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Abstract—Scanning tunneling microscopy and reflection high-energy electron diffraction under ultrahigh vac-
uum conditions were used to make an in situ study of atomic structures at the surface of an InAs/GaAs hetero-
structure grown by molecular-beam epitaxy. It was observed that the deposition of approximately 0.3 ML of
indium on an arsenic-enriched GaAs(001)-2 × 4 surface leads to the formation of the 4 × 2 phase while the dep-
osition of 0.6 ML indium leads to the appearance of a new 6 × 2 reconstruction. It is shown that layer-by-layer
two-dimensional epitaxial growth of InAs on GaAs(001) as far as 13 monolayers can only be achieved if the
growth front reproduces the 4 × 2 or 6 × 2 symmetry of the substrate and models of 4 × 2 and 6 × 2 reconstruc-
tions are proposed. Atomic-resolution images of faceted planes on the surface of three-dimensional islands in
an InAs/GaAs(001) system were obtained for the first time and structural models of these were developed.
© 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Heteroepitaxial growth in lattice-mismatched sys-
tems is one of the most promising technological
approaches to obtain low-dimensional quantum nano-
structures (quantum dots, quantum wires) and to fabri-
cate new optoelectronics devices using these [1, 2]. An
effective method of producing these nanostructures is
to use self-organization in heteroepitaxial systems
which occurs as a result of the formation of elastically
strained coherent three-dimensional islands [3]. In the
best known system of this type, InAs/GaAs (with a
7.2% lattice mismatch) the transition from two-dimen-
sional to three-dimensional growth, which can reduce
the accumulated energy of the elastically strained layer
grown by molecular-beam epitaxy, takes place when a
critical thickness of approximately 2 monolayers is
reached. Then in typical quantum-well nanostructures
where the electron motion is bounded in one dimen-
sion, the morphological Stranski–Krastanow transfor-
mation [4] of the elastically strained layer into an array
of three-dimensional coherent islands can be delayed or
suppressed. This last factor can be used to achieve pla-
nar growth and to obtain abrupt interfaces, which is
fundamentally important for optimizing the character-
istics of optoelectronic devices fabricated using hetero-
junctions and superlattices. 

The growth of any film by molecular-beam epitaxy
is essentially a nonequilibrium process so that both the
morphology and the evolution of the growing film are
governed by the relationship between the kinetic and
thermodynamic parameters which can be used to con-
1063-7761/00/9105- $20.00 © 21000
trol the character of the growth. If the growth of the
strained layer takes place by the Stranski–Krastanow
mechanism [4], the formation of three-dimensional
islands is accompanied by a reduction in the elastic
strain energy although it leads to an increase in the total
surface area and consequently a higher consumption of
surface free energy. Thus, when the surface tension is
low, relaxation of the elastic strain energy predomi-
nates, promoting a transition from two-dimensional to
three-dimensional growth but as the surface tension
increases, the situation changes. Thus, by varying the
component ratio [As4]/[In] in the flux during the growth
process and thereby varying the surface reconstruction
from the arsenic-enriched 2 × 4 phase having low sur-
face tension to the indium-enriched 4 × 2 phase, Schaf-
fer, Lind, Kowalczyk, and Grant [5] showed that
strained InAs epitaxial layers up to 2000 Å thick can be
grown two-dimensionally on a GaAs substrate. Under
conditions of strong indium enrichment, the formation
of three-dimensional inhomogeneities is to a large
extent suppressed because of the appreciable kinetic
barrier for the formation of dislocations. This mecha-
nism, being related to the higher surface tension of the
indium-enriched reconstructed surface, requires a
knowledge of the surface morphology and its atomic
structure for its substantiation.

In the present paper we report results of a detailed
in situ study of the surface structure of an InAs/GaAs
system during its two-dimensional and three-dimen-
sional growth as a function of the epitaxial layer thick-
ness and the concentration ratio of the components in
000 MAIK “Nauka/Interperiodica”



        

ATOMIC STRUCTURES OF TWO-DIMENSIONAL STRAINED InAs EPITAXIAL LAYERS 1001

                                                                                                                                         
the fluxes, made using scanning tunneling microscopy
under ultrahigh vacuum conditions. The purpose of the
study was to understand the growth mechanism of the
films at the atomic level and also the process of forma-
tion of InAs quantum dots formed at the surface of
GaAs as a result of self-organization [6]. 

2. METHOD

All the experiments were carried out using an ultra-
high-vacuum (base pressure 3 × 10–11 Torr) scanning
tunneling microscope (STM) at Tohoku University
which was combined with a molecular-beam epitaxy
chamber [7]. Gallium arsenide substrates measuring
4 × 10 mm2 were cut from wafers oriented in the [001]
crystallographic direction and were etched in a stan-
dard mixture of H2SO4 and H2O2 before being placed in
the growth chamber. The oxide layer on the surface was
removed by annealing at 600°C in an As4 stream. A 400 nm
thick GaAs buffer layer was grown at 550°C at a rate of
200 nm/h with an [As4]/[Ga] concentration ratio in the
flux of 40. Silicon (1 × 1018 cm–3) was used as the
dopant. The growth process was monitored by measur-
ing the intensity oscillations of the reflection high-
energy electron diffraction (RHEED) spots. After
growth of the buffer layer the sample was annealed at
470°C and transferred to the microscope chamber. The
STM images were usually observed in the filled state
regime at bias voltages Vs between –1.6 and –3.5 V and
at tunnel currents It = (20–40) × 10–12 A.

The most ordered β-phase was used as the substrate
for the InAs growth [7]. The initial InAs wetting layer
was prepared by depositing a submonolayer (0.5 ML)
In coating on the arsenic-enriched surface at a substrate
temperature of 450°C and a chamber pressure of 1 ×
10–10 Torr. This layer had a 2 × 4 structure similar to the
2 × 4 reconstruction of the GaAs(001) surface although
the dimer rows on the InAs surface were not as straight
as those on the GaAs surface [7] and they have a higher
density of kinks resembling the 2 × 4 structure on the
surface of a solid InAs(001) crystal [8]. We observed
that after depositing approximately 0.3 ML of indium
and then annealing for 5 min at 450°C, the surface
exhibited a very sharp RHEED pattern corresponding
to 4 × 2 symmetry. The subsequent layer-by-layer
growth of the InAs was achieved using migration-
enhanced epitaxy [7, 9]. STM observations showed that
in this case two parameters are critical: the [As4]/[In]
concentration ratio in the flux (to obtain the 4 × 2 phase
this was 3–5 at 450°C) and the switching time τ of the
shutters of the Knudsen cells in the growth chamber.

3. EXPERIMENTAL RESULTS AND DISCUSSION

3.1. 4 × 2 Surface Reconstruction

Figure 1 shows typical filled-state STM images of a
4 × 2 surface which demonstrate its high degree of per-
fection. The images consist of straight lines separated
by 16 Å gaps and equidistant humps along the [110]
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
direction (the 4 × 2 unit cell is shown by the white rect-
angle). Also shown are scanning profiles along the L1,
L2, and L3 lines. The fourfold (4×) periodicity of the

surface in the [ 10] direction and the twofold (2×) period-
icity in the [110] direction are observed most clearly on
the cross-section profiles of the L1 and L2 lines, respec-
tively. As the bias voltage decreased to Vs = –1.6 V no sub-
stantial changes were observed in the contrast between
the lines and the humps but an additional single (1×)
periodicity appeared along the line formed by the
smaller projections as can be seen on the scanning pro-
file of the L3 line. A more thorough examination of this
image revealed that the smaller hump forming the 1×
periodicity are always situated on either side of larger
humps in the [110] direction (some of the small humps
near the unit cell are shown white) which indicates that the
humps having 2× and 1× periodicity are attributable to
tunneling from different species. The observed character-
istics differ appreciably from those reported for homoepi-
taxial growth of an indium-enriched (001)InAs-4 × 2
surface [8, 10] and an arsenic-enriched GaAs(001)-2 × 4
surface [7] so that they should have different structures.
Since the 2× direction coincides with the direction of
indium dimerization, we can postulate that the large 2×
humps are caused by tunneling from In dimers. The STM
images of the empty states of this surface revealed the

1

Fig. 1. High-resolution STM images of an indium-enriched
GaAs(001) surface and corresponding cross-section profiles.
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same hump-plus-line features but the 2× humps
become brighter than the lines. This change in the con-
trast is consistent with the concept that the 2× humps
are caused by tunneling from In dimers in the first layer
and the lines are produced by tunneling from As atoms
in the second layer, and this allowed us to propose a
model of 4 × 2 reconstruction (Fig. 2). The 2× period-
icity occurs as a result of dimerization of In adatoms in
the [110] direction while the regular missing of In
dimers is responsible for the formation of fourfold peri-

 First layer In
Second layer As
Third layer Ga/In
Fourth layer As

[110]

[110]

8 Å

Fig. 2. Geometric model of 4 × 2 GaAs(001) surface.
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Fig. 3. Surface morphology of sample after 13 monolayers
of InAs were deposited on a GaAs(001)–As-2 × 4 substrate,
Vs = –2.5 V.
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odicity in the [ 10] direction. The exposed As adatoms
in the missing rows dimerize to their neighbours and
their uniform arrangement explains the single periodic-
ity along the L3 line in Fig. 1. The unit cell consists of
a single In dimer at the top of the layer and two As
dimers in the second layer and assumes that the surface
has an approximately 0.3 ML thick In coating, which
agrees with the experiment. The proposed model does
not contradict the Pashley electron counting rule [10]
and implies that the dangling bonds of each As atom are
completely filled with two electrons while the dangling
bonds of the In atoms remain empty, without trapping
charge, which corresponds to a stable semiconducting
surface. The observed difference in contrast between
the images of the filled and empty states can be attrib-
uted to a difference in the position of the energy levels
of the dangling arsenic bonds and the antibonding
orbitals of the In dimers. Note that this model gives a
0.5 ML thick In surface coverage which agrees with the
experiment.

Ohkouchi and Tanaka [11] proposed a single-dimer
structure which also agrees with the observed STM
images and could be used as an alternative model of an
indium-enriched 4 × 2 surface. However, this model
predicts a difference in contrast of 2.95 Å (step height
of a double InAs layer) between the In dimers of the first
and third layers, which was not observed, and assumes
an In surface coverage of approximately 0.75 ML. 

After the 4 × 2 layer described above had been fab-
ricated on the substrate, a two-dimensional multilayer
InAs coating with a smooth surface could be grown
systematically, layer by layer, by selecting and strictly
maintaining the ratio of the [In] and [As4] atomic con-
centrations in the flux, the substrate temperature, and
the cooling rate such that the growth front reproduced
the 4 × 2 symmetry of the substrate. This factor clearly
demonstrates the specific function of the 4 × 2 surface
which serves as a template for the two-dimensional
growth. STM observations of the morphology of a sur-
face coated with 13 InAs monolayers (which is consid-
erably thicker than the critical thickness of two mono-
layers) confirmed its planar growth and suppression of the
formation of three-dimensional islands (Fig. 3). It can be
seen that within an area of 2300 × 3000 Å2 we can iden-
tify four levels of planar terraces (each corresponds to
approximately 3 Å which is slightly greater than the
value of 2.8 Å which is the step height of a double layer
of bulk GaAs). Generally, the growth of new-phase
islands is determined by two processes: diffusion of
adatoms toward the island and transitions of atoms
across the interface with the island, i.e., the boundary
kinetics. Using migration-enhanced epitaxy under con-
ditions of indium enrichment ensured a fairly long dif-

fusion path length L = , where D is the diffusion
coefficient of the adatoms, and in this case, an earlier
transition to the formation of three-dimensional islands
should be predicted. Thus the layer-by-layer growth
observed by us was attributed to the increasing surface

1
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tension: as we know, indium-enriched structures have a
higher coefficient of surface tension γ than arsenic-
enriched structures [5]. These results show good agree-
ment with the criterion for the critical layer thickness tcr
(deposition time) obtained by Snyder, Mansfield, and
Orr [12] based on a kinetic approach:

tcr ≈ γ2/K2ε4L, (1)

where K is the bulk modulus and ε is the lattice mis-
match (7.2%). For thicknesses t < tcr we observed two-
dimensional growth of a metastable elastically strained
film whereas for t > tcr we observed the formation of
three-dimensional coherent islands where the expres-
sion for the minimum temperature Tmin below which the
formation of islands is suppressed [12]

(2)

gives a temperature close to that used by us: Tmin =
450°. Here kB is the Boltzmann constant and EA is the
activation energy of an adatom. We note that although
the surface morphology is fairly smooth, the STM
image in Fig. 3 does not exhibit such a high degree of
ordering as in Fig. 1 although the RHEED patterns in
both cases corresponded to 4 × 2 symmetry. 

Another important topic is the mechanism for relax-
ation of the elastic energy accumulated in the two-
dimensional epitaxial layer since no stacking faults nor
the formation of mismatch dislocations were observed
at this stage of the growth process. Returning to Fig. 3,
we note that the surface consists mainly of 4 × 2
domains and at the same time is modulated by charac-
teristic dark lines in the [110] direction from one edge
of the step to the other, which form a unique structure
with domain walls separated by the distance Na0 (a0 is
the surface lattice constant). For all coatings in the
range of 4–13 ML the value N = 6 predominated. In the
STM images of empty states, domain walls were
observed on the same positions which demonstrates
their geometric origin. The observed characteristics are
similar to the 2 × N structures on the strained Ge/Si
interface and the lines of vacancy defects caused by the
presence of Ni on the Si(100) surface, and are the result
of the relaxation of surface stress [13–15]. We postulate
that the regularly distributed domain walls are a new
mechanism for the relaxation of elastic strain and may
be considered as potential sites for the nucleation of
misfit dislocations.

3.2. 6 × 2 Surface Reconstruction

At the initial stage of growth of a strained InAs layer
on a GaAs(001) surface we observed a new 6 × 2 recon-
struction whose formation appreciably improved the
morphology and structure of the substrate. The 6 × 2
phase was prepared by depositing 0.6 ML of indium on
an arsenic-enriched GaAs(001)-2 × 4 surface at 500°C,
i.e., under essentially the same conditions as those used

Tmin

kB

EA

------ 1.44DτK
2ε4

γ2
------------------------------ln 

 
1–

,=
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to obtain the 4 × 2 phase. The InAs layers were then
grown at 450°C at a rate of 0.2 ML/s and in order to
achieve two-dimensional growth the [As4]/[In] concen-
tration ratio in the flux was maintained at 2–3 in the
molecular-beam epitaxy regime or 6 in the migration-
enhanced epitaxy regime (with τ = 1 s for As and 2 s for
In). In both cases the RHEED pattern corresponded to
6 × 2 symmetry and the layer-by-layer growth process
typical of a superlattice structure could be maintained
up to 13 (sometimes even fifty!) monolayers.

Figure 4 shows STM images of a surface with the
6 × 2 phase where we can clearly discern large flat ter-
races approximately 500 Å wide in the [110] direction
and two-layer steps 2.8 Å high (step height of a double
GaAs layer) but we do not observe any adsorption-
induced artifacts or step bunching. Note that we could
not obtain images of structures at bias voltages |Vs| ≤ 1 V;

40
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Å
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(b)
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II

Fig. 4. STM images of a 6 × 2 surface: (a) large-scale scan
image and (b) the zoom-in image of the same surface show-
ing step structure and surface defects, Vs = –2.5 V.
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Fig. 5. High-resolution STM images and cross-section profiles obtained in the filled state regime (a), Vs = –2.5 V and in the empty
state regime (b), Vs = +2.2 V demonstrating a kink type defect and a transition from a 6  × 2 structure to the c(12 × 2) antiphase
induced by it.
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this implies a semiconducting rather than a metal sur-
face. The 6× periodicity on the STM images is charac-
terized by uniformly distributed rows of bright spots
passing across the entire terrace without any kinks and

separated by 24 Å in the [ 10] direction which forms
an appreciable contrast with the arsenic-enriched 2 × 4
phase [7]. The spacing between neighboring spots is
8 Å and corresponds to 2× periodicity. We shall assume

that the high coherence in the [ 10] direction is caused
by the stronger lateral interaction at the surface during
deposition of the indium so that the kink formation
energy should be considerably higher.

The STM image in Fig. 4 demonstrates the structure
of both types of single-layer steps: A (running along the

rows of dimers of the upper terrace in the [ 10] direc-
tion) and B (running perpendicular to the dimer rows in
the [110] direction). We know that on an arsenic-
enriched 2 × 4 surface, type A steps are straight while
type B steps are highly kinked because of a difference
in their formation energies [11, 16]. The situation
changes after the formation of the 6 × 2 phase: first the

1

1

1
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rough edge of step B becomes straight while the smooth
edge of step A becomes rougher so that in the 6 × 2
phase step A is characterized by a higher formation
energy than step B. Since step B contains no kink and
step A is smoother than B on an arsenic-enriched sur-
face, the absolute value of the kink formation energy on
the 6 × 2 surface will be higher than that on a 4 × 2 sur-
face. 

Figures 4 and 5 show several groups of surface
defects. In the [1[bar]10] direction we observe two
types of domain walls, I and II, and in the [110] direc-
tion we observe two different types of defects: the miss-
ing of bright protrusions (shown by the white arrows in
Fig. 4) and kinks where the spacing between neighbor-
ing protrusions is shifted to 4 Å (shown by the black
arrow in Fig. 4 and more clearly by the arrow on the
magnified image of the surface in Fig. 5a). The
sequence of the neighboring rows near the kink
changes and leads to the antiphase c(12 × 2) (Fig. 5b).
High-resolution STM images of this surface in the
filled (Fig. 5a) and empty (Fig. 5b) state regime exhibit
the same structural features. The 2× periodicity in the
 AND THEORETICAL PHYSICS      Vol. 91      No. 5      2000
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Fig. 6. Geometric model of 6 × 2 reconstruction.
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[110] direction is illustrated by typical linear chains
consisting of regularly spaced oblong protrusions (L1
scanning profile) and the 1× periodicity is illustrated by
the L2 scanning profile. In the image of the filled states,
the rows look brighter than the protrusions at 0.30 Å
(L3 profile) whereas in the empty state regime the pro-
trusions are imaged more brightly than the rows at 0.45
Å (L4 profile), For the (001) polar face of a covalent
InAs crystal where the filled states are localized pre-
dominantly at the anion sites and the empty states are
localized at cation sites, the observed dependence of
the contrast on the polarity of the bias voltage implies
that the bright rows correspond to As atoms in the sec-
ond layer and the oblong protrusions correspond to In
dimers. The model of the 6 × 2 reconstruction devel-
oped on the basis of this reasoning (Fig. 6) consists of
three In dimers in the first layer and two dimerized As
atoms in the second layer (six dangling bonds per unit
cell) and shows good agreement with the Pashley elec-
tron counting rule [11]. Essentially this model is a com-
promise between the surface density of the dangling
bonds and the surface elastic strain. A high density of
dangling bonds (a maximum of 8 per unit cell) is ener-
getically unfavorable and thus, as they tend to equilib-
rium, the surface atoms will form additional bonds, and
in particular they will form pairs or dimers in order to
reduce the number of dangling bonds. In the limit we
obtain four dangling bonds per unit cell which leads to
an excessively high surface tension. 

In order to check this model we carried out a series
of experiments on the annealing of the 6 × 2 phase
under ultrahigh vacuum conditions. As the temperature
increased, the number of protrusions decreased mono-
tonically which, bearing in mind the higher binding
energy of the GaAs crystal compared with InAs, means
that these can be ascribed to indium atoms. Another
IMENTAL AND THEORETICAL PHY
conclusion is the appearance of a locally ordered 6 × 6
phase (Fig. 7) which is characterized by large oval pro-
trusions formed after the desorption of all the indium
atoms in the first layer and also the arsenic atoms in the
second layer. On comparing this phases with the gallium-
enriched GaAs(001)-4 × 6 phase which was obtained
under similar conditions [17], we reached the conclusion
that the oval protrusions are gallium clusters.

No 6 × 2 phase was observed, even as a transition
phase, on any static phase diagram for the homoepitax-
ial growth of a (001) GaAs or InAs surface so that it

24 Å
[110][110]

6 × 6

Fig. 7. STM images of an InAs/GaAs surface illustrating the
formation of the 6 × 6 phase (unit cell indicated) as a result
of the desorption of In dimers in the first layer and As atoms
during annealing at 580°C for 6 min, Vs = –2.2 V.
SICS      Vol. 91      No. 5      2000
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was important to determine how it is formed. The 6 × 2
phase is commensurate with the substrate structure and
only accumulates elastic strain energy as a result of the
7.2% lattice mismatch although similar preparation
conditions may lead to the appearance of a coherently
strained (i.e., containing no dislocations) 4 × 2 recon-
struction so that an additional mechanism must be
included for the appearance of a specific 6 × 2 phase. In
order to demonstrate the special role of the 6 × 2 struc-
ture in the two-dimensional growth of InAs, Fig. 8a
shows the evolution of the surface morphology during
the successive deposition of 13 InAs monolayers. The
layer-by-layer growth is evident as a result of the pres-
ence of a terrace–step structure over the entire scanning
area although the high rate of surface diffusion under
our selected growth conditions should promote a Stran-
ski–Krastanow morphological transition. The fact that
this transition did not take place is evidence of an
increase in the surface tension of the 6 × 2 phase. It can
also be seen from Fig. 8a that the edges of both types of
steps (A and B) are straight while the islands are more
anisotropic than those on the GaAs(001) surface. Since
subsequent annealing did not change the configuration,
this behavior should be the result of anisotropic diffu-
sion up the steps and/or different sticking coefficients at
steps A and B. In addition, as is shown in Fig. 8b, the sur-
face structure is no longer uniform: the former 6 × 2 ter-
races are modulated and contain a considerable number
of type I domain walls, and no screw dislocations or
stacking faults are observed at the surface. The forma-
tion of domain walls is a clear indication that the elastic

[110]
[110]

3600 × 2800 Å

(b)

(a)

24 Å

Fig. 8. (a) Evolution of the surface morphology of
InAs/GaAs during deposition of 13 epitaxial InAs layers
(six successive stages shown, Vs = –2.5 V); (b) Magnified
image of the same surface demonstrating typical modula-
tion of the 6 × 2 structure by domain walls and confirming
the removal of elastic strain at the growth fronts, Vs = –2.3 V.
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strain energy is redistributed over the surface of thick
strained layers [18]. We postulate that this strain could
be partially relieved by the formation of edge disloca-
tions at the interface [13] or by expansion of the lattice
in the direction of growth [4, 11] as a result of the elas-
tic longitudinal deformation of the surface, which can-
not be observed in an STM.

3.3. Structure of Faceted Faces 
of Three-Dimensional Islands

We shall now consider the growth of coherently
strained (i.e., containing no dislocations) islands in
the Stranski–Krastanow mode in a heteroepitaxial
InAs/GaAs system. In this case, the deposited materials
initially form a two-dimensional pseudomorphic wet-
ting layer on the substrate and after a critical thickness
has been reached, they form a three-dimensional island
structure. Undoubtedly the main reason for the change
in the growth mechanism is that when the next layer is
filled, the lattice parameter changes. The formation of
three-dimensional islands is usually explained on the
basis of the energy balance of the elastic strain and the
surface free energy because as a result of the lattice
mismatch, the elastic strain energy is accumulated as
the wetting layer grows. The main reason for the forma-
tion of islands is a possible reduction in the strain as a
result of elastic relaxation accompanied by bending of
the atomic planes of the lattice which takes place far
more efficiently in three-dimensional islands than in
two-dimensional layers. During the formation of these
islands some of the accumulated energy may be
released but as a result of an increase in the total surface
area, a higher surface energy is required. Thus, the for-
mation of an array of three-dimensional islands occurs
at thickness for which the increase in the surface free
energy is compensated by a reduction in the elastic
strain energy. Broadly the growth stage of coherently
strained islands concludes with the formation of the
first mismatch dislocation stimulated by an increase in
the elastic strain energy proportional to the volume of
the island. If the volume of the island is constant its
shape, characterized by its height-to-length ratio, will
play an important role in this process. The critical size
of the island at which the first mismatch dislocation
forms and the residual strain relaxes may be calculated
as in the two-dimensional growth regime. In [19–21]
the authors proposed various models using the concept
of energy balance, and the distortion of the unit cells in
an island is considered as a longitudinal uniform plate
deformation (similar to that studied in [22]) which
allowed them to obtain expressions for the strain/stress
in the [001] direction of growth:

(3)

where σ is the Poisson coefficient of the epitaxial layer

(the strains/stresses in the [110] and [ 10] directions

u001 2u
σ

1 σ–
------------,–=

1
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[110]

18.4°

18.4°

[110]

[210]

Fig. 9. A magnified STM image of three-dimensional island
on a GaAs(001) surface after deposition of 1.6 ML InAs,
Vs = −3.5 V.
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u110 =  = u are assumed to be isotropic and equal)
and the elastic strain energy:

(4)

where V is the volume of the island and µ is the shear mod-
ulus of the epitaxial layer, which agree with the results
obtained and accurately describe the creation of a new
phase. Coalescence of the islands at the later stages of
growth is responsible for the formation of new disloca-
tions and smearing of the edges of the epitaxial layer.

At present in most theoretical studies devoted to the
mechanism for the formation of three-dimensional
islands, these have been assumed to be disk-shaped or
hemispherical [23–25]. However, it has been found that
the shape of the islands is usually quite intricate and
facets having lower surface energy may appear at the
surface during reconstruction. In order to study the
mechanism for the formation of three-dimensional
islands we need to study their atomic structure. Using
an atomic force microscope proved to be ineffective
[26, 27] and thus, it was advisable to use an STM in the
same line as the growth chamber and to observe the for-
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Fig. 10. STM images of isolated quantum dots obtained for various InAs coverages and their cross sections.
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Fig. 11. Characteristics of three-dimensional island struc-
ture in an InAs/GaAs(001) heterosystem as a function of the
coverage: (a) density of islands; (b) lateral dimensions;
(c) average height.
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mation of the islands in situ with atomic resolution
under ultrahigh-vacuum conditions [7]. Figure 9 shows
three-dimensional islands formed on a two-dimen-
sional InAs wetting layer. An analysis of the STM
images revealed that the preferred sites for the nucle-
ation of three-dimensional islands are steps on the wet-
ting layer. A typical island has an approximately rect-

angular shape elongated in the [ 10] direction along
rows of dimers (Fig. 9). Since the indium atoms must
diffuse over a large distance in this direction, the elon-
gated rectangular shape is due to the higher growth rate

of the islands in the [ 10] direction. Note that the wet-
ting layer has a 2 × 4 structure [8–10] but the dimer
rows are curved unlike the dimer rows on a GaAs(001)
2 × 4 surface [7]. Figure 10 shows STM images, cross
section profiles (pyramidal shape), and characteristic
dimensions of two islands measured along the lines A–B.
Surface diffusion of the deposited atoms has an appre-
ciable influence on the shape and position of the islands
whose density Ns can be estimated using the simple
relationship [28]:

(5)

In our case, the density of islands for a 1.6 ML InAs
coating was approximately 9 × 109 cm–2, the average
height was 40 Å, the width in the [110] direction was

170 Å, and in the [ 10] direction 230 Å. The Miller
indices of the faceted plane were determined from its
angle of inclination relative to the substrate plane. 

We used a sequence of STM images obtained for
various InAs coatings to obtain information on the geo-
metric parameters of the three-dimensional islands
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Fig. 12. Histogram showing static distribution of faceted planes over angles of inclination and its dependence on the coverage. The
ordinate gives the relative contribution of the various planes with the (113) and (114) planes indicated.
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(Fig. 11). It can be seen that in the 1.6–2.6 ML range
the lateral dimensions do not change significantly and
are approximately 200 Å ([110] direction) and 250 Å

([ 10] direction). For a 3.0 ML coating the dimensions
of the islands in these directions increase to 350 and
550 Å, respectively, evidently as a result of the forma-
tion of dislocations at the interface of the InAs islands
with the GaAs substrate. The average height of the
islands increased continuously from 45 Å (1.6 ML) to
70 Å (3.0 ML). Since the lateral dimensions of the islands
in the 1.6–2.4 ML range remained constant, the increase
in height convincingly indicates that as the coating
increases, the side plane becomes steeper with respect to
the substrate. These data do not contradict the results
obtained by other independent researchers [27–32]. 

The angles of inclination of the faceted planes in the
[110] direction were measured for each island and
Fig. 12 gives a complete three-dimensional histogram
which clearly reveals maxima for the (113) and (114)
planes. In a GaAs crystal these planes have a lower sur-
face energy and thus are stable like the planes with low
Miller indices such as (100) and (111). In fact, it was
shown in [33, 34] that (113) and (114) oriented GaAs
substrates are suitable for preparing flat interfaces even
in systems with large lattice mismatch parameters. It
can be postulated that these arguments are also applica-
ble to the (113) and (114) planes on an InAs surface. As
regards the dependence on the coverage, it was found
that at 1.6 ML the (114) faceting [tilted by 19.5° from
the (001) substrate] dominates whereas with increasing
coverage, the peak corresponding to the (113) plane

inclined at an angle of 25.2° increased. In the [ 10]
direction the faceting of the islands was not so obvious
and it was difficult to determine the angle of inclination
of the facets as clearly as in the [110] direction.

On the faceted planes of the three-dimensional
islands we observed atomic-scale features. In particu-
lar, on the (113) plane along the [210]-axis toward the
tip of the island, we observed linear structures forming
a pattern similar to a chevron (Fig. 9). As is indicated
on the STM image, this direction forms an angle of
18.4° with the [110]-axis and the distance between the
lines is approximately four times the lattice constant of
the heterostructure so that this structure may be consid-
ered to be a 4 × 1 reconstruction of the InAs(113) sur-
face. Since the surface of the sample was enriched in
arsenic in accordance with the preparation conditions
and the observed STM images were obtained in the
filled state regime (Vs < 0), these linear structures may

be considered to be rows of As dimers in the [ 11]
direction. On the basis of these results and satisfying
the electron counting rule [11] we developed a struc-
tural model (Fig. 13) according to which, in addition to
the formation of As dimers, two neighboring In atoms
in the unit cell also form a bond in order to saturate their
dangling bonds. We note that the GaAs(113) surface
has been studied by various methods including STM
and atomic-resolution images revealed similar linear

1

1

2

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
structures [35] although the direction along which these

linear features run was [ 32] rather than [ 11] as on the
faceted planes of the InAs islands. Similar structures were
also present on the STM images of the (114) faceted plane
and these also differ from those observed on a planar
GaAs(114) surface [36]. This suggests that the faceted
planes of three-dimensional islands have a different
atomic structure compared with their planar counterparts.

3 2

As atoms In atoms

[110]

[332]

18.4°

[110]

(215)

Fig. 13. Structural model of faceted (113) plane.

Fig. 14. Three-dimensional STM images of InAs quantum
dot on GaAs(001) surface, scanning area 130 × 130 Å2, Vs =

–3.5 V; the faceted plane (215) and the [ 10] direction are
indicated.

1
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In addition, a careful study of the STM images
revealed that on some islands the faceted planes are
tilted from the (113) plane. These systems of facets
were observed most frequently when other islands were
localized close to the faceted plane. Figure 14 shows an
example of a similar facet orientation whose analysis
allowed us to ascribe the index (215) to the faceted
plane. On this plane we can clearly identify regularly
distributed protrusions mapping As dimers. We devel-
oped a structural model of this plane with a 1 × 1 unit
cell containing a single As dimer and one In bond sim-
ilar to the model of the (113) plane which is also con-
sistent with the electron counting rule. 

4. CONCLUSIONS
We have used atomic-resolution STM to study in situ

the initial stages of InAs/GaAs(001) heterostructure
growth according to the Stranski–Krastanow mechanism,
and the ensuing surface reconstructions. We established
the important role of the 4 × 2 phase as a template for the
layer-by-layer growth of a high-quality interface. We
observed the formation of domain walls which facilitated
the two-dimensional growth of epitaxial InAs films. For
the first time we observed a new 6 × 2 phase whose forma-
tion appreciably improved the morphological stability and
structure of the substrate.

We investigated the nucleation of three-dimensional
InAs islands on a GaAs substrate and studied their
characteristics. For the first time we obtained STM
images which reveal the atomic structure of the faceted
planes of these islands and we proposed structural
models for these. We showed that the atomic structures
of the faceted planes differ from the structures of their
flat counterpart and geometric models of flat surfaces
cannot be applied to faceted surfaces.
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Abstract—Magnetooptic methods were used to observe the existence of magnetic-field-induced order–disor-
der–order phase transitions between metastable modifications of biperiodic stripe domain structures in mag-
neto-uniaxial iron garnet films having a low positive anisotropy constant. It is shown that the loss of long-range
order in the system in a certain range of variation of the field is caused by the loss of correlation between the
quasi-harmonic surface distortions of the profile of neighboring domain walls. © 2000 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION 

In the present paper we report results of an experi-
mental investigation of the properties of biperiodic
stripe domain structures in thin uniaxial magnetic films
having a low positive anisotropy constant βu and the
axis of easy magnetization directed along the normal n
to the surface (subsequently called the z-axis). These
structures which were observed by the authors in [1]
and exist in a specific range of film thicknesses  < L <

 are characterized by an ordered system of contin-
uous stripe domains of period d oriented in some spe-
cific direction (subsequently called the y-axis), sepa-
rated by walls whose profile undergoes quasi-harmonic
surface modulation with the period Λ. In the absence of a
magnetic field all the domain walls undergo “in-phase”
modulation, i.e., the distance between neighboring
domain walls along the x axis is a constant equal to d. 

It was shown in [2] that as the film thickness
increases, the amplitude of modulation of the domain
wall profile aΛ increases monotonically from zero for
L =  (a second-order phase transition in terms of
thickness from a monoperiodic to a biperiodic domain
structure) to a value approximately equal to d, undergo-
ing a jump of approximately d/4 for aΛ/d = 0.5 (a first-
order phase transition in terms of thickness between
two modifications of biperiodic domain structures with in-

phase modulation of the domain wall). When L >  the
domains in the structure begin to branch and then cease
to be stripe domains. The vast majority of published
studies have been devoted to the properties of biperi-
odic domain structures in films of varying thickness
and the construction of various theoretical models
(using the approximation of structureless “geometric”

Lcr*

Lcr
1( )

Lcr*

Lcr
1( )
1063-7761/00/9105- $20.00 © 21011
domain walls) to explain the reasons for the formation
of these structures (see the definitive studies [1–4] and
also the bibliography in [5, 6]). In earlier experiments
in the presence of a magnetic field the emphasis was on
studying hysteresis loops and mechanisms for the mag-
netic reversal of films; no field-induced phase transi-
tions were reported in the range of existence of biperi-
odic domain structures. 

It was recently observed [5, 6] that in the presence
of a magnetic field 

H = H||ez + H⊥ e⊥

several types of regular biperiodic domain structures
(DS) may exist in a certain range of field strength and
orientation in uniaxial magnetic films with βu ≤ 1.
These structures include: DSI where the profile of all
the domain walls undergoes quasi-in-phase modulation
at each surface of the film (in each domain wall the
modulation of the profile at different surfaces is in
antiphase); DSII where the profile of neighboring
domain walls undergoes quasi-antiphase modulation at
each surface of the film (in each domain wall the mod-
ulation of the profile at different surfaces takes place
independently); DSIII is a hybrid domain structure hav-
ing twice the period of the blocks generating it, in
which sections with in-phase and antiphase modulation
of the neighboring domain wall profile alternate sys-
tematically in pairs. As the strength of the magnetizing
field increases or decreases, first- or second-order
phase transitions take place between various types of
domain structure. For example, in the presence of a
weak field H|| = const and a field H⊥  whose strength
increases continuously from zero, we observe the fol-
lowing chain of phase transitions: DSI  DSIII 
DSII  simple (monoperiodic) DS  uniformly
magnetized state. For H|| = 0 the component corre-
000 MAIK “Nauka/Interperiodica”
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sponding to the hybrid DSIII is omitted from this chain
of phase transitions. The symmetry of the optical dif-
fraction patterns observed for normally incident light
on a film having any of these types of domain structure
is characterized by the same mm2 point group. The
phase diagram of the films on the plane (H⊥ , H||) was
determined for the case when the component H⊥  is col-
linear to the direction in which the stripe domains are
oriented (the y axis).

In the present study we report results of an experi-
mental study of the stability of various types of biperi-
odic domain structures relative to a symmetry-perturb-
ing external action, specifically the magnetic field com-
ponent Hx , and we also analyze the ensuing metastable
distributions of the magnetic moment.

2. EXPERIMENTAL RESULTS

Experiments were carried out using uniaxial films of
magnetic garnets (for a detailed description of the prop-
erties of the films see [5, 6]) at T = 293 K and H|| = 0 by
the following method. First we determined the satura-
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Fig. 1. Phase diagram of the 16 µm thick Lu2.1Bi0.9Fe5O12
film No. 1 on the plane (φH, H⊥ ). Explanations to curves 1–7
are given in the text.

(a) (b)

Fig. 2. Schematic diagram of two possible types of biperi-
odic domain structure where the unit cell profile differs (a)
weakly and (b) strongly from rectangular.
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tion field H⊥  >  which was then decreased continu-
ously to zero with the result that a regular biperiodic
domain structure with domain walls along the y-axis
formed in the film. The film was then turned about the
normal to the surface by a certain angle φH and the
response of the domain structure to a continuous
increase in the field H⊥  was studied using a polarizing
microscope.1 We also monitored the diffraction pat-
terns (using 0.6328 µm laser radiation) which played a
decisive role in identifying the types of domain struc-
ture observed. As a result of the existence of a rotational
coercive force [7] the initial direction of the domain
wall was conserved in a certain range of H⊥  where
the width of this range depended on the selected value
of φH.

We shall illustrate the main results of a study of the
phase transitions between different types of domain struc-
ture in the presence of the component Hx for one film
16 µm thick having the composition Lu2.1Bi0.9Fe5O12
(film No. 1) for which the period of the domain struc-
ture d in the absence of a magnetizing field was 5.6 µm
and the period of the quasi-harmonic distortions was
Λ = 2.1 µm.2 The apparent value of the uniaxial anisot-
ropy constant  = /4πM for this film was 0.21. For
clarity the data obtained are given as a phase diagram
(Fig. 1) on the plane (φH, H⊥ ). Curves 1–7 give a set of
points corresponding to the upper limit of the range of
stability of a specific type of domain structure for a con-
tinuously increasing field H⊥  for H|| = 0.

(1) For small (φH ≤  ≈ 17°) deviations of the
direction of the field H⊥  from the y axis the evolution of
the domain structure with increasing field was the same
as that for φH = 0, i.e., the following chain of transitions
was observed: DSI  DSII  monoperiodic DS 
uniformly magnetized state. The only characteristic
feature was that for any nonzero value of Hx the struc-
tures of the neighboring domain walls (and neighboring
domains) in the domain blocks differed and the shape
of the unit cell also exhibited a small (a few degrees)
deviation from rectangular, as is shown schematically
in Fig. 2a. The motif-forming element is shown as a
black and white figure having its perimeter outlined by
a heavy solid line, the domain walls are shown by the
dashed lines, and the unit cell is a parallelogram (thin
solid lines) having a corner angle close to π/2; the black
and white sections correspond to domains with Mz > 0
and Mz < 0. The field component Hx amplified the peri-

1 For the case φH ≠ 0 we cannot use the more informative procedure
of cyclic magnetic reversal of the films, as was used to study the
domain structures observed for φH = 0 [5, 6] because after satura-
tion of the film followed by a reduction in the magnetic field the
incipient stripe domains are oriented in the direction H⊥ . This
implies that all the nonuniform distributions of the magnetic
moment described in this study are metastable.

2 Results of an investigation of the phase transitions between differ-
ent types of domain structure for φH = 0 were described in
detailed for this film in [5, 6] so that to avoid repetition we shall
subsequently refer to the data in these studies as necessary.

H ⊥*

βu* H ⊥*

φH
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(a)

(b)

(c)

Fig. 3. Photographs of observed domain structures (right) and their corresponding diffraction patterns (left) for film No. 1 for  φH = 35°
and H⊥  = (a) 100, (b) 120, and (c) 130 Oe.
odic surface modulation of the magnetization distribu-
tion profile at one of the walls of each domain and sup-
pressed it at the other. The diffraction pattern corre-
sponding to this domain structure lost the mirror
reflection planes and its symmetry was based on point
group 2, not on the mm2 group as for φH = 0. 

As the field increased continuously (from zero), at
only slightly differing field values, a transition took
place from an initial quasi-in-phase domain structure to
a quasi-antiphase structure (curve 1 in Fig. 1) with dif-
ferent modulation periods of the domain wall profile at
the free surface (Λ1a = 1.8 µm) and at the film–substrate
interface (Λ2a = 3.6 µm). With increasing field, the
modulation initially disappears at the first of these sur-
faces (curve 2) and in stronger fields, at the second
(curve 3), i.e., a transition takes place to a monoperi-
odic domain structure.3 For fields corresponding to
curve 4 the film is converted to the single-domain state
(compare with Fig. 2 in [6]).

(2) If the angle φH is larger than , the processes
observed with continuously increasing field H⊥  were
initially the same as those described above: a quasi-in-
phase biperiodic domain structure with a slightly dis-
torted rectangular unit cell was stable in weak fields
(Fig. 2a). Photographs of the domain structure for this
case and the corresponding diffraction pattern are
shown in Fig. 3a. As the field H⊥  increased further in a

φH
cr1( )
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certain narrow range we observed some smearing of the
diffraction peaks caused by modulation of the domain
walls whose character indicated that the period of the
modulation distortions of the magnetization distribu-
tion profile remained almost the same for all domain walls
but the spatial phase shift between distortions in neighbor-
ing domain walls was not constant (see Fig. 3b), i.e., the
corner angle of the unit cell fluctuated perceptibly, as
shown in Fig. 2a. Above a certain critical value (curve 5 in
Fig. 1) however, these fluctuations disappeared and a
regular domain structure formed, characterized in that
the quasi-harmonic distortions of the magnetization
distribution profile in domain walls of the same type
(distributed alternately) were shifted relative to each
other by approximately half a period. In this case, all
the diffraction peaks J(p, q) with q ≠ 0 were shifted rela-

3 In this range of fields the modulation period Λ increases mono-
tonically for the in-phase domain structure. First it is the same for
both developed surfaces (Λ1s = Λ2s = Λ) but as we approach the
range of stability of the antiphase domain structure the values of
Λ1s > Λ1a and Λ2s < Λ2a begin to differ, the difference between
them increasing monotonically with increasing field, remaining
less than Λ2a – Λ1a (see Fig. 2 in [6]). As a result of the inevitable
nonuniformity of the properties in the film in the narrow range of
fields a transition takes place from a in-phase to an antiphase
domain structure, both types of structure coexist and domain
walls having four modulation periods of the profile are observed
simultaneously. On the diffraction patterns this is observed as
splitting of all the diffraction peaks J(p, q) with q ≠ 0 into doublets.
SICS      Vol. 91      No. 5      2000
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tive to the peaks J(p, q – 1) parallel to the abscissa by an
amount close to half the spacing between the neighbor-
ing initial reflexes (see Fig. 3c). This may be treated as
a first-order phase transition between states having dif-
ferent unit cell profiles and specifically for values of H⊥
below curve 5 in Fig. 1 the acute angle at the corner of the
parallelogram is close to π/2 whereas above the critical
value of H⊥  this angle is approximately ,
see Fig. 2. 

A characteristic feature of this phase transition is the
exact agreement between the modulation periods of the
domain wall profile Λ at the free surface of the film and
at the film–substrate interface which is confirmed by
the complete absence of any tendency to form typical
doublets on the diffraction patterns which are observed

for φH < .

(3) As the magnetic field increases, the domain
structure formed having an oblique-angled unit cell
remains stable over a fairly wide range of H⊥  but after
a certain critical value has been exceeded (curve 6 in
Fig. 1) this domain structure becomes unstable with
respect to strong fluctuations of the unit-cell corner
angle which leads to such severe smearing of the dif-
fraction peaks J(p, q) with q ≠ 0 that they almost merge
into continuous bands. The diffraction pattern then has
a form similar to that shown in Fig. 3b. This smearing
persists until a transition takes place to a monoperiodic
domain structure (curve 3 in Fig. 1); conversion to the
single-domain state takes place in a stronger field
(curve 4 in Fig. 1).

2d/Λ( )arctan

φH
cr1( )

Fig. 4. Photograph of the domain structure of 10 µm thick
Lu2.1Bi0.9Fe4.83Mg0.17O12 film No. 2 at H⊥  = 0.
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(4) For any value of φH ≠ 0 the asymmetry of the dis-
tribution of the magnetization vector in neighboring
domain walls becomes increasingly strong as the field
increases; a visual observation under conditions when

φH >  shows that the modulation of the profile for
half the domain walls (every other one) at each surface
of the film becomes almost indiscernible in fairly weak
fields (see the photographs in Figs. 3b and 3c obtained
by focusing on the outer surface of the film). Each of
the domain walls has a modulated profile on one sur-
face and an unmodulated one on the other and at neigh-
boring walls the modulation is suppressed at different
surfaces.

(5) There is a second critical value of the angle φH =

 (for film No. 1 this value is around 30°) above
which in a fairly strong field (above curve 7 in Fig. 1)
biperiodic domain structures become unstable with
respect to the formation of large-scale (relative to the
periods d and Λ) kinks (breaks) in the domain walls
with the result that these walls are transformed into zig-
zag structures with two types of subblocks. In the first
type of subblock the orientation of the domain walls
remains close to the initial orientation whereas in the
second type of subblock all the domain walls are turned
through a small angle relative to the y axis in the direc-
tion of the vector H⊥ . With increasing H⊥ , as a result of
the creation and migration of kinks subblocks of the
first type become displaced and the domain walls in all
the subblocks rotate in the direction of the magnetic
field. If the kinks are small-angled (a few degrees), as is
the case for φH & 60°, they have almost no influence on the
processes of rearrangement of the domain structure; for
φH > 60° even in comparatively weak fields the domain
wall kinks become so strong that the evolution of the
domain blocks follows a completely different scenario.

(6) If the field intensity is reduced without allowing
reorientation of the domain walls and (or) conversion to
the single domain state, the chain of phase transitions
described above takes place in the reverse order with
appreciable hysteresis whose width in terms of the
magnetic field depends on the angle φH.

This pattern of phase transitions can be made more
complex if the magnetic anisotropy energy of the films
includes a contribution attributable to the crystallo-
graphic (cubic) anisotropy. For the orientation of the
films used in our experiments [the substrates were cut
in the (111) plane] even for φH = 0 the neighboring
domain walls will only have the same magnetization
distribution profile if the field H⊥  is assigned to one of
the mirror reflection planes passing across the [111]
axis. If this condition is not satisfied, only domain
structures of the type shown in Fig. 2a having different
distribution profiles of the magnetization vector in
neighboring domain walls will exist. In addition, in this
case we can also observe the formation of large-scale

φH
cr1( )

φH
cr2( )
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kinks in the domain walls similar to those formed under
the action of the field Hx .

This is illustrated in Fig. 4 which shows a photograph
of the domain structure of a 10 µm thick, (111)-oriented
demagnetized (H⊥  = 0) film No. 2 whose composition
only differed from that of film No. 1 in that it contained
a small (0.17 per formula unit) quantity of magnesium
ions (the influence of cubic anisotropy was manifest
most strongly in these films although weaker effects
were observed in films of any composition). Large-scale
kinks can be observed and a difference between the
images of neighboring domain walls is also clearly visi-
ble. The orientation of the stripe domains was specifically
selected so that the reduction in the symmetry of the mag-
netization distribution was most clearly defined. Note that
this effect should be observed not only in biperiodic but
also in monoperiodic domain structures. 

The presence of a cubic component of the magnetic
anisotropy also has the result that when domains are
created from the saturated state, the stripe domains are
generally not strictly oriented parallel to the field H⊥
but are deflected from it by some angle (up to 10°)
where the magnitude of the deflection depends on the
sign of the field (with its orientation unchanged). 

In order to check whether the various modifications
of the biperiodic domain structures observed using the
magnetooptic diffraction of light are correctly identi-
fied, we used a well-known scheme (see, e.g., [8–10])
to make theoretical calculations of the intensity of the
diffraction peaks. The model shown in Fig. 5 was used
to calculate the structure factor for various types of
domain structures. The profile of the domain walls was
approximated by broken lines (cf. Fig. 2), the amplitudes
of the distortions of neighboring domain walls X1 =
x4 – x3 and X2 = x2 – x1 were generally assumed to be
different, and the positions of the projections and
indentations on the domain walls were characterized by
the values yi defined by the following relationships:

y1 = cΛ, y2 = Λ/2 – y1,

y3 = Λ/2 + y1, y4 = Λ – y1,

X1X2

0 x1 x2 x3 x4 xd

y4

y3

y2

y1

y
Λ

Fig. 5. Model of domain walls used to calculate the intensity
of the diffraction peaks.
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where the numerical parameter c determines the degree
of deviation of the domain structure from a symmetric
(H = 0) in-phase structure for which c = 0. It was also
assumed that

We used a step approximation for the distribution of the
component Mz and a model with a triangular distribu-
tion where Mz goes to zero at the domain wall. For the
low-order diffraction peaks observed in real experi-
ments both approaches yield almost the same results. 

x1 x2+
2

----------------
d
4
---,

x3 x4+
2

----------------
3d
4

------.==

(a)

(b)

(c)

Fig. 6. Theoretical diffraction patterns for various types of
biperiodic stripe domain structures: (a) biperiodic domain
structure with in-phase modulation of the domain wall pro-
file and a rectangular unit cell; (b) biperiodic domain struc-
ture with a negligibly small deviation of the unit cell shape
from rectangular; (c) biperiodic domain structure with an
oblique-angled unit cell.
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Although calculations were made for all possible
types of domain structure, we shall merely confine our
analysis to the three examples shown in Fig. 6 and relat-
ing to film No. 1. The first (a) describes diffraction at a
symmetric in-phase domain structure (y1 = 0, y2 = y3 =
Λ/2, y4 = Λ, X1 = X2 = 1.1 µm), while the second and
third (b and c) model the situation shown in Figs. 3a and
3c, respectively. The values of the geometric parameters
for the second and third examples which reflect the real
experimental results were selected as follows: y1 = y3 =
Λ/4, y3 = y4 = 3Λ/4, X1 = 1.1 µm, for a domain structure
with a negligible deviation of the cell profile from rect-
angular (Fig. 6b) X2 = 0.3 µm, and for a domain struc-
ture with an oblique-angled cell (Fig. 6c) X2 = 0. In this
last case, in the calculations of the structure factor inte-
gration was performed over a doubled cell (compared
with that shown in Fig. 5) comprising a combination of
two initial cells shifted relative to each other by the dis-
tance d along the abscissa in one of which the domain
walls were shifted by Λ/2 along the ordinate. The dif-
fraction peaks are shown by the black circles whose
area is proportional to the intensity and the centers are
positioned at the nodes of a reciprocal lattice formed by
translations of the basis vectors. A comparison with the
experimental results (see also Figs. 4 and 7 from [6])
shows that good agreement is observed between the
calculated and experimental diffraction patterns.

3. CONCLUSIONS

An analysis of the experimental results shows that in
the presence of a magnetic field directed at an angle to
the plane of the domain walls, only those biperiodic
domain structures which possess certain unit cell cor-
ner angles, either close to 90° or differing negligibly
from ), are stable. The magnetic-field-
induced first-order phase transition between these domain
structures belongs to the order–disorder–order type, i.e., it
takes place via an intermediate amorphized state charac-
terized by a specific type of partial loss of long-range
order caused by strong fluctuations of the unit-cell corner
angle. The phase transition from a biperiodic domain
structure (having a unit cell which differs substantially
from rectangular) to a monoperiodic structure also takes
place by the same scheme.

2d/Λ( )arctan
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To conclude, we note that in [5, 6], in order to dis-
criminate between various modifications of biperiodic
domain structures, the present authors used a symmetry
description of domain structure “transforms” (photo-
graphs) based on the framework of two-dimensional
space groups which corresponded to a description of
the symmetry of the distribution of the component
Mz(x, y) for z = const in any plane parallel to the sur-
faces of the film. A truncated symmetry description was
used because in experiments to observe domain struc-
tures and their corresponding diffraction patterns the
Faraday effect was used which only gives information
on the z component of the magnetization vector; infor-
mation on the Mx(x, y, z) and My(x, y, z) distribution is
completely lost. A complete description of these objects
in terms of magnetic symmetry can only be given (if we
neglect the difference between the properties of the film at
the interfaces with free space and the substrate) after
obtaining the necessary information, for example, using
the Kerr effect or magnetic force microscopy.
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Abstract—Results are presented of studies of the 154Sm1 – xSrxMnO3 system using neutron powder diffraction
and small-angle polarized neutron scattering. An analysis of the neutron diffraction spectra showed that at T <
180 K these exhibit typical Jahn–Teller distortions of the manganese–oxygen octahedrons which persist under
further cooling and on transition of the sample to a metallic magnetically ordered state. The magnetic contribu-
tion to the diffraction is satisfactorily described using the (Ax(Ay)Fz) model and is interpreted as the coexistence
of ferromagnetic and antiferromagnetic phases. The exaggerated widths of the diffraction lines indicate an
appreciable contribution from microdeformations evidently associated with the inhomogeneity of the system.
Small-angle polarized neutron scattering showed that the Sm system for x = 0.4 and 0.25 is magnetically inho-
mogeneous in the low-temperature phase. Ferromagnetic correlations occur on scales of around 200 Å and
having dimensions greater than 1000 Å which, combined with the temperature hysteresis of the magnetic small-
angle scattering intensity observed for an x = 0.4 sample in the low-temperature phase, suggests that the tran-
sition is of a percolation nature. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Manganites having the general formula

, where R is a rare earth and A is a diva-
lent metal, have recently attracted increased interest
following the observation of colossal negative magne-
toresistance in these materials and also because they
exhibit a broad spectrum of structural and magnetic
transitions which evidently lead to the complex mesos-
copic magnetic structure of these materials. Research-
ers have always noted the magnetic inhomogeneity of
these systems (beginning with [1]) and have put for-
ward assumptions that magnetic inhomogeneities exist,
these being an integral and fundamental characteristic
which is responsible for the colossal negative magne-
toresistance (see, e.g., the reviews [2, 3] and [4]). This
has recently led to an increasing number of studies on
small-angle neutron scattering to identify magnetic
inhomogeneities associated with phase separation
using the electrical conductivity, principally in La per-
ovskites, and analyses of magnetic scattering mainly in
the paramagnetic phase [5–11]. 

The structural homogeneity of the manganese sam-
ples used for these studies has frequently been cast into
doubt. Indeterminacy of the stoichiometric composi-
tion [12, 13], anisotropic diffraction line broadening
associated with the presence of a microstructure [14],
exaggerated Debye–Waller factors, and inhomogene-

R1 x–
3+ Ax

2+MnO3
1063-7761/00/9105- $20.00 © 21017
ities visible by electron microscopy [15] have all been
noted. For fundamentally inhomogeneous samples the
structural characteristics extracted from diffraction
data have the meaning of averaged values. In this con-
text, a study of mesoscopic-scale inhomogeneities
using small-angle neutron scattering should be highly
informative for investigating substituted rare-earth
manganites and may significantly complement and
refine the averaged picture visible from Bragg diffrac-
tion. 

The Sm1 – xSrxMnO3 system is of particular interest
for these studies since, as a result of a difference
between the ionic radii of samarium and strontium
(rSm = 1.132 Å, rSr = 1.31 Å), it is assumed that there
will be appreciable local distortions of the lattice (for
example, for x = 0.4 we have σ2 = 7.604 × 10–3 Å2,

where σ2 = xi  – 〈r〉2) which substantially influence
the transport and magnetic properties of the manganites
[16]. In addition, there are disparities between the
results of investigations of thin films and powder sam-
ples. For example, data on the optical absorption and
resistivity of Sm0.6Sr0.4MnO3 thin films [17] indicate
that this compound remains an insulator over the entire
range studied, it does not undergo ferromagnetic order-
ing, and exhibits indications of charge ordering. An
investigation of this compound in powder form using
electron diffraction analysis and microscopy combined
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with a study of the transport and magnetic properties
revealed ferromagnetic ordering, the existence of a
metal–insulator transition, and the coexistence of sev-
eral structural types [18]. Assuming that the film and
the powder have the same chemical composition, dif-
ferences in the macroscopic characteristics should be
sought in a difference between the characteristic sizes
of the films (around 100 nm) and the powder grains (5–
10 µm) which emphasizes the need for studies on the
mesoscopic scale.

The present study is an attempt to make a more
detailed investigation of samarium–strontium mangan-
ite Sm0.6Sr0.4MnO3 which includes a study of the mac-
roscopic, magnetic mesoscopic (small-angle polarized
neutron scattering, SAPNS), and microscopic (high-
resolution neutron powder diffraction, NPD) character-
istics of the same powder sample. As far as we are
aware, no detailed structural analyses have been made
of a samarium–strontium system. Results of prelimi-
nary studies of the macroscopic properties and struc-
ture of this system with x = 0.25 and 0.4 were published
in [19–21], and results for the magnetic mesoscopic
characteristics were given in [22] where SAPNS was
mainly used to study the x = 0.25 composition, and in
[23]. It was established in [19] that the system has a dis-
torted perovskite structure, where (1) a transition to a
magnetically ordered phase (110–130 K) accompanied
by a change in the type of conductivity to “metallic”
was observed for a sample with x = 0.4 and (2) an
increase in the magnetic susceptibility (90–100 K) was
observed in a sample with x = 0.25, the magnetic struc-
ture was not determined, and no transition to the metal-
lic state was observed. The magnetic and electrical
properties of the samples studied in [19] show a good
correlation with the properties of the Sm system
described in [18]. With regard to the mesoscopic char-
acteristics, it was shown in [22, 23] that in an Sm sys-
tem with x = 0.25 and 0.4, ferromagnetic correlations
and magneto-nuclear cross correlations on scales of
180–250 Å and ferromagnetic correlations on scales of
thousands of angstrom exist in the low-temperature
range.

In the first section we present the necessary infor-
mation on the sample, we describe its magnetotransport
properties and the characteristics of the neutron scatter-
ing experiments. We then analyze the magnetic and
crystal structures using the diffraction data and present
an interpretation of the small-angle scattering and
depolarization. In Section 4 we search for a model for
a joint treatment of the macroscopic, mesoscopic, and
microscopic data. The main results are presented in the
Conclusions.

2. SAMPLE AND EXPERIMENTS

The initial reagents were samarium and manganese
oxides and strontium carbonate. The samples were pre-
pared by stepwise solid-phase synthesis from stoichio-
metric mixtures of the initial components with interme-
JOURNAL OF EXPERIMENTAL 
diate grinding and pressing at 50–10 000 kg cm2. The
samples were synthesized in air using alundum cruci-
bles at temperatures of 1000, 1100, and 1200°C, the
duration of a single synthesis stage was 6–97 h, and the
samples were quenched in air. The synthesized samples
were tested to determine the content of the metal com-
ponents using chemical methods of analysis: a semim-
icro complexometric titration method was used to
determine Sm, Sr, and Mn with a random error not
exceeding 1% for Sm and Mn and 2% for Sr relative to
oxygen. The Sm content was also determined by a photo-
metric technique. The accuracy of these methods of anal-
ysis was confirmed by analyzing artificial solutions and
comparing the complexometric and photometric results.
Finally we prepared a completely enriched 154Sm powder
having the composition 154Sm0.590(6)Sr0.410(8)Mn1.00(1)O3
and grain size 5–10 µm. Data on the magnetoresistance
of this sample were published in [19] and results of an
investigation of the magnetic susceptibility and magne-
tization were kindly supplied by A. Maignan [24].

The neutron powder diffraction measurements were
made using the G4.2 Franco-Russian high-resolution
neutron powder diffractometer at the Leon Brillouin
Laboratory (Saclay, France). Monochromatic neutrons
having the wavelength λ = 2.3433 Å were used. Most
of the data were obtained in a heating regime at temper-
atures T = 1.5, 19.5, 50.5, 72, 87.1, 106, 124.9, and
300 K. In addition, diffraction patterns were also mea-
sured at T = 250, 180, 145, and 120 K in the sample
cooling regime. For the NPD measurements the powder
sample was placed in a vanadium cylindrical container
8 mm in diameter.

The small-angle scattering measurements were
made using the VEKTOR small-angle polarized neu-
tron scattering device [25] (WWR-M reactor, Gatch-
ina). For the SAPNS measurements we used a sample
of the same powder in a 2-mm thick aluminum con-
tainer measuring 8 × 45 mm. VEKTOR was fitted with
a twenty-counter (3He) detector and a multichannel
analyzer which could be used to make a comprehensive
polarization analysis in the range of scattering vectors 0 <
q < 3 × 10–1 Å–1 in a slit geometry (q = k – k' where k
and k' are the wave vectors of the incident and scattered
neutrons, respectively), i.e., the four scattering cross
sections S±, ± could be measured where ± are the neu-
tron spin states relative to the magnetic field before and
after the sample, respectively. The polarization of the
neutron beam was defined as

where I± is the intensity of neutrons having the corre-
sponding spin state relative to the magnetic field. The
initial polarization of the neutron beam incident on the
sample was P0 . 0.94. The measurements were made in
a magnetic field 0 < H < 4500 Oe (the field lay in the
scattering plane at an angle of around 55° to the z-axis
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directed along k) at the wavelength λ = 9.2 Å (∆λ/λ =
0.25). The measurements were made in an RNK10-300
cryorefrigerator in the temperature range 15 ≤ T ≤
300 K with temperature stabilization of around 0.1 K.
The samples were placed in a gaseous helium atmo-
sphere which was used as the heat-exchange gas.

3. MAGNETOTRANSPORT PROPERTIES

The temperature dependence of the resistance of
this Sm0.6Sr0.4MnO3 sample given in [19] shows that
the compound undergoes a transition to the metal state
at T = 110 K. The application of a field substantially
reduces the resistance at the transition point
[R110(0)/R110(24 kOe) = 7] which allows us to classify
Sm0.6Sr0.4MnO3 as a compound having “colossal mag-
netoresistance” (Fig. 1). At T > 120 K the conductivity
is of the hopping (polaron) type and at T . 180 K an
activation energy jump occurs. In a field of 24 kOe this
jump disappears. Measurements of the susceptibility
and magnetization show that at T = 110 K a spontane-
ous magnetic moment appears in the sample. Charac-
teristics of this compound should include some drop in
the magnetization and magnetic susceptibility at T < 40 K
and the presence of an elongated section on the suscep-
tibility curve at T > 110 K [18]. The magnetotransport
properties of this sample in the paramagnetic range
were analyzed in greater detail in [26] where results of
measurements of the second harmonic of the suscepti-
bility were taken as the basis for assuming that antifer-
romagnetic correlations with a weak ferromagnetic
component develop in the paramagnetic phase. In addi-
tion, it is also assumed in [26] that regions of charge
ordering of the manganese ions form in the sample,
where antiferromagnetic ordering occurs. The size of
these regions is hundreds of angstrom and their bulk
fraction should be extremely small (this was not esti-
mated). This treatment correlates with the results of
measurements of the magnetization, and the electron
diffraction and microscopy data obtained for a manga-
nite having the same composition [18].

4. ANALYSIS OF NEUTRON DIFFRACTION DATA

Diffraction spectra of Sm manganite obtained at
room temperature and at T = 1.5 K are shown in Fig. 2.
An analysis of the width of the diffraction lines
revealed that the lines are broadened appreciably com-
pared with the resolution function of the diffractometer.
This discrepancy is indicative of effects associated with
the microstructure such as the influence of the size of
coherent regions and microdeformations. By examin-
ing suitable corrections it was established that the line
widths actually observed can be described in terms of
an orthorhombic microdeformation in which the lattice
constants are assumed to have a Gaussian distribution
over the sample while conserving the orthorhombic
symmetry of the unit cell. Parameters to be refined are
the dispersions of the lattice constants of the model
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
structure. A different degree of “smearing” of the lattice
constants leads to different line broadening with differ-
ent indices h, k, and l. This broadening of the diffraction
peaks, described as anisotropic, was observed in man-
ganites in an earlier study [14] and was attributed to the
multiphase composition of the samples and to the exist-
ence of a continuous distribution of lattice constants
caused by microdeformations. At the final stages of a
Rietveld analysis, two parameters were used to

120 160 200 24080
T, K

1

R(0)/R(H)

2

3

5

T1 = 1.5Tc

T2= 1.25Tc

Tc

Fig. 1. Temperature dependence of the magnetoresistance
R(0, T)/R(H, T) of an Sm0.6Sr0.4MnO3 sample for H =
24 kOe. The features on the temperature dependence indi-
cated by the arrows are as follows: (1) T1 is associated with
an O–O' structural transition; (2) T2 is associated with the
appearance the second harmonic of the magnetization;
(3) Tc is associated with a metal–insulator transition and the
appearance of spontaneous magnetization.
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Fig. 2. Experimental and calculated (almost the same) dif-
fraction patterns of 154Sm0.6Sr0.4MnO3 sample at 300 K.
The difference curve is shown by the lower line. The mark-
ers below the diffraction pattern indicate the position of the
peaks. The inset shows the same pattern at 1.5 K, the upper
row of markers corresponds to the crystal-structure peaks and
the lower row corresponds to the magnetic structure peaks.
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described the line broadening, an isotropic broadening
component and an anisotropic component proportional
to the dispersion of the distribution of the lattice con-
stant b over the sample. The latitude parameters were
fixed at the values of the diffractometer resolution func-
tion. The other parameters of the orthorhombic micro-
deformation model had zero averages over tempera-
ture, allowance for these did not improve the quality of

0.2

0 100 200 300
T, K

0.3

X, arb. units

4

0 100 200 300
T, K

6
STR2, arb. units

2

Fig. 3. Temperature dependences of the lattice constants of
154Sm0.6Sr0.4MnO3 (Pbmn). The arrows indicate the direc-
tion of change in temperature. 
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Fig. 4. Temperature dependences of the microdeformations
parameters proportional to the dispersions of the lattice
parameters: X—isotropic component; STR2—anisotropic
component along the b-axis of the unit cell; j—measure-
ments in heating regime (top to bottom: 300, 250, 180, 144,
120, 106, 87, 72, 50.5, 19.5, and 1.5 K); u—measurements
in cooling regime.
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the fit, and in order to reduce the number of parameters
to be refined, these were eliminated from the refine-
ments at the final stage of the treatment. Temperature
dependences of the refined lattice parameters are plot-
ted in Fig. 3. 

The microdeformations which when taken into
account provided a satisfactory description of the
observed diffraction line broadening, are associated
with the size and shape distribution of the unit cells.
The refined microdeformation parameters are propor-
tional to the second moments of these distributions.
Thus, all the structural parameters given below have the
meaning of averages. The existence of microdeforma-
tions is associated with the inhomogeneity of the sam-
ple and the characteristics of the degree of inhomoge-
neity may be taken to be the dispersions of the lattice
constants which, as we can see from Fig. 4, vary with
temperature. The temperature dependences of the
microdeformation parameters exhibit a jump when
magnetic ordering of the manganese atoms appears.
This jump is also retained when only the anisotropic
component is used to refine the microdeformation
parameters [20]. 

5. CRYSTAL STRUCTURE OF Sm0.6Sr0.4MnO3

The structural parameters were extracted by the
Rietveld method using the FULLPROF program [27].
The parameters were determined in the context of an
orthorhombic structure (space group 62, Pbnm). Tem-
perature dependences of the refined lattice constants
given in Fig. 3 and Table 1 indicate that at room tem-
perature the structure is metrically close to tetragonal.

The phase O (a ≥ b > c/ ) denotes the orthorhombic
(Pbnm) structure obtained from the cubic aristotype by
rotating the regular (undistorted) MnO6 octahedrons
[28]. This structure has three crystallographically inde-
pendent Mn–O spacings and in the O-phase these are
the same. The O' phase denotes the orthorhombic struc-

ture where the axes are related as b > a > c/ . This
structure may be obtained from O if the spacings in the
manganese–oxygen fragment cease to be the same. On
the basis of the temperature dependences of the lattice
constants, the transition temperature is TO–O' . 180 K.
The transition to a magnetically ordered metallic state
corresponds to a jump on the temperature dependences
of the lattice constants. The lattice constant b in partic-
ular, has a maximum at T = 120 K. In addition, as for
the microdeformation parameters, when T < TO–O', a
slightly different temperature dependence of the lattice
constants a and b is observed during heating and cool-
ing of the sample (Figs. 3 and 4). The difference
reaches a maximum and exceeds two standard devia-
tions at T . 120 K. For the lattice constant c the differ-
ence in the heating and cooling regimes does not
exceed two standard deviations.

2

2
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Table 1.  Refined values of lattice constants and magnetic moments for manganese atoms

T, K a, Å b, Å c/ , Å mz, µB (F-type) my, µB (A-type)

1.5 5.4297(7) 5.439(1) 5.4260(9) 2.50(6) 0.53(4)

19.5 5.4294(8) 5.439(1) 5.426(1) 2.55(6) 0.55(4)

50.5 5.4297(8) 5.440(1) 5.426(1) 2.40(6) 0.50(4)

72.0 5.4306(8) 5.441(1) 5.426(1) 2.14(6) 0.48(4)

87.1 5.4310(7) 5.441(1) 5.426(1) 1.99(6) 0.44(5)

106.0 5.4344(8) 5.445(1) 5.425(1) 1.28(8) 0.35(5)

124.9 5.4376(9) 5.446(1) 5.423(1) – –

300.0 5.4415(6) 5.4419(9) 5.4256(6) – –

2

Table 2.  Bond lengths and angles in a manganese–oxygen fragment

T, K Mn–O1, Å Mn–O2(1), Å Mn–O2(2), Å Mn–O1–Mn Mn–O2–Mn

1.5 2.06(2) 1.935(2) 1.86(2) 158.1(2)° 164.9(5)°
19.5 2.06(2) 1.935(2) 1.86(2) 157.7(2)° 164.8(5)°
50.5 2.07(2) 1.934(2) 1.84(2) 157.8(2)° 165.2(5)°
72.0 2.06(2) 1.934(2) 1.86(2) 157.6(2)° 165.4(6)°
87.1 2.08(2) 1.931(2) 1.84(2) 157.9(2)° 166.8(6)°

106.0 2.06(2) 1.937(2) 1.86(2) 158.2(2)° 163.8(5)°
124.9 2.12(2) 1.936(2) 1.78(2) 160.3(1)° 163.9(5)°
300.0 1.96(2) 1.952(3) 1.94(2) 160.0(2)° 158.7(4)°
The O–O' transition corresponds to a loss of equal-
ity between the lengths of the three manganese–oxygen
bonds. The temperature dependence of these bond
lengths is given in Table 2 and is typical of the cooper-
ative Jahn–Teller effect. The splitting of the bond
lengths in the MnO6 octahedron corresponds to the
Mn–O2 square lying approximately in the plane ab
being distorted to form a rhomb at T < 180K where the
maximum distortion occurs at the magnetic ordering
temperature. It should be noted that the distortion of the
manganese–oxygen fragment is unusually large for a
relatively dilute system of Jahn–Teller ions (60% Mn3+)
and is comparable with that for undoped LaMnO3

(100% Mn3+) [29]. This well-defined distortion of the
MnO6 octahedron is also conserved in the region of
metallic conductivity despite the fact that these distor-
tions imply localization of the Mn3+ ions. 

The overall structural data, specifically the appre-
ciable line broadening, the temperature hysteresis of
the lattice constants, and the high level of Jahn–Teller
distortions which are conserved in the temperature
region of magnetic ordering and metallic conductivity,
indicate that the sample is structurally inhomogeneous.
By this we understand that the sample has a multiphase
composition which, because of the similarity between
the crystal structures of the different phases, only
appears within the limits of the diffractometer resolu-
tion for the effects listed. 
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
6. MAGNETIC STRUCTURE 
OF Sm0.6Sr0.4MnO3

A preliminary analysis of the contribution of mag-
netic scattering to the neutron diffraction spectra at T <
TC, where TC is the Curie temperature, was made in
[20]. Here we shall give refined data which can be used
to provide a more accurate model of the magnetic
ordering in Sm0.6Sr0.4MnO3. The diffraction spectra at
low temperatures contain ferro- and antiferromagnetic
contributions. Magnetic scattering almost disappears at
T = 130 K. The magnetic contribution was analyzed
using the FULLPROF program. We only considered a
single-phase homogeneous model for the Mn sublattice
based on an orthorhombic (Pbnm) crystal lattice.

We found that the magnetic structure can be
described as a mixture of ferromagnetic and antiferro-
magnetic components. The magnetic moment of the
Mn ions has components my (or mx) and mz, respec-
tively, along the b- (or a-) and c-axes in the orthorhom-
bic (Pbnm) structure. The mzcomponents are ordered
ferromagnetically in the c direction; the my (or mx) com-
ponents are ordered ferromagnetically in the ab plane
and antiferromagnetically in the c direction, forming a
so-called A-type antiferromagnetic structure. The total
magnetic moment of the Mn ions at saturation at T =
1.5 K was defined as m = 2.52(5)µB. The temperature
dependences of the components of the magnetic
moment are given in Table 1. The experimental data
SICS      Vol. 91      No. 5      2000
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cannot be used to make a definitive choice between the
a and b directions of the antiferromagnetic moment.
Thus, we say that there is an equal probability of an
AxFz or AyFz magnetic structure having the wave vector
k = (0, 0, 0) being formed. Moreover, a choice between
a noncollinear ferromagnetic or a multiphase system
consisting of ferromagnetic and antiferromagnetic
regions cannot be made merely from powder diffrac-
tion data. Using data from [30], the AxFz magnetic
structure can be described as a superposition of nonre-
current irreducible  + τ3 representations of the Pbnm
group while the AyFz magnetic structure can be described
as a superposition of recurrent irreducible  + τ3 repre-
sentations. In the first case, we have different irreduc-
ible representations and therefore two exchange mul-
tiplets which most likely corresponds to a two-phase
(ferro- and antiferromagnetic) state of the compound.
In the second case, however, we have a single irreduc-
ible representation τ3 and thus a single exchange mul-
tiplet and there is good reason to consider the system to
be a canted ferromagnet.

A subsequent more detailed analysis of the neutron
diffraction data showed that the description of the crys-
tal and magnetic structures of this Sm0.6Sr0.4MnO3
compound given above may be slightly improved if we
assume that there is another antiferromagnetic phase
having the wave vector k = (1/2,1/2, 0). This corre-
sponds to doubling the magnetic unit cell, compared
with the crystal one, along the a- and b-axes. The ori-
entation of the magnetic moments at the Mn ions in this
phase corresponds to a CE-type antiferromagnet (the a-
and b-axes are again not isolated as in the A-type anti-
ferromagnetic structure considered above). Figure 5
shows parts of the experimental spectra measured for
an Sm0.6Sr0.4MnO3 sample in the temperature range
1.5 ≤ T ≤ 300 K. The positions of the (001) peak from
the A-type antiferromagnetic lattice and the (1/2 1/2 1)

τ1''

τ3'

Intensity, arb. units
16000

12000

8000

4000

0
10 20 30 40 50

2θ, deg

A CE F

Fig. 5. Fragments of experimental diffraction patterns of
154Sm0.6Sr0.4MnO3 at various temperatures (top to bottom:
300, 250, 180, 144, 120, 106, 87, 72, 50.5, 19.5, and 1.5 K).
The arrows indicate the changes in intensity caused by the
A, F, and CE types of magnetic ordering.
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peak from the CE-type antiferromagnetic lattice are
indicated. It can be seen that whereas the A-type mag-
netic ordering disappears above 120 K, the CE-type
magnetic ordering is still observed at 150 K but not at
180 K. We also note that no CE structure is observed for
an Sm0.75Sr0.25MnO3 sample. The magnetic moment of
the Mn ions forming the CE structure calculated from
the experimental data reaches mCE = 0.31(3)µB at low
temperatures (.1.5 K). 

In many studies the formation of a CE antiferromag-
netic structure is attributed to charge ordering of the
Mn3+ and Mn4+ ions. Our neutron diffraction data
broadly agree with the results of [18] where local regions
of charge ordering were observed from electron diffrac-
tion and electron microscopy data for Sm1 – xSrxMnO3
manganites in the concentration range 0.4 ≤ x ≤ 0.6 and
the magnetic, TC . 125 K, and charge ordering tem-
peratures TCO . 140 K were determined from the tem-
perature dependence of the magnetization for
Sm0.6Sr0.4MnO3.

7. RESULTS AND ANALYSIS OF SMALL-ANGLE 
POLARIZED NEUTRON SCATTERING 

MEASUREMENTS

Typical temperature dependences of the magnetic
small-angle scattering intensity Im(T) and the polariza-
tion P(T) are plotted in Figs. 6 and 7. The values of
Im(T) were calculated as

Im(T) = I(T) – I(300 K), (1)

where I(T) is the experimentally measured intensity,
and the polarization P(T) is normalized to the polariza-
tion of the incident neutron beam. Figure 7b gives the
temperature dependence of the integrated magnetic
scattering cross section Σ(T) in the range of small q (in
practice in the central counter of a detector with q <
0.003 Å–1) which is determined from the depolarization
data. According to [31] (see also [32] and the literature
cited there) the depolarization of neutrons after passing
through the sample may be considered to be the result
of integral scattering at magnetic inhomogeneities
within the angular width of the transmitted beam:

P = P0exp(–gΣL), (2)

where g < 2 is a coefficient which depends on the ori-
entation of P0 relative to k, and L is the sample thick-
ness. Thus, by measuring the depolarization it is possi-
ble to study the total scattering cross section in the
range q < qmin (qmin is the resolution of the counter) and
to obtain integrated information on large-scale mag-
netic inhomogeneities having the characteristic dimen-
sion R > 1/qmin. 

On analyzing the dependences P(T) and Im(T) we
can confirm the following.

(a) Scattering increases with decreasing T in ranges
of small q < qmin and q > 0.003 Å–1 i.e., Σ(T) and Im(T),
AND THEORETICAL PHYSICS      Vol. 91      No. 5      2000
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respectively. The transition takes place over a larger
range of T and the temperature dependences of the scat-
tering have typical sections which are very different for
x = 0.4 and 0.25 (data for x = 0.25 were taken from
[22]).

(b) Temperature hysteresis is observed on the
dependences Im(T) and P(T).

(c) The depolarization ∆P(T) = 1 – P(T) in weak
fields increases with decreasing T (not exceeding 80%)
and decreases at T < 40 K.

(d) The scattering exhibits a strong dependence on
the field H where the scattering cross section increases
with H in the range of small q < qmin [depolarization or
Σ(T)] and decreases in the range q > 0.003 Å–1 [i.e.,
Im(T)]. An exception is the range T = 130–110 K where
Im(T) depends weakly on H while Σ(T), conversely,
increases relatively rapidly in the field H = 4200 Oe. In
addition, in this field we observe that the transition tem-
perature is shifted to 130 K.

The SAPNS data show that in the low-temperature
phase the Sm system is magnetically highly inhomoge-
neous. The authors will not attempt to interpret all the
nuances of the observed temperature and field depen-
dences of small-angle scattering. Our task is to attempt
to give a qualitative explanation of the observed effects
taking into account research by other methods. The first
question is the extent to which the observed magnetic
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P 

Fig. 6. Temperature dependences of the polarization P in the
central counter (q < 0.0003 Å–1) and the neutron magnetic
scattering intensity Im for an Sm1 – xSrxMnO3 sample with
x = 0.4 for H = 0 (d, r) and H = 4.2 kOe (n). The neutron
depolarization data for the x = 0.25 sample (u) for H = 0 are
taken from [22].
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scattering is associated with the aggregate inhomoge-
neity of the system, since the samples being studied are
powder samples in which magnetic scattering can take
place at grain/pore boundaries. Using a polarized neu-
tron method, we can give an estimate of the contribu-
tion of this scattering to the total magnetic scattering.
The intensity of the scattering of polarized neutrons at
a magnetized sample I(T, q) may be expressed in the
form

(3)

where In and Im are the nuclear and magnetic scattering
at magnetic density fluctuations having amplitudes Fn

and Fm, respectively, and Imn is the magneto-nuclear
interference term. For simplicity we shall assume that
Fm includes a geometric factor for the relative orienta-
tion of the vectors q and m, where m is the magnetic
moment of the sample. All three terms in (3) can be
measured independently and as a result we can find the
ratio of the magnetic scattering intensities obtained
from measurements of the interference term and caused
by scattering at grains/pores (see below) to the total
magnetic scattering intensity (1).

I T q,( ) Fn
2 T q,( ) 2Fn T q,( )Fm T q,( ) Fm

2 T q,( ),+ +∝

In T q,( ) Fn
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Fig. 7. Temperature dependences of (a) the magnetic
scattering intensity Im with q = 0.01 Å–1 and (b) the inte-

grated magnetic scattering in the range q < 0.003 Å–1 for
Sm1 – xSrxMnO3 samples with x = 0.4 and H = 0 (d), 130 (s),
800 (j), 1240 (.), 4200 Oe (n). The data for the x = 0.25
sample (u) for H = 0 were taken from [22].
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The interference term Imn can be measured as the
difference ∆ between the scattering intensities of neu-
trons polarized parallel (I–) and antiparallel (I+) to the
applied magnetic field H:

∆ = I+ – I– = 4Fn(T, q)Fm(T, q). (4)

It was shown in [22] that for Sm samples with x = 0.25
and 0.4 an interference effect is observed whose mag-
nitude normalized to the total magnetic scattering Pint =
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Fig. 8. Temperature dependence of the normalized mag-
neto-nuclear interference effect Pint = (I+ – I–)/Im in fields
H = 800 Oe (u, s) and 4200 Oe (j, d) for an
Sm0.6Sr0.4MnO3 sample with q = 0(j, u) and q = 0.01 Å–1

(d, s).

Fig. 9. Time dependences of: (a) the neutron intensity in the
central counter (j) and the scattering for q = 0.01 Å–1 (d)
and (b) the normalized magneto-nuclear interference effect
Pint = (I+ – I–)/Im during condensation of N2 in sample
pores: Sm0.6Sr0.4MnO3 sample, T = 70 K, H = 130 Oe.
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∆/Im does not exceed 2% in fields up to 1 kOe. In this
study and references cited in it the authors determined
the conditions for observation of interference scattering
at magnetic-nuclear cross correlations which, in accor-
dance with the optical theorem, changes sign for q  0. 

Figure 8 gives the temperature dependence Pint(T)
for a sample with x = 0.4 in fields up to 4.2 kOe. The
interference effect may be caused by scattering at
cross-correlated intragranular magnetic and structural
fluctuations on scales of hundreds of angstrom and at
grain/pore boundaries (when the grains are magne-
tized) or at both. The fundamental possibility of study-
ing the cross-correlation magnetic and lattice sub-
systems will be discussed below. The existence of the
second scattering channel is confirmed by the depen-
dence of the interference effect with varying nuclear
contrast using a method of gas condensation [33] (in
this case nitrogen) in the sample pores. Figure 9 gives
time dependences of the change in the interference
effect (b), the intensity in the central counter (q . 0)
and the scattering for q = 0.01 Å–1 (a) during the nitro-
gen condensation process.

From independent measurements of In and Im we
found that, for example at T = 100 K and H = 130 Oe

the ratio is α = /  & 3. [In these order-of-magni-
tude estimates we neglect the difference in the momen-
tum dependences Im(q) and In(q). The dependence Im(q)
will be considered subsequently and the nuclear scat-
tering which is mainly determined by scattering at
grain/pore boundaries is satisfactorily described by the
asymptotic form In(q) ∝  q–4 for q ≥ 4 × 10–3 Å–1.] Bear-
ing in mind that Pint(T) does not exceed 6–7% in all
measurement regimes and that the magnetic scattering
increases no more than fourfold relative to that at 100 K as
the temperature decreases, the value of β, which is the

ratio of the values of  obtained from measurements
of the interference term and from measurements of the
magnetic scattering may have the upper estimate (i.e.,
maximum Pint and minimum α) 

This ratio is an upper estimate of the fraction of the
magnetic scattering at grain/pore boundaries in the total
magnetic scattering since we assumed that all the inter-
ference scattering takes place merely in one channel. 

Hence, to within 10–3 the magnetic scattering whose
temperature dependences are plotted in Fig. 7 involves
scattering at magnetic fluctuations in grains. An analy-
sis of the dependences Im(q) showed that these are accu-
rately described by the expression:

(5)

Fn
2 Fm

2

Fm
2

β
Pint

2

16α T H,( )
------------------------- & 10 3– .=

Im q( )
A
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-----------------------,=
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where A and κ = 1/Rc are free parameters and Rc has the
meaning of the characteristic correlation radius. In the
coordinate representation expression (5) corresponds to
scattering at the spin correlation function 〈Si , Sj〉  which
decreases exponentially with distance r:

(Si , Sj) ∝ exp(–r/Rc). (6)

Values of the parameters A and Rc obtained by convo-
luting the Lorentzian (5) with the resolution function of
the system are plotted in Fig. 10. It can be seen that the
characteristic correlation radius Rc depends weakly on
temperature unlike the parameter A which, in accor-
dance with the variation of Im(T), follows the tempera-
ture variations of the magnetic moment and the mag-
netic inhomogeneity density having the characteristic
dimension Rc.

Figure 11 gives the temperature dependence of the
ratio Im(q)/Σ which primarily characterizes the change
in the topology of the magnetic inhomogeneities since
in the magnetic cross section ratio the dependence on
the induction should be reduced in a first approxima-
tion. This ratio is essentially the ratio of the magnetic
scattering in the detector counter at the angle θ, which
corresponds to q = 0.01 Å–1, to the magnetic scattering
in the central counter of the detector (θ = 0). It can be
seen that Im/Σ shows a stable tendency to decrease with
decreasing temperature and increasing magnetic field
which may be interpreted as an increase in the density
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Fig. 10. Temperature dependences of (a) the correlation
radius Rc and (b) the parameter A for Sm1 – xSrxMnO3 sam-
ples under various measurement conditions: a—x = 0.4,
cooling in fields H = 0 (s) and 4.2 kOe (m); x = 0.25, cooling
at H = 0 (u) [22]; b—x = 0.4, cooling at H = 0 (s) and
4.2 kOe (m) and heating at H = 0 (d). The lines in the upper
diagram were drawn by eye.
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of large-scale scattering inhomogeneities with decreas-
ing temperature and increasing magnetic field. An
exception is the temperature range T < 40 K. An
increase in P(T) with decreasing T is typical of a reen-
trant spin-glass transition accompanied by the forma-
tion of a cluster spin glass phase [34]. 

The change in the topology of the magnetic inhomo-
geneities is also confirmed by the strong depolarization
with decreasing temperature and increasing field up to
4200 Oe. The increase in the depolarization in fields up
to 4 kOe implies that the magnetic moments in the low-
temperature ferromagnetic phase are not completely
oriented parallel to the field in this range, i.e., the sys-
tem exhibits fairly strong magnetic anisotropy. For
instance, the maximum value of ∆P is approximately
80% for H = 0 and reaches 100% for H = 4200 Oe. We
can show that even for the maximum magnetic moment
of the Mn atom scattering at ferromagnetic fluctuations
on the scale Rc cannot give depolarization greater than
20%. For estimates we can use the formula [32]

(7)

where γ is the neutron gyromagnetic ratio, B(T) =
4πM(T) is the induction of the ferromagnetic region of
dimension Rc, v is the neutron velocity, and L is the
effective thickness of the sample. [Formula (7) agrees
with (2) provided that the change in the phase of the
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Fig. 11. Temperature dependence of the ratio of the intensity
of neutron magnetic scattering Im with q = 0.01 Å–1 to the

magnetic scattering Σ in the range q < 0.003 Å–1 for an
Sm0.6Sr0.4MnO3 sample under cooling in various mag-
netic fields: H = 0 (d), 130 (s), 800 (j), 1200 (.), and
4200 Oe (n).
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neutron wave at fluctuations Rc is small, i.e., γBRc/v !
2π, and apart from a numeric factor agrees with the
classical depolarization formula obtained by Halpern
and Holstein [35]. For example, if the magnetic
moment of the Mn atom is 4µB and the effective sample
thickness is L = 1.5 mm the depolarization is &15%.
However, if we assume homogeneous ferromagnetic
ordering on the grain scale the depolarization for H ≈ 0,
the minimum magnetic moment of the Mn atom around
1µB, and the given sample thickness, should be 100%.
The experimental data on the temperature dependences
of the scattering Im(T) and the polarization P(T) (see
Figs. 6 and 7) may agree if we assume that in addition
to fluctuations having the characteristic scale Rc, the
system also has larger-scale ferromagnetic fluctuations
from which scattering takes place almost in the central
counter so that it is only recorded from the change in
polarization. For instance, the presence of approxi-
mately 20% ferromagnetic fluctuations having dimen-
sions of 5000–6000 Å can give a depolarization of
around 80%. Data on the depolarization only give a
qualitative estimate of the sizes of the magnetic regions
since its value depends (apart from the size) on the
magnitude and distribution of the induction in these
regions and also on the concentration of these regions. 

8. DISCUSSION OF RESULTS

An analysis of the neutron diffraction data and mag-
netic small-angle polarized neutron scattering data for
this manganite unambiguously indicate that this con-
tains magnetic and nuclear inhomogeneities which
evolve with temperature. This pattern agrees with the
results of electron diffraction and microscopy which
have revealed the coexistence of structural P- and
I-types for a compound having this composition. A
reduction in temperature leads to the appearance of
incommensurate superstructures in the P-phase which
is treated in [18] as the appearance of a local charge-
ordered state at T = 140 K. This conclusion is consistent
with the (1/2, 1/2, 1) peak associated with the magnetic
CE structure observed by us in the 1.5–150 K range.
The magnetic nature of this peak is confirmed by the
appearance of hysteresis of the second harmonic of the
magnetization at T . 160 K and below [26], and its low
intensity indicates that the charge-ordered regions have a
small bulk fraction. At the same time, no I-type structure
could be clearly identified from the neutron diffraction
data. Possible reasons for this are the following.

(1) The similarity between the structural parameters
of the P- and I-structures and the small fraction of the
I-phase which make it impossible to resolve the struc-
tures at the level of instrumental resolution used. This
point is supported by the line broadening and the exag-
gerated Debye–Waller factors. In addition, neutron dif-
fraction gives a pattern averaged over the bulk of the
sample whereas electron methods study regions near
the surface. 
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(2) The absence of a magnetic field in the neutron
diffraction experiments. For example, a magnetic field
of the order of 1–2 T was applied in the electron micro-
scope experiment [18]. In particular, the difference
between the neutron diffraction and electron micros-
copy data in Pr0.5Sr0.5MnO3 manganite was ascribed to
this factor [36]. In our case, the sensitivity of the struc-
ture to a magnetic field follows from the magnetoresis-
tance data: in a 24 kOe field the characteristic kink on
the temperature dependence of the resistance disap-
pears at T . 180 K which corresponds to a OO' struc-
tural transition. In addition, the results of SAPNS mea-
surements reveal a strong dependence of the mesos-
copic inhomogeneity topology on the magnetic field. 

An analysis of the magnetic diffraction results
revealed the coexistence of several types of magnetic
ordering (A, F, CE). The reason for the appearance of
different magnetic phases in manganites is usually
assumed to be competition between ferromagnetic dou-
ble exchange and antiferromagnetic superexchange
(see, for example, [37]). Using the nominal magnetic
moment for manganese at a given concentration,
Mn3+/Mn4+, and the experimental magnetic moments,
we can approximately estimate the fraction of manga-
nese atoms in the different phases. At T = 1.5 K 60% of
the manganese atoms form the ferromagnetic phase,
15% are antiferromagnetically ordered, and the remain-
ing fraction of the manganese atoms (25%) makes no
contribution to the magnetic diffraction. The reason for
this may be the small sizes of the magnetically ordered
regions containing 25% of the manganese atoms and
forming at low temperatures an additional magnetic
phase of the cluster spin glass type whose presence in
these perovskites has been discussed in many studies
[7, 38, 39]. Indications of a spin glass state may include
a difference in the measurements of the magnetonu-
clear interference term as a function of the cooling
regime [in zero field (ZFC) followed by application of
the field H or in the field H (FC) [22]], a difference in
the magnetization in the ZFC and FC regimes at T <
40–50 K [24], and characteristic depolarization behavior
at T < 40 K in weak fields [34]. The formation of magnetic
inhomogeneities having characteristic dimensions of
around 200 Å which depends weakly on temperature
and field is attributed to the evolution of ferromagnetic
correlations with decreasing temperature against a
background of competing antiferromagnetic regions. In
order to complete the scenario we also need to include
the existence of large-scale ferromagnetic correlations
(thousands of angstrom) which ensure the observed
depolarization. A contribution to the small-angle mag-
netic scattering may also be made by antiferromagnetic
regions having scales of hundreds of angstrom formed
inside large-scale ferromagnetic regions, i.e., “mag-
netic holes” in ferromagnetic regions. The transition to
the ferromagnetic phase is evidently accomplished by a
percolation manner where ferromagnetic correlations
having dimensions of around 200 Å merge into clusters
of around 1000 Å. This scenario can at least reconcile
AND THEORETICAL PHYSICS      Vol. 91      No. 5      2000
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the small-angle scattering and neutron depolarization
data. Similar scales of ferro- and antiferromagnetic
regions were observed by electron microscopy in an
(La, Pr, Ca)MnO3 system in [40]. In this system, how-
ever, the authors observed oriented ordering of ferro-
magnetic regions in fields up to 4 kOe which is not the
case in an Sm system, as we have already noted because
in this range of magnetic fields the depolarization is far
stronger than in zero field. We can postulate that in an
Sm system the anisotropy is stronger. The SAPNS data
indicate that the magnetic mesostructure of an Sm sys-
tem with x = 0.4 and 0.25 differs (see Figs. 6, 7, and 10).
These differences possibly characterize the absence of
a transition to the metal state at deficient strontium con-
centration.

An important characteristic of the transition to the
magnetically ordered state is the strong hysteresis of
the depolarization and small-angle scattering and the
appreciable hysteresis of the lattice constants. This hys-
teresis is natural for a percolation transition. In this con-
text it should be noted that the concept of the Curie
temperature TC used to describe the phase diagrams of
the Sm system and similar systems is very arbitrary.

Using polarized neutrons in the small-angle experi-
ments makes it possible to measure the magneto-
nuclear interference on a suitable scale. Here these
measurements were mainly used to give an upper esti-
mate of the ratio of the magnetic scattering intensity at
grains/pores to the total magnetic scattering assuming
that all the interference scattering takes place only in
one channel. Such an estimate is required for powder
samples. However, the method in principle provides the
unique experimental possibility of studying intercorre-
lations between the magnetic and lattice subsystems on
a scale of 10–1000 Å. There is some basis for their
existence. First, experiments show (Fig. 9) that the time
dependence of the interference term in nuclear con-
trasting clearly does not tend to zero and second the dif-
fraction peaks are only satisfactorily described using a
microdeformation model. However polycrystalline or
single-crystal samples are required for these measure-
ments. Nevertheless, we note once again that the
SAPNS method gives more adequate information for
powder experiments. This in turn provides a unique
possibility for directly comparing the SAPNS and NPD
results obtained for the same sample.

9. CONCLUSIONS

A combined analysis of experimental data on the
macroscopic properties (magnetoresistance, magneti-
zation, magnetic susceptibility), microscopic structural
parameters (neutron powder diffraction), and mesos-
copic characteristics (magnetic small-angle polarized
neutron scattering) suggests the following pattern for
the temperature evolution of Sm0.6Sr0.4MnO3. 

(a) At T . 180 K a structural transition takes place
from the O to the O' phase associated with the evolution
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
of well-defined Jahn–Teller distortions of the manga-
nese–oxygen octahedrons. The temperature depen-
dence of the resistance, having a polaron character,
exhibits a singularity corresponding to an increase in
activation energy.

(b) At T . 160 K the antiferromagnetic correlations
appearing in part of the sample lead to charge and
related magnetic CE ordering. These effects lead to the
formation of an elongated section on the magnetic sus-
ceptibility and magnetization curves [18], the appear-
ance of the (1/2, 1/2, 1) magnetic peak, and hysteresis
of the second harmonic of the magnetization [26]. 

(c) From T . 110–120 K a spontaneous magnetic
moment appears in the system and increases. In this
case, ferromagnetic (F) and antiferromagnetic (A and
CE) phases coexist. A magnetic diffraction analysis
shows that even at low temperatures, around 25% of the
manganese atoms make no contribution to the mag-
netic diffraction peaks. However, an analysis of the
small-angle scattering in this temperature range indi-
cates that magnetic inhomogeneities having character-
istic dimensions of around 200 Å and of the order of a
few thousand angstrom coexist in the system.

(d) At T < 40 K some of the manganese atoms which
make no contribution to the magnetic diffraction form
a magnetic phase, evidently of the cluster spin glass
type, which leads to an increase in the polarization of
the neutrons transmitted by the sample and explains
why the temperature dependences of the magnetic
characteristics differ from the magnetic prehistory of
the sample.

Quite clearly, the main result of this study is that we
have obtained experimental evidence that in a system
with competing magnetic interactions the coexistence
of magnetically different but structurally similar phases
is energetically favorable. The mechanism for the phase
separation remains unclear although the scales of the
mesoscopic inhomogeneities do not suggest electron
phase separation. The existence of magnetic inhomoge-
neities in the system and the dependence of their topol-
ogy on the magnetic field indicates that the negative
magnetoresistance effect may be attributed to charac-
teristic features of the magnetic mesostructure. 
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Abstract—An analysis is made of the behavior of a magnetic droplet suspended in a liquid in a high-frequency
uniform, rotating magnetic field. In weak fields the droplet is spheroidal while in strong fields it is disk-shaped.
The observed change in the shape of the droplet as the amplitude of the field increases depends on the magnetic
permeability µ of the liquid and takes place according to three scenarios: (a) for small µ the spheroidal droplet
is continuously converted into a disk; (b) for intermediate µ there is a range of fields in which the droplet
becomes a triaxial ellipsoid with its major axis lying in the plane of the field, and spheroid–triaxial ellipsoid–
disk transitions take place as a result of a soft bifurcation; (c) at high µ both transitions are hard. Theoretical
calculations are made of the stability curve for the various droplet shapes. It is predicted that a change in the
types of droplet shape bifurcations will occur in strong fields. A comparison is made with the experimental data.
© 2000 MAIK “Nauka/Interperiodica”.
Studies of equilibrium shapes of rotating volumes of
liquid in order to describe the shape of the planets were
started as early as the mid nineteenth century [1] when
Plato also conducted the first experiments. Since it is
clearly impossible to simulate gravitating volumes of liq-
uid under laboratory conditions, in these experiments the
role of the planet was played by an ordinary liquid droplet
whose shape was determined as a result of the competition
between surface and centrifugal forces. The main Plato
methodology, that is to say the neutral buoyancy of a drop-
let and setting it in motion using a rotating drum, are still
retained to some extent today. Alongside the traditional
Plato technique, in modern experiments the droplet is
suspended under conditions of weightlessness [2] or by
the action of an ultrasonic wave [3]. Rotation of the
droplet is also achieved by acoustic methods [3]. There
is also a simpler method of rotating the droplet. If a
magnetic fluid, comprising a colloidal suspension of a
magnetic substance in an ordinary liquid [4], is used as
the droplet material, the droplet will rotate when it is
placed in a rotating magnetic field. This approach was
implemented by us in [5] where we studied the behav-
ior of a magnetic droplet in a low-frequency (~1 Hz)
external field and observed that the droplet breaks up into
two smaller volumes as its rotation speed increases. An
increase in the frequency of the field does not generally
lead to a significant increase in the rotation speed of the
droplet. This observation is exactly the same as the so-
called rotation effect, in which a layer of magnetic fluid
is entrained by a rotating magnetic field [4]. In this
effect the angular rotation speed of the liquid is several
orders of magnitude slower than the rotation speed of
the field. However, it is possible in principle to achieve
rapid rotation of a droplet under the action of a rotating
1063-7761/00/9105- $20.00 © 21029
magnetic field exactly the same as the suspension of a
droplet in air in a graded magnetic field. Before con-
ducting such an experiment we must first determine how
the magnitude of a rapidly rotating magnetic field and the
magnetic properties of the magnetic fluid influence the
equilibrium shape of the droplet. 

In the present study we report an experimental
investigation of the behavior of droplets of magnetic
fluid in a uniform rotating magnetic field at 55 Hz. This
field frequency is high in the sense that it is much higher
than the rotation frequency of the droplet (≤1 Hz). For this
frequency ratio the predicted droplet shape is an oblate
ellipsoid of revolution whose maximum cross section
coincides with the plane of rotation of the field. We
know that in a static field the droplet is an ellipsoid of
revolution elongated in the direction of the field [6].
Thus, when the field rotates rapidly and the droplet
shape cannot keep up with its change, it is predicted
that the prolate ellipsoid will become “smeared” in the
plane of the field and will be converted into an oblate
ellipsoid. We denote the semiaxes of the droplet ellip-
soid by a, b, c where the first two lie in the plane of the
field and a ≥ b. In our experiment as the amplitude of
the field increased, the droplet was successively con-
verted from a sphere to a spheroid (a = b > c) and then
to a disk, i.e., a highly oblate ellipsoid of revolution
(a = b @ c). However, this sequence of continuous flat-
tening of the droplet, beginning with a spherical droplet
in the absence of a field and ending with a disk-shaped
droplet in strong fields, only occurs when the magnetic
permeability of the magnetic fluid is low. For µ > 5 we
observed unexpected behavior of the droplet shape
which underwent two successive bifurcations. First,
above a certain field GA the spheroidal droplet became
000 MAIK “Nauka/Interperiodica”
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elongated in the plane of the field, being converted into
a triaxial ellipsoid (a > b > c), then it began to be com-
pressed, and finally it was converted into a disk in the
field GB.

In order to make a detailed study of the effect, we
used six concentrated magnetic fluids having magnetic
permeabilities between 5.8 and 20.4. For each magnetic
fluid we prepared samples of between three and seven
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Fig. 1. Stability diagram of equilibrium droplet shapes. The
numbers indicate the ranges of parameters for which the
droplet is a spheroid (1), a triaxial ellipsoid (2), and a disk
(3). The solid curve gives the results of calculations using
formulas (2) and (3), the filled triangles give the experimen-
tal data with increasing field and the unfilled triangles give
the data for decreasing field. The notation A, B, C, F is
defined in the text.
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Fig. 2. Droplet semiaxis ratio a/b in the plane of the field as
a function of the Bond number for µ = 5.94. The symbols
give the experimental data for three droplets having differ-
ent initial radii, A and B are the bifurcation points. The solid
curve gives the results of the calculations using formulas (2)
and (3).
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droplets, whose radius R in the absence of the field was
2–5 mm. We suspended each droplet in an aqueous
solution of zinc chloride. We determined the coefficient
of surface tension σ at the interface between the droplet
and the solution by a standard method [6] using the
elongation of the droplet in a static field. We then
placed the droplets in a high-frequency rotating mag-
netic field and we determined the limits of the range of
field amplitudes GA and GB for its existence in the form
of a triaxial ellipsoid. Both shape-bifurcation fields for
droplets of fixed magnetic permeability depended on
their dimensions as GA, B ∝  R–1/2. Thus, we calculated
the corresponding values of the Bond magnetic num-
bers Bo = G2R/σ which were averaged over a set of
droplets having the same magnetic permeability µ. In
this way we determined the range of µ–Bo parameters
for which the droplet exists in the form of a spheroid,
triaxial ellipsoid, or disk. The maximum amplitude of
the magnetic field in the experiments was 50 Oe which
corresponded to Bond numbers of ~150. The experi-
mental data are plotted in Fig. 1. An important charac-
teristic of the conversion of the droplet from a spheroid
to a triaxial ellipsoid and back is that for µ < 11 both
transitions are soft. This property is reflected in Fig. 2
which gives the experimental results for the semiaxis
ratio a/b as a function of the Bond number. It can be
seen that as the field increases near the bifurcation
points A and B, the ratio a/b varies monotonically. Bifur-
cations of the droplet shape at high µ take place com-
pletely differently. In our experiments when the field
reached the value GA a droplet with µ = 20.4 was
abruptly converted from a spheroid to a triaxial ellip-
soid with the semiaxis ratio a/b = 6. The reverse transi-
tion in strong fields is also hard: a triaxial ellipsoid with
the semiaxis ratio a/b = 10 is abruptly converted to a
disk. The hard instability at high magnetic permeabili-
ties is accompanied by the appearance of hysteresis of
the droplet shape, i.e., the magnitudes of the transition
fields and the geometric dimensions of the droplet
become different for increasing and decreasing ampli-
tude of the field.

We shall now make a theoretical analysis of the
problem of droplet behavior in a rotating high-fre-
quency magnetic field. In this problem there are several
physical mechanisms determining the shape of the
droplet, i.e., the magnetic field, the surface tension at
the interface, and the flow created inside and outside
the droplet. However, the role of this flow is insignifi-
cant. This is deduced from a simple estimate of the
characteristic values of the viscous and hydrodynamic
pressures and from our experimental data obtained as
the field frequency increases. It was found that the fre-
quency of the field merely (weakly) influences the rota-
tion speed of the droplet but not its shape. Thus, we can
predict that the droplet shape is determined as a result
of competition between magnetic and surface stresses.
We take the axes of a coordinate system rotating with
the droplet as follows: the x axis is positioned along the
 AND THEORETICAL PHYSICS      Vol. 91      No. 5      2000
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major axis of the ellipsoid and the z axis lies in the same
direction as the vector of the angular rotation velocity
of the field ω. Let us assume that G is the amplitude of
the field and the rotation speed of the field is much higher
than the rotation velocity Ω of the droplet, ω @ Ω. The
droplet energy is equal to the sum of the surface and
magnetic energies:

(1)

Here S and V are the surface area and volume of the
droplet; M1 = (µ – 1)/4π(1 + (µ – 1)n1), M2 is obtained
from M1 by substituting 1  2 in the index; n1 and n2
are the demagnetizing factors in the plane of the field,
along the x and y axes, respectively. The magnetic con-
tribution to the energy was formulated using the well-
known result for the magnetization of a uniformly mag-
netized ellipsoid [7] assuming that µ is independent of
the field, averaging over the period of the field, and
neglecting the dispersion of the magnetic permeability
of the magnetic fluid which is vanishingly small at
these field frequencies (~100 Hz) [4]. By varying (1)
according to the semiaxis ratios a/b and a/c at constant
droplet volume, after simple but cumbersome calcula-
tions we obtain a system of equations to determine the
droplet shape. After writing the ellipsoid semiaxes a, b,
and c in units of the droplet radius R without the field,
this system finally has the form 

(2)

(3)

where  = (n2b2 – n3c2)/(b2 – c2), the values of  and

 are obtained from  by means of a cyclic permu-
tation of the indices 1, 2, and 3 and their corresponding
ellipsoid semiaxes a, b, and c. The quantities with tildes

, , and  denote the demagnetizing factors of a

so-called auxiliary ellipsoid whose semiaxes , , and
 are related to the semiaxes of the ellipsoid under

study a, b, and c by the relationships:  = a,  = ac/b,
 = c. Introducing an auxiliary ellipsoid can signifi-

cantly shorten the notation on the left-hand sides of
Eqs. (2) and (3) which contain cumbersome expres-
sions for elliptic integrals. We note a simple property
of the auxiliary ellipsoid. The prolate ellipsoid of rev-
olution (a > b = c) corresponds to the oblate auxiliary

ellipsoid of revolution (  =  > ). 

We shall analyze this system of Eqs. (2) and (3). It has
a solution in the form of an oblate ellipsoid of revolu-
tion (a = b > c) for any values of the field. In this case,

E σS
VG2

4
---------- M1 M2+( ).–=

ñ1 a2 b2–( ) c2 ñ3 ñ2–( )+

=  
2π
3

------Bo M1
2 n2'' 2n3''+( ) M2
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ñ1 a2 b2+( )– ñ2 2a2 c2–( ) ñ3 2b2 c2–( )+ +

=  2πBo M1
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ã b
c̃

ã b
c̃

ã b̃ c̃
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Eq. (2) is converted into an identity and Eq. (3) deter-
mines the implicit dependence of the eccentricity e =

 of the ellipsoid on the Bond number in the
form

(4)

Equation (4) describes continuous flattening of the
droplet with increasing field, beginning from its spher-
ical shape in the absence of the field. This solution is
only stable for comparatively low magnetic permeabil-
ities of the magnetic fluid. From µ = 5.08 another solu-
tion appears in the form of a triaxial ellipsoid which
exists in a bounded range of magnetic field amplitudes
GA and GB and corresponding Bond numbers. Having
appeared, this solution is always energetically more
favorable than the spheroidal one. The scenario for
spheroid–triaxial ellipsoid–disk transitions of the drop-
let also depends on µ. Figure 2 gives the curve for the
droplet semiaxis ratio a/b calculated using Eqs. (2) and
(3) in the plane of the field for µ = 5.94. It can be seen
that both transitions are the result of a soft bifurcation:
the dependence of the deviation of a/b from unity is
continuous in terms of the Bond number. Near the
bifurcation points this dependence obeys a square-root

law: a/b – 1 ∝   and ∝ , respec-
tively. A further increase in µ is accompanied by a
change in the type of transitions from soft to hard. It
follows from the solution of system (2) and (3) that this
change in the type of bifurcation should be observed for
µ = 11 in weak fields and µ = 14 in strong fields. 

Figure 3 gives calculated dependences of the droplet
semiaxis ratio a/b near the bifurcation points for a mag-
netic fluid having the permeability µ = 15. A character-
istic feature of the behavior of the curve in weak and
strong fields is the appearance of the unstable branches
AC and EF which correspond to the maximum of the
droplet energy. Consequently, hysteresis of the droplet
shape occurs: as the field increases, a spheroidal droplet
is abruptly elongated to form a triaxial ellipsoid in the
field GA (shown by the dashed line AD in Fig. 3)
whereas the reverse transition with decreasing field also
takes place abruptly but at lower values of the field GC .
The behavior of the droplet in strong fields is similar:
as the amplitude of the field increases, the droplet shape
undergoes a hard bifurcation near point F (curve FK).
The result for the disk–triaxial ellipsoid transition
which takes place with decreasing field was unex-
pected. It can be seen from Fig. 3 that this transition
should be accompanied by a change in the type of bifur-
cation: initially a soft bifurcation takes place near point B
(curve BE in Fig. 3) and as the field decreases further,
this is replaced by a hard bifurcation (curve EG). We

1 c/a( )2–

Bo 4π 1
µ 1–
------------ n1+ 

  2

=

× e2

1 e2–( )1/3
------------------------

1 e2 ñ1 3 e2+( )–+

1– e2 n1 3 2e2–( )+ +
----------------------------------------------------.

Bo BoA– BoB Bo–
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were unable to record this change in the type of bifur-
cation experimentally because of the narrow range of
fields GE – GB which is comparable with the sensitivity
limit of our equipment. Thus, it is impossible to state at
the present time whether this type of transition does in
fact occur or whether it is an artifact of the proposed
model. In our experiments using concentrated magnetic
fluids having permeabilities of 16.6 and 20.4 we reli-
ably established that the droplet shape changes abruptly
in accordance with the theoretical analysis and that
hysteresis exists in weak and strong fields. For concen-
trated magnetic fluids the experimental values of the
ratio a/b were 10–50% (depending on the field) lower
than those calculated using Eqs. (2) and (3). The main
reason for this deviation is the appearance of magneti-
zation saturation effects for the concentrated magnetic
fluids in strong fields. The magnetization curves M(H)
depend strongly on the disperse composition of the
magnetic fluid and outside the initial (linear) section
they are highly individual for different magnetic fluids.
Thus, we neglected these effects in the theoretical part
of this study.

We shall now analyze Fig. 1 which gives the calcu-
lated stability diagram of the droplet shapes in addition

G

C

D

H A

E

B K

F

10

8

6

4

2

0
12 13 14 65 66 67 Bo

a/b

Fig. 3. Droplet semiaxis ratio a/b in the plane of the field as
a function of the Bond number near the bifurcation points
for µ = 15.
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to the experimental data. The stability boundaries A, B,
C, and F correspond to similar bifurcation points in
Fig. 3 obtained for various permeabilities µ. The line
described by the bifurcation point E at which the bifur-
cation regime changes (see Fig. 3) lies very close to line B
and is not shown in Fig. 1. It can be seen that the exper-
imental and theoretical data show good agreement
except for the case of concentrated magnetic fluids and
strong fields for which the saturation effects are appre-
ciable. 

Hence, droplets of magnetic fluid in a rapidly rotat-
ing magnetic field are either converted continuously
from a spheroid to a disk or via a triaxial ellipsoid stage
as the amplitude of the field increases. Does the life of
the droplet end with this? It would seem not. As the
field increases further, a set of needles (up to several
tens) forms around the perimeter of the increasingly
oblate droplet, converting the droplet into a “starfish.”
An experimental and theoretical study of the disk-
shaped droplet stage in strong fields was made in [8]. 
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Abstract—An investigation is made of nonlinear oscillations of the field and current in semiconductor super-
lattices driven by strong terahertz radiation. Regimes of periodic, quasi-periodic, and stochastic self-oscillations
are determined and mechanisms for their formation are discussed. It is shown that the self-oscillation spectra
are many-valued functions of the external field amplitude and the static field in them is either absent, weak, or
fractionally quantized. Previously predicted states of self-induced superlattice transparency and dynamic elec-
tron localization are destroyed as a result of the evolution of dissipative and parametric instabilities and can only
be observed in transient processes whose duration decreases with increasing electron concentration. © 2000
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A semiconductor superlattice is a single-crystal
structure whose chemical composition varies periodi-
cally in space at distances (1–10 nm) greater than the
periods of the crystal lattices of its constituent materi-
als. This structure exhibits an additional periodic
(superlattice) potential which leads to splitting of the
Brillouin quasi-momentum zones and the allowed elec-
tron energy bands in the initial homogeneous materials
into a set of relatively narrow (104–106 cm–1) Brillouin
minizones and narrow (10–3–10–1 eV) allowed and for-
bidden energy minibands [1–3]. As a result of the small
dimensions of these minibands the superlattice
becomes a highly nonlinear and unstable medium even
in relatively weak electric fields (102–104 V/cm) [4]. In
general, some contribution to the electron conductivity
is made by intraminiband electron motion, intermini-
band transitions within a single band, interband transi-
tions, and processes containing two or three of these
types of motion simultaneously. We shall confine our-
selves to the single-miniband approximation. The con-
ditions for its validity will be given below. Significantly
the corresponding nonlinear conductivities vary non-
monotonically (exhibit oscillatory behavior) as the
amplitude and frequencies of the fields acting in the
superlattice increase. 

The clearest manifestation of the nonmonotonic
behavior (oscillatory behavior) of the intraminiband rf
conductivity of the superlattice can be found in the self-
induced [5], induced [6], and selective transparencies
[4] which essentially consist of the following. Under
the action of an rf harmonic field E(t) = E1cos(ω1t)
(ω1τ @ 1, τ is the relaxation time of the electron
1063-7761/00/9105- $20.00 © 21033
momentum distribution), a nonlinear electric current
appears in the superlattice [4] 

(1)

where j0 = const, g1 = eE1d/"ω1, e is the electron
charge, d is the superlattice period, and Jn(x) are Bessel
functions. It can be seen from (1) that for discrete val-
ues of the ratio of the amplitude of this field to the fre-
quency for which J0(g1) = 0, the macroscopic polariza-
tion of the electron gas disappears and the superlattice
behaves almost as a linear dielectric possessing the per-
mittivity of the main crystal lattice and weak (but extre-
mal!) nonlinear absorption. This is self-induced trans-
parency. It is found [6] that if the superlattice has been
converted to a state of transparency using one rf har-
monic field, it will also be transparent for another rf
harmonic field (i.e., it will not be polarized by this field)
if the amplitude of this field is not too large and the har-
monic frequencies of the fields are not very similar.
This is induced transparency. Unlike induced and self-
induced transparency, selective transparency implies
the alternate disappearance of various harmonics of the
nonlinear current as the amplitudes or frequencies of
the fields acting in the superlattice vary. In a harmonic
field the nth harmonic of the current [see (1)] disap-
pears when Jn(g1) = 0.

j t( ) 2 j0 J0 g1( ) J2µ 1– g1( ) 2µ 1–( )ω1t[ ]sin
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,
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In [7] the authors reported the experimental obser-
vation of self-induced transparency in a superlattice
driven by terahertz laser radiation. However, since the
authors only studied the third harmonic of the current
and it is difficult to convert the external field to the field
inside the superlattice, the conclusions of this study
cannot be considered to be definitive. Moreover, in
fields with J0(g1) = 0 dynamic electron localization [8]
and collapse of its quasienergy minibands occurs [9].
This implies that the electron translational motion is
completely converted into vibrational and the maxi-
mum possible buildup of oscillations occurs (since the
width of the energy miniband is finite and the electron
velocity in it is limited), i.e., the energy exchange
between the field and the isolated electrons is most effi-
cient. Thus, when J0(g1) = 0 the absorption of the har-
monic field has a maximum which is reflected in the
dissipative current surge in (1). The electrons can trans-
fer the energy acquired from the harmonic field not
only to the lattice but also partly to other fields (includ-
ing the static field), amplifying them. The appearance
of a multifrequency field in the superlattice destroys the
self-induced transparency which can only exist in the
superlattice under certain conditions (which will be dis-
cussed below). Thus, it is possible that the authors of [7]
observed selective transparency rather than self-induced
transparency. No observations of induced transparency
have yet been reported in the literature.

Manifestations of the nonmonotonic behavior of the
dissipative conductivities (including inversion of their
sign) in a superlattice include alternating energy exchange
between harmonic fields [6] and between harmonic and
static fields [10], including absolute negative conduc-
tance (dc negative conductance caused by the absorption
of rf field energy) [4, 5, 10], spontaneous generation of
a static field and a static current [12] by a harmonic
field [4, 11], resonant superheterodyne amplification and
explosive parametric instability of electromagnetic waves
[13, 14]. Absolute negative conductance was observed
experimentally in [15], alternating energy exchange
between static and harmonic fields was observed in [16],
but we are not aware of any reported observations of spon-
taneous static field generation in a superlattice.

Another manifestation of the nonmonotonic behav-
ior of nonlinear superlattice conductivities is the many-
valued dependence of the intralattice field on the exter-
nal field. The need to allow for this many-valued behav-
ior (multistability) which leads to hysteresis effects was
evidently first noted in [17] in a study of the penetration
of a transverse electromagnetic wave into a nondissipa-
tive superlattice. This was also discussed in [18] where
the authors studied the possibility of observing self-
induced transparency experimentally in a superlattice.

The behavior of a superlattice in a given internal elec-
tric field with different time dependences has been studied
fairly comprehensively (see, for example, [4, 19] and the
literature cited there). In order to study superlattice
behavior in external fields, at first glance it is sufficient
JOURNAL OF EXPERIMENTAL
merely to make a suitable many-valued change in the
field amplitudes. This approach was used in [17, 18] to
study multistable states in a nondissipative superlattice.
However, this approach is not always correct even for
studying steady states. A correct approach must allow for
the linear and nonlinear resonances of the electrodynamic
system, the inertia of the coupling between the field
inside the superlattice and the external field, dissipative
and parametric instabilities of the fields. As a result of
the combined manifestation of these factors, a superlat-
tice located in a strong external harmonic field is gen-
erally converted to self-oscillatory regimes of which
there may be several. The nature of the transient pro-
cesses and the final state of the system depend on the
electron concentration, the amplitude and frequency of
the external field, the parameters of the external circuit,
and in general, on the initial conditions and the rate of
switching on the external field. Self-oscillation regimes
in a superlattice (in [17, 18] these were not analyzed
because the approximation of a single-frequency inter-
nal field was used) are of considerable interest, particu-
larly in the experimental context. In particular, without
taking these regimes into account it is impossible to
correctly formulate an experiment to study superlattice
transparency. 

In the present study we investigate nonlinear oscil-
lations of the field and current observed in one-dimen-
sional superlattices driven by external terahertz radia-
tion or in superlattices connected to an external circuit
with a given voltage source. A specific electrodynamic
system may be a quasioptic system similar to that stud-
ied in [18] in which terahertz laser radiation is fed
inside the superlattice using a microwave antenna. The
equivalent electric circuit corresponding to that used in
the calculations contains a superlattice of thickness Nd
(N is the number of periods in the sample) shunted by a
resistance R, a voltage source V = V0 cos(ω1t), whose
amplitude is determined by the intensity of the laser field,
an external capacitance C1, which takes into account the
substrate surrounding the medium and the series-con-
nected capacitance of the antenna, and also a load imped-
ance ri, which includes the radiation resistances of the
antenna, the contacts, and the voltage source. All the
dimensions of the structure are assumed to be small
compared with the wavelength. Unlike [12], where sto-
chastic current oscillations were studied, the sample is
open-circuit to direct current.

Important characteristics of the self-oscillatory sys-
tem under study are as follows.

(1) The same external harmonic field is a source of
self-oscillation energy and traps their frequencies in a
specific range of its parameters.

(2) The natural frequencies of the system are the
plasma frequency and the frequency of the electron
Bloch oscillations. The frequency of the plasma oscil-
lations depends strongly on the amplitudes of the har-
monics of the total field in the superlattice (it may even
go to zero) while oscillations of the macroscopic quan-
 AND THEORETICAL PHYSICS      Vol. 91      No. 5      2000
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tities at the Bloch frequency (in particular, the current)
only occur in transient processes and are damped rap-
idly.

2. BASIC EQUATIONS

We shall consider an electron superlattice in which
electrons only fill the lower miniband having the har-
monic dispersion law

(2)

where ∆ is the width of the miniband, ε3(k3), ε⊥ (k⊥ ), and
"k3, ⊥  are the longitudinal and transverse energies and
the components of the electron momentum "k, relative
to the superlattice axis, respectively, and m is its trans-
verse mass. This miniband is separated from the other
minibands by a distance greater than ∆g which is the
characteristic nearest miniband gap. We shall assume
that the electric field E having the characteristic frequency
ω is uniform and directed along the superlattice axis, and
the number of periods in the sample is N ~ 10–103.
A lower constraint is imposed on N by the possibility of
introducing the concept of continuous quasimomentum
and an upper constraint is imposed by the wavelength
of the radiation acting on the superlattice and the
approximation of a uniform field in the lattice. (The for-
mation of field domains is neglected in the present
study.) We shall assume that the following inequalities
are satisfied

(3)

The first inequality in (3) is required for the appearance
of a miniband structure, the second is required for the
existence of a specific dispersion law in the miniband
(it is not necessary for the validity of the qualitative and
even some quantitative results of the present study), the
third allows the analysis to be confined to the single-
miniband approximation, and the fourth (also not nec-
essary for the validity of the qualitative results) com-
bined with the previous three ensures that the semiclas-
sical description of electron behavior in the miniband is
valid. Assuming that these conditions are satisfied, the
electron and field behavior in the superlattice will be
described by the Boltzmann equation in the τ-approxi-
mation,

(4)

and the equation of continuity of the total current,

(5)

ε k( ) ε3 k3( ) ε⊥ k ⊥( )+=

=  
∆
2
--- 1 k3d( )cos–[ ]

"
2
k ⊥

2

2m
-----------,+

∆g @ "τ 1– , ∆ @ "τ 1– ,

∆g @ "ω1, eEd , ∆ @ eEd .

∂f k t,( )
∂t

-------------------
eE t( )

"
-------------∂f k t,( )

∂k3
-------------------+

f k t,( ) f 0 k( )–
τ

------------------------------------– ,=

ε0
dE t( )

dt
------------- 4πj t( )

ε0E t( )
RCS

---------------+ + 4πje t( ).=
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Here f(k, t) and f0(k) are the field-perturbed and equi-
librium electron functions, E(t) and j(t) are the electric
field and electron current density in the superlattice,
respectively, CS = ε0/4πNd is the linear capacitance of
the superlattice, ε0 is the permittivity in the absence of
electrons, je(t) is the external current density which
depends on the scheme for connection of the superlat-
tice to the external circuit, and τ = const. In a scheme
with a given external field Ee(t) = E0cos(ω1t), we have

(6)

where εe is the permittivity of the external medium. In
a scheme with a given voltage source V(t) = V0cos(ω1t)
the external current je(t) is determined by the equations

(7)

(8)

where S is the area of the superlattice cross section and
V1(t) is the voltage drop at the capacitance C1. 

We introduce the complex function

where 〈ε3〉0 is the average equilibrium longitudinal
electron energy, multiply the left- and right-hand sides of
Eq. (4) by this function, and integrate over k within the
first Brillouin minizone. As a result, for the average lon-
gitudinal electron energy

and the current density

we obtain hydrodynamic equations in the following
complex form convenient for investigation:

(9)

where 

(10)

je t( )
εe

4π
------

∂Ee t( )
∂t

---------------,=

S je t( ) C1

dV1 t( )
dt

----------------,=

1 C1ri
d
dt
-----+ 

  V1 t( ) V t( ) E t( )Nd ,–=

ϕ k3 t,( ) ∆
2
--- ε3 k3( ) i

d
---

dε3 k3( )
dk3
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2
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n
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3
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Φ t( ) ϕ k3 t,( )〈 〉≡
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n is the electron concentration, Ω(t) = edE(t)/"ω1 is the

instantaneous “Bloch” frequency, j0 = "ε0 /4πed, 

is the square of the plasma frequency which describes
linear oscillations of the superlattice plasma in the
absence of external electric fields. 

In order to make a qualitative study of self-oscilla-
tions of the currents and fields, it is not necessary to
introduce the resistances ri and R since dissipating cur-
rent harmonics always exist in a superlattice in the non-
linear regime. Dissipation in the superlattice must be
taken into account even for ri ≠ 0 and finite R. Neglect-
ing this leads to the absence of spontaneous generation
of the static field which significantly alters the nature of
the nonlinear oscillations in the superlattice. For quan-
titative calculations we shall assume that the following
inequalities are satisfied

(11)

where v = NSd is the superlattice volume, Vω is the
amplitude of the voltage harmonic generated over it,
and summation is performed over all frequencies ω.
The last inequality in (11) implies that the losses to the
resistance ri are small compared with the characteristic
losses inside the superlattice and the first two imply that
the circuit has a high Q factor. In this case, terms con-
taining ri and R can be neglected in Eqs. (5) and (8) (the
numerical calculations were performed allowing for
these terms) and the antenna capacitance can be
included in CS (more accurately, its component parallel
to CS, the series component of the antenna capacitance
is included in C1). 

The radiation power of the sample at frequency ω
can then be determined using the approximate formula

(12)

where Rr is the radiation resistance of the sample which
forms part of ri . We shall give typical values of the sys-
tem parameters taken from [6]: ω1 = 2π × 0.7 THz, N =
100, d = 100 Å, CS ~ C1 = 7 fF, Rr = 2 Ω , ri = 7 Ω , R =
200 Ω , n = 1017 cm–3, τ = 2 × 10–12 s, and ∆ = 20 meV.
For these parameters we have ω1riC1 ≈ 0.2, ω1RCS ≈ 6,
Vω ≈ 0.2 V (taken from the results of the numerical cal-
culations presented below), α ≈ 0.1, Pω ~ 10–4 W; i.e.,
the inequalities (11) are satisfied and the power emitted
by the superlattice is appreciable. At the same time
these estimates show that the resistances ri and R must

ω0
2

ω0
2 4πne2d2

ε0"
2

-------------------- ∆
2
--- ε3〈 〉 0– 

 =

ω1riC1 ! 1, ω1RCS @ 1,

α ≡ 
riτ

nv∆
----------

Vω
2

ri
2 ωC1( ) 2–+

------------------------------ ! 1,
ω
∑

Pω
Vω

2
Rr

2 ri
2 ωC1( ) 2–

+[ ]
--------------------------------------,=
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be taken into account to analyze specific experimental
results (at present none are available).

Using the approximation (11) we obtain the follow-
ing self-consistent system of equations for the electric
current j(t), the longitudinal electron energy n〈ε3〉 , and
the internal electric field E(t) in terms of dimensionless
variables:

(13)

(14)

where  = tω1, g(t) = Ω(t)/ω1 is the dimensionless volt-
age incident on a single period of the superlattice,

in a scheme with a given external field and

in a scheme with a given voltage source.

The behavior of the superlattice in a given internal
field with an arbitrary time dependence is described by
the single Eq. (13). Its general solution has the form

(15)

where

(16)

The most typical situation is that when the field in the
superlattice can be approximately represented as the
sum of the static and biharmonic fields:

(17)

In accordance with (10) and (15), this field excites the
current density in the superlattice

(18)
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(19)

where g1, 2 = Ω1, 2/ω1, 2, Ω1, 2 = eE1, 2d/". 
If the field E2 is weak (g2 ! 1), (18) may be

expressed in the form

(20)

where

(21)

(22)

(23)

σ0 = edτ/"j0 = ε0 τ/4π is the linear static conductivity
of the superlattice. The nonlinear conductivity σ(ω2 +
nω1; …) for n = 0 is the linear conductivity of the super-
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lattice at frequency ω2 varied by the harmonic field E1.
It describes nonsynchronous (which does not depend
on the phase relationships) interaction of the fields
whereas for n ≠ 0 it describes synchronous interaction
of these fields. The conductivities σ(nω1; …) describe
the generation of n harmonics of the field E1. 

If the frequency of the weak field E2 is not a multiple
or half-multiple of ω1 (ω2 ≠ 0.5nω1, n = 1, 2, …), the
static current is completely determined by the nonlinear
conductivity σC(ΩC , Ω1, ω1) and the current at fre-
quency ω2 is determined by the “linear” conductivity
σ(ω2; ΩC, Ω1, ω1). An important relationship exists
between these conductivities:

(24)

In particular, we have

(25)

In a quadratic approximation with respect to E2
(required to understand the peculiarities of energy
exchange between the fields), the static conductivity
and the conductivity at ω1 are given by
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is the real part of the nonlinear conductivity of the
superlattice at frequency ω1 in the field (17) for E2 = 0.
It can be seen from (28) that the rf conductivity of the
superlattice can become negative only in the presence
of a relatively high positive static conductivity. How-
ever, we stress that for ω1 = ΩC this is positive for any
amplitudes E1 at variance with the statement in [20].

3. INSTABILITY OF SUPERLATTICE 
TRANSPARENCY STATES. 

LOW ELECTRON CONCENTRATIONS

At low electron concentrations (ω0/ω1 ! 1), the
given internal field approximation is a good approxi-
mation. In this approximation we shall first consider the
interaction between harmonic and static fields having
arbitrary amplitudes described by the conductivities (21),
(23), and (28). In accordance with (20), (21), and (28) the
absorbed energy in the field EC + E1cos(ω1t) is given by

(29)

× 

The first term in (29) describes the losses in a single
static field. The second term is always positive and con-

– 2
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Fig. 1. Regions of negative conductance for the fields E1 (1)
and EC (2) for E2 = 0 and for E2 (2) for EC = 0; ω1τ = 4,
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sequently the application of a harmonic field always leads
to an additional increase (small for ω1τ @ 1) in the total
electromagnetic losses in the superlattice. In the resonant
regions ΩC = µ0ω1 ± τ–1 (µ0 = 1, 2, …; ω1τ @ 1) the con-
ductivities σC(ΩC, Ω1, ω1) and Reσ(ω1; ΩC, Ω1, ω1) are
extremal, depend weakly on τ, and, in accordance with
(21), (28), weakly dissipative resonant energy exchange
takes place between the fields, described by

(30)

Relation (30) shows that in these resonant regions as it
passes between neighboring wells in the superlattice,
an electron moving in the opposite direction to the
static field, acquires the energy "ΩC and has the proba-

bility (g1) of emitting µ0 quanta of the harmonic
field E1 (ΩC > µ0ω1) or absorbing them and is shifted by
a period of the superlattice with respect to the static
field, overcoming the potential barrier of height "ΩC

(ΩC < µ0ω1). As a result of these transitions, only a rel-
atively small (~"τ–1) excess energy is transferred to the

lattice so that [see (29) and (30)] jCEC @ . As in stim-
ulated Raman light scattering in equilibrium media
[see, for example, [21]) and in accordance with the con-
servation law energy is transferred to the field having
the lower of the frequencies ω1 and ΩC . 

Figure 1 shows regions of negative values of the
static [Eq. (21)] and rf [Eq. (28)] conductivities for
ω1τ = 4. An abrupt change in the energy exchange
between the fields in the resonant regions described
approximately by Eqs. (30) can be clearly seen. The
boundary curves of regions 2 correspond to current-
free (jC = 0) states where the solid heavy sections are
stable, which are determined by the conditions

or 

(31)

the dashed and thin solid sections on the abscissa are
unstable with respect to quasi-static fluctuations of the
field. In the unstable state any arbitrarily small fluctua-
tion of EC increases with time and the superlattice is
transferred to an upper or lower stable state with respect
to the quasi-static perturbations with EC ≠ 0. An impor-
tant characteristic of the boundary curves is the pres-
ence of regions (E1, ω1) which can have two or more
stable states with different values of EC  (multistability).
Thus, hysteresis occurs in the dependence of the stable
values of EC(g1). Figure 1 shows examples of these
dependences for infinitely slowly varying g1. The
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SELF-OSCILLATIONS IN SEMICONDUCTOR SUPERLATTICES 1039
arrows indicate the direction of change in the amplitude
of the harmonic field. For ω1τ @ 1 (and low electron
concentrations!) the dc voltage formed in the superlat-
tice for jC = 0 is 

(32)

(L is the superlattice length), i.e., it has a pronounced
stepped character, is a multiple of the frequency of the
harmonic field (integer quantized), and does not depend
on the superlattice material. (If the electron dispersion
law departs from harmonic, the quantization of the
static field becomes fractional.) At the nth stable step
the nonlinear current is j(t) ~ Jn(g1) ≠ 0, i.e., no self-
induced transparency occurs, it being shifted toward
stronger fields where ΩC ≈ nω1, jC ≠ 0 but (see Fig. 1)
is also unstable. Numerical calculations show that for
ω1τ ~ 1 dc voltage jumps only occur with decreasing g1,
they are smooth and significantly smaller than (32). For
ω1τ ! 1 no current-free dc voltage occurs. 

This reasoning applies to the soft regime for the
excitation of dc voltage. Hard regimes may also occur,
for example, when g1 = 4 (see Fig. 1) which require
fairly appreciable (~"ω1/ed) initial fluctuations of the
static field.

Since the relationship (25) exists between the non-
linear static and linear rf conductivities in the superlat-
tice, apart from the substitution ΩC  ω2 the regions
of absolute negative conductance shown in Fig. 1 are
also regions of negative rf conductance for the weak
field E2. Using this relationship, for weakly dissipative
resonant energy exchange between the harmonic fields
E1 and E2 in the regions ω2 ≈ µ0ω1 ± τ–1 for EC = 0 we
obtain from (27) and (30)

(33)

(34)

Relation (34) can be obtained directly from (22) for n = 0.
The second term in (33) describes absorption of the
strong field E1 for E2 = 0. It has been noted that this has
a maximum in regions of dynamic localization, i.e.,
when J0(g1) = 0 [4]. The direction of electromagnetic
energy transfer corresponds to stimulated Compton
light scattering in equilibrium media, i.e., energy is
transferred to the field having the lower of the frequen-
cies µ0ω1 and ω2. In addition to dc voltage jumps (or
instead of these) plasma or other rf (determined by the
parameters of the external circuit) oscillations will also
be excited in the superlattice. Several scenarios are pos-
sible depending on which process takes place faster,
generation of a dc voltage or plasma (or other) oscilla-
tions. For large g1 (and high electron concentrations)
competition between these processes at the stage of the
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transient process can substantially lengthen its duration
and even lead to stochastic oscillations (see Section 4).
In general, the states to which the superlattice may be
transferred under the influence of an external harmonic
field are nonlinear oscillations whose spectrum may
contain a static field (zeroth harmonic). Several such
states may exist which is manifest in particular in the
many-valued (and hysteresis) dependences of the static
field and the current and radiation spectra of the super-
lattice on the external field amplitude. For the coeffi-
cient of reflection of the laser radiation and the genera-
tion of its third harmonic this many-valued behavior
(even neglecting dissipative and parametric instabilities
and static field generation, which significantly alter its
character) was observed in [17, 18].

Quite clearly at very low electron concentrations in
the regions σC (ΩC, Ω1, ω1) < 0 the transition to a state
with finite dc voltage is the determining factor. The initial
stage of this transition is described by the dispersion equa-
tion

(35)

In the region of initial dynamic localization (EC = 0,
J0(g1) ≈ 0) and for |ω2| < ω1 we obtain from (22) and (35)

(36)

where

(37)

For ω1τ > 2 we have ω2 ≈ 0.5i(ω0/ω1)2τ –1. Conse-
quently, at low electron concentrations the characteris-
tic time for the loss of self-induced transparency and
transition of the superlattice to a state with finite EC is

and for high concentrations (ω0 ~ ω1)

.

By way of example Fig. 2 gives time evolutions of the
current, average field, and current spectra in the super-
lattice in a constant external harmonic field with  =

0.05,  = 2.4, ω1τ = 10. It can be seen that the super-
lattice is transferred to a state of self-induced transpar-
ency where all the current harmonics are small, fairly
rapidly within a few periods of the field (~τ). Then,
slowly (over approximately 200 periods), accelerating
appreciably for ΩC(t)  ω1 in accordance with the
resonant increase in energy exchange between the
static and harmonic fields noted above [formula (30)],
the self-induced transparency is destroyed (aperiodic
instability) and the superlattice is transferred to the
state with ΩC ≈ –ω1, relatively large current (~J1(g1)),
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and a significantly different spectral composition (the sec-
ond harmonic which was absent before the loss of self-
induced transparency becomes the largest). Quite clearly
for short laser pulses (of duration less than 200 periods in
this example) self-induced transparency will not have time
to be destroyed and is thus observable. For long laser
pulses a voltage which chaotically changes sign (and in
general magnitude) from one pulse to another will
appear at the ends of the superlattice. A similar effect
was observed experimentally in bulk GaAs [22]. At high
concentrations it is difficult to observe self-induced trans-
parency because it is destroyed rapidly. 

The slow loss of self-induced transparency accompa-
nied by the generation of a quantized (for ω1τ @ 1)
static field [see (38)] is described by Eq. (14) averaged
over the period of the high-frequency oscillations.
Thus, at low concentrations we have

(38)t
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Fig. 2. Time evolutions of the (a) current, (b) average field,
and (insets) current spectrum of the superlattice in a con-

stant external harmonic field with  = 0.05,  = 2.4,
ω1τ = 10.

w̃ Ṽ0
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where  is the initial fluctuation of the static field.
Retaining only the resonant terms in (38) we obtain

(39)

This dependence is plotted in Fig. 2 (dashed curve) and
shows good qualitative agreement with the exact solu-
tion (solid curve).

The appearance of a static field significantly alters
the pattern of energy exchange between the harmonic
fields E1 and E2. According to (21) and (24), the
absorbed field energy E2 is given by

(40)

It is deduced from (40) that weakly dissipative energy
exchange between the fields and resonant amplification
of the field E2 occurs in the following frequency ranges:
(a) ω2 = µ0ω1 + ΩC – τ–1; (b) ω2 = µ0ω1 – ΩC – τ–1;
(c) ω2 = ΩC – µ0ω1 – τ–1. In all three cases the corre-
sponding losses are half of the value (21) because the
absorption (emission) of electromagnetic field quanta
as an electron moves parallel and in the opposite direc-
tion to the static field is nonequivalent. In case (a) [(b)]
the electron absorbs µ0 quanta of the field E1 and as it
propagates in the direction opposite to the field (paral-
lel to the field) per superlattice period it emits the quan-
tum "ω2 and a relatively small fraction of energy (~"τ–1)
is transferred to the lattice. In case (c) the electron prop-
agates in the opposite direction to the static field and
emits the quantum "ω2 and µ0 quanta "ω1. Case (b) is
interesting when ω2 = ΩC ≈ 0.5(µ0ω1 – τ–1). For odd µ0

the additional (~ ) energy acquired from the field E1

is transferred equally to the fields EC and E2. For even µ0
it follows from (26) that the initial losses of the static

field are of the order (8/5) (g1) – (g1) and may
be positive. This case indicates that radiation may be
generated at the Stark frequency. However, the energy
for this is drawn from the harmonic field rather than the
static one, especially as our electrical circuit has no dc
voltage source. The role of the static field reduces to
creating an initial fluctuation of the oscillation at the
Stark frequency (transient process) and halving its
maximum growth rate. In the absence of a strong har-
monic field no amplification can take place at the Stark
frequency, as we have noted. This instability channel
may be important (see below) for the onset of self-
oscillations with a doubled period and fractionally
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SELF-OSCILLATIONS IN SEMICONDUCTOR SUPERLATTICES 1041
quantized static field. After the superlattice has been
transferred to a state having a finite dc voltage (e.g., at
steps DG and LN, see Fig. 1) the regions of negative
conductivity for the weak field E2 change substantially.
According to (24), they are determined by the system of
equations

(41)

An analysis shows that these regions have no zero fre-
quency but half-multiple frequencies do exist. At quasi-

statically stable steps with ΩC ≈  = µ0ω1 (µ0 = 0, 1,
2, …) for ω1τ @ 1, ω1 @ Reω2 @ Imω2 from (22) and
(35) we have for the plasma oscillations

(42)

The frequency ω2 can lie in a region of positive or neg-
ative values of the conductivity. In the first case, no
oscillations can occur and the dc voltage obtained from
Eq. (31) remains the same if we neglect other resonant
frequencies of the system and the possibility of hard
excitation of nonlinear plasma oscillations. In the sec-
ond case, these oscillations will grow until steady-state
values of their amplitudes and frequencies are estab-
lished. (However chaos is possible.) In this case, the
superlattice conductivity at frequency ω1 and the dc
voltage vary. At low electron concentrations these vari-
ations are small.

An analysis of the processes of establishment and
destruction of self-induced transparency has revealed
the following.

(1) The self-induced transparency of the superlattice
has a dissipative nature. It occurs as a result of electron
collisions for discrete values of the harmonic field
amplitude in the superlattice. In the approximation of
constant electron relaxation time it occurs in the same
fields as dynamic localization and collapse of the elec-
tron quasienergy minibands. However, this does not
imply that these effects are identical. The inaccuracy of
the identification commonly made in the literature was
indicated in [9].

(2) Dynamic electron localization is responsible for the
establishment of absolute negative conductance which is
one of the main reasons for the loss of self-induced trans-
parency. 

4. HIGH ELECTRON CONCENTRATIONS.
SELF-OSCILLATIONS OF CURRENT 

AND VOLTAGE

At high electron concentrations in the superlattice
not only the amplitudes of several current harmonics
may be of the same order of magnitude (see, e.g., Fig. 2),
but also the fields created by them. An important role in
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the formation of the field inside the superlattice is
played by processes of decay and merging of oscilla-
tions which did not appear at low electron concentrations.
(Spontaneous generation of a static field also occurs at low
concentrations.) Processes involving harmonics and sub-
harmonics of the external field (which is also promoted by
the frequency locking effect) and processes of weakly dis-
sipative resonant energy exchange between fields
appear. In particular, parametric generation of harmon-
ics without any initial fluctuation plays an important
role [13]. This has a hybrid character and consists of
ordinary harmonic generation with the frequency n1ω1
(n1 = 1, 2, …) followed by its continuous degenerate
parametric amplification. At the linear stage this pro-
cess is described by three current terms (20) with n = 0,
–2n1 (from the first sum) and n = n1 (from the second
sum). A significant role is also played by coupled non-
degenerate processes involving the decay and merging
of oscillations of the type

(43)

where n1 = α2 + α3 = 1, 2, …, and α2, 3 are positive num-
bers commensurable with n1. (If EC = 0, then n1 only
has even values as in the previous case.) Then the fol-
lowing values of α2, 3 and its corresponding processes
are the most important. 

(1) α2, 3 are positive integers. These are the pro-
cesses of independent parametric generation of the har-
monics α2ω1 and α3ω1 noted above supplemented by
nondegenerate processes of parametric amplification
linking them [decay and merging (43) with different
n1]. At the linear stage these processes are described by
current terms from the first sum (20) with ω2 = α2, 3ω1
and n = –n1 for the decay process [“+” sign in (43)] and
n = ±n1 for the merging process [“–” sign in (43)]. An
important factor is that initial fluctuations are also not
required for these processes. As a result of their evolu-
tion two types of nonlinear oscillations are formed:
(a) oscillations containing only odd harmonics; (b) oscil-
lations containing a static field, even, and odd harmon-
ics. The static field is either quantized [see (32)] or
weak. In the first case, it occurs as a result of spontane-
ous oscillation, in the second case as a result of detec-
tion. For clarity we shall analyze the case when the
nonlinear oscillation can be approximately described by
the biharmonic field (17) with ω2 = n0ω1 (n0 = 1, 2, …) and
g2 ! 1. In this case, the steady-value of the field EC is
given by 

(44)

where in accordance with (18), (19) the detection cur-
rent is

(45)
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For even n0 the current ∆jC is symmetric with respect to
EC whereas for odd n0 it is asymmetric. It can be seen
from (21), (44), and (45) that the steady-state values of
EC only depend on the electron concentration in terms
of the amplitudes and phases of the fields. For ω1τ @ 1,
ΩC ! ω1, and even n0 we obtain from (44)

(46)

where 
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Fig. 3. Period doubling regime: (a) projection of the phase
portrait on the current–superlattice voltage plane; (b) super-
lattice voltage spectrum; (c) current spectrum; ω1τ = 10,
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It can be seen from (46) and (47) that the detection field
is not quantized and oscillates with increasing E1.

(2) α2, 3 are positive half-integers. This case only
differs from case 1 by the absence of ordinary genera-
tion of the harmonics α2, 3ω1 (parametric amplification
remains) so that initial fluctuations are required. The
evolution of these processes leads to the generation of
period-doubled self-oscillations. The degenerate case
α2 = α3 is either achieved for EC ≠ 0 or in the hard exci-
tation regime. (The corresponding nonlinear current is

~ .) However for Reσ(ω2; ΩC, Ω1, ω1) < 0 a regime
involving two-stage soft excitation of the half-integer
harmonic may also occur for EC = 0. At the first (linear)
stage the subharmonic is excited as a result of dissipa-
tive instability. At the second (nonlinear) stage it is
amplified as a result of the induced decay of 4α2 quanta
of the field E1 into four quanta of the field E2.

Figure 3 shows a projection of the phase portrait on
the current–voltage plane and the voltage and current
spectra for steady-state period-doubled self-oscilla-

tions with  = 1,  = 2, and ω1τ = 10. The most
important characteristics of the curves are: the appear-
ance of a weak static field ΩC ! ω1 (≠nω1!), even har-
monics, subharmonics ω1/2 with a relatively large
amplitude and the combination harmonics (n + 1/2)ω1.
In this case the period doubling process of the nonlinear
oscillations begins with the nondegenerate parametric
decay 2ω1 = 1/2ω1 + 3/2ω1. The superlattice does not
enter the region of absolute negative conductance and
thus the dc voltage is caused by the nonresonant detec-
tion effect and is not quantized. We also observed
period-doubled self-oscillations in which the ratio
ΩC/ω1 had values close to 1.0; 1.5; 2.0; 2.5. The frac-
tional and integer quantization of the static field was
associated with the resonant terms in the expressions
for the static (21) and rf (40) conductivities containing
the factors

(ωi are the frequencies of the field harmonics in the
superlattice), and corresponding to weakly dissipative
energy exchange between the fields. These terms also
determine the characteristics of the current–voltage char-
acteristics of the superlattice in a laser field, which differ
qualitatively from the Shapiro steps in Josephson junc-
tions [23]. The experimental results of [16] confirm this. 

(3) α2, 3 = (2n – 1)/3, excluding integer α2, 3. Specific
examples are the coupled decay 2ω1 = (1/3)ω1 +
(5/3)ω1 and merging 2ω1 + (1/3)ω1 = (7/3)ω1 of the
oscillations. As in case 2, a hard regime involving a
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degenerate decay process of the type (2n + 1)ω1 = 3ω2
(n = 0, 1, 2, …) is possible. The interrelated infinite set
of these processes forms a period-trebled self-oscilla-
tion which contains the set of frequencies (2n + 1)ω1/3.
Generally, it contains no fixed bias. 

(4) α2, 3 =2n/3, n = 1, 2, …, excluding integer α2, 3.
Specific examples are the decay 2ω1 = (2/3)ω1 +
(4/3)ω1 and merging 2ω1 + (2/3)ω1 = (8/3)ω1 of oscil-
lations. The interrelated infinite set of these processes
forms another period-trebled self-oscillation which
contains the set of frequencies 2nω1/3, including a
static field and even harmonics (in addition to the odd
harmonics which are always present). Generally this
oscillation is unstable. As a result of the presence of EC,
forced decay processes of the type ω1 = (1/3)ω1 +
(2/3)ω1 and merging of oscillations of the type (1/3)ω1 +
(4/3)ω1 = (5/3)ω1 lead to its coupling with oscillation
of the previous type. As a result a complex period-tre-
bled oscillation is established containing the harmonics
nω1/3 (n = 0, 1, 2, …). Figure 4 shows corresponding

dependences for  = 1.25,  = 2, ω1τ = 10 for a
period-trebled self-oscillation of the first type. This
oscillation contains the harmonics (2n + 1)ω1/3 and no
static field and even harmonics occur. Its appearance is
initiated by the decay 2ω1 = (1/3)ω1 + (5/3)ω1. For a
superlattice with a low carrier concentration (for exam-
ple, for  = 0.05) the other parameters being the same,
no period trebling occurs and the voltage is almost har-
monic (the amplitude of the third harmonic of the inter-
nal field is only 0.15 of the fundamental one). In addi-
tion to the self-oscillation shown in Fig. 4, we also
observed complex self-oscillations containing the sub-
harmonics nω1/3, even harmonics, and a quantized
static field. 

As a result of the weakly dissipative resonant energy
exchange between the field with the maximum growth
rates oscillation decay and merging processes (43) with
α2, 3 = n2, 3 ± (ω1τ)–1 (n2, 3 = 0, 1, 2, …) take place at the
nonlinear stage. Since the corresponding frequencies
are incommensurable, these processes lead to the estab-
lishment of quasi-periodic oscillations (beats) in the
system. As we know, at the nonlinear stage the oscilla-
tion frequencies vary and the beats may be converted
into periodic self-oscillations, for example, as a result
of frequency locking.

The appearance of incommensurable frequencies is
also a path for the evolution of chaos. Another scenario
for its evolution (most commonly used for ωτ = 4, as
has been shown by the numerical calculations) is the
systematic period doubling of the self-oscillations
(Feigenbaum scenario). Numerical investigations have
revealed another path for the evolution of chaos via
period trebling and narrow-band (bounded) chaos. Fig-
ure 5 shows the time evolution of the period-averaged
voltage on the superlattice, the projection of the phase
portrait on the current–voltage plane, and the voltage

Ṽ0 w̃

w̃
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and current spectra of the stochastic self-oscillation for

 = 2.05,  = 4.5, ω1τ = 10. (Stochastic self-oscilla-
tions for a superlattice with nonzero static current were
considered in [12] but unfortunately, without discuss-
ing the mechanisms for their occurrence. The conclu-
sion reached by the authors that only integer quantiza-
tion of the static current occurs is not always correct.)
A characteristic feature of this self-oscillation is a tem-
porally chaotic transition between two quasi-steady
states with 〈g〉  = ±1. 

To conclude this section, Fig. 6 shows the regions of
existence of various types of nonlinear oscillations on

the plane of the parameters  and  in a superlattice
with  = 10; nonlinear oscillations with the period of
the external field (unshaded unnumbered regions), sub-
harmonic periodic self-oscillations (numbered regions
which give the ratio of the periods of the self-oscillation
and the external field), quasi-periodic (vertical shading)
and stochastic (horizontal shading) self-oscillations.
The absence of stochastic oscillations for large  is
caused by the strong screening of the external field

Ṽ0 w̃

w̃ Ṽ0

w̃

w̃

0.5

0

–0.5

1.5

1.0

0.5

–2 0 2 g

0 1 2 3
ω/ω1

0.15

0.10

0.05

0 1 2 3
ω/ω1

(a)

(b)

(c)

–j/j0

Fig. 4. Period trebling regime, as Fig. 3 but  = 1.25.Ṽ0
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whereas for large  it is attributable to the smallness
of all the current harmonics as a result of the frequent
Bragg reflections of an electron from the miniband
boundaries. This pattern is not complete. It has been

noted that in general for given  several steady states
exist. In particular, studies under various initial condi-

Ṽ0

Ṽ0

2

0

–2
0 500 1000 1500

ω1t/2π

〈g〉
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–0.50
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g

Im Φ

0 2 4
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0
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(b)

0.04

ω/ω1
1 32

×2

(d)

Fig. 5. Stochastic oscillations: (a) time evolution of the
period-averaged external field of the superlattice voltage
(〈g〉); (b), (c), and (d) correspond to, respectively, (a), (b),

and (c) in Fig. 3;  = 4.5,  = 2.05.w̃ Ṽ0

0.2

2

0.4

×5.5

(c)

1 3
ω/ω1
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tions have shown that in regions of chaos it is also pos-
sible to have purely periodic self-oscillations.

5. CONCLUSIONS

(1) The spectra of the nonlinear steady-state oscilla-
tions of the current and voltage in a superlattice are
many-valued functions of the external field amplitude. 

(2) Under the action of a strong rf harmonic field in
a superlattice having a low electron concentration mul-
tistable steady states are formed with a zero static cur-
rent and integer-quantized static field. 

(3) In a superlattice with a high electron concentra-
tion periodic self-oscillations appear, containing har-
monics and subharmonics of the external field and also
quasi-periodic and stochastic oscillations. The period
of the self-oscillations varies nonmonotonically with
increasing electron concentration, frequency, and
amplitude of the external field. The static field in the rf
self-oscillations is either weak or fractionally quantized
according to their period. 

(4) States of self-induced transparency are unstable
and can only be observed in a superlattice with a low
electron concentration when this is exposed to pulsed
action and in transient processes.

(5) In long (in particular, planar) superlattices peri-
odic and nonperiodic dissipative structures may appear
with traveling and standing domains of rf and static fields.
This leads to the appearance of a diffraction pattern in the
fields reflected and transmitted by the sample.

Effects similar to those analyzed may also be observed
in double-quantum-well and double-quantum-dot struc-
tures. 
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Abstract—Characteristics of the formation of a dipole electric field are established for multicomponent fiber
composites having a regular distribution of inclusions in the matrix. It is shown that these media are character-
ized by symmetry transformations of the average electric fields. These symmetry transformations yield reci-
procity relations for the effective parameters. Various forms of these relations are given and their physical inter-
pretation is presented. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In the theory of inhomogeneous media an important
part is played by reciprocity relations which establish a
general relationship between the local characteristics of
the inhomogeneities and the effective characteristics of
the medium as a whole. These relations are valid for
many stochastic, polycrystalline, and matrix mixtures
which may have a complex structure. An explicit form
of these reciprocity relations was established by the
Keller theorem [1]. Keller considered an unbounded
matrix medium having a regular packing of uniform
cylindrical inclusions whose centers are positioned at
the nodes of a rectangular lattice. In cross section this
medium is two-dimensional and using the conjugate
properties of harmonic functions, Keller put forward an
elegant proof of the theorem for a mixture of two iso-
tropic components. The matrix model of an inhomoge-
neous medium considered by Keller was first proposed
by Rayleigh [2] who developed a method of calculating
the electric fields in this medium and made analytic cal-
culations of its effective parameters. The results
obtained by Rayleigh confirm the reciprocity relations.
They are also satisfied by inhomogeneous media hav-
ing a hexagonal structure [3] and matrix media contain-
ing two-layer cylindrical inclusions [4, 5]. In all these
cases the technique of calculating the effective param-
eters proposed by Rayleigh is used. The Keller theorem
can also be applied to one-dimensional, stratified
media.

Balagurov [6] showed that the reciprocity relations
are valid for various forms of inclusions and arbitrary
spatial configurations of these inclusions. Extremely
general proofs of the Keller theorem were put forward
by Fokin [7], Schulgasser [8], Mendelson [9], and other
authors. In these studies the authors considered all pos-
sible real structures of randomly inhomogeneous and
regular two-dimensional media with discrete or contin-
uously varying local material characteristics. 
1063-7761/00/9105- $20.00 © 21046
Dykhne found that the reciprocity relations for two-
component media follow from the symmetry transfor-
mations satisfied by spatially averaged physical fields
(inhomogeneous conducting media in a static electric
field were studied [10]). In order to derive the symme-
try transformation Dykhne [10] considered a cell model
of a two-phase material in which the entire volume is
covered with a system of closed nonoverlapping cells
in each of which the properties are constant and the
cells are distributed statistically uniformly and isotropi-
cally in space. Miller [11] proposed and studied a
model of an inhomogeneous material with a similar
structure in the theory of elasticity. If it is additionally
assumed in the cell model that the geometry of all the
cells is the same for both phases, we obtain an inhomo-
geneous medium with a checkerboard structure. For
this model the electric field inside the cells can be cal-
culated exactly and the average characteristics of the
material can be calculated [12]. It was shown that the
symmetry transformation of the spatially averaged
fields depends on the direction of the external field in
the system; the Dykhne transformation corresponds to
the case when the external field is directed along the
diagonal of the squares [12]. Dykhne transformations
were used to obtain various interesting results in the
theory of the galvanomagnetic properties of two-
dimensional two-component systems [13–15].

It should be noted that reciprocity theorems are also
known in other fields of physics and mechanics: for
example, in acoustics, in electrodynamics, in elasticity
theory (Maxwell and Betti theorem), and in theories of
electric circuits, electromechanical systems, electroa-
coustics, and other fields. 

Reciprocity theorems are important in the theory of
inhomogeneous media because, having a high degree
of generality, they can be used to monitor the correct-
ness and accuracy of the calculations of effective
parameters in numerical calculations. They also sim-
000 MAIK “Nauka/Interperiodica”
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plify the calculation of components of the material ten-
sor. 

This mainly applies to two-component materials.
Multicomponent systems having more than two phases
have been very little studied. These media are interest-
ing from the point of view of the theory and possible
applications since combinations of many components
with different characteristics can give a composite
unique properties. However, calculations of the effec-
tive parameters of multiphase media involve overcom-
ing serious mathematical complexities. In this case,
unfortunately, the classical methods of potential theory
developed by Rayleigh [2] cannot be applied to regu-
larly inhomogeneous media having a periodic struc-
ture. These difficulties are associated with the need to
solve complex boundary-value conjugation problems
for multiply connected regions. 

In the present study we establish symmetry transfor-
mations and determine reciprocity relations for two-
dimensional multicomponent dielectric media. The
model of a three-component matrix medium is used as
the initial model to prove the reciprocity theorem.
These results are then generalized to multicomponent
dielectrics. The problem is discussed with reference to
dielectric media. However, the mathematical methods
used and the results obtained can also be applied to
study similar problems in theories of thermal conduc-
tivity, diffusion, hydrodynamics, elasticity, magneto-
statics, and electrical conductivity. 

2. PROPERTIES OF A DIPOLE ELECTRIC FIELD

We shall analyze a two-dimensional three-compo-
nent dielectric medium with a regular periodic struc-
ture. Figure 1 shows the doubly periodic repeating ele-
ment of a spatially unbounded matrix medium. The
periodic parallelogram contains two types of cylindri-
cal inclusions having permittivities ε2 and ε3. The
matrix has the permittivity ε1. The cylindrical inclu-
sions are parallel, their radii generally differ, and con-
sequently the concentrations of inclusions in the mate-
rial are not the same.

It is assumed that no free charges are present in the
dielectric and the electric field is described by electro-
static equations with linear coupling between the
induction vector D and the electric field vector E:

(1)

In the cross section perpendicular to the axes of the
cylindrical inclusions the electric field is two-dimen-
sional and the equations are the same as the Cauchy–
Riemann equations. This allows us to convert to the
plane of the complex variable z and introduce the com-
plex values of the electric field 

(2)

∇ D⋅ 0, ∇ E× 0, D εE.= = =

D z( ) Dx iDy,–=

E z( ) Ex iEy z x iy+=( ).–=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
In the isolated periodic cell the electric field is deter-
mined by dipole–dipole interactions between inclu-
sions in the cell and between these and other inclusions
in the system. For the analysis and subsequent calcula-
tions this field is conveniently expressed in the follow-
ing generalized form:

(3)

Here E1(z) is the electric field in the matrix; E2(z) and
E3(z) are the electric fields in inclusions having the per-
mittivities ε2 and ε3, respectively; E0 is the uniform
external electric field (the bar above E0 denotes com-
plex conjugation); αk, βk, and γk are the angles between
the x axes and lines connecting the centers of the inter-
acting inclusions. The dimensionless parameters ∆12,
∆13, and ∆ are given by 

(4)

The functions E0exp(…)Fm(…) and ,
m = 1, 2, 3 correspond to the nonuniform parts of the
electric field in the components; in fact, they are infinite
sums of induced dipoles; k = 1, 2, … is the running
index in these sums. The function E0exp(…)Fm(…)
combines all the dipoles whose moments depend on the
direction of the external field E0 and on the position of
the inclusions in the system with which the isolated

E1 z( ) E0 E0 iα k( )F1 ∆12
2k ∆13

2k ∆k z, , ,( )exp+=

– Ẽ0G1 ∆12
2k 1– ∆13

2k 1– z, ,( ),

E2 z( ) 1 ∆12+( ) E0 E0 iβk( )F2 ∆12
2k ∆k z, ,( )exp+[=

– E0G2 ∆12
2k 1– z,( ) ] ,

E3 z( ) 1 ∆13+( ) E0 E0 iγk( )F3 ∆13
2k ∆k z, ,( )exp+[=

– E0G3 ∆13
2k 1– z,( ) ] .

∆12

ε1 ε2–
ε1 ε2+
---------------, ∆13

ε1 ε3–
ε1 ε3+
---------------,= =

∆ ∆12∆13 1 ∆12 ∆13 ∆ 1≤, ,≤–( ).=

E0Gm …( )

ε2

ε3

ε1

U

W

y

é

V
h

l x

Fig. 1. Periodic cell of a dielectric material with a regular
structure. The material is reinforced with cylindrical fibers
of two different types.
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inclusion in a particular cell interacts. It is important to
note that the moments of this set of dipoles have an
even dependence on the parameters ∆12 and ∆13. All the
remaining dipoles are assigned to the function

. The moments of this group of dipoles are
directed along the vector of the external electric field
E =  and have an odd dependence on the dimension-
less parameters ∆12 and ∆13. 

Hence, the dipole electric field in this inhomoge-
neous medium may be represented by two components.
These are selected according to the following criteria.
All dipoles having an even dependence on the parame-
ters ∆12 and ∆13 are assigned to one component and all
the other dipoles are assigned to the other. The latter
have an odd dependence on these parameters.

These properties of the electric field are characteris-
tic features of the formation of dipole fields in multi-
component matrix media. They are used extensively in
the following calculations. These properties of a dipole
electric field can be determined explicitly by solving a
model problem involving the interaction of two dielec-
tric cylinders having arbitrary permittivities located in
an external uniform electric field. An exact solution of
this problem has been obtained [16, 17] and can be used
to calculate the electric field in a two-dimensional
three-component matrix medium having a low concen-
tration of cylindrical inclusions [18]. The results of cal-
culations of the field for close-packed inclusions in this
system are presented in Section 4 of the present article.
The analytic expressions for the electric field presented
in [18] and in Section 4 are fully consistent with the
generalized representation of the electric field in the
form (3).

At very low concentrations of inclusions, when the
radii of the cylindrical bodies in the matrix are
extremely small compared with the characteristic
dimensions of the periodic cell, r1, r2 ! l, h and the
inclusions are separated by a large distance d @ r1, r2,
the relative influence of inclusions in the system can be
neglected. In this medium the electric field in the peri-
odic cell may be represented as the sum of the fields of
isolated cylindrical bodies. In this case, the field inside
the cylinders is uniform whereas in the outer region of
the inclusions it is the sum of the external uniform field
and the field of the induced linear dipoles positioned on
the axes of the cylindrical bodies. We have

(5)

where a and b are the coordinates of the centers of the
inclusions on the z plane.

It can be seen that the formulas (5) are consistent
with the representation of the electric field in the gener-

E0Gm …( )

E0

E1 z( ) E0
E0∆12r1

2

z a–( )2
------------------–

E0∆13r2
2

z b–( )2
------------------,–=

E2 z( ) 1 ∆12+( )E0,=

E3 z( ) 1 ∆13+( )E0,=
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alized form (3). They can be assumed to be the zeroth
approximation for calculating the electric field in a
medium containing interacting inclusions.

3. SYMMETRY TRANSFORMATIONS

In order to determine the effective parameters of the
inhomogeneous medium, we need to calculate the spa-
tially averaged values of the electric field. The averag-
ing 

(6)

is performed over the area S which is naturally taken to
be the area of the periodic parallelogram (see Fig. 1)
which is the basic region of a medium having a doubly
periodic inhomogeneity structure. 

By definition, this composite consists of compo-
nents with locally isotropic materials. However, on a
scale much larger than the dimensions of the averaging
cell the composite may acquire anisotropic properties.
Anisotropy of the macroscopic permittivity occurs
either as a result of the geometric shape of the cell or as
a result of the layered distribution of inclusions of dif-
ferent types. In these cases, averaging the material
equation (1) gives

(7)

where the permittivity is described by the effective ten-
sor

(8)

reduced to the principal axes. 
The averaging cell can be selected such that for

fixed directions of the electric field the opposite sides of
the periodic parallelogram in a regular-structure com-
posite coincide with the equipotential and field lines.
This property of the periodic cell can simplify the field
averaging procedure, by replacing calculation of the
integrals over its area by calculation of the contour inte-
grals along its boundary lines. 

Let us assume that the external electric field is ini-
tially directed along the x-axis: E0 = E0x. Then, two
sides of the periodic parallelogram OV and UW are
located on the equipotentials and the other two OU and
UW coincide with the field lines (Fig. 1). In this case,
the component εeff xx of the tensor  may be deter-
mined from

(9)

where

(10)

…〈 〉 1
S
--- …( ) s,d

S

∫=

D〈 〉 ε̂eff E〈 〉 ,=

ε̂eff εeffxx εeffyy,{ } ,=

ε̂eff

D〈 〉 x εeffxx E〈 〉 x,=

E〈 〉 x
1
l
--- ReE x( ) x, D〈 〉 xd

0

l

∫
ε1

h
---- ReE iy( ) y.d

0

h

∫= =
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Integrating the expressions (3) gives

(11)

The last expression is written allowing for the rela-
tionships

(12)

In order to find the component εeff yy of the tensor
, the external electric field must be directed along

the y-axis: E0 = –iE0y (without loss of generality we can
assume that E0x = E0y). Now in the periodic parallelo-
gram the sides OU and VW coincide with the equipo-
tentials and the sides OV and UW are positioned on the
field lines. For the assumed conditions the component
εeff yy is determined from

(13)

Here the average fields are calculated using the inte-
grals:

(14)

Substituting Eqs. (3) into Eqs. (14), we obtain

(15)

It is found that the average fields given by Eqs. (11)
and (15) are not independent. As will be shown below
by means of specific calculations, the following rela-
tions exist between them:

(16)

where in accordance with Eqs. (4) ∆21 = –∆12 and ∆31 =
–∆13. Note that Eqs. (16) are valid under the condition
assumed above E0x = E0y.

Using the complex representation of the electric
field (2), Eqs. (16) may be expressed as a single rela-
tionship:

(17)

Here we recall that the bar over the function E
denotes complex conjugation. In vector form the rela-

E〈 〉 x E1〈 〉 x E2〈 〉 x E3〈 〉 x,+ +=

D〈 〉 x ε1 E1〈 〉 x

1 ∆12–
1 ∆12+
----------------- E2〈 〉 x

1 ∆13–
1 ∆13+
----------------- E3〈 〉 x+ + .=

ε2

ε1
----

1 ∆12–
1 ∆12+
-----------------,

ε3

ε1
----

1 ∆13–
1 ∆13+
-----------------.= =

ε̂eff

D〈 〉 y εeffyy E〈 〉 y.=

E〈 〉 y
1
h
--- ImEy iy( ) y,d

0

h

∫=

D〈 〉 y

ε1

l
---- ImE x( ) x.d

0

l

∫=

E〈 〉 y E1〈 〉 y E2〈 〉 y E3〈 〉 y,+ +=

D〈 〉 y ε1 E1〈 〉 y

1 ∆12–
1 ∆12+
----------------- E2〈 〉 y

1 ∆13–
1 ∆13+
----------------- E3〈 〉 y+ + .=

D ∆21 ∆31,( )〈 〉 x ε1 E ∆12 ∆13,( )〈 〉 y,=

D ∆21 ∆31,( )〈 〉 y ε1 E ∆12 ∆13,( )〈 〉 x.=

D ∆21 ∆31,( )〈 〉 iε1 E ∆12 ∆13,( )〈 〉 .=
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tionships (16) are written as:

(18)

where  is a two-dimensional tensor having the trans-
verse components:

(19)

The minus sign appeared in (18) because the external
field was expressed in the complex form E0 = E0x – iE0y;

the vector E0 corresponds to the conjugate of E0: E0 = . 

The equality (16) can also be expressed as follows:

(20)

It is quite clear that Eqs. (16) and (20) are equivalent.
From Eqs. (20) we obtain a relation equivalent to (17)

(21)

and thus in vector form we have

(22)

The equalities (16) and other Eqs. (17)–(22) derived
from them determine the symmetry transformations of
the average values of the electric field in three-compo-
nent matrix dielectrics having anisotropic properties of
the effective parameters.

If an inhomogeneous material is on average isotro-
pic, it is characterized by a scalar effective permittivity
which is now determined from

(23)

In this case, the symmetry transformations have the
form

(24)

or in equivalent notation

(25)

The relationships (24) and (25) can be expressed in the
vector form:

(26)

(27)

The validity of the symmetry transformations (16)
for these periodic media is demonstrated using the fol-
lowing assumptions. 

(1) The electric field in a three-component matrix
medium is generally represented in the form (3) where
the functions E0exp(iαk)Fn(…) and E0Gn(…), m = 1, 2, 3,

D ∆21 ∆31,( )〈 〉 ε– 1T̂ E ∆12 ∆13,( )〈 〉 ,=

T̂

T̂ 0 1

1 0
.=

E0

D ∆12 ∆13,( )〈 〉 x ε1 E ∆21 ∆31,( )〈 〉 y,=

D ∆12 ∆13,( )〈 〉 y ε1 E ∆21 ∆31,( )〈 〉 x.=

D ∆12 ∆13,( )〈 〉 iε1 E ∆21 ∆31,( )〈 〉 ,=

D ∆12 ∆13,( )〈 〉 ε– 1T̂ E ∆21 ∆31,( )〈 〉 .=

D〈 〉 εeff E〈 〉 .=

D ∆21 ∆31,( )〈 〉 x y, ε1 E ∆12 ∆13,( )〈 〉 x y, ,=

D ∆12 ∆13,( )〈 〉 x y, ε1 E ∆21 ∆31,( )〈 〉 x y, .=

D ∆21 ∆31,( )〈 〉 ε1 E ∆12 ∆13,( )〈 〉 ,=

D ∆12 ∆13,( )〈 〉 ε1 E ∆21 ∆31,( )〈 〉 .=
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are expressed by infinite sums of dipoles where each
element is given by

(28)

where pk are the moments of the linear dipoles and ak

are the coordinates of the dipoles on the z plane. The
dipole moments generally depend on the external field
E0, the parameters ∆12, ∆13, ∆, and geometric factors,
and some also depend on the angle αk [see, e.g.,
Eq. (5)].

(2) Calculation of the average values of the field can
be reduced to integrating and then summing the dipole
fields. In the calculations of the averages 〈D〉x and 〈E〉y

the corresponding integrals (10) and (14) of the real and
imaginary parts of the field for the same limits of inte-
gration only differ in respect of the signs. This can eas-
ily be established by integrating expression (28). How-
ever, after integrating the function E0exp(iαk)Fn(…)
and summing the results, the value obtained in two
cases has the same sign. This is attributable to the pres-
ence of the factor exp(iαk) as a result of which the val-
ues at complex-conjugate points are summed in a peri-
odic system so that the sign of the integral becomes
irrelevant. 

Ultimately, by averaging the functions containing
the parameter ∆ to any power and the parameters ∆12
and ∆13 to even powers, we obtain the same value for
the imaginary and real parts. A similar operation for
functions containing the parameters ∆12 and ∆13 gives
values which differ only in respect of the signs. This
rule is also conserved in calculations of the average
〈D〉x where the factors (12) must be taken into account. 

All this reasoning also applies to calculations of the
averages 〈D〉y and 〈E〉x. 

It has thus been demonstrated that symmetry trans-
formations (16) exist for matrix three-component
media having a periodic structure. In this case, the
shape of the inclusions is unimportant and their con-
centration in the matrix may be arbitrary. In the follow-
ing section the correctness of the symmetry transforma-
tions is confirmed by specific calculations.

The relations (16)–(27) correspond to the symmetry
transformations of three-component matrix media. In
particular cases when the inclusions have the same
characteristics ε3 = ε2 (∆13 = ∆12) or the permittivity of
one of the inclusions is the same as the permittivity of
the matrix, e.g., ε3 = ε1 (∆13 = 0), Eqs. (16)–(27) will
determine the symmetry transformations of two-com-
ponent media. The equalities (16) then have the form

(29)

Ek z( )
pk

z ak–( )2
--------------------, pk pxk i pyk,+= =

D ∆21( )〈 〉 x ε1 E ∆12( )〈 〉 y,=

D ∆21( )〈 〉 y ε1 E ∆12( )〈 〉 x.=
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In complex and vector forms these may be expressed
as:

(30)

where the tensor  was defined above, see (19).

Instead of Eqs. (20), we now have

(31)

or briefly in the complex and vector representations:

(32)

(33)

In accordance with Eqs. (26) and (27), the symme-
try transformations for two-component isotropic media
have the form

(34)

(35)

Symmetry transformations in the form (30) were
obtained by Dykhne [10] in a study of statistically iso-
tropic randomly inhomogeneous media.

4. EXACT ANALYTIC SOLUTIONS

In order to show that the symmetry transformations
are satisfied explicitly, we shall give the results of cal-
culations of various exactly solvable problems. Unfor-
tunately, there are only a few models of inhomoge-
neous media which can be studied analytically. These
are generally composite materials having a regular
structure. Media having these properties can be studied
comparatively easily. Despite various assumptions usu-
ally used in problems and assumptions made to sim-
plify the calculations, the solutions obtained are of
great importance for the theory of inhomogeneous
media.

4.1. Three-Component Matrix Medium Having 
a Low Concentration 

of Unidirectional Cylindrical Fibers

Figure 2 shows a fragment of an unbounded inho-
mogeneous medium in the transverse cross section to
the fibers. The centers of the cross sections of two dif-
ferent types of fibers are distributed uniformly at the
nodes of a square lattice. Overall, a composite material
having this structure possesses isotropic properties and
its effective permittivity is determined from Eq. (23).
The local electric field in this material was calculated
in [18].

D ∆21( )〈 〉 iε1 E ∆12( )〈 〉 ,=

D ∆21( )〈 〉 ε– 1T̂ E ∆12( )〈 〉 ,=

T̂

D ∆12( )〈 〉 x ε1 E ∆21( )〈 〉 y,=

D ∆12( )〈 〉 y ε1 E ∆21( )〈 〉 x,=

D ∆12( )〈 〉 iε1 E ∆21( )〈 〉 ,=

D ∆12( )〈 〉 ε– 1T̂ E ∆21( )〈 〉 .=

D ∆21( )〈 〉 ε1 E ∆12( )〈 〉 ,=

D ∆12( )〈 〉 ε1 E ∆21( )〈 〉 .=
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When the electric field E0 is directed along the x-axis,
E0 = E0x, calculations of the average fields in the com-
posite give

(36)

The expressions (36) are written in terms of the relative
units E/E0 and D/ε0E0 where ε0 is the electric constant.
In Eqs. (36) s1 and s2 are the concentrations of inclu-
sions having permittivities ε2 and ε3, respectively. The
parameters An and Bn (n = 1, 2) are functions of the
inclusion radii r1 and r2 or, which is equivalent, func-
tions of the inclusion concentrations s1 and s2 (sn =

π /l2, l is the linear dimension of a square cell, its
side). Explicit expressions for the parameters An and Bn

are given in [18]. 
It can be seen that Eqs. (36) satisfy the symmetry

transformations (24) of inhomogeneous isotropic
media.

4.2. Three-Component Matrix Medium 
with Close-Packed Cylindrical Inclusions

In the plane perpendicular to the axes of the inclu-
sions, as in the previous example, the medium is con-
sidered to be a two-dimensional inhomogeneous
medium with isotropic properties. Figure 3 shows a
fragment of a composite with square-packed cylindri-
cal fibers. The electric field in this material can be cal-
culated using methods described in [16–18]. It should

D〈 〉 x ε1 1 ∆12s1/2 ∆13s2/2––[=

+ ∆12
2 A1 ∆13

2
A2 ∆ B1 B2+( )+ + ] ,

E〈 〉 x 1 ∆12s1/2 ∆13s2/2+ +=

+ ∆12
2 A1 ∆13

2
A2 ∆ B1 B2+( )+ + .

rn
2

ε1

ε2 ε3

l

lO

y

x

Fig. 2. Fragment of a three-component dielectric material
having a square distribution of unidirectional fibers. Case of
an isotropic medium.
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be noted that for a medium having an extremely high
concentration of inclusions, as in this case, the field cal-
culations must be made with a fairly high degree of
approximation, retaining a considerable number of
terms in the asymptotic expansions.

Finally, for a fixed direction of the external field
E0 = E0x the average values of the electric field in the
material are determined by the expressions (for dimen-
sionless quantities)

(37)

D〈 〉 x ε1 2
∆12 ∆13+( )s

2
-----------------------------–





=

+ ∆12
2k ∆13

2k+( ) Ck Dk+( ){
k 1=

∞

∑

– ∆12
2k 1+ ∆13

2k 1++( ) Ck Dk 1++( )

---+ ∆k 2 Ak Bk+( ) ∆12 ∆13+( ) Ak Bk 1++( )–[ ] }




,

E〈 〉 x 2
∆12 ∆13+( )s

2
-----------------------------+=

+ ∆12
2k ∆13

2k+( ) Ck Dk+( ){
k 1=

∞

∑

+ ∆12
2k 1+ ∆13

2k 1++( ) Ck Dk 1++( )

+ ∆k 2 Ak Bk+( ) ∆12 ∆13+( ) Ak Bk 1++( )+[ ] } .

y

x

ε1

ε2

O

ε3

l

l

Fig. 3. Fragment of a dielectric material having close-
packed fibers of two different types. Isotropic medium.
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Here s is the total concentration of inclusions, s = π/4.
The numerical coefficients of the infinite sums Ak, Bk,
Ck, and Dk are given by 

(38)

It is easily confirmed that the average electric fields
in the material determined by Eqs. (37) and (38) satisfy
the symmetry transformation (24).

4.3. Anisotropic Three-Component Medium 
Containing Unidirectional Cylindrical Fibers

Figure 4 shows a fragment of an inhomogeneous
medium in the transverse cross section to the fibers.
The centers of two types of fibers are located at the
nodes of a square lattice. Macroscopically this material
has anisotropic properties. The anisotropy of the effec-
tive permittivity occurs as a result of the grouping of
inclusions of each type into rows oriented along the y
axis; the rows alternate periodically in the direction of
the x-axis. 

Ak
4 2k 1+( )2

2k 1+( )4 16k4–
---------------------------------------,=

Bk
4 2k 1–( )2

2k 1–( )4 16k4–
---------------------------------------,=

Ck
16λ2k 1+ 1 λ2k 1+–( )2

1 λ2k 1+–( )4 λ2 1 λ2k–( )
4

+
---------------------------------------------------------------,=

Dk
16λ2k 1+ 1 λ2k 1––( )2

1 λ2k–( )4 λ2 1 λ2k 1––( )
4

+
---------------------------------------------------------------,=

λ 3 2 2.–=

ε1

ε3

l x

y

O

ε2

l

Fig. 4. Anisotropic dielectric material containing unidirec-
tional fibers of two different types.
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The tensor of the effective permittivity  is now
determined from (7). The electric field in the medium
can be calculated using the methods indicated in Sec-
tion 4.2. At low concentrations of inclusions the expres-
sions for the average fields in the material have the fol-
lowing form (in arbitrary units):

for E0 = E0x

(39)

for E0 = –iE0y

(40)

where α and β are numerical coefficients characterizing
the geometric structure of the material (α + β = 1, α =
0.7045); s1 and s2 are the concentrations of inclusions

(in periodic structures s1 = π /l2, s2 = π /l2, where r1

and r2 are the inclusion radii and l is the dimension of
the square cell). To simplify the notation, explicit
expressions for the functions Φ, Ψ and Φ', Ψ' are not
given here, which does not influence the essence of this
problem. Without any loss of generality we can assume
that E0x = E0y . 

In this case, the average values of the electric field
in an inhomogeneous material (39) and (40) satisfy
relations in the form (16), as can be established by
direct checking, or in the equivalent forms (17)–(22)
which determine the symmetry transformations of
anisotropic media.

4.4. Three-Component Stratified Media

It is interesting to note that media having a one-
dimensional periodic structure (stratified media) also
satisfy the symmetry transformations of anisotropic
media (16)–(22). In fact, let us assume that a composite
material consists of periodically alternating layers of
the same dimensions having permittivities ε1, ε2, and ε3.
The layers are oriented along the y axis. The average
fields in this material are determined elementarily. We
have

for E0 = E0x

(41)

ε̂eff

D〈 〉 x ε1 1 α ∆12s1 ∆13s2+( )–[=

– ∆12
2 Ψ r1( ) ∆13

2 Ψ r2( )– ∆Φ r1 r2,( )– ] ,

E〈 〉 x 1 β ∆12s1 ∆13s2+( )+=

+ ∆12
2 Ψ' r1( ) ∆13

2 Ψ' r2( ) ∆Φ' r1 r2,( )+ + ;

D〈 〉 y ε1 1 β ∆12s1 ∆13s2+( )–[=

+ ∆12
2 Ψ' r1( ) ∆13

2 Ψ' r2( ) ∆Φ' r1 r2,( )+ + ] ,

E〈 〉 y 1 α ∆12s1 ∆13s2+( )+=

– ∆12
2 Ψ r1( ) ∆13

2 Ψ r2( )– ∆Φ r1 r2,( )– ,

r1
2 r2

2

D〈 〉 x ε1E0x,=

E〈 〉 x
1
3
---

3 ∆12 ∆13 ∆–––
1 ∆12 ∆13 ∆+––
----------------------------------------E0x;=
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for E0 = –iE0y

(42)

where, as in previous cases, we can assume that E0x =
E0y.

All the examples considered above confirm the
validity of the symmetry transformations which are sat-
isfied by the average values of the electric field in two-
dimensional three-component matrix and stratified
media. Naturally these symmetry transformations
should also be satisfied for two-component media. In
order to illustrate this, two typical models of two-
dimensional two-component inhomogeneous media
are considered below: a model of a two-phase material
having a checkerboard structure with rectangular cells
and a model of a matrix medium reinforced with paral-
lel cylindrical fibers having the centers of their cross
sections positioned at the nodes of a square lattice
(Rayleigh model).

4.5. Two-Dimensional Two-Component 
Inhomogeneous Medium with a Doubly Periodic 

Inhomogeneity Structure

Figure 5 shows a fragment of the inhomogeneous
medium. In this case we consider the “checkerboard”
model of an inhomogeneous medium with rectangular
cells. A material with this structure broadly possesses
anisotropic properties. In particular cases, by changing
the geometry of the cells we can obtain a doubly peri-
odic system with square cells which corresponds to an
isotropic medium or we can go over to a one-dimen-
sional structure (stratified medium).

An inhomogeneous medium having this structure
serves as a theoretical model to study composites hav-
ing a critical component composition. This in fact
implies that in a quasi-steady-state electric field when
the permittivity has a complex value, a metal–insulator
phase transition can take place in an inhomogeneous
medium. 

The electric field in this composite material can be
calculated analytically using a calculation technique
proposed in [12]. The local electric field in neighboring
cells OUUW and OUW'U' (see Fig. 5) is given by the
formulas

(43)

where A and B are real constants. The particular solu-
tions Epq(z), p, q = 1, 2 in Eq. (43) have the following
expressions:

D〈 〉 y

ε1

3
----

3 ∆12 ∆13 ∆–+ +
1 ∆12 ∆13 ∆+ + +
-----------------------------------------E0y,=

E〈 〉 y E0y,=

E1 z( ) AE11 z( ) BE12 z( ),+=

E2 z( ) AE21 z( ) BE22 z( ),+=

E11 z( )
iπ
2
----- 1

2
--- γ– 

  X z( ),exp=
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(44)

where 

(45)

In Eq. (45) cn(2u) is the elliptic cosine, K and K' are
complete elliptic integrals of the first kind with the
moduli k(l/h) and k'(l/h),

(46)

l and h are the linear dimensions of the rectangular cell
(see Fig. 5).

The average electric fields in the inhomogeneous
material are determined by the formulas

for E0 = E0x (A = B)

(47)

for E0 = –iE0y (A = –B)

(48)

Integration in Eqs. (47) and (48) gives

(49)

E12 E11
1– z( ),=

E21 z( )
ε2

ε1
----

iπ
2
----- 1

2
--- γ+ 

  X z( ),exp=

E22

ε2

ε1
----E11

1– z( ),=

X z( )
1 cn 2u( )–
1 cn 2u( )+
-------------------------

γ
u

Kz
l

------= 
  ,=

1
2
--- γ<–

1
π
--- ∆12

1
2
---.<arcsin=

K /K' l/h,=

D〈 〉 x

ε1

h
---- ReE1 iy( ) y,d

0

h

∫=

E〈 〉 x
1
l
--- ReE1 x( ) x;d

0

l

∫=

D〈 〉 y

ε1

l
---- ImE1 x( ) x,d

0

l

∫=

E〈 〉 y
1
h
--- ImE1 iy( ) y.d

0

h

∫=

D〈 〉 x

ε1πA

2 1 ∆12+
---------------------------- F'

K'
-----,=

E〈 〉 x
πA

2 1 ∆12–
---------------------------- F

K
----;=

D〈 〉 y

ε1πA

2 1 ∆12+
---------------------------- F

K
----,=

E〈 〉 y
πA

2 1 ∆12–
---------------------------- F'

K'
-----.=
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h

ε2

l

V '

V

ε1

O

W

U

W '

y

x

Fig. 5. Two-dimensional dielectric media having a doubly periodic distribution of rectangular cells.
Here F and F ' are hypergeometric functions:

(50)

Bearing in mind the sign of the parameter γ deter-
mined by formula (45) 

(51)

and the symmetric properties of hypergeometric func-
tions relative to the parameters 1/2 + γ and 1/2 – γ, we
can confirm that expressions (49) satisfy the symmetry
transformations of the average electric fields (29)–(33)
in anisotropic materials. 

It is important to note that Eqs. (49) correspond to a
strictly exact solution of the problem and were obtained
without any approximations in the calculation process. 

In the particular case when l = h and the cells are
square, the medium becomes broadly isotropic. We
then have

(52)

where Γ(…) is a gamma function. It follows from
Eqs. (49) that

F F
1
2
--- γ+ 1

2
--- γ; 1; k2–, 

  ,≡

F' F
1
2
--- γ+ 1

2
--- γ; 1; k'2–, 

  .≡

γ ∆12( ) γ ∆21( ),–=

k k'
1

2
-------, K K'

1

4 π
----------Γ2 1

4
--- 

  ,= = = =

F F' π Γ 3
4
--- γ

2
---+ 

  Γ 3
4
--- γ

2
---– 

  1–

,= =

D〈 〉 x y, ε1
2 2π2A

1 ∆12+
---------------------=
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(53)

In this case the inhomogeneous medium is inte-
grally isotropic and its electric fields averaged over
space satisfy the symmetry transformations (34)
and (35). 

If we now go to the limit h/l  ∞ in Eqs. (49)
assuming that l is fixed, the initial doubly periodic
structure becomes singly periodic, a layered two-com-
ponent medium having the same compositions (more
accurately we obtain a medium containing semilayers).
In this case, the parameter k tends to zero. In the limit
k = 0 and 

(54)

For h/l  ∞ we can use the following asymptotic rep-
resentations of the functions F '(k) and K '(k):

(55)

Taking into account Eqs. (54) and (55), the average
values of the electric field (49) in a two-component
material having periodically alternating semilayers

× Γ2 1
4
--- 

  Γ 3
4
--- γ

2
---+ 

  Γ 3
4
--- γ

2
---– 

 
1–

,

E〈 〉 x y,
2 2π2A

1 ∆12–
--------------------=

× Γ2 1
4
--- 

  Γ 3
4
--- γ

2
---+ 

  Γ 3
4
--- γ

2
---– 

 
1–

.

K π/2, F 1.= =

F' k( ) Γ 1( ) Γ 1
2
--- γ+ 

  Γ 1
2
--- γ+ 

  1– 1

k2
---- 

 ln≈

=  
4
π
--- 1 ∆12–

1
k
--- 

  ,ln

K' k( )
1
k
--- 

  .ln≈
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have the form

(56)

In this case, the inhomogeneous medium is broadly
anisotropic and Eqs. (56) correspond to symmetry
transformations in the form (29)–(33). 

This system is also characterized by symmetry
transformations of the local fields where these transfor-
mations depend on the direction of the external field.
We shall demonstrate this. 

Let us assume that the external electric field E0 =
E0x – iE0y has an arbitrary direction in the system. The
constants A and B in expressions (43) are determined
for a rectangular cell step from the integral equalities 

(57)

Integrating in Eqs. (57), we obtain

(58)

where all the parameters are the same as in Eqs. (49).
From the Eqs. (58) we find the values of the constants
A and B:

(59)

Taking into account the property of the function
X(z), 

(60)

we obtain from Eqs. (43)–(45) 

(61)

D〈 〉 x ε1 2A 1 ∆12– ,=

E〈 〉 x
2A

1 ∆12–
--------------------,=

D〈 〉 y

ε1 2A

1 ∆12+
---------------------,=

E〈 〉 y 2A 1 ∆12+ .=

E0x
1
l
--- ReE1 x( ) x, E0yd

0

l

∫ 1
h
--- ImE1 y( ) y.d

0

h

∫= =

E0x
π A B+( )

2 2 1 ∆12–
------------------------------- F

K
----,=

E0y
π A B–( )

2 2 1 ∆12–
-------------------------------F '

K'
-----,=

A
2

π
------- 1 ∆12–

K
F
----∆0x

K'
F '
-----E0y+ 

  ,=

B
2

π
------- 1 ∆12–

K
F
----∆0x

K'
F '
-----E0y– 

  .=

X z( ) X z( ),=

E1
2 z( )

ε2

ε1
----E2

2
z( )+ 4AB,=
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which in expanded form becomes

(62)

This is the symmetry transformation of the local fields.
The transformation (62) establishes the relationship
between the field intensities at congruent points in a
doubly periodic system. It is inhomogeneous since it
contains a right-hand side.

If the direction of the external field E0 is fixed so that

(63)

or, which amounts to the same thing, 

(64)

the local-field symmetry transformation (62) becomes
homogeneous:

(65)

The relationship (65) may be written as the linear
equality 

(66)

The presence of two signs in Eq. (66) indicates that
there are in fact two directions of the external field each
corresponding to one of two transformations. Thus,
rotational symmetry exists.

For a square cell we have l = h which, according to
(52), means that F = F ' and instead of (64) we have

(67)

Consequently, the homogeneous symmetry transforma-
tion (66) is also valid in a system with square cells if the
external field is directed along the diagonal of the
squares.

It is found that the local-field symmetry transforma-
tion (66) is also satisfied for one-dimensional (layered)
structures if the external electric field has the following
direction in the system:

(68)

This can be confirmed by going to the limit h/l  ∞
and using the asymptotic Eqs. (54) and (55).

Thus, the homogeneous local-field symmetry trans-
formation in the form (66) is valid for singly and dou-
bly periodic structures with equal concentrations of
components. In this case, the external field has a fixed

E1
2 z( )

ε2

ε1
----E2

2
z( )+

=  
8

π2
----- 1 ∆12–( ) K

F
----E0x 

 
2 K'

F '
-----E0y 

 
2

– .

E0x

E0y

--------
FK'
F'K
---------,=

E0x

E0y

--------
h
l
--- F

F'
----,=

E1
2 z( )

ε2

ε1
----E2

2
z( )+ 0.=

E1 z( ) i
ε2

ε1
----E2 z( ).±=

E0x E0y.=

E0x

E0y

--------
1

2 1 ∆12–
------------------------.=
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direction which generally depends on the geometric
and physical parameters of the system.

An interesting property of these systems is associ-
ated with the transformation (66), i.e., the energy of the
electric field in inhomogeneous media is distributed
uniformly over the phases.

In fact, Eq. (66) may be expressed as:

(69)

Multiplying the left- and right-hand sides of
Eqs. (66) and (69) and performing a preliminary com-
plex conjugation operation in (66) or (69), we obtain

(70)

It follows from (70) that at congruent points in periodic
systems the electric field energy is the same so that the
overall field energy is distributed equally between the
phases:

(71)

It should be stressed that this statement only holds for
fixed directions of the electric field when linear homo-
geneous symmetry transformations are satisfied. These
conditions are satisfied for singly periodic and for dou-
bly periodic two-component structures with equal
phase concentrations. 

4.6. Two-Component Media Containing 
Unidirectional Cylindrical Fibers

A model of an inhomogeneous medium containing
cylindrical fibers of the same type positioned at the
nodes of a rectangular lattice was proposed and investi-
gated by Rayleigh when studying optical effects [2].
The electric field in the composite was calculated using
methods from classical potential theory which fully
take into account the relative influence of the fibers on
each other. This allows the physical fields to be calcu-
lated for any concentration of inclusions in the mate-
rial. 

The method put forward by Rayleigh has been
developed in many studies, mainly involving two-com-
ponent matrix media [3–5]. In [3], for example, this
method was used to calculate the electric field in a com-
posite having a square configuration of cylindrical
fibers. The asymptotic solution in the third approxima-
tion has the form

(72)

where s = π(r/l)2 is the concentration of inclusions (r is
the fiber radius, l is the spacing of the square lattice); a,

D1 z( ) i
ε1

ε2
----D2 z( ).±=

W1 z( ) W2 z( ).=

W1〈 〉 W2〈 〉 .=

D〈 〉 x ε1 1 ∆12s– ∆12
2 s a b c+( )s4+[ ]–{=

– ∆12
3 bs9 ∆12

4 bcs16+ } ,

E〈 〉 x 1 ∆12s ∆12
2 s a b c+( )s4+[ ]–+=

+ ∆12
3 bs9 ∆12

4 bcs16,+
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b, and c are numerical constants (a = 0.3058, b =
1.40296, c = 0.0134).

This material is integrally isotropic and its average
electric fields determined by formulas (72) satisfy the
symmetry transformations (34) and (35). 

Similar expressions for the average fields can be
obtained from the solutions derived previously for the
models described in Sections 4.1–4.3. In fact, if we
assume in Eqs. (36), (37), and (39) that all the fibers
have the same radii r1 = r2, and permittivities ε2 = ε3
(∆12 = ∆13), under these conditions the average values of
the electric field will correspond to a matrix medium
reinforced with fibers of the same type having its axes
at the nodes of a square mesh. As we can easily con-
firm, these also satisfy the symmetry transformations
(34) and (35). 

Hence, all the analytic solutions given clearly show
that the average fields of two-dimensional two- and
three-component media satisfy symmetry transforma-
tions in accordance with the general theory. We note
that because of the known analogy between the macro-
scopic properties of various two-dimensional struc-
tures, many average characteristics of periodic systems
can naturally be extended to various classes of ran-
domly inhomogeneous media [6, 7, 10, 11].

5. RECIPROCITY RELATIONS

Various consequences follow from the symmetry
transformations which establish the general properties
of the average values of the electric field in inhomoge-
neous media. The most important of these are associ-
ated with the reciprocity relations of the effective
parameters. These relations may be obtained as fol-
lows. 

We multiply the left- and right-hand sides of the sec-
ond Eq. (16) and the first Eq. (20):

(73)

Using the averaged material Eq. (7) we obtain

(74)

where in accordance with (4) we have ∆21 = –∆12 and
∆31 = –∆13. 

Similarly, multiplying the left- and right-hand sides
of the first Eq. (16) and the second Eq. (20) gives 

(75)

From this it follows that

(76)

These Eqs. (74) and (76) are equivalent. They deter-
mine the reciprocity relations of the effective parame-

D ∆21 ∆31,( )〈 〉 y D ∆12 ∆13,( )〈 〉 x

=  ε1
2 E ∆12 ∆13,( )〈 〉 x E ∆21 ∆31,( )〈 〉 y.

εeffxx ∆12 ∆13,( )εeffyy ∆21 ∆31,( ) ε1
2,=

D ∆21 ∆31,( )〈 〉 x D ∆12 ∆13,( )〈 〉 y

=  ε1
2 E ∆12 ∆13,( )〈 〉 x E ∆21 ∆31,( )〈 〉 y.

εeffxx ∆21 ∆31,( )εeffyy ∆12 ∆13,( ) ε1
2.=
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ters of two-dimensional three-component media. These
relations are extremely general and play an important
role in the theory of inhomogeneous structures.

If an inhomogeneous material possesses broadly
isotropic properties, instead of two Eqs. (74) and (76)
we have

(77)

In the particular case when a two-dimensional inho-
mogeneous medium consists of only two components,
ε1 and ε2, Eqs. (74) and (76) have the form

(78)

The equality (77) becomes

(79)

Strictly, Eqs. (78) and (79) follow from the symme-
try transformations for two-component media (29) and
(31) and their derivation is exactly the same as the pro-
cedure used to derive (74), (76), and (77).

The reciprocity relations (78) and (79) are usually
written in the form:

(80)

for anisotropic media and

(81)

for isotropic materials. Here the first argument implies
the permittivity of the matrix and the second implies
that of the inclusions. Both forms of writing (78), (79)
and (80), (81) are equivalent, as was shown in [12]. 

Reciprocity relations in the form (80) and (81) were
established by Keller [1] who adopted the Rayleigh
model of an inhomogeneous medium to prove the rele-
vant theorem. Balagurov showed [6] that the results of
the theorem are valid for less stringent constraints on
the shape of the inclusions and their position in the
composite. Generalizations of the Keller theorem pro-
posed by Mendelson [9], Fokin [7], Schulgasser [8],
and other authors extended this theorem to a very broad
class of two-component media in terms of their possi-
ble geometric structure. 

The reciprocity relations can be assigned a simpler
form if we introduce the tensor of the relative effective
permittivity

(82)

whose components are related to the components of the
tensor  by

εeff ∆12 ∆13,( )εeff ∆21 ∆31,( ) ε1
2.=

εeffxx ∆12( )εeffyy ∆21( ) ε1
2,=

εeffxx ∆21( )εeffyy ∆12( ) ε1
2.=

εeff ∆12( )εeff ∆21( ) ε1
2.=

εeffxx ε1 ε2,( )εeffyy ε2 ε1,( ) ε1ε2=

εeff ε1 ε2,( )εeff ε2 ε1,( ) ε1ε2=

∆̂eff ∆effxx ∆effyy,{ } ,=

ε̂eff
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(83)

Inverting Eqs. (83), we obtain

(84)

Substituting Eqs. (84) into Eqs. (78) gives

(85)

For isotropic media, Eq. (79) gives

(86)

In the form (85) and (86) the reciprocity relations
appear as odd functions of their arguments. 

The reciprocity relations and symmetry transforma-
tions can have a simpler and clearer physical interpre-
tation if we introduce the concept of reciprocal media
[6]. With reference to three-component media this term
has an extended meaning. 

Let us assume that all the physical parameters of the
reciprocal medium relative to the initial medium are

denoted by a tilde: , , , , , ,

, …. A double tilde returns this medium to
the initial one. 

By definition the reciprocal medium differs from the
initial one by the substitution of parameters ∆12,
∆13  ∆21, ∆31 with the initial geometry conserved. It
therefore follows that

(87)

which is equivalent to the equalities 

(88)

Here we have two relations and three indeterminate
parameters: ,  and . Thus, we need an additional
condition. For example, if we assume that in the initial
medium and in the medium reciprocal to it the matrix
has the same permittivity  = ε1, from Eqs. (73) we
obtain quite specific values of the permittivities of the
additional phases in the reciprocal medium expressed
in terms of the parameters of the initial medium:

(89)

It is found that the average energies of the reciprocal
media are the same. From Eqs. (17) and (21) we obtain

(90)

∆effxx

ε1 εeffxx–
ε1 εeffxx+
----------------------,=

∆effyy

ε1 εeffyy–
ε1 εeffyy+
----------------------=

1 ∆effxx ∆effyy 1<,<–( ).

εeffxx

ε1
-----------

1 ∆effxx–
1 ∆effxx+
---------------------,

εeffyy

ε1
-----------

1 ∆effyy–
1 ∆effyy+
---------------------.= =

∆effxx ∆12 ∆13,( ) ∆effyy ∆21 ∆31,( ),=

∆effxx ∆21 ∆31,( ) ∆– effyy ∆12 ∆13,( ).=

∆eff ∆12 ∆13,( ) ∆eff ∆21 ∆31,( ).–=

ε̃1 ε̃2 ε̃3 ∆̃12 ∆̃13 Ẽ ∆̃12 ∆̃13,( )

D̃ ∆̃12 ∆̃13,( )

∆̃12 ∆21, ∆13 ∆31,= =

ε1ε̃1 ε2ε̃2, ε1ε̃1 ε3ε̃3= =

ε̃1 ε̃2 ε̃3

ε̃1

ε̃2 ε1
2/ε2, ε̃3 ε1

2/ε3.= =

Re D〈 〉 E〈 〉( ) Re D̃〈 〉 E
˜〈 〉( ),=
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or in vector form

(91)

The components of the average electric field of the
reciprocal media are interrelated by the following:

(92)

where φ and  are the angles between the average val-

ues of the field Ex, Ey and , , respectively.
One advantage of the concept of reciprocal systems

is the obvious simplification of the study. The reciproc-
ity relations (74), (76), and (77), for example, can be
written concisely as:

(93)

The reduced notation is particularly convenient for
describing multicomponent media. 

The form of the symmetry transformations of the
average values of the electric field and the form of the
reciprocity relations for the effective parameters
remain the same for an arbitrary number of compo-
nents, only the number of arguments of the correspond-
ing functions changes. In fact, let us assume that a com-
posite having this structure consists of n components
and the matrix having the permittivity ε1 contains cylin-
drical inclusions having the permittivities ε2, ε3, …, εn

in a doubly periodic configuration. This medium is
characterized by the parameters ∆12, ∆13, …, ∆1n. The
average values of the field of its reciprocal medium will
be functions of the parameters ∆21, ∆31, …, ∆n1. These
properties follow naturally from repeating the previous
scheme for calculating the electric field, in a multicom-
ponent fiber composite the calculations of the field are
also based on summing the pair interactions of cylindri-
cal inclusions and locally conserve their dipole nature.

6. CONCLUSIONS

Studies of the characteristics of multicomponent
media are attracting interest in many applications in the
physics and mechanics of inhomogeneous polarizable
materials. However, a systematic study of these materi-
als is held back by various serious factors. Among these
mention may be made of the large number of constitu-
ent elements, the complexity of the internal geometry,

D〈 〉 E〈 〉⋅ D̃〈 〉 Ẽ〈 〉 .⋅=

Ẽ〈 〉 x ε1
1– εeffyy E〈 〉 y,+−=

Ẽ〈 〉 y ε1
1– εeffxx E〈 〉 x,+−=

D̃〈 〉 x ε1εeffyy
1– D〈 〉 y,±=

D̃〈 〉 y ε1εeffxx
1– D〈 〉 x,±=

φ̃ φtantan εeffxx/εeffyy,=

φ̃
Ẽx Ẽy

εeffxxε̃effyy ε1
2, ε̃effxxεeffyy ε1

2,= =

εeffε̃eff ε1
2.=
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and the scarcity of exactly solvable models. In this
respect, multicomponent media are considerably infe-
rior to two-component, two-dimensional composites
whose theory is based on the powerful mathematical
tool of the functions of a complex variable.

Subsequently, general theorems in the theory of
inhomogeneous media, i.e., reciprocity relations, sym-
metry transformations, and energy relations, may play
an important role in obtaining specific solutions. Then,
it may be possible to check the correctness of the
empirical approaches and the accuracy of the approxi-
mate calculations more effectively.
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Abstract—A generalized expression is obtained for the recombination velocity in structures with spatially sep-
arated electrons and holes. One stage of this process is tunneling. Under certain assumptions the general model
yields the Shockley–Read recombination model and the tunneling recombination model. It is shown that an
induced recombination effect may be observed in tunnel-coupled regions. An expression is obtained for the cur-
rent–voltage characteristic of a surface-barrier diode in which tunneling recombination takes place. The theo-
retical results are compared with an experiment carried out using surface-barrier structures formed on gallium
arsenide and thin As2Se3 films. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In addition to perfect crystal semiconductors, inhomo-
geneous materials in which the electrons and holes may be
spatially separated and recombination takes place by
induced tunneling to overcome the potential barriers are
also being studied and used. These materials particularly
include compensated semiconductors [1] in which fluc-
tuations of the band potential occur as a result of an
uncorrelated impurity distribution. As the degree of
compensation tends to unity, the amplitude of the fluc-
tuations is comparable with the band gap. Fluctuations
may also occur as a result of variations in the composi-
tion of the solid solutions. This category may include a
broad class of glassy and amorphous materials [2].
Quantum-well structures are playing an increasing role
in electronics. For example, these structures have been
used to fabricate highly efficient light-emitting devices
based on wide-gap III–V compounds [3, 4]. A spatially
nonuniform distribution of free carriers and recombina-
tion centers also forms in these structures which may
lead to new physical effects. 

Recombination in spatially inhomogeneous struc-
tures has been investigated in various studies [5–7].
However, the formulas for the recombination velocity
in these studies have a particular character expressed
for the current–voltage characteristics and are not ana-
lyzed. At the same time, the sections of the current–
voltage characteristic attributable to recombination in
the space charge region carry useful information on the
properties of recombination centers [8–11] which is not
generally utilized. In the present study we obtain a gen-
eralized expression for the recombination velocity in
structures with tunnel-coupled regions and for the cur-
rent–voltage characteristic of these structures. We show
that the Shockley–Read model [12] emerges as a partic-
ular case from the results of the present study. In addi-
1063-7761/00/9105- $20.00 © 21059
tion, methods of obtaining the parameters of recombi-
nation centers are obtained.

2. THEORETICAL ANALYSIS

The recombination scheme is shown schematically in
Fig. 1. According to this, the semiconductor has two
regions which for various reasons contain different con-
centrations of free carriers and localized states which may
serve as recombination centers. These regions are sepa-
rated by a thin tunnel-transparent layer. Each region has
recombination centers whose energies are distributed in
accordance with some law which is generally unknown.
Carrier recombination may take place independently in
each region. We shall discuss the properties of the
model in greater detail. We shall consider a quasi-equi-
librium steady-state problem in which both free and
bound carriers have their own steady-state concentrations
at each point in space. For various reasons, primarily

Ev

Nk(E)

cpk(E)pk

E'
E' + dE'

cnk(E)nk

Nj(E)

cpj(E)p1j(E)

cnj(E)n1j(E)

E + dE

E

cpj(E)pj

cnj(E)nj

E'E

wjk

cpk(E)p1k(E')

cnk(E)n1k(E)

Fig. 1. Diagram of electron transitions in the generalized
recombination model. 
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because of the spatially nonuniform distribution of the
electric potential, these concentrations have different val-
ues in each of the coupled regions. However, since quasi-
equilibrium is established in the system (since injection
and generation take place), the free carriers of each type
form a common subsystem. The electron and hole con-
centrations generally differ. The change in their con-
centrations is made up of the changes in concentrations
in all the coupled regions. The energy distribution of
the traps is determined by the physical characteristics
of the semiconductor and the conditions of formation
of the structure. In neighboring coupled regions these
may differ. 

In order to calculate the recombination velocity, we
give the electron and hole recombination velocity bear-
ing in mind, as has been noted, that this is determined
by the recombination velocities in all the coupled
regions:

(1)

(2)

where cnj, k(E) (cpj, k(E)) is the coefficient of electron
(hole) capture by localized states in the range between
E and E + dE in regions j and k: nj, k (pj, k) is the density
of the electron concentration at the bottom of the con-
duction band (at the corresponding percolation level) or
the hole concentration (at the top of the valence band or
at the corresponding percolation level); n1i, 1k(E) =
Ncexp[–(Ec – E)/kT] is a parameter characterizing the
rate of electron emission; p1i, 1k(E) = Nvexp[–(E –
Ev)/kT] is a parameter characterizing the rate of hole
emission; Ec is the energy of the bottom of the conduc-
tion band (the corresponding percolation level); Ev is
the energy of the top of the valence band (the corre-
sponding percolation level); Nj, k(E) are the energy den-
sity distributions of the localized states in the jth and
kth regions; fj, k(E) is the probability of electron occu-
pancy of the localized states.

In the steady state the recombination velocities of
the electrons and holes are the same. Equating (1) and (2),

∂n
∂t
------ cnj E( )n jN j E( ) 1 f j E( )–[ ]–{

E

∫=

– cnk E( )nk Nk E( ) 1 f k E( )–[ ]
+ cnj E( )n1 j E( )N j E( ) f j E( )

+ cnk E( )n1k E( )Nk E( ) f k E( ) } dE,

∂p
∂t
------ cpj E( ) p jN j E( ) f j E( )–{

E

∫=

– cpk E( ) pk Nk E( ) f k E( )

+ cpj E( ) p1 j E( )N j E( ) 1 f j E( )–[ ]
+ cpk E( ) p1k E( )Nk E( ) 1 f k E( )–[ ] } dE,
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we find the relationship between the electron occu-
pancy functions of the traps in regions j and k:

(3)

where tnj, k(E) = cnj, k(E)[nj, k + n1j, 1k(E)]; tpj, k(E) =
cpj, k(E)[pj, k + p1j, 1k(E)].

In order to find each distribution function separately,
we need another equation. We obtain this equation by
applying the steady-state condition for the process to
the rate of change of the electron concentration at the
traps in one of the regions. This rate may be expressed
in the following form:

(4)

In accordance with the usual algorithm for calculat-
ing tunneling transitions [13], we shall assume that tun-
neling takes place without any change in energy. We
shall assume that the tunneling probability depends
only on the overlap integral [1, 2]:

(5)

where ν is the frequency of attempts to overcome the
potential barrier, which is equal to the characteristic
phonon frequency; a = "/  is the localization
radius [1]; r is the average hopping length which is
equal to the average distance between traps which in

turn is determined by their concentration: r = 1/ . In
addition, we introduce the notation 

We equate to zero the rate of change in the electron
concentration at the trap (4) and obtain another expres-
sion linking the occupancy functions of the traps in dif-
ferent regions:

(6)

f j E( ) cpj E( ) p1 j E( ) cnj E( )n j+[ ] N j E( ){=

+ cpk E( ) p1k E( )Nk E( ) tnk E( ) t pk E( )+[ ]–

× Nk E( ) f k E( ) } tnj E( ) t pj E( )+[ ] N j E( ){ } 1– ,

∂ntj

∂t
-------- cnj E( )n jN j E( ) cpj E( ) p1 jN j E( )+

E

∫=

– tnj E( ) t pj E( )+[ ] N j E( ) f j E( )dE

– wLR E E',( )N j E( ) f j E( )Nk E'( )

E'

∫
E

∫

× 1 f k E'( )–[ ]dEdE' wRL E E',( )N j E( )

E'

∫
E

∫+

× 1 f j E( )–[ ] Nk E'( ) f k E'( )dEdE'.

w E( ) wLR E( ) wRL E( ) ν 2r/a–( ),exp= = =

2mE

N3

Nk j, Nk j, E( ) E.d

E

∫=

f j E( ) cnj E( )n jN j E( ) cpj p1 j E( )+[=

+ w E( )N jNk E( ) f k E( )

× tnj E( ) t pj E( )+[ ] N j E( ) w E( )N j E( )Nk+{ } 1– .
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By jointly solving Eqs. (3) and (6), we obtain a rela-
tionship between the occupancy functions and the trap
parameters and free carrier concentrations in neighbor-
ing coupled regions of space:

(7)

(8)

where Cpnj, k = [cnj, k(E)nj, k + cpj, k(E)p1j, 1k]Nj(E); Tpnj, k =
tpnj, k(E) + tpnj, k(E).

On analyzing formulas (7) and (8), we can note that
the degree of occupancy of the traps depends on their
parameters and on the concentration of free carriers in
the two coupled regions. We substitute (7), (8) into (1)
or (2) and obtain a formula for the recombination
velocity in the two coupled regions:

R = Rj + Rk + Rjk, (9)

where 

Like the occupancy function, the recombination
velocity is determined by all the parameters of the cou-
pled system. Below we consider some particular cases
of the generalized recombination model.

3. SHOCKLEY–READ MODEL

This well-known model is obtained from Eq. (9) if we
assume that first, recombination takes place via discrete
energy levels, i.e., 

f j E( )N j E( )

=  
CpnjT pnk w E( )N j Cpnj Cpnk+( )+

T pnkT pnj w E( )NkT pnk w E( )N jT pnj+ +
------------------------------------------------------------------------------------------,

f j E( )Nk E( )

=  
CpnkT pnj w E( )Nk Cpnj Cpnk+( )+

T pnkT pnj w E( )NkT pnk w E( )N jT pnj+ +
------------------------------------------------------------------------------------------,

Rj cnj E( )cpj E( ) ni
2 p jn j–( ){

E

∫=

× T pnk w E( )N j+[ ] N j E( ) }

× T pnkT pnj w E( )NkT pnk w E( )N jT pnj+ +[ ] 1– dE,

Rk cnk E( )cpk E( ) ni
2 pknk–( ){

E

∫=

× T pnj w E( )N j+[ ] N j E( ) }

× T pnkT pnj w E( )NkT pnk w E( )N jT pnj+ +[ ] 1– dE,

R jk w E( ) N jNk E( )D jk Nk N j E( )Dkj+[ ]{ }
E

∫=

× T pnkT pnj w E( )NkT pnk w E( )N jT pnj+ +[ ] 1– dE,

D jk tnj E( )cpk E( ) p1k E( ) t pj E( )cnk E( )nk,–=

Dkj tnk E( )cpj E( ) p1 j E( ) t pk E( )cnj E( )n j,–=

N j k, E( ) Nt j k, δ E Etj k,–( ),=
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where Etj, k are the activation energies of the traps, Ntj, k

are their concentrations, and second, the coefficients of
capture by the traps in one region are zero, i.e., none
exist. Applying these conditions (cnk = cpk =0), we
obtain from (9)

(10)

Formula (10) is exactly the same as the expression
for the recombination velocity via a trap in the jth
region of the semiconductor structure, which is the
main result of the study [12]. (Here we assume that

p1n1 = ). For this case the formula for the current–
voltage characteristic of a forward-biased p–n junction
in the recombination region was obtained and analyzed
in [8–11]. For the case of several recombination centers
the resultant current is the sum of the recombination
currents through each recombination center:

(11)

where w is the width of the space charge region, g is the
number of doubly charged recombination centers
which participate in the recombination process at the
same time. 

An indication of the presence of complex recombi-
nation processes involving several recombination lev-
els may be the nonmonotonic behavior of the differen-
tial slope coefficient of the current–voltage characteris-
tic which is defined as

(12)

As the voltage across the p–n junction varies, β var-
ies between 1 and 2, having a value of 1 when the volt-
age is low. As the voltage increases, the value of β tends
toward 2. The derivative 

(13)

R
cnjcpj p jn j n j

2–( )Ntj

cnj n1 j n j+( ) cpj p1 j p j+( )+
-----------------------------------------------------------------.=

ni
2

Ir = 

qSw U( )cnmcpmni
2 qU

2kT
--------- 

 exp 1– Ntm

2ni cnmcpm
qU
2kT
--------- 

 exp cnmn1m cpm p1m+ +

----------------------------------------------------------------------------------------------------
m 1=

g

∑

× 2kT
q Vd U–( )
-----------------------,

β q
kT
------

d jrln
dU

------------- 
 

1– q jr

kT
-------

d jr

dU
------- 

 
1–

.= =

dβ
dU
------- β2 q

2kT
---------=

×
ni cncp cnn1 cp p1+( ) qU

2kT
--------- 

 exp

2ni cncp
qU
2kT
--------- 

 exp cnn1 cp p1+ +
2

-----------------------------------------------------------------------------------------
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has extrema. The maxima on the curve dβ/dU = f(U) are
achieved at voltages U0 which can be used to find the
deep-level activation energy:

(14)

Similar information may be obtained using a differ-
ent differential coefficient:

(15)

where Rnp is given by

Under certain assumptions we have

(16)

A function of the type (16) is the sum of bell-shaped
humps having minima at the points U0m. The amplitude
of each hump depends on the contribution of the spe-
cific deep level to the total recombination current.

Et

Eg qU0–
2

--------------------- δ, δ+
kT
2

------ 1
4
---

cn

cp

-----
Nc

Nv

------- .ln= =

γ
∂Rnp

∂U
-----------2kT

q
--------- 1

Rnp

--------,=

Rnp U( ) Rnpk

k

∑=

=  

cnmcpmniNtm
qU
2kT
--------- 

 exp 1+

2ni cnmcpm
qU
2kT
--------- 

 exp n1mcnm p1mcpm+ +

----------------------------------------------------------------------------------------------------.
m

∑

dγ
dU
-------

q
2kT
--------- 1

Rnp

--------
Rnpm

q U U0m–( )
2kT

---------------------------- 
 exp

q U U0m–( )
2kT

---------------------------- 
 exp 1+

2
------------------------------------------------------------

m

∑ .–=

1

2

0 0.1 0.2 0.3 0.4 0.5
–0.4

0

0.4

0.8

1.2

1.6

U, V

∂β/∂U, γ, arb. units

Fig. 2. Differential coefficients of the current–voltage char-
acteristics of silicon-based p–n junctions: (1) ∂β/∂U; (2) γ.
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Assuming that the deep level lies above the center of
the band gap (i.e., cpmp1m ! cnmn1m), we obtain

The last value may be considered to be a systematic
error arising from a lack of knowledge of the capture
coefficients. 

The differential coefficients can easily be deter-
mined experimentally. Figure 2 gives these values mea-
sured for silicon p–n junctions. They exhibit well-
defined extrema which can be used to determine the acti-
vation energies of the recombination centers. The results
of measurements using the current–voltage characteristic
agree with independent measurements made by the ther-
mally stimulated capacitance method. In order to deter-
mine the ratio of the capture coefficients we need to make
additional temperature measurements.

4. INDUCED RECOMBINATION

The phenomenon of induced recombination involves a
change in the degree of occupancy of the traps in one
region under the influence of recombination fluxes tak-
ing place via traps in another region coupled to the first
by means of tunneling processes. Thus, as a result of
tunnel coupling, traps in the first region transfer charge
to traps in the second region and conversely. This
changes the recombination fluxes in both regions. Since
this phenomenon is accompanied by charge transfer of
levels, it may be called tunneling charge transfer. This
interesting new phenomenon is also described by for-
mula (9). However, it can be demonstrated more conve-
niently by analyzing the expressions for the trap occu-
pancy probability (7) and (8). We shall assume that no
tunneling takes place between regions j and k (w  0).
In addition, we shall confine ourselves to the case of a
single discrete level in the band gap and then from (7)
and (8) we obtain the occupancy probability

(17)

We shall normalize the functions (7) and (8) to fj, k (17)
and analyze the result. Figure 3 gives a modeling vari-
ant when cnk < cpk. For the tunneling probabilities w <
10–12 cm3 s–1 the normalized probability functions for
trap occupancy in both regions are unity. This is the
case of weak coupling and recombination takes place
independently in both regions. At high tunneling prob-
abilities the values of the normalized functions begin to
differ from unity. The traps influence each other. At low
injection levels we find fj > 1. Then this value becomes
less than one and fk > 1. We note that at high injection
levels tunnel coupling is suppressed. This is expressed
as a tendency of both normalized functions to go to
unity. Similar behavior is observed when cnk > cpk. In

Etnm

Eg qU0m–
2

------------------------ δm, δm+
kT
2

------ 1
4
---

cn

cp

-----
Nc

Nv

------- 
  .ln= =

f j k,
cnj k, n j k, cpj k, p1 j 1k,+

tnj k, t pj k,+
------------------------------------------------N j k, .=
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this case, however, fi is greater than one over the entire
range of injection levels. 

5. TUNNELING RECOMBINATION

As we have noted, in amorphous and glassy semi-
conductors the electrons and holes are spatially sepa-
rated. Recombination can only take place when one of
the stages of the process is tunneling, hence the name
of the model. This model also follows from Eq. (9). For
this we need to assume that in one region traps are only
exchanged with the electron percolation level and in the
other region, with the hole percolation level. We shall
assume that cpj = 0 and cnk = 0, and then we obtain
from (9)

(18)

which agrees with the conclusions reached in [7]. This
model has an important property. This is that the recombi-
nation velocity saturates at low probabilities of tunneling
between the coupled regions. These current–voltage char-
acteristics are also observed in compensated (Fig. 4)
and glassy (Fig. 5) semiconductors. 

In order for recombination to be observed in metal–
semiconductor contacts, inversion conductivity must
occur in the layer adjacent to the contact. In this case, the

R w E( )N jNk E( )cnj E( )cpk E( ) p1k E( )[
E

∫=

– w E( )Nk N j E( )cnj E( )n jcpk E( ) pk ]
× t pk E( )tnj E( ) w E( )Nk E( )t pk E( )+[

+ w E( )N jtnj E( ) ] 1– dE,

109 1011 1013 1015 1017

5 4 3 2

1

1'2'3'4'5'

0.1

1.0

nj,k, Òm–3

fj, k/f0, arb. units

Fig. 3. Charge transfer between traps associated with induced
recombination phenomena. Curves 1–5 give the functions fk,
and curves 1'–5' give fj . The modeling was performed using
formula (9) for the following values of the tunneling probabil-
ities (in cm3 s–1): (1) 10–2, (2) 10–4, (3) 10–6, (5) 10–10.
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potential barrier at the interface with the metal should be
more than half the mobility gap. We shall assume that a
certain constant bias voltage U is applied to the contact.
The electrons and holes have a quasi-equilibrium distri-
bution in the space charge region. Their concentration
at the percolation levels may be obtained 

0 0.2 0.4 0.6
10–10

10–9

10–8

10–7

U, V

I, A

Fig. 4. Tunneling recombination in GaAs structures; the cir-
cles give the experimental results and the solid curves give
the modeling using Eq. (17).

6

5

4

3

2

1

0 0.4 0.8 1.2 1.6 2.0
10–15

10–14

10–13

10–12

10–11

10–10

10–9
I, A

U, V

Fig. 5. Current–voltage characteristic of a metal–As2Se3
contact: the circles give the experimental results and the
curves give the calculations using Eq. (17) for tunneling
probabilities (in cm3 s–1): 9.4 × 10–20 (1), 1.9 × 10–20 (2),
4 × 10–21 (3), 7.7 × 10–22 (4), 1.7 × 10–22 (5), and 2 × 10–23 (6).
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by multiplying the concentration of the appropriate car-
riers at the boundaries of this region with the Boltz-
mann factor, which allows for the change in the poten-
tial φ(x) near the contact. In the one-dimensional case
we obtain

(19)

where n(0) is the concentration of free electrons at the
interface with the metal n(0) = Ncexp(–ϕbn/kT); p(d) is
the concentration of free holes at the boundary of the
space charge region in the bulk of the semiconductor (is
the same as the bulk concentration of free holes p0); d is
the width of the space charge region of the metal–semi-
conductor contact; Uk is the contact potential differ-
ence; eUk = ϕbp – Ef , where ϕbp is the height of the
potential barrier for holes at the metal–semiconductor
contact, and Ef is the Fermi level energy. The instanta-
neous value of the potential energy φ(x) is measured
from the corresponding percolation level in the bulk of
the semiconductor. The recombination current density
(9) can be determined by integrating the recombination
velocity (9) over the space charge region taking into
account the expression for the free carrier concentra-
tion (19).

The dependence of the recombination velocity on
the coordinate is a bell-shaped function having almost
exponential wings. This means that it can be calculated
using the method of steepest descents [8]:

(20)

where Rmax is the maximum recombination velocity; F
is the average electric field strength in the contact.

In order to integrate (20) we need to find the instanta-
neous value of the potential energy corresponding to the
maximum recombination velocity. We can change the
sequence of integration over the coordinate and energy. As
a result it is easier to search for an extremum. Having per-
formed a standard procedure [8], after various transfor-
mations we find the free carrier concentrations at the
point of maximum recombination velocity:

(21)

n x( ) n 0( )
e Uk U–( ) φ x( )–

kT
---------------------------------------– ,exp=

p x( ) p d( ) φ x( )
kT

----------– ,exp=

jr e R x( ) xd 2Rmax
1

kT
------ φ x( )d

xd
------------- 

 
1–

≈
0

d

∫
2kT Rmax

eF
---------------------,= =

p ni

E f

2kT
---------– 

 exp=

×
cn E( )
cp E( )
------------

cp E( ) p1 E( ) wN+
cn E( )n1 E( ) wN+
----------------------------------------- eU

2kT
--------- 

 exp ,
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(22)

Taking this into account, the expression for the cur-
rent density of the current–voltage characteristic has
the form

(23)

Expression (23) yields the result [14] whereby the
saturation of the current–voltage characteristic can be
attributed to limitation of the transmitting capacity of
the tunnel channel (jr ∝  wN2) [15]. Allowing for (5), we
obtain a formula for the saturation current density:

(24)

Thus, the saturation current can be used to calculate
the concentration of traps involved in the tunneling
recombination.

We shall assume that the energy distribution of the
traps is Gaussian. For low dispersions, when this distri-
bution is close to discrete, we can estimate the energy
of the distribution center from the maximum of the
reduced recombination velocity. In this approximation
we have

(25)

We shall perform a standard procedure to search for
the maximum. To be specific we shall assume that the
level, for example, lies in the upper half of the band. In
this case, we have n1 > ni > p1. Under these assumptions
the voltage at the maximum of the reduced recombina-
tion velocity is related to the energy of the distribution
center by the following relationship:

(26)

 is the effective density-of-state mass of the con-
duction band (valence band). 

n ni
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Formulas (24) and (26) simplify the procedure for
modeling the current–voltage characteristic whose
results are given in Figs. 4 and 5 for samples having dif-
ferent degrees of ordering. These show fairly good
agreement with the experimental results. Other param-
eters required for the modeling were determined from
the results of independent experiments which are not
given in detail because of the restricted size of the arti-
cle although they are mentioned below.

In GaAs the energy of the distribution center deter-
mined using formula (26) was equal to the energy of the
EL2 trap which was checked independently by capaci-
tive methods. The parameters of this trap are well
known and they were used for the modeling. The dis-
persion of the distribution was calculated from the
broadening of the luminescence spectra of these sam-
ples. For the glassy semiconductor the trap energy and
the dispersion were calculated using the results of mea-
surements of the space-charge-limited currents. Thus,
there were no fitting parameters for GaAs and one, the
capture coefficient, for the glassy semiconductor.

The model of recombination in surface-barrier diodes
developed in the present study is common to a fairly wide
range of semiconductors with different degrees of
ordering. 
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Abstract—It is shown that in the range of tunneling resonance energies of an S–I–S (superconductor–insula-
tor–superconductor) junction with weak (low impurity concentrations) structural disorder in the I-layer, the
average critical current and the magnitude of its mesoscopic fluctuations are determined by tunneling along
quantum resonance-percolation trajectories. For a “small” junction situated in a parallel magnetic field at tem-
perature T = 0 conditions for smallness of the mesoscopic fluctuations are obtained and an estimate is made of
the range of parameters in which the resonance mechanism for supercurrent propagation predominates. © 2000
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Random spatial inhomogeneities of the tunnel trans-
parency in the junction plane caused, for example, by
random inhomogeneities of its thickness appreciably
influence the properties of a tunnel S–I–S junction in a
magnetic field parallel to the junction plane, leading in
particular to a change in the dependence of the critical
current on the magnetic field [1, 2].

Here we consider that the inhomogeneities of the
tunnel transparency of the I-layer are caused by quan-
tum resonance-percolation trajectories [3, 4], i.e., paths
of resonant tunneling along chains of approximately
equidistant impurities, formed randomly in an I-layer
with weak structural disorder and connecting the oppo-
site S-edges of the junction. In the tubes of resonant
transparency along these chains the coefficient of elec-
tron transmission is D ~ 1 whereas outside these the
coefficient is exponentially small which leads to strong
spatial fluctuations of the transparency in the resonant
energy range. An important difference between this
model and the model [1] is that fluctuation formations
such as the quantum resonance-percolation trajectories
at low impurity concentrations determine not only the
magnitude of the fluctuations in the range of tunnel res-
onance energies but also the magnitude of the average
critical current in an ensemble of “like” samples which
is considerably higher than the critical current of an
impurity-free junction.

2. MODEL. BASIC EQUATIONS

We shall consider a tunnel junction model in the
form of an S–I–S sandwich located at T = 0 K in a uni-
form external magnetic field (0, Hy, 0) parallel to the
junction plane and comprising two identical solid super-
conductors separated by a planar insulator layer of
1063-7761/00/9105- $20.00 © 21066
fairly small thickness Lx and area S = LyLz containing
identical electron-attracting impurities for which the
single-impurity local level is ε0 and the radius of local-
ization of the state at this level is a–1 = (U0 – ε0)–1/2

("2/2m = 1). The regular (unperturbed by impurities)
barrier potential of the I layer is U0 = const > µ, where
µ is the Fermi level of the junction. Over the layer vol-
ume V = LxS N impurities are distributed macroscopi-
cally uniformly with the density n = N/V. The Fermi
level µ is situated near ε0, i.e., within the energy spec-
trum of the resonant tunnel transparency of the disor-
dered I-layer. The junction is assumed to be “small”:
Lz ! λJ (λJ is the Josephson depth of penetration of the
magnetic field), which means that the self-produced
magnetic field of the Josephson current can be
neglected [5].

In order to calculate the Josephson current the
superconducting order parameters in the S-edges ψ1, 2 =
∆exp(iϕ1, 2) are assumed to be constant, as is usually
the case [2, 6], but are perturbed by the presence of
weak tunnel coupling between the edges. The charac-
teristic energy width γ of the tunnel resonance which is
significant for this value |µ – ε0| satisfies the relation-
ship ∆ ! γ ! µ. 

Under these conditions the Josephson current
through the junction may be expressed in the form [7]

(1)

where j(µ – ε0, ΓN , r) is the current density, r = (y, z),
∆ϕ = ϕ2 – ϕ1, Φ and Φ0 are the magnetic flux through
the contact and the magnetic flux quantum, respec-

J µ ε0– Φ ΓN, ,( ) j µ ε0– Γ N r, ,( )
S( )
∫=

× ∆ϕ 2πΦ
Φ0

----------- z
Lz

-----+ d2ρ,sin
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tively, ΓN = {r1, r2, …, rN} is a random configuration of
N impurities in the I-layer, N @ 1.

We write the Josephson current density in the form

(2)

where [4] D(µ – ε0, q, r, ΓN) is the tunnel transparency
of the I-layer for electrons of energy µ having the fixed
transverse momentum component q at the “entrance”
to the barrier and the fixed transverse coordinate r at
the “exit,” and integration over q is performed in the
range 0 ≤ q2 ≤ µ. 

Substituting (2) into (1), we obtain

(3)

where the form of the function G(µ – ε0, Φ, ΓN) is clear
from the substitution.

The objects of the calculations are

(4)

where 

(5)

(6)

At energies µ close to ε0 the phase space of the
impurity system {ΓN} is factorized as a set of resonant
and nonresonant regions and the main contribution to
the averages (5) and (6) is made by the resonant regions
corresponding to quantum resonance-percolation tra-
jectories [3, 4]. Expressions (5) and (6) are then
reduced to the form

(7)

(8)
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2e
------- D µ ε0– q r Γ N, , ,( ) d2q

2π( )2
-------------,∫=
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2e
-------G µ ε0– Φ Γ N, ,( ),=

J〈 〉 π∆
2e
------- G〈 〉 , δJ( )2〈 〉 π∆

2e
------- 

 
2

δG( )2〈 〉 ,= =

δG( )2〈 〉 G2〈 〉 G〈 〉 2,–=

G〈 〉 1
∆Γ N
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Γ N{ }
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G
2〈 〉 1

∆Γ N

---------- G2 µ ε0– Φ Γ N, ,( ) Γ N ,d

Γ N{ }
∫=

∆Γ N V N , dΓ N dr1dr2…drN .= =

G〈 〉  = d2

S( )
∫ ρm

m 1=

N

∑

× pm u( )Gm
res µ ε0– u Φ rm, , ,( ) u,d

+/m

∞
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2ρm
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where

(9)

Here [4]

(10)

is the probability (per unit area) of formation of an m-
impurity quantum resonance-percolation trajectory
with the dimensionless “step” u = 2la (2l is the distance
between neighboring impurities in the chain), c = na–3

is the dimensionless impurity concentration, + = aLx is
the dimensionless thickness of the I-layer, 

(11)

where

rm is the transverse coordinate of the mth (last) impu-
rity in the chain,

(12)

is the energy width of the resonant transparency zone
along the quantum resonance-percolation trajectory.

Substituting (9)–(11) into (7) and (8), calculating
the integrals contained therein, and finding the extrema
of the expressions obtained with respect to ∆ϕ, we
obtain the averages of the critical current and its fluctu-
ations:

(13)

where

(14)

Gm
res Gm

res µ ε0– q r rm– u, , ,( )∫∫=

× ∆ϕ 2πΦ
Φ0

----------- z
Lz

-----+
d2q

2π( )2
-------------d2ρ.sin

pm u( ) a
2
cm cmπu3–( ) 2u2 mu

+
------- 1– 

  m 1–

exp=

Dm
res µ ε0– q r rm– u, , ,( ) 4σ0

kq

k
----=

×
2a

2 r rm– 2

u
-----------------------------– uq2

2a2
--------

µ ε0–( )2

γ2 u( )
---------------------––

 
 
 

,exp

4σ0 a2k
2π 4– a2 k2+( ) 2–

,=

k
2 µ, kq

2 µ q
2
,–= =

γ u( ) 4a2u 1– e u–=

Jc〈 〉 π∆
2e
------- Gc〈 〉 ,=

δJc( )2〈 〉 π∆
2e
------- 

 
2

δGc( )2〈 〉 ,=

Gc µ ε0– Φ,( )〈 〉

=  S gm
res µ ε0–( )

m 1=

N

∑ Φ0

πΦ
-------- πΦ

Φ0
-------- 

 sin ,
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(15)

(16)

(17)

The integrals (16) and (17) can be calculated by the
method of steepest descents although in order to deter-
mine the nature of the dependence of 〈Gc〉  (14) and
〈(δGc)2〉  (15) on µ – ε0 it is sufficient to note that

(a) as a result of the exponentially fast decrease in
γ(u) with increasing u (12), the main contribution to the
integrals (16) and (17) occurs near their lower limits;

(b) for

these integrals are exponentially small. Consequently
for given m the main contribution to (16) and (17) is
made by the slightly winding quantum resonance-per-
colation trajectories close to the shortest, having the
step um = +/m and therefore the largest (for given m)
energy width γm .

Thus, Eqs. (14) and (15) [allowing for (10), (16),
and (17)] give the tunnel conductance 〈Gc〉  of a disor-
dered junction in a magnetic field and its fluctuation
〈(δGc)2〉  as a series in powers of the concentration c
whose mth term gives the contribution of m-impurity
quantum resonance-percolation trajectories to these

δGc µ ε0– Φ,( )( )〈 〉

=  S f m
res µ ε0–( )

m 1=

N

∑ 1
2
--- 1

Φ0

2πΦ
----------- 2πΦ

Φ0
----------- 

 sin+ ,

gm
res µ ε0–( ) σ0 pm u( )

µ ε0–( )2

γ2 u( )
---------------------–exp u,d

+/m

∞

∫=

f m
res µ ε0–( ) σ0

2 pm u( )
2 µ ε0–( )2

γ2 u( )
------------------------–exp u.d

+/m

∞

∫=

µ ε0– γm> γ +
m
----- 

  4a2

+/m
----------- +

m
-----– 

 exp= =

0 1 2 3 4 5
β/π

1

η –1

Figure.
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values and as a function of the argument µ – ε0 is a
Gaussian curve having a maximum at µ = ε0, character-
istic width ~γm, and height ~cm.

3. ESTIMATES

We shall consider the “higher” single-impurity (m = 1)
tunnel resonance for c ! 1 which for |µ – ε0| < γ(+)
makes the main contribution to 〈Gc〉  and 〈(δGc)2〉 . In
this case, (14) and (15) have the form (β = πΦ/Φ0)

(18)

(19)

where

(20)

(21)

(22)

The condition for strong suppression of fluctuations

yields the constraint:

(23)

The curve 〈Gc 〉2 = 〈(δGc)2〉  which arbitrarily separates
the regions of strong and weak fluctuations on the plane
(η–1, β) is shown qualitatively in the figure. The enve-
lope of the maxima behaves as β–2, the region of strong
fluctuations is located above the curve, and for β = nπ
no region of weak fluctuations exists. We shall give
numerical estimates of the range of parameters where
this tunnel resonance may appear.

We shall estimate the range of concentrations c in
which the conductance 〈Gc(µ – ε0, 0)〉  is considerably
higher than the conductance G0 of the “empty” (without
impurities) junction for |µ – e0 | < γ(+):

(24)

Substituting (20) into (24), we obtain

(25)

Bearing in mind that for low-resistivity tunnel junctions
[2] exp(–2+) ~ 10–6 (+ ≈ 7), we obtain from (25)

(26)

Gc µ ε0– β,( )〈 〉 2 Gc µ ε0– 0,( )〈 〉 2β 2– βsin
2

,=

δGc µ ε0– β,( )( )2〈 〉 δGc µ ε0– 0,( )( )2〈 〉=

× 1
2
--- 1 2β( ) 1– 2βsin+[ ] ,

Gc µ ε0– 0,( )〈 〉 2 η2σ0
2 2 µ ε0–( )2

γ2 +( )
------------------------– ,exp=

δGc µ ε0– 0,( )( )〈 〉 2 ησ0
2 2 µ ε0–( )2

γ2 +( )
------------------------– ,exp=

η ca
2
S cπ+3

–( ).exp=

Gc〈 〉 2
 @ δGc( )2〈 〉 ,

η 1–
 ! 2β 2– βsin

2
1 2β( ) 1– 2βsin+[ ] 1–

.

Gc〈 〉  @ G0 4π3
a2Sσ0+

1–
2+–( ).exp=

c cπ+3
–( ) @ 4π3+ 1–

2+–( ).expexp

10 5–
 ! c ! 10 2– .
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Assuming that a2 ~ k2 = µ ~ 10 eV (~105 K) we obtain
from (12) the estimate of the resonance width:

(27)

In accordance with this particular model ∆ ! γ(+) and
consequently

∆ ~ 10–3 eV (~10 K), (28)

and the temperature should satisfy the condition T ! ∆
and therefore T ~ 1 K. The junction area S required to
suppress the fluctuations for a given value of β is esti-
mated from (23). For example, for β = 0 it follows from
(22) and (23) that 

(29)

Thus, for c ~ 10–3 and + ≈ 7 we obtain S @ 103a–2

where a–1 is the radius of localization of the state at an
impurity, which is of the order of magnitude of the
interatomic distance. 

It can therefore be concluded that in the range of
parameters indicated above, in the presence of resonant
impurities having local levels in the band |µ – ε0 | < γ(+)
the Josephson current and its mesoscopic fluctuations
should be determined by the existence of quantum res-

γ +( ) 10 2–  eV ~102  K( ).∼

S @ c 1– cπ+3( )a 2– .exp
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
onance-percolation trajectories with m = 1 in the disor-
dered I-layer.
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Abstract—An analytic and numerical investigation is made of the self-focusing of a wave beam allowing for
the inertia of the nonlinear response of the medium described by an acoustic type of equation. Some character-
istics of the dynamics of self-interaction of the wave fields are analyzed in the paraxial optics approximation
and the self-similar structures and space-time instability of a plane wave are considered. The stages of instabil-
ity buildup, structure formation, and the establishment of a steady state are studied numerically. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

With the successful generation of strong short elec-
tromagnetic pulses, theoretical studies of the self-interac-
tion of wave beams under conditions when the inertia of
the nonlinear response of the medium plays an important
role have become a topical issue. We have recently seen
the publication of theoretical studies devoted to the self-
interaction of wave beams in media having the common-
est mechanisms for relaxation of the nonlinear response:
Kerr, diffusion [1, 2], and acoustic [3, 4]. The spatial
evolution of these beams is described by the same non-
linear Schrödinger equation. The transition regime to
the steady-state pattern depends strongly on the type of
relaxation equation for the nonlinear response of the
medium to the action of an electromagnetic field. For
the case of material coupling described by a first-order
equation with respect to time, which corresponds to the
Kerr and diffusion mechanisms of nonlinearity relax-
ation, a steady-state pattern is established as a result of
the formation of singularities of the compressible fila-
ment or traveling focus type and the subsequent struc-
tural instability of these formations [1, 2]. For striction
nonlinearity, whose relaxation is described by an
acoustic equation, the establishment of a steady-state
self-consistent distribution is associated with the exci-
tation of an intermediate wave propagating into the
nonlinear medium [3, 4]. This conclusion was reached
for axisymmetric wave beams and consequently
applies to radiation whose power is of the order of
(higher than) the critical self-focusing power. It can be
predicted that dynamic structures of the compressible
filament or traveling focus type will play an important
role in the evolution of wave beams having powers con-
siderably higher than the critical self-focusing power,
as in other mechanisms for relaxation of the nonlinear
response.

In the present study we make an analytic and numer-
ical investigation of the nonsteady-state self-focusing
1063-7761/00/9105- $20.00 © 21070
of wave beams in the presence of striction nonlinearity.
We find self-similar structures over a wide range of
supercriticality parameters and analyze characteristics
of the space–time instability of a plane wave and the
dynamics of self-interaction of the wave field in the
paraxial approximation under acoustic relaxation of the
nonlinear response. A numerical investigation of the
nonsteady-state interaction of wave beams was based
on a two-dimensional model system which keeps the
main features of the initial equations. This allowed us
to make a detailed study of the transition processes
under conditions of structural instability of the wave
fields.

2. BASIC EQUATIONS.
SELF-SIMILAR STRUCTURES

We shall consider nonsteady-state self-focusing
processes of an electromagnetic wave beam in a
medium where the dominant mechanism of nonlinear-
ity is striction nonlinearity associated with redistribu-
tion of the density of the medium under the action of a
ponderomotive force. An example of such a medium in
which we neglect the contribution of other nonlineari-
ties may be a strongly ionized plasma at moderate elec-
tromagnetic radiation intensities. In this case, the wave
beam self-interaction process may be described by a
well-known system of equations consisting of the non-
linear Schrödinger equation for the scalar envelope of
the wave beam field ψ(r, t) and the wave equation for
the perturbations of the density n. We shall consider the
case when the time taken for propagation of a wave
through the region occupied by the nonlinear medium
is substantially shorter than the characteristic relax-
ation time of the nonlinearity, i.e., the time taken for
sound to pass through the transverse dimension of the
beam. The field distribution in the medium can then be
considered to be quasi-steady-state, i.e., the time deriv-
ative ∂ψ/∂t in the nonlinear Schrödinger equation can
000 MAIK “Nauka/Interperiodica”
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be neglected. As a result, the initial system of equations
can be expressed in the form

(1)

(2)

Here we shall also neglect time dispersion effects since
these are negligible for the pulses of interest to us, hav-
ing durations comparable with the sound relaxation
time. The scale invariance of these equations means that
they can be written for various nonlinear media [3, 5],
including a plasma [4, 5] in the dimensionless form
given. Here ∆⊥  = ∂2/∂x2 + ∂2/∂y2 is the transverse Lapla-
cian, and the field ψ is normalized to the field charac-
teristic for nonlinear effects in which the steady-state
perturbation of the refractive index varies substantially.
Here we also introduce the new coordinates z = kz, r⊥  =
kr⊥ , and the time t = k0vst, where k is the wave number
and vs is the velocity of sound (in a plasma the ion
sound velocity). By introducing the arbitrary function
F(|ψ|2) we can describe a wide range of situations from
the simplest dependence F(|ψ|2) = |ψ|2 corresponding
to cubic nonlinearity to nonlinearity saturation effects.
We shall subsequently analyze the space–time dynam-
ics using the system (1), (2) with the following bound-
ary and initial conditions:

(3)

In the simplest case F(|ψ|2) = |ψ|2 after the estab-
lishment of steady-state cubic nonlinearity (n = – |ψ|2)
the problem reduces to the well-studied nonlinear
Schrödinger equation with cubic nonlinearity. From
the theory of steady-state self-focusing we know that
if the power of the wave beam entering a nonlinear
medium (z = 0) exceeds a critical value called the criti-
cal self-focusing power

the evolution of any distribution inevitably ends in the
formation of a singularity [6–9]. Near the focus z ≈ z0
the axisymmetric distribution of the field evolves in
accordance with the self-similar law [9]

(a is the transverse dimension of the beam); the energy
flux trapped in the singularity is exactly Pcr . If the beam
power is considerably higher than the critical self-
focusing power, the wave beam separates into beams of
critical power in the transverse direction [6, 5, 8]. 

In the nonsteady-state regime a common class of
solutions for media having nonlinear response inertia
are solutions in the form of jets which are homoge-
neous along z and compressible with time (homoge-

i
δψ
∂z
------- ∆⊥ ψ nψ–+ 0,=

∂2n

∂t2
-------- ∆⊥ n– ∆⊥ F ψ 2( ).=

ψ ψ0 x y t, ,( ) at z 0, n t 0=( ) 0.= = =

P ψ 2
r3d∫ Pcr,>=

a
z z0–

z0 z–( )lnln
----------------------------∝
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neous wave channels), along which the trapped electro-
magnetic field propagates. Substituting into the initial
equations

(4)

we can easily obtain the following equations for the
self-similar functions:

(5)

(6)

where ∆ξ is the Laplacian in cylindrical coordinates.
A numerical analysis of the system of Eqs. (5), (6)
shows that a localized self-similar solution exists for
any value of the parameter p characterizing the rate of
collapse. For p  0 a transition takes place to the
limit of a homogeneous waveguide channel (“Townes”
mode) when the coupling between the perturbations of
the medium and the field is quasi-steady-state. High
values of p (p @ 1) correspond to the highly nonsteady-
state case when the term containing the time derivative
plays a determining role in the initial equations (1) and

(2). In the supersonic regime the power P = dξ
channeled in the dynamic jet depends on the rate of
compression. The rate of compression increases with

increasing parameter p as p ∝  . It is important that
the power stored in the filament in the dynamic regime
may be significantly higher than the critical self-focus-
ing power in a system with steady-state nonlinearity
(p ≈ 0). 

At this point we note the existence of a broader class
of self-similar structures corresponding to traveling
singularities of the focus type a ~ z/v – t + t0. It can be
seen that these are described by a system of equations
similar to (5) and (6). These equations contain the
square of the focus velocity v and thus, unlike other
types of nonlinearity relaxation (Kerr, diffusion) [1, 2],
in this particular case the direction of motion of the sin-
gularity cannot be determined from the condition of
localization of the solution. Using the generalized lens
transformation

(7)

where a is an as yet arbitrary function of the arguments
z, t, yields the following equation for the field:

(8)

F ψ 2
, ψ 1

a t( )
---------Φ ξ( ) iz

a2
----- 

  ,exp= =

n
1

a2 t( )
------------N ξ( ), ξ r

a
---, a t0 pt,–= = =

∆ξΦ 1 N+( )Φ– 0,=

p2ξ2Nξξ 6 p2ξ Nξ 6 p2N ∆ξ N–+ + ∆ξΦ
2,=

Φ2∫

P

ψ 1
a z t,( )
---------------Φ ξ z t, ,( ) i

az

4a
------r2

 
  ,exp=

n
1

a2
-----N ξ z t, ,( ), ξ r

a
---,= =

ia2∂Φ
∂z
------- ∆ξΦ N

a2azz

4
-----------ξ2+ 

  Φ–+ 0.=
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From this it can be seen that for a traveling-focus self-
similar structure (a ~ z/v – t + t0), the last (lens) term
goes to zero (azz = 0). In this case, the self-similarity is
exact (complete) and the dominant eigenmode of equa-
tion (8) is strictly localized.

Hence, an analysis of the self-similar solutions
reveals a new possibility for the formation of a singu-
larity other than steady-state self-focusing, in which a
power considerably higher than the critical value is
localized. However, the existence of suitable self-simi-
larities still does not guarantee the feasibility of the cor-
responding solutions for arbitrary initial and boundary
conditions of the problem. A broad class of self-similar
solutions tends to indicate a wide range of dynamics for
the establishment of a steady-state distribution in the
system (1), (2) and especially in the highly supercritical
regime.

3. PARAXIAL OPTICS APPROXIMATION

The self-similar structures obtained naturally give
some idea of the problem but a simpler and more con-
venient method of analyzing the self-interaction of
wave beams is the paraxial optics approximation. The
accuracy of the results obtained using this approxima-
tion, particularly in the case of the nonsteady-state self-
interaction being considered is obviously low. This is
because the lens formed under the action of the ponder-
omotive force, is in principle aberrational, especially in
the dynamic regime when acoustic perturbations of the
medium density are excited. In this case, however, the
paraxial approximation gives a qualitatively correct
description of the system behavior. For example, when
a homogeneous waveguide channel forms in a pulsed
radiation field [3], a comparison between the gain fac-
tors calculated using equations of the type (1) and (2)
and using the aberration-free approximation shows that
neglecting aberrations merely yields slightly exagger-
ated values of the field on the axis of the system. 

We shall consider a system of Eqs. (1) and (2) for
F(|ψ|2) = |ψ|2 in the paraxial optics approximation (in
the so-called aberration-free approximation) where it is
assumed that the field distribution in a wave beam
propagating in a nonlinear medium remains Gaussian

(9)

having the width a which depends on z and t, and the
distribution of the refractive index perturbation in the
axial region is approximated by a parabola

(10)

ψ P
a

------- r2

2a2
--------– i

az

4a
------r2+ 

  ,exp=

n n0 z t,( ) n2 z t,( )r2.+=
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As a result we have the standard equation for the beam
width in the paraxial approximation of self-focusing
theory

(11)

The self-consistent evolution of the dependence n2(z, t)
is determined by the material Eq. (2) in the axial region
(r ≈ 0). The normal method of calculating n2 is as fol-
lows [10]. Integrating the material Eq. (2) for a Gauss-
ian wave beam, we can easily find expressions for n and
consequently the value of the coefficient 

of the quadratic term in the parabolic approximation of
the perturbation of the refractive index n. As a result,
the self-consistent equation to describe the behavior of
the wave beam width in the aberration-free approxima-
tion is integrodifferential [10]. 

We shall subsequently adopt a different approach.
We shall assume that the parabolic approximation of
the refractive index (10) is a consequence of the expan-
sion of n = n0exp(–r2/a2) for r = 0. The existence of
additional coupling (n2 = –n0/a2) allows us to obtain the
oscillator equation from the material equation (2) for n2:

(12)

Note that as a result of this approach we have obtained a
simpler and clearer system of equations to describe the
space–time evolution of the wave beam (11) and (12)
instead of an integrodifferential Eq. [10].

Naturally the equations in the aberration-free approxi-
mation (11) and (12) have the same self-similar substitu-
tion as the initial system (1) and (2):

(13)

From (11) and (12) we can then obtain the following
relationship for the rate of collapse:

(14)

For P @ 1 we then find the value of p =  which
is the same as the similar value for the parameter of the
self-similar structure (5) and (6). For a power of the
order of the critical self-focusing power Pcr ≈ P ≈ 1 the
rate of collapse is low and equation (12) may be pre-
dicted to have oscillator properties. Obviously, these
properties should be manifest most clearly at the
entrance to the interaction zone (z = 0) where the width
of the collimated wave beam (a(z = 0) = a0) varies neg-
ligibly. 

∂2a

∂z2
-------- 4

a3
----- 4n2a.–=

n2
1
2
---∂2n

∂r2
-------- r 0=( )=

∂2n2

∂t2
----------

8n2

a2
--------+

8P

a6
-------.=

a t0 pt.–=

p
2 P 1–( )

5
--------------------.=

2P/5
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We give the expression for the square of the wave
beam width as a series:

(15)

It is then easy to obtain an equation describing the motion
of the maximum coordinate of the field (da/dz = 0):

(16)

The spatial derivatives of the square of the width are
calculated for z = 0 where a0 remains constant in time
[having renormalized the variables in the system (11)
and (12), this can be taken as unity]. This allows us to
obtain explicit expressions for them. For example, from
(11) we can easily obtain 

(17)

where the second derivative of the refractive index per-
turbation at the boundary (z = 0) is described by 

(18)

Integrating (18) for the case where the field is “switched
on” instantaneously ([P(t ≥ 0) = const], we find

(19)

Similarly we can obtain an expression for ∂4a2/∂z4

(z = 0, t). This is fairly cumbersome and thus we shall
not give it here in its entirety. For P ≈ 1 and times when
the numerator in (16) vanishes (n20 = 1) we find
∂4a2/∂z4 ≈ 80. Finally we obtain

From this it can be seen that at time

(20)

the first maximum of the field appears near the bound-
ary (z ≈ 0) and propagates into the nonlinear medium as
it is amplified. The rate of emergence of the field max-
imum from the linear focal region is approximately
unity.

Figure 1 shows the time dependence of the position
zmax of the field maximum on the axis obtained in the
paraxial approximation, i.e., by a numerical simulation
of the system of Eqs. (11) and (12) for near-critical val-
ues of the power. The three curves plotted in Fig. 1 corre-
spond to the powers P1 = 1.2, P2 = 1.4, P3 = 1.6 A char-
acteristic feature of the motion of the field maximum is

a
2

a0
2 ∂2

a
2

∂z
2

---------- z 0 t,=( )z2

2
----+=

+
∂4a2

∂z4
---------- z 0 t,=( ) z4

24
------.

zmax
2 6

∂2a2

∂z
2

----------/
∂4a2

∂z4
----------.–=

∂2a
2

∂z2
---------- 8 1 n20–( ),=

∂2
n20

∂t2
------------ 8n20+ 8P.=

n20 P 1 2 2t( )cos–[ ] .=

zmax
2 12

5
------ 1 P 1 2 2t( )cos–[ ]–{ } .–≈

t 4P( ) 1/2–≈
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that it exhibits a rapid shift from the origin z = 0, begin-
ning at t ≈ 0.5 [see expression (20)], to the point z ≈ 1
and then moves slowly back to the boundary z = 0 at the
velocity d(zmax)/dt ~ 0.1. Note that the motion of the
maximum into the nonlinear medium is unlikely to be
caused by the motion of the beam focal point since the
beam width at the field maximum point amin differs negli-
gibly from the value at the entrance amin ~ a(z = 0) = 1.
However, the motion of the maximum back to the
boundary z = 0 is characterized by low values of the
width amin and high values of the concentration pertur-
bation n2max and may be considered to be the motion of
the beam focus. This last stage of the beam evolution in
the paraxial approximation realizes a solution of the
traveling focus type. 

The displacement of the region of maximum field
into the nonlinear medium is typical of the initial stage
of nonsteady-state self-interaction for various mecha-
nisms of relaxation of the nonlinear response. A char-
acteristic feature of the excitation of acoustic motion in
a medium is the periodic formation of regions of wave
beam constrictions (field maxima) near z = 0 and their
subsequent motion into the nonlinear medium [3, 4].
Typical parameters of the process are the same as the
values obtained below in a study of the resonant space–
time instability of a plane wave. In terms of dimen-
sional variables the velocity of the field maximum in a
wave beam having the characteristic width a0 is vM ≈
csk0a0, where cs is the velocity of sound and k0 is the
wave number of the electromagnetic wave. The period
of the inhomogeneity generation is of the order of mag-
nitude of T ≈ a0/cs. Estimating the collapse time from
(11) and (12), we can easily establish that the number
of overoscillations is proportional to (P – 1)–1/2. It is
also clear that these effects are suppressed appreciably

1
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3

1.0

0.8

0.6

0.4

0.2

0 0.5 1.0 1.5 2.0

zmax

t

Fig. 1. Time dependence of the position zmax of the field
maximum on the beam axis obtained using the paraxial
approximation. Curves 1, 2, and 3 correspond to powers
P1 = 1.2, P2 = 1.4, and P3 = 1.6, respectively.
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for pulses having a leading edge duration τf  greater
than the oscillation period (τf @ 2π).

Another conclusion can also be drawn from equa-
tion (17). A spatially bounded pulse of duration τ and
width a0 is trapped in the self-focusing process if the
power P exceeds the threshold value:

(21)

Calculations for pulses of different shape based on an
integrodifferential equation were presented in [10]. The
results of the calculations show that the threshold
power remains almost constant P ≈ 1 when the param-
eter a0/τ varies between zero and one and then increases
in accordance with the relationship obtained above pro-
portionately as (a0/τ)2.

4. SPACE–TIME INSTABILITY
OF A WAVE BEAM

Singularities in the dynamics of transverse separa-
tion of a wave beam having a power higher than the
critical value for self-focusing can be investigated most
easily by studying the stability of a homogeneous plane
wave. The role of various transverse perturbation scales
in the formation of a nonlinear structure is determined
by the corresponding instability growth rates. This for-
mulation of the problem has recently been actively used
to study the behavior dynamics of abrupt inhomogene-
ities (“hot spots”) against the background of a continu-
ous wave field distribution [11, 12]. We shall consider
some singularities in the dynamics of self-interaction
associated with acoustic relaxation of the nonlinear
response.

Assuming that ψ = Φ0 + qcos(k · r⊥ ), n = pcos(k · r⊥ ),
(|q | ! Φ0) we linearize the initial system of equations.
As a result, we obtain the following equations for the real
part of the field perturbation qr = Re(q) and p [11–13]:

(22)

(23)

The system of Eqs. (22) and (23) reflects singularities
of the nonsteady-state self-interaction accompanying
acoustic relaxation of the nonlinear response of the
medium. It is a system of coupled equations for space (22)
and time oscillators (23). Unlike [11–14], we shall con-
sider a special class of resonant perturbations

(24)

corresponding to waves traveling away from (minus) or
toward (plus) the boundary. This type of perturbation
will clearly evolve as fast as possible. The equations for

P a0
2
/4τ2.>

∂2qr

∂z2
---------- k4qr k2 pΦ0+ + 0,=

∂2 p

∂t2
-------- k2 p k

2
2qrΦ0⋅+ + 0.=

qr p, A h ikt ik2z±( ),exp,∼
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the slowly varying amplitudes of the resonant perturba-
tions have the form

(25)

(26)

An unstable solution of these equations with the initial
condition qr(z, t = 0) = A0, qr can only be obtained for
waves traveling away from the boundary [plus sign in
Eq. (25)]. This solution has the form

(27)

(28)

and thus, at the boundary z = 0 we have

(29)

i.e., the field exhibits weak (A0 ! Φ0) periodic time
(T = 2π/k) modulation. 

For waves traveling toward the boundary the modi-
fied Bessel functions are replaced by the ordinary func-
tions J0 and J1 and consequently no instability occurs.

From the condition that the envelope (27), (28)
increases slowly on the characteristic space and time
scale of the wave perturbation we can find that the
range of validity of the solution (27), (28) is achieved
for k @ Φ0. These perturbations are the fastest growing.

Small perturbations on the propagation path of the
wave field increase exponentially with time. As a result
the phase of the wave perturbation travels from the
boundary of the nonlinear medium z = 0 into this
medium at the velocity 1/k while its amplitude
increases in space and time. Note that the space–time
dynamics of the perturbation envelope [the dependence

of the function I0( Φ0) on z and t] negligibly
influences the motion of the maxima of the field modu-
lus |ψ| so that this motion takes place almost at the
same velocity as the phase motion: dzmax/dt ≈ 1/k. An
important characteristic of the dynamics is the presence
of a phase shift π/2 between the perturbations of the
field (27) and the refractive index of the medium (28).
This can be seen in the numerical calculations of the
nonsteady-state self-focusing in a medium exhibiting
acoustic relaxation of the nonlinear response [3, 4]. For
the velocity of a resonant perturbation under conditions
of space–time instability we have v ≈ vsk0qr . This value
is the same as the propagation velocity of wave-like
perturbations in the paraxial optics approximation and
in the numerical calculations [3, 4]. 

Space–time instability on nonresonant scales was
investigated in [13]. This instability evolves as in Kerr
and diffusion relaxation of the nonlinear response [15].
The growth rate of this instability increases as the per-

i
∂A
∂z
------

Φ0

2
------h,±=

i
∂h
∂t
------ kΦ0A.–=

A A0I0 2kztΦ0( ),=

h
iA0 2kt

z
--------------------I1 2kztΦ0( ),=

ψ z 0 t,=( ) Φ0 A0 kt( ),cos+≈

2kzt
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turbation wave number k increases. In a layer of
bounded length the instability reaches the nonlinear
stage of evolution initially at the rear boundary and then
the region of the nonlinear regime expands at a velocity
of the order of z/2t toward the incident radiation. In the
intermediate region between the front boundary and the
boundary of the nonlinear regime for the nonresonant
instability the space–time dynamics is determined by
the evolution of resonant instability if its corresponding
growth rate is higher than the nonresonant instability
growth rate. This is achieved under the condition

(30)

i.e., in fairly strong pump fields and for large k.

5. NUMERICAL INVESTIGATION
OF NONSTEADY-STATE SELF-FOCUSING

It is difficult to make a numerical investigation of a
nonsteady-state three-dimensional problem in terms of
the variables x, y, z, and t for times considerably greater
than the nonlinearity relaxation time even using power-
ful computers. In order to identify the fundamental
characteristics of nonsteady-state self-interaction under
conditions of structural instability of the wave fields,
we decided to use the following (model) system of
equations:

(31)

where Γ is an operator describing the damping of
acoustic perturbations.

This system of equations for α = 0, Γ = 0 is exactly
the same as the initial system (1), (2) in the sense of the
laws of asymptotic behavior of the field near a singular-
ity of the same type. Here we used a well-known pro-
cedure in the theory of wave collapse (see, for example
[16]) which reduces the dimensions of the problem but
retains the main physical dependences and scalings. If
we consider equation (1) with an arbitrary steady-state
power nonlinearity n = |ψ|2s and various dimensions of
the transverse Laplacian d, it is easy to show that the
power of the steady-state localized nonlinear mode ψ =
ψ(r)exp(–ihz) and the corresponding self-similar solu-
tions is independent of its width (amplitude) for sd = 2.
For s = 1, d = 2 we have a standard Townes mode and
collapse of beams having powers exceeding this critical
power. A similar situation is achieved in the two-
dimensional case (x, z) d = 1 for s = 2, i.e. when n = |ψ|4.
This means that the model system of Eqs. (31) can be
used to investigate beam collapse with the formation of
a singularity and beam decay into filaments as a result
of the evolution of self-focusing instability, i.e., to
some extent it can simulate the self-interaction of real
three-dimensional beams. Saturation of the nonlinear-

zkΦ0
2
 @ t,

i
∂ψ
∂z
------- ∂2ψ

∂
--------- nψ–+ 0,=

∂2n

∂t2
-------- Γ∂n

∂t
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∂x2
--------–+

∂2

∂x2
-------- ψ 4

1 α ψ 4+
----------------------,–=
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ity ((α ≠ 0) is introduced to confine the field near the
foci.

The system of Eqs. (31) was integrated numerically
using a fast Fourier transformation. The number of har-
monics nx = 512 was selected to obtain a fairly good
description of the smallest-scale spatial inhomogene-
ities. The boundary conditions were assumed to be
periodic in x, and the calculation accuracy was moni-
tored from the conservation of the integrals of the initial
system. We shall first consider the nonlinear stage of
resonant instability, then the transition process in the
evolution of space–time instability and the establish-
ment of a steady-state field distribution. This formula-
tion of the problem corresponds to a “broad” wave
beam having above-critical power. The evolution of the
wave field was investigated using the same boundary
distribution of the field

(32)

as in [1, 2] in order to illustrate singularities associated
with the acoustic mechanism for relaxation of the non-
linear response. The self-interaction dynamics of a
localized field distribution were studied separately.

(1) The process of space–time instability of a plane
wave was investigated numerically on a spatial interval
having the transverse dimension Lx = 2 and longitudinal
dimension Lz = 1.75. The homogeneous field distribu-
tion Φ0 = 2 was simulated by a small perturbation hav-
ing the amplitude qr = 0.02 and transverse wave number
k = π. Figure 2 shows the field distribution on the axis
of the system (|ψ|(x = 0, z)) at various times. The initial
stage of evolution of the small perturbations is charac-

z 0, ψ Φ0 qr kx( ),cos+= =

|ψ|
6

4

2

0

0.5
1.0

1.5
2.0

z
0.1

0.2

0.3

0.5

t

0.4

Fig. 2. Dependence of the modulus of the field on the axis
of the system (the function |ψ|(x = 0, z)) on the longitudinal
coordinate z for several successive times obtained as a result
of a numerical simulation of the process of space–time
instability of a plane wave with the boundary conditions
ψ(z = 0) = 2 + 0.02cos(kx) and the transverse wave number
k = π. As far as the time t = 0.5 the solution is only charac-
terized by a shift of the maxima (see Fig. 3) and an increase in
the spatial modulation and may be described using the approx-
imate analytic solution ψ ≈ Φ0 + aI0(Φ0(2kzt)1/2)exp(ikt –

ik2z). From this time the solution becomes essentially non-
linear (the perturbations ψ become of the order of Φ0).
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terized by an increase in the modulation of the field. Its
amplitude increases in space and time. In addition, the
perturbation wave travels into the nonlinear medium, as
is clearly demonstrated in Fig. 3 which gives the time
dependence of the coordinates of the four maxima of
the field modulus closest to the entrance to the nonlin-
ear system (the point z = 0). For times t < 0.4 the z coor-
dinates of the field maxima increase almost linearly
with time [as for the approximate analytic solution
(27)] and the spatial structure of the field always resem-
bles (27). We note that this “similarity” of the behavior
of the numerical and analytic solutions at the initial
stages of the evolution is manifest despite a difference
in the boundary conditions [for the analytic solution
(27) the field at the boundary varies periodically with
time (29) whereas in our problem ψ(z = 0, t) = const. At
t ≈ 0.4 the motion of the maxima becomes slower and
is accompanied by the appearance of small-scale spa-
tial modulation of the field which is subsequently
amplified. Quite clearly, the field distribution becomes
essentially nonlinear at these times (the amplitude of
the perturbations is of the same order of magnitude as
the amplitude of the unperturbed plane wave) and can
no longer be described using the approximate analytic
solution (27). At times t > 0.5 the second maximum of
the field begins to move back toward the entrance to the
nonlinear medium, which is very reminiscent of the
time behavior of the coordinate of the beam maximum
zmax(t) obtained in the paraxial approximation (see Fig. 1).
The overall space–time pattern of the initial stage of the
process corresponds to the evolution of resonant insta-
bility. By the time t ≈ 0.6 the spectrum of the field is sig-

1.5

1.0

0.5

0 0.2 0.4 0.6 0.8

zmax

t

Fig. 3. Time evolution of the z coordinates of the four max-
ima of the function |ψ| closest to the entrance to the nonlin-
ear medium (z = 0). This dependence is the result of a
numerical simulation of the process of space–time instabil-
ity of a plane wave having the boundary conditions [(ψ(z =
0) = 2 + 0.02cos(kx)] and the transverse wave number k = π.
The motion of the maxima at times t < 0.4 takes place at
almost constant velocity.
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nificantly enriched in spatial harmonics and the system
goes over to a nonlinear regime characterized in that the
first maximum remains in its original position and its
amplitude increases.

(2) A numerical investigation of the competing behav-
ior of many spatial harmonics was made allowing for sat-
uration of the nonlinearity (α ≠ 0). At the boundary we
defined a field distribution of the type (32) having the
average Φ0 = 2 modulated by the sum of several spatial
harmonics having different phases and small ampli-
tudes. This formulation of the problem can be used to
analyze the dynamics of the self-interaction of wave
beams having powers considerably higher than the crit-
ical value for self-focusing. The results are plotted in
Fig. 4. Resonant space–time instability of a plane wave
similar to that shown in Fig. 2 develops initially. This
stage concludes with the formation of a “homogeneous”
collapsing waveguide channel. Over its entire lifetime the
channel looks corrugated. The corrugation is initially
dynamic and is determined by the acoustic relaxation of
nonlinearity (Fig. 4a) and is then associated with a non-
linearity saturation effect (Figs. 4b, 4c). Note that by
modifying the spectrum of the initial perturbations (32)
we did not succeed in achieving a smooth homogeneous
channel or a traveling focus regime as in the Kerr or diffu-
sion relaxation of the nonlinear response [1, 2]. 

The concluding stage involving the establishment of
a steady-state pattern of wave field separation takes
place as in other types of nonlinearity relaxation: struc-
tural instability develops initially, leading to perturba-
tion of the dynamic turbulence. This stage of nonlinear
interaction of electromagnetic radiation with matter
accompanying Kerr relaxation of the nonlinear response
of a medium was observed recently in a numerical inves-
tigation of processes for three-dimensional wave beams
[17]. Short-lived localized turbulent structures of this type
have recently been increasingly frequently described in
the literature as flickers [11, 12]. It is important to note
that the ensuing fairly chaotic spatial distribution of the
field (sometimes having the outline of a “homoge-
neous” channel) is then gradually expelled from the
boundary into the nonlinear medium (Figs. 4d, 4e) and
a completely steady-state pattern shown separately in
Fig. 4f forms in this region. This is naturally the same
as the field distribution in other types of relaxation of
the nonlinear response. However, unlike the Kerr [1]
and diffusion [2] mechanisms of nonlinearity relax-
ation, in this case the steady-state distribution is estab-
lished without any dissipation of the acoustic motion of
the medium (2). The time of establishment is of the
same order of magnitude as that for Kerr nonlinearity
and is 1.5 orders of magnitude greater than the charac-
teristic time for the diffusion mechanism of nonlinear-
ity. This increase is evidently attributable to the strong
“damping” of sound in the diffusion regime. The agree-
ment between the times of establishment for the Kerr
and acoustic mechanisms of relaxation is apparently
arbitrary. At this point it is better to search for the rea-
son for the appreciable increase in the time of establish-
AND THEORETICAL PHYSICS      Vol. 91      No. 5      2000
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Fig. 4. Time evolution of the spatial structure of the field ψ: (a) t = 0.843, (b) t = 1.56, (c) t = 1.875, (d) t = 21.875, (e) t = 59.375,
and (f) steady-state pattern.
ment of the steady-state pattern for Kerr nonlinearity
which is more than an order of magnitude greater than
the characteristic relaxation time of the nonlinear
response.

(3) When the wave beam power exceeds the critical
value by a moderate amount, the establishment of a
steady-state pattern takes place most smoothly. In order
to suppress the waves reflected from the boundaries of
the calculation range, we introduced the term iβ(x)ψ in
Eq. (31), which corresponds to smooth damping of the
field near the boundaries of the calculation range. The
calculations were made for a Gaussian beam ψ =
Aexp(–x2/a2) collimated at the entrance to the nonlinear
medium (z = 0). For A ≈ 2 a self-consistent distribution
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
of the perturbations of the field and the medium was
established as a result of the excitation of an intermedi-
ate wave near z = 0, i.e., the self-interaction dynamics
had the same character as in [3, 4]. As A increased,
some structural characteristics were observed.

A region of strong field forms initially and then
aberrational distortions cause this region to expand
mainly into the nonlinear medium and form a fairly
extended homogeneous channel. Instability leads to
decay of the quasi-homogeneous channel. The inhomo-
geneities observed as a result of this process are ini-
tially distributed regularly along the axis of the system
and then their distribution varies uncontrollably until
two regions of maximum field remain. The appearance
SICS      Vol. 91      No. 5      2000
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of some turbulence in the interaction zone is most likely
attributed to weak reflection from the boundaries of the
calculation interval. For A > 3 we did not succeed in
completely suppressing this reflection and as a result
the reliability of the numerical simulation was reduced
appreciably.

At the concluding stage in the establishment of a
steady-state pattern the “peak” closest to the boundary
remains constant while the second peak moves into the
nonlinear medium. As a result a steady-state pattern is
established where the wave beam splits into two
slightly diverging beams beyond the first focus and
these then converge and form a region of strong field on
the axis of the system.

6. CONCLUSIONS

This investigation has shown that there is a signifi-
cant difference in the dynamics of the nonsteady-state
self-interaction of wave beams having powers of the
order of (higher than) and considerably higher than the
critical self-focusing power. In the first case, the steady-
state pattern is established in accordance with the sce-
nario proposed in [3]. An intermediate wave is excited
near the boundary of the nonlinear medium and moves
into the medium, forming a steady-state self-interaction
pattern.

The main result of this study relates to the long-term
evolution of wave beams having powers significantly
higher than critical. Three stages can be identified in
this evolution.

Initially a self-similar distribution in the form of a
homogeneous collapsing wave channel is formed and
then the evolution of structural (longitudinal and trans-
verse) beam instability (see Fig. 4d) leads to the appear-
ance of turbulence in the nonlinear medium (uniform
filling of the interaction zone with dynamic inhomoge-
neities of the field and the density, see Fig. 4d). Nonlinear
diffraction of incoming radiation at these inhomogeneities
is accompanied by the slow expulsion of the region of
dynamic turbulence toward large z. As a result, a steady-
state (“laminar”) filamentation structure of the field distri-
bution is established in a time almost two orders of mag-
nitude longer than the relaxation time of the striction
nonlinearity (the time taken for sound to pass through
the transverse dimension of the wave beam). 

Note that this scenario for the establishment of a
steady-state pattern (the formation of speckle inhomo-
geneities and their subsequent expulsion from the front
boundary of the nonlinear medium) is fairly typical for
high supercriticalities and is achieved in the Kerr and
diffusion mechanisms for the relaxation of the nonlin-
JOURNAL OF EXPERIMENTAL 
ear response [1, 2]. In our particular “conservative”
case of acoustic relaxation of the nonlinearity this pro-
cess is slower.
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Abstract—A special arrangement of a gravity-wave experiment, in which the noise background of the gravity
detector is investigated near time markers corresponding to the detection of astrophysical events accompanying
neutron or gamma bursts, is studied. A general algorithm is developed for analyzing the traces for the case of
resonant solid-state detectors. The efficiency of the algorithm is demonstrated in a reanalysis of old data con-
cerning the “neutron-gravity correlation” effect associated with the explosion of the SN1987A Supernova.
Modifications of the algorithm for searching for gamma-gravity correlations are proposed. © 2000 MAIK
“Nauka/Interperiodica”.
1. RADIATION EFFECTS OF RELATIVISTIC 
ASTROPHYSICAL EVENTS

The conventional arrangement of a gravity-wave
experiment searching for random bursts of gravita-
tional radiation from astrophysical sources presupposes
detection of the coincidence of signals from two or
more spatially separated gravity detectors. For good
isolation of the detectors this method has been consid-
ered for a long time to be the only method for establish-
ing the global nature of the detected signal [1]. In the
automatic mode events have been detected only by
Weber during his first experiments using uncooled res-
onant detectors, located in Chicago and Maryland [2].
Subsequently, a number of groups have searched for
coincidences not in real time but rather a posteriori, i.e.,
by analyzing the electronic traces obtained using anten-
nas. The last experiment of this kind, using cryogenic
antennas Explorer and Allegro, is described in [3]. At
the present time the a posteriori method is actually the
only real possibility of searching for coincidences,
since there are no systems for synchronized coupling
between several antennas, forming a “worldwide net-
work” (automatic search for events in real time would
possibly be organized in the LIGO project [4] on two
large interferometric antennas after they come on line).

In the present paper a different form of a gravity-
wave experiment is examined. The idea is to search for
weak perturbations of the noise background of a gravity
detector which are correlated with certain astrophysical
events, such as neutrino and gamma bursts [5–7]. This
method has attracted attention because of the recogni-
tion that the last stages of stellar evolution involve an
explosion of a Supernova, merging of binary stars, col-
lapse of single stars, and so on, traditionally viewed as
sources of gravity pulses, should be accompanied also
by neutrino and, very likely, gamma radiation. Gener-
1063-7761/00/9105- $20.00 © 20845
ally speaking, this means that the detection of neutrino
and gamma bursts, using appropriate detectors, deter-
mines the time intervals near which it makes sense to
search for a perturbation of a gravity detector. The
advantages of this approach over the conventional
method are, in the first place, that the observation time
is shorter and the sources are identified with greater
certainty and, in the second place, that there is a poten-
tial possibility of accumulating weak signals. The latter
is especially important because currently existing grav-
ity detectors lack adequate sensitivity.

As regards radiation scenarios, it should be noted
that the neutrino bursts produced by collapsing stars at
the end of their evolution have been studied quite well
theoretically [8–10]. According to theory, the total
energy released in the form of neutrinos (of all flavors)
is of the order of 0.1M(c2 with time scales of several
seconds (2–20 s). This radiation can be detected (pri-
marily on account of the inverse β-decay reaction) if
the source is not too far from the Earth (10–100 kpc).
The corresponding programs “Collapse search” (or
“Supernova Watcher”) are being conducted by all
research groups which have suitable liquid scintillation
detectors [11, 12] or water Cherenkov detectors [13,
14]. Moreover, a neutrino flux from a Supernova was
probably detected during the burst of the SN1987A
Supernova [15, 16]. However, such programs are search
for collapsing stars in our and neighboring galaxies,
i.e., the expected average frequency of events is three
events per 100 yr. Even the large detector Super Kami-
okande with an effective mass an order of magnitude
greater than the mass of other setups makes it possible
to detect in principle 150 neutrinos per year from the
Large Magellanic Cloud (LMC) and only one from the
Andromeda Nebula [17]. It is unlikely that neutrinos
will be detected from the Supernova in the Virgo cluster
000 MAIK “Nauka/Interperiodica”
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(15–20 Mpc), which is viewed as the main source of
gravity signals. Thus, the search for correlations
between the noise background of neutrino and gravity
detectors is limited by the condition of low frequency
of events (3–10 events per 100 years). Hence there is
virtually no possibility of increasing the signal/noise
ratio by integrating the signals. At the same time, the
expected amplitude of an individual gravity pulse can
be relatively large, up to 10–18 from a source located at
the center of the Galaxy (when describing the ampli-
tude in units of the perturbation of the metric).

Another astrophysical phenomenon is more attrac-
tive but less well determined—gamma bursts, concern-
ing whose nature only hypotheses exist at the present
time [18]. The main favorable feature of this phenome-
non is its relatively high frequency: on the average one
event per day. The high energy of the detected gamma
bursts (up to 0.1M(c2) together with the short time
scales means that relativistic stars are the source. Two
main ideas concerning the nature of the gamma bursts
are being discussed so far. The first idea examines their
possible galactic origin taking account of the fact that
the sources, fast pulsars, are distributed not only over
the galactic disk but they also occur in the halo [19].
The second (and more popular) idea is associated with
the cosmological nature of gamma bursts, which are a
result of catastrophic processes with relativistic stars in
distant galaxies (the above-mentioned collapses, merg-
ing of binary stars, explosions of Supernova) [20].
Thus, both scenarios are concerned with objects which
are also typical sources of bursts of gravity waves. The
following is known about their possible intensity.

Galactic pulsars can produce only weak gravity-
wave bursts as a result of “starquakes” with a corre-
sponding perturbation of the metric at the Earth of the
order of 10–24–10–23 [21] for a source at the center of the
galaxy. In [22, 23] it is conjectured that closer pulsars,
near 100 pc, can give the observed frequency of gamma
events (as a consequence of “star quakes”) ≈5 per
month. In this case the expected amplitude of the corre-
sponding “close” gravity-wave bursts will be 10–22–10–21.
In the cosmological scenario, if binary stars with black
holes are considered, the predicted frequency of grav-
ity-wave bursts can reach 30 events per year with a met-
ric perturbation amplitude 10–21 near 50–100 Mpc
[24, 25]. These estimates were made assuming that only
10–4 of the rest mass of a star can be converted into gravi-
tational radiation. A more optimistic value of the conver-
sion factor 10–2 is given in other works [26, 27]; this
should increase the perturbation amplitude up to 10–20.

It is well known that the new observations obtained
on the BerroSAX satellite paired with the Keck II tele-
scope on the identification of several gamma bursts
from distant galaxies, for which the red shift z ≈ 0.8–3.4
[28], confirm the cosmological nature of at least some
of the gamma events. However, more distant events
have also been detected together with these strongly
distant sources (1–10 Gpc). The burst GRB980425 can
JOURNAL OF EXPERIMENTAL 
be tentatively attributed to an optical object, such as
Supernova burst, located at a distance of 40 Mpc (z =
0.08) [29]. Although it is not entirely clear how gamma
radiation passes through the shell of a Supernova or
how the merging of black holes can produce a gamma
burst, the energetics of the observed events definitely
requires scenarios associated with relativistic catastro-
phes (an energy estimate for GRB971214 gives ~2 ×
1053 ergs, which, in general, is greater than the typical
energy from the explosion of a Supernova or from the
merging of binary neutron stars 1051 ergs [30]. Models
with binary black holes or a rapidly rotating massive
black hole with accretion (so-called “hypernova”) are
required [31]).

An adequate network of detectors for implementing
programs searching for astro-gravitational correlations
already exists. There are four operating neutrino tele-
scopes and two cosmic satellites (CGRO (BATSE) and
BeppoSAX), which provide a list of “productive”
astrophysical events. The key question concerns the
sensitivity of the gravitational detectors, which are in a
continuous-observation mode. Only the supercryo-
genic resonance detectors Nautilus (INFN, Frascati)
and Auriga (NFN, Legnaro) can attain a sensitivity of
10–21 for detecting short bursts ~10–3 s [32]. The “burst”
sensitivity of the previously mentioned helium–tem-
perature detectors Allegro and Explorer is 6 × 10–19,
i.e., 2.5 orders of magnitude lower than the desired value.
Nonetheless, it should be kept in mind that their “effective
sensitivity” increases to 10–21 for longer events (up to 1 s)
and also if equivalent accumulation of short signals is
possible (an explanation is given in [33]).

Actually, the first works searching for astro-gravita-
tional correlations are the work of the PTM collabora-
tion on the investigation of a correlation of the traces of
the neutron scintillator under Mont Blanc and the grav-
itational detectors in Rome and Maryland [11, 15, 34, 35].
Here a “signal accumulation algorithm” optimized for
Gaussian noise of gravitational detectors was proposed.
The same problem in application to astrophysical events
with gamma bursts has been studied in recent publications
[36, 37]. The authors of [36] performed a numerical exper-
iment simulating the flux of gamma bursts from cosmo-
logical objects with prescribed spatial distribution in
order to estimate the number of events for which the
“accumulated gravitational signal” should exceed the
detection threshold (i.e., it is detected) for cryogenic
resonant antennas. The accumulation rule (the correla-
tion search algorithm), however, was not specified, and
the hypothesis adopted concerning the rate of growth of

the signal/noise ratio as , where N is the number of
events taken into account, is valid only for a noiseless
gravitational antenna.

In [37] the check of the hypothesis that “gamma-
gravitational coupling” exists was studied in applica-
tion to the mutual cross-correlation function of two sep-
arated interferometric antennas in the LIGO project.
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The question of the difference of the average values of
the cross-correlation variable, measured in the vicinity
of and away from gamma bursts, was solved on the
basis of Student’s t criterion. The reliability of the “dif-
ference” argument in this case actually increases as

, but the argument for the “optimality” of the cho-
sen “cross-correlation variable” remains outside the
framework of the paper. In addition to the theoretical
works, the first experimental attempts have already
been made to observe the “gamma–gravitational corre-
lations.” Thus, a search for correlations between
BATSE events and noise in the Explorer cryogenic
detector was reported in [38, 39]: there was no effect at
the amplitude level (2–3) × 10–18.

The solution of the problem of optimal accumula-
tion of weak gravitational signals associated with astro-
physical events depends on our knowledge of their
structure, arrival time, and so on. The theory does not
offer us a large choice for the forms of the gravitational
signal. In most cases the signal at the maximum inten-
sity level can be represented in the form of short pulses
with a carrier frequency 102–103 Hz [21]. The simulta-
neous description of the gravitational, neutrino, and
gamma radiation has been developed in detail for only
a few scenarios of relativistic events. The most definite
model is the model of merging of a relativistic binary
star, where the gravity-wave burst is definitely expected
first (on an inwardly spiraling trajectory) and then, after
merging has occurred, neutrino and gamma bursts can
appear [40]. More complicated scenarios are presented,
for example, in [21, 26, 27, 41], where the processes
leading to the formation of a neutron star and the inter-
action of stellar residues are considered as multistage
gravitational collapse. A multistage scenario is also
proposed for the collapse of a massive star with large
initial angular momentum [21]. The matter can be pre-
vented from falling toward the center by reflected
shock waves, fragmentation, merging or emergence of
some of the fragments, and so on. In principle, gravity,
electromagnetic, and neutrino bursts can be generated at
each stage of these scenarios. A detailed description and
a strict temporal arrangement does not yet exist for them.

The brief review of the situation with a new trend in
gravity-wave experiments makes it possible to formu-
late the problem addressed in this paper. Traces of grav-
itational, neutrino, and gamma detectors are available.
It is necessary to check the presence of any relationship
between these data. A simple comparison does not give
the desired result because the arrival time of signals of
different nature is unknown, because of the relative
insensitivity of the detectors [34, 42], and so on. The
data must be analyzed using the methods of optimal fil-
tering, keeping in mind information about the noise
background of the receivers, the structure of the signal,
and other information [43]. The specific goal is to
determine the optimal algorithm for searching for the
correlation of neutrino (or gamma) events with pertur-
bations of the resonance gravity detector. The noise sta-

N
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tistics of detectors of this type is determined more accu-
rately than the noise of a gravity antenna with free
masses. After a possible algorithm is formulated, the
application of this algorithm is considered for reanaly-
sis of old data concerning the “neutrino–gravity corre-
lation effect,” noted in the PTM collaboration during
the burst of the Supernova SN1987A. As is well known,
the authors of [15, 34, 35, 44] did not find a clear astro-
physical interpretation of the correlations which they
observed; our reanalysis sheds light on the reason for
these difficulties. An extension of the correlation algo-
rithm to the case of gamma events with a complicated
structure is discussed in the last section of this paper.

2. MAXIMUM LIKELIHOOD ALGORITHM 
FOR DETECTION OF AN INCOHERENT 

GRAVITY-WAVE PACKET

In accordance with the astrophysical picture, we
shall examine a model of a signal with the conventional
name “incoherent pulse packet.” The gravity-wave per-
turbation is given as a random group of short pulses
with two main parameters: the arrival time τi and the
amplitude ai. The intervals between individual pulses
can vary over wide limits in accordance with the fre-
quency and nature of astrophysical events. The form of
an individual pulse is ignored, and the duration  is
assumed to be short, including only several periods of
the carrier frequency ω, so that

ω  ~ 1, ω ∼ ω0 ± 1/ ,

where ω0 is the central frequency of the pulse spectrum.
The random background is determined by the noise of
the gravity resonance antenna. A modern antenna con-
sists of a cooled solid-state detector, an electromechan-
ical transducer (as a reading device), an amplifier, and
a preliminary filtering circuit with a bounded frequency
band ∆ω ≤ –1, which is implemented by a “difference
unit” or a Wiener–Kolmogorov filter, and so on. The
simplest approximation in describing the noise of such
a system is a Gaussian model (assuming perfect acous-
tic, seismic, and electric insulation of the antenna).

Let us consider the problem of optimal detection.
The output signal x(t) of the antenna is an additive mix-
ture of the noise ξ(t) and the signal S(t), which is a ran-
dom sequence of short pulses sk, i.e.,

(1)

It is assumed that ξ(t) is stationary Gaussian noise with
spectral density W(ω), determined by the antenna struc-
ture; λ = (1, 0) is a parameter that determines the pres-
ence or absence of a signal. An individual pulse in the

τ̂

τ̂ τ̂

τ̂

x t( ) λS t( ) ξ t( ), S t( )+ sk t( ).
k

∑= =
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sequence S(t) can be represented in a complex form as
follows:

(2)

The symbols (t) and  introduced here are,
respectively, the complex amplitude of the “gravity
bursts” and the pulse characteristic (Green’s function)
of a linear antenna

with resonance frequency ω0.

Expression (2) contains a third signal parameter—
the initial phase Θk. The amplitude parameter ak, if it is
small, does not have a large effect on the structure of
the data processing algorithm. The effect of the two
other parameters—the initial phase and the arrival
time—is significant. The arrival time of the gravity
bursts, according to the “astro-gravitational correlation
hypothesis,” should be localized near the astrophysical
events:

tk = tak + τ, k = [1, 2, …, n]. (3)

Here tak are the markers of the “astrophysical events,”
whose total number is n in the observation interval [0, T],
and τ is an unknown shift between the “astrophysical”
and “gravitational” events. The admissible value of this
shift must be limited a priori by some interval (τmin,
τmax) which is assumed to be given. The algorithm for
optimal processing of the output data can be synthe-
sized on the basis of the maximum likelihood (ML)
principle. According to this principle, it is possible to
construct a variable (which is a function of the output
signal x(t)) maximizing which can give the highest
probability for detecting the a priori signal according to
the realization x(t) taking account of the existing a pri-
ori information on the observed interval [0, T]. For a
signal on a background of Gaussian noise the solution
is known: the ML variable z is proportional to the loga-
rithm of the functional of the likelihood ratio Λ[x] [43, 45]:

(4)

where the reference function u(t) is the solution of the
integral equation

(5)

where Kξ(t) is the correlation function of the process
ξ(t). The brackets 〈…〉  denote statistical averaging over
the signal parameters.

sk t( ) Re s̃k t( ) jω0t( )exp[ ] ,=

s̃k t( ) akH̃ t tk–( ) j Θk ω0tk–( )( ).exp=

s̃k H̃ t( )

H t( ) Re H̃ t( ) jω0t( )exp[ ]=

=  H0 t( ) ω0t ψ t( )+[ ]cos

Λ x[ ] x t( )u t( ) td

0

T

∫ 1
2
--- S t( )u t( ) td

0

T

∫–exp ,=

Kξ t τ–( )u τ( ) τd

0

T

∫ S t( ), 0 t T ,< <=
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We introduce one more assumption about the signal:
the pulses in a packet are quite sparse and cannot over-
lap with one another in time. This agrees with the idea
that the frequency of relativistic events is relatively low
and makes it possible to represent the functional of the
ratio of the likelihood in a factorized form:

(6)

where Λk is the ratio of the likelihood of an isolated kth
pulse. In Eqs. (4) and (5) uk(t) must be substituted for
u(t) and sk(t) must be substituted for S(t). Then, finally,
the ML variable can be represented as

(7)

Equations (4) and (5), rewritten for an individual pulse
sk(t), and Eq. (7) represent a general solution obtained
by the maximum likelihood method for an incoherent
packet of pulses against the background of Gaussian
noise. For practical applications, the reference function
uk(t) must be found in an explicit form, after which the
value zk is calculated.

Since the correlation time of the detector noise (just
as the duration of a pulse) is much shorter than the
observation interval T, the upper limit of integration in
Eq. (5) can be replaced by infinity. Then we obtain the
ratio

(8)

where uk(ω), sk(ω), and Nξ(ω) are the Fourier trans-
forms of uk(t), sk(t), and Kξ(t), respectively. Using
Parseval’s equation

Equation (4) can be rewritten for an individual pulse in
the following form:

(9)

Here (ω) is the Fourier transform of the complex

amplitude (t). After substituting Eq. (2) into Eq. (9),

Λ x[ ] Λk x[ ] ,
k 1=

n

∏=

Z Λk x[ ]ln
k 1=

n

∑ zk, zk

k 1=

n

∑ Λk x[ ] .ln= = =

uk ω( )
sk ω( )
Nξ ω( )
--------------,≈

a t( )b t( ) td

∞–

∞

∫ 1
2π
------ a ω( )b* ω( ) ω.d

∞–

∞

∫=

Λk x[ ] Re
1

2π
------ x ω ω0+( )

s̃k* ω( )
Nξ ω ω0+( )
--------------------------- ωd

∞–

∞

∫



exp≈

–
1

8π
------

s̃k* ω( )
2

Nξ ω ω0+( )
--------------------------- ωd

∞–

∞

∫ 



.

s̃k

s̃k
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the latter becomes

(10)

where

We now express Eq. (10) in terms of the antenna
output variable (t), which is a result of the passage of
the input signal x(t) (1) through an optimal filter with
transfer function

where t0 is the time delay of the filter:

(11)

Here

is the variance of the output noise.
Introducing the amplitude of the output signal

we obtain the final expression for the kth likelihood
ratio:

(12)

This formula contains the unknown pulse parameters
Ak and Θk. The uncertainty can be removed by using the
“generalized form of the ML algorithm” [45], where
the unknown parameters are replaced by the “maxi-

mum likelihood estimates”  and , which are
taken as the solution of the following extremal equa-
tions:

(13)

where

A direct calculation leads to the following results.
(a) The ML estimate of the amplitude is identical to

the envelope of a narrow-band output process R(t)

Λk x[ ] akRe jχk–( ) 1
2π
------exp

exp≈

× x ω ω0+( )
H̃* ω( )

Nξ ω ω0+( )
--------------------------- jωtk( )exp ωd

∞–

∞

∫

– ak
2 1
8π
------ H̃ ω( )

2

Nξ ω ω0+( )
--------------------------- ωd

∞–

∞

∫ 



,

H̃ ω( ) H̃ t( ), χk ω0tk Θk.–=

ỹ

Kopt
H* ω( )
Nξ ω( )
---------------- jωt0–( ),exp=

Λk x[ ] akRe e
jψk ỹ tk( )[ ] ak

2σ2/2–{ }exp〈 〉 .≈

ψk ω0 t0 tk+( ) Θk,–=

σ2 1
π
---

Kopt ω( ) 2

Nξ ω( )
---------------------- ωd

∞–

∞

∫=

Ak ỹ tk( )〈 〉 akσ
2,= =

Λk x[ ]
Ak

σ2
-----Re jψk( ) ỹ tk( )exp[ ]

Ak
2

2σ2
---------–

 
 
 

exp .≈

Âk Θ̂k

∂zk

∂Ak

--------- 0,
∂zk

∂Θk

--------- 0,= =

zk Λk x[ ] .ln=
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of the antenna:

(14)

Then

(15)

(b) The ML estimate of the unknown shift τ between
the time marker of the “astrophysical” event tak and the
arrival time of the “gravity” signal tk is determined by
the position of the maximum of the function zk(tak + τ)
as a function of τ.

The results (a) and (b) correspond to the assumption
that the values of the signal parameters are unknown
but are not random. In a different approach the initial
phase Θk is treated as a random variable uniformly dis-
tributed on the interval [0, 2π]. Statistical averaging
gives

(16)

where the amplitude  is the solution of the equation

(17)

(I0 and I1 are modified Bessel functions). In this case
the ML variable reduces to the form

(18)

The solution of Eq. (17) is shown in Fig. 1. It is obvious
that the difference in estimates (14) and (17) is substan-
tial, when the amplitude of the signal is small (Ak < σ).
For amplitudes Ak ≥ 2σ, the estimates are essentially

Âk
2
 = Re jψ̂k( ) ŷ tk( )exp[ ]{ } 2 = y tk( ) 2 = R2 tk( ).

zk
Âk

2

2σ2
---------

R2 tk( )

2σ2
-------------.= =

Λk x[ ]〈 〉 Âk
2
/2σ2( )–[ ]exp I0 ÂkR tk( )/σ2( ),=

Âk

Âk R tk( )
I1 ÂkR tk( )/σ2[ ]
I0 ÂkR tk( )/σ2[ ]
-----------------------------------=

zk I0 ÂkR tk( )/σ2( )ln Âk
2
/2σ2–[ ] .=

5

4

3

2

1

0 1 2 3 4 5

Âk/σ

R/σ

Fig. 1. 
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identical and it is recommended that the value of the
envelope R(tk) be taken as the ML estimate of Ak; the
difference between variables (15) and (18) is likewise
negligible.

Thus, for signals that are not too weak, in the model
of an incoherent packet of pulses against the back-
ground of narrow-band Gaussian noise the ML algo-
rithm recommends using in Eq. (7) the variable

(19)

which is a sum of the squared measurements of the
envelope which are shifted relative to the astrophysical
event by τ (3); the summation extends on an interval of
observations which includes a posteriori n events. Next,
similarly to Eq. (13), the absolute maximum of Z can be
found in the space of shifts τ, i.e., it is possible to switch
to the “absolute maximum variable”

. (20)

The value of τopt which gives the maximum of Z(τ)
must be taken as the ML estimate of the time shift
between the astrophysical event and the gravitational
signal (in our simple approach the shift is assumed to be
the same for all events—this is the “uniformity of
events” hypothesis). As noted above, in the statistical
model there are no indications for the limits of variation
of τ; they must be found from additional consider-
ations.

Under conditions of insufficient a priori informa-
tion, the gravitational data in the presence of a list of
astrophysical events is processed, naturally, on the
basis of the Neiman–Pearson strategy. After forming
the variables Zmax it must be compared with the thresh-
old, which depends on the statistics of the variable.
Crossing a threshold will signify “presence of a signal”
with reliability (1 – α), where α is the probability of a
“false alarm.” This strategy presupposes that the statis-
tics of Zmax is known; this can be found from theory or
empirically, i.e., by studying the noise characteristics of
the output realization of an antenna.

3. STATISTICAL PROPERTIES
OF THE VARIABLES EMPLOYED

Maximum likelihood data processing employs three
variables: the squared envelope R2(t) (14); the sum of
the squared readings Z (19) taken near the astrophysical
events in the interval [0, T ]; and, the maximum value of
this sum Zmax (20), corresponding to the optimal time
shift. The statistics of each of these three variables can
be calculated analytically, using the hypothesis that the
noise ξ(t) of the gravitational detector is Gaussian.
Experiment shows that for uncooled antennas this
assumption is close to reality for thresholds whose
energy is not too high.

Z R2 tk( )/2σ2( ),
k 1=

n

∑=

Zmax Z τ( )
τ

max= , τ τmin τmax,[ ]∈
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The formulas (19) and (20) were written in a dimen-
sionless form. For comparison with experiment, it is
helpful to have also relations where the variables stud-
ied are expressed in degrees Kelvin.

3.1. Statistics of the Squared Amplitude Readings

The thermal oscillations of the resonance solid-state
detector can be described by a narrow-band Gaussian
random process

x(t) = A(t)cosω0t – B(t)sinω0t

with slowly varying quadratures A(t) and B(t). Their
correlation function is

where

is the Brownian variance,

γ = ω0/2Q

is the relaxation constant (m, T0, and Q are, respec-
tively, the mass, absolute temperature, and mechanical
Q of the detector).

After pre-filtering (the differentiating unit, the
Weiner–Kolmogorov filter, and so on) x(t) becomes a
narrow-band process inside a limited frequency band
∆ω with the squared envelope

R2 = (∆A)2 + (∆B)2.

This quantity is proportional to the variation of the
energy Et(t) of the detector over a time ∆t = ∆ω–1 ! γ–1:

The correlation function of the corresponding variation
of the quadratures ∆A or ∆B is of the type

k∆(τ) = σ2ρ(τ),

where

The variance σ2 is related with the Brownian variance

 via the effective noise temperature Te of the detec-
tor:

The correlation function of the energy variation

K(τ) = 〈E(t)E(t + τ)〉  – 〈E(t)〉2

has the form

K(τ) = 4(kTe)2ρ2(τ). (21)

k τ( ) σ0
2 γ τ–( ),exp=

σ0
2 kT0/mω0

2=

E t( ) mω0
2R2 t( )/2, E t( )〈 〉 kT02γ∆t.= =

ρ
1 τ /∆t( ), τ ∆t≤–

0, τ ∆t.>



=

σ0
2

σ2 kTe

mω0
2

---------- σ0
2Te

T0
-----, Te T0 2γ∆t( ).= = =
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The correlation coefficient ρ2(τ) in this formula
decreases to zero on time scales ∆t. In the discrete rep-
resentation, E(t)  E(tk), the readings are indepen-
dent for (tk + 1 – tk) ≥ ∆t.

3.2. Statistics of the Sum 
of the Squared Amplitude Readings

The next variable which of interest is the sum of the
squared amplitude readings taken at the moments of the
astrophysical events (19). For convenience, this vari-
able can be normalized by dividing by the total number
of events in the observed interval [0, T ]. The new vari-
able C = Z/n is proportional to the “selected average
value” of the energy variations

on the observable interval at the sampling moments of
the astrophysical events:

(22)

If the number of events in sum (22) is greater than
30, then according to the central limit theorem the vari-
able C has asymptotically a Gaussian distribution with
average value 〈C(t)〉  = 1 or 〈 〉  = kTe. The correlation
function

has the form

i.e., there is a principal maximum in the range 0 ≤ τ ≤
∆t, decreasing parabolically, and there is a series of side
maxima at the points τ = (ti – tk). This leads to a specific
determination and calculation of the “correlation time”
for the variable C. Assuming that the sequence of astro-
physical events is a Poisson flux of pulses, ρc(τ) can be
put into the form (provided that ∆t ≤ τ ≤ T )

(23)

The total number n of events in the observation time T
is not expected to be too large, n(∆t/T ) ! 1 and the cor-
relation time for C(τ) is bounded |τc| ! T. Then, Eq. (23)
simplifies:

(24)

E
1
n
--- E tk( )

k 1=

n

∑=

C
Z
n
---

1
nkTe

----------- E tk( )
k 1=

n

∑ 1
kTe

-------- Ẽ.= = =

E

Kc C t1 t2…tn,( )C t1 τ+ t2 τ+ …tn τ+, ,( )〈 〉=

– C t1 t2…tn,( )〈 〉 2

Kc τ( )
1

n2
----- nρ2 τ( ) ρ2 ti tk τ+–( )

k 1 k i≠,=

n

∑
i 1=

n

∑+ ,=

Kc τ( )
1
n
--- ρ2 τ( ) π 1– n 1–( )

∆t
T
----- 1 τ

T
-----– 

 + .=

Kc τ( )
ρ2 τ( )

n
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ρ2 τ( ) kTe( )2

n
----------------------------.=
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The variance of the variable C (just as ) is less than
the variance of R2 by the factor 1/n, which corresponds
to the properties of the sum of independent readings.

3.3. Statistics of the Absolute Maximum

Studying the normalized sum of the squared ampli-
tude readings, instead of Zmax (20) we must consider

The search for a maximum is made by varying the time
shift on an a priori prescribed interval (20). Let the time
shift be discretized with step δt. Then there is a combi-
nation of L values

If the variable C is Gaussian, the distribution Cmax can
be found in the literature. Specifically, the Cramer for-
mula can be used [46]. This formula represents the sta-
tistics of Cmax in terms of the auxiliary random variable
ξ:

(25)

with probability density

(26)

where the average value 〈ξ〉  = 0.577 and the variance is

 = π2/6. The formulas (25) and (26) are valid asymp-
totically when

L = ∆τ/δt  ∞.

The parameter µ in Eq. (25) depends on the variation of
the time shift ∆τ = τmax – τmin and the second derivative
of the correlation coefficient ρ2(τ) of the variable C (24)
at the point τ = 0:

(27)

The calculation of the value of ρ''(0) for Markov pro-
cesses is always nontrivial. In our case the estimate can
be obtained in terms of the approximation using Owen
functions [47]:

(28)

Formulas (25), (26), and (28) solve the problem of cal-
culating the “case probability” where Cmax is greater
than a certain chosen threshold Cth.
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4. NEUTRINO–GRAVITY CORRELATION 
EFFECT FROM SN1987A

We shall now consider the application of the ML
algorithm to the neutrino–gravity correlation effect,
represented by a series of works performed by the PTM
collaboration (INFN, Rome University La Sapienza
and Rome University Tor Vergata; CNR, Institute of
Cosmogeophysics (Turin); University of Maryland
(Washington) and Institute for Nuclear Research, Rus-
sian Academy of Sciences (Moscow)) [48, 49]. The
effect consists in “observing a significant correlation”
between the generalized noise background of uncooled
gravity detectors in Rome and Maryland and the back-
ground neutrino scintillator under Mont Blanc during
the burst from the Supernova SN1987A.

The difficulty of direct astrophysical interpretation
of the effect lies in the two-order of magnitude deficit
of sensitivity of the uncooled detectors with respect to
the average estimate of the energy of gravitational radi-
ation from a collapsing star in the LMC [48] (although
speculations on the uncertainties of the source parame-
ters could possibly reduce the deficit to a negligible
quantity). Subsequently, a series of investigations was
performed to elucidate the nature of the effect, for
which the “case probability” was estimated by the PTM
group to be extremely small, 10–6 [35]. Specifically, a
correlation was shown between the “neutrino back-
ground” of the “collapse” program and the background
radiation in other channels [50]; the correlation of the
noise of the gravitational detectors with the seismic
background [51]. In addition, the dynamics of the
directional pattern of the complex antenna from detec-
tors in Rome and Maryland [52] was followed in order
to check its orientation toward the LMC; finally, a num-
ber of ideas with “new physics” were examined (see the
examples in [53]). However, a definite model for
explaining the correlation was not obtained. Numerical
simulation of the fluxes of neutrino and gravitational
data showed that the “vg-correlation effect” could be
the result of statistical fluctuations with a correct esti-
mate of the probability of an event [54]. However, the
PTM group did not accept this criticism, since in their
opinion the authors of [54] did not work with real
experimental data [55].

The results of our analysis of the real data, kindly
provided by the PTM collaboration, are presented
below. The method described in Section 2 is used in
parallel with the PTM method for comparison.

4.1. Method and Results of the PTM Group

The databank consisting of general traces of the
gravity detectors in Rome and Maryland is limited by
the time interval from 12:00 UT on February 22 to
06:00 UT on February 23.

For this time interval there exists a trace of the ran-
dom noise of the LSD neutrino scintillator according to
the channel of the “Supernova Watcher” program. All
JOURNAL OF EXPERIMENTAL
data are presented in digital form. The digitizing step
for the gravitational traces ∆t = 1 s corresponds to the
correlation time of the output noise (∆ω = 1/∆t is the
frequency band of the filter). The times of the neutrino
events were read with an accuracy of 0.01 s (for techni-
cal reasons there are no data after 07:00 UT: the detec-
tor in Maryland did not operate). The neutrino traces
contain a feature near 2:52 UT on February 23: five
neutrino pulses in the form of a dense close packet with
a small Poisson probability. These neutrinos were dis-
tinguished independently and before information about
the optical observation of the Supernova arrived.

The analysis of the PTM group consisted of using
auxiliary statistics, constructed from the gravitational
data. This is the sum of the variations of the energy of
two detectors taken at the moments of the neutrino
events, normalized to a number of these events. The
motivation was due to the meaning of C as being pro-
portional to the correlation function between the read-
ings of the variations of the energy of the gravitational
detector and the neutrino events. The use of the total
energy of the detectors in Rome and Maryland was
termed “the good excitation method” [54] (the two
detectors are considered to be a single, combined, grav-
itational antenna in a general gravity-wave perturba-
tion; if the frequencies of the detectors are different, the
combined antenna collects energy from different spec-
tral components of the gravity-wave pulse). The PTM
group operated directly with the dimensional variable

(29)

which corresponds to  in our notation (22) (for con-
venience in comparing the results we retain the notation
of the PTM group in this section; the summation in
Eq. (29) is performed with the normalizing factor ε in
order to introduce the amplitude correction reflecting
the difference of the noise temperatures of both detec-
tors).

The main result obtained by the PTM group is that
the variable C reaches its maximum value Cexp = 72.5 K
in a two-hour window around 2:52 UT with the total
number of “neutrino markers” n = 96 and time shift
−1.2 s. The “case probability” of such an event esti-
mated by the PTM group by a Monte Carlo simulation
of the flux of neutrino events was extremely small. This
result was presented on two types of plots. Figure 2a
shows the relative number of cases where the simulated
(“artificial”) quantity C(τ = –1.2 s) exceeded the exper-
imentally observed value Cexp, as a function of the posi-
tion of the two-hour segment on the entire observation
interval. The second plot shows the relative number of
cases calculated for the distinguished two-hour interval
around 2:52 UT (the “anomalous neutrino packet”
interval) as a function of the time shift varying near its
“optimal” value −1.2 s (see Fig. 2b). Both types of plots
demonstrate a “special feature” of the observed data:
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the plots contain deep dips at the points 2:52 UT
(Fig. 2a) and −1.2 s (Fig. 2b). According to [11, 15, 34,
35], the presence of these dips signifies detection of a rare
event. Its probability was estimated by two methods.

The first method employed the binomial formula
p = m/n, where m is the number of cases where C ≥ Cexp,
and n is the total number of values of C employed. The
second method consisted of empirical construction of
the statistics of C using a simulation of the neutrino
events (each simulated neutrino series gives a definite
value of C—a single point in the empirical distribu-
tion). The differential distribution for C, taken from
[35], is shown in Fig. 2c, which also shows the value of
Cexp. Both methods give the probability p = 10–3 for the
 EXPERIMENTAL AND THEORETICAL PHY
effect shown in Fig. 2a, and p = 10–6 for the effect
shown in Fig, 2b. The PTM group considered the last
result as detection of the “anomalous correlation” between
the gravitational and neutrino data near 2:52 UT accord-
ing to universal time—the so-called “neutrino-gravita-
tional correlation” effect associated with the burst of
SN1987A.

4.2. Method and Results
of the Sternberg Astronomical Institute Group

The theory of the method which we used in the
reanalysis of the observational data is described in Sec-
tions 2 and 3. The method is close to that of the PTM
SICS      Vol. 91      No. 5      2000
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group, the difference being that the variable Cmax is
used instead of C as the “sufficient statistics.”

4.2.1. Gaussian estimates. As shown in Section 3,
in the Gaussian approximation (ξ(t) is a normal pro-
cess) all required probability estimates can be calcu-
lated and predicted. The experimental data support the
“Gaussian nature” for uncooled detectors (specifically,
see [35]). The noise temperatures Te are known for the
detectors in Rome Te = TR = 28.6 K and in Maryland
Te = TM = 22.1 K. Hence the normalizing factor in (29)
is

ε ≈ TM/TR ≈ 0.77,

which is quite close to the estimate obtained by the
PTM group (ε = 0.75). The estimates of the average
value and the variance for the variable C in the “grid
excitation” method in dimensional form (C  )
(29), using Eqs. (21) and (24), are

k–1〈C〉  = (TR + TM) ≈ 51 K,

(30)

Thus, near 2:52 UT the theory gives a Gaussian distri-
bution of the variable C centered at the point 51 K with
effective width 3.7 K.

Next, following the ML algorithm, we must con-
sider the absolute maximum of the variable C as a func-
tion of τ. The average value of the random variable Cmax
calculated using Eqs. (25) and (26) becomes, after sta-
tistical averaging,

(31)

Here 〈ξ〉 = 0.577. The “time shift parameters” played
the main role in estimating µ: the interval of variation
∆τ and the step δt. The ML algorithm places no limita-
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tions on these parameters; recommendations can be
taken only from physical arguments. We chose ∆τ =

 s and δt = 0.01 s in accordance with the specific
nature of the experimental data (see explanation
below). Then we have, according to the formula (28),

ρ2 ≈ 0.1, µ ≈ 6.46.

Substituting these numbers into the expression (31)
gives a numerical estimate of the average value 〈Cmax〉
in the time zone of interest to us: 〈Cmax〉  ≈ 65 K (with
k = 1).

The formulas (25)–(28) also make it possible to
determine the width of the distribution of Cmax and to
calculate the probability of a “false alarm” (or “case
probability”) for any value of C that could appear in the
experiment, i.e., to solve completely the problem of sta-
tistical estimates. However, since all these estimates
depend on the characteristic “shift times,” we shall
postpone this until we perform an empirical analysis of
the statistics of the observational data in a manner sim-
ilar to the empirical method used by the PTM group.

4.2.2. Empirical analysis. An empirical analysis is
good in that it does not employ a priori hypotheses
about the distribution law of the data. At the same time,
the problem of extracting the statistical properties of
the observed variables on the basis of only one realiza-
tion of the random process is strongly “ill-posed,” and
the extraction errors can then be sufficiently large to
make the method ineffective. Hence each step in an
empirical analysis must be monitored for possible
errors. Actually, the procedure of the ML algorithm is a
delicate filtering process with an attempt to discover a
weak signal that is strongly covered with noise. Figure 3
shows as an illustration the trace of the output data of
the gravitational detector in Rome for February 22 and
23, 1987 (a computer reconstruction of the digital data
is shown). It is obvious that it is impossible to extract
the signal from this background without using a special
procedure.

Our repeated analysis also revealed the presence of
features in the behavior of the variable C near the
marker 2:52 UT 23 February 1987. Indeed, it reaches a
maximum (on the neutrino events in two-hour inter-
vals) with a value of 72.5 K. The plots of the two main
tests—the temporal evolution of C in two-hour inter-
vals with a fixed shift of −1.2 s (Fig. 2d) and the change
in C for variations of the shift in the range ±2 s (near
2:52 UT) (Fig. 2e)—are essentially identical to its cor-
responding histograms obtained by the PTM group.

Estimates of the “case probability” for these events,
which we made using the method of the PTM group do
not fundamentally differ from their estimates. Thus, the
binomial formula gives

p = m/n ≈ 10–3

(compare with Section 4.1; see [33] for the validity of
using the binomial formula here). The empirical differ-
ential distribution constructed (using the neutrino

100+−
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events simulated by the Monte Carlo method) of the C
statistics (Fig. 2f) is also identical to the corresponding
distribution obtained by the PTM group (Fig. 2c). It is
centered at the point 52 K and agrees well with the the-
oretical prediction (30) 51 ± 3.7 K. For this distribution
the experimental value Cexp = 72.7 K, falling “deep in
the right-hand wing,” has a random realization proba-
bility of 10–5–10–6.

Thus, we have confirmed all results obtained by the
PTM collaboration in [11, 15, 34, 35] on the basis of the
method which they employed. However, it should be
stipulated that the reliability of reconstructing the dis-
tributions by the empirical method improves on the
“wings of the distribution” (ill-posed problem). Conse-
quently, the empirical estimates at the level “vanish-
ingly small probabilities” cannot be interpreted abso-
lutely, but more like a qualitative tendency.

4.2.3. Criticism of the PTM-group results. The
key argument of the criticism of the results obtained by
the PTM collaboration is the assertion that the variable
C cannot be sufficient statistics in the experiment being
considered. Consequently, neither the “binomial for-
mula” nor the empirical distribution of C can give the
correct estimate of the probability of a “random event.”
The problem is that the estimates made above did not
take into account the fact that the time shift τ between
the “neutrino” and “gravitational” events was varied (to
find the optimal value, equal to −1.2 s) in order to max-
imize C. This must influence the probability of a ran-
dom event.

In the general ML algorithm (see Section 2) the
effect of a “shift adjustment” is taken into account by
switching to the variable “absolute maximum” Cmax. It
is this distribution that should be used for calculating
the statistical errors. In an empirical analysis, the con-
struction of this distribution on the interval of the
“observed correlation” is done as follows: the Monte
Carlo method is used to simulate the “neutrino events”
(a series of time markers) with the total number n = 96;
next, the shift τ is chosen so that the variable C assumes
its maximum value C = Cmax. This is one point in the
distribution of Cmax. The procedure is repeated, giving
the set of values of Cmax required for a histogram.

Figure 4 displays such a distribution of Cmax
together with the distribution of the variable C and the
experimentally observed value Cexp = 72.5 K.1 The two
characteristic times, and the interval and step of varia-
tion of the time shift which are required for the con-
struction were chosen from a feature of the experimen-
tal data. The interval for the variations of τ cannot be
greater than the characteristic time between the Poisson
neutrino events. Otherwise, the additional “neutrinos”
from neighboring two-hour intervals will be “cap-
tured.” For an average value between the pulses of the

1 The construction of the distribution of Cmax requires much more
computer time than the distribution of the variable C. Conse-
quently, its histogram contains only 103 points.
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LSD detector in 70–80 s we took at ∆τ = ±100 s. The
step for varying the time shift was taken to be the short-
est of the experimental time scales, i.e., the accuracy of
the “neutrino readings” δt = 0.01 s.

As expected, the empirical distribution of Cmax is
shifted to the right relative to the C curve, closer to the
experimental value Cexp = 72.5 K. Its center lies in the
zone 65–66 K, which agrees well with the prediction of
the theory in the Gaussian approximation (65 K; see
Section 4.2.1). An estimate of the probability of “ran-
domly obtaining the result Cexp ” taking account of this
distribution increases to 10–4–10–3. This is much greater
than the estimate presented by the PTM group (10–6),
but it is still small enough to consider the correlation
between the gravitational and neutrino events as an
objective fact.

However, another source of errors, which is present
in this experiment (though, in principle, not necessary)
interferes with this. It is due to the different discretiza-
tion times of the gravitational and neutrino data: 1 s for
readings of the gravitational detector and 0.01 s for the
neutrino events. This necessarily requires interpolation
in order to search for adequate gravitational readings
(the values of the energy variations) when the “neutrino
marker” falls between the gravitational markers. Inter-
polation can be performed by different methods,
including an optimal method [56], but it still introduces
an error, which must be taken into account when calcu-
lating the statistical parameters and, specifically, when
determining the position of the center of the distribu-
tion of Cmax. The calculations performed in [56]
showed that the interpolation error is

∆Cint ≈ 4.6 K.

This “corridor” is shown in the plot (Fig. 4) near the
center of the distribution of Cmax. If the center of Cmax is
shifted to the right-hand edge of the corridor, the “prob-
ability of a random event” for Cexp reduces to 0.01 and
greater. Such numbers are no longer “distinguished”
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for measurements with random processes and do not
presuppose the existence of any extra corridor event.

In summary, it follows from our reanalysis that the
existing experimental data are inadequate to make a
reliable conclusion about the detection “of significant
vg-correlation” during the burst of the Supernova
SN1987A.

5. SPECIAL FEATURES 
OF THE ML ALGORITHM IN SEARCHING 

FOR GAMMA–GRAVITATIONAL 
CORRELATIONS

The direct application of the ML algorithm to the
gamma bursts encounters the problem of adequately
determining the time marker of an astronomical event.
This is due to the large diversity of durations and struc-
tures of gamma bursts. The “trigger time” presented in
the BATSE catalog can have a very remote relation with
the real phase of the active operation of a “gamma emit-
ter” for pulses with a complex configuration. For this
reason, it is reasonable to attempt to test adaptive algo-
rithms in which the “time marker of a gamma event” is
determined taking into account the structure of the
pulse. The concept of structure and duration for gamma
bursts is itself ambiguous and is a subject of debate. For
our purposes, the most attractive approach is probably
that of [57], where the effective duration is determined
according to the fraction of the emitted energy, starting
with the most intense bin in the pulse (a bin is the num-
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ber of photons of fixed energy in a fixed count time).
The pulse is represented by its temporal structure Gi(t),
located under the threshold energy level in accordance
with the chosen fraction of the total energy (50, 80%,
and so on). 

The contribution of the variations of the energy of
the gravitational background, corresponding to a
gamma burst with number i, in the average selective
variation (22) can be represented by the integral

(32)

where Wi(τj) is the probability density of the arrival
time of a gamma burst (in other words, the probability
that the time τj must be chosen as the “effective arrival
time” for the pulse i).

We note that the function Wi(τj) determines the time
window in which integral (32) is different from zero.
This window approximately corresponds to the dura-
tion of a gamma burst; it is assumed that it is much
shorter than the interval between bursts. The unknown
shift τ between the gravitational and gamma events,
just as in the “case with a neutrino,” is assumed to be
independent of the number of the burst (uniformity of
sources) and limited by some integral ∆.

For a “multipeak” gamma burst the following proce-
dure can be phenomenologically proposed for estimat-
ing the function Wi(τj) and integral (32). Let τik be the
time position of a local maximum k in the gamma burst
with number i, whose amplitude exceeds the threshold
Gc, Gik ≥ G. Then there exists a set of random “arrival
moments” of the gamma burst:

τi*  τi1, τi2, …τik, …,

where k = 1, 2, …mi is the total number of local maxima
of the function Gi(t). The probability density Wi(τj) can
be represented by a discrete series of coefficients pik,
proportional to the relative amplitudes of the maxima:

(33)

where

Ultimately, the variable “average of the selective varia-
tion” of the energy of the gravitational detector will be
represented by the formula

(34)
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Expression (34) extends the simpler Eq. (22) to the case
of gamma bursts as astronomical events in the search
for astro-gravitational correlations. As in the case with
neutrinos, the shift τ is not determined within the statis-
tics and requires astrophysical arguments. The transi-
tion to the variable Cmax on the basis of the ML algo-
rithm occurs just as in the neutrino case. The formulas
for the statistical estimates in the Gaussian approxima-
tion remain the same.

6. DISCUSSION

The main results of this work are a formulation of
the ML algorithm for searching for astro-gravitational
correlations and finding the “phenomenon of neutrino–
gravitational correlation,” observed during the burst of
the Supernova 1987A.

The advantages and drawbacks of the proposed
algorithm were clearly demonstrated in the analysis of
the last event. Its main weakness is that the results of
the analysis depend on the unknown time interval
between the astrophysical and gravitational events. An
effective algorithm requires an a priori estimate of this
interval. Attempts to limit the interval by considering
the special features of the experimental data (as done in
the present work) lead to a solution only within the
model adopted. In the general case the estimate of the
probability of the presence or absence of a correlation
remains undetermined. The most favorable case is one
where the value of the shift is known exactly. Then the
probability of the observed correlation can be estimated
according to the variable C, which is more reliable than
an estimate made using Cmax. However, the latter distri-
bution must be used if the shift is not known in
advance.2

The shift τ = ±2 s used in [48, 49] can be associated
only with the expected delay of the neutrino signal (less
than 2.7 s), if the neutrino has a rest mass (less than
10 eV), and for the hypothesis that the neutrino and
gravity waves are emitted simultaneously. This special
model is also very limited.

It is interesting to note that even for a substantial
range of the shift τ = ±100 s, which was used in our
repeated analysis, the probability of a random “correla-
tion” remains small, 10–4–10–3, and only the “interpola-
tion error” made it impossible to confirm the existence
of the “effect,” described by the PTM group.

An alternative hypothesis for explaining the
observed experimental data, in which the presence of a
“correlation” is assumed only between the detectors in
Rome and under Mont Blanc, caused by the regional
seismic activity was advanced in [53]. The contribution
of the Maryland detector to the effect was negligible.
This is illustrated by the graph of the temporal evolu-

2 We note that the authors of [54] came quite close to this idea,
introducing the special parameter q in order to determine how fre-
quently realizations with rare statistical properties occur in the
computer simulation.
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tion of the C variable for each detector separately com-
pared with their sum (see Fig. 5). However, evidently, it
is difficult to confirm the fact of a seismic correlation
between the “Rome–Mont Blanc” detectors numeri-
cally.3

Returning to the general problem of searching for
the “astro–gravitational correlations,” we shall make
several concluding remarks.

In principle, the ML algorithm presumes accumula-
tion of a signal. However, in the case of “post-detector
detection” according to the envelope the accumulation
of weak incoherent pulses (Ak ≤ σ) increases the sig-
nal/noise ratio in proportion to n1/4, i.e., the accumula-
tion efficiency is low. The accumulation procedure
leads to the standard law for adding independent ran-
dom counts (∝ n1/2) only for pulses with a large ampli-
tude. However, in this case, large n with reasonable
observation times cannot be expected.

There is no doubt that the gravity-wave experiment
in the form of the search for “astro–gravitational corre-
lations” has an obvious advantage because the “empty”
observational time is smaller. This decreases the prob-
ability of a “false alarm” proportional to the factor
n∆τ/T; but, for the same detection threshold (sig-
nal/noise ratio) the probability of “correct detection”
increases negligibly, only by a factor of (1/2)ln[T/n∆τ].

It should be noted that the algorithm developed can-
not be transferred without any changes to the case of a
laser interferometric antenna on free masses. The prob-
lem is that the response of this wide-band detector can-
not be represented in a universal form (“response to a δ
excitation”) and the complicated structure of an indi-
vidual gravitational pulse must be taken into account.
The construction of an optimal algorithm for a packet
of such pulses, correlated with astrophysical events,
transforms into a multiparameter problem requiring a
separate analysis.
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Abstract—A regularized quantum theory of gravity interacting with matter is constructed. The construction is
made on the basis of the method of dynamical quantization of generally covariant theories. A solution of the
problem of decoherence in quantum cosmology is proposed on the basis of this method. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

A new dynamical method for quantizing generally
covariant theories has been proposed in a series of
works [1–4]. The study of two-dimensional models,
such as the two-dimensional bosonic string [5] and
two-dimensional gravity interacting with matter [7],
from the standpoint of this method has led, in the first
place, to anomaly-free quantization of these models1

and, in the second place, to further elaboration of the
method of dynamical quantization itself. Consequently,
a formulation of the dynamical quantization method in
the interpretation which makes it possible to advance as
far as possible in calculations in the theory of two-
dimensional gravity is needed. This is done in Sections 2
and 3. The main purpose of the present paper is an
attempt to solve the problem of decoherence in quan-
tum cosmology on the basis of the method of dynami-
cal quantization. To this end, quantization of the model
of the theory of gravity with a Λ term, interacting with
a Dirac field, is done in Section 4. A possible solution
of the problem of decoherence in an inflating universe
is proposed in Section 5. We show that (in a closed
model) since the number of physical degrees of free-
dom is finite in dynamical quantization in an inflating
universe, the quantum fluctuations “die out” with time
at an exponential rate. This result is valid to all orders
in the Planck scale lP .

Specific results of the application of the method of
dynamical quantization to the above-mentioned two-
dimensional theories [5, 7], obtained by explicit construc-
tions and direct calculations, justify the abstract assump-
tions and axioms on which this method is based.2 

1 See [6] for a discussion of anomaly-free quantization of two-
dimensional gravity from a standpoint close to that of the present
author.

2 The basic assumptions and axioms of the method of dynamical
quantization [1–4] appeared before the problem of anomaly-free
quantization of two-dimensional gravity was solved.
1063-7761/00/9105- $20.00 © 20859
The ideology and logical scheme of the dynamical
method will be expounded below taking account of the
experience in quantizing two-dimensional gravity.

The key point in the quantization of two-dimen-
sional gravity was the construction of a complete set of
such operators {An, Bn, …}, designated below as {AN,

}, which possess the following properties.

1. The operators AN and  are Hermitian conju-
gates of one another and

[AN, AM] = 0, [AN, ] = δNM. (1)

2. The set of operators {AN, } describes all phys-
ical dynamical degrees of freedom of the system.

3. Each operator from the set {AN, } commutes
with all constraints of the first kind or with the complete
Hamiltonian of the theory.

Quantization is performed directly using the opera-

tors {AN, }. This means that the space of physical

states is constructed using the operators { } from the
ground state and all operators are expressed in terms of

the operators {AN, }, as well as in terms of the oper-
ators describing the gauge degrees of freedom.

Quantization is also performed according to the
described scheme on the basis of the dynamical method.
However, in the theory of two-dimensional gravity the

operators {AN, } were constructed explicitly (i.e., they
were expressed explicitly in terms of the initial dynam-
ical variables), in more realistic theories this problem is
hardly solvable. Consequently, the set of operators

{AN, } with the properties 1–3 must be introduced axi-
omatically. Conversely, the properties 1–3 make it possible,

AN
†

AN
†

AM
†

AN
†

AN
†

AN
†

AN
†

AN
†

AN
†

AN
†
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in principle, to express the initial variables in terms of

the convenient operators {AN, }.

However, in contrast to the two-dimensional theory
of gravity, regularization is required in real models of
gravity. In the method of dynamical quantization, regu-
larization is done precisely in terms of the operators

{AN, }. As will be shown below, such regularization
is natural in generally covariant theories, since it pre-
serves the form of the Heisenberg equations and
thereby also the general covariance of the theory.

2. METHOD OF DYNAMICAL QUANTIZATION

Let us consider a generally covariant field theory.
Let us assume that in this theory the Hamiltonian in the
classical limit is an arbitrary linear combination of con-
straints of the first kind and there are no constraints of
the second kind.

Let {Φ(i)(x), P(i)(x)} be a complete set of fundamen-
tal fields of the theory and their canonically conjugate
momenta, in terms of which all other physical quanti-
ties and fields in the theory are expressed. Here the
index (i) enumerates the types of fields. For example,
for some (i) these can be either six spatial components
of the metric tensor gij(x) or the scalar field φ(x) or the
Dirac field ψ(x), and so on. The set of fields {Φ(i)(x)} is
a complete set of the mutually commuting fundamental
fields of the theory.

Next, to simplify the notation the index i will be
omitted. It can be assumed that the variable x includes,
besides the spatial coordinates, the index i also.

The construction of a quantum theory by the
dynamical method is based on the following natural
assumptions or axioms relative to the structure of the
unregularized space F of the physical states of the the-
ory.

Axiom 1. All states of the theory which are physi-
cally meaningful are obtained from the ground state |0 〉
using the creation operators : 

AN|0 〉  = 0. (2)

States (2) form an orthonormal basis of the space F
of physical states of the theory.

The numbers n1, …, ns assume integer values and
are called occupation numbers.

Axiom 2. The set of states Φ(x) |n1, N1; …; ns, Ns 〉 ,
where the set of numbers (n1, N1; …; ns, Ns) is fixed,
contains a superposition of all states of the theory, in
which one of the occupation numbers differs in modu-
lus by one and all other occupation numbers equal to
the occupation numbers of state (2).

AN
†

AN
†

AN
†

n1 N1; …; ns Ns,,| 〉 n1! … ns!⋅ ⋅( ) 1/2–=

× AN1

†( )
n1 … ANs

†( )
ns⋅ ⋅ 0| 〉 ,
JOURNAL OF EXPERIMENTAL 
Here the operators  and their conjugates AN pos-
sess the standard commutation properties (1). The oper-

ators {AN, }, generally speaking, can be bosonic or
fermionic. If the creation and annihilation operators
follow the Fermi statistics, then the commutator is
taken in Eq. (1). For compact spaces the case of interest
to us, we can assume without loss of generality that the
index N, enumerating the creation and annihilation
operators, belongs to a discrete finite lattice. A norm
can be easily introduced in the space of indices N.

Since states (2) are physical, they satisfy the rela-
tions

*T|n1, N1; …; ns, Ns 〉  = 0, (3)

where *T is the complete Hamiltonian of the theory.
Equations (3) follow from the equations

*T |0〉  = 0, (4a)

[*T, ] = 0, [*, AN] = 0. (4b)

We call attention to the fact that the commutation rela-
tions (4b) are a consequence of the general covariance
of the theory. In other theories a set of operators with
properties (4b) exhausting the physical degrees of free-
dom of the system may not exist.

It should be noted that both axioms introduced
above can be somewhat altered depending on the prop-
erties of the dynamical system under consideration.
Here the simplest variant of a formulation of the axi-
oms of the dynamical quantization method is pre-
sented. Ultimately, only the following assumptions
need be satisfied.

(a) There exists a set of operators {AN, }, which
exhaust the physical degrees of freedom of the system
and satisfy the commutation relations (4b) or a weak-
ened variant of the commutation relations

[*T, ] = λN . (5)

(b) The matrix constructed from the elements [AM,

], [AM, AN], and [ , ] is invertible.

In contrast to problem (2)–(4) considered here, in
the exactly solvable case of two-dimensional gravity
[7] we had constraints on the occupation numbers. The
absence of any constraints on the occupation numbers
means physically that the phenomenon of “not flying
out” is absent in the theory. Thus, the axioms 1 and 2
together with Eqs. (1)–(4) refer to systems where the
quanta of the fundamental fields can exist as stable par-
ticles. Conversely, if Eqs. (5) are satisfied, then in order for
Eqs. (3) to be satisfied the following constraint on the
occupation numbers is necessary (compare with the anal-
ogous constraint in [7]):

AN
†

AN
†

AN
†

AN
†

AN
† AN

†

AN
† AM

† AN
†

nNλN

N

∑ 0.=
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In the following, axioms 1 and 2 and Eqs. (4) are
assumed to be satisfied. We present certain conse-
quences of axioms 1 and 2.

Let |N〉 = |0〉 . It follows from axiom 2 that

(6)

and the linearly independent fields φN(x) do not depend

on the operators AM or :

[φN(x), AM] = 0, [φN(x), ] = 0. (7)

If Φ(x) is a real field, then it follows from the axioms
and Eqs. (6) that the following expansion is valid:

(8)

where the field φ(x) does not contain the operators AN

and  to the first power. For a complex Dirac field ψ
Eq. (8) becomes

(9)

where {AN, } are fermionic operators. If there is no
fermionic condensate, then the fermionic field χ(x)

depends on the fermionic operators {AN, } to pow-
ers no less than cubic.

Since the operators {AN, } are conserved, the
entire dynamics of the fields Φ(x)(ψ(x)) is contained in
the variables φN(x) and φ(x)(ψN(x), χ(x)).

The preceding constructions make it possible to
examine a regularization of the theory. Thus far our
exposition was formal, since the singularity of the the-
ory was not taken into account.

The importance of commutation relations (1) and
(4b) lies in the fact that any set of pairs of operators

{AN, }'' can be viewed as a set of constraints of the
second kind. This makes it possible to perform a regu-
larization as follows.

We single out a finite set of pairs of annihilation and

creation operators {AN, }' and enumerate them so
that |N| < N0. Since the physical information is con-
tained in the wave functions φN(x), this set is actually
determined by the choice of set of linearly independent
wave functions {φN(x)}' which corresponds to the set of

operators {AN, }'. The choice of functions in the set
{φN(x)}' is determined by the physical conditions of the
problem. For example, if the x space is a torus, then
periodic traveling waves, whose wave numbers are
bounded in modulus, can be taken as the wave func-

AN
†

Φ x( ) N| 〉 φN x( ) 0| 〉 N ; Φ x( )| 〉 ,+=

0 N ; Φ x( )〈 | 〉 0,=

AM
†

AM
†

Φ x( ) ANφN x( ) AN
† φN* x( )+( ) φ x( ),+

N

∑=

AN
†

ψ x( ) ANψN x( ) χ x( ),+
N

∑=

AN
†

AN
†

AN
†

AN
†

AN
†

AN
†
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tions of this set at a given moment in time. All creation
and annihilation operators, except for those chosen, i.e.,
the operators with |N | > N0, are set equal to zero:

AN = 0,  = 0, |N | > N0. (10)

We shall prove a theorem, which is important for
our method, that gives meaning to the entire dynamical
quantization scheme.

Theorem. The imposition of the constraints of the
second kind (10) does not change the form of the
Heisenberg equations, preserving their classical form.

Proof. Let |}' 〉, |1' 〉, … be basis vectors (2), con-

structed using a bounded set of operators {AN, }', and
let F ' denote the Fock space with these basis vectors.
The imposition of constraints (10) means that the space
of physical states F is limited up to the regularized sub-
space F ' ⊂ F. For any operator A in the regularized the-
ory, only the matrix elements of the form 〈}'|A|1' 〉are
considered. Consequently, the matrix elements, corre-
sponding to constraints (10), of the quantum Dirac
brackets of the operators A and B can be represented in
the form (an asterisk denotes a Dirac bracket)

(11)

By definition of the quantum Dirac brackets the opera-

tors AN and  with |N | > N0, contained in the operators
A and B from Eq. (11), are assumed to be zero after nor-
mal ordering. The commutator [A, B] is formally distin-
guished from the Dirac bracket (11) by the fact that
when the matrix elements 〈}'|[A, B]|1' 〉  are calculated
according to a formula similar to (11), the summation
extends over all intermediate states (2). Let us assume
that the operator B is diagonal in basis (2) and does not

depend on the operators AN and  with |N | > N0. Then
it is evident from Eq. (11) that

〈}'|[A, B]*|1' 〉 = 〈}'|[A, B]|1' 〉 . (12)

It now remains to note that all occupation number oper-

ators nN = AN commute with the complete Hamilto-
nian. Moreover, as a result of the commutation relations
(4b) the Hamiltonian does not depend on the operators

AN and . Consequently, in Eq. (12) the Hamiltonian
*T can be substituted for the operator B. This proves
the theorem.

There is also a classical variant of the theorem pre-
sented above: the imposition of constraints (10) com-
pletely preserves the form of the equations of motion.
This is expressed by the equality

[ξ, *T] = [ξ, *T]*.

AN
†

AN
†

}'〈 | A B,[ ]* 1'| 〉 }'〈 |A +'| 〉 +'〈 |B 1'| 〉(
+'
∑=

– }'〈 |B +'| 〉 +'〈 |A 1'| 〉 ).

AN
†

AN
†

AN
†

AN
†
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The last assertion immediately follows from the def-
inition of the Dirac brackets [8] and Eqs. (4b).

Corollary. The regularized theory is generally
covariant.

Indeed, this follows directly from the theorem
proved above. The equations of motion satisfied by the
field Φ(x) in the regularized theory have the same form
as the classical equations of motion which are generally
covariant. This proves the corollary.

Since, in principle, any number of physical degrees
of freedom can be retained in the regularized theory, a
perturbation theory can be developed with respect to
this number.

We underscore that the Dirac brackets [ξ, χ]* of two
arbitrary operators ξ and χ, generally speaking, is dif-
ferent from the commutator [ξ, χ] in the classical and
quantum cases.

The following circumstance should be noted. Let

the operator field 2(x; AN, ) be a normal-ordered
series relative to the generators of the Heisenberg alge-

bra {AN, }:

(13)

Here the operator fields 2(0)(x), (x), and so on do
not depend on the generators of the Heisenberg algebra

{AN, }. Then the equality

2(x; AN, ) = 0 (14)

is equivalent to the system of equalities

2(0)(x) = 0, (x) = 0, …. (15)

3. AXIOMATIC APPROACH

A more axiomatized scheme of dynamical quantiza-
tion will now be presented. This scheme, which possi-
bly is less natural, is logically stricter and simplifies the
calculations.

This approach is based on the following assump-
tion: the theory is regularized in a manner so that the
axioms are satisfied.

Axiom 3. All states of the theory which are physi-
cally meaningful are obtained from the ground state |0〉
using the creation operators  with |N | < N0:

(16)

AN
†

AN
†

2 x; AN AN
†,( ) 2 0( )

x( )=

+ 2N
1–( )

x( )AN 2N
+1( )

x( )AN
†+[ ] ….+

N

∑

2N
±1( )

AN
†

AN
†

2N
±1( )

AN
†

n1 N1; …; ns Ns,,| 〉 n1! … ns!⋅ ⋅( ) 1/2–=

× AN1

†( )
n1 … ANs

†( )
ns⋅ ⋅ 0| 〉 ,

AN 0| 〉 0.=
JOURNAL OF EXPERIMENTAL 
States (16) form an orthonormal basis of the states F '
of physical states of the theory.

Axiom 4. The dynamical variables Φ(x) transfer
state (16) with fixed values of the numbers (n1, N1; …;
ns, Ns) into a superposition of the states of the theory of
form (16), containing all states in which one of the
occupation numbers is different in modulus by one and
all other occupation numbers are identical to those of
state (16).

Axiom 5. The equations of motion and constraints
for the physical fields {Φ(x), 3(x)} have the same form,
to within the arrangement of the operators, as the cor-
responding classical equations and constraints.

Axioms 3 and 4 are analogs of axioms 1 and 2 in the
unregularized theory. Axiom 5 replaces the theorem
from Section 2. It postulates the correct form of the
equations of motion and the constraints in agreement
with classical mechanics. Since now the equations of
motion no longer need to be derived, the Hamiltonian
also becomes unnecessary.

We call attention to the fact that the Heisenberg
equations are completely equations of type (14) and
(15), while the equations of constraints (4) decompose
into two series:

(17)

. (18)

Equations (18) should be interpreted as an identity.
Thus, in the formal approach the problem reduces to

the following. A finite set of linearly independent func-
tions {φN(x)}' and the corresponding set of operator

pairs {AN, }' are chosen and they are used to con-
struct, according to Eq. (8), a regularized quantum field
Φ(x). Next, the regularized quantum field is substituted
into Heisenberg’s equations of motion and the equa-
tions for the constraints, which are solved in accor-
dance with Eqs. (15), (17), and (18). As a result of such
calculations, an explicit expression should be found for
the field φ(x) in Eq. (8) as a normal-ordered series with
respect to the generators of the Heisenberg algebra {AN,

}. The physical state is given by an expansion in
basis (16) and all possible averages are calculated with
respect to this state.

The logical scheme for quantization presented
above leaves the following question unanswered: how
are Eqs. (17) solved? Here we propose a solution using
a method which in [7] was termed the second method
of quantization.

We shall assume below that all equations weaker
than Eqs. (17) are satisfied:

(19)

We underscore that in Eq. (19) the average extends only
over the gauge degrees of freedom of the system; the

*T
0( )

0| 〉 0,=

*TN
±1( )

0 …,=

AN
†

AN
†

0〈 |*T
0( )

0| 〉 0.=
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operator  depends on the gauge degrees of free-
dom but not on the physical degrees of freedom {AN,

}, which follows from Eq. (18).

We assume next that the ground state |0〉  is a specific
state with respect to the gauge degrees of freedom. This
means the following.

Let field (8) be such that all gauge degrees of free-
dom are explicitly singled out in it in a linear approxi-
mation. In the theory of gravitation such a field is the
gravitational field (the metric tensor or tetrad), but the
matter field is not. We shall represent the field φ(x),
which is the second term on the right-hand side of Eq. (8),
in the form

(20)

Here φ0(x) and φ||n(x) are c numbers of the field, and the
set of modes {φ||n(x)} forms a complete set of longitu-
dinal modes. In other words, any infinitesimal purely
gauge transformation of the field Φ(x) can be uniquely
expanded in a set of orthonormal (in some sense)
modes {φ||n(x), (x)}. For the theory of gravity the
longitudinal part of the metric tensor is given by the
expression ξi; j + ξj; i. The field φ'(x) depends on the

operators {an, } to powers no less than quadratic. It

is natural to assume that the operators {an, } are the
generators of the Heisenberg algebra:

[am, ] = δm, n, [am, an] = 0. (21)

Let us assume that the ground state |0〉  is coherent
with respect to the gauge degrees of freedom:

an|0〉  = zn|0〉 , 〈0 |  = 〈0 | . (22)

Here {zn} are complex numbers. Since all operators

{an, , AN, } on the right-hand side of Eq. (8) are
by definition normal-ordered, then

(23)

In contrast to Eq. (18), on the right-hand side of
Eq. (23) all functions Φ(cl)(x), φN(x), and so on are
c-number functions which depend on the numbers zn.
Note that the collection of numerical functions {φ||n(x),
φN(x)} forms a complete independent set of functions in
terms of which any variation of the field Φ(x) can be
expanded.

In what follows we shall assume that the Heisenberg
equations and the constraints are given in a Lagrangian

*T
0( )

AN
†

φ x( ) φ0 x( ) φ||
1( ) x( ) φ' x( ),+ +=

φ||
1( ) x( ) anφ||n x( ) an

†φ||n* x( )+( ).
n

∑=

φ||n*

an
†

an
†

an
†

an
† zn*

an
† AN

†

0〈 |Φ x( ) 0| 〉 Φ cl( ) x( )=

+ φN x( )AN φN* x( )AN
†+[ ] ….+

N N0<
∑
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form. This means that the momentum variables 3(x)
are expressed in terms of the coordinate variables Φ(x)
and their derivatives with the aid of the corresponding
part of the Heisenberg equations and are substituted
into the constraints equations and the remaining
Heisenberg equations. As a result, in the theory of grav-
itation we obtain quantum microscopic Einstein equa-
tions and Lagrangian equations for the matter fields.
The term “microscopic” in this case means that the
energy–momentum tensor in Einstein’s equations is
clearly expressed in terms of the matter field (scalar,
vector, spinor, and so on), and the term “quantum”
means that all fields in the Einstein–Lagrange equa-
tions are quantized. In what follows we shall call the
collection of quantum microscopic equations of
motions and constraints in the Lagrangian form briefly
as the equations of motion.

The problem of ordering the operator fields in the
equations of motion cannot be solved on the basis of
such a general analysis. Apparently, this problem is due
to the problem of the consistency of the theory, and it
can be solved together with a development of an effec-
tive computational scheme.

We now average the equations of motion relative to
the gauge degrees of freedom. In order to be able to use
Eqs. (22) in the equations of motion within the averag-
ing symbol

(24)

the collection of operators {an, } in the braces in
Eq. (24) must be normal-ordered. Since the field Φ(x)

[or gµν(x)] is a series in the field (x) and its deriva-
tives [see Eq. (20)], as a result of such ordering sums of
the form

(25)

and so on arise. In sums (25) the index n, enumerating
the gauge degrees of freedom, runs through all its val-
ues. It is very important that the physical quantities do
not depend on the gauge degrees of freedom. Conse-
quently, regularization with respect to the gauge
degrees of freedom is not required. This means that in
sums (25) summation indeed extends over all n. There-
fore, the sums in Eq. (25) are proportional to integrals
of the form

(26)

where D is the dimension of space-time, and P(|k |, ki)
are polynomials with positive powers of |k | and ki, and

0〈 | Rµν
1
2
---gµνR–

8πG

c4
-----------Tµν–

 
 
 

0| 〉 0=

an
†

φ||
1( )

φ||n x( )φ||n* x( ), φ||n x( ),µφ||n* x( ),
n

∑
n

∑

d D 1–( )k
k

-----------------P k ki,( ),∫
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the polynomials in Eq. (26) include, generally speak-
ing, a polynomial of zero degree

P0(|k |, ki) ≡ 1.

Indeed, let us consider the field

(27)

which is the first term in the expansion of field (8) in

terms of the operators {AN, , an, }. In the theory
of gravitation the first term in the expansion of the met-
ric tensor with respect to the Planck scale according to
Eq. (40) plays the role of field (27). This field is a
bosonic massless tensor field in curved space-time, and
its kinetic energy has the usual structure for bosonic
fields, being a second-order differential operator. Con-
sequently, the quantization procedure, leading to the
expansion of field (27) in terms of the modes {φN(x), φ||n},
in the dimensional sense is identical to the quantization
procedure in scalar field theory. As is well known, in
the theory of a massless scalar field in Minkowski space
the modes satisfy the formula

φk(x) ∝  |k |–1/2exp(ik · x).

Since the curvature of space-time plays no role here, it is
evident that sums (25) have the form of integrals (26).

In the method of dimensional regularization all inte-
grals (26) and thereby all sums (25) vanish for D > 2,
i.e., in all theories of gravitation in space-time with
dimension greater than 2. This result means that in all
theories of gravitation, except for two-dimensional the-

ories, all operators an and  in Eq. (24), even before
being normal-ordered, can be replaced by the numbers
zn and , respectively, after which the averaging oper-
ation in Eq. (24) can be dropped. In two-dimensional
generally covariant theories more direct calculations
are required when working with gauge degrees of free-
dom. Fortunately, this is possible (see [7]) because of
the kinematic simplicity of two-dimensional theories.

We underscore that the sums of the form

which arise when ordering the operators AN and  in
Eq. (24), cannot be dropped, since these sums are reg-
ularized. The physically measured quantities include
the indicated regularized sums, giving the quantum cor-
rections. These quantum corrections arise as a result of
normal ordering of the operators describing the physi-
cal degrees of freedom. In this manner, Dirac [9] calcu-
lated precisely the contribution to the anomalous mag-
netic moment of the electron and the Lamb shift of the
electron levels in the hydrogen atom.

h x( ) ANφN x( ) AN
† φN* x( )+( ) φ||

1( ) x( ),+
N

∑=

AN
† an

†

an
†

zn*

φN x( )φN* x( )
N N0<
∑

AN
†
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The coefficient functions of the matter fields [e.g.,
ψΝ(x) in Eq. (9)] also depend on the gauge degrees of

freedom {an, }. The latter can be replaced within the

averaging symbol in Eq. (24) by the numbers {zn, }.
The basis for such a substitution and the resulting lim-
itation on the dimension of space-time remain the
same.

Now we can greatly supplement our system of axi-
oms by the following supposition: field (23) is used in
axioms 3–5, i.e., the quantized field, averaged with
respect to the gauge degrees of freedom. The fields
Φ(cl)(x), φN(x), ψN(x), and so on satisfy certain equations
which can be obtained uniquely from the Lagrangian
equations of motion, if the expansion of the field Φ(x)
in form (23) is substituted into them and then, after nor-

mal ordering of the operators {AN, }, the coeffi-
cients of the various powers of the generators of the

Heisenberg algebra {AN, } are equated to zero. As a
result of the indicated normal ordering, a relation arises
between the higher order coefficient functions and the
lower order coefficient functions in expansion (23). We
obtain an infinite chain of equations for the coefficient
functions {Φ(cl)(x), φN(x), ψN(x), …}.

The latter conjecture can be introduced with the aid
of the following axiom, replacing axiom 5.

Axiom 5'. The equations of motion for the quantized
fields (23), to within the ordering of the quantized
fields, have the same form as the corresponding classi-
cal equations of motion.

We note that according to axiom 5' the dynamics of
the gauge degrees of freedom in a real theory of gravi-
tation is always semiclassical. At the intuitive level this
conjecture can be justified by the fact that for the gauge
degrees of freedom there is no potential, and their
dynamics are similar to that of a free particle. It is easy
to see that the latter becomes classical as time elapses.
Indeed, let x and p be Heisenberg coordinate and
momentum operators of a free nonrelativistic particle
with mass m. Then

p = p0, x = x0 + t,

where t is the time, and x0 and p0 are constant operators,
satisfying the commutation relation [x0, p0] = i". It is
obvious that if 〈p0〉  ≠ 0, then as t  ∞

which means that the dynamics of the free particle is
semiclassical.

The system of axioms 3, 4, and 5' gives a definition
of the quantized variant of the given generally covariant
theory.

an
†

zn*

AN
†

AN
†

p0

m
-----

x〈 〉 p〈 〉
| x p,[ ]〈 〉 ]
----------------------- ∞,
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We note once again that such a general analysis does
not solve the problem of the ordering of operator fields
in the equations of motion.

4. DYNAMICAL QUANTIZATION OF GRAVITY

We shall now apply the quantization scheme devel-
oped above to the theory of gravitation. Let us consider
the theory of gravitation with a Λ term, where the grav-
itation interacts in a minimal manner with the Dirac
field. The action of such a theory has the form

(28)

Here { } is an orthonormalized basis, gµν is the metric
tensor, and ηab = diag(1, –1, –1, –1), so that

the 2-form of the curvature is given by

where the 1-form  = dxµ is the connectivity in

the orthonormalized basis { }. The spinor covariant
derivative is given by the formula

γa are the Dirac matrices:

γaγb + γbγa = 2ηab.

Since the Planck constant is assumed to be 1, the
parameter lP is the Planck scale.

We shall write out the equations of motion for sys-
tem (28). Varying action (28) relative to the connectiv-
ity gives the equation

(29)

In deriving the last equation, we employed the equality

(30)

Here εabcd is the absolutely antisymmetric tensor, where
ε0123 = 1. The right-hand side of Eq. (29) is the torsion
tensor. We can see that including into the theory a Dirac
field results in the appearance of torsion.

S
1

lP
2

---- d4x g– R 2Λ+( )∫–=

+ d4x g–∫ i
2
---ea

µ ψγa$µψ $µψγaψ–( ) mψψ–
 
 
 

.

ea
µ

gµνea
µeb

ν ηab, R ea
µeb

νRµν
ab ,= =

dωab ωc
a ∧ ωcb+

1
2
---Rµν

ab dxµ ∧ dxν,=

ωb
a ωbµ

a

ea
µ

$µψ
xµ∂
∂ 1

2
---ωabµσab+ 

  ψ,=

σab 1
4
--- γa γb,[ ] ,=

∇ µeν
a ∇ νeµ

a–
1
4
---lP

2 εbcd
a eµ

b eν
c ψγ5γdψ Tµν

a .≡–=

γaσbc σbcγa+ iεabcdγ5γd.–=
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We note that torsion (29) possesses the property

(31)

Consequently, even though torsion exists in the theory
being considered, the torsion tensor is not present in the
Dirac theory:

(32)

Varying action (28) with respect to the orthonormal-
ized basis gives the Einstein equation, which we write
in the form

(33)

Here the expression in braces is (Tµν – (1/2)gµνT),
where Tµν is the energy–momentum tensor on the mass
shell [i.e., taking account of the equations of motion of
matter—in our case, the Dirac equation (31)].

Equations (29), (30), and (33), together with the
relations

form a complete system of classical equations of
motion and constraints for system (28).

We now represent the field as a sum of classical and
quantum components:

(34)

We assume that the fermionic field has no classical
component, so that

(35)

where the Fermi creation and annihilation operators
satisfy the following anticommutation relations (as
usual, only the nonzero relations are written out):

(36)

The complete orthonormal set of fermionic modes

{ (x)} can be naturally determined as follows. We
denote by Σ(3) the spacelike hypersurface, defined by

the equation t = const, and by  the hypersurface at
t = t0. Let the metric in space-time be given by means

of the tensor gµν. This metric induces a metric on ,

Tµν
ν ea

νTµν
a 0.≡ ≡

iea
µγa$µ m–( )ψ 0.=

Rµν Λgµν+
1
2
---lP

2 i
2
--- ψγcec $(µ ν )ψ(





=

– ec(µ$ν )ψγcψ) 1
2
---mψψgµν





.–

gµν ηabeµ
a eν

b , ea
µeµ

b δa
b= =

gµν g cl( )µν hµν, eµ
a+ e cl( )µ

a f µ
a .+= =

ψ x( ) BNψN
+( ) x( ) CN

† ψN
–( ) x( )+( ) …,+

N NF<
∑=

BM BN
†,{ } CM CN

†,{ } δM N, .= =

ψN
±( )

Σ0
3( )

Σ0
3( )
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which in the local coordinates xi, i = 1, 2, 3, is repre-
sented by the metric tensor 3gij. Using the equations

the connectivity (without torsion) in local coordinate

 and a spin connectivity  are determined on

. For a Dirac single-particle Hamiltonian we have

It is easy to check that in the metric

(37)

the operator *$ is self-conjugate. Consequently, the

solution of the problem for the eigenvalues on 

(38)

has a complete set of orthonormalized modes in metric
(37). The index 0 everywhere means that in the corre-
sponding quantity the fields are taken in the zero
approximation with respect to quantum fluctuations.

We note that a one-to-one relation can be estab-
lished between the positive- and negative-frequency
modes by means of the equation

We call attention to the fact that the scalar product

(39)

is not always the same as the scalar product (37). These
scalar products coincide, if the path function N = 1,
which happens, for example, for the metric

The scalar product (39) has the advantage over the sca-

lar product (37) that if the modes { (x)} satisfy the
Dirac equation in the zero approximation with respect
to quantum fluctuations (which, according to the expo-

g3
i j k, γik

l g3
lj γ jk

l g3
il, γij

k+ γ ji
k ,= =

g3
ij e3 α

i e3 α
j , e3 α

i e3 i
β

α 1=

3

∑– δαβ,= =

∂i e3 i
α γki

j e3 k
α ω3

αβi e3 j
β+ + 0,=

ω3
αβi ω3

βα i–=

γ jk
i ω3

αβi

Σ0
3( )

*$ i e3 i
ααα ∂i

1
2
--- ω3

βγi
1
4
--- αβ αγ,[ ]+ 

  mγ0,+–=

αβ γ0γβ.=

ψM ψN,〈 〉 d3x g3– ψM
† ψN

Σ0
3( )

∫=

Σ0
3( )

*$
0( )ψN

±( ) x( ) εNψN
±( ) x( ), εN 0,>±=

γ0γ5ψM
+( ) ψM

–( ).=

ψM ψN,( ) d3x g 0( )– ψM
† ψN

Σ 3( )

∫=

g0i
0( ) 0, g00

0( ) 1.= =

ψN
±( )
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sition below, does indeed happen), then the scalar prod-
uct (39) is conserved in time.

The field hµν in Eq. (34) can be expanded as follows:

(40)

In Eqs. (34), (35), and (40) the c-number coefficient

fields , g(cl) µν, hN µν, and so on can be expanded in
powers of the Planck scale, for example,

.

Since fields (40) are real, we have

(41)

The operators {AN, } satisfy the Bose commutation
relations (31). A method for choosing the set of func-
tions {hN µν} will be discussed below.

According to the dynamical quantization scheme,
we must substitute fields (34), (35), and (40) into
Eqs. (29) and (32), (33), after which the operators

{AN, } must be normal-ordered and all coefficients
of the various powers of these operators and the Planck
scale must be set equal to zero.

Thus, we obtain the first of these equations:

(42)

Here and below all raising and lowering of indices are

done with the tensors  and g(0)µν. Thus, in the lowest
approximation the fields satisfy the classical equations
of motion. In the zeroth approximation we also have a
series of equations for the fermionic modes:

(43)

hµν lP hN Aµν N hN* A†
µν N+( )

N N0<
∑=

+ lP
2 hN1 N2, Aµν N1

AN2
(

N1 N2, N0<
∑





+ hN1 N2
* A†

µν N1
AN2

† hN1 N2
A†

µν N1
AN2

)+

+ hN1 N2 µν
F ++( ) BN1

† BN2
hN2 N1 µν

F ––( ) CN1

†
CN2

+(
N1 N2, NF<

∑

+ hN1 N2 µν
F + –( ) BN1

† CN2

† hN1 N2 µν
F + –( )* CN2

BN1
)+




….+

ψN
±( )

g cl( ) µν gµν
0( ) lp

2 g cl( ) µν
2( ) …+ +=

hN1 N2 µν hN2 N1 µν, hN1 N2 µν* hN2 N1 µν,= =

hN2 N1 µν
F ++( )* hN1 N2 µν

F ++( ) , hN2 N1 µν
F ––( )* hN1 N2 µν

F ––( ) .= =

AN
+

AN
+

∇ µ
0( )eν

0( )a ∇ ν
0( )eµ

0( )a– 0, Rµν
0( ) Λgµν

0( )+ 0.= =

gµν
0( )

iea
0( )µγa$µ

0( )
m–( )ψN

±( ) 0.=
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We now introduce the notation

(44)

(45)

It is easily checked that

where (h, h) is a quadratic form of the tensor
field hλρ, which can be constructed in terms of the sec-
ond variation of Rµν relative to the metric tensor at the

point . We write out the complete form:

Thus, (h, h') is a symmetric bilinear form with

respect to its arguments hµν and , which in what fol-
lows are operator fields (40). Thus, here the problem of
ordering the operator fields to lowest order has been
solved.

Now we can write out the following relations, which
follow from the exact quantum equations with the
expansion indicated above. To first order in lP we have

(46)

We note that, using Eqs. (42), the operator (44) van-
ishes on the quantity (ξµ ;ν + ξν ;µ). Consequently, the
value of the operator (44) on the fields hµν and

(47)

coincide for any vector field ξµ. This fact is a conse-
quence of the gauge invariance of the theory. Using the

Kµν
0( )λρ 1

2
--- ∇ σ

0( )∇ 0( )σδµ
λδν

ρ– Rµν
0( )λρ Rν

0( )ρδµ
λ+–=

+ ∇ µ
0( ) ∇ 0( )λδν

ρ 1
2
--- ∇ ν

0( )g 0( )λρ– 
 

+ µ ν[ ] 2Λδ(µ
λ δν)

ρ ,+

Rµν
0( ) 2( ) h h',( )

1
2
--- Rµν

0( ) 2( ) h h'+ h h'+,( )[=

– Rµν
0( ) 2( ) h h,( ) Rµν

0( ) 2( ) h' h',( ) ] .–

1
2
---Kµν

0( )λρ δ Rµν Λgµν+( )
δgλρ

-----------------------------------
gµν gµν

0( )=

,=

Rµν
0( ) 2( )

gµν
0( )

Rµν
0( ) 2( ) h h,( )

1
2
--- hλ

ρhρ; µ
λ( ) ν;=

–
1
2
--- hσ

λ hµ; ν
σ hν ; µ

σ hµν
;σ–+( )[ ] λ;

+
1
4
---hλ ; ρ

λ hµ; ν
ρ hν ; µ

ρ hµν
;ρ–+( )

–
1
4
--- hρ; ν

λ hν ; ρ
λ hνρ

λ;–+( ) hµ; λ
ρ hλ ; µ

ρ
hµλ

;ρ–+( ).

Rµν
0( ) 2( )

hλρ'

1
2
---Kµν

0( )λρhNλρ 0.=

hµν' hµν ξµ ;ν ξν  ;µ+ +=
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indicated gauge invariance, any solution of Eq. (46) can
be put into the form

(48)

In what follows, we shall assume that the field satisfies
the gauge condition (48), which is convenient in a num-
ber of problems. It is obvious that taking account of the
gauge condition (48) the term in parentheses in opera-
tor (44) vanishes.

To clarify the question of the normalization of the
gravitational modes, we shall employ the following
technique. The equation of motion (46) can be obtained
with the action

(49)

Hence follows the canonically-conjugate momentum
for the field hµν and the one-time commutation rela-
tions:

(50)

Evidently, in Eq. (50) the fields are free of constraints
(48). We represent the field hµν in the form [compare
with the first term in Eq. (40)]

(51)

The set of operators {AN, } forms a Heisenberg
algebra (1), and the functions {hN µν} satisfy Eqs. (46).
Equations (50) and (51) lead to the following relations
which reflect the orthonormal nature of the set of the
modes:

(52)

In the latter equations the integration extends over any
spacelike hypersurface Σ(3). As a result of Eqs. (46),
integrals (52) indeed do not depend on the hypersur-
face. It is natural to assume that the gravitational modes
satisfy conditions (52). The significance of Eq. (52) is
that renormalization of the coefficient functions in
expansion (40) is given with its help.

In second order in lP , we obtain the following equa-
tions:

(53)

(54)

∇ ν
0( )hµ

ν 1
2
--- ∇ µ

0( )hν
ν– 0.=

S 2( ) d4x g 0( )– hµνKµν
0( )λρhλρ.∫=
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λ δν)

ρ δ 3( ) x y–( ).=

hµν x( ) hNµν x( )AN hNµν* x( )AN
†+( ).

N

∑=

AN
†

i d3x g 0( )– hM
µν*∇ 0( )0hN  µν[

Σ 3( )

∫

– ∇ 0( )0hM
µν*( )hN  µν ] δM N, .=

1
2
---Kµν

0( )λρhN1 N2 λρ Rµν
0( ) 2( )– hN1

hN2
,( ),=

1
2
---Kµν

0( )λρhN1 N2 λρ 2Rµν
0( ) 2( ) hN1

* hN2
,( ),–=
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(55)

(56)

(57)

It is evident from Eq. (29) that torsion appears in the

same order (~ ). Here, however, we do not write out
the corresponding corrections for the connectivity.

We shall now briefly summarize the results
obtained.

According to the dynamical method, the quantiza-
tion of gravity starts with finding a solution of the clas-
sical microscopic field equations of motion (for exam-
ple, the solutions of Eqs. (42) in the example consid-
ered above). The classical solution is determined by (or
determines) the topology of space-time. Then, using
the classical approach, Eqs. (43) and (46), which deter-

mine the single-particle modes { , hN µν}, are
solved. To solve Eq. (46) the gauge must be fixed, since
the operator (44) is degenerate because of the gauge
invariance of the theory. At the first step these modes
are determined in the zeroth approximation according
to the Planck scale, and their normalization is fixed
using Eqs. (39) and (52). Given the set of modes

{ , hN µν}, we can explicitly write out the right-hand
sides of Eqs. (53)–(57) and then solve them for the two-
particle modes , , and so on, and find

the correction  which is of second order in lP to
the classical component of the metric tensor. We call
attention to the fact that the right-hand side of Eq. (57)
arises because the operators must be normal-ordered.
The solution of Eq. (57) can be interpreted as a single-
loop contribution to the average of the metric tensor
with respect to the ground state.

We note that if a nonsymmetric bilinear form were
used on the right-hand sides of Eqs. (53)–(57), then the
condition that the metric tensor be real would be vio-
lated. Consequently, the condition that the metric ten-
sor is real determines the ordering of the operator fields
in the equations of motion at least in second order with
respect to the operator fields.

1
2
---Kµν

0( )λρhN1 N2 λρ
F ±±( ) i

4
--- ψN1

±( )γcec(µ
0( ) $ν)

0( )ψN2

±( )(±=

– ec(µ
0( ) $ν)

0( )ψN1

±( )γcψN2

±( ) ),

1
2
---Kµν

0( )λρhN1 N2λρ
F +–( ) i

4
--- ψN1

+( )γcec(µ
0( ) $ν)

0( )ψN2

–( )(=

– ec(µ
0( ) $ν)

0( )ψN1

+( )γcψN2

–( ) ),

1
2
---Kµν

0( )λρg cl( )λρ
2( ) Rµν

0( ) 2( ) hN* hN,( )
N N0<
∑–=

+
i
4
--- ψN

–( )γcec(µ
0( ) $ν)

0( )ψN
–( )(

N NF<
∑

– ec(µ
0( ) $ν)

0( )ψN
–( )γcψN

–( ) ).

lP
2

ψN
±( )

ψN
±( )

hN1 N2 µν hN1 N2 µν

g cl( ) µν
2( )
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It is important that all Eqs. (42), (46), and so on
which arise are generally covariant, since they are
expansions of generally covariant equations. Thus, the
method of dynamical quantization leads to a regular-
ized gauge-invariant theory of gravitation, which con-
tains an arbitrary number of physical degrees of free-
dom.

We shall now make a remark about the compatibil-
ity of Eqs. (53)–(57) and the analogous equations aris-
ing in higher orders. Let hµν be an arbitrary symmetric
tensor field and K(0) the operator (44), acting on this
vector field. It is easily verified that, using Eqs. (42), we
obtain the identity (compare with Eq. (48))

Consequently, in order for Eqs. (53)–(57) to be compat-
ible the right-hand sides of these equations must satisfy
the same identity. It is easy to see that this is indeed the
case. Indeed, Eqs. (53)–(56) are identical to the analo-
gous classical equations arising when nonuniform
modes (higher order harmonics) and the subsequent
expansion of the classical Einstein equation in powers
of the nonlinearity or the Planck length are added to the
uniform fields. Hence it follows that each term on the
right-hand sides of the “loop” equations of the type (57)
likewise satisfy the necessary identity, since these
terms have the same form as the right-hand sides of the
“nonloop” Eqs.(53)–(56).

We also call attention to the fact that in the method
of dynamical quantization it is implicitly assumed that
the quantum anomaly is absent in the algebra of the
operators of the constraints of the first kind. Conse-
quently, the method of dynamical quantization must be
justified in each specific case by concrete calculations,
which must be not only mathematically correct but also
physically meaningful.

5. ON THE PROBLEM OF DECOHERENCE
IN QUANTUM COSMOLOGY

We shall now show how the problem of decoherence
in quantum cosmology in a model of the inflating uni-
verse can be solved on the basis of the method of
dynamical quantization. The solution proposed here is,
in the opinion of the present author, quite simple and
natural.

We shall briefly formulate the problem of decoher-
ence in quantum cosmology (see [10–15] and refer-
ences therein).

In Friedmann type models it is natural to take the
scale factor of the universe a as the time parameter.
According to all present experimental data the quantum
fluctuations of a are not observed because they are
small. This can be easily explained if there existed an
external (with respect to the universe) observer who
would perform an experiment as a result of which the
wave function of the universe would be reduced to a

∇ ν
0( ) K 0( )h( )µ

ν 1
2
--- ∇ µ

0( ) K 0( )h( )ν
ν

– 0.=
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state in which the scale factor has a definite value.
However, in quantum cosmology the observer is always
part of the system and consequently the explanation
presented above is not acceptable.

At the present time another idea is generally
accepted. According to this idea, nonuniform quantum
fluctuations lead to decoherence of the density matrix
describing the homogeneous degree of freedom—the
scale factor. The meaning of this assertion is as follows.
Let us consider the density matrix of the universe and
calculate its trace with respect to all nonuniform
degrees of freedom. This gives a density matrix ρ(a, a')
for the scale factor. Qualitative considerations lead to
the following form for this matrix:

ρ(a, a') ~ ρ(a – a'). (58)

The latter formula means that there is no coherence
(decoherence) for the scale factor a. In other words,
interference of various values of a does not appear in
any measurement.

However, concrete calculations performed in the
single-loop approximation encounter serious difficul-
ties associated with the ultraviolet divergences of the
theory. These difficulties were overcome in [13, 14]. It
was found that conventional regularization itself leads
to a physically meaningless result. To obtain a physi-
cally acceptable result, additional nonlocal transforma-
tions of the fields, which possess a completely different
character for bosonic and fermionic fields, are required.
In addition, the question of the divergences in the cal-
culations in higher order groups remains open. It is
obvious that this question cannot be solved without
constructing a systematic quantum theory of gravita-
tion or including the theory of gravitation in a more
fundamental theory, for example, string theory.

We shall show at a qualitative level how the problem
of decoherence can be solved on the basis of the
method of dynamical quantization in a model of an
inflating universe. The solution proposed here remains
valid when higher order corrections with respect to the
Planck scale are taken into account.

First we note that the qualitative arguments in [10]
which lead to Eq. (58) in our case indeed make sense,
since their validity is implicitly based on the assump-
tion that the number of nonuniform modes, though
large, is finite. This situation occurs in the method of
dynamical quantization.

We shall briefly reproduce the arguments presented
in [10]. We denote by {a, xN} the complete set of com-
muting variables, where a is the scale factor (59) and xN

are the degrees of freedom of the nonuniform modes. In
the single-loop approximation (which corresponds to
taking into account only the “single-particle” modes
gN ij and ψN) the wave function has the form

Ψ a j; xN{ } Ψ0 a( ) f N a xN,( ).
N N0<
∑=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Here Ψ0(a) is the wave function of the minisuperspatial
model. According to Hartle and Hawking for small a

where (xN) is the wave function of the ground state
of the corresponding degree of freedom for small a. By
definition the density matrix (58) is obtained using the
following integral:

(*)

We shall estimate the integral (*) using the single inte-
grals

which are equal to 1 for small a, a' but decrease rapidly
in modulus with increasing a, a', remaining equal to 1
only for a = a'. Consequently, for increasing a and a' ≠ a

Thus, we arrive at the formula (58). It is important in
this argument that although N0 is large, it is still finite.

We shall now show how the decoherence problem
can be solved on the basis of the method of dynamical
quantization.

As is well known, the spatially uniform solution of
Eq. (42) has the form

(59)

Here  is a positive-definite metric on the sphere 

with radius H–1 in some coordinates and x0 = t. The tilde
denotes the corresponding quantities on the sphere

. The solution (59) describes a universe in the infla-

tion stage. We write out the nonzero components of the
connectivity:

(60)

Hence we have for the components of the Riemann and
Ricci tensors

(61)

f N a xN,( ) f N
0( ) xN( ),=

f N
0( )

ρ a a',( ) Ψ0 a( )Ψ0* a'( )=

× xN f N a xN,( ) f N* a' xN,( ).d∫
N N0<
∏

ρN a a',( ) xN f N a xN,( ) f N* a' xN,( ),d∫=

ρN a a',( ) 0, N0 ∞.
N N0<
∏

g00
0( ) 1, g0i

0( ) 0, gij
0( ) a2 t( )g̃ij,–= = =

a t( ) Ht, H2cosh
1
3
---Λ .= =

g̃ij S
H

1–
3

S
H

1–
3

Γ ij
0( )0 aȧg̃ij, Γ0 j

0( )i ȧ
a
---δj

i , Γ jk
0( )i Γ̃ i

jk.= = =

Rµνλρ
0( ) H2 gµλ

0( )gνρ
0( ) gµρ

0( )gνλ
0( )–( ),–=

Rµν
0( ) 3H2gµν

0( ).–=
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We also write out the formula

–g(0) = a6(t) , (62)

which follows from Eq. (59).

It follows from general considerations based on the
gauge invariance of the theory that at each point of
space (or for each “frequency”) only two independent
degrees of freedom of the field hµν (40) remain. It is
shown in the Appendix that gauge transformations can
be used to obtain

(63)

In this case and taking account of Eq. (61), Eq. (46)
becomes

(64)

The last equation can be rewritten, using Eqs. (59) and
(60), as

(65)

We note that the operator  leaves invariant the
space of vector fields {hN ij} satisfying Eqs. (63). This
means that

if the field hN ij satisfies Eqs. (63). In addition, the oper-

ator  is self-conjugate in the metric

(66)

where d  is an element of volume on the sphere .

Consequently, we choose as the set of functions {hN ij}'
the set of eigenfunctions, orthonormalized in the metric

(66), of the operator (– ) with bounded eigenval-
ues:

(67)

The fields hN ij in Eq. (67) satisfy Eqs. (63).

Let

(68)

Then we obtain, using Eq. (65), the estimate

(69)

g̃

hN  0µ 0, hN  i
i 0, ∇ j

0( )hN  i
j 0.= = =

∇ λ
0( )∇ 0( )λ 2H2+( )hN  ij 0.=

∇ 0
0( )( )2

hN  ij
1

Htcosh
2

-------------------- ∇̃ k ∇̃
k
hN  ij– 3H Htanh( )∇ 0hN  ij+

+ 2H2 1 Httanh
2

+( )hN  ij 0,=

∇ 0
0( )( )n

hN  ij a2

t∂
∂

 
 

n

a
2–
hN  ij( ), n 1 2 …., ,= =

∇̃ k ∇̃ k

g̃ij ∇̃ k ∇̃
k
hN  ij 0, ∇̃ j ∇̃ k ∇̃

k
hN  i

j 0,= =

∇̃ k ∇̃ k

Ṽ g̃ikg̃ jlhM  klhN  ij,d∫
Ṽ S

H
1–

3( )

∇̃ k ∇̃ k

∇̃ k ∇̃
k
hN  ij– ε̃NhN  ij, ε̃N ε̃0.<=

ε̃N  @ H Htcosh( )2
.

∇ 0
0( )hN  ij ε̃N Htcosh( ) 1– hN  ij.∼
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Since, according to Eq. (59),  ~ a–4hN ij, we obtain
using Eqs. (62), (69), and (52)

or

(70)

In the opposite case

(71)

we obtain using Eq. (65)

(72)

Hence, just as above, we find the estimate

(73)

Comparing estimates (70) and (73) shows that at the
time

the regime of temporal evolution of the corresponding
mode changes. This change of regime occurs because
for t < tN the wavelength of the mode hN ij is less than the
so-called event horizon, and the opposite situation
occurs for t > tN.

Indeed, the distances on the sphere , denoted by

, and on the hypersphere  (the section of the de
Sitter space with metric (59) at a fixed time t), denoted
as l(t), according to Eq. (59) are related by the relation

(74)

Consequently, the wavelength of the mode hN ij is of the
order of 

(75)

Hence one can see that Eq. (69) corresponds to

λN ! H–1, (76)

and Eq. (71) corresponds to

λN @ H–1. (77)

By definition, the distance l(t) between two points x1

and x2 on  is less than the event horizon Rc if the
light signal emitted at the point x1 reaches the point x2
some time in the future. According to Eq. (59) for prop-
agation of light

dt = a(t)d ,

hN
ij

ε̃N H 3– Htcosh( )
2–

hN  ij
2

1,∼

lp hN  ij ε̃N
1/4– lpH3/2 Ht.cosh∼

ε̃N  ! H Htcosh( )2

∇ 0
0( )hNij H hN  ij .∼

lp hN  ij l pH Htcosh .∼

H HtNcosh ε̃N∼

S
H

1–
3( )

l̃ Σt
3( )

l t( ) Htcosh( ) l̃ .=

λN Htcosh( )ε̃N
1/2– .∼

Σt
3( )

l̃
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and therefore

(78)

where t2 is the time when the signal reaches the point

x2, and  is the distance on  between x1 and x2.

Comparing Eq. (78) and Eq. (74) and letting t2 approach
infinity, we find

(79)

The meaning of the event horizon is that two points on
Σ(3) separated by a distance greater than Rc cannot
exchange any signals during the entire subsequent time.

Using Eqs. (39) and (59) it is easy to obtain the fol-
lowing estimate for fermionic modes:

(80)

Before estimating the role of quantum fluctuations,
we make the assumption

lpH  1, λmin ~ vlp, (81)

where λN > λmin is the minimum wavelength of the
modes under study in an epoch close to the time of
observation and v is a dimensionless number.

We now use the well-known formula

(82)

in the lowest approximation. The averaging in Eq. (82)
is performed with respect to a state close to the ground
state. In this case the inequality in Eq. (82) is close to
saturation and the left-hand side can be estimated by
estimating the right-hand side of this inequality. Using
Eq. (29), in the lowest approximation for quantum fluc-
tuations we obtain

(83)

To estimate the right-hand side in Eq. (83), this sum
must be divided into two terms.

The first term takes into account the infrared modes
(the index i) with wavelengths

(84)

and the second term takes account of the ultraviolet
modes (the index u) with wavelengths

vlp < λN u < H–1. (85)

l̃12
t'd

a t'( )
---------,

t1

t2

∫=

l̃ S
H

1–
3( )

Rc a t( ) t'd
a t'( )
---------

t

∞

∫ H 1– .∝ ∝

ψN H3/2 Htcosh( )
3/2–

.∝

!!

gij g cl( ) ij–( )2 x( )〈 〉 gkl g cl( ) kl–( )2 x'( )〈 〉[ ]
1/2

≥ 1
2
--- gij x( ) gkl x'( ),[ ]〈 〉

gij x( ) gkl x'( ),[ ] lp
2=

× hN  ij x( )hN  kl* x'( ) hN  ij* x( )hN  kl x'( )–[ ] .
N N0<
∑

H 1– λN  i H
1–

Ht,cosh< <
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Let the number of infrared and ultraviolet modes be,
respectively, of the order of Ni and Nu, and

Ni + Nu = N0 = const.

Then the sum on the right-hand side of Eq. (83) is rep-
resented as a sum of two terms of order

(86)

(87)

Here we employed estimates (73) and (79). Since

quantities (86) and (87), referred to the fourth power of
the scale factor a(t), are physically meaningful. We also
take account of the fact that the number of infrared
modes increases with time, so that (see Eq. (84))

(88)

Thus we find

(89)

(90)

In the latter formula the fact that

where  is the maximum eigenvalue of the modes hN  ij

[see Eq. (67)], was taken into account.
The estimates obtained lead to the following quali-

tative conclusion: in a model of the inflating universe
the value of the quantum fluctuations decreases expo-
nentially with increasing time. Conversely, as the
moment of creation of the universe is approached the
role of quantum fluctuations becomes determining.

Indeed, according to modern notions, at the de Sitter
stage

lPH ~ 10–4–10–12. (91)

Consequently, the infrared contribution to quantum
fluctuations is negligibly small at all stages of inflation.
The contribution of ultraviolet quantum fluctuations,
according to Eq. (90), decays exponentially with
increasing time, and vice versa.
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2 Ni lpH( )2 Ht,cosh∼ ∼
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∼ N0 Ni–( ) ε̃N
1/2–〈 〉 ulP
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2
.
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Ni
H 1– a t( )
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----------------- 
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APPENDIX

Using Eqs. (61), Eq. (46) becomes (the index N,
enumerating the modes, is dropped here)

(A.1)

Let ξµ be a vector field satisfying the equation

(A.2)

in all of space-time.
We obtain using Eqs. (48) and (A.2)

(A.3)

We now substitute into Eq. (A.1) with µ = ν = 0 the

expression for  from Eq. (A.2) and use

(A.4)

which is valid for any vector field ξµ. As a result, we
obtain

(A.5)

Finally, we substitute h0i from Eq. (A.2) into Eq. (A.1)
with µ = 0 and ν = i and use once again Eq. (A.4). We
obtain

(A.6)

Now, it is evident from Eqs. (A.3), (A.5), and (A.6) that
if

(A.7)

(A.8)

on some spacelike hypersurface , then Eqs. (A.7)
and (A.8) hold in all space-time. This can be attained by
making an appropriate choice of the vector field ξµ.
Indeed, using the shift

where the field ϕµ does not depend on x0, Eq. (A.2) can
be made to hold for all x0 and Eq. (A.7) can be made to

hold on the hypersurface . Indeed, using Eqs. (61),
(A.1), (A.2), (A.4), and (A.7) we obtain

∇ λ
0( )∇ 0( )λhµν– 2H2 gµν

0( )hλ
λ hµν–( )+ 0.=

h0µ' h0µ ∇ 0
0( )ξµ ∇ µ

0( )ξ0+ + 0= =

∇ 0
0( ) ∇ i

0( )ξ i 1
2
---hi

i+ 
  ∇ λ

0( )∇ 0( )λ 3H2–( )ξ0.–=

h0
0

∇ λ
0( )∇ 0( )λ ∇ µ

0( )ξν ∇ µ
0( )∇ λ

0( )∇ 0( )λξν=

+ 2H2gµν
0( )∇ 0( )λξλ 2H2∇ ν

0( )ξµ– 3H2∇ µ
0( )ξν,–

∇ 0
0( ) ∇ λ

0( )∇ 0( )λ 3H2–( )ξ0[ ]

=  2H2 ∇ i
0( )ξ i 1

2
---hi

i+ 
  .–

∇ 0
0( ) ∇ λ

0( )∇ 0( )λ 3H2–( )ξ i[ ]

=  ∇ i
0( ) ∇ λ

0( )∇ 0( )λ 3H2–( )ξ0[ ] .–

∇ λ
0( )∇ 0( )λ 3H2–( )ξµ 0,=

∇ i
0( )ξ i 1

2
---hi

i+ 0=

Σ0
3( )

ξµ ξµ ϕµ,+

Σ0
3( )

∇ j
0( )∇ 0( ) j 2H2–( ) ∇ i

0( )ξ i 1
2
---hi

i+ 
  0,=
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which is valid on . Hence follows the validity of

Eq. (A.8) on the hypersurface .

Let us consider the transformed field

(A.9)

If the field hµν satisfies Eqs. (A.1) and (48), then as a
result of Eq. (A.7) the field  also satisfies these
equations. In addition, according to Eqs. (A.2) and
(A.8)

(A.10)

Thus, the compatibility of Eqs. (63) and (64) has been
established.
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Abstract—We perform the dual transformation of the Yang–Mills theory in three dimensions using the Wilson
action on the cubic lattice. The dual lattice is made of tetrahedra triangulating a 3-dimensional curved manifold
but which is embedded into a flat 6-dimensional space [for the SU(2) gauge group]. In the continuum limit, the
theory can be reformulated in terms of 6-component gauge-invariant scalar fields having the meaning of the
external coordinates of the dual lattice sites. These 6-component fields induce a metric and a curvature of the
3-dimensional dual-color space. The Yang–Mills theory can also be rewritten as a quantum gravity theory with
the Einstein–Hilbert action but with a purely imaginary Newton constant plus a homogeneous “ether” term. The
theory can be formulated in a gauge-invariant and local form without explicit color degrees of freedom. © 2000
MAIK “Nauka/Interperiodica”.
1. LATTICE PARTITION FUNCTION
Although our objective is the continuum theory, we

start by formulating the SU(Nc) gauge theory on a cubic
lattice. The partition function can be written as an inte-
gral over all link variables, which are SU(Nc) unitary
matrices U, with the action given by the sum over all
plaquettes:

(1)

where β is the dimensionless inverse coupling. The uni-
tary matrix Uplaq is a product of four-link unitary matri-
ces closing a plaquette.

To go to the continuum limit, one writes

where a is the lattice spacing and

is the Yang–Mills gauge potential, with ta being the
gauge group generators normalized to

one then expands TrUplaq in the lattice spacing a. For a
plaquette lying in the (12) plane, the result is

(2)

] β( ) U link
β TrUplaq c.c.+( )

2Tr1
----------------------------------------

plaquettes

∑ 
 
 

,expd
links

∏∫=

U link iaAµ
a ta( ),exp=

Aµ
a ta Aµ=

Trtatb δab/2;=

β
TrUplaq c.c.+

2Tr1
------------------------------- β 1 a4TrF12

2

2Tr1
-------------– O a6( )+ 

  ,=
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1063-7761/00/9105- $20.00 © 20873
where

is the Yang–Mills field strength. Summing over all
plaquettes, one obtains the partition function of the
continuum theory,

(3)

with the obvious relation

, (4)

between the dimensionless lattice coupling β and the

SU(Nc) gauge coupling constant in d dimensions .

In this paper, we concentrate on the Euclidean
SU(2) Yang–Mills theory in three dimensions. In this
case, Eq. (4) becomes

(5)

The continuum limit of the 3-dimensional Yang–
Mills theory given by partition function (1) is obtained
if one takes the lattice spacing a  0 and β  ∞
with their product

kept fixed. This quantity provides the theory with a
mass scale. It is widely believed (although not proven

Fµν ∂µAν ∂ν Aµ– i AµAν[ ]–=

]cont DAµ
1

2gd
2

--------– ddxTrFµν
2∫ 

  ,exp∫=

β
2Nc

a4 d– gd
2

----------------=

gd
2

β 4

ag3
2

--------.=

g3
2 4

aβ
------=
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so far) that the theory possesses two fundamental prop-
erties: (1) the average of a large Wilson loop has an area

behavior with the string tension proportional to  and
(2) correlation functions of local operators similar to

 decay exponentially at large separations, with a

“mass gap” proportional to .

Our aim is to rewrite partition function (1) in dual
variables and to study its continuum limit.

2. THE DUALITY TRANSFORMATION

The general idea is to integrate over the link vari-
ables Ulink in Eq. (1) and to make a Fourier transforma-
tion in the plaquette variables Uplaq. This is done in sev-
eral steps, i.e., one in each subsection.

2.1. Inserting a Unity into the Partition Function

First of all, we need to explicitly introduce the inte-
gration over unitary matrices assigned to the plaquettes,
Uplaq. This is done by inserting a unity for each
plaquette into the partition function (1),

(6)

where U1…4 are the link variables closing into a given
plaquette. The δ-function is understood with the group-
invariant Haar measure. The realization of such a
δ-function is given by the Wigner D-functions:

(7)

This equation is known as the completeness condition
for the D-functions [1]. The main properties of the
D-functions used in this paper are listed in Appendix A.

Equation (7) should be understood as follows: if one
multiplies the right-hand side of Eq. (7) with any func-
tion of the unitary matrix U and integrates over the
Haar measure dU, the same function of the argument V
is obtained:

(8)

Using the multiplication law for the D-functions (see
Appendix A, Eq. (A.3)), one can represent the unity to
be inserted for each plaquette in partition function (1)
as

(9)

g3
4

Fµν
2

g3
2

1 Uplaqδ Uplaq U1U2U3U4,( ),d∫
plaquettes

∏=

δ U V,( ) 2J 1+( )Dm1m2

J U†( )Dm2m1

J V( ).

J 0
1
2
--- 1

3
2
--- …, , , ,=

∑=

U f U( )δ U V,( )d∫ f V( ).=

1 Uplaq 2J 1+( )Dm1m2

J Uplaq
†( )Dm2m3

J U1( )
J

∑d∫=

× Dm3m4

J U2( )Dm4m5

J U3( )Dm5m1

J U4( ),
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where U1…4 are the corresponding link variables form-
ing the chosen plaquette.

2.2. Integrating over Plaquette Variables

Integrating over the plaquette unitary matrices Uplaq
now becomes very simple. For each plaquette of the lat-
tice, one has the factorized integrals of the type

(10)

where TJ(β) is the ratio of the modified Bessel func-
tions [2],

(11)

The quantity TJ(β) is the “Fourier transform” of the
Wilson action; because the dynamical variables have
the meaning of Euler angles and are therefore compact
in the lattice formulation, the Fourier transform
depends on discrete values J = 0, 1/2, 1, 3/2, …. How-
ever, as one approaches the continuum limit (β  ∞),
the essential values of the plaquette angular momenta

increase as J ~  and their discreteness becomes less
relevant. Strictly speaking, the continuum limit is
achieved at plaquette angular momenta J @ 1.

Here, we make a side remark on this occasion. For a
given β, the quantity TJ(β) gives the probability that the
plaquette momentum J is excited. For the typical value
(β = 2.6) used in lattice simulations (in 4 dimensions),
we find that the probabilities of having plaquette exci-
tations with J = 0, 1/2, 1, 3/2, and 2 are 56, 29, 11, 3,
and 1%, respectively. This means that lattice simula-
tions are actually dealing mainly with J = 0, 1/2, and 1
with a tiny admixture of higher excitations. It is impor-
tant to understand why and how continuum physics is
reproduced by lattice simulations with such small val-
ues of the plaquette momenta J involved.

Thus, we, obtain the partition function

(12)

where U1–4 are link variables forming a plaquette with
the angular momentum JP .

Uplaq β
TrUplaq TrUplaq

†+
2Tr1

---------------------------------------- 
  Dm1m2

J Uplaq
†( )expd∫

=  δm1m2

2
β
--- I1 β( )T J β( ),

T J β( )
I2J 1+ β( )

I1 β( )
------------------- 2J J 1+( )

β
----------------------–exp=

as β ∞.

β

]
2
β
--- I1 β( )

number of plaquettes

2JP 1+( )T JP
β( )

plaquettes

∏
JP

∑=

× UlDm1m2

JP U1( )Dm2m3

JP U2( )Dm3m4

JP U3( )Dm4m1

JP U4( ),d∫
links l

∏
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2.3. Integrating over Link Variables

It is difficult to integrate over link variables in Eq. (12)
because each link enters several plaquettes. In two
dimensions, every link is shared by two plaquettes;
hence, one has to calculate integrals of the type

(13)

for all links on the lattice. We consider this case in Sec-
tion 4.

In three dimensions, every link is shared by four
plaquettes; hence, the integral over link variables has
the form

, (14)

where JA, B, C, D are angular momenta associated with
four plaquettes intersecting at a given link U and m1–8
are “magnetic” quantum numbers that must be con-
tracted inside closed plaquettes. In four dimensions, six
plaquettes intersect at a given link; however, we do not
consider this case here.

The general strategy to calculate link integrals (14)
is (i) to separate four D-functions into two pairs accord-
ing to a certain rule and to decompose the pairs of
D-functions in terms of single D-functions using
Eq. (A.10), (ii) to integrate the resulting two D-func-
tions using Eq. (13), and (iii) to contract the “magnetic”
indices. Since all the “magnetic” indices are eventually
contracted, we arrive at the partition function written in
terms of the invariant 3nj symbols.

There are several different tactics for dividing four
D-functions into two pairs, eventually leading to any-
thing from 6j to 18j symbols. In this paper, we take the
route used in [3, 4], leading to a product of many 6j
symbols, although one loses certain symmetries on this
route, causing later difficulties. The gain, however, is
that it is easier to work with 6j symbols than with 12j or
18j symbols. Since important sign factors were omitted
in [3, 4] and only the final result was reported, we feel
it is necessary to give a detailed derivation in what fol-
lows.

In three dimensions, all plaquettes are shared by two
adjacent cubes; therefore, it is natural to divide all
cubes of the lattice into two classes, which we shall call
“even” and “odd,” and to attribute plaquettes to even
cubes only. We call a cube even if its front lower left
corner is a lattice site with even coordinates:

It is called odd otherwise. The even and odd cubes form
a 3-dimensional checker board, as illustrated in Fig. 1,
where only even cubes are drawn explicitly. The even
cubes touch each other through a common edge or link,
as do the odd ones among themselves. The even and
odd cubes have common faces or plaquettes. All
plaquettes are attributed to even cubes only: that is the

UDkl
J1 U( )Dmn

J2 U†( )d∫ 1
2J1 1+
-----------------δJ1 J2

δknδlm=

UDm1m2

JA U( )Dm3m4

JB U( )Dm5m6

JC U( )Dm7m8

JD U( )d∫

1–( )x y z+ + +1.=
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reason for the division of cubes into two classes. We
now consider an even cube (Fig. 2). In the figure
A, B, C, D, E, and F denote the six faces of the cube;
the numbers from 1 to 12 denote its links or edges; and
a, b, c, d, e, f, g, and h denote its 8 vertices or sites. Cor-
respondingly, we denote the plaquette angular
momenta by JA–F , the link variables by U1–12, and the
“magnetic” numbers of the D-functions carry indices
(a–h) referring to the sites connected by the D-func-
tions.

One can write the traces of products of four D-func-
tions over plaquettes in various ways. To be systematic,
we adhere to the following rule. Link variables in the
plaquette are taken in the counterclockwise order, as
viewed from the center of the even cube to which the
given plaquette belongs. If the link goes in the positive

Fig. 1. “Even” cubes in checker board order.
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Fig. 2. An elementary even cube.
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direction of the x-, y-, z-axes, we assign the U variable
to it; otherwise, we assign the U† variable to it.

With these rules, the six plaquettes of the elemen-
tary cube shown in Fig. 2 bring in the following six
traces of the D-function products:

(15)

Each link variable U1–12 appears in this product
twice: once as U and once as U†. For D(U†), we use
Eq. (A.5) to write it in terms of D(U). We can then
apply decomposition rule (A.10) to express pairs of
D-functions in terms of one D-function and two 3jm
symbols. The new D-functions correspond to the links
and carry the angular momenta denoted by j. The 3jm
symbols have “magnetic” indices that are contracted
when all the indices related to a given corner of the
cube are assembled together. Although straightforward,
this exercise is rather lengthy, and we relegate it to
Appendix B. As a result, we rewrite (15) as

(16)

Cube Diaib

JA U1( )Dibic

JA U2( )Dicid

JA U3
†( )Didia

JA U4
†( )[ ]=

× D jb ja

JB U1
†( )D ja je

JB U12( )D je j f

JB U5( )D j f jb

JB U9
†( )[ ]

× Dkckb

JC U2
†( )Dkbk f

JC U9( )Dk f kg

JC U6( )Dkgkc

JC U10
†( )[ ]

× Dldlc

JD U3( )Dlclg

JD U10( )Dlglh

JD U7
†( )Dlhld

JD U11
†( )[ ]

× Dmema

JE U12
†( )Dmamd

JE U4( )Dmdmh

JE U11( )Dmhme

JE U8
†( )[ ]

× Dn f ne

JF U5
†( )Dnenh

JF U8( )Dnhng

JF U7( )Dngn f

JF U6
†( )[ ] .

Cube 2 j1 1+( )… 2 j12 1+( )
j1… j12

∑=

× Doaob

j1 U1( )D pc pb–,–
j2 U2

†( )D qc– qd–,
j3 U3

†( )

× Drard

j4 U4( )D s f– se–,
j5 U5

†( )Dt f tg

j6 U6( )

× Duhug

j7 U7( )D v h– v e–,
js U8

†( )D w f– wb–,
j9 U9

†( )

× Dxcxg

j10 U10( )D yh– yd–,
j11 U11

†( )Dzaze

j12 U12( )

× j1 j4 j12

oa ra za 
 
  j1 j9 j2

o– b wb pb 
 
 

× j2 j3 j10

pc qc xc– 
 
  j4 j3 j11

r– d qd yd 
 
 

× j12 j8 j5

ze– v e se 
 
  j6 j5 j9

t– f s f w f 
 
 

× j6 j10 j7

tg xg ug 
 
  j7 j11 j8

u– h yh v h 
 
 
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where j1–12 are the angular momenta attached to the
links of the cube, (…) are the 3jm symbols, and {…}
are the 6j symbols. We see that a 6j symbol is attached
to each corner of the even cube; its arguments are three
plaquette momenta J and three link momenta j inter-
secting at a given corner. The 3jm symbols involve only
the link variables j.

We have, thus, rewritten all twelve pairs of DJ-func-
tions entering a cube as a product of single Dj-func-
tions, where j’s are the new momenta associated with
the links.

This procedure must be applied to all even cubes of
the lattice. As the result, one has only two Dj-functions
of the same link variable U for all links of the lattice,
which makes it straightforward to integrate over the
link variables using Eq. (13).

It is convenient to simultaneously integrate over six
links entering one lattice site, because this leads to the
full contraction over all the “magnetic” numbers. The
derivation is again straightforward but lengthy: the
details are given in Appendix C. The result is that the
3jm factors in Eq. (16) are contracted with analogous
3jm symbols arising from neighboring even cubes,
which gives 6j symbols attached to every lattice site
and that are composed of the six link momenta j inter-
secting at a given lattice site. In the notation of Fig. 3,
the result for the a and b vertices has the form

(17)

and the expressions for the other vertices are similar.
A sign factor (–1)2j must be attributed to every link of
the lattice. As shown in Appendix C, it is actually
equivalent to the sign factor (–1)2J attributed to every
lattice plaquette.

× j7 j11 j8

JE JF JD 
 
  j6 j10 j7

JD JF JC 
 
 

× j6 j5 j9

JB JC JF 
 
  j12 j8 j5

JF JB JE 
 
 

× j4 j3 j11

JD JE JA 
 
  j2 j3 j10

JD JC JA 
 
 

× j1 j9 j2

JC JA JB 
 
  j1 j4 j12

JE JB JA 
 
 

,

“a”
j1 j4 j12

j15 j14 j13 
 
 

,=

“b”
j1 j9 j2

j17 j18 j16 
 
 

,=
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3. LATTICE PARTITION FUNCTION 
AS A PRODUCT OF 6j SYMBOLS

We now summarize the recipe derived in the previ-
ous section. One first divides all 3-cubes into two
classes: even and odd. They form a 3-dimensional
checker board shown in Fig. 1. All even cubes are char-
acterized by their plaquette momenta J. The edges of
even cubes have link momenta j; each link is shared by
two even cubes.

To each of the eight corners of an even cube, one
assigns a 6j symbol of the type

(18)

where J’s are the plaquette and j’s are the link momenta
intersecting at a given corner of the cube. The rule is
that link 1 is perpendicular to plaquette A, link 2 is per-
pendicular to plaquette B, and link 3 is perpendicular to
plaquette C. Four triades—( j1JBJC), ( j2JAJC), ( j3JAJB),
and ( j1 j2 j3)—satisfy triangle inequalities.

To each lattice site, one assigns a 6j symbol of the
type

(19)

where j’s are the six link momenta entering the chosen
lattice site. The rule is that link 4 is a continuation of
link 1 lying in the same direction, link 5 is a continua-
tion of link 2, and link 6 is a continuation of link 3. Four
triades—( j1 j2 j3), ( j1 j5 j6), ( j2 j4 j6), and ( j3 j4 j5)—sat-
isfy triangle inequalities.

Actually, each lattice site has five 6j symbols asso-
ciated with it: four originate from the corners of the
even cubes adjacent to the site and are of type (18) and
one is of type (19).

The lattice partition function (1) or (12) can be iden-
tically rewritten as a product of the 6j symbols described
above. Independent summations over all possible
plaquette momenta J and all possible link momenta j
are understood. We write the partition function in a
symbolic form as

(20)

The plaquette weights TJ(β) are given by Eq. (11).
Apart from the sign factor, the essentially identical expres-

j1 j2 j3

JA JB JC 
 
 

,

j1 j2 j3

j4 j5 j6 
 
 

,

]
2
β
--- I1 β( )

number of plaquettes

=

× 2JP 1+( )T JP
β( ) 1–( )

2JP 2 jl 1+( )
links

∏
plaquettes

∏
JP jl,
∑

× j j j

J J J 
 
 

even cubes corners

∏ j j j

j j j 
 
 

.
lattice sites

∏
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sion was given in [3, 4].1 The sign factor is equal to ±1
if the total number of half-integer plaquettes J’s is even
(odd). Since plaquettes with half-integer momenta
form closed surfaces, it may seem that the sign factor
can be omitted. This is not so, however, in the general case
involving vacuum averages of operators; therefore, it is
preferable to keep the sign factor. It is also important for
getting a smooth continuum limit, see Section 10.

4. A SIMPLE EXAMPLE: 
THE d = 2 YANG–MILLS THEORY

In a simple case of the exactly soluble 2-dimen-
sional SU(2) theory, every link is shared by only two
plaquettes. Therefore, the link integration is of the type
given by Eq. (13): it requires that all plaquettes on the
lattice have identical momenta J. The partition function
thus becomes a single sum over the common J,

(21)

(the number of plaquettes being equal to V/a2), where V
is the full lattice volume (full area in this case) and a is
the lattice spacing.

A slightly less trivial exercise is to compute the
average of the Wilson loop. Let the Wilson loop be in

the representation js. This means that  must be
inserted for each link along the loop. The result is given
by integrals of two D-functions outside and inside the
loop; integrals of three D-functions, for the links along
the loop. The first integral says that all the plaquettes
outside the loop are equal to a common J. The second

1 We are grateful to P. Pobylitsa, who has independently derived
Eq. (20).

]
2
β
--- I1 β( )

number of plaquettes

=

× T J β( )[ ]number of plaquettes

J

∑

D
js U( )

2

34

5
6

78

9

10
11

12

16

15

14

18

17

I

II

V
VI

IV

III

h

g

c

f

d

e

a

b13

Fig. 3. Several cubes combine to produce 6j symbols com-
posed of link momenta j. These are the same cubes as in Fig. 1.
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integral says that all the plaquettes inside the loop are
equal to a common J'. The integrals along the loop
require that J, J', and js satisfy the triangle inequality.
Thus, we have the average of the Wilson loop of area S
given by

(22)

This is an exact expression for the lattice Wilson loop;
however, we wish to explore its continuum limit. In tak-
ing the continuum limit, we have V/a2  ∞ and
S/a2  ∞ but S ! V; we also have β  ∞ and a  0,

but βa2 = 4/  is fixed, where  is the physical coupling
constant with the dimension of mass squared, see Eq. (4).

In taking the V/a2  ∞ limit first, we see that only
the J = 0 term contributes to the sum, with T0(β) ≡ 1;
consequently, all momenta inside the loop are equal to
the source momentum: J ' = js. Taking the large-β
asymptotic form of TJ(β) into account, Eq. (11), we
obtain

(23)

W js
S( )〈 〉

=  

T J B( )[ ]V /a2 T J' β( )
T J β( )
-------------

S/a2

J' J js–=

J js+

∑
J

∑
T J β( )[ ]V /a2

J

∑
-------------------------------------------------------------------------------.

g2
2 g2

2

W js
S( )〈 〉 T js

β( )[ ]S/a2 g2
2

2
----- js js 1+( )S– ,exp= =
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Fig. 4. Tetrahedra corresponding to the 6j symbols sitting at
vertices (a) and (b).

Fig. 5. Octahedron dual to the even cube.
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which is, of course, the well-known area behavior of
the Wilson loop with the string tension proportional to
the Casimir eigenvalue.

5. THE DUAL LATTICE: TETRAHEDRA
AND OCTAHEDRA

We now turn to the construction of the dual lattice.
Each 6j symbol of the exact partition function (20)
encodes four triangle inequalities between the
plaquette J’s and the link j’s. It is therefore natural to
represent each 6j symbol by a tetrahedron such that the
lengths of its six edges are equal to the six momenta of
the 6j symbol. Four faces of the tetrahedron form four
triangles, and the triangle inequalities for the momenta
are therefore automatically satisfied.

We first consider the eight 6j symbols correspond-
ing to the eight corners of an even cube. These eight 6j
symbols are given explicitly in Eq. (16) with the nota-
tion shown in Fig. 2. We represent all of them by tetra-
hedra having edges of the appropriate lengths. For
example, the tetrahedra corresponding to the corners a
and b are shown in Fig. 4. We denote the plaquette
momenta JA, … by their Latin labels A, B, etc., and the
link momenta j1, j2, … by their numerical indices 1, 2,
etc. We notice immediately that the two tetrahedra have
a pair of equal faces; in this case, it is the triangle (A, B, 1).
Therefore, we can glue the two tetrahedra together such
that, this triangle becomes their common face. The gluing
can be done in two ways. To be systematic, we always
glue tetrahedra such that their volumes do not overlap.

Other tetrahedra are glued together in the same way.
Being glued together, the eight tetrahedra of the cube
form an octahedron shown in Fig. 5. Its center point O
is connected with six lines to the vertices denoted as A–F;
the lengths of these lines are equal to the corresponding
plaquette momenta JA–F. The lengths of the external
twelve edges of the octahedron are equal to the link
momenta j1–12. The eight faces of the octahedron corre-
spond to the eight vertices of the original even cube.
One can say that the octahedron is dual to the cube: the
faces become vertices and vice versa; the edges remain
edges.

It is clear that for generic J’s and j’s, the octahedron
cannot be placed into a flat 3-dimensional space.
Indeed, we have 6 + 12 = 18 given momenta (i.e., fixed
lengths) but only 7 points defining the octahedron,
including the center one. In three dimensions, this gives
21 degrees of freedom, from which we must subtract
3 + 3 to allow for rigid translations and rotations.
Therefore, we are left with only 15 degrees of freedom
instead of the required 18. (In four dimensions, the
arithmetic would match: 7 × 4 – 4 – 6 = 18.)

Each even cube of the original lattice has twelve
neighboring even cubes sharing edges with the first one
and with themselves. If we represent the neighboring
even cubes by their own dual octahedra, the octahedra
also share common edges. This network of octahedra
AND THEORETICAL PHYSICS      Vol. 91      No. 5      2000
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does not cover the space because there are holes
between them. However, we have not yet used the 6j
symbols (19) made solely from the link momenta j’s. If
we represent these 6j symbols by tetrahedra, their trian-
gle faces will coincide with the faces of the octahedra
corresponding to the even cubes adjacent to the site.
For example, if we consider the 6j symbols correspond-
ing to site a (see Fig. 3 and Eq. (17)),

it has a common triangle face ( j1, j4, j12) with the octa-
hedron shown in Fig. 5. The other faces of this tetrahe-
dron match the octahedra dual to cubes II, III, and IV
(see Fig. 3).

The octahedra corresponding to the cubes supple-
mented by the tetrahedra corresponding to the lattice
sites cover the space without holes and, therefore, serve
as a simplical triangulation (see Fig. 6).

An equivalent view on the dual lattice was proposed
in [3]. One can connect the centers of neighboring
cubes (both even and odd) and assign the plaquette
momenta J to these lines. The link momenta j are then
assigned to the diagonal lines connecting only neigh-
boring even sites of that dual lattice (see Fig. 7).

The dual lattice can be understood in two senses. On
the one hand, one can build a regular cubic dual lattice
with additional face diagonals, as shown in Figs. 6 and 7,
and assign J’s and j’s to its edges. On the other hand, since
the variables living on the links of the dual lattice are pos-
itive numbers, one can build a lattice with the lengths of
the edges equal to the appropriate angular momenta. We
always use the dual lattice in this second sense.

6. THE DUAL LATTICE COORDINATES 
AS NEW VARIABLES

In the previous section, we encountered a situation
where an octahedron that is dual to a cube does not fit
into a 3-dimensional flat space: at least four dimensions
were necessary. As one enlarges the triangulation com-
plex, more dimensions are needed to match the number
of the degrees of freedom. In the limiting case of an
infinite lattice, one needs 6 flat dimensions. This num-
ber of dimensions follows from the number of the
degrees of freedom involved: at each lattice site, there
are three plaquette momenta J and three link momenta
j, and there is a one-to-one correspondence between the
lattice sites and cubes.

Therefore, the dual lattice (understood in the second
sense, see above) spans a 3-dimensional manifold that
can be embedded into a 6-dimensional flat space. We
note that this is the maximum number of flat dimen-
sions needed to embed a general 3-dimensional Rie-
mannian manifold; it can be counted from the number
of components of the metric tensor, which is 6 in three

j1 j4 j12

j15 j14 j13 
 
 

,
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dimensions. Only very special configurations of J’s and j’s
can be embedded into a lower dimensional flat space.

We are primarily interested in the continuum limit
of the lattice theory, that is, in the case where a is small
and β is large. This implies that large angular momenta

J ~  are involved, and we can pass from the summa-
tion over J’s and j’s to the integration over these vari-
ables in the partition function (20). We replace

(24)

and for the summation over link momenta j as well.

The next step is to assign a 6-dimensional Lorentz
scalar field wα(x), α = 1, …, 6 to the centers of all cubes
of the original lattice (see Fig. 7). We call them the
coordinates of the dual lattice. They are scalars because

β

2J 1+( )… 2 J2…d

0

∞

∫
J 0 1/2 1 …, , ,=

∑

Fig. 6. A tetrahedron corresponding to the lattice site fits
precisely into a hole between four octahedra corresponding
to the four corners of the even cubes adjacent to the site
(shown in motion).

jxz

wα(x, y, z + a)

wα(x, y, z)

Jx

Jz

wα(x + a, y, z)

Fig. 7. Another view on the dual lattice.
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the cubes are scalars in three dimensions. The argument
of the six-component scalar field is the coordinate of
the center of the cube in question; however, we con-
sider wα(x) as continuous functions. Since six functions
depend on only three coordinates, there are three rela-
tions between wα(x) at any point; these relations define
a curved 3-dimensional manifold whose triangulation
is given by the set of J’s and j’s.

We next define 6-dimensional angular momenta as
the differences of wα(x) taken at the centers of neighbor
cubes,

(25)

and so on. By construction, the lengths of these 6-vec-
tors are the lengths of the edges of the dual lattice.

The six functions wα(x) can be called external coor-
dinates of the manifold; they induce the metric tensor
of the manifold given by

(26)

As is standard in differential geometry, one can define
the Christoffel symbol

(27)

and the Riemann tensor

(28)

The contravariant tensor is inverse to the covariant one,

(29)

and can be used to raise indices and to make contrac-
tions. The determinant of the metric tensor is

(30)

and the contravariant metric tensor is

(31)

Jx
α x

a
2
---+ y z, , 

  wα x a+ y z, ,( ) wα x y z, ,( )–=

=  a∂xw
a a2

2
-----∂x

2wα …,+ +

jxz
α x

a
2
---+ y z

a
2
---+, , 

  wα x a+ y z, ,( ) wα x y z a+, ,( )–=

=  a ∂x ∂z–( )wα O a2( ),+

gij x( ) ∂iw
α∂ jw

α .=

Γ i jk, x( )
1
2
--- ∂ jgik ∂kgij ∂ig jk–+( )=

=  ∂iw
α∂ j∂kw

α wi w jk⋅( )≡

Rijkl x( )
1
2
--- ∂ j∂kgil ∂i∂lg jk ∂ j∂lgik– ∂i∂kg jl–+( )=

+ Γm jk, Γ il
m Γm jl, Γ ik

m–

=  wik w jl⋅( ) gpq wp wik⋅( ) wq wil⋅( )–[ ] k l[ ] .–

gijg jk δk
i ,=

g detgij=

=  
1
3!
-----e

ijk
e

lmn wi wl⋅( ) w j wm⋅( ) wk wn⋅( ),

gij 1
2g
------e

ikl
e

jmn wk wm⋅( ) wl wn⋅( ).=
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In three dimensions, there is a useful identity for the
antisymmetrized product of two contravariant tensors:

(32)

The scalar curvature is obtained as the full contraction:

(33)

Recalling that wα is a 6-dimensional vector, we can
rewrite the scalar curvature in another form:

(34)

This form makes it clear that the scalar curvature van-
ishes if wα has only three nonzero components, which
corresponds to a flat 3-dimensional manifold.

Finally, we consider the Jacobian for the change of
integration variables from the set of the lengths of the

tetrahedra edges (  and  specified at all lattice sites)
to the external coordinates wα. In the continuum limit,
this Jacobian is quite simple. It is given by the determi-
nant of a 6 × 6 matrix composed of the second deriva-
tives:

(35)

Since  = , there are six independent second
derivatives. The Jacobian is zero in the degenerate case
where the triangulation by tetrahedra can be embedded
in less than 6 dimensions. 

7. CONTINUUM DUALITY TRANSFORMATION 
AND THE BIANCHI IDENTITY

At this point, it is instructive to compare the duality
transformation on the lattice with that in the continuum
theory. The continuum partition function (3) can be
written with the help of an additional Gaussian integra-

tion over the “dual field strength”  as

(36)

This representation is usually referred to as the first-
order formalism.

gikg jl gilg jk– e
jim

e
klngmn/g.=

R gikg jlRijkl
1
2
--- gikg jl gilg jk–( )Rijkl= =
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--------e
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αwi'
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βw j'
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γ'wlm
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2 ji
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∏ wα x( )Jac w( ),d
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Jac w( ) detwij
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wij
α w ji
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Jij
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] DJij
a DAi
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In the Abelian case, where the Ai commutator term
is absent, the integration over Ai results in the δ-func-
tion of the Bianchi identity:

(37)

Because of this identity, one can parametrize Jk = ∂kw
and obtain the partition function

(38)

It represents a theory of a free massless scalar field w.
This is in accordance with a 3D Abelian theory contain-
ing only one physical (transverse) polarization. It is
easy to check that gauge-invariant correlation functions
of field strengths coincide with those computed in the
original formulation.

In the non-Abelian case, the integration over  is
more complicated and there is no simple Bianchi iden-
tity for

However, one can formally perform the Gaussian inte-

gration over  [5] with the result

(39)

where )–1 is the inverse matrix,

(40)

We note that the second term in the exponent is purely
imaginary; the full partition function is real because for

each configuration , there exists a configuration

involving – (x), which adds a complex conjugate
expression.

We now turn to the discretized version of the dual
theory. As explained above, we need 6 flat dimensions
to embed the dual lattice, and we have introduced
6-dimensional momenta Jα [see Eq. (25)]. These
momenta obviously satisfy, e.g., the identity (see Fig. 7

∂iJij 0, or eijk∂iJk 0,= =

Jk
1
2
---eijk Jij.=

]Abel D∫ w x3 g3
2

2
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] DJi
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.=

Ji
a x( )

Ji
a
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for the notation)

(41)

as well as other components. This is nothing but a dis-
cretized version of the Bianchi identity:

(42)

Therefore, we recover the simple (flat) form of the
Bianchi identity for the dual field strength in 6 dimen-
sions. One can say that the complicated (nonlinear)
form of the usual non-Abelian Bianchi identity is the
result of projecting the flat Bianchi identity onto the
curved color space.

8. THE WILSON LOOP

In this section, we present the Wilson loop in the
representation js,

(43)

in terms of dual variables.
In terms of the original lattice, the Wilson loop cor-

responds to adding a product of the  functions to
all links along the loop, with a chain contraction of the
“magnetic” indices. Because of these insertions, the
links contained in the loop correspond to the integration
over three D-functions instead of two (as for all other
links). As the result, we obtain additional 3jm symbols
along the loop that combine into new 9j symbols
assigned to all lattice sites (see Appendix D). For exam-
ple, the 9j symbols assigned to vertices a and b are (see
Fig. 3 for notations)

(44)

The accompanying sign factors are given in Appendix D.
Six triades of the 9j symbols corresponding to all its
rows and columns satisfy the triangle inequalities.

Unlike the 6j symbol, the 9j symbol cannot be rep-
resented by a geometrical figure with the edges equal to
the 9j symbol entries. In addition, the link momenta
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W js

1
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----------------Tr Pexp i xiAi
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j2 j1 j9
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along the loop split into pairs: j1 and , j15 and , j17

and , and so on. The “primed” and “nonprimed”
angular momenta satisfy triangle inequalities, with the
source js being the third edge of the triangles. If js is an

integer, there always exists a contribution with  = j1

(and so on). If js is a half-integer, one necessarily has

 ≠ j1.

Thus, there appears to be a fundamental difference
between Wilson loops in integer and half-integer repre-
sentations. For integer representations, one can proceed
as in the vacuum case and parametrize the dual lattice
sites by the coordinates wα(x) related to angular
momenta through Eq. (25). In the half-integer case, one
cannot uniquely parametrize the dual lattice by the
coordinates wα(x). In the presence of a Wilson loop in a
half-integer representation, the dual space wα is not
simply connected: there is an infinitely thin cylindrical
“hole” in the dual space along the loop.

9. ASYMPTOTIC FORM OF THE 6j SYMBOLS

In the continuum limit as β  ∞ and J, j  ∞,
one can replace the 6j symbols by their asymptotic
forms. The asymptotic form was ingeniously guessed
in a seminal paper by Ponzano and Regge [6] and later
explicitly derived and improved by Schulten and Gor-
don [7]. The results of these works can be summarized
as follows.

First of all, one draws a tetrahedron with the edges
equal to jn + 1/2, where jn are the six momenta of a
given 6j symbol. It should be stressed that although
four momenta triades satisfy triangle inequalities, this
is not necessarily true for the same triades shifted by
1/2. In that case, the 6j symbol is said to be “classically
forbidden” and is exponentially suppressed at large jn.
If jn lie in the “classically allowed” region, the asymp-
totic form is given by the Ponzano–Regge formula

(45)

where V(j) is the 3-dimensional volume of the tetrahe-
dron and θn is the dihedral angle in the tetrahedron cor-
responding to the edge jn + 1/2. Since we are interested
in the large-jn limit, we systematically neglect the shifts
by 1/2. The tetrahedron volume can be found from the

j1' j15'

j17'

j1'

j1'

j1 j2 j3

j4 j5 j6 
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  1

12πV j( )
-------------------------=

× jn
1
2
---+ 

  θn
π
4
---+

n

∑ ,cos
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Cayley formula

(46)

The dihedral angle corresponding, for example, to the
edge j1 can be found from

(47)

where

(48)

is the area of the triangle built on the edges j1, 2, 3. The
dihedral angles are defined such that 0 ≤ θ ≤ π. Because
the 6-dimensional angular momenta jα defined in Sec-
tion 6 are such that their lengths are the edges of the tet-
rahedra, we can find the dihedral angles from simpler
formulas involving scalar products of momenta in the
6-dimensional space. For example, Eq. (47) can be
rewritten as

(49)

We note that the angle is defined to be equal to π (not
0!) when the two vectors—j2 and j6—coincide; it is zero
when they point in the opposite directions. We use this
formula in what follows.

10. THE ANGLE DEFECT

The Yang–Mills partition function (20) is a product
of many 6j symbols, for each of which we use the
asymptotic form (45) in approaching the continuum
limit. Each cosine can be written as a half-sum of expo-
nentials of an imaginary argument. Therefore, we must
consider the sum of products of many imaginary expo-
nents:

(50)

where Ωn denotes the cosine argument in Eq. (45) for the
nth 6j symbol and the sum runs over all signs en = ±1.

The expression in the exponent of Eq. (50) can be
rearranged as follows. We first pick one of the edges of
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the dual lattice, whose length is a link jl or a plaquette
JP , and combine all dihedral angles θn related to this
edge as coming from the nth tetrahedron. We then sum
over all edges of the dual lattice. Therefore, we can
write

(51)

As can be seen, e.g., from Fig. 7, each plaquette J enters
four tetrahedra; therefore, the corresponding sum over
n in Eq. (51) goes from 1 to 4. Each link j enters six tet-
rahedra, and in this case the sum is over six dihedral
angles θn( j) with the appropriate signs en.

We consider the contribution to Eq. (50) where all
signs en = +1, and we assume for a moment that the dual
lattice spans a 3-dimensional Euclidean manifold. The
sum of the dihedral angles about an edge is then equal
to 4π – 2π = 2π when summing over four tetrahedra and
equal to 6π – 2π = 4π when summing over six tetrahe-
dra. In the first case, we obtain

in the second case, we obtain

We note that the sign factor (–1)2J compensates exactly
the same factor in the partition function (20). We con-
clude that if the configuration of the momenta is “flat,”
there exists a contribution to the sum (50) that does not
oscillate with varying J’s and j’s. In fact, there are
exactly two such contributions corresponding to taking
all signs en = ±1 simultaneously. Contributions of any
other choice of the signs oscillate fast at large J’s and
j’s, and thus die out in the continuum limit.

A generic configuration of momenta cannot be
embedded into a flat 3-dimensional space. Therefore,
the sum of dihedral angles about the respective edges J
and j generally differs from 2π and 4π. These differ-
ences are sometimes called the angle deficiencies or
angle defects (we use the second term). We denote
them as

(52)

(53)

Our task is to identify those contributions to Eq. (50)
that survive the continuum limit in the general case
where the dual lattice is a curved 3-dimensional mani-
fold. To be more precise, we must consider the sum of
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all momenta on the lattice times their angle defects,

(54)

and to find the contribution of the order a3 to this expo-
nent, where a is the lattice spacing. The O(a3) order is
needed to compensate for the 1/a3 factor arising in
passing from the summation over the lattice sites to the
integration over the 3-dimensional space.

In the continuum limit, we assume that the momenta
are given by the gradients of a 6-component function
wα(x) having the meaning of 6-dimensional coordinates
of the dual lattice sites (see Eq. (25)). If we restrict our-
selves to the first terms in the gradient expansion in
Eq. (25), the momenta are expressed only through three
vectors: ∂xwα, ∂ywα, and ∂zwα. These vectors define a
flat 3-dimensional space; therefore, the angle defects Θ
are zero in the first-derivative approximation. To obtain
a nonzero angle defect, it is necessary to expand the
momenta in Eq. (25) up to the second derivatives of wα.
In what follows, we see that this is also sufficient in
three dimensions.

Since the angle defects Θ vanish if j’s are taken in
the first approximation of the gradient expansion, the
expansion of Θ's starts from linear terms in the lattice
spacing a. In accordance with Eq. (25), the expansion
of the momenta also starts from linear terms in a.
Therefore, one can expect that the expansion of the
exponent in Eq. (54) starts from O(a2) terms. If that
were so, the configuration would be too “ultraviolet”
and would not survive the continuum limit. Fortunately,
an exact cancellation of all O(a2) terms appears to
occur in the sum over several neighboring edges of the
dual lattice, and the exponent in Eq. (54) then proves to
be finite in the continuum limit.

We next embark on the rather tedious enterprise of
calculating the angle defects about six plaquette J’s
in a cube (each entering four tetrahedra) and about
twelve link j’s that are the edges of that cube (each
involved in six tetrahedra, see Section 5). Unfortu-
nately, this seems to be the smallest elementary group
that is repeated through the lattice. This means that we
must compute 6 × 4 + 12 × 6 = 96 dihedral angles,
expressing them through the first and second gradients
of the 6-component function wα using Eqs. (25) and
(49). This formidable calculation has been performed
by heavily exploiting Mathematica. The intermediate
results are very lengthy and we do not present them
here. However, the final result is beautiful. From a

i JPΘ JP( )
P

∑ jlΘ jl( )
l

∑+ ,exp
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direct calculation, we obtain

(55)

where g is the determinant of the induced metric tensor
given by Eq. (30) and R is the corresponding scalar cur-
vature given by Eq. (33). Actually, we obtain the
expression for the left-hand side of Eq. (55) in the form
of Eq. (33) (written in components, 384 terms!), in
which we recognize the scalar curvature.

In fact, this result is a concrete realization of a more
general theory developed many years ago by Regge [6,
8]. In these papers, it was shown that the left-hand side
of (55) must be equal to its right-hand side for any sim-
plicial triangulation, provided it has a smooth contin-
uum limit. However, no relation of the scalar curvature
R to any concrete triangulation was given. We feel that
it is the first time that this ingenious relation is derived
explicitly for a concrete triangulation, and the contin-
uum limit is shown to exist.

11. THE FULL PARTITION FUNCTION

Having dealt with the 6j symbols of partition func-
tion (20), we now turn to the weight factors TJ(β). For
large β and J, it follows from Eq. (11) that

(56)

where relation (5) between β and the physical coupling

constant  has been used together with the gradient
expansion for the angular momenta in Eq. (25). Com-
bining Eqs. (55) and (56) and using

we finally obtain the Yang–Mills partition function

(57)

The second term is the Einstein–Hilbert action with a
purely imaginary Newton constant; it is invariant under
global 6-dimensional rotations of the external coordi-
nates wα(x) and, more importantly, under local 3-
dimensional diffeomorphisms

wα(x)  wα(x'(x)).
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The first term in Eq. (57) can be viewed as a “mat-
ter” source,

(58)

with the stress-energy tensor T ij  = δij.
violating the invariance under diffeomorphisms. Since
it is homogeneous in space, it can be called the “ether.”

The functional measure in Eq. (57) arises from two
sources. One factor is the Jacobian for the change of
variables from the tetrahedra edges J’s and j’s to wα [see
Eq. (35)]. The other factor arises from the tetrahedra
volumes in the asymptotic form of the 6j symbols
(Eq. (45)). In the continuum limit, the tetrahedron vol-

ume can be written as V( j) ~ , and there are 5 tetra-
hedra per lattice site (see Section 3).

Once the partition function is written in covariant
terms, we can forget the origin of the external coordi-
nates wα (as the dual lattice coordinates) and consider
the metric tensor components gij as independent
dynamical variables that are integrated over in Eq. (57).
The Jacobian for this change of variables can easily be
worked out: in fact, it is the inverse of Jac(w) intro-
duced in Eq. (35). We thus obtain the integration mea-
sure for partition function (57) as

(59)

which would be the invariant measure in three dimen-
sions. We give an independent check of the power –5/4
in the next section. It any case, it is a local counterterm
not affecting the physics.

We stress that the partition function written in terms
of the metric tensor does not contain explicit color
degrees of freedom. Implicitly, however, the theory
does contain three gluons at short distances. This fol-
lows from a simple dimensional analysis of Eq. (57).

The dimension of the first term in (57) is ∂2w2 (we
are counting the number of derivatives and the overall
power of w); the dimension of the second term is ∂3w1.
At short distances, where quantum fluctuations of wα(x)
vary rapidly, the second term dominates the first one.
On the other hand, the second term is a fast-oscillating
functional at nonzero R. Therefore, the leading contri-
bution to the functional integral arises from zero-curva-
ture fluctuations of wα, that is, from the 3-dimensional
wα. Being inserted into the first term, the three compo-
nents of wα describe three massless scalar fields. These
fields correspond to three gluons of SU(2) with one
physical (transverse) polarization (which is similar to
Eq. (38) for free electrodynamics). This is the correct
result for the non-Abelian theory at short distances in
three dimensions.

At large distances or at low field momenta, on the
contrary, the first term is dominant because it has less
derivatives. It describes six (instead of three) massless

g3
2

2
----- x3 giid∫–

g3
2

2
----- x3 gTijgij,d∫–=

g

g

Dgijg
5/4– , instead of Dgijg

2– ,∫∫

g3
2
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scalar degrees of freedom. This is the correct number of
gauge-invariant degrees of freedom in the SU(2) the-
ory. However, the theory remains strongly nonlinear,
and it is not clear so far whether massless modes sur-
vive in the physical spectrum.

12. QUANTUM GRAVITY 
FROM THE FIRST-ORDER CONTINUUM 

FORMALISM

In this section, we give another derivation of parti-
tion function (57) directly in the continuum theory
starting from the first-order formalism (see Section 7).
We show that the two terms in the exponent of Eq. (36)
are in fact in a one-to-one correspondence with the two
terms in Eq. (57) and that the integration measure coin-
cides with that in Eq. (59).

Actually, in the previous section we saw that the first
terms in Eqs. (36) and (57) are equal to

(60)

We now derive a less trivial relation for the second
terms,

(61)

This derivation is done in two steps. We first show, fol-
lowing Witten [9], that the left-hand side of (61) can be
represented as a certain Chern–Simons term. Second,
we show that it is formally equal to the Einstein–Hil-
bert action. A subtle question about the integration
measure is discussed at the end of this section.

The left-hand side of (61) is obviously invariant
under ordinary gauge transformations

(62)

where

is the covariant derivative. Less evidently, it is also
invariant under the local transformation

(63)

S1

g3
2

2
----- x3 Ji

a( )2
d∫–=

=  
g3

2

2
----- x3 ∂iw

α∂iw
αd∫–

g3
2

2
----- x3 gii.d∫–=

S2
i
2
--- x3

e
ijk Ji

a ∂ j Ak
a ∂k A j

a– eabcA j
bAk

c+( )d∫=

=  
i
2
--- x3 gRd .∫

δAi
a ∂iδ

abωb– eabcω
bAi

c+ Di
ab A( )ωb,–= =

δJi
a

eabcω
bJi

c,=

Di
ab A( ) ∂iδ

ab
eabcAi

c+=

δJi
a ∂iρ

a– eabcρ
bAi

c, δAi
a+ 0.= =
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Indeed, after the integration by parts, the variation of
the action becomes

(64)

This variation vanishes owing to the Bianchi identity

 = 0.

The two transformations form a 6-parameter gauged
Poincaré group called ISO(3). We introduce three
“momentum” generators Pi and three “angular momen-
tum” generators Li satisfying the Poincaré algebra

(65)

We next introduce a 6-component vector field ,

(66)

Its gauge transformation has the standard form

(67)

Using Poincaré algebra (65), it is easy to verify that its
infinitesimal form coincides with Eqs. (62) and (63).

Because the left-hand side of Eq. (61) is invariant
under these 6-parameter transformations, it can be
rewritten in an explicitly ISO(3)-invariant form. For
this purpose, we note that the invariant tensor of this
group is

(68)

where each “1” is a unit 3 × 3 matrix. This matrix
defines the scalar product BαMαβCβ that is invariant
under global (x-independent) transformations (67).
Using this invariant tensor, we build a local gauge-
invariant action having the form of the Chern–Simons
term:

(69)

where  = –  are the ISO(3) structure constants.
Explicitly,

(70)

δS2
i
2
--- x3 ρa

eijkDi
ab A( )F jk

b ,d∫=

F jk
b ∂ j Ak

b ∂k A j
b– ebcd A j

cAk
d.+=

eijkDi
abF jk

b

Pa Pb,[ ] 0, La Lb,[ ] ieabcLc,= =

La Pb,[ ] ieabcPc.=

B̂i

B̂i Ji
aPa Ai

aLα Bi
αTα ,≡+=

Tα Pa, α a 1 2 3,, ,= =

La, α 3 a+ 4 5 6., ,= =



=

B̂i S 1– B̂iS iS 1– ∂iS,+

S iρaPa iωaLa+[ ] .exp=

Mαβ
0 1

1 0 
 
 

,=

S2
i
2
--- x3

e
ijkMαβBi

α ∂ jBk
β 1

3
---Fγδ

β B j
γBk

δ+ 
  ,d∫=

Fβγ
α Fγβ

α

Fbc
α 0, F3 b+ c,

a
eabc,= =

F3 b+ c,
3 a+ F3 b+ 3 c+,

a 0, F3 b+ 3 c+,
3 a+

eabc.= = =
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Using definition (66), it is easy to verify that Eq. (69)
coincides with the left-hand side of (61); however, it is
explicitly invariant under the 6-parameter gauge trans-
formation (67).

Equation (69) has the form of the Chern–Simons
term in the Yang–Mills theory. Although our derivation
above is for the gauge group SU(2), it can be easily
generalized to any Lie group: it suffices to replace the
SU(2) structure constants eabc with the structure con-
stants fabc of the gauge group under consideration. We
note in passing that in four dimensions, the mixed

 term of the first-order formalism also pos-
sesses an additional local symmetry. To unveil it, it is
sufficient to replace the scalar parameter ρa in the trans-

formation (63) by a 4-vector parameter : the invari-
ance again follows from the Bianchi identity, this time
in four dimensions.

The second step in the derivation is more standard.

We introduce the dreibein , a = 1, 2, 3 satisfying the

condition  = δab such that the metric tensor is rep-

resented as gij =  and the spin connection

(71)

We then identically rewrite  as

(72)

where

If we now identify the dreibein with the dual field

strength  =  and the connection with the Yang–

Mills potential  = , Eq. (72) takes exactly the
form of the left-hand side of (61). This parallel was first
noticed in [10].

Since the pure gravity action can be rewritten as the
Chern–Simons term in Eq. (69), it is actually a topolog-
ical field theory [9] with no real propagating particles.
It is the “ether” term that violates the invariance under
diffeomorphisms and restores the propagation of glu-
ons, as it should be in the Yang–Mills theory (see the
end of the previous section).

Finally, we remark that the integration measure (59)
could be anticipated from the first-order formalism as

well. Indeed, integrating over  in Eq. (39), we obtain

iJµν
a Fµν

a A( )

ρµ
a

ei
a

ei
aebi

ei
ae j

a

ωi
ab 1

2
---eak ∂iek

b ∂kei
b–( )=

–
1
2
---ebk ∂iek

a ∂kei
a–( ) 1

2
---eakeblei

c ∂kel
c ∂lek

c–( ).–

gR

gR
1
2
---e

ijkei
a ∂ jωk

a ∂kωj
a– eabcωj

bωk
c+( ),=

ωai ωi
a 1

2
---eabcωi

bc.= =

ei
a Ji

a

ωi
a Ai

a

Ai
a
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Eq. (40), with the integration measure over the dreibein
being

The Jacobian for the change of variables from the
dreibein to the metric tensor is

Adding the powers, we obtain

as in Eq. (59).

13. CONCLUSIONS AND AN OUTLOOK

We have studied the dual transformation of the
SU(2) Yang–Mills theory in 3 dimensions, from both
the continuum and lattice points of view.

On the lattice, one can introduce dual variables that
are the angular momenta of the plaquettes (J’s) and of
the links (j’s). The partition function can be rewritten as
a product of 6j symbols made of those angular
momenta. A Wilson loop is described by replacing the
6j symbols along the loop with a product of 9j symbols.
One can construct a dual lattice made of tetrahedra
whose edges have the lengths equal to J’s and j’s; the
tetrahedra span a curved 3D manifold that can be
embedded into a flat 6D space.

In the continuum limit, the angular momenta are
large and we have introduced continuum 6D Euclidean
external coordinates wα(x) to describe the curved dual
space. The Bianchi condition for the Yang–Mills field
strength has been shown to be trivially soluble in six
flat dimensions.

At large angular momenta, one can use the asymp-
totic form of the 6j symbols given by Ponzano and
Regge. Using a specific simplicial triangulation of the
dual space (as dictated by the original lattice), we have
shown that the product of 6j symbols does have a
smooth continuum limit that appears to be the Ein-
stein–Hilbert action, with the metric tensor gij and the
scalar curvature R being expressed through the flat
external coordinates wα(x). Although this result cannot
be considered as particularly new (it is the cornerstone
of the Regge’s simplicial gravity), it is to the best of our
knowledge the first time that this result has been explic-
itly derived from a concrete triangulation of the curved
space and the continuum limit is shown to exist. We
have also found the integration measure for the contin-
uum limit.

The continuum Yang–Mills partition function can
be rewritten as a quantum gravity theory but with an
“ether” term violating the invariance with respect to the
general coordinate transformations (diffeomorphisms).
This term, however, revives gluons at short distances, in

detJ( ) 3/2– g 3/4– .∼

dei
a dgijg

1/2– .∼

3
4
---– 1

2
---–

5
4
---,–=
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contrast to the topological pure gravity theory, where
no particles propagate.

The presentation of the Yang–Mills theory in the
quantum gravity form (57) is explicitly color gauge–
invariant because the metric tensor of the dual space is
color-neutral. Thus, we have formulated the Yang–
Mills theory solely in terms of colorless “glueball”
degrees of freedom.2 It turns out to be an interacting
theory of six massless scalar fields. Nevertheless, it cor-
rectly reproduces the propagation of gluons at small
distances. At the moment, it is not clear to us how to
proceed best in order to reveal its large-distance behav-
ior. We now discuss several possibilities.

One possibility is to exploit the fact that the pure
quantum gravity theory is topological and, therefore,
essentially a free theory. One can try to make a pertur-

bative expansion in  about it.

Another possibility is to use the Chern–Simons term
(69), obtained from integrating over heavy fermions, in
this case belonging to some ISO(3) representation. The
subsequent integration over the bosonic fields Ai and Ji

is trivial because there is no kinetic energy term for
these fields: the result would be a local four-fermion
theory with infinitely heavy fermions; it might be solu-
ble, at least, in the large-Nc limit.

Probably the most promising possibility is to pursue
the analogy with quantum gravity and corresponding
methods. One can average Eq. (57) over 3D diffeomor-
phisms: the second term is invariant, while the first term
is not. Integrating the first term over diffeomorphisms
produces a diffeomorphism-invariant effective action con-
taining growing powers of the curvature. The effective
action may lead to a nonzero vacuum expectation value of
the scalar curvature, thereby yielding a mass gap for the
diffeomorphism–non-invariant correlation functions, for

example, the correlation functions of .

There are several other tasks for the future lying on
the surface. First, it would be interesting to generalize
the present approach to color groups other than SU(2).
In view of the sad fact that the theory of the “6j sym-
bols” for higher Lie groups is not sufficiently devel-
oped, it will probably be difficult to make a straightfor-
ward generalization of the lattice formulation. A more
promising approach would be to start from the first-
order formalism, in particular, because the wide local
symmetry revealed in Section 12 can be directly gener-
alized to any Lie group. Second, it would be interesting
to make a transformation similar to the one considered
in this paper in d = 4. The lattice 6j symbols have been
known for a while in this case [4] [for the SU(2) color];
however, it again seems that the first-order formalism is
more promising due to the additional gauge symmetry
noticed in Section 12.

2 A somewhat similar line was developed in [11] for the 3 + 1
dimensional Yang–Mills theory in the Hamiltonian approach; see
also [12].

g3
2

Fµν
2

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
ACKNOWLEDGMENTS

We are grateful to Pavel Pobylitsa for many fruitful
discussions. D.I. Diakonov acknowledges the very use-
ful conversation with Ben Mottelson. V.Yu. Petrov is
grateful to NORDITA for the hospitality extended to
him in Copenhagen, in particular, for the partial support
by a Nordic Project grant. The work was supported in
part by the Russian Foundation for Basic Research
(project no. 97-27-15L).

APPENDIX A

D-FUNCTIONS, 3jm, 6j, AND 9j SYMBOLS

The Wigner D-functions are eigenfunctions of the
square of the angular momentum operator (for exam-
ple, written in terms of three Euler angles α, β, and γ):

(A.1)

These functions can be referred to as the eigenfunctions
of a spherical top; they are (2J + 1)2-fold degenerate.
The “magnetic” quantum numbers m and n have the
meaning of the projections of the angular momentum
of the spherical top on the third axis in the “body-fixed”
and “lab” frames. One can parametrize a 2 × 2 unitary
matrix by Euler angles as

(A.2)

It is convenient to use the unitary matrix U as a formal
argument of the D-functions. Their main properties are
as follows. 

(1) Multiplication law:

(A.3)

(2) unitarity:

(A.4)

(3) phase condition:

(A.5)

(4) orthogonality and normalization:

(A.6)

with the integration taken over the Haar measure,

(A.7)

J2Dmn
J α β γ, ,( ) J J 1+( )Dmn

J α β γ, ,( ),=

J 0
1
2
--- 1

3
2
---…, J m n J .≤,≤–, , ,=

U iατ3/2( ) iβτ2/2( ) iγτ3/2( ).expexpexp=

Dkl
J U1U2( ) Dkm

J U1( )Dml
J U2( )=

summation over repeated indices understood( );

Dkl
J U†( ) Dlk

J U( )( )∗=

“*” denotes complex conjugation( );

Dlk
J U( )( )∗ 1–( )l k– D l– k–,

J U( ),=

Dkl
J 1( ) δkl

2J 1+( );=

UDkl
J1 U†( )Dmn

J2 U( )d∫ 1
2J1 1+
-----------------δJ1 J2

δknδlm,=

U…d∫ SU( )…d∫ US( )…,d∫= =

Ud∫ 1;=
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(5) completeness (with the δ-function understood in
the Haar measure sense):

(A.8)

(6) matrix element:

(A.9)

where (…) denote 3jm symbols;

(7) decomposition of a direct product of irreducible
representations,

(A.10)

The last two factors can be replaced by 
using Eq. (A.5).

The 3jm symbols are symmetric under cyclic per-
mutations of the columns. An interchange of two col-
umns gives a sign factor:

(A.11)

If one changes the signs of all the “magnetic” quantum
numbers or projections, the 3jm symbol also acquires a
sign factor:

(A.12)

A “practical” definition of the 6j symbol {…} is via the
contraction over projections in three 3jm symbols:

(A.13)

The summation over the projections k, l, and m is such
that p = m – l, q = k – m, and r = l – k are kept fixed. 

δ U V,( ) 2J 1+( )Dkl
J U†( )Dlk

J V( );
J

∑=

UDa1b1

J1 U( )Da2b2

J2 U( )Da3b3

J3 U( )d∫
=  

J1 J2 J3

a1 a2 a3 
 
  J1 J2 J3

b1 b2 b3 
 
 

,

Da1b1

J1 U( )Da2b2

J2 U( ) 2J 1+( ) J J1 J2

c– a1 a2 
 
 

J

∑=

× J J1 J2

d– b1 b2 
 
 

1–( )d c– Dcd
J U( ).

D d– c–,
J U†( )

j1 j2 j3

k l m 
 
 

1–( )
j1 j2 j3+ + j2 j1 j3

l k m 
 
 

, etc.=

j1 j2 j3

k l m 
 
 

1–( )
j1 j2 j3+ + j1 j2 j3

k– l– m– 
 
 

.=

1–( )
j4 k– j5 l– j6 m–+ + j5 j1 j6

l p m– 
 
  j6 j2 j4

m q k– 
 
 

klm

∑

× j4 j3 j5

k r l– 
 
  j1 j2 j3

p– q– r– 
 
  j1 j2 j3

j4 j5 j6 
 
 

.=
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Another definition of the 6j symbol is via the full
contraction of projections in four 3jm symbols:

(A.14)

Since the three j’s of any 3jm symbol satisfy the triangle
inequalities, e.g.,

the following four triades of the 6j symbols must satisfy
the triangle inequalities: ( j1 j2 j3), ( j1 j5 j6), ( j2 j4 j6), and
( j3 j4 j5); otherwise, the 6j symbol is zero.

The 6j symbols are symmetric under the permuta-
tion of any two columns and under a simultaneous
interchange of the upper and lower arguments in any
two columns, e.g.,

(A.15)

The full contraction of six 3jm symbols yields a 9j symbol,

(A.16)

The 9j symbol is symmetric under the transposition and
under even permutations of rows and columns; under
odd permutations, it acquires the sign factor

. As follows from the definition, six
momenta triades corresponding to the rows and col-
umns of the 9j symbol satisfy triangle inequalities.

A convenient reference book on D-functions, 3jm,
and 6j and 9j symbols is [1], from which we have bor-
rowed the definitions.

APPENDIX B

6j SYMBOLS IN AN “EVEN” CUBE

In this Appendix, we decompose the DJ-functions
of two plaquettes into a sum of single Dj-functions
labelled by the link angular momenta j. We then assem-
ble the arising 3jm symbols into 6j symbols attached to

1–( )
j4 n j5 o j6 p+ + + + + j1 j2 j3

k l m 
 
  j1 j5 j6

k o p– 
 
 

klmnop

∑

× j4 j2 j6

n– l p 
 
  j4 j5 j3

n o– m 
 
  j1 j2 j3

j4 j5 j6 
 
 

.=

j1 j2– j3 j1 j2, etc.,+≤ ≤

j1 j2 j3

j4 j5 j6 
 
  j1 j3 j2

j4 j6 j5 
 
 

=

=  
j4 j2 j6

j1 j5 j3 
 
 

, etc.

j1 j2 j3

k l m 
 
  j4 j5 j6

n o p 
 
  j7 j8 j9

q r s 
 
  j1 j4 j7

k n q 
 
 

∑

× j2 j5 j8

l o r 
 
  j3 j6 j9

m p s 
 
  j1 j2 j3

j4 j5 j6

j7 j8 j9 
 
 
 
 

.=

1–( )
j1 … j9+ +
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the corners of the even cubes. The notation is given in
Fig. 2.

We find it convenient (although not necessary) to
write the decomposition for the pairs containing
U1, 4, 12, 6, 7, 10 (these links are at the lower left and upper
right corners of the cube) in terms of D(U); the rest, in
terms of D(U†).

Using Eq. (A.10) of Appendix A, we obtain

(B.1)

Diaib

JA U1( )D jb ja

JB U1
†( ) 1–( )

ja jb–
2 j1 1+( )

j1

∑=

× j1 JA JB

oa– ia ja– 
 
  j1 JA JB

ob– ib jb– 
 
 

1–( )
ob oa–

Doaob

j1 U1( ),

Dibic

JA U2( )Dkbkc

JC U2
†( ) 1–( )

kb kc–
2 j2 1+( )

j2

∑=

× j2 JA JC

pb– ib kb– 
 
  j2 JA JC

pc– ic kc– 
 
 

D pc– pb–,
j2 U2

†( ),

Dldlc

JD U3( )Dicid

JA U3
†( ) 1–( )

id ic–
2 j3 1+( )

j3

∑=

× j3 JD JA

qd– ld id– 
 
  j3 JD JA

qc– lc ic– 
 
 

D qc– qd–,
j3 U3

†( ),

Dmamd

JE U4( )Didia

JA U4
†( ) 1–( )

ia id–
2 j4 1+( )

j4

∑=

× j4 JE JA

ra– ma ia– 
 
  j4 JE JA

rd– md id– 
 
 

1–( )
rd ra–

Drard

j4

U4( ),

D je j f

JB U5( )Dn f ne

JF U5
†( ) 1–( )

ne n f–
2 j5 1+( )

j5

∑=

× j5 JB JF

se– je ne– 
 
  j5 JB JF

s f– j f n f– 
 
 

D s f– se–,
j5 U5

†( ),

Dk f kg

JC U6( )Dngh f

JF U6
†( ) 1–( )

n f ng–
2 j6 1+( )

j6

∑=

× j6 JC JF

t f– k f n f– 
 
  j6 JC JF

tg– kg ng– 
 
 

1–( )
tg t f–

Dt f tg

j6

U6( ),

Dnhng

JF U7( )Dlglh

JD U7
†( ) 1–( )

lh lg–
2 j7 1+( )

j7

∑=
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We now combine the 3jm symbols related to the same
vertices (they are marked by the appropriate indices of
the projections a, b, c, d, e, f, g, h): three 3jm symbols
for each vertex together with the appropriate sign fac-
tors. The three 3jm symbols per vertex combine into 6j
symbols, one for each vertex of the cube.

Vertex a. Related to vertex a are the factors

× j7 JF JD

uh– nh lh– 
 
  j7 JF JD

ug– ng lg– 
 
 

1–( )
ug uh–

Duhug

j7

U7( ),

Dnenh

JF U8( )Dmhme

JE U8
†( ) 1–( )

me mh–
2 j8 1+( )

j8

∑=

× j8 JF JE

v e– ne me– 
 
  j8 JF JE

v h– nh mh– 
 
 

D v h– v– e,
j8 U8

†( ),

Dkbk f

JC U9( )D j f jb

JB U9
†( ) 1–( )

jb j f–
2 j9 1+( )

j9

∑=

× j9 JC JB

wb– kb jb– 
 
  j9 JC JB

w f– k f j f– 
 
 

D w f– wb–,
j9 U9

†( ),

Dlclg

JD U10( )Dkgkc

JC U10
†( ) 1–( )

kc kg–
2 j10 1+( )

j10

∑=

× j10 JD JC

xc– lc kc– 
 
  j10 JD JC

xg– lg kg– 
 
 

1–( )
xg xc–

Dxcxg

j10

U10( ),

Dmdmh

JE U11( )Dlhld

JD U11
†( ) 1–( )

ld lh–
2 j11 1+( )

j11

∑=

× j11 JE JD

yd– md ld– 
 
  j11 JE JD

yh– mh lh– 
 
 

D yh– yd–,
j11 U11( ),

D ja je

JB U12( )Dmema

JE U12
†( ) 1–( )

ma me–
2 j12 1+( )

j12

∑=

× j12 JB JE

za– ja ma– 
 
  j12 JB JE

ze– je me– 
 
 

1–( )
ze za–

Dzaze

j12

U12( ).

1–( )
ia ja ma oa– ra– za–+ + j1 JA JB

oa– ia ja– 
 
 

ia ja ma, ,
∑

× j4 JE JA

ra– ma ia– 
 
  j12 JB JE

za– ja ma– 
 
 
SICS      Vol. 91      No. 5      2000
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(we use oa + ra + za = 0, make cyclic permutations in all
the 3jm symbols, and change the summation indices as
i, j, m  –i, –j, –m)

(B.2)

In the last transformation, we used the definition of the
6j symbol, Eq. (A.13).

Vertex b. Related to vertex b are the factors

(we interchange the first two columns in the first 3jm
symbol and change the signs of all its projections,
which does not change the sign of the 3jm symbols; we
then make cyclic permutations of the last two 3jm sym-
bols and change the summation indices as i, j, k  −i,
–j, –k)

(B.3)

In each case, we combine the three 3jm symbols and the
sign factors such that they suit the definition of the 6j
symbol given in Appendix A, Eq. (A.13).

An important property of the sign factors is as fol-
lows: if j1, JA, and JB enter the same 3jm symbol, there
is the equality

(B.4)

where all signs can occur. This is because there are
either zero or two half-integer momenta among the
three momenta. Another important property is that if

=  1–( )
ia– ja– ma– JB j1 JA

ja oa– ia– 
 
 

ia ja ma, ,
∑

× JA j4 JE

ia ra– ma– 
 
  JE j12 JB

ma za– ja– 
 
 

=  1–( )
JA– JB– JE– j1 j4 j12

oa ra za 
 
  j1 j4 j12

JE JB JA 
 
 

.

1–( )
ob kb+

ob ib jb–=
j1 JA JB

o– b ib jb– 
 
 

ib jb kb, ,
∑

× j2 JA JC

pb ib kb– 
 
  j9 JC JB

w– b kb jb– 
 
 

=  1–( ) i– j k–+ insert 1 1–( )
2JB 2 j–

=[ ]
i j k, ,
∑

× JA j1 JB

i ob j– 
 
  JB j4 JC

j wb– k– 
 
  JC j9 JA

k pb– i– 
 
 

=  1–( )
JB JA– JC– j1 j9 j2

ob– wb pb 
 
  j1 j9 j2

JC JA JB 
 
 

.

1–( )
2 j1 2JA 2JB±±±

1,=
JOURNAL OF EXPERIMENTAL 
the momentum J enters a certain 3jm symbol and m is
its projection, then

This is because J and m are either integer or half-inte-
ger, but simultaneously.

In what follows, we list the expressions for other
vertices of the cube without a detailed derivation
(which is quite similar to the derivations given above).

Vertex c.

(B.5)

Vertex d.

(B.6)

Vertex e.

(B.7)

Vertex f.

(B.8)

Vertex g.

(B.9)

Vertex h.

(B.10)

Combining all these factors, we obtain Eq. (16) corre-
sponding to the cube.

APPENDIX C

6j SYMBOLS AT THE LATTICE SITES

In this Appendix, we show how the integration over
the link variables combines the 3jm factors in Eq. (16)
into 6j symbols composed of the link momenta j, one
for each site of the lattice. The notation is given in
Fig. 3.

1–( )2J 2m± +1.=

1–( )
JA JD JC–+ j2 j3 j10

pc qc xc– 
 
  j2 j3 j10

JD JC JA 
 
 

.

1–( )
JA JD– JE– j4 j3 j11

r– d qd yd 
 
  j4 j3 j11

JD JE JA 
 
 

.

1–( )
JE JB– JF– j12 j8 j5

ze– v e se 
 
  j12 j8 j5

JF JB JE 
 
 

.

1–( )
JB JC JF–+ j6 j5 j9

t f– s f w f 
 
  j6 j5 j9

JB JC JF 
 
 

.

1–( )
JC JD JF+ + j6 j10 j7

tg xg ug 
 
  j6 j10 j7

JD JF JC 
 
 

.

1–( )
JE JF JD–+ j7 j11 j8

uh– yh v h 
 
  j7 j11 j8

JE JF JD 
 
 

.
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We consider the integration over the link variables
U1, 4, 12, 13, 14, 15 entering the vertex a shown in Fig. 3.

This vertex is an intersection of four even cubes
denoted as I, II, III, and IV in Fig. 3. Link 1 is common
to cubes I and II, link 4 is common to I and IV, and
so on.

The analytical expression for cube I is given in
Eq. (16). The factors relevant to vertex a are

(C.1)

It is not necessary to directly compute the corre-
sponding expressions for cubes II–IV. It is sufficient to
draw a correspondence between the links and the sites
of other cubes with those of cube I. For example, link 1, as
seen from the viewpoint of cube II, is analogous to link 7
of cube I; vertex a seen from the viewpoint of cube II is
analogous to vertex h of cube I, and vertex b is analo-
gous to vertex g. In Table 1, we give the list of the “ana-
logs” of links in cubes II–IV to those of cube I.

Using the correspondence given in Table 1, we can
immediately read off from Eq. (16) the expressions rel-
evant to vertex a, arising from cubes II–IV.

From cube II:

(C.2)

From cube III:

(C.3)

From cube IV:

(C.4)

Integrating over U1, 4, 12, 13, 14, 15, we obtain

(C.5)

Doaob

j1 U1( )Drard

j4 U4( )Dzaze

j12 U12( )
j1 j4 j12

oa ra za 
 
 

.

Duaub

j1' U1( )D ya– yβ–,
j13 U13

†( )

× D v a– v a–,
j14 U14

†( ) j1' j13 j14

u– a ya v a 
 
 

.

Dxaxe

j12' U12( )D pa– pα–,
j14' U14

†( )

× D qa– qe–,
j15 U15

†( ) j12' j14' j15

x– a pa qa 
 
 

.

Duaub

j4' U4( )D sa– se–,
j15' U15

†( )

× D wa– wβ–,
j13' U13

†( ) j4' j14' j13'

t– a sa wa 
 
 

.

U1Doaob

j1 U1( )Duaub

j1' U1( )d∫
=  

δj1 j1'

2 j1 1+
----------------- 1–( )

ub ua–
δoa ua–, δob ub–, ,
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
(C.6)

(C.7)

(C.8)

(C.9)

(C.10)

The four 3jm symbols in Eqs. (C.1)–(C.4) are now
fully contracted over all indices. This results in a 6j
symbol, in accordance with Eq. (A.14). Indeed, for ver-
tex a, we have

(C.11)

(we note that o + r + z = 0; we change the summation
variable as y  –y and interchange the last two col-
umns in the second 3jm symbol and the first two col-
umns in the last two 3jm symbols, which gives the sign

factors , , and ;

U4Drard

j4 U4( )Dtatd

j4' U4( )d∫
=  

δj4 j4'

2 j4 1+
----------------- 1–( )

td ta–
δra ta–, δrd td–, ,

U12Dzaze

j12 U12( )Dxaxe

j12' U12( )d∫
=  

δj12 j12'

2 j12 1+
------------------- 1–( )

xe xa–
δza xa–, δze xe–, ,

U13D ya– yβ–,
j13 U13

†( )D wa– wβ–,
j13' U13

†( )d∫
=  

δj13 j13'

2 j13 1+
------------------- 1–( )

wa wβ–
δwa ya–, δwβ yβ–, ,

U14D v a– vα–,
j14 U14

†( )D pa– pα–,
j14' U14

†( )d∫
=  

δj14 j14'

2 j14 1+
------------------- 1–( )

pa pα–
δpa v a–, δpα vα–, ,

U15D qa– qe–,
j15 U15

†( )D sa– se–,
j15' U15

†( )d∫
=  

δj15 j15'

2 j15 1+
------------------- 1–( )

sa se–
δsa qa–, δse qe–, .

“a” 1–( )o r z q– v y––+ + j1 j4 j12

o r z 
 
 

orqvyz

∑=

× j1 j13 j14

o y v 
 
  j12 j14 j15

z v– q 
 
  j4 j15 j13

r q– y– 
 
 

1–( )
j1 j13 j14+ +

1–( )
j12 j14 j5+ +

1–( )
j4 j13 j15+ +

Table 1

II I III I IV I

1 7 12 10 4 6

13 11 14 2 13 9

14 8 15 3 15 5

a h a c a f
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we then insert two unities in the form 1 = 

and 1 = )

(C.12)

(C.13)

where we used equation  =

 (see Eq. (B.4)), which is valid because
j12, j14, and j15 come from the same 3jm symbol. This is
the final result for vertex a: the six angular momenta
assigned to the six links entering this vertex combine to
produce a 6j symbol.

One can treat vertex b similarly, see Fig. 3. The links
labelled by 1, 2, 9, 16, 17, and 18 enter this vertex; they
are pairwise shared by cubes I, II, V, and VI. The corre-
spondence between the links viewed from the view-
point of cubes II, V, and VI with those of cube I is given
in Table 2.

Performing the same steps as in deriving the 6j sym-
bol for vertex a, we arrive at the following result for the
vertex b:

(C.14)

We note that vertex a is of the “even” and vertex b is of
the “odd” type: all other vertices of the lattice can be
considered as either “even” or “odd.” Therefore,

1–( )
2v 2 j14–

1–( )
2q 2 j15–

=  1–( )
j1 j4 j12 j13 j14– j15–+ + +

× j1 j4 j12

o r z 
 
  j1 j14 j13

o v y– 
 
 

orqvyz

∑

× j15 j4 j13

q– r y 
 
  j15 j14 j12

q v– z 
 
 

=  1–( )
j1 j4 j12 j13 j14 j15––+ + + j1 j4 j12

j15 j14 j13 
 
 

=  1–( )
j1 j4 j12 j13 j14 j15+ + +–+ j1 j4 j12

j15 j14 j13 
 
 

,

1–( )
j12 j14 j15––

1–( )
j– 12 j14 j15+ +

“b” 1–( )
j1 j2 j9 j16 j17 j18–+ + + + j1 j9 j2

j17 j18 j16 
 
 

.=

Table 2

II I V I VI I

1 7 9 11 2 8

16 6 16 4 17 5

18 10 17 3 18 12

b g b d b e
JOURNAL OF EXPERIMENTAL
Eqs. (C.13) and (C.14) give the full result. Combining
them, we find that the sign factor

(C.15)

must be attributed to all links of the lattice.

We now prove that this sign factor is equivalent (in
the vacuum!) to the sign factor

(C.16)

attributed to all plaquettes of the lattice. We recall that
all links are shared by two even cubes whose faces
carry plaquette values J. We first attribute all links to
only one (out of the two possible) cube according to
some rule. Many such rules can be suggested, the only
requirement being that each link is attributed to one and
only one even cube. An example is given by the follow-
ing construction: we choose edges 12, 5, 9, 2, and 7 (see
Fig. 2) as “belonging” to the cube shown in that figure.
The remaining six edges then “belong” to one of the
neighboring even cubes. For example, edge 1 is
counted as “belonging” to cube II (see Fig. 3). Indeed,
from the cube II point of view, this edge has type 7, and
so forth. It can be seen that in this scheme, every link of
the full lattice “belongs” to one and only one even cube.

We have, therefore, the sign factor

(C.17)

attributed to cube I. Next, we recall that, e.g., j12 enters
the 3jm symbol together with the plaquette angular
momenta JB and JE (see Eq. (B.2)). Using Eq. (B.4)

appropriate to this case, we can replace  =

. Similarly  =  and so
on. As a result, we see that sign factor (C.17) is equal to

(C.18)

This procedure can be repeated for all even cubes of
the lattice. This proves the above statement that the
product of all link sign factors (C.15) can be replaced
by the product of all plaquette sign factors (C.14). We
stress that this proof is valid only for the vacuum, i.e.,
for the partition function itself but, generally speaking,
not for the averages of operators.

APPENDIX D

9j SYMBOLS FROM THE WILSON LOOP

Let the Wilson loop in the representation js go
through links …, 15, 1, 17, …, see Fig. 3 for notation.
This means that one has to integrate three D-functions
of the link variables U15, 1, …, instead of two, as was the

1–( )2 j 1–( ) 2 j–=

1–( )2J 1–( ) 2J–=

1–( )
2 j12 2 j5 2 j9 2 j2 2 j7+ + + +

1–( )
2 j12

1–( )
2JB 2JE+

1–( )
2 j5 1–( )

2JB 2JF+

1–( )
2JA 2JB 2JC 2JD 2JE 2JF+ + + + +

.
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case in Eqs. (C.5) and (C.10), with the other integra-
tions remaining unchanged. We now have

(D.1)

(D.2)

Using the other 3jm symbols related to vertex a [see
Eqs. (C.1)–(C.4)] and the Kronecker symbols from
Eqs. (C.6)–(C.9), we obtain the vertex a in the form

(D.3)

(we note that r + z = –o, w + p = –u, and o + u + m = 0;
hence, the sign factor is +1; we change the signs of all
projections in the second 3jm symbol and permute the
columns in the other 3jm symbols to match the defini-
tion of the 9j symbols in Eq. (A.16))

(D.4)

To obtain the final sign factor, we have used the relation

 = +1 valid for any j1, 2, 3 originating
from the same 3jm symbol.

U1Doaob

j1 U1( )Duaub

j1' U1( )Dmamb

js U1( )d∫
=  j1 j1' js

oa ua ma 
 
  j1 j1' js

ob ub mb 
 
 

,

U15D qa– qe–,
j15 U15

†( )D sa– se–,
j15' U15

†( )Dmbme

js U15( )d∫
=  1–( )

me ma– j15 j15' js

qe se me 
 
  j15 j15' js

qa sa ma 
 
 

.

“a” 1–( )r z w p m–+ + + j1 j4 j12

o r z 
 
 

∑=

× j1' j13 j14

u– w– p– 
 
  j14 j15 j12

p q z 
 
  j4 j15' j13

r s w 
 
 

× j1 j1' js

o u m 
 
  j15 j15' js

q s m 
 
 

=  1–( )
j1' j4– j14 j15 js+ + +

j4 j1 j12

j15' js j15

j13 j1' j14 
 
 
 
 

.

1–( )
2 j1 2 j2 2 j3±±±
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Proceeding in the same way, we obtain the vertex b,

(D.5)

REFERENCES
1. D. A. Varshalovich, A. N. Moskalev, and V. K. Kherson-

skii, Quantum Theory of Angular Momentum (Nauka,
Leningrad, 1975; World Scientific, Singarore, 1988).

2. J.-M. Drouffe and J.-B. Zuber, Phys. Rep. 102, 1 (1983).
3. R. Anishetty, S. Cheluvaraja, H. S. Sharatchandra, and

M. Mathur, Phys. Lett. B 314, 387 (1993).
4. I. G. Halliday and P. Suranyi, Phys. Lett. B 350, 189

(1995).
5. M. B. Halpern, Phys. Rev. D 16, 1798 (1977).
6. G. Ponzano and T. Regge, in Spectroscopic and Group

Theoretical Methods in Physics, Ed. by F. Bloch (North-
Holland, Amsterdam, 1968).

7. K. Schulten and R. G. Gordon, J. Math. Phys. 16, 1971
(1975).

8. T. Regge, Nuovo Cimento 19, 558 (1961).
9. E. Witten, Nucl. Phys. B 311, 46 (1988).

10. F. A. Lunev, Phys. Lett. B 295, 99 (1992).
11. P. E. Haagensen and K. Johnson, Nucl. Phys. B 439, 597

(1995); hep-th/9408164; P. E. Haagensen, K. Johnson,
and C. S. Lam, Nucl. Phys. B 477, 273 (1996); hep-
th/9511226; R. Schiappa, Nucl. Phys. B 517, 462
(1998); hep-th/9704206.

12. F. A. Lunev, J. Math. Phys. 37, 5351 (1996); hep-
th/9503133.

“b” 1–( ) v y– t– x m+–– j1 j9 j2

o– y– v– 
 
 

∑=

× j16 j18 j1'

t x u 
 
  j16 j17 j9

t q y 
 
  j18 j2 j17'

x v s 
 
 

× j1 j1' js

o u m 
 
  j17 j17' js

q s m 
 
 

=  1–( )
j1' j2– j16 j17 js+ + +

j2 j1 j9

j17' js j17

j18 j1' j16 
 
 
 
 

.
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Abstract—Quantum teleportation of an Einstein–Podolsky–Rosen pair using maximally entangled triplets to
two receivers is studied. The projection basis for combined three-particle measurements, from the results of
which the unknown state can be reconstructed, is found. The basis contains states where only two of the three
particles are maximally entangled. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Quantum teleportation was proposed in [1]. It
enables the sender A (conventionally named Alice) to
transmit an unknown state to the user B (Bob) located
in a different location of space. Teleportation of a state
of a two-level quantum system or a qubit (quantum bit)
requires an Einstein–Podolsky–Rosen (EPR) pair and a
classical communication channel, along which the
result of combined measurements performed in the Bell
basis is transmitted. Various variants of this process,
which employ two-particle entangled states, are exam-
ined in [2]. The case of quantum teleportation of a
polarized photon and single-mode coherent light has
been demonstrated experimentally in [3, 4]. In [4] light
from an optical parametric amplifier was used as the
source of the EPR pair, but the physical nature of the
particles can be arbitrary. Thus, in [5] an ensemble of
EPR correlated atoms was obtained. Such two-parti-
cle entangled states can be used in schemes for inter-
spatial teleportation [6], where a quantum state is
transferred between particles of a different physical
nature [7].

The quantum teleportation procedure can be
regarded as a computational process [8], corresponding
to a network consisting of rotation type operations, log-
ical elements c-NOT (controlled NOT), and other com-
ponents. Such schemes are interesting because the
components can be implemented using physical sys-
tems of various nature, for example, optical, such as a
half-transmitting mirror or a polarized divider [9].

In the present paper we consider A variant of quan-
tum teleportation of an entangled pair to two receivers
B and C (Clair) using a three-particle entangled state of
the type GHZ (Greenberger–Horne–Zeilinger). We
note that the GHZ triplet has been realized experimen-
tally in [10].
1063-7761/00/9105- $20.00 © 20894
The main problem arising here concerns the form of
the three-particle projection basis required for the com-
bined measurements. The basis found, in contrast to the
variants of quantum teleportation of one qubit, is not
maximally entangled. It contains a state with two max-
imally entangled particles. Two receivers can recon-
struct the unknown wave function of the EPR pair from
the results of combined measurements in this basis, but
neither receiver can do so separately. As shown in [11],
in such a scheme with a GHZ triplet, where one qubit
participates instead of an EPR pair, the unknown sin-
gle-particle state can be reconstructed by only one
receiver. The results obtained were extended to the case
of the quantum teleportation of an N-particle entangled
state of the EPR type. The basic features of the quan-
tum teleportation process for one particle are presented
in Section 2. The types of initial states of the entangled
pair and the triplet are determined in Section 3, and the
projection operators for combined measurements for
them are constructed in Section 4. In Section 5 a proto-
col and a quantum teleportation scheme for an EPR pair
are presented and the case of an N-particle entangled
state of the EPR type is studied.

2. TELEPORTATION
According to [1], the teleportation of an unknown

state of a quantum system by a sender A to a receiver B
located at a different point in space involves the follow-
ing basic aspects.

Let A possess a physical system, for example, a two-
level or qubit system, in the unknown state

(1)

where |α|2 + |β|2 = 1. An EPR pair in the maximally

entangled state |Ψ23〉  = (|01〉  + |10〉)/  is distributed
between A and B, so that qubit 2 is located at A and
qubit 3 is located at B. First, A performs combined

ψ1| 〉 α 0| 〉 β 1| 〉 ,+=

2
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measurements on qubits 1 and 2 in the Bell basis, con-
sisting of the for projecors ∏k = |πk〉〈 πk|, k = 1, …, 4,

Πκ = 1, |π1〉 = | 〉, |π2〉 = | 〉, |π3〉 = | 〉, |π4〉 =

| 〉 , where the Bell states represent the maximally
entangled two-particle states

(2)

(3)

As result of combined measurements on the parti-
cles 1 and 2, the density matrix of the entire system ρ =
|ψ1〉〈ψ 1| ^ |Ψ23〉〈Ψ 23|, determined in the three-particle
Hilbert space H1 ^ H2 ^ H3, projects onto one of the
four Bell states. The main circumstance ensuring the
success of the procedure is that the probability of the

kth outcome Pr(k) = Sp{Πkρ } = 1/4 does not depend
on α and β, and the reduced density matrix ρ3(k) =

Sp12{Πkρ } of qubit 3 is related with the unknown
matrix of qubit one by the unitary transformation Uk:

(4)

where  is the density matrix in H3, corresponding to
ρ1 = |ψ1〉〈ψ 1|, and Uk is a set of unitary operators con-
sisting of the Pauli matrices U1 = σx, U2 = –iσy, U3 = 1,
U4 = σz.

According to the protocol of [1], the sender A sends
the kth outcome of the measurement to the receiver B,
who performs on his qubit 3 from the EPR pair one of
four operations Uk, according to the message received.
Ultimately, a qubit in the state |ψ1〉  arises at B and tele-
portation has been successfully completed.

3. RESOURCES

Teleportation of an EPR pair requires a maximally
entangled triplet of particles. On the basis of this asser-
tion we shall examine the possible types of initial
states.

The entangled pair can be described by a wave func-
tion of the form

(5)

where |α|2 + |β|2 = 1, or

(6)

which corresponds to the case of an EPR pair. Eight
states with three maximally entangled particles can be
indicated, for example,

(7)

k∑ Φ12
+ Φ12

– Ψ12
+

Ψ12
–

Φ±| 〉 1

2
------- 00| 〉 11| 〉±( ),=

Ψ±| 〉 1

2
------- 01| 〉 10| 〉±( ).=

Πk
†

Πk
†

ρ3 k( ) Ukρ̃1Uk
†,=

ρ̃1

Ψ12| 〉 α 00| 〉 β 11| 〉 ,+=

ΨEPR| 〉 α 01| 〉 β 10| 〉 ,+=

000| 〉 111| 〉±( )/ 2, 001| 〉 110| 〉±( )/ 2,

010| 〉 101| 〉±( )/ 2, 100| 〉 011| 〉±( )/ 2.
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Without loss of generality we choose from the set of
possible initial states presented above the state (6) and
a GHZ triplet:

(8)

Then the initial wave function of the entire system is a
product

(9)

Figure 1 displays a scheme for teleportation of an
EPR pair, formed by particles 1 and 2, using an entan-
gled triplet of particles 3, 4, and 5. The GHZ triplet is
distributed between the sender A and the receivers B
and C, to whom A sends the results of combined mea-
surements on particles 1, 2, and 3. Eight projection
operators Πk, forming a complete basis in which the
wave function |Ψ〉 can be expanded, are required in
order to perform combined measurements. The choice
of such a basis is the main ingredient for solving the
problem.

4. PROJECTION BASIS

It could be inferred that the set of projection opera-
tors Πk will consist of the maximally entangled states
(7). We denote this basis by π(123). However, a direct
calculation shows that this is not so. The problem is that
the projections of the initial wave function |Ψ〉 on the

four vectors (|010〉  ± |101〉)/  and (|100〉  ± |011〉)/
from π(123) are 0. It is impossible to reconstruct the
states of an EPR pair from these measurements. Conse-
quently, here, in contrast to teleportation of one parti-
cle, the maximally entangled basis does not solve the
problem.

In the present case a basis with two maximally
entangled particles 1, 3 or 1, 2 is suitable. However, the
presence of an entangled pair is only a necessary con-
dition. To study the possible realizations of the opera-
tors Πk we introduce a classification where one of the
indicators will be the number of maximally entangled
particles (two or three). Since all complete sets are
related with one another by a unitary transformation,
one can be chosen as the initial set. Let the initial basis
be π123:

|π123〉  = |ijk〉, i, j, k = 0, 1, (10)

ΨGHZ| 〉 1

2
------- 000| 〉 111| 〉+( ).=

Ψ| 〉 ΨEPR| 〉 ΨGHZ| 〉 .⊗=

2 2

A

3

1
2

4

5 C
B

ΨEPR
GHZ

ΨEPR

Fig. 1. Network for teleportation of an EPR pair using a
GHZ triplet.
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where each of the eight components describes a state
with three independent particles. Any component of a
different basis can be represented as a linear combina-
tion of s ≤ 8 vectors from π123. In what follows, we shall
assume the number s to be the same within a single
basis and we shall use it for classification. This gives a
basis π1(23)(s) in which particles 2 and 3 are maximally
entangled. For s = 2 it has the form

(11)

where each of eight vectors, for example, |0〉| 〉 =

(|000〉  ± |011〉)/ , is represented by two elements
from π123. For the case s = 4

(12)

where a pair of vectors forming a single-particle basis
has the form

(13)

Any of the sets presented above is complete and
orthonormal, but π1(23)(2) does not solve the problem.
The reason is that the probabilities of the outcomes of
measurements in this basis depend on the parameters of
the teleportation wave function |ΨEPR〉: Pr(k) = |α|2/4,
|β|2/4. Consequently, the unitary transformation relat-
ing the reduced density matrix of particles 3 and 4 with
the state of the EPR pair will depend on α and β, i.e.,
on the unknown state. We note that for the basis
π(12)3(4) their arises a situation, just as for π(123)(2),
where half of the expansion coefficients are zero.

Two bases with s = 4 are suitable for teleportation of
an EPR pair: π1(23)(4) or π(13)2(4), where the particles 2,
3 or 1, 3 are entangled. The structure of the initial state,
the projection basis π1(23)(4), and the wave function of
the entire system after the measurements are shown in
Fig. 2.

π1 23( ) 2( )| 〉 i| 〉 Φ23
±| 〉 ; i| 〉 Φ23

±| 〉{ } , i 0 1,,= =

Φ23
±

2

π1 23( ) 4( )| 〉 π1
±| 〉 Φ23

±| 〉 ; π1
±| 〉 Φ23

±| 〉{ } ,=

π1
±| 〉 1

2
------- 0| 〉 iϕ( ) 1| 〉exp±( ).=

B

C
AA

(a) (c)

(b)

111

2 2 2 33

4

5
C

B

3

4

5

Fig. 2. Structure of the wave functions: (a) initial state with
entangled particles 1, 2 from an EPR pair and 3, 4, 5 from a
GHZ triplet; (b) projection basis π1(23)(4); (c) state after a
measurement.
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5. TELEPORTATION OF AN EPR PAIR

The expansion of the wave function of the initial
state in the basis π1(23), determined according to Eq. (12),
where we set the phase ϕ = 0, has the form

(14)

where

(15)

Equations (15) mean that for measurements in the cho-
sen basis the reduced density matrix ρ45(k) =
Sp123{Πk|Ψ〉〈Ψ|Πk} of particles 4 and 5 will be related
with the density matrix of the EPR pair by a unitary
transformation 

(16)

where  = | 〉〈 |,  is a wave function
from the Hilbert space H4 ^ H5, corresponding to ΨEPR.
The following expressions are valid for the unitary opera-
tor from Eq. (16): U1 = σx4 ^ I5, U2 = –U3 = iσy4 ^ I5,
U4 = –U1, U5 = I4 ̂  σx5, U6 = –U7 = I4 ̂  (–iσy5), U8 = –U5.
Here the Pauli operators σγj (γ = x, y, z) and the identity
operators Ij act on the variables of the particle j = 4, 5.

In this scheme the teleportation of an EPR pair is
accomplished according to the following protocol.

1. The sender A performs eight measurements in the
basis π1(23)(4) on particles 1, 2, and 3, whose outcomes
she transmits to B and C.

2. For the outcomes k = 1–4 the receivers B uses the
unitary transformations σx, iσy, –iσy, –σx on his parti-
cle. Ultimately, an EPR pair in the state ΨEPR arises at
B and C.

3. For the outcomes k = 5, 6 the receiver C applies
the unitary operations σx, –iσy, iσy, –σx to her particle
in order to reconstruct the state of the EPR pair.

In the protocol presented above, in half the cases
only one receiver applies a unitary operation to her par-
ticle; the other receiver at the same time “operates”
with the identity operator on her particle. This variant
is not unique. The problem is that the initial states can
be reconstructed by different methods. For example,
the vector |2〉 from Eq. (15) can be obtained in two
ways:

Ψ| 〉 π1
+| 〉 Φ23

+| 〉 1| 〉= π1
+| 〉 Φ23

–| 〉 2| 〉+

+ π1
–| 〉 Φ23

+| 〉 3| 〉 π1
–| 〉 Φ23

–| 〉 4| 〉+

+ π1
+| 〉 Φ23

+| 〉 5| 〉 π1
+| 〉 Φ23

–| 〉 6| 〉+

+ π1
–| 〉 Φ23

+| 〉 7| 〉 π1
–| 〉 Φ23

–| 〉 8| 〉 ,+

1 2,| 〉 β 00| 〉 α 11| 〉 ,±=

3 4,| 〉 β 00| 〉 α 11| 〉+−( ),–=

5 6,| 〉 β 11| 〉 α 00| 〉 ,±=

7 8,| 〉 β 11| 〉 α 00| 〉+−( ).–=

ρ45 k( ) Ukρ̃EPRUk
†, k 1 … 8,, ,= =

ρ̃EPR Ψ̃EPR Ψ̃EPR Ψ̃EPR
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(17)

The expression (17) means that for the outcome of a
measurement, where k = 2, both receivers, B and C,
must simultaneously operate on their particles, just as
in the protocol presented, applying the operations σx4
and σz5 instead of iσy4 and the identity operation. How-
ever, these differences do not change the final results.
The general feature here is the presence of two receiv-
ers, neither of which can solve the problem separately.

Figure 3 displays a network that simulates the tele-
portation of an EPR pair. It was constructed similarly to
the case of one particle [8, 9, 12] and contains the
c-NOT operation and the Hadamard transformation H.
At the output of the EPR block particles 1 and 2 are in
the entangled state ΨEPR after the c-NOT operation C12,
acting on qubits 1 and 2. The operation C12 does not
change the state of qubit 1 hand to flips qubit 2 (the tar-
get) only when 1 is in a state corresponding to the log-
ical 1. In the GHZ a maximally entangled GHZ triplet
is produced by means of the Hadamard transformation H,

operating qubit 3, ((H|0〉 = (|0〉 + |1〉)/ , H|1〉 = (|0〉 –
|1〉)/ ), and two c-NOT operations C34 and C35. At the
output of the entire scheme the qubits 4 and 5 are in the
entangled state ΨEPR, which does not depend on the
states of the other qubits. We note that here, together
with ΨEPR, a pair with the wave function (5) can be
used.

The procedure examined above can be extended to
the case of the teleportation of an N-particle entangled
state of the EPR type

(18)

using N + 1 qubits in a maximally entangled state of the
GHZ type

(19)

where |i 〉N = |i 〉 ^ … |i 〉 , i = 0, 1. This scheme involves
2N + 1 particles, the sender A, and N receivers, between
which N + 1 particles from Eqs. (19) are distributed.
The initial wave function, which is determined in the
Hilbert space H1 ^ … H2N + 1, is a product |Ψ〉 = |ΨN〉 ^
|Ψ(N + 1)〉 .

To perform combined measurements on N + 1 parti-
cles 1, 2, …, N, N + 1 it is necessary to have 2N + 1 pro-
jection operators, forming a complete set with a maxi-
mally entangled pair M, N + 1, M = 1, …, N. For M =
N such a basis can be represented in the form

(20)

β 00| 〉 α 11| 〉– iσy4 I5 Ψ̃EPR| 〉⊗=

=  σx4 σz5 Ψ̃EPR| 〉 .⊗

2

2

ΨN| 〉 α 0| 〉 N β 1| 〉 N+=

Ψ N 1+( )| 〉 1

2
------- 0| 〉 N 1+ 1| 〉 N 1++( ),=

π1 … N 1 N N 1+,( )–, , s( ) π1 … N 1–, ,| 〉{ ΦN N 1+,
±| 〉 ;⊗=

π1 … N 1–, ,| 〉 ΦN N 1+,
±| 〉 } ,⊗
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where the particles of N, N + 1 are entangled, and
|π1, …, N – 1〉  are vectors from H1 ^ …HN – 1. As noted
above, the presence of an entangled pair is only a nec-
essary condition for a projection basis. The value of the
parameter s, whose value and the form of the vectors
π1, …, N – 1 will be determined below, expanding the
wave function of the entire system in the basis (20), will
be a sufficient condition. The expansion has the form

(21)

where

(22)

Teleportation requires that

PN – 1 ≠ 0, QN – 1 ≠ 0. (23)

This means that all coefficients in the expansion must
contain a linear combination of two terms α|i 〉N and
β|j 〉N, i ≠ j = 0, 1, which can be reconstructed from
Eq. (18) by a unitary transformation that does not
depend on α and β, i.e., on the parameters of the
unknown state. The set of vectors

(24)

where  is the single-particle basis determined
according to Eq. (13), satisfies the conditions (23). This
can be shown by noting that the set (24) consists of 2N – 1

elements, each of which always contains a pair of terms
|i〉N – 1, i = 0, 1.

For the basis found from Eqs. (20) and (24), the
parameter s will have the value s = 2N. We note that the
case s < 2N, where bases containing more than a pair of
entangled particles (two pairs or a triplet) arise, does
not solve the problem. The following assertion can
serve as the final result. Teleportation of an N-particle
entangled state of the EPR type, using maximally

Ψ| 〉 PN 1– α 0| 〉 N QN 1– β 1| 〉 N±{ }=

× π1 … N 1–, ,| 〉 ΦN N 1+,
±| 〉 PN 1– α 1| 〉 N QN 1– β 0| 〉 N±{ }+

× π1 … N 1–, ,| 〉 ΦN N 1+,
±| 〉 ,

PN 1– π1 … N 1–, , 0〈 | 〉 N 1– ,=

QN 1– π1 … N 1–, , 1〈 | 〉 N 1– .=

π1 … N 1–, ,| 〉 π1
±| 〉 N 1–{ } ,=

π1
±

HH

H

HH

H

|0〉  + |1〉

|0〉  + |1〉

 |1〉

 |1〉

 |0〉

 |0〉

 |0〉 |ΨEPR〉

GHZ

1

2

3 

4 

5 

EPR
α|0〉  + β|1〉

Fig. 3. Network for teleportation of an EPR pair.
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entangled N + 1 particles for combined measurements,
requires a projection basis containing one maximally
entangled pair. Each element of the basis must consist
of 2N vectors corresponding to the states of N + 1 inde-
pendent particles.
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Abstract—A general formula is obtained for the probability of tunneling ionization of an atom accompanied
by excitation of the core. This formula is a generalization of the Carlson formula for the probability of a single-
photon two-electron transition in atoms. The limiting case of this formula, just as that of the Carlson formula,
is the well-known random-perturbations approximation. Numerical results are presented for Zn, Sr, and Cd
atoms. For these atoms the contribution of the excited states of singly charged ions to the probability of the for-
mation of doubly charged ions is a nonmonotonic function of the laser radiation intensity. Analysis of the tun-
neling ionization of molecules shows that with overwhelming probability an ion is formed in the ground vibra-
tional state, while for the standard photoionization the distribution over vibrational states is determined by the
Franck–Condon factors. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The formation of multiply charged ions of atoms in
a strong laser field has been actively studied in the last
few years both theoretically and experimentally [1, 2].
Nonetheless, the effect of the excited states of atoms
and ions on the ionization probability has still not been
adequately studied. The excitation of the atomic core in
multiphoton ionization of the Sr atom was observed in
[3, 4]. In [5] the concept of shaking ionization of a
“core” electron when an “optical” electron is detached
from the atom was used to describe the formation of
He2+ ions in the tunneling regime by 614 nm laser radi-
ation. Experimental data obtained in [6] for single-pho-
ton dielectronic ionization of the He atom were used to
estimate the probability of the process.

In the present paper the role of electronic excitations
of the core in the formation of a multiply charged
atomic ion as a result of the tunneling detachment of
several electrons from an atom is studied. Generally
speaking, tunneling ionization cannot be treated as a
“fast” process, and other approaches differing from the
theory of instantaneous perturbations must be used.
The corresponding general formula is derived in Sec-
tion 3 using quantum-defect methods. However, it is
interesting that the instantaneous-perturbations approx-
imation follows from it as a limiting case with a clear
physical content.

For molecules the excited states of the core can
appear as vibrationally excited levels of the molecular
ion formed. It is important to know the occupation
probability of these levels in order to understand the
subsequent behavior of the ion. For the standard photo-
effect the distribution over the vibrational levels of the
ion is described by the Franck–Condon factors [7], if,
1063-7761/00/9105- $20.00 © 20899
of course, the photon energy is much greater than the
ionization potential. For the tunneling effect, however,
this distribution has nothing in common with the
Franck–Condon factors and is described using the indi-
cated general formula, which is derived for atoms but
which is also applicable for describing the excitation of
the core in the tunneling ionization of molecules. We
note that [8] is devoted to the question of the change in
the Franck–Condon factors in a strong field, when the
tunneling ionization regime is possible.

2. QUALITATIVE DESCRIPTION OF THE ROLE
OF THE EXCITED STATES OF AN ATOM

IN THE FORMATION 
OF MULTIPLY CHARGED IONS

It is clear from physical considerations that the
probability of tunneling ionization of a singly charged
atomic ion from an excited states A+* resulting in the
formation of a doubly charged ion A2+ is greater than
the probability of ionization of this singly charged ion
from the ground state A+:

W(A+*  A2+ + e) > W(A+  A2+ + e). (1)

However, the probability of ionization of a neutral
atom A with excitation of a singly charged ion is less
than the ionization probability of a neutral atom, when
the singly charged ion remains in the ground state:

W(A  A+* + e) < W(A  A+ + e). (2)

Indeed, when the core is excited the energy of the
tunneling electron in the initial state decreases, and the
electron drops even farther below the barrier, decreas-
ing the tunneling probability.
000 MAIK “Nauka/Interperiodica”



 

900

        

ZON

                                                                                                                                                  
Thus, if A2+ ions are produced as a result of two-cas-
cade reactions

(3)

then it follows from Eqs. (1) and (2) that the probability
of the first cascade in the upper reaction is greater than
the probability of the first cascade in the lower reaction,
and the reverse is true for the probabilities of the second
cascades in these reactions. Thus, from general consid-
erations it cannot be concluded which of the two reac-
tions (3) is most likely to occur—concrete calculations
are required.

The probability of the reaction (3) proceeding via
the upper cascade can be calculated using the standard
formulas of the theory of tunneling ionization [9–11],
known in the modern literature as the Ammosov–
Delone–Krainov (ADK) theory. In the next section a
general formula, from which the probability of the pro-
cess of shaking excitation follows as a limiting case, is
developed for calculating the probability of the reac-
tions (3) proceeding through the lower cascade. The
same limiting case also follows from the Carlson for-
mula [12], describing the standard single-photon ion-
ization of an atom with excitation of the core or the for-
mation of a doubly charged ion. Since the form of the
Carlson formula and the formula obtained in the
present paper is very similar to that of the formulas
from the instantaneous-perturbations theory, in Section 4
a detailed discussion is given of the problem, differing
somewhat from that given in textbooks and a number of
review works. Although this question is in a certain
sense methodological, its discussion here is entirely
relevant, since the tunneling process is usually consid-
ered to be adiabatic rather than fast. Consequently, the
assumption that tunneling in certain limiting cases
should be regarded as a fast process merits a separate
investigation. In Section 4 it is shown that, specifically,
the concept of relative rapidity and slowness, which are
used in the theory of instantaneous perturbations, are
not always precisely defined and must be replaced by
energy relations, which are identical to the conven-
tional concepts of the rapidity and slowness in cases
where these relations can be obtained, for example,
from semiclassical considerations.

The general results obtained are illustrated in the
following sections by numerical examples for a number
of atoms with two electrons in the outer shell and for
the H2 molecule. The atomic system of units is used
throughout.

3. BASIC FORMULAS

To calculate the ionization probability of an atom
we shall employ the algorithm proposed for this pur-
pose by Keldysh [13], since in this approach the tunnel-
ing effect can be described on the basis of the S matrix

A
A+ e+

A+* e+
A2+ 2e,+
JOURNAL OF EXPERIMENTAL
formalism. For simplicity, we shall confine our atten-
tion to atoms with two s electrons in the outer shell.

The exact amplitude of a quantum transition is
determined, as is well-known [14], by the expression

Mif = 〈Ψf (r1, r2, t)|V(r1, r2, t)|Φi(r1, r2, t)〉 . (4)

Here

V(r1, r2, t) = –(r1 + r2) · Fcos(ωt) (5)

is the interaction of a two-electron atom an external
field in the dipole approximation, ω and F are the fre-
quency and amplitude of the electric field of the laser
wave, Φi is the wave function of a free atom in the ini-
tial state before the field is switched on, and Ψf is the
exact solution of the Schrödinger equation for two elec-
trons, corresponding to the final state of the system, in
the field of an atomic core and an ac external field. Of
course, the explicit expression for Ψf is unknown, but to
solve our problem the fact that for a periodic external
field the time-dependence of this function is of a
quasienergy character is sufficient.

Since in the ground state of a two-electron atom the
electron spins are oppositely directed, the coordinate
part of the wave function is symmetric. Assuming in the
two-electron wave function to e factorable, we write

(6)

Here φ0 are the wave functions of the electrons in the
initial state and E0 = –(U1 + U2), is their total energy in
this state, U1, 2 are the first and second ionization poten-
tials of the atom, ψj are is the wave function of the jth
state of the atomic core corresponding to energy ej. If
the excitation energy of the atomic residue ∆j, 0 ≤ ∆j <
U2, is introduced, then ej = –U2 + ∆j. Generally speak-
ing, the functions ψj and φ0 are not orthogonal. In Eq. (6)
gn is the nth quasienergy harmonic of a free electron,
ε is the desired quasienergy of this electron determined
in the standard manner: ε  –U1 for adiabatically
slowly switching on or off of the ac field, if the atomic
core is assumed to be “frozen.” We neglect the effect of
an external field on the state of an ion, i.e., the quasien-
ergy structure of the function ψj.

Substituting Eqs. (5) and (6) into Eq. (4) and per-
forming the time integration we find

(7)

(8)

Φi r1 r2 t, ,( ) φ0 r1( )φ0 r2( ) iE0t–( ),exp=

Ψ f r1 r2 t, ,( )
1

2
-------=

× ψ j r1( ) gn r2( ) inωt–( )exp 1 2{ }+
n

∑
× i e j ε+( )t–[ ] .exp

Mif 2 ψ j φ0〈 | 〉 mif ,=

mif π gn〈 |r F φ0| 〉 δ e j ε n 1+( )ω E0–+ +[ ] .⋅
n

∑–=
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From Eq. (8) follows the value of the quasienergy:

(9)

The quantity mif is the amplitude for the ionization
of an atom in the Keldysh model. As is well-known, in
this model the Coulomb interaction of the exiting elec-
tron with the atomic core can be taken into account only
in the tunneling limit [10, 11]. We recall that the tunnel-
ing effect in a laser field is possible if the electron can
tunnel through the potential barrier in a time equal to
the half-period of the field. This condition is formulated
in the form of the smallness of the Keldysh parameter:

(10)

where Z is the charge of the ion core and ν is the effec-
tive principal quantum number of the tunneling elec-
tron. According to (9),

(11)

Thus the probability of tunneling ionization of an
atom with excitation of the core in a state j is

(12)

Here wt is the probability of the tunneling effect, which
depends only on the effective principal quantum num-
ber of the electron and the electric field amplitude of the
wave. The coefficient 2 in Eq. (12) appeared from
Eq. (7) and is associated with the equivalence of the
electrons and the possibility that any electron can tun-
nel. A formula similar to Eq. (12) for two-electron sin-
gle-photon ionization of an atom and for single-elec-
tron ionization with excitation of the core was obtained
by Carlson in [12] (a detailed discussion of this formula
is given in [15]). However, the case of single-photon
ionization is simpler, since the energy absorbed by the
atom is known and it is known how the energy is dis-
tributed between the electrons. In the tunneling effect,
however, the question of the amount of energy
absorbed by the atom is not so trivial. In the next sec-
tion it is shown that the energy relations in this problem
can be taken as the basic relations.

4. SHAKING APPROXIMATION

The presence of the overlap integral of the core
wave functions in Eq. (12) is reminiscent of a formula
of the theory of sudden perturbations [16–18]. It is
well-known [15] that the appearance of such an overlap
integral is due to fact that the interaction of the sub-
system only in the initial state is taken into account.1 If
this interaction is completely neglected, the wave func-

1 A less important approximation is due to the possibility of factor-
izing the wave functions of the subsystems in the initial state. The
accuracy of this approximation for the two-electron photoeffect in
He is analyzed in [19].

ε ε j≡ E0 e j– U1– ∆ j.–= =

γ Zω
Fν
-------  ! 1,≡

ν ν j≡ Z

2 U1 ∆ j+( )
------------------------------.=

W j 2 ψ j φ0〈 | 〉 2wt ν j F,( ).=
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tions ψj and φ0 become mutually orthogonal. On the
other hand, the possibility of a limitation due to the fact
that the interaction is taken into account only in the ini-
tial state in the theory of sudden-perturbations is justi-
fied by the shortness of the interaction time in the final
state, where one subsystem “flies away” rapidly. In the
theory of tunneling the neglect of the interaction in the
final state is justified by the large spatial separation of
the tunneling and core electrons [9, 16].

At the same time, Eq. (12), just as the Carlson for-
mula, contains a fundamental difference from the for-
mulas of the theory of sudden perturbations: the ioniza-
tion probability depends on the state in which the core
is formed. It follows from Eq. (11) that the tunneling
probability no longer depends on the final state of the
core, when the first ionization potential of the atom is
much greater than the excitation energy of the core:

∆j ! U1. (13)

When the condition (13) is satisfied Eq. (12) is iden-
tical to the result of the theory of sudden perturbations,
and this circumstance requires a special discussion.

It is easy to see that the idea of fast and slow sub-
systems, which are ordinarily used in the theory of sud-
den perturbations, is actually contained in inequalities
similar to Eq. (13), which is a particular case of them.
Indeed, if the change in the Hamiltonian of the slow
subsystem as result of any quantum processes in the
fast subsystem occurred in a time τ, then according to
the uncertainty relation the energy of the fast subsystem
is E ~ "/τ. If the characteristic time of the motion of the
slow subsystem is T, then it’s energy is ε ~ "/T, and the
condition τ ! T is analogous to the condition (13): ε ! E.

The difficulties of a priori substantiation of the
applicability of the theory of sudden perturbations to a
specific physical problem are due precisely to estima-
tion of the times T and τ because in quantum mechanics
there is no definite concept of a “quantum transition
time.” For example, the decay time of a quantum sys-
tem cannot, of course, be taken for the time τ: accord-
ing to a witty remark by the authors of [18], the lifetime
of a β-active nucleus can be hundreds of years, but the
shaking theory describes very well the ionization of the
atom during β decay.

These difficulties are most acute in applications of
the theory of sudden perturbations to equivalent atomic
electrons belonging to the same shell. An example of
such a problem is examined in the present paper, and a
large number of similar problems is presented in [18].
Their solutions obtained in [18] by the distorted-wave
method also have their own limiting cases of the for-
mula from the shaking theory. Analysis shows that in
all cases the shaking approximation is applicable when
relations of the type (13) are satisfied.

Thus, we arrive at the conclusion that purely quan-
tum energy relations are more suitable for establishing
the applicability of the shaking approximation then
considerations based on the notions of relative rapidity
SICS      Vol. 91      No. 5      2000
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and slowness. Specifically, the subsystem where a quan-
tum transition occurs with a change in energy greater
than the change in the energy of another subsystem must
be taken as the “fast” subsystem from the standpoint of
the theory of sudden perturbations and, correspondingly,
the second subsystem must be taken as “slow.” It is
assumed here that as result of quantum transitions the
subsystems are spatially separated, so that the interac-
tion between them in the final state can be neglect.

Zn0.012

0.008

0.004

0
12 13 14 15 16

W1/W0

logI [W/cm2]

Fig. 1. Laser radiation intensity dependence of the ratio of
the probability of cascade two-electron ionization of the Zn
atom via an excited state of Zn+ to the same ionization prob-
ability via the ground state of Zn+.

Sr0.05

0.03

0.01

10 11 12 13 14 15
logI [W/cm2]

W1/W0

Fig. 2. Same as in Fig. 1, but for the Sr atom.

Cd6

4

2

0
10 11 12 13 14

logI [W/cm2]

W1/W0

Fig. 3. Same as in Fig. 1 but for the Cd atom.
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The tunneling effect studied above is an example of
the constructiveness of this definition, aside from the
examples presented in [18]. Another example concerns
the already mentioned classical Migdal–Feinberg prob-
lem of the ionization of an atom during β decay, to
solve which the approximation of sudden perturbations
was first proposed. The Migdal–Feinberg theory cor-
rectly describes the experimental data, though the
velocity of the β particle is only slightly greater than the
velocity of the electron in the K orbit of the heavy atom,
differing, as is well-known, from the velocity of light
by a factor of Z/137. It is the high energy of the βparti-
cle, as compared with the ionization potential of a K
electron and not its velocity that makes it possible to
use the approximation of sudden perturbations [20].

A definition of fast and slow motions, which is actu-
ally identical to the one presented above, under the con-
ditions of applicability of the semiclassical correspon-
dence principle was used in the well-known mono-
graph [21] to study nonadiabatic processes in the
Landau–Zener system (see Eqs. (13.46) and (13.47) in
[21] and the accompanying discussion). On the basis of
the correspondence principle the characteristic time of
the motion in a slow subsystem is determined in [21]
has "/∆E, where ∆E is the energy of a quantum transi-
tion. The fact that different subfields of quantum
mechanics such as the theory of sudden perturbations
and the theory of adiabatic collisions work with identi-
cal definitions of rapidity and slowness is a very posi-
tive sign.

5. NUMERICAL EXAMPLES

5.1. Two-Electron Atoms

In this section we present the result of a calculation
of the reactions (3) for neutral Zn, Sr, and Cd atoms
with outer-shell configurations 4s2, 5s2 and 5s2, respec-
tively. In Eq. (11) we must set Z = 1. The 5s level for
Zn+ and the 6s level for Sr+ and Cd+ where taken as the
excited levels of the singly charged ions. The probabil-
ity of the tunneling effect for ions is determined by the
effective principal quantum number

(14)

The ion wave functions presented in [22] were used
to calculate the overlapped integrals on the basis of
Eq. (12).

The ratios of the probabilities of the formation of
doubly charged ions by tunneling ionization via the
indicated excited levels of singly charged ions (W1,
upper reaction (3)) and via the ground states of these
ions [W0, lower reaction (3)] are presented in Figs. 1–3.
As one can see, the role of the excitation of the core
increases appreciably from light to heavier atoms. This
means that the decrease in the probability of the first
cascade in the reaction (3) for light atoms is not com-

ν j
+( ) Z

2 U2 ∆ j–( )
------------------------------, Z 2.= =
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pensated by an increase in the probability of the second
cascade (3). For heavy atoms the situation is reversed.
However, it should be noted that for the Cd atom the
range where W1 > W0 corresponds to intensities that are
too low: the probability of the tunneling effect here is
negligibly small, so that this example is purely illustra-
tive.

Analysis shows that the above-noted feature in the
behavior of the probabilities W0, 1 is due to the smaller
value of the excitation energy ∆j in heavier atoms. For
this reason, in atoms with a different configuration of
the outer shell, differing from the configuration s2 con-
sidered here, the behavior noted can change. For the He
atom, which was studied in [5], the high excitation
energy of the He+ ions makes it possible to neglect
completely the influence of the excited states of the ion
on the tunneling ionization of a neutral atom.

It is also interesting that the ratio W1/W0 is described
by curves with maxima. It follows from the ADK the-
ory that the extremal value of the intensity of a laser
field is determined in this case by the formula

(15)

Here νj and  are determined by the formulas (11)
and (14) and ∆0 = 0, while ∆1 is equal to the energy of
the excited level under study. For all three atoms shown
in Figs. 1–3 the numerator and denominator in Eq. (15)
are positive, so that Fextr corresponds to a maximum.
For atomic transitions in which the numerator and
denominator in Eq. (15) are negative, the value of Fextr
will correspond to a minimum. However, if the right-
hand side in Eq. (15) is negative, then the dependence
of W1/W0 on the intensity of the field is a monotonic
function that increases with the intensity if the numer-
ator in Eq. (15) is negative or decreases with increasing
intensity if the denominator in Eq. (15) is negative.

To complete the picture of the tunneling formation
of doubly charged ions the simultaneous detachment
(in a half-period of the field) of two electrons from an
atom 

A  A2+ + 2e (16)

should be calculated. The corresponding formulas are
presented in [23]. However, since the reaction (16) is a
single-cascade reaction, its dependence and that of the
reaction (3) on the duration of the laser pulse are differ-
ent. Consequently, the relative role of these reactions is
not universal but rather it depends on the experimental
conditions.

Unfortunately, it is impossible to compare the
results obtained to the data obtained in [3, 4] for the Sr
atom, since an inequality opposite to (10) was satisfied
under the experimental conditions of [3, 4].

Fextr

ν1
3– 2/ν1

+( )( )3 ν0
3–– 2/ν0

+( )( )3
–+

3 ν1 ν1
+( ) ν0– ν0

+( )–+( )
--------------------------------------------------------------------------.=

ν j
+( )
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5.2. H2 Molecule

The formulas obtained in Section 3 are applicable
not only to atoms but also to any quantum systems for
which the ADK theory makes it possible to estimate the
probability of a tunneling effect. Specifically, mole-
cules are such systems. An ADK theory for electroni-
cally excited molecules has been developed in [24]. For
molecules in the ground electronic state the differences
from the simplest formulas of the ADK theory are
greater [25]. However, even in this case it can be
assumed that the ADK formulas describe qualitatively
correctly the probability of the tunneling effect. This is
even more convincing, if one is interested not in the
absolute magnitude of the probability but rather the rel-
ative probabilities corresponding to different excited
states of the molecular core.

If only the vibrational excitations of the molecular
core are taken into account, Eqs. (11) and (12) can be
used, setting ν ≡ νv , ∆j  ∆v , where v is the vibra-
tional quantum number of the core and ∆v is the energy
of the state with this vibrational number, measured
from the energy of the state with v = 0.

Figure 4 shows the probabilities calculated in this
manner for the occupation of the states of the ion H2+

with quantum number v with respect to the occupation
of the ground state v = 0, occurring as result of tunnel-
ing ionization of the H2 molecule. The harmonic
approximation with frequency 2297 cm–1 was used to
calculate thee vibrational spectrum of H2+.

As one can see, the probabilities are increasing
functions of the intensity, differing very strongly in
absolute magnitude. It is obvious that the distribution
function of the vibrational ionic states in this case has
nothing in common with the distribution determined by
the Franck–Condon factors. For heavier molecules the
vibrational frequency is smaller, and consequently the
occupation probabilities for the ground and excited
vibrational states will not differ as greatly. Nonetheless,
even for heavy molecules the dependence of the tunnel-

v = 1

v = 2

v = 3

0

–2

–4

–6

–8

–10
12.0 12.5 13.0 13.5 14.0

log(Wv /W0)

logI [W/cm2]

Fig. 4. Laser radiation intensity dependence of the relative
excitation probabilities of the vibrational states v = 1, 2, 3
of the H2+ ion as result of tunneling ionization of the H2
molecule.
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ing probability on the energy of the ion formed plays a
more important role than the difference of the Franck–
Condon factors from 1.
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Abstract—A set of very important simple quantum systems is analyzed from the standpoint of the amount of
coherent information that is accessible when information channels corresponding to the systems are used. It is
shown that for simple quantum models the coherent information can be calculated and used for estimating the
potential possibilities of the corresponding quantum channel as a source of physical information in experiments
associated with the effects of the coherence of quantum states. The following physical models are studied: a
two-level atom in a laser radiation field, an aggregate of two two-level subsystems in a multilevel atom (hydro-
gen), a system of two two-level atoms in the process of joint quantum-deterministic evolution and under the
action of transformations of quantum measurement and quantum duplication, as well as one and two two-level
atoms in the process of emission. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Finding a completely quantum analog of Shannon’s
quantitative measure of information [1] that would sat-
isfy the corresponding quantum coding theorem, i.e.,
guarantee transmission along a quantum channel with a
fixed information capacity irrespective of the physical
nature of the channel, has for a long time remained a
central unsolved problem of quantum information the-
ory. The solution of this problem is given in [2, 3] using
the concept of coherent information

Ic = Sout – Se, (1)

where Sout describes the quantum entropy of the output
variables of the channel and Se is the exchange entropy,
taken from a reservoir. If the measure Ic is positive, then
expressed in qubits it gives the logarithm of the dimen-
sion of the Hilbert space, all states of which can be
transmitted with probability p = 1 in the limit N  ∞
for long ergodic ensembles. In the opposite case, when
the exchange entropy is greater than the output entropy
and, correspondingly, the noise introduced by the chan-
nel completely nullifies the input information, we take
Ic = 0.

There is every reason to expect that in application to
physics coherent information will play a much larger
role than Shannon’s information. While in classical
physics the information capacity of channels, arising in
the process of a physical measurement, ordinarily can
also be estimated without special calculations, at least
in order of magnitude, this is far from being the case in
the quantum situation. Analysis of the potentially
accessible quantum information in the formulation of
experiments in the newest directions of physics, associ-
1063-7761/00/9105- $20.00 © 20905
ated with quantum computations, problems of quantum
communication and quantum cryptography [4, 5],
where the measure of coherent information of the phys-
ical channel used determines the potential information
content of the data obtained, is especially important.
However, in order to apply the concept of coherent
information to physical systems the corresponding
channel in the form of a superoperator transformation
# must be specified for each system considered and the
required quantum calculations, which, as a rule, are
quite nontrivial, must be performed. It is shown in the
present paper that this can be done, at least, for the most
important simple quantum systems studied. The analy-
sis is performed for systems of various physical nature,
including channels with qualitatively different nature
of the input and output of the type of atom in the elec-
tromagnetic field of the vacuum. The classification of
the types of quantum channels considered, coupling
two quantum systems, is given in Fig. 1.1 The types of
two-moment channels studied, where the information
is transmitted from a state at an earlier moment t = 0 to
a state at a later moment t > 0, must be supplemented
by the corresponding single-moment analogs, in which
information at the output concerning the state of the
input at the same moment in time is considered. The
first class is most closely associated with the problems
of quantum communication and quantum measure-

1 The specific limitations associated with the causality principle
and due to the spatial localization of the systems 1 and 2 are
important only for the channels 1  2 and 1  (1 + 2). The
analysis performed below of a system of two atoms interacting
via a radiation field requires that the relativistic retardation of the
signal be taken into account in order to give a correct description
of the dynamics at short times.
000 MAIK “Nauka/Interperiodica”
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ments, and the last class is associated with modern
approaches to problems of quantum computations and
quantum teleportation.

This paper is organized as follows. A description of
the physical content of coherent information and the
corresponding basic relations is given in Section 2. Sec-
tion 3 is devoted to a description of the basic definitions
and the technique of superoperator representations. The
set of physical systems and the corresponding quantum
channels is discussed in the next sections according to
the classification presented in Fig. 1. The exchange of
coherent information between the quantum states of a
two-level atom (TLA) in a resonant laser field in two
different moments in time (Fig. 1a) is discussed in Sec-
tion 4. The same type of channel (1  1) is analyzed
in Section 5 for a multilevel system, consisting of two
systems of sublevels, for the example of the hydrogen
atom. Section 6 examines the exchange of coherent
information between two different quantum systems. It
includes exchange between (1) two TLA coupled by a
unitary transformation (Fig. 1b), (2) two TLA coupled
via the procedure of quantum measurement (Fig. 1b),
(3) an arbitrary system and its duplicated formed as a
result of the quantum duplication procedure (Fig. 1c),
(4) TLA and the field of the electromagnetic vacuum
(Fig. 1b), and (5) two TLA coupled via a photon field
of the vacuum (Fig. 1b). The basic results of this work
are summarized in the conclusions.

1 1
Quantum channel

(a)

(b)

(c)

1

22

2

1

2

Time

1

1

Fig. 1. Classification of possible quantum channels cou-
pling two quantum systems: (a) 1  1—information is
transferred from the initial state of a system to its final state;
(b) 1  2—information is transferred from the sub-
system 1 of the system (1 + 2) to the subsystem 2; (c) 1 
(1 + 2)—information is transferred from the subsystem 1 of
the system (1 + 2) to the entire system (1 + 2).
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2. QUALITATIVE MEANING OF COHERENT 
INFORMATION AND ITS RELATION 
WITH SHANNON’S INFORMATION

The classical measure of Shannon’s information
with error-free transmission of all possible values of a
quantity x, which assumes M values, is given by I =

, which for the given choice of the base of the
logarithm it is conventionally assigned a “bit” as the
unit of measurement. If the transmitted values x have
different probabilities and are described by the proba-
bility distribution P(x), then the definition presented is
applicable not directly to x but to an ergodic sequence
xk (k = 1, …, n) of statistically independent copies of x
with the probability distribution P(x1) · … · P(xn). In
this case, asymptotically for n  ∞, the set of
sequences of nonzero probability consists of Mn = 2nS(P)

approximately equally probable values, and one sym-
bol corresponds to information ( )/n = S(p),

where S(P) = – P(x) P(x) is the Boltzmann
entropy. This result, which, specifically, plays a funda-
mental role in statistical physics, gives the basis for
assigning the value I = S(P) to the information obtained
with error-free transmission of all values of x with
probability distribution P(x). If errors are possible in
transmission, then such a nontrivial information trans-
mission channel is described by a conditional probabil-
ity distribution P(y |x) of the values of the output vari-
able y for a fixed value of the input variable x. In this
case, for long ergodic sequences the specific error-free
transmitted information is described by the reciprocal
Shannon information:

(2)

Here Px, Py, and Pxy are, respectively, the probability
distributions for the input x, output y, and the pair (x, y).
The first relation in Eq. (2) indicates the symmetric
(reciprocal) character of Shannon’s information with
respect to input and output. The second relation gives
the information as the difference of the entropy of the
output variable y and the average value of the entropy
introduced by the channel into the value of y for the
transmission of a given a symbol x. The meaning of the
latter relation is most transparent for a channel in which
the transmitted values x are represented in transmission
by nonoverlapping subsets Mx of the values of the quan-
tity y ∈ ∪ Mx, i.e., the distortions reduce to scatter of the
output variable y in the regions Mx. The transmitted
information is described, in this case, as the difference
of the total entropy of y and the average entropy of the
subsets Mx.

The initial definition of the coherent information is
the relation Ic = dimH, where H is the Hilbert

M2log

M2 nlog

∑ 2log

I S Px( ) S Py( ) S Pxy( )–+=

=  S Py( ) S P y x( )[ ]P x( ).
x

∑–

2log
 AND THEORETICAL PHYSICS      Vol. 91      No. 5      2000



SIMPLE QUANTUM SYSTEMS AS A SOURCE OF COHERENT INFORMATION 907
space of the states of the input quantum system, all
states of which are transmitted without distortions. The
natural term for the unit of quantum information is the
term “qubit,” corresponding to a two-level quantum
system with dimension dimH = 2, that is used in the
theory of quantum computations. The fundamentally
new element of the theory is the quantum character of
the transmitted information, which is described by an
arbitrary coherent superposition of the basic elements.
If the statistical distribution of the input states is
described by the density matrix , then on the basis
of considerations similar to those described above, with
error-free transmission of quantum states ψ ∈  H the
measure of quantum information is the von Neuman
entropy Ic = S( ) where

is the direct operator generalization of the expression
for Boltzmann’s classical entropy. The simplest chan-
nel implementing error-free transmission of informa-
tion is, for example, the dynamical quantum evolution
of a closed system considered at two moments in time,
t = 0 and t ≥ 0.

For a quantum channel with distortions the input
state is represented as a linear transformation of the
input state  = # . The superoperator # of the
channel is analogous to the conditional probability dis-
tribution P(y |x), considered above, of a classical chan-
nel. The quantum generalization of the Shannon defini-
tion (2) is constructed on the basis of the second rela-
tion, in which the first term—the quantum entropy of
the output—has a unique quantum generalization in the
form of the corresponding von Neuman entropy. The
second term, describing the entropy introduced by the
channel—the so-called exchange entropy Se—should
give in the quantum case with error-free transmission,
i.e., for the identity superoperator # = (, a zero quan-
tity, and for a pure state at the input (analog of the clas-
sical deterministic state) it should be identical to the
entropy at the output, which in this case is determined
only by the entropy introduced by the channel. These
requirements can be satisfied by considering instead of
the input quantum system its expansion H ^ H', where
the variables H' do not interact with the channel vari-
ables, but rather the state  in the aggregate system is
pure and such that after averaging it gives the initial
state  [2]. This procedure of replacing the initial
quantum system is called “purification” of the mixed
quantum state. The corresponding transformation, per-
formed by the channel on the composite quantum sys-
tem, has the form # ^ (, where ( corresponds to con-
stancy of the variables of the additional system, and the
resulting exchange entropy is identified with the
entropy of the transformed composite system. The spe-
cific form of the purified state in H ^ H, i.e., with the

ρ̂in

ρ̂in

S ρ̂( ) Trρ̂ ρ̂2log–=

ρ̂out ρ̂in

ρ̂P

ρ̂in
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choice H ' = H, is explicitly contained in the formula,
obtained in [3], whence follows

(3)

where pi, |i 〉 , and 〈 j | are the eigenvalues and the
right/left eigenvectors of the density matrix , and
|i*〉  and 〈 j* | denote the complex-conjugate vectors.
The purified state is combined, therefore, from the
input system and its “mirror image.”2 The correspond-
ing exchange entropy has the form

(4)

where

(5)

The transformation # in the information channel, in
general can describe the transfer of information to the
output system with a different Hilbert space of states
Hout ≠ H.

For physical applications it is important to give an
adequate physical interpretation of the density matrix
(5) introduced in [3] and the density matrix, determined
here, of the purified state (3), which initially appear
from the above-described mathematical considerations.
The expression (3) describes the combined state of the
system consisting of the input and the mirror image,
from which the quantum-mechanical state of the sys-
tem input–output appears after transmission along the
channel. In the classical theory the conditional proba-
bility P(y |x) of the output with fixed input and, simul-
taneously, averaging with the distribution P(x) over the
states of the input corresponds to the state (5). The con-
ditional distribution is represented by the superoperator
#, and averaging over the input is represented in the
structure of the wave function

corresponding to the purified state (3). This two-parti-
cle state is entangled, i.e., it does not reduce to a statis-
tical mixture of density matrices of the type
|ψi 〉|ϕi 〉〈 ϕi |〈ψi |, corresponding to pure states in the
form of direct products |ψi 〉|ϕi 〉  of single-particle states.
Its purely quantum fluctuations reproduce the fluctua-
tions of a mixed nature, which are described by the den-
sity matrix , determined in the first space in the
direct product H ^ H. Therefore the density matrix (5)
describes the state of the input–output system, where
actually the input is replaced by the mirror-conjugate
representation (see footnote 2). It determines the

2 Compared with [3], here the complex conjugate, necessary for
invariance of representation under study relative to rotations in
subspaces corresponding to degenerate eigenvalues of the density
matrix, is added. For real matrices  with a nondegenerate
spectrum, this refinement is not essential.

ρ̂P pi p j i| 〉 j〈 | i*| 〉 j*〈 |,⊗
ij

∑=

ρ̂in

ρ̂in

Se S ρ̂α( ),=

ρ̂α # (⊗( )ρ̂P.=

ΨP pi i| 〉 i*| 〉 ,∑=

ρ̂in
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908 GRISHANIN, ZADKOV
exchange entropy in the channel and, on the basis of its
physical meaning, is qualitatively different from the
standard one-time density matrix, since the correspond-
ing nonzero entropy appears only as a result of the
transformation of the input state accompanying trans-
mission along the channel. In the absence of distortions
in the channel, in contrast to the standard two-particle
density matrix, it always corresponds to a pure state and
zero entropy.

3. BASIC DEFINITIONS
AND THE SUPEROPERATOR 

REPRESENTATION TECHNIQUE

For purposes of the present paper, it is especially
effective to use a combination of the technique of sym-
bolic and matrix representation of superoperators [6]. The
most general representation of a superoperator transfor-
mation is introduced by the symbolic expression

(6)

where the substitution symbol ( must be replaced by an
operator of the transformed physical quantity or the
density matrix, while ek describe an arbitrary vector
basis in Hilbert space H where the transformed opera-
tor is defined. To describe physically realizable trans-
formations of the density matrix , the operators 
must satisfy the positivity condition3of the block oper-

ator  = ( ) and the orthonormality condition

Tr  = δkl , (7)

which ensures the required normalization for all nor-
malized operators  with Tr  = 1.

Using the symbolic representation (6), it is possible
to obtain the corresponding expression for the product
of the superoperators #1 and #2, whence it is possible
to give a symbolic representation of the superoperator
algebra. For the case  = |k 〉〈 l | we obtain a represen-

tation of the identity superoperator (, and for  =
|k 〉〈 k |δkl we obtain the representation of the quantum
reduction superoperator

The case  = δkl describes the superoperator of taking
the trace Tr(, which is a linear functional in the space
of density matrices. The correspondence between the
matrix form S = (Smn) of the representation of the super-
operator # in the orthonormal basis  and the repre-
sentation (6) is given by the relation

(8)

3 The operators  must be introduced in order to check posi-

tivity completely [7].

# ŝkl ek〈 | ( el| 〉 ,∑=

ρ̂ ŝkl

ŝkl 1̂⊗

Ŝ ŝkl

ŝkl

ρ̂ ρ̂

ŝkl

ŝkl

5 k| 〉 k〈 | ( k| 〉 k〈 |.∑=

ŝkl

êk

ŝkl # k| 〉 l〈 |( ) Smn l〈 |ên k| 〉 êm,
mn

∑= =
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whose validity can be easily checked after substituting
into the expression (6) and comparing with the standard
definition of the matrix elements by means of the rela-
tion

The exchange entropy in the expression (1) for
coherent information is determined by the relation (4),
where the combined density matrix  of the input–
output variables is described in accordance with [3] and
Eq. (5) by the relation

(9)

Here |ρi 〉 = |i 〉  are the transformed eigenvectors of
the input density matrix

| 〉  are the complex conjugates of |ρi 〉 , and # is the
input–output transformation superoperator, so that

 = #  describes the density matrix of the output
variables. Using the superoperator representation in the
form (6) and the above-defined eigenvectors |i 〉 , the
density matrix (9) becomes

(10)

where the operators  are the states of the output vari-
ables. Both the input and output partial density matrices
can be represented as traces over the corresponding
additional system:  = Trin ,  = Trout .

To describe exchange of coherent information
between two quantum systems via the quantum chan-
nels, shown in Figs. 1b, 1c (1  2 or 1  (1 + 2))
the initial combined density matrix must be given in the
form of a direct product  =  ^ , where  =

 and  describes the initial partial density matrices,
where the first one describes the input and the second
describes the output channel. For a channel of the type
1  2 the output are states of the second system,
which contain information about the initial state of the
first system, if a certain transformation over both sys-
tems is satisfied.

The temporal dynamics of the composite system
(1 + 2) is described by the superoperator #1 + 2, and the
corresponding superoperator transformation of the
channel  = #  can be written as

where the trace is calculated over the final states of the
first system. In terms of the representation (6) for the

#ên Smnêm.
m

∑=

ρ̂α

ρ̂α # ρi| 〉 ρ j〈 |( ) ρi*| 〉 ρ j*〈 |.⊗
ij

∑=

ρ̂in
1/4

ρ̂in pi i| 〉 i〈 |,∑=

ρi*

ρ̂out ρ̂in

ρ̂α pi p j( )1/4ŝij

ij

∑ ρi*| 〉 ρ j*〈 |,⊗=

ŝij

ρ̂out ρ̂α ρ̂in* ρ̂α

ρ̂1 2+ ρ̂in ρ̂2 ρ̂in

ρ̂1 ρ̂2

ρ̂out ρ̂in

# Tr1#1 2+ ( ρ̂2⊗( ),=
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composite system this transformation can be described
as

(11)

where the multiplicative basis |k〉|κ〉  is used, and the
indices k and κ correspond to the first and second quan-
tum systems. The operator coefficients  in Eq. (6)
now assume the form

(12)

Here # depends on the form of the combined dynami-
cal transformation #1 + 2 and on the initial state  of
the second system, and it maps the initial states of the
first system into the final states of the second system.

Ordinarily, it is much easier to calculate the one-
time amount of information, since the input–output
density matrix is simply a one-time density matrix of
the corresponding variables, which is calculated
directly from the dynamical equations. For one system,
the corresponding channel is described by the single
superoperator ( and the corresponding calculations are
trivial: for the combined input–output density matrix
(9) we obtain the pure state

and the corresponding exchange entropy Se = 0 and
coherent information Ic = Sout = Sin. For two systems,
where the input–output density matrix is a combined den-
sity matrix , the corresponding coherent information
in the system 2 about the system 1 at the time t is

When the dynamics is described by a unitary transfor-
mation and the initial state of the second system is pure,
all eigenstates |i〉  of the first system transform into the
corresponding set of orthogonal states Ψi(t) of the com-
posite system (1 + 2), so that the combined entropy
remains unchanged, and the coherent information
becomes

If the initial state of the first system is also pure, then
we obtain simply Ic(t) = S[ (t)]. For a TLA this gives
Ic = 1 qubit, if the maximally entangled state is attained
in a system of two qubits.

# n〈 |ŝkκ lλ, n| 〉 κ〈 |ρ̂2 λ| 〉 k〈 | ( l| 〉 ,
n

∑
kκ lλ
∑=

ŝkl

ŝkl n〈 |ŝkκ lλ, n| 〉 κ〈 |ρ̂2 λ| 〉 .
n

∑
κλ
∑=

ρ̂2

ρ̂α ρi| 〉 ρi*| 〉 ρi*〈 | ρ j〈 |,
j

∑
i

∑=

ρ̂1 2+

Ic t( ) S ρ̂2 t( )[ ] S ρ̂1 2+ t( )[ ] .–=

Ic t( ) S ρ̂2 t( )[ ] S ρ̂1 0( )[ ] .–=

ρ̂2
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4. TWO-LEVEL ATOM
IN A RESONANT LASER FIELD

We shall consider the exchange of coherent infor-
mation between the states of a TLA in a resonant laser
field at two different times (Fig. 1a).

An example of a channel of this type was examined
in [3], where only pure dephasing in the absence of an
external field was studied. In the presence of a field and
other relaxation mechanisms, the calculation of coher-
ent information on the basis of the Markov approxima-
tion can be performed in the most general form by cal-
culating the combined density matrix (9) using the
technique of matrix representation of dynamical super-
operators. One question of interest is the form of the
dependence of the coherent information on the applied
resonant field.

An external field changes the characteristic decay
rates of the initial state of a TLA, which are described
by the real parts of the eigenvalues λk of the dynamic
Liouville operator + = +r + +E, where the Liouville
operators +r and +E describe relaxation and interaction
with an external field. Here we confine our attention to
relaxation represented only by pure dephasing in com-
bination with the action of a laser field. The corre-
sponding Liouville matrix in the operator basis  =

{ , , , } has the form [8]

(13)

where Γ describes the rate of decay of the phase in the
absence of the field, Ω is the Rabi frequency, and ,

, and  are the Pauli matrices. The eigenvalues of

êk

Î σ̂3 σ̂1 σ̂2

L

0 0 0 0

0 0 0 Ω
0 0 Γ– 0

0 Ω– 0 Γ– 
 
 
 
 
 

,=

σ̂1

σ̂2 σ̂3

1.00

0.75

0.50

0.25

0
0.5 1.0

1.5
2.0 0

0.5
1.0

1.5
2.0

Ω/Γ

Γ t

Ic, qubit

Fig. 2. Coherent information transferred from the initial
state of a TLA at t = 0 state at the moment t > 0 as a function
of the dimensionless time Γt and the Rabi frequency Ω/Γ.
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the matrix (13) have the form

The laser field changes these quantities compared with
their unperturbed values 0, –Γ, –Γ, and 0.

It is of interest to determine whether or not such a
change in the decay rates results in a decrease of the
decay rate of the coherent information, though from
intuitive considerations it can be inferred beforehand
that an information gain is possible only in the case of
another effect related with the laser field—decrease of
the relaxation parameters of the relaxation superopera-
tor +r itself [8–11].

Calculating the matrix of the dynamical superoper-
ator # = exp(+t) and using the corresponding repre-
sentation (6), we obtain an analytical expression for the
combined density matrix (9) and then [using Eqs. (4)
and (1)] we calculate the coherent information retained
in the TLA at the time t relative to its initial state. The
latter is chosen in the form of the density matrix  =

/2 with maximum entropy S( ) = 1 qubit. The com-
putational results are displayed in Fig. 2. They are
described by a threshold-type time dependence, typical
for coherent information limited by coherence loss pro-
cesses. In addition, it is clearly seen that the coherent
information does not increase, and it even decreases
somewhat with increasing field intensity, as described
by the corresponding Rabi frequency.

The results presented demonstrate also the singular-
ity of the first time derivative of the coherent informa-
tion at time t = 0, which is a characteristic feature of the
initial stage of its decay. Indeed, initially the input–out-
put density matrix (9) of a TLA has the form of a pure
state  = ΨΨ+ with the input–output wave function

Ψ = |i〉| i〉 . Its eigenvalues λk and the probabili-
ties of the corresponding eigenvalues are all zero,
except the one corresponding to Ψ. As a result of the
singularity of the entropy function (–λk) λk at
λk = 0, the derivative of the corresponding exchange
entropy also possesses a logarithmic singularity.

Another interesting feature of the coherent informa-
tion is the form of its dependence on the initial (input)
state . If it were possible, it would make sense to
choose it in the form of the characteristic Liouville
operator

where |kmin 〉  is the eigenvector corresponding to the
minimum eigenvalue |Reλk| > 0 of the matrix L. How-

λk 0 Γ– Γ Γ2 4Ω2–+( )/2,–, ,{=

Γ Γ2 4Ω2––( )/2 } .–

ρ̂0

Î ρ̂in

ρ̂α

∑ pi

∑ 2log

ρ̂in

ρ̂in kmin| 〉 lêl,
l 1=

4

∑=
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ever, the vector |kmin 〉  equals {0, (Γ + )/2Ω ,
0, 1}, i.e., it describes an element of the linear subspace
of operators with zero trace, since the first component
is zero. Therefore the decay of coherent information
cannot be decreased by decreasing the rate of decay of
the coherence of the atomic state in a laser field.

5. EXCHANGE OF COHERENT INFORMATION 
BETWEEN TWO OPEN SUBSYSTEMS

OF A SINGLE SYSTEM

Let us consider the quantum channel of the type
1  1 (Fig. 1a) between two open subsystems A and
B of a single closed system {A, B} with the Hilbert
space of states HA + HB, where HA and HB are the Hil-
bert subspaces of the systems A and B, respectively, and
the “+” sign is used to denote a linear union.

In classical information theory this situation corre-
sponds to transfer of only the part A ⊂ X of the values
of the input random variable x ∈  X. The realization
where the detector does not obtain any message also
carries information and means that x belongs to the
complement of A, x ∈  . This situation can be
described by the corresponding transformation of the
choice # = PA + P0(1 – PA), where PA is the projection
operator from X onto the subset A, PAx = x for x ∈  A and

PAx = ∅  (empty set) for x ∈  , while P0 is the projec-
tion operator from X onto an independent single-point
set X0 and P0x = X0. This transformation corresponds to
the classical reduction channel, which results in infor-
mation losses, only if  does not consist of only one
point. If A is only point, then it is possible to obtain a
potential limit of information equal to 1 bit, because 
replaces the second state of the bit, so that actually no
information is lost.

In quantum mechanics the corresponding reduction
channel is described by an obvious generalization of
the classical selection operator—the selection superop-
erator

(14)

where the state |0 〉  is the quantum analog of the classi-
cal one-point set, which does not depend on all the
other states. This transformation is positive and pre-
serves the normalization of the density matrix, describ-
ing adequately the exchange of coherent information
between open subsystems of a single system. The last
term in Eq. (14) expresses conservation of normaliza-
tion, provided that all states outside the set of B states
are included. In our case these states are all included in
the form of the projector |0 〉〈 0 |, which does not take
into account their coherence. In contrast to the classical
one-bit case, for a TLA they do not carry any coherent
information because of the complete loss of coherence.

Γ 2 4Ω2–

A

A

A

A

# P̂A ( P̂A 0| 〉 0〈 |Tr 1 P̂A–( ) ( 1 P̂A–( ),+=
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Considering the coherent information transmitted
from one part A to the part B of a system, whose state
depends on time, we are dealing with a superoperator of
this channel of the form

(15)

with a unitary temporal resolution operator U(t) and
selection superoperators #A and #B of the subsystems
A, B. Here the selection superoperator #A is presented
only for the possibility of determining the complete
superoperator of the channel irrespective of the form of
the input density matrix. However, if the input density
matrix  is determined only in the corresponding
subspace HA of the complete space H, this superopera-
tor can be dropped.

Let us assume that the dynamical evolution of the
system is given by a set of eigenstates |k 〉  and the corre-
sponding Bohr frequencies ωk. Then, representing the pro-
jectors in terms of the corresponding input |ψl〉 and output
|ϕm〉 wave functions, we obtain from Eq. (15) the represen-
tation of the temporal evolution specified in the form

(16)

Let us consider the case of an orthogonal choice of sub-
sets of input/output wave functions, which is of special
interest. Then, if there is only one common state |φ〉  in
the sets |ψl 〉, |ϕm 〉  and U(t0) = 1 for a time t0, we obtain
the expression

which means that the input system reduces to a classi-
cal bit of information, associated with the states |φ〉  and
|0〉 , and no coherent information is transmitted into the
system B. Nonetheless, it appears in the process of tem-
poral evolution, provided that the eigenstates |k 〉  of the
operator U(t) are different from the input/output states
|ψl 〉, |ϕm 〉 . Therefore, the information capacity of the
channel is due to the quantum entanglement of the
input and output on account of the corresponding con-
tribution to the Hamiltonian systems.

To illustrate the exchange of coherent information
in the channel of the type described, we shall consider

#AB #B#0 t( )#A, #0 t( ) U t( ) ( U 1– t( )= =

ρ̂in

#AB t( ) ŝll' t( ) 0| 〉 0〈 | ∫+
ll' A∈
∑=

× ϕm ψl t( )〈 | 〉 ψl' t( ) ϕm〈 | 〉
m B∉
∑ ψl〈 | ( ψl'| 〉 ,

ŝll' t( ) ϕm ψl t( )〈 | 〉 ψl' t( ) ϕm'〈 | 〉 ϕm| 〉 ϕm'〈 |,
mm' B∈
∑=

ψl t( )| 〉 iωkt–( ) k ψl〈 | 〉 k| 〉 .exp
k

∑=

#AB t0( ) φ| 〉 φ〈 | ( φ| 〉 φ〈 | 0| 〉 0〈 | ϕm〈 |
ϕm φ≠
∑  ( ϕm| 〉 ,+=
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the typical intraatom channel formed by two two-level
systems constructed from two pairs of orthogonal states
A = {|ψ0 〉, |ψ1 〉}  and B = {|ψ0 〉, |ψ2 〉}  of the same atom.
As an example we shall use the spinless model of the
hydrogen atom (Fig. 3): ψ0 is the ground s state with
n = 1, ψ1, 2 correspond to the s state with l = 0, m = 0
and the p state with l = 1, m = 0 of the first excited state
n = 2.

In the absence of an external field the quantum
channel does not transmit any coherent information,
since the states l = 0, m = 0 and l = 1, m = 0 are not cou-
pled. In the absence of an external electric field applied
along the Z axis, the desired pair of four initially degen-
erate states with n = 2 splits as a result of the Stark
effect and transforms into a pair of new eigenstates

and the input state l = 0 oscillates with the frequency of
the Stark shift:

Therefore, on account of the applied electric field, the
input states become entangled with the output states,
which as a result contain coherent information about
the input states.

In our model, Eq. (16) gives the operators  in the
form of a 3 × 3 matrices, where the third columns and
rows correspond to a fictitious “vacuum” state |0〉:

1| 〉 ψ1| 〉 ψ2| 〉+( )/ 2, 2| 〉 ψ1| 〉 ψ2| 〉–( )/ 2==

ψ1 t( )| 〉 ωst( ) ψ1| 〉cos ωst( ) ψ2| 〉 .sin+=

ŝkl

ŝ11

1 0 0

0 0 0

0 0 0 
 
 
 
 

, ŝ12

0 ωst( )sin 0

0 0 0

0 0 0 
 
 
 
 

,= =

ŝ21

0 0 0

ωstsin 0 0

0 0 0 
 
 
 
 

,=

m = 1
n = 2

m = –1m = 0l = 0
l = 1

n = 1

A B

|1〉

|2〉

Fig. 3. Spinless model of the hydrogen atom. The informa-
tion channel is formed from the input forbidden (nlm 
n'l 'm') transition 100–200 and the output dipole-active tran-
sition 100–210.
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Zero values of the operators  and  correspond to
the absence of coherent information at t = 0, i.e., the
absence of entangled states. Choosing the input density

matrix in the form  = /2, we obtain the correspond-
ing input–output density matrix:

where x = sin(ωst) and the output density matrix  is
diagonal with diagonal elements 1/2, x2/2, and (1 –
x2)/2.

Calculating the nonzero eigenvalues (1 ± x2)/2 for
 and the entropies Sout and Sα, we obtain the coherent

information

This function is greater than zero everywhere with the
exception of the point x = 0, where the coherent infor-
mation is zero, and its maximum is one qubit with x = ±1,
i.e., for the precession angle ωst = ±π/2. Hence it is evi-
dent that the coherent information about the states of
the forbidden dipole transition is in principle accessible
via the dipole transition using the Stark effect. Its aver-
age value in time is 〈Ic〉  = 0.46 qubits.

The estimates made above indicate the potential
possibility of observing experimentally the coherent
effects due to the influence of the forbidden electronic
transition on a dipole transition. Forbidden transitions
were studied in [12, 13] as a potential source of infor-
mation about the breakdown of spatial symmetry due to
an interaction via weak neutral currents [14, 15]. If
Ic = 0, then in principle only an incoherent effect of a
forbidden transition via the population of the ground
state n0 is possible. In this case only one parameter—
the population—can be measured, while the exact
knowledge of the phase requires Ic = 1.

ŝ22

0 0 0

0 ωst( )sin
2

0

0 0 ωst( )cos
2

 
 
 
 
 
 

.=

ŝ12 ŝ21

ρ̂in Î

ρ̂α

1
2
--- 0 0

x
2
--- 0 0

0 0 0 0 0 0

0 0 0 0 0 0

x
2
--- 0 0

x2

2
----- 0 0

0 0 0 0 0 0

0 0 0 0 0
1 x2–

2
------------- 

 
 
 
 
 
 
 
 
 
 
 
 
 

,=

ρ̂out

ρ̂α

Ic 1 x2+( ) 1 x2+( )2log x2 x2( )2log–[ ] /2.=
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6. EXCHANGE OF COHERENT INFORMATION 
BETWEEN TWO CLOSED QUANTUM SYSTEMS

A variety of results associated with the exchange of
coherent information between two atomic qubits,
including analysis of the problem from the standpoint
of the measure of quantum entanglements [16], analy-
sis of the problem of eavesdropping [17], and a set of
various experiments proposed in order to create a con-
trollable entanglement in a system of two atoms [18,
19], has been published in the last few years. From the
information standpoint coherent information
exchanged in a system of two TLA coupled by a quan-
tum channel depends on the specific form of the trans-
formation realized by the quantum channel as well as
on the initial states of the TLA. It is natural to take as
the initial state the product of independent density
matrices of the atoms: .

In this section we give a systematic analysis of the
processes leading to exchange of coherent information
between two initially independent quantum systems.
The following are included: (1) two unitarily coupled
TLA (Section 6.1), (2) two TLA coupled by the quan-
tum measurement procedure (Section 6.2), (3) an arbi-
trary system and its duplicated state (Section 6.3),
(4) TLA and a photon field in free space (Section 6.4),
and (5) two TLA interacting via the vacuum photon
field (Section 6.5).

6.1. Two Unitarily Coupled Two-Level Atoms

We discuss first a noiseless deterministic quantum
channel coupling two TLA (Fig. 1b). It can be
described by a unitary two-atom transformation, given
by the matrix elements Uki, k'i ' , k, i, k', i' = 1, 2. Then the
superoperator of the transformation of channel #, giv-
ing the mapping    = , can be written in
terms of the substitution symbol using the relation (6)
with the operators

represented in accordance with Eqs. (8) and (12), by the
matrix elements # in the form

(17)

The relation

holds and gives the correct normalization, and the pos-
itiveness of the block matrix

guarantees positiveness of #.

ρ̂1 2+ ρ̂in ρ̂2⊗=

ρ̂in ρ̂out ρ̂2'

ŝkl Skl µν, µ| 〉 ν〈 |,
µν
∑=

Skl µν, ρ2αβUmµ kα, Umν lβ,* .
mαβ
∑=

Trŝkl Skl µµ,

µ
∑ δkl= =

ŝkl( ) ŝ11 ŝ12

ŝ21 ŝ22 
 
 

=
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SIMPLE QUANTUM SYSTEMS AS A SOURCE OF COHERENT INFORMATION 913
For a transformation of the form U = U1 ̂  U2, which
does not lead to the creation of entangled states, Eqs. (6)
and (17) give # = Tr(, which signifies a transfor-

mation of the initial state  of the first TLA into the

final state, which is not entangled with the state  =

U2  of the second TLA.

Relation (17) can be simplified by considering pure
states , so that in combination with the possibility of
choosing an arbitrary transformation U without entan-
glement it is useful, specifically, to single out especially
the case of the state ρ2αβ = δαβ . Taking account of

the linearity of the dependence of Skl, µν on  and the
convexity of the coherent information Ic as a function of
# [20], the analysis of Eq. (17) can be reduced to anal-
ysis of the relation

(18)

which means that the quantum channel is described
only by a unitary transformation U. Here the summa-
tion extends only over the states |m 〉  of the first atom
after the entangling transformation.

The coherent information transmitted, in the present
system of two coupled TLA with

is shown in Fig. 4. It is a convex function of  with a
maximum at the boundary, ρ11 = 0.1. Just as in the case
of one TLA, the coherent information preserves the
typical threshold character of the dependence on the
coupling angle, which describes the degree of coherent
coupling of two TLA with respect to independent fluc-
tuations of the second TLA.

6.2. Two Two-Level Atoms Coupled
by the Quantum Measurement Procedure

We shall consider a special type of quantum channel
coupling two TLA,4 which can be described by a super-
operator #, defining the quantum measurement proce-
dure. This procedure is related with a different
approach to defining the quantum information [21],
based on the so-called measured information.

Let us consider first a channel consisting of two
identical two-level systems. In terms of the wave func-
tion the corresponding transformation of the complete
measurement of the state of the first TLA has the form

(19)

4 In reality, the results of the present section are valid not only for
two TLA but also for any quantum systems with finite dimension.

ρ̂2'

ρ̂1'

ρ̂2'

ρ̂2 U2
+

ρ̂2'

δαα0

ρ̂2'

Skl µν, Umµ kα0, Umν lα0,* ,
m

∑=

ρ̂in Î/2, ρ̂2( )12 ρ̂2( )11 1 ρ̂2( )11–[ ]= =

ρ̂2

ψ ϕ⊗ ai φi| 〉 φi| 〉 , ai∑ φi ψ〈 | 〉 .=
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This transformation describes the entanglement of cer-
tain basis states |φi 〉 , which does not depend on the ini-
tial state ϕ of the second TLA. The latter is an indicator
of the measuring setup, preserving completeness of
information on the basis states in the initial state ψ =

ai|φi 〉 . Relation (19), given in the form of a single-
valued transformation of the wave function, in reality is
not a linear transformation with respect to ϕ and there-
fore cannot represent a deterministic transformation,
not being unitary. The corresponding representation in
terms of the two-atom density matrices has the form

(20)

It is linear with respect to  and satisfies the standard
conditions of physical realizability [7, 20], i.e., com-
pletely positive and preserves normalization. The den-
sity matrix has the form pi|φi 〉|φi 〉〈φ i|〈φi|, so that

S( ) = S( ), and in accordance with the relations of
Section 3 the one-time coherent information is zero.
This is due to the classical nature of the information,
represented here only by the classical indices i.

The quantum transformation superoperator cou-
pling two TLA in the case of a two-time channel can be
obtained from the relation (6) with  = |φk 〉〈φk|δkl,
〈 k|  〈φk| and |k 〉  |φk 〉 , which after taking the
trace with respect to the first TLA and replacing  by
the substitution symbol ( becomes

(21)

where  = |φk 〉〈φk| are orthogonal projectors, repre-
senting the eigenstates of the “indicator” variable of the

∑

ρ̂12 φi〈 | φj〈 |ρ̂12 φj| 〉 φi| 〉 φi| 〉 φi| 〉 φi〈 | φi〈 |.
j

∑
i

∑
ρ̂12

∑
ρ̂12 ρ̂2

ŝkl

ρ̂12

} P̂kTr1Êk(,
k

∑=

P̂k

1.0

0.8

0.6

0.4
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0
0.2 0.4 0.6

0.8 1.0
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0.5
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Ω/t

Ic, qubit

Population, ρ11

Fig. 4. Coherent information transmitted between two TLA
coupled by a unitary transformation, as a function of the
matrix element ρ11 of the diagonal initial density matrix of
the second TLA and the procession angle ϕ = Ωt.
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914 GRISHANIN, ZADKOV
second TLA, and  = |φk 〉〈φk| describes the orthogonal
expansion of unity. It is constructed from the same
operators, giving here the transformation of the quan-

tum-classical reduction Tr1  ( = 〈φk| ( |φk 〉 , which
gives the procedure for obtaining the classical informa-
tion k from the first system. Applying the transforma-
tion (21) to  and using Eq. (9), we obtain for the cor-
responding output and input–output density matrices

(22)

where

are the eigenvalues of the probabilities for the reduced
density matrix, and

are the normalized modified input states, coupled after
the quantum measurement procedure with the output
states |φk 〉 . It should be noted especially that, as follows
from Eqs. (22), there is no exchange of coherent infor-
mation in the system, since the vectors |φk 〉  are orthog-
onal and the entropies of the density matrices (22) are
obviously the same. Conversely, the measured informa-
tion, introduced in [21], in this case is different from
zero.

There is no difficulty in extending this result to the
case of a channel of a more general form, where the
output system has a structure that is different from the
initial system and is described by a different Hilbert
space. The latter difference is taken into account by
replacing in the preceding relations the basal states |φi 〉
of the second system by a different orthogonal set |ϕi 〉  =
V |φi 〉 , where V is the isometric transformation from the
Hilbert space of the states H1 of the first system into a
different Hilbert space H2 of the second system. After
simple, obvious transformations, we obtain the same
final result—the absence of coherent information trans-
mitted in such a channel. This result is characteristic for
coherent information, in contrast to other information
approaches (see, e.g., [21]).

It is of interest to discuss quantum-measurement
transformations of a more general type, specifically, the
procedure of indirect (generalized) measurement, first
introduced in application to problems of the theory of
optimal quantum detection and measurement in [22],
and in a more general form of the nonorthogonal

expansion of unity (dλ) in [23] ( (dλ) is the equiv-

Êk

Êk

ρ̂in

ρ̂out p̃k φk| 〉 φk〈 |,
k

∑=

ρ̂α p̃k πk| 〉 φk| 〉 φk〈 | πk〈 |,
k

∑=

p̃k φk〈 |ρ̂in φk| 〉 pi φk i〈 | 〉 2

i

∑= =

πk| 〉 pi/ p̃k φk i〈 | 〉 i| 〉
i

∑=

%̂ %̂
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alent of a positive-definite operator-valued measure
(POVM), used in semiclassical variants of quantum
information theory and quantum theory of optimal
detection/measurement [5, 24, 25]). The corresponding
transformation of the indirect measurement is obtained
by averaging the transformation of the direct measure-
ment, applied not directly to the system of interest but
rather to its combination with an arbitrary independent
system. In the general case the indirect measurement
superoperator can be represented as

(23)

where  describe an arbitrary set of orthogonal pro-

jectors, and  is a general nonorthogonal expansion

of unity in the space H (POVM). We note that  =
|ϕq 〉〈ϕ q| describes the case of a “pure” POVM, first
introduced precisely in this form in the quantum theory
of detection/measurement [22]. It corresponds to a
complete measurement in H ̂  Ha with the choice of the
singular density matrix for the initial state of an auxil-

iary independent system  = δb0δbc.

In Eq. (23) the classical index q represents the infor-
mation exchange between the initial state and final state
of the output. Since the number Nq of values of q can be
greater than the dimension dim H, it can be inferred that
a definite amount of coherent information might be
attained as a result of this excess. The corresponding
output and input–output density matrices have the form

(24)

where  = Tr  describe the probabilities of
states determined by indirect measurement. For the
case of complete indirect measurement, based on the
quantum analog [2] of the classical theorem of no
increase in information in successive transformations
of data and on the above-proved result concerning the
complete direct measurement, it is not difficult to sub-
stantiate theoretically and confirm by numerical calcu-
lations that it is impossible to obtain coherent informa-
tion. Therefore, to obtain as a result of a measurement
procedure a nonzero amount of coherent information it
is necessary to use incomplete (“soft”) quantum mea-
surements which require an independent, more detailed
investigation.

6.3. Quantum Duplication Procedure

In counterpoint to the above-studied dequantizing-
type measurement procedure, determined by the trans-

} P̂qTr%̂q(,
q

∑=

P̂q

%̂q

%̂q

ρbc
a

ρ̂out p̃qP̂q,
q

∑=

ρ̂α pi p j j〈 |%̂q i| 〉 P̂q i| 〉⊗ j〈 |,
qij

∑=

p̃q %̂q ρ̂in
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SIMPLE QUANTUM SYSTEMS AS A SOURCE OF COHERENT INFORMATION 915
formation (20), which completely destroys coherent
information, here we shall examine a transformation in
a channel, shown in Fig. 1c, which preserves the coher-
ent information:

It does not ignore the phase relations between the vari-
ous φi because of the use of the off-diagonal matrix ele-

ments of the input density matrix  = .

For the initial density matrix in the form of a product
 ^ , in terms of the transformation   

from H to H ^ H the corresponding superoperator has
the form

(25)

This superoperator determines the transformation of a
coherent measurement in counterpoint to an incoherent
measurement, studied in [21]. The transformation of the

coherent measurement converts  into an -indepen-
dent state

(26)

which results in duplication of the eigenstates φi  of the
input by the same states of the indicator variable

The pure input states transform into pure states of the
composite (1 + 2) system by means of duplication of
the indicator states:

which repeats the mapping (19), which gives a multi-
valued description of the corresponding superoperator
transformation. Of course, only the input states equal to
the eigenstates φk  of the chosen indicator variable are
duplicated without distortion as a result of the incom-
patibility of the nonorthogonal states; this is the basic
theorem of the impossibility of quantum cloning [26].
The entropy of the output state with density matrix

(26), possessing the same matrix elements as , obvi-
ously is identical to the entropy of the input state, Sout =

Sin = S[ ], on account of the conservation of the
coherence of all pure input states.

For combined input–output states the transforma-
tion (25) leads to the density matrix (9) in the space H ^
H ^ H of the form

(27)

ρ̂12 ρ̂12' φi〈 |Tr2ρ̂12 φj| 〉 φi| 〉 φi| 〉 φj〈 | φj〈 |.
ij

∑=

ρ̂1 ρ̂in

ρ̂in ρ̂2 ρ̂in ρ̂12'

4 φi| 〉 φi| 〉 φj〈 | φj〈 | φi〈 | ( φj| 〉 .
ij

∑=

ρ̂in ρ̂2

ρ̂out ρ̂12' φi〈 |ρ̂in φj| 〉 φi| 〉 φi| 〉 φj〈 | φj〈 |,
ij

∑= =

k̂ k φk| 〉 φk〈 |.
k

∑=

ψ φi ψ〈 | 〉 φi| 〉 φi| 〉 ,
i

∑

ρ̂in

ρ̂in

ρ̂α φk| 〉 φk| 〉 φl〈 | φl〈 | p̃k p̃l χk| 〉 χ l〈 |,⊗
kl

∑=
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where  and |χk 〉  are the same as above; this makes it
possible to construct a spectral expansion of the density
matrix in the form

Keeping in mind the fact that the first term of the tensor
product in Eq. (27) is a set of transition projection oper-

ators , it is easy to prove the alge-
braic rule used for an arbitrary scalar function f:

where  = ( ) is a block matrix, and

Here  = ( |χk 〉〈 χl |), which equals simply

||χ〉〉〈〈 χ||+ with ||χ〉〉ki = χki, since this corresponds to
a vector in the space H ^ H. The eigenvalues λk of this
matrix are {1, 0, 0, 0} with a single nonzero eigenvalue,
corresponding to the vector ||χ〉〉.

A calculation of the exchange entropy gives Se = 0
and therefore Ic = Sin. This means that the quantum
duplication procedure does not decrease the volume of
coherent information in the channel 1  (1 + 2) irre-

spective of whether or not the indicator  is compatible

with the input density matrix, i.e., [ ] = 0.

If the channel considered is reduced to the channel
shown in Fig. 1b and studied in the preceding section
by taking the trace over the first or second system in
Eq. (26), we obviously arrive at the measuring proce-
dure examined in Section 6.2. As a result, we can con-
clude that coherent information is not associated with
each system separately, i.e., it is strongly coupled with
both systems. The specific nature of the quantum infor-
mation, studied above, can be used, specifically, in
algorithms for correcting quantum errors [27] or for
producing stable entangled states [28].

6.4. Two Level Atom–Vacuum Field Channel

We now consider the interaction between a TLA and
a vacuum electromagnetic field, i.e., the process of
electromagnetic emission, as an information channel
(Fig. 1b), which compared with a TLA in a given laser
field (see Section 4) introduces a new object—the pho-
ton vacuum field—as the output.

For this purpose we shall employ a reduced model
of the field based on the reduction of the Hilbert space
in the Fock representation (Fig. 5). In a more general

p̃k

ρ̂in p̃k χk| 〉 χk〈 |.
k

∑=

P̂kl P̂klP̂mn, δlmP̂kn=

f P̂kl

kl

∑ R̂kl⊗
 
 
 

P̂kl

kl

∑ f R̂( )kl,⊗=

R̂ R̂kl

Trf P̂kl

kl

∑ R̂kl⊗
 
 
 

Trf R̂( ).=

R̂ p̃k p̃l

p̃k

k̂

k̂ ρ̂in,
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916 GRISHANIN, ZADKOV
terminology, this problem corresponds to the problem
of the dynamics of the interaction of a two-level system
with a multimodal system of linear oscillators [29]. The
solution of the latter problem on long-time scales, to
which we shall confine our attention here, corresponds
to the standard description of the emission of a single
photon. Moreover, for purposes of information analysis
of a system consisting of an atom and a field, there is no
need to describe the coherent dependence of the wave
function ψ0(k, λ) of the photon on the photon wave vec-
tor (and polarization), since only the total probability of
emission of the photon is important.

In the basis of states of the free atom and the Fock
states of the free field for a vacuum initial state α0 = 0
we obtain from the relation (18)

where the Greek indices are used to denote states of the
photon field, which in general correspond to the num-
ber of photons and their spatial coordinates or wave
vectors. The calculation of this superoperator, per-
formed on the basis of a unitary matrix of the temporal
evolution of the atom–field system with matrix ele-
ments Umµ, k0, is illustrated in Tables 1 and 2.

Choosing ψ0(k, λ) as the basis element of a single-
photon subspace of states of the field reduces the matrix

Skl µν, Umµ k0, Umν l0,* ,
m

∑=

Atomic
states

Fock states 
of the field

|1〉a

|0〉a |0〉

|1〉kλ

|2〉k1λ, k2λ

c1 ψ0(k
, λ)

Fig. 5. Structure of the compound Hilbert space of the
atom–field system. For the vacuum initial state of the field
both atomic states and only two Fock states of the field ( |0〉
and |1〉) are included in the dynamics of the atom–field com-
posite system, which can be defined by only two states
|0〉a|1〉kλ and |1〉a|0〉 , described by time-dependent functions
ψ0(k, λ) and c1, respectively.
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Skl, µν of the superoperator to a nonoperator transforma-
tion matrix, which in terms of the matrices  has the
form

(28)

where |c1|2 = exp(–γt) describes the decay of the popu-
lation of an initially completely populated excited state
of the atom, and

describes the total probability of detecting a photon. It
follows from Eqs. (28) that the structure of the photon
is of no significance, and the transmitted information is
determined only by the probability of emission of a
photon by the time t. This reduction of the photon field
(only the photon numbers µ, ν = 0, 1 are important)
reduces it to an equivalent two-level system.

Applying the transformation (28) to the input den-
sity matrix

where we have confined ourselves to the case of purely
real off-diagonal matrix elements, we obtain the output
density matrix

and the corresponding input–output density matrix,
which for the case ρ12 = 0 has the form

ŝkl

ŝ11
1 0

0 0 
 
 

,=

ŝ12
0 1 e γt––( )1/2

0 0 
 
 

,=

ŝ21
0 0

1 e γt––( )1/2
0 

 
 

,=

ŝ22
e

γt–
0

0 1 e γt–– 
 
 
 

,=

ψ0 k λ,( ) 2∑ kd∫ 1 γt–( )exp–=

ρ̂in
ρ11 ρ12

ρ12 1 ρ11– 
 
 

,=

ρ̂out
ρ11 ρ22e γt–+ ρ12 1 e γt––( )1/2

ρ12 1 e γt––( )1/2 ρ22 1 e γt––( ) 
 
 
 

,=
ρ̂α

ρ11 0 0 ρ11ρ22 1 e
γt–

–( )[ ]
1/2

0 ρ22e γt– 0 0

0 0 0 0

ρ11ρ22 1 e
γt–

–( )[ ]
1/2

0 0 ρ22 1 e
γt–

–( ) 
 
 
 
 
 
 
 

.=
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For t  ∞ this expression gives a completely
entangled state (in the sense of the absence of classical
correlations, since it is a pure state) of the atom–photon
system, leading to transfer to the photon of coherent
fluctuations of the atomic state, which are equivalent to
a mixed ensemble. The corresponding eigenvalues are

λα = {0, 0, 1 – ρ22exp(–γt), ρ22exp(–γt)}.

The nonzero values describe the probabilities of atomic
states at time t. The eigenvalues for the output density
matrix (photon + vacuum)  are

λout = {ρ22[1 – exp(–γt)], 1 – ρ22[1 – exp(–γt)]}

and describe the probability of observing whether the
photon is emitted or not. The set of quantities presented
above determines the characteristic values of the prob-
abilities of the combined input–output density matrix
and the partial density matrices. The coherent informa-
tion given by the corresponding entropy difference
assumes the form

(29)

where x = exp(–γt). This formula is applicable for
Ic > 0, while in the opposite case Ic = 0. The corre-
sponding critical moment in time is determined by
the relation exp(–γt) = 1/2, which corresponds to the
probability 1 – ρ22[1 – exp(–γt)] of the absence of a
photon being equal to the probability 1 – ρ22exp(–γt) of
the bottom atomic level being occupied.

The results of the calculation of the coherent infor-
mation are presented in Fig. 6 for two special cases:
ρ12 = 0 (Fig. 6a) and ρ11 = 1/2, 0 ≤ ρ12 ≤ 1/2 (Fig. 6b).
It is easy to see from Fig. 6a that the coherent informa-
tion is symmetric with respect to the symmetry point
ρ11 = 1/2. A further increase of the population of the
excited state ρ22 = 1 – ρ11 and the corresponding level
of photon emission does not increase the amount of
coherent information. This is due to the decrease in the
input entropy, which determines the potential maxi-
mum of coherent information. For the same reasons,
the coherent information decreases if a nonzero coher-
ent correction is made to the initial density matrix of the
atom in the form of a state with maximum entropy and
vanishes for a purely coherent initial state (Fig. 6b).

In accordance with Section 3 and taking account of
the fact that the initial state of the field is pure, the one-
time information is equal to the entropy difference only
for the photon field represented by the density matrix

 and the initial atomic state represented by . For

ρ̂out

Ic xρ22 xρ22( )2log=

– 1 ρ22– xρ22+( ) 1 1 x–( )ρ22–[ ]2log

+ 1 xρ22–( ) 1 xρ22–( )2log

– 1 x–( )ρ22 ρ22 xρ22–( ),2log

ρ̂out ρ̂in
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a pure initial state of the atom in the form of an excited
state |2〉  we obtain for all times the nonzero coherent
information

which gives one qubit for the time when x = 1/2 and the
population of the excited state coincides with the prob-
ability of emission of a photon.

6.5. Atom-to-Atom Transmission of Coherent 
Information Via a Free Vacuum Field

Let us consider a quantum channel of the type 1  2
(Fig. 1b), where information is transferred from one
atom to another through free space by emission of a
photon, assuming that initially the second atom is the
ground state. In addition, we introduce a limitation on
the scale of the times considered, excluding from our
analysis fast processes occurring on times of the order
of and less than the period of atomic oscillations, i.e.,
ignoring the discrete nature of the electromagnetic sig-
nal that is associated with interatomic retardation [30–
33]. In this approximation the problem under consider-
ation is a Dicke problem [34], for which the solution in
terms of two time-decaying symmetric and antisym-

Ic x x2log– 1 x–( ) 1 x–( ),2log–=

Table 1.  Unitary transformation atom–field–atom–field
Umµ, kα for a vacuum initial state of the photon field; the indi-
ces m and k enumerate the atomic photons, µ and α are the
photon numbers

kα
mµ

00 01 10 11

00 1 0 0 0

01 – – – –

10 0 ψ0(k, λ) c1 0

11 – – – –

Note: The second and fourth rows are the matrix elements that do
not appear in the matrix elements Skl, µν which are computed
(see Table 2).

Table 2.  Atom–field superoperator Skl, µν, setting the trans-
formation |k〉〈 l|  |µ〉〈ν|. The indices k and l enumerate the
atomic photons, and µ, ν are the photon numbers

kl
µν

00 01 10 11

00 1 0 0 0

01 0 0 ψ0(k, λ) 0

10 0 (k, λ) 0 0

11 |c1|2 0 0 ψ0(k, λ) × (k', λ')

ψ0
+

ψ0
+

SICS      Vol. 91      No. 5      2000



918 GRISHANIN, ZADKOV
1.0

0.8

0.6

0.4

0.2

0
0.2 0.4 0.6 0.8 1.0

0
1

2
3
4
5

0
1

2
3
4
5

0.2 0.4 0.6 0.8 1.0

0

Ic, qubit

Ti
m

e,
 γ

t

ρ12

(a) (b)

Population, ρ11

1.0

0.8

0.6

0.4

0.2

Ic, qubit

Ti
m

e,
 γ

t

Fig. 6. Coherent information transmitted by the atom–field quantum channel as a function of time and the output density matrix of
the atom: (a) the density matrix is diagonal with matrix element ρ11 of the ground state; (b) the density matrix is described by the
sum of /2 and the real (“cosine”-type) coherent addition in the form of the off-diagonal term ρ12 .Î σ̂1
metric Dicke states ||s〉〉  = (|1〉|2〉  + |2〉|1〉)/ , ||a〉〉  =

(|1〉|2〉  – |2〉|1〉)/  and a stable vacuum state ||0〉〉 =
|1〉|1〉  in the following form is well known:

(30)

where c0(t) is the complex amplitude of the vacuum
component |1〉|1〉 , including the incoherent correction
due to the spontaneous radiative transitions from
excited atomic states, ξ(t) is the uniformly distributed
phase of atomic oscillations, γs, a and Λ are the decay
rates and the frequency splitting (frequency shift),
respectively, and cs, a are the complex amplitudes of the
Dicke states.

In terms of multiplicative combinations of individ-
ual atomic states |i〉| j〉  for the corresponding amplitudes
of the initial states c12(0) = 0 and c22(0) = 0 the dynam-
ics of the system under study is described in accordance
with the dynamics of Dicke states, determined by the
relations (30), for the following equations:

2

2

cs t( ) cs 0( ) γs/2 iΛ+( )t–[ ]exp ,=

ca t( ) ca 0( ) γa/2 iΛ+( )t–[ ]exp ,=

c0 t( ) c0 0( )=

+ cs 0( )2 ca 0( )2 cs t( )2– ca t( )2–+[ ]1/2
eiξ t( ),

c11 t( ) c11 0( ) f t( )eiξ t( )c21 0( ),+=

c21 t( ) =  f s t( )c21 0( ), c12 t( ) f a t( )c12 0( ),=

c22 t( ) 0,=

f t( ) 1 γst–( )exp γat–( )exp+[ ] /2–{ } 1/2,=

f s t( ) γs/2 iΛ+( )t–[ ]exp{=

+ γa/2 iΛ–( )– t[ ] } /2,exp
JOURNAL OF EXPERIMENTAL 
Using these expressions for the input operators of the
form ck1(0) (0)|k〉〈 l | for the first atom and then aver-
aging them over the final states of the first atom and
fluctuations of the atomic field (the latter are repre-
sented here only by the variable ξ(t)), we obtain the
symbolic representation of the superoperator of the

transformation of the channel (0)  (t) =

#(t) (0) and the corresponding operators  in the
form

(31)

To make the problem more concrete we shall con-
sider two identical atoms with parallel dipole moments,
directed perpendicular to the vector connecting the
atoms under study. Then only two dimensionless vari-
ables are important: γt, where γ describes the radiative

f a t( ) γs/2 iΛ+( )t–[ ]exp{=

– γa/2 iΛ–( )– t[ ] } /2.exp

cl1*

ρ̂ 1( ) ρ̂ 2( )

ρ̂ 1( ) ŝkl

# t( ) 1| 〉 1〈 | ( 1| 〉 1〈 | f t( )2 f s t( ) 2+[ ] 1| 〉+=

× 2〈 | ( 2| 〉 1〈 | f a t( ) 2 2| 〉 2〈 | ( 2| 〉 2〈 |+

+ f a t( ) 2| 〉 2〈 | ( 1| 〉 1〈 | f a* t( ) 1| 〉 1〈 | ( 2| 〉 2〈 |,+

ŝ11
1 0

0 0 
 
 

, ŝ12
0 f a* t( )

0 0 
 
 

,= =

ŝ21
0 0

f a t( ) 0 
 
 

,=

ŝ22
f t( )2 f s t( ) 2+ 0

0 f a t( ) 2
 
 
 
 

.=
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Fig. 7. (a) Population of the excited state of the second atom and (b) the coherent information in a system of two atoms interacting
through free space as a function of the dimensionless time γt and the interatomic distance ϕ = ω0R/c. The input density matrix cor-
responds to a state with maximum entropy  = /2. ρ̂in Î
decay rate of an isolated atom, and a dimensionless
interatomic distance ϕ = k0R, where R is the distance
between the atoms and k0 is the modulus of the wave
vector corresponding to the frequency of the atom. The
dimensionless two-atom radiative decay rates and the
frequency shift due to the short-range dipole-dipole
interaction are described by the corresponding relations
[19, 28–33]:

γs, a/γ = 1 ± g, Λ/γ = (3/4)/ϕ3,

where g = (3/2)(ϕ–1sinϕ + ϕ–2cosϕ – ϕ–3sinϕ).

The corresponding coherent information can be cal-
culated as done in Section 6.4. Using the correspon-
dence exp(–γt)  f(t)2 + |fs(t)|2, the operators  for
the two cases are completely similar and the coherent
information, once again, is described by the same rela-
tion (29) with x = f(t)2 + | fs(t)|2. Nonetheless, in this
case the dependence considered, as compared with the
case of one atom (see Section 6.4), has specific qualita-
tive features on account of the oscillatory character of
the function |fs, a(t)|2 as a function of the interatomic
distance ϕ.

If there were no oscillations due to the quasielectro-
static short-range dipole-dipole interaction, i.e., if one
could set Λ = 0, then the coherent information would
always be zero, since the threshold x < 0.5 cannot be
reached. The parameter 1 – x corresponds to the popu-
lation of the excited state of the second atom with the
initial state |2〉  of the first atom, and for the optimal,
from the standpoint of information, value of the popu-
lation of the first atom ρ22, equal to half its initial pop-
ulation, we obtain 1 – x ≤ 1/4 and correspondingly x ≥
3/4. The oscillations in |fa(t)|2 lead to interference
between two decaying Dicke components, so that the
maximum of the population n2 = 1 – x also reaches
larger values right up to n2 = 1, and the corresponding
coherent information becomes different from zero.

ŝkl
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The functions n2(ϕ, γt) and Ic(ϕ, γt), calculated using
the relation (29), are shown in Fig. 7. They serve as a
universal measure for a system of two atoms, being
independent of their frequency or the magnitude of the
dipole moment (the latter is valid only for a fixed geom-
etry of the system, described above).

As one can see in Fig. 7a the population decays rap-
idly as a function of time because of the rapid decay of
the short-lived Dicke component. The population and
the coherent information undergoes strong oscillations
(Fig. 7b) for small interatomic distances ϕ. As ϕ  0
the population of the long-lived Dicke state remains
substantial for unlimited long times, but no coherent
information is associated with it because the other com-
ponent decays completely.

7. CONCLUSIONS
It was shown in this work that the concept of coher-

ent information can be used for obtaining the most gen-
eral description of the interaction between two real
quantum systems, including systems of qualitatively
different physical nature, and for determining the role
of quantum coherence in the composite system.

It was shown for a TLA in a resonant laser field that
coherent information in the system does not increase
with increasing intensity of the applied field, provided
that the relaxation processes themselves are not sup-
pressed.

The hydrogen atom was considered as an example
of the information exchange between subsystems of a
single system. It was shown that under the action of an
applied electric field coherent information exchange
occurs between forbidden and dipole-active atomic
transitions as a result of the interaction due to the Stark
effect.

It was shown for two unitarily coupled TLA that the
maximum possible value of the coherent information
Ic = 1 qubit is reached for maximum entanglement and
SICS      Vol. 91      No. 5      2000
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Ic = 0 for any type of measurement procedures studied
in Section 6.2.

It was shown for information exchange between
TLA and a free photon field in the process of emission
of electromagnetic radiation that the coherent informa-
tion reaches the threshold of nonzero values at the crit-
ical point of the decay exponential exp(–γt) = 1/2,
where the probability of there being no emitted photon
is equal to the population of the lower atomic state. At
the maximum the coherent information can reach the
value Ic = 1 qubit.

It was shown for information exchange between two
atoms by means of the vacuum field, when the atoms
are separated by a distance of the order of the wave-
length, that the coherent information is nonzero only as
a result of coherent oscillations between the Dicke
states, which are due to short-range dipole-dipole
quasielectrostatic interaction with spatial dependence
∝ 1/R3. In contradistinction to this, the semiclassical
information extracted using the quantum detection pro-
cedure is associated with population correlations [28].
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Abstract—The bipolar harmonics method is extended to the case of complex elliptic polarization vectors. The
method is used to study, on the basis of the semiclassical theory, the multipole moments of the ground state of
atoms under conditions of sub-Doppler cooling with a monochromatic light field possessing spatial gradients
of the polarization. It is shown that for stationary atoms with an initial isotropic distribution over sublevels the
multipole moments of rank κ decompose, in accordance with the parity κ of the rank, according to one of two
minimal sets of bipolar harmonics with different symmetry under inversion. An expansion of the corrections,
which are linear in the velocity, to the multipole moments with respect to the indicated minimal sets of bipolar
harmonics is studied for a stationary state, and the expansion coefficients are analyzed. The orientation vector
J of the atomic ensemble is studied on the basis of the proposed method for the dipole transition 1/2  1/2,
and the light-induced forces for a specific 2D configuration of the light field, including radiation friction forces
and Lorentz-type forces, are analyzed. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION 

Many problems in atomic physics are determined in
the initial formulation by a certain set of vector quanti-
ties. Examples are problems of the collisions of atomic
particles, photoionization of ions, optical pumping of
atoms by a light field, and so on. Specifically, the polar-
ization and spatial configuration of the light field are
important for sub-Doppler cooling of atoms. The iden-
tification of the kinematic factors characterizing the
transformation properties of the desired quantities with
respect to spatial transformations and the dynamical fac-
tors is an important problem here. For two determining
vectors,1 n1 and n2, the method of bipolar harmonics

where Yl(n) are spherical functions of rank l, is
effective. This method is based on the theorem [1, 2]
on the expansion of bipolar harmonics of arbitrary
rank {l, L} with respect to a basis of “minimal” har-

monics , k = 0, …, j, p = 0, 1, where

 = . We note that this basis

consists of two independent sets,  and ,
whose harmonics have different parity under inversion.
Such minimal sets can form natural bases for studying
the multipole moments arising in the problem, where
the expansion coefficients are the dynamical factors of
the problem.

1 Without loss of generality, these vectors can be taken as unit vec-
tors.

Y j
l L, n1 n2,( ) Yl n1( ) YL n2( )⊗{ } j,=

= j
k p, n1 n2,( ){ }

= j
k p, n1 n2,( ) Y j

j k– k p+, n1 n2,( )

= j
k 0, = j

k 1,
1063-7761/00/9105- $20.00 © 20921
The possibility of extending the spherical functions
Yl(n) for a complex vector n, as noted in [3] and used in
[4] for finding the stationary point of the radiation
relaxation operator and in [5] to describe the “dark”
states under conditions of coherent population trap-
ping, also makes it possible to extend the method of
bipolar harmonics to the case of the determining com-
plex vectors n1 and n2. In this work such an extension
is made in a study of the multipole moments of atoms
in the semiclassical theory of sub-Doppler cooling. The
processes of optical pumping of an atom play an impor-
tant role in sub-Doppler cooling [6], where in general
e(r) and e*(r)—the polarization vector of the general
light field and its complex conjugate—are the deter-
mining vectors in the problem.

In Section 2 a reduced closed kinetic equation (11)
for the multipole moments of the ground state of atoms,
which is the initial equation for the subsequent analy-
sis, is presented on the basis of the known approxima-
tions of the theory of sub-Doppler cooling.

The extension of bipolar harmonics and certain
other quantities from the apparatus of the quantum the-
ory of angular momentum [7] by means of analytic
continuation to complex Euler angles is studied in Sec-
tion 3. The Clebsch–Gordan theorem for the Wigner D
functions of complex arguments and Clebsch–Gordan
coefficients [8], which corresponds to the expansion of
the known representations of the SU(2) group to the
group of unimodular complex matrices SL(2, C) (see
Appendix), plays a fundamental role here. In this inter-
pretation the arbitrary elliptic polarization vector gives
a certain direction characterized in some coordinate
system by certain complex Euler angles. Correspond-
000 MAIK “Nauka/Interperiodica”
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ingly, the analytic continuation to complex angles for
the spherical functions Yl(ϑ , ϕ) and bipolar harmonics

 as tensor products of spherical
functions of different directions becomes justified.
Many important algebraic properties of generalized
functions remain in force.2 

In Section 4 the structure of the multipole moments
of the ground state of stationary atoms is studied using
the method of bipolar harmonics, and in Section 5 the
first corrections to them with respect to the velocity v
of the atoms are studied. The vectors n1 = e/e, n2 = e*/e,

where e =  =  =  corresponds to the
degree of maximum linear polarization for a pure polar-
ization state of the light field [9] (ε is the ellipticity
angle), are chosen as the determining vectors. Obvi-
ously, the total number of bipolar harmonics in the 2j + 1
basis permits expanding an arbitrary multipole moment
of rank j with respect to it.

For optical pumping from an equilibrium (isotropic)
state of atoms the multipole moments of the ground
state are expanded only in terms of the minimal sets
with p = 0 for even ranks j and sets with p = 1 for odd
ranks j. For example, the orientation of the atoms (j = 1) is

proportional to , while only  (i = 0, 1, 2) are
present in the alignment tensor (j = 2). The dependence
of the dynamical factors on the parameters of the light
field is determined only by the scalar quantity χ =
n1 · n2 = 1/cos2ε = l–1, related with the ellipticity of the
field.

The contributions linear in the velocity v to the mul-
tipole moments of atoms of ranks j are expanded in the

general basis . The dependence of the velocity
is characterized by four scalars:3 Λ = ((v · ∇ )n1) · n2,
ϒ = ((v · ∇ )n1) · [n1 × n2], and their complex conju-
gates. Together with χ they appear in the expansion
coefficients which are the dynamical factors of the
problem. The physical content of these scalars is due to
the spatial gradients of polarization vectors of various
nature. Thus, the real part Λ is proportional to the gra-
dient of the ellipticity of the light field, and the imagi-
nary part is proportional to the gradient of the rotation
angle of the polarization ellipse in the initial plane,
while ϒ is proportional to the gradients of the rotation
of the plane of the polarization ellipse itself in space.
The invariant method of finding the dynamical factors,
which is based on the property that the minimal sets

 are linearly independent separately, is
examined.

In Section 6 the model of the simplest transition
1/2  1/2 in a monochromatic light field, which has
gradients of the polarization, is studied. In this case the

2 For example, the Clebsch–Gordan expansion and the addition
theorem for spherical functions are satisfied.

3 ϒ is a pseudoscalar.

Y j
l L, ϑ 1 ϕ1; ϑ 2 ϕ2,,( )

e e⋅ 2εcos l

=1
1 1, =2

i 0,

= j
k p,{ }

= j
k 0,

; = j
k 1,{ }
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polarization of the atomic medium is described only by
the orientation vector J, which is a multipole moment
of rank 1 (j = 1). A calculation of J up to linear correc-
tions in the velocity v is performed on the basis of the
method presented. Further, the light-induced forces,
including radiation friction forces and Lorentz-type
forces, are analyzed on the basis of the specific two-
dimensional (2D) configuration of the light field.

2. KINETIC EQUATION FOR THE MULTIPOLE 
MOMENTS OF ATOMS IN THE GROUND STATE

Let us consider the resonance interaction of an atomic
medium with a weak light field, which in general is a
superposition of coherent monochromatic plane waves
with optical frequency ω:

(1)

Here %(r) = |%|exp(iφ(r)) is the total complex ampli-
tude of the light field taking account of the general spa-
tial phase of the field φ, and e(r) is a unit polarization
vector: e · e* = 1.

In a local cyclic basis, called in this paper the local
natural basis, the unit vector e0(r) ~ e × e* is perpendic-
ular to the plane of the polarization ellipse, and the unit
polarization vector e and its complex conjugate e* have
the form

(2)

(3)

where –π/4 ≤ ε ≤ π/4 is the ellipticity angle and ϕ0 is the
rotation angle of the polarization ellipse.

The light field (1) is resonant with the closed atomic
dipole transition jg  je with frequency ω0, where jg

and je are the total angular momenta for the ground and
excited states of the atom. Let the atomic medium be
described by the density operator in the Wigner repre-
sentation, . If the optical transition is closed,
it is sufficient to confine attention to the following com-

ponents of the density operator:  = —from the

excited state; , —from optical coherences; and,

 = —from the ground state. We shall consider as
the atomic medium an ensemble of precooled (slow)
atoms, so that the condition for the velocities of the
atoms γ @ k · v is satisfied (γ is the radiative relaxation
constant for the excited state of an atom). On the other
hand the temperature of the ensemble is still quite high

E r t,( )
1
2
--- e iωt– % r( )e r( ) c.c.+[ ]=

=  
1
2
--- e iωt– E r( ) eiωtE∗ r( )+{ } .

e ε π/4–( )e
iϕ0e+ ε π/4–( )e

iϕ0–
e–sin–cos–=

=  e+e+ e
–e–,+

e∗ ε π/4–( )e
i– ϕ0e– ε π/4–( )e

iϕ0e+sin+cos=

=  e
+( )∗ e– e

–( )∗ e+,–

ρ̂ r p t, ,( )

ρ̂ee ρ̂e

ρ̂eg ρ̂ge

ρ̂gg ρ̂g
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compared with the recoil energy due to the emission of
one photon, mv2/2 @ ("k)2/2m, so that the recoil
parameter "k/p ! 1 is the small parameter. We shall
neglect all relaxation processes (for example, those due
to interatomic collisions) except for radiative relaxation
processes. This model is typical for studying the initial
states of sub-Doppler cooling of atoms in light fields,
when an analysis can be performed staying within the
semiclassical approximation.

It is well known [10] how a closed approximation
for the density operator of only the ground state  can
be derived in the zeroth approximation in the recoil
parameter in a weak light field, where the rate of optical
pumping of the excited state is low compared with γ,

from the main equation for . In accordance with the
standard reduction method [11, 12] the optical coher-
ences in the adiabatic approximation and in the linear
approximation in the field intensity can be represented
in the form

(4)

and the operator for the density of the excited state 
in the linear approximation in the field intensity for the
times considered below, which exceed the characteris-

tic time γ–1 for establishing a stationary regime for ,
can be represented as

(5)

Here

(6)

is the saturation parameter (smallness parameter, S ! 1),
Ω = –%d/" is the Rabi frequency, d is the reduced
matrix element of the dipole moment for a given optical
transition, δ = ω – ω0 is the detuning of the light-field

frequency from resonance,  =  and  =  are
the projections of the lowering and raising operators of
the reduced dipole moments [11, 12] on the polariza-
tion direction. The explicit form of these operators is
determined by the representation chosen. Thus, in the
Jm representation of the eigenvectors of the angular
momentum (|je, µe〉  for the excited and |jg, µg〉  for the

ground states of the atom) the operator  [11] has the
matrix elements

(7)

where the Wigner 3jm symbols [7] are used and the
coefficients eq were determined in Eqs. (2) and (3).

ρ̂

ρ̂g

ρ̂eg ρ̂ge( )† Ω
δ iγ/2+
-------------------V̂ ρ̂g,≈=

ρ̂e

ρ̂e

ρ̂e SV̂ ρ̂gV̂
†
.≈

S
Ω 2

γ2/4 δ2+
---------------------=

V̂ V̂
eg

V̂
†

V̂
ge

V̂

Vµeµg
1–( )

je µe– je 1 jg

µe– q µg 
 
 

e
q,

q 1±=

∑=
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In the approximations (4) and (5) and in zeroth order
in the recoil parameter the closed equation for the den-

sity operator of the ground state, , has the form
[11, 12]

(8)

where ∆ = 1/2 – iδ/γ. This equation describes the
dynamics of the ground state of the atomic ensemble as
a result of optical pumping processes. The first term
(arrival operator) on the right-hand side describes the
arrival of atoms in the ground state as a result of spon-
taneous radiative decay of the excited state; the remain-
ing terms describe outgoing processes and light-
induced shifts of the energy levels of the ground state.
The explicit form of the arrival operator in the Jm rep-
resentation [11] is

(9)

Stationary solutions were obtained in the stationary-
atoms approximation for all types of closed transitions
jg  je (j  j for half-integer j in [13], j  j + 1 in
[3]), including for arbitrary saturations S, while for
transitions with coherent population trapping (j  j
for integer j and j  j – 1) they were obtained in [14].

Specifically, it has been shown that the solutions  in
the low-saturation limit, S ! 1, do not depend on the
saturation parameter S and, which is surprising, on the
detuning δ of the light field, while their tensor structure
is determined only by the irreducible tensor products of
the vectors e and e* with the corresponding rank.

We note one final circumstance: evidently, the ten-
sor structure of the solutions of Eq. (8) will be deter-
mined by the vectors e and e* in general also (for a non-
stationary regime and taking account of the motions of
the atoms). To this end we switch to the representation
of irreducible tensors, otherwise called the κξ  represen-
tation. In accordance with the Wigner–Eckart theorem,
the multipole moments of the atomic ensemble are
related with the matrix elements ρµµ' of the density
operator (in the Jm representation):

(10)

ρ̂g

td
d ρ̂g γ̂ SV̂ ρ̂gV̂

†{ }=

– γS ∆( )∗ V̂
†
V̂ ρ̂g ∆ρ̂gV̂

†
V̂+( ),

γ̂ ρ̂e{ }( )µgµg' γ 2 je 1+( )=

× 1–( )
je µe– je 1 jg

µe– q' µg 
 
 

q' 0; 1±=
µe µe',

∑

× ρµeµe'
e 1–( )

je µe'– je 1 jg

µe'– q' µg' 
 
 

.

ρ̂g

ρ̂κξ Π κ( ) 1–( ) j µ– j κ j

µ– ξ µ' 
 
 

ρµµ' ,
j µ; µ' j≤≤–

∑=
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924 BEZVERBNYŒ
where

The components  (–κ ≤ ξ ≤ κ) are projections of the
multipole moment of rank κ of the ground (j = jg) state
of the atom and transform with respect to the corre-
sponding irreducible representations of the group
SU(2) [7]. The physical content of these quantities is
studied, e.g., in [15].

In the κξ  representation Eq. (8) has the form [16]

(11)

where the matrix ^ is expressed in terms of the 6j and
9j symbols:

The summation in Eq. (11) extends over possible val-
ues of the multipole moments of the photon density
matrix (κ1 = {0; 1; 2}) and the atomic density matrix

(max(0, κ – κ1) ≤ κ2 ≤ min(2jg, κ + κ1)); 

is the tensor product of the irreducible tensors of the
photon  and atomic density matrices. The multipole

moments of the photon density matrix can be repre-
sented as a tensor product of the vectors (2) and (3)
appearing in the problem:

(12)

The equation (11) is the starting equation for the subse-
quent analysis.

3. ELLIPTICAL POLARIZATION VECTORS
AND THE SL(2, C) GROUP

An arbitrary irreducible tensor of rank κ transforms
according to the corresponding representation of the
SU(2) group. Thus, on switching to a different coordi-
nate system the transformation is performed using the
Wigner D operator (rotation matrices):

(13)

Π x y …, ,( ) 2x 1+( ) 2y 1+( )…=

ρ̂κξ

ζ
dρ̂κ

g

dt
--------- γS ^κ

κ1κ2 δ jg je, ,( ) ρ̂κ1
ρ̂κ2

g⊗{ } κ ,
κ1 κ2,
∑=

^κ
κ1κ2 δ jg je, ,( ) Π κ1 κ2,( ) 1–( )

je jg– κ+
=

× 1–( )
2 je 2 je 1+( ) jg jg κ

je je 1 
 
 

1 1 κ1

jg jg κ2

je je κ 
 
 
 
 







– ∆∗ 1–( )
κ κ1 κ2+ +

∆+( ) κ κ1 κ2

jg jg jg 
 
  1 κ1 1

jg je jg 
 
 







.

ζρ̂κ1
ρ̂κ2

g⊗{ } κ

ζρ̂

ζρ̂x e e∗⊗{ } x.=

ρ̂κξ Dξ'ξ
κ U( )ρ̂κξ' ,

ξ'

∑=
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where the explicit form of the matrix elements 
is determined by the specific parameterization of the
matrices U of the SU(2) group. Ordinarily, the Euler
angles α, β, and γ are used for these purposes [7].

Remaining in the κξ  representation, the concept of
“rotation matrix” can be extended to the larger group
SL(2, C) (see Appendix). For example, complex quan-
titities can be used as the Euler angles, and many
important algebraic properties from the apparatus of
irreducible tensors remain in force. This also permits
studying in a natural manner arbitrary elliptic polariza-
tion vectors as vectors (directions) in a complex three-
dimensional space, which are uniquely given by certain
complex angles. For example, we shall employ Eq. (A.9)
from the Appendix and represent the initial vectors e
and e* (2) and (3) in a natural local basis in terms of the
expanded spherical functions of rank 1:

(14)

(15)

where the length of the elliptic polarization vector,

(16)

corresponds to the degree of maximum linear polariza-
tion, and

is the imaginary azimuthal angle (minus ϕ0). We under-
score that the extension of the Euler angles to complex
values and the subsequent transition to generalized

spherical coordinates z = {z, , } for vectors in a
three-dimensional complex space necessarily lead to a
Euclidean scalar product of complex vectors,

and therefore length of the vector (16), which is impor-
tant for the following exposition.

We shall employ the notation  [3]

for an arbitrary unit vector z = {1, , }. Specifically,
in a local natural basis

The vectors

(17)

everywhere below denote the directions of elliptical
polarization of the light field. We underscore an impor-

Dξ'ξ
κ U( )

e e ϑ 1 ϕ1,( ) 4π
3

------eỸ1
π
2
--- ϕ0 ϕ̃+, 

  ,= =

e∗ e∗ ϑ 2 ϕ2,( ) 4π
3

------eỸ1
π
2
--- ϕ0 ϕ̃–, 

  ,= =

e e e⋅ e∗ e∗⋅ 2ε( )cos l,= = = =

iϕ̃( )exp ε π/4+( )tan=

ϑ̃ ϕ̃

z1 z2⋅ z1( )i z2( )i,
i

∑=

Ỹκ z( ) Ỹκ ϑ ϕ,( )=

ϑ̃ ϕ̃

Ỹκ n1( ) Ỹκ
π
2
--- ϕ0 ϕ̃+, 

  , Ỹκ n2( ) Ỹκ
π
2
--- ϕ0 ϕ̃–, 

  .= =

n1
e
e
--, n2

e∗
e
-----= =
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tant relation between the components of these func-
tions:

(18)

It should be noted that the case of circular polarizations
(e = e±, e* = – ) is a limiting case, since because e =

e*  0 it corresponds to the limit   ±i∞.

The representations of the photon density matrix in
terms of the expanded spherical functions and the gen-
eralized bipolar harmonics are presented below:

(19)

 (20)

4. STRUCTURE OF THE MULTIPOLE MOMENTS 
OF STATIONARY ATOMS

We shall now examine the structure of the multipole
moments of stationary atoms (v = 0), representing the
solution of Eq. (11) as an asymptotic series in time for

 starting from the initial conditions  =
δκ, 0/Π(jg) (isotropic distribution with respect to the
Zeeman sublevels).

The stationary-atoms approximation here means
that v/γS ! λ, i.e., the displacement of atoms in the
characteristic optical pumping time (γS)–1 is much
smaller than the wavelength of the light. Then

and the iteration series has the form

(21)

(22)

Thus, R1, κ ~ (n1, n2) in accordance with Eq. (20).
It is easy to show that the tensor structure of all other
coefficients Rn, κ is determined only by the generalized

bipolar harmonics (n1, n2) with even l + L, if the
following relation is used:

(23)

Ỹκ ξ, n1( )( )∗ 1–( )ξ Ỹκ ξ–, n2( ).=

e+−

ϕ̃

ζρ̂x
4π
3

------ 2ε( ) Ỹ1 n1( ) Ỹ1 n2( )⊗{ } x,cos=

ζρ̂x =
4π
3

------ 2ε( )Ỹ x
1 1,

n1 n2,( ).cos

ρ̂κ
g t( ) ρ̂κ

g 0( )

dρ̂g

dt
-------- ∂ρ̂g

∂t
--------,≈

ρ̂κ
g t( ) Rn κ,

tn

n!
-----, R0 κ,

n 0=

∞

∑ δκ 0,

Π jg( )
-------------,= =

ζRn κ, γS ^κ
κ1κ2 δ jg je, ,( ) ρ̂κ1

R n 1–( ) κ2,⊗{ } κ .
κ1 κ2,
∑=

Ỹ x
1 1,

Ỹκ
l L,

Yκ1

1 1, n n',( ) Yκ2

l L, n n',( )⊗{ } κ

=  
3Π κ1 κ2,( )

4π
------------------------- Gp q,

l L, Yκ
l p+ L q+, n n',( ),

p q, 1±=

∑
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where

which follows directly from the formulas for the
change in the coupling for four commuting irreducible
tensors and the Clebsch–Gordan theorem for spherical
functions [1] and is true for an arbitrary pair of unit vec-
tors n and n'. This relation remains in force also for the

generalized bipolar harmonics (n1, n2). The param-
eters p and q in Eq. (23) assume only the values ±1, and
therefore the quantities l + L and l + L + p + q have the
same parity.

Thus, in the general case the multipole moments of
the ground state have the form

(24)

where the expansion coefficients  depend on δ,
jg, je, and S but not on the polarization parameters of the
light field. The existence of a stationary solution t  ∞
for Eq. (24) is due to relaxation processes in the system,

and this solution also has the form (24) with  =
const. The universality of the expansion (24) breaks
down only for optical transitions j  j – 1, for which,
as is well known [14], the stationary solution depends
on the choice of initial conditions. It can thereby be
asserted that with the exception of the transitions j 
j – 1 the general form of the stationary solutions,

(25)

is universal for the description of the optical orientation
processes for stationary atoms irrespective of the choice of
initial conditions.

This infinite series can be represented as a finite
sum, if the reduction relation (A.11) is used. We intro-
duce the parameter  = 2[(κ + 1)/2], equal to κ for even
κ and κ + 1 for odd κ ([a] is the integer part of the num-
ber a). Then, for Eqs. (11) the application of the reduc-
tion formula (A.11) necessarily leads to expansions in
the bipolar harmonics of the form

(26)

Gp q,
l L, 1–( ) p q–( )/2 l

p 1+
2

------------+ 
  L

q 1+
2

------------+ 
 =

×
1 1 κ1

l L κ2

l p+ L q+ κ 
 
 
 
 

,

Ỹκ
l L,

ρ̂κ
g t( ) ãκ

l L, t( )Ỹκ
l L,

n1 n2,( ),
l L+ 2k=

∞

∑=

ãκ
l L, t( )

ãκ
l L,

ρ̂κ
g ãκ

l L, Ỹκ
l L,

n1 n2,( ),
l L+ 2k=

∞

∑=

κ̃

ρ̂κ
g aκ

l χ( )Ỹκ
l κ̃ l–,

n1 n2,( ),
l κ̃ κ–=

κ

∑=
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926 BEZVERBNYŒ
where the expansion coefficients  (0 ≤ κ ≤ 2jg) are
now functions of the cosine of a complex angle

(27)

inversely proportional to the degree l of the maximum
linear polarization of the field [9].

We underscore that the expansion (26) has an invari-
ant form, where the kinematic part of the problem (the
transformation properties of the solution with respect to
the transformations of the coordinate system, as well as
inversion) is determined by the generalized bipolar har-
monics, and the dynamical part is described by the

expansion coefficients . Specifically, it follows from

the fact that the sum l + L is even that  are invariant
under inversion {e  –e; e*  –e*}, i.e., the mul-
tipole moments of even rank are true tensors and those
of odd rank are pseudotensors. The quantity χ remains
invariant in any case.

Thus, the problem of finding the stationary solution
of initial Eq. (11) and the problem of finding the
dynamical solution with an isotropic initial distribution
reduces to the problem of finding the dynamical factors

(χ) ( (χ, t)). We shall now determine the number of
these parameters as a function of the value of the total
angular momentum jg of the ground state.

In accordance with the condition for choosing the
general phase for the components of irreducible tensors
[7], the relation  = (–1)ξ  holds. We shall use
Eq. (18). Then the expansion coefficients (26) are

related with one another by the condition  = .
We separate the real and imaginary components of
these coefficients:

(28)

It is obvious that of the entire set { , } the coeffi-

cients  with values l ≤ /2 and  with l ≤ /2 – 1 are

sufficient. For fixed κ their total number is 2(2κ –  + 1).
Next, we perform a summation over all ranks up to the
maximum value κmax = 2jg and take into account the nor-

malization condition  = 1/Π(jg). Finally, the total num-
ber of independent coefficients in the expansion (26) is

aκ
l

χ n1 n2⋅ e e∗⋅
e e⋅

------------ 1
2ε( )cos

------------------- l 1– ,= = = =

aκ
l

ρ̂κ
g

aκ
l aκ

l

ρ̂κ ξ,* ρ̂κ ξ–,

aκ
l( )∗ aκ

κ̃ l–

mκ
l Reaκ

l aκ
l aκ

κ̃ l–+
2

---------------------,= =

mκ
l

Imaκ
l aκ

l aκ
κ̃ l––

2i
---------------------.= =

mκ
l mκ

l

mκ
l κ̃ mκ

l κ̃
κ̃

ρ0
g

Ngen Ng 1,–=
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where

We underscore that Ngen also can be found by analyzing
the structure of initial Eq. (11) in a local natural basis,
in which the photon density matrix has the following
nonzero components: { ; ; ; }. It is
obvious that in this basis the system of Eqs. (11) sepa-
rates for even and odd projections of the atomic density
matrix, where the number of independent elements is
determined by the number of components ρκ, ξ with
κ > 0 and with even projections ξ, which coincides
with Ngen.

Thus, for a transition with jg = 3/2 there are seven
such coefficients. For example, the following can be

chosen: { , , , , } and { , }. The
coefficients in the first group do not depend on the sign
of the detuning δ, while the coefficients in the second
group show a dispersion dependence on δ. This prop-
erty remains in force for arbitrary values of jg.

The stationary solutions for the ground state of an
atomic medium were obtained in [4, 13, 14], including
for arbitrary saturations S. These solutions possess a
number of unusual properties. In the first place, the

number of independent dynamical parameters  in

them is much smaller than Ngen, since all  = 0. In the

second place, the coefficients  do not depend on the
detuning δ. We also note that for transitions with coher-
ent population trapping, which have “dark” states, the

part  vanishes.

The coefficients  are invariants and, correspond-
ingly, they can be found by a method that is not related
with the choice of any distinguished coordinate system.
For example, let us consider the stationary state. We
substitute Eq. (26) into Eq. (11). Then the equations for

 become

(29)

We shall use the property of “linear independence” [1]

of the minimum set of bipolar harmonics (n, n') =

(n, n') with 0 ≤ l ≤ κ: relations of the form

(30)

Ng jg 1+( ) 2 jg 1+( )
κ̃max

2
----------.–=

ζρ00 ζρ10 ζρ20 ζρ2 2±

m1
1 m2

0 m2
1 m3

1 m3
2 m2

0 m3
1

aκ
l

mκ
l

mκ
l

mκ
l

aκ
l

aκ
l

Π κ1 κ2,( )^κ
κ1 κ2,

aκ2

l

l κ̃2 κ2–=

κ2

∑
κ1 κ2,
∑

× Gp q,
l κ̃2 l–,

Ỹκ
l p+ κ̃2 l– q+,

n1 n2,( )
p q, 1±=

∑ 0.=

=κ
l 0,

Yκ
κ l– l,

Cκ
l n n'⋅( )=κ

l 0, n n',( )
l

∑ 0=
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are possible only if  = 0. Evidently, this relation also
holds for generalized bipolar harmonics. This is easy to
see by switching to a distinguished coordinate system
with quantization axis in the direction of one of the vec-
tors n or n'. Then Eqs. (29) for even ranks κ lead to the
form, similar to Eq. (30) taking account of the substitu-
tion n · n'  χ, if the reduction relation (A.11) is
used. The system of equations (30) which ultimately
arises is equivalent to the linear equations of the form

(31)

with coefficients

where c0, c1, … depend only on the detuning δ. For
fixed κ the number of these equations is κ + 1.

A similar method is also applicable for odd ranks κ
with the clarification that here the linearly independent
set is formed by harmonics of the form

Thus, Eqs. (29) reduce to a system Ngen = Ng – 1 of
linear inhomogeneous equations of the form (31) with
nonuniformity due to the contributions from the total

population of the ground state with  = 4π/Π(jg) in
accordance with the normalization condition.

The calculation, performed by the indicated

method, of the dynamical factors  for the simplest
transitions jg < 3 agrees with the known solutions [4,
13] for the transitions j  j (j are half integer values)
and j  j + 1 in the limit of small saturations S ! 1.
We now present some results:

(32)

Cκ
l

Cκ
l χ( ) Xl κ,

l' κ ', aκ '
l'

l' κ ',
∑ 0= =

Xl κ,
l' κ ', c0 l' κ ' l κ, , ,( )=

+ c1 l' κ ' l κ, , ,( )χ c2 l' κ ' l κ, , ,( )χ2…,+

=κ
l 1, n n',( ) Yκ

κ 1 l–+ l, n n',( ) 1 l κ .≤ ≤=

a0
0

aκ
l

jg 1/2 je 1/2, jg 1/2 je 3/2= = = =

a1
1 4π–

3χ
---------,=

jg 1 je 1= =

a1
1 a2

1 4π–
3χ

---------, a2
0 a2

2 0,= = = =

jg 1 je 2= =

a1
1 a2

1 100πχ
3 8 25χ2–( )
----------------------------,= =

a2
0 a2

2 10
3
------

8π
8 25χ2–
--------------------.–= =
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Taichenachev et al. [17] used a different method to
obtain general results for the dynamical factors for arbi-
trary jg and the indicated types of optical transitions.

5. STRUCTURE OF THE CORRECTIONS LINEAR 
IN THE VELOCITY

TO THE MULTIPOLE MOMENTS

Taking account of the motion of the atoms results in
qualitatively new corrections for the multipole moments
of the ground state of an atomic ensemble. It is well
known [6] that these corrections describe the retarda-
tion in the optical ordering of atoms over the Zeeman sub-
levels, which arises as a result of motion in light fields with
spatial gradients of the polarization (ε(r), ϕ0(r)). Ordi-
narily, the characteristic scale of these gradients is of
the order of the wavelength of the light λ, and the char-
acteristic time for establishing a stationary distribution
over the Zeeman sublevels of the ground state is of the
order of tpump ~ (γS)–1 in accordance with Eq. (11). Then
the degree of retardation can be estimated as

We shall consider an atomic ensemble, for which the
condition ηret < 1, is satisfied. This is also the condition
for the velocity groups of atoms subjected to sub-Dop-
pler cooling. Correspondingly, to find the contributions
that are linear in the velocity we shall confine ourselves
to corrections which are of first-order in ηret . We note
the importance of these contributions: in most models
of sub-Doppler cooling these contributions can be used
to determine the radiation friction forces acting on
atoms in light fields. In this connection, it should be
noted that the condition ηret < 1 breaks down at the nodes
of the light field, where %(r) = 0. In these regions the
dependence of the multipole moments of the atoms on the
velocity v must be taken into account exactly [18].

The initial equation for finding the corrections linear
in v in accordance with Eq. (11) has the form

(33)

where  are the known multipole moments of the

stationary atoms and  are the corrections which
are first in the retardation parameter ηret .

Applying the above-described method of temporal
asymptotic series to Eq. (11), we can determine the ten-

η ret

v tpump

λ
--------------- kv

γS
-------.∼=

ζ

v ∇⋅
γS

-----------ρ̂κ
g 0( )

=  ^κ
κ1κ2 δ jg je, ,( ) ρ̂κ1

ρ̂κ2

g 1( )⊗{ } κ ,
κ1 κ2,
∑

ρ̂κ
g 0( )

ρ̂κ
g 1( )
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sor structure of these collections using the previously
considered minimal sets of bipolar harmonics:

(34)

where , , and  are coefficients which depend
on δ, ξ, and S and the type of transition, δ0 = 0 for even
κ and δ0 = 1 for odd κ, and δ1 = 1 for even κ and δ1 = 0
for odd κ. The tripolar harmonics [7] appearing in
Eq. (34) in the double sum reduce to bipolar harmonics, if
a local natural basis {n1, n2, n3 = [n1 × n2]} can be used
as a basis for expanding an arbitrary vector. This basis
is not orthonormalized: thus, (n1 · n2) = χ ≠ 0 in the gen-
eral case. The use of this basis for a linear polarization
field requires an additional analysis because this basis
reduces to the single vector e. For example, in n-dimen-
sional (n = 2, 3) configurations of a light field with
polarization gradients the regions with linear polariza-
tion ordinarily form a hypersurface of dimension n – 1,
and here the passage to the limit χ  1 ordinarily
does not result in multivaluedness and divergence.4 The
field configuration σ+ – σ– [6], where the polarization is
linear everywhere, is a special case with n = 1. Here a
different basis must be used. For example, the set of
vectors {e, (v · ∇ )e, [e × (v · ∇ )e]} can be used.

We shall perform an expansion, in the basis
{n1, n2, n3}, of the newly arising vectors in the prob-
lem (v · ∇ )n1 and (v · ∇ )n2, different from the previ-
ously determined n1 and n2 (17). For example,

(35)

where the expansion coordinates have the form

(36)

A similar expansion is possible for (v · ∇ )n2.
Using an expansion of the type (35), it can be shown

that the corrections linear in v to the multipole
moments of the ground state have the structure

(37)

4 In this connection, see the result (52) below for the optical transi-
tion 1/2  1/2.

ρκ
g 1( ) v ∇ χ⋅( ) f κ

l =̃κ
κ δ0 l–+ δ0,

l δ0=

κ

∑=

+ sκ κ ',
l v ∇⋅( )n1({

l δ1( )'=

κ '

∑
κ ' κ 1–=

κ 1+

∑

+ tκ κ ',
l v ∇⋅( )n2 ) =̃κ '

κ ' δ1( )' l–+ δ1',
⊗ } κ ,

f κ
l sκ κ ',

l tκ κ ',
l

v ∇⋅( )n1 ν1n1 ν2n2 ν3n3,+ +=

ν2

v ∇⋅( )n1 n2⋅
1 χ2–

-------------------------------- ν1, ν2 χ ,⋅–= =

ν3

v ∇⋅( )n1 n3⋅
1 χ2–

--------------------------------.=

ρκ
g 1( ) γS( ) 1– ΛAκ

l Λ∗ Bκ
l

+( )=̃κ
κ δ0 l–+ δ0,

l δ0=

κ

∑=

+ ϒ Cκ
l ϒ∗ Dκ

l⋅+⋅( )=̃κ
κ δ1 l–+ δ1,

l δ1=

κ

∑ ,
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where , , , and  depend on χ, δ, and the
type of transition and are dynamical parameters similar

to the previously studied coefficients  in Eq. (26),
while the kinematic part is determined by the minimum

sets of generalized bipolar harmonics  of the
corresponding rank κ.

The scalar functions, formed from the products of
new ((v · ∇ )n1, (v · ∇ )n2) and previous (n1, n2) vectors

(38)

appear linearly in Eq. (37) in accordance with the linear
approximation being considered. Under inversion Λ
and Λ* are true scalars, while ϒ and ϒ* are pseudosca-
lars, so that the multipole moments (37) of even rank
are true tensors, while those of odd rank are pseudoten-
sors. In this connection, we note that for multipole
moments of stationary atoms the only scalar formed
from the defining vectors is the cosine of the complex
angle χ = (n1 · n2) between the directions of the ellipti-
cal polarization and its complex conjugate. In terms of
the geometric content of the new scalars, it can be
shown that the quantity ReΛ is proportional to the gra-
dient of the ellipticity ε, while ImΛ is proportional to
the gradient of the rotation angle ϕ0, ⊥  of the local polar-
ization ellipse relative to the initial axis n3(r), perpen-
dicular to the plane of the initial polarization ellipse.
We shall call such a rotation the first-kind rotation of
the polarization ellipse. The quantity Reϒ is propor-
tional to the gradient of the rotation of one of the prin-
cipal axes (eeee1 ~ Ren1) of the polarization ellipse relative
to the eeee2 ~ Imn1-axis, perpendicular to eeee1 and n3. Cor-
respondingly, the quantity Imϒ is proportional to the
gradient of the rotation angle of another principal axis
eeee2 of the local polarization ellipse of the field relative to
the axis eeee1. We shall call this type of rotation of the
plane of the polarization ellipse, polarization ellipse
rotations of the second kind. Evidently, they do not
occur in models of a one-dimensional sub-Doppler
cooling: ϒ = 0.

The condition for choosing the general phase

 = (–1)ξ  leads to the following rela-
tions for these quantities:

(39)

A substantial difference between the kinematic
structure of the correction (37) and the expansion for
stationary atoms (26) is the presence of bipolar har-

monics  from the minimal sets, in addition to the

previously examined minimal sets  and possess-
ing a different parity with respect to inversion. Thus, for
rank κ = 1 the previously considered set reduces to the

Aκ
l

Bκ
l

Cκ
l

Dκ
l

aκ
l

=̃κ
k p,

{ }

Λ v ∇⋅( )n1( ) n2, Λ∗⋅ v ∇⋅( )n2( ) n1,⋅= =

ϒ v ∇⋅( )n1( ) n3, ϒ∗⋅ v ∇⋅( )n2( )– n3,⋅= =

ρ̂κ ξ,
g 1( )( )∗ ρ̂κ ξ–,

g 1( )

Aκ
l( )∗ Bκ

κ δ0 l–+
, Cκ

l( )∗ Dκ
κ δ1 l–+

.= =

=̃κ
k δ1,

=̃κ
k δ0,
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only vector n3 = n1 × n2 ~  ~ e0, while the new set

consists of the vectors { , } ~ {n1; n2} ~ {e+; e–}.
The corrections linear in the velocity to the multipole

moments characterized by the sets  are qualita-
tively different from those considered previously. For
example, for the simplest case jg = 1/2 in the Jm repre-

sentation it is easy to see that the component (1) ~

 gives a correction linear in the velocity to the dif-
ference of the populations of the Zeeman sublevels in a

local natural basis, while the remaining part (1) =

β1  + β2  (β1, 2 are the expansion coefficients)
describes the appearance of coherences between the
sublevels µ1 = –1/2 and µ2 = 1/2 in this basis. In the gen-
eral case of arbitrary values of jg the contributions to

 describe the populations of the sublevels and the
coherences between the sublevels with the same parity

(µ – µ' = ±2, ±4…), while the contributions with 
describe the coherences of the sublevels of different
parity (µ – µ' = ±1, ±3…) and, as follows from Eq. (37),
are due to a rotation of the polarization plane in space.

The total number of dynamical parameters5  and

 can be easily determined by taking into account the
fact that the total number of minimal harmonics

{ } of a given rank j is 2j + 1. Thus, the number of
dynamical factors Ngen, 1 = (2jg + 1)2 – 1 is equal to the
number of elements of the density matrix in the Jm repre-

sentation minus the normalization condition  = 0.

The invariant method for finding the coefficients

, , , and  is similar to the method used

previously to determine  and is based on the previ-
ously considered property of the linear independence of
minimal sets of bipolar harmonics. We take account of
the fact that

Then, the left-hand side of Eq. (33) can be reduced
to a form with kinematic structure similar to that of
Eq. (37). The coefficients of the parameters Λ, Λ*, ϒ,
and ϒ* should vanish independently; this results in sep-
aration of the general system of equations into four
parts. There are a number of reasons for the possibility
of such a reduction. In the first place, as noted previ-

5 The dynamical parameters  and  are bound according to
Eq. (39).

=̃1
1 1,

=̃1
0 0,

=̃1
1 0,

=̃κ
k δ1,

ρ1 pop,
g

=̃1
1 1,

ρ1 coh,
g

=̃1
0 0,

=̃1
1 0,

=̃κ
k δ0,

=̃κ
k δ1,

Aκ
l

Bκ
l

Dκ
l

Cκ
l

=̃κ
k p,

ρ0
g 1( )

Aκ
l

Bκ
l

Cκ
l

Dκ
l

aκ
l

v ∇⋅( )Yl n1( ) 2l 1+( )l Yl 1– v ∇⋅( )n1⊗{ } κ ,=

v ∇⋅( )χ Λ Λ∗ .+=
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ously, the bipolar harmonics  and  for fixed
κ form independent minimal sets, and consequently the
general system of equations immediately separates into

two parts:  and  determined from the first part,

and the coefficients  and  are determined from
the second part. In the second place further separation
of the two systems of equations is due to the different
geometric content of the scalars (39). For example,
ReΛ and ImΛ are determined by the spatial gradients
of the ellipticity and the rotation angle of the first kind
of the ellipse, which are linearly independent vectors.
This is easy to see for the two- and three-dimensional
configurations of the light field. We shall choose the
velocities v1 and v2 to be the same in magnitude but dif-
ferent in direction. Then, in the general case these
directions can be chosen so that Λ1/  ≠ Λ2/ ,
which corresponds to the parameters ReΛ and ImΛ
and, correspondingly, Λ and Λ* being linearly indepen-
dent. Therefore, the terms with Λ and Λ* should vanish
separately.

As a result of the reduction, the basic equation for

finding  becomes

(40)

where  = κ + δ0 in accordance with the previously

used notation. Then  can be determined from
Eq. (39).

The basic equation for finding  has the form

=̃κ
k δ0,

=̃κ
k δ1,

Aκ
l

Bκ
l

Cκ
l

Dκ
l

Λ1* Λ2
*

Aκ
l

∂χaκ
l lχaχ

l

1 χ2–
--------------–

 
 
 

=̃κ
κ̃ l– δ0,

l δ0=

κ

∑

+
aκ

l Π2 l( ) l κ̃ l– 1+( )

1 χ2–
------------------------------------------------ 1–( )κ

× 1 l 1– l

κ κ̃ l– κ̃ l– 1+ 
 
 

=̃κ
κ̃ l 1+– δ0,

=  
γS
χ
----- Π κ ' κ '',( )^κ

κ ' κ '',
Aκ ''

l''

l'' δ0( )''=

κ ''

∑
κ ' κ '',
∑

× Gp q,
l'' κ ''˜ l''–, Ỹκ

l'' p+ κ ''˜ l''– q+,
,

p q, 1±=

∑

κ̃
Bκ

l

Cκ
l

i 1–( )κ aκ
l Π l κ̃ l–,( ) l l 1+( )

1 χ2–
---------------------------------------------------

l δ0=

κ

∑
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(41)

and  can be determined from Eq. (39).

We shall present the computational results for some

of the simplest transitions (  = δ/γ):

(42)

(43)

× 1 l l

κ κ̃ l– h 
 
 

C1 0; κ̃ l 0,–,
h 0, Ỹκ

l h,

h κ̃ l– 1±=

∑

=  
γS
χ
----- Π κ ' κ ',( )^κ

κ ' κ ',
Cκ ''

l''

l'' δ1( )''=

κ ''

∑
κ ' κ ',
∑

× Gp q,
l'' κ '' δ1( )'' l''–+,

Ỹκ
l'' p+ κ '' δ1( )'' l''– q+ +,

,
p q, 1±=

∑

Dκ
l

δ̃

jg 1/2 je 1/2= =

A1
1 3

χ4 χ2–
----------------,=

C1
0 3 6 6δ̃ χ2 1–( ) i 1 3χ2+( )+( )

χ2 1–( ) 9χ2 1– 36δ̃
2

χ2 1–( )+( )
------------------------------------------------------------------------------,–=

C1
1 12i 6χ

χ2 1–( ) 9χ2 1– 36δ̃
2

χ2 1–( )+( )
-------------------------------------------------------------------------------.=

jg 1 je 1= =

A1
1 8 2π 1 4δ̃

2
+( ) δ̃ 3iχ 2δ̃ 30 3χ+(+( )+( ) )

1 4δ̃
2

+( )χ2 χ2 1–( )
------------------------------------------------------------------------------------------------------,=

A2
0 12 10δ̃ i 30χ+( )–

5 i– 2δ̃+( )χ χ2 1–( )
--------------------------------------------------,=

A2
1

4 4π 1 4δ̃
2

+( ) 6iδ̃χ 30δ̃
2

+ +([=

+ 4δ̃
2

30 3χ 30χ2+ +( ) ) ] 1 4δ̃
2

+( )χ2 χ2 1–( )[ ]
1–
,

A2
2 24δ̃–

i 2δ̃+( )χ χ2 1–( )
-----------------------------------------,=

C1
0 8 6π–

2δ̃ i–( ) χ2 1–( )
--------------------------------------,=

C1
1 8 6π

2δ̃ i–( )χ χ2 1–( )
-----------------------------------------,=

C2
1 16 3/5π

2δ̃ i–( )χ χ2 1–( )
-----------------------------------------,=

C2
2

0.=
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The remaining dynamical parameters are found from
Eq. (39).

The parameters for the transition jg = 1/2  je =
3/2 differ from the parameters presented above for the
transition 1/2  1/2 only by the general numerical

factor and the substitution   – . The parameters
for more complicated transitions have a very compli-
cated form and are not presented here, but we note an
important property of these coefficients: the real part of

 is an even function of the detuning δ of the field,
while the imaginary part of δ exhibits a dispersion

dependence; for , conversely, the real part exhibits a

dispersion dependence on , while the imaginary
part is an even function of δ.

6. MODEL OF SUB-DOPPLER COOLING

6.1. Transition 1/2  1/2
in a Nonuniformly Polarized Light Field

We shall consider the simplest type of resonance
dipole optical transition jg = 1/2  je = 1/2 in a mono-
chromatic light field (1). In this case the initial equa-
tions (8) and (11) can be put into a vector form by tak-
ing account of the fact that in the ground state only mul-
tipole moments of ranks κ = 0 and 1 are possible, and

 = 1/  because of the normalization condition. The

multipole moment of the first rank  = J(r) is a vector
quantity—the optical orientation of the atomic ensem-
ble [15]. Then the system of equations (11) reduces to
a single equation for the optical orientation vector:

(44)

where e and e* are polarization vectors of the field (2)
and its complex conjugate (3). The equation (44) is an
equation for optical pumping of the ground state of an
atomic ensemble assuming the approximations S ! 1
and k · v/γ ! 1. Likewise, for sub-Doppler cooling the
condition k · v/(γS) ! 1 holds, and we shall seek the
solution J ≈J(0) + J(1) to first-order in this small param-
eter inclusively for the stationary optical pumping.

The minimum set of bipolar harmonics for this case
is equivalent to a local natural basis {e, e*, e⊥  = {e ⊗
e*}1}. The zeroth-order solution, describing the orien-
tation of stationary atoms,

(45)

corresponds to the previously presented solution (32).

δ̃ δ̃

Aκ
l

Aκ
l

Cκ
l

ρ0
g 2

ρ1
g

t∂
∂ v∇+ 

  J
γS
9
----- J

i

2
-------e e∗×+–=

+ 1
2
--- 3iδ̃– 

  e∗ J⋅( )e 1
2
--- 3iδ̃+ 

  e J⋅( )e∗+ ,

J 0( ) e⊥ ,–=
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The projections of the first correction J(1) to the vec-
tors of the local natural basis are

(46)

(47)

(48)

where  = (v · ∇ )  · e⊥  = –i e3ϒ is proportional to
the previously determined quantity ϒ (38), and the
underbar denotes the quantity on which the differentia-
tion operator ∇ acts.

The final expression for the first correction, equiva-
lent to the expansion of the given multipole moment
(orientation vector) in terms of the minimal set of bipo-
lar harmonics in a local natural basis, has the form

(49)

and agrees with the previously presented result (42). It
follows from the explicit form (49) that this solution
must be examined additionally for linear polarization
of the light field: sin2ε  0. Taking account of the
fact that in a local natural basis

(50)

(51)

(e0 is a vector of unit length), it is easy to show that the
asymptotic form of the correction (49) is

(52)

Thus, for the transition under consideration the correc-
tion linear in the velocity to the optical orientation
exists and is finite for all admissible values of the polar-
ization parameters of the light field.

Proceeding from the results (45) and (49), we can
study various kinetic and optical characteristics of such
an atomic ensemble. We shall confine our attention
below to determining the resonance light-induced force
F acting on the atoms in a light field. Following the
results of [19], we shall employ for this the definition of

Je e J 1( )⋅=

=  
18
γS
------ 3 6iδ̃–( )ϒ̃ 1 6iδ̃–( ) 2ε ϒ̃∗⋅cos–

9 2εcos
2

– 36δ̃
2

2εsin
2

+
--------------------------------------------------------------------------------,–

Je∗ e∗ J 1( )⋅ Je( )∗ ,= =

J ⊥ e⊥ J 1( )⋅ 9
4γS
--------- v ∇⋅( ) 2ε( )sin

2
,= =

ϒ̃ e 2

J 1( ) Je( )∗ 2εJecos–

2εsin
2

---------------------------------------e=

+
Je 2ε Je( )∗cos–

2εsin
2

---------------------------------------e∗ 2J ⊥

2εsin
2

---------------e⊥+

e⊥ 2( ) 1–
2ε( )e0,sin=

e e∗– 2 ε e+e
iϕ0 e–e

iϕ0–
+( )sin–=

J 1( )

2ε 0→sin
lim

9 2
γS

---------- v∇( )ε r( ) e0.⋅=
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this force in terms of the multipole moments of the
ground state of an atomic ensemble:

(53)

where the operation (…·…) denotes a scalar product
[7] of irreducible tensors of the same rank κ. The elec-
tric field vectors E and E* were determined previously
in Eq. (1). Then we have for the transition 1/2  1/2

(54)

6.2. Model of 2D Cooling

We shall now consider the manifestation of the force
(54) in the simple 2D model of sub-Doppler cooling:
the symmetric configuration of the light field is given
by three coherent linearly polarized traveling waves:

(55)

where E0 is the amplitude of each wave, and the wave
vectors km, m = 1, …, 3 lie in the same plane making
angles 2π/3 with one another, so that in the distin-
guished Cartesian coordinate system {ex, ey, ez} (the
ez-axis is perpendicular to the plane of the wave vec-
tors) their explicit form is

(56)

Let the linear polarization vectors em, m = 1, …, 3,
make the same angles θ with the ez axis. Then

(57)

For the configuration (55) the local parameters of
the field can be expressed using the following invari-
ants:

(58)

(59)

F
"i/4

γ/2 iδ+
------------------- 1–( )

jg je+
=

× 1 1 κ
jg jg je 
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κ 0 1 2, ,=

∑
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"i/12

γ/2 iδ+
-------------------= =

× ∇ E E∗⊗{ } 1 J0 J1+( )⋅( ) c.c.+

E E0 em ikm r⋅( )exp
m 1=

3

∑=

k1 kex, k2
k
2
--- ex– 3ey+( ),= =

k3
k
2
--- ex– 3ey–( ).=

e1 θey θez,cos+sin=

e2
1
2
--- θ 3ex ey+( ) θez,cos+sin–=

e3
1
2
--- θ 3ex ey–( ) θez.cos+sin=

E∗ E⋅ E0
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E E⋅ E0
2 Z2 2 1 c–( )Z∗–( ),=
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where

%(r) is the total amplitude of the field and c is the
cosine of the angle between the polarization vectors.
Therefore, the ellipticity ε(r) of the total field, the total
phase φ(r), and the polarization vector of the total field
can be represented in the form:

(60)

(61)

(62)

For the model presented an analysis of the possible
structures of two-dimensional atomic gratings, arising
as a result of the force F(0), is made in [12] for the tran-
sitions j  j (j are half-integers). For simplicity, we
shall confine our attention to the case c = 0, where the
polarization vectors (57) are orthogonal to one another,

and the intensity %2 = 3  of the general field is uni-
form. This configuration of the light field was first con-
sidered in [20] for models of optical transitions with
coherent population trapping. The uniformity of the
intensity of the general light field simplifies substan-
tially the analysis of the force F(1), since here the light
field has no nodes.

Z ikm r⋅( ),exp
m 1=

3

∑=

c em em'⋅( )m m'≠ θcos
2 1

2
--- θ,sin

2
–= =

2ε( )cos 1/χ=

=  
Z2 2 1 c–( )Z∗–( ) Z∗( )2

2 1 c–( )Z–( )
3 c ZZ∗ 3–( )+

---------------------------------------------------------------------------------------------,

4iφ( )exp
Z2 2 1 c–( )Z∗–

Z∗( )2
2 1 c–( )Z–

------------------------------------------,=

e
E

% eiφ-------------.=

E0
2

Fig. 1. Form of the potential Φ(r) for δ > 0. The circles mark
the regions of localization of the atoms.
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1. Let us consider the force F(0). In general, it is deter-
mined by the gradients of the ellipticity and the total

phase.6 However, for large detunings  @ 1 the ellipticity
gradient makes the main contribution [12], and the force
F(0), to a high degree of accuracy, can be treated as a poten-
tial force: F(0) = –∇Φ , where the potential

(63)

is presented in Fig. 1. The centers of localization for δ > 0
in this case are found from the condition that the fol-
lowing invariant function is zero:

(64)

and at these points the field (5) is circularly polarized.
2. We now consider the force F(1). We take account

of the fact that for c = 0 the relation ∇ (  · E*) = 0
holds. This force can be represented in the form

The component

(65)

(66)

(67)

where

is due to the gradients of the ellipticity, the total phase,
and the angle of rotation of the first kind of the polar-
ization ellipse. For an atom moving toward the center of
localization, it decreases to zero, just as F(0). The com-
ponents appearing in Eq. (65) correspond to the force
contributions which are already known from the 1D
models of sub-Doppler cooling.

Thus, the contribution FSys ~ f1 has a dispersion
dependence on the detuning and is associated only with

6 The general configuration of the light field and for an arbitrary
dipole transition the force F(0) also depends on the gradients of
the intensity and the angle of polarization-ellipse rotation of the
first kind [10].
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π/4

–π/2
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Fig. 2. The vector fields (left panel) f1 and (right panel) f2. The circles mark the regions of localization.
the spatial gradient of the ellipticity ε(r), and the vector
field f1(r), represented in Fig. 2 (left panel), determines
the direction of action of this force. Force FSys results in
cooling of the atoms for δ > 0 by the sisyphus mecha-
nism [6], due to the redistribution of the photons scat-
tering by the atoms between the light beams, forming
the initial light field (55). We note that FSys predomi-

nates for large detunings  @ 1.

The contribution Fscat ~ f2 arises from the gradient of
the ellipticity and the gradients of the angle of rotation
of the first kind of the ellipse and the total phase of the
light field and is due to scattering of photons of the ini-
tial light field (55) by atoms as a result of spontaneous
scattering. The direction of the force is given by the
vector field f2(r) and is represented in Fig. 2 (right
panel), but the magnitude of the force is proportional to
the projection of the velocity of the particle on f1. The
effect of radiation friction is characterized by the tensor

and there is also a contribution to the “Lorentz force,”
where the corresponding effective field Beff, 1(r) ~ f2 × f1 is
directed along the z axis. In contrast to FSys, the force
Fscat does not depend on the detuning for a given type
of transition, but rather it is determined only by the spa-
tial gradients of the light field. An example of a similar
force in the one-dimensional model is presented in
[21], where a possible cooling mechanism is also pro-
posed for this case.

The component  arises from the gradients of the
angles of rotation of the second kind of the polarization
ellipse and its structure is more complicated. For the

δ̃

R̂1( )i j, f1( )i f2( ) j f2( )i f1( ) j,+∼

F2
1( )
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light-field configuration considered here it can be rep-
resented in the form

(68)

(69)

(70)

where the vector fields f3 and f4 are presented in Fig. 3
on the left and right sides, respectively, and are deter-
mined by the relations

where

and the vectors

are reciprocal-lattice vectors (e.g., {b1; b2}) and deter-
mine the spatial periodicity of the light-field configura-
tion under study [22].

The contribution  is a dissipative force, but the
explicit anisotropy of the radiation friction forces fol-
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Fig. 3. The vector fields f3 (left side) and f4 (right side). The circles mark the regions of localization.
lows from its form (69). For example, for positive
detunings δ > 0 cooling occurs along the directions f4,
while heating occurs along the directions f3. The dissi-
pative force vanishes in the localization regions. It is

important to note that for large detunings  @ 1 this
force decreases and, on the whole, becomes much less
than the previously considered forces FSys and Fscat . The
symmetry of the vector fields f1 and f2 is determined by
the reciprocal-lattice vectors {b3; b4}, so that the unit
cell of the periodic structure is different from the unit
cells of the previously considered fields f1 and f2.
Apparently, the final spatial lattice of atoms also will be
determined by the vectors {b1; b2}.

Another component contributes to the “Lorentz
force,” where the effective field (69) depends strongly
on the detuning of the light field. Specifically, this com-
ponent for large detunings predominates over the previ-
ously considered dissipative contribution, and in local-
ization regions it does not vanish and is determined as

(71)

where summation over the indices is assumed, and εmnp

is the Levi–Civita tensor.

The appearance of the force (69), just as the previ-
ously considered contributions (65), is due to retardation
of the optical pumping of the ground state of the atoms
in fields with polarization gradients. Corrections to the
populations of the Zeeman sublevels mg = {+1/2, –1/2}
in a local natural basis lead to the force (65), and these
corrections arise even in one-dimensional configura-

δ̃

F2
1( ) 2ε 0=cos( )

=  
"

108
---------εmnpbm v bn⋅( ) 2bp r⋅( ),sin
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tions. The well-known interpretation of cooling mech-
anisms [6, 21] is also presented within this basis. In
contrast to them, the force (69) is present only in the 2D
and 3D models of the sub-Doppler cooling and is due

to the appearance of coherences  between the
sublevels of the ground state in a local natural basis. For
large detunings δ @ γ this force is on the whole small
compared to, e.g., FSys. However, its influence on the
formation of three-dimensional atomic gratings must
be taken into account because of the different scales of
the symmetry of the corresponding vector fields
(Figs. 2 and 3).

7. CONCLUSIONS

The bipolar-harmonics method, studied in this paper
and extended to the case of complex elliptic polariza-
tion vectors, is based on an expansion of the multipole
moments which arise in physical problems in bases
formed from the minimal sets of harmonics of any two
chosen directions. This method is most effective in
problems where there are two determining vectors, but
it could also be helpful with a large number of vectors
in the problem, as we showed in Section 5. The choice
of determining vectors is not unique. For example,
instead of the complex polarization vectors e and e*,
the real vectors eeee1 = Ree and eeee2 = Ime, giving the direc-
tions of the principal axes of the polarization ellipse,
could be used. The advantage of the method is that the
analysis is invariant: the basic dynamical factors are
immediately identified; the number of such factors, for
a number of reasons, can be much smaller than the ini-
tial dimension of the physical problem. On the other
hand, the known structure of the irreducible tensors

ρ 1/2; 1/2+−±
g
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makes it possible to analyze the characteristics of the
medium (susceptibility tensor [23], kinetic coeffi-
cients) in their connection with the determining vectors
of the problem. For example, in analyzing on the basis
of the semiclassical approximation light-induced forces
and diffusion coefficients, determining the kinetics of
the cooling of atomic ensembles in light fields with 2D
and 3D configurations, attention is focused on the
dependence of these kinetic coefficients on the param-
eters of the light field: the spatial gradients of the inten-
sity, the total phase, the ellipticity, and the rotation
angle of the polarization ellipse. Depending on the type
of gradient, light-induced forces are naturally classi-
fied, as one can see for the model considered in the last
section. It can also be shown that the dynamical factors,
which have the form of rational functions of the ellip-
ticity parameter cos2ε of the light field, will determine
the specific nature of a particular atomic dipole transi-
tion.
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APPENDIX

Generalized Rotation Matrices

The parameterization of the matrices U of the SU(2)
group using the Euler angles α, β, and γ [7] has the
form

(A.1)

where the ranges of the parameters are 0 ≤ β ≤ π,
0 ≤ α ≤ 2π, and 0 ≤ γ ≤ 2π. In this parameterization the

rotation matrix  is represented in the form [8]

(A.2)

U
u11 u12

u21 u22 
 
 

=

=  β/2( )e i α γ+( )/2–cos β/2( )e i α γ–( )/2–sin

β/2( )ei α γ–( )/2sin– β/2( )ei α γ+( )/2cos 
 
 
 

,

Dξ'˙ ξ,
κ U( )

Dξ'˙ ξ,
κ α β γ, ,( ) e i ξ'α ξγ+( )– dξ'ξ

κ β( ),=

dξ'ξ
κ β( ) 1–( )ξ κ ξ–( )! κ ξ'–( )!

κ ξ+( )! κ ξ'+( )!
---------------------------------------- β

2
---cot

ξ ξ'+
=

× κ j+( )! 1–( ) j

κ j–( )! j ξ–( )! j ξ'–( )!
-------------------------------------------------------- β

2
---sin

2 j
.

j max ξ ξ',( )=

κ

∑
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The direct representation  in terms of the

elements ui, j of the matrix U [8] is

(A.3)

The generalization of the representation (A.3) for
arbitrary complex 2 × 2 matrices U possesses a multi-
plicativity property:

(A.4)

If detU = 1 (U ∈  SL(2, C))), then the generalized “rota-
tion matrices” (A.3) will also satisfy the Clebsch–Gordan
theorem [8]:

(A.5)

These two properties make it possible to expand cer-
tain well-known algebraic relations from the apparatus
of the quantum theory of angular momentum. For
example, it is well known [8] that the matrices U ∈
SL(2, C) can be parameterized in accordance with
Eq. (A.1), where now the angles α, β, and γ are com-
plex, and their ranges are

0 ≤ Reβ ≤ π, 0 ≤ Reα ≤ 2π, 0 ≤ Reγ < 2π.

The extension of the trigonometric functions of com-
plex angles is done in the standard manner. The trans-
formations for the Euler angles (7) from the superposi-
tion of two rotations U = U1 · U2 remain valid even in
the more general case of complex angles. The rotation
matrices generalized in this manner are not unitary:

However, once again, the relation

(A.6)

and other similar symmetry properties are satisfied [7].

Expanded Spherical Functions

Expanded spherical functions (the term “expanded
spherical functions” is sometimes used in the literature

Dξ'˙ ξ,
κ U( )

Dξ' ξ,
κ U( ) κ ξ+( )! κ ξ–( )! κ ξ'+( )! κ ξ'–( )!=

× u11( )κ ξ j–+ u21( ) j u12( )ξ' ξ– j+

j max 0 ξ ξ'–,( )=

min κ ξ'– κ ξ+,( )

∑
× u22( )κ ξ'– j– κ ξ j–+( )! j! ξ' ξ– j+( )! κ ξ'– j–( )![ ] 1– .

Dκ U1 U2⋅( ) Dκ U1( ) Dκ U2( ).⋅=

Dξ1' ξ1,
κ1 U( )Dξ2' ξ2,

κ2 U( )

=  Cκ1 ξ1', ; κ2 ξ2',
κ ξ1' ξ2'+,

Cκ1 ξ1, ; κ2 ξ2,
κ ξ1 ξ2+,

Dξ1' ξ2'+ ξ1 ξ2+,
κ U( ).

κ κ1 κ2–=

κ1 κ2+

∑

Dκ U 1–( ) Dκ U( )( )†
.≠

Dκ U 1–( ) Dκ γ β α–,–,–( )=
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to denote the Wigner D functions [24]) can be intro-
duced into the analysis:

(A.7)

by analogy with the definition of the spherical func-

tions for the SU(2) group. Here  is an associ-
ated Legendre polynomial. The spherical functions
defined in this manner possess the following properties:

(a) The Clebsch–Gordan expansion remains valid
[7], which follows directly from Eqs. (A.5) and (A.7);

(b) these functions transform according to the law

(A.8)

where ϑ, ϕ and ϑ ', ϕ' are the complex spherical angles
in the initial and the new coordinate systems; and,

(c) the symmetry properties

These functions can be represented as an irreducible
tensor product of the corresponding complex vector z:

(A.9)

if the parameterization vector in the form of general-
ized complex spherical coordinates (z, ϑ , ϕ) instead of
the Cartesian complex coordinates (z1, z2, z3) is used for
this vector. The representation of the expanded spheri-
cal functions in the form (A.9) was used in [4] to ana-
lyze the tensor properties of the radiation relaxation
operator and the stationary solution for the density
matrix of atoms with optical orientation by elliptically
polarized light.

Generalized Bipolar Harmonics

By analogy to the standard harmonics [7], we now
introduce the generalized bipolar harmonics as func-
tions of directions in a complex space, which are given

Ỹκ ξ, β α,( )
Π κ( )

4π
----------- Dκ( )0 ξ,

1– α β γ, ,( )=

=  
Π κ( )

4π
-----------D0 ξ,

κ γ β α–,–,–( )

=  eiξα 2κ 1+( ) κ ξ–( )!
4π κ ξ+( )!

----------------------------------------Pκ
ξ βcos( )

Pκ
ξ βcos( )

D̂ α β γ, ,( )Ỹκ ξ', ϑ ' ϕ',( )

=  Ỹκ ξ, ϑ ϕ,( )Dξ ξ',
κ α β γ, ,( ),

ξ
∑

Ỹκ ξ, β α–,( ) 1–( )ξ Ỹκ ξ–, β α,( ),=

Ỹκ ξ, β α,–( ) 1–( )ξ Ỹκ ξ, β α,( ).=

Ỹκ ξ, ϑ ϕ,( )
1

zl
--- 2κ 1+( )!!

4πκ!
------------------------=

× … z z⊗{ } 2 z⊗{ } 3… z⊗{ } κ ξ, ,
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by two arbitrary vectors, z and z', and are defined by the
relation

(A.10)

Many algebraic properties of these functions are
identical, because of Eqs. (A.4) and (A.5), to those for
the standard bipolar harmonics [7], including proper-
ties such as the Clebsch–Gordan expansion and the
transformation under a rotation of the coordinate sys-
tem. In this connection, we note the reduction relation (1)
for bipolar harmonics:

(A.11)

which makes it possible ultimately to represent  with
arbitrary values (l, L) ≥ 0 as a sum of bipolar harmonics
with the order of the upper indices (l', L') ≥ 0 satisfying the
condition 2j ≤ l' + L' ≤ 2j + 1. Here nz = z/z.
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Abstract—The reduced density matrix method is used to calculate the quantum-statistical properties of the
radiation of a quantum-dot laser operating on the whispering gallery mode of a dielectric microsphere. It is
shown that under the conditions of strong coupling between the quantum dot and an electromagnetic field the
radiation of such a laser can be in a nonclassical (sub-Poissonian) state. The laser scheme considered is char-
acterized by an extremely low lasing threshold and a small number of saturation photons, as result of which
lasing is possible with close to zero population inversion of the working levels, if g @ P @ γ @ Γ, where g is
the field–matter interaction constant, P is the pumping rate, γ is the loss rate of the resonator, and Γ is the spon-
taneous emission rate. The largest squeezing inside the resonator–microsphere (the Fano factor F = 0.75)
obtains for g @ P @ γ @ Γ, and the greatest squeezing in the fluctuation spectrum outside the resonator [V(ω =
0) ≈ 0.25] occurs for g ~ P ~ γ @ Γ, and in this case a substantial deviation of the photon number statistics of
the radiation leaving the resonator from the Poissonian statistics is observed. © 2000 MAIK “Nauka/Interperi-
odica”.
1. INTRODUCTION

Quantum dots are nanoscopic semiconductor quan-
tum structures which possess a discrete spectrum of
electronic states [1–3]. The single-atom microlaser is
now an object of active theoretical and experimental
investigations, which make it possible to study the fun-
damental quantum properties of the interaction of mat-
ter and light for the example of such an elementary light
source.

As shown in [1,3], a dielectric microsphere with an
atomic transition which is in resonance with the whis-
pering gallery mode with its inherent high Q (up to
1010) makes it possible to develop a microlaser with a
record low threshold of excitation and a narrow spectral
line.

In the present work we examine a four-level laser
scheme based on a quantum dot with parallel pumping
[3–5]. The quantum dynamics of the laser was calcu-
lated by finding an accurate numerical solution of the
equations of motion for the reduced density operator in
a basis of Fock states of the single-mode electromag-
netic field of the whispering gallery mode of a micro-
sphere interacting with the quantum dot. The condi-
tions for generation of a squeezed (sub-Poissonian)
state of light in the strong-coupling regime, which we
found in a previous work [6] and which is characterized
by the following relations between the field–matter
interaction constant (g), the pumping rates (Pi), the loss
rate of the resonator (γ), and the spontaneous emission
rate (Γ), were determined: Pi, γ @ Γ and Pi, γ ~ g. It was
1063-7761/00/9105- $20.00 © 20938
established that under the optimal conditions 25%
squeezing can be obtained inside the resonator and
four-fold squeezing of the spectrum of the intensity
fluctuations of the output radiation can be obtained at
zero frequency. In a previous work [6] we showed that
in the strong-coupling regime a two-level single-atom
microlaser can produce a squeezed state of light with
indicators of squeezing under the stationary conditions
much smaller than in the four-level scheme with paral-
lel pumping studied in the present work. At the same
time, in the transitional regime squeezing in a two-level
scheme can reach a factor of 10 at the output of the res-
onator and exceed the corresponding value for a four-
level laser. The whispering gallery mode used as the
resonator with high Q and a small effective mode vol-
ume [1] makes it possible to obtain the strong-coupling
regime necessary for the generation of the squeezed
state of light [6].

2. MODEL OF A QUANTUM DOT LASER

Since the size of a quantum dot is 10–30 nm, we can
assume that only one discrete energy level for an elec-
tron and one level for a hole are present in it. As result
of the Coulomb blockade effect [2, 3], no more than
one electron and hole can be present simultaneously in
each energy level. The excited state of a quantum dot
(exciton) arises when both types of carriers are present
simultaneously in the potential wells corresponding to
each of them. An optical transition (λ = 980 nm for
InAs/GaAs) occurs with the mutual annihilation of an
000 MAIK “Nauka/Interperiodica”
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electron and a hole, as a result of which the quantum
dot is transferred into the ground state (empty quantum
dot). If only one carrier (electron or hole) enters the
quantum dot by tunneling through the potential barrier,
there arises a semiexcited [3] state of the quantum dot
that does not interact with the electromagnetic field. A
transition from a semiexcited state into an excited state
is possible if a carrier with the opposite sign enters the
quantum dot.

A quantum dot is coupled with the whispering gal-
lery mode of the microsphere [1] placed nearby and is
the active medium of the microlaser.

Following [5], we shall distinguish two semiexcited
states [3] and study two levels |C〉  and |D〉  (through
which the upper laser level |A〉  is pumped) arising when
only one electron or only one hole is present in the
quantum dot. In this excitation scheme there arises
four-level laser model operating on a two-level quan-
tum dot with parallel pumping (Fig. 1).

We shall neglect the process where the excited state |A〉
decays by means of the loss of one of the carriers and
transitions into semiexcited states, and we shall also
neglect the direct pumping arising when carriers with
different signs have entered the quantum dot simulta-
neously.

The coupling constant between the quantum dot and
the field of the whispering gallery mode in the dipole
interaction approximation was taken to be real

(1)

where Veff is the effective volume of the whispering gal-
lery mode [1] interacting with the quantum dot, and dAB

is the matrix element of the dipole moment operator of
the quantum dot characterizing the transition |A〉  |B〉
with the emission of one photon into the resonance
whispering gallery mode of the microsphere.

We shall analyze the quantum stochastic dynamics
of a four-level quantum-dot laser using a reduced den-
sity operator of a system consisting of the quantum dot
and a single-mode field in a Fock basis:

(2)

We shall place the reference point of the energy of
the quantum dot midway between the energies of the
states |A〉  and |B〉 , and we shall assume that the energies
of the conditional semiexcited states |C〉  and |D〉  are
also equally spaced from the energies of the laser states
|A〉  and |B〉 . Under these conditions, in the interaction
representation and the Born–Markov approximation
[6, 7] the reduced density operator of the atom–field

g dAB

2πωAB

"V eff
----------------,=

ρ t( ) ρxy; nm t( ) x| 〉 n| 〉 m〈 | y〈 |.
n m, 0=

∞

∑
x y, A B C D, , ,{ }=

∑=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
system (2), interacting with a reservoir, satisfies a Liou-
ville equation of motion of the following form:

 

(3)

where ∆ = ωAB – ωc is the detuning of the resonator fre-
quency from the transition frequency, and the operators
referring to the quantum dot have the following form:
σxy = |y〉〈 x |, x, y = A, B, C, D. The quantities γ, Γ, and
Pxy are, respectively, the rate of loss of the field at the
mirrors, the spontaneous emission rate, and the inco-
herent pumping rate. The quantities Pyx are the rates of
de-excitation of the excited and semiexcited states and
will be neglected in the calculations below. The equilib-
rium average numbers of photons of the thermostat and
excitation of the quantum dot at temperature T are
denoted in Eq. (3) as nT and NT , respectively. Both

∂ρ
∂t
------

t∂
∂

SpR σR S⊕( ) i∆
σAA σBB–

2
----------------------- ρ,–= =

– ig a+σAB σBAa+( ) ρ,[ ]

+
γ
2
--- nT 1+( ) 2aρa+ a+aρ ρa+a––( )

+
γ
2
---nT 2a+ρa aa+ρ– ρaa+–( )

+
Γ
2
--- NT 1+( ) 2σABρσBA σBAσABρ– ρσBAσAB–( )

+
Γ
2
---NT 2σBAρσAB σABσBAρ– ρσABσAB–( )

+
Pxy

2
------- 2σxyρσyx σyxσxyρ–(





xy{ } CA BC BD DA, , ,=

∑

– ρσyxσxy )
Pyx

2
------- 2σyxρσxy σxyσyxρ ρσxyσyx––( )+





,

É

|A〉

|C〉 |D〉
g

PBDPBC

PCA PDA

|B〉

"ωA/2

–"ωA/2

0

Fig. 1. Arrangement of the energy levels of a quantum dot.
The states |A〉  and |B〉  are coupled with one another by the
laser dipole transition with frequency ωA and coupling con-
stant g; Γ is the spontaneous emission rate: the states |C〉  and
|D〉  correspond to the energy levels of a semiexcited quan-
tum dot (see explanation in the text; see also [3, 5]); Pxy
(xy = BC, BD, CA, DA) are the rates of pumping of the upper
laser level through semiexcited states.
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quantities are small in the optical frequency range of
the field at moderate temperatures.

In the basis of states of the quantum dots the com-
ponents of the reduced density operator of the system

ρxy(t) ≡ 〈x |ρ|y〉, x, y = A, B, C, D,

which depend only on the electromagnetic-field vari-
ables, satisfy the following equations of motion
obtained from Eqs. (3):

(4)

ρ̇AB

Γ PBD PBC+ +
2

-----------------------------------ρAB–=

– i∆ρAB ig aρBB ρAAa–( ) LρAB,+–

ρ̇BA

Γ PBD PBC+ +
2

-----------------------------------ρBA–=

+ i∆ρBA ig ρBBa+ a
+ρAA–( ) LρBA,+ +

ρ̇CD

PBD PBC PCA+ +
2

----------------------------------------ρCB–=

– i
∆
2
---ρCB igρCAa LρCB,+ +

ρ̇BC

PBD PBC PCA+ +
2

----------------------------------------ρBC–=

– i
∆
2
---ρBC iga+ρAC– LρBC,+

ρ̇CA

Γ PCA+
2

-------------------ρCA– i
∆
2
---ρCA igρCBa+ LρCA,+ + +=

ρ̇AC

Γ PCA+
2

-------------------ρAC– i
∆
2
---ρAC– igaρBC– LρAC,+=

ρ̇BD

PDA PBD PBC+ +
2

----------------------------------------ρBD–=

+ i
∆
2
---ρBD iga+ρAD– LρBD,+

ρ̇DB

PDA PBD PBC+ +
2

----------------------------------------ρDB–=

– i
∆
2
---ρDB igρDAa LρDB,+ +

ρ̇DA

Γ PDA+
2

-------------------ρDA– i
∆
2
---ρDA igρDBa+ LρDA,+ + +=

ρ̇AD

Γ PDA+
2

-------------------ρAD– i
∆
2
---ρAD– igaρBD– LρAD,+=

ρ̇AA ΓρAA– PCAρCC PDAρDD+ +=

– ig aρBA ρABa+–( ) LρAA,+
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Here the operators representing the resonator losses
caused by the interaction with the vacuum modes of the
field have the form

(5)

It follows from the equations of motion (4) for the
polarization operators coupling the nonlaser states with
the laser states ρxy (xy = CB, BC, AD, DA, CA, AC, BD,
DB) that if initially the values of these quantities are
zero, then these variables remain zero fro all time. Con-
sequently, in the calculations below the equations for
the indicated polarizations of the quantum dot will be
neglected, since the initial values will be taken as zero.

The equations for the matrix elements of the
reduced density operator, which we solved numeri-
cally, can be obtained from Eqs. (4) in the Fock repre-
sentation

(6)

The system of equations with dimension 6 × (nmax + 1) ×
(nmax + 1), where nmax is the size of the basis of Fock
states, was solved numerically by the fourth-order
Runge–Kutta method. Initially, the field was in a pure
vacuum state, and the quantum dot was in the lower
state. Thus the density matrix of the quantum dot and
the field, which did not interact with one another at the
moment t = 0, is

(7)

The statistical average values of the field and popula-
tions of the states of the quantum dot were determined
as follows:

(8)

(9)

ρ̇BB ΓρAA PBD PBC+( )ρBB–=

+ ig ρBAa a+ρAB–( ) LρBB,+

ρ̇CC PCAρCC– PBCρBB LρCC,+ +=

ρ̇DD PBDρBB PDAρDD– LρDD.+=

Lρxy
γ
2
--- 2aρxya

+ a
+
aρxy– ρxya

+a–( ).≡

ρxy; nm t( ) x〈 | n〈 |ρ m| 〉 y| 〉 ,≡

xy AB BA CB BC CA AC BD DB,, , , , , , ,=

DA AD AA BB CC DD., , , , ,

ρ 0( ) ρa ρ f ,⊗=

ρa B| 〉 B〈 |, ρ f 0| 〉 0〈 |.= =

n t( )〈 〉 Tr ρxx t( )( )
x

∑ ρxx; n n, t( ),
n 0=

∞

∑
x A B C D, , ,=

∑= =

Px t( )〈 〉 Tr ρ t( )σxx( ) ρxx; n n, t( ).
n 0=

∞

∑= =
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The variance (fluctuations inside the resonator) was
found from the expression

(10)

The variances of the canonically conjugate quadratures
of the field X+(t) = [a+(t) + a(t)]/2 and X–(t) = [a+(t) –
a(t)]/2i can be expressed in terms of the matrix ele-
ments of the density operator as

(11)

It is assumed that inside the microsphere, which is the
laser resonator, the electromagnetic field is in a state
with discrete values of the frequencies (whispering gal-
lery mode), while outside the resonator the field pos-
sesses a continuous spectrum. Consequently, the tem-
poral fluctuations of the field inside the resonator are
sources of fluctuations of the frequency spectrum of the
radiation exiting through the surface of the micro-
sphere. The field outside the spherical resonator can be
represented as a sum of the laser field exiting the cavity
and the noise field of the reservoir–thermostat, incident
on the surface of the microsphere, i.e., aout(t) = bin(t) +

a(t), where bin(t) is the operator of the vacuum field
incident on the surface of the microsphere [8–10]. The
Heisenberg operator aout+(t)aout(t) is the operator for the
number of photons exiting through the surface of the
microsphere per unit time. The quantity characterizing
the statistics of the laser radiation outside the micro-
sphere is the stationary spectrum of fluctuations of the
form

(12)

Since the two-time correlators under stationary condi-
tions are even functions of t, the Fourier cosine trans-
form is used in Eq. (12).

var n t( )( ) ∆n t( )( )2〈 〉≡

=  n n t( )〈 〉–( )2ρxx; n n, t( ).
n 0=

∞

∑
x A B C D, , ,=

∑

∆X±( )2〈 〉 1
4
--- 2n 1+( )ρxx; n n, t( )

n 0=

∞

∑




x A B C D, , ,=

∑=

± n n 1–( )ρxx; n n 2–, t( )
n 2=

∞

∑

± n 1+( ) n 2+( )ρxx; n n 2+, t( )
n 0=

∞

∑

−+ n 1+ ρxx; n n 1+, t( )
n 0=

∞

∑ nρxx; n n 1–, t( )
n 1=

∞

∑±
2





.

γ

V
out ω( ) 2 τ ωτ( )cosd

0

∞

∫t ∞→
lim=

× nout t τ+( )nout t( )〈 〉 aout+ t τ+( )aout t( )〈 〉 2
–[ ] .
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The commutation relations for the field operators,
forming a continuous spectrum outside the cavity have
the form [8–10]

(13)

Using Eq. (13), we obtain the two-time correlation
function of the photon number operators:

(14)

Thus the stationary spectrum (SS) of the fluctuations of
the number of field photons at the cavity exit consists of
the shot noise and the chronologically and normally
ordered spectrum of the fluctuations:

(15)

In the case of one transmitting mirror the correlators of
the field of the discrete mode of the radiation inside the
microsphere are related with the correlators of the
fields of the continuous spectrum outside the cavity, as
shown in [8–10], as follows:

(16)

(17)

Substituting Eqs. (16) and (17) into Eq. (12), we find
finally for the Fano spectral factor the formula

(18)

The quantity F(ω) ≥ 0 assumes values less than 1 for
the field outside the microsphere in a nonclassical state.
For F(ω) = 0 there is a shot noise level for all frequen-
cies ω, i.e., the field is in a coherent state. The parame-
ter characterizing the photon statistics outside the
microsphere is the Mandel parameter

(19)

The Fano factor is related with the Madnel parameter
by the relation F = Q + 1; for the field in a nonclassical
squeezed state the Mandel parameter is negative. We
note that local squeezing in the spectrum (18) may not

aout t τ+( ) aout+ t( ),[ ] δ τ( )= .

nout t τ+( )nout t( )〈 〉 a+ t τ+( )a t τ+( )a+ t( )a t( )〈 〉
out

≡

=  a+ t τ+( )a t( )〈 〉 outδ τ( )

+ a+ t( )a+ t τ+( )a t τ+( )a t( )〈 〉 out
.

Vout ω( ) nout tSS( )〈 〉 : Vout ω( ) : .+=

a+ t( )a t( )〈 〉 out γ a+ t( )a t( )〈 〉 ,=

a+ t( )a+ t τ+( )a t τ+( )a t( )〈 〉 out

=  γ2 a+ t( )a+ t τ+( )a t τ+( )a t( )〈 〉 .

F ω( )
Vout ω( )

n〈 〉 out
-----------------≡ 1 2γ

a+ t( )a t( )〈 〉
-------------------------

t ∞→
lim+=

× τ a+ t( )a+ t τ+( )a t τ+( )a t( )〈 〉[d

0

∞

∫
– a+ t τ+( )a t τ+( )〈 〉 a+ t( )a t( )〈 〉 ] ωτ( ).cos

Qout
: ∆n+out t( )∆nout t( ) :〈 〉

nout t( )
----------------------------------------------------≡ g

π
--- F ω̃( ) 1–[ ] ω̃d ,

0

∞

∫=

ω̃ ω
g
----.=
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Fig. 2. (a) Fano factor for the radiation inside a quantum-dot laser resonator versus the dimensionless time for Pxy = 3, γ = 1, and
Γ = 0.001 in units of g. (b) The spectrum of the fluctuations of the number of radiation photons outside the laser cavity. (c) Depen-
dence of the average number of photons of radiation inside the quantum-dot laser resonator versus the dimensionless time for the
same values of the parameters. (d) Populations of the states of a quantum dot versus the dimensionless time for the same values of
the parameters.
lead to a frequency-integrated nonclassical sub-Poisso-
nian photon-number distribution.

The two-time correlation functions appearing in
Eq. (18) was found as follows. Under stationary condi-
tions it is easy to obtain for the correlation functions of
the field operators inside the resonator the following
expression from the quantum regression theory (see,
for example, [11]):

(20)

where the operator (τ) ≡ (t + τ) satisfies the Liou-
ville equation (3) with the initial condition (τ = 0)

(21)

where ρn + 1, m + 1(tSS) are the stationary values of the
density matrix of the system.

3. STRONG COUPLING CONDITION 
AND GENERATION NONCLASSICAL LIGHT

In [6] we established that a single-atom two-level
laser with incoherent pumping is capable of generating

a+ t( )a+ t τ+( )a t τ+( )a t( )〈 〉 SS Tr a+aρ̃ τ( )( ),=

ρ̃ ρ̃

ρ̃n m, 0( ) n 1+( ) m 1+( )ρn 1+ m 1+, tSS( ),=
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nonclassical radiation with sharply sub-Poissonian
photon statistics. The necessary condition for generat-
ing such light is that the spontaneous emission rate
must be small compared to the cavity pumping and loss
rates. A necessary and sufficient condition for the radi-
ation to be nonclassical is the so-called strong-coupling
condition, when the field–atom coupling constant is of
the order of the loss rate of the resonator and the pump-
ing rate and much greater than the spontaneous emis-
sion rate, i.e., g ~ Pxy, γ @ Γ. It should be noted that
such a regime is different from the strong-coupling
regime studied in, for example, [12] with g @γ, Γ,
where the fluorescence spectrum possesses the charac-
teristic Rabi doublet structure.

In this work, a strong-coupling regime similar to the
one described in [6] is studied for a quantum-dot laser
in a four-level scheme under conditions where the
pump rates Pxy are all the same. Calculations using the
relations (4)–(6) showed that, just as in the case of the
two-level one-atom laser, a substantial degree of com-
pression of the light generated is possible under stationary
conditions as well as in a transitional regime. Figure 2a
shows the dependence of the Fano factor F = 〈(∆n)2〉/〈n〉
AND THEORETICAL PHYSICS      Vol. 91      No. 5      2000
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Fig. 3. Same as Fig. 2, for Pxy = 0.02, γ = 0.005, and Γ = 0.0001 in units of g.
inside the resonator on the dimensionless time for P = 1,
γ = 3, and Γ = 0.001 in units of the coupling constant g,
i.e., under strong-coupling conditions. As one can see
from Fig. 2a, in this case sub-Poissonian photon statistics
occurs in the transitional regime (Fmin = 0.901) and under
stationary conditions FSS = 0.905. It was found in [6] that
a single-atom two-level microlaser with Γ ! γ ! g ~ Pxy

in the transitional regime produces a field with F ! 1.
The calculations performed in the present work show
that for a quantum-dot microlaser transitional squeez-
ing of the field intensity cannot exceed its stationary
value by so much. Figures 2c and 2d show the quan-
tum-mechanical averages of the number of photons and
the populations as a function of time for the same val-
ues of the laser parameters. We note that in the process
of establishing a stationary state, at some moment in
time all populations of the states of the quantum dot
become equal to one another, which is a characteristic
feature of this four-level scheme and occurs for any val-
ues of the laser parameters. At the same time, as follows
from Fig. 2d, under stationary conditions, for g ~ P ~
γ @ Γ, there is a substantial population inversion of the
laser levels of the quantum dot.

It is evident from Fig. 2b that substantial squeezing
of the output radiation of the laser is present in the spec-
trum of the photon number fluctuations near zero fre-
AL OF EXPERIMENTAL AND THEORETICAL PHY
quency: F(ω = 0) = 0.289. The Mandel parameter in
this case is Qout = –0.29, i.e., the distribution of outgo-
ing radiation photons is sub-Poissonian.

The calculations show that the internal squeezing is
minimal for strong-coupling conditions of the form g @
P @ γ @ Γ. Varying the parameters Pxy and γ showed
that the maximum squeezing attainable in this scheme
inside the cavity is 25% (the Fano factor of F ≥ 0.75).
Figure 3 displays the computational results for close to
optimal values of P and γ; here the squeezing inside the
cavity F = 0.76 (see Fig. 3a). Squeezing in the outgoing
radiation spectrum is substantial only for frequencies
ω < γ; the maximum squeezing obtains at zero fre-
quency: F(ω = 0) = 0.504 (see Fig. 3b). The Mandel
parameter in this case Qout = –10–4, i.e., the state of the
outgoing radiation is close to coherent. Thus, when the
rate of resonator losses is small compared to be cou-
pling constant g and the pumping rate, substantial
squeezing of the fluctuations of the number of photons
of intracavity radiation leads to a nearly Poissonian dis-
tribution of the photons outside the cavity.

The dynamics of the establishment of stationary las-
ing in the case g @ P @ γ @ Γ is of special interest. As
one can see from Fig. 3d, the point where all level pop-
ulations are the same is obtained even at the early stage
of the evolution of the laser, when the average number
SICS      Vol. 91      No. 5      2000
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of photons in the cavity is small compared to the sta-
tionary value. In the stationary state the populations of
all four levels become the same, i.e., generation occurs
in the virtual absence of a population inversion for the
working transition (the inversion does not exceed 10–5).

Our calculations for ∆ ≠ 0 showed that the detunings
of the frequency of the resonator field from the transi-
tion frequency lead only to a decrease of the squeezing
inside and outside the cavity.

As noted in [13–15], noise suppression is a charac-
teristic property of multilevel lasers, including our
quantum-dot laser. Under the conditions of the scheme
with parallel pumping the residence of carriers in inter-
mediate semiexcited states results in a time delay or a
memory effect [14], a consequence of which is regular-
ization of the pumping of the excited state, since a
quantum dot in a semiexcited state no longer interacts
directly with the field. An important factor making pos-
sible generation of a squeezed state is the equality of
the rates of pumping performed synchronously from
both semiexcited states.

4. CONCLUSIONS

The calculations performed in the present work
have shown that an important condition for the genera-
tion of a squeezed state of light by a quantum-dot laser
is that the coupling constant between the matter and the
electromagnetic field must be large compared with the
spontaneous emission rate. Using the whispering gal-
lery mode of a dielectric microsphere, having a small
effective mode volume [1], as a laser resonator makes
it possible to increase the coupling constant to 109 Hz
[1, 3]. The characteristic spontaneous emission rate of
a quantum dot in empty space is of the order of 1010 Hz.
However, the presence of a material body (dielectric
microsphere) substantially changes the mode density of
the electromagnetic field in the space surrounding the
body and therefore the distribution of the zero fluctua-
tions of the field and, consequently, the spontaneous
emission rate [16–18]. Depending on the transition fre-
quency of the quantum dot and the position of the dot
relative to the surface of the microsphere, the spontane-
ous emission rate of the quantum dot can differ from
the corresponding value in empty space [19] and there-
fore it can be substantially lower.

Another necessary condition for achieving substan-
tial squeezing of intensity is the relation between the
coupling constant and the radiation lost rate in the cav-
ity g @ γ. This condition can also be satisfied in the case
JOURNAL OF EXPERIMENTAL
of the whispering gallery mode because of its high Q [1].
On this basis the strong-coupling condition g @ P @
γ @ Γ, permitting generation of nonclassical light by a
quantum-dot laser, can be satisfied.

A characteristic feature of a quantum-dot laser oper-
ating on the whispering gallery mode is an extremely
low lasing threshold, as a result of which it is possible
to produce intense radiation with incoherent pumping
under close to zero population inversion conditions.
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Abstract—An algorithm is proposed for calculating the spectrum of the cross section for photoionization of
carriers on deep centers in electric fields on the basis of the form function of an optical transition. An experiment
and calculations were performed for the complex VGa–SAs in GaAs. The proposed model is compared with
theoretical works based on the single-coordinate approximation. It is concluded that the single-coordinate
model is applicable for describing the field-dependence of the cross section for photoionization of an electron
on a VGa–SAs center. Data on the influence of an external electric field on the change in the moments of the form
function of the absorption band of the complex VGa–SAs in GaAs are obtained. It is concluded that an electric
field influences the adiabatic potentials of the center investigated. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is known that an electric field increases the prob-
ability of optical transitions. This effect was predicted
for intraband transitions by Franz and Keldysh inde-
pendently [1] in 1958 and first observed experimentally
by Vavilov and Britsin [2] in 1960. The theory was fur-
ther elaborated in [3, 4] (the Franz–Keldysh effect in
impurity absorption).

A more accurate calculation of the transition proba-
bility from deep impurities centers into the conduction
band in the space charge region of a semiconductor in
an electric Field was made in [5, 6] in 1972, and the
results of this work were quickly confirmed experimen-
tally in [7]. The Timashov formulas, presented in [6],
are based on a single-coordinate model for describing
deep centers in semiconductors. This model imposes
quite stringent restrictions on the character of the oscil-
lations in a system and must be verified in each individ-
ual case. Thus, the degeneracy of the electronic states
of a crystal with an impurity center results in the break-
down of the adiabatic approximation and in vibrational
mixing of the electronic levels. In this case the single-
coordinate model may be in inapplicable for calculat-
ing field dependences.

It is shown in the present paper how to calculate the
field dependences of the photoionization cross section
in general case on the basis of the experimental form
function of the optical transition. To confirm the calcu-
lation presented the inverse problem of finding the form
function of an optical transition from the experimental
spectrum of the photoionization cross section of elec-
tron in a deep level of the complex VGa–SAs in GaAs is
solved.
1063-7761/00/9105- $20.00 © 20945
2. CALCULATION OF THE PHOTOIONIZATION 
PROBABILITY FOR DEEP CENTERS 

IN STRONG ELECTRIC FIELDS

The basic characteristics of an electronic transition
between two states of a system which are described by
the wave functions |1〉  and |2〉  are determined by the
transition probability, which according to [8, 9] can be
represented in the form

(1)

where n and n' enumerate the vibrational states of the
ground and excited electronic terms, and ρ1n is the
probability of finding an electron in a vibrational state
with index n of the term 1, which taking account of the
Boltzmann distribution has the form

where  is the electric or magnetic dipole moment
operator of the system.

It is obvious that the value of the integral W12(hν)
depends strongly on the form of the functions |1〉  and
|2〉 , so that for a given electronic transition 1  2 it is
determined by the character of the vibrational states
being combined or in other words by the electron–
phonon interaction. The latter determines the depen-
dence of W12 on the photon energy. Knowing W12(hν),
it is easy to find the light absorption coefficient K12(hν).
We shall determine this coefficient, as usual, from the

W12 hν( )

=  ρ1n 1n M̂ 2n'
2δ E2n' E1n hν––( ),

n n',
∑

ρ1n

E1n

kT
--------– 

  E1n''

kT
---------– 

 exp
n''

∑
1–

,exp=

M̂
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relation I = I0exp[–K12(hν)l], where I and I0  are,
respectively, the intensity of the incident and transmit-
ted light, and l is the thickness of the absorbing layer.
Then [10]

(2)

where N is the number of absorbing centers per unit
volume.

According to [8], Eq. (2) can be rewritten in the
form

(3)

where f(hν) is the form function of the optical transi-
tion (in our case with absorption of a photon), contain-
ing information about the electron–phonon interaction.

In practice it is often necessary to deal with level–
band (conduction or valence) transitions. Having
absorbed a photon, an electron moves from a deep level
into any state of the band (for definiteness, we shall
consider the conduction band). Consequently, even in
the absence of an electron–phonon interaction the prob-
ability of a transition under the action of optical radia-
tion depends on the electron density of states of the
conduction band. In the parabolic approximation for
the conduction band E(k) = "2k2/2m* this dependence
near the band edge has the well-known form [11]

(4)

Thus, above the ionization threshold E0 the effective
cross section is proportional to the electron density of
states of the conduction band.

On this basis the transition probability from a deep
impurity center into the conduction band is a convolu-
tion of Eq. (3) with the conduction-band states:

(5)

where ∆ is the energy width of the allowed band (con-
duction band).

Then we obtain the following expression for the
probability of an optical transition with absorption
from a deep impurity center into the conduction band:

(6)

where G0 it is a normalization constant.

The contribution of electric field F can be taken
into account in the expression for the probability of a
purely electronic transition. The latter was calculated
theoretically by Vinogradov, using a three-dimensional

K12 hν( ) 4π2
Nν

3"c
----------------W

12
hν( ),=

K12 hν( ) kνf hν( ),≈

W hν( ) 1
hν
------ hν E0– .≈

Wabs hν( ) W hν ε–( )K12 ε( ) ε,d

hν ∆–

hν

∫=

Wabs hν( ) G0 hν ε– f ε( ) ε,d

hν ∆–

hν

∫=
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δ-function for the potential of a deep center, neglecting
the electron–phonon interaction [4]:

(7)

where

A is a normalization factor that depends on the number
of impurity centers. Finally, we obtain

(8)

Therefore the problem of calculating the spectrum
of the photoionization cross section in electric fields
reduces to finding the form functions of the optical
transition with absorption of a photon. The latter can be
obtained [12] from the contour of the absorption band
by dividing it by the photon energy or from the lumi-
nescence band, as shown in [9].

3. EXPERIMENTAL DETERMINATION 
OF PHOTOIONIZATION CROSS SECTIONS

Sulfur-doped GaAs was chosen as the material for
checking the model experimentally. Group-VI impuri-
ties in GaAs occupy arsenic sites and become donors,
forming shallow levels near the conduction-band bot-
tom. In addition, it is well-known [13–15] that they
form complexes consisting of gallium vacancies and a
donor at an arsenic site (VGa–DAs). In [9] the photolu-
minescence spectrum of the complexes VGa–SAs in
GaAs:S were investigated. Ni-GaAs contacts were pro-
duced by electrochemical deposition of nickel. The
method for depositing nickel and an investigation of the
structures obtained, which are described in [16],
showed that the structures obtained are Schottky
diodes.

The spectrum of the photoionization cross sections
of deep centers was measured on the basis of a study of
the charge transfer kinetics of deep levels under the
action of illumination in the stage charge region (SCR)
of a Schottky diode [17–19]—the so-called photoca-
pacitance method [19]. A metal cryostat was used to
perform the experiment at temperatures below room
temperature. The sample was thermostated (the tem-
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perature was maintained to within 1 K), and it was pro-
tected from the background light. An MDR-23 mono-
chromator was used for excitation.

The analysis of the measurements was based on a
simple kinetic equation, which in the absence of trap-
ping of electrons and holes in the field of the space
charge region is

(9)

where J is the photon flux in the SCR, qn(p) it is the pho-
toionization cross section for electrons (holes), en(p) is
the rate of emission of electrons (holes) from the level,
Nt is the density of complexes, and nt is the density of
electrons on the complexes. The emission rate includes
a combination of all thermal field processes. Hence we
obtain the time constant for the decrease of the capaci-
tance with the light switched off: τ–1 = en + ep + J(qn + qp).

Since the level lies closer to the valence band and
the energy splittings from the bands exceeded 10kT, it
can be assumed that charge transfer on the level with
the light switched off is completely determined by hole

emission and the time constant of the process  = ep,
and with the light switched it depends on the time con-

stant  = ep + Jqn. Then the photoionization cross sec-
tion is

(10)

The experiment was performed as follows. The time
variation of the capacitance of the SCR of the sample
with monochromatic illumination with photon energies
from 1.27 to 1.46 eV switched off and on were mea-
sured for several fixed reverse-bias voltages applied to
the sample.

The spectral curves of the optical emission rate and
the photoionization cross section for electrons on a
deep center, produced by the complex VGa–SAs, are pre-
sented in Fig. 1 for five different fixed fields in the SCR
of the barriers investigated.

4. CALCULATION OF THE FORM FUNCTION 
FOR OPTICAL ABSORPTION

The quantity Wabs(hν) on the left-hand side of

Eq. (6) is simply the optical emission rate  = Jqn,
where qn is the photoionization cross section and J is
the photon flux in the semiconductor. Therefore (taking
account of the weak dependence of J on hν), the depen-
dences which we measured for the photoionization

dnt

dt
------- Jqn en+( )– nt Jqp ep+( ) Nt nt–( ),+=

τoff
1–

τon
1–

qn

en
0

J
-----

1

τon
1– τoff

1––
--------------------1

J
---.= =

en
0
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cross section for electrons on deep centers of a VGa–SAs
complex are described by the expression

(11)

To find f(hν) it is necessary to solve Eq. (11), which
is a Fredholm integral equation of the first kind. This
equation can be solved for hν using the Riemann–Liou-
ville integral transformation:

(12)

where D1/2 is a derivative of degree 1/2 [20]. However,
the problem of solving the equation is ill-posed because
the solution is unstable. This means that even very
small errors in qn(hν), which are definitely present and
are due to errors in the measurements and calculations,
can result in large errors in the solution. Such problems
can be solve by regularization methods [21], which are
based on the concept of a regularizing algorithm.

qn hν( ) G0 hν ε– f abs ε( ) ε.d

hν ∆–

hν

∫=

f hν( ) 4
G0

------ d
dhν
---------

qn' ξ( )dξ
hν ξ–
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∫ 
 
 

=
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4
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1.28

1
2
3
4
5

10–19

10–18

10–17

10–20

1.32 1.36
hv, eV

qn(~Wabs), Òm2

Fig. 1. Experimental photoionization cross sections for an
electron on a deep level of the complex VGa–SAs (points)
and the spectra computed using Eq. (8) (solid lines) for var-
ious fields in the SCR: (1) 8.3 × 104, (2) 8.8 × 104, (3) 9.5 ×
104, (4) 1.05 × 105, and (5) 1.1 × 105 V/cm.
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The desired form functions were found by the zero-
order Tikhonov regularization method, according to
which the problem was reduced to solving a system of
linear equations

(13)

where

α f abs hν( ) k hν s,( ) f abs s( ) sd

a

b

∫+ w hν( ),=

a hν b,≤ ≤

k hν s,( ) K t hν,( )K t s,( ) t,d

c

d

∫=

w hν( ) K t hν,( )Wabs t( ) t,d

c

d
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K x y,( ) x y– , x y>
0, x y,<




=

1

2

3

4

5

6

1.3 1.4 hν, eV
0

0.2

0.4

0.6

0.8

I, arb. units

Fig. 2. Form function of the optical absorption band of the
complex VGa–SAs, reconstructed from the emission spec-
trum (curve 1). The form functions of optical transitions
with absorption, which were calculated from the experimen-
tal spectrum of the photoionization cross sections, described
by polynomials of degree eight, with Gaussian edges for var-
ious fields in the SCR: (2) 8.3 × 104, (3) 8.8 × 104, (4) 9.5 ×
104, (5) 1.05 × 105, and (6) 1.1 × 105 V/cm.
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a, c and b, d are, respectively, the lower and upper
energy limits of the range of the measured spectrum of
the photoionization rate. The adjustable parameter α
for the spectrum varied from 10–4 to 3 × 10–3.

The curves f (hν) which we obtained in this manner
were described by polynomials of degree eighth, nor-
malized to 1 and corrected. The following was done for
this: (1) sections were chosen on the short- and long-
wavelength wings of the form functions that corre-
spond to intensities from 0.15 to 0.30; (2) these sections
were approximated by Gaussian functions and extrapo-
lated to the wavelength range containing distortions
caused by the inaccuracy of the Tikhonov method (Fig. 2).

The form functions [ (hν) below] presented in
Fig. 2 can be used to calculate the field dependences
of the photoionization cross sections using the for-
mula (8).

To check the experimental form functions (hν)
it is helpful to compare them with the results of a lumi-
nescence investigation [9]. To this end, the form func-
tion of the optical absorption band of the complex

VGa−SAs ( (hν) below), which is shown by the
dashed line in Fig. 2, was reconstructed from the emis-
sion spectrum of the complex VGa–SAs [9] using the
results of [12, 22, 23].

To compare (hν) and (hν) we shall calcu-
late the first central moments of these functions. The
central moment 〈Mn〉  of order n of the distribution func-
tion f (ν), calculated relative to the origin of coordi-
nates, is determined by the formula

(14)

where  is a binomial coefficients and Mn = f (ε)dε
is the initial moments of order n [12]. The moments
obtained are presented in the table, where it is evi-
dent that the first moments decreases as the electric
field intensity increases. The second moment can be
assumed to be constant. This indicates that the adia-
batic potentials of the ground and excited states of the
defect in an electric field draw together on the energy
axis by the amount

f abs
F

f abs
F

f abs
0

f abs
F f abs

0
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------- 

 
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n εn∫

∆E F( ) E0 0( ) E0 F( )– M1 0( ) M1 F( ),–= =
Table

Moment
 with field intensity

8.3 × 104 V/cm 8.8 × 104 V/cm 9.5 × 104 V/cm 1.05 × 105 V/cm 1.1 × 105 V/cm

M1 1.3658 1.3567 1.3534 1.3504 1.3449 1.3409

〈M2〉 9.476 × 10–4 9.434 × 10–4 9.300 × 10–4 9.187 × 10–4 9.894 × 10–4 9.549 × 10–4

f abs
0 hν( )

f abs
F hν( )
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where E0(0) is the energy of a purely electronic transi-
tion in a zero electric field and E0(F) is the energy of a
purely electronic transition in an electric field with
intensity F. No changes in the curvature of the poten-

tials occur. The first moment of the function (hν)
can be taken as the first moment of the form function

(hν) in a zero field. Figure 3 shows the deforma-
tions of the adiabatic potentials in an electric field
which were constructed according to their first
moments, clearly illustrating the conclusions drawn
above.

5. CALCULATION OF THE FIELD DEPENDENCE 
OF THE CROSS SECTION 
FOR PHOTOIONIZATION 

OF A DEEP CENTER VGa–SAs IN GaAs 
ON THE BASIS OF THE FORM FUNCTION 

OF THE OPTICAL ABSORPTION BAND

The form function of the optical absorption band of
the complex VGa–SAs, reconstructed from the initial
band of the complexes using the parameters of the sin-
gle-coordinate model, was used as f (ε) to calculate the
photoionization cross section from Eq. (8). The field
dependences of the cross section calculated in this
manner are displayed in Fig. 1. We note that the Vino-
gradov formula for the probability of a purely elec-
tronic transition (7) describes the field dependences of
the transition probability only in a narrow range near
the impurity absorption edge and below. Consequently,
good agreement between the theoretical curves and
experiments is obtained only in this range. The coeffi-
cient A' in Eq. (8) was chosen so as to obtain the best
agreement between theory and experiment for hν rang-
ing from 1.30 to 1.33 eV with a 8.8 × 104 V/cm field. As
one can see from Fig. 1, within the experimental error
limits, which are associated with inaccuracies in mea-
surements of the capacitance and calibration of the
radiation source, the agreement between the computed
and experimental data is satisfactory.

6. CALCULATION OF THE FIELD DEPENDENCE 
OF THE PHOTOIONIZATION PROBABILITY

FOR A DEEP CENTER VGa–SAs IN GaAs
IN THE SINGLE-COORDINATE 

APPROXIMATION

There are very few works on the exact theoretical
calculation of the probability of optical transitions in
electric fields. This is due to the difficulty of the calcu-
lations and the choice of a model. In [24] optical gener-
ation of charge carriers was studied, on the basis of the
one-coordinate model, in a strong electric field with

f abs
F

f abs
0
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light absorption below the impurity absorption edge:

(15)

where

σ2 is the second moment of the absorption form func-
tion, and A is a slowly varying function of the field and
temperature. As F  0, Eq. (15) passes into the Vino-
gradov expression [3]
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Fig. 3. Configuration-coordinate diagram of the complex
VGa–SAs, illustrating the distortions of the adiabatic poten-
tials in an electric field. Here Ug is the adiabatic potential of
the ground state, Uu is the adiabatic potential of the excited

state outside the field,  is the adiabatic potential of the

excited state in a field with intensity F, and F5 > F4 > F3 >
F2 > F1 > 0 (curves 1–5).

Uu''
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In [25] the electron–phonon interaction parameters
in a one-coordinate model were calculated, using the
formulas proposed in [12], from the moments of the
form function of the optical radiative transition fem(hν).
Thus, we have for the complex VGa–SAs the following
values of the parameters of the single-coordinate model
at temperature 100 K: E0 = 1.3 eV, "ωu = 0.017 eV,
"ωg = 0.025 eV, S = 3, where "ωu is the phonon energy
describing the adiabatic potential of the excited state,
"ωg is the phonon energy describing the adiabatic
potential of the ground state, S is the Huang–Rice fac-
tor, and E0 is the energy of a purely electronic transition
from a local state near the conduction-band bottom to a
deep level corresponding to the ground state of the cen-
ter—this is essentially the activation energy of the
level. The average between "ωu and "ω, specifically,
"ω = 0.21 eV, was used as "ω in Eq. (15).

The computational results obtained with Eq. (15)
are presented in Fig. 4. The coefficient A in the formula
(15) was chosen to obtain the best agreement between
theory and experiment with hν ranging from 1.30 to
1.33 eV for a 8.8 × 104 V/cm field [just as in the calcu-
lation using Eq. (8)]. For comparison, the field depen-
dences of the transition probability calculated using
Eqs. (8) and (15) are presented in Fig. 4.

7. CONCLUSIONS

Thus, an algorithm based on experimental optical
transition spectra has been developed to calculate the
photoionization cross sections of deep centers in elec-

1

3

10–19

9 10 118
F, 104 V/cm

10–18

10–17
qn(~Wabs, ~W), cm2

2

4

Fig. 4. Experimental dependences of the photoionization
cross sections for an electron in a deep level of the complex
VGa–SAs versus the field intensity (points); dependences
calculated using Eq. (8) (broken lines) and the formula (15)
(solid lines) for various incident photon energies: (1) 1.34,
(2) 1.32, (3) 1.30, (4) 1.29 eV.
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tric fields. For this, a quantum-mechanical calculation
was performed of the optical ionization probability of
deep centers in electric fields. The algorithm developed
for calculating the photoionization cross sections of
deep centers was compared with the calculations of the
ionization probability of deep centers of the complex
VGa–SAs performed on the basis of the single-coordi-
nate model as well as with the experimental data. Good
agreement was obtained between the experimental
dependence and both theoretical dependences. How-
ever, preference was given to the scheme proposed for
calculating the photoionization cross sections of deep
centers on the basis of the experimental spectrum of
optical transitions, because the latter was obtained
without using any approximations, in contrast to meth-
ods based on the single-coordinate model, and is there-
fore more general. Calculations of the form function of
the absorption band of the complex VGa–SAs in GaAs
were performed. Data on the influence of an external
electric field on the change in the moments of the form
function of the absorption bands were obtained. It was
concluded that an electric field affects the adiabatic
potentials of the center studied.
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Abstract—It is demonstrated that a three-level medium can be used to convert the carrier wave frequency with-
out decreasing the signal/noise ratio. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The attractiveness of a three-level medium from the
standpoint of quantum optics has been noted repeat-
edly. Lasers constructed using such objects are capable
of emitting sub-Poissonian light because of their inter-
nal properties. It is sufficient to overcome a threshold,
and the lasing arising will be automatically nonclassi-
cal. This is because the specific nonlinear properties a
three-level medium negative feedback capable of stabi-
lizing the electromagnetic field even below the quan-
tum limits occurs [1]. Nonetheless, the prospects for
practical applications of three-level lasers as sources of
nonclassical light are at the present time small, since
the quantum characteristics of this light are not very
pronounced: shot noise can be suppressed in best case
by only one-half.

At the same time there is another possibility of using
the system for, specifically, the conversion of the fre-
quency of an electromagnetic wave without substantially
degrading the signal/noise ratio. One can imagine, for
example, the following physical situation. An attempt is
made to transmit and analyze information by appropriate
modulation of laser radiation. In the usual physical situa-
tion one frequency of the laser carrier wave is more suit-
able for transfer of the radiation through space and the
other is more suitable for photodetection. Thus, carrier
frequency conversion is an important applied problem.

It will be shown below that, specifically, this prob-
lem can be solved in a three-level medium. Indeed, the
arriving information-modulated wave can be used to
excite this medium, as result of which lasing arises on
an adjacent transition of the three-level medium, i.e., at
a completely different but, as expected, also informa-
tion-modulated frequency. Here we shall demonstrate
that, in first place, the physical parameters can be
adjusted so that the information modulation will be
transmitted without distortion from the control channel
into the generation channel of the converter and, in sec-
ond place, if the information embedded in the initial
1063-7761/00/9105- $20.00 © 0952
beam in the form of amplitude modulation is to be ana-
lyzed, then information transfer from one carrier wave
frequency to another can occur without a decrease of
the signal/noise ratio.

2. INFORMATION TRANSFER
BY LASER RADIATION

A. Information Modulation of Laser Radiation

Figure 1 shows schematically the experimental situ-
ation that we shall discuss. We have a single-mode laser
source of Poissonian or sub-Poissonian light (S). One
possible method of introducing information into the
laser beam without destroying the quantum properties
of the beam is Q-modulation of the resonator. This can
be done, for example, by gluing a resonator mirror on a
plate cut from a ceramic crystal; this will make it pos-
sible to change the perimeter of the resonator using
suitable electric signals.

The information-modulated laser beam propagating
in free space reaches the unit (Tr) in our experimental
setup. The carrier frequency is changed in this unit. We
shall assume that it consists of an optical high-Q reso-
nator with a three-level medium.

The arriving modulated light excites the three-level
medium in the resonator to the generation threshold, as
result of which a laser field appears on an adjacent
atomic transition. We assume that the new lasing will
be information-modulated just as the initial lasing.
Thus, the optical carrier frequency will be converted.
As is well-known, this could be important, for example,

i(t)

DTrS

Fig. 1. 

~
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for photodetection, if the photodetector is insensitive to
the initial lasing frequency.

Finally, the modulated radiation, which is now from
the three-level laser (frequency converter), strikes the
photodetector (D), whose electrical circuit is arranged
in a manner so that it is possible to study the spectrum
of the photocurrent.

In the present section we shall discuss only the first
unit, specifically, the laser source of information-mod-
ulated Poissonian or sub-Poissonian light. The simplest
models of two-level lasers make it possible to write the
following equation for the number of laser photons
m0(t) [2, 3]:

(2.1)

Here, κ0 is the spectral width of the laser mode, r0 is the
average rate of excitation of the upper laser level, η–1 is
the number of photons which saturate the laser transi-
tion. The quantity η can be written in the explicit form

(2.2)

where  and  the relaxation rates, respectively, of

the upper and lower laser levels (Fig. 2),  is the
relaxation rates of the coherence on the laser transition,
and g0 is the dipole interaction constant for an atom
interacting with the laser wave.

On the basis of this equation we shall assume that
the resonator width κ0 varies adiabatically in time as
result of the corresponding electric oscillations of the
piezoelectric ceramic:

(2.3)

We shall assume that the degree of modulation is small
κ0 @ δκ0(t), and then the number of photons in Eq. (2.1)
can be written as

(2.4)

Here, m0 is the stationary solution in the absence of
modulation and (which is important, as we shall see
below, for our formulation of the problem) in the
absence of the frequency converter Tr

(2.5)

We could proceed in the standard manner, linearizing
Eq. (2.1) and writing a differential equation describing
the modulation of the laser radiation. This is a linear,
inhomogeneous, first-order equation and therefore it is
easily solved. However, recalling that the problem for
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modulation is something in the adiabatic approxima-
tion, we can obtain

(2.6)

directly from the expression (2.5).

B. Limiting Possibilities for Observing Modulation: 
Signal/Noise Ratio with Photodetection

of the Laser Radiation

The statistical theory in this case can be formulated
precisely as done in [3], with no modulation, on the
basis of the ideas developed in [2].

It is well-known that if there is no modulation, the
photocurrent spectrum can be represented in the form

(2.7)

Here, the first term (1 in parentheses) gives the shot-
noise level, and the second term gives the level of the
“excess” noise. For Poissonian light with saturation,
ηm0 @ 1, the Mandel parameter ξ0 is 0 (the second term
in ξ0 is absent in this case) and therefore there is no
excess noise. For sub-Poissonian light, likewise with
situation, the second term in ξ0 becomes the main term
and then ξ0 = –1/2, provided that the spontaneous decay

of the upper laser level is sufficiently slow:  @ .
It is evident that at close to zero frequencies the excess
noise completely compensates the shot noise. The sup-
pression of shot noise, which was predicted in [3], has
been confirmed experimentally in [4].

If we now assume that the initial beam contains
information-carrying low-contrast modulation, then an
additional term due to this modulation will appear in
the formula, and the complete spectrum at saturation
will have the form

(2.8)

Here, T is the measurement time, which, in one hand,
should be long enough so that explicit expression for
the excess noise in Eq. (2.7) remains unchanged, while
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on the other hand it should not be so long that the spec-
tral structure

(2.9)

could fit into the spectral interval T–1. The latter condi-
tion is in complete agreement with the initial adiabatic-
ity condition.

The formula (2.8) can be viewed as the observed
signal in our experiment on the detection of modulated
laser radiation. In addition, for obvious reasons, the
modulation is not observed in a pure form but rather
against background noise, which is determined by
Eq. (2.7).

It is natural to determine the signal/noise ratio SNRω
as the ratio of the third term in Eq. (2.8) to the sum of
the first two terms:

(2.10)

Here, we took into account the adiabaticity condition
and assumed that the excess noise is spectrally uniform
within the spectral width of the informative part of the
signal and we have introduced the index in to under-
score that the investigation is performed at the input of
the frequency converter (but, in its absence).

To be able to measure and analyze the modulation it
is natural to require that

(2.11)

Obviously, this condition for a Poissonian laser, ξ = 0,
gives a limit on the degree of information modulation.
At the same time, in a theoretical analysis for a sub-
Poissonian laser, ξ = –1/2, modulation with arbitrary
lack of contrast can, in principle, be noticeable.

3. CONVERSION OF THE CARRIER 
FREQUENCY ON THREE-LEVEL ATOMS

A. Semiclassical Theory

We shall now demonstrate that when a three-level
laser is pumped by modulated laser light we can force
the system to generate light that is modulated in pre-
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cisely the same manner (but, naturally, at a different
frequency) on an adjacent transition.

Let the carrier frequency of the initial signal enter-
ing from the source S (Fig. 1) into the input of the fre-
quency converter Tr be in resonance with an atomic
transition (1  3) (Fig. 3a) and excite the atomic
medium, as result of which lasing arises on another
mode frequency in resonance with the atomic transition
(2  3). As one can see from Fig. 3a, for atoms the
frequency can only increase. However, one can imagine
a different structure which is mathematically complete
equivalent to the first structure (Fig. 3b) but gives a
decrease in frequency.

The smallest distortions of the modulation when the
modulation is transferred from the pump channel to the
lasing channel will occur when the pumping is weak:

(3.1)

Here, gd is the dipole interaction constant between the
pump wave and the transition (1–3) (the pump or con-
trol channel).

In addition, we require

(3.2)

These two conditions give zero-inversion lasing of a
three-level laser [5], first mentioned in [6].

Then, the arguments can be based on the equations
for the number n0(t) of photons in the laser source and the
number n1(t) of photons in the frequency converter [5]:

(3.3)

(3.4)

Here, the last equation is different from Eq. (2.1) in that
besides the initial losses of the laser field, which are
determined by the coefficient κ0 and which also
occurred in the absence of the converter, now the losses
to excitation of the three-level medium with rate κ are
also taken into account:

(3.5)

N1 is the total number of three-level atoms in the reso-
nator. The quantity

determines the saturation properties of the three-level
medium on the transition (3–2), and g1 is the dipole
interaction constant between the pump wave and the
transition (2–3).

In addition, we take into account the possibility that
the lasing power of the laser source can change if the

β0n0 ! 1, β0 2gd
2/γ3

2.=

δ
γ2

γ3
----- ! 1.=
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ṅ0 – κ0 t( ) κ+( )n0

ζr0η2n0

1 ηn0+
-------------------.+=

κ
γ3β0N1

1 β1n1+
--------------------,=

β1 2g1
2/γ3

2=
AND THEORETICAL PHYSICS      Vol. 91      No. 5      2000



ZERO-NOISE CONVERSION 955
average excitation rate r0 of the medium is replaced
by ζr0.

Now, once again, assuming the modulation of the Q
and of the lasing power of the initial laser source to be
weak, we require the same thing for lasing at the new
frequency:

(3.6)

where n1 is the stationary solution of Eq. (3.3):

(3.7)

At saturation, when i1δ @ 1,

(3.8)

Linearizing Eq. (3.3) with respect to the weak modula-
tion of the input and output radiation, we obtain

(3.9)

Taking into account the adiabatic approximation and
the saturation factor, we obtain on the basis of Eq. (3.8)

(3.10)

Now we must estimate the relation between the lasing
power of the laser source in the absence m0 and in the
presence n0 of the frequency converter. Having in mind
Eq. (3.4), it is easy to obtain

(3.11)

Thus we see that the presence of a converter can, in
principle, result in weaker modulation of the initial
radiation and in a weaker signal as a whole. However,
additional pumping can compensate the latter.

Now we can relate the characteristics of the second-
ary and primary emissions:

(3.12)

Here, it is important to underscore that under the cho-
sen conditions the initial temporal variation was trans-
ferred from the initial frequency to the converted fre-
quency without any deformations. We shall see below
that even though the degree of modulation decreases as
result of losses of the initial field on excitation of the
three-level medium, it is nonetheless entirely realistic
to obtain conditions under which the modulation of the
light at the converted frequency will not be any more
difficult to observe than the modulation at the initial
frequency.
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B. Signal/Noise Ratio at the Output 
of the Frequency Converter

The photocurrent spectrum at the output of the fre-
quency converter can be calculated in the standard
manner just as in [5] in the absence of modulation:

(3.13)

Compared with the work cited, an additional informa-
tion term of the same type as in Eq. (2.8) appears here.
Once again, we shall determine the signal/noise ratio as
the ratio of the third term to the sum of the first two terms.
It should be remembered once again that because the
informative modulation is introduced into the system adi-
abatically the spectral width of the detected signal (third
term) is much smaller than the spectral width of the
noise. Thus, to record the signal/noise ratio we can take
the first two terms (the numerator of the ratio) at zero
frequency.

Here we call attention to an important fact. Accord-
ing to Eq. (3.3), the number of photons n1(t) in the con-
verter is proportional to the number of photons in the
laser source n0. This means, in turn, that the stationary
number n1 of photons and the modulation δn1(t) are
also individually proportional to n0. But then the infor-
mative term in Eq. (3.13) will also be proportional to n0.
Since the noise terms do not depend on n0, we must
conclude that the signal/noise ratio in the present case
depends on the radiation power of the laser source, the
dependence being all the stronger, the higher the power.

We shall now consider two limiting cases κ0 @ κ
and κ0 ! κ, which were called in [5] the cases of weak
and strong coupling between lasers. In the first case the
presence of the converter does not affect in any way the
operation of the source. In the second case, however,
absorption in the three-level medium is the main source
of losses for the intraresonator laser field of the source.

For weak coupling the signal/noise ratio is indepen-
dent of the statistics of the initial light:

(3.14)

which is entirely obvious, since the three-level system
perceives any radiation as Poissonian radiation [5].
However, if the coupling is strong, then

(3.15)
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As we can see, the cases of Poissonian and sub-Poisso-
nian laser sources are fundamentally different here:
modulation of sub-Poissonian light can be observed for
arbitrarily small degree of modulation, which cannot be
said of modulation of Poissonian light.

To assess how the measurement possibilities have
changed compared with the initial situation, we shall
write the ratio of the signal/noise ratios at the output
and input of the frequency converter, denoting this ratio
by the letter F:

(3.16)

It is easy to obtain that for weak coupling

(3.17)

and F = 1 for Poissonian light, if

(3.18)

Thus we can obtain the same measurement conditions
at the converter output as at the converter input. For a
sub-Poissonian light the signal/noise ratio at the con-
verter output is always smaller.

For strong coupling

(3.19)
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and F = 1 obtains for

(3.20)

Therefore it can be concluded that, on the one hand,
a three-level medium is entirely convenient and can
serve for converting the frequency of the carrier wave
and, the other hand, the detection conditions at the new
frequency will be no worse than at the initial frequency.
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Abstract—The objective of this work is to investigate how the anisotropy of the interaction between dipole-
active vibrations of a crystal lattice and infrared electromagnetic waves is manifested in the spontaneous para-
metric light scattering spectra of polaritons (Raman scattering by small angles). The case where scattering
occurs by extraordinarily polarized polaritons—quasiparticles formed as a result of the coupling of the wave
polarized in the symmetry plane of a biaxial crystal simultaneously with two phonons possessing orthogonal
dipolar moments—is studied. A series of spectra of equilibrium fluctuations of the electromagnetic (infrared)
field, each of which represents an intensity distribution in frequency–wave number coordinates for a fixed direc-
tion of the wave vector, are constructed on the basis of a scattering model that takes account of the tensor char-
acter of the permittivity and the quadratic and cubic susceptibilities of the crystal. Analysis of the computed
spectra identified the basic laws and dependences which are determined by the anisotropy of the electromag-
netic susceptibilities of various orders and made it possible to explain previous experimental results which can-
not be interpreted on the basis of the generally accepted model of transversely polarized polaritons. A method
is proposed for determining the contributions of the dipole-active vibrations of the crystal lattice to the permit-
tivity and the quadratic and cubic susceptibilities, as well as the absorption of the material from the spectra of
the extraordinarily polarized polaritons. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The main objective of this work is to examine the
special features, which have not yet been investigated,
of light scattering by polaritons (SP) under the condi-
tions of strong anisotropy of the deformation potential
and the dipole moment of optical phonons, to show that
SP can be used to measure the dynamical characteris-
tics of these phonons, and to revive interest in this phe-
nomenon of nonlinear optics.

Spontaneous parametric (Raman) scattering by
polaritons in noncentrosymmetric crystals was actively
investigated at the end of the 1960s and in the 1970s. At
that time the basic physical features and characteristics
of the process were mainly studied. In addition, quite
effective methods for determining the dynamical
parameters (frequencies, damping constants, contribu-
tions to the linear and nonlinear susceptibilities) of
optical phonons, as well as methods for measuring the
optical characteristics of crystals in the frequency range
from tens to several thousands of reciprocal centimeters
were developed on its basis.

Detailed reviews of the theoretical and experimental
works devoted to scattering by polaritons are presented
in [1–4]. Scattering by polaritons was successfully used
to investigate ferroelectric phase transitions and isoto-
pic substitution processes. The influence of trace impu-
rities as well as regular and irregular optical nonunifor-
mities on scattering was studied in [5–7]. The method
was used especially successively to study the anharmo-
1063-7761/00/9105- $20.00 © 20957
nicity of vibrations and the Fermi resonance and Fano
antiresonance phenomena.

However, the effect of the anisotropy of the interac-
tion of phonons with the IR field on the SP spectra has
still not been investigated. It is obviously manifested
whenever the polaritons participating in scattering are
extraordinarily polarized. In such situations, ordinarily,
only a complex dependence of the general form of the
frequency-angular distribution of the scattering inten-
sity on the orientation of the interacting waves is noted,
and no attempt is made to explain it. This situation nar-
rows the range of applicability of SP spectroscopy.
After all, for many crystals the selection rules with
respect to symmetry make it possible to observe scat-
tering only by extraordinary polaritons.

Polaritons are the eigenstates of the electromag-
netic field in a medium which are formed as a result of
the coupling of the electromagnetic field (macrofield)
with dipole-active phonons. In the process of a laser
wave (pump waves with frequency νl and wave vector
kl) scattering by polari tons, signal waves, whose fre-
quencies νs lie in the visible range, are created. The
form of the scattering spectrum depends on the disper-
sion of the permittivity and the quadratic and cubic sus-
ceptibilities at the frequencies of all three waves, but in
the visible range the dispersion of the optical properties
of a crystal is much weaker than in the infrared range
and it has a smooth character, so that the polariton spec-
trum has a determining effect. From the two-dimensional
frequency–scattering angle distribution I(νs, θ) observed
in the visible region, the spectrum P(ν, k) of the equilib-
000 MAIK “Nauka/Interperiodica”
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rium fluctuations of the electromagnetic field at polari-
ton frequencies ν = νl – νs can be easily reconstructed
by using the relations

k = kl – ks, (1)

where ks is the wave vector of the signal wave and k is
the coordinate of the fluctuation spectrum. The disper-
sion law I(νs, θ) for polaritons can be determined as the
line joining the maxima of the frequency (for constant k)
contours of the spectrum P(ν, k). If the frequency ν is
close to the phonon frequency νj (in the resonance region),
the dispersion of the polaritons is different from that of
free electromagnetic waves in the medium [8].

Polaritons correspond to small angles θ; for large
angles the SP lines pass into the Raman scattering (RS)
lines of optical phonons (in what follows we shall
assume that the wave number of the polaritons lies in
the range

0 < |k | < 10πν ,

where εs is the permittivity in the visible range; parti-
cles with larger values of the wave number will be
called phonons).

The two-dimensional spectrum of equilibrium fluc-
tuations of the electromagnetic field in the resonance
region depends primarily on the ratio of the dynamical
parameters of the phonon (contributions to the permit-
tivity ∆ε, the quadratic and cubic susceptibilities ∆χ
and ∆Θ, and the damping constant Γ) as well as the
background values of the susceptibilities determined by
the contributions of neighboring phonons and elec-
tronic states. Various methods for determining such
parameters from the SP spectra have now been devel-
oped. They are used in special cases [4, 9, 10], but the
most general approach is one based on the numerical
simulation of the spectra I(νs, θ) [or P(ν, k)], since it is
applicable irrespective of the ratio of the dynamical
parameters of the vibrations [11]. Modern computa-
tional technology makes it possible to fit these parame-
ters. The accuracy of such a procedure can be different
depending on the form of the spectrum (e.g., how many
phonons must be drawn into the analysis), but it is quite
high. Thus, vibrations with oscillator strengths up to
10–7 can be detected and small contributions (10–14–
10−17 cm3 erg–1) to the cubic susceptibility can be
detected. Such small vibrations are not observed in the
RS spectra, and their dipole activity is too weak to
study them by the infrared method [12, 13].

As a rule, when modeling spectra it is assumed that
the polarization of the polaritons is strictly perpendicu-
lar to the direction of their wave vector, irrespective of
the direction of propagation. However, in a biaxial
crystal electromagnetic waves are strictly transverse
only if they propagate in the symmetry plane of the
ellipsoid of wave normals and are polarized perpendic-
ular to this plane, while in a uniaxial crystal (irrespec-
tive of the direction of propagation) only one of the two

εs
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possible waves (the ordinary wave) is transverse. Con-
sequently, the cases where scattering by “purely ordi-
nary” polaritons in an anisotropic crystal is observed
are exceptional. Under real experimental conditions,
for each SP spectrum the direction of propagation kl

and the polarization el of the pump wave are fixed and
the wave vector ks and polarization es of the signal
wave can vary in the range 10°–12°. The orientation of
the polariton wave vector kp can vary by 90° and more
because of the strong dispersion of the permittivity ε in
the resonance regions. In an anisotropic crystal, the
principal values of ε can differ by several orders of
magnitude, and they can also be negative; correspond-
ingly, the shape of the ellipsoid of wave normals can be
subject to strong dispersion, so that the longitudinal
component of the electric field can be much greater
than the transverse component. Consequently, a model
of scattering by ordinary polaritons that does not take
account of the longitudinal field is unsuitable for inter-
preting the SP spectra of extraordinary (anisotropic)
polaritons.

Extraordinary polaritons are formed when the elec-
tric field of the light wave possesses a nonzero projec-
tion on two (or three) axes of an anisotropic crystal and
vibrations of various symmetry types are linearly cou-
pled by this field. The dispersion of such polaritons,
i.e., the dependence of the frequency on the magnitude

of the wave vector kp = 2πν  for various fixed direc-
tions of the vector, was first described theoretically by
Poulet in 1955 and then by Merten and Loudon (cita-
tions to these works are given in [14, 15, p. 180] and
[16, p. 401]), the corresponding quasiparticles were
called mixed-polarization polaritons. The dispersion
ν(kp) of electromagnetic waves near frequencies of
nondegenerate vibrations in biaxial crystals were also
studied in [17, 18]. It was assumed in the calculations
that the damping constants of dipole-active vibrations
Γj are negligibly small. The term “oblique polaritons”
is used in [19–22], and “anisotropic polaritons” is used
in [23].

The number of experimental works on observations
of extraordinarily polarized (extraordinary or anisotro-
pic) phonons and polaritons is small. As a rule, the
angular dependences of the phonon frequencies and the
intensity of Raman scattering by the phonons (for

k2 @ ) or the dependence of the form of the curve
ν(kp) in the polariton region on the orientation of the
sample are investigated. The works [20–22, 28] are
devoted to experiments on scattering in lithium niobate,
[19, 27] in lithium iodate, and [29] in potassium nio-
bate; the contributions of the deformation potential and
the macroscopic field are identified in [30], which is
devoted to scattering in a beryllium sulfide crystal, on
the basis of the measured angular dispersion of the RS
intensity.

The theoretical description of the intensity of scat-
tering by extraordinary polaritons is given in a general

εp

ν p
2
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form in, for example, [23–26]. However, the special
features of the spectra for polariton values of the wave
numbers near the resonance frequencies of the phonons
have still not been analyzed; they have been calculated

only in the limit k2 @ , i.e., for phonons. This is
because it is virtually impossible to obtain transparent
analytical expressions describing scattering for arbi-
trary orientations of the wave vectors of the interacting
waves relative to the symmetry elements of the crystal.

To determine the effect of the anisotropy of the
deformation potential and dipole moment of the vibra-
tions of the crystal lattice on the SP spectrum, in the
present work the method of computer simulation using
oscillator functions for giving the first-, second-, and
third-order susceptibilities, was chosen. The computa-
tional algorithms were obtained on the basis of the
expressions presented in [23].

In order for the anisotropy of the interaction of two
phonons with macroscopic electromagnetic field to be
manifested, it is sufficient that these vibrations be non-
degenerate and possess dipole moments oriented in dif-
ferent directions and that the electric field vector of the
macroscopic electromagnetic wave in the crystal pos-
sess a nonzero projection on these directions. Conse-
quently, we do not limit the generality of the problem,
but we decrease substantially the number of parameters
by studying scattering in a uniaxial crystal or in the
symmetry plane of a biaxial crystal. In general, a pair
of polaritons can then participate in the process; one of
the polaritons (the ordinary one) is polarized strictly
perpendicular to the wave vector and the symmetry
plane, and the vector of the other (extraordinary)
polariton lies in this plane. These polaritons correspond
to different phase velocities and therefore different
scattering angles. Consequently, two branches sepa-
rated by an angle can be distinguished in the SP spec-
trum, and scattering by mutually orthogonal polarized
polaritons can be studied independently [31].

In the next section the computational formulas and
the algorithm for calculating the spectrum P(ν, k) of
equilibrium fluctuations of the IR field, whose unit
polarization vector lies in the symmetry plane of a biax-
ial crystal, are presented.

Next, a series of model spectra P(ν, k) near the fre-
quencies of two nondegenerate vibrations with orthog-
onally oriented dipole moments, constructed for differ-
ent fixed directions of the wave vector of the polaritons
using specific values of the dynamical parameters, are
analyzed. In Section 3.1 the case where the anisotropy
of the dipole moment is greater than the anisotropy of
the deformation potential is studied. The spectra pre-
sented in Section 3.2 correspond to polaritons formed
by a pair of vibrations with the deformation potential
anisotropy predominating. The dynamical parameters
were chosen so that the analysis would be most easily
understood: it is assumed that the phonon damping
constants Γj are less than the LO–TO splitting.

ν p
2
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The spectrum of scattering by polaritons can be cal-
culated using the formulas presented in Section 2, if,
taking account of the real experimental conditions and
the optical properties of a crystal, for each point (ν, k)
the orientation k from the triangle (1) is found first. In
Section 4, as an example, the computed spectrum is
compared with the experimentally obtained spectrum
for scattering in an iodic acid crystal (for the frequency
range 800–900 cm–1, which contains the stretching
vibrations of the IO group). Scattering by polaritons in
this crystal was first observed in 1972 [43–47], but up
to now the numerous “anomalies” in the spectra have
not been interpreted. In our view these features can be
fully explained on the basis of the model of extraordi-
nary polaritons.

The method used to determine the dynamical
parameters of the vibrations of a crystal lattice on the
basis of the spectra of scattering by anisotropic polari-
tons is discussed in Section 5.

2. SPECTRA OF THE EQUILIBRIUM FIELD 
FLUCTUATIONS OF POLARITONS POLARIZED 

IN THE SYMMETRY PLANE OF A CRYSTAL

Let us consider scattering by extraordinary polari-
tons in an orthorhombic crystal with symmetry axes x1,
x2, and x3. Let the polariton wave be produced as a
result of the coupling of the macroscopic electromag-
netic wave only with two phonons, whose dipole
moments are mutually orthogonal and oriented along
the x1- and x2-axes. The wave vector kp and the unit
polarization vector ep of such a wave must lie in the x1x2
plane (Fig. 1). For definiteness, we assume that the
pump and signal wave vectors are also parallel to the
x1x2 plane, and the vector kl makes with the x1-axis an
angle φ, while the vector k makes the angle ρ. Let the
polarization unit vector of the pump el lie in the x1x2
plane, and let the unit vector es of the signal wave lie
along the x3-axis (Fig. 1). Then only two components
χσ need be taken into account:

(2)

(3)

These components must be complex functions, just as
the components of the permittivity

The intensity of scattering by polaritons in an aniso-
tropic crystal is proportional to the imaginary part of
the tensor Green’s function for Maxwell’s equations
[8, 23]. Using the general expression for the scattering

χ1 χ321es
3el

2 χ311es
3el

1+ χ321 φcos χ311 φ,sin+= =

χ2 χ312es
3el

1 χ322es
3el

2+ χ312 φsin χ322 φ.cos+= =

χσ χσ' iχσ'' ,+=

εσ εσ' εσ'' , σ+ 1 2.,= =
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960 LAPTINSKAYA, PENIN
form factor g, proposed in [23], we obtain the following
system of formulas for the conditions chosen:

(4)

Here A is a normalization constant, which is constant
for the entire spectrum,

(5)

contains only the real part of the quadratic susceptibil-
ity; the imaginary part of the quadratic susceptibility
appears in the terms denoted by g'':

(6)

Here the variable µ = |k |/νp—the frequency normalized
coordinate of the spectrum |k | = |kl – ks |—is used. The
contribution of the imaginary part of the cubic suscep-
tibility is represented by two terms:

(7)

(8)

The functions R, I, Pσ, and Qσ are given by the formulas

(9)

(10)

P ν k,( ) Ag, g
4π

R2 I2+
---------------- g' g''+( ) Θ1 Θ2.+ += =

g' χ1'( )2
Q1 χ2'( )2

Q2 2Iµ2χ1' χ2' ρ ρsincos–+=

g'' 2χ1' χ1''P1 2χ2' χ2''P2 χ1''( )2
Q1 χ2''( )2

Q2+ + +=

– 2µ2 ρ ρ R χ1''χ2' χ1' χ2
''+( ) Iχ1''χ2

''+[ ] .sincos

Θ1 γ3322es
3es

3el
2el

2 γ3321es
3es

3el
2el

1,+=

Θ2 γ3311es
3es

3el
1el

1 γ3321es
3es

3el
2el

1.+=

R µ2– ε1' ρcos
2 ε2' ρsin

2
+( ) ε1' ε2' ε1''ε2'',–+=

I µ2– ε1'' ρcos
2 ε2'' ρsin

2
+( ) ε1''ε2' ε1' ε2'',+ +=

x1

x2

x3

es

ep

el

ks

kl

k
ρ ξ

θ

φ

Fig. 1. Orientation of the polarization unit vectors of the
pump wave el, signal wave es, polariton ep, and the wave
vectors kl, ks, and k relative to the symmetry axes of a biax-
ial crystal.
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The system of formulas described above makes it
possible to calculate the dependence of the scattering
intensity on the frequency and wave number irrespec-
tive of the value of the wave number in the “phonon”
and in the “polariton” regions.

The system simplifies substantially for regions of
the spectrum far from the characteristic phonon fre-
quencies. Here χ' @ χ'', so that g'' ! g', and the effect
of the cubic susceptibility can also be neglected. In this
case it follows from Eqs. (4) and (5) that the scattering
intensity along the line

(11)

connecting the maxima of the scattering intensity
k-contours in the ν–k plane is proportional to the factor

(12)

As is well known, in a transparent anisotropic crystal
the cosine of the angle β between the electric field vec-
tor and the x1-axis is

(13)

If it is assumed that the absorption in the nonresonance
region is isotropic, i.e.,

this quantity can be removed from the parentheses in
Eq. (12) where the squared contraction of the quadratic
susceptibility tensor with the field of the polariton
wave, taking account of the transverse and longitudinal
components the field, will remain.

We note a very important feature of the SP spectra,
which is associated with the anisotropy. The last term in
the numerator in Eq. (12) can be positive or negative.
Let us assume that the components of the quadratic sus-
ceptibility tensor  and  have the same sign. Then
its term is positive if the vectors kp and kl lie in the same
or opposite quadrants of the x1x2 plane and negative if
kp and kl lie in adjacent quadrants (see Fig. 1). Thus, for
a definite orientation of the crystal the intensity can
vanish in some frequency range. We recall that the
spectra of ordinary polaritons also contain regions with
zero intensity (so-called points of linearization of the
crystal [1, 8]), but there they are due to the compensa-

P1 R µ2 ρcos
2 ε2'–( ) Iε2'',–=

Q1 Rε2''– I µ2 ρcos
2 ε2'–( ),–=

P2 R µ2 ρsin
2 ε1'–( ) Iε1'',–=

Q2 Rε1''– I µ2 ρcos
2 ε1'–( ).–=

µ2 εp' ν( )
ε1' ε2'

ε1' ρcos
2 ε2' ρsin

2
+

-------------------------------------------,= =

G'
g'

R2 I2+
----------------=

=  
χ1' ε1' ρsin( )2 χ2' ε1' ρcos( )2

2χ1' χ2' ε1' ε2' ρ ρsincos+ +

ε2'' ε1'( )
2 ρcos

2 ε1'' ε2'( )
2 ρsin

2
+

------------------------------------------------------------------------------------------------------------------------.

βcos
ε2' ρsin

ε1'( )2 ρcos
2 ε2'( )2 ρsin

2
+

-------------------------------------------------------------.=

ε1'' ε2'' ε'',= =

χ1' χ2'
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tion (interference) of the electron–phonon contribution
with the background value of the quadratic susceptibil-
ity. In this case the signal wave is extinguished (in some
frequency range) for another reason. Each component
χijk, acting on the pump field and the polariton field,
generates a field parallel to the x3-axis. The sign and
magnitude of this field (contraction) depend on the
magnitude of the components and on the difference of
the phases between the initial pump and polariton
fields, as determined by the relative orientation of their
wave vectors and the symmetry elements of the crystal.
The intensity at the maximum of the k-contour of the
spectrum of extraordinary polaritons is determined by
the interference of the contributions of the components,
and the regions of zero intensity can be termed points
of phase compensation of the scattering intensity.

When describing scattering near the resonance fre-
quencies of phonons the contribution of the imaginary
parts of the quadratic and cubic susceptibilities cannot
be neglected; the terms (6)–(8) make a large contribu-
tion to the SP intensity. In this case, qualitative conclu-
sions about any particular feature of the spectra, associ-
ated with the anisotropy of the crystal lattice, can be
drawn by constructing the series of spectra using spe-
cific dynamical parameters of the vibrations and ana-
lyzing the series.

Let the functions describing the dispersion of the
principal values of the permittivity and the components
of the quadratic and cubic susceptibilities be oscilla-
tory. We shall confine our attention to a small range
near the resonance frequencies ν1 and ν2 and we shall
take into account only one oscillator for each polariza-
tion, making the assumption that the contributions of
all vibrations in this section can be given by constant
background values ε0σ:

(14)

where

(15)

The contractions χσ (5) can also be given in an oscilla-
tor form, since the angle φ for each spectrum is fixed:

(16)

On the basis of the same considerations, the cubic sus-
ceptibility can be written as

(17)

3. EFFECT OF THE ANISOTROPY 
OF THE PARAMETERS OF DIPOLE-ACTIVE 

PHONONS ON THE FLUCTUATION SPECTRA
OF THE POLARITON FIELD

It is well known that the dispersion of extraordinary
polaritons ν(kp) depends on which parameter of the
vibrational spectrum changes more strongly when the
wave vector of the phonons rotates in a fixed plane—

εσ ν( ) ε0σ' ∆εσ ν( ) f σ iε0σ'' ,+ +=

f σ νσ
2 νσ

2 ν2– iνΓσ–( ) 1–
.=

χσ χ0σ ∆χσ f σ ν( ).+=

Θσ ∆Θσ f σ ν( ).=
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the resonance frequency or the longitudinal–transverse
splitting (dipole moment). It is said that in the first case
the anisotropy of the deformation potential predomi-
nates while in the second case the dipole-moment
anisotropy predominates [14–16]. The dynamical
parameters of three vibrations, from which pairs corre-
sponding to two types of anisotropy can be constructed,
will be used below to model the SP spectra (see table).
The resonance frequencies of the dipole-active
phonons ν1 and ν2 in columns 1 and 2 of the table are
almost identical; the contributions ∆ε1 and ∆ε2 are cho-
sen in a manner so that in the x1x2 plane the dipole-
moment anisotropy predominates:

(curves 1 and 2 in Fig. 2a). In order for the deformation
potential anisotropy to predominate the difference
between the frequencies ν1 and ν2 must be greater than

the LO–TO splitting  – ν1. This type of interaction

ν1
L ν1 ν2

L ν2– ν2 ν1–>,–

ν1
L
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Fig. 2. Dispersion curves of (a) the real part of the principal
values of the permittivity for Γi = 0 and (b) the real part of
the components of the quadratic susceptibility in relative
units for Γi ≠ 0, ν1 = 801, ν2 = 802, and ν3 = 837 cm–1 are

resonance frequencies of the vibration,  = 820,  =

844, and  = 841 cm–1 are longitudinal frequencies. These

curves are used for constructing the model spectra.
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L

ν3
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962 LAPTINSKAYA, PENIN
can be studied using as parameters with index 2 the
parameters from column 3 of the table. Then

ν2 >  > ν1

(curves 1 and 3 in Fig. 2a). It is assumed that the
phonon values for the imaginary part of the permittivity
are much smaller than for the real part:

 = 0.002.

The phonon damping constants Γσ were chosen to be
small, not greater than the LO–TO splitting.

The quantities ∆χσ are presented in relative units;
we shall assume that  = 1, and the background val-
ues of the imaginary part of the components of the qua-
dratic susceptibility are negligibly small.

After ∆εσ and ∆χσ are given, the contributions to the
cubic susceptibilities cannot be chosen arbitrarily [8, 32].
We obtain for the components of the tensors of orthor-
hombic crystals from [33, 34]

(18)

where

(19)

but

and the relation between the cubic susceptibility and
the RS tensor αij [15, 16] is determined by the relations

(20)

The background part of the cubic susceptibility can be
neglected, since it is much smaller than the background
part of the second-order susceptibility.

ν1
L

ε0σ''

χ0σ'

4π ∆χ1( )2 ∆ε1∆Θ1, 4π ∆χ2( )2 ∆ε2∆Θ2,==

∆χ1 ∆χ321es
3el

2 ∆χ311es
3el

1,+=

∆χ2 ∆χ312es
3el

1 ∆χ322es
3el

2,+=

∆χ311 ∆χ322 0,= =

∆Θ1 α ijes
3el

2( )2
, ∆Θ2 α ijes

3el
1( )2

.==

Dynamical parameters of vibrations, used to calculate the SP
spectra

Dynamical 
parameters of 
the vibrations

1 2 3

vibration 1

vibration 2, 
dipole-moment 
anisotropy pre-

dominates

vibration 2, defor-
mation potential 
anisotropy pre-

dominates

νσ, cm–1 801 802 837

, cm–1 820 844 841

∆ε0σ 0.184 0.478 0.044

3.84 4.45 4.58

∆χσ 0.4 0.4 0.05

Γσ, cm–1 3 3 1

νσ
L

ε0σ'
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3.1. Predominance of the Dipole-Moment Anisotropy

We shall consider first the situation where the
dipole-moment anisotropy predominates over the
deformation potential anisotropy for the x1x2 plane: let
the resonance frequencies of the vibrations forming the
extraordinary polaritons be almost identical (ν1 =
801 cm–1, ν2 = 802 cm–1) and the dipole splittings dif-

ferent (  = 820 cm–1,  = 844 cm–1). The corre-
sponding computed spectra of the fluctuations of the
polariton field in the frequency–wave number coordi-
nates P(ν, k) are presented in Figs. 3 and 4. For each
spectrum, the orientation of the wave vector of the
polaritons is fixed. It was assumed for the spectrum in
Fig. 4a that the pump wave vector makes the angle φ =
90° with the x1-axis; for Fig. 4b φ = 0°. For all other
spectra φ = 45°, i.e., the growth components of the qua-
dratic susceptibility contribute to the SP intensity [see
Eq. (5)]. Each spectrum is normalized to the maximum
intensity P0 in the distinguished field ν, k, according to
the formula

the values of P, from 0 to 0.6 are marked white, the val-
ues from 0.6 to 3 are divided into 24 levels, a darker
color corresponding to a higher level.

We shall now investigate how the permittivity
anisotropy influences the spectrum P(ν, k). For this, it
must be assumed that the quadratic susceptibility does
not depend on the polarization of the polaritons in the
range considered, i.e., χ1 = χ2. Let χ1 and χ2 also be
independent of frequency in the oscillator model; this is
possible if the phonon contributions to the quadratic
susceptibility ∆χσ = 0 [see Eq. (16)]. It follows from the
relations between the phonon contributions to the sus-
ceptibility of various orders (19) that in this case ∆Θσ = 0
and, corresponding to Eq. (20), the components of the
tensor αij must also be zero. Such vibrations are active
only in the dipole approximation, and they appear in the
spectra of transversely polarized polaritons in the form
of discontinuities of the dispersion branches.

Even though in this case the imaginary part of the
quadratic susceptibility is zero [this follows from
Eq. (16)], we cannot use the quite simple Eq. (12) to
analyze the intensity distribution in frequency–wave
number coordinates, since Eq. (11), describing the
angular dependence of the effective value of the real
part of the permittivity, is physically meaningless in the
region of strong absorption.

The spectra calculated using Eqs. (4)–(10) for vari-
ous fixed directions of the wave vector are presented in
Fig. 3.

If the wave vector of the polaritons is directed along
the x2-axis (Fig. 3a), then the computed spectrum has
two branches corresponding to the condition

µ2 = ε1(ν) (ν < 801 cm–1 and ν > 820 cm–1),

ν1
L ν2

L

P 999G/P0 1+( );log=
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Fig. 3. Computed spectra of the equilibrium fluctuations of the polariton field for various fixed values of the angle ρ between the
wave vector of the polaritons and the axis x1. Dipole moment anisotropy predominates. For all spectra χ1 = χ2 = 1; ρ = (a) 90°,
(b) 60°, (c) 30°, (d) 0°. 
Note: The spectrum is constructed using a matrix of 7000 points. The fine intensity nonuniformities on the upper-frequency scatter-
ing branch are explained by the features of the graphical editor; they disappear when this fragment is constructed using a denser grid.
and a line at the frequency  = 844 cm–1, parallel to
the axis of the wave vectors. Indeed, ρ = 90°, we have
from Eqs. (4)–(10)

G = 4π(G1 + G2), (21)

where

(22)

ν2
L

G1

ε1'' χ1'( )2 χ1''( )2
–[ ] 2 ε1' µ2–( )χ1' χ1''–

ε1' µ2–( )2 ε1''( )2
+

-----------------------------------------------------------------------------------,=
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(23)

The term G1 does not contain χ2. Hence, it corresponds
to the unit polarization vector of the polaritons that is
directed strictly along the x1-axis (i.e., strictly trans-
versely polarized polaritons), and it describes the
branch the maxima of whose k-contours lie on the line
µ2 = . The term G2 does not contain µ, and hence it
does not depend on the matching conditions. The max-

G2

ε2'' χ2'( )2 χ2''( )2
–[ ] 2 ε2'( )χ2' χ2''+

ε2'( )2 ε2''( )2
+

------------------------------------------------------------------------.=

ε1'
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Fig. 4. Computed spectra for various values of the components of the quadratic susceptibility. Dipole moment anisotropy predomi-
nates. For all spectra the angle ρ between the wave vector of the polaritons and the x1-axis is 60°. (a) χ1 = 0, χ2 = 1; (b) χ1 = 1,
χ2 = 0; (c) dispersion of χ1 and χ2 is given by an oscillator function with parameters taken from the table (curve 1 in Fig. 2b); (d) the
same function χ2 is used, but for the function χ1 the opposite sign of the contribution of the vibration ∆χ1 was chosen (see curves 1
and 2 in Fig. 2b).
ima of the frequency contours of this branch lie on the

straight line  = 844 cm–1, where (ν) = 0. The term
G2 does not contain χ1 and therefore describes the con-
tribution of only polaritons polarized along the x2-axis
to scattering (in terms of [35] this is a fictitious longitu-
dinal wave). The branches G1 and G2 cross: the longitu-
dinally and transversely polarized polaritons do not
interact. Far from the point of intersection with large
values of the wave number (µ2 @ ) the contribution
of transversely polarized polaritons to scattering tends

ν2
L ε2'

ε1'
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to zero. Thus the intensity at the maximum of scattering
by a longitudinal phonon is

(24)

In this case the cubic susceptibility makes no contri-
bution. Hence the interaction between a longitudinal
phonon (or a fictitious longitudinal wave) and a laser
wave is due only to the quadratic susceptibility. In the
Raman scattering spectrum the line corresponding to
the resonance frequency of the phonon will not appear

G2
L χ2'( )2 χ2''( )2

–

ε2''
------------------------------.=
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(Fig. 3a, ν = 801 cm–1, |k | > 2300 cm–1), while the line
at the longitudinal frequency will be intense.

If ρ = 0° (Fig. 3d), then the scattering form factor is
described by Eq. (21) where the two terms have the
form (22) and (23) with indices 1 and 2 interchanged.
Now G1 gives the wave number independent line with a

maxima of the frequency contours at ν =  = 820 cm–1—
it corresponds to a longitudinal oscillation polarized
along x1; the intensity of scattering by it for large values
of the wave number is determined completely by the
component χ1 and by absorption for a wave with corre-
sponding polarization. The term G2 describes the
branch the line of whose maxima corresponds to the
condition µ2 = , i.e., dispersion of transversely polar-
ized polaritons.

If the wave vector of the electromagnetic wave is not
directed along one of the crystallographic axes, then the
projections of the electric field on both axes are non-
zero and two oscillations with orthogonal dipole
moments contribute to the polariton wave. In this case
the computed spectrum contains three dispersion
branches, which cannot be separated according to
polarization (Figs. 3b, 3c); in what follows, we shall

call them the upper (ν > ), middle (  < ν < ), and
lower (ν < ν2) branches with respective frequency. In
the region of existence of the middle branch the princi-
pal values of the permittivity have different signs. The
end of this branch corresponding to large values of the
wave number (the phonon section of the polariton
branch) shifts to the frequency ν = 820 cm–1 as the
angle ρ decreases.

The curves εp(ν) connecting the maxima of the fre-
quency contours of the scattering lines in the ν– k plane
can be obtained from Eq. (11), if it is assumed that
Γ1, 2 = 0. They cannot lie in the interval 802–820 cm–1

for any values of ρ. The “phonon ends” of the polariton
branches [the poles of the functions εp(ν)] lie at the fre-
quencies for which

(25)

Thus, the dispersion of the extraordinarily polarized
polaritons εp(ν), obtained on the basis of our model,
depends on the direction of the wave vector just as
described in [14–16].

It was assumed above that both components of the
quadratic susceptibility at any frequency equal 1, and
the pump and polariton wave vectors lie in the same
quadrant of the coordinate plane. Nonetheless, a dip in
the scattering intensity is observed at the middle fre-
quencies of the dispersion branches (Figs. 3b, 3c).
Since the imaginary parts of the components of the per-
mittivity and the function εp(ν) do not have singulari-
ties here, there is only one explanation for the dips: the

ν1
L

ε2'

ν2
L ν1

L ν2
L

ε1 ε2 ρtan
2

.–=
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contributions due to χ1 and χ2 to the signal field sub-
tract out because  and  have different signs.

The dispersion of the scattering intensity in the
spectra presented in Fig. 3 is determined to a greater
extent by the change in the direction of the polarization
unit vector of the polaritons than by the dispersion of
the absorption. This direction cannot be determined
from Eq. (13), since in the resonance region the imagi-
nary part of the permittivity is two to three orders of
magnitude greater than the real part. However, numeri-
cal modeling makes it possible to identify the singular-
ities of the dispersion of the angle between ep and kp.

Let us assume that only one of the components of
quadratic susceptibility operates, that is χ2, but χ1 = 0
(such conditions can be created in crystals belonging to
certain symmetry classes: for example, let χ322 = χ311 = 0,
and the pump wave vector is directed along the x2-axis).
The spectrum in Fig. 4a is constructed for ρ = 60°. Let
us compare it with the spectrum in Fig. 3b: the dip in
the intensity at the central frequency of the branch near
|k | = 1300 cm–1 is absent, but the left end of this branch
(where k  0) is not seen in the scattering. For a dif-
ferent orientation of the wave vector of the polaritons,
the general form of the spectrum, of course, will
change, but it follows from model calculations that the

intensity vanishes near the frequency  = 820 cm–1

irrespective of the angle ρ. This can be explained only
by the fact that the field of the polariton waves does not
have at this frequency a component along the x2 axis
(and participation of the other component is ruled out
by the choice χ1 = 0). The spectrum calculated with ρ =
90° will contain only a line due to a longitudinal vibra-
tion at the frequency 844 cm–1. If, however, ρ = 0°, only
the branch due to transversely polarized polaritons,
which corresponds to the condition µ2 = (ν), will be
present.

One of the spectra, calculated assuming that χ1 ≠ 0
while χ2 = 0, is presented in Fig. 4b (ρ = 60°). The dip
in the intensity shifted from the middle to the upper
branch, to the frequency 844 cm–1. It exists here in the
spectra calculated for any ρ, if χ2 = 0. For ρ = 90° only
the branch due to transversely (along the x1-axis) polar-
ized polaritons remains, and for ρ = 0° only the line due
to longitudinal vibrations at frequency 820 cm–1

remains.
Thus, irrespective of the orientation of the wave vec-

tor the polarization unit vector of extraordinary polari-
tons with ν = 844 cm–1 is directed strictly along the
x1-axis, and for ν = 820 cm–1 it is directed strictly along
the x2-axis.

Let us now assume that the vibrations are also active
in Raman scattering, i.e., the resonance contributions to
the components of the cubic and quadratic susceptibil-
ities are different from zero (see table). In this case their
dispersion is described by Eqs. (15)–(17). Let us com-

ε1' ε2'

ν1
L

ε2'
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pare the spectrum in Fig. 4c with the spectrum in Fig. 3b.
They were constructed for the same orientation of the
wave vectors of the pump and the polaritons (ρ = 60°,
φ = 45°), so that the position of the dispersion branches
in the ν – k plane is the same. The intensity distribution
over the entire spectrum changed: in the lower-fre-
quency branch in Fig. 4c it is now much larger than on
the upper branch. This is due not only to the contribu-
tion of the cubic susceptibility but also the resonant
growth of the real and imaginary parts of the compo-
nents of the quadratic susceptibilities as ν  ν1, 2. We
chose ∆χ1, 2 equal in magnitude and the functions χ1
and χ2 are also almost identical, so that once again we
see the dip in the intensity in Fig. 4c on the middle
branch, and it remains essentially unshifted.

The intensity distribution changes substantially, if
the sign of ∆χ1 is changed without changing the other
parameters (Fig. 4d). In the first place, the point of
phase compensation of the contributions of the compo-
nents now lies on the upper branch and is absent on the
middle branch. This is because in the frequency interval
under study the components  and  have different
signs (curves 1 and 2 in Fig. 2b). As a result, their con-
tributions to scattering on the upper branch near ν =
860 cm–1 are compensated, while on the middle branch
they add, since here the main values of the permittivity
also have different signs (  < 0). The total intensity of
the lower-frequency branch is less than in Fig. 4c. This
is because the real and imaginary parts of the compo-
nents of the quadratic susceptibility have opposite signs
here. The intensity increases, as a result of the contribu-
tion of both components of the cubic susceptibility,
only for large values of the wave number, when ν 
ν1, 2 (we note that in the spectrum in Fig. 3b the inten-
sity decreases as frequency increases from 785 to
801 cm–1).

3.2. Predominance of the Deformation Potential 
Anisotropy

Let the dynamical properties of the second vibration
be given by the values in the third column of the table.
Then the anisotropy of the deformation potential will
predominate over the dipole-moment anisotropy: ν2 >

 > ν1, i.e., the LO–TO gap for the second phonon,
whose dipole moment is oriented along the x2 axis
(837–841 cm–1), will lie above the longitudinal fre-
quency of the first phonon (curves 1 and 3 in Fig. 2a).
The computed spectra of the fluctuations of the polari-
ton field for fixed orientations of the wave vector are
presented in Figs. 5 and 6. The pump wave vector
makes an angle of 90° with the x1-axis for the spectrum
in Fig. 6a and 0° for the spectrum in Fig. 6b; for all
other spectra it is equal to 45°. The normalization and
levels of intensity were chosen to be the same as in the
preceding section (for the spectra in Figs. 3 and 4).

χ1' χ2'

ε2'

ν1
L
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Just as in the preceding section, we shall investigate
the role of the permittivity anisotropy, making the
assumption that the components of the quadratic sus-
ceptibility are the same and the vibrations are inactive
in Raman scattering.

For ρ = 90° the scattering can be described by
Eqs. (22) and (23). Figure 5a contains a branch, the
position of the maxima of whose k-contours is deter-
mined by the condition µ2 =  (the branch of polari-
tons polarized strictly along the x1-axis). It intersects
the line with the maxima of the frequency contours of

the intensity at  = 841 cm–1 (the line of polaritons
polarized longitudinally along the x2-axis, transforming
for large values of the wave number into the line of lon-
gitudinal phonons).

When the wave vector of the polaritons rotates by a
small angle a local minimum forms at the intersection
of the branches (at k = 7500 cm–1, Fig. 5b) and the
upper- and middle-frequency branches stand out. As
the angle ρ decreases further (Figs. 5b, 5c) the “phonon
section” of the middle branch shifts downwards to the
frequency ν2 = 837 cm–1, and at the same time its cur-

vature changes slightly above the point  = 820 cm–1.
The “phonon section” of the lower branch moves

upwards to ; its curvature changes and approaches
the middle branch. Both branches join at the point ν =
820 cm–1, k = 11300 cm–1, when ρ = 0° (Fig. 5d). In
Fig. 5d we see a branch the position of whose maxima
in the k-contours corresponds to the condition µ2 =

(ν), and it intersects a line with a maximum at the
frequency 820 cm–1. Just as in the case where the dipole
moment predominates (see preceding section), for
large values of the wave number the intensity here is
determined by the ratio of the difference of the squared
real and imaginary parts of the component χ1 to the
imaginary part of the permittivity  (23); this is the
same line of longitudinal polaritons as in the spectrum
shown in Fig. 3d.

The “forbidden band” does not exist for the given
form of the anisotropy of the phonon parameters for
polaritons. If the line connecting the maxima of the fre-
quency contours of the intensity is drawn, then the
dependence of their form on the orientation of the wave
vector is similar to that described in [14–16]. For
phonons there is a “forbidden band”: the “phonon sec-
tions” of the bottom and middle branches correspond-
ing to large values of the wave number cannot lie in the
interval 820 < ν < 837 cm–1. The position of “phonon
sections” is determined from the condition (25).

In contrast to the situation where the dipole-moment
anisotropy predominates over the deformation-poten-
tial anisotropy, in the present case the main values of
the permittivity have different signs not along the entire
middle branch but only in the range 837 < ν < 841 cm–1

ε1'

ν2
L

ν1
L

ν1
L

ε2'

ε1''
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Fig. 5. Computed spectra for various fixed values of the angle ρ between the wave vector of the polaritons and the x1-axis. Defor-
mation potential anisotropy predominates. For all spectra χ1 = χ2 = 1; ρ = (a) 90°, (b) 70°, (c) 20°, (d) 0°. See also the remark for
Fig. 3.
(ε1 > 0, ε2 < 0) as well as on the lower branch at 801 <
ν < 820 cm–1, (ε1 < 0, ε2 > 0). Consequently, the sec-
tions with zero intensity are now present on the middle
branch (Fig. 5b, |k| = 10700 cm–1) and the bottom scat-
tering branch (Fig. 5c, |k| = 17500 cm–1): the contribu-
tions of the components of the quadratic susceptibility
with constant and identical values of χ1 and χ2 can be
compensated on both branches.

We shall now investigate the dispersion of the angle
between the polarization unit vector of the polaritons
and the wave vector according to the model SP spec-
trum just as was done in Section 3.1.
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If χ1 = 0 and χ2 = 1, then the start of the middle-fre-

quency branch (the region k  0 for ν   =
820 cm–1) is not seen in the scattering for any angles ρ
(an example of such a spectrum for ρ = 30° is given in
Fig. 6a). However, if χ1 = 1 and χ2 = 0, then for any ρ
the left end of the upper branch is not seen (the region

k  0 for ν   = 841 cm–1, an example is given

in Fig. 6b). Hence, at the point ν =  the electric-field
vector of the polariton wave is directed along the x1-axis,

and at the point ν =  it is directed along the x2-axis,
irrespective of the orientation of the wave vector.
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L
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L
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L
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Fig. 6. Computed spectra for various values of the components of the quadratic susceptibility. Deformation potential anisotropy pre-
dominates. For all spectra the angle between the wave vector of the polaritons and the x1-axis is 30°. (a) χ1 = 0, χ2 = 1; (b) χ1 = 1,
χ2 = 0; (c) dispersion of χ1 and χ2 is given by an oscillator function with parameters taken from the table (curves 1 and 3 in Fig. 2b);
(d) the same function χ2 is used, but for the function χ1 the opposite sign of the contribution of the vibration ∆χ1 was chosen (see
curves 2 and 3 in Fig. 2b). The presence of the fine nonuniformities is explained in the remark in Fig. 3.
The bottom and middle branches also contain two
special points: for ε2 at the frequency ν1 = 801 cm–1,
and for ε1 at the frequency ν2 = 837 cm–1. These points
are also distinguished in the spectra of fluctuations of
the polariton field. If the component of the field along
x1 (the spectrum in Fig. 6a) does not participate in the
scattering, then a local intensity minimum is observed
at the frequency 837 cm–1. It exists in all spectra calcu-
lated for the angles 15° < ρ < 75°. If the component
along x2 does not participate (Fig. 6b), then a similar
minimum occurs on the lower branch at ν = 801 cm–1.
JOURNAL OF EXPERIMENTAL
Comparing the spectra in Figs. 6a and 6b, it can be
inferred that the component of the field along the x1-axis
predominates at the frequency ν2 and the component
along x2 predominates at the frequency ν1.

Let us now consider the situation where the dipole-
active vibrations also contribute to the cubic and qua-
dratic susceptibilities: ∆χ1 = 0.4 and ∆χ2 = 0.05. In con-
trast to the case where the dipole-moment anisotropy
predominates over the deformation-potential anisot-
ropy, the frequencies of the maxima and minima of the
nonlinear susceptibilities at ρ ≠ 0, 90° do not coincide
 AND THEORETICAL PHYSICS      Vol. 91      No. 5      2000
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with the poles of the functions εp(ν) (see curves 1 and
3 in Fig. 2). Comparing the spectra calculated for dif-
ferent angles between the wave vectors of the polari-
tons and the x1-axis, shows a quite complicated depen-
dence of the general form of the intensity distribution
on ρ. But, we present only one spectrum for the given
parameters in Fig. 6c (ρ = 30°). We note that the inten-
sity of the bottom branch is now greater than that of the
middle and top branches (compare with Figs. 5b, 5c).
There are two reasons for this: near the resonance fre-
quency (ν1 = 801 cm–1) the contributions of χ1 and Θ1
are large, and on the “phonon (high-frequency) sec-
tion” of this branch the components of the quadratic
susceptibility are also large, and the principal values of
the permittivity have different signs (curves 1 and 3 in
Fig. 2). The point of phase compensation of the contri-
butions of the susceptibilities is located on the middle
branch, since in the interval 820 < ν < 837 cm–1 χ1 and
χ2 have different signs, while ε1 and ε2 have the same
signs, and in the interval 837 < ν < 841 cm–1 both com-
ponents of the quadratic susceptibility are negative,
while the principal values of the permittivity have dif-
ferent signs.

The spectrum shown in Fig. 6d was constructed
using the same value of ∆χ2 but the sign of ∆χ1 was
changed (the dispersion of χ1 is described now by curve 2,
and the dispersion of χ2 is described by curve 3 in Fig. 2b).
Here the middle branch is the most intense branch,
since for 820 < ν < 837 cm–1 both components of the
quadratic susceptibility are positive for positive ε1 and
ε2 (curves 1 and 3 in Fig. 2a), while for ν > 837 cm–1 ε2
and χ2 become negative simultaneously. The top branch
possesses an intensity minimum at k = 750 cm–1, which
can be explained by the compensation of the contribu-
tions of the components because χ1 is positive while χ2
is negative.

4. EXPERIMENT

The experimentally observed spectra of scattering
by polaritons are a two-dimensional dependence of the
intensity on the frequency and scattering angle θ. To
each value of θ there corresponds a wave number

(26)

(the range of variation of the magnitude of this spectra
is limited below by the value kmin = ||kl| – |ks||—the so-
called point of collinear matching). The angle ξ
between k and kl (Fig. 1) is also determined from the
triangle (1). Thus, the orientation of the wave coordi-
nate in the observed spectrum cannot be constant and
must be calculated for each point using the formula

(27)

In a small frequency range near the resonance fre-
quency of the phonon the range of variation of ρ can

k kl
2 ks

2 2klks θcos–+=

ρ φ ks θ/ ksin( ).arcsin–=
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reach 180°. Consequently, the form of the spectra of
scattering by extraordinary polaritons depends strongly
on the orientation of the sample. It is obvious that the
observed frequency–angle distribution of the intensity
can be compared with the computed distribution in
some region in the ν–k plane only when the condi-
tions (26) and (27) are taken into account for each point
in the region.

As an example, we shall examine below a fragment
of one of the SP spectra of the iodic acid crystal
α-HIO3. This crystal is widely used in nonlinear optics,
its linear and nonlinear optical properties have been
investigated in detail [39–42]. The Raman scattering
and infrared absorption spectra, as well as their depen-
dence on the orientation of the phonon wave vector, are
described in [36]. At the beginning of the 1970s the first
spectra of scattering by polaritons were obtained [43–45],
and together with these spectra new information on
higher order vibrations, bands of multiparticle states,
and Fermi and Fano resonances, was also obtained
[46–50]. The temperature dependence of the RS and SP
spectra were investigated [51]. Experiments with this
crystal demonstrated the great possibilities of SP spec-
troscopy in the investigation of lattice dynamics. How-
ever, they also revealed a large number of “anomalies”:
some sections of the spectrum, especially their sharp
dependence on the orientation of the sample, could not
be explained on the basis of the scattering model
adopted.

The crystal belongs to symmetry class 222, and
scattering by ordinarily polarized polaritons is impossi-
ble in it. At the same time a sample can be cut out and
oriented so that the intensity is determined only by one
or two components of the quadratic and cubic suscepti-
bilities. This gives the minimum set of parameters for
investigating the effect of crystal-lattice anisotropy on
the SP spectrum [31].

To obtain the SP spectra in the coordinates fre-
quency ν—scattering angle θ, we employed the stan-
dard experimental setup [1, 6] which made it possible
to implement parallel information extraction using
photographing system. This method makes it possible
to obtain a much more data in a definite period of time
compared with successive recording using photoelec-
tronic devices.

A series of SP spectra of iodic acid crystals were
obtained for various orientations of the samples. It was
found that the sections of the spectra which we previ-
ously called “anomalous” could be explained by taking
account of the tensor character of the linear and nonlin-
ear susceptibilities and that modeling of the observed
spectra was possible.

Figure 7a shows a fragment of one spectrum. The
scattering plane is also the xy plane of the crystal (the
designation of the axes corresponds to the ratio of the
refractive indices for the visible region nx < ny < nz), and
the angle φ between the pump wave vector and the
y-axis is 23°. The laser wave is polarized in the xy plane,
SICS      Vol. 91      No. 5      2000
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Fig. 7. (a) Fragment of an SP spectrum of an iodic acid crystal. The arrows mark the (1) upper-frequency and (2) middle-frequency
scattering branches; (b) dispersion of the angle ρ between the y-axis and the wave vector of the polaritons, as obtained from this
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and the signal wave is polarized along the c axis. Scat-
tering in this case is determined by two components of
the quadratic susceptibility: χzxy and χzyx, so that only
polaritons polarized in the xy plane can participate in
the process. In the frequency range displayed in Fig. 7a,
the polaritons are formed as a result of the coupling of
the macroscopic electromagnetic wave with the stretch-
ing vibrations of the IO bond. The resonance frequen-
cies of the Bx and By type phonons are almost identical,
but the dipole moments are different: νx = 801 cm–1,
νy = 802 cm–1,  = 820 cm–1, and  = 844 cm–1, i.e.,
dipole-moment anisotropy predominates in the xy
plane [36].

The arrows in Fig. 7a mark the upper-frequency (ν >
844 cm–1) and middle-frequency (820 < ν < 844 cm–1)
branches of the polariton dispersion. The spectrum is
sharply asymmetric: the top branch is intense for posi-
tive scattering angles θ > –0.3° (right side of the spec-
trum) and is almost not seen for scattering in the other
direction from the pump direction (θ < –0.3°, left side
of the spectrum). For the middle-frequency branch,
conversely, the backward scattering is much more
intense. The signs of the components of the quadratic
susceptibility in the interval 800–880 cm–1 are constant,
and the components vary monotonically (this follows
from measurements according to a series of SP spectra
for the given sample, which were obtained with differ-
ent orientations of the sample). What is the nonmono-
tonic nature and asymmetry of the scattering intensity
due to? It can be explained by the phase interference of
the contributions of the components χzxy and χzyx: the
products of these components make a contribution to

νx
L νy

L
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the scattering intensity, being multiplied by the direc-
tion cosines of the wave vectors and the components of
the real part of the permittivity.

Figure 7b shows the dispersion of the angle ρ
between the wave vector of the polaritons and the y-axis
for points connecting the maxima of the intensity of the
frequency contours of the experimental spectra. The
range of variation of the angle is almost 140°. The top
and middle branches approach one another at ρ = 180°,
and |k | = 6900 cm–1 (this is the minimum value of the
wave vector for this spectrum—Fig. 7c). The wave vec-
tors of the pump and the polaritons to the left of this
point lie in adjoining quadrants of the coordinate plane;
at the right of the point they lie in opposite quadrants.

In the region of existence of the top branch the prin-
cipal values of the permittivity are positive. Conse-
quently, if the pump and polariton wave vectors lie in
opposite quadrants, the signal fields arising with the
participation of the components χzxy and χzyx add (right
side of the spectrum), and if they are located in adjoin-
ing quadrants, then they subtract (left side of the spec-
trum). In the region of the middle branch the signs of
εx, y are different. Consequently, this branch, con-
versely, is intense to the left of the point where ρ = 180°
and to the right of the point the intensity decreases rap-
idly with increasing angle, passing through zero at ρ =
210° (this is the compensation point for the contribu-
tions of the components).

On the middle branch the magnitude of the wave
vector of the polaritons undergoes the opposite disper-
sion: here the decrease in εp as a result of a rotation of
k predominates over the normal dispersion growth of
the components (Fig. 7c). We note that the anomalous
AND THEORETICAL PHYSICS      Vol. 91      No. 5      2000
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Fig. 8. Fragment of the spectrum of an iodic acid crystal, calculated taking account of the dispersion of the angle ρ. The known
optical parameters were used. The orientation of the crystal was taken to be the same as for the spectrum in Fig. 7a.
dispersion in the spectrum of extraordinary polaritons
can also exist for the same signs of the principal values
of the permittivity. In the spectrum of ordinary polari-
tons, anomalous dispersion of εp(ν) is impossible.

The intensity distribution in the coordinates fre-
quency–scattering angle, obtained for the given experi-
mental conditions by means of calculations performed
using Eqs. (4)–(10), (26), and (27), is presented in Fig. 8.
The functions describing the dispersion of the quadratic
susceptibility and the permittivity were given on the
basis of measurements performed on a series of SP
spectra observed at various angles φ between the pump
wave vector and the y-axis. The principal values of the
permittivity are given by six oscillators (see [37]); a
rougher, single-pole approximation was used for the
components of the quadratic susceptibility. Conse-
quently, we attempted only to obtain qualitative agree-
ment between the computed and observed spectra.

5. DISCUSSION

The numerical simulation of the spectra of scatter-
ing by polaritons with extraordinary polarization
(anisotropic polaritons) was performed assuming that
the susceptibilities are given by single-oscillator func-
tions with small phonon damping constants. As a result,
a number of features due to the anisotropy of particular
dynamical parameters of the crystal lattice were identi-
fied (resonance frequencies, damping constants, phonon
contributions to the first, second, and third order optical
susceptibilities).

The effect of the anisotropy of the linear optical
properties was shown for the example of the spectra of
Raman-inactive vibrations assuming that the quadratic
susceptibility does not depend on direction or fre-
quency. This effect consists not only in the fact that the
variation of the dispersion ν(kp) changes when the
direction of the wave vector changes but also in the
presence of a longitudinal component of the polariton
polarization, which can be much greater than the trans-
verse component.

The manifestation of anisotropy of nonlinear optical
properties depends on the symmetry type of the crystal,
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which corresponds to a definite form of the quadratic
susceptibility tensor. The magnitude of its components
at the frequencies of the dipole-active phonons depends
in a definite manner on the components of the Raman
scattering tensor and the phonon damping constants.
Estimating the contributions of the individual compo-
nents of the nonlinear susceptibilities to the intensity of
scattering, it is necessary to take account of not only the
polarization of the interacting waves but also the rela-
tive orientation of their wave vectors and the symmetry
elements of the crystal and the signs of the principal
values of the permittivity.

The main differences between the scattering spectra
of extraordinary polaritons in the symmetry plane of
noncentrosymmetric crystals (not only orthorhombic,
but also uniaxial and monoclinic) from the spectra of
ordinary polaritons are as follows.

1. In the observed spectra the frequency dependence
of the scattering intensity is determined not only by the
dispersion of the components of the quadratic suscepti-
bility tensor but also by the frequency and scattering
angle dependence of the direction of the wave vector of
the polaritons (the angle ρ(νp, θ) at each point of the
spectrum for a specific experiment is determined by the
matching conditions (1)). This dependence is also man-
ifested when a single component operates. The relative
orientation of the pump and polariton vectors and the
symmetry elements of the crystal are also important.

2. If extraordinary polaritons are formed as a result
of the coupling of an electromagnetic wave with two
phonons with orthogonal dipole moments, then the
spectra possessed three dispersion branches. When the
dipole-moment anisotropy predominates over the
deformation potential anisotropy, then along the entire
middle-frequency branch one of the principal values of
the permittivity εj is negative, and a similar section is
also present on the lower-frequency branch. When the
deformation potential anisotropy predominates, one
value of εj changes sign on the middle-frequency
branch and the other changes sign on the lower-fre-
quency branch. The intensity of scattering by polaritons
can vanish on sections where the contraction of the
components of the quadratic susceptibility with polar-
SICS      Vol. 91      No. 5      2000
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ization unit vectors of the pump and the signal possess
the same sign but the signs of the principal values of the
permittivity are different.

3. Sections with anomalous dispersion which are
not associated with absorption could exist in the scat-
tering spectra for extraordinary polaritons. They are
explained by the fact that the decrease of the effective
value of the permittivity as a result of anisotropy as
function of angle ρ(ν, θ) predominates over the normal
dispersion growth.

We also note one important feature of the phonon
spectra (the region k @ ν). The intensity of scattering
by a longitudinal phonon (for large values of the wave

number) at the frequency  is determined primarily
by the ratio of the difference of the squared real and
imaginary parts of the quadratic susceptibility χj =

χikj  to the imaginary part εj. The contribution to
the cubic susceptibility to scattering at the frequency

 is all the smaller, the farther away it is from the res-
onance frequency. A line due to scattering by a longitu-
dinal phonon can also be observed when the line at the
resonance frequency is absent because the vibration is
Raman-inactive.

It is much more difficult to analyze the scattering by
extraordinary polaritons than it is to analyze the spectra
of transversely polarized polaritons. Nonetheless, the
dynamical parameters of the vibrations can also be
determined according to the spectra.

The measurements can be performed as follows.
First, an orientation such that the intensity depends on
the minimum number of components of the optical sus-
ceptibilities, for example, so that the scattering occurs
in the symmetry plane of the crystal, must be chosen for
observation. The effective values of the permittivity
εp(ν) are determined from the maxima of the angular
contours for several nonresonant sections of the spectra
in a wide range of frequencies, covering the frequen-
cies of the oscillations under study. Knowing these val-
ues for various orientations of the wave vector, the prin-
cipal values of εj(ν) can be determined. Next, taking
into account the maximum possible number of oscilla-
tors, using the same Raman scattering data, the contri-
butions of phonons to the components of the permittiv-
ity ∆εj can be determined (this calculation for iodic acid
is done in [37]).

To determine the phonon contributions to the qua-
dratic susceptibility it is first necessary to find the back-
ground (slowly varying with frequency) value of the
components. The effective value of the background
quadratic susceptibility can be calculated after the
intensity is measured at the maximum of the angular
scattering contours on nonresonant sections. If the
intensity is determined by a pair of components χikj,
then it is sufficient to perform measurements for a pair
of differently oriented polaritons at the same frequency.
The measurement error in this case is larger than for
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L

es
i el

k ep
j

ν j
L

JOURNAL OF EXPERIMENTAL 
transversely polarized polaritons. The accuracy can be
increased by observing the frequency shift accompany-
ing rotation of the sample, when the intensity vanishes
because of the compensation of the contributions of the
components—this makes it possible to calculate the
ratio of their background values. Next, it is necessary to
find the sections where the signs of the components χikj

are different, and the points where each component
vanishes because of compensation of the contribution
of the vibrations and the background value. Sometimes
the sample must be oriented so that only one compo-
nent operates. As a rule, this happens when the wave
vector of the pump or the polaritons is directed along
the symmetry axis of the crystal. The reference points
for the measurements can also be the longitudinal
vibrational frequencies, where the direction of the
polarization unit vector of the polaritons is constant and
does not depend on the direction of the wave vector.
Then the contributions of vibrations to the components
of the quadratic susceptibility can be estimated. They
will be determined more accurately, if several oscilla-
tors can be taken into account in the modeling of the
function χikj. In the cases where the parameters cannot
be chosen uniquely, the intensity of the Raman scatter-
ing spectra for different positions of the sample can be
measured on the same setup. It is also convenient to
make a preliminary estimate of the damping constants
Γj according to the Raman scattering spectra.

Given a set of preliminary approximate values, the
spectra (taking account of the matching condition) can
be calculated for scattering in different directions from
the pump direction and the dynamical parameters of the
oscillation under study can be refined, achieving agree-
ment between the observed and computed intensity dis-
tributions.

The accuracy of such measurements and calcula-
tions must be estimated separately for each specific
case, since it depends on many factors, for example, the
number of characteristic vibrations in the spectrum of
the crystal, anharmonicity, absorption and, first and
foremost, the correct measurement of the spectral
brightness of the scattering. However, irrespective of
whether or not we observe scattering by ordinary or by
anisotropic polaritons, this method is more accurate
than other optical methods for measuring the dynami-
cal parameters of vibrations.

6. CONCLUSION

The method described in this paper for measuring
the components of the permittivity and the nonlinear
susceptibility of crystals in the phonon frequency range
and determining the dynamical parameters of these
phonons is especially important for investigating the
effect of external actions on the crystal lattice. For
example, it is known that different components vary
differently when the temperature is varied, electric or
magnetic fields are applied, under pressure, and so on.
AND THEORETICAL PHYSICS      Vol. 91      No. 5      2000



LIGHT SCATTERING BY EXTRAORDINARILY POLARIZED POLARITONS 973
It is especially important to take account of the anisot-
ropy of the interaction of lattice vibrations with an elec-
tromagnetic field when studying the kinetics of the
structural transformations by the method of SP spec-
troscopy, since in the course of these processes not only
the magnitudes of the dynamical parameters of the
phonons but also the orientation of the symmetry ele-
ments of the crystal, the domain structure, and so on
change.

Specific parameters of vibrations were used to con-
struct a series of polariton spectra, but it should be
noted that the choice of the ratios between them is not
fundamental. For example, the spectra near phonons
with large damping also can be calculated using the
algorithm described above, and definite regularities in
their variation as a function of the orientation of the
wave vector can be found. Thus, the dynamical param-
eters were determined for the stretching vibration of the
OH bond of the iodic acid crystal and quite good agree-
ment was obtained between the observed and modeled
spectra [38].

The central problem now is to simulate the spectra
of scattering by extraordinary polaritons in the region
of the bands of multiparticle states, taking account of
the anisotropy of the density function of these states.
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Abstract—A hydrodynamic approximation is used to study the behavior of dipole modes of the transverse
oscillations of an ion beam in a storage ring with an electron cooling section. It is shown that in addition to the
finite interaction time of the beams, instability may be caused by a specific interaction effect between the ion
and electron beams in the magnetic field which leads to redistribution of energy between the various modes of
the ion beam oscillations. In this case, the condition that the determinant of the transfer matrix for the cooling
section does not exceed unity no longer guarantees the stability of the transverse coherent oscillations of the
ion beam and all the eigenvalues of the complete matrix of the ion motion including the storage ring must
be analyzed. Calculations of the stability of ion beam dipole oscillations are presented for the parameters
of CELSIUS. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

By introducing damping in the oscillations of parti-
cles about an equilibrium orbit, electron cooling can
easily control the beam parameters. By combining an
ion beam and a high-intensity electron beam having a
small momentum spread in a rectilinear storage sec-
tion, it is possible to achieve efficient energy exchange
between them. As it passes through the cooling section,
the electron beam is lost to the collector, taking some of
the ion beam thermal energy with it, which leads to an
effective reduction in the transverse dimension and the
momentum spread in the initial ion beam. At low ion
beam intensities cooling can be successfully used in
many devices [1]. However, on transition to higher
beam intensities effects are observed which destroy the
cooling. Dag Reistad observed this effect on CELSIUS
and called it electron heating [2]. 

One of the mechanisms responsible for this effect
may be coherent interaction of ion and electron beams
in the cooling section [3]. We note that for the ions this
system is open. Electrons can remove energy from the
system. The work done during the reduction and thin-
ning of the beams makes its own contribution to the
energy balance.

In the present study we shall analyze the behavior of
the transverse coherent oscillation modes of an ion
beam in a storage ring allowing for a cooling section.
Our study differs from previous studies on this topic
first, by allowing for the finite interaction tine between
the beams and second, by analyzing the influence of a
finite magnetic field in the cooling section on the
dynamics of the ion–electron interaction. Studies
devoted to this topic [4, 5] generally use the approxima-
tion of an infinite magnetic field B  ∞. This has the
result that the electrostatic interaction of the transverse
1063-7761/00/9105- $20.00 © 0975
oscillations of the electron and ion beams is not ana-
lyzed. In this case, the fast oscillations of the magne-
tized electron column have the frequency ω, of the
order of the electron cyclotron frequency ωce, which is
much higher than the characteristic frequencies of the
ion motion, and the slow oscillations have the fre-
quency ωpe which is much lower. For real parameters of
the problem this last condition is not always satisfied.

In order to analyze the situation, we shall use the
hydrodynamic approximation, assuming that the ion
and electron temperatures are zero and the beams
undergo simultaneous coherent transverse motion. We
shall also assume that the particle density in the beams
is radially uniform and the beam radii are the same. The
conducting wall is removed to infinity and image
charges have no influence on the beam dynamics. The
beams are matched for a time shorter than all the other
characteristic times of the problem. Outside the cooling
section the beam propagates in the storage ring with
azimuthal focusing symmetry.

We shall first use a simple model to analyze the
influence of the finite time of joint beam motion on the
interaction of the electron and ion beams. We shall then
study the behavior of the dipole oscillation mode of an
ion beam in a storage ring with a cooling section and
we shall calculate the instability growth rates for a spe-
cific device.

2. MODEL OF ION AND ELECTRON BEAM 
INTERACTION IN THE ABSENCE

OF A MAGNETIC FIELD

By way of a simple example to illustrate the effect,
we shall consider a model problem in which the ions
and electrons move jointly in drift space in the absence
2000 MAIK “Nauka/Interperiodica”
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of a magnetic field. The equations of motion in a frame
of reference moving with the beam may be written as

(1)

(2)

where ri, e are the position vectors of the ions and elec-
trons and E = Ee + Ei is a superposition of the space
charge fields of the electron and ion beams. 

In the limit, where the transverse dimension of the
beams is small compared with the perturbation wave-
length, the electric fields will be described by the
expressions

where

are the plasma frequencies of the ions and electrons in
a bounded plasma, Ri, e = (Xi, e, Yi, e) are the positions of
the beam centers, Ni, e are the ion and electron densities,
r is the position vector, Zi is the ion charge, Ai is the ion
mass number, and γ is the relativistic factor. Expanding

in terms of the position of the beam center Ri, e and the
position of a particle in it , after integrating the
equations of motion of the particles over the beam cross
section S we obtain a system describing the dynamics
of the centers:

(3)

(4)

where

are the frequencies of the beam oscillations in a space
charge field of opposite sign. It can be seen from
Eqs. (3) and (4) that in this case, the vertical and radial
motion of the particles is independent and the four-
dimensional problem is reduced to a two-dimensional
one. 
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A consistent solution of the linear equations (3) and
(4) under the initial conditions for the electrons 

for each component of the vector Ri may be written in
the form

(5)

which links the position and velocity of the ion beam
center “after” the cooling section with their values
“before” this section using a linear transformation [6].
The elements of the matrix Acool are determined by inte-
grating the complete system of equations of motion (3)
and (4) with unit initial conditions for the ions and zero
initial conditions for the electrons. For the Y component
of the beam motion all the equations are written simi-
larly. 

The solutions of the system (3) and (4) correspond
to stable beam motion if all the moduli of the eigenval-
ues |λk | of the matrix of motion (5) are less than or equal
to unity. Otherwise, two physically different situations
are possible. In the first we find |λk | > 1 but the determi-
nant of the matrix

remains equal to (or less than) unity. This implies that
the ion energy is conserved (or decreases) but is redis-
tributed between different modes of the ion beam oscil-
lations. The possibility of energy being redistributed
between the modes by means of elements positioned
outside the cooling section and of beam stability being
achieved depends on the specific physical conditions
and requires a separate analysis. In the second situation
when the determinant of the matrix is also greater than
unity, it is impossible to achieve beam stability without
introducing additional dissipative forces. 

The results of an investigation of the matrix (5) may
be summarized as follows. First, the moduli of the
eigenvalues of the matrix for the cooling section are the
same, i.e., |λ1 | = |λ2 | and consequently

Second, for an arbitrary beam interaction time τ =
Lcool/γV0 we have

(6)
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where  =  + . A graph of this function is plot-
ted in Fig. 1. The first term in this expression may be
interpreted as the transfer of energy from the ions to the
electrons in their interaction process and its value is
strictly less than unity. The second term allows for the
binding energy which occurs when the beams are
matched. For a short interaction time (ω0τ ! 1) when
the relative displacement of the beams during their joint
motion is small, the difference between the energy of
the electrostatic interaction between the beams at the
beginning and end of the cooling section can be
neglected. The ions transfer some of their energy of
transverse motion to the electrons and the amplitude of
the ion beam oscillations decreases. However, for inter-

action times τ ~  a situation arises where the dis-
continuity of the ion coupling with the electrons leads
to an increase in the total energy of the system some of
which is transferred to the transverse motion of the ion
beam, and the amplitude of the oscillations increases.

We write the energy of the complete electron + ion
system:

The first term in this expression is the energy of the ion
motion, the second is that of the electrons, and the third
allows for the work required to create the ion + electron
system. Since the electron velocity at the beginning of
the cooling section is zero, an increase in the electron
energy will subsequently lead to a reduction in the
coherent fluctuations of the ions, i.e., to “cooling.” The
existence of the third term changes the situation and
growth of the perturbations becomes possible.

3. DIPOLE OSCILLATIONS OF AN ION BEAM
IN A STORAGE RING

WITH AN ELECTRON COOLING SECTION

3.1. Cooling Section

We shall now consider a situation more consistent
with real conditions. The electron and ion beams prop-
agate in the direction of the external magnetic field. The
characteristic relationship between the parameters of
the problem is:

where

are the cyclotron frequencies of the electrons and ions,
respectively. The equations for the transverse motion of

ω0
2 ωie

2 ωei
2

ωie
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W niWi neWe Wie+ +
nimiṘi
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the ion beam center in a reference frame moving with
the beam are written in the following form:

(7)

(8)

In this case the vertical and radial beam motion ceases
to be independent. However, introducing the new vari-
ables

we can transform the system describing the combined
behavior of the electron and ion beams to the simpler
form:

(9)

(10)

In the calculations of Acool we can use the fact that the
determinants of the matrices 

(where A and B are arbitrary matrices with real coeffi-
cients) are related by detR = |detJ |2. 

Since the electron motion is strongly magnetized,
Eq. (10) describing the motion of the electron beam
center may be reformulated using the drift approxima-
tion
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dt2
---------- ωci
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dt
-------- ωie
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dt2
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dt
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2 Yi+ + ωie
2 Ye.=

zi Xi iYi, ze+ Xe iYe,+= =
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dt2
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dt2
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det Acool – 1

Fig. 1. Determinant of the cooling section matrix for joint
motion of the beams without a magnetic field (ωieτ = 1).
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as follows:

(11)

where Λ = /ωce is the drift rotation frequency of the
electrons in the ion space charge field.

Solving the system (9) and (11) in the limit of short
interaction times

we obtain the following expressions for the eigenval-
ues:

(12)

It can be seen that for this case the eigenvalues of the
various modes differ. In addition to a damped mode,
there is a mode which grows for an arbitrarily short inter-
action time. The electron beam acts as an “intermediary”
transferring energy from one mode to another. An
increase in the space-charge electric field of each com-
ponent (Ei, e ∝  Ni, e ∝  ωei, ie) leads to an increase in the
instability growth rate. An increase in the magnetic
field reduces this value. 

The determinant of the matrix in this model is given by

(13)

An interesting characteristic of this expression is the
lack of dependence on the electron beam density. The
electron beam density changes the magnitude of the
difference det(Acool) from unity but not the sign. 

This expression supplements the results obtained in
[7] assuming that the magnetic field has no influence on
the ion dynamics in the cooling section (i.e., ωci  0).
Allowance for this influence narrows the region in
which the determinant of the matrix of the cooling sec-
tion does not exceed unity, by imposing the constraint:

(assuming that the beam interaction time is short). In
addition, as will be shown in Section 3.2, the condition

is necessary but not sufficient for stable ion motion.
The redistribution of energy between the ion modes

can also be demonstrated by reducing the system (9) and
(10) to the form of coupled oscillations. We make the
change of variables

(14)
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where

are the partial oscillation frequencies of the ion and
electron beams, respectively, ai and bi are the oscilla-
tion amplitudes of the ion modes, and ae and be are the
oscillation amplitudes of the electron modes. Without
limiting the generality we shall take the partial frequen-
cies such that

The system (9) and (10) can then be transformed as
follows:

(16)

(17)

(18)

The second electron mode corresponds to fast electron
motion at a frequency of the order of ωce so that within
the limits of our analysis its influence on the dynamics
of the slow ion modes can be neglected.

We shall consider the case when each ion mode ai

and bi interacts independently with the electron mode be:

(19)

(20)

The equations for interaction of the modes bi and be are
written similarly. The solution of this system of equa-
tions with the initial conditions

gives the following result:
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ai ai
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Fig. 2. Determinant of the cooling section matrix. Diagram (a) gives the value of det Acool – 1 calculated using the complete systems
of Eqs. (9) and (10) and diagram (b) gives that calculated using the formulas for a short ion–electron beam interaction time (13).
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(22)

where

and 

for the interaction of modes ai and be

for the interaction of modes bi and be .
It can be seen that the ion beam oscillation mode bi

loses energy and |bi/ | ≤ 1 for any ion beam interac-
tion time. When the ion mode ai interacts with the elec-
tron beam, its energy increases with time and only at
times when 

does the energy of the mode ai reach its initial value
which it had before the onset of interaction.

In order to determine to what extent these effects
may be significant in the physics of real systems, we
shall present calculations made using the complete sys-
tem of Eqs. (9) and (10) for the parameters correspond-
ing to those of CELSIUS: length of cooling section
Lcool = 250 cm, ion velocity V0 = 9 × 109 cm/s, and mag-
netic field B = 500 G. Figures 2 and 3 show contours of

bi
2 bi

0 2
=

× 1
∆2

Ω2i Ω1e–( )2 ∆2
–

-----------------------------------------
ω+ ω––( )t

2
------------------------- 

 sin
2

– ,

∆2 4ωie
2 ωei

2

Ω2e Ω2i Ω1i–( )
--------------------------------------,=

ω+ ω––( )2 Ω2i Ω1e–( )2 ∆2–=

ω+ ω––( )2 Ω1i Ω1e–( )2 ∆2–=

bi
0

ω+ ω––( )t/2( )sin 0,=
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the matrix determinant detAcool – 1 and |λmax| – 1 in the
plane of the parameters ωieτ and ωeiτ for the matrix of
the cooling section corresponding to the drift of ions in
the cooling section. It can be seen that for the determi-
nant the value ωeiτ ≈ 4 divides the plane of the parame-
ters into two regions. For ωeiτ < 4 the matrix determi-
nant is greater than unity, which corresponds to insta-
bility whereas for ωeiτ > 4 the determinant is much
smaller than unity. In the region ωeiτ > 40 we observe a
rapid exchange of zones of stability and instability. The
maximum eigenvalue of the matrix of the cooling sec-
tion behaves completely differently for the same
parameters. Its value is always much greater than unity
and increases monotonically with increasing parameter
ωieωeiτ2 ∝  (nine)1/2. For comparison we also plot con-
tours obtained using Eq. (12) for short interaction
times. It can be seen that for low values of ωie and ωei

these fairly accurately describe the qualitative pattern
of instability behavior as a function of the parameters
of the cooling section. We also note that the difference
from unity for the eigenvalues of the matrix is substan-
tially greater than the difference from unity for the
determinant.

3.2. Storage Ring with Cooling Section

In order to determine the complete dynamics of the
beam in the storage ring, we need to supplement the
matrix of the coolant section with the matrix describing
the ion beam motion in the storage ring. For dipole
oscillations this will be the well-known Twiss matrix:

(23)
2πν( )cos β 2πν( )/V0sin

V0 2πν( )/βsin– 2πν( )cos 
 
 

,
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Fig. 3. Modulus of the maximum eigenvalue of the cooling section matrix |λmax | – 1. Diagram (a) was calculated using the complete
system of Eqs. (9) and (10) and diagram (b) was calculated using the formulas for a short ion–electron beam interaction time (13).
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where β is the betatron function of the storage ring, ν is
the betatron tune. 

The following sequence of operations was per-
formed to correctly match the cooling section with the
storage ring. Before beginning to propagate in the cool-
ing section, the ion beam was displaced longitudinally
over the length –Lcool/2 by using a matrix inverse to the
drift section matrix. After passing through a cooling
section of length Lcool , this operation was repeated
before using the Twiss matrix. The matrix of the com-
plete storage ring was thereby converted into a matrix
corresponding to the storage ring without a cooling sec-
tion. 

For the dipole mode and a short beam interaction
time, the eigenvalues of the resultant matrix can be cal-
culated analytically in the simple form:

(24)

where allowance is made for an inverse transition to the
laboratory frame using the transformation

(25)

Expressions (24) can also be rewritten in the fol-
lowing form, having collated the definitions for Λ, ωie ,
and τ:

(26)

λ1
2 1

1
2
--- β

γV0
---------ωie

2 Λτ2,+=

λ2
2 1

1
2
--- β

γV0
---------ωie

2 Λτ2,–=

1 0

0 1/γ 
 
 

Acool
1 0

0 γ 
 
 

.

λ1/2
2 1 2π2neni

γ5
--------- βreriLcool

3( ) c4

V0
4

------
V0

ωceLcool
------------------- 

  ,±=
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where

are the classical radii of the electron and ion, respec-
tively.

It can be seen from (24) that allowance for the storage
ring section slightly changes the relationship between the
maximum and minimum eigenvalues of the cooling sec-
tion matrix but as before, keeps one of these greater
than unity, which is slightly unusual for accelerator
physics. Generally, if the parameters of the elements
forming the storage ring channel do not go beyond cer-
tain limits, it is possible to obtain stable motion of the
various particles characterized by the condition |λk | ≡ 1
for all k. For the dynamics of the collective dipole oscil-
lation mode this is not the case and although the ampli-
fication of the focusing (reduction in the β function)
and an increase in the energy of the cooled ions leads to
a reduction in the growth rate of this instability, it does
not suppress it completely. 

In order to explain this effect we propose the follow-
ing approximate physical model. Although these beam
oscillations are electrostatic and curlE = 0, when the vec-
tor fields are averaged over fast oscillations (ω ~ ωce) a
nonpotential vortex component may appear [8]. This
can occur if the field E is noncollinear to the ion dis-
placement induced by it, which is readily achieved in
the presence of a longitudinal magnetic field. In the
presence of nonzero curl E, the ion motion in the cool-
ing section is equivalent to the motion in a structure
described by the following equation of motion:

(27)

re
e2

mec
2

-----------, ri

zie( )2

Aimpc2
-----------------= =

d2zi

dt2
--------- iωci

dzi

dt
------- ω2 i f c

2+( )zi+ + 0.=
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Fig. 4. Maximum eigenvalue |λmax | – 1 of the complete matrix of the storage ring (ν = 1.45, βx = βy = 900 cm, V0 = 9 × 109 cm/s).
The ion motion in the cooling section was calculated (a) using the complete system of Eqs. (9) and (10) and (b) using the formulas
for a short ion–electron beam interaction time (24).
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The term i zi is associated with the additional trans-
verse nonpotential field

It can be shown that the influence of this section on the
ion motion in the storage ring leads to the appearance
of eigenvalues having a modulus which differs from
unity and no choice of accelerator parameters ν and β
can make this equal to unity. The value of the matrix
determinant is then identically equal to unity. In the
limit of a short drift time in this section, the eigenvalues
of the complete matrix of this structure are 

(28)

However, unlike the situation obtained when the
ions drift in the cooling section, in this model the effect
is first order with respect to the time of interaction with
the structure. 

In order to study the beam dynamics in a storage
ring with a moderately long interaction time we shall
again use the CELSIUS parameters. We first use (24) to
estimate the possible magnitude of the effect. For the
working parameters, electron beam current Ie ≈ 0.5 A,
proton beam current Ii ≈ 10 mA, beam radii Di = De ≈
2 cm, we have the following values:

The corresponding moduli of the eigenvalues are λ1/2 ≈
1 ± 7 × 10–4 which is fairly close to the Landau damping
decrement. For this device its value is of the order of
10–3 which implies mixing of the fluctuations in phase
space caused by a spread of the betatron oscillation fre-

f c
2

F mp f c
2 y– x,( ).=

λ1
2 1

1
2
--- β

γV0
--------- f c

2τ , λ2
2+ 1

1
2
--- β

γV0
--------- f c

2τ .–= =

ωieτ 0.3, weiτ 1.6.≈≈
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quencies over 103 ion revolutions in the storage ring.
The similarity between the instability growth rate and
the Landau decrement implies that as the charge density in
the ion or electron beams increases further, the ensuing
fluctuations of the ion beam dipole oscillations will be
amplified as it passes through the cooling section. 

The results of numerical calculations for arbitrary
values of ωieτ and ωeiτ using the system of Eqs. (9) and
(10) are plotted in Fig. 4. As for the case of a short inter-
action time, allowance for the storage ring does not sig-
nificantly alter the maximum eigenvalue of the matrix
describing the ion dynamics. We note that at low ion
densities additional constraints are imposed on the
electron current density (the threshold value ωieτ ≈
2 × 10–1) because the frequency shift of the betatron
oscillations in the space charge field is too large.

It can be seen from these estimates and numerical
calculations for an arbitrary interaction time that the
effect associated with energy redistribution between
modes may be much larger than the effect caused by the
determinant of the cooling section matrix differing
from unity. Thus, we propose the following mechanism
for the buildup of instability. If the instability growth
rate associated with one of the eigenvalues exceeding
unity is smaller than the decrement associated with the
frequency spread of the betatron oscillations (Landau
damping), the particle energy will be redistributed
between various collective modes within a single revo-
lution. On average over many revolutions the change in
the ion energy will be determined by the relationship
between all the eigenvalues of the cooling section
matrix, i.e., its determinant. If the instability growth
rate begins to exceed the Landau decrement, over a sin-
gle revolution a fluctuation which has not had time to
mix in phase space, acquires an additional energy
SICS      Vol. 91      No. 5      2000



982 PARKHOMCHUK, REVA 
increment as it passes through the cooling section, and
within a number of revolutions 

the beam is lost.

4. CONCLUSIONS
The results of the analysis presented above show

that interaction of an electron beam with ions over a
finite time may lead to instability of the coherent ion
oscillations in a storage ring. In the hydrodynamic
approximation two physically different effects are pos-
sible. 

The first effect is associated with the determinant of
the cooling section matrix differing from unity, i.e.,
with a change in the total energy of the ion beam. We
note that the finite time of interaction between the ions
and electrons leads to instability. The entry of ions into
the electron interaction section followed by the disrup-
tion of this interaction are sources of energy transfer to
the ion transverse motion.

The second effect is associated with the redistribu-
tion of energy between the various ion beam oscillation
modes in the cooling section. In this case the magnetic
field has an important influence. Even a relatively low
value B ≈ 100 G leads to the buildup of instability
which is characterized by an increase in the amplitude
of one oscillation mode as a result of a decrease in the
other. In the limit of a short ion beam drift time in the
cooling section, allowance for the storage ring does not
alter the situation, keeping one oscillation mode grow-
ing and the other decaying. Thus, the condition that the
determinant of the transfer matrix does not exceed

N λ k 1–( ) 1–∼
JOURNAL OF EXPERIMENTAL 
unity no longer guarantees the stability of the trans-
verse coherent ion oscillations in systems with electron
cooling and it is necessary to analyze all the eigenval-
ues of the complete matrix of the ion motion including
the storage ring.
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Abstract—A theory of two excess electrons in alkali halide melts is developed using variational estimates of
path integrals. As a result of the strong screening, the average field generated by the ions has little influence on
the electrons and the problem reduces to a study of a bipolaron type of free energy functional. The behavior of
this functional is determined as a function of the thermodynamic and structural characteristics of the melt. Vari-
ational bipolaron calculations are made using the approximation of uncorrelated electrons and using Kohn–
Sham theory to allow for electron–electron correlations. The results of the calculations using Kohn–Sham the-
ory agree with the data obtained by quantum molecular dynamics and show that a correct choice of trial wave
function which allows explicitly for the correlation of two electrons is required to obtain a correct estimate of
bipolaron stability. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

An investigation of the bipolaron, two excess elec-
trons forming a bound state or quasi-molecule, is one of
the most interesting and intriguing problems in the
physics of condensed media. The formation of an F'
center (two electrons bound at an anionic vacancy) in
alkali halide crystals has been fairly well studied exper-
imentally [1]. Various experimental data are available
on the possible formation of bipolarons in polar liquids
[2]. It has been shown that bipolarons may play an
important role in the mechanism for superconductivity
[3]. Various experimental observations have been made
to support the existence of bipolarons in molecular
organic polymers [4]. 

Recently, the bipolaron problem has started to be
extensively studied by numerical calculations based on
quantum molecular dynamics methods [5–10]. Calcu-
lations of bipolaron states using the Car–Parinello
method stimulated numerous studies on quantum
molecular dynamics. According to these studies, bipo-
laron states are stable in water [8] and in metal–ammo-
nia solutions [9, 10] at metal concentrations of approx-
imately 1% and, as the metal concentration increases
further, the bipolarons form clusters. However, the
complexity and cumbersome nature of the calculations
has prevented sufficiently detailed full-scale investiga-
tions of bipolarons from being made. 

From the theoretical point of view, the behavior of
bipolarons in a liquid has been less well studied than
the behavior of a solvated electron or polaron. Various
studies [11–15] have been made using the continuum
model and these have generally all been devoted to
investigating the criterion for the existence of bipo-
larons. Studies have also been reported where bipo-
laron states were investigated using a semicontinuous
approximation (see [16] and references therein) for var-
1063-7761/00/9105- $20.00 © 20983
ious liquids (water, ammonia) and polar matrices.
According to these studies, in all these media bipolaron
states are stable and energetically more favorable than
two single-electron states. At present, no experimental
data are available to confirm these calculations.

In the present study we apply a method [17, 18]
developed recently to investigate the behavior of self-
trapped electron states in alkali halide melts to the bipo-
laron problem. On the basis of this method we use vari-
ational estimates of the partition function to obtain the
free energy functional of a bipolaron and then deter-
mine the bipolaron behavior as a function of the struc-
tural and thermodynamic parameters of the melt. This
functional is investigated by variational methods using
the simplest multiplicative approximation for a bipo-
laron wave function in the uncorrelated electron
approximation. Allowance for electron–electron corre-
lations will be made using local density functional the-
ory (LDA) [19, 20].

As a clear example we describe calculations of bipo-
laron states in a KCl melt. This system was chosen
because the relationships for the free-energy functional
are simplest for alkali halide melts as a result of the
strong screening. In addition numerical data obtained
using the Car–Parinello method are available for a
bipolaron in KCl [5–7].

2. FORMULATION OF THE PROBLEM

We shall consider two excess electrons situated in a
melt of an alkali halide salt such as KCl. This system is
a liquid electrolyte. In the statistical approach the prob-
lem reduces to calculations of a grand partition func-
tion which contains the configuration integral over the
000 MAIK “Nauka/Interperiodica”
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ion coordinates R{N} =  and path integrals
over the coordinates of both electrons r1(τ) and r2(τ):

(1)

Here we used a system of units in which " = 1, m = 1,
e = 1 and also the following notation: V is the volume
of the system, β = (kBT)–1 is the reciprocal temperature,
µ and M are the chemical potential and mass of the
ions, respectively. In order to simplify the calculations
we shall assume that the chemical potentials (µ+, µ–)
and the ion masses (M+, M–) are equal, i.e., µ+ = µ– = µ
and M+ = M– = M, and the ion charge is ±1, i.e., the melt
is considered to be a symmetric 1–1 electrolyte. 

In Eq. (1), the interaction energy W(r1, r2, R{N})
contains the ion interaction potential Uii(R{N}) and the
action for the bipolaron S2: 

W(r1, r2, R{N}) = Uii(R{N}) + β–1S2. (2)

In turn the action for the bipolaron S2 contains the

kinetic terms (∝ ), the Coulomb repulsion of two
electrons (∝| r1 – r2|–1), and also the interaction with the
liquid particles:

(3)

where u±(r – Ri±) are the corresponding electron–
anion and electron–cation interaction potentials, and
Ri+ (or Ri–) is the coordinate of the ith anion or cation.
The choice of signs in Eqs. (1)–(3) depends on the
polarity of the ion charge.

We can postulate that the interaction potential of the
liquid particles Uii includes the Coulomb interaction
uq ∝  R–1 and the short-range component Us(R):

(4)

The short-range component Us(R) can then be approxi-
mated by the hard-sphere potential:

Us(R ≥ σ) = 0, Us(R ≤ σ) = 0, (5)

where σ is the hard-sphere diameter for the ions. To
simplify the calculations, we shall assume that the
diameters of the hard spheres are the same for all the
ions. The electron–ion interaction is more complex and

Ri–
N /2{ } Ri+

N /2{ }

Ξ 2πM( ) 3/2– β3/2V βµ( )exp[ ] N

N!
--------------------------------------------------------------------

N 0≥

∞
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× D r1 τ( )[ ] D r2 τ( )[ ] R N{ }d∫∫∫
× βW r1 r2 R N{ }, ,( )–[ ] .exp

ṙ2

S2 τ
ṙ1

2 τ( ) ṙ2
2 τ( )+

2
----------------------------

1
r1 τ( ) r2 τ( )–
-------------------------------+ ∫d

0
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∫=

+ u± r1 τ( ) Ri±–( ) u± r2 τ( ) Ri±–( )+{ }
i

N

∑ ,

Uii R N{ }( ) Us R N{ }( )
1
2
--- uq Ri± R j±–( ).±

i j≠
∑+=
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is not generally local at short distances. However, to
simplify the estimates we shall use the pseudopotential
approximation which may include the two types of
interaction noted above. We shall separate the potentials
for the electron–liquid particle interaction as in (4). The
potential of the electron–negative ion interaction ue–(r)
includes the Coulomb repulsion uq(r) and the hard-
sphere potential ues(r < d–) which allows for the effect
of excluded volume 

ue–(r) = uq(r) + ues(r), (6)

whereas the electron–cation potential ue+(r) is a purely
Coulomb potential at large distances and is constant at
distances shorter than some characteristic value d+:

(7)

This last effect simulates the influence of the polariza-
tion of the cation nucleus and is frequently used in
numerical calculations [5–7]. In general, the parameter
d+ can also be determined from quantum-chemical cal-
culations, for example, using the pseudopotential
method [21].

In order to find the grand partition function Ξ, we
need to calculate the complex multidimensional inte-
grals in (1) and then sum the series over N. Various sta-
tistical methods can be used for this purpose. Note that
the ions create a complex potential field for the excess
electrons and in principle, the KCl melt can be consid-
ered to be an ensemble of classical charged particles of
a particular size in some external field. Two excess
electrons form the source of this external field. The
long- and short-range components of this external field
are determined by the following functionals:

(8)

(9)

Thus, the problem can be reduced to estimating the
grand partition function for a liquid electrolyte in a cer-
tain potential field which includes long- and short-
range components. Having obtained this estimate, we
can make self-consistent calculations of the electron
density distribution for the excess electrons which
induce this field. 

ue+ r d+≥( ) uq r( ),–=

ue+ r d+<( ) ue+ d+( ).=

Ue2 R( )
1

2β
------ τ uq R r1 τ( )–( )[d

0

β

∫=

– ue+ R r1 τ( )–( ) uq R r2 τ( )–( ) ue+ R r2 τ( )–( ) ] .–+

Us2 R( )
1
β
---=

× ues R r1 τ( )–( ) ues R r2 τ( )–( )+[ ] τ .d

0

β

∫
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3. EFFECTIVE FUNCTIONAL
FOR A BIPOLARON

The grand partition function for classical ions in an
external field can be estimated by transforming this
sum into a continuous field integral. The method of
transforming the partition function into a field integral
is used in plasma theory [22] and to investigate electro-
lytes [23, 24]. As a result of this transformation (see
Appendix 1) we obtain a relationship for the grand par-
tition function as a continuous field integral Ψ: 

(10)

Here Ω({Ψ, r1(τ), r2(τ)}) is the thermodynamic poten-
tial for a bipolaron:

(11)

The symbol * denotes convolution integration:

y * x ≡ x(R)y(R – r)dr.

The last term in expression (11) reflects the changes in
the ion distribution caused by the excess electrons:

(12)

where f2(r1, r2) is the generalized Mayer function for a
bipolaron:

f2 = (exp[βΨ] + exp[–βΨ – βUs2] –2). (13)

Here ρ is the average density of the melt, and hs(r) is the
complete correlation function for hard spheres. In gen-
eral, Eq. (12) also contains third- and higher-order irre-
ducible correlation functions of hard spheres (see
Appendix 1) although these correlation functions can
be neglected if this system is not close to the phase tran-
sition point. 

An advantage of Eq. (11) is that terms associated
with short- and long-range interactions are explicitly
isolated in it. We shall show below that in some cases,
this separation can be used to obtain analytic estimates
for the bipolaron free energy.

The field integral can be estimated using the saddle-
point method which determines the average field

(R):

∂Ω(Ψ = )/∂Ψ = 0.

In general, the average field  can be related to the
binary bipolaron–cation and bipolaron–anion correla-
tion functions gb±(r) using the Poisson–Boltzmann
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2hs * f 2,+=

1
2
---

Ψ̃

Ψ̃

Ψ̃
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equation. The derivation of these relationships is given
in Appendix 1. Note that in our system there is a small
parameter (reκ)–1 where re is the average radius of the
electron density distribution and κ = (4πρβ)1/2 is the
reciprocal Debye length. For a bipolaron re . 4–5 Å
and under normal conditions in a KCl melt when T .
1000 K and ρ . 3 × 10–2 Å–3 we obtain the estimate
(κre)–1 . 0.06. Consequently, in the zeroth approxima-
tion we can expand the thermodynamic functional (11)

in terms of the small parameter Ω({ , r1(τ), r2(τ)}) =
Ω0 + Ω1 + … and confine ourselves to the zeroth term
of this series Ω0({r1, r2}) which depends on the elec-
tron coordinates:

(14)

where Ωs is the component associated with the short-
range repulsion:

(15)

fs2(R) = exp[–βUs2(R)] – 1. (16)

The derivation of Eqs. (14) and (15) and the estimate
Ω1({r1(τ), r2(τ)}) are given in Appendix 2.

In order to determine the bipolaron free energy, we
need to calculate the continuous integral of the func-
tional Ω0({r1, r2}) which only depends on the electron
coordinates. Estimates of this functional may be
obtained in terms of the two-particle Green’s function
which is related to the bipolaron wave functions:

(17)

where Ei and φi are the total energies and wave func-
tions for the ith bipolaron state. In general, these func-
tions also depend on the spin coordinate. However, we
shall confine ourselves to the case when the electron
spins are opposed and we shall subsequently only take
into account the dependence of these wave functions on
the spatial coordinates. Optimizing the effective func-
tional yields the nonlinear Schrödinger equation for
φi(r1, r2). If the bipolaron ground state is not degener-
ate, i.e., β|E0 – Ei| @ 1, we can only consider the contri-
bution associated with this ground state. The estimate
of the continuous integral is then reduced to averaging
over the electron density distribution of the ground

state (r1, r2). As a result of this procedure, the poten-
tials which depend on the electron path are replaced in
the continuous integral by the average potentials, i.e.,

Ψ̃

Ω0 T1 T2
1

r1 τ( ) r2 τ( )–
------------------------------- Ωs+ + +=

–
1

8π
------ ∇ Ue2 R r1 r2, ,( )[ ]2 R,d∫

Ωs ρβ 1– f s2
ρ
2
--- f s2 * hs * f s2+( ),–=

G r1 r1 r2 r2, , ,( )

=  φi r1 r2,( )φi r1 r2,( ) βEi–[ ] ,exp∑

φ0
2

SICS      Vol. 91      No. 5      2000



986 CHUEV
Ue2  〈Ue2〉 , Us2  〈Us2〉 . Finally, we obtain the
effective thermodynamic potential for the bipolaron:

(18)

where we used the following notation:

(19)

(20)

(21)

Here n(r) and n2(r1, r2) are the single- and two-particle
electron density distribution functions and these are
related to the bipolaron wave function by:

(22)

The contribution Ωs associated with short-range repul-
sion leads to the formation of a region of reduced anion
density similar to that accompanying the formation of
an F center in alkali halide crystals. The simplest approx-
imation of this contribution may be written as [18]

(23)

Assuming that the average scale of variation of the
short-range component of the electron–cation potential
is much smaller than the characteristic dimension of the
electron density distribution, i.e., d ! re , we can sim-
plify expression (18) and, converting from the thermo-
dynamic potential to the free energy, we obtain the final
expression for the bipolaron free energy:

(24)

where  = [uq(r) + ue+(r)]dr/2 is the square of the

characteristic dimension of the cation nucleus. Thus,
the effective functional of the total bipolaron energy
depends on the single- and two-particle electron den-

Ωeff T1 T2

n2 r1 r2,( ) r1 r2dd
r1 r2–

--------------------------------------∫∫+ +=

+ Ue2〈 〉  * 
uq

1–

2
------- * Ue2〈 〉 Ωs Us2〈 〉( ),+

Ti
1
2
---– r1 r2dd φ0 r1 r2,( )∇ i

2φ0 r1 r2,( ),∫=

Ue2 R( )〈 〉 1
2
---=

× uq R ri–( ) ue+ R ri–( )–[ ]n ri( ) ri,d∫
i

∑

Us2 R( )〈 〉 ues R ri–( )n ri( ) ri.d∫
i

∑=

n ri( ) rφ0
2 r ri,( ),d∫=

n2 r1 r2,( ) φ0
2 r1 r2,( ).=

Ωs
4πρ
3β

----------re
3 n( ).≈

Feff n1 n2,( ) T1 T2

n2 r1 r2,( ) r1 r2dd
r1 r2–

--------------------------------------∫∫+ +≈

–
1
2
---

n ri( )n r j( ) r j ridd
ri r j–

------------------------------------- a+
2 n2 r( ) rd∫ 4πρ

3β
----------re

3,+ +∫∫
ij

∑

a+
2 ∫
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sity distributions and only on two parameters associ-

ated with the structural characteristic of the cation ( )
and the thermodynamic state of the medium (ρβ–1). 

The expression (24) obtained by us for the total
bipolaron energy in a KCl melt is similar to the known
expressions. For instance, the first three terms on the
right-hand side of (24) correspond to the functional for
a bipolaron obtained by Pekar for the static permittivity
e0 = ∞ (strong screening limit κ–1  0) and the high-
frequency permittivity e∞ = 1 (classical medium). The
fourth term on the right-hand side of (24) is associated
with the short-range repulsion and was analyzed using
continuous bipolaron models in [13, 14]. Contributions
similar to the last term in (24) are associated with the
formation of a cavity and were obtained in semicontin-
uous theories of bipolarons in a polar liquid [16].

4. VARIATIONAL ESTIMATES
OF THE BIPOLARON FUNCTIONAL

Further study of the bipolaron involves minimizing
the effective functional (24) or solving the two-particle
Schrödinger equation. The prospects for proceeding
successfully along this path are determined by the
choice of approximation for the two-particle wave
function φ0(r1, r2). 

We shall begin our study with the simplest approxi-
mation, based on assuming that the two electrons are
uncorrelated when the bipolaron wave function is
approximated as a product of the single-particle wave
functions:

φ0(r1, r2) = φ0(αr1)φ0(αr2), (25)

where α ∝   is the variational parameter. The trial
wave functions can be taken to be Gaussian or Cou-
lomb wave functions:

φG(r) ∝  exp[–α2r2],

φC(r) ∝ (1 + αr)exp[–αr]

and the parameter α can then be sought by varying the
free-energy functional. As a result of minimizing
Feff(α) we obtain the nonlinear algebraic equation for α:

(26)

where C0, C2, and Cs are constants determined by the
choice of trial wave function. In this particular approx-
imation the average electron density is defined as n(r) =
2φ2(αr). Ultimately we obtain the relationship for the
total bipolaron energy:

(27)

a+
2

re
1–

α C0 C2a+
2α2– Csρ/βα4,+=

F n r( )[ ] T Ueff〈 〉
φ0

2 r( )φ0
2 r'( ) rd r'd

r r'–
--------------------------------------,∫∫+ +≈
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where we used the notation 〈Ueff〉  for the average poten-
tial energy of the electron–ion interaction:

(28)

whereas 

is the bipolaron kinetic energy.

Another method of allowing for many-electron effects
is to use the local density functional theory [19, 20] for
two spin-paired electrons. In this approach the multi-
particle electron problem is reduced to calculation of
the single-particle wave functions of the electrons and
the electron–electron interaction is approximated by a
functional which depends on the average electron den-
sity n(r) = 2φ2(r). Following this theory we write the
functional of the total system energy in the form [20]

(29)

where 

is the kinetic energy of the ith electron. The last term in
(29) is the exchange correlation energy Exc which
includes the exchange (ex) and correlation (ec) compo-
nents per particle in a homogeneous electron gas:

(30)

Following [25], we shall approximate these by

(31)

where rs(r) is the average radius of the electron density

distribution: (r) = 4πn(r)/3. 

Performing transformations for the partition func-
tion and taking into account all the reasoning put for-
ward above, we finally obtain an expression for the

Ueff〈 〉 1
2
---–

n r( )n r'( ) rd( ) r'd
r r'–

--------------------------------------–∫∫=

+ a+
2 n2 r( ) rd∫ 4πρ

3β
----------re

3 n( ),+

T rφ r( )∇ 2φ r( )d∫–=

W n r( ) R N{ },( ) Uii R N{ }( )=

+ ue± r Ri±–( )n r( ) rd We n r( )[ ] ,+∫
i

N

∑
We n r( )[ ] T1 T2+=

+
1
2
--- rd r'

n r( )n r'( )
r r'–

--------------------d Exc n r( )[ ] ,+∫∫

Ti
1
2
--- rφi r( )∇ 2φi r( )d∫–=

Exc n r( )[ ] rn r( ) ex r( ) ec r( )+[ ] .d∫=

ex r( )
Cp

rs r( )
----------,–=

ec r( )
γp

1 β1rs r( )1/2 β2rs r( )+ +
------------------------------------------------------,=

rs
3–
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functional of the total bipolaron energy in terms of the
average electron density:

(32)

where 〈Ueff(n(r))〉  is the average potential energy of the
electron–ion interaction defined by Eq. (28). The varia-
tion of this functional in terms of φ0(r) gives the equa-
tions for the single-particle wave functions. We can
then proceed as above, specifically taking φ0(αr) in a cer-
tain form and seeking the parameter α by varying (32).

5. RESULTS

A qualitative analysis of (24) shows that the bipo-
laron functional includes various factors. Coulomb inter-
action associated with the polaron effect and the Hartree
potential mainly determines the bipolaron energy. The

contribution proportional to 4πρ (n)/β is associated with
the formation of a cavity; it leads to a reduction in the aver-
age bipolaron radius and helps to increase the average
bipolaron binding energy ∆E = E – 2E1 (where E1 is the
total energy of a single electron solvated in KCl) as a
result of entropy effects. The contribution proportional

to n2(r)dr leads to opposite effects. Competition

between these two contributions determines the stabil-
ity conditions for the bipolaron. Allowance for elec-
tron–electron correlations using the local density func-
tional method also leads to an increase in the entropy
factor as a result of effects associated with the forma-
tion of an exchange correlation hole [20] and ultimately
helps to increase ∆E. 

We performed variational calculations for these
types of trial functions and determined the bipolaron
energy characteristics and its average radius in a KCl
melt. For the calculations we used the values T = 1000 K,
ρ = 2.4 × 10–2 Å–3 and a+ = 3.5 au. Two types of calcu-
lations were made: using the uncorrelated electron
approximation when the bipolaron wave function was
approximated as a product of single-particle wave func-
tions (25) and using the local density functional approxi-
mation (29). The results of these calculations are given in
Table 1. For comparison this table also gives similar vari-
ational estimates for a single electron. 

It can be seen that the variational calculations show
good agreement with the numerical estimates and
broadly give a correct estimate of the bipolaron energy
and structural characteristics. The characteristic size of
a bipolaron in a KCl melt is around 3.5 Å and is slightly
greater than the characteristic size of a single electron
solvated in KCl. The formation of a bipolaron state
from spin-paired electrons is similar to the formation of
an F center. The total bipolaron energy is approxi-
mately –(2.2–2.7) eV. However, choosing a multiplica-
tive trial wave function (25) has the result that in the

FLDA n( ) T Ueff〈 〉+=

+
1
2
--- n r( )n r'( ) r r'dd

r r'–
---------------------------------∫∫ Exc n r( )[ ] ,+

re
3

a+
2 ∫
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Energy and structural characteristics of a bipolaron and polaron in a KCl melt

Polaron Bipolaron

uncorrelated electron approximation local density 
approximation

Trial function φG(r) φC(r) φG(r) φC(r) φG(r)

re, Å 3.03 3.02 3.61 3.62 3.55

T, eV 0.093 1.035 1.308 1.443 1.358

– 〈Ueff〉 , eV 1.961 1.979 7.003 7.198 7.126

Eee , eV 3.886 4.098 3.958

Ex , eV 7.918

–Exc, eV 4.585

–F, eV 1.032 0.094 1.810 1.657 2.434
uncorrelated electron approximation the bipolaron
energy is lower than the energy of two unbound
polarons, i.e., the bipolaron state is unstable and decays
into two isolated polarons. This sharply contradicts the
data obtained by quantum molecular dynamics [6]
according to which the singlet bipolaron state is stable.
However, variational calculations using the local den-
sity method based on Kohn–Sham theory give a result
similar to the variational calculations [6]. Compared
with the uncorrelated electron approximation the char-
acteristic radius and the total bipolaron energy are
reduced. The bipolaron binding energy ∆E is around
0.4 eV which also agrees with the data obtained by the
quantum molecular dynamics method. 

We can therefore conclude that in order to obtain a
correct estimate of the bipolaron stability and its range
of existence, we need to make a correct choice of trial
wave function which explicitly allows for the correlation
of the two electrons. These numerical calculations indi-
cate the characteristic feature already noted on several
occasions [16, 9] that bipolaron calculations require accu-
rate allowance for electron–electron interactions and that
the stability of a bipolaron is extremely sensitive to these
interactions.
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APPENDIX 1

Method of Collective Variables 

The electric charge density ρq(R) at an arbitrary
point R may be expressed as a sum of the densities of
the positive and negative charges ρ±(R): 

ρ± R( ) δ R Ri±–( ), ρq R( )±
i

N /2

∑ ρ+ R( ) ρ– R( ).+= =
JOURNAL OF EXPERIMENTAL 
Essentially ρq(R) is a collective variable. Its Fourier
transform has the meaning of the mode of a fluctuation
wave having the wave vector k for the charge. The
long-range interaction between the particles can be
expressed in terms of these modes. Finally the partition
function may be expressed in the functional form

where J(Rρq) is the Jacobian of the transition from R{N}

variables to ρq collective variables. Note that in this last
relationship the long-range contribution to W which is
proportional to Ue2 * ρq + ρq * uq * ρq /2 depends qua-
dratically on ρq . This can be expressed in terms of
Gaussian functional integrals if an inverse operator
exists for the potential uq(R). For Coulomb interaction

such an inverse operator exists (R) = 1/4∆(r) so that
the exponential function can be Fourier transformed
from the quadratic form [26]:

Finally we transform the grand partition function Ξ into
the continuous field integral Ψ:

Ξ D r1 τ( )[ ] D r2 τ( )[ ] D ρq[ ] J Rρq( )∫∫∫∝

× W r ρq,( )–[ ] ,exp

W β T1 T2 Ue2 * ρq+ +[=

+ ρq * 
uq

2
----- * ρq Us ρq( ) Us2 * ρ– ] ,+ +

uq
1–

1
2
---ρq * uq * ρqexp

=  D Ψ[ ] 1
2
---Ψ * uq

1–
 * Ψ–





1–

exp∫



× D Ψ[ ] 1
2
---Ψ * uq

1–
 * Ψ– ρq * Ψ+ .exp∫

Ξ Ξ0 D∫ Ψ[ ] βΩ–[ ] ,exp=
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We introduce the n-particle correlation functions

(r1, …, rn) for hard spheres:

Using the expression for the Mayer function in this last
relationship, we perform a Mayer transformation for
the configurational component I(Ψ, Ues, Us):

We shall assume that  ≡ ρ is the average density of

the melt, and  = ρ2 + ρ2hs(r) is the second-order cor-
relation function for hard spheres which is related to
hs(r), the total correlation function for hard spheres
which is determined by a standard method [27]. Then,
neglecting all the irreducible correlation functions of
the third order and above, we obtain 

Transforming this relation into exponential form, we
finally obtain Eq. (11). 

In general, the potentials Uii(r) and u(r) are sepa-
rated into short- and long-range components by differ-
ent methods. For a representation in terms of collective
variables it is sufficient for the potential uq(r)) at short
distances to be a fairly smooth function (belonging to
the L2 class of functions).

Ω T1 T2 Ψ Uer–( )+ +=

 * 
uq

1–

2
------- * Ψ Uer–( )I Ψ Uer Us, ,( ),

I Ψ Ues Us, ,( ) R N{ } zN

N!
------d

N 0≥

∞

∑=

× β Ψ Ri±( )± Us R N{ }( )– Ues Ri–( )–([ ] .exp
i

N

∏

ρs
n( )

ρs
n( ) r1 … r2, ,( ) Ξ 1– zN

N n–( )!
--------------------

N

∞

∑=

× βUS–[ ]exp R N n–{ } .d∫

I Ψ Ues Us, ,( ) 1 f 2 * ρs
1( )+=

+
1
2!
----- f 2 * ρs

2( )
 * f 2…

1
n!
----- f 2 * ρs

n( )
 * … f 2.+

ρs
1( )

ρs
2( )

I Ψ Ues Us, ,( ) 1
f 2 * ρ( )k

k!
----------------------

k 1=

∞

∑+=

+
1
k!
---- 1

2!
----- f 2 * ρ

2hs * f 2 
 

k

.
k 2=

∞

∑
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APPENDIX 2

Screened Potentials

In order to relate the field  and the electron-
induced external field, we shall analyze the bipolaron–
anion and bipolaron–cation correlation functions gb±(r)
which describe the probability of finding the correspond-
ing ion at the distance r from the localization center:

Using this function, we obtain the Poisson–Boltzmann

equation for the average field :

This equation may be written in the integral form:

The field  is sometimes called the screened potential
[27] since it determines the electrostatic field in the sys-
tem and is associated with charge screening of the
external field. If we confine ourselves to quadratic
terms with respect to the field Ψ in the thermodynamic
potential (11) (random phase approximation), the con-
tinuous field integral will be Gaussian:

Ω = Ω0 – A * Ψ + Ψ * B * Ψ,

where Ω0 is determined by formula (14) and the opera-
tors A and B are defined as follows:

The continuous field integral has a Gaussian form and
by calculating it for the Fourier transform of the field

(k), we obtain (k) = A(k)/B(k). Finally we obtain a
definitive expression for the thermodynamic potential:

Ω = Ω0 – A *  = Ω0 + Ω1.

It can be shown that Ω1 ∝  α2κ–2. In general, we can also
obtain corrections which include the terms ∝Ψ 3, and
so on.
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Abstract—An investigation is made of the absorption spectra of triplet metastable helium molecules in the

a3  state in liquid 4He and 3He at various pressures and in dense 3He gas. An analysis of the spectrum corre-

sponding to the a3   c3  transition confirms the conclusion that there is a microscopic bubble surround-
ing the molecule in liquid helium. A simple approximation is proposed for the wave function of the valence
electron of the molecule and the parameters of the bubble are determined for various experimental conditions.
The coefficient of molecular recombination in liquid 3He and 4He was determined experimentally at various
pressures and in dense cold 3He gas. The results show good agreement with the theory of mutual recombination
limited by molecular diffusion under conditions of strong van der Waals interaction. It is shown that in the con-
densed phases of helium the polarization of the molecules under the action of the magnetic field does not lead
to suppression of their mutual recombination, and this is confirmed experimentally. © 2000 MAIK
“Nauka/Interperiodica”.
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1. INTRODUCTION

Numerous experimental and theoretical studies
have been devoted to the neutral triplet excitations of
helium. The lowest triplet atomic (23S) and molecular

(a3 ) states are metastable having intrinsic lifetimes
of approximately 8000 s [1, 2] and 15 s [3, 4] and ener-
gies of 19.82 and 17.86 eV, respectively. When helium
is excited by fast particles, an appreciable fraction of
the energy is dissipated in the formation of triplet atoms
and molecules. As the helium density increases, the
ratio of the steady-state molecular concentration to the
concentration of excited atoms increases [5] which can
be attributed to an increase in the probability of three-
body collisions when a triplet atom may capture an
unexcited atom and form a dimer [6]. In dense helium
gas (n ≥ 3 × 1020 cm–3) [5] and in liquid helium [7], trip-

let molecules in the a3  state are the predominant
type of neutral excitations. 

The main mechanism for the loss of triplet molecules
in condensed helium [5, 7, 8] and triplet atoms in the low-
density gas [9] is their mutual recombination which takes
place via a Penning ionization scheme

(1)

The characteristic lifetime of the molecules decreases
as their concentration increases τ = 1/(αn) (α is the

Σu
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Σu
+

He2* a
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+( ) 2He 11S( ) He2
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mutual recombination coefficient) and is a few milli-
seconds at concentrations of approximately 1013 cm–3.

In condensed helium the excimer decay process is
limited by diffusion:

α = 4πDRI , (2)

where RI is the characteristic distance between the mol-
ecules for which the ionization takes place with a prob-
ability of the order of unity. This distance is determined
from the condition that the characteristic diffusion time

/D and the characteristic time of reaction (1) are
equal. 

Detailed calculations of the interaction between a
triplet helium atom and a surrounding liquid were made
in [10]. The calculated shift of the absorption line for
the 23S  23P transition relative to the position at low
pressure showed good agreement with the experiment [7].
Similar calculations have not yet been made for triplet
molecules.

In the present study we give the molecular absorp-

tion spectra corresponding to the a3   c3  and

a3   b3Πg transitions measured in liquid 3He and
4He at various pressures and in dense cold 3He gas. The
integrated intensities of the spectra were used to deter-

mine the ratio of the oscillator strengths of the a3  

c3  and a3   b3Πg transitions whose value
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shows good agreement with the calculated value.
Quantitative data were obtained on the van der Waals
coefficients of the following pair interactions: 

We calculated the interaction between a molecule
and surrounding helium which leads to a shift and
broadening of the absorption lines, using a model of the
“bubble” formed by the molecule in liquid helium and
we determined the bubble radius under various condi-
tions. The molecular spectra in the gas were described
using the standard theory of line broadening in the
binary approximation [10, 11].

The theory of diffusion-limited mutual recombina-
tion was extended to the case of strong van der Waals
interaction. Good agreement was observed between the
calculated data and the experimental data obtained in the
present study and in [7]. The coefficient of recombina-

He2
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+( ) He2
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+( ),–
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+( ) He 11S( ),–

He2* c3Σg
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Fig. 1. Absorption spectra of molecules corresponding to the

a3   b3Πg transition: (a) in liquid 4He (s—1.0 atm,

2.1 K; d—23.9 atm, 1.9 K); (b) in liquid 3He (s—1.0 atm,
1.8 K; d—14.4 atm, 1.8 K). The spectra are normalized to
the absorption at the maximum.
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+
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tion calculated using this model does not depend on the
magnetic field and this is confirmed experimentally.

2. ABSORPTION SPECTRA
AND THEIR INTERPRETATION

The method of generating molecules and measuring
the absorption is similar to that described in [12]. The
molecules are formed as a result of the recombination
of positive ions and electrons injected into the helium
from tungsten tips. Light from a halogen lamp passing
through a mechanical chopper and a monochromator is
fed along a quartz light guide into an experimental cell
from which it is extracted to a photodetector using
another light guide. The photodetector signal is ampli-
fied and demodulated using a lock-in amplifier. The
excimer concentration was modulated at low frequency
by periodically varying the current through the cell and
the signal from the lock-in amplifier was demodulated
using a computer. 

Typical absorption spectra observed in liquid 3He
and 4He are shown in Figs. 1 and 2. To within experi-

(a)
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(b)

0

Fig. 2. Absorption spectra of molecules corresponding to

the a3   c3  transition: (a) in liquid 4He (s—

0.05 atm, 2.1 K; u—6.3 atm, 2.1 K; d—10.1 atm, 2.0 K;
j—23.9 atm, 1.9 K; (b) in liquid 3He (s—4.8 atm, 1.8 K;
u—14.4 atm, 1.8 K; d—23.9 atm, 1.7 K; j—31.5 atm, 1.7 K).
The vertical line gives the wavelength corresponding to the

(0–0) a3   c3  transition in vacuum. The spectra

are normalized to the absorption at the maximum.
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STRUCTURE AND DYNAMICS 993
mental accuracy, the a3   b3  absorption line
does not shift with varying pressure whereas the

a3   c3  line undergoes an appreciable dis-
placement in the short-wavelength direction and
becomes broader as the pressure and particle density

increase. Line broadening of the a3   c3  tran-
sition was observed as a function of temperature (Fig. 3).
It is important to note that in the given temperature
range at constant pressure, the variation of the helium
density is within 1.5% so that we can reliably talk of
temperature-induced broadening of the line. Unlike the
absorption line width, its shift relative to the vacuum
position does not depend on temperature, which sug-

gests that the position of the a3   c3  line may
be used as an indicator of the static interaction
between the molecule and the environment, neglect-
ing the temperature fluctuations which lead to addi-
tional broadening.

In order to describe the pressure dependence of the

(0–0) a3   c3  line shifts, we used a model
which assumes that a microscopic bubble surrounds the
molecule in liquid helium. This approach was used in

[10] which was devoted to the  metastable
triplet helium atoms. It is assumed that the bubble is
formed as a result of the repulsion of an excited elec-
tron from the surrounding helium atoms. This mecha-
nism may lead to the formation of a bubble around the
metastable molecule since the size of the outer electron
orbit is comparable with the interatomic distance in liq-
uid helium [13]. 

The equilibrium bubble radius R0 is determined by
minimizing the total energy of the complex E(R) which
consists of the total energy of the interaction between
the molecule and the surrounding helium atoms Ema ,
the potential energy of the cavity in the liquid pV, the
potential energy at the bubble interface Esur, and the
kinetic energy of the molecule Em which is associated with
the oscillations of the molecule in the bubble.

We shall make an assumption which will be justified
by the following calculations, that the size of the bubble
is considerably greater than the internuclear distance in
the molecule (around 1 Å [14]). To a first approxima-
tion the interaction of the molecule with the surround-
ings reduces to the repulsion of the outer electron from
the helium atoms at short distances and van der Waals
interaction of the molecule with the atoms. In the
widely used optical model the energy of the interaction
between an electron and a helium atom is written in the
form

Σu
+ Πg

Σu
+ Σg

+
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+ Σg

+
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+
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+ Σg

+

He2
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me

----------------- ψ R( ) 2,=
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where a0 is the scattering length of the electron on the
helium atom in the pseudopotential approximation
(a0 = 0.62 Å) and ψ(R) is the electron wave function [15].
Calculation of the electron wave function of a helium
molecule is a complex theoretical problem. However,
we are merely interested in its behavior at compara-
tively large distances from the nuclei. Calculations

made for the  and  singlet molecular
states by Guberman and Goddard [16] show that at dis-
tances greater than 5 Bohr radii the wave functions of
the outer electron are accurately approximated by
hydrogen-like functions of the 2S and 2P0 type, respec-
tively with the effective charges of the molecular core
Z(A1) = 1.08 and Z(C1) = 0.69. We shall assume that the

wave functions of an excited electron in the  and

 states are also essentially 2S and 2P0 hydrogen-
like functions and the effective core charges will be fit-
ting parameters.

We do not know of any experimental or theoretical
data on the coefficient of the van der Waals interaction
between a molecule and a helium atom. In order to esti-
mate this we can use the following simple reasoning:
the dipole moment of a molecule is mainly determined
by the outer electron whose characteristic frequency of
motion is low compared with the frequencies of elec-
trons in the 11S ground state of the helium atom.
Assuming that the motion of the outer electron relative
to the molecular core is classical, at each instant the
energy of the interaction between a molecule and a
helium atom is –αE2(R)/2 where E(R) is the electric
field induced by the molecule and α is the polarizability
of the helium atom in the ground state (α = 1.383 au [17]).

A1 Σu
+( ) C1 Σg

+( )

a3Σu
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c3Σg
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Fig. 3. Line broadening of the a3   c3  transition

in liquid 4He as a function of temperature at 23.9 atm (s—
1.55 K; u—1.75 K; d—1.95 K; j—2.1 K; Tλ = 1.88 K).
The spectra are normalized to the maximum and are shifted
along the ordinate by 0.25 relative to each other.
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Averaging over the state of the outer electron in the
molecule, we can easily obtain 

where the angular brackets denote averaging over the
state. We note that the expression for εvdW(2P0) is the
same as the result of the approximate quantum-
mechanical calculations [18]. Figure 4 gives the inter-

action potential between a molecule in the  state
and a helium atom in the ground state. It can be seen
that the characteristic scale of the region of major vari-
ation in the potential is smaller than the interatomic dis-
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Fig. 4. Energy of interaction between an  mol-

ecule and a 11S helium atom at large distances.
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Fig. 5. Shift of the maximum of the (0–0) a3   c3

absorption line relative to the vacuum position in liquid
helium [u—3He, s—4He, d—fitting using bubble model
(see text)].
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tance in the liquid. Thus, the helium density was subse-
quently assumed to be equal to its value at infinity
everywhere outside the bubble and

We write the energy associated with the presence of
a liquid–vacuum interface at the bubble surface in the

form Esur = 4π γ. The value of γ was assumed to be
equal to σ0(n/n0), where σ0 and n0 are the coefficients of
surface tension at the liquid–saturated vapor interface
and the liquid density at the saturated vapor pressure,
respectively, when T  0. When calculating the
kinetic energy of the molecule we assumed that the
configuration of the surrounding liquid remains the
same under the molecular oscillations since the
attached mass of the bubble is considerably greater than
the molecular mass and the characteristic frequencies
of the bubble oscillations are relatively low. Under this
assumption the change in the potential energy of the
interaction of the molecule with the surroundings when
the molecule is displaced by δr = {δx, δy, δz} relative
to the center of the bubble is

(3)

Expanding (3) as a series in powers of δx, δy, and δz as
far as quadratic terms and integrating, we find the fre-
quencies of the molecular oscillations in the corre-
sponding directions. For a bubble radius of 6–7 Å these
frequencies correspond to temperatures of 10–15 K and
consequently the kinetic energy of the molecule is sim-
ply the energy of its zero-point oscillations.

In the adiabatic approximation the frequency shift
of the transition is ∆ω = (Ec(R0) – Ea(R0))/", where
Ea(R0)(Ec(R0)) is the total energy of the “bubble + mol-

ecule in state ( )” complex, and R0 is the equi-
librium radius of the bubble formed by the molecule in

the initial state . In our model, the shift of the
absorption line only depends on the unknown effective
charges of the molecular core Za and Zc in the initial and
final states which were determined by fitting the exper-
imental values. It can be seen from Fig. 5 that the pro-
posed model accurately describes the interaction
between the molecule and the surrounding liquid. 

The values of Za = 1.04 ± 0.05 and Zc = 0.78 ± 0.04
thus determined are close to the effective charges ZA and

ZC determined for, respectively, the  and 
singlet states from Guberman and Goddard’s calcula-
tion[16]. The bubble radius varies between 7 Å at low
pressure and 6.4 Å at pressures close to solidification.

The absorption spectra corresponding to the a3  

c3  transition were also measured in cold 3He gas at
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densities of 1.3 × 1021–1.1 × 1022 cm–3 (Fig. 6). In order
to describe the observed line shifts relative to the vac-
uum position we used the standard theory of line broad-
ening in the binary limit (see, e.g., [11]) assuming that
the energy of the interaction between the molecule and
the surroundings can be reduced to the sum of the ener-
gies of two-particle interactions between the molecule
and isolated atoms. Then, in the adiabatic approxima-
tion the frequency dependence of the absorption inten-
sity is given by

where

(4)

Here, ω is the frequency shift, Ua(R) and Uc(R) are the
energies of the interaction of the molecule with an iso-
lated atom in the initial and final states, n(R) is the
coordinate distribution function of the helium atoms.
Taking into account the slope of the interaction poten-
tial Ua(R) and the smallness of the van der Waals mini-
mum compared with temperature (see Fig. 4), we
approximated the real potential by an infinite wall
located at a distance Rmin from the molecule. The value
of Rmin is determined from the condition Ua(Rmin) = T
(classical turning point) and depends weakly on tem-
perature. If three-body “molecule + atom + atom” col-
lisions are neglected, we can easily calculate the coor-
dinate distribution function of the atoms:

Figure 7 shows measured shifts of the maximum of

the a3   c3  absorption line from the vacuum
position in 3He at various densities and results of calcu-
lations using the bubble model and in the binary
approximation. On comparing the experimental data
with the calculations, we can conclude that at densities
*1.5 × 1022 cm–3 the molecule is localized in a bubble (for
comparison, the critical 3He density is 8.3 × 1021 cm–3

[19]).

3. KINETICS OF MOLECULAR DECAY

Triplet  molecules are the longest-lived
neutral excitations in condensed helium and thus the
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question of the processes leading to their decay is of
considerable interest. The dominant mechanism of
excimer loss in liquid and dense gaseous helium is the
binary Penning ionization reaction (1) [5, 7, 8]. In cases
where the total electron spin of the interacting triplets
does not exceed unity, reaction (1) takes place to the
extent of exchange interaction between the outer elec-
trons of the reacting particles and its rate at maximum
convergence (2.5–3 Å [20]) is Wex ≈ 1014 s–1 [20, 21]. If
the electron spin of the reacting triplets is two, ioniza-
tion as a result of total spin-conserving exchange inter-
action is forbidden since the spin of the reaction prod-
ucts does not exceed unity. In this case, a nonzero Pen-
ning ionization probability only occurs when weak spin
dipole interaction is taken into account. The rate Wex – d

of the reaction taking place by this exchange dipole mech-
anism is seven orders of magnitude lower than Wex [4].
Konovalov and Shlyapnikov [4] predict that recombi-
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Fig. 6. Absorption spectra of molecules corresponding to

the a3   c3  transition in cold 3He gas at various

densities (u—0.7 atm, 2.9 K, 0.0064 g/cm3; s—1.8 atm,
4.2 K, 0.017 g/cm3; d—2.2 atm, 4.2 K, 0.033 g/cm3; j—
2.1 atm, 3.4 K, 0.057 g/cm3).
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Fig. 7. Shift of the a3   c3  absorption line relative

to the vacuum position in liquid and gaseous 3He at various
densities [s—experiment, u—calculations using bubble
model, n—calculations using binary approximation (see
text)].
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nation will be appreciably suppressed when the triplets
are strongly polarized.

The dynamics of the loss of molecules as a result of
mutual recombination may be described by the follow-
ing relationships:

(5)

where n↑, n0, and n↓ are the concentrations of mole-
cules having different spin projections and αij are the
recombination coefficients. If, following Konovalov
and Shlyapnikov [4], we assume that free molecular
diffusion takes place, the rate of recombination is deter-
mined by

α = 4πDRI , (6)

where the ionization radius is determined by the condi-
tion /D ≈ 1/W(RI) (W(R) is the probability of recom-
bination event (1) per unit time). The molecular diffu-
sion coefficient can be estimated in the τ approximation
using the calculated bubble radius (see previous sec-
tion). Typical values of the diffusion coefficient in a
normal liquid are around 10–5 cm2/s, increasing in a
superfluid liquid as the density of the normal compo-
nent decreases. As a result of an exponential decrease
in the recombination probability W with distance, the
characteristic ionization radius varies weakly as the dif-
fusion coefficient varies. Under our experimental con-
ditions the ionization radius of a spin-allowed reaction
was 7–10 Å. The characteristic time of an ionization
reaction by the exchange–dipole mechanism is several
orders of magnitude greater than the diffusion time at
all distances and in the approximation under study we
find α↑↑  ! α↑↓ , α↑0. 

However, the assumption of free diffusion is not
consistent with the real situation because of the pres-
ence of strong van der Waals interaction between the
molecules. Allowance for this interaction yields the
conclusion that molecules having converged to a dis-
tance at which the van der Waals energy is comparable
with the temperature, do not diverge but form a bound
state having a short intermolecular distance (≈3 Å) and
react within times much shorter than the diffusion con-
vergence time even when the total molecular spin is
two. The van der Waals capture radius is [22]

(7)
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We use the following formula to estimate the van
der Waals coefficient (see, e.g. [23])

(8)

where fak and ωak are the oscillator strength and fre-

quency of the   k transition, respectively, and
summation is performed over all possible transitions.

The oscillator strength of the   b3Πg transition
is known, fab = 0.205 [5]. The oscillator strength of the

   transition can easily be calculated
using the matrix elements of the dipole moment opera-
tor calculated by Yarkony [24] and the calculations give
fac = 0.307.

Using the well-known relationship (see, e.g., [25]) 

where fkk' is the oscillator strength of the k  k' tran-
sition, σ(ν) is the cross section for absorption of light at
frequency ν, and the integral is taken along the entire
absorption line corresponding to this transition, we
obtain from the integrated intensities of our measured
spectra: fac/fab = 1.5 ± 0.2 which agrees with the calcu-
lated data. 

Having retained only the principal terms with k, k' =
b, c in the sum (8), we obtain the lower constraint on the

van der Waals coefficient  = 6020 au. For the
upper constraint on C6 we assume fae = 1 – fab – fac (the
a  d transition is parity-forbidden), fak = 0 for k ≠ b,

c, e, which gives  = 7940 au. Thus, we have C6 =
7000 ± 1000 au. 

Bearing in mind that RI & 10 Å we have C6/(T ) @ 1
and integration in (7) can be extended to infinity, which
gives

(9)

at temperatures of 1.5–4.2 K. Thus, at low temperatures
we find RvdW > RI so that the van der Waals capture
radius should be taken as the characteristic ionization
radius:

α = 4πDRvdW. (10)

Thus, in this model the polarization of the molecules
has no influence on their decay dynamics.

Formula (10) obtained in the diffusion approxima-
tion holds for short mean free paths l ! RvdW. If the
molecule is situated in a liquid, it is localized in a bub-
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ble and direct estimates in the τ-approximation give l ≈
R0/6 (R0 = 6.4–7.0 Å is the bubble radius); for a super-
fluid liquid we have l ≈ (R0/6)(n/nnorm) where nnorm is the
density of the normal component. If the molecule is sit-
uated in a low-density gas, we find l ≈ 2/σn where the
cross section for scattering of a helium atom at a mole-
cule is σ = 1–2 × 10–14 cm2 at 2–4 K (the factor 2
appears as a result of a difference between the atomic
and molecular masses which has the result that for a
molecule a single collision with an atom is insufficient
to reverse its momentum). Thus, we find that the result
(10) is valid in normal liquid helium, in superfluid 4He
at temperatures above 1.7 K, and also in gases at densi-
ties n @ 1021 cm–3, and under all the conditions listed
above polarization does not influence the recombina-
tion of excimers. 

We shall now consider the opposite limit of long
mean free paths l @ RvdW . The coefficient of molecular
recombination in this case is determined by 

α = σvT , (11)

where σ is the cross section of reaction (1) and vT is the
thermal velocity. The limit of long mean free paths
obtains in superfluid helium at &1.3 K and in gas at
densities !1021 cm–3. In superfluid helium as the mol-
ecules converge to distances R & 2R0 (R0 is the bubble
radius), a bound state of two molecules localized in a
single bubble forms so that the cross section is .π(2R0)2

and the recombination coefficient also does not depend
on the polarization of the molecules. 

We note that an electron–ion pair formed as a result
of the excimer ionization reaction (1) may recombine to
form a “secondary” molecule. If the probability of this
process γ is not low, the recombination coefficient (10),
(11) should be multiplied by (1 – γ). The experimental
setup in the present study can be used to estimate γ. The
lifetime of the molecules in liquid helium under the
conditions used to observe the absorption spectra was
several milliseconds which is much shorter than the
characteristic vibrational and rotational relaxation
times (~300 ms and 15 ms, respectively [8]). Conse-
quently, the molecular distribution over excited vibra-
tional and rotational states corresponds to the probabil-
ity of the formation of a molecule in a particular excited
state. However, the characteristic relaxation times of

the  and  molecular ions are relatively short as
a result of the absence of an excited electron which sup-
presses the interaction of the ion core with the sur-
roundings in the case of a molecule. Hence, molecules
generated in highly excited rotational states are formed
as a result of recombination of an electron–ion pair
which occurred when the helium atom was ionized, and
attachment of one or two atoms to an atomic ion. Such
a pair is comparatively short-lived (the characteristic
distance of maximum separation during expansion is
R & 10–5 cm, the time of convergence and pair recom-

He2
+ He3

+
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bination is τei ~ R3/(µ ) & 10–7 s) and the ion core does
not have time to relax. 

An analysis of the spectra shows that the fraction of
molecules formed in this process is (20 ± 10)%. Thus,
using the measured spectra we can estimate the probabil-
ity γ of the formation of a single molecule in a mutual
recombination event involving two molecules: let n1 and
n2 be the concentrations of unexcited (primary) and
excited (secondary) molecules and then the rate of gen-
eration of secondary molecules is γα(n1 + n2)2 and their
rate of recombination is αn2(n1 + n2). Consequently in
the steady-state regime we have γ = n2/(n1 + n2) ≈ 0.2
and allowance for the factor (1 – γ) in estimates of the
recombination coefficient is needlessly accurate.

The calculated values (10) and (11) and the Fitzsim-
mons experimental data [7] measured in superfluid 4He
at temperatures of 1.4–2.1 K are compared in Fig. 8. 

Thus, the suppression of recombination by a strong
magnetic field can only be observed in a gas in the long
mean free path regime. The condition l @ RvdW is equiv-
alent to the absence of three-body “molecule + mole-
cule + atom” collisions. Then, as they converge, these

e

2.0

1.5

1.0

0.5

0.5 0.6 0.7 0.8
1/T, K–1

α, 10–10 Òm3/s

Fig. 8. Temperature dependence of the coefficient of recom-
bination of molecules in superfluid 4He: s—Fitzsimmons
experimental data [7], corrected allowing for the calculated
[5] oscillator strength fab; the solid curve gives the calcula-
tions using the diffusion approximation, the dashed curve
gives the calculations using the long mean free path limit
(see text).

Table 1

Phase T, K P, atm µBH/(kT)

Superfluid 4He 2.12 0.05 3.5

Superfluid 4He 1.76 28.1 4.2

Superfluid 4He 1.43 0.004 5.2

20% 3He–4He solution 1.8 14.4 4.1
3He, liquid 1.8 14.4 4.1
3He, liquid 1.8 31.5 4.1
3He, gas 2.9 0.7 1.4
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Table 2

Phase T, K P, atm α, cm3/s (±15%)
experiment

α, cm3/s
calculated l/RvdW

Liquid 4He 2.10 1.0 3.8 × 10–11 3.6 × 10–11 0.086

Liquid 4He 1.98 14.4 3.2 × 10–11 2.9 × 10–11 0.072

Liquid 4He 1.76 28.1 2.8 × 10–11 3.2 × 10–11 0.080

Liquid 4He 1.76 1.0 1.1 × 10–10 0.9 × 10–10 0.23

Liquid 3He 1.64 14.4 3.3 × 10–11 2.9 × 10–11 0.086

Gas 3He 3.0 0.7 4.3 × 10–10 8.5 × 10–10 0.60
molecules do not form bound states and react with a
certain probability which depends on their polarization.
The corresponding reaction cross sections for triplet
atoms were calculated in [20]: σ(↑↓ ) ≈ σ(↑0) ≈ 3.2 ×
10−14 cm2, σ(↑↑ ) ≈ 2.9 × 10–15 cm2 at low temperatures. 

Unfortunately our method of generating molecules
cannot operate at fairly low helium densities since,
when n & 1021 cm–3, the electron mobility increases
rapidly [15] and breakdown occurs in the cell. Table 1
gives all the experimental conditions used to study the
influence of molecular polarization on the recombina-
tion coefficient. The molecular lifetimes were 200 ms.

Simple estimates using standard spin–lattice relax-
ation theory (see, for example [26]) for molecules in
helium of appropriate density give longitudinal relax-
ation times on microsecond scales as a result of “spin–
axis” interaction, which suggests that the polarization
of the molecules in our experiments is close to equilib-
rium. Under our conditions it was impossible to
observe molecular polarization using the Zeeman effect
because in the fairly strong magnetic fields for which
multiplet splitting could become appreciable in the
absorption spectra, optical transitions accompanied by
a change in the spin projection MS are forbidden as a
result of the Paschen–Back effect. 

Under all the experimental conditions listed above
no influence of the magnetic field on excimer decay
was observed, which is in complete agreement with the
theory.

In order to determine the numerical values of the
recombination coefficient under various experimental
conditions, the experimental time dependences of the
absorption signal were fitted using the binary reaction
equation

where A(t) = n(t)σ0V/S, σ0 is the cross section for
absorption of light determined from the oscillator
strength of the transition and the integrated intensity of
the spectrum, V is the volume in which absorption takes
place, S is the area of the light beam, and the recombi-
nation coefficient α was the fitting parameter. The
unknown effective volume V was obtained by compar-

A t( ) 1
A t0( )
-----------

α t t0–( )
σ0V /S

-------------------+ 
  1–

= ,
JOURNAL OF EXPERIMENTAL
ing our data with the results [7] under similar condi-
tions. The values of the recombination coefficient thus
determined and those calculated using formula (10) are
given in Table 2. 

All the experimental data agree with the calcula-
tions within measurement error, except for the coeffi-
cient of recombination measured in a gas, where the
criterion for the validity of the diffusion approximation
ceases to be satisfied. Assuming that the cross section
of the ionization reaction is approximately equal to the
cross section for the reaction of two triplet atoms at low
temperatures (see above), in the long mean free path
limit we obtain α ≈ 4.8 × 10–10 cm3/s at 3.0 K which is
in good agreement with the experimental value.

4. CONCLUSIONS

The position and shape of the absorption line corre-

sponding to the a3   c3  molecular transition
exhibits a strong dependence on the helium density

which means that the interaction of the 
molecule with the surroundings can be studied using
optical measurements. By analyzing the spectra obtained
under various experimental conditions, we established
that at above-critical densities the molecules are localized
in microscopic bubbles similar to the localization of
excess electrons. The size of this complex, unlike a
bubble, formed by an electron varies weakly with pres-
sure.

We obtained estimates of the coefficients of the van
der Waals interaction between a molecule and a
ground-state helium atom:

We observed appreciable broadening of the absorp-
tion line in 4He as a function of temperature. The natu-
ral oscillation frequencies of the bubble which are eas-
ily estimated correspond to temperatures around 3 K
and we ascribe the observed broadening to the excita-
tion of vibrational degrees of freedom of the bubble. 

Σu
+ Σg

+

He2* a3Σu
+( )

C6 He2* a3Σu
+( ) He 1

1
S( )–( ) 54 au,≈

C6 He2* c3Σg
+( ) He 1

1
S( )–( ) 68 4/5 3/5 Θcos

2
+( ) au.≈
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We obtained an estimate of the coefficient of van der
Waals interaction of the molecules C6 = 7000 ± 1000 au.
Allowance for the strong attraction of molecules at
large distances yields the conclusion that the diffusion-
limited rate of excimer recombination does not depend
on the molecular polarization. Calculations using the
proposed model show good agreement with all the
available experimental values measured under condi-
tions when the diffusion approximation is valid (normal
3He and superfluid 4He at temperatures above 1.7 K).
The recombination coefficient measured in cold 3He
gas agrees with the data [5] obtained in 4He at similar
densities and shows good agreement with the results of
the theoretical calculations [20] for an extremely low-
density gas.
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