band according to the form of the auditory filter
with the center frequency ω.

Since the period of this signal is TΩ , a maximum
equal to 1 at the frequency Ω will be projected onto the
common frequency axis. The envelope of the input sig-
nal, m(t) = 1 + dmsin(Ωt), will arrive at the envelope’s
auditory filter centered at the frequency Ω with its form
being projected onto the common frequency axis with
a maximum of dm also at the frequency Ω. A maximum
equal to (1 + dm) will thus be displayed at the frequency
Ω on the common frequency axis.

If Ω exceeds the aural critical band, the three spec-
tral components will be processed independently and,
therefore, the procedure will display the form of the
auditory filter at the frequency ω with a maximum of 1,
and at the frequencies ω – Ω and ω + Ω, the forms of
the auditory filters with maxima of 0.5dm.

There will be no maxima displayed in the envelope,
because the intensities of the independent spectral com-
ponents will be constant in time, as well as their sum,
and the periodicity function ignores the constant com-
ponent of the analyzed signal.
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Example 2. Let N1 = N + 0.5 or N1 = N – 0.5. In this
case, the period of the signal p(t) is 4π/Ω. This signal
will also have two quasi-periods: (TΩ + Tω/2) and (TΩ –
Tω/2).

If the three components of the signal fall within the
same aural critical band, the model will process them as
their sum, and three maxima of 1, 0.5dm, and 0.5dm will
be projected onto the common frequency axis at f1 =
1/2TΩ, f2 = 1/(TΩ + Tω/2), and f3 = 1/(TΩ – Tω/2), respec-
tively. In the envelope, the model will generate a maxi-
mum of 0.5dm at a frequency fΩ.

If the spectral components of the signal occur in dif-
ferent aural critical bands, i.e., when Ω > ∆Fcr, there
will be three maxima of 1, 0.5dm, and 0.5dm on the com-
mon frequency axis at the frequencies fω, fω + Ω, and
fω – Ω, respectively. In the envelope, there will also be
no maxima projected (see Example 1 for Ω > ∆Fcr).

Example 3. Let the ratio of the carrier frequency ω
to the envelope frequency Ω for the signal p(t) gradu-
ally increase from N1 = N to N2 = N + 2.

When the spectral components of this signal lie
within the same aural critical band, i.e., at Ω < ∆Fcr, the
signal will be processed as a sum of the three spectral
components. At ω/Ω = N, where N is an integer, there
will be one maximum of (1 + dm) produced at the fre-
quency Ω (see Example 1 for Ω < ∆Fcr). As the fre-
quency gradually increases from N1 = N to N1 = N + 0.5,
the length of the quasi-period gradually increases from
TΩ to (TΩ + Tω/2) and the second quasi-period (TΩ –
Tω/2) appears at N1 = N + 0.5 (see Example 2). As the
frequency ω increases further, there will only be one
quasi-period of (TΩ – Tω/2) left, which will gradually
increase from (TΩ – Tω/2) to TΩ at N1 = N + 1. With a
further increase in the frequency ω from ω/Ω = N + 1 to
ω/Ω = N + 2, the process will be repeated.

When Ω > ∆Fcr, there will be three maxima of 1,
0.5dm, and 0.5dm produced at the frequencies ω, (ω + Ω),
and (ω – Ω), respectively. In the envelope, there will be
no maxima projected, as before (see Example 1).
Note that the three-dimensional frequency- and
time-domain representation of the input signal proves
to be efficient not only in the auditory analysis of peri-
odicity of sound but also in extracting the pitch of a
speech signal [14]. The above examples of processing
AM signals by the mathematical model proposed in this
paper show that the model satisfactorily explains their
pitch and the auditory estimate of their envelope period.
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Abstract—From behavioral studies of a bottlenose dolphin (Tursiops truncatus), the audibility thresholds were
measured for a single pair of equal-amplitude pulses, i.e., clicks, presented to the dolphin in combination with
a pulse jam. The pulse jam consisted of pairs of identical pulses with a pulse spacing τj within the pairs and a
pair repetition rate fj. Series of pulses were interrupted by a pause R > 1/fj, within which the pulse jam was
absent while a pair of test pulses was supplied to one of the two channels at random. Each series had a dura-
tion T, and the total stimulation cycle was J = T + R. The dependence of the test pair detection threshold on
the pulse spacing τj was studied at different fixed values of the pulse spacing in the test pair: τt = 50, 100,
200, and 500 µs. Preliminary measurements performed with τj = τt = 100 µs were used to adjust the parameters
of the pulse jam. The threshold shift at τj = τt = 100 µs reached 35 dB above the audibility threshold of the
test pair in the absence of the pulse jam. On both sides of the point τj = τt = 100 µs, the thresholds decreased
with varying τj to approximately 20 dB above the detection threshold of the test pair in the absence of the
jam. However, in the course of training, the threshold curves gradually shifted downwards approaching the
detection level of the test pair in the absence of the jam and becoming progressively flatter (the selectivity
with respect to the pulse jam vanished). A decrease in the pause duration R restored the dependence of the
test pair detection threshold on τj. In this case, a statistically significant maximum was obtained at τj = τt for
τj within the critical interval (for τt < 500 µs). Beyond the critical interval (for τt > 500 µs), even with the
smallest pause duration (R = 15 ms), no dependence of the test pair detection thresholds on τj could be
observed. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The tone-by-tone and tone-by-noise masking are
classical methods of hearing studies. The psychoacous-
tic literature of the last few decades contains a number
of publications concerned with the masking of signals
by complex natural stimuli, for example, by speech-like
sounds. The masking of pure tones by stimuli with var-
ious complex spectra makes it possible to obtain the so-
called “auditory spectra” of such maskers.

For a dolphin, a natural type of masker is a pulse jam
imitating a multiple reverberation of the dolphin’s own
echolocating pulses. When a single echolocating pulse
of the dolphin hits an underwater target, the echo
returning to the animal often has the form of a sequence
of several pulses (the so-called primary and secondary
echoes) with short pulse spacings and different peak
amplitudes [3, 4]. The detection and discrimination of
pulse sequences with very short pulse spacings under
the actual echolocation conditions is a complicated
problem. However, it is surprisingly easily solved by
the dolphins. The possibility of explaining the unique
echolocation abilities of dolphins by the sensitivity to
the pitch produced by a sequence of coherent pulses,
i.e., the time separation pitch (TSP), has been much dis-
cussed in the literature [5, 6].
1063-7710/04/5004- $26.00 © 20485
According to previous investigations [7–9], the
interval of pulse spacings within 200–300 µs contains a
boundary where a dolphin changes its behavior in dis-
criminating the paired pulses. If a dolphin perceives
stimuli with pulse spacings smaller than 200–300 µs
for a sufficiently long time, it ceases being able to dis-
criminate pairs with a pulse spacing of more than 200–
300 µs in the standard pair. Moreover, when the pulse
spacings are below 200–300 µs, the positive signal used
by the dolphin is the pair of pulses with the greater
spacing, while when the pulse spacing in the standard
pair increases above 200–300 µs, the dolphin begins to
use the pair with the smaller spacing as the positive
stimulus [8]. In the cited publication, the changes in the
behavioral reactions of the dolphin are explained by the
fact that, when the pulse spacing in a pair is smaller
than 200–300 µs, the pair of pulses is perceived by the
dolphin as a single auditory image, while a pair with a
greater pulse spacing is perceived as two separate
pulses. The pulse spacing of 200–300 µs is called the
critical interval. By the method of summary evoked
potentials, it was shown that, in the brainstem of a dol-
phin, in the region of 200–300 µs, responses to individ-
ual pulses of a pair begin to separate [10]. An assump-
tion was put forward [6] that, at intervals lying within
the critical one, the dolphin perceives the TSP of the
004 MAIK “Nauka/Interperiodica”
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paired pulses, which is determined by the inverse value
of the pulse spacing in pairs.

The effect of a pulse jam on the audibility thresholds
of pure tones was studied in [11]. The dependence of
the thresholds on the frequency of the test signal had a
fairly complex form. This dependence can be consid-
ered as a superposition of several components: (i) rela-
tively shallow oscillations of the whole curve of thresh-
old shifts, which correlate with the extrema of the jam
spectrum; (ii) a monotonically decreasing component
with a high maximum at a frequency of 1/τj; and (iii) a
frequency-independent component. Different compo-
nents of the masking curve were ascribed to different
auditory (subjective) features of the pulse jam [11]. The
first component, which reflects the distribution of the
neuron excitation level over the frequency channels
according to the form of the jam amplitude spectrum,
determines the timbre properties of the pulse jam. The
second component, which is of special interest, can be
explained only by assuming that the pulse sequence is
characterized by a pitch corresponding to a frequency
of 1/τj. Then the monotonically decreasing component
of the masking curve is the result of the masking of the
pure tone by the complex tone of the jam. The first two
components are caused by the periodicity of the spec-
tral density of paired pulses. The third component
exhibits no traces of periodicity and corresponds to the
auditory feature of a quasi-random noise. Its origin is
the random neuron activity caused by the pulse jam in
different frequency-specific channels.

For the bottlenose dolphin, the effect of the pulse
jam on the discrimination between paired and single
pulses was studied in [12]. By the conditioned-reflex
method of differentiation of paired and single pulses,
the detection thresholds were determined for the sec-
ond pulse in the test pair under the effect of a pulse jam.
The selectivity with respect to the pulse spacing in the
pairs forming the jam was demonstrated. The threshold
curves exhibit one pronounced maximum at the coinci-
dence of the pulse spacing in the test pairs and in the
pairs forming the jam. This selectivity was observed for
test pairs with pulse spacings from 20 to 200 µs, i.e.,
within the critical interval. Beyond the critical interval,
such a selectivity was absent. Presumably the selectiv-
ity is also determined by the sensitivity to the pitch fea-
ture of the pulse jam.

N

S

P

S

Fig. 1. Schematic diagram of the experiment: the dolphin
occupying the starting position, (N) a separating net,
(S) two acoustic sources, and (P) the platform from which
the test signal was controlled and the animal was rewarded
with food.
This paper reports on the study of the effect pro-
duced by a pulse jam in the form of relatively long
series of pairs of identical pulses on the detection of a
single pair of identical pulses. The detection thresholds
were measured for a test pair with a fixed pulse spacing,
which was taken to be equal to τt = 50, 100, 200, and
500 µs, as functions of τj (the pulse spacing in pairs
forming the jam). The aim of the study was to find out
whether it is possible to obtain a selectivity of the effect
of the jam on the detection of paired pulses, as was
observed in the case of the discrimination between
paired and single pulses [12].

EXPERIMENTAL

The experiments were performed with an adult
female bottlenose dolphin (Tursiops truncatus) that
was caught in the open sea three months before the
beginning of its training. The experimental setup is
schematically represented in Fig. 1. A separating net N
was fastened with its one end to a small platform P. On
both sides of the net, at a distance of 1 m, two acoustic
sources S (piezoceramic transducers 10 mm in diame-
ter) were suspended at a depth of 1.5 m. The other end
of the net was fixed by guy ropes at a distance of 2 m
from the platform. The starting position of the animal
was at the far end of the separating net. The start signal
was a 60-kHz tone produced by a third source not
shown in Fig. 1. Figure 2 shows the time diagram of
acoustic stimulation. The pulse jam was produced by
the two sources that were fed from the same generator
and had the form of series of paired pulses with a dura-
tion T, a controlled pulse spacing τj within a pair, and a
pair repetition rate fj. The series of paired pulses were
separated by a pause with a duration R > 1/fj, within
which the pulse jam was absent while the test signal
appeared at one of the sources (at random) at an instant
r. The test signal was a pair of pulses with a fixed pulse
spacing τt and a controlled pulse amplitude. The total
stimulation cycle was J = T + R. The peak value of the
pulse jam is denoted as L in Fig. 2.

The duration of a single acoustic pulse in water did
not exceed 30 µs. Figure 3 shows the acoustic spectrum
of single pulses obtained at different sources in
response to the same electric pulse together with the
averaged spectrum. The latter was calculated by apply-
ing the Fourier transformation to the oscillograms of
pulses.

By the conditioned-reflex method with food rein-
forcement, the animal was trained to approach the
source at which the test pair of pulses was produced.
The period of training was somewhat longer than two
months. The thresholds were determined by the adap-
tive (staircase) method. The peak value of the pulses in
the test pair was reduced at steps of 4 dB starting from
a value that was preliminarily known to be above the
threshold down to the level at which the animal made
its first mistake. After this, the level was increased until
the dolphin gave a correct response and then again
ACOUSTICAL PHYSICS      Vol. 50      No. 4      2004
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reduced until it was mistaken, and so on. After a rough
determination of the threshold region, the step was
reduced to 2 dB and the level was reduced only after
two consecutive correct responses. If in two tests one
response (or both responses) was wrong, the level was
increased. The threshold value obtained in this way cor-
responded to 70.7% of correct responses [13]. The
number of level reversals that were used to obtain one
threshold value reached 20 in many cases and was
never less than 10. The total number of tests in the
threshold region was 30–50. The threshold value was
determined by averaging the levels that were intermedi-
ate between neighboring reversals. In one experiment,
it was possible to obtain two or three (or four to five at
best) threshold values.

In the initial experiments, the parameters of the
pulse jam were adjusted, and then these parameters
were used as fixed. The parameters were as follows: the
peak level L above the audibility threshold of the pulse
jam, the duration T of the individual series of paired
pulses of the jam, the repetition rate of paired pulses fj,
and the duration R of the pause between sequential
series of paired pulses of the jam. The parameters of the
jam were adjusted at τj = τt. At first, the task was to
obtain a considerable shift of the detection threshold of
the test pair at τj = τt with respect to the detection
threshold of the test pair in the absence of the pulse jam.

RESULTS

Figure 4 shows the threshold curves for τt = 100 µs.
Figure 4a presents the threshold curves obtained with
the following parameters of the pulse jam: 1/J = 3 s–1,
1/fj = 5 ms, R = 10/fj = 50 ms, r = 5/fj = 25 ms, and L ≈
25 dB above the audibility threshold of the jam. The
numbers of the curves indicate the order number of the
experiment (one experiment a day). The first three
curves (1–3) are more or less similar to each other in
shape and have a single maximum at τj = τt = 100 µs.
On both sides of this maximum, the thresholds decrease
with varying τj to approximately 20 dB above the detec-
tion threshold for the test pair in the absence of the jam.
The height of the maximum observed in these curves
reaches 10–15 dB. However, in the course of training,
the threshold curve as a whole moves downwards along
the ordinate axis and approaches the detection level of
the test pair in the absence of the jam, first without
changing its shape (curve 4) and then ceasing to exhibit
any dependence of the threshold on τj (curve 5).

In all subsequent experiments, the peak value of the
pulses of the jam was increased by 25 dB, i.e., to 50 dB
above the audibility threshold for the jam. Figure 4b
shows the test pair detection curves, which were
obtained with a new level of the pulse jam and with all
other parameters of the jam being invariable, at differ-
ent stages of training.

Curves 1–3 in Fig. 4b show the average thresholds
for every next two sequential experiments as functions
ACOUSTICAL PHYSICS      Vol. 50      No. 4      2004
of the pulse spacing in the paired pulses of the pulse
jam. Curve 1 in Fig. 4b again exhibits a maximum at
τj = τt = 100 µs. Its height is approximately the same as
in curves 1–3 in Fig. 4a. Curves 2 and 3 in Fig. 4b grad-
ually flatten, and curve 4 in Fig. 4b (the average curve
for the last five experiments of the given series) exhibits
no dependence of the threshold on τj. In the course of
the experiments, we again observe a gradual displace-
ment of the threshold curves towards the detection
threshold of the test pair in the absence of the pulse jam,
which means that the effect of the pulse jam becomes
weaker. However, at the jam level of 50 dB, the down-
ward displacement of the curves stopped at the same
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Fig. 2. Time diagram of acoustic stimulation: T is the dura-
tion of a single series of paired pulses of the jam; the jam
consists of pairs of pulses with a pulse spacing τj in each of
them and a pair repetition rate fj; the test signal is a single
pair of pulses with a fixed pulse spacing tt; the test signal is
supplied at random to one of the two channels within the
pause R > 1/fj with a time shift r relative to the beginning of
the pause; the total cycle of stimulation is J = T + R; L is the
peak level of the jam pulses above the audibility threshold.
The time and amplitude scales are arbitrary.

Fig. 3. Spectrograms of the pulses recorded in water from
different sources (the dashed lines) in response to the same
electric pulse. The solid line shows the average spectrogram
for the two sources.
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Fig. 4. Detection thresholds of the test pair with a pulse spacing τj = 100 µs in the presence of a pulse jam at different stages of training.
The pulse jam consists of a series of pairs of pulses with a pulse spacing τj, a series duration T, and an interval R between the series.
The parameters of the pulse jam are as follows: L = (a) 25 and (b, c) 50 dB; R = (a, b) 50, (c, curve 1) 30, and (c, curve 2) 15 ms;
r = (a, b) 25, (c, curve 1) 15, and (c, curve 2) 5 ms; 1/J = (a, b) 3 s–1 and (c) 1 s–1; and 1/fj = (a, b) 5 and (c) 1 ms. The numbers of
the curves in Fig. 4a indicate the order numbers of the experiments. Curves 1–3 in Fig. 4b show the average thresholds for each two
sequential experiments. In Fig. 4c, curve 1 is obtained by averaging over the last 5 experiments out of 18 performed with the pulse
jam parameters specified for Fig. 4c, and curve 2 represents the results of a single experiment. The crosses below indicate the detec-
tion threshold level for the test pair in the absence of the jam. The decibels along the ordinate axis correspond to the level of the
detection threshold of the test pair in the presence of the jam above the threshold of the test pair in the absence of the jam. The
abscissa axis represents the pulse spacing in the pairs of pulses forming the jam (in microseconds).
level (approximately 20 dB above the pair detection
threshold in the absence of the jam) as that correspond-
ing to curves 1–3 in Fig. 4a (which were obtained at a
jam level of 25 dB relative to the threshold in the
absence of the jam). Thus, a considerable increase in
the jam level does not allow one to obtain a stable selec-
tivity of the effect of the pulse jam on the near-thresh-
old detection of a paired pulse with an equal peak
amplitude.

All subsequent experiments were performed at 1/J =
1 s–1, 1/fj = 1 ms, and L = 50 dB above the jam audibility
threshold. Only the values of R and r were varied.
Curve 1 in Fig. 3c was obtained at R = 30/fj = 30 ms and
r = 25/fj = 25 ms (the threshold dependence on τj was
averaged over the last 5 experiments out of 18 per-
formed with the indicated jam parameters). At the
aforementioned time parameters of the pulse jam, it
was possible to obtain a stable maximum at τj = τt =
100 µs, which was retained in the course of the training.
The maximum in curve 1 is relatively low. However, the
volume of threshold data allowed us to obtain a very
high level of statistical significance of the average
threshold difference at τj = 80 and 150 µs compared to
the case of τj = τt = 100 µs: 99.9 and 90%, respectively
(according to Student [14]). This suggests that the dura-
tion of the pause between sequential series of paired
pulses of the jam is more important than the jam level
for revealing the selectivity. Concerning the pulse spac-
ing τt = 100 µs, it should be added that, when the pulse
spacing in pairs of the pulse jam increases beyond the
critical interval, at τj = 500 µs the threshold proves to be
very high (curve 1 in Fig. 4c). However, after the termi-
nation of the whole cycle of experiments, at other test
pulse spacings, it was found that the threshold at τj =
500 µs for τt = 100 µs drastically decreased almost to
the level observed at τj = 80 µs. In Fig. 4c, this value is
indicated with number 3. Curve 2 in Fig. 4c for τt =
100 µs was obtained with the pulse jam parameters
chosen as the final ones: L = 50 dB, fj = 1000 s–1, 1/J =
1 s–1, R = 15/fj = 15 ms, and r = 5/fj = 5 ms. The latter
curve also exhibits a maximum at τj = τt = 100 µs but
lies somewhat higher than curve 1 (Fig. 4c). Thus, the
measurements of the detection thresholds of paired
pulses at τt = 100 µs showed that a selectivity with
respect to the effect of the pulse jam may take place.
A sufficiently stable maximum at τj = τt = 100 µs was
obtained only for R < 50 ms.

All other threshold measurements in the presence of
the pulse jam were performed at τt = 50, 200, and 500 µs.
The corresponding average threshold curves are shown
in Fig. 5. the threshold curve for τt = 100 µs is also
shown for comparison (curve 1 in Fig. 3c, which was
obtained from a sufficiently large array of threshold
data). From Fig. 5 it follows that the curves for τt = 50
and 200 µs, as well as the curve for τt = 100 µs, exhibit
a maximum at τj = τt. The highest maximum (15 dB) is
observed at τt = 50 µs, and for this value of the test pulse
spacing is no pronounced tendency to a decrease in the
height of the maximum in the course of the experiments
(during 12 days of experimentation). However, the dif-
ACOUSTICAL PHYSICS      Vol. 50      No. 4      2004
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ference in the heights of the maximum for τt being
equal to 50 and 100 µs can to some extent be explained
by the fact that the curve for τt = 100 µs was obtained
with a longer pause between sequential series of
paired pulses of the jam (R = 30 ms for τt = 100 µs and
R = 15 ms for τt = 50 µs). The low maximum for τj =
τt = 200 µs is most likely to be determined by the pulse
spacing in the test pair for which the measurements
were performed with the shortest pause R. Note that the
pulse spacing of 200 µs lies near the boundary of the
critical interval [7]. Beyond this boundary (at τt = 500 µs),
no dependence of the test pair detection thresholds on
τj has been observed. Figure 5 also shows that the
threshold curves for the test pulse spacings within
50−200 µs exhibit a rise for the jam pulse spacings τj

beyond the critical interval. In addition, for τt = 100 µs
at a jam pulse spacing τ j = 500 µs, the threshold val-
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Detection thresholds in the presence of the jam (dB)
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4

200 300 400 500
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Fig. 5. Detection thresholds of the test pair of pulses in the
presence of the pulse jam. The latter consists of pairs of
pulses with a pulse spacing τj, a series duration T, an interval
R between the series, and a pair repetition rate fj. The
parameters of the curves are as follows: the pulse spacing in
the test pair τt = (1) 50, (2) 200, (3) 500, and (4) 100 µs; L =
(1–4) 50 dB; 1/τ = (1–3) 1 s–1 and (4) 3 s–1; 1/ft = (1–3) 1
and (4) 5 ms; R = (1–3) 15 and (4) 30 ms; and r = (1–3) 5
and (4) 15 ms. The level of 0 dB corresponds to the detec-
tion threshold of the test pair in the absence of the jam. The
abscissa axis represents the pulse spacing τj in the pairs
forming the pulse jam.
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ues are characterized by a fairly large scatter (Figs. 4c
and 5).

DISCUSSION

The experimental results have shown that, for the
test pairs of identical pulses with a pulse spacing tt <
500 µs, it is possible to obtain a local selectivity of the
masking effect of the pulse jam with respect to the pulse
spacing τj in the pairs of pulses forming the pulse jam
(the pulses of the jam being identical). The masking
effect is stronger in the region of coincidence of the
pulse spacings in the test pair and in the paired pulses
of the jam: τj = τt. The maximum of the masking effect
occurs exactly at τj = τt, and, on both sides of this max-
imum, the masking effect decreases. This selectivity,
which resembles the tone-by-tone masking curves, sug-
gests that, under the effect of the pulse jam, a special
kind of masking takes place, namely: the complex tone
of the test pair, which corresponds to the time separa-
tion pitch (TSP) with a frequency of 1/τt, is masked by
the complex tone of the pulse jam with a frequency of
1/τj. In the literature, a complex tone is usually under-
stood as a periodic signal consisting of a set of harmon-
ics or an aperiodic signal with a rippled spectral density
(pairs or sequences of pulses or noise obtained by com-
bining two identical noise segments with some delay
[11]). The pitch of a complex tone corresponds to the
fundamental frequency f0 = 1/τ.

The assumption that masking by a complex tone is
possible was first put forward in the paper [11] report-
ing on a study of the audibility thresholds of simple
tones under the effect of a pulse jam. The behavior of
the masking curve, which had the form of a monotoni-
cally decreasing function of the tone frequency with a
high maximum at the fundamental frequency of the
pulse jam, was explained by the masking effect of the
pitch produced by the pulse jam.

The selectivity observed in our experiments in the
masking effect of the jam whose pulse spacings did not
exceed the critical interval proved to be stable when the
pauses between sequential series of paired pulses were
R < 50 ms. The role of the pause duration R that was
revealed in our experiments resembles the effect of a
combined masking [5, 16]. A combined masking
exceeds the sum of the direct and inverse masking taken
separately. The effect of the combined masking is
explained by the neural processing with a time window
within which the average signal-to-noise ratio is esti-
mated. The window can move so as to occupy the posi-
tion where the signal-to-noise ratio is maximal. A
higher signal-to-noise ratio can be obtained when the
time window is not centered at the test signal. In the
optimal situation, in the case of forward masking, the
window is centered after the signal, while in the case of
backward masking, it is centered before the signal.
When combined masking takes place, the time window
is centered at the test signal but includes both maskers
(the forward and backward ones). In this case, the sig-
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nal-to-noise ratio decreases and an additional masking
appears [16].

One can expect that a similar time window exists in
the case of the masking by a complex tone. The pitch of
a complex tone has a higher or lower strength depend-
ing on the value of the delay and the depth of the spec-
trum ripple [17, 18]. The masking effect of a complex
tone due to its pitch strength depends not only on the
delay and the depth of the spectrum ripple [17, 18] but,
in the case of the pulse jam, also on the duration of the
pause R between sequential series of paired pulses.
Within a limited time (within R ≈ 15 ms), the complex
tone of the pulse jam has its maximal strength. When R
≤ 30 ms, the pause proves to be too short for the mask-
ing effect of the pitch component of the jam to be com-
pletely eliminated by a displacement of the time win-
dow. The greater duration R = 50 ms is sufficient for the
auditory processing system in the course of training to
find a position of the time window that provides a com-
plete elimination of the masking effect of the complex
tone. Thus, it is possible that the mechanism lying at the
heart of the training is the active search for the time
window position at which the masking effect of the
complex tone is minimal or totally eliminated.

According to [4, 18], for dolphins, the pitch strength
of ripple noise reaches its maximum at a delay of 100 µs
and decreases on both sides of this value. The masking
selectivity curves obtained from our experiments for a
test pulse spacing of 100 µs exhibit a similar depen-
dence on the jam pulse spacing. From the similarity of
different functions of the pulse spacing, one may sur-
mise that the masking curve for τt = 100 µs has the
aforementioned form, because precisely this spacing
corresponds to the maximal pitch strength of the paired
pulses of the pulse jam. However, for the test pulse
spacings of 50 and 200 µs, we also obtained a Λ-shaped
dependence of masking on the jam pulse spacing with
a maximum at τj = τt. To explain the observed selectiv-
ity of the pulse jam effect on the discrimination of
paired pulses and a single pulse, the following hypoth-
esis has been put forward: the auditory system of dol-
phins may contain specific channels tuned to the pulse
spacing in the same way as the frequency-specific audi-
tory channels are tuned to a certain frequency [12]. The
data of our experiments do not contradict this hypothe-
sis. It only should be added that the channels with tun-
ing to the pulse spacing actually are pitch-specific
channels tuned to the pitch of pulse sequences.

In the literature, one can find psychoacoustic data on
the selectivity of the effect of overthreshold amplitude-
modulated (AM) or frequency-modulated (FM) tones
on the detection thresholds of the tone modulation fre-
quency [19–22]. In [23], an increase in the detection
thresholds was observed for a linear FM only when
instantaneous frequencies of the overthreshold and test
stimuli varied in the same direction. The results of these
studies were explained by the adaptation of the system
of hypothetical “channels” tuned to certain features of
a stimulus. However, the sensory nature of selectivity
revealed in [19–23] was questioned in [24]. The doubts
expressed by the authors of [24] were caused by the
small value of the threshold variations due to the over-
threshold exposure and also by the fact that these vari-
ations disappeared in the course of training [25, 26]. In
the subsequent publication [27], the effect of the over-
threshold FM tone has already been called masking, but
the authors still believed that special AM and FM chan-
nels existed in the human auditory system.

In our experiments, the shift of the detection thresh-
old of a paired pulse in response to the effect of the
overthreshold pulse jam reached 15 dB. In addition, we
managed to determine the jam parameters at which a
stable threshold shift was observed, which also testifies
in favor of the presence of pitch-specific pulse sequence
channels in the auditory system of a dolphin.

Irrespective of the pulse jam level, most curves in
Fig. 4 do not reach below the level of 20–27 dB above
the test pair detection threshold in the absence of the
jam (indicated by crosses). A pair of pulses has a pitch
in the sense that, for each pair, a subject under test may
indicate with fair accuracy a simple tone of a close fre-
quency determined by the inverse value of the pulse
spacing. However, the subject can always discriminate
between a paired pulse and a simple tone. This means
that a complex stimulus (for example, a paired pulse or
ripple noise) also has other auditory (subjective) fea-
tures. Psychoacoustic data show that a human individ-
ual listening to ripple noise perceives not only the pitch
but also the noise component [28]. As was mentioned
above, the audibility curve for pure tones in the pres-
ence of a pulse jam [11] includes several components.
The behavior of two of them may be related to the peri-
odicity of the spectral density of a pair of pulses. The
third component, which has a relatively high level,
exhibits no traces of periodicity characterizing the
spectral density of the jam and may be interpreted as a
result of the sensation accompanying the perception of
paired pulses of the jam in the form of a random noise.
The origin of the third component is the random neuron
activity induced by the pulse jam in different fre-
quency-specific channels. The total shift of the thresh-
old curves with respect to the test pair detection
threshold in the absence of the jam (shown by crosses
in Fig. 4) may also correspond to the noise component
in the perception of the pulse jam independently of the
pulse spacing τj. Figure 4 illustrates the twofold nature
of the sensation caused by a paired pulse and also
shows that the tone and noise components behave inde-
pendently of each other. Presumably, the noise and
pitch hearing components are related to different levels
of signal processing in the auditory system. The noise
component is most likely of peripheral origin, while the
pitch component, of a more central origin.

In the behavior of the masking curves under the
effect of the pulse jam, an unexplained feature is the
growth of thresholds for pulse spacings exceeding the
ACOUSTICAL PHYSICS      Vol. 50      No. 4      2004
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critical interval (more than 200 µs). In the transition
zone of pulse spacings, between a paired pulse that is
perceived as a single sound with a pitch and a pair of
pulses perceived separately without the pitch feature,
the pulse jam acquires auditory properties of quasi-ran-
dom noise. In this case, the masking of the complex
tone of the test pair by quasi-random noise takes place.
Possibly, in the transition zone of pulse spacings, at low
frequencies, the periodicity of the spectral density and
the corresponding pitch feature are still retained. In the
course of training, the auditory system is adjusted so as
to exclude the effect of high-frequency fluctuations of
the spectral density of the jam, which explains the sharp
threshold change observed at tt = 500 µs for τj = 100 µs
after a prolonged experimentation (Fig. 4c). It is of
interest that, for a test pulse spacing greater than the
critical interval (τt = 500 µs), we did not observe any
increase in the masking effect of the pulse jam with
increasing jam pulse spacing.

CONCLUSIONS

The main results of the studies described in this
paper can be formulated as follows:

(1) A stable selectivity of the masking effect of a
pulse jam with respect to the pulse spacing in pairs of
jam pulses is observed for test pulse spacings of 50–200
µs when the duration of the pause between sequential
series of paired pulses forming the pulse jam is R ≤ 30
ms. The selectivity manifests itself as the excess of the
masking level in the region of the pulse spacing value
at which the pulse spacings in the pulse jam and in the
test pair coincide, τj = τt. The maximum masking is
observed exactly at the coinciding pulse spacings. All
masking curves lie at a relatively high level above the
detection threshold of a paired pulse in the absence of
the pulse jam.

(2) When the interval between sequential series of
paired pulses forming the jam is sufficiently large (R =
50 ms), the masking curves flatten in the course of the
training.

(3) For a test pulse spacing of 500 µs, no selectivity
can be observed.

(4) The detection threshold exhibits another
increase beyond the selective masking region around
the coincident values of the pulse spacings in the pulse
jam and the test pair of pulses.

It is assumed that the perception of paired pulses
involves different auditory (subjective) features. Pairs
with a pulse spacing less than 500 µs possess a pitch
feature, which is perceived by hearing as a tone with a
frequency equal to the inverse value of the pulse spac-
ing, and also a noise feature. It is assumed that the noise
component is associated with the relatively high level
of random neuron activity induced in the auditory fil-
ters by the pulse jam, while the tone component is
caused by the periodicity of the spectral density of
paired pulses. The masking effect observed around the
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coincident values of the pulse spacings in the test pair
and in the paired pulses of the jam is caused by the
peculiar kind of masking of the complex tone of the test
pair by the complex tone of the paired pulses of the jam.
In the course of training, when the pause between the
sequential series of paired pulses of the jam is suffi-
ciently large, adaptive mechanisms begin to work,
which allows the auditory system to exclude the mask-
ing effect of the complex tone. The masking effect asso-
ciated with the noise feature of a paired pulse is
retained in the course of the training.
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