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Abstract—A nonperturbative theory of energy loss in collisions between structural, highly charged heavy ions
moving at relativistic velocities and atoms is developed. A simple formula for effective deceleration is derived.
By structural ions are meant ions containing partially filled electron shells. It is such ions characterized, as a
rule, by a significant charge (for example, partially “stripped” uranium ions) that are used in numerous experi-
ments involving the use of modern heavy-ion accelerators. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is known that inelastic processes, which accom-
pany collisions of relativistic ions of fairly high charges
with atoms, cannot be described [1, 2] within perturba-
tion theory however high the collision energy may be.
A consistent nonperturbative theory of loss of energy
by relativistic “bare” heavy ions at free electrons has
been developed by Lindhard and Sorensen [3]. How-
ever, experiments often involve partially stripped ions;
in addition, when a fast ion moves in a medium, some
equilibrium ion charge, which is less than the bare ion
charge sets in, as a result of processes of charge
exchange and electron loss. In calculations of decelera-
tion, the field of a screened ion is usually described as
the field of a point charge, although it is, in principle,
clear that, during collisions with low impact parameters
or high transferred momenta, the ion behaves as a bare
unscreened charge, and, in collisions with high impact
parameters or low transferred momenta, the ion
behaves as a screened charge. In other words, it appears
necessary to treat a decelerated ion as an extended
structural particle with the size of the order of electron
shells on which electrons are located with a steady
equilibrium ion charge, rather than as a point particle.
Some researchers (see, for example, [4–6]) treated such
effects within perturbation theory, whose range of
applicability calls for the validity of the inequality
Z/v  ! 1, where Z is the incident particle charge and v
is the relative velocity of collision (here and below, use
is made of the atomic units " = me = e = 1). For consis-
tent inclusion of the presence of an electron “coat” of a
heavy relativistic ion, nonperturbative treatment is
required. Recent experiments (see, for example, [7–10]
and the references cited there) have involved the inves-
tigation of energy loss by ions whose charges are so
high that the range of applicability of the Born approx-
imation, strictly speaking, cannot be attained [1] even at
1063-7761/02/9402- $22.00 © 20217
v  ≈ c (c is the velocity of light), so that it often turns out
that Z/v  ~ 1.

This paper deals with a nonperturbative theory of
energy loss in collisions between structural, highly
charged heavy ions moving at relativistic velocities and
nonrelativistic atoms. A simple formula for effective
deceleration is derived.

2. ENERGY LOSS IN COLLISIONS
WITH INDIVIDUAL ATOMS

For simplicity, we will first treat a collision between
a relativistic heavy ion and a hydrogen atom. According
to [11], the entire range 0 < b < ∞ of possible values of
the impact parameter b may be divided into three
regions, namely,

(1)

which correspond to low, moderate, and high values of
the impact parameter. We will calculate the effective
deceleration [12] κ in each one of regions (1) to derive
the total effective deceleration on adding up the contri-
butions by three regions. The exact values of the bound-
aries are of no importance to us, because the depen-
dence of κ in each region on the parameters b1 and b0
turns out to be logarithmic, which results in the joining
of the contributions by adjacent regions and eliminates
the dependence on the parameters of joining b1 and b0
in the final answer. One must bear in mind that the can-
cellation of logarithmic terms is a necessary, but far
from sufficient, condition of correctness of joining. In
each one of the three regions, we will apply an approx-
imation that is specific to the given region, and different
approximations will correspond to different regions.
Then, the condition of sufficient correctness of joining
will be the condition of equal validity of the approxima-

(A ) 0 b b0,  (B ) b0 b b1,  (C ) b1 b ∞,< << << <
002 MAIK “Nauka/Interperiodica”



 

218

        

MATVEEV

                                                
tions employed in adjacent regions, in some neighbor-
hood containing a parameter of joining.

(A) The region of low values of the impact parame-
ter: 0 < b < b0. In collisions with low impact parameters
or high transferred momenta, one can assume [13]
atomic electrons to be free and at rest until scattering
and describe an ion as a bare unscreened charge Z. This
enables one to use the result of Lindhard and Sorensen
[3]; in so doing, according to numerical calculation
results, the effective deceleration (up to γ ≤ 10 and up
to ion charges of ≤92) may be represented in the fre-
quently used form

(2)

where 

and ∆LBloch and ∆LMott are Bloch [14] and Mott [15] cor-
rections which are effectively other than zero [3] only
in the case of low values of the impact parameter. The
inclusion of the Mott correction only in the region of
low values of the impact parameter calls for additional
comments. The Mott correction arises due to the differ-
ence between the Rutherford cross section and the
exact cross section [16] of quantum relativistic scatter-
ing in the Coulomb field. In our case, an atomic elec-
tron prior to collision is always nonrelativistic, and a
relativistic velocity in collision with an ion may be
acquired by such an electron only in the region of low
values of the impact parameter (see detailed estimates
for this and other sections in Section 3).

(B) The intermediate region: b0 < b < b1. We will
restrict ourselves to treatment of collisions with light
(nonrelativistic) atoms. In this case, as in [4–6], one can
ignore the processes of excitation of electron shells of
an ion and treat an incident structural ion as an
extended charge. We will follow [4–6, 17] and assume
that the nucleus of an incident ion has the charge Z, and
its Ni electrons are distributed around the nucleus with
the density

where λ is the screening length. The Coulomb interac-
tion between an ion located at point R and an atomic
electron located at point r has the form

(3)

where we introduced the relative number of electrons
ν = Ni/Z in the ion. In writing the ion and electron coor-
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dinates, the impact parameter b and the projection s
of coordinates r of an atomic electron on the impact
parameter plane are usually introduced,

The transition cross section of a nonrelativistic hydro-
gen atom from the |0〉  state to the |n〉  state as a result of
collision with a relativistic ion has the following form
in an eikonal approximation (see, for example, [11]):

(4)

This formula is valid if, in the impact parameter range
of b0 < b < b1, an atomic electron as a result of collision
is imparted a momentum that is much less than c and
may be regarded as nonrelativistic before and after col-
lision. It is this fact that enables one to use (see also [18,
19]) formula (4) for cross sections, with the potential in
the form of a static Coulomb potential (and disregard
the Mott correction in this region and in region C).

The standard technique [20, 21] in calculating the
eikonal phase for the Coulomb potential consists in the
following:

is replaced by

and the integral of U' over dX is written with the prime
omitted. As a result of integration, we have

(5)

where Z* = Z(1 – ν), and K0(x) and K1(x) are Mac-
donald functions. The specific feature of collisions of
highly charged ions with atoms consists in that the
cross sections of inelastic processes are, as a rule, fairly
large and exceed considerably the atomic dimensions.
In view of this circumstance, we will assume that s/b ! 1;
then, Eq. (5) may be rewritten as

(6)

where the vector

(7)
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apparently has the meaning of momentum transferred
to an atomic electron upon its collision with an ion at
the impact parameter b. The limiting values of q have a
transparent physical meaning,

which corresponds to scattering from a screened ion of
charge Z(1 – ν), and

which corresponds to scattering from a bare ion of
charge Z. Therefore, the cross section (4) of the inelas-
tic process for the orthogonal |n〉  and |0〉  states takes the
form

where the generalized inelastic form factor is

The effective deceleration [12] is

(8)

where en and e0 denote the energy of the |n〉  and |0〉
states, and f = exp(–iq · r). In following Landau and
Lifshitz [12], one can readily find that the effective
deceleration in the b0 < b < b1 range is represented in
the form

(9)

The integral appearing here is readily calculated analyt-
ically, and, given the validity of the conditions

(10)

the contribution made to effective deceleration by the
region of intermediate values of the impact parameter
depends logarithmically on the parameters of joining
(b0 and b1) and is

(11)

(C) The region of high values of the impact param-
eter: b1 < b < ∞. Here, the ion–atom interaction may be
included using perturbation theory; in the case of high
values of the impact parameter, the atom is acted upon
by the field of a screened ion; i.e., the apparent ion

q
2Z 1 ν–( )b

v b2
--------------------------- for b ∞,

q
2Zb

v b2
---------- for b 0,

σn b2d∫ n〈 | iq · r–( )exp 0| 〉 2 b2 f 0n
2,d∫= =

f 0n n〈 | iq · r–( )exp 0| 〉 .=

κ en e0–( )σn

n

∑ en e0–( ) b2 f 0n
2,d∫

n

∑= =

κ b0 b b1< <( ) 1
2
--- q22πb b.d

b0

b1

∫=

b0

λ
-----  ! 1,

b1

λ
-----  @ 1,

κ b0 b b1< <( ) 4πZ2 1 ν–( )2

v 2
-------------------------------- b1ln=

+
4πZ2

v 2
------------ 1

b0
----- 2λ

η
------ 

 
ν 2 ν–( )

.ln
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
charge is Z* = Z(1 – ν). The respective effective decel-
eration is [11]

(12)

Here, we followed [13] and introduced the “mean”
atomic energy I.

The total deceleration is derived by summing up the
contributions made by the three regions,

As a result, we have

(13)

This formula is generalized to the cases of collisions
between relativistic structural heavy ions and complex
atoms using a standard [12] method; namely, the right-
hand side of the formula is multiplied by the number Na

of atomic electrons, and the respective atomic charac-
teristic I in Eq. (12) is calculated for a complex atom.
In addition, one can readily see that, within the sug-
gested approach, it is possible to directly take into
account the fact that, when the processes of trapping
and loss are included, the number Ni of ion electrons
(and, consequently, ν = Ni/Z) turns out to be dependent
on the target parameters, the ion charge, and the relative
velocity of collision.

3. RANGE OF VALIDITY OF THE APPROACH

The values of the boundaries of regions (1) and the
conditions of validity of the developed approach call
for additional comments. The division of all possible
values of the impact parameter into three regions corre-
sponds to three different approximations. The region A
of low values of the impact parameters is the region of
validity of the method of Lindhard and Sorensen [3]
with the following reservations. Atomic electrons may
be assumed to be free if the collision time

is the characteristic atomic time, whence b ! vγ. When
this inequality is valid, atomic electrons are scattered as
free electrons from an unscreened ion nucleus, if b ! λ,
the characteristic size of the electron “coat” of the ion.
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The main contribution to the Bloch correction is made
[3] by the angular momenta l (connected to the impact
parameter b through the conventional relation l = vγb)
such that 0 ≤ l2 ≤ (Z/2v)2 or by the impact parameters
such that 0 ≤ b ≤ Z/2vγ. The Mott correction is signifi-
cant if an atomic electron, as a result of collision with a
relativistic ion, acquires the velocity in the Coulomb
field of ∆v  ~ 2Z/(vb) ~ c and becomes relativistic, or in
the case of collisions with impact parameter values of

Note that, in our case,

Therefore, strictly speaking, it must be pointed out that

the region A is located in the range of 0 < b < , where

 @ Z/2vγ. The region B of moderate values of the
impact parameter is the range of validity of the eikonal
approximation in the form of Eq. (4) and is located [11,
18, 19] in the range of  < b < , where

The region C of high values of the impact parameter is
the region of validity of perturbation theory, which cor-
responds to the smallness of the eikonal phase given by
Eq. (6), which, for high values of b, is estimated as

where d ~ 1 is the characteristic size of an atom. There-
fore, the region C is located within the boundaries  <

b < ∞, where  @ 2Z*/v.

Thus, the values of b0 and b1 in (1) lie in the ranges
of overlapping of adjacent regions and satisfy the fol-
lowing inequalities:

 < b0 < ,  < b1 < 

or

(14)

In addition, in order to perform a correct joining with
the values of the region boundaries dropping out of the
final formula (13), the validity of inequalities (10) was
required; these inequalities may now be rewritten in a
more convenient form,
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One can readily see that inequalities (14) and (15)
(along with the conditions b0 < b1 and b0 < λ) are com-
patible, and valid in numerous cases of practical impor-
tance, when the collisions between relativistic heavy
ions and light (nonrelativistic) atoms are investigated,
including the cases treated by us, where Z ≤ 92 and γ ≤
10. Note further that condition (15) is valid in a fairly
wide range of variation of the screening length λ; at the
same time, this condition does not make it possible to
perform a direct limiting transition λ  0 or λ  ∞
in formula (13)

4. RESULTS AND ESTIMATES

In order to describe the correction due to the extent
of the ion charge and to clarify the importance of differ-
ent regions of the impact parameters, we will introduce
relative corrections χ1 and χ2. The correction

where

(16)

is the effective deceleration [22] of a point nucleus of
charge Z*, and the correction

is similar to the correction χ1 with the difference that
κpoint(Z) is the effective deceleration of a point bare
nucleus of charge Z. The behavior of the relative correc-
tions χ1 and χ2 is given in the figure. We followed [4,
17] (see also [5, 6]) and calculated the screening length
λ by the formula

where a is the Bohr radius (although, in principle, a
may be treated as a parameter describing the effective
ion size in the presence of excited electron shells of an
ion).

In the frequently encountered cases of Z @ 1 and
Z* @ 1 corresponding to ν ! 1, only the terms linear

χ1
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with respect to ν ! 1 may be retained; then,

(17)

In the right-hand side of formula (17) (as in Eq. (16)), the
values of ∆LBloch and ∆LMott and of their derivatives are cal-
culated for the point charge Z*. The first term in this for-
mula represents the effective deceleration of a point ion of
charge Z*, while the second term is a correction due to the
finite size of the ion. The following conclusions may be
made. The inclusion of the extent of the ion charge brings
about a considerable increase in the effective deceleration
κ of the ion compared with the deceleration κpoint of a point
nucleus of the same charge Z*. The order of the energy
loss increase may be estimated as

where ν = Ni/Z is the relative number of electrons on the
ion shells. For example, a uranium ion with ten elec-
trons in bound states experiences a deceleration that is
approximately 10% higher than that experienced by a
bare point nucleus of charge 82 and of the same mass
moving with the same energy.

ACKNOWLEDGMENTS

I am grateful to the Ministry of Education of the
Russian Federation (project no. E00-3.1-390) and to
the Russian Foundation for Basic Research (project
no. 01-02-17047) for the financial support of this study.

REFERENCES
1. J. Eichler and W. E. Meyrhof, Relativistic Atomic Colli-

sions (Academic, New York, 1995).

κ 4π Z∗( )2

v 2
-------------------- 2v 2

I 1 β2–( )
---------------------ln β2– ∆LBloch ∆LMott+ + 

 =

+
8π Z∗( )2

v 2
--------------------ν 2v λ

η 1 β2–
---------------------- ∆LBloch ∆LMott+ +ln



–
Z∗
2

------
Z∗d
d ∆LBloch ∆LMott+( )

 .

κ κ point–( )/κpoint ν ,≥
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
2. J. Eichler, Phys. Rep. 193, 167 (1990).
3. J. Lindhard and A. Sorensen, Phys. Rev. A 53, 2443

(1996).
4. G. L. Yudin, Zh. Tekh. Fiz. 55, 9 (1985) [Sov. Phys. Tech.

Phys. 30, 4 (1985)].
5. G. Maynard, D. Gardes, M. Chabot, et al., Nucl.

Instrum. Methods Phys. Res. B 146, 88 (1998).
6. G. Maynard, M. Chabot, and D. Gardes, Nucl. Instrum.

Methods Phys. Res. B 164/165, 139 (2000).
7. E. E. Zhurkin and S. D. Bogdanov, Nucl. Instrum. Meth-

ods Phys. Res. B 164/165, 230 (2000).
8. H. Weick, H. Geissel, and C. Scheidenberger, Nucl.

Instrum. Methods Phys. Res. B 164/165, 168 (2000).
9. C. Scheidenberger and H. Geissel, Nucl. Instrum. Meth-

ods Phys. Res. B 135, 25 (1998).
10. C. Scheidenberger, H. Geissel, H. H. Mikelsen, et al.,

Phys. Rev. Lett. 77, 3987 (1996).
11. V. I. Matveev and S. G. Tolmanov, Zh. Éksp. Teor. Fiz.

107, 1780 (1995) [JETP 80, 989 (1995)].
12. L. D. Landau and E. M. Lifshitz, Course of Theoretical

Physics, Vol. 3: Quantum Mechanics: Non-Relativistic
Theory (Nauka, Moscow, 1989, 4th ed.; Pergamon, New
York, 1977, 3rd ed.).

13. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Course
of Theoretical Physics, Vol. 4: Quantum Electrodynamics
(Nauka, Moscow, 1989; Pergamon, New York, 1982).

14. F. Bloch, Ann. Phys. (Leipzig) 16, 285 (1933).
15. N. F. Mott, Proc. R. Soc. London, Ser. A 124, 425

(1929).
16. J. A. Doggett and L. V. Spenser, Phys. Rev. 103, 1597

(1956).
17. W. Brandt and M. Kitagawa, Phys. Rev. B 25, 5631

(1982).
18. V. I. Matveev and Kh. Yu. Rakhimov, Zh. Éksp. Teor.

Fiz. 114, 1646 (1998) [JETP 87, 891 (1998)].
19. V. I. Matveev, Kh. Yu. Rakhimov, and D. U. Matrasulov,

J. Phys. B 32, 3849 (1999).
20. J. Eichler, Phys. Rev. A 15, 1856 (1977).
21. V. I. Matveev, Fiz. Élem. Chastits At. Yadra 26, 780

(1995) [Phys. Part. Nucl. 26, 329 (1995)].
22. S. P. Ahlen, Rev. Mod. Phys. 52, 121 (1980).

Translated by H. Bronstein
SICS      Vol. 94      No. 2      2002



  

Journal of Experimental and Theoretical Physics, Vol. 94, No. 2, 2002, pp. 222–227.
Translated from Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 121, No. 2, 2002, pp. 266–273.
Original Russian Text Copyright © 2002 by Andreev, Komarov, Charukhchev, Litvinenko, Platonov.

                                                                

NUCLEI, PARTICLES, 
AND THEIR INTERACTION
Generation of a Fast-Ion Beam upon the Interaction 
of a Multiterawatt Picosecond Laser Pulse with a Solid Target

A. A. Andreeva, V. M. Komarovb, A. V. Charukhchevb, I. M. Litvinenkoc, and K. Yu. Platonovd, *
aResearch Institute of Laser Physics, Vavilov State Optical Institute All-Russia Scientific Center,

St. Petersburg, 199034 Russia
bFederal Scientific and Production Center, Research Institute of Complex Testing of Optoelectronic Devices,

Sosnovyœ Bor, Leningrad oblast, 188537 Russia
cAll-Russia Research Institute of Technical Physics, Snezhinsk, Chelyabinsk oblast, 456770 Russia

*e-mail: platonov@quark.stu.neva.ru
dSt. Petersburg State Technical University, St. Petersburg, 195251 Russia

Received July 12, 2001

Abstract—The parameters of fast particles generated upon the interaction of 1019 W/cm2 laser pulses with
solid targets are studied. The spatial and energy parameters of fast ions are investigated. It is found that approx-
imately 1–3% of the laser energy is transformed to the energy of mega- and submegaelectronvolt ions at laser
pulse intensities ≥1018 W/cm2. It is shown experimentally that an ion beam is directed perpendicular to the tar-
get surface. The analytic and numerical simulations agree with experimental results and predict the propagation
of fast electrons in the mirror direction with respect to the incident laser beam and of ions perpendicular to the
target. The theoretical calculations are compared with the experimental output and spectra of fast electrons and
ions. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The recent development of the laser technique
resulted in the building of high-power laser systems
providing the radiation intensity on a target of ≤7 ×
1020 W/cm2 [1]. At such ultrahigh intensities and the
optimal choice of the parameters of a laser pulse and
targets, a plasma can become a powerful source of hot
electrons, fast ions, and hard X-rays and gamma rays in
the megaelectronvolt energy range [2, 3]. The creation
of a laser plasma source of particles and quanta with
such parameters opens up unique possibilities for initi-
ating various nuclear reactions for producing compact
neutron sources, obtaining a variety of isotopes, and
generation of artificial radioactivity. Due to its small
size (of the order of 10 µm) and ultrashort pulse dura-
tion (of the order of 1 ps), such a source can have a bright-
ness that is much greater than that of all known sources,
which opens up wide prospects for its applications in
nuclear physics, medicine, and accelerators [2, 4].

In the case of relativistic intensities, the conversion
of laser energy to the energy of fast electrons is deter-
mined by the known nonlinear mechanisms, the value
of the conversion coefficient being quite large [4]. At
the same time, to increase the efficiency of conversion
of laser energy to the energy of fast ions, it is necessary
to study first of all the mechanisms of acceleration of
ions by electrostatic fields induced in a solid-target
plasma. This would allow the optimization of the
parameters of laser pulses and the configuration of tar-
gets for increasing the yield of nuclear reactions
1063-7761/02/9402- $22.00 © 0222
because the advantage of ions is that they have much
higher (compared to electrons and gamma quanta)
cross sections for nuclear reactions.

The generation of fast ions by solid targets irradi-
ated by picosecond laser pulses was observed in earlier
experiments [5, 6] where submegaelectronvolt and
megaelectronvolt ions were detected and rather high
conversion coefficients were obtained. The detection of
protons with energies up to 55 MeV at a laser pulse
intensity ≤ 3 × 1020 W/cm2 was recently reported in
papers [7, 8]. A collimated beam of fast 1.5-MeV pro-
tons within an angle of 40° was obtained in experiments
[9]. In this paper, we performed more detailed theoret-
ical and experimental studies of the energy and angular
characteristics of electrons and ions escaping to vac-
uum and inside the target upon the interaction of an
ultrashort high-power (≤1019 W/cm2) laser pulse with a
solid target.

2. EXPERIMENTAL RESULTS

Experiments were performed on the picosecond
channel of a Progress-II neodymium-glass laser setup
[10, 11]. The laser pulse duration was of about 1.5 ps.
The experimental studies were carried out in two steps.
In the first stage, when the laser energy was up to 1 J
(the laser power of the order of 1 TW) for a beam diam-
eter of 35 mm, the radiation was focused with a lens
with the aperture ratio f/4 (f is the focal distance) [10].
As the beam energy increased up to 16 J and its power
2002 MAIK “Nauka/Interperiodica”
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increased approximately up to 10 TW, it was difficult to
provide the near-diffraction-limited size of the focal
spot. For this reason, we used an axial parabolic mirror
with the aperture ratio f/1.1 for focusing laser radiation
instead of the lens. The measurements of the focal spot
of the laser beam on the target showed that approxi-
mately 50% of laser energy was contained in the spot of
diameter d ≤ 7 µm [11]. The experiments were per-
formed with both p-polarized and s-polarized radiation
with targets made of optically polished Al and Sn at
angles of incidence of the laser beam on the target
θ = 33° and 45°.

Upon the interaction of picosecond pulses with solid
targets, a prepulse, whose parameters can strongly
affect the interaction, plays an important role. For this
reason, we measured the energy and shape of a pulse of
amplified spontaneous emission (ASE) behind an aper-
ture located in the focal plane of a long-focus (90 m)
optical system and having an equivalent diameter of
7 µm in the target plane [11]. The duration of the ASE
prepulse was approximately 5 ns at half maximum. The
pulse energy was measured with a calorimeter with a
sensitivity threshold of 2 nJ. The measurements showed
that the ASE prepulse energy did not exceed 0.5 mJ and
its power was less than 5 × 10–9 of the main picosecond
pulse, which is well below the plasma formation thresh-
old [12]. The measurements performed in the interval
from 10 to 100 ps before the main single pulse showed
that the prepulse intensity was lower than the sensitivity
threshold of the method (≤10–3). To find out whether the
prepulse noticeably affects the size of the plasma spot
formed in a real laser beam with a nominal power of
about 10 TW, we photographed the plasma spot in soft
0.25- to 1.5-keV X-rays with the help of a pinhole cam-
era of diameter 5 µm (twelvefold magnification). We
found that the focal spot size did not exceed 8 µm and
its shape was close to that obtained by optical methods.
Therefore, the prepulse power is too low to affect
noticeably the interaction process.

We determined the absorption coefficient of the tar-
get irradiated by 1017-W/cm2 pulses by measuring the
energy of scattered light using the Ulbricht sphere. A
focusing lens was simultaneously used as an entrance
window of a vacuum chamber. The target in the form of
a polished plate of size 5 × 5 mm and thickness of sev-
eral hundred microns was placed at the center of the
sphere. In experiments with the use of a parabolic
focusing mirror, calorimeters were placed around the
target. One of the calorimeters completely picked up
the radiation reflected from the target in the mirror
direction, while the rest of the calorimeters were placed
around the target, both in the plane of incidence and
perpendicular to it. The energy reflected backward to
the aperture of the focusing optical system was mea-
sured separately. All the components of scattered and
incident energy were detected with a multichannel
measuring system [13].
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The velocity distributions of ions were measured by
the time-of-flight method using ion collectors and a
60-MHz-bandwidth multichannel computer-controlled
digital oscilloscope. The detectors were arranged
around the target so that at least one of them detected
ions leaving the target in a direction close to the normal,
as well as ions escaping in the mirror direction with
respect to the incident beam. Collectors were used in
the experiments to study the spatial distribution of the
scattered ions and to estimate, in combination with
plasma calorimeters, the charge state Z/A of the plasma
[14].

The experimental dependences obtained in this
study are presented in Figs. 1–4.

Figure 1 shows the absorption coefficients of p- and
s-polarized laser radiation measured as functions of the
laser intensity for Al and Sn targets. We have found the
following properties. The target with a higher Z (Sn)
has a higher absorption. As the laser intensity increases,
absorption becomes the same for s- and p-polarized

10171016 10201018 1019
0

0.2
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0.6
0.8
1.0
Absorption coefficient

Intensity, W/Òm2

Fig. 1. Absorption coefficients of s- and p-polarized laser
radiation as functions of the laser intensity for Al [(d) p
polarization, (n) s polarization] and Sn [(j) p polarization]
targets.
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Fig. 2. The velocity distribution of all fast ions for different
escape angles: 0° (h), 20° (e), and mirror direction (s). The
proton velocity v  ≈ (5.4–10) × 1018 cm/s corresponds to the
energy εi = 150–550 keV. The velocity of the carbon ion C+2

v  ≈ 3.3 × 1018 cm/s corresponds to the energy εi = 0.8 MeV.
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laser pulses and only weakly depends on the laser inten-
sity in the range from 1017 to 5 × 1018 W/cm2.

Figure 2 presents the velocity distribution for high-
energy ions for different angles of escape from the tar-
get plasma. The laser pulse intensity on the target made
of polished Al was approximately 5 × 1018 W/cm2. The
dependence of dNi/dv  on v  is linear at the logarithmic
scale, indicating a power distribution of high-energy
ions over velocities. The preliminary mass spectromet-
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10171016 1018 1019

I, W/Òm2

εi, eV

Fig. 3. Dependence of the mean energy εi of the hydrogen
ion on the laser-radiation intensity I. The experimental
curve (solid line) corresponds to the dependence εi =

0.0003I0.46, and the theoretical curve (dashed line) is plot-
ted according to (1).

Escape angle, deg
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Fig. 4. Dependence of the total energy carried away by
hydrogen ions into vacuum on the escape angle for an inten-
sity of 1018 W/cm2. The PIC code calculation is shown by
the solid curve; dots are the experimental data. The total
energy carried away is about 1.2 × 1016 eV.
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ric measurements showed that the main part of the ions are
protons with energies up to ~550 keV (v  = 109 cm/s). A
small amount of carbon ions were also detected with
the maximum velocity of 4.5 × 108 cm/s (εi = 1.5 MeV).
At the same time, no Al ions with velocities higher than
108 cm/s were detected [15]. The estimates based on
the assumption that the main part of fast ions are pro-
tons give the total number of fast ions escaping during
the laser pulse of about 1011.

Figure 3 shows the dependence of the average
energy εi of fast ions on the laser intensity I. The exper-
imental curve corresponds to the power dependence
εi = 0.0003I0.46, where εi is measured in eV and I
in W/cm2.

Figure 4 presents the angular distribution of the
total energy of all ions that escaped. The ions escaped
perpendicular to the target with an angular dispersion
of ~30°.

The total energy of escaping ions estimated in the
experiments for the laser intensity of about 5 × 1018 W/cm2

amounts to 0.01–0.03 of the laser pulse energy.
To analyze our further measurements, we will use

the results obtained in our paper [15], where we have
measured the spectrum of hard X-rays under the same
experimental conditions in the energy range from 15 to
1000 keV and estimated the yield of hot 2.7- to 22-MeV
electrons leaving the plasma. The method and results of
these measurements are described in detail in paper [15],
so we point out here only the main features. The spec-
trum of hard X-rays was measured in the 15- to 90-keV
region by the method of selective filters [16] and at
higher energies, up to 1.0 MeV, by the method of neu-
tral filters. The selective filters were made of Zr,
Rh, Cd, Gd, and Pb, and neutral filters were made of Pb.
The detectors of hard X-rays were protected from hot
electrons leaving the plasma with a Be filter of thick-
ness 3.5 g/cm2, which was placed at a distance of
10−20 cm from the detector. This filter reduces the X-
ray signal by a factor of 1.5–2 and completely absorbs
electrons with energies up to 10 MeV. All the detectors
were protected from scattered quanta and particles by a
lead case.

The spectra of fast electrons were measured simul-
taneously with the measurement of hard X-rays by the
method of neutral Pb filters. A detector with the same
filter but without Be protection was placed near the
hard X-ray detector. Thus, the detector with the Pb filter
measured the total signal from electrons and X-rays,
whereas the detector additionally shielded with the Be
filter measured only X-rays.

In experiments with the laser pulse intensity on the
Al target of about 5 × 1018 W/cm2, we detected 8- to
10-MeV electrons leaving the target in the near mirror
direction. Our estimated showed that the number of hot
electrons leaving the plasma in the energy range from
2.7 to 10 MeV was approximately 109. The spectra of
hard X-rays emitted by the plasma have a characteristic
 AND THEORETICAL PHYSICS      Vol. 94      No. 2      2002
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two-temperature shape. The higher temperature was
200–400 keV, and the lower one was 20–30 keV [15].

3. ANALYSIS OF EXPERIMENTAL DATA 
AND THE THEORETICAL ESTIMATES

Consider processes resulting in the absorption of
laser radiation and generation of fast particles. For I ≥
1016 W/cm2, collisionless absorption occurs because
the plasma temperature becomes rather high. Since the
prepulse intensity in our experiments is low, we deal
with a sufficiently sharp plasma boundary, when the
scale of the plasma inhomogeneity L in less than the
wavelength. It is known that the laser-field amplitude is
reduced at the sharp boundary by ωp/ω times. There-
fore, we can roughly estimate the absorption coefficient
η equal to the ratio of the absorbed energy to the laser
pulse energy εL, 

for these intensities by using the expression for col-
lisionless absorption in the regime of high-frequency
anomalous skin effect [17] or sheath inverse
bremsstrahlung (SIB) [18] obtained in the approxima-
tion linear in the laser field:

(1)

In this case, thermal electrons moving deep in the
plasma are accelerated by the laser-wave field over the
skin-layer length by absorbing the laser radiation
energy. This process is physically analogous to the Lan-
dau damping of a plasma wave. Expression (1) is valid
for vTωp/cω ≤ 1 (in our case, ~1), and it follows from it
that the absorption coefficient is proportional to the
number Z*ni of electrons in plasma. Note that the “vac-
uum heating” [19] and “pondermotive absorption” [20]
have, under our conditions, an effect on the absorption
coefficient that is comparable with the SIB effect, so
that expression (1) is valid with an accuracy to a factor
of the order of unity. When the laser pulse intensity is
very high, the absorption coefficient η is no longer
dependent on θ and I and is of the order of 0.3–0.4
[4, 21]. The velocity v e of electrons in the plasma skin
layer is determined by the laser-field strength. For this
reason, for comparable values of v e, the electron cur-
rent density j = eneve entering the expression for η
becomes greater for a materials with a higher concen-
tration of electrons in the plasma. One can see from
Fig. 1 that absorption in the Sn target is approximately
1.5–1.7 times higher than that in the Al target in the
intensity range in vacuum from 1018 to 5 × 1018 W/cm2.
Let us estimate the ratio of electron concentrations in
these materials taking into account the effective degree

η
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of their ionization. The electron temperature Te of the
plasma, which determines the degree of ionization of
the target atoms at this intensity, is several keV [2]. This
is sufficient for full ionization of an Al atom and pro-
vides the effective degree of ionization Z* ≈ 25 for Sn
because Z* ≈ (2/3)(ATe)1/3 [22]. Therefore, according to
our estimates, the absorption coefficient of the Sn target
at I ≤ 5 × 1018 W/cm2 is approximately two times higher
than that of the Al target.

Let us analyze the energy distribution of fast elec-
trons in the target, which follows from the shape of the
X-ray spectrum [15]. We will need the number of hot
electrons and their energy for analysis of the ion accel-
eration. The bremsstrahlung intensity of fast electrons
is described by the expression [23]

(2)

It is obvious that the dependence of the intensity on the
photon energy at the logarithmic scale is a straight line
with a slope determined by temperature, while the point
of intersection of the straight line with the ordinate axis
gives the logarithm of the concentration neh of fast elec-
trons. The estimate of the concentration of fast elec-
trons gives neh ~ 1018 cm–3, while the total number of
fast electrons produced during the laser pulse is 1011.
The temperature of fast electrons is determined by the
characteristic energy

(3)

which is acquired by an electron in the field of laser
waves. Here, I18 is the laser radiation intensity in units
of 1018 W/cm2. The appearance of the second group of
electrons with a lower temperature [15] is probably
explained by the countercurrent of plasma electrons
compensating for the fast-electron current [24]. With-
out such compensation, the fast-electron current
would exceed the Alfven current, which is physically
impossible.

Let us now analyze the mechanisms of the escape of
electrons and ions from a target into vacuum. A greater
part of fast electrons are accelerated deep into the
plasma by the pondermotive pressure force. However,
electrons located in the outer plasma layer near its sur-
face leave the plasma under the action of the reflected
part of the laser pulse at an angle to the normal close to
the mirror angle. Due to the escape of electrons into
vacuum and their penetration inside the target, the near-
surface plasma region becomes depleted of electrons.
The appearing ambipolar field and a positive spatial
discharge eject the near-surface part of the ions into
vacuum and deep into plasma in a direction close to the
normal to the target surface. Assuming that photons
impart their momentum εL/c and energy εL with the
conversion coefficient ηv ! η to a group of electrons

dε
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and ions escaping into vacuum, we obtain from the con-
servation laws the equation

for the conservation of the transverse component of the
momentum and the equation

for the energy conservation.
Here, ηv is a part of the absorption coefficient corre-

sponding to the particles escaping into vacuum; γ and
Ne are the Lorentz factor and the number of electrons;
and εL, εi, and pi are measured in units mec2 and mec.
Because the system is inhomogeneous in the longitudi-
nal direction, the longitudinal component of the field
momentum and of particles escaping into vacuum is not
conserved. By combining two conservation laws, we
obtain the relation

(4)

between the escape angles of the particles. Two impor-
tant conclusions follow from expression (4).

(1) The escape angle of the high-energy group of
electrons with γ @ 1 is close the mirror angle, θe ≈ θ,
while electrons with lower energies leave the target in a
direction close to the normal. The highest energy elec-
trons are formed in the region of plasma transparency,
where electrons are subjected to the action of the most
intense field. The energy of such fast electrons in the
electromagnetic wave is

(5)

where vE = eE/mω is the oscillation velocity of elec-
trons, and the initial momentum of an electron along
the laser beam is p0 ≈ mvE because it is determined by
the acceleration in the laser field E at the wavelength
λ = 2πc/ω. From here, we obtain for I ≈ 1019 W/cm2 the
value εuh ≈ 10 MeV, in accordance with the experiment.
We emphasize that this concerns a small number of
electrons belonging to the “tail” of the distribution
function. The main part of electrons has a lower charac-
teristic energy (3). Thus, electrons leave the target in a
range of directions from normal to mirror.

(2) The escape angle of ions, obtained from (4), can-
not obviously exceed

(6)

Thus, the ions escape on average virtually along the
normal to the target. We estimate the energy of a fast
ion from the law of conservation of momentum in the
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differential form, i.e., of conservation of the flux den-
sity for the longitudinal component of the ion pulse and
of electrons pulling the ions:

where ni, e are the concentrations of ions and electrons
in the near-surface plasma layer (the transparency
region of scale L) and

(ncr is the critical concentration). The characteristic
energy of fast electrons in the field of the incident and
reflected laser pulses is estimated as (3). Then,

(7)

For I18 ≥ 1, we find from (7) that εi ~ , in accordance

with the experimental dependence εi ~  in Fig. 3. To
determine the ratio Z*ne/ncr, in the near-surface plasma
we will use the results of X-ray measurements pre-
sented in the previous section. By substituting the value
of neh instead of ne, we obtain Z*ne/ncr ~ 0.1. Let us plot
the theoretical dependence εI(I) in Fig. 3, by substitut-
ing the values Z*ne/ncr ~ 0.1, θe ≈ θ, and η = 0.4 because
absorption weakly depends on I (Fig. 1). One can see
from Fig. 3 that the theoretical dependence (the dashed
curve) is close to the experimental dependence, indicat-
ing the validity of the model.

Along with simple estimates, we simulated the
escape of particles using the relativistic PM2D PIC
code [25]. The theoretical dependence of the total
energy (in eV) carried away by hydrogen ions to vac-
uum on the escape angle for the intensity equal to
1018 W/cm2 is shown in Fig. 4 (the solid curve) together
with experimental data. As in the experiment, the ions
leave the target mainly along its normal, with an angu-
lar dispersion of ~15°. The difference in the angular
widths of the theoretical and experimental dependences
in Fig. 4 is probably explained by the use of the one-
dimensional spatial model in calculations. The escape
angle of ions predicted by the two-dimensional model
can be substantially larger than (6).

Let us also compare the energy carried away by fast
ions calculated using the PIC code with the experimen-
tal value. It follows from the numerical calculation pre-
sented in Fig. 4 that the ions carry away the energy
1.2 × 1016 eV in the direction along the normal to the
target when the irradiation intensity is 1018 W/cm2. By
integrating the experimental velocity distribution of
ions escaping along the normal (Fig. 2) and multiplying
by the average energy of ions taken from Fig. 3, we
obtain the experimental result 7 × 1015 eV. Thus, the
calculations and experimental data are consistent.
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The main part of ions leaving the target are protons
with a small amount of C+ and C2+. The hydrogen and
carbon ions appear in the aluminum target due to
adsorption of water vapor on the target surface and as
chemical traces of the target surface polishing. There-
fore, in the absence of hydrogen and carbon on the tar-
get surface, according to (7), the energy of Al ions with
high Z* should be εi ≥ 1 MeV for Z* ≥ 6.

Note that, according to our calculations, the fast-ion
beam of approximately the same angular width propa-
gates deep into the target from the near-surface region
of volume V = π(d/2)2L due to the charge-separation
potential eϕ = εeh produced owing to the escape of fast
electrons with the energy εeh ≈ ηI/cneh from the surface
region deep into the target. Assuming that the fast ion
acquires the energy Z*eϕ ≈ εih and

is the Coulomb barrier energy, we obtain, similarly to [9],

where the dependence on I corresponds to (7) and coin-
cides with (7) for ((d/λ)1/2 ≈ ne/ncr. The number of such
ions in the Al target for the intensity 5 × 1018 W/cm2 is of
the order of 107, and the coefficient of conversion to the
energy of fast ions achieves ~1%. This fast-ion beam
can be used for the generation of nuclear reactions
inside the target (similarly to [26]), in particular, as a
high-power pulsed neutron source.

4. CONCLUSIONS

We have obtained the following results in this paper.
(i) Megaelectronvolt ions, submegaelectronvolt pro-

tons, and fast electrons with an energy above 10 MeV
have been detected by irradiating targets by ~1019 W/cm2

p-polarized laser pulses.
(ii) The spectral, spatial, and energy parameters of the

fast-ion beam have been determined for I > 1017 W/cm2.
(iii) The two-dimensional PIC calculations have

shown that the main part of fast ions leave the target
within a narrow solid angle normally to the target sur-
face upon its oblique irradiation (unlike fast electrons),
in accordance with the experimental results obtained
for I > 1017 W/cm2; in addition, the fast-ion beam also
propagated deep into the target.

(iv) The coefficient of conversion of the laser-pulse
energy into the energy of fast ions (of about 1%) obtained
by us confirms the outlook for using the laser for acceler-
ation of particles and generation of nuclear reactions.
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Abstract—The channel of the accommodation of the energy of a heterogeneous chemical reaction (recombi-
nation of hydrogen atoms) related to vibrational V–V exchange between excited chemical reaction products and
adsorption layer molecules (H2O, HDO, D2O, and H2) was studied by the method of modulated molecular
beams. The chemical reaction was found to proceed in an oscillatory mode caused by the nonequilibrium char-
acter of its elementary steps. The participation of adsorbed molecules in accommodation was studied by ana-
lyzing nonequilibrium desorption of these molecules. An isotope effect was observed in nonequilibrium des-
orption. The kinetic mechanism of the reaction and the micromechanism of elementary reaction events, which
determine the “physical” mechanism of catalysis in the system under study, are discussed. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Reactive collisions of atomic particles with the sur-
face of a solid (adsorption, recombination of atoms,
etc.) are often accompanied by considerable energy lib-
eration, up to several electronvolts per elementary event.
Usually, this energy first concentrates on the newly
formed chemical bond in the form of high-excitation
motions of nuclei. Nonequilibrium vibrational states
with large quantum numbers then relax by transferring
excess energy to various degrees of freedom of the solid
and, possibly, reaction product (accommodation pro-
cess). At high reaction heats (of the order of 1 eV) and
usual Debye temperatures of solids, the energy released
in the reaction is large compared with the energy even of
phonons with the highest frequency (of about 10–2 eV),
and exchanging the heat of the reaction into phonons is
seriously hindered. Long-lived (on the time scale of
one-phonon excitation lifetimes) nonequilibrium vibra-
tional states (vibratons) with lifetimes τv @ 10–13 s can
then form on the surface. If the vibrational spectrum of
the surface contains frequencies (for instance, adsorp-
tion layer frequencies) coinciding with or close to
vibraton frequencies, a vibraton can move over the sur-
face with insignificant damping and display the proper-
ties of a usual quasi-particle (in two dimensions). In
addition to its high-frequency character, the simplicity
of reaction product structures contributes to the long
lifetime of vibratons, because a small number of inter-
nal vibrational (and other) degrees of freedom in the
1063-7761/02/9402- $22.00 © 20228
product impedes the decay of vibratons to its “internal”
excitations. Such conditions, for instance, characterize
heterogeneous recombination of hydrogen atoms, when
the H + Hads = H2(ads) recombination event causes the
appearance on the surface of a “giant” high-frequency

vibraton , which has an energy of about 4 eV and
"ω0 ≈ 0.5 eV and is bound to the very simple H2 mole-
cule.

Note that, generally, a vibraton interacts with both
the atomic (lattice) and the electronic subsystem of
crystals (reaction products) and causes transitions of
these subsystems into excited vibrational and electronic
states. Even comparatively recently, the latter (“elec-
tronic”) accommodation channel has been totally
rejected in view of the drastically different masses of
the electron and atomic particles [1]. In a strongly
vibrationally nonequilibrium state, we cannot, how-
ever, independently consider the “heavy” (lattice) and
“light” (electronic) crystal subsystems in the Born–
Oppenheimer approximation, because electron-vibra-
tional coupling caused by motions of nuclei mixes elec-
tronic states and can initiate nonadiabatic electronic
transitions. Other electron-vibrational interaction
mechanisms that cannot be disregarded in the problem
under consideration are also known [2]. Electronic
accommodation is observed in several physical phe-
nomena related to electronic excitation of solids as a
result of heterogeneous chemical reactions. These phe-
nomena include nonequilibrium conductivity of crys-

H2
v
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tals on whose surface reactions occur [3, 4], transverse
chemomagnetoelectric effect (similar to the Kikoin–
Noskov effect in photoexcitation) [5], longitudinal
chemical valve effect similar to the generation of pho-
toelectromotive force [6], luminescence of crystals in
the visible and other spectral regions [7], and electronic
emission from the surface [8, 9].

The lattice accommodation channel also leads to
several physical effects unknown earlier, such as emis-
sion from the surface of crystal lattice components
(atoms and ions) during reactions [8] and reaction-
induced diffusion of impurity atoms from the surface
into the bulk of the crystal [10]. All these effects have
been discovered comparatively recently.

To summarize, an elementary exothermic chemical
reaction event is nonequilibrium in principle from the
physical point of view. The evolution of primary exci-
tations (vibratons) that arise in electronic configuration
(chemical bond) rearrangements can determine the fine
features and the most important characteristics of reac-
tions including reaction rates, as will be shown below.

As concerns practical applications, solving the
problem under consideration opens up possibilities for
controlling many important technological processes
such as growth of crystals and epitaxial layers, catalysis,
adsorption separation of isotopes (including adsorption
separation under laser actions), and thermal protection
of descending spacecraft.1

The problem of accommodation has not been rigor-
ously formulated in the theory of adsorption and heter-
ogeneous reactions, in particular, because the micro-
scopic paths and mechanisms of accommodation on the
surface have scarcely been studied theoretically and
experimentally.

In this work, we consider the poorly studied accom-
modation channel, which is of importance for gas–solid
systems when the surface of the solid has a noticeable
adsorbate coverage. The participation of adsorbed mol-
ecules in accommodation can be traced by studying the
effect of nonequilibrium desorption of these molecules
(“own” or “foreign”) as a result of absorbing the energy
of reactive vibratons. The gas–adsorption layer interac-
tion was found to cause the appearance of an oscillatory
reaction mode in the system under study. The observa-
tion of a real oscillatory chemical process is always a
striking event, although such phenomena are becoming
common in modern physics.

2. EXPERIMENTAL RESULTS

The object of study was the Teflon (with some
adsorbate)–atomic hydrogen system. Teflon is charac-
terized by very low heats of adsorption of H2O and H2
molecules and H atoms (adsorbate particles of our

1 Spacecraft are heated both because of air friction and because of
the recombination on their surfaces of free atoms (O and N)
formed from molecules in the Earth’s atmosphere dissociated
under the shock wave action.
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experiments), which favors nonequilibrium desorption
of such particles caused by the energy effect of the reac-
tion. The nonequilibrium desorption effect in this sys-
tem is also favored by substantial energy release in the
recombination of H atoms (above 4 eV per recombina-
tion event). The electronic accommodation channel is
of no importance in the system under consideration
because the lowest electronically excited Teflon and
reaction product (H2 molecules) states lie much higher
than the heat effect of the reaction on the energy scale.

Virtually the only effective accommodation channel
under these conditions is vibrational V–V relaxation in
the adsorption layer (this process can occur under
conditions close to resonance) and the accompanying
V–T relaxation (nonequilibrium desorption). At low
adsorbed particle concentrations, there is no conditions
favoring accommodation. The Teflon–atomic hydrogen
system is therefore characterized by exceptionally low
atomic recombination coefficients (this is one of the
reasons for using this system in hydrogen masers [11]).

Measurements were taken on a unit with molecular
beams. The experimental procedure was described in
[12]. Here, we only give the basic scheme of measure-
ments (Fig. 1). An atomic–molecular beam of hydrogen
(H2 + H) formed by a source of a special design was
directed into accumulating quartz flask 1 (15 cm in
diameter), such as usually employed in hydrogen masers.
The flask walls were coated by a Teflon film (F-10). The
densities of the flows of H atoms and H2 molecules

were  ≈ 5 × 1014 cm–2 s–1 and  ≈ 2 × 1015 cm–2 s–1,
respectively. Preliminarily, heavy water D2O molecules
with HDO and H2O admixtures were adsorbed on flask
walls (adsorption time t ≈ 1 min,  = 18 Torr,
T = 300 K). Starting with the moment of switching on
the H + H2 beam, the following kinetic dependences
were recorded by independent methods: (1) the inten-
sity of desorption of particles from the surface of Teflon

j1
0 j2

0

PD2O HDO H2O, ,

1

2

3

4

H2

MKh-7304

FEU-118

D2O

HDO, H2O

HF field

H
 +

 H
2 

be
am

hv

Fig. 1. Scheme of experimental unit (see text for explana-
tion).

photomultiplier
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was determined mass spectrometrically on an MKh-7304
mass spectrometer; (2) concentration n of hydrogen
atoms in the flask was monitored by observing the
chemiluminescent response of a small luminophor 2
sample, which luminesced because of the recombina-
tion of H atoms on it; the intensity of chemilumines-
cence (ICL, recorded using an FEU-118 photomulti-
plier) at the moment of switching on the beam of atoms
was strictly proportional to n; (3) the recombination
coefficient of H atoms on Teflon (γ) was determined
from the rate of decreasing the concentration of H
atoms in the flask, n(t), after switching off the atomic
beam with the use of the same chemiluminescent sen-
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55 95 135 175 215 25515
0

10

20

30

40
50

t, min

∆I, arb. units

0 t

I

∆I{
}I

Fig. 2. Dependences of the intensity of nonequilibrium des-
orption of D2O (d), HDO (×), and H2O (n) from the surface
of Teflon F-10 on the time of exposure to H + H2 beams.
The experimental schedule is shown in the inset, where
marked by arrows are time moments of switching off (↓ )
and on (↑ ) H + H2 beams during measurements of intensity
I of desorption of water molecules as a function of time at
T = 295 K and j1 = 5 × 1014 cm–2 s–1.
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Fig. 3. Heterogeneous recombination coefficient of H atoms
(curve 1) and heterogeneous chemiluminescence intensity
of a probe within the flask (curve 2) as functions of the time
of exposure to H + H2 beams at T = 295 K and j1 = 5 ×
1014 cm–2 s–1.
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sor and photomultiplier. Recombination coefficient γ is
the ratio between the number of incident atoms that
recombine on the surface to the total number of atoms
colliding with the surface (for instance, in unit time).
The recombination of atoms incident from the gas
phase with atoms adsorbed on the surface is character-
ized by γ = σ2N1, where N1 is the surface concentration
of adsorbed atoms and σ2 is the recombination reaction
cross section. When the beam is switched off, the con-
centration of atoms in the flask (n) decreases because of
their recombination on flask walls by the law [13]

from which the γ value is calculated (v a is the thermal
velocity of atoms). The time taken by γ measurements
was small (5 s), which allowed us to study long-term
kinetics γ(t) determined by slow changes in the condi-
tions on the surface.

Along with usual equilibrium (thermal) desorption
of water molecules (D2O, HDO, and H2O), we
observed nonequilibrium desorption when the surface
was subjected to bombardment by H + H2 beams. We
were able to separate the equilibrium and nonequilib-
rium contributions by applying a modulation proce-
dure. When beam atoms were switched off (HF dis-
charge generating atoms was switched off or modulator
shutter 3 closed the beam), we observed a jump
decrease (∆I) in the intensity of D2O, HDO, and H2O
peaks in the mass spectrum. The residual intensity (I)
was used as a measure of the equilibrium desorption
flow, whereas the ∆I value characterized the nonequi-
librium desorption component (Fig. 2, inset). The
∆I/(I + ∆I) ratio, or the fraction of nonequilibrium des-
orption, increased during H atomic beam action from
zero to 30–40% at t > 30 min. An H2 purely molecular
beam (free of atoms) did not cause the nonequilibrium
desorption effect.

The ∆I(t) and ∆I(t)/I(t) time dependences were
unusual (the latter value can be selected as a measure or
effectiveness of nonequilibrium desorption of water
molecules). The ∆I intensity of nonequilibrium desorp-
tion (like the ∆I/I ratio) was an oscillatory function of
time (Fig. 2) at a constant beam intensity. In addition,
the γ(t) recombination coefficient of atoms on the sur-
face of Teflon (Fig. 3) and the n(t) concentration of H
atoms in the flask (as mentioned, n(t) was measured by
the intensity of luminescence from the chemilumines-
cent sensor) also exhibited oscillations. The ∆I non-
equilibrium desorption flow, the ∆I/I relative flow, and
the γ value oscillated almost in phase with each other
but in antiphase to n(t). According to our hypothesis,
the nonequilibrium component of the desorption of
molecules is due to transfer of vibrational energy from

 (vibratons)2 to preliminarily adsorbed water
molecules (V–V exchange in the adsorption layer) fol-

2 Here, L (from lattice) is the symbol of the surface of a solid.

n n0 γ
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lowed by their nonequilibrium desorption (V–T
exchange). As the γ value characterizes the intensity of
the reaction (cm–2 s–1) of the recombination of atoms on
the surface (the reaction intensity equals γj1, where j1 is
the flow density of atoms H that reach flask walls), this
hypothesis directly explains the synchronous character
of γ, ∆I, and ∆I/I variations in time, because the last two
values are also proportional to the intensity of the reac-
tion. At time moments corresponding to the highest
reaction intensity on the surface (to maximum ∆I, ∆I/I,
and γ values), the concentration of atoms in the flask is

minimum (at a constant  flow of H atoms into the
flask from the source of atoms).

Oscillations themselves can also be explained by V–
V exchange on the assumption that the probability of
recombination of atoms (and, therefore, the rate of the
reaction) is determined by the probability of stabilizing

 molecules formed in recombination events by
means of vibrational energy loss. This probability in
turn depends on surface coverage by water molecules,
which absorb energy in excess of the equilibrium
energy. It follows that we discuss an unusual catalytic
action of a substrate with an adsorbate which is “phys-
ical” catalysis involving the accommodation of reaction
heat by an adsorbate (catalyst); this catalyst increases
the σ2 recombination reaction cross section in the γ =
σ2N1 formula, where N1 is the surface concentration of
adsorbed atoms. The “naked” substrate itself much less

effectively stabilizes the  reaction product (less
effectively absorbs vibratons), because this product is a
carrier of large vibrational quanta (in the free H2 mole-
cule, "ω0 ≈ 0.5 eV at the lower vibrational levels). The
accommodation “through a substrate” is an essentially
multiphonon (and therefore low-probability) process;
Teflon is known as one of the worst catalysts of the
recombination of H atoms, γ ~ 10–6. Conversely, H2O,
H2, etc., adsorbates containing “light” atoms may have
frequencies with a small “resonance defect” with

respect to the  vibraton, which favors effective
accommodation “through the adsorbate.”3 Surface cov-
erage by an adsorbate should not be too large, because,
for the recombination of atoms on the surface to occur,
the surface should contain a fairly large number of free
adsorption centers for H atoms (the N1 value in the γ =
σ2N1 formula should be fairly large). From this point of
view, vibrational development of the recombination of
H atoms on the surface of Teflon with an adsorbate can
qualitatively be described as follows. At large surface
coverages by water molecules, the surface concentra-
tion of adsorbed atoms (N1) is low. The γ value and the

3 According to [14], excited  molecules incident on the

Teflon surface from the gas phase were also successfully accom-
modated in the presence of specially preadsorbed molecules on
the surface.

j1
0

H2
v –L

H2
v –L

H2
v –L

H2
v  = 1
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intensity of recombination γj1 are therefore also low. As
water molecules undergo desorption (both equilibrium
and nonequilibrium), surface coverage by H atoms (that
is, N1) increases, and surface coverage by water mole-
cules approaches the value optimal for effective V–V
exchange between the  and H2O–L systems. An
increase in N1 and σ2 leads to an increase in γ and,
therefore, the rate of the reaction accompanied by an
increase in the intensity of nonequilibrium desorption
(the ∆I(t) and ∆I/I values increase). At the same time,
the volume concentration of atoms (n) decreases and
that of water molecules increases.4  However, simulta-
neously, the mechanism of reaction deceleration begins
to operate; namely, because of nonequilibrium desorp-
tion of water as a result of V–V exchange, surface cov-
erage by the adsorbate (water molecules) decreases and
increasingly deviates from optimal (the σ2 and γ values
decrease). The γj1 reaction intensity and, accordingly,
the ∆I and ∆I/I values also decrease. The amplitude of
∆I oscillations should lessen as time passes, because
the concentration of water molecules in the flask and on
the surface decreases as a result of evacuation from
cycle to cycle. This conclusion is in agreement with the
experimental data (Fig. 2). Conversely, the amplitude
of ∆I/I oscillations increased in our experiments
because the relative contribution of nonequilibrium
desorption grew larger. Interestingly, contrary to our
expectations, the amplitude of γ(t) oscillations did not
decrease to zero even at very long times (more than
4 hours) of Teflon surface exposure to H + H2 beam
action, when water molecule lines disappeared from the
mass spectra (Fig. 4). This led us to conclude that the
adsorption of foreign molecules (water in our experi-
ments) is not a necessary condition for the appearance

4 The concentration of water increases because of the design of the
unit. Although molecules are continuously evacuated from the
flask, they are evacuated through a narrow capillary, which makes
the process inertial. Any adsorption–desorption equilibrium vio-
lation therefore causes pressure changes in the flask.
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Fig. 4. (1) Relative nonequilibrium desorption of H2 and
(2) recombination coefficient of H atoms on the surface of
Teflon F-10 as functions of the time of exposure to H + H2

beams at j1 = 2.5 × 1014 cm–2 s–1 and T = 298 K.
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of recombination coefficient oscillations, which can
also result from the adsorption and subsequent non-
equilibrium desorption of its own molecules (H2). We
performed special experiments following the same pro-
cedure with H + H2 atom–molecular beams but without
preliminarily adsorbing water. The surface of the Teflon
was made free of adsorbed impurities by heating in a
high vacuum and pretreating with an intense flow of
hydrogen atoms (j1 = 1018 cm–2 s–1) for an hour (the gas
was supplied by diffusion). As with water adsorption,
we used independent techniques to simultaneously
measure the intensity of nonequilibrium desorption of
H2 molecules ∆I/I (mass spectrometrically), the inten-
sity of chemiluminescence of the luminescent probe
ICL ~ n (by a photomultiplier), and the recombination
coefficient of H atoms on Teflon. According to Fig. 4,
the ∆I/I and γ(t) values oscillated in time in phase with
each other, as in experiments with water. It can be sug-
gested that the mechanism of oscillations had the same
nature in both experiments, and that, in the absence of
foreign (water) molecules in the adsorbate, the role of
the adsorbate–catalyst was played by its own H2 mole-
cules; that is, the process occurred under autocatalytic
oscillation conditions. Autocatalytic oscillations were
caused by oscillations of surface coverage by adsorbate
particles (H2 and H). The effectiveness of V–V
exchange with H2–L molecules in the adsorption layer
was even higher than with H2O–L because these mole-
cules best satisfied the resonance conditions for vibra-
tional energy transfer.

Let us estimate the effectiveness of nonequilibrium
desorption of H2, that is, the number of desorbed mol-
ecules per one recombination event on the surface,
from the experimental data. If  is the flow of mole-
cules from the accumulating flask to the mass spec-
trometer and  is the nonequilibrium contribution
to this flow, then, clearly,

(1)

The lifetime of molecules in flask volume deter-
mined by the probability of their gas kinetic escape
through the narrow orifice equaled 15 s in our experi-
ments, which was much less than the period of ∆I/I
oscillations. It follows that quasi-stationary conditions
were maintained in the flask, and the flow of molecules
into the flask from the H + H2 beam equaled the outflow
of molecules from the flask; that is,

where  is the density of the flow of molecules inci-
dent on the flask inlet hole of area S0. Substituting this

 value into (1) yields

(2)

JH2

∆JH2

∆JH2

∆I
I

------JH2
.=

JH2
j2

0S0,=

j2
0

JH2

∆JH2

∆I
I

------ j2
0S0.=
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The flux of H atom recombination events on the Teflon
flask surface is

(3)

where j1 is, as previously, the density of the flow of H
atoms onto flask walls of area S. The effectiveness of
nonequilibrium desorption is determined by the ratio
between (2) and (3),

α ; (4)

The above relations allow estimates to be made. Under

the experimental conditions,  S0 = 4 × 1014 s–1, j1 =
3 × 1015 cm–2 s–1, S = 706 cm2, and (∆I/I)max = 0.16
(Fig. 4, curve 1). The corresponding γ value is γ = 1.8 ×
10–5 (Fig. 4, curve 2). Substituting these values into (4)
yields

The minimum value is

It follows that one  molecule formed on the
surface causes nonequilibrium desorption of up to 3 H2

molecules. Clearly, if /J > 1, the flow of molecules

that experience nonequilibrium desorption ( )
exceeds the flow of molecules that replenish the surface
as a result of the recombination of atoms (these mole-
cules in the form of vibratons have fairly long lifetimes
on the surface; otherwise, they would not be able to par-
ticipate in V–V exchange). Under these conditions, sur-
face coverage decreases as time passes. If the opposite
inequality holds, that is, /J < 1, surface coverage
by molecules increases (this is the effect of dynamic
blocking of the surface by molecules formed on the sur-
face during the reaction). Oscillations of the /J
ratio between values larger and smaller than one is pre-
cisely what signifies the occurrence of heterogeneous
recombination in the accumulating flask in an oscilla-
tory regime.

Qualitative considerations concerning the appear-
ance of oscillations are substantiated by a strict kinetic
analysis of the problem (see Section 3).

Similar experimental estimates for nonequilibrium
desorption of water molecules during the recombina-
tion of H atoms on the surface also give /J ratios
that oscillate between values larger and smaller than

J
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one. In these experiments also, the maximum /J
value reached three.

In the experiments that we describe, we observed
the isotope effect in nonequilibrium desorption;
namely, the relative probability θ of nonequilibrium
desorption of water molecules caused by the recombi-
nation of H atoms depended on the isotope composi-
tion of molecules. The probabilities determined exper-
imentally for the D2O, HDO, and H2O molecules were
related as θ1 : θ2 : θ3 = 1.6 : 1.8 : 2.0. Light water mole-
cules with vibrational quanta highest in energy (as com-
pared with D2O and HDO), which, therefore, exhibited
the smallest resonance defect in V–V exchange with

 vibratons, most readily underwent nonequilib-
rium desorption.

The isotope effect in nonequilibrium desorption is
one of the direct arguments of the validity of the model
under consideration. Under certain conditions, an
adsorption layer provides an effective channel for the
accommodation of the energy of the heterogeneous
chemical reaction. The adsorption layer necessary for
energy accommodation can be either created from the
outside or formed automatically by the reaction itself
(from reagents and reaction products). No matter what

∆JH2O

H2
v –L
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
the origin of the adsorbate on the surface, the catalytic
efficiency of the surface and the rate of the reaction are
functions of surface coverage, and the coverage in turn
depends on the rate of the reaction. Under these condi-
tions, manifestations of various nonlinear effects in the
kinetics of the reaction can be expected.

3. KINETIC MECHANISM 
OF THE RECOMBINATION OF H ATOMS 
AND NONEQUILIBRIUM DESORPTION 

OF ADSORBED MOLECULES

In what follows, we consider the problem in the
most general form taking into account that, in the
recombination of H atoms, the surface can contain both
foreign molecules (water, etc.) and its own particles
(H and H2) and that all of them can participate in non-
equilibrium desorption. The kinetic mechanism of reac-
tions in the flask includes the following steps:

H L+ HL—adsorption (desorption) of atoms,
ν1

ν1'

H HL H2
v L—recombination of atoms,+

ν2
H2
v L

+L( ) 2 HL( )—nonequilibrium dissociation,

H2
v 1– L phonons—multiphonon relaxation,+

+H2L( ) H2
v 1L H2

v 1– L—relaxation V–V  exchange( ),+

H2 L—nonequilibrium desorption of H2 molecules,+

+HL( ) H L H2
v 1– L—nonequilibrium desorption of  atoms,+ +

+H2OL( ) H2O L H2
v 1– L—nonequilibrium desorption of H2O molecules.+ +












µ

Γ1

σΓ2

Γ3

σ4Γ4

σ5Γ5
Further, the process is repeated with a decrease in
the number of the occupied vibrational level,

and so on until

H2
v m– 1+ L

H2
v 1L phonons,+

+H2L( ) H2
v 1L H2

v 1L,+

H2 L,+

+HL( ) H L H2
v 1L,+ +

+H2OL( ) H2O L H2
v 1L,+ +










 Γ1

σΓ2

Γ3

σ4Γ4

σ5Γ5

H2 L H2L—adsorption (desorption) of H2,+
ν3

ν3'
Probabilities νi referred to unit time, Γi, and cross
sections σi of the corresponding reactions are given
above the arrows. The vibrational quantum number v
– m + 1 corresponds to v  = 2, and v 1 labels molecules
at the first vibrational level v  = 1. For simplicity, the
model includes adsorbed water without heavy water
admixtures, and σiΓi-type values are the rates of
exchange of vibrational quanta.

The system of kinetic equations that corresponds
to this model [with the corresponding surface con-
centrations5 L  N(t), HL  N1(t), H2L  N2(t),

5 For instance, the concentration of free surface centers L(t) is
denoted by N(t).

H2OL H2O L—desorption of H2O.+ν'
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  ,   , and
H2OL  N3(t)] is as follows:

and so on according to

Note that the surface processes under consideration
are characterized by a certain hierarchy of times. For
instance, the Γi ~ 103–108 s–1 values are much larger
than the characteristic rates of adsorption, desorption,
and recombination νi. The system is then in a quasi-
equilibrium state; that is,

The quasi-equilibrium condition yields

H2
v L N2

v t( ) H2
v k– L N2

v k– t( )

Ṅ –ν1N ν3N– ν1' N1 ν3' N2 µN2
v–+ +=
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v N2

v 1– … N2
v 1+ + +( ) ν'N3,+

Ṅ1 ν1N ν1' N1– ν2N1– 2µN2
v+=

– σ4Γ4N1 N2
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Ṅ2
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v 1– N2

v δ,=
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Substituting these relations into the initial system of
equations, we obtain

(5)

Here,

is the total number of adsorption sites per unit surface,

The flow of H2O molecules that undergo nonequilib-
rium desorption from the surface is proportional to the

 concentration and depends on the rate of the
recombination of H atoms,

H2O molecules (or other admixtures) may be (pre-
liminarily) adsorbed predominantly on surface sites M
different from H atom adsorption sites L. The recombi-
nation of H atoms can then also stimulate desorption of
H2O (or other admixtures) from sites M by the mecha-
nism described above. In addition, stimulated surface
diffusion of H2O molecules adsorbed on sites M to sites
L, on which H atoms recombine, can occur,

0 ≤ k ≤ v  – 1,

The above system of equations then takes the form

δ
Γ1 σΓ2N2 σ4Γ4N1 σ5Γ5N3+ + +

Γ1 σΓ2N2 Γ3 σ4Γ4N1 σ5Γ5N3+ + + +
-------------------------------------------------------------------------------------------,=

N2
v m– 1+ N2

v δm 1– ,=

N2
v 1 N2

v δm A 1–( )BN2
v ,+=

N2
v N2

v 1– … N2
v 1+ + + N2

v AB,=

A 1
σΓ2N2

Γ1 Γ3 σ4Γ4N1 σ5Γ5N3+ + +
--------------------------------------------------------------------,+≡

B
1 δm 1+–

1 δ–
--------------------.≡

Ṅ1 ν1N ν1' N1– ν2N1– 2µ σ4Γ4N1BA–( )N2
v ,+=

Ṅ2 ν3N ν3' N2– ν2N1 µ Γ3AB+( )N2
v ,–+=

Ṅ3 –ν'N3 σ5Γ5N3BAN2
v .–=

N1 N2 N N3+ + + N0=

µ µ0 1
N1 N2 N3+ +

N0
--------------------------------– 

  .=

N2
v

∆I σ5Γ5N3BA
ν2N1

a1
------------ 

  .=

H2
v k– L H2OM L H2

v k– 1– L M H2OL,+ + + +Γmσm

H2
v L H2OM H2

v 1– L M H2O.+ + +
Γ5σ5

Ṅ1 ν1N ν1' N1– ν2N1– 2µ σ4Γ4N1BA–( )N2
v ,+=

Ṅ2 ν3N ν3' N2– µ Γ3AB+( )N2
v ,–=
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Here, H2O–M  Nm, and  is the probability of des-
orption of H2O from site M per unit time.

The complete scenario of surface processes should
take into account the possibility of preliminary adsorp-
tion on sites M of not only foreign (water molecules)
but also its own molecules (H2). The recombination of
H atoms on surface sites L then can cause stimulated
transfer of H2 molecules from sites M to L,

For simplicity, let there be no adsorbed water mole-
cules, N3 = Nm = 0.

The kinetic equations for this model have the form

(6)

Here, the surface concentrations are denoted as M 
NM and H2 – M  N2M, σ2M is the cross section of
adsorption of H2 on sites M, and j2 is the density of the
flow of H2 molecules onto flask surface.

It is also necessary to write the kinetic equations that
determine the densities of H atom and H2 molecule
flows in the accumulating flask. Under kinetic condi-
tions (σ2N1R/2D < 1, where R is the flask radius and D
is the diffusion coefficient of atoms) characteristic of
units with molecular beams, we have, for instance, for
atoms,

(7)

Ṅ –ν1N ν3N– ν1' N1 ν3' N2 µN2
v–+ +=

+ σ4Γ4N1 Γ3 σ5Γ5N3+ +( )BAN2
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– N2
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N
N0
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v ,–=

Ṅ3 –ν'N3 σ5Γ5BAN2
v N2
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N
N0
------.+–=

νm'

H2
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v k– 1– L M H2L.+ ++ +
ΓMσM
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v ,+=

Ṅ2 ν3N ν3' N2– ν2N1 µ Γ3BA+( )N2
v–+=

+ N2
v ABΓMσMN2M

N
N0
------,

Ṅ2M = σ2M j2NM νM' N2M–

– N2
v AB ΓMσM

N
N0
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  N2M.

4R
3v a
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∂ j1

∂t
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S0

4πR2
------------ j1

0 ν1' N1+ 
 =

+ σ4Γ4AB
σ2N1

2

a1
------------ σ2N1– σ1N– P

S0

4πR2
------------–

 
 
 

j1.
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As 3v a/4R ~ 105 s–1, there is quasi-equilibrium between
surface coverage and the concentration of atoms in the
accumulating flask,

(8)

Here, P is the probability of escape of an atom from the
flask when the atom is in the supplying channel of the
accumulating flask of the maser.

The obtained system of kinetic equations (5)–(7)
was numerically solved by the Runge–Kutta method
with a ∆t = 10–9–10 s step over the time mesh; it was
taken into account that the criterion of stability of the
solution to the system should be satisfied.

A computer study of the model revealed self-oscil-
latory variations in time of the N1 and N2 concentra-
tions, the heterogeneous recombination coefficient γ,
and the intensity of nonequilibrium desorption of water
molecules, H2, and H atoms (Fig. 5). The effectiveness
of nonequilibrium desorption (the number of particles
that underwent nonequilibrium desorption as a result of
one H atom recombination event) was close to that
observed experimentally. Taking into account the total
probability of gas kinetic escape of desorbed particles
from the reaction volume [see (7)] also leads to the time
dependence of the concentrations of hydrogen atoms
and molecules in the reaction volume.

The period of oscillations is determined by the den-
sities of the flows of atoms and molecules, the cross
sections of adsorption σ1 and recombination σ2, and the
initial conditions. An analytic (sufficient) condition of

j1

S0

4πR2
------------ j1

0 ν1' N1+ 
 =

× P
S0

4πR2
------------ σ1N σ2N1 σ4Γ4AB

σ2N1
2

a1
------------–+ +
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Fig. 5. Changes in surface coverage by atoms N1 and mole-
cules N2, in recombination coefficient γ, and in number α of
molecules undergoing nonequilibrium desorption per one
recombination event: (a) in the absence of oscillations,
(b) periodic changes with increasing amplitudes, (c) relax-
ation oscillations (“recombination explosion”), and (d) sto-
chastic oscillations. Computer simulations.
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the appearance of oscillations, which follows from the
obtained kinetic mechanism, is given by the following
inequalities:

In the problem under consideration, the necessary
condition for the appearance of oscillations is nonequi-
librium desorption of  (µ ≠ 0) and stimulated diffu-
sion of H2M (ΓM ≠ 0).

We found by numerically solving (5)–(7) that
imposing nonlinearities of various types resulted in a
complex behavior of the system. Several types of qual-
itatively different solutions are possible. These are
monotonic time dependences of γ, α, and surface cov-
erages N1 and N2 (Fig. 5a), as well as periodic oscilla-
tions and quasi-periodic behavior. Periodic oscillations
can, in turn, have a constant amplitude or an increasing
(Fig. 5b) or decreasing amplitude. More complex
behaviors of surface coverages N1 and N2 and the γ and α
values were also obtained. For instance, periodic oscilla-
tions of the type of relaxation oscillations (“recombination
explosion”) shown in Fig. 5c are possible. Recombination
explosion is a sharp change in the N1, N2, and α parame-
ters during a very short time (less than 10–6 s in the
problem under consideration). For such an explosion to
occur, the stimulated recombination reaction

with the rate constant Γ6 of the order of 10–19 cm2 s–1 is
additionally introduced into the scheme of processes.
At large Γ2 values, model behavior variants correspond-
ing to multiplicity of solutions with the transition to
stochastic oscillations are possible (Fig. 5d).

The rates of the corresponding processes can be esti-
mated based on their microscopic models.

4. MICROMECHANISMS OF NONEQUILIBRIUM 
DESORPTION CAUSED BY VIBRATIONAL 

EXCITATION OF INTRAMOLECULAR BONDS 
(V–V AND V–T EXCHANGE)

Consider vibrational quantum transfer from an
adsorbed  molecule (vibraton) to a water mole-
cule H2O–L (or to another recipient) on the surface. In
first-order perturbation theory, the rate of a multiquan-
tum transition with transfer of k vibrational quanta from

 and excitation of H2O–L from the zero to the
k' – k0 vibrational level is

where ρ(E) is the energy density of final states.

2µ a1–
a1

-----------------ν2 ν1 ν1' ν3 ν3'+ + +( ) 0,≥–

a2 µ– ΓMσMN2M+
a1

----------------------------------------------ν1ν2 ν3ν1– ν3 ν3'+( )2
0.>–

H2
v

H2
v L– 2 H L–( ) 2 H2

v L–( ) L+ +Γ6

H2
v –L

H2
v –L

ν∗ 2π
"

------ v k– k' W v 0,,〈 〉 2ρ E( ),=
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The interaction between  and H2O–L is, in all
probability, quadrupole–dipole interaction. The inter-
action energy then equals

where R is the distance through which energy is trans-
ferred, r and Q are the displacements in the quadrupole
and the dipole from the equilibrium position, χ is the

orientation factor, and  and  are the derivatives of
the dipole and quadrupole moments at equilibrium,

Let us calculate the matrix element for the transi-
tion rate. Substituting W into the expression for
〈final|W |initial〉  yields

Consider relaxation in the  molecule through one
or two vibrational levels. For oscillations in the Morse
anharmonic potential, we have

Accordingly, let us find the second multiplier of the
interaction matrix element for the excitation of H2O–L
from the zeroth to the first vibrational level,

Here, m and M are the reduced masses of the oscilla-
tors, and ω and ω0 are their cyclic frequencies.

The energy density of final states ρ(E) in H2O can be
estimated as

The rate of quadrupole–dipole exchange of vibrational
quanta then equals

For H2,  = 2.9 D/Å. For estimation purposes, set

= 1 D and R ≈ 10 Å for water (coverage by H2O
equals 1014 cm–2). This gives ν* = 105 s–1. Generally,
ν* = 105(N'/1014)4 s–1, where N' is the sum of the con-
centrations of H2O and H2 adsorbed molecules. The
rate of the transfer rapidly increases as the surface is

H2
v –L

W
χ

εR4
--------Ḋ r0( )µ̇ Q0( )rQ W0rQ,= =

Ḋ µ̇

W0
χ

εR4
--------Ḋ r0( )µ̇ Q0( ).=

v k k' W v 0,,–〈 〉 W0 v k r v–〈 〉 k' Q 0〈 〉 .=
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v k– r v〈 〉

"v
2mω0
-------------- 

  1/2

, k 1,=
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2mω0
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  1/2 v 1–
4S
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, k 2.=








=

k' 1= Q 0〈 〉 "
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1/2

.=

ρ E( ) "ω( ) 1– .=

ν∗ π W0
2v

mMω2ω0
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Ḋ r0( )
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filled by H2O–L and H2–L molecules. The probability
of desorption of a vibrationally excited molecule (H2O–
L or H2–L) from the adsorption potential of depth q as
a result of intramolecular nonequilibrium vibrations of
frequency ω will also be estimated in first-order pertur-
bation theory. The potential including correlation of
internal (coordinate ∆r) and adsorption (∆z) vibrations
will be written in the form

(this is a linear approximation to the Morse potential).
The rate of nonequilibrium desorption of a molecule
into a continuous spectrum of free states is

Here, ωi is the vibrational frequency of the molecule as
a whole in the adsorption potential of depth q, ω is the

intramolecular vibration frequency,  is the operator of
momentum, p is the momentum of the desorbing mol-
ecule, and 2S + 1 is the number of levels in this poten-
tial up to the continuous spectrum boundary. The rate of
nonequilibrium desorption at ω = 1013 s–1, ωi = 1012 s–1,
and 2S + 1 ≈ 10 equals Γ ≈ 106 s–1. This desorption rate
value is quite measurable and agrees with our experi-
mental data in order of magnitude.

5. CONCLUSION

In this work, we used a modified variant of the Ram-
sey unit with molecular beams to study nonequilibrium
processes on the surface. The original version was
designed to accumulate atomic particles in the required
quantum state in the flask volume for creating hydrogen
masers. The accumulation effect is observed because a
hydrogen atom from a beam that enters the flask occurs
as though in a trap: it does not perish in collisions with
flask walls (a small recombination coefficient) and can-
not escape the flask because the inlet hole is small. Dur-
ing its lifetime, the atom collides with flask walls
105 times, and the lifetime itself of atomic particles that
are short-lived under usual conditions increases to mac-
roscopic values and amounts to several seconds. This
allowed us to increase the accuracy of measurements to
five orders of magnitude. We were able not only to
reveal nonequilibrium processes at the interphase
boundary but also to develop a method, which is likely
to be the most sensitive and accurate at present, for
determining the recombination coefficient of atoms γ
on the surface necessary for studying inelastic colli-
sional processes at the gas–solid interface. This method

U 2α2q∆z∆r=

Γ 2π
"

------ 2aq( )2 EF E( ) 0 ∆r 1〈 〉 2 3U

2π"( )3
-----------------d∫=

× 4πp2δ E q–( ) "α( )2 ip r/"⋅( )exp p̂ i〈 〉 2

M2 E q+( )2
------------------------------------------------------------------ pd∫

≈ 192π3/2 ωi

ω
----- 

 
3

ωi 2S 1+( )1/2.

p̂
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is free of instrumental interference in the system under
study and, because of its low inertial characteristics,
allows the time dependence of γ to be measured by
physical methods as the reaction proceeds [we know no
other method for measuring γ(t) kinetic dependences].
Precisely γ(t) kinetic measurements allowed us to
observe oscillatory variations in the rate of the recom-
bination reaction. The reliability of recording oscilla-
tions was ensured by simultaneous measurements of
several values that underwent oscillatory changes,
namely, the concentration of hydrogen atoms in the
accumulating volume, the recombination coefficients
of atoms on flask walls, and the intensity of nonequilib-
rium desorption of molecules from the surface of
Teflon. These measurements were performed using
independently operating instruments.

The system considered in this work (Fig. 1) is the
simplest open dissipative system far from thermody-
namic equilibrium. This system, which in many
respects can be considered a model one, possesses all
the remarkable properties of dissipative systems. In
conformity to the synergistic principles [15, 16], we
observed self-organization elements in this system
under the experimental conditions described above;
namely, when substances and energy were continu-
ously supplied to the system, a time structure in the
form of undamped self-oscillations spontaneously
formed in it (the system as though became animated).
Energy supplied from an external (nonoscillatory)
source then compensated dissipative loss in the sys-
tem.6 For the limiting cycle (oscillatory process) to
arise, the level of energy supply (“pumping” level)
should exceed some critical value.

This simple model system can be used to study var-
ious regimes of its behavior (from fully stochastic to
coherent) and, in particular, observe the development of
fluctuations leading to the loss of system stability and
to bifurcation transitions to one of the set of possible
system states in computer experiments (see Fig. 5).
This is to be done in full measure in our further studies.

In some sense, the dynamic system under consider-
ation can serve as a prototype of more complex open
systems (for instance, biological systems) because the
general characteristics of oscillatory chemical pro-
cesses (“chemical clock”) model those of the corre-
sponding biological processes (“biological clock”),
where undamped self-oscillations are also sustained by
the energy of a nonoscillatory external source which
feeds biological organisms. This results in the mutual
synchronization of the behavior of many oscillators
(cells). As in the system under consideration, there
exists a hierarchy of times of various processes in bio-
logical systems, from fairly slow processes that mani-
fest themselves in exchange with the environment (in
our unit, this corresponds to escape of molecules from

6  It would be an exaggeration to claim that we a priori expected to
observe this effect.
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the flask, 15 s) to very fast processes responsible for
internal transformations in the system.

Lastly, the system under consideration allowed us to
separately consider a purely “physical” catalysis mech-
anism, probably, for the first time. In this mechanism,
the rate of the recombination of atoms is limited by
energy accommodation, that is, by the physical condi-
tions of the relaxation of highly excited reaction prod-
ucts.7 The catalysis mechanism under consideration is
fairly general (at least, in simple heterogeneous reac-
tions), although, in complex reactions, it can be
obscured by other factors that contribute to reaction
rates. This does not decrease its value, because the
number of practically important “simple reactions” is
fairly large, from growth of epitaxial layers in the pro-
duction of semiconductors to reactions determining
heating of descending spacecraft in the atmosphere of
planets (see Introduction).

The system studied in this work complements the
list of systems with oscillatory chemical reactions (e.g.,
see [17–21]) studied since the discovery of the
Belousov–Zhabotinskii reaction [22].
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NUCLEI, PARTICLES, 
AND THEIR INTERACTION
The Bremsstrahlung of Electrons on Atoms Calculated
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Abstract—The total bremsstrahlung spectra for electrons colliding with atoms have been calculated for kryp-
ton atoms in a photon energy range from 10 eV to 25 keV and for lanthanum atoms in the vicinity of the 4d
shell ionization energy. The generalized atomic polarizabilities were calculated using a simple semiclassical
local energy density approximation and experimental data on the photon absorption. The results are compared
to those obtained using the distorted partial wave approximation for Kr and to the experimental data available
for La. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The bremsstrahlung radiation arising upon collision
of a charged particle with an atom is generated via two
different mechanisms. The first is related to the particle
acceleration in a static atomic field [1], and the second,
to a dynamic polarization of the target atom in the elec-
tromagnetic field of the impinging particle [2]. The
spectral distribution of photons with the energies ω
emitted by charged particles decelerated in the static
atomic field is described by a smooth curve decreasing
approximately as 1/ω. In contrast to the static field
effect, the polarization mechanism usually leads to the
appearance of rather intense maxima and minima in the
emission spectra in the vicinity of ionization potentials
of the atomic shells.

Calculations of the electron bremsstrahlung spectra
with an allowance for the polarization mechanism were
performed for a number of atoms (see, e.g. [3–6]. An
analysis of the obtained results leads to the conclusion
that a contribution of the polarization channel to the
total bremsstrahlung cross section requires the knowl-
edge of generalized polarizabilities of the target atoms.
Since the exact quantum-mechanical calculation of this
quantity encounters extremely large computational dif-
ficulties, the development of simple approximate calcu-
lation methods is still an important task.

In this study, the generalized polarizabilities of the
target atoms are calculated using a simple semiclassical
local energy density approximation [7, 8] and experi-
mental data on the photon absorption. This approach
eliminates cumbersome calculations taking into
account the electron–electron correlations. All calcula-
tions will be performed in the atomic system of units
(e = m = " = 1).
1063-7761/02/9402- $22.00 © 20239
2. BASIC RELATIONSHIPS

In the dipole approximation, the spectral intensity of
emitted photons with an energy of ω can be described
in terms of the particle acceleration and averaged over
the photon polarization [1, 9]:

(1)

Here, p1 and ψ1 are the electron momentum and wave
function before the photon emission, p2 and ψ2 are the
electron momentum and wave function after the photon
emission, dΩ2 is the element of a solid angle of the elec-
tron scattering, and a is the electron acceleration oper-
ator. The wave functions ψ are normalized to a single
particle per unit volume.

Let us assume that the spatial orientation of atoms in
the target is arbitrary and, hence, the electron scattering
can be considered as axially symmetric. In this case, the
electron wave function can be expanded as follows [9]:

(2)

where θ is the angle between vectors p and r, Rl(r, p) is
the radial wave function of an electron with the
momentum p and the angular moment l, and Pl are Leg-
endre polynomials. Upon substituting expression (2)
into Eq. (1) and integrating with respect to angles, we
obtain

(3)

ωdσ
dω
-------

4 p2

3 2πc( )3 p1

------------------------- ψ2* a ψ1〈 〉 2 Ω2.d∫=

ψ r θ,( ) il 2l 1+( )Pl θcos( )
Rl r p,( )

r
-----------------,

l 0=

∞

∑=

ωdσ
dω
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32 p2

3c3 p1

-------------- l 1+( ) Ml l 1+,
2 Ml 1+ l,

2+( ),
l 0=

∞

∑=
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where

(4)

The acceleration operator a can be written as a sum
of the static and polarization components [8],

(5)

where U(r) is the atomic potential and α(ω, r) is the
generalized polarizability in a coordinate form. Since
α(ω, r) is a complex quantity, relationship (3) also
describes the interference between the static and polar-
ization emission channels.

As was mentioned in the Introduction, calculation of
the generalized polarizability α(ω, r) is a very compli-
cated quantum-mechanical problem. In order to sim-
plify the calculations, we have used a semiempirical
approach similar to that proposed by Korol’ et al. [5].
According to this, the function α(ω, r) is presented in
the form of a product

(6)

where α(ω) is the usual dipole polarizability of an
atom. In [5], where it was demonstrated that all infor-
mation about the electron–electron correlations is con-
tained in the factor α(ω), the function G(ω, r) was cal-
culated in the Hartree–Fock approximation. We have
used a simpler model of the local spin density [7, 8],
according to which the target atom was considered as
an inhomogeneous plasma formation with an electron
density distribution ρ(r) and the plasma frequency
ωp(r) obeying the relationship

(7)
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Fig. 1. The |G(ω, r)|2 function calculated in the local elec-
tron density approximation for Kr atom at a photon energy
of ω = 500 eV. 
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Within the framework of this model, radiation with
the frequency ω is absorbed provided that the reso-
nance condition ω = ωp(r) is satisfied. An expression for
the generalized polarizability is as follows:

(8)

where rp(ω) is the function inverse to (7) and Θ is the
Heaviside function.

An analysis performed in [8] showed that the local
spin density model provides for a quite reasonable
approximation for the atomic polarizabilities. Using
expression (8), we readily obtain an approximated for-
mula for the function G(ω, r):

(9)

Figure 1 shows the results of calculations of the
function G(ω, r) for a Kr atom at a photon energy of
ω = 500 eV. Note a resonance peak at a distance deter-
mined by the condition ω = ωp(r).

In contrast to the G(ω, r) function, the usual dipole
polarizability α(ω) has to be determined as precisely as
possible. For this reason, we have calculated this quan-
tity by the OPTCON program (Moxgraf Company)
using a compilation of the empirical data. The dipole
polarizability can also be calculated using experimental
values of the photon absorption cross section σγ(ω), a
dispersion relationship, and the optical theorem [2, 5]

(10)

3. SOME FEATURES OF THE POLARIZABILITY 
CALCULATION

The radial wave functions Rl(r, p) were calculated
by the phase method [10]. This technique provides for
a convenient parameterization, thus simplifying taking
the integrals in expression (4). We employed the fol-
lowing representation of the wave function:

(11)

where jl and nl are spherical Bessel functions and δl are
the partial phase shifts. The amplitude functions Al(r)
and phase shifts δl(r) were determined from the differ-
ential equations

(12)
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(13)

For large values of the angular moment l, the radial
wave functions Rl(r, p) differ but little from the undis-
torted wave functions of the free electron. Therefore,
the phase shifts for l > lmax can be taken equal to zero,
and the Rl(r, p) values can be replaced by the spherical
Bessel functions jl(pr). The value of lmax can be roughly
estimated from the relationships

(14)

where ε is a certain small value characterizing the
degree of distortion of the wave function.

The atomic potential U(r) was described using a
simple approximated analytical expression [11]
obtained by fitting to an exact Hartree–Fock potential

(15)

where Aj and αj are the fitting coefficients and Z is the
charge of the atomic nucleus. Using this approxima-
tion, we can also readily calculate the plasma frequency
using relationship (7):

(16)

Our experience showed that using the analytical
potential (15) considerably reduces the computational
time, while not introducing significant errors in the
results.

4. CALCULATION RESULTS

The results of our calculations of the total
bremsstrahlung cross sections for electrons with an
energy of 1, 5, 10, and 25 keV scattered on the krypton
atom are presented in Figs. 2–5 (thin solid curves) in
comparison with the same values (thick solid curves)
calculated [6] within the framework of the distorted
partial wave approximation (DPWA).

On the whole, our results satisfactorily agree with
those obtained in [6]. A peak observed in the region of
photon energies ω = 10–100 eV reflects the contribu-
tion of virtual dipole excitations from the 4s and
4p subshells. For photon energies of ω = 100–1000 eV,
the total bremsstrahlung spectrum exhibits the second
maximum related to the dipole excitation of electrons
in the intermediate 3s, 3p, and 3d subshells. For pho-
tons with energies exceeding 2000 eV, the total cross
section varies rather monotonically with the energy ω,
except for a region near the ionization potentials of the
2s and 2p subshells of the krypton atom.

dAl

dr
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× jl pr( ) δl nl pr( ) δlcos+sin[ ] .
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Fig. 2. The total bremsstrahlung cross sections for electrons
with an energy of 1 keV scattered on the krypton atom, cal-
culated using the DPWA method [6] (thick solid curve) and
the local electron density approximation (thin solid curve).

Fig. 3. The total bremsstrahlung cross sections for electrons
with an energy of 5 keV scattered on the krypton atom, cal-
culated using the DPWA method [6] (thick solid curve) and
the local electron density approximation (thin solid curve).

Fig. 4. The total bremsstrahlung cross sections for electrons
with an energy of 10 keV scattered on the krypton atom, cal-
culated using the DPWA method [6] (thick solid curve) and
the local electron density approximation (thin solid curve).
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Fig. 5. The total bremsstrahlung cross sections for electrons
with an energy of 25 keV scattered on the krypton atom, cal-
culated using the DPWA method [6] (thick solid curve) and
the local electron density approximation (thin solid curve).

Fig. 6. The spectrum of the imaginary part of the dipole
polarizability: (thick solid curve) DPWA calculation
method [6]; (thin solid curve) experimental data compiled
using the OPTCON program.

Fig. 7. The polarization bremsstrahlung cross sections for elec-
trons with an energy of 500 keV scattered on the lanthanum
atom: (thick solid curve) experiment [12]; (thin solid curve)
calculation using the local electron density approximation.
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Differences between the bremsstrahlung spectra
calculated by the two methods are manifested predom-
inantly in the low-energy spectral region. As a rule, the
maxima and minima calculated using the local energy
density approximation are smaller than those calculated
by DPWA. One possible reason for these discrepancies
is a difference between the experimental values of the
dipole polarizability of Kr atoms used in our calcula-
tions and the α(ω) values calculated by the DPWA
method. Indeed, the dependence of the polarization
radiation spectrum on ω can be estimated as

(17)

where g(ω) is a certain smooth monotonically decreas-
ing function. As can be seen from relationship (17), the
α(ω) value significantly influences the polarization
component of the bremsstrahlung spectrum.

Figure 6 shows the plots of Im[ω2α(ω)] predicted by
the DPWA method [6] (thick solid curve) in compari-
son with the compilation of experimental data (thin
solid curve) processed using the OPTCON program. As
can be seen, the difference between the two plots in the
low-energy spectral region actually amounts to 15–
20%, which may account for the difference observed in
the bremsstrahlung spectra.

Another possible reason for the observed discrep-
ancy can be the use of the electron wave functions cal-
culated for the unperturbed atomic potential in the Har-
tree–Fock approximation. As is known [2], somewhat
different results can be obtained for the bremsstrahlung
cross sections calculated in terms of the acceleration
and length.

Figure 7 shows the results of calculations of the
polarization component of the bremsstrahlung radia-
tion for lanthanum in the vicinity of the 4d subshell ion-
ization potential (thin solid curve) in comparison to the
experimental data [5, 12] (thick solid curve) As can be
seen, the proposed method provides for a quite satisfac-
tory coincidence of the calculation and experiment.

5. CONCLUSION

We have proposed a semiempirical method for the-
oretical description and calculation of the total
bremsstrahlung spectrum, which offers a simple means
of taking into account the phenomena related to the
electron–electron correlations. The bremsstrahlung
spectra were calculated for krypton atoms in the energy
range from 10 eV to 25 keV and for lanthanum in the
vicinity of the 4d subshell ionization energy. Despite
the relative simplicity of the models used in the theoret-
ical description of the polarization radiation, the results
show satisfactory agreement with the values calculated
by a different method (DPWA) and with the available
experimental data. It should be noted that this approach
can also be used to calculate the bremsstrahlung spectra

ωdσ
dω
------- 

 
pol

ω2α ω( )
2
g ω( ),≈
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of electrons colliding with more complicated objects
such as molecules.
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Abstract—Owing to the conservation by the electrons of the memory of their intra-atomic states, a photoion-
ized plasma arising in the mode of suppression of the ionization barrier exhibits a pronounced dependence of
the efficiency of generation of the third and fifth harmonics of the pumping field on such states of electrons. For
the maximal values of generation efficiency, this dependence is directly proportional to the tenth power of the
principal quantum number of excited ns states of electrons. © 2002 MAIK “Nauka/Interperiodica”.
1. The generation of higher harmonics under the
effect of coherent radiation on matter was treated in
1964 using plasma as an example. The physical pattern
of this phenomenon was associated with the coherent
bremsstrahlung of electrons oscillating in the pumping
field and scattered by plasma ions [1]. Later on, the har-
monic generation in a plasma came to be associated
with the ponderomotive effect of radiation on plasma
(see, for example, [2]). Relevant experimental studies
were performed in parallel with studies into controlled
laser fusion (see, for example, [3]). More recently,
rather intensive experiments in generation of higher
harmonics of laser pumping radiation were performed
with gas targets (see, for example, [4]). The results of
such experiments brought about the accumulation of a
large body of experimental data, as well as the develop-
ment of new concepts of the manifestation of the prop-
erties of atomic electrons in the generation of higher
harmonics. It must be emphasized that the theory of
such concepts is associated with computer develop-
ment of physical models; as a result, it is not always that
physical phenomena may be thoroughly treated in full
detail. However, in this respect as well, certain progress
was made recently thanks to the development of analyt-
ical description [5].

Note that, more often than not, the harmonic gener-
ation in experiments involving gas targets is actually
caused by the bremsstrahlung of harmonics by elec-
trons moving in the pumping field; i.e., the cause is the
same as that initially used to predict the generation of
higher harmonics in a fully ionized plasma [1]. Plasma
theory is largely analytical and relatively descriptive.
Its development for the case of pumping radiation of
elliptic polarization [6] revealed, in particular, the pos-
sibility of an anomalous increase in the efficiency of
harmonic generation with the degree of circular polar-
ization of radiation in the region of small values of this
1063-7761/02/9402- $22.00 © 20244
degree [7]. This phenomenon was previously detected
experimentally [8].

The results of experiments involving gas targets
indicate that the gas is ionized under the effect of laser
pumping radiation [9–11]. Therefore, there is good rea-
son to understand the behavior of such plasmas arising
as a result of photoionization and the regularities char-
acterizing the harmonic generation in these plasmas. Of
special interest is the photoionization of gas in the
mode of suppression of the ionization barrier, when the
Bethe condition is valid [12],

(1.1)

This formula is written in atomic units. Here, E is the
electric field intensity of pumping radiation, IZ is the
ionization potential, and Z is the charge of the atomic
nucleus. The importance of excited states will be appar-
ent if one uses the formula

(1.2)

which holds for electrons in the Coulomb field and for
excited states with the principal quantum number n.
The latter formula, after being substituted into Eq. (1.1),
leads to the following condition for the energy flux den-
sity of pumping radiation:

(1.3)

Hence, it follows, in particular, that, for fairly high val-
ues of the principal quantum number and not very high
values of Z, the ionization in the mode of barrier sup-
pression may turn out to be determining in a wide range
of relatively easily accessible experimental values of
the laser energy flux density.
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The brief communication [13] contains a reference
to the physical possibilities of theoretical determination
of regularities of generation of higher harmonics in a
photoionized gas, when the ionization proceeds in the
mode of suppression of the ionization barrier. In [14],
the possibilities referred to in [13] are substantiated,
and examples of plasmas arising as a result of ioniza-
tion of a gas consisting of hydrogen-like atoms in some
quantum states are used to determine asymptotic
dependences characterizing the generation of higher
harmonics of pumping radiation. The next step (which
is important from the standpoint of our treatment) was
made in [15], where, firstly, the general form of the dis-
tribution function of photoelectrons arising as a result
of their ionization from the ns state of a hydrogen-like
atom was determined for the case of the mode of sup-
pression of the ionization barrier,

(1.4)

Here, Ne is the electron number density, p is the electron
momentum, m is the electron mass, n is the principal
quantum number, VZ = Ze2/" is the Coulomb unit of
velocity [16], e is the electron charge, and " is Planck’s
constant. Secondly, the importance of excited atomic
states with respect to the generation of higher harmon-
ics of pumping radiation in a photoionized plasma was
revealed in [15]. It was found that the presence of atoms
in excited states in a photoionized gas may bring about
an increase in the efficiency of generation of higher har-
monics by several orders of magnitude.

Of considerable importance in understanding the
urgency of the present investigation is the study [17]
involving experimental investigation of the generation
of the third harmonic in a gas with preexcited atoms. It
has been shown that the generation efficiency increases
by orders of magnitude compared with the generation
from a gas without such preexcitation of atoms. The
experimental data of [17] were not sufficient for
uniquely determining the mechanism of harmonic gen-
eration. On the other hand, the results of the theoretical
study [15] apply to the case of very high harmonics, and
the experimental investigation [17] was performed for
a lower, third, harmonic. In view of this, for better
understanding of experiments in generation of rela-
tively lower harmonics, it appeared urgent to develop
the theory of generation of such harmonics that would
enable one to perform the necessary comparison with
the results of detailed experimental investigations,
including investigations of the dependence of the gen-
eration efficiency on the pumping intensity. This is
especially urgent under conditions in which it is possi-
ble to somehow control the excitation of atoms of a
photoionized gas. Therefore, presented below is the

f ns p( )
Ne

4π2 mVZ( )3
---------------------------=

×
8n 2n np/mVZ( )arctan( )sin[ ] 2

p/mVZ( )2 1 np/mVZ( )2+[ ] 2
-------------------------------------------------------------------------.
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theory of generation of the third and fifth harmonics,
the results of which supplement substantially the
results of the asymptotic theory of generation of very
high harmonics given in [15], first of all, for the region
which is not described by the asymptotic theory of
higher harmonics and, second, for the region which is
more open to investigation. Here, all of our treatment
concerns the effects of the mechanism of generation of
higher harmonics, which came to be known as the
mechanism of coherent bremsstrahlung (see, for exam-
ple, [1, 15]).

2. In order to describe the coherent bremsstrahlung
of lower harmonics in a plasma, we will use the sim-
plest model of this phenomenon based on the kinetic
equation for electrons with the electron–ion collision
integral in the Focker–Planck–Landau form [18]. In
this approach, as was demonstrated even in [1] (see
also, for example, [15]), a relatively simple relation
holds for the perturbation of electron current δj, which
is due to the pumping field and defines the harmonics
field,

(2.1)

Here, ei is the ion charge, Ni is the ion density, Λ is the
Coulomb logarithm, V = p/m is the electron velocity,
uE(t) is the rate of electron oscillation in the pumping
field, and fe(V) is the electron distribution function. For
the simplest case of monochromatic pumping field with
linear polarization that is treated here, the electric field
intensity may be represented as

(2.2)

where E is the amplitude of the electric field of the
pumping wave, ω is the pumping frequency, and φx is
the phase that is independent of time but capable of
being dependent on coordinates. The dipole approxi-
mation is sufficient for the theory of harmonics genera-
tion in a nonrelativistic plasma. In this approximation,
the following approximate expression is sufficient for
the rate of electron oscillations in the pumping field:

(2.3)

where

(2.4)

is the amplitude of the rate of electron oscillations; the
dependence on this amplitude plays a decisive part in

∂δj
∂t

--------
4πe2ei

2NiΛ
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---------------------------–=

× Vd( )eV

V3
------- f e V uE t( )–( ).∫

E Ex t( ) 0 0, ,( ),=

Ex t( ) E ωt φx–( ),cos=
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our theory. It is appropriate to note that the Bethe con-
dition given by Eq. (1.3) in view of (2.4) has the form

(2.5)

where IH is the ionization potential of a hydrogen atom
and ω is the pumping frequency measured in electron
volts. The right-hand side of relation (2.5) indicates that
the Bethe condition of photoionization of atoms in the
mode of barrier suppression for excited states may also
arise in the case when the rate of electron oscillations in
the pumping field does not significantly exceed the unit
of Coulomb velocity VZ.

The substitution of relations (1.4) and (2.3) into for-
mula (2.1) enables one to derive the following expres-
sion for the perturbation of electron current:

(2.6)

This formula describing the generation of odd harmon-
ics is general (see, for example, [1]). It is our objective
to determine the explicit form of partial nonlinear con-
ductivities for which we use the notation

(2.7)

where the effective nonlinear collision frequencies are
defined by the formulas

(2.8)

Here,

(2.9)

is the effective frequency of electron–ion collisions for
electrons, related to the unit of Coulomb velocity. The

functions  depend both on the number of the
harmonic being generated and on the principal quan-
tum number n. These functions may be represented in a
form which considerably simplifies the theory, where
the dependences on the harmonic number and on the
quantum number are separated. Namely, we derive

(2.10)

Here, after using the operator Dn, we must assume b = 1.
In this case, Dn for different values of the principal
quantum number represents different differential oper-
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ators which have the following form, for example, for
the first five values of n = 1, 2, 3, 4, 5 used below:

(2.11)

The function α(2N + 1)(Y), which is common for all
atomic states and different for different harmonics, may
be represented in the form of the following integral:

(2.12)

where Qν(ζ) denotes Legendre functions. Under the
integral given by Eq. (2.12), the variables ζ and θ are
related by

(2.13)

Before proceeding to the determination of the form of
functions defined by the integral given by Eq. (2.12),
note that, as is demonstrated below, a simple scaling
dependence proportional to n2 is present for the func-

tions  in the region of not very high values of
the argument in the vicinity of their maximal values.
This points to the efficiency of using the functions

(2.14)
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For effective nonlinear collision frequencies, one can
write

(2.15)

The fifth power of the principal quantum number in for-
mula (2.15) is one of the main new regularities revealed
below.

3. This section will be devoted to the theory of third
harmonic generation. For this purpose, we must first
treat formula (2.12), which, in the case of interest to us
and in view of relation (2.13), may be represented as

(3.1)

One of the possible ways of transforming this expres-
sion is associated with the use of an integral represen-
tation for Legendre functions [19, 8.713, p. 1015],

This representation enables one to write, in the form
convenient for further computations,

(3.2)

where

(3.3)

As a result of these transformations, formula (3.1) may
be represented as

(3.4)

where

or

(3.5)
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Formulas (3.3)–(3.5) enable one to write expression
(3.1) in the following explicit form:

(3.6)

which makes it possible, in accordance with Eqs. (2.10)

and (2.11), to represent the functions  for five
ns states n = 1, 2, 3, 4, 5 in the form

(3.7)

where

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

Figure 1 gives five functions  (x = nVE/VZ). At high
values of the argument, all of these functions come
closer together. On the contrary, in the region of their
maxima, these functions differ strongly. It turns out
with a high accuracy that this difference is given by n2.

In view of this, five functions  are given in
Fig. 2 for describing the third harmonic generation
using the effective nonlinear collision frequency

. One can see that, while the curve for the
1s state falls out somewhat from the general pattern, the
remaining curves, first, differ little from one another
and, second, come closer together as the principal
quantum number increases. For all of the curves which
have thus come closer together, their maxima are
reached at VE = (1.2–1.5)VZ, with the maximal values
being approximately 0.13.
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Formula (2.15), on the one hand, and the virtually

coinciding maxima of the  curves, on the other
hand, lead one to conclude that the real scaling of the

effective frequencies  on the principal quantum
number is given by approximately n5.

4. We will now treat the effective nonlinear collision

frequencies  describing the nonlinear conductivity
of plasma responsible for the generation of the fifth har-
monic of the pumping field. Similar to Eq. (3.1), the
input relation is

(4.1)
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Fig. 1. Graphs of the functions (x = nVE/VZ) for five

ns states corresponding to n = 1, 2, 3, 4, 5. Here and in sub-
sequent drawings, the dashed curve with short dashes corre-
sponds to n = 1, the dashed curve with long dashes corre-
sponds to the 2s state, the dot-and-dash curve corresponds
to the 3s state, the dotted curve corresponds to the 4s state,
and the solid curve corresponds to n = 5.
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Fig. 2. Graphs of the functions  for the first

five ns states.
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The integral representation of Legendre functions
makes it possible to write the relation 

(4.2)

where

(4.3)

Accordingly, formula (4.1) may be represented as

(4.4)

In the latter relation, the integral may be taken in an
explicit form, so that

(4.5)

This is the key formula in our theory of fifth harmonic
generation. We use the procedure of (2.10) and formula
(4.5) to find

(4.6)
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These formulas give an exhaustive analytical answer to
the question of the effective nonlinear collision fre-
quency responsible for the generation of the fifth har-
monic of the pumping field.

To continue our discussion, consider the attached
figures. Figure 3 shows graphs of five functions

 which come closer together at high val-
ues of the argument. This is associated with the fact
that, at high values of the argument, formula (4.6) takes
the form

(4.12)

where  = –1.533, ,  =

–1.038, and  = –0.978. In the region of their

maxima, the functions (x) differ markedly from
one another. With a high accuracy, this difference is
given by n2. All of the foregoing lends support to the
above-mentioned advisability of using the functions

 in the region of moderate values of pumping
intensity to describe the harmonic generation.

Figure 4 gives five functions . The graphs of
functions in this figure are qualitatively similar to those
in Fig. 2. Here, the curve corresponding to the ground
1s state likewise falls somewhat out of the pattern. As
the principal quantum number increases, the curves
corresponding to excited state come closer together.
The maximal values of the curves corresponding to the
2s, 3s, 4s, and 5s states are approximately four times
less than the values corresponding to Fig. 2 and lie in
the range from 0.03 to 0.033, and the values (VE/VZ)
corresponding to such maxima lie in the range from 2.2
to 2.5. Figure 4 leads one to assume that the depen-
dence of the nonlinear effective collision frequency on
the principal quantum number is given by approxi-
mately n5, which is analogous to the above-identified
law for the third harmonic. On comparing the curves of
Figs. 4 and 2, one can see that the ratio of the values
(VE/VZ) corresponding to the maxima of the curves in
these figures approximately follows the law

In other words, the pumping field at which the maximal
value of the effective nonlinear collision frequency is
attained increases with the harmonic number.

5. In order to gain an impression of the order of
magnitude of the effects being discussed, we will turn
to the case of the simplest geometry of the pumping
field. Namely, we will assume that the pumping field is
described by a traveling plane wave along the z axis
with the wave vector k. Then, φx = kz, and the wave vec-
tor of the pumping field is defined by the relation
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According to formula (2.6), in this case, the harmonics
field also has the form of plane waves with frequencies
(2N + 1)ω and wave vectors (2N + 1)k. We define the
efficiency of harmonic generation as the ratio of the
flux density of its energy to the energy flux density of
the pumping field to derive (cf. [15])

(5.1)

For the treated case of generation of the third and fifth
harmonics, the following expressions may be written in
accordance with formula (2.15):

(5.2)

(5.3)

We will use these expressions to treat the maximal val-
ues of the harmonics generation efficiency. Note, first
of all, that, because the peaks on the curves in Figs. 2
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Fig. 3. Graphs of the functions (x = VE/VZ), (x =

2VE/VZ), (x = 3VE/VZ), (x = 4VE/VZ), and 

(x = 5VE/VZ).
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and 4 are observed at VE ~ 2VZ, they are realized at the
energy flux density of the pumping field:

(5.4)

where the energy flux density is measured in W/cm2

and the pumping frequency is measured in electron
volts. Then, in accordance with the results given in Sec-
tions 3 and 4 for the maximal efficiency of generation
of the third and fifth harmonics, the following estimates
may be written:

(5.5)

(5.6)

where

(5.7)

The tenth power of the principal quantum number is a
very clearly defined dependence of the maximal gener-
ation efficiency described by formulas (5.5) and (5.6).
The parameter given by Eq. (5.7) for dense plasmas
may considerably exceed unity. We will not assume this
in our estimate which is clearly not overstated. Namely,

we will assume that Λ ~ 10, /Z3 ≥ 0.1, and Ni ≤
1018 cm–3, which leads one to take the parameter y ≈ 1.
We will further assume that ω[eV] ≈ 1. Then, in accor-
dance with Eqs. (5.5) and (5.6) for the generation of the
third and fifth harmonics by the plasma produced dur-
ing ionization of atoms in the 5s state, we derive

These values are ten million times higher than the effi-
ciency of harmonic generation by the plasma arising
during ionization of atoms in the ground 1s state,

The foregoing estimates enable one to sum up. The
theoretical treatment of coherent bremsstrahlung of the
third and fifth harmonics of pumping radiation in a pho-
toionized plasma formed in the mode of suppression of
the ionization barrier helped reveal a very strong depen-
dence of the efficiency of harmonics generation on the
principal quantum number of atoms of the gas from
which the plasma is formed. Therefore, the presence in
the gas of a small percentage of atoms in excited states
may bring about a considerable increase in the genera-
tion of the third and fifth harmonics in a photoionized
plasma. It was such an increase in the efficiency of third
harmonic generation that was observed in [17]. At the
same time, it must be emphasized that, as is demon-
strated in [15], the importance of excited states dis-
cussed by us decreases if the duration of the pumping
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radiation pulse exceeds the time of electron–electron
collisions. This time is given by the estimate

With longer times, when the velocity of electrons
approaches a Maxwellian distribution, the n10 law of
formulas (5.5) and (5.6) changes, according to [15], to
the n6 law. In addition, the harmonics generation
increases considerably owing to the presence of excited
states in the gas being ionized. The effect of excited
atomic states on the harmonics generation in plasma
ceases when the duration of the pumping pulse is such
that the electrons are heated so that their temperature
exceeds their intra-atomic energy.
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Abstract—A fractional differential equation is derived that describes the transformation of a stochastic trans-
port from fast spreading (  ∝  tα, α > 1) to a pseudowave regime (α = 1) due to the finiteness of the velocities
of individual particles. Qualitative features of the new regime are discussed. © 2002 MAIK “Nauka/Interperi-
odica”.
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1. INTRODUCTION

In this paper, we consider the diffusion, in a homo-
geneous and isotropic medium, of a macroscopic cloud
of microscopic passive particles (i.e., those that do not
affect the medium) characterized by a certain internal
random-walk law. The latter circumstance relates this
process to the class of stochastic transports, which is
very popular in modern physics (see, for example, sur-
veys [1–3] or the recent papers [4–9]). Depending on
the features of the random walk at the microscopic
level, macroscopic transport equations for the cloud
density n(x, t) may strongly differ from classical diffu-
sion equations (while including the latter as a particular
case) and involve, as a rule, fractional derivatives (see
[10]) with respect to the space and/or time variables.

The standard random-walk model is as follows.
Consider one-dimensional motion of a particle along a
straight line x (multidimensional analogues will be con-
sidered at the end of this paper) that is characterized by
the probability laws g(|x |) and f(t): the particles situated
at any point (say, at x0) may instantaneously jump to
neighboring points, so that the probability that a parti-
cle occurs within the interval (x0 + x, x0 + x + dx) is
equal to g(x)dx; this jump occurs after a certain waiting
period, so that the probability that a particle leaves its
original position (the same point x0) within the interval
(t, t + dt) (after arriving at this point) is equal to f(t)dt.
It is the random character of the microscopic law of
motion that is responsible for the stochastic character of
the corresponding macroscopic transport: during this
process, the initial state n0(x) = n(x, 0) is forgotten, and
the distribution n(x, t) attains a universal self-similar
profile (see the cited literature and the reasoning
below).

Historically, the first analyzed example of such
walks was a crowd of drunk sailors with rather primi-
tive g and f (see [1]); however, the model described here
is fairly universal and admits a wide variety of physical
interpretations. For example, we are especially inter-
ested in the resonance radiative transfer in a coronal
1063-7761/02/9402- $22.00 © 20252
plasma [11, 12]. In this case, the mean free path of a
microscopic particle (a photon or a γ quantum) depends
on whether this particle is emitted at the center or on the
wing of a line, so that g(x) is uniquely determined by
the shape of the line contour, whereas f(t) describes a
spontaneous radiative decay of the excited state of the
ion into which a quantum is transformed after its
absorption. Of course, the actual process of radiative
transfer is more complicated than the model under con-
sideration (in particular, it requires that the plasma
characteristics, such as the concentration and tempera-
ture, should be homogeneous and stationary); neverthe-
less, this model reflects many features of actual pro-
cesses.

A specific problem to the solution of which this
paper is devoted is the determination of the effect of the
finiteness of a fixed velocity v  of particles on the
spreading of a cloud of excitations, i.e., taking into
account the deviation from the standard model. How-
ever, a better understanding of the arising problems
requires a brief account of the specific character of the
process in the classical statement, i.e., with v  = ∞. We
will mainly follow [5], although there are many other
works devoted to similar problems.

2. SPECIFIC FEATURES OF THE DESCRIPTION 
OF A STOCHASTIC TRANSPORT

The spreading of a cloud of particles is determined
by the following important characteristics of the space
and time distribution functions: the mean square of dis-
placement (mean free path) and the mean expectation
time

(1)

When these parameters are finite, the effective transport
equation asymptotically (i.e., for macroscopic time

x2〈 〉 x2g x( ) x, t〈 〉d

∞–

+∞

∫ t f t( ) t.d

0

∞

∫= =
002 MAIK “Nauka/Interperiodica”
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t @ 〈t 〉  and spatial scales|x | @ ) reduces to the
classical diffusion equation

When these expressions are divergent (due to the
slowly decaying power tails of g and f), the situation
changes drastically. The case 〈x2〉  = ∞ of the so-called
Levy flights leads to the spatial nonlocality of the trans-
port process (a fractional power of a Laplacian—a con-
volution-type integral operator with a certain power
function of x—appears in the equation) and a faster
spreading of the cloud, whereas the case with 〈t 〉  = ∞
(which is characterized by the term “traps”) gives rise
to the time nonlocality (a fractional time derivative of a
certain different type!) and decelerates the macroscopic
motion. In the general case, the asymptotic transport
equation is expressed as

(2)

where the constant K and the exponents γ ≤ 1 and β ≤ 1
are related to the powers of the tails of f and g, so that
the evolution of the cloud width n(x, t) is described by

(3)

The redundant minuses of the Laplacian are attributed
to the form of the corresponding operator in the Fourier
space (see below).

The standard terminology classifies any stochastic
processes described by (3) with α > 1/2 and α < 1/2 as
super- and subdiffusion processes.1 Here, the stochas-
ticity, or forgetting the initial conditions mentioned
above, consists in ascribing the self-similarity of the
Green’s function,

of Eq. (2) to the general solution of this equation;
namely, as soon as the characteristic width of G, which
increases according to (3), becomes greater than the
initial size of the cloud (one often speaks of the suffi-
ciency of the doubling of the scale during the spreading
process), the density distribution

(4)

1 In fact, here we implicitly assume that physical systems are spa-
tially and temporally homogeneous, as was mentioned in the
Introduction, since a conventional diffusion process with  ~

 in the case of D = D(x, t) can guarantee the fulfillment of
(3) for any α (which frequently occurs).
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∂n
∂t
------ D

∂2n

∂x2
--------, D

x2〈 〉
2 t〈 〉
----------.= =

∂γn

∂tγ-------- K ∆–( )βn,–=

x tα , α∝ γ
2β
------.=

x

Dt

G x t,( ) 1/tα( )Φ x/tα( ),=

n x t,( ) n0 x'( )G x x'– t,( ) x'd

∞–

+∞

∫=
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becomes more and more universal:

(see below). In other words, the self-similarity, which
generally facilitates the analysis of the properties of
mathematical physics equations, in this case is “attract-
ing” in addition; this considerably simplifies the analy-
sis of the possible behavior of such physical systems.
Interestingly, the specific form of G(Φ) depends on β
and γ separately, rather than on α.

Thus, it is the Levy flights that are responsible for
the superdiffusion behavior in this model.2 Depending on
a specific physical problem (for example, depending on
the shape of the line contour), the parameter α may
take any value. Here, the case α > 1 is of greatest inter-
est (when 〈 t 〉  ≠ ∞, the boundary of α is associated with
the divergence of the moment 〈|x |〉 of g) when the
spreading of the cloud occurs at increasing rate. There
is no established term for this situation; the term
“enhanced superdiffusion” used in the title sounds
fairly natural.

As we mentioned above, the problems presented in
this section were analyzed from various viewpoints and
to different degrees of comprehensiveness in many
studies. Nevertheless, the question concerning such an
important generalization of the random-walk model as
the consideration of the finiteness of the velocities of
microscopic particles as they move to neighboring
points (which is certainly inherent in real physical situ-
ations) has scarcely been analyzed. As applied to non-
diffusion equations, this question has been raised quite
recently in [6, 7]; however, one can hardly agree with
all the assertions made in those works.

3. THE EFFECT OF THE FINITENESS OF FLIGHT 
VELOCITIES: PRIMARY CONSIDERATIONS

In fact, even a qualitative analysis of the arising new
situation (cf. [7]) allows one to make important
assumptions about the expected phenomena. First of
all, we have to realize what we are going to find out.
The obvious effect of the finiteness of the flight velocity
is the fact that the Green’s function of the effective
equation (which represents the density distribution n(x,
t) in (2) with n0 = δ(x); see (4)) identically vanishes for
|x | > v t. This fact may be very important, for example,
in physical problems that require a rigorous consider-

2 In general, the converse is not true: the fact that a transport equa-
tion contains the operator (–∆)β does not always guarantee that
there are Levy flights in the physical phenomenon described by
this equation. For example, in the problems of skin effect [13] or
the Maxwell relaxation of charge [14] in thin films, the operator
(–∆)1/2 is attributed to purely geometric reasons, and there are no
microscopic particles at all; in these problems, n plays the role of
the component of a magnetic (electric) field normal to the film.

n x t,( ) t ∞→ G x t,( ) n0x' x'd

∞–

+∞

∫
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ation of the relativistic causality principle, and does not
always strongly influence the behavior of the main
group of particles. When α < 1, the boundary G ≡ 0
moves faster than the characteristic self-similar param-
eter (3), so that the old Green’s function is formed
asymptotically (Eq. (2) also makes sense only asymp-
totically) with the distortion of Φ(ξ) only on “far” tails
(the boundary of these distortions being such that
ξbound|t → ∞  ∞). We will not consider this phenome-
non. A sufficiently detailed discussion of this phe-
nomenon as applied to the conventional diffusion
equation (the Gaussian profile Φ(ξ)) was given, for
example, in [15].

The situation is entirely different for the enhanced
superdiffusion. Here, in contrast, the evolution of the
self-similar width of the cloud is faster; therefore, the
asymptotic condition |x | < v t substantially changes the
form of G and the structure of Eq. (2) itself. The present
paper is devoted precisely to the derivation of this equa-
tion with allowance for these new circumstances.

It is fair to say that, when α < 1, the finiteness of v
may change the value of the coefficient K, while leav-
ing unchanged (in the above sense) the fractional expo-
nents of (2). It seems sufficiently obvious that, when 〈t 〉
and 〈|x |〉 are finite, the following change is made in K:

(5)

This fact is well known for a diffusion process. How-
ever, the change (5) should also be valid for infinite val-
ues of the mean expectation time (in the sense that finite
values of 〈|x |〉 do not influence the value of K any
longer).

The earlier works [6, 7] shed light differently on the
v  phenomena discussed. There is a rather enigmatic
assertion in [6] that the finiteness of v  reduces any
equations of type (2) (with any β and γ) to a diffusion
equation. This error was corrected in [7], which was
only partly concerned with this problem; however, the
authors of [7] restricted themselves to the derivation
and analysis of the type (2) equations with regard to (5).
As for the enhanced superdiffusion (recall that 〈|x |〉 = ∞
in this case), a strange result was obtained in [7] that,
since the finiteness of v  for α > 1 qualitatively changes
the Green’s function of the initial equation (2), this
equation is “absolutely inapplicable to the description
of real processes”; as a result, the strongest effect due
to the finite particle velocity (v  ≠ ∞) was left unstudied.

In fact, the more a power function with a large expo-
nent leads a linear function for large values of the argu-
ment, the more it falls behind it for small values of the
argument. Under enhanced superdiffusion, a cloud first
spreads rather slowly, so that the constraint |x | < v t
starts to influence the self-similarity (3) not very soon

t〈 〉 t〈 〉 x〈 〉
v

-----------.+
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and, for sufficiently large values of v, the transforma-
tion of the process, which occurs for t ∝  v 1/(α – 1), may
leave enough time for the initial macroscopic evolution
by the law (2), (3) (intermediate asymptotics).

A clear physical example of such a possibility is
provided by a radiative transfer in a coronal plasma.
This phenomenon is characterized by considerable val-
ues of α and huge values of v  (it is the velocity of
light!). The latter fact allows one to set v  equal to infin-
ity in the majority of plasma problems; however, tech-
nically, this is not always correct. Moreover, this simply
may prove to be incorrect even in the present statement,
let alone in other possible physical realizations of the
model; this fact stimulates the analysis of the transfor-
mation described. The mathematical procedures
involved will be based on the approach used in [5].

4. INITIAL EQUATIONS

An adequate description of the kinetics of a trans-
port process requires the introduction of several new
parameters N, F, and Q in addition to n, g, and f. As we
noted in the Introduction, the particles located at a
given point x remember the moment when they arrived
at this point; therefore, their spatial density n represents
an integral of a certain distribution N with respect to
lifetime τ:

It is more convenient to express the transition to further
motion in terms of the probability to survive until τ,

rather than directly in terms of f . Finally, we can denote
by Q(x, t) a flow emanating from a given point and
directed to either side and reaching any distance.
According to the definition, f characterizes the escape
rate in terms of particles that have initially arrived at
this point, of which only a part determined by F(τ)
remain by the moment τ. Therefore, by the conditional
probability formula (see [5]), we have

(6)

Thus, we obtain the following compact expression
for the equation of balance for the particles that are
located at a given point at a given moment (for resting
particles):

n x t,( ) N x t τ, ,( ) τ .d

0

∞

∫=

F τ( ) 1 f t( ) t,d

0

τ

∫–=

Q x t,( ) N x t τ, ,( )
F τ( )

---------------------

0

∞

∫ f τ( )dτ .=
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(7)

where N0(x, τ) ≡ N(x, 0, τ) is the initial lifetime distri-
bution of particles. Equations (6) and (7) provide a full
description of the situation.

It is easily seen that, while the parameters F and Q
are only needed to make the expression more compact,
the introduction of the distribution N is essential in the
sense that the equation for n cannot be expressed only
in terms of the density n of particles; i.e., in general, the
macroscopic kinetics depends on the microscopic
details in a rather awkward way. Unfortunately, this
technical feature is not properly reflected in the litera-
ture; as a rule, one immediately writes only a micro-
scopic transport equation (see, for example, [7]), which
is actually valid only in a certain asymptotic sense.

One meets no problems only in the case

when F and f (and, consequently, Q and n) are just pro-
portional to each other. This law is encountered quite
frequently in physical applications; for example, it is
typical of the radiative decay of excited states. For other
f (which are also encountered in practice), the features
of the function of N versus its arguments make their
own contributions. The point is that the newly arriving
particles form a self-similar profile

with a correlated dependence on t and τ, where P is an
incoming flow. The old initial distribution is shifted to
the domain τ > t and monotonically decreases due to the
flights to the neighboring points (see (7)). When such
self-similarity occupies a greater part of the profile N(τ)
and starts to dominate in Q, the integrals in dt ' and dτ
(the latter integral enters the definition of Q (6)) in (7)
can be interchanged, and, instead of N, one obtains its
integral—the macroscopic density n. For simplicity,
one can choose N0 as a shifted Dirac’s delta function (as
proposed in [5]):

This provides a self-similar relation between the func-
tions of N versus t and τ from the very beginning of the

n x t,( ) g x'( )θ t
x'
v
------– 

 

∞–

+∞

∫=

× Q x x'– t
x'
v
------ t'––, 

  F t'( ) t'd x'd

0

t x' /v–

∫

+
N0 x τ t–,( )

F τ t–( )
--------------------------F τ( ) τ ,d

t

∞

∫

f µ µt–( ), µexp 1/ t〈 〉 ,= =

Nnew θ t τ–( )P t τ–( )F τ( )=

N0 n0δ+ τ( ), δ+ τ( ) τd

0

∞

∫ 1.= =
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
process. Then, instead of (6) and (7), one obtains a sin-
gle basic equation (cf. [5] with v  = ∞ and [7]):

(8)

In the general case, this equation is valid only asymp-
totically; this makes the problem of describing the evo-
lution of a cloud for small time t  0 rather involved
but does not influence the present study. In fact, Eq. (8)
in the problem considered is not sufficiently asymp-
totic. For our purposes, we have to make the transition
t  ∞ (which is accompanied by the transition  
∞ due to the spreading phenomenon). The simplest way
to do this is to apply the Laplace transform with respect
to the time variable and the Fourier transform with
respect to the space variable; this will save us from
dealing with convolution integrals; calculations with
functions are simpler than those with operators.

5. ASYMPTOTIC EVOLUTION

To facilitate intermediate calculations and to make
definite certain numerical coefficients, it is desirable to
specify the expressions for the distribution functions g
and f(F) without losing the possibility to describe a
variety of forms of Eq. (2). The following class of func-
tions proves to be very convenient (see [5]; to simplify
the cumbersome expressions, everywhere below we use
dimensionless variables, so that x, t ~ 1 correspond to
microscopic scales):

(9)

Here, Γ is the Euler gamma function, and the numerical
coefficients are determined by the normalization of g
and f to 1. Only the power exponents of the tails of func-
tions that are parameterized by the positive numbers β
and γ are essential for the further analysis. These expo-
nents coincide with those introduced in Eqs. (2) and (3)
(variants (9) with β, γ > 1 give standard integral-order
derivatives in macroscopic transport equations3).

3 Stochastic transports of type (2) and with a fractional derivative
with γ > 1 are yet possible but in entirely different problems, for
example, in a drift of a passive impurity by a turbulent flow of a
fluid [16].
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∫
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As reference information, we present the aforemen-
tioned power moments of these distributions (as long as
they exist):

Below, we will restrict the analysis to the case β < 1 (the
opposite case is described by analogous formulas) and
mainly to β < 1/2.

The simultaneous application of the above Laplace
and Fourier transforms reduces Eq. (8) to

(10)

(here, the symbol [·]k stands for a Fourier component of
an appropriate function). The asymptotic transition |x |,
t  ∞ in (8) corresponds to the dual transition k,
p  0 in (10). For the latter transition, it suffices to
expand the equation in power series in k and p and
retain the first terms in the expansion. Here, it is conve-
nient to subtract the expression fpnpk from the left- and
right-hand sides of (10) simultaneously. Then, for g and
f from (9), the original Eq. (10) is transformed to (the
appropriate integrals and their series expansions can be
found, for example, in [17])

(11)

(cf. [5] and (2) with v  = ∞).

Actually, for every specific value of β and γ, Eq. (11)
has a simpler form. Say, for γ > 1 (i.e., for finite 〈t 〉), one
can neglect pγ – 1 as compared with unity (p0) in square
brackets on both sides of the equation, whereas, for γ < 1,
the situation is opposite. The cases β > 1/2 and β < 1/2
give similar results. The “critical” values of the num-
bers β = 1/2 and γ = 1 (as well as β = 1) yield a slightly
more complicated problem (which requires removal
of the ∞ – ∞ uncertainties), since there appear loga-
rithms in addition to the power terms in the equation
(see [5]). The terminology of ∂γ/∂tγ and (–∆)β used in (2)
is attributed to the coefficients pγ and |k |2β (for v  = ∞).

The combination containing (p/v  ± ik)2β (just as the
first term on the right-hand side, where the terms ±ik are

x2〈 〉 1
2 β 1–( )
--------------------, x〈 〉 Γ β 1/2–( )
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------------------------,= =
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γ 1–
-----------.=
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v
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Γ 1 β–( )
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× p
v
---- ik+ 

  2β p
v
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  2β
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npk

+ pγ 1– Γ 1 γ–( ) 1
γ 1–
-----------+ n0k
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merely canceled out) results from the series expansion
of the integral

(12)

Therefore, we have to single out a branch with real val-
ues for real k and positive p; i.e., the above combination
can be represented as

(13)

It is clear that, for finite values of 〈|x |〉, the situation
actually coincides with the case discussed in Section 3.
For example, if 〈t 〉  is also finite, then the first term in
curly brackets on the right-hand side of (11) is com-
bined with the expression on the left-hand side to give
a term of the form

(cf. [7]). It is interesting to note that there is no such a
coefficient on the right for n0k; this naturally implies
that the number of particles described by Eq. (11)
asymptotically decreases by a factor of

as compared with its initial value. This situation has a
simple explanation: The finite velocity of motion
results in a natural separation of particles into two
types: resting ones, which are described by Eqs. (8),
(10), and (11), and flying ones. It is obvious that, on
macroscopic temporal and spatial scales satisfying the
inequalities

the densities of each type of particles are proportional
to the time during which they stay in this state; there-
fore (cf. [7]),

(14)

If there are flying particles in the system at the initial
moment, then the following change is made in (11):

This trivial circumstance results in another (in addi-
tion to those discussed in Section 3) nontrivial phenom-
enon when 〈|x |〉 = ∞. In this case, the number of flying
particles should asymptotically increase; in other
words, an irreversible transformation of resting parti-
cles (whose number asymptotically tends to zero) into
flying ones occurs during such a transport. Recall that
these two states are actually quite different in a physical
problem of radiative transfer through a plasma, so that
the total number of excitations in a medium will
decrease, while the number of γ quanta will asymptoti-

p x /v–( ) kx( )cosexp
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∫
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t〈 〉 / t〈 〉 x〈 〉 /v+( )

t @ t〈 〉 , x  @ x〈 〉 ,

nfly x t,( )
x〈 〉

v t〈 〉
-----------n x t,( ).=

n0k n0k nfly0k.+
AND THEORETICAL PHYSICS      Vol. 94      No. 2      2002



ENHANCED SUPERDIFFUSION AND FINITE VELOCITY OF LEVY FLIGHTS 257
cally tend to a constant value. Naturally, this fact man-
ifests itself in the structure of the Green’s function since

is not an integral of motion any longer in the effective
transport equation.

Thus, the problem in question is solved: Eq. (11)
represents an asymptotic equation of stochastic trans-
port with the finite velocity of Levy flights. In the next
section, we discuss the characteristic features of the
equation obtained.

6. TRANSFORMATION OF REGIMES
UNDER ENHANCED SUPERDIFFUSION

In addition to the renormalization of the coefficient
K in (2), which was pointed out in [7], for finite values
of v, the fractional power of the Laplacian is replaced,
according to (11), by a slightly more exotic combina-
tion

(15)

In principle, within the framework of the terminology
used, this combination can be expressed in terms of an
appropriate sum of fractional derivatives

(which, possibly, more clearly demonstrates the neces-
sary condition G ≡ 0 for |x | > v t). However, in contrast
to (–∆)β or ∂γ/∂tγ, this expression is not widely used.
How does such a transformation of operators influence
the structure of the Green’s function of the transport
equation?

Since we are interested in the change of the self-
similarity (i.e., in a maximally strong influence; see
Section 3), we have to study a self-similar relation
between the characteristic scale of the wave vector 
and p in Eq. (11). Let us rewrite (11) in a more compact
form setting, for definiteness, γ > 1 and β < 1/2 (cf. (2)),

(16)

and assume that v  @ 1 for transformation of regimes at
the stage of macroscopic evolution; formula (16) makes
sense only for this stage since we assumed that , t @ 1
when deriving these formulas.

Consider two limit regimes in (16): the old, now
intermediate, asymptotics and the new, final, asymptot-
ics. Initially (i.e., for moderately large t and moderately

n xd
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small p), the term (p/v )2 can be neglected as compared
with k2 in the parentheses on the right-hand side of (16)
(by setting ϕ = π/2). Indeed, in this case, (16) reduces
to (2) with  ∝  t1/2β (see (3)) or  ∝  p1/2β (see the right-
and left-hand sides of (16)), which allows us to neglect
(p/v)2 as compared with p1/β up to p ~ v –2β/(1 – 2β) (or
always when β > 1/2) or t ~ v 2β/(1 – 2β) (t ~ v 1/(α – 1) when
γ < 1; cf. Section 3).

However, after a certain period of time, the situation
is radically changed, and the new self-similarity  ~ v t

(  ~ p/v) is established, so that the entire left-hand side
of (16) can be neglected:

Hence, the required Green’s function of the “trans-
formed” equation is expressed as

(17)

This function really satisfies the announced conditions
that it should identically vanish at large distances and
that the total number of resting particles should asymp-
totically decrease. Since

the effect is determined by the zero harmonic of G. In
addition,

therefore,

(recall that this regime is not realized when γ < 2β or
α < 1!). This expression coincides with the expression
obtained by integrating (14) under the following inter-
pretation:

Note that, when passing from p to t, the exponents in
the expressions for the real function G and the self-sim-
ilar parameter  (cf. conventional diffusion equation)
differ by unity.

x k

x

k

K
2βϕ( )cos
πβ( )cos

------------------------ k2 p2

v 2
------+ 

 
β

npk n0k.=

Gpk
πβ( )cos

K 2βϕ( ) k2 p2/v 2+( )β
cos

-------------------------------------------------------------.=

n xd

∞–

+∞

∫ nk k 0= ,=

Gp0 p 2β– ,∝

n xd

∞–

+∞

∫ t2β 1– or t2β γ– at γ 1<( )∝

nfly xd

∞–

+∞

∫ const, x〈 〉 g x( ) x x t1 2β– ,∝d

v t–

v t

∫

t〈 〉 f t( )t td

0

t

∫ t1 γ– .∝

x

SICS      Vol. 94      No. 2      2002



258 ZABURDAEV, CHUKBAR
The transformation of regimes from the conserva-
tion of the total number of particles to its decrease
occurs, according to the general Eq. (16), by the follow-
ing law:

(18)

As is clear from (11), when γ < 1, the second term in the
denominator of this expression is additionally multi-
plied by p1 – γ.

7. PARTICULAR CASES AND THE DISCUSSION 
OF GENERAL PROPERTIES

According to (4), asymptotic relation (17) (or its full
variant following from (11) or (16)) allows one to
obtain a solution to the problem of enhanced superdif-
fusion with the finite velocity of Levy flights for any
initial distribution n0(x). However, operations in the
Laplace–Fourier space prove to be poorly descriptive;
therefore, to give an idea of the character of the new
form of the Green’s function, we present simple expres-
sions for some of these functions in conventional vari-
ables.

For the case β = 1/4 (  ∝  t2), which corresponds to
the frequently encountered Lorentz contour of lines in
the physical problem of radiative transfer, we have

(19)

(recall that this expression is valid only for t @ v). Here,
Eq. (17) is inverted completely due to the simple rela-
tion between the cosines of a simple and a half angle. In
this case, the transformation of regimes (18) occurs by
the following law:

Another case corresponds to a whole class of
extremely fast transports with β  0; here, one can
set cos(2βϕ)  1 (which is not fully rigorous since
the questions concerning the convergence rate in dual
spaces are rather complicated; nevertheless, ϕ ~ 1 in the
self-similarity domain  ~ p/v), and, hence,

(20)

(for t @ v 2β @ 1, this inequality imposes certain con-
straints on β for a given v ).

Despite the fact that the Green’s functions obtained
are similar to their analogues encountered in wave
problems, the process considered possesses all the
characteristic features inherent in stochastic transport.
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Indeed, we still deal with the infinitely spreading func-
tion

therefore, according to (4), any initial profile n0(x)
tends to the following universal distribution involving
few parameters (see [5]):

i.e., the forgetting fully manifests itself (cf. the Hamil-
tonian problem of a truly wave motion). Note that,
since n(x, t) represents a convolution of n0 with G, the
sharp gradients (and even discontinuities) of the latter
for |x | ~ v t in the asymptotic profile of the macroscopic
concentration are actually smoothed over a distance on
the order of the initial width of a cloud.

Nevertheless, variant (17) of the Green’s function is
different from those obtained in earlier investigations.
When 〈|x |〉 ≠ ∞, for any velocity v, one can determine
the boundaries starting from which the effective trans-
port equation loses its sensitivity to the initial condi-
tions; this occurs for  @ 〈|x |〉. In fact, we always deal
with the transient regime. This fact manifests itself in
the following. As was noted above, for β > 1/2 and
nf ly0(x) ≠ 0, we obtain only a certain renormalization of
the initial condition; however, in our case, this function
does not fully describe the situation; an adequate
description requires the introduction of the distribution
nf ly at the place where the particles will settle (cf. the
introduction of the distribution N(τ)). Therefore, the
whole subsequent evolution can be radically changed by
an appropriate choice of the function nf ly(x).4 In this case,
the relation between the functions n and nf ly is different
from a simple proportion even for nf ly0 ≡ 0 (see [7]):

This fact is attributed to the extreme nonlocality of the
problem and the asymptotic extinction of resting parti-
cles.

4 Note that, in the case of highly nonequilibrium initial distribution
functions N0(τ) for 〈 t〉 = ∞, the formation of the self-similar “t – τ”
profile of N may also take a rather long time.
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8. INCREASING THE DIMENSION
OF THE PROBLEM

It is well known that, in conventional superdiffusion
(with v  = ∞), the transformation of the effective equa-
tion when passing from a one-dimensional problem to
a multidimensional problem is trivial: the fractional
power of the Laplacian in Eq. (2) corresponds to −|k |2β

in space of arbitrary dimension (see [1–7]). The situa-
tion is completely different in the present case; it is
rather difficult to rewrite (11) or (16) in a new form.
Here, the problem is associated with the fact that the
simple additivity of p and ±ik is attributed exclusively
to the convenient properties of expression (12), which,
in the general case, are not preserved in spaces of other
dimensions.

Nevertheless, the situation is quite similar in the
most frequently encountered three-dimensional case:

(in the two-dimensional case, the sine is replaced by a
Bessel function). Hence, for v  ≠ ∞, the block of terms
containing k2β (where k is the modulus of the wave vec-
tor) in the effective equation is replaced by

(21)

and the separation of the required branch yields sin[(2β +
1)ϕ] rather than a cosine. In terms of conventional
physical variables, the situation is not so simple as in
(15), since, although p/v  still corresponds to ∂/∂t, ±ik is
an integral operator of the type ∆1/2 from the very begin-
ning. However, from the mathematical viewpoint, oper-
ations with (21) are not substantially more difficult than
operations with (15).

9. CONCLUSION
Thus, the solution of the problem on the determina-

tion of asymptotic properties of the stochastic transport
of microscopic particles has allowed us to derive new
macroscopic equations describing the kinetics of this
process with allowance for the finiteness of the velocity
of particles. Despite a different type of fractional deriv-
atives involved, these equations prove to be very conve-
nient for a sufficiently detailed analysis of the phenom-
ena associated with the finiteness of v : the transforma-
tion of the self-similarity of the Green’s functions, the
extinction of resting particles, and nontrivial depen-
dence of the system evolution on the dimension of the
problem. All these questions can find direct practical
application, in particular, to the study of radiative trans-
fer in plasma.

pr/v–( ) ik– r⋅( )g r( )expexp rd

∞–

+∞

∫

=  4π – pr/v( ) kr( )sinexp
k

------------------------------------------------

0

∞

∫ g r( )rdr–

p/v ik+( )2β 1+ p/v ik–( )2β 1+–
2ik πβ( )cos

------------------------------------------------------------------------------
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Abstract—Two possible mechanisms of the temperature-induced variation and jump of the helix pitch in a spa-
tially bounded planar layer of a cholesteric liquid crystal (LC) was considered within the framework of the con-
tinuum theory of elasticity. These mechanisms are related to the existence of two configuration curves of the
system free energy. The states with local free energy minima on each of the configuration curves correspond to
topologically equivalent configurations of the LC director distribution and are quasi-equivalent in this sense.
The transitions between such quasi-equivalent states are especially important in the first mechanism of the helix
pitch jump proceeding without participation of defects. The second mechanism is related to transitions between
the ground states of different configuration curves corresponding to topologically nonequivalent configurations.
This mechanism requires either participation of disclination lines or the formation of defects. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The cholesteric liquid crystals (LCs) occupy a special
place among numerous liquid-crystalline materials. The
chirality of cholesteric molecules, which is an inherent
property of this class of liquid crystals, accounts for a very
large number of physical effects important both for practi-
cal applications (e.g., in LC display technology) and for
the proper understanding of basic problems pertaining to
the physics of liquid crystals [1].

The effect of a sharp change in the helix pitch in a
spatially bounded cholesteric liquid crystal (CLC) in
response to the temperature variation was both experi-
mentally observed and theoretically studied [2–4].
Recently, Belyakov and Kats [2] demonstrated an
important role of the cohesive energy in this effect; pro-
posed a mechanism responsible for a change in the
helix pitch, according to which the total number of half-
turns in the helix changes by one as a result of the LC
director slippage on the surface; and introduced a uni-
versal parameter playing a special role in this effect:

,

where K22 is the torsion modulus of the LC, W is the
height of the potential of cohesion between LC and the
surface, and d is the LC layer thickness. Unfortunately,
an analysis of the pitch jump phenomenon performed in
[2] was restricted to very large values of this parameter
(Sd ~ 1/2π) for which a change in the helix configura-
tion cannot involve metastable states. According to an
estimate obtained using typical values of the LC param-
eters (K22 = 3 pN, d = 5 µm, and W ≥ 0.1 mJ/m2 [5])

,

Sd K22/Wd=

Sd 6 10 3–
 ! 1/2π×<
1063-7761/02/9402- $22.00 © 20260
excluding the metastable states from consideration can
only be justified in a special case of extremely small
cohesive energies.

In this paper, the notions about the LC director slip-
page are further developed, but a somewhat different
approach to this problem is proposed. In particular, the
concept of quasi-equivalent states is introduced, and,
according to one of the proposed mechanisms, the tran-
sitions involving a change in the helix pitch take place
just between such states. The quasi-equivalent states
correspond to topologically equivalent configurations
of the CLC director distribution, the transitions
between which (quasi-equivalent transitions) are
allowed both due to deformation of the director field in
the bulk and due to a finite cohesive energy at the LC
boundaries. For a relatively large energy of cohesion
between LC molecules and a surface (@0.1 mJ/m2),
this implies configurations differing from one another
by an even integer number of halfturns in the choles-
teric helix. At a relatively small cohesive energy caused
by a deviation of the director from the easy orientation
axis, a minimum change in the number of halfturns
upon a quasi-equivalent transition can be characterized
by an intermediate value between one and two. In con-
trast to the second mechanism involving transitions
between the topologically nonequivalent configura-
tions differing by a halfturn of the cholesteric helix, the
quasi-equivalent transitions require no defect forma-
tion.

This study is devoted to the general case, whereby
the easy orientation axis of LC molecules possesses an
initial slope (tilt) at the boundary surfaces and the cohe-
sive energy comprises two components—zenithal and
azimuthal. The latter circumstance is of special signifi-
002 MAIK “Nauka/Interperiodica”
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cance from the standpoint of investigations related to
the development of oriented coatings of a new type with
controlled slope of the LC molecules and controlled
components of the cohesive energy. It will be demon-
strated that important factors determining the helix
pitch variation include, in addition to the temperature
dependence of the natural helix pitch considered in [2],
the temperature dependence of the elasticity coefficient
and the presence of an LC director tilt at the boundaries.
With a view to subsequent experimental verification of
the proposed mechanisms, the general equations were
numerically solved for a particular CLC and the optical
transmission spectra in a selective reflection range were
calculated.

2. BASIC EQUATIONS

Consider the layer of a cholesteric liquid crystal
confined between two surfaces spaced by a distance d.
The CLC is assumed to possess a planar texture,
whereby the cholesteric helix axis is oriented perpen-
dicularly to the boundary surfaces. For brevity, this sys-
tem is referred to below as the CLC cell. The right-
handed coordinate system is oriented so that the x and
y axes are lying in the plane of the first boundary sur-
face and the z axis is directed toward the second sur-
face. Let the easy orientation axes of CLC molecules in
both boundary planes belong to the xz plane. The orien-
tation state of CLC molecules in the layer is character-
ized by a unit vector (director)

where θ and ϕ are the azimuthal and polar angles mea-
sured from the z and x axes, respectively (Fig. 1). When
the total number of halfturns in the cholesteric helix is
much greater than unity, we can use Frank’s general
formula [5] for the free energy density and obtain the
following expression for the free energy of a CLC per
unit area (see Appendix for details):

(1)

where K11, K22, and K33 are the LC constants of elastic-
ity; q is the wavenumber of the cholesteric helix in the
cell; q0 is the wavenumber corresponding to the natural
helix pitch P0 = 2π/q0 (attained in the limit of negligibly
weak interaction between CLC and the boundary sur-
faces); and W1 = W1(ϕs1, θs1) and W2 = W2(ϕs2, θs2) are
the energies of cohesion between CLC and the bound-
ary surfaces, which depend on the director orientation
(the subscripts s1 and s2 indicate the director angles on
the first and second surfaces, respectively).

n nx ny nz, ,( ) θ ϕcossin θ ϕsinsin θcos, ,( ),= =

F
K22d

2
----------- q0 q–( )2=

+ K11K33 θs1cos
2 θs2cos

2
+( )q W1 W2,+ +
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The azimuthal distribution of the CLC director is
described by the expressions

(2)

with the boundary conditions

(3.1)

(3.2)

where k is an integer. Note that the domain of ϕs1, s2 val-
ues represents a 2π-wide sector. In the general case of a
tilted director, this domain contains no ϕs1, s2 values cor-
responding to like director states on the boundary sur-
faces. The helix configurations with the same k may dif-
fer by a multiple of two halfturns. In the particular case
when the director is not tilted at the boundaries, the ori-
entational equivalence of the director states (n = –n)
allows the ϕs1, s2 domain to be restricted to a π-wide sec-
tor; in this case, the k value corresponds to an integer of
the total number of halfturns in the helix. However, for
the sake of generality and consistency, we will consider
the entire domain of ϕs1, s2 values defined in (3.2).

For the subsequent analysis, it is convenient to
define the quasi-equivalent states as the states in which
the k values either are the same or differ by an even inte-
ger. The introduction of this concept be justified below.
It should be noted that the quasi-equivalent states cor-
respond to local minima of the free energy of the sys-
tem on the general configuration curve (representing
the free energy as a function of q). Adjacent states with
the k values differing by unity belong to a different con-
figuration curve and should be spatially separated by a
disclination line.

The equilibrium state of a CLC corresponds to a
minimum total free energy of the system. For the extre-
mal values of the function (1), variation of the angles
ϕs1 and ϕs2 with an allowance of the boundary condi-
tions (3) yields

nx θ qz ϕ s1+( )cossin= ,

ny θ qz ϕ s1+( )sinsin= .

ϕ s1 qd+ ϕ s2 πk,+=

π ϕs1 s2, π,≤<–

z

x

y

n
θ

ϕ

Fig. 1. A schematic diagram of a cholesteric helix in the lab-
oratory coordinate system.
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(4)

These equations lead to several important results. The
first is the boundary condition

(5)

In the case of identical surfaces (W1 = W2 ≡ W), this
yields

(6)

Secondly, substituting relationship (6) into Eqs. (4) and
taking into account the boundary condition (3.1), we
obtain expressions for the helix wavenumber in a cho-
lesteric layer confined between two like surfaces:

(7.1)

(7.2)

(7.3)

where (since the surfaces are identical) we set θs1 = θs2 ;
θs. The solutions of the system of Eqs. (7.1) and (7.2)
correspond to extremal values of the free energy. Sup-
plementing this system by condition (7.3), we restrict
the consideration to solutions representing minima of
the energy. Expressions (7.1)–(7.3) are the key relation-
ships in the subsequent analysis.

3. RESULTS AND DISCUSSION

The experimentally observed effect [3, 4] consists in
that a change in the temperature leads to a sharp shift of
the selective transmission spectrum, which is explained
by a jumplike change in the cholesteric helix pitch. The
jump takes place over a very narrow temperature inter-
val amounting to a fraction of one kelvin. As can be see
from Eq. (7.1), changes in the helix wavenumber for a
fixed CLC layer thickness can be due to the temperature
dependence of either the quantity q0 or the elastic con-
stants, tilt angle, and cohesive energy. The temperature
dependences of elastic constants for some LC materials
were measured with a good accuracy [6], which allows
us to perform an analysis based on the particular esti-
mates. Turning to the experiments reported in [3],
where the selective reflection band was observed in the

∂F
∂ϕ s1
---------- K22 q0 q–( )=

–
1
d
--- K11K33 θs1cos

2 θs2cos
2

+( )
∂W1

∂ϕ s1
----------+ 0,=

∂F
∂ϕ s2
---------- K22 q0 q–( )–=

+
1
d
--- K11K33 θs1cos

2 θs2cos
2

+( )
∂W2

∂ϕ s2
----------+ 0.=

∂W1

∂ϕ s1
----------

∂W2

∂ϕ s2
----------.–=

ϕ s1 ϕ s2 ϕ s.≡–=

q q0

2 K11K33

K22d
------------------------ θscos

2
–

1
K22
--------∂W

∂ϕ s

--------,+=

ϕ s
πk qd–

2
------------------,=

∂2W

∂q2
----------

1
2
---K22d 0,>+
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visible range (λ ~ 500–600 nm) for a 4.8-µm-thick
CLC cell, we can readily estimate that the change by
one in the number of halfturns of a cholesteric helix
corresponds to a relative change in the wavenumber by

,

where n ~ 1.6 is the CLC index of refraction and N is
the number of halfturns in the cholesteric helix over the
cell thickness. According to (7.1), the presence of a
finite director tilt at the boundary allows the helix pitch
to change as a result of variation of the elastic constants
even for infinite cohesive energy. A finite cohesive
energy makes the wavenumber q even more sensitive
toward the temperature variations because deviations of
the director from the easy orientation axis give rise to a
nonzero derivative ∂W/∂ϕs. In the case of a zero tilt of
the director, a relative change in the helix wavenumber
due to the temperature variation of K22 per one kelvin
can be estimated as 

(8)

Here, we took q0 = 15 µm–1, the elastic constant K22 = 3 pN,
and the temperature coefficient dK22/dT ≈ –0.06 pN/K for
the well-known nematic liquid crystal pentylcyanobi-
phenyl (5CB) and limited the cohesive energy variation
to a typical value of 0.1 mJ/m2 for the director deviation
by an angle of π/4. As noted above, a change in the
number of halfturns by one under the experimental con-
ditions used in [3, 4] requires a relative change in the
wavenumber ∆q/q0 ~ 0.03 (here, we do not specify a
mechanism changing the number of halfturns). For the
conditions used in the estimate (8), this corresponds to
a temperature interval width on the order of 0.5 K.

Thus, typical temperature-induced variations in the
elastic constants may introduce, together with the tem-
perature dependence of the natural helix pitch, a signif-
icant contribution to the resulting effect of variation of
the helix pitch.

3.1. On Mechanisms of the Cholesteric Helix 
Wavenumber Jump in the Absence of a Director Tilt 

in the Rapini Model Potential

Let us consider in more detail the possible mecha-
nisms of the temperature-induced jump in the helix
pitch, based on the Rapini model—the most popular
shape of the surface potential in the absence of a tilt of
the CLC director at the boundaries. As will be shown
below, there are two basically different mechanisms
that may account for the variation and jump in the helix
pitch, which are related to the two configuration curves
of the free energy as a function of the wavenumber.

∆q/q0 1/N∼ λ /2dn 0.03∼=

1
q0
----- ∂q

∂T
------ 1

q0 K22( )2
--------------------∂W

∂ϕ s

--------
∂K22

∂T
-----------–=

∼ 1

1.5 107 m 1– 9 10 24–  H2×××
--------------------------------------------------------------------10 4–  J/m2

π/4
-----------------------

× 6 10 14–  N K× –1
0.06 K–1.=
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In one of these mechanisms, an important role
belongs to the temperature dependence of the natural
pitch and the ratio of the coefficient of elasticity to the
cohesive energy. Unfortunately, precise measurements
of the cohesive energy encounter a number of difficul-
ties. In most cases, the experimental data presently
available on the cohesive energies at various surfaces
can be considered only as estimates. For this reason, we
will fix the cohesive energy and consider the influence
of the temperature variation of the coefficient of elastic-
ity. However, it should be borne in mind that, in the
general case, we imply the temperature dependence of
the ratio of the coefficient of elasticity to the cohesive
energy. The role of the temperature variation of the
wavenumber q0 requires special analysis.

For certainty, the calculations will be performed for
a 5CB liquid crystal, the parameters of which are
known in a broad temperature range [6]. The use of
such values by no means reduces generality of the anal-
ysis, while indicating the boundaries of variation of the
parameters that are important in experiment. The liquid
crystals of pure 5CB are not cholesteric, but small
chiral additives (only slightly affecting the elastic con-
stants of the matrix) render the material cholesteric
with a certain natural helix pitch. In our calculations,
the natural pitch is assumed to be P0 = 2π/q0 = 0.5 µm.
As is commonly known, 5CB possesses a room-tem-
perature (T = 20°C) elastic constant K22 ≈ 3.3 pN and
the corresponding temperature coefficient dK22/dT ≈
−0.06 pN/K. For the sake of generality, the layer thick-
ness will be taken somewhat different from a nominal
value (d0 = 5 µm).

In the case when the CLC easy orientation axes
occur in the boundary planes (e.g., are parallel to the x
axis), the Rapini potential is

(9)

and Eqs. (7.1)–(7.3) acquire the following form:

(10.1)

(10.2)

Obviously, Eq. (10.1) has a trivial solution q = q0 for a
thickness of d = d0 = πk/q0 referred to as the nominal.
In the general case, the thickness d differs from d0 and,
hence, the cholesteric helix is ether contracted or
extended owing to cohesion between LC and the sur-
face.

The possible mechanisms of a jump in the wave-
number q are most clearly illustrated by a graphical
solution of Eq. (10.1) presented in Fig. 2a. The solu-
tions to this equation correspond to the points of inter-
section of the functions

W ϕ s( )
1
2
---W0 ϕ ssin

2
=

q q0

W0

2K22
----------- πk qd–( ),sin+=

K22 2W0d πk qd–( )cos 0.>+

f q( ) W0 πk qd–( )/ 2K22( ), g q( )sin q q0–= =
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represented by curve 1 (or 2) and line 3, respectively.
For a set of k values differing by an even integer, f(q) is
a common continuous periodic function. By the same
token, the free energy function F(q) for the same set of
k values is also represented by a common smooth curve
(Fig. 2b).

Not all solutions to Eq. (10.1) satisfy the condition
(10.2) of the free energy minimum. If there is a family
of solutions meeting the condition of minimum for a
given set of k values (differing by an even integer), we
will speak of a set of the quasi-equivalent states. Here,
the prefix “quasi” emphasizes a difference in the free
energies for the states corresponding to various local
minima, while the term “equivalence” indicates that the
states belong to the same configuration curve F(q).

1

2

3
A

qB q0 qA

1*

2* B

1.0

0.5

0

–0.5

–1.0

f, 
g 

=
 q

 –
 q

0,
 µ

m
–

1

B B*

1*

2*

1

2

AA*

12

10

8

6

4

2

0

11.5 12.0 13.513.012.5
q, µm–1

F
, p

N
/m

Fig. 2. (a) A graphical solution of Eq. (10.1) for d = d0 +
P0/4 = 5.125 µm and (b) the corresponding configuration
curves of the free energy: solid curves 1, 2 correspond to the
states with k = 20; dashed curves 1*, 2* represent the adja-
cent states with k = 19 or 21; the pairs of curves 1, 1' and 2,
2' show the f(q) and F(q) functions calculated for K22 = 1.5
and 3 pN, respectively; straight line 3 represents the func-
tion g(q) = q – q0 (see the text); the minima A, B and A*, B*
indicate the quasi-equivalent states on the configuration
curves 1 and 1*, respectively; arrows indicate transitions
between quasi-equivalent states.

(a)

(b)
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There are only two sets of integers k—even and odd—
which determine two configuration curves of the free
energy as a function of q. It is the existence of the two con-
figuration curves that accounts for the two basically differ-
ent mechanisms of a jump in the helix wavenumber.

In Fig. 2a, solid curves show the functions f(q) for
k = k0 = 2d0/P0 = 20, while the dashed curves represent
the analogous functions for k = k0 – 1 = 19 (the pairs of
curves 1, 1* and 2, 2* corresponding to different coef-
ficients of elasticity). First, let us restrict the consider-
ation to the solutions for k = 20 at a fixed helix wave-
number q0. Although there are three points of intersec-
tion between curve 1 and line 3, only two of these
solutions (indicated by points A and B) satisfy the con-
dition (10.2) of minimum free energy (see Fig. 2b). The
point A corresponds to a metastable quasi-equivalent
state, which is separated from the energetically more
favorable state B by a barrier depending on the cohesive
energy and the coefficient of elasticity. Once falling
into the state A, the system may occur there for a rather
long time (in practice, the lifetime of a metastable state
may be on the order of tens of minutes). However, a
temperature-induced increase in the elastic constant up
to a certain level may decrease the amplitude of the f(q)
function (Fig. 2, curve 2), leading to disappearance of
the solution A (curve 2 intersects with line 3 at a single
point B corresponding to the free energy minimum).
Thus, the local energy minimum corresponding to the
metastable quasi-equivalent state A disappears and the
system exhibits a jumplike transition into state B with a
sharply different helix wavenumber q (Fig. 2b, curve 2).

An analogous behavior can be observed on displac-
ing line 3 (representing the function g(q) = q – q0) in

10.5
10.5

q,
 µ

m
–

1

q0, µm–1

10

10
q, µm–1

11.0

11.5

12.0

12.5

13.0

13.5

11.0 11.5 12.0 12.5 13.010.0

1
2
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B

C

5

0

12 14

C B A

15
3

2

1

F, pN/m

Fig. 3. A plot of the helix wavenumber q in the CLC cell
versus the wavenumber q0 corresponding to the natural
helix pitch. Arrows indicate the direction of variation of the
parameter q0. The inset shows the configuration curves of
the free energy versus q for various q0 = 13 (1), 12.6 (2), and

11.4 µm–1 (3), illustrating the mechanism of jumps in the
wavenumber q. Symbols A, B, and C indicate stable states of
the system for various q0. All calculations were performed for

d = 5.125 µm, K22 = 3 pN, and W0 = 3 × 10–3 mJ/m2.
JOURNAL OF EXPERIMENTAL
Fig. 2a. For example, if the temperature variation leads
to a decrease in the wavenumber q0, the line 3 would
shift toward greater values along the ordinate axis and,
hence, the solution A would disappear. However, there
is an essential difference in this scenario from the case
of variation of the elastic constant. Indeed, the shift of
the g(q) line upward not only leads to disappearance of
the solution A, but can “create” a new solution C on the
left (along the q axis) of solution B. Moreover, continu-
ing variation of the wavenumber q0 would render the
state B metastable, whereas C would become the main
stable state. Finally, a moment will come when the state
B disappears (by a mechanism described above for state
A) and the system passes into state C (see the inset in
Fig. 3).

If the direction of displacement of the g(q) line is
reversed (by inverting the direction of temperature vari-
ation), the system would apparently exhibit a hysteresis
because the temperature at which state C disappears on
increasing the q0 value differs from the temperature of
disappearance of state B with decreasing q0. Thus, the
variation of the natural helix pitch leads to reversible
changes in the wavenumber, albeit with a certain hys-
teresis. This is illustrated in Fig. 3 showing a plot of the
helix wavenumber q versus q0 corresponding to the nat-
ural helix pitch. In contrast to this behavior, the jump in
the wavenumber caused by changing the elastic con-
stant is not reversible, since the system always passes
into an energetically more favorable state.

Now let us briefly mention the role of other param-
eters varied at a fixed wavenumber q0. An increase in
the layer thickness d leads to a change in the period of
function f(q) and, accordingly, increases the tempera-
ture sensitivity of the system with respect to the appear-
ance of local minima in the W0/K22 ratio. In our exam-
ple, W0 = 3 × 10–3 mJ/m2 and one of the two possible
jumps in the helix pitch (extremely low cohesive energy
of this system results in that only one metastable quasi-
equivalent state exists on each configuration curve) can
be observed provided that the coefficient of elasticity
varies from 2.9 to 3.1 pN, which corresponds to the
temperature variation from 21 to 23°C. An increase in
the cohesive energy would increase the number of
quasi-equivalent states between which the transitions
can take place. However, the most sensitive with
respect to the temperature still will be the states with
deeper local energy minima, that is, with maximum
change in the number of halfturns relative to the nomi-
nal value 2d0/P0.

It should be emphasized that, in contrast to the
approach proposed in [2], we consider the transitions
between quasi-equivalent states with the same (or dif-
fering by an even integer) k values. The quasi-equiva-
lent character of states is a very important condition,
since this mechanism does not require the formation of
bulk defects for changing the helix wavenumber. The
quasi-equivalent states correspond to topologically
equivalent configurations of the LC director distribu-
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tion. A continuous transition between these configura-
tions, even for infinite surface energy, can be provided
by deformation of the LC director in the bulk. A good
illustration is offered by a hydrodynamic bistability
phenomenon observed upon application of an electric
field pulse to a CLC cell [7, 8]. The physical pattern of
this bistability can be clearly described in terms of the
mechanism proposed above, by considering the transi-
tions between quasi-equivalent states differing (under
conditions of strong cohesion) by two halfturns of the
CLC helix.

The considerations above referred to the case of
states belonging to the same configuration curve. How-
ever, there is a basically different possible mechanism
of the helix pitch variation related to the transitions
between ground states belonging to the different con-
figuration curves. The states with adjacent values k =
{19, 21} are characterized by analogous, albeit some-
what shifted, configuration curves of the free energy
(see dashed curves 1* and 2* in Fig. 2b) and may
equiprobably exist in a real cell with the thickness d =
d0 + P0/4. The configuration with k = 20 and any of the
adjacent states with k = {19, 21} are topologically non-
equivalent and, hence, separated by a disclination line.
An insignificant energy gain acquired by one of the two
configurations would result in movement of the discli-
nation line separating the two states with the k values
differing by unity.

In contrast to the quasi-equivalent transitions, for
which a minimum change in the helix wavenumber q
falls within the interval from π/d to 2π/d (at higher
cohesive energies, the corresponding change in the
number of halfturns approaches two), a change in q for
the transition between adjacent states does not exceed
π/d. This property can serve a criterion for distinguish-
ing the different mechanisms of the helix pitch jump
corresponding to the transitions between quasi-equiva-
lent and adjacent states. By leveling the energies of
ground states on the two configuration curves (which
can be provided by varying the layer thickness or the
natural helix pitch so that d = d0 + P0/4), we may create
conditions for the existence of equiprobable adjacent
configurations. In the experimental selective reflection
spectra, the presence of adjacent configurations should
be manifested by superposition of the spectra from two
spatially separated regions, which was probably
observed in [3]. At the same time, a jump in the wave-
number with the number of halfturns changed by two
reported in [4] can be attributed to a quasi-equivalent
transition.

For a greater cohesive energy (@0.01 mJ/m2), when
the amplitude of the f(q) function is sufficiently large,
the system possesses a large number of solutions corre-
sponding to deep minima in the free energy. Here, a
change in the coefficient of elasticity or the natural
helix pitch may be insufficient to eliminate the quasi-
equivalent states with the k values close to the nominal
number of halfturns N0 = 2d0/P0. In this case, a mecha-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
nism of the helix wavenumber variation can only be
related to a shift of the disclination lines or to the for-
mation of defects (assuming that the LC director in the
bulk is not perturbed, e.g., by an applied electric field).

3.2. Effects of the Director Tilt 
and the Cohesive Energy Components

In order to establish the role of the director tilt angle,
it is important to take into account that, in the general
case, the azimuthal cohesive energy component (i.e.,
the cohesion related to the director deviation by the
angle ϕ) differs from the zenithal component (involving
the director deviation in the θ angle).

At present, there is no commonly accepted form of
representation for the potential of interaction between
the LC director and the surface, although this problem
has been discussed for a long time [9]. In particular, the
interaction energy is frequently written in the form of
an expansion in Legendre polynomials. However, the
mean field distribution at the surface in the general case
does not possess a cylindrical symmetry. Mathemati-
cally, the mean field asymmetry requires introducing
the angular dependence of the cohesive energy with
the aid of a set of orthogonal functions ensuring the
expansion of dependences defined over the {0, 2π}
interval and possessing a period of 2π. This possibil-
ity is offered by the Fourier expansion instead of the
Legendre polynomials that can only provide for the
expansion of functions defined on the interval of

 .

The Fourier representation of the cohesive energy
can be conveniently written in a local coordinate sys-
tem x 'y 'z ' in which the y' axis coincides with the easy

acos x 1 1,–{ } ,∈= θ 0 π,{ }∈

Fig. 4. A schematic diagram illustrating the interaction
between the LC director and the surface in a local coordi-
nate system x 'y 'z '. The y' axis coincides with the easy orien-
tation axis; the z axis of the laboratory coordinate system
lies in the y 'z ' plane. Deviation of the LC director from the
easy orientation axis is considered as a superposition of
deviations in the two orthogonal planes z 'y ' and x 'y ', which
correspond to the azimuthal and zenithal cohesive energy
components, respectively.
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orientation axis (Fig. 4). The concept of the easy orien-
tation axis is very important. By definition, this axis is
determined in the laboratory coordinate system xyz by
a tilt angle relative to the xy plane and corresponds to
the director orientation on the surface in the absence of
elastic deformations in the bulk. If the director field in
the LC bulk is deformed, the director orientation on the
surface would deviate from the easy orientation axis.
The returning force of the surface is determined by the
type of the cohesive energy.

In the local coordinate system, the movements of the
director in the two orthogonal planes x'y' and y'z' can be
considered as independent (i.e., characterized by indepen-
dent amplitudes of the harmonics); these movements are
defined as corresponding to the azimuthal and zenithal
cohesive energy components. In the most general case,
each of these components can be represented as a Fourier
series in the orthogonal directions corresponding to the
rotations with respect to angles φ' (for the azimuthal
energy) and ϑ ' (for the zenithal energy):

(11.1)

(11.2)

where m is the harmonic number and Azm , Bzm , Axm , and
Bxm are the corresponding harmonic amplitudes.
Assuming the presence of a certain symmetry, expan-
sions (11.1) and (11.2) can be simplified. For example,
if the system is symmetric relative to the easy orienta-
tion axis, the energy function should be even and the

Wz' Azm mϑ '( )cos Bzm mϑ '( )+( ),
m 0=

∞

∑=

Wx' Axm mφ'( )cos Bxm mφ'( )sin+( ),
m 0=

∞

∑=

Fig. 5. The configuration curves of the free energy for a
CLC layer with the thickness d = d0 + P0/4 = 5.125 µm (1,
1*) in the absence of tilt and (2, 2*) in the presence of a 10°
director tilt and the anisotropic cohesive energy. The curves
were calculated for k = 20 (1, 2) and 19 (1*, 2*); K22 = 2 pN;

K33 = 10 pN; K11 = 6.4 pN/m; Wa = 3 × 10–3 mJ/m2; and

Wz = 0.3 mJ/m2. The corresponding director tilt θs at the
boundaries for k = 20 and 19 is 83° and 97°, respectively.
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Fourier series in both (11.1) and (11.2) would contain
only the terms with cosines. An additional symmetry
with respect to the x 'z' plane (orthogonal to the easy ori-
entation axis) would retain only even harmonics in the
expansion. In the latter case, the zeroth and second har-
monics reflect the widely used Rapini potential. Evi-
dently, no such symmetry takes place in the general
case, and, hence, the development of methods for deter-
mining the Fourier coefficients in expansions (11.1)
and (11.2) would provide an approach to adequate char-
acterization of the cohesive energy. However, since
most of the measurements so far were performed for the
Rapini model potential, we will restrict the further analysis
to a modified form of this potential taking into account an
anisotropy in the cohesion and the director tilt.

Retaining only the zeroth and second harmonics in
the Fourier expansions (11.1) and (11.2), we can
express the total cohesive energy in terms of the direc-
tor components as follows:

(12)

where Wa and Wz are the amplitudes of the azimuthal
and zenithal components of the cohesive energy, and
nx' and nz' are the director components in the local coor-
dinate system (see Fig. 4).

Accomplishing the coordinate transformation and
taking into account that easy orientation axis belongs to
the xz plane, we arrive at an expression for the cohesive
energy in the laboratory coordinate system:

(13)

where the index s indicates the values determined at the
surface,

and the angle θs0 determines the orientation of the easy
orientation axis relative to the z axis. Substituting (13)
into Eqs. (7.1) and (7.2), we obtain 

(14)

Comparing expressions (14) and (10.1), one can
readily see that the director tilt could be treated in terms
of the effective change in the natural helix pitch and
renormalized cohesive energy, if it was not the last term
that may give a very significant contribution due to an
anisotropic cohesive energy (when Wz @ Wa). These
contributions are different for the two adjacent states as
a result of the π/2 phase shift. Should the anisotropic
contribution be zero at a certain thickness for the states
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with k = 0, the adjacent state with k = 1 will be charac-
terized by the maximum contribution. This is a conse-
quence of the qualitatively different free energy rela-
tionships in the adjacent states. For a comparison, Fig. 5
shows the configuration curves of the free energy for
adjacent states in the absence (dashed curves 1 and 1*)
and in the presence (solid curves 2 and 2*) of the director
tilt. In the absence of tilt, the configuration curves 1 and 1*
for the given thickness (d = d0 + P0/4 = 5.125 µm) are
symmetric with respect to the vertical axis drawn at q = q0;
in the presence of a 10° tilt, the curves exhibit a strong
shift in both ordinate (energy) and abscissa (wavenum-
ber) axes. The latter shift may result in a considerable
displacement of the Grangin zones in the Kano wedge,
which should be taken into account when this method
is used for determining the natural helix pitch.

The presence of a director tilt is a factor important
for practical applications, which can be used for intro-
ducing asymmetry into the energy of adjacent states in
order to inhibit the formation of undesired domains and
the transitions between adjacent states in the CLC cell.
It is well known that the supertwist nematic (STN) LC
display technology employs large tilts (25° for 270°
STNs) for avoiding the domain formation.

3.3. Manifestations of the Cholesteric Helix 
Wavevector Jump in the Selective Optical

Transmission Spectra

With a view to the possible experimental verifica-
tion of the mechanism of variation of the cholesteric
helix wavenumber, we have numerically modeled a
CLC cell using parameters of the 5CB crystal. In par-
ticular, we calculated the optical transmission spectra in
a selective reflection range.

The calculation was performed using a two-stage
procedure. In the first stage, the general Lagrange equa-
tions (derived using expression (A.3) in the Appendix)
were solved by the relaxation method and a distribution
of the director was determined for a CLC layer with pre-
set boundary conditions. Then, using the 4 × 4 matrix
method with an algorithm proposed in [10], we numer-
ically solved the Maxwell equations for a layered opti-
cal system including both the CLC layer and the bound-
ary glass plates. The optical problem was solved for a
partly monochromatized (coherence length, 100 µm)
nonpolarized light, which is the closest to typical con-
ditions that can be used in the possible experiment.

By properly selecting the ϕs0 value (0° or 180°) for
the easy orientation axis on the second surface, we
obtained numerical solutions corresponding to one of
the configuration curves (with k = 19 or 20) considered
above. Examples of the transmission spectra of a CLC
cell calculated for k = 19, fixed wavenumbers q0, and
various coefficients of elasticity are presented in Fig. 6
(the other parameters corresponded to the values used
for calculation of the configuration curves in Fig. 2). As
can be seen, the selective transmission band exhibits a
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sharp displacement within the region of K22 between
2.8 and 3.2, which is caused by a change in the helix
wavenumber from 11.7 µm–1 (curve 3) to 12.7 µm–1

(curve 2). This behavior is fully consistent with the pro-
posed interpretation of the helix pitch jump as a result
of the quasi-equivalent transitions. In this particular case,
the system features a transition of the type A*  B* as
indicated in Fig. 2. Naturally, analogous (but displaced)
curves will also be observed for the A  B transition
on the other configuration curve. Thus, for any selected
layer thickness, the measured spectra can represent a
superposition of spectral curves corresponding to vari-
ous states.

A real system exhibits the temperature dependence
of both the elastic constants and the natural helix pitch.
According to the proposed mechanism, the latter factor
must result in that the jumplike shift of the selective
transmission spectrum would be periodically repeated,
for example, on heating, with a hysteresis behavior
observed on cooling (see Fig. 3).

In the case of transitions between adjacent states,
the spectral shift caused by a jump in the helix pitch
will be smaller than that depicted in Fig. 6, because the
total number of halfturns in the helix cannot change by
more than one. Moreover, since the transition is accompa-
nied by motion of the disclination line separating two
states, the transition may be accompanied both by a super-
position of the spectral curves from the two spatially sep-
arated regions and by increased light scattering.

The presence of a director tilt will affect both the
positions of the spectral curves and the period of jump-
like spectral shifts. The last term in Eq. (14) accounts
for the existence of two different intervals on the wave-
number scale through which the jump of the selective
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Fig. 6. The optical transmission spectra of a 5.125-µm-thick
CLC cell for nonpolarized light, calculated for various val-
ues of the elastic constant K22 = 4 (1), 3.2 (2), 2.8 (3) and
2 pN (4) with an allowance for the boundary glass plates
(refractive index, n = 1.5; thickness, 200 µm). The calcula-
tions were performed for a normal dispersion law with the
following refractive indices: n|| (λ = 514 nm) = 1.736;
n⊥ (λ = 514 nm) = 1.544; n|| (λ = 630 nm) = 1.706; n⊥ (λ =
600 nm) = 1.531.
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transmission spectrum takes place in the course of a
gradual variation of the natural helix pitch.

4. CONCLUSION

We have considered two possible mechanisms
explaining the temperature variation of the helix pitch
in the spatially bounded layer of a cholesteric liquid
crystal. The two mechanisms are related to the exist-
ence of two configuration curves of the free energy as a
function of the cholesteric helix wavenumber.

The first mechanism is based on the temperature vari-
ation of the positions of quasi-equivalent states on one of
the configuration curves. As the CLC parameters or the
boundary conditions exhibit temperature-induced varia-
tions, solutions of basic equations corresponding to the
quasi-equivalent states may disappear. This results in a
jumplike transition to another quasi-equivalent state,
which is accompanied by a change (ranging from one to
two) in the number of halfturns. The transitions between
quasi-equivalent states require no defect formation.

The second mechanism is based on the transitions
between ground states belonging to different configura-
tion curves. This mechanism implies either the motion
of a disclination line or the formation of defects. In this
case, the total number of halfturns changes by no more
than one.
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APPENDIX

In the most general case, the free energy density of a
CLC is determined by the Frank expression [5] and, with
an allowance for the cohesive energy, can be written as

(A.1)

where δ(z) is the Dirac delta function.
Restricting the consideration to a practically impor-

tant case of the director orientation changing only in the
z direction, we can use the relationships 

(A.2)
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and Eq. (A.1) acquires the following form:

(A.3)

An analysis of the numerical solution to the
Lagrange–Euler equations for the free energy density
(A.3) showed that the director distribution can be
described with very good accuracy by the expressions

(A.4.1)

(A.4.2)

Therefore, the analytical solutions for the CLC director
orientations corresponding to the free energy minima
can be solved in the form of (A.4.1) and (A.4.2), where

the quantities  and  refer to the first and second
surfaces and correspond to the characteristic length
over which the z component of the director exhibits varia-
tion. These quantities can be determined from the condition
of minimum for the free energy. The corresponding A1 and
A2 values are determined from the boundary conditions.

Substituting (A.4.1) and (A.4.2) into (A.3) and inte-
grating with respect to thickness, we obtain the follow-
ing expressions for the free energy per unit area:

(A.5)

(A.6)
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(A.8)

where  denotes the fourth-order terms in
A1, 2. Since A1, 2 < 1 (moreover, the tilt at the boundaries
is usually small and A1, 2 ! 1), the fourth-order terms in
A1, 2 can be fully ignored.

The results of numerical modeling of the general
problem showed that, in the presence of a director tilt at
the boundary and for a large number of halfturns in the
helix (N @ 1), the director tilt angle ϑ  = π/2 – θ (mea-
sured from the xy plane) tends to zero in the majority of
the CLC cell (except for a thin near-surface region hav-
ing a thickness comparable with the helix pitch). Thus,
for N @ 1, the exponential terms in (A.6)–(A.8) can be
ignored since ξ1d @ 1 and ξ2d @ 1. Moreover, in this
case one can readily derive from the boundary condi-
tions that A1 ≈ nzs1 and A2 ≈ nzs2, so that the expression
for the free energy acquires a still simpler form:

(A.9)

Varying (A.9) with respect to ξ1 and ξ2 and using the
condition of minimum free energy (A.9), we obtain

(A.10)
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cohesive energy influences the values of nzs1 and nzs2.
For this reason, the director slope at the boundaries dif-
fers from the initial tilt determining the easy orientation
axis. Substituting (A.10) into (A.9), we finally arrive at

(A.11)

The approximation in the right-hand part of (A.11) is jus-
tified when |q0 – q| ! q0, which takes place for N @ 1.
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Abstract—For a two-sublattice antiferromagnet, the Lagrangian is constructed taking into account Berry’s
phase whose form is matched with the quantum-mechanical Heisenberg Hamiltonian. Tunnel effects are ana-
lyzed taking into account the crystallographic symmetry and possible types of Dzyaloshinski interaction. It is
shown that, when the real magnetic symmetry and the Dzyaloshinski interaction are taken into consideration,
the effects of destructive instanton interference and the suppression of macroscopic quantum tunneling may
come into play. This may lead to a periodic dependence of the ground-state level splitting on the Dzyaloshinski
interaction constant; the magnitude of this splitting is calculated. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

During the last decade, macroscopic quantum tun-
neling in macroscopic (or, to be more precise, meso-
scopic) magnetic systems has become an object of
intense experimental and theoretical investigations [1].
In the physics of magnetism, such systems include
small magnetic particles, magnetic clusters, and high-
spin molecules. Special attention is paid to coherent
macroscopic quantum tunneling (CMQT) between
physically different, but energetically equivalent, states
in systems with discrete degeneracy of the ground state.
A typical CMQT effect in such systems is tunneling
between two equivalent classical states corresponding
to two minima of the anisotropy energy (see [2]).

The CMQT effects can be observed experimentally
from the resonant absorption of electromagnetic waves
at tunnel-split energy levels. The interest in this effect
is associated with the following two factors. First,
mesoscopic objects exhibiting quantum-mechanical
properties are interesting as potential elements of quan-
tum computers. Second, fine and elegant effects of
interference of instanton trajectories emerge in these
problems. For ferromagnetic particles, these effects
suppress tunneling for half-integral values of the total
spin of the system [3, 4] and lead to oscillatory depen-
dences of the tunnel splitting of energy levels on extrin-
sic parameters [5]. In addition, in contrast to the effects
of quantum runaway from a metastable to a stable state,
the manifestations of CMQT effects are not masked by
thermal fluctuations.

Initially, the CMQT investigations were carried out
for small particles of a ferromagnet [6, 7] under the
assumption that all spins in a particle are in fact parallel
to one another (high-spin model). The effects of
destructive interference of instanton trajectories and
interference suppression of tunneling were predicted
1063-7761/02/9402- $22.00 © 20270
precisely for such systems [3, 4, 8]. It turned out later
that antiferromagnets form a more convenient class for
experimental investigations of CMQT. According to
calculations [9, 10], the level spitting in an antiferro-
magnet is stronger than in a ferromagnet and the effects
can be observed at a higher temperature. It is not sur-
prising that the CMQT effects were observed for the
first time in ferritin particles possessing an antiferro-
magnetic structure [8]. No interference effects are
observed in pure antiferromagnets (i.e., in the case of
complete compensation of the spins of sublattices), but
such effects may appear upon the application of a mag-
netic field [5]. It will be shown below that even in zero
field, the interference effects may also appear when the
real magnetic symmetry of the crystal is taken into
account (in particular, in the presence of the Dzya-
loshinski–Moriya interaction).

A semiclassical description of magnetic systems is
based on the formalism of coherent spin states. In con-
structing the effective field Lagrangian both for a ferro-
magnet and for an antiferromagnet, we will proceed
from the formula for the Euclidean Lagrangian of an
individual spin, which has the form [11]

(1)

Here, s is the spin associated with each magnetic
moment, φk and θk are the polar coordinates of the kth
magnetic moment, and W(φk, θk) is the classical energy
of a magnetic material; the dot indicates the differenti-
ation with respect to the imaginary time τ = it. The first
term determines the magnetization dynamics (its varia-
tion leads to the well-known Landau–Lifshitz equa-
tions in angular variables) and also determines the so-
called Berry’s phase (see [11, 12]). This quantity is
associated with the total time derivative which is not

+0 i"s φ̇k 1 θkcos–( ) W φk θk,( ).–
k
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manifested in the equations of motion, but is responsi-
ble for the interference of instanton trajectories.

For a macroscopic description, it is natural to use
one or several field variables (order parameters) instead
of the set of microscopic variables. The determination
of the number of order parameters and their transforma-
tion properties in magnetic systems is a nontrivial prob-
lem. In the approach base on coherent spin states, the
order parameter for ferromagnets is the magnetization
vector of constant length, which can be parametrized by
the angular variables θ and φ. In this case, Berry’s phase
is just the resultant change in angle φ along an instanton
trajectory [3, 4]. The behavior of an antiferromagnetic
system can be correctly described with the help of a
three-component vector of a fixed length, viz., the fer-
romagnetism vector l [13–15]. The total spin in this
case is a subordinate variable and is determined by vec-
tor l and its time derivative ∂l/∂t. Dynamic equations for
the antiferromagnetism vector l can be either con-
structed proceeding from the symmetry considerations
[13] or derived from the Landau–Lifshitz equations for
the magnetizations of sublattices [16, 17]. In both these
approaches, the same classical equations of motion for
the unit vector l are obtained, which are usually referred
to as the equations of the σ model. The application of
such equations considerably simplifies the analysis of
both linear and nonlinear dynamic effects in an antifer-
romagnet (see [18, 19]). However, the advantage of
using these equations for describing macroscopic quan-
tum effects is not so obvious. At any rate, the
Lagrangian obtained from the classical Landau–Lif-
shitz equations or from symmetry considerations can-
not be used directly for describing the MQT effect tak-
ing into account the interference of instanton trajecto-
ries. It is probably for this reason that Golyshev and
Popkov [5] used in their analysis of the CMQT effects
a system of two equations for the magnetizations of
sublattices, whose analysis is much more complicated.

As a matter of fact, it is impossible in principle to
reconstruct the Lagrangian of a dynamic system from
the classical equations of motion. The Lagrangians
describing the same classical equations of motion for
the system may differ in the term which is the total
derivative with respect to time. This term does not
affect the classical dynamics of the system, but alters
the magnitude of action on trajectories. For this reason,
the corresponding terms of the type of total derivatives
were lost in the early publications [6, 7]. A consistent
quantum-mechanical expression for the spin Lagrangian
taking into account the correct equation for the total
derivative can be derived using the formalism of coher-
ent states and the analysis of the evolution operator; this
expression coincides with formula (1) given above.
Topological terms of the form of total derivatives in the
effective Lagrangian for vector l were found to be sig-
nificant for the quantum theory of 1D antiferromagnets
[11]. However, it is impossible in principle to derive
their expressions proceeding only from the classical
equations of the σ model for vector l.
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In the simplest version of the σ model, the deriva-
tives of l with respect to time appear in the Lagrangian
in the trivial form (∂l/∂τ)2 [13–15]. In this case, the
equations of the σ model are Lorentz-invariant, and the
description of the dynamics of nonlinear magnetization
waves (kink-type solitons in antiferromagnets) is sim-
plified considerably (see [15, 18]). In such a case, the
interference effects in MQT are obviously absent.
However, the situation changes radically in an analysis
of more realistic models.

First, for many antiferromagnetic crystals, there
exist terms taking into account interactions of the Dzy-
aloshinski-Moriya type, which are linear in l and in
magnetization. It was shown in [20, 21] that these inter-
actions are responsible for the terms in the effective
Lagrangian which are linear in ∂l/∂t; this considerably
modifies the kink dynamics as compared with the sim-
plest Lorentz-invariant model. Obviously, such interac-
tions may in principle also lead to the emergence of
total derivatives (topological phases). The presence of a
magnetic field may also lead to similar effects; this was
noted in an analysis of the nonlinear dynamics of anti-
ferromagnets [22] as well as for the MQT effect (see [5]
and recent publications [23–27]).

In the present work, we will construct the
Lagrangian of the σ model on the basis of formula (1)
taking into account consistently the sources of the
terms with the total derivative, which may lead to non-
trivial interference effects. This Lagrangian will be
used to study the interference of instanton trajectories
for the real models of antiferromagnetic particles of
various symmetries and to determine the contribution
of these effects to the tunneling probability.

2. LAGRANGIAN OF THE σ MODEL
FOR REAL ANTIFERROMAGNETS

Let us consider a system with localized spins, in
which nearest neighbors are coupled through the anti-
ferromagnetic interaction. We assume that the lattice
has such a structure that the sites with spins can be
divided into two groups so that the spins appearing in
pairs of nearest neighbors belong to different groups
and there are no frustrations in the lattice. For an ideal
antiferromagnet, these two groups correspond to two
magnetic sublattices. In this case, we can assume that
the spins corresponding to each group have parallel ori-
entations and form the total spins S1 and S2 of the sub-
lattices. In the exchange approximation for such anti-
ferromagnets, vectors S1 and S2 are antiparallel. The
total spin S = S1 + S2 in the ground state can differ from
zero in view of a different number of sites in the sublat-
tices (decompensation), |S1 | ≠ |S2 |, and also in the pres-
ence of an external magnetic field and/or the Dzy-
aloshinski interaction, when the antiparallelism of the
spins is violated (i.e., |S1 + S2 | ≠ 0 even for |S1 | = |S2 |).
We will consider only completely compensated antifer-
romagnets with |S1 | = |S2 | since the specific effects
SICS      Vol. 94      No. 2      2002
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associated with spin decompensation (|S1 + S2 | ≠ 0, but
|S1 – S2 | ! |S1, 2 |) in fact reduce the interference effects
to those which are well known for ferromagnets (see
[28]).

Our goal is the construction of the Lagrangian
describing the dynamics of vector l in the presence of
the Dzyaloshinski–Moriya interaction and a magnetic
field. Since the tensor of exchange interaction constants
Jij may have an antisymmetric component in the nearest
neighbor approximation, the Hamiltonian of such a sys-
tem has the form

(2)

Here, the first term describes the isotropic exchange
interaction, and the summation in this term is extended
to the pairs of nearest neighbors, and Sα is the spin at
the αth site. The antisymmetric component of the ten-
sor of exchange constants Jij is a microscopic source of
the Dzyaloshinski–Moriya interaction (see [29]), corre-
sponding to the dual vector d. The last term describes
the interaction of spins with the external magnetic field.

Let us consider the exchange approximation in
which the deviation from the conventional Heisenberg
model with an isotropic exchange interaction of the
type JSαSβ is small; i.e., d, gµBH ! J. In this case, we

can introduce the spins S1 =  and S2 =  of
the sublattices and assume that vectors S1 and S2 have a
fixed length. It is convenient to put S1 = Nss1 and S2 =
Nss2, where s is the spin of a sublattice site and N is
the number of sites in each sublattice. We will parame-
trize the unit vectors s1 and s2 by the polar coordinates
(θ1, φ1) and (θ2, φ2), respectively. In this case, the clas-
sical energy of the antiferromagnet, whose exchange
component corresponds to Hamiltonian (2), can be
written in the form

(3)

Here, N is the number of spins in a sublattice, z is the
coordination number for a lattice site, and w(s1, s2) is
the anisotropy energy.

Thus, we arrive at the description of the energy of an
antiferromagnet in terms of two vectors of unit length.
Their dynamics can be described by a Lagrangian
which can be written in the dynamic variables s1 and s2
taking into account relation (3) in the form

(4)

*e J Sα Sβ⋅
αβ〈 〉
∑=

+ d Sα Sβ×[ ]⋅
αβ〈 〉
∑ gµB H Sα .⋅

α
∑–

Sα1∑ Sα2∑

0 s1 s2,( ) Js2zNs1 s2 s2zNd s1 s2×[ ]⋅+⋅=

+ w s1 s2,( ) gµBsNH s1 s2+( ).⋅–

+ i"S1A1 s1( ) ṡ1⋅–=

–  i " S 2 A 2 s 2 ( ) s ˙ 2 ⋅ 0 s 1 s 2 , ( ).–                                                         
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Here, we have chosen a more general form of the
kinetic terms as compared to relation (1). These terms
can be presented through the vector potential of the
field of a magnetic monopole:

(5)

where n1, 2 are the quantization axes of coherent states
for each sublattice. This potential has a singularity for
s · n = –σ, i.e., on a certain half-line in the s space.
Usually, the “north pole” gauge with n = ez is used, in

which the quantity A(s) ·  assumes the familiar form
(1). The potentials A1, 2 of the monopole field permit
gauge transformations (such as a change in the position
of spin quantization axes and, hence, singularities)
which do not change the equations of motion, but make
a contribution to the Lagrangian in the form of the total
derivative of the function of spins s1and s2 with respect
to τ, which may in principle be significant for the
description of interference effects. The kinetic term for
each sublattice can be written in an individual gauge (in
particular, with different directions of n1 and n2).

We present the unit vectors s1 and s2 in terms of
vectors l = (s1 – s2)/2 and m = (s1 + 
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)/2 which are
connected through the relations
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we can write the kinetic term in the form
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dynamic term starts with the term linear in 
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, which
can be written in the form

(8)

where

(9)
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ṡ

l2 m2+ 1, m l⋅ 0.= =
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=  –i" l̇ A1 l( ) A2 –l( )–[ ]⋅
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Thus, most of the arbitrariness in the choice of the
gauge field A, which takes place for ferromagnets, does
not exist for antiferromagnets. The gauge-invariant
quantity Fi, which has the meaning of a formal mag-
netic field associated with potential A, is the magnetic
monopole field F = l/|l |3. In the transition from formula
(7) to expression (8), the initial gauge arbitrariness
turned out to be localized in the term with the total
derivative d(m · A(l))/dτ. As regards this quantity, its
contribution to the Euclidean action is obviously equal
to zero in the case when an instanton trajectory misses
the singular point of A(l). This condition can be satis-
fied easily if we choose the direction n = n1 = – n2 along
the hard magnetization axis of the antiferromagnet. In
this case, the phase for a closed path on the sphere l2 =
1, which is formed by instanton trajectories, is indepen-
dent of the position of the quantization axis n.

Taking into account the condition m · l = 0, we elim-
inate from expression (4) the subordinate variable m:

(10)

where γ = gµB/" is the gyromagnetic ratio and Heff is the
effective field which is the sum of the external field H
and the Dzyaloshinski field HD. In the approximation
chosen above, in which the Dzyaloshinski–Moriya
interaction can be presented in a purely antisymmetric
form d · [s1 × s2] ∝  d · [l × m], the Dzyaloshinski field
can be written as

The expression for m is also valid for more general
forms of the Dzyaloshinski interaction, which cannot
be reduced to a bilinear form in s1, 2. In particular, we
will consider more general forms of the Dzyaloshinski

interaction of the type Dik(l)milk, , which
are observed for many crystals and are significant for
the MQT effects. In this case, the effective field in the
expression for m assumes the form

(11)

In this section, we will not specify the form Dik(l). It
follows from formula (10) that the approximation |m| !
|l | used in the derivation of the σ model is satisfied for
max(H, HD) ! Hex, where Hex = Jsz/µB is the exchange
field. Substituting m into Lagrangian (4), we obtain the
effective Lagrangian for vector l in the form

(12)

Here, 0a(l) has the meaning of the effective anisotropy
energy in which the additional term (HD · l)2 – (HD)2 is

m
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2Jsz
----------- γ Heff l Heff l⋅( )–( ) il l̇×–[ ] ,=

HD zs d l×[ ] /gµB.=
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D Dik l( )lk=
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0 Dik l( )lk.+=

+
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2Jz
---------- 1

2
--- l̇

2
iγHeff l l̇×[ ]⋅+

 
 
 

0a l( )–=

+
2µB
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taken into account along with the initial energy w(l) =
w(s1, s2) introduced above for s1 = –s2 = l. The quan-
tity 0a(l) is obviously the real anisotropy energy deter-
mined from static measurements in weak fields, and
there is no point in separating these contributions. We
must simply use the expression for 0a(l) which is
determined by the crystal symmetry of the magnet. The
specific form of the anisotropy energy for various anti-
ferromagnets is given in the table. The terms in the
braces describe the variation of the static energy of the
antiferromagnet due to the external magnetic field. The
first term, which is quadratic in the components of H, is
quadratic in l and can also be presented as the field-
induced renormalization of the anisotropy energy. The
second term, which is bilinear in the components of the
external magnetic field H and the Dzyaloshinski field
HD, contains odd powers of the components of l and
describes the energy of the weak ferromagnetic
moment induced by the Dzyaloshinski interaction. (In
particular, this term can be reduced to H · [d × l] for a
purely antisymmetric Dzyaloshinski interaction.) This
term can completely remove the degeneracy of the clas-
sical ground state of the system, and the analysis of the
MQT effects becomes meaningless. For this reason, it
makes sense to take into account the external magnetic
field and the Dzyaloshinski interaction simultaneously
only for certain selected orientations of the external
field, when this term vanishes for vector l directed
along the easy magnetization axis of the antiferromag-
net. Some of these orientations of the field for orthor-
hombic antiferromagnets were considered in [5].

Thus, we arrive at the following conclusions. The
Lagrangian for vector l differs from the Lagrangian in
the σ model of an ideal antiferromagnet [11] in the
presence of a number of additional terms which play
different roles in the description of CMQT. In contrast
to the case of a ferromagnet or an antiferromagnet with
different spins of the sublattices, the term with the total
derivative can easily be eliminated and is immaterial. It
is important that the inclusion of the external field and
some forms of the Dzyaloshinski interaction leads to
the emergence of gyroscopic terms linear in dl/dτ. The
emergence of these terms indicates the lowering of the
actual dynamic symmetry of antiferromagnets in the
presence of a magnetic field and/or the Dzyaloshinski
interaction.

The structure of the Lagrangian is such that the con-
tribution of the Dzyaloshinski interaction to the gyro-
scopic term can be taken into account simply by adding
the Dzyaloshinski field HD, which is a function of l, to
the external magnetic field H. Gyroscopic terms can
make significant contributions to the probabilities of
tunneling processes both by affecting the structure of
instanton solutions and by creating destructive interfer-
ence of instanton trajectories. It will be proved below
that, in contrast to the case of a ferromagnet or an anti-
ferromagnet with different spins of the sublattices, this
interference is not of topologic origin, but can also be
SICS      Vol. 94      No. 2      2002
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Anisotropy in the basal plane and the Dzyaloshinski interaction for systems with various types of magnetic symmetry

n Axes DMI Γ(θ, φ) B(θ, φ) K

2 β2sin2θsin2φ mxly + mylx 3sin3θsin2φ * 3sin2θsin2φ 4

mylz + mzlx 6sin2θcosθsinφ * 6sinθcosθsinφ 4

mxlz + mzlx 6sin2θcosθcosφ 6sinθcosθcosφ 4

4 β4sin4θsin22φ 5sin5θsin4φ * 5sin4θsin4φ 16

mxlx – myly 3sin3θcos2φ 3sin2θcos2φ 16

mxly + mylx 3sin3θsin2φ * 3sin2θsin2φ 8 + 8cos(sdN/J)

6 β6sin6θsin23φ 7sin7θsin6φ * 7sin6θsin6φ 36

5sin4θcosθsin3φ * 5sin3θcosθsin3φ 36

5sin4θcosθcos3φ 5sin3θcosθcos3φ 36

Note: For higher-order axes, the following notation is introduced: m± = mx ± imy and l± = lx ± ily. Asterisks mark systems for which the
exact solution corresponding to the least action exists; DMI stands for the Dzyaloshinski–Moriya interaction.
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3+( )
of fundamental importance. The examples of “pure”
antiferromagnets in which tunneling can be completely
suppressed due to the interference of instanton trajecto-
ries will be given below.

While deriving Lagrangian (12), we disregarded the
possibility of inhomogeneous tunneling and, hence, the
dependence of S and l on spatial coordinates was omit-
ted from the very outset. The inclusion of such a depen-

dence leads to the substitution N  , where a

is the lattice constant, and to the emergence of an addi-
tional term proportional to Ja2(∇ l)2 in the Euclidean
action. A comparison of the inhomogeneity energy with
the anisotropy energy leads to an estimate of the spatial

inhomogeneity size on the order of ∆0 = a ,
where Hex and Han are the exchange field and the anisot-
ropy field and ∆0 is the domain wall thickness. If the
size of a particle is larger than ∆0, i.e., N > Nc ≈ (∆0/a)3 ≈
(Hex/Han)3/2, we can assume a more advantageous inho-
mogeneous tunneling scenario, in which the level split-
ting weakly depends on N (or is even independent of it)
for N > Nc. Although this question has not been dis-
cussed in the literature and its analysis is beyond the
scope of the present publication, we will consider it
briefly.

The value of Nc is too large for the tunneling effects
to be observable for N > Nc. As a matter of fact, N in the

V /a3d∫

Hex/Han
JOURNAL OF EXPERIMENTAL 
tunneling exponent is multiplied by the susceptibility
of the system, i.e., appears in the combination NHan/Hex
(see [10]). The presence of this small parameter actu-
ally makes it possible to observe tunneling at ferritin
particles with N ≈ 3.5 × 103 [8, 30]. However, for typi-
cal values of Han/Hex ~ 10–3–10–2, the tunneling expo-
nent NcHan/Hex ≈ (Hex/Han)1/2 @ 1 is too large and the
observation of the transition to the inhomogeneous tun-
neling mode becomes problematic.

3. SYMMETRY OF INSTANTON SOLUTIONS 
AND INTERFERENCE OF CONTRIBUTIONS 

FROM INSTANTON TRAJECTORIES

In accordance with the general rules of the semiclas-
sical approximation formulated in the language of
instantons, the amplitude of transition from one state to
another is described in the so-called instanton-gas approx-
imation [31]. The level splitting for a system with two
equivalent minima can be presented in the form

(13)

where the quantity D is defined as

(14)

∆ 2D K ,=

D det'Ω̂( ) 1/2– Re(
"

----------- 
 

1/2 Re(
"

-----------– 
  ,exp=
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( is the one-instanton action; K is a combinatorial fac-
tor emerging due to nonuniqueness of the tunnel path

connecting two equivalent minima; and det' is the
fluctuation determinant disregarding the zeroth mode,
which is determined by small deviations from an
instanton trajectory (see [31] for details). In order to
analyze the effects of tunneling between degenerate
states corresponding to the ground states of the system
and to determine the value of splitting, we must find the
one-instanton trajectories connecting these states, cal-
culate the value of the Euclidean action ( on these tra-
jectories, and find the determinant of the operator for
the second variation of action. The contribution to the
splitting comes only from equivalent trajectories corre-
sponding to the minimum value of the real component
of (. The combinatorial factor depending on the phase
difference in the trajectories will be calculated below
using formula (18). In this section, we concentrate our
attention on an analysis of the main contribution which
comes only from ( and will not calculate the preexpo-
nential factor. Let us see how these calculations can be
carried out in actual practice.

For a concrete analysis, it is convenient to write the
Lagrangian in the form

(15)

where wH = γHeff, γ is the gyromagnetic ratio, and Heff

is the effective field. The dimensionless function wa(l)
is proportional to the anisotropy energy, and the value
of ω0 coincides with the frequency of a homogeneous
antiferromagnetic resonance in the uniaxial anisotropy
field. We parametrize vector l by the angular variables

(16)

We assume that we are dealing with an easy-axis
anisotropy; consequently, the ground state is doubly
degenerate and has two values of l corresponding to it:
l = e3 and l = –e3, the unit vector e3 being parallel to the
easy magnetization axis. Let us consider the tunneling
between these two states. Function wa(l) for a magnet
with the anisotropy axis Cn can be written in the form

(17)

where the first term corresponds to easy-axis anisot-
ropy and  ! 1 defines anisotropy in the basal
plane.

For a magnet with an easy-magnetization axis of
symmetry Cn, there exist n instanton trajectories and n

Ω̂

+
"

2N
2Jz
----------=

× 1
2
--- dl

dτ
----- 

 
2

i wH l×[ ] dl
dτ
-----⋅

ω0
2

2
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anti-instanton trajectories, and the combinatorial factor
has the form

(18)

i.e.,  is the phase difference between the kth
instanton and the k'th anti-instanton. The integral defin-
ing  is taken over a closed path formed by the tra-
jectories of the k instanton and the k' anti-instanton. In
the Lorentz-invariant σ model, the Lagrangian is real
and all  are equal to zero; consequently, the com-

binatorial factor K is trivial and equal to n2. Conse-

quently, ; i.e., the total transition amplitude
and level splitting for n pairs is just the contribution
from one instanton multiplied by the number of paths.
It will be shown below, however, that, for  ≠ 0, the
level splitting ∆ may contain an oscillatory dependence
on the product of the small parameter |wH | and the large
quantity N and, hence, requires a more detailed analy-
sis. The nature of its oscillations can be established
from symmetry considerations, and the specific form of
the function K of the parameters of the problem can be
determined even without solving the corresponding the
Euler–Lagrange equations.

Lorentz-invariant s model. It is convenient to con-
sider first the tunneling in the simplest Lorentz-invari-
ant σ model which corresponds to Lagrangian (15) with
wH = 0. As a matter of fact, for some models of an anti-
ferromagnet with the Dzyaloshinski–Moriya interac-
tion, the results turn out to be the same as in the absence
of this interaction (see below). If Heff = 0, the analysis
of the problem does not present any difficulty. Indeed,
for any form of the anisotropy energy in a uniaxial anti-
ferromagnet with the principal axis C2, C4, or C6 (in the
subsequent analysis, we will consider only the type of
symmetry that can exist in the crystal lattice), the
instanton solution corresponds to the function θ = θ(τ)
with the boundary conditions θ  0, π for τ  ±∞
and φ = φ0 = const, where φ0 is defined by the relation

(19)

Let us assume that the ground states ±e3 are on the prin-
cipal axis Cn. In this case, the value of  is pro-
portional to sin nφ and there exist 2n solutions to this
equation:

(20)

K Φk k', ,cos
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from which n solutions  correspond to the mini-
mum of wa(θ, φ), while the remaining n solutions

 correspond to the maximum of this function for

all θ ≠ 0, π. Instantons with  correspond to the
lower value of the Euclidean action, and we will con-
sider below only these n solutions. Function θ(τ) can be
determined from the second-order equation for which
the first integral is known to be

(21)

Henceforth, we assume that wa(0, φ) = wa(π, φ) = 0 and
that the value of φ = 0 corresponds to the minimum of the
function wa(θ, φ). With such a choice of the axes, z is
always an easy magnetization axis and x is an intermediate
magnetization axis. The Euclidean action on trajectories is
real-valued for all values of φ and is defined as

(22)

This approximate expression is written in the main
approximation in small anisotropy in the basal plane

 ! 1, where  is the characteristic anisotropy con-
stant in the basal plane, i.e., the maximum value of .
Thus, the contribution in the given case comes from n
instanton trajectories on which vector l is real and
rotates in one of the n planes defined by the condition

φ =  = . The imaginary component of ( in the
Lorentz-invariant model is absent, and the combinato-
rial factor K in expression (18) is equal to n2.

Role of Heff. The inclusion of the terms with Heff,
which destroy the Lorentz invariance, brings about two
types of difficulties. First, for Heff ≠ 0, the solution φ =
const is generally inapplicable and the instanton struc-
ture is determined by the general system of two second-
order equations

(23)

(24)

whose solutions are generally not real-valued. Here, the
terms with Γ are determined by the variation of the term
with Heff · [(dl/dτ) × l] in Lagrangian (15), and the form
of the function Γ(θ, φ) generated by the Dzyaloshinski
interaction for various types of magnetic symmetry is
given in column 5 of the table. Second, the imaginary
component of the Euclidean action (, which comes
from the term proportional to ωH, may appear even for
trajectories with a real l. Let us consider the cases when
these situations are realized.
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If Γ(θ, φ) vanishes at the same values of  as for
∂wa(θ, φ)/∂φ, Eq. (24) is satisfied identically for the plane
trajectories φ = 0, while the first equation in (23) can be
reduced to Eq. (21) considered above in the Lorentz-

invariant σ model. Consequently, in this case Γ(θ, )
does not affect the form of the function θ = θ(τ) in an
instanton, but changes the imaginary component of the
action. This effect will be considered in greater detail in
Section 4.

If, however, Γ(θ, ) ≠ 0, an instanton does not cor-
respond to a plane solution φ = const any longer, and we
must seek the general solution of the system (23), (24)
of the form θ = θ(τ), φ = φ(τ). In this case, functions
θ(τ) and φ(τ) may in general turn out to be complex-
valued. There are no general analytic methods for con-
structing such separatrix solutions; an instanton solu-
tion of the system of equations (23), (24) can be con-
structed exactly only in some cases (see [32] and Sec-
tion 4 in the present paper).

It will be shown below that the effect of the term Heff

in the Lagrangian on the imaginary component of
action ( may lead to nontrivial consequences even for

antiferromagnets for which Γ(θ, φ) ≠ 0, but Γ(θ, ) =
0, and there exists a real-valued instanton solution θ =

θ(τ), φ = , or in the case when the value of Heff/Hex

is negligibly small and its inclusion changes θ = θ(τ)
and the real component of ( insignificantly.

In order to explain this, we consider the case when
the value of (Γ/Hex) ! 1 is so small that instanton tra-
jectories can be regarded as planar, θ = θ(τ) ! 1, φ =
const. The presence of the term linear in dl/dτ leads to
the contribution to the imaginary component of the
Euclidean action (, which is proportional to the num-
ber of spins in a particle. The imaginary component of
the Euclidean action ( is of the order of Im(/" ∝  Nd/J;
i.e., it is proportional to the product of a small and a
large parameter. Consequently, it can be appreciable and
the effects of destructive interference can be significant. It
is well known that the interference effects for an orthor-
hombic ferromagnet may suppress tunneling completely
(see [1–4]). In contrast to the case of an antiferromagnet,
the term with dm/dτ for a ferromagnet does not contain a
small factor of the type of Heff/Hex, but it is immaterial
since the value of Im(/" ≈ πNs @ 1 for a ferromagnet,
while tunneling is suppressed completely when Im(/" ≈ π.
This condition can easily be satisfied for a large N. In par-
ticular, for an antiferromagnetic particle of the ferritin
type with N ≈ 3500, the tunneling probability in a mag-
netic field taking interference into account is an oscil-
lating function of the field, and the suppression of tun-
neling can be observed in fields H & 100 Oe [5, 28, 33],
which are much weaker than the characteristic value of
the Dzyaloshinski field HD = 103–105 Oe.

On the other hand, the contribution to the real com-
ponent of the Euclidean action does not contain the
large parameter N. This contribution can be appreciable

φk
0( )

φk
0( )

φk
0( )

φk
0( )

φk
0( )
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(see the next section), but in this case the product of
other parameters, namely, the small quantity d/J ! 1

and the large quantity d/  @ 1, is significant. Thus, the
terms with dl/dτ may lead to two types of effects:
(1) the emergence of nonplane instanton trajectories
and complex values of components of l on these trajec-
tories; (2) the interference of instantons even in the case
of plane trajectories with real (.

First-type effects only take place when the term
Γ(θ, φ) in Eqs. (23), (24) differs from zero. Such terms
are always important for the description of domain wall
dynamics in an antiferromagnet: they may reduce the
limiting velocity of a domain wall to a considerable
extent and may also lead to an abrupt change in the wall
structure upon a continuous variation of its velocity
[20, 21]. The subsequent analysis of concrete instanton
solutions will show that the role of such terms in the
description of the instanton structure and tunneling is
not so important as in the description of the domain
wall dynamics. On the other hand, if function Γ(θ, φ)

differs from zero, but the function Γ(θ, ) = 0 for the

given solution φ = , the domain wall dynamics is
trivial and can be described by Lorentz-invariant for-
mulas. In this case, the instanton structure θ = θ(τ) is
the same as in the Lorentz-invariant theory. However,
the situation with instantons is different: not all features
can be described by the function θ(τ) and the real com-
ponent of ( only. It will be shown bellow that the main
contribution from the term H(eff) · [(dl/dτ) × l] is associ-
ated precisely with interference processes and is mani-
fested most clearly exactly when an instanton trajectory

is planar; i.e., Γ(θ, ) = 0.

In the case of real-valued trajectories, it is conve-
nient to use the following approach for calculating the
imaginary component of action [34]. We introduce the
vector r = rl which is not subjected to the condition r2 = 1
and present the term with the first derivative in expres-
sion (15) in the form

(25)

This expression has the same structure as the term in
the nonrelativistic Lagrangian describing the interac-
tion of a classical charged particle moving in a 3D
space with coordinate r and velocity v = dr/dτ with a
formal magnetic field B = ∇  × !!!! (differentiation is car-
ried out in the r space). It is well known that the mag-
netic field appears in the Lagrangian of a charged parti-
cle through the vector potential !!!! at point r, which is
defined only to within a certain gauge, while the field B
is gauge-invariant.

Simple but cumbersome calculations proved that,
for any ferromagnet, this formal magnetic field B may

β̃

φk
0( )

φk
0( )

φ 0( )

iγ!!!!
∂r
∂τ
-----, !!!!–

r Heff×
r2

------------------.=
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be radial and can be presented in the form

(26)

In the absence of the Dzyaloshinski interaction, the
value of B(θ, φ) is determined only by the external field
H(0), B(θ, φ) = 2(H(0) · l). In zero external field, the value
of B(θ, φ) is determined by the Dzyaloshinski field

 = Dij(l)lj and can be presented in terms of tensor Dij:

(27)

Here, the comma in the subscript on D indicates the dif-
ferentiation of tensor Di j with respect to the corre-
sponding component of l, and the summation is carried
out over recurrent indices. The values of B(θ, φ) for var-
ious types of Dzyaloshinski interaction and of the con-
figurations of axes are given in column 7 of the table.

Phases  defined above (see formula (18)) can

be presented in terms of the integrals  taken over

instanton–anti-instanton pairs forming closed contours.
Using the Stokes theorem, we can present the phase dif-
ference Φk, k' as the magnetic flux of vector B through a
part of the unit sphere bounded by such a contour.
Obviously, individual phases are determined by the
vector potential !!!!, i.e., depend on the gauge, but the
phase differences are gauge-invariant for all pairs of
trajectories.

It is important that the structure of B(θ, φ) for all
possible types of Dzyaloshinski interaction is such that
the total flux of field B through the unit sphere,

, (28)

is equal to zero and the value of cos  is independent
of the total time derivative in the Lagrangian (gauge
invariance).1

1 It should be noted that the situation in this case is basically differ-
ent from the case of a particle with an uncompensated total spin
S, where we have the potential of field of a magnetic monopole
for !!!! (see formula (4) above). This vector potential !!!! can be
written only in singular form with a singularity on the half-line
emerging from the point of location of the monopole (Dirac
string). The total flux Φtot through the sphere is equal to 4πS, and,
hence, the phase difference ∆Φ for two diametrically positioned
trajectories is equal to 2πS. For this reason, the phase factor
cos(∆Φ/2) = 0 for half-integral values of S, and tunneling is for-
bidden. It should also be noted that, having repeated Dirac’s anal-
ysis concerning the uniqueness of the electron wave function is
the monopole field, we can derive the condition cos(Φtot/2) = 0
leading to the half-integral quantization of uncompensated spin
(an example of quantization of parameters; see [35]). In our case
of an uncompensated antiferromagnetic particle in the presence
of an external field and/or Dzyaloshinski interaction, Φtot = 0
and, naturally, no quantization of parameters takes place.

B
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This approach enables us to calculate specifically
without any difficulty the phase difference of integral
trajectories and the combinatorial factor K in formula
(13). We begin with the simplest case of an orthorhom-
bic antiferromagnet for which there are only two pairs
of instanton trajectories. It can easily be verified that
the Dzyaloshinski interaction of any type (see table)
makes zero contribution to the phase difference for two
diametrically opposite trajectories [34]. For this reason,
the required phase factor can be determined only by the
external field and can be written in the form

(29)

where α is the angle between the plane containing the
instanton trajectories and the external field H(0). This
result was obtained by Chiolero and Loss [33] in partic-
ular cases when α = 0 and α = π/2. Thus, for instanton
trajectories lying in the same plane, all possible types of
Dzyaloshinski–Moriya interaction given in the table do
not affect the tunneling. This results does not contradict
the analysis carried out by Golyshev and Popkov [5],
who studied tunneling in small completely compen-
sated particles of an orthorhombic antiferromagnet
with the orthoferrite structure and discovered no inter-
ference effects in zero magnetic field. The approach
used by us here enabled us to obtain this result without
resorting to the Euler–Lagrange equations. Thus, we
have proved that the conclusion that no interference
takes place for diametrically opposite trajectories can
be extended to more general cases of the Dzyaloshinski
interaction. It is important that this conclusion is drawn
without resorting to any approximation, which is inev-
itable in the solution of a complex system of equations
describing the instanton structure.

Thus, in the case of orthorhombic antiferromagnets
with two instanton trajectories, none of the types of
Dzyaloshinski interaction presented in the table leads
to destructive interference. However, this result is dif-
ferent for uniaxial antiferromagnets with an easy mag-
netization axis Cn, n > 2. In this case, there exist n pairs
of instanton trajectories. Obviously, here we also have
pairs of trajectories lying in the same plane, for which

 = 0 and interference is trivial, but interference can

be manifested for pairs of trajectories with  –  ≠ π.
It will be shown below that the value of combinatorial
factor in this may be reduced considerably in this case
from its maximum value n2 to zero; i.e., both partial and
complete suppression of interference is possible.

Tetragonal antiferromagnets. Let us demonstrate
this using specific examples of particles with a tetrago-
nal easy magnetization axis and binary axes in the per-
pendicular plane (crystallographic class 4z2x2xy), when
the minimum of the real component of action corre-
sponds to four instanton and four anti-instanton trajec-
tories. In order to describe tetragonal antiferromagnets,
we choose the polar axis e3 along the tetragonal easy

Φcos
gµBH 0( )Ns

Jz
-------------------------- αcos 

  ,cos=

Φk k',

φk
0( ) φk'

0( )
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magnetization axis 4z. Anisotropy in the basal plane is
determined by the fourth-order invariant (see table). We
assume that β4 > 0; i.e., instanton trajectories corre-
spond to the rotation of l in the equivalent planes zx and
zy. Depending on the magnetic parity of the principal
axis (according to Turov; see [36]) and of the binary
axes 2x, 2y or 2xy, 2yx, basically different versions of the
behavior can be observed. We will consider them sepa-
rately.

Axes , , and . With such a structure of
axes in an antiferromagnet, only the antisymmetric
invariant d(mxly – mylx) is usually considered, which can
be obtained from the antisymmetric component of the
tensor of exchange constants. The value of d is on the

order of  (see [29]). This invariant determines the
weak isotropic ferromagnetic moment when l is ori-
ented in the basal plane. However, it is of no interest to
us since it can be reduced to the total derivative in the
Lagrangian and, hence, gives Γ(θ, φ) = 0 in the equa-
tions of motion and B(θ, φ) = 0 in the imaginary com-
ponent of the Euclidean action. In addition, there exist
a number of invariants of relativistic origin (see [37]),
which give a nonzero value of Γ(θ, φ). The simplest of

these invariants has the form 2( )(mxly + mylx),
which coincides (except for the total derivative) with

the invariant (m+  – m– )/2i presented in the table. It

can easily be seen, however, that in this case Γ(θ, ) = 0
and the instanton solution has the form θ = θ(τ), φ =

 = πk/2 for integral k. The value of B(θ, φ) is such
that

(30)

and, hence, all phases  are equal to zero (see
table). An analysis of other invariants, e.g., of the type

(mxly – mylx), leads to the same result (namely, the
Dzyaloshinski interaction does not affect tunneling in
any way). This result is apparently independent of the
model and is determined only by the type of magnetic
symmetry (the model independence for dynamic
effects in domain walls having the same origin, i.e., the
Dzyaloshinski interaction, was demonstrated in [20,

21]). Thus, the case of an even principal axis  may
serve as an example that nonzero terms which are linear
in dl/dτ and cannot be reduced to the total derivative are
not manifested in the separatrix solution and do not
affect tunneling in any way.

A different situation takes place for an antiferro-

magnet with an odd principal axis . In this case, two
versions are possible: when the intermediate anisotropy
axes through which tunneling takes place are odd and
when these axes are even.

4z
+( ) 2x

–( ) 2xy
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βJ
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3
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Axes , , and . In this case, Γ(θ, φ) = 0 for

φ =  = πk/2 and the presence of the Dzyaloshinski
interaction does not affect the instanton trajectories

with the minimum action, which correspond to φ = ,

θ = θ(τ). However, in contrast to the system with ,
the contribution of the Dzyaloshinski interaction is sig-
nificant for calculating the combinatorial factor K in
formula (13). It can be seen from the explicit expression
B(θ, φ) ∝  sin2θsin2φ that the phase difference for adja-

cent trajectories (with φ =  and φ = ) differs
from zero.

Thus, the phase factor for the tunneling probability
is given by

(31)

It is an oscillating function of the Dzyaloshinski inter-
action constant d and assumes the values from 0 to 16.
For realistic values of N on the order of 103–105, the
period is not large; the value of ∆HD/HD ≈ 10–3–10–1 for
characteristic values of HD ≈ 104 Oe and Hex ≈ 106 Oe.
Since the value of the Dzyaloshinski field is very sensi-
tive to extrinsic parameters (e.g., the value of pressure
or the addition of a small amount of an impurity to the
crystal), these oscillations can be observed and moni-
tored. An additional opportunity for observing interfer-
ence effects appears when the magnetic field is taken
into consideration.

Axes , , and . Such a symmetry group is
typical of the extensively studied weak antiferromagnet
MnF2 (see [38]). In this case, Γ(θ, φ) ∝  sin3θcos2φ and

Γ(θ, φ) ≠ 0 for all values of φ = , corresponding to
the minimum of anisotropy in the basal plane and
describing instanton trajectories for d = 0. For d ≠ 0,
instanton solutions cannot be written in the simple form
θ = θ(τ), φ = πk/2, k = 0, 1, 2, 3. On the other hand, if
we assume that the value of d is very small, we can eas-
ily find, applying the approximation of planar rotation
and using the formula B(θ, φ) ∝  sin2θcos2φ (see table),
that the difference in the imaginary components of (
for pairs of trajectories lying in the same plane as well
as for adjacent instanton trajectories is equal to zero and
no interference effects take place. We will consider the
solution for this case in the next section and prove that
these simple regularities are preserved in a more rigor-
ous analysis also, when we do not require that φ = πk/2.
We will also consider general mechanisms of tunneling

in the case when Γ(θ, ) ≠ 0 and the instanton solu-
tion is not real-valued.

Hexagonal antiferromagnets. Let us briefly con-
sider the case of a hexagonal principal axis. Here, we
again have three cases presented in the table. For a sys-

tem with an even principal axis , , and ,
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there exists the invariant mxly – mylx, and the Dzya-
loshinski interaction, which cannot be reduced to a total
derivative, appears only in the fifth order in l. The anal-

ysis is similar to that for the system , , and .
In this case also, nonzero terms which are linear in dl/dτ
and cannot be reduced to a total derivative do not affect
tunneling in any way. It can be verified that such a
behavior is the same as for an antiferromagnet with the

even principal axis .

For systems with an odd principal axis, the Dzya-
loshinski interaction is a cubic function of l, but it
makes zero contribution to the imaginary component of
the Euclidean action under the assumption of planar

real trajectories. In the system , , and , min-
imal instanton trajectories have an imaginary compo-
nent, but this only changes the real component of the
Euclidean action. The analysis of this system is similar
to that which will be carried out in Section 4 for the sys-

tem , , and . Consequently, the combinato-
rial factor K in all the three cases has the maximum
value equal to 36.

4. INSTANTON SOLUTION 
FOR AN ANTIFERROMAGNET 

WITH SYMMETRY , , AND 

It was noted above that, in the case of an antiferro-

magnet with symmetry , , , there is no exact
solution of the type φ = πk/2, θ = θ(τ) for trajectories
with the rotation of l in the vicinity of the easy plane φ ≈
πk/2, and we have to analyze the complete system of
two equations (23), (24). The situation is complicated
even further since these equations have complex-valued
coefficients and, in general, their complex solutions of
the type θ = θ1(τ) + iθ2(τ), φ = φ1(τ) + iφ2(τ) must be
considered. As a result, system (23), (24) is equivalent
to a dynamic system with four degrees of freedom and
is not integrable. No general method exists for an anal-
ysis of such systems; however, a comprehensive analy-
sis can be carried out in the given case as well as for
magnets with other types of symmetry, which are listed
in the table.

In the case of an antiferromagnet with an odd tetrag-
onal axis, the equations for the angular variables θ and
φ have the form

(32)

(33)
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The quantity ω0 defines the height of the potential bar-
rier through which tunneling occurs, and β4 is the
dimensionless parameter of anisotropy in the basal
plane. We assume that β4 > 0, which corresponds to
instantons in the Lorentz-invariant σ model (ωD = 0),
passing through the even axes x or y; β4 ! 1 corre-
sponds to the easy-axis limit, and ωD is proportional to
the Dzyaloshinski interaction constant, ωD = γ|HD| =
zd/".

It can easily be seen that this system has the exact
solution φ = π(2k + 1)/4, θ = θ(τ) which was considered
in the previous section. It determines tunneling for β4 < 0,
but in the case of β4 > 0 we are interested in now, it cor-
responds to the rotation of l in hard planes, does not
ensure the minimum value of the real component of the
Euclidean action, and makes zero contribution to tun-
neling in the instanton approximation. The exact solu-
tion φ = πk/2 does not exist in this case; it can be seen,
however, that the substitution φ = πk/2 + if(τ) and θ =
θ(τ) with the real functions f(τ) and θ(τ) does not con-
tradict this system and leads to the following system of
two equations for functions f and θ:

(34)

(35)

In addition, such a substitution renders the Lagrangian
real-valued:

(36)

It can be seen that the imaginary component f = Imφ of
the instanton solution affects only the real part of the
action. The system of equations (34), (35) is equivalent
to a mechanical system with two degrees of freedom,
and only one first integral is known for it:

(37)

(% = 0 for the separatrix solutions we are interested in);
for this reason, this system cannot be analyzed exactly.
However, an approximate solution can be constructed
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in the physically interesting case, when ωD ! ω0, β4 ! 1
and for any relation between ωD and ω0β4. In order to
find such a solution, we note that Eq. (34) from system

(34), (35) is transformed into  ≈  in the
zeroth approximation in the small parameters ωD/ω0
and β4. In this case, the constant solution f = f0 = const
satisfies Eq. (35) and gives

(38)

It should be noted that the value of f0 is determined by
the ratio of two small parameters and can be apprecia-
ble. Using this fact, we can write a refined equation for
θ(τ):

(39)

The approximate solution constructed by us is valid

if  ≈ ω0sinθ; i.e.,

(40)

This condition may also hold for  = ωD/β4ω0 of
the order of unity, but is still violated for β4  0. In
this case, the situation is similar to that observed for
the domain wall dynamics (see [21]): the limiting
velocity of a domain wall in a tetragonal antiferro-
magnet with an odd axis, the limiting velocity of a wall
with φ ≠ const tends to zero as β4  0, and no
dynamic solution exists for β4 = 0.

The value of the Euclidean action for the obtained
solution is real and is defined by the formula

(41)

Thus, in the range of applicability of the constructed
solution, i.e., when ωD and β4 are small and when ine-
quality (40) is satisfied, the inclusion of the Dzya-
loshinski interaction leads only to a small correction to
the real component of the Euclidean action, the imagi-
nary component being identically equal to zero.

For models of an antiferromagnet with binary and
hexagonal symmetry axes, such an approximate solu-
tion cannot be constructed, but an analysis of these
models is even simpler than in the case of an antiferro-
magnet with a tetragonal symmetry axis. In these cases,

we can also verify that, if the exact solution φ =  =
2πk/n, θ = θ(τ) does not exist, the solution has the same
form as before:

(42)
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and the term in the Lagrangian which is linear in dl/dτ
contributes only to the real component of (. It can be
proved, however, that function f(τ) is antisymmetric
and proportional to the parameter ωD/(βω0), which is
always small (in contrast to the case of a tetragonal anti-
ferromagnet, in which there appears the parameter
ωD/β4ω0, whose value may be appreciable). Conse-
quently, we can seek the quantity f ! 1 using virtually
the same perturbation theory as for the domain wall
dynamics in such antiferromagnets (see [21]). As a
result, we obtain the following expression for the real
component of the Euclidean action:

(43)

where the numerical factor ξ is of the order of unity.
Thus, the correction to the result typical of the Lorentz-
invariant model is always small. Considering that no
interference effects take place in this case, we arrive at
the conclusion that the Dzyaloshinski interaction
hardly affects the tunneling probability in hexagonal
and orthorhombic antiferromagnets.

5. CONCLUDING REMARKS

The analysis of antiferromagnetic particles with a
tetragonal symmetry axis indicates the existence of
three possible versions of the effect of the Dzyaloshin-
ski interaction on tunneling processes. The investiga-
tion of the remaining cases important for an analysis of
crystalline antiferromagnets (orthorhombic or uniaxial
with a hexagonal symmetry axis; see table) proved that
these versions include all possible cases for antiferro-
magnetic systems with a doubly degenerate ground
state. In fact, all cases can be reduced to the following
three versions of the behavior.

1. The principal axis is even, e.g.,  or . In
this case, vector l is real on all instanton trajectories and
the trajectories are planar (φ = 2πk/n, θ = θ(τ)). The real
part of the Euclidean action is independent of the Dzya-
loshinski interaction constant, the imaginary compo-
nent is equal to zero, and destructive interference
effects are absent. In this case, tunneling can in fact be
described without taking into account the Dzyaloshin-
ski interaction.

2. The principal axis is odd, and there exists an exact
real solution with the rotation of l in the easy plane
determined by anisotropy. An example is a system of

the type  or , in which the instanton trajectory
is plane and the Dzyaloshinski constant does not appear
in the real component of the Euclidean action. In this
case, however, the inclusion of the Dzyaloshinski
interaction leads to the emergence of the imaginary
component of the Euclidean action and may affect the
tunneling probability due to the interference of instan-
ton trajectories lying in different planes. Since the cor-
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responding phase factor contains the large factor N,
tunneling can be suppressed completely due to destruc-
tive interference even for small values of the Dzya-
loshinski constant.

3. The principal axis is odd and the simple solution
φ = 2πk/n does not exist. In this case, vector l has both
real and imaginary components, but all types of Dzya-
loshinski interaction change only the real component of
the Euclidean action, this change being small in view of
the smallness of the parameter d2/Jβ. The imaginary
component of the Euclidean action is equal to zero and
destructive interference effects are absent in this case.

Thus, the only important effect produced by the
Dzyaloshinski interaction is associated with the possi-
bility of the interference of instanton trajectories in the
case when their number is greater than two (an antifer-
romagnetic particle with the easy magnetization axis
approximately corresponds to n > 2). This effect can be
observed for an antiferromagnet with an odd principal
axis in the case when the rotation of l on the instanton
trajectory also occurs through the odd axis. It is associ-
ated with the interference of pairs of instanton trajecto-
ries lying in different planes. Since l is real in this case
and all instanton trajectories are plane, an exact analy-
sis can easily be carried out and the description of tun-
neling is reduced to the geometrical analysis described
in Section 3.
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Crossover between the Thermodynamic and Nonequilibrium 
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during Compression
A. G. Lyapin*, O. V. Stal’gorova, E. L. Gromnitskaya, and V. V. Brazhkin

Institute of High-Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow oblast, 142190 Russia
*e-mail: alyapin@hppi.troitsk.ru

Received June 19, 2001

Abstract—A detailed investigation of different scenarios of structural transformations of H2O Ih ice during
compression to a pressure of 2 GPa in the temperature range from 77 to 200 K is performed. In the range of
temperatures and pressures being treated, detailed data are obtained for the density and the shear modulus for
different phases of ice including the hda, IX, and XII phases. The experimentally obtained correlations for the
density and ultrasonic velocities, with due regard for the available data of structural investigations, are used to
identify the transformation sequences Ih  hda (below 135 K), Ih  II  VI (above 165 K), and Ih 
IX  VI (from 155 to 180 K). In the vicinity of the crystallization temperature of amorphous ice, i.e., at about
140 K, an anomalous transformation pattern is observed, which is interpreted as predominantly the Ih  XII
phase transition. The temperature crossover is discussed between the mode of solid-phase amorphization
(Ih  hda) and crystal–crystal transitions, as well as the metastable nature of IX ice and the mechanism of
solid-phase amorphization. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The investigation of the properties of water and ice
at high pressures is of great importance for astrophys-
ics, geophysics of planets and their satellites [1–5], and
cryobiology [6]. H2O ice is characterized by one of the
most complex phase diagrams: at least 16 different
crystalline and amorphous modifications are observed
at different pressures P and temperatures T [7–13].
Many of these ice phases are apparently present in
quantity in satellites of giant planets such as Europa,
Callisto, and Ganymede, as well as in the nuclei of
comets and in interstellar dust [1–5].

As in the case of other substances, the phase dia-
gram of ice may be conventionally divided into a high-
temperature part, in which phase transitions occur in
the vicinity of the lines of thermodynamic equilibrium
of the respective phases, and a low-temperature part, in
which unusual structural transformations may be
observed such as the solid-phase amorphization of ice
[12–16]. If we restrict ourselves to the regular diffusion
mechanism of phase transitions, then, at fairly high
temperatures (at approximately T ≥ (2/3)Tm, where Tm

is the respective melting temperature), phase transitions
proceed through the stage of formation of nuclei of a
new phase and their further growth [17], while, at low
temperatures (conventionally, at T ≤ (1/3)Tm, the diffu-
sion of atoms and molecules is frozen, and the transfor-
mation may occur away from the line of equilibrium. In
the latter case, phase transformations may be defined
by the singularities of the lattice dynamics rather than
by the thermodynamic relations. This means that non-
1063-7761/02/9402- $22.00 © 20283
equilibrium scenarios of phase transitions are possible,
which are associated with the softening of certain
phonon modes or elastic moduli [18, 19]. The interme-
diate temperature range estimated at (1/3)Tm < T <
(2/3)Tm is a transition region corresponding to the
crossover between the thermodynamic and nonequilib-
rium (kinetic) scenarios of phase transformations. For
H2O ice at pressures of up to 2 GPa, the range of cross-
over between those two modes of structural transforma-
tions may be estimated at 120 < T < 200 K.

A diffusion mechanism and a martensite mechanism
exist in accordance with the standard classification of
phase transitions of the first order. In the case of mar-
tensite transitions, the atomic displacement occurs
coherently over the entire lattice (or in a macroscopi-
cally extended region), and the transition is associated
with the softening of certain elastic moduli [17]. It is
natural that, for martensite transitions, the division into
the thermodynamic and nonequilibrium modes of
phase transformations makes no sense, as a rule. Mar-
tensite phase transitions are usually accompanied by a
small jump in volume. At the same time, many phase
transitions under conditions of low-temperature com-
pression occur with a considerable variation of volume,
which makes difficult the realization of coherent transi-
tion in the entire crystal; as a result, a lamellar substruc-
ture is formed [20]. In addition to ice, a spontaneous
solid-phase amorphization (SPA) is observed for a
number of crystals upon low-temperature compression
(naturally, the low-temperature condition is individual
for each substance) [21–25] (see also the references
002 MAIK “Nauka/Interperiodica”
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cited in [18, 19, 23–25]); this may apparently be treated
as the limiting case of nonequilibrium transformations
controlled by the softening of certain phonon modes in
the absence of diffusion [18, 19, 21, 26–30].

In the equilibrium part of the phase diagram for H2O
ice, the compression of the Ih phase brings about the
realization of sequences of phase transitions such as
Ih  III  V  VI, Ih  II  V  VI, and
Ih  II  VI, depending on temperature, which are
well studied using different procedures [7–9] including
the ultrasonic method [31–33]. In the case of low-tem-
perature compression of ice (77–120 K), its solid-phase
amorphization occurs (Ih  hda transformation)
[12–16], whose structural and thermodynamic aspects
have also been studied fairly well [12–16, 34–36].
Recently, ultrasonic investigations of this transforma-
tion were performed, which revealed a considerable
softening of the shear modulus prior to amorphization
[37, 38].

Almost no studies have been made of the intermedi-
ate region of temperature at which the mechanism of
structural transformations changes from equilibrium to
nonequilibrium. In the case of compression of Ih ice, IX
ice [16, 39] and XII ice [40, 41] were observed in the
temperature range of crossover of 120 < T < 200 K,
which apparently had no regions of thermodynamic sta-
bility. Few attempts at studying phase transitions in this
temperature range involved structural investigations
and measurements of the specific volume of phases at
certain pressures and temperatures [11, 14–16, 40, 41].
As to the behavior of elastic moduli, which is extremely
important from the standpoint of understanding the
mechanism of phase transitions, it was not previously
investigated in this range of temperatures and pres-
sures.

It was the objective of our study to investigate in
detail the transition (crossover) from the thermody-
namic to nonequilibrium scenario of transformations of
Ih ice during compression in the temperature range
from 77 to 200 K, by way of measuring the elastic prop-
erties and density.

2. EXPERIMENTAL PROCEDURE

The elastic characteristics of H2O ice were mea-
sured in the pressure range from zero to 2.0 GPa and in
the temperature range from 77 to 300 K by the pulsed
ultrasonic method [42]. Samples of ice were prepared
from distilled water by rapid cooling using liquid
nitrogen. Cylindrical ice samples 8–10 mm high and
16–17 mm in diameter in thin-walled lead sheaths
(~0.4 mm) were placed in a high-pressure chamber of
the cylinder-piston type. Thin (0.02 mm) layers of cop-
per foil were placed between the sample and pistons to
protect the latter from destruction due to diffusion of
the substance being investigated into the material of the
chamber. Ultrasonic measurements were performed
using piezoelectric transducers which generated a
JOURNAL OF EXPERIMENTAL 
transverse or longitudinal oscillation at a resonance fre-
quency of 5 MHz. During the experiment, the variation
of the time of travel of an ultrasonic signal in the sample
t(p, T) and of the travel path length ∆l(p, T) under the effect
of pressure and temperature was determined. The typical
rate of pressure variation was 0.02–0.05 GPa/min. Cor-
rections for the deformation of the chamber with the
variation of pressure and temperature were determined
in special experiments. The error of pressure measure-
ment did not exceed 0.03 GPa. The temperature in the
working volume was measured with the aid of four cop-
per–constantan thermocouples located in the immedi-
ate vicinity of the sample; the temperature gradient
across the sample did not exceed 1 K. The measure-
ments at 77 K were performed with the high-pressure
unit fully immersed in a container filled with liquid
nitrogen. In this case, the temperature was maintained
constant throughout the experiment. At higher temper-
atures, use was made of a system of cooling the high-
pressure chamber and stabilizing the temperature,
which was based on controlling the velocity of flow of
liquid nitrogen vapor through bores in the top and bot-
tom supports of the high-pressure unit, as well as
through the shell of the working chamber. In this case,
the temperature was determined within 1–2 K. A more
detailed description of the experimental equipment and
procedure is found in [43]. In order to calculate the
shear modulus G and the bulk modulus B, we used the
approximation of homogeneous isotropic medium, i.e.,

the relations G =  and B + (4/3)G = , where ρ
is the density, and Vt and Vl denote the velocity of trans-
verse and longitudinal ultrasonic waves, respectively.

3. NONEQUILIBRIUM PHASE DIAGRAM 
OF Ih ICE

The points of phase transitions and structural trans-
formations, determined in our experiments by jumps in
density and ultrasonic velocity, are given in the phase
diagram (Fig. 1). This diagram may be treated as non-
equilibrium because, on the one hand, it includes the
lines of phase transitions observed under concrete
kinetic conditions (dP/dt ~ 0.02–0.05 GPa/min, and so
on) with a certain experimental hysteresis and, on the
other hand, structural transformations of the type of
solid-phase amorphization of ice Ih  hda bear no
relation whatsoever to the thermodynamic phase dia-
gram. The presented diagram is in fact the main exper-
imental result and will be discussed in detail as the
study is described. The coordinates of the points of
phase transitions in Fig. 1 are, in general, consistent
with the previously published data of low-temperature
structural investigations performed under pressure [12, 14,
16]. In particular, the curve of amorphization of Ih ice
(Fig. 1) fits nicely the curve determined by Mishima [16].

The advantage of our investigations consists in that
the parameters being measured were monitored contin-
uously, whereby we could accurately determine the

ρVt
2 ρVt

2
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Fig. 1. A nonequilibrium phase diagram for ice, in which the experimental points of structural transformations are marked: d, crys-
tal–crystal transitions during compression; j, solid-phase amorphization of Ih  hda; and s, crystal–crystal transitions upon
pressure release from the VI phase. The dashed curves indicate the interpolation of phase transformations, as well as the position of
the beginning and completion of solid-phase amorphization of Ih  hda. The bold dashed curve indicates the crystallization
curve of amorphous ice (lda or hda), with n indicating the experimental data. The bold dot-and-dash curve indicates the interpola-
tion of the experimental data for transformation of Ih ice emulsion [16].
pressure P and the temperature T of phase transitions.
At the same time, the absence of direct structural mea-
surements obviously made it difficult for us to interpret
the fairly complex pattern of phase transitions. Never-
theless, the use of the available data of direct structural
and Raman investigations under pressure [12, 14, 16,
39, 41] and the measurements of density during the
experiments enabled us, in all cases being treated, to
highly reliably interpret the observed anomalies and
identify most of the structural transformations (special
cases will be discussed separately).

The crystallization curve of amorphous lda and hda
ice (see Fig. 1, as well as [14, 16]) divides the phase
diagram of ice into two parts corresponding to low-tem-
perature nonequilibrium transformations and to high-
temperature transitions between crystal phases. Below,
we will treat the variation of the elastic properties of ice
during compression of the Ih phase in the above-identi-
fied two temperature regions.

3.1. Crystal–Crystal Phase Transitions

As was already mentioned, the high-temperature
part of the phase diagram of H2O (T = 150–300 K) has
been well studied using different methods [5–7]. As to
the variation of the elastic properties during Ih 
III  V  VI and Ih  II  V  VI phase
transitions, it was investigated using the ultrasonic tech-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
nique and Brillouin scattering [31–33] only at tempera-
tures above the triple points TII–V–VI ≈ 213 K, TII–III–V ≈
249 K, and TIh–II–III ≈ 238 K [7–9].

We have determined fairly accurately (Fig. 1) the
values of pressure for direct and inverse phase transi-
tions Ih–II and II–VI in the range of 175–200 K, i.e.,
below the triple point TII–V–VI ≈ 213 K. The obtained
lines of phase transitions fit well the data of Mishima
[14]. X-ray investigations [16] and Raman scattering
[39] were used to find that the Ih  IX phase transi-
tion is observed in the range of 155–180 K, where IX
ice is a proton-ordered analog of III ice [44–46] and
may be obtained by cooling III ice below 170 K [44].
However, the exact positions of the Ih  IX phase
transition were registered on the pressure–temperature
plane either sporadically [39] or only qualitatively [16, 41].

Our measurements help complete the pattern in this
temperature range (Fig. 1). Two clearly defined anom-
alies were observed in the density and elastic properties
at temperatures above 175 K, which obviously corre-
sponded to the sequence of phase transitions Ih 
II  VI. As the temperature decreased, the points of
phase transitions shifted to the right (Figs. 1 and 2) in
accordance with the increase in kinetic hysteresis for
the transitions. However, the pattern changed abruptly
below 175 K: the position of the second anomaly of ρ
and Vt shifted in a jump to the left with respect to pres-
sure, and, for intermediate temperatures of 166–175 K,
SICS      Vol. 94      No. 2      2002
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curves with three anomalies of ρ and Vt were observed
(Figs. 2 and 3). It is natural to relate the observed pat-
tern to the change from the sequence of phase transi-
tions Ih  II  VI to the sequence Ih  IX 
VI. In view of the fact that the densities of the II and
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IX phases of ice are very close to one another, the
curves with three anomalies of ρ and Vt during transi-
tion to the VI phase must apparently correspond to the
mode of mixture of the II and IX phases. The ampli-
tudes of the second and third anomalies are defined by
the fraction of the II and IX phases (Fig. 3). Note that,
in the temperature range corresponding to the transition
region between the II  VI and IX  VI transfor-
mations, the pattern of variation of ρ and Vt might differ
strongly for the same temperatures (compare the curves
for T = 166 K in Figs. 2 and 3) depending, apparently,
on diverse factors such as the previous history of the
sample, kinetic characteristics, and so on.

Therefore, it follows from our experimental data
that the kinetic line of the Ih  IX phase transforma-
tion changes smoothly to the line of the Ih  II tran-
sition, which is consistent with the previously pub-
lished data of [14, 16]. At the same time, the IX  VI
phase transition occurs at a lower pressure than the
II  VI transition (Fig. 1), with due regard for the
kinetics of transitions (hysteresis).

3.2. Solid-Phase Amorphization

The variation of the elastic properties of ice in the
process of solid-phase amorphization at 77 K was
investigated by us in detail previously [37, 38]. Figure 4
gives experimentally obtained correlations for solid-
phase amorphization at three temperatures, namely, 77,
125, and 130 K. One can see that the pattern of varia-
tion of the density and elastic properties does not vary
qualitatively at different temperatures; it is only with
the temperature rise that the amorphization pressure is
observed to shift towards decreasing (Fig. 1). In view of
the data of [37, 38], one can formulate the following
singularities of the nonequilibrium scenario of solid-
phase amorphization (Fig. 4): (1) as the pressure
increases, the density and the bulk modulus of initial Ih
ice increase, and the velocity of transverse ultrasonic
waves and the shear modulus decrease (Fig. 4); (2) the
transformation of crystal into the amorphous phase
begins as an abrupt and simultaneous variation of the
density and elastic properties, similarly to phase transi-
tions of the first kind; (3) the solid-phase amorphization
is accompanied by a fairly extended “tail” of transfor-
mation (compare Figs. 2 and 4, and see Fig. 1); (4) prior
to amorphization in the Ih phase, an increase in the
Poisson coefficient is observed up to anomalously high
values of approximately 0.4 [38]. The shear elastic soft-
ening of the lattice of Ih ice is of extreme importance
for an understanding of the mechanism of solid-phase
amorphization and will be treated below (Section 5).

3.3. Phase Transitions in the Vicinity
of the Crystallization Line

At T = 140 K, the experimentally obtained pressure
dependence of ρ and Vt (Fig. 4) turned out to be
unusual. Two weak singularities in the behavior of ρ(P)
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and Vt(P) at pressures of 0.3 and 1.4 GPa, marked by
arrows in Fig. 4, apparently should be associated with
the Ih  IX and IX  VI transitions, as a result of
which impurities of the IX and VI phases emerge,
respectively. These singularities are defined more
clearly on the ρ(P) curve. However, the main structural
transformation of Ih ice occurs in the vicinity of
0.8 GPa. By the pattern of variation of ρ and Vt and by
the value of pressure of this transition (Figs. 1 and 4), it
would be natural to associate this transition with the
solid-phase amorphization of Ih  hda. However, the
amplitude of the density jump and, especially, of the
jump in the value of the transverse velocity of sound
during this transition is much higher than in the case of
Ih  hda transformation (Fig. 4). Moreover, the final
density of ice at P = 1.6 GPa is markedly higher than
the density of both hda ice and the VI phase, and, from
the standpoint of the transformation coordinates, this
cannot be a phase transition to VI ice or to the distorted
VI' phase. Obviously, the pattern observed at 140 K
cannot be represented as a superposition of the Ih 
hda and Ih  IX  VI transformations (see the
dependence of ρ and Vt and of G for T = 130 and 150 K
in Figs. 4 and 2, respectively).

The observed anomalous pattern of phase transfor-
mations at 140 K can be readily explained if we assume
that the jump in ρ and Vt in the vicinity of 0.8 GPa cor-
responds to the phase transition to XII ice character-
ized by the density of 1.44 g/cm3 [10]. Koza et al.
[40, 41] have found recently that the Ih  XII phase
transition competes with solid-phase amorphization
during transformations of Ih ice in the entire low-tem-
perature range; at the same time, the kinetic factors
defining the type of transformation (Ih  XII or
Ih  hda) were not exposed [40]. As was demon-
strated later, the Ih  XII phase transition is more
probable at a high compression rate [41]. It has been
found that the upper limit of the temperature of forma-
tion of XII ice corresponds to T = 150 K, which is con-
sistent with our data.

The evolution of the sequence of transformations
from Ih  II(IX)  VI to Ih  hda is given in
Fig. 5, where the values of ρ and Vt are taken for differ-
ent samples of ice at fixed values of pressure of 0.7 and
1.6 GPa. One can see in Fig. 5 that the high-temperature
and low-temperature modes of transformations are
clearly separated. Unfortunately, the accuracy of mea-
surements and the number of experimental points pre-
vent one from finding exact temperature dependences
of these characteristics for samples of different phases.
However, the values of both the density and the velocity
of transverse ultrasound are registered fairly reliably
for the phases identified as VI and hda ice. The varia-
tion of ρ and Vt for hda ice may be attributed to two rea-
sons. Firstly, as was already discussed, a mixture of the
hda and XII phases is formed in the low-temperature
part of the phase diagram corresponding to solid-phase
amorphization of Ih ice [40, 41], with the content of the
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XII phase depending on the kinetic singularities of the
experiment. Secondly, the properties of the hda phase
may systematically depend on the amorphization tem-
perature because, unlike the crystal lattice, an amor-
phous network cannot be a uniquely defined structure
(in terms of short-range singularities). The measured
characteristics of VI ice in the temperature range from
150 to 170 K (Fig. 5) are too high compared with the
available data for VI ice [31–33, 47, 48]. While the
deviation of the values of the velocity of transverse
ultrasound could be associated with the presence of tex-
ture in samples of VI ice in view of the fact that its
structure is of tetragonal symmetry [49] and, conse-
quently, anisotropic, the deviation of the density toward
increasing cannot be associated with the texture. It is
natural to assume the presence of another, denser, phase
at a high pressure, first of all, XII ice. In this case, XII
ice may be treated as an indicator of the nonequilibrium
scenario of transformations of Ih ice (Ih  XII phase
transition), although direct structural investigations
under pressure are no doubt required for unique identi-
fication of phases (or their mixtures).
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4. II–VI AND IX–VI PHASE TRANSITIONS

The thermodynamic nature of IX ice and the pattern
of the IX  VI phase transition are of importance
from the standpoint of accurate interpretation of the
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crossover between the thermodynamic and nonequilib-
rium scenarios of transformations of Ih ice. It appears
that IX ice is a metastable phase [44], and, therefore,
the Ih  IX  VI phase transitions may be treated
as nonequilibrium from the viewpoint of thermody-
namics. Nevertheless, it is to be assumed that the mech-
anism of IX  VI phase transition is a diffusion one,
because, firstly, it is accompanied by a substantial rear-
rangement of structure of ice and, in particular, of the
oxygen sublattice, and, secondly, the pattern of
abruptly increasing hysteresis for the IX  VI transi-
tion (Fig. 1) is typical of the diffusion mechanism.

We will analyze in more detail the thermodynamic
correlations between the II, IX, and VI phases of ice.
Obviously, for the arbitrary A, B, and C phases (with a
uniquely defined structure and thermodynamic poten-
tials), lines of thermodynamic equilibrium and a triple
point may be introduced, even if they do not exist on the
equilibrium P–T diagram, from the correlations GA =
GB and so on and GA = GB = GC, where GA is the ther-
modynamic potential of the A phase and so on. In treat-
ing the phase diagram of ice, we will assume for sim-
plicity that the variations of volume, ∆V, and of entropy,
∆S, are constant over a certain region along the lines of
phase equilibria, which causes little distortion of the
real pattern of the equilibrium phase diagram for ice. It
follows from the Clausius–Clapeyron equation dT/dP =
∆V/∆S that this simplification implies a constant slope
of the phase boundary on the P–T diagram.

Jumps in volume for phase transformations of ice are
known from [32, 33], namely, ∆VIII → II = –0.35 cm3/mol,
∆VII → V = –0.88 cm3/mol, and ∆VII → VI = –1.85 cm3/mol;
these data are in good agreement with the results of
other measurements [9, 31, 48]. It follows from the
phase diagram of ice in [7–9] that SIII ≈ SV ≈ SVI or,
more precisely, that the variation of entropy for the
respective phase transitions is rather small, because the
observed interfaces have close-to-vertical slopes (Fig. 6).
From this correlation, it follows, in particular, that the
slope of the II–VI interface is negative and approxi-
mately 2.1 times steeper than the slope of the II–V
curve, because ∆VII → VI/∆VII → V = 2.1. We extrapolate
the II–III and II–VI interfaces to lower temperatures
and easily find the coordinates of a virtual (i.e., not
existing on the equilibrium phase diagram) triple point
II–III–VI, namely, P = 0.48 ± 0.01 GPa and T = 255 ± 3 K
(Fig. 6). Because SIII ≈ SV ≈ SVI, the slope of the line of
equilibrium for III and VI ice is almost vertical. The
temperature of the III  IX phase transition is 170 K
[44], with the jump in volume being 0.1% or less.
Therefore, one can conclude that the III–IX equilibrium
line is an almost horizontal line in the neighborhood of
T = 170 K (Fig. 6). This enables one to approximate the
coordinates of the virtual triple point III–IX–VI as 0.5 GPa
and 173 K. The slope of the virtual interface IX–VI may be
calculated directly. Proceeding from the estimates of
∆VIX → VI = ∆VII → VI = ∆VIII → II + ∆VII → VI = 2.2 cm3/mol
and ∆SIX → VI = ∆SIX → III = 1.35 J/K mol [50], we derive
 AND THEORETICAL PHYSICS      Vol. 94      No. 2      2002
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(dT/dP)IX → VI = 1600 K/GPa. As a result, it is possible
to obtain the line of IX–VI phase equilibrium, as is
shown in Fig. 6.

Therefore, in the temperature range of 150–180 K being
treated, the IX–VI interface is shifted by 0.3–0.4 GPa
toward lower pressures relative to the II–VI curve. The
curve of the IX  VI phase transition obtained by us
is shifted by approximately the same value on the pres-
sure scale relative to the respective curve of the II  VI
transition, where one must take into account the kinetic
hysteresis for both phase transitions. It is natural to
assume that the relative position of points of the IX  VI
and II  VI phase transitions is governed by thermo-
dynamic relations. At the same time, the results of our
analysis serve as additional arguments to prove that IX
ice is a metastable phase. Indeed, if IX ice had a region
of stability on the phase diagram, this region would
have to be located between the regions of either the Ih
and II phases or the II and VI phases. However, both
these situations may be eliminated in view of our con-
structions (Fig. 6), in particular, of the position of the
triple point II–IX–VI which may be obtained by cross-
ing the equilibrium lines of IX–VI and II–VI. In any of
the cases identified above, the formation of IX ice
would have been observed at relatively high tempera-
tures (>200 K).

The observed similarity between the structures of
IX and VI ice, at least relative to the positions of oxygen
atoms [51], may serve as an additional kinetic factor
affecting the position of the IX  VI phase transition.
Summing up, one can assume that the sequence of the
Ih  IX  VI phase transitions is due to the ther-
modynamic driving forces and apparently associated
with the diffusion mechanism of transitions. Neverthe-
less, this sequence corresponds to nonequilibrium
phase transitions, because IX ice is metastable and,
therefore, defined by the kinetics as well or, to be more
precise, by the ratio of the energy barriers for phase
transitions between different phases.

5. MECHANISM OF SOLID-PHASE 
AMORPHIZATION

Ultrasonic investigations yield direct information
about the acoustic part of the phonon spectrum in a
solid, which is very important for explaining the mech-
anism of solid-phase amorphization of Ih ice under
pressure. The characteristic features of solid-phase
amorphization of ice were identified in the previous
section. Note that the Ih  hda transformation is sim-
ilar to phase transitions of the first kind, although the
process of solid-phase amorphization, unlike phase
transitions between crystalline modifications of ice, has
an extended (up to 1.7 GPa) “tail” (Fig. 1) correspond-
ing to gradual relaxation compaction. The density jump
value for the Ih  hda transition of about 20% mea-
sured by us coincides with the results of previous stud-
ies [12–14, 34, 35].
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Of key importance for the understanding of the
mechanism of solid-phase amorphization of ice is the
revealed decrease in the velocity of transverse ultra-
sonic waves Vt(P) and, accordingly, in the shear modu-
lus G(P) up to the beginning of the Ih  hda transi-
tion. The shear softening of Ih ice prior to amorphiza-
tion is accompanied by a density increase (~10%). The
high value of the Poisson coefficient [38] at the moment
of amorphization, i.e., the low value of the G/B ratio,
likewise points to the shear softening of the lattice of
ice under pressure. Therefore, the concept of instability
of the ice lattice as the triggering mechanism of solid-
phase amorphization receives direct proof from the
ultrasonic measurements of the elastic properties.

Figure 7 gives the temperature dependence of the

pressure derivative  (Fig. 7). In spite of the consid-
erable scatter of experimental points due to large errors

in numerical differentiation, it is obvious that 
depends little on temperature. Therefore, the softening
of the lattice upon compression of Ih ice is primarily
due to the singularities of its lattice geometry and of the
interaction of atoms in the lattice, while the thermal
oscillation of atoms is not so important in this case.
While the mechanism of structural transformation at
low temperatures is associated with dynamic reasons,
the rise of temperature is accompanied by the activation
of atomic diffusion and predomination of the thermo-
dynamic scenarios of compaction of ice.

More detailed information about the components of
the elastic constants tensor and about the phonon spec-
trum of crystalline Ih ice under pressure is of special
interest for the understanding of the mechanism of
solid-phase amorphization. The data on the G(P) corre-
lation are insufficient in this case, because the shear
modulus for a polycrystal is a characteristic that is aver-
aged over different orientations of crystallites. How-

ever, in view of the fact that the pressure derivative 
is weakly dependent on temperature (Fig. 7), one can
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assume that the pressure derivatives of the components
of the elastic constant tensor do not vary strongly with
temperature either, and, consequently, the low-fre-
quency stability of Ih ice may be analyzed using the
data of [32, 33] obtained under pressure for the temper-
ature of 238 K. The lattice will be mechanically stable
if the elastic constant tensor of the compressed lattice is
positive definite [19, 52–54]. For hexagonal Ih ice
(P63/mmc space group), this implies three conditions of
stability relative to shear strain, namely,

(1)

(2)

(3)

where c11, c12, c13, c33, and c44 are five basic constants
describing the elastic constant tensor of hexagonal lat-
tice of Ih ice (in this case, c66 = (1/2)(c11 – c12). Here,
one more condition, according to which the bulk mod-
ulus is positive, is assumed to be valid. The interpola-
tion of the data of [32, 33, 55] readily yields the follow-
ing logarithmic derivatives with respect to pressure for
shear elastic constants at P = 0: /µ1 = –0.057 GPa–1,

/µ2 = –0.183 GPa–1, and /µ3 = –0.216 GPa–1; i.e.,
the decrease in µ2 and µ3 is more intensive. However,
the second derivatives µ2 and µ3 with respect to pres-
sure are positive, and these elastic moduli vary little
with pressure until approximately 1 GPa, while  < 0,
and the decrease in µ1 rises rapidly with pressure. The
extrapolated quantity µ1 tends to zero at 1.5 GPa. With
a pressure of approximately 1.1 GPa corresponding to
amorphization of ice, the extrapolated decrease in the
modulus µ1 is ~60% relative to the initial value. For var-
ious procedures of solid-phase amorphization, the soft-
ening of elastic constants by 30–60% is typical [56].
The decrease in the moduli µ2 and µ3 with pressure is
not so significant in our case, and the rate of decrease in
the polycrystalline shear modulus is intermediate
between the respective values for µ1, µ2, and µ3.

The results of computer calculations of Tse et al.
[27, 57] lend support to the assumed scenario of soften-
ing the elastic constants of Ih ice. In particular, the
method of molecular dynamics was used to demon-
strate that the pressure-induced collapse of the lattice of
Ih ice begins with an abrupt decrease in the modulus µ1.
The softening of the elastic constants corresponds to
the lattice instability with respect to acoustic phonon
modes in the neighborhood of the center of the Bril-
louin zone. At the same time, for substances with a dia-
mond-like structure, it is known, for example, that the
lattice instability during compression occurs first on the
boundary of the Brillouin zone; it must be emphasized
that, with respect to oxygen atoms, Ih ice has a short-
range order with tetrahedral packing of atoms analo-

µ1 1/2( ) c11 c12–( ) 0,>=

µ2 c44 0,>=

µ3 1/2( ) c11 c12 c33+ +(=

– c11 c12 c33–+( )2 8c13
2+ ) 0,>

µ1'

µ2' µ3'

µ1'
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gous to that of diamond-like semiconductors. Natu-
rally, a rigorous calculation of the phonon spectrum of
Ih ice upon compression is of most interest for the
understanding of the dynamic mechanism of solid-
phase amorphization. However, simple reasoning anal-
ogous to that following from the analysis of stability of
diamond-like lattices [19] may lead to the understand-
ing of the reasons for the instability of Ih ice under pres-
sure. The instability of the ice lattice is due to the loose
tetrahedral structure of ice. The shear elastic instability
is associated with the negative contribution by pressure
to the shear moduli [18, 19], which increases rapidly
due to central repulsion between neighboring oxygen
atoms.

Note that the presence of an unstable mode in the
vibrational spectrum of crystal lattice is not a sufficient
condition of solid-phase amorphization, because the
unstable mode may correspond to the lattice transition
to a new crystalline state. It is obvious that the factors
disturbing the coherent motion of atoms, for example,
the interaction of two soft modes (see the examples of
softening of two or more phonon modes in [19] and
[30]), may contribute to the disordering of an unstable
lattice. One can mention the following singularities for
Ih ice which may contribute to solid-phase amorphiza-
tion: (1) a high degree of disordering in the proton
arrangement [58] or orientational disorder of H2O [59],
(2) the existence of two types of hydrogen bonds [60],
and (3) a possible contribution of libration phonon
modes [61] to the process of dynamic disordering of the
ice lattice.

6. TRANSITION FROM THE THERMODYNAMIC 
TO NONEQUILIBRIUM SCENARIOS

OF TRANSFORMATION DURING 
COMPRESSION OF Ih ICE

Now, one can identify two main and interrelated
characteristic features of the kinetics of structural trans-
formations of Ih ice upon a decrease in temperature:
firstly, the transition from the thermodynamic to non-
equilibrium scenario of structural transformations,
which is the main subject of this study, and, secondly,
the replacement of the diffusion mechanism of phase
transitions by mechanisms caused by the dynamics of
the lattice being softened with cooperative (to some
degree) motion of atoms at the moment of rearrange-
ment of structure.

It is natural to assume that the crossover between the
crystal–crystal (II  IX phase transition) and crystal–
amorphous phase modes of transformations of Ih ice
corresponds to the freezing of diffusion in the oxygen
sublattice. This is suggested by the fact that the inter-
face between the two modes is in the region of crystal-
lization of amorphous hda ice at temperatures of 140–
150 K (Fig. 1). In the same temperature range, a cross-
over was observed between the two-phase melting of
ice emulsion, in which the nucleation of crystalline
phases could be prevented, and the solid-phase amor-
 AND THEORETICAL PHYSICS      Vol. 94      No. 2      2002
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phization as a single-phase process defined by the insta-
bility of the Ih lattice [16] (see also Fig. 1). The general
form of the curve of transformations of Ih ice (Fig. 1)
may be described as the intersection of the hysteresis
curve of the Ih  IX(II) phase transition and the
instability curve, in good agreement with the results of
model analysis of [18]. Naturally, this intersection is
smoothed out by transition processes which are appar-
ently of thermoactivation nature.

Unfortunately, the mechanism of the Ih  XII
phase transition remains unclear. The interpretation of
structural transformation at 140 K as the Ih  XII
phase transition also needs to be confirmed. It is known
[41] that this phase transition is observed below 150 K
as a process competing with solid-phase amorphiza-
tion. One can assume that the mechanism of the Ih 
XII phase transition, which is also associated with the
lattice instability, apparently has a nature analogous to
that of martensite phase transitions, and the choice
between two channels of transformations is governed
by the kinetics of experiment.

The diffusion of atoms in the oxygen sublattice
develops above the crystallization temperature of the
amorphous phases of ice, and, as was already men-
tioned, the thermodynamic correlations between the
phases affect considerably the relative position of the
points of phase transitions, as in the case of the IX 
VI and II  VI transitions. However, nonequilibrium
scenarios are possible in this case as well, if the temper-
ature is not high. In the pressure range being treated, the
thermodynamic driving forces proportional to the fac-
tor exp(∆G/kT) (where ∆G is the difference of the val-
ues of the Gibbs free energy between the phases) are
fairly small for the phase transitions between the II and
III phases of ice or between the II and IX phases, so that
all of these phases are very close in density and in
energy (31–31, 44–46]. At the same time, the kinetic
barriers for the II–III or II–IX phase transitions are
obviously not low, because these transitions are associ-
ated with considerable rearrangement of the oxygen
sublattice. On the contrary, for the III–IX phase transi-
tion, the barriers are not high, because the III and IX
phases are characterized by the same structure of the
oxygen sublattices and by the disordered and ordered
arrangement of protons, respectively. Indeed, IX ice
was first produced upon cooling III ice [44–46]. If we
assume that the Ih  IX  VI sequence of phase
transitions during compression proceeds by a nonequi-
librium scenario (i.e., IX ice is a metastable phase), and
the mechanism of these phase transitions is a diffusion
one, then the reasons for which the nonequilibrium sce-
nario becomes preferable are associated with the
restrictions in the diffusion motion of atoms that arise
during a temperature decrease. It is in a configuration
space that these restrictions correspond to higher barri-
ers, including the case of transition to a thermodynam-
ically stable phase.
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Therefore, the general tendency toward transition to
nonequilibrium scenarios with decreasing temperature
is associated with a gradual freezing of the motion of
atoms and diffusion, and the triggering of the dynamic
mechanisms of transformations is associated with the
softening of the lattice and with the reduction of the
respective energy barriers in the configuration space.
Note that the complex pattern of crossover between the
thermodynamic and nonequilibrium scenarios of struc-
tural transformations of ice is not unique. Previously, a
similar crossover was observed under conditions of
relieving high-pressure phases of silicon and germa-
nium, where the transition also occurred from the mode
of crystal–crystal transformations for phases with a sta-
bility region on the phase diagram to modes of the type
of crystal–metastable crystalline phase, and then to the
mode of crystal–amorphous phase. Further progress in
the understanding of the nonequilibrium polymorphism
of ice must be associated with detailed crystallographic
and dynamic analysis of phase transitions between
crystalline modifications and with computer simulation
of various stages of the process of solid-phase amor-
phization.
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Abstract—A stable static mixed domain structure consisting of strip domains and a cylindrical magnetic
domain (CMD) is obtained in (Bi0.7Lu0.3)3(Fe0.8Ga0.2)5O12 ferrite–garnet films. An analytic theory of the mixed
domain structure is constructed. An analytic solution is obtained for the shape of a distorted strip domain, which
is in good agreement with experimental results. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that the magnetic domain ordering
is energetically favorable in ferromagnetic films [1, 2].
An equilibrium domain structure is determined by the
balance of many factors, of which the exchange inter-
action, magnetization, anisotropy, the shape of a mag-
netic sample, the energy of domain walls, the magni-
tude and direction of external magnetic field, tempera-
ture, defects, magnetostriction, and the structure of the
surface are the most important ones. For a specific set
of physical parameters, a magnetic sample is character-
ized by a definite type of magnetic domains. For exam-
ple, the most widespread type of magnetic ordering in
magnetic films with perpendicular anisotropy is either
a strip (or labyrinth) domain structure or an array of
cylindrical magnetic domains (CMDs) [3].

A mixed magnetic structure in an isotropic material
seems to be energetically unfavorable; artificial imple-
mentation of such a structure will result in unstable
structures that eventually transform into a uniform
equilibrium magnetically ordered state. Nevertheless,
the existence of a nonequilibrium nonstationary mixed
magnetic structure is quite possible; moreover, it has
apparently been obtained in the experiments carried out
in [4, 5]. In these studies, an equilibrium strip structure
in a (BiTm)3(FeGa)5O12 ferrite–garnet film was
exposed to a focused laser beam, which locally heated
a cylindrical region inside a strip domain to a tempera-
ture higher than the Curie point, thus destroying the fer-
romagnetic medium in this region, which is equivalent
to the formation of a mixed magnetic structure: a cylin-
drical domain inside a strip domain. This nonstationary
mixed structure evolved with time as new regions of the
film were heated. Hence, the radius of the effective
cylindrical domain increased, thus generating a nonuni-
form magnetostatic stray field. Then, the magnetic field
induced a disordered motion of various regions of the
domain walls and distorted the original strip domain
structure, increasing the deflection of the strip domain
walls. After a time, as the temperature of the overheated
region decreased, an inverse process occurred: the
1063-7761/02/9402- $22.00 © 20293
deflection of the strip domain decreased, and the equi-
librium strip domain structure was recovered [4, 5]. In
spite of the fact that the results of experiments [4, 5] are
in good qualitative and quantitative agreement with the
model concepts of [6] concerning the efficient genera-
tion of a mixed domain structure by a focused laser
impulse, the authors of [4, 5] did not directly observe
such a structure.

In the present paper, we demonstrate (both experi-
mentally and theoretically) the existence of a quasi-
equilibrium mixed domain structure representing a sys-
tem of strip domains and a CMD; this structure is stable
and may exist during an infinitely long period of time.
The constructed analytic theory that describes this
mixed structure is in good agreement with the experi-
mental results presented in this paper.

2. DESCRIPTION OF THE EXPERIMENT

The aim of the experiment carried out is to obtain a
concrete mixed domain structure consisting of an ori-
ented strip structure and a CMD situated inside a strip
domain. A mixed domain structure of a different type
was considered in [1]. In that paper, the authors pre-
sented the results of investigating the magnetization of
epitaxial ferrite–garnet films with orientation (210) and
the diagram of the phase states of quasi-uniaxial mag-
netic films whose easy magnetization axis made an
angle with a normal to the film surface. A single-
domain state, an oriented strip domain structure, and an
array of tilted CMDs of hexagonal type were the basic
magnetic states. For certain values of the free energy, a
set of magnetic structures consisting of tilted CMDs,
dumbbell-shaped domains, and strip domains with a
unified correlated period was implemented in these
films of rhombic anisotropy. However, these structures
were localized in different regions of the magnetic film.

In the present paper, we used a
(Bi0.7Lu0.3)3(Fe0.8Ga0.2)5O12 film with orientation (210)
for the experimental observation of a mixed static
domain configuration. We chose a sample with the fol-
002 MAIK “Nauka/Interperiodica”
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lowing parameters in our experiment: a film thickness
of h ≈ 13 µm, an inclination angle of the easy magneti-
zation axis of θ ≈ 30°, a saturation magnetization of
4πMs ≈ 60 G, a dimensionless Hilbert decay parameter
of α ≈ 0.01 (the dimensionless decay parameter was
determined from the magnetic resonance linewidth),
and a rhombic anisotropy field of H ≈ 1400 Oe. The
sample was fabricated in A.M. Balbashov’s laboratory
at the Moscow Power Institute.

The magnetic structure was observed through a
polarization microscope in white light using the Fara-
day effect with amplitude resolution. Helmholtz coils
were used to create a magnetic bias field Hb perpendic-
ular to the sample surface. A planar pulse field was also
generated by Helmholtz coils. A pulsed magnetic field
Hz perpendicular to the film surface was generated by a
planar coil. The minimal pulse rise and fall times were
7 and 40 ns, respectively. The sample was placed at the
center of the coils. A G5-67 oscillator was used as a
pulse generator, and a G3-33 oscillator, as a source of
harmonic signals. The diagram of the experimental
setup for the observation of the magnetic structure is
shown in Fig. 1.

It was pointed out in [1] that the domain structure in
a given type of film can be controlled either by a mag-
netic field directed perpendicular to the film surface or
by a planar field.

A required magnetic state was achieved only by
applying a magnetic field with allowance for the feature
of the behavior of strip dynamic domains under magne-
tization. At the beginning of the experiment, a sample
was demagnetized and had a strip domain structure.
Then, a bias field of Hb = 15 Oe was applied to the sam-
ple. When the width of magnetic domains with the ori-

*

2

3
4

5
6

7

8

9

1

Fig. 1. Observation scheme; (1) light source, (2) polarizer,
(3) bias field (Hb) coils, (4) planar field (Hx) coils, (5) sam-
ple, (6) pulse field (Hz) coil, (7) objective lens of the micro-
scope, (8) analyzer, and (9) photographic camera.
JOURNAL OF EXPERIMENTAL
entation of magnetization vector opposite to the exter-
nal field decreased, the sample was exposed to five sin-
gle rectangular pulses of magnetic field Hz with
minimal rise and fall times. The amplitude of the pulsed
field was Hz = 5 Oe, and the pulse duration was 7 µs.
After this procedure, one could observe CMDs in the
film. Then, single pulses of magnetic field Hx directed
along the projection of the easy magnetization axis onto
the film plane were applied to the sample. Pulses of tri-
angular shape with a rise and fall time of 10 µs and an
amplitude of Hx = 7 Oe facilitated the growth of CMDs
into the strip domains. However, the growth of certain
CMDs into a strip domain was hindered by the adjacent
strip domains that had earlier grown from a CMD.
Under the effect of the above single pulses, all CMDs
except for one grew into strip domains. Thus, a struc-
ture consisting of strip domains and a CMD was
obtained. Next, the bias field was decreased to Hb = 6 Oe,
while the structure obtained was preserved.

Then, a series of sinusoidal pulses of a magnetic
field perpendicular to the film surface were applied to
the sample with a frequency of 30 Hz, and a final
domain configuration was obtained when the field
amplitude was reduced from 1 Oe to zero. The films of
the type investigated may have large relaxation times
after switching off external forces. Therefore, the struc-
ture obtained was photographed after a time interval
necessary for establishing a stable domain configura-
tion. Figure 2 shows a photograph of the mixed domain
structure obtained. The width of the strip domain (the
dark domain in the figure) in which a CMD is located is
equal to 16 µm. The mean radius of the CMD is equal
to 6.75 µm.

The CMD situated inside a strip domain bends the
domain walls. The domain structure is stable; therefore,
the magnitude of bending is preserved during the whole
period of observation, which amounts to more than
eight hours. It is known that, if the films of this type
have a strip domain structure in the initial state, this
structure is preserved under small variations of external
conditions; moreover, the period of the strip structure is
also preserved [7]. The magnetic structure under inves-
tigation also proves to be stable with respect to small
variations of external magnetic fields. Since the config-
uration considered is obtained without local variations
in the film parameters, its stability is determined by
magnetostatic fields. The magnitude of bending is in
good agreement with the results of calculations carried
out in this work.

3. THE THEORY OF A MIXED
DOMAIN STRUCTURE

To describe a mixed domain structure, we proceed
from the general concepts of micromagnetism. For sim-
plicity, we restrict the analysis to a single strip domain
containing a cylindrical magnetic domain. This restric-
tion is justified by the fact that, as is clear from experi-
 AND THEORETICAL PHYSICS      Vol. 94      No. 2      2002
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Fig. 2. Cylindrical magnetic domain in a strip domain structure.
ments, the effect of the next-nearest strip domains is
negligible. This assumption allows us to construct an
analytic solution for the mixed domain structure under
consideration.

Consider an isolated strip domain that contains a
cylindrical magnetic domain of radius R inside it. Fig-
ure 3 shows an isolated strip domain of width w = 2a
situated along the coordinate axis x in an infinite film of
thickness h. The coordinate axis z is perpendicular to
the film plane, while the axis y is perpendicular to the
domain wall. The origin of coordinates is located at the
center of the cylindrical domain. The magnetostatic
stray field of the cylindrical domain distorts the shape
of the strip domain; thus, the width of the latter domain
depends on the coordinate x.

Suppose that a function y(x) describes the bending
of the wall of the strip domain. Then, the magnetostatic
energy, considered as a functional of the unknown
function y(x), can be represented as

(1)

Consider the individual terms of functional (1):

is the variation of the magnetostatic energy due to the
bending of the domain walls in two rectilinear strips

W W1 W2 W3 W4 W5.+ + + +=
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 OF EXPERIMENTAL AND THEORETICAL PHY
that fringe the bent domain walls and are parallel to the
x axis, as well as the variation of the energy of interac-
tion between the surface magnetic charges of the above
strips due to the bending of the domain walls. Here, b is
the maximum of the function y(x) that describes the dis-
tortion of the strip domain wall due to the magnetostatic
stray field of the cylindrical domain, σ is the magneto-
static surface charge density equal to the normal com-
ponent of the magnetization vector, A is a regularization
parameter, and

H x y x' y', , ,( )
1

x x'2–( ) y y'–( )2+
-------------------------------------------------=

–
1

x x'–( )2 y y'–( )2 h2+ +
-------------------------------------------------------------,

–y(x) y(x)

a b B–B –a

x

y
–b 0

Fig. 3. Isolated strip domain with a cylindrical magnetic
domain in the center (top view).
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is the energy of interaction between the magnetic
charges of the cylindrical domain and the surface mag-
netic charges of the strip domain, induced by the bend-
ing of the domain walls (hereupon, we neglect the dis-
tortion of the cylindrical domain itself), where

is the variation of the magnetostatic energy of interac-
tion between the upper and lower surfaces of the unbent
strip domain with adjoining rectilinear strips that fringe
the bent domain walls and are parallel to the x axis, as
well as the variation of the energy of interaction
between rectilinear semi-infinite planes with the strips
that fringe the bent strip domain walls, where B is a reg-
ularization parameter;
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is the energy of interaction of the magnetic charges of
the cylindrical domain with the surface charges of the
upper and lower parts of the unbent strip domain and
with the semi-infinite planes that bound the isolated
strip domain in a thin ferromagnetic film; and

is the variation of the magnetostatic energy of the
strip domain in the external bias magnetic field,
where Hz is a magnetic field parallel to the z axis and
const stands for the terms independent of the domain
wall bending.

Calculating the variational derivative of the magne-
tostatic energy functional (1) and equating it to zero, we
obtain a nonlinear functional integral equation for the
function y(x); for relatively small degrees of bending of
the domain walls, this equation can be linearized.
Expanding the function y(x) in series with respect to the
points a and b within the integration limits, we obtain
the equation

(2)

where ψ = b – a, ν = b + a, f = 4ln(1 + h2/4a2),

and

Equation (2) is a convolution-type linear integral
equation; it can be solved by the Fourier transform
technique [8]. Applying a cosine Fourier transform to
Eq. (2), we obtain
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(3)
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where (  – a) is the Fourier image of the function
(y(x') – a).

Solving algebraic equation (3) and applying the
inverse Fourier transform, we obtain the following
expression for the magnitude of deformation of the
domain wall due to the magnetostatic stray field of the
cylindrical domain:

–
1
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∞
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where

and

For small deflections of the domain wall, we can
assume that the denominator in the integrand in solu-
tion (4) is constant, which corresponds to the expansion
of the Macdonald function K0(y) for small values of the
argument [9]. As a result, we obtain the following ana-
lytic solution y(x) that describes the distortion of the
domain wall of an isolated strip domain due to the field
of the cylindrical domain:

(5)
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Substituting x = 0 into Eq. (5), we obtain an equation
for determining the maximum bending b of the strip
domain wall. Thus, the theory developed solves the
problem stated in this paper.

4. CONCLUSIONS AND COMPARISON 
WITH AVAILABLE EXPERIMENTAL RESULTS

The shape of deflection of a strip domain wall
obtained in the experiment (Fig. 2) is in good agree-
ment with the theoretical result represented in Fig. 4;
thus, the theoretical model developed can be applied to
describe the behavior of a quasi-equilibrium mixed
configuration of magnetic domains (strip domains and
CMDs).

The maximum bending of a strip domain wall calcu-
lated by formula (4) (Fig. 4) for the parameters corre-
sponding to the experimental data (a strip domain width
of w = 16 µm, a magnetic film thickness of h = 13 µm,
and a mean radius of the CMD of R = 6.75 µm) is equal
to 5.1 µm. The maximal bending of the strip domain
wall obtained in the experiment with the above param-
eters is 3.9 µm. Thus, the value calculated by formula
(4) is in good agreement with the experimental value of

–1–2

–1.0

–0.5

0.5

1.0

1 2 x/h

y/h

Fig. 4. The shape of the strip domain structure in the pres-
ence of a cylindrical magnetic domain in a thin ferromag-
netic film.
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the strip domain wall bending due to the stray field of
the cylindrical domain.
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Abstract—Complex studies of magnetic, electrical, and optical properties of VxFe1 – xBO3 solid solutions are
carried out in the entire range of concentrations between the extreme compounds VBO3 and FeBO3. A concen-
tration semiconductor–insulator transition accompanied by a change in the magnetic structure is observed. It is
found that the physical properties of the solid solution under investigation differ from those predicted in the
model of a virtual crystal in the form of an aggregate of V and Fe centers taken with the weight of x and 1– x,
respectively. The systems of electron energy levels of the VB6O6 and FeB6O6 clusters are calculated from first
principles using the Hartree–Fock method. The calculated electron structure forms the basis for simulating the
optical absorption spectra, which are in good agreement with experimental results. A qualitative explanation is
given for the entire body of data on electrical conductivity and magnetization. © 2002 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

Antiferromagnetic dielectric oxides of 3d metals
have become the objects of intense studies as Mott–
Hubbard dielectrics with strong electron correlations.
Their alloying leads to the emergence of high-tempera-
ture superconductivity in copper oxides and the colos-
sal magnetoresistance effect in manganese oxides. A
number of borates ABO3 of 3d metals (A = Fe, Cr, V,
Ti) form another class of isostructural oxides with
strongly differing electrical and magnetic properties [1–
3]. Such a difference in the properties is apparently
associated mainly with different occupancies of the 3d
shell, which determines different types of exchange
interactions in these compounds. Among these com-
pounds, FeBO3 has been studied comprehensively,
while the data on other representatives of this class
(especially solid solutions in which the consequences
of competing exchange interactions may be manifested
most clearly) are exceptionally scarce.

The VBO3 and FeBO3 compounds are, respectively,
a ferromagnet (TC = 32 K) and an antiferromagnet with
weak ferromagnetism (TN = 348 K). At T < 500 K, the
former compound is a semiconductor and the latter is
an insulator. Both compounds have the same crystal
structure of a calcite of the rhombohedral system with
the same lattice parameters a = 4.62 Å and c = 14.52 Å,
which is apparently due to virtually identical ionic radii
of V3+ and Fe3+ ions. The magnetic properties of VBO3
and FeBO3 are determined by an indirect 90° exchange
through the O2– anions; a considerable difference in
these properties can be attributed to their different elec-
1063-7761/02/9402- $22.00 © 20299
tron configurations (d2 and d5, respectively). The high
value of TN for FeBO3 indicates the high-spin state of
the Fe3+ ion. The magnetic moment of the V3+ ion in
VBO3, determined from the saturation magnetization
in the ferromagnetic phase, is the sum of the spin and
orbital magnetic moments and is approximately 6%
lower than the theoretical value. It is unclear whether
this discrepancy is a consequence of noncollinearity of
the magnetic moments due to the Dzyaloshinski inter-
action or results from the effect of covalence.

In the present work, we analyze an aggregate of mag-
netic, electric, and optical properties of VxFe1 – xBO3 solid
solutions in the entire concentration range between the
extreme compounds.

2. SAMPLES AND PREPARATION TECHNOLOGY

Crystals of the mixed composition VxFe1 – xBO3
were grown by spontaneous crystallization from the
solution–melt of the system Fe2O3–V2O3–B2O3–
(20PbO + 30PbFe3 wt %). We used compositions with
the following relation between components:

(1 – x)Fe2O3 – xV2O3 = 10–15 wt %, x = 0.5–1.0,

B2O3 = 40–42.5 wt %,

0.2PbO + 0.3PbF2 = 42.5–50 wt %.

It should be noted that the value x is given in accor-
dance with the concentration of components in the
charge and is approximate.
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Temperature dependence of magnetization in a magnetic field H = 10 kOe: (a) FeBO3 (1), V0.5Fe0.5BO3 (2); (b) VBO3 (1),
V0.95Fe0.05BO3 (2); (c) V0.6Fe0.4BO3. The inset to Fig. 1c shows the magnetization on a magnified scale.
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The mixture of the initial components was placed in
closed platinum crucibles having a volume of 100 cm3

and was held at T = 1000°C until the charge was diluted
completely. Then the mixture was rapidly cooled to
800°C and held for 1 h.

Using this technology, we obtained crystals in the
form of thin plates with a size of 4 × 4 mm and a thick-
ness of about 0.1 mm, having a smooth and bright sur-
face.

The VxFe1 – xBO3 samples with x = 0.6 were sub-
jected to X-ray structural and chemical analyses; the
former analysis revealed that the compound with a
mixed composition has the same crystal lattice as the
extreme compounds VBO3 and FeBO3, while the latter
analysis confirmed the closeness of the concentration x
of the substituent ion to that laid during synthesis.
X-ray diffraction measurements carried out at 77 K
revealed that the compound does not experience any
phase transition.

3. EXPERIMENTAL RESULTS

The temperature and magnetic-field dependences of
magnetization were measured with the help of a vibrat-
ing-coil magnetometer with a superconducting sole-
noid. Resistive measurements were made by a direct
two-contact method using a teraohmmeter. Indium con-
tacts were deposited using the surface wetting effect,
and the sample temperature was controlled by its blast-
ing with a gaseous nitrogen or air jet in a flow cryostat.
We also obtained optical absorption spectra in the spec-
JOURNAL OF EXPERIMENTAL 
tral region 4000–20 000 cm–1 in the temperature range
83–300 K.

The results of complex measurements showed that,
in the concentration range 0 < x < 0.5, the magnetic and
electrical properties of solid solutions are close to those
of the initial compound FeBO3. Figure 1a shows by
way of an example the temperature dependences of
magnetization for FeBO3 (curve 1) and for a composi-
tion with x = 0.5 (curve 2) in a magnetic field of 10 kOe.
Since FeBO3 is a well-studied compound, it was not
investigated additionally in the present work, and the
data of magnetization of FeBO3 were borrowed from
[4]. Surprisingly, both curves exhibit the same behavior
and demonstrate close values of magnetic moment at
T = 4.2 K in spite of the fact that half iron atoms are
replaced by vanadium atoms. However, the value of TN

for the solid solution is considerably (approximately by
20 K) lower than for the initial compound.

While solid solutions remain close to FeBO3 in the
magnetic and electric respect in a wide concentration
range of the substituent ion V3+, the addition of small
amounts of Fe to VBO3 leads, on the contrary, to a rapid
change in the nature of magnetic ordering. Although
the curves describing the temperature dependence of
magnetization for VBO3 (curve 1) [1] and for a compo-
sition with 5% Fe (curve 2) have the same form typical
of ferromagnets (Fig. 1b), the saturation magnetic
moment for the solid solution at T = 4.2 K is 15% lower
than for VBO3.

For values of x = 0.6 and 0.75, the temperature
dependences of magnetization are close and exhibit a
AND THEORETICAL PHYSICS      Vol. 94      No. 2      2002
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complex behavior. Figure 1c shows the temperature
dependence of magnetization for a V0.6Fe0.4BO3 sam-
ple. It can be seen from the figure that the function M(T)
decreases near TC, which is typical of pure VBO3, but
the value of the saturation magnetization Ms amounts to
only 10% of its value for the initial compound [1],
although the vanadium concentration in the sample is
60%. In the vicinity of T = 150 K, the curve has a peak
followed by a decay in M(T), which also displays sin-
gularities. Such an unusual behavior of M(T) was
observed in [4, 5] for solid solutions of CrxFe1 – xBO3
and was attributed to the existence of an intermediate
magnetic structure.

Figure 2 shows the M(H) curves at T = 4.2 K. It can
be seen that the magnetization processes are different
for samples with different compositions. For example,
the tangent to the M(H) curve in the region of strong
fields for a sample with x = 0.95 is almost parallel to the
abscissa axis (Fig. 2a). The samples with x = 0.5 are
characterized by a weak paraprocess, while this process
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Fig. 2. Magnetization curves at T = 4.2 K for
(a) V0.95Fe0.05BO3 and (b) V0.6Fe0.4BO3.
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for an intermediate composition with x = 0.6 and 0.75
is strong (Fig. 2b).

As regards the electric properties of the samples, the
samples with 0 < x < 0.5 are insulators (see above),
while the remaining compositions, which are closer to
VBO3, are conductors whose resistivity decreases by
9% upon an increase in temperature from 77 to 550 K.
The electric properties of samples with x = 1 and 0.95
as well as of compositions with x = 0.6 and 0.75 are
close; for this reason, Fig. 3 depicts only the depen-
dences for the former compositions. It can be seen from
Figs. 3a and 3b that the temperature dependence of the
resistance of VBO3 is close to a simple activation law
with the activation energy Ea = 0.9 eV. At high temper-
atures, the composition V0.6Fe0.4BO3 also displays acti-
vation conduction with a slightly higher value of Ea =
1.1 eV. However, at lower temperatures, the linear
dependence of lnR on reciprocal temperature is vio-
lated for this composition. It can be seen in Fig. 3c that,
in this temperature range, the resistance is described
more correctly by the law [6]

R ∝  exp(Q/kBT)1/4,

where Q is the quantity determined by the density of
states at the Fermi level and by the rate of the decrease
for the envelope of the wave function. This law is typi-
cal of hopping conduction with a varying jump length.
Thus, this mechanism obviously dominates at low tem-
peratures. Unfortunately, we cannot trace the concen-
tration dependence of the absolute value of resistance
for various samples since its variations are not very pro-
nounced and the resistance cannot be measured pre-
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Fig. 3. Logarithm of resistance as a function of (a, b) reciprocal temperature 1000/T and (c) 1000//T1/4 for VBO3 (1) and
V0.6Fe0.4BO3 (2) at (a) T > 300 K and (b, c) T < 300 K.
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Fig. 4. Optical absorption curves at T = 90 K: (a) VBO3; (b) V0.75Fe0.25BO3 (curves 1 and 2 correspond to 300 and 90 K, respec-
tively); (c) V0.5Fe0.5BO3; and (d) V0.25Fe0.75BO3.
cisely in view of the irregular geometrical shape of the
samples.

The observed variation of the optical absorption
spectrum D = ln(I0/I) with x is also nontrivial by nature.
Figure 4 shows the spectral characteristics for samples
from the series VxFe1 – xBO3. For the VBO3 crystal
(Fig. 4a), an extremely weak temperature-independent
peak can be seen at 9800 cm–1. The absorption edge
corresponds to approximately 16 000 cm–1. For a
V0.75Fe0.25BO3 crystal (Fig. 4b), the absorption edge is
strongly displaced to 11 000 cm–1. In addition to the
9800-cm–1 peak typical of V3+, a new peak with a
clearly manifested temperature dependence appears.
For a V0.5Fe0.5BO3 sample (Fig. 4c), this peak remains,
while the peak typical of V3+ vanishes. Figure 4d shows
the absorption spectrum for a V0.25Fe0.75BO3 sample,
which obviously contains a series of bands typical of
FeBO3 [7]. In all publications devoted to the absorption
spectra of FeBO3 (see, for example, [8]), this series of
bands is attributed for phonon–magnon repetitions of
the lowest–frequency transition 6A1g  4T1g in Fe3+.
Thus, the temperature-dependent absorption peak
observed near 10 000 cm–1 for intermediate concentra-
tions of V and Fe cannot be attributed to single-ion tran-
sitions in V3+ and Fe3+.

Apart from the emergence of the additional absorp-
tion peak, the nonmonotonic change in the position of
the fundamental absorption band edge is also nontriv-
ial: with decreasing x, the edge is displaced to the long-
wave region, but as x approaches zero, it is abruptly
shifted to the short-wave region as in the case of
FeBO3.
JOURNAL OF EXPERIMENTAL 
4. ONE-ELECTRON CALCULATIONS 
OF FeB6O6 AND VB6O6 CLUSTERS

In order to explain qualitatively the obtained exper-
imental results, the knowledge of the electron structure
is essential. Since borates (like other oxide dielectrics
with localized d electrons) belong to the class of sys-
tems with strong electron correlations, the standard
one-electron band calculations using the density func-
tional method in the local dipole approximation (LDA)
are inapplicable. In this situation, ab initio one-electron
calculations of molecular orbitals (MO) for finite clus-
ters provide incomplete, but rather valuable, informa-
tion on the degree of hybridization of various cation
and anion orbitals, the parameters of their splitting in
the crystal field, and dipole matrix elements for inter-
band transitions. In spite of the fact that the absolute
values of electron energies cannot be correct if we dis-
regard strong correlations, their difference can be right-
fully used for a qualitative analysis of experimental
data.

An analysis of the electron structure of the given
compounds was carried out using the Hartree–Fock
method with the help of the GAMESS package [9]. In
view of the absence of metallic properties in both com-
pounds, cluster methods of calculations could be
applied. The necessity of taking into account the
exchange effects exactly in order to explain the mag-
netic properties of Fe and V ions dictated the applica-
tion of the Hartree–Fock method.

As a model, we chose the FeB6O6 (VB6O6) cluster
(Fig. 5). The central Fe (V) atom is surrounded by an
octahedron of oxygen atoms. In view of the small sep-
aration (1.42 Å) between the oxygen and boron atoms
and strong hybridization of their orbitals, the boron
AND THEORETICAL PHYSICS      Vol. 94      No. 2      2002
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atoms in the cluster had to be taken into account also.
The chosen formula Fe(V)B6O6 of the cluster correctly
describes the surroundings of the central metal atom in
the first and second coordination spheres. In our calcu-
lations, we included the s, p, and d electrons of the cat-
ion; the s and p electrons of oxygen; and the s and p
electrons of boron.

Since the effect of atoms from the next coordination
spheres is disregarded in all cluster models, an addi-
tional charge dZ must be introduced into the cluster
charge or dZ must be subtracted from the cluster
charge. We chose the charge of the cluster under inves-
tigation equal to −3, since each boron atom has only
one bond (with oxygen atoms), which corresponds to
approximate occupancy of the d shell of the central
atom of the metal.

The calculations for VB6O6 (even number of elec-
trons) and for FeB6O6 (odd number of electrons) were

FeFeFeOOO

OOO

OOO

OOO

BBB

BBB

BBB

BBB

BBB

BBB

OOO

OOO

Fe

OO

O

O O

O

Fig. 5. Structure of the FeB6O6 (VB6O6) cluster being cal-
culated.
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carried out for a triplet and for a doublet, respectively.
According to the results of calculations, the level corre-
sponding to the highest occupied molecular orbital
(HOMO) is formed by the d shell of the Fe (V) atom,
which is weakly hybridized with other orbitals of the
cluster. This is visually shown in Fig. 6 depicting the
partial densities of states for both compounds. In these
figures, the contributions from the s, p, and d electrons
of the central metal atom; the sp shells of oxygen; and
the sp shells of boron are presented successively from
bottom to top. It can be seen that the d level for Fe lies
much lower on the energy scale than in the shell of the
V atom. This shift is apparently associated with the
larger charge of the nucleus of the Fe atom, which low-
ers the energy of the d electron.

For both crystals, a weak sp–d hybridization of the
d electrons of the cation and the sp states of the anion is
observed. For VB6O6, a very small addition to the den-
sity of states from the 3d electrons can be seen in the
energy range 1.1–1.3 eV, where the contributions from
the p(V), p(O), s(B), and p(B) atomic orbitals domi-
nate. In the HOMO region, one can see a very small
contribution from the p orbitals of oxygen. The splitting
of the HOMO peaks for VB6O6 by ∆E ≈ 0.4 eV corre-
sponds to the splitting of the electron t2g level due to the
uniaxial crystal field component. For FeB6O6, the p–d
hybridization is stronger than for vanadium, which is
manifested in the larger height of the d peak of Fe in the
partial density of states with an energy of 1.3 eV and the
peak of the d states of oxygen in the HOMO. At the
same time, strong hybridization of the s and p states of
the cation with the p states of oxygen and sp states of
boron takes place for both compounds; this hybridiza-
tion determines the covalent component of the chemi-
cal bond as well as the optical absorption spectra.

The calculated energy levels and dipole matrix ele-
ments formed the basis for simulating the optical
absorption spectra (Fig. 7). It can be seen that the
absorption spectra for these compounds are completely
0 1
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Fig. 6. Partial density of states for (a) FeB6O6 and (b) VB6O6 clusters. The lower scale shows the energy levels of molecular orbitals.
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different due to different positions of the d shell of the
metal relative to other shells.

It can be seen from Fig. 7 that the optical absorption
spectrum is determined by the dipole transitions from
filled MO to partly filled HOMO. For FeB6O6, three
absorption peaks repeating qualitatively the absorption
spectrum of FeBO2 [7] are observed in the energy range
(10–16) × 103 cm–1: closely spaced peaks in the range
(1.1–1.25) × 104 cm–1 (Fig. 7a) correspond to the broad
absorption peak for a FeBO3 crystal with the center at
1.15 × 104 cm–1, while the position of the peak at
1.65 × 104 cm–1 completely coincides with the experi-
mental peak. Naturally, various types of interactions
occurring in the crystal may lead to a renormalization
of the spectrum. In view of the absence of fitting param-
eters in the calculations and the simplicity of the
FeB6O6 cluster, we may conclude that the main contri-
bution to partial densities of states and to the optical
spectra is formed by the electron bonds in the first and
second coordination spheres.

For VB6O6, high-intensity p–d transitions from the
filled MO to the partly filled HOMO produce a high-
intensity peak with an energy exceeding 4 × 104 cm–1,
which is beyond the range of our measurements. Weak
d–d transitions allowed due to the cation–anion p–d
hybridization lead to a low-intensity peak at 9800 cm–1.
A theoretical analysis leads to a similar low-intensity
peak with the energy ∆E = 0.4 eV, presented in Fig. 7b,
which is determined by the splitting of the filled (band
index λ = 1) and unfilled (λ = 2) parts of the t2gorbitals
in the crystal field. In this case, the intra-atomic Cou-
lomb interaction between different orbitals in the t2g

configuration enhances this splitting. Indeed, the
Hamiltonian of such an interaction can be written in the
form

(1)H12 ε1nd1 ε2nd2 V12nd1nd2,+ +=
JOURNAL OF EXPERIMENTAL 
where ndλ =  is the operator of the number
of d electrons at the λ level; cdλσ is the annihilation
operator for a d electron at the λ level with spin σ; and
ε1, ε2, and V12 are the energies of molecular orbitals 1,
2 and the parameter of the Coulomb interaction
between them. In the simplest mean-field approxima-
tion,

we obtain renormalized MO levels,

(2)

and the transition energy

(3)

Since orbital 1 is filled (〈nd1〉  = 1) and orbital 2 is empty
(〈nd2〉  = 0), the line in the absorption spectrum is deter-
mined not only by the splitting ∆E = ε2 – ε1 in the crys-
tal field, but also by the Coulomb interorbital matrix
element. Considering that the typical value of V12 for 3d
metal oxides is on the order of 1 eV, we obtain the shift
of the theoretical peak depicted in Fig. 7b to the region
of observable values.

5. DISCUSSION

The most adequate model of the electron structure
of 3d metal borates, which describes the electric and
magnetic properties on a unified basis, is the multiband
Hubbard model taking into account different d orbitals
explicitly as well as their interatomic overlapping and
strong electron correlations U @ t, where t is the jump
integral. In this model, FeBO3 with the 3d5 configura-
tion for the Fe3+ ion is an analogue of the conventional
orbital-nondegenerate Hubbard model with a half-filled
band, in which the indirect exchange interaction J ~
t2/U through anions is of the antiferromagnetic type.

cdλσ
+ cdλσ∑

V12nd1nd2 V12nd1 nd2〈 〉 V12 nd1〈 〉 nd2,+

ε̃1 ε1 V12 nd2〈 〉 , ε̃2+ ε2 V12 nd1〈 〉 ,+= =

∆Ẽ ε2 ε1– V12 nd1〈 〉 nd2〈 〉–( ).+=
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For VBO3 with the d2 configuration of the V3+ ion, we
have one unfilled orbital in the t2g shell, which, in the
language of the Hubbard model, leads to a kinematic
ferromagnetic exchange interaction. The separation
between filled and unfilled t2g orbitals (3) determines
not only the peak in the optical absorption spectrum,
but also the conduction activation energy Ea ≈ 0.9 eV.

In solid solutions VxFe1 – xBO3, the average number
of d electrons per cation is

(4)

For a low Fe concentration in the range 2/3 < x < 1,
charge carriers are holes in t2g states, which ensure the
semiconductor-type conduction. The concentration xc =
2/3 is critical in the sense that it corresponds to half the

filling of the t2g levels, i.e., to the  configuration.
Considering that the eg levels of d electrons lie above
the t2g levels by the cubic crystal field component,

10Dq ≈ 3–5 eV, we arrive at the conclusion that the 
configuration is analogous to a half-filled band in the
one-band Hubbard model, and strong electron correla-
tions lead to the localization of charge carriers. Thus, a
transition from the semiconductor-type conduction to
the dielectric state occurs at concentration x = xc. In
view of composition disorder in solid solutions, the
temperature dependence of the resistance near xc at low
temperatures is of the characteristic Mott type lnR ∝
T1/4 corresponding to jumps with a varying jump length
(see Fig. 3). As regards the magnetic properties, an addi-
tional integral of indirect exchange through the anions,
which is responsible for the antiferromagnetic contri-
bution as in the Hubbard model and for the additional
scale in Fig. 1c, appears in the case of the half-filled

 configuration. The approach described above corre-
sponds to an averaged pattern. In the nonaveraged
form, we can speak of the exchange integrals I(V3+–
V3+) (ferromagnetic), I(Fe3+–Fe3+) (antiferromagnetic),
and I(V3+–Fe3+) (antiferromagnetic). For x ≈ 0.5
(including the range of x ~ xc), the number of V3+–Fe3+

pairs is maximum, and it is the interaction between
such pairs which is apparently manifested in the form
of the peak at T = 150 K (Fig. 1c).

In the other limiting case of a low vanadium concen-
tration, the electron structure is determined by a super-
position of the d5 and d4 configurations. The role of
charge carriers may probably be played by holes from
the eg shell, but they are localized due to the small band
width in view of weak cation–anion hybridization.

In order to interpret the optical absorption spectra in
solid solutions, we calculate the spectrum of a virtual
crystal consisting of independent absorbing FeBO3 and
VBO3 centers using the formula

(5)

nd 5 1 x–( ) 2x+ 5 3x.–= =

t2g
3

t2g
3

t2g
3

D x( ) xD VBO3( ) 1 x–( )D FeBO3( ),+=
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where the D(VBO3) and D(FeBO3) spectra are taken
from the experimental data for the initial single crystals
(Fig. 8).
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Fig. 8. Experimental absorption spectra for VBO3 (1) and
FeBO3 (2) at T = 300 K.
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Fig. 9. Absorption spectra for (a) V0.75Fe0.25BO3,
(b) V0.6Fe0.4BO3, and (c) V0.25Fe0.75BO3: experimental
curves 1 were obtained at T = 300 K (a, b) and T = 90 K (c);
theoretical curves 2 correspond to T = 300 K.
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The experimental spectra with those calculated on
the basis of formula (5) for the compositions
V0.75Fe0.25BO3, V0.6Fe0.4BO3, and V0.25Fe0.75BO3 are
compared in Figs. 9a, 9b, and 9c, respectively. It can be
seen from the figure that the positions of the experimen-
tal peaks are close to the corresponding peaks for the
initial components, but the peak intensities are much
higher than for the virtual crystal. The reason for the
increase in the peak intensity is explained in Fig. 10
showing the diagrams of molecular orbitals for FeBO3

and VBO3, constructed on the basis of the numerical
calculations of clusters in Section 4. The notation in the
figure corresponds to the initial atomic orbitals of d
electrons of the cation and the sp electrons of oxygen
and boron; actually, molecular orbitals with small
admixtures of states due to the sp–d hybridization are
presented. Here, ∆EFe and ∆EV are the energies of tran-
sitions between molecular orbitals of FeBO3 and
VBO3, determining the absorption peaks at 11 000 and
9800 cm–1, respectively. In addition to independent
contributions to the spectrum in a solid solution (for-

Fig. 10. Diagrams of molecular orbitals for FeBO3 and
VBO3.
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Fe V
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mula (5)), a mutual effect takes place when the unit
cells of FeBO3 and VBO3 occupy neighboring posi-
tions. This effect is manifested in the enhancement of
the sp–d hybridization, since the sp states of boron and
oxygen belong simultaneously to the FeBO3 and VBO3
cells. This gives rise to additional optical transitions
with energies ∆EFe and ∆EV, which are depicted in
Fig. 10 by inclined dashed lines and are responsible for
the enhancement of peaks in the absorption spectrum as
compared to the virtual crystal.
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Abstract—Complete morphological diagrams (with stable, metastable, and absolutely unstable regions) were
calculated for the problem of morphology selection under the conditions of nonequilibrium growth of a spher-
ical crystal taking into account arbitrary kinetic process rates at the boundary and a linear dependence of the
growth rate on supersaturation. The consideration was performed by jointly using linear stability analysis and
the principle of maximum entropy production. The principal difference between kinetically and diffusion-
controlled crystal growth is the possibility of the coexistence of three or more morphological phases under
the same conditions in the former case. It was shown that, at the transition point, the rate of accretion of the
growing crystal mass increased in a jump. The jump value was studied as a function of the parameters of the
problem. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Problems of structure formation under nonequilib-
rium crystallization conditions are extensively studied
in view of their theoretical importance for the physics
of open nonequilibrium systems. These problems are
also of importance for practical applications in materi-
als science. It has been found in many experimental and
computer simulation studies that different morphologi-
cal phases can coexist at the same thermodynamic
parameters (for instance, supersaturation) that control
nonequilibrium crystallization [1–5]. It has also been
noted that the transition from one morphological phase
to another is accompanied by a jump in either the crys-
tal growth rate or its derivative [2–8]. Based on these
observations, an analogy is often drawn between phase
and morphological diagrams, and the concepts of first-
and second-order morphological transitions are intro-
duced [4, 8]. One of the most fundamental problems
that arise in this context is the development of a theo-
retical apparatus that can be used in calculating and pre-
dicting the form of complete morphological diagrams
(including metastable and labile region boundaries).
No final solution to this problem has, however, been
reported.

Based on an analysis of the problem of diffusion-
controlled crystal growth from solutions, joint use of
the principle of maximum entropy production and a lin-
ear morphological stability analysis was suggested in
[9, 10] for the construction of morphological diagrams.
The principal idea of these studies was that the use of
1063-7761/02/9402- $22.00 © 20307
the maximum entropy production principle [11] led to
finding the binodal of a nonequilibrium morphological
transition (the instability point with respect to small but
finite perturbations) rather than the spinodal (the insta-
bility point with respect to infinitesimal perturbations).
The maximum entropy production principle then
becomes a complement rather than an alternative (as
according to [12, 13]) to traditional perturbation theory
and makes its own contribution to solving the problem
of morphological selection. The strong point of the
approach suggested in [9, 10] is the possibility of sim-
ple analytic calculations of morphological diagrams
(with stable, unstable, and metastable regions), which
allows the phenomenon of the coexistence of different
morphological phases at the same thermodynamic
parameters observed in many computer and physical
experiments to be explained and described.

This approach was used in [9, 10] in considering the
simplest problem of crystal growth on the assumption
of infinitely fast kinetic processes on its surface. The
purpose of this work was to apply the method suggested
in [9, 10] to the problem of morphology selection in
nonequilibrium growth of a spherical crystal with arbi-
trary surface kinetics. It was assumed that the growth
rate was isotropic and linearly depended on supersatu-
ration. This problem is an essential generalization of
the one considered in [9, 10] and opened up the possi-
bility in principle of describing numerous experimental
data on the crystallization of quasi-isotropic systems.
002 MAIK “Nauka/Interperiodica”
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2. LINEAR MORPHOLOGICAL 
STABILITY ANALYSIS

A linear stability analysis was earlier performed
only for growth of spherical particles from melts [14].
As concerns growth of weakly distorted spherical par-
ticles from solutions, the problem has certain mathe-
matical peculiarities and will therefore be briefly
described.

The problem is formulated as follows.
(1) The most typical situation of isothermal-isobaric

crystallization is considered; it is assumed that the sol-
vent is completely displaced by the growing crystal. It
is also assumed that the surface free energy and the
kinetic coefficient are isotropic.

(2) The concentration field is described by the
Laplace equation ∇ 2c = 0; that is, it is assumed that the
condition

(1)

is satisfied [15]. Here, C is the constant concentration of
the solute in the crystal (in our approximation, the den-
sity of the crystal), and C∞, Cint, and C0 are the concen-
trations of the solute far from the crystal and at the sur-
face of an arbitrary type and the equilibrium concentra-
tion at a plane boundary, respectively.

(3) It is assumed than an arbitrary small distortion of
the spherical particle can be represented as a superposi-
tion of spherical harmonics, and the behavior of a sin-
gle spherical harmonic Ylm is considered.

(4) The concentration in the solution satisfies the
boundary conditions

(2)

(3)

(4)

where  ≡ dR/dt,  ≡ dδ/dt, R = R(t) is the radius of the
sphere, t is the time, δ is the perturbation amplitude, V
is the local growth rate, D is the diffusion coefficient,
β is the kinetic crystallization coefficient, and Cint eq =
Cint(β  ∞) is the equilibrium solute concentration
near the surface of an arbitrary type.

Boundary condition (4) is written on the assumption
that the solute concentration is negligibly small com-
pared with the crystal density; this assumption consid-
erably simplifies the problem solution and is well satis-
fied for many real systems crystallizing from solutions.
It is also assumed that the rate linearly depends on
supersaturation, which is valid for the normal crystal

C∞ Cint–
C Cint–
---------------------

C∞ C0–
C C0–
-------------------  ! 1≤

c ∞ t,( ) C∞,=

c R δYlm+ t,( ) Cint,=

V Ṙ δ̇Ylm+≡ D
C
---- c∂

r∂
-----

r R δYlm+=
=

=  β
Cint Cint eq–

C
---------------------------,

Ṙ δ̇
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growth mechanism or when supersaturation exceeds
some critical value [16, 17].

Solving this problem in a linear approximation
yields

(5)

(6)

(7)

(8)

where α = D/β ,  = 2Γ/∆ is the critical nucleus
radius, Γ is the surface tension coefficient, ∆ = (C∞ –
C0)/C0 is the relative supersaturation, CR eq = C0 +
2C0Γ/R is the equilibrium solute concentration near a
spherical surface, and ρ = /R.

Using (8) and following [14, 15], it can be shown
that infinitesimal perturbations increase when the
radius of the crystal becomes larger than the critical

radius ( ),

(9)

Equations (8) and (9) fully determine the stability of the
growing spherical particle with respect to infinitesimal
perturbations.

Equation (9) is, by definition, the equation of the
spinodal of the stable (spherical) growth–unstable (den-
drite-like, skeletal) growth morphological transition.

3. THERMODYNAMIC MORPHOLOGICAL 
STABILITY ANALYSIS

Let us apply the thermodynamic approach to ana-
lyzing the problem formulated above. Let r2dΩdr be a
volume element at distance r ≡ r(ϕ, θ, t) = R(t) +
δ(t)Ylm(ϕ, θ) from the center of the spherical crystal
(dΩ is the solid angle). The ΣS local entropy production
of this solution volume element close to the surface
then has the form [18]

(10)

where ∇µ  is the chemical potential gradient and j is the
crystallizing component flux. We will restrict ourselves

Cint CR

δYlmRS*

2R2
------------------

C∞ C0–( ) l 1–( )
1 αρ+( ) 1 αρ l 1+( )+( )

-----------------------------------------------------------+=

× l 2 2α lαρ+ + +[ ] ,

CR

CR eq C∞αρ+
1 αρ+

--------------------------------,=

Ṙ
C∞ CR eq–

C
------------------------ D

R 1 αρ+( )
-------------------------,=

δ̇ δYlm

D C∞ C0–( ) l 1–( )
2CR2 1 αρ+( ) 1 αρ l 1+( )+( )
-------------------------------------------------------------------------=

× 2 ρ 2 l 1+( ) l 2+( )+( )– αρ2 l 1+( ) l 2+( )–( ),

RS* RS*

RS*

RS
S

RS
S 0.5RS* 1 0.5 l 1+( ) l 2+( )+( )=

× 1 1 2α l 1+( ) l 2+( )
1 0.5 l 1+( ) l 2+( )+( )2

--------------------------------------------------------++ .

ΣS j∇µ r2drdΩ,=
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to the dilute solution approximation, which is tradition-
ally used in analyzing growth of crystals from solu-
tions. According to [18], the j∇µ  value can be written
accurate to within a constant in the form

(11)

Applying (4) allows the local entropy production in
the volume element under consideration close to the
surface to be written as

(12)

Following [9, 10], we can find the ∆ΣS difference
between the entropy productions in growth of perturbed
and unperturbed spherical crystals. Using (12), we can
write the equation for ∆ΣS in the form

(13)

Equations (5)–(8) were used to numerically analyze
(13). The results show that, at Ylm(ϕ, θ) > 0, the ∆ΣS

function increases in the [ , ] interval of its possi-
ble variations as the crystal radius grows and passes

zero at spherical crystal size . It follows that, at crys-

tal sizes larger than , the entropy production at a per-
turbed surface is larger than the entropy production
near the unperturbed crystal surface. Following [9, 10],
the conclusion can be drawn that this point is the bin-
odal of the morphological transition under study.

The plot of  variations depending on the parame-
ter α value is shown in Fig. 1. This plot was constructed
by numerically solving the ∆ΣS = 0 equation with the
use of the MathCAD software. It follows from the

results given in Fig. 1 that the  binodal radius
decreases as α increases, most noticeably starting with
α = 0.1.

The principal difference between the present prob-
lem of morphology selection and that considered ear-
lier [9, 10] is the absence of local equilibrium at the
crystal–solution boundary in the general case. We can-
not therefore use formulas of type (10) to calculate
entropy production directly at the interphase boundary.
Instead, the following equation should be used [18]:

(14)

j∇µ D
∇ c( )2

c
--------------.∼

ΣS
C2V2

CintD
-------------r2drdΩ.∼
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drdΩ∼ C2RṘ
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--------------=

× 2Ylm Rδ̇ Ṙδ+( ) RṘ 1
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--------– 
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drdΩ.
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RS
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RS
b
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b

RS
b

ΣS
int j µint µeq–( )r2dΩ,=
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where µint and µeq are the chemical potentials of the sol-
ute with the Cint concentration and the Cint eq equilib-
rium concentration, respectively.

Within an additive constant, the chemical potential
in dilute solutions is related to the concentration as
µint ~ lnCint, and, for the flux, we have j ~ CV (it is

assumed that C @ c). The ∆  difference between the
entropy productions on the surface in growth of per-
turbed and unperturbed spherical crystals therefore
takes the form

(15)

By analogy with the situation considered above, we
can use (5)–(8) and (15) to determine the point at which

∆ = 0. It does not follow from general nonequilib-
rium thermodynamics considerations that the binodals
found by (13) and (15) should have equal values. What
is more, numerical calculations show that the difference
of these values becomes substantial at relative supersat-
urations exceeding 0.1 (see Fig. 2). At ∆ < 0.1, the solu-

tions to the equations ∆ΣS = 0 and ∆  = 0, however,
coincide within 1% (see Fig. 1). It follows from the
local maximum entropy production principle suggested
in [9–11] that the presence in the system of perturba-
tions of a sufficiently large amplitude causes the forma-

ΣS
int

∆ΣS
int dΩC V R δYlm+( )2 Cint

Cint eq
------------ln ṘR2 CR
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-----------ln–
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Fig. 1.  in  units as a function of parameter α. Solid

curve corresponds to numerical solution of the ∆ΣS = 0
equation, where ∆ΣS is defined by (13); dashed curve is

numerical solution to the ∆  = 0 equation; and dot-and-
dash curve corresponds to analytic equation (17) for the bin-
odal radius. The plots are given for ∆ = 0.02 and l = 2.
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tion of a state characterized by a local entropy produc-
tion maximum. It appears that, in the absence of local
equilibrium on the surface (that is, always except when
crystal growth is diffusion-controlled) and at fairly
large supersaturations, the determination of the binodal
requires using expressions of type (15). A study of mor-
phological transitions in this strongly nonequilibrium
situation is a separate very interesting theoretical prob-
lem. It, however, follows from the results shown in Fig. 1
that the binodals found by both methods coincide in a
fairly large region of supersaturations that are usually
observed in experiments. At the same time, the
approach based on (13) is less cumbersome and makes
it possible to analytically obtain a fairly simple approx-

imation to , which is valid in the whole range of α
variations and fairly accurately describes the numerical
solution. For this reason, we only consider corollaries
to the ∆ΣS = 0 equation in what follows.

As

(13) can be rewritten in the ∆ ! 1 approximation in the
form

(16)

RS
b

1
CR

Cint
--------– δYlm∆=

×
RS* l 1–( ) l 2 2α α lρ+ + +( )

2R2 1 ρ α ∆ α∆+ +( )+( ) 1 αρ l 1+( )+( )
--------------------------------------------------------------------------------------------------,

∆ΣS 2l ρ l3 2l2 l 2– 2α l 1+( )–+ +( )–∼

– ρ2α l l 1+( )2.
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Fig. 2. Dimensionless binodal radii /  as functions of

parameter α at large supersaturations ∆. Solid curves corre-
spond to numerical solutions of the ∆ΣS = 0 equation [see
(13)], and dashed curves are numerical solutions to the

∆  = 0 equation. The plots are given for l = 2.
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b
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int
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In the [ , ] interval of possible sphere radius vari-
ations, the ∆ΣS function determined by (16) becomes

positive starting with R = ,

(17)

The  radius is shown by the dot-and-dash curve
in Fig. 1. According to the insets in Fig. 1, the approxi-
mation that we use allows the exact numerical solution
of the ∆ΣS = 0 equation to be described with high accu-
racy at low supersaturations. Indeed, the difference

between the  value determined by (17) and that
obtained by numerically solving the ∆ΣS = 0 equation
does not exceed 3% at ∆ ≤ 0.1. The largest deviations
for small perturbed harmonic numbers are observed for
diffusion-controlled growth, and for large harmonic
numbers, for kinetically controlled growth.

In the approximation of an infinitely fast surface
kinetics (β  ∞), (17) becomes

(18)

The  binodal radius coincides with that
obtained in [10].

For kinetically controlled crystal growth (β  0),

the  binodal radius also tends to the  asymp-
totic value,

(19)

The obtained spinodal (9) and binodal (17) equa-
tions were used to construct complete morphological
diagrams.

4. MORPHOLOGICAL DIAGRAMS 
OF A SPHERICAL CRYSTAL GROWING 

UNDER NONEQUILIBRIUM CONDITIONS

The binodal and spinodal radii as functions of
growth conditions are shown in Fig. 3 for various har-
monics. Under diffusion-controlled conditions (α <
0.1), metastable regions corresponding to different har-
monics do not intersect. In the intermediate region
(0.1 < α < 1), the binodal of the (l + 1)th harmonic and
the spinodal of the lth harmonic approach each other,
and, at α ≈ 1, they intersect; as a result, the metastable
regions of neighboring harmonics overlap each other. A
further increase in α can cause overlapping of three or
more metastable regions. As a consequence, under
intermediate and kinetically controlled spherical crys-
tal growth conditions, the coexistence and development
of a large number of crystals of different shapes (differ-

RS* RS
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b
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b 41( ) 1– RS* l3 2l2 l 2– 2α l 1+( )–+ +{=

+ l3 2l2 l 2–+ +( )2
4α2 l 1+( )2+[

+ 4α l4 l3 l2– l 2+ + +( ) ]1/2 } .
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ent morphological phases) from a spherical nucleus is
possible (for instance, for α = 150, the coexistence of
seven morphological phases is possible, and ten such
phases can coexist if α = 500).

The aforesaid is illustrated by the morphological
diagrams shown in Figs. 4 and 5; these diagrams are
constructed in the crystal size–supersaturation and sur-
face tension–supersaturation variables for only two per-
turbed harmonics. A comparison of Fig. 4a with 4b and
Fig. 5a with 5b shows that, whereas, at α = 0.001, meta-
stable regions do not intersect, the coexistence of three
morphological phases (metastable spherical and two
phases with developing perturbations corresponding to
harmonics l = 2 and l = 3) is possible at α = 100. It also
follows from Fig. 4 that the binodal and spinodal radii
sharply decrease as supersaturation grows.

Let us study crystal mass changes caused by the
morphological transition from a spherical particle to a
particle with developing perturbations. For this pur-
pose, consider the difference between increments in the
mass of a crystal (in other words, between substance
fluxs from the solution to the crystalline surface) in the
perturbed (dN/dt)p and unperturbed (dN/dt)n cases. As
previously, mass changes will be calculated per unit
time for volume element r2dΩdr close to the surface of
the crystal. Performing the calculations by analogy
with what has been done above, we obtain

(20)

This difference is an increasing function of crystal
radius R and vanishes at

(21)

The α dependences of the , , and radii are
shown in Fig. 6. No matter what conditions, the radius
starting with which the mass of a crystal with a per-
turbed surface increases at a higher rate than that of an
unperturbed crystal is always smaller than the binodal
radius. As a consequence, the rate of mass accretion can
only increase stepwise at the morphological transition

point situated somewhere between  and  depend-
ing on the perturbation amplitude. Examples of the
behavior of the rate of mass accretion and entropy pro-
duction during a morphological transition directly at
the binodal point are shown in Fig. 7. Note that the
closer the crystal radius at which the morphological
transition occurs to the spinodal radius, the larger the
stepwise change in the rate of mass accretion. The
question of whether this result is general in character or
is determined by the boundary conditions that we use
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(in particular, by the linear supersaturation dependence
of the rate of crystal growth) and by the simplified solu-
tion model under consideration requires additional the-
oretical inquiries. Many experimental works [2–7] give
evidence that the rate of crystal mass accretion
increases with the thermodynamic force or with the
crystal size. At the same time, an example of a morpho-
logical transition accompanied by a decrease in the
growth rate was described in [8]. The results of this
experiment are, however, very difficult to analyze
because of a very special character of the system under
consideration. Namely, the crystallization occurred
from an anisotropic medium (from a smectic liquid
crystal). As a result, changes in supercooling caused the
appearance of numerous difficultly distinguishable
anisotropic morphological phases.

The crystal size and supersaturation dependences of
the rate of mass accretion near the morphological tran-
sition point constructed according to (17), (20), and
(21) are shown in Figs. 8 and 9. Diagrams of the type

2
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α = 0.001

É, 10–7 cm

Fig. 5. Morphological phase diagram of stable (unstable)
sphere growth in surface tension Γ—relative supersatura-
tion ∆ variables. Solid curves are spinodals, and dotted
curves are binodals. Stable growth is observed above bin-
odals, and absolutely unstable growth occurs below spin-
odals. Metastable regions are situated between them. The
plots are given for R = 5 × 10–5 cm.
JOURNAL OF EXPERIMENTAL 
shown in Fig. 8 are most convenient for interpreting
experimental data on crystal mass changes during crys-
tal growth when crystallization occurs from a solution
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S

α
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1

Fig. 6. Radii  (solid curve),  (dashed curve), and 

(dotted curve) as functions of parameter α. The plots are
given for l = 2.
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Fig. 7. Mass accretion rate dN/dt (solid and dotted curves
refer to stable and metastable growth regions, respectively)
and entropy production ΣS (dashed curves) as functions of
(a) supersaturation ∆ and (b) crystal size R. The plots are
given for α = 10 and l = 2.
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with certain initially set characteristics. Diagrams of
the type shown in Fig. 9 are used in studies of growth
rate and morphological phase type variations caused by
changes in solution parameters at a constant crystal
size.

An analysis of Figs. 8 and 9 shows that (a) the mass
accretion rate jump decreases as the kinetic crystalliza-
tion coefficient and supersaturation decrease or the
crystal size and the perturbed harmonic number

1 2
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Fig. 8. Mass accretion rate dN/dt as a function of crystal size
R close to the morphological transition point. The plots are
given for l = 2.
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increase; (b) the rate jump shifts to lower supersatura-
tions as the kinetic coefficient and surface tension
decrease or the crystal size increases; and (c) the rate
jump shifts to a smaller crystal size as the kinetic crys-
tallization coefficient or surface tension decreases or
supersaturation increases.

5. CONCLUSION

In this work, we considered the problem of mor-
phology selection during nonequilibrium growth of a
spherical crystal taking into account arbitrary kinetic
process rates at the interface. For the first time, the com-
plete morphological diagram (including stable, meta-
stable, and absolutely unstable regions) was calculated
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Fig. 9. Mass accretion rate dN/dt as a function of relative
supersaturation ∆ close to the morphological transition
point. The plots are given for l = 2.
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for different growth conditions with the use of the
approach suggested in [9, 10]. The principal feature of
the kinetically controlled growth in comparison to the
diffusion-controlled process is the possibility of inter-
section of metastable regions corresponding to differ-
ent perturbing harmonics and, as a consequence, the
possibility of the coexistence of a large number of mor-
phological phases under identical conditions. Another
important peculiarity of the intermediate and kineti-
cally controlled growth is a substantial broadening of
the metastable region corresponding to the perturbing
harmonic. This fact allows simpler quantitative experi-
mental methods to be used to verify the theoretical
approach suggested in [9, 10] and applied in this work
to calculating the metastable behavior of a spherical
particle growing from a solution under nonequilibrium
conditions.

Because the problem considered in this work is
fairly general in character, the results that we obtained
can be very useful in other domains of science con-
cerned with transitions between different structures
under nonequilibrium conditions, especially, we
believe, in handling biological morphogenesis prob-
lems [19].
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Abstract—The nonlinear and generally unsteady dynamics of domain walls with a vortex internal structure in
a constant magnetic field H is investigated on the basis of the numerical solution of the Landau–Lifshitz equa-
tion for a 2D distribution of magnetization M in magnetic films with planar anisotropy taking into account
exactly the main interaction, including the dipole–dipole interaction. It is shown that in addition to field Hc
(bifurcation field) above which the motion of a wall becomes unsteady and its internal structure experiences
global dynamic changes, there exists a field H0 separating two steady motions of the wall with different struc-
tures. The data clarifying the physical origin of the nonlinear dynamic rearrangement of the wall structure are
presented. New rearrangement mechanisms associated with the generation and attenuation of vortices as well
as their tunneling through the central surface of the wall are established. The existence of subperiod oscillations
of the wall velocity in a static field in addition to the oscillations associated with the precession of M around
the easy magnetization axis is predicted. The period T of dynamic variations of the wall structure is studied, and
an empirical formula is proposed for describing the singular behavior of the T(H) dependence near H = Hc with
the critical index depending on the film parameters. The bifurcation process is studied, and a nonlinear depen-
dence of the critical field Hc on the film thickness and the saturation magnetization is established. The possibil-
ity of direct experimental investigation of the dynamic rearrangement of the internal structure of the wall is indi-
cated. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The spin subsystem of magnetically ordered sub-
stances is very sensitive even to weak external effects.
Under real conditions, this leads to nonlinear phenom-
ena playing an important role in the physics of magnets.
In particular, the dynamic properties of local forma-
tions of magnetization M such as domain walls play a
fundamental role. The dynamic properties of domain
walls can be described by the nonlinear Landau–Lif-
shitz equations [1].

In view of gyroscopic properties of elementary mag-
netic moments forming domain walls, the physical ori-
gin of the dynamic behavior of the walls cannot be
reduced to a mechanical analogy. At the present time,
the domain wall dynamics is successfully described by
using the 1D model of magnetization distribution [2–
4], leading to the classical structure of the walls with
the rotation of magnetization in their planes (Bloch
walls). However, the situation is complicated consider-
ably for thin magnetic films in which the magnetization
distribution is known to be non-one-dimensional (see,
for example, [4, 5]) and the dipole–dipole interaction
plays a significant role. For such films, only the wall
dynamics in magnetically uniaxial films with trans-

verse anisotropy and a large quality factor Q = K/4π
(K is the magnetic anisotropy constant and Ms is the sat-

Ms
2

1063-7761/02/9402- $22.00 © 20315
uration magnetization) has been studied comprehen-
sively [5, 7]. This is due to the fact that the dipole–
dipole interaction in such films can be taken into
account approximately.

We concentrate our attention on films with a planar
anisotropy and a small Q factor. In these films, the
dipole–dipole interaction plays the leading role in both
static and dynamic properties of domain walls. For this
reason, this interaction must be taken into account
exactly whenever possible. It is due to the dipole–
dipole interaction that the domain wall structure in such
films is not one-dimensional and is of the asymmetric
vortex type [8, 9]. At the present time, the existence of
such walls has been confirmed experimentally [10–12].
As a domain wall with a vortex internal structure moves
under the action of an external magnetic field H applied
along the easy magnetization axis (EMA), the vortex in
the wall is displaced towards one of the film surfaces.
Clearly, the dynamic properties of such an object can be
studied neither on the basis of the above-mentioned 1D
models nor on the basis of the models developed for
describing the dynamics of walls with transverse
anisotropy. In the films under investigation, we in fact
encounter a very interesting object from the viewpoint
of nonlinear physics, viz., a topological soliton with
internal degrees of freedom. The analysis of the wall
dynamics in such films is of considerable practical
002 MAIK “Nauka/Interperiodica”
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importance in connection with the improvement of the
heads for high-frequency recording (reading) of high-
density information.

The first publication in which direct computational
methods were used to consider dynamic transforma-
tions of the structure of a moving domain wall taking
into account meticulously the main interactions in a 2D
model of the distribution of magnetization M in the
steady-state and unsteady modes belongs to Yuan and
Bertram [13]. They proved that a transition from one
mode to the other occurs at a certain value of the exter-
nal magnetic field H = Hc (Hc is the bifurcation, or crit-
ical, field). It was found that a dynamic rearrangement
of the internal structure of the domain wall takes place
for H > Hc. The mechanism of such a rearrangement
includes the transformation of an asymmetric Bloch
wall to an asymmetric Néel wall and back with simul-
taneous variation of the chirality of the domain wall
vortex.

These results correspond to the motion of a domain
wall away from the critical field. For this reason, the
physical nature of the transition from a steady-state
motion of the wall to an unsteady motion (the nature of
the bifurcation process) occurring in this case and the
effect of the magnetic properties of the film on this pro-
cess remains unclear. The related questions whether or
not the mechanism of the transition of the wall to the
state of unsteady motion is universal and, if not, how
the change in the film parameter may alter this mecha-
nism call for further investigations. The parameters of
the periodic rearrangement of the internal structure of
the wall (in particular, its period) and the characteristics
of possible subperiod oscillations of the dynamic struc-
ture of the walls have not been investigated either.
Moreover, such oscillations were not detected earlier.
The present article is devoted to the description of the

x

y

z

x

z

y

a
M

θ

ϕ

b

M

M

Domains

DW
EMA

Fig. 1. Geometry of the problem and an example of equilib-
rium configuration of an asymmetric (one-vortex) Bloch
wall. The arrows indicate the projections of relative magne-
tization u on the xy plane. The domain wall (DW) structure
is obtained for basic films of thickness b = 0.05 µm.
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results of such investigations carried out on the basis of
direct numerical calculations in the framework of a 2D
model of magnetization distribution using a rigorous
micromagnetic approach. We propose an “empirical”
formula for the period of the dynamic rearrangement of
a domain wall, which clarifies the pattern of the nonlin-
ear movement of domain walls with internal degrees of
freedom in the range of fields H > Hc. We also describe
the new mechanisms of nonlinear dynamic rearrange-
ment of the wall structure, discovered by us and modi-
fying considerably the concept of a bifurcation process.

2. FORMULATION OF THE PROBLEM 
AND METHODS OF ITS SOLUTION

Let us consider a magnetouniaxial film of thickness
b with the plane of the surface parallel to the xz plane
and with the EMA oriented along the z axis (Fig. 1). We
assume that the magnetic state of the film corresponds
to two domains with the saturation magnetizations +Ms

and –Ms oriented along the +z and –z axes, respectively,
for x > –a/2 and x < a/2. We also assume that a domain
wall is located in region V having the rectangular cross
section D in the xy plane and the size a along the x axis.
Let the magnetization in D be M = M(x, y), which cor-
responds to a 2D model of distribution of M.

In order to solve the problem, we first define the
equilibrium configuration of a wall and then consider
its evolution in time.

In the 2D model, the equilibrium configurations of a
domain wall and the minimum energies γ0 correspond-
ing to them can be determined through a numerical
minimization of the functional

(1)

per unit length (along z). In formula (1), the first, sec-
ond, and third terms in the braces are the densities of
the exchange energy, magnetic anisotropy energy, and
dipole–dipole (in the continual approximation) energy;
A is the exchange parameter; c is a unit vector along the
EMA; and H(m) is the magnetostatic field which can be
determined from the equations of magnetostatics with
the conventional boundary conditions.

We will solve the problem using the constancy of
the magnetization modulus (M2 = const) and the fol-
lowing conditions at the boundaries of the rated region:

(2)
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(3)

To carry out numerical minimization, we divide the
rated region D into small meshes by a rectangular net-
work. The region V in this case is divided into parallel-
epipeds extended along the z axis, whose lateral faces
are parallel to the coordinates planes xz and yz. We
assume that meshes have a macroscopic but small size
so that the direction of vector u = M/Ms can be regarded
as constant at all points of each parallelepiped. Vector
u = const along z (2D model). The orientation of M in
domain D changes upon a transition from one mesh
to another. The details of the model can be found in
[14, 15].

We used networks with different number of meshes
and with different ratios a/b. The maximum number of
meshes was 90 × 30. A larger number of meshes would
strongly increase the counting time without changing
the results significantly. The a/b ratio was varied in the
interval 1 ≤ a/b ≤ 6. As the basis, we choose the param-
eters

which are typical of permalloy films. The criterion
determining the end of counting was chosen in accor-
dance with [16].

By way of an example, Fig. 1 shows a stable struc-
ture known an asymmetric Bloch wall (which was pre-
dicted in [8]). Other 2D structures also exist but prove
to be metastable except in some special cases (see [4,
14, 17]). Periodic structures with domain walls of this
type were considered in [18].

Figure 1 shows the distribution of u in the xy plane
perpendicular to the film surface and to the EMA. It can
be seen that the component of M changes upon a tran-
sition from one domain to another so that a magnetiza-
tion vortex is formed in the xy plane. The z component
of M changes as we pass from a domain to its neighbor.
On the central dashed curve (y = y0 (x)), the value of
uz = 0 (wall center). Thus, at different depths of the
film, the wall center corresponds to different coordi-
nates x. The asymmetry of this curve relative to the y
axis is responsible for this wall being referred to as
asymmetric. The other two curves are level lines Mz =
const, between which the direction of M changes by
approximately 60°.

An analysis of the nonlinear dynamics of the
domain wall was based on the numerical solution of the
Landau–Lifshitz equation written in the form

(4)

Mz x a/2±= Ms,±=

Mx x a/2±= My x a/2±= 0.= =

A 10 6–  erg/cm, K 103 erg/cm3,= =

Ms 800 Gs,=

1 α2+( ) u∂
τ∂

------ u heff×[ ]– α u u heff×[ ]×[ ] ,–=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
where τ = γMst, t is the real time, γ is the gyromagnetic
ratio, α is the Hilbert damping parameter, and heff is the
dimensionless effective field defined as

(5)

where

Equation (4) was solved numerically taking into
account conditions (2) and (3) by choosing the same
spatial mesh as for the minimization of the γD func-
tional. We used the predictor-corrector method [19]. At
instant τ = 0, the u0 distribution is defined, which is
determined through the numerical minimization of the
energy (1) of the domain wall. At the first stage, itera-
tion un + 1 is defined in accordance with formula

(6)

(predictor), where

At the second stage, the procedure to the final determi-
nation of un + 1 is applied:

(7)

(corrector).
The time step ∆τ is chosen to be either constant, or

variable if the maximum angle of rotation of the mag-
netization vector in the meshes is bounded by a certain
small number.

It is envisaged that, at any instant, random perturba-
tions of any amplitude can be introduced and that the
start is possible from any configuration of M. This
enables us to judge the stability of the obtained solu-
tions.

In order to exclude the emergence of the wall at the
boundary of the rated region V, we make allowance for
a displacement of this region during the motion of the
wall. The displacement of the “center of gravity” of the
wall is traced thereby. For the wall “mass,” we choose

the quantity  +  assuming the highest values on the
central line of the domain wall.

The procedure described above and aimed at the
preliminary determination of the equilibrium distribu-
tion of M rapidly leads to stable solutions.
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3. ORIGIN OF DYNAMIC TRANSFORMATION
OF THE DOMAIN WALL STRUCTURE

It was proved in [13] that there exists a certain criti-
cal value Hc of the external magnetic field. In fields H < Hc,
the motion of a wall after the completion of the
unsteady process associated with the application of the
field is steady. The changes in its structure are reduced
to the displacement of the magnetization vortex, which
was initially localized at the center of the film, to one of
the surfaces in the dynamic mode. The direction of the
displacement depends on the direction of the external
field H oriented along the EMA. We established that,
under certain conditions, there also exists another mode
of steady motion (see below). In fields H > Hc, the
motion of the domain wall becomes complex (its veloc-
ity becomes variable), which is connected with a com-
plex dynamic transformation of the internal structure of
the wall.

2

0

(a)

t, ns

(b)

4 8 12 31616 116

1

0

v , 102 m/s

1.5

0

(a)

t, ns

(b)

2 6 8 10

1.0

0.5

v , 102 m/s

4 110 210A

Fig. 2. (a) Dependence of the average (corresponding to the
motion of the center of gravity) velocity of a domain wall
on time t and (b) the instantaneous configuration of magne-
tization for steady motion of the wall. At the initial
moment (A), the M configuration is identical to that
depicted in Fig. 1. Basic films have the following parame-
ters: b = 0.05 µm, α = 0.1, and H = 80 Oe.

Fig. 3. The same as in Fig. 2 but for H = 99 Oe. For 0 < t <
2 ns, the wall structure is similar to that in Fig. 2b.
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In order to find the physical reasons for dynamic
transformations of the internal structure of the wall, we
calculated the instantaneous configurations of magneti-
zation M for fields close to critical. We also determined
the time dependences of the velocities for various
points of the wall and of angle ϕ (see Fig. 1). The final
data are displayed on a monitor in the form of video-
films which make it possible to trace the features of the
dynamic changes in the wall structure. By way of an
example, Figs. 2–4 show the time dependences of the
mean velocities v  of the walls (corresponding to the
motion of the “center of gravity”) and some instanta-
neous configurations of the wall. The results were
obtained for basic films with b = 0.05 µm and α = 0.1.
It was found that the critical field Hc is approximately
equal to 99.3 Oe.

Figures 2 and 3 correspond to a steady motion of the
wall (after the completion of unsteady processes). A
comparison of these figures indicates that the form of
the steady motion changes as H approaches the field Hc.
It can be seen that a wall moving steadily in the field
H = 80 Oe has the asymmetric Bloch structure, while,
in the field H = 99 Oe, the structure is completely dif-
ferent and is known as the asymmetric Néel structure
[4]. Thus, in a certain field H0 < Hc, the structure of a
steadily moving wall may be rearranged. In the course
of the rearrangement process, the steady motion of the
wall is violated. In order to understand the reason for
the emergence of this effect, it should be borne in mind
that the motion of the wall indicates the magnetization
rotation from its direction in one domain to the direc-
tion in another domain. Under the action of the field
applied along the EMA, such a rotation is possible if
additional magnetostatic fields are created, leading to
the precession of M around the x axis (in the middle
layers of the film) or around the y axis in the surface
layers. The presence of these fields gradually distorts
the domain wall structure and generally leads to an
increase in the angle ϕa averaged over the film thick-
ness. For a certain value of the field H = H0, the struc-
ture of an antisymmetric Bloch wall cannot ensure any
further increase in ϕa, and the wall undergoes an appro-
priate rearrangement. Field H0 turns out to be a function
of the parameters of the film and its thickness. An anal-
ogous rearrangement of the wall structure during its
inertial motion was predicted in [4].

It follows from Fig. 4 that, in fields H > Hc, the
velocity of the wall and its structure vary periodically
with time. Among other things, it can be seen that an
asymmetric Bloch wall a is transformed, through a state
b with a displaced vortex, to an asymmetric Néel wall c
which is again transformed (through a structure close to
a simple Néel wall d) to the structure of an asymmetric
Néel wall e, but with the slope of the central line oppo-
site to that in the case c. This structure is transformed
(through stage f) into an asymmetric Bloch structure (at
point A) of type a, but with the opposite chirality. This
completes the half-period of the change in the domain
 AND THEORETICAL PHYSICS      Vol. 94      No. 2      2002
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Fig. 4. Example of the time dependence of the average (in the above sense) velocity of a domain wall in the field region H > Hc
(unsteady motion) and instantaneous configurations (a)–(f) of the wall structure. Basic films with b = 0.05 µm, α = 0.1, and H =
100 Oe are considered.
wall structure. During the second half-period, similar
transformations take place and the wall structure
becomes identical to case a by the end of this time inter-
val.

In order to clarify the physical origin of the emer-
gence of the unsteady motion of the wall and the
dynamic rearrangement of its structure, we determined
the angle ϕ(t) for H = 80, 99, and 150 Oe. The ϕ(t)
dependence describes an additional (as compared to the
equilibrium static state) emergence of magnetization
from the yz plane, which is known to be connected [2, 3]

with the formation of a magnetostatic field  around
which the magnetization precession takes place, caus-
ing the motion of the wall along x.

In the 2D model of M distribution under investiga-
tion, angle ϕ(t) is a function of coordinate y. We made
calculations for three values of y = 0, ±b/2, i.e., for the
central plane of the film and for its surfaces. For H =
80 Oe, when the first type of steady motion of the
domain wall takes place, all three values of ϕ(t) become
time-independent after a certain short-term unsteady
process and remain different in magnitude. For H =
99 Oe, when, in accordance with Fig. 3, we have a
steady motion of the second type, the three ϕ(t) curves
converge and become time-independent after the rear-
rangement of an asymmetric Bloch wall into an asym-
metric Néel wall. For H > Hc (Fig. 5), angle ϕ(t)

Hx
m( )
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increases indefinitely. Consequently, in fields H > Hc,
the magnetization starts precessing around the EMA in
addition to the other type of precession of M associated
with the motion of the wall. As in the case of a domain
wall with a 1D distribution of M, this leads to the situ-
ation where, during certain time intervals, the wall
moves oppositely to the initial direction (backward
motion of the wall). In this case, the motion of the wall
remains unidirectional on the average over the period of
velocity variation.

Thus, in spite of the fact that a domain wall can be
regarded as a certain macroscopic object possessing an
effective mass, its dynamic behavior differs radically
from the behavior of other objects in view of the gyro-
scopic properties of elementary magnetic moments
forming the wall. In contrast to the 1D model, the pre-
cession around the EMA emerging in a wall with a 2D
distribution of M is nonuniform (see Fig. 5). Consider-
ing that the precession of M around the EMA emerges
only as a result of violation of the balance of the torques
(see, for example, [2]), we may conclude that the emer-
gence of a nonlinear dynamic rearrangement of the wall
structure is associated precisely with the violation of
the balance of the torques in fields H = Hc and higher.

Thus, the deep-rooted physical reason for the
dynamic rearrangement of the domain wall structure is
SICS      Vol. 94      No. 2      2002
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the same for walls with 1D and 2D configurations of the
M distribution.

The transformations of the wall structure described
above were predicted for the first time in [13]. We will

2π

0 1
t, ns

π
0

–π
2 3 4 5

(c) (d)

(a) (b)
ϕ

1 23

Fig. 5. Time dependence of angle ϕ in three planes of the
film: y = –b/2 (1), y = 0 (2), and y = b/2 (3); (a)–(d) are
instantaneous configurations of the wall. Basic films with
b = 0.05 µm, α = 0.1, and H = 150 Oe are considered.
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Fig. 6. Example of the field dependence of the period T of
dynamic rearrangement of domain walls for films with α =
0.1 and different parameters: K = 105 erg/cm3, b = 0.05 µm
(1); b = 0.08 µm (2); b = 0.055 µm (3); K = 106 erg/cm3, b =
0.05 µm (4); Ms= 900 G, b = 0.05 µm (5). The missing
parameters correspond to the basic values. Symbols corre-
spond to the results of numerical experiments. Solid curves
are plotted for better visualization.
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refer to such transformations as classical. In spite of the
fact that the dynamic rearrangement of the wall struc-
ture is similar to that in [13], the velocity variation
obtained by us is noticeably different. This is due to the
fact that, in contrast to [13], our results were obtained
in fields close to the bifurcation field. These differences
indicate a considerable change in the behavior of the
wall velocity with time as the external field approaches
the value Hc. As the field H decreases (for H > Hc), the
wall preserves the asymmetric Néel structure over
longer and longer time intervals. Such a behavior of the
domain wall matches the emergence of the second type
of steady motion depicted in Fig. 3 in the field range
H < Hc.

Despite the generality of the reasons for the emer-
gence of bifurcation (for H = Hc) in different models of
M distribution, the form of specific transformations of
the domain wall structure upon a transition through
point Hc is very sensitive to the distribution of M and to
the variation of physical parameters of the film. For
example, a change in the film thickness, damping, mag-
netizations, etc., may bring about completely different
mechanisms of the dynamic transformation of the wall
structure. In fields differing from Hc considerably, the
mechanisms of dynamic wall transformation are also
different. If, for instance, we increase the field to
350 Oe for the same film parameters as in the above
discussion, the rearrangement of the internal structure
of the domain wall occurs with the formation of three
vortices. In still stronger fields, the state of determinis-
tic chaos is attained. The experimental observation of
the chaotic behavior of domain walls in yttrium garnet
ferrite plates subjected to a varying magnetic field was
reported in [20]. The existence of deterministic chaos in
the behavior of domain walls in films with transverse
anisotropy was reported, for example, in [21, 22].

4. DEPENDENCE OF THE PERIOD 
OF THE DYNAMIC TRANSFORMATION 
OF THE WALL INTERNAL STRUCTURE 

ON THE FILM PARAMETERS

An analysis of the period T of the dynamic rear-
rangement of the wall structure is important for deter-
mining the features of the nonlinear transitional
dynamic behavior of a domain wall. This problem is not
easy if only because the form of the rearrangement
changes significantly with increasing field (see above).
In this connection, we will consider in this section the
results obtained in fields very close to the bifurcation
field Hc.

By way of an example, Fig. 6 shows the period T for
different film parameters. As expected, the period T
increases indefinitely as H approaches Hc. An analysis
shows that the types of this singularity are different for
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different films. None of the curves obtained as a result
of a numerical experiment matches the period

(8)

where ωH = γH, which was determined in [2] (see also
[23]) in the framework of a 1D model of the M distri-
bution. According to our calculations, the exponent s ≠
1/2 varying with the film parameters should be used
instead of the critical exponent 1/2 characterizing the
behavior of the period of dynamic rearrangement of the
internal structure of the wall in the vicinity of the sin-
gular point (point of bifurcation). By way of an exam-
ple, the table presents the results of numerical experi-
ments for a film with the basic parameters b = 0.05 µm
and α = 0.1. For the sake of comparison, the results
obtained on the basis of the empirical formula

(9)

and on the basis of formula (8) derived using the 1D
model are also presented. It can be seen from the table
that, for the critical exponent s = 0.4 and for the critical
field Hc = 99.3265 Oe (this value is in accord with that
obtained in [13]), formula (9) describes the results of
the numerical experiments quite accurately. The rela-
tive error does not exceed 5%. On the other hand, the
best results obtained for T on the basis of the 1D model
of magnetization distribution (for Hc = 99.3078 Oe) dif-
fer significantly (up to 45%) from the results of the
numerical experiment. These discrepancies are obvi-
ously due to completely different types of dynamic
rearrangement of the domain wall structure in the cases
of 1D and 2D models of magnetization distributions.
New possible mechanisms of the wall structure rear-
rangement in the 2D model of the M distribution,
which are associated, for example, with the formation,
motion, and decay of magnetization vortices in the
wall, must also affect the critical (bifurcation) field
itself.

5. DEPENDENCE OF THE CRITICAL FIELD 
ON THE FILM PARAMETERS

The critical field is important not only as a parame-
ter describing basic features of the nonlinear behavior
of domain walls, but also for practical applications. By
controlling its value, it is possible to optimize the high-
frequency magnetization reversal of the films, which is
necessary for the development of heads intended for hf
recording and reading of high-density information. As
a matter of fact, the wall mobility in weak fields (H < Hc)
must be given by (see, for example, [4])

(10)

T
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(δ is the wall thickness), i.e., inversely proportional to
the damping parameter α. It may appear that, by choos-
ing substances with small values of α, we can attain
high velocities. However, these arguments are valid
only for fields H < Hc. In fields higher than Hc, the time-
averaged translational velocity of the wall decreases
due to its backward movements emerging in this case.
In addition, 1D models [2] give

(11)

This means that the region of fields in which the veloc-
ity of a domain wall can be high becomes narrower
upon a decrease in α. This means that we must choose
some optimal values of α. The situation does not
change radically if we go over to an analysis of 2D
models of the M distribution in a wall.

Figure 7 shows the Hc(α) dependence obtained by
us for basic films of thickness 0.05 µm. This depen-
dence turned out to be almost linear. Insignificant devi-
ations are observed only for small values of α. In order
to find the reason for such deviations, we analyzed the
dynamic rearrangement of a domain wall for small val-
ues of α. Figures 8 and 9 show examples of the time
variation of the wall velocities and the corresponding
instantaneous configurations of M. A new effect is
observed: along with the main nonlinear periodic (with
period T) velocity variations described in Section 3,
additional oscillations of the wall velocity appear over
fractions of period T (such oscillations will be referred
to as subperiodic). Figure 9 shows the velocity v  for the
same film over a shorter time interval. The instanta-

Hc 2πMsα .=

Dependence of the period of dynamic rearrangement of a
domain wall on the external magnetic field. The results of
numerical experiments are compared with the results
obtained on the basis of formula (9) proposed in this work
and formula (8) for a 1D model

H, Oe T, ns (numerical 
experiment)

T, ns
(formula (9))

T, ns
(formula (8))

99.33 171.684 166.244 171.704

99.35 77.854 77.630 124.531

99.37 59.280 60.698 102.569

99.40 46.910 49.223 84.239

99.50 33.530 34.934 58.330

100 19.680 20.351 30.698

102 11.640 11.774 15.488

104 9.524 9.434 11.674

106 8.344 8.166 9.727

108 7.534 7.379 8.494

110 6.981 6.776 7.721

115 5.906 5.787 6.218

120 5.194 5.149 5.352

130 4.330 4.329 4.298
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neous configurations of the magnetization in the wall
corresponding to the minima and maxima of the veloc-
ity are also presented. An analysis of Fig. 9 shows that
subperiodic oscillations are associated with vibrations
of some parts of the walls relative to others. Such oscil-
lations are excited every time when the wall structure is
rearranged radically; namely, an asymmetric Bloch
wall is reconstructed into an asymmetric Néel wall, etc.

5
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Hc, Oe

α × 103

10
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5 15 20 25 30

Fig. 7. Critical field as a function of the damping parameter
α for basic films with b = 0.05 µm.
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At this moment, sharp changes in local magnetostatic
fields occur, whose nonuniformity is naturally com-
mensurate with the inhomogeneities of the magnetiza-
tion distribution in the wall. These results were
obtained for fields H > Hc very close to the critical field
Hc. Similar oscillations also take place for H < Hc [24].
The deviations of Hc(α) from a straight line, which are
observed for small values of α, are apparently associ-
ated with these oscillations. Oscillations of the same
origin are also observed in fields considerably exceed-
ing Hc.

Thus, a decrease in damping for fixed H terminates
the translational motion of the wall not only due to
equalization of the time intervals during which the
main and backward movements of the wall take place,
but also due to the development of subperiod oscilla-
tions. These oscillations strongly affect the T(H) depen-
dence also. This is demonstrated in Fig. 10 which
shows that the smaller the damping parameter, the more
gently sloping the T(H) curve. This fact offers unique
possibilities for experimental investigations of pecu-
liarities of the nonlinear transitional wall dynamics (see
Section 6).

The observed velocity oscillations are characterized
by frequencies on the order of 1011 Hz, which are much
higher than the frequencies associated with the preces-
sion of magnetization around the EMA (see above).
These oscillations may lead, in addition to radiation
0 10
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0

2

4

20 30 40

(d) (Â) (f)

(a) (b) (c)

t, ns

v , 102 m/s

Fig. 8. Time dependence of the average (in the above sense) velocity for a film with the basic parameters and b = 0.05 µm, α = 0.001,
and H = 5 Oe. Instantaneous configurations (a)–(f) correspond to the main rearrangement of M.
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Fig. 9. The same dependence v(t) as in Fig. 8, but for a shorter time interval. Instantaneous configurations (a)–(f) in this case illus-
trate the type of vibrations in the wall on various segments of T.
predicted in [25], to the magnetic-dipole emission of
electromagnetic waves due to the motion of domain
walls.

Returning to expression (11), we recall that Hc cor-
responds to the field H in which the torque associated

with the magnetostatic field component  assumes
the maximum value. This is observed only for the max-

imum value of  = Hmax which can be attained when
the M configuration becomes close to that of a classical
Néel wall (see Fig. 4d). In this case, the domain wall
can be visualized as a plate magnetized to saturation in
the transverse direction. If this plate is infinitely large,
as is the case in the 1D model [2], we have

which leads precisely to expression (11). Here, Mav is
the value of the Mx component averaged over the wall
thickness. For a one-dimensional Néel rotation of vec-
tor M in the wall, we have Mav = Ms/2. Obviously a wall
in a film can be likened to a finite-size plate; conse-
quently, irrespective of the model describing the mag-
netization distribution, field Hc is a function of the film
thickness; i.e.,

(12)

where F(b) is a function depending on the wall thick-
ness, such that the value of 4πMsF(b) must approach

Hx
m( )

Hx
m( )

Hmax 4πMav 2πMs,= =

Hc 4πMsαF b( ),=
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2πMs, viz., the value for an infinitely large sample,
upon an increase in b. Consequently, the field Hc should
increase with the film thickness. Such an increase was
indeed observed [26], but in a very narrow region of b.
In a wider region of b, contrary to expectations, we
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Fig. 10. Magnetic field dependence of the period of
dynamic rearrangement of the wall structure for basic films
with b = 0.05 µm and α = 0.001 (1), 0.01 (2), and 0.03 (3).
Symbols correspond to the results of numerical experi-
ments, and solid curves are plotted for better visualization.
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obtain a nonlinear and nonmonotonic dependence
Hc(b) (Fig. 11a). Moreover, the Hc(Ms) dependence is
found to be nonmonotonic also (Fig. 11b). Both curves
have nothing in common with those predicted by the
1D model of the M distribution [2] (see formula (11)).

In order to find the reasons for the observed behav-
ior of field Hc, we analyzed the dynamic rearrangement
of the domain wall structure upon a change in the film
thickness and in the saturation magnetization. New
mechanisms of the wall structure rearrangement were
established. Let us consider two of such mechanisms to
establish the reason for the above-mentioned nontrivial
behavior of Hc as a function of the film thickness and
Ms. Some instantaneous configurations illustrating new
mechanisms of the rearrangement of the wall structure
are given in Fig. 12.

Classical transformations described above and
shown in Fig. 4 exist in films having a small thickness
(approximately up to b = 0.064 µm). As the thickness
increases, the mechanism of rearrangement changes. In
films with b = 0.065–0.75 µm placed in fields close to
critical, the rearrangement stages c, d, and e associated
with the formation of Néel walls vanish (see Fig. 4). A
vortex of an asymmetric Bloch wall (Fig. 12) located at
the center of the film at a certain instant is displaced
towards its lower surface (a). In this case, a new vortex
of opposite chirality is generated at the upper surface;
consequently, at a certain stage of dynamic rearrange-
ment, the wall consists of two vortices located one
above the other (b). Then both vortices are displaced
downwards and the lower vortex ultimately disappears (c).
The remaining upper vortex moves in the downward
direction, passing through the middle of the film (d),
and then a vortex configuration of magnetization (e)
similar to case (a) but possessing the opposite chirality
is formed. This completes the half-period of the forma-
tion of the wall structure. A similar rearrangement takes
place during the next half-period, and we arrive at the
initial domain wall structure.

In films of a large thickness b > 0.075 µm, the mech-
anism of the dynamic rearrangement of the wall is dif-
ferent. By way of an example, Fig. 12b shows the struc-
tural transformation for a wall moving in the field H =

60
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Hc, Oe

b, 10–5 cm
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Fig. 11. Dependence of the critical field on (a) the film
thickness and (b) the saturation magnetization for b =
0.05 µm, basic parameters, and α = 0.1.
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103 Oe. In this case, a vortex of M moving downwards
(a) starts gradually tunneling through the central line to
the right part of the wall (b); ultimately a vortex with
the previous chirality is formed on this side (c). Then,
another vortex with the opposite chirality is generated
at the upper surface to the left of the central line. At the
next stage, this vortex grows and the magnetization
configuration acquires the form depicted in Fig. 12b
(d). Then the right vortex gradually disappears, while
the left vortex moves downwards. This gives rise to the
M configurations presented in Fig. 12b (e) and (f). The
latter differs from the initial configuration (a) only in
the chirality of the vortex. This completes the half-
period. During the next half-period, similar transforma-
tions lead to structure (a).

Thus, in the thickness range b = 0.04–0.064 µm, the
domain wall is transformed so that a structure of type
(d) (Fig. 4) appears. In this case, the wall can be condi-
tionally presented as a “plate” with the average magne-
tization perpendicular to the yz plane. The magnitude of
this magnetization is determined by Hmax and, hence,
Hc. An increase in b leads to an increase in Hmax and,
accordingly, to an increase in Hc.

The subsequent decrease in the value Hc upon an
increase in b (for b = 0.65 µm) is associated with a rad-
ical change in the type of rearrangement. In this case,
the structure of type (d) (Fig. 4) is not formed. Instead,
either a structure of type (b) (first-type mechanism in
Fig. 12a) is formed after the displacement of the vortex
to the lower surface for b = 0.65–0.75 µm, or the (b)-
type structure (second-type mechanism in Fig. 12b)
appears for b > 0.75 µm. In both cases, in contrast to
structure (d) (Fig. 4), magnetostatic poles with alternat-
ing signs are formed on the surfaces of the wall. Such a
fragmentation of poles on the surface of a domain wall
perpendicular to x leads to a decrease in Hmax and,
hence in Hc. A further increase in the film thickness
enhances the tendency to the pole fragmentation.

If we increase the saturation magnetization after fix-
ing the value of b, the density of poles on the lateral sur-
face of the wall increases in the case of the classical
scenario of the domain wall rearrangement. This leads
to an increase in the value of Hc. However, since the
exchange length b0 decreases with increasing Ms, the
pole fragmentation on the planes of the wall perpendic-
ular to x becomes possible. Consequently, starting from
certain values of Ms, field Hc must decrease, which is
indeed observed in our numerical experiments. An
analysis shows that the wall rearrangement mecha-
nisms appearing in this case are similar to those
described above.

The nonmonotonic behavior of the critical field and
the mechanisms of the dynamic rearrangement of the
domain wall structure described above are also
observed for films with parameters differing from the
basic parameters.
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Fig. 12. Sequence of instantaneous configurations of the wall under the dynamic transformation of its structure in films with the
basic parameters, α = 0.1, b = 0.07 µm (a), b = 0.1 µm (b), and H = 103 Oe.
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It can be seen that expression (11) for the critical
field is independent of the anisotropy field. However,
this is associated not with the 1D nature of the magne-
tization distribution, for which formula (11) was
derived, but with the assumption that the shape of the
wall remains virtually unchanged during its motion. It
was demonstrated above that this assumption is incor-
rect in the general case for the model of a 2D distribu-
tion of M and the wall structure actually experiences
considerable distortions. This means that, in addition to
the torque associated with the magnetostatic fields, the
torques associated with the exchange and anisotropic
interactions also appear. Both these contributions to the
torque, as well as the contribution associated with mag-
netostatic fields, are finite. This means that, in this case
also, an increase in the external magnetic field must
induce bifurcation leading to the emergence of a
unsteady motion of the wall; i.e., in contrast to formula
(11), field Hc must depend on the anisotropy field Ha

and on the exchange field He. It was found that the
dependence of the critical field on Ha is close to linear
and its dependence on He is nonmonotonic.

6. DISCUSSION AND CONCLUSIONS

We investigated the nonlinear and generally
unsteady dynamics of domain walls with a 2D magne-
tization distribution in magnetouniaxial films with an
easy magnetization axis parallel to the surface. It is
shown that there exist three field regions in which the
dynamic behavior of domain walls is different and is in
poor agreement with the predictions of a 1D model in
many respects.

It is shown that the dynamic rearrangement of the
wall structure occurs not only after a change from a
steady-state to unsteady motion upon a transition
though field Hc (bifurcation field) as predicted earlier
[2, 13], but also as a result of the change in the type of
steady motion upon a transition through field H0 which
is always smaller than field Hc.

It has been proved that the nature of bifurcation
(transition from a steady to an unsteady behavior of the
wall) is the same for walls with 1D and 2D distributions
of magnetization. It is associated with the magnetiza-
tion precession around the easy magnetization axis. In
addition, the 1D models of the M distribution widely
used earlier do not provide an adequate description of
the domain wall dynamics in fields stronger than H0
(field H0 does not exist at all in 1D models). In particu-
lar, 1D models cannot lead to nonmonotonic depen-
dences of the bifurcation field on the film thickness and
on the saturation magnetization, which were observed
by us in the framework of a 2D model.

It is only in low fields H ! H0 that the domain wall
dynamics can be considered under the assumption of an
invariable internal structure of the wall, as was done
starting from [3]. In fields stronger than H0 (and espe-
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cially stronger than Hc), the structure of domain walls
changes dramatically during their motion. The mecha-
nisms of the dynamic structure rearrangement for
domain walls change significantly upon the variation of
the film parameters. Among other things, we predicted
new mechanisms which are completely different as
compared to the classical mechanism [13].

The rearrangement of the internal structure of
domain walls strongly affects their velocities. It should
be recalled that the wall velocity  averaged over a cer-
tain time interval (e.g., the time between two consecu-
tive exposures) is usually measured in experiments [7,
27, 28]. As applied to the films under investigation, the
velocity being measured as a function of the external
magnetic field increases in many cases up to field Hc in
accordance with the above-discussed theory (see
below). However, in fields H > Hc, the averaged wall
velocity  being measured starts decreasing upon a
further increase in H due to periodic backward move-
ments of the wall. It should be recalled that the period
T of dynamic transformations of the wall decreases
upon an increase in the external field (see table). The
same nonmonotonic dependence of velocity was
observed, for example, in [27]. True enough, the
authors of [27] associated such a dependence with the
nonlinear field dependence of the velocity of a domain
wall in the region of its steady motion, which was pre-
dicted in [2] for films with a small Q factor and
obtained on the basis of a 1D model of the magnetiza-
tion distribution. However, more rigorous calculations
made on the basis of a 2D model of magnetization dis-
tribution in [13] and in the present work do not confirm
this conclusion. It is appropriate to recall in this con-
nection the second type of steady motion of domain
walls predicted by us (see Fig. 3). In this case, the wall
velocity changes with time nonmonotonically (first
decreases and then increases) upon a transition from the
first to the second type of steady motion. If we again
consider the above-mentioned method of the wall
velocity measurements, we can formally arrive (under
certain conditions) to a dependence (H) resembling
that predicted in [2]. However, first, it will be the time-
averaged velocity for each fixed H, in contrast to [2].
Second, the above-mentioned transition may occur
long before the emergence of unsteady motion of the
wall. Consequently, the decrease in the time-averaged
velocity as a function of H must give way to its further
increase, which is not predicted in [2], but is observed
experimentally [27] for CoNiFe films. In the present
communication, we only consider films with a planar
anisotropy. The nonmonotonic behavior of the domain
wall velocity as a function of the field in films with a
transverse anisotropy [28] is probably also connected
with additional transformations of the domain wall
structure, which have not been studied comprehen-
sively as yet.

Returning to the nonmonotonic behavior of the
domain wall velocity upon a transition through the
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bifurcation field, we note that such a behavior (velocity
maximum for H = Hc) provides a comparatively simple
method of experimental investigation of the bifurcation
field depending on film parameters.

The experiments carried out by us indicate for the
first time the practical opportunity for not only experi-
mental investigations of the above-mentioned averaged
characteristics of unsteady motion of the wall, but also
for a direct analysis of the time evolution of the wall
velocity in the unsteady mode of motion. It can be seen
from Fig. 10 that an increase in T is observed for all val-
ues of α; it is important, however, that the curves
become more gently sloping upon a decrease in α.
Along with comparatively low values of the fields (on
the order of a few oersted) in which the dynamic rear-
rangement of domain walls takes place for small α, this
circumstance is favorable for experimental investiga-
tions in our opinion. As a matter of fact, for large peri-
ods of dynamic transformations, high time resolutions
are not required. It may appear that experiments should
be carried out in the vicinity of the critical field, where
the period T is quite large. If, however, we take films
with α = 0.1, the critical field in them is rather strong
(Hc = 99.3 Oe for basic films). In the immediate vicinity
of this field, the period T is large. For example, T =
171.7 ns for H = 99.33 Oe. It is difficult, however, to get
into such a narrow region of the fields. If the field is
increased just to 102 Oe, the period T decreases approx-
imately to 11.6 ns. On the other hand, our numerical
experiments show that, for α = 0.001, the period T still
remains large enough (T = 80 ns) even in a field of 5 Oe,
which is approximately twice as large as the critical
field. Consequently, in order to detect experimentally
the regions of periodic variation of the velocity of the
walls, a time resolution on the order of 10 ns is
required. In addition, there exists a certain reserve for
increasing T by decreasing H.

The experiments can be carried out, for example, on
the basis of the method of high-speed photography in
the double or triple flash mode. For a flash duration of
about 1 ns, it is possible to determine the coordinate q
of the instantaneous displacement of the wall as a func-
tion of time t.

It is very important to select appropriate films. Films
with a small damping parameter (e.g., α = 0.001) are
preferable. It should be noted that, although we used for
our calculations the permalloy films with the basic
parameters described above, other films with a quality
factor Q ≤ 1 are also quite suitable. By way of an exam-
ple, we varied Ms from 400 to 1600 G and K from 103

to 106 erg/cm3 to observe a behavior resembling that
described above. However, the selected films should
not be too thick (not thicker than 0.2 µm for permalloy)
since the dynamic behavior pattern for thicker films is
very complicated.
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Abstract—Investigations are performed of the crystal structure and magnetic and electromagnetic properties
of single crystals (0.23 ≤ x ≤ 0.34) and polycrystals (0 ≤ x ≤ 0.50) of an Nd1 – xBaxMnO3 – δ system of solid solu-
tions. It is found that, for samples prepared in the air, the maximal Curie temperature (TC) does not exceed 150 K,
while, in the case of polycrystalline samples in the concentration range of 0.34 ≤ x ≤ 0.50, prepared in a reducing
medium (a gaseous mixture of argon and carbon monoxide), TC increases to 320 K. As a result of the reducing
medium effect on the compositions, the type of the magnetic phase transition to the paramagnetic state changes
from the first to second order. The electrical resistivity of reduced polycrystalline samples (0.34 ≤ x ≤ 0.50)
decreases in magnitude and correlates with the behavior of magnetization. Both series of samples, prepared
both in the air and in a reducing medium, exhibit a transition from the metal to dielectric state at a temperature
below TC. The temperature and field dependences of magnetization for the stoichiometric polycrystalline com-
position of Nd0.50Ba0.50MnO3 are measured under conditions of hydrostatic pressure. It is demonstrated that the
hydrostatic pressure induces in Nd0.50Ba0.50MnO3 the transition from the antiferromagnetic to ferromagnetic
state. Based on the measurement results, hypothetical magnetic phase diagrams are constructed for the system
of solid solutions being treated, depending on the concentration of barium and the method of preparation. It is
found that no TC increase is observed in single crystals (0.23 ≤ x ≤ 0.34) such as is observed in polycrystals.
It is assumed that the abrupt increase in TC of polycrystalline samples prepared in a reducing medium is a
result of the emergence of extended defects and microstresses in the crystal lattice. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Ln1 – xDxMnO3 manganites of rare-earth elements
(Ln denotes ions of La, Pr, Nd, and the like, and D
denotes ions of Ca, Sr, and Ba) with the perovskite
structure have been attracting the attention of research-
ers in the field of physics of magnetic phenomena for
well over 50 years [1]. Their unusual magnetic and
electric properties became the subject of numerous
experimental [2, 3] and theoretical [4, 5] investigations.
However, it was much later that interest in these com-
pounds increased sharply as a result of discovery of the
effect of giant magnetoresistance [6] and, to a greater
extent, of the metal–semiconductor and charge order–dis-
order phase transitions induced by a magnetic field [7, 8].

The investigation of compounds of this class is
important both from the standpoint of fundamental
research and from the practical standpoint. The nature
of the magnetic and electric processes involved is still
1063-7761/02/9402- $22.00 © 20329
unclear and is the subject of extensive discussion. How-
ever, even today these compounds find wide application
in magnetic recording of information as the active ele-
ment of a readout device. Because of the high chemical
stability, they are used as the electrode materials of
high-temperature fuel cells and cathodes for CO2
lasers.

LaMnO3 is the best studied of all manganites. This
compound has the perovskite structure and is character-

ized by an O1 orthorhombically distorted (c/  < a ≤ b)
unit cell. The distortion of this type is typical of com-
pounds containing Jahn–Teller ions [9]. In this case,
these are Mn3+ ions (proceeding from the charge con-

servation law, La3+Mn3+ ). By its magnetic proper-
ties, LaMnO3 is an A-type antiferromagnet with a small
ferromagnetic component due to the Dzyaloshinski–
Moriya interaction, and by its electric properties it is a
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semiconductor [2]. The magnetic properties of this
compound are fully defined by the spins of Mn ions,
because the orbital magnetic moments are “frozen” in
the crystal field of oxygen anions.

Stoichiometric La3+Mn3+  contains only Mn3+

ions with the electronic configuration  (S = 2). The
substitution of Ln3+ ions by alkali-earth elements D2+ is

accompanied by the formation of Mn4+ ions ( , S =
3/2) and by the transition to the ferromagnetic metal
state. In order to explain this behavior of substituted
systems, Zener elaborated a special theory of indirect
exchange interactions via charge carriers (in this case,
the latter are eg electrons). This form of interactions was
given the name of double exchange [10, 11].

The double exchange is based on the real transition
of an electron from a half-filled eg orbital of an Mn3+

ion to a free eg orbital of Mn4+. Such a jump is energet-
ically advantageous in the case of parallel arrangement
of local spins S of Mn3+ and Mn4+ ions which are near-
est neighbors. Therefore, the double exchange favors
ferromagnetism and metallic type of conduction. How-
ever, numerous facts exist which cannot be interpreted
within the double exchange theory [12].

Goodenough [13] formulated the basic principles of
the theory of superexchange, a specific type of indirect
exchange interaction. This theory is based on the virtual
exchange of electrons between manganese ions and
predicts the anisotropic pattern of exchange interac-
tions. The interaction between Mn3+ and Mn4+ depends
on the number of factors such as the Mn–O bond
length, Mn–O–Mn bond angle, and the Mn3+/Mn4+

ratio. Note that, in accordance with the theory of super-
exchange, the state of ferromagnetic order may not cor-
relate with the behavior of electrical conductivity.

The presence of Mn3+ and Mn4+ ions is the deter-
mining factor for the formation of the magnetic and
electric properties of manganites. Different methods
may be used to vary the Mn3+/Mn4+ ratio [14], namely,
(1) the replacement of Ln3+ ions by D2+ ions (Ca, Sr, Ba,
Pb, and Cd) in the A sublattice of perovskite; (2) the
replacement of Mn ions by various metals; and (3) the
removal of oxygen anions, which leads to the transition
of Mn4+ ions to Mn3+ ions with a simultaneous decrease
in their coordination.

It is known that, as the oxygen content decreases,
the Curie temperature TC and spontaneous magnetiza-
tion decrease, as a rule, and the resistance increases.
Anion-deficient compositions were prepared such as
La1 – xCaxMnO3 – δ (0 ≤ δ ≤ 0.50) [15, 16] and
Ln0.55Ba0.45MnO3 – δ (0 ≤ δ ≤ 0.37) [17]. A gradual tran-
sition was observed from ferromagnetism to the prop-
erties of spin glass or antiferromagnetic, and the elec-
trical resistance increased considerably and assumed
the semiconductor behavior. It is known that
La0.50Ba0.50MnO3 is a ferromagnet with TC ≈ 350 K

O3
2–

t2g
3 eg

1

t2g
3
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[18], while La0.50Ba0.50MnO2.75 is an antiferromagnet
with the Néel temperature TN ≈ 185 K [19]. However, it
has been reported recently [20] that, after being reduced
in argon, a Pr0.50Ba0.50MnO3 – δ sample exhibits a con-
siderable increase in TC from 140 to 320 K and demon-
strates the transition from the ferromagnetic to antifer-
romagnetic state at about 200 K, where a high magne-
toresistance is developed. The reduced composition
remained a semiconductor at a temperature below TC,
while the sample synthesized in the air performed at TC

a transition to the metal state. These unusual properties
were interpreted using the Goodenough model, accord-
ing to which the Mn3+–O–Mn3+ exchange interaction is
ferromagnetic in the case when static Jahn–Teller dis-
tortions are relieved. However, the sign of the Mn3+–O–
Mn3+ exchange interaction depends also on the coordi-
nation of ions. In an orbital disordered phase, the inter-
action between Mn3+ ions is ferromagnetic in octahe-
dral positions and antiferromagnetic in pentahedral
positions [21]. Therefore, the ferromagnetism should
have decayed gradually with decreasing oxygen con-
tent, whereas a considerable increase in TC was
observed. It was to find the reason for the unusual
behavior of the Pr0.50Ba0.50MnO3 – δ sample and to inves-
tigate the effect of oxygen deficiency on the magnetic
and electric properties of manganites on the basis of
other rare-earth elements that our study was per-
formed. As a result, we have found that polycrystalline
samples of Nd1 – xBaxMnO3 – δ (0.34 ≤ x ≤ 0.50)
annealed in a reducing medium (a gaseous mixture of
argon and carbon monoxide) also exhibit a two- to
threefold increase in TC (up to 320 K). However, unlike
Pr0.50Ba0.50MnO3 – δ, samples from the Nd1 – xBaxMnO3 – δ
series at a temperature below TC make a transition to the
metal state. Single crystals (0.23 ≤ x ≤ 0.34) demon-
strate no such behavior.

2. EXPERIMENT

Polycrystals of Nd1 – xBaxMnO3 (0 ≤ x ≤ 0.50) were
prepared using the conventional ceramic technology.
Nd2O3 and Mn3O3 oxides and BaCO3 carbonate (opti-
cally and spectroscopically pure) were mixed in the sto-
ichiometric ratio and ground in an agate mortar with an
addition of ethyl alcohol. For the removal of moisture,
Nd2O3 was roasted in the air at 1000°C for one hour.
Then, the oxide mixture was pressed into tablets 2 cm
in diameter and 0.5 cm high. These tablets were twice
annealed in the air at 1000 and 1200°C for one hour
with subsequent grinding. The final synthesis was per-
formed in the air at 1530°C for two hours. In order to
produce compositions close to stoichiometric with
respect to oxygen, samples with x ≤ 0.20 were
quenched, and those with x ≥ 0.40 were held for
100 hours in the air at 900°C with subsequent cooling
to room temperature at a rate of 100 deg h–1. Single
crystals of Nd1 – xBaxMnO3 (0.23 ≤ x ≤ 0.34) were pre-
AND THEORETICAL PHYSICS      Vol. 94      No. 2      2002
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pared by spontaneous crystallization from a solution in
a B2O3–BaO–BaF2 melt upon slow cooling from a tem-
perature of 1150°C in the air in a platinum crucible. The
chemical composition was determined by Auger elec-
tron spectroscopy in a PHI-660 scanning Auger spec-
trometer. The oxygen content of the compositions syn-
thesized in the air was determined by thermogravimet-
ric analysis. According to this investigation, all of the
samples prepared in the air were stoichiometric with
respect to oxygen. The crystal structure and the unit cell
parameters were determined by the method of X-ray
powder diffraction in Kα radiation of Cr, using a
DRON-3 diffractometer. The investigations were per-
formed at room temperature at angles in the range of
20° ≤ 2θ ≤ 80°. The prepared samples were annealed in
a stream of argon at 900°C for 24 hours. In order to
enhance the reduction effect, pellets of activated carbon
were located alongside the samples. Activated carbon
caused a decrease in the partial pressure of oxygen in
accordance with the reaction

2C + O2  2CO. (1)

The oxygen content after annealing in a reducing
medium was monitored by weighing the samples
before and after reduction. We did not observe any sig-
nificant decrease in the mass of samples after the reduc-
tion procedure. For example, according to the data of
our measurements, the oxygen content in the case of a
sample with x = 0.50 annealed in argon was close to
2.93. For monitoring the oxygen content, reduced sam-
ples were annealed in the air at 900°C for 12 hours. The
value of the oxygen index of reduced sample, equal to
x = 0.50 and calculated by the variation of the mass
before and after annealing in the air, corresponds to
2.97. An OI-3001 vibrating-coil magnetometer was
used for magnetic measurements. The magnetization
was measured in the temperature range from 4 to 400 K.
The Curie temperature was determined as the tempera-
ture corresponding to the minimum of the derivative of
magnetization in a weak magnetic field. A miniature
Be–Cu container was used to measure the magnetiza-
tion under conditions of hydrostatic pressure. A mix-
ture of mineral oil and kerosene was used as the pres-
sure-transmitting medium. The pressure was graduated
at low temperatures using a superconducting lead junc-
tion. The dynamic magnetic susceptibility was mea-
sured by a mutual-inductance bridge in the temperature
range from 77 to 350 K. The field amplitude was 200 A/m,
with the frequency of 1200 Hz. Electrical conductivity
was measured by the standard four-probe technique in
the temperature range from 77 to 350 K. Samples in the
form of 10 × 2 × 2 mm3 bars without macrocracks were
used to measure the electrical conductivity. A silver
paste was used for contacts. The magnetoresistance was
calculated in accordance with the equation

(2)
MR %( )

=  ρ H( ) ρ H 0=( )–[ ] /ρ H 0=( ){ } 100 %( ),×
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where MR(%) is the negative isotropic magnetoresistance
in percent, ρ(H) is the electrical resistivity in a magnetic
field of 9 kOe, and ρ(H = 0) is the electrical resistivity in
zero magnetic field. The magnetic field was applied in par-
allel with the electric current in the sample.

3. RESULTS AND DISCUSSION

According to the results of X-ray analysis, the sam-
ples synthesized in the air are single-phase perovskites.
The parameters were calculated [22] on the assumption
of orthorhombic (0 ≤ x ≤ 0.25) and pseudocubic (0.25 ≤
x ≤ 0.50) symmetries of a unit cell. For example, for a
polycrystalline sample with x = 0.50, the parameter is
a = 3.893 Å (V = 59.00 Å3). The polycrystalline sam-
ples annealed in argon were divided into two groups,
namely, (1) those in the concentration range of 0.34 ≤
x ≤ 0.50, in which the samples are single-phase perovs-
kites, and (2) those in the range of 0 ≤ x ≤ 0.34, in which
the presence of the second phase was revealed. The
X-ray photographs of polycrystalline samples annealed
in a reducing medium exhibited characteristic features
such as a clearly defined broadening of reflections and
their shift towards greater angles (Fig. 1). The X-ray
photographs of reduced samples were interpreted on
the assumption of cubic symmetry of a unit cell. For
example, the parameter for a polycrystalline sample
with x = 0.50 annealed in a reducing medium is a =
3.889 Å (V = 58.84 Å3). After annealing a compound of
the same composition in the air, the parameter became
a = 3.887 Å (V = 58.76 Å3)). This behavior is unusual
for the parameter of a reduced sample, because an
increase in the unit cell volume was usually observed
after reduction, this being attributed to the transition of
a part of the Mn4+ ions to Mn3+ ions, which have a much
greater effective ionic radius [23]. A similar behavior of
the unit cell parameter was observed for reduced poly-
crystalline compositions from the 0.34 ≤ x ≤ 0.50 range.
All single crystals (x = 0.23, 0.25, 0.27, 0.30, 0.34)
remained single-phase after reduction. In the case of
single-phase samples, the type of unit cell symmetry
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Fig. 1. X-ray reflections 211 for polycrystalline
Nd0.50Ba0.50MnO3 – δ samples prepared (1) in the air and
(2) in a reducing medium.
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remained unchanged. However, unlike polycrystals, the
unit cell volume of reduced single crystals increased dras-
tically. The Auger spectroscopy investigation of samples
annealed in a reducing medium failed to reveal the pres-
ence of chemical elements other than Nd, Ba, Mn, and O.

Figure 2 gives the dependences of magnetization on
temperature and magnetic field, measured at different
hydrostatic pressures for a sample with x = 0.50 prepared
in the air. In the case where no external hydrostatic pres-
sure is present, the magnetization in a field of 1.5 T is
approximately 40 G cm3, while the magnetization
under a pressure of 0.74 GPa increases to 62 G cm3/g
(T = 4.2 K). The external pressure brings about the dis-
appearance of the field magnetization hysteresis, as
well as causes a high rise of the Curie point, approxi-
mately at the rate of dTC/dP = 24 K/GPa. Note that the
value of the temperature of the onset of magnetic order
depends strongly on the applied hydrostatic pressure.
Shown in the inset of Fig. 2 is a linear interpolation of
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Fig. 2. The dependence of magnetization (a) on the temper-
ature in a magnetic field of 15 kOe and (b) on the magnetic
field at a temperature of 4.2 K under conditions of hydro-
static pressure P = 0 and P = 0.74 GPa for a stoichiometric
polycrystalline sample with x = 0.50 prepared in the air. The
arrows indicate the direction of variation of temperature in
the process of measurement. Given in the inset is a linear
interpolation of the temperatures of the emergence of ferro-
(T1) and antiferromagnetic (T2) components as a function of
applied hydrostatic pressure. The dotted lines indicate the
magnetic contribution made by the Be–Cu container.
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the critical temperatures of the emergence of ferro- (T1)
and antiferromagnetic (T2) components as a function of
hydrostatic pressure, prepared in a field of 100 Oe after
cooling in zero field. The equations for the T1 and T2
straight lines are as follows:

T1 = 60.97 + 2.92P, T2 = 36.22 – 1.83P.

In our opinion, such a behavior of the magnetization of
a sample with x = 0.50 prepared in the air points to the
presence of an antiferromagnetic component in the
sample. A two-phase ferro-antiferromagnetic state was
observed in Pr1 – xCaxMnO3 compounds in the vicinity
of ferromagnetic–antiferromagnetic concentration
transitions [24]. The same singularities of the two-
phase magnetic state are apparently inherent in the
Nd0.50Ba0.50MnO3 compound as well. The range of vari-
ation of dTC/dP was determined experimentally to be 5
to 50 K GPa–1. It has been found that the highest values
of dTC/dP correspond to compositions with the lowest
values of TC. Medvedeva et al. [25] attributed this to the
competition between the double-exchange and super-
exchange interactions.

Figure 3 gives the results of measurement of the
dynamic magnetic susceptibility as a function of tem-
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Fig. 3. The temperature dependence of dynamic magnetic
susceptibility for polycrystalline Nd1 – xBaxMnO3 – δ sam-
ples with different values of the concentration of Ba ions
(x = 0.20, 0.34, 0.40, 0.50), prepared (a) in a reducing
medium and (b) annealed in the air afterwards.
ND THEORETICAL PHYSICS      Vol. 94      No. 2      2002



INVESTIGATION OF MAGNETIC PHASE TRANSFORMATIONS IN A SYSTEM 333
perature for polycrystalline samples with the barium
content in the range of 0.20 ≤ x ≤ 0.50, prepared under
reducing conditions and then annealed in the air. One
can see that all of the reduced samples exhibit an
increase in TC up to approximately 310 K. However, the
value of susceptibility and the steepness of transition to
the paramagnetic state decrease gradually with decreas-
ing concentration of Ba. Clearly defined in this plot is
the low-temperature anomaly in the neighborhood of
125 K, which correlates with the temperature of the
onset of magnetic order of stoichiometric samples.
After annealing the same reduced samples in the air, the
temperature of transition to the paramagnetic state
increases slightly to 320 K, and the values of suscepti-
bility in the high-temperature part of the samples with
x = 0.50, 0.40, and 0.34 become almost equal. It will be
remembered that a sample with x = 20 annealed in
argon contains an impurity phase. One can see in the
figures that the Curie temperature for samples prepared
in argon is two–three times that for compounds pre-
pared in the air. Note that the Curie temperature of com-
pounds prepared in argon varies little with the barium
concentration. A similar behavior was observed for a
La1 – xPbxMnO3 (0.26 ≤ x ≤ 0.44) system prepared in the
air [26]. As was revealed by the measurements of mag-
netization, the spontaneous magnetic moment for sam-
ples prepared in a reducing medium is somewhat
(approximately 10%) less than that for samples pre-
pared in the air (Fig. 2). A sample with the concentra-
tion x = 0.50 prepared in the air exhibited a kink in mag-
netization at a temperature below TC, which is charac-
teristic of a smeared first-order phase transition; in the
case of reduced samples, the transition to the paramag-
netic state is smooth (Fig. 4), which corresponds to a
second-order phase transition.

The temperature dependences of magnetization,
electrical resistivity, and magnetoresistance for a sam-
ple with x = 0.34 annealed in argon are given in Fig. 4.
One can see in the figures that the curves of electrical
resistivity and magnetoresistance exhibit peaks in the
vicinity of TC. The increase in magnetoresistance with
decreasing temperature is apparently due to intergranu-
lar effects, as in the case of other polycrystalline man-
ganites. The temperature dependences of electrical con-
ductivity and magnetoresistance of samples with a high
content of barium ions (0.34 ≤ x ≤ 0.50) are similar to
the dependences given in Fig. 4 for a sample with x =
0.34. In [20], the semiconductor behavior of
Pr0.50Ba0.50MnO3 – δ prepared in argon was revealed.
This difference is possibly due to different procedures
for the preparation of samples employed for measure-
ments.

Figure 5 gives magnetic phase diagrams of systems
of Nd1 – xBaxMnO3 – δ samples prepared both in the air
and in a reducing medium. The phase diagram for the
system prepared in the air is based on the data given in
[22]. The samples prepared in the air exhibit the classi-
cal sequence of concentration phase transformations,
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
namely, antiferromagnetic dielectric–ferromagnetic
dielectric–ferromagnetic metal, and, at x ≈ 0.5, the anti-
ferromagnetic phase appears again. However, samples
with a low barium content are unstable in a reducing
medium. In these conditions, they break down into a
mixture of phases, one of which possesses a perovskite
structure with a high barium content, and its magnetic
properties are similar to the properties of single-phase
samples with x ≥ 0.34. Therefore, the phase diagram of
reduced compositions starts with the value of x = 0.34.
All of these compositions are ferromagnetics with the
Curie point above room temperature. The value of elec-
trical resistivity is small compared with that of the sam-
ples prepared in the air, and the metal–insulator transi-
tion is observed in the vicinity of TC.

Magnetic measurements have revealed that single
crystals annealed in argon are spin glasses with the
freezing temperature of magnetic moments of about
40 K, i.e., they exhibit a behavior similar to that of
reduced samples of the La–Ca–Mn–O [27] and La–Ba–
Mn–O [28] systems. This is due to the fact that the sin-
gle crystals have lost a significant fraction of oxygen as
a result of annealing in the reducing medium and trans-
formed to phases with a high deficiency of oxygen ions.
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Fig. 4. The temperature dependence of (a) magnetization
and (b) electrical resistivity and magnetoresistance mea-
sured in a magnetic field of 9 kOe (pointed by arrows) for a
polycrystalline Nd0.66Ba0.34MnO3 – δ sample annealed in a
reducing medium.
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Apparently, an intensive exchange of oxygen with the
ambient gas medium (which, in addition to Ar, con-
tained Co, CO2, and O2) occurred in polycrystalline
samples in the case of annealing in a reducing medium.
We believe that the main result of this exchange was an
abrupt increase in a certain type of extended defects and
microstresses of the crystal lattice rather than the emer-
gence of oxygen vacancies; in our opinion, it was this
fact that brought about the change in the behavior of
phase transformation from the first to second order,
with an abrupt increase in TC. The effect of this type of
defects of crystal structure on the magnetic properties
is, in all likelihood, similar to the effect of external
hydrostatic pressure, which also causes an increase in
TC. The broadening of X-ray reflections is, in our opin-
ion, a direct result and proof of the emergence of
defects and microstresses in the sample. The emergence
of microstresses may be due both to the formation of
defects and to the crystal-structure phase transforma-
tions. Note that the phases obtained in argon are stable
during heating in the air to 1250°C. Upon heating to
1350°C, the magnetic properties become the same as
those of the initial samples prepared in the air. The high
stability, under oxidizing conditions, of the samples
annealed in a reducing medium supports the assump-
tion that these samples do not contain a significant
number of oxygen vacancies. However, this may be
proof of the high stability of the resultant anion-defi-
cient systems as well.

We did not observe a similar behavior for samples of
manganites doped with calcium and strontium ions.
This is apparently due to the specific features of the
crystal structure of barium-containing samples or to the
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Fig. 5. The magnetic phase diagram for polycrystalline
samples of two Nd1 – xBaxMnO3 – δ systems of solid solu-
tions. The system prepared in the air is indicated by solid
symbols, and that prepared in a reducing medium, by hol-
low symbols. AI denotes antiferromagnetic semiconductor;
FI, ferromagnetic semiconductor; FM, ferromagnetic
metal; and PI, paramagnetic semiconductor.
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inadequate accuracy of the experiments performed. For
example, Ln0.50Ba0.50MnO3 samples (Ln = La, Pr, Nd,
Sm, Eu, Gd) are characterized by the cubic symmetry
of a unit cell, in spite of the very great difference
between the ionic radii of the A sublattice of ABO3 per-
ovskite (for example, r(Gd3+) = 1.107 Å and r(Ba2+) =
1.470 Å [23]). It is possible that, in compositions such
as Nd0.50Ba0.50MnO3 prepared in the air, the Nd and Ba
ions are partly ordered, which may have an effect on the
processes of defect formation.

4. CONCLUSION

We have demonstrated that rare-earth neodymium
manganites from an Nd1 – xBaxMnO3 system of solid
solutions, replaced by barium ions, may find them-
selves in different magnetic states without considerable
changes in the chemical composition and unit cell
parameters. It has been found that polycrystalline sam-
ples in the concentration range of 0.34 ≤ x ≤ 0.50, pre-
pared in a reducing medium (a gaseous mixture of
argon and carbon monoxide), exhibit an increase in TC

and a variation of the pattern of the magnetic phase
transition to the paramagnetic state. It has been demon-
strated that the hydrostatic pressure induces the antifer-
romagnet–ferromagnet transition in Nd0.50Ba0.50MnO3.
Hypothetical magnetic phase diagrams have been con-
structed for the systems being treated, depending on the
concentration of barium and the method of preparation.
The experimental data obtained lead one to conclude
that the magnetic and electric properties of substituted
manganates may be largely defined by defects and
microstresses in the crystal lattice. Further structure
and spectroscopic studies are required to provide for a
more detailed understanding of the properties of
reduced Ln1 – xBaxMnO3 – δ manganites (Ln = Pr, Nd).
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Abstract—Numerical experiments showed that the number-of-bonds distribution of particles that form a fairly
large molten argon-like cluster was bimodal. This result was interpreted as a consequence of the formation of
two “phases,” namely, particles inside the cluster and a monolayer of particles lying above the others. Particle
chains were shown to be formed near the surface of the cluster. Splitting off of separate particles from them was
the most probable mechanism of vaporization. Model concepts that described the dependences observed in
numerical experiments were developed. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

According to current views, a transition layer exists
between coexisting gas and liquid. The basis for
describing this layer was laid by Gibbs [1] and van der
Waals [2]. Gibbs obtained thermodynamic relations
between various macroscopic values characterizing the
transition layer as a whole but did not consider its
microscopic structure. The van der Waals theory
assumed that the properties of one phase smoothly
transformed into the properties of the other within a
transition layer whose thickness noticeably exceeded
the intermolecular distance; in this theory, the surface
thermodynamic parameters were expressed in terms of
the parameters that characterized this transition.

Modern approaches to describing the surface are
based on the statistical mechanics apparatus [3]. The
density functional method [4–6] is used most exten-
sively. It is assumed in this method that the density is a
continuous function of the coordinate normal to the
interphase boundary. The characteristic transition layer
thickness is usually of the order of four–five intermo-
lecular distances. The modified van der Waals theory
[7] and the mean field approximation within the frame-
work of this theory [8] are also used.

Considerable advances in the description of the
equilibrium properties of surfaces have been made by
applying the density functional method and other
approximations based on the assumption of a smooth
transformation of one phase into the other. These
approaches are, however, inapplicable to surface kinet-
ics, for instance, to the description of undamped density
correlations [9] and high self-diffusion coefficient val-
ues [10] observed in numerical experiments. These
phenomena can be qualitatively explained following
Frenkel [11], that is, by treating the transition layer as a
set of elementary thermal excitations of the capillary
wave type. Smooth coordinate dependences of values
1063-7761/02/9402- $22.00 © 20336
within the layer are then obtained by time averaging
instantaneous values at a given point. This approach
was further developed in [12–14]. It, however, uses
macroscopic values (such as surface tension and den-
sity) to describe waves of microscopic lengths. The cor-
responding results are therefore purely qualitative in
character and cannot be used in model verification.

To summarize, the problem of the microscopic
structure of the transition layer remains unsolved. A
wealth of data have been obtained by numerically sim-
ulating the interphase surface by the molecular dynam-
ics [9, 15–17] and Monte Carlo [18, 19] methods. How-
ever, numerical experiments are as a rule performed to
study time-averaged values. Studies of instantaneous
configurations of systems comprising large numbers of
particles are impeded by their complexity. The conclu-
sion can only be drawn that the surface of a liquid is
exceedingly uneven and strong surface fluctuations are
noticeable.

In this work, we suggest a method for studying the
microstructure of the interphase surface in numerical
experiments. The method is based on determining num-
ber-of-bonds (number of nearest neighbors) distribu-
tion functions of particles constituting the system. The
number of nearest neighbors is one of the fundamental
values characterizing the state and structure of con-
densed substances. This number is sensitive to state and
structural changes and, at the same time, is easy to
determine in numerical experiments. The object of our
molecular dynamics study was variously sized argon-
like clusters present in supersaturated vapor at temper-
atures above the triple point of the corresponding sub-
stance. As distinguished from the plane condensed
phase layer traditionally used in molecular dynamics
calculations [9, 15–17], clusters are characterized by
easily variable ratios between the numbers of particles
on the surface and in the bulk, which makes them con-
002 MAIK “Nauka/Interperiodica”
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venient objects of study. In addition, with clusters, we
have no bottom wall, which, in traditional experiments,
determines the interphase boundary profile and can
influence the results of measurements.

Number-of-bonds distributions of particles in large
clusters comprising no less than several hundred parti-
cles have a well-defined bimodal character and can be
represented by the sum of two Gaussian exponential
functions. The ratio between the modes is a cluster size
function. The bimodal character of the distribution is
evidence of the presence of two groups of particles or
“phases” with sharply different properties. The parti-
cles that lie above the others and form a monolayer
(surface particles) form fewer bonds than the other
(internal) particles, which form the same number of
bonds as particles in the continuous liquid. The num-
ber-of-bonds distributions of the surface and internal
particles were found to exactly reproduce the modes
observed for the cluster as a whole. This means that, at
every time moment, there exists a very sharp boundary
separating homogeneous gas from homogeneous liq-
uid. The position of this boundary changes as time
passes.

According to [20], small clusters containing less
than ten particles predominantly occur in the state with
the number of bonds equal to two; that is, the particles
form virtual chains. Similar structures are also
observed near the surface of large clusters; they play an
important role in vaporization of clusters. It has been
found that the most probable mechanism of vaporiza-
tion from the surface of a liquid is the separation of par-
ticles from surface virtual chains.

The dependence of the number of bonds in a cluster
on its size is interpreted using the two-phase cluster
model comprising a nucleus of internal and a layer of
surface particles. The limiting cases of small and large
clusters can be related by a linear interpolation, which
satisfactorily describes the size dependence observed in
numerical experiments.

In Section 2, we describe the procedure for numeri-
cal simulation and the obtained number-of-bonds dis-
tribution functions. The two-phase cluster model is for-
mulated in Section 3, and Section 4 contains a discus-
sion of the results.

2. NUMBER-OF-BONDS DISTRIBUTION 
FUNCTIONS (NUMERICAL EXPERIMENT)

As mentioned in Introduction, variously sized clus-
ters can conveniently be considered to study number-
of-bonds distribution functions. We then reveal the
dependence of the values of interest on the size of clus-
ters, and the vapor–liquid interphase boundary is the
limit of an infinitely large cluster. We used the method
of molecular dynamics in a (P, T) ensemble. The
numerical experiment procedure was described in
detail in [21, 22]; it was as follows. The system to be
simulated, which is a cluster placed into a vapor with
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
fixed mean concentration and kinetic energy values, is
contained in a spherical cell. The system is open, and
particles that reach the cell boundary from the inside
are removed, whereas vapor particles directed inside
the cell and having a Maxwell velocity distribution are
generated. A cluster is initialized in the center of the
cell, and the values under study are recorded during its
evolution. As distinguished from traditionally used
microcanonical ensembles (e.g., see [23]), the (P, T)
ensemble can conveniently be used to trace the whole
spectrum of cluster sizes during a simulation experi-
ment, from large clusters to very small ones. In addi-
tion, such a simulation corresponds with real experi-
ment conditions.

It is assumed that the interaction of particles in the
system is determined by the pair additive short-range
potential function

(1)

where the cutoff radius rc = 2.5a and e and a are the
depth of the potential and the length scale, respectively.
Potential function (1) with the cutoff radius specified
above is often used to study argon-like systems. To
decrease the effect of cluster temperature fluctuations,
we used the modified Berendsen thermostat method
described in [21, 22]. The temperature of the system
was assumed to equal 0.75e/kB, where kB is the Boltz-
mann constant, the radius of the cell was set equal to
R = 16a, and vapor concentration nv was varied in the
range (0.008–0.016)a–3. The critical cluster size was
larger than or of the order of 103. The initial cluster size
equaled 2500; during the evolution, the cluster com-
pletely vaporized.

The determination of the number-of-bonds distribu-
tion function required the bond concept to be defined.
A particle will be assumed to have b bonds if b particles
in the same cluster are situated at a distance not exceed-
ing rb from it. Clearly, selecting rb should give a correct
definition of the cluster size. According to the most fre-
quently used Stillinger definition [23], a cluster is a set
of particles each bonded with at least one particle from
the same cluster. For a cluster to be observable, its size
should not depend on rb at least in a narrow range of rb

variations. The value suggested by Stillinger (it equals
the distance to the point at which the potential function
vanishes) does not satisfy this condition. As has been
shown in [24], there exists such an rb value at which the
first and second derivatives of the dependence of the
number of particles in a cluster (of particle size g) with
respect to rb equal zero; that is, in the vicinity of this rb

value, g is independent of rb. Precisely this value will be
used to determine the size of clusters and the number of
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bonds per particle. For the numerical experiment
parameters specified above, rb = 1.65a. Note that the
surface tension of a curved surface is similarly deter-
mined in classical thermodynamics; that is, in the vicin-
ity of the surface of tension, the surface tension value
does not depend on the position of this surface. It has
also been shown in [24] that, if rb is selected as
described above, the g value determines the equimolar

cluster radius Re; namely, g = , where nl is the con-
centration of particles in the continuous liquid.

We define the number-of-bonds distribution func-
tion of a system of particles, F(b), as the mean number
of particles with b bonds. Then,

(2)

are the number of particles in the cluster and the total
number of bonds, respectively. The F(b) value was
determined during numerical simulations. Each vapor-
ization process realization was repeated many times,
and the F(b) value was recorded in time intervals of

τ0/2, where τ0 = a  is the characteristic molec-
ular dynamics time and M is the mass of a particle.
Instantaneous F(b) values were averaged for each clus-
ter size g and then over the g ± 0.04g interval.

Re
3nl
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Fig. 1. Number-of-bonds distribution functions for a cluster
comprising 2152 particles. Given by symbols are numerical
simulation results for all particles constituting the cluster
(solid squares), surface particles (open triangles), and inter-
nal particles (open squares). Solid curves 1 and 2 are the
decomposition of numerical simulation results into two
Gaussian components, and curve 3 is the sum of curves 1
and 2 [Eq. (3)]. The dashed curve is the number-of-bonds
distribution function for the particle closest to the center of
mass normalized with respect to the number of internal par-
ticles.
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The F(b) values found for a cluster comprising
2152 particles are shown in Fig. 1. The F(b) function
can be represented by the sum of two Gaussian expo-
nential functions,

(3)

whose parameters were adjusted to obtain the best fit to
the numerical experiment results; this gave a1 = 113,
a2 = 326, b1 = 8.78, b2 = 12.93, c1 = 5.00, and c2 = 2.03.
Figure 1 shows that this approximation is fairly accu-
rate.

To determine the reason why the obtained distribu-
tion is bimodal, let us divide the particles in the cluster
into two types, namely, internal and surface. Particle 1
with radius vector r1 (the origin is at the center of mass
of the cluster) will be called internal if it forms more
than four bonds and there exists at least one particle 2
with coordinate r2 such that the conditions

(4)

(5)

are satisfied. Condition (4) means that the projection of
the radius vector of particle 2 onto the direction of the
radius vector of particle 1 exceeds the length of the lat-
ter. Condition (5) limits the length of the projection of
vector r2 onto the plane normal to r1. This condition
corresponds to the model concept according to which a
surface particle is situated in a vertex of a regular tetra-

hedron with edge length  equal to the mean dis-
tance between particles in the liquid, whereas the other
particles that occupy the remaining tetrahedron vertices
are internal.

The particles that are not internal will be called sur-
face particles. It is shown below that surface particles
with less than five bonds form virtual chains anchored
to the surface of the cluster.

As the surface of clusters is essentially nonspheri-
cal, the simple condition of the largest distance between
a surface particle and the center of mass of the cluster
is insufficient. More exact conditions (4) and (5) iden-
tify particles 2 that can be situated outside a small
neighborhood of particle 1 but lie within a solid angle
with a vertex at the center of mass of the cluster and an
axis passing through point r1 at a distance from the cen-
ter of mass larger than r1. If a microcavity is spontane-
ously formed within the cluster, the particles adjacent
to this cavity are considered internal in accordance with
(4) and (5). At the same time, when a deep hollow or a
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sharp protuberance are formed on the surface of the
cluster, surface particles correctly outline their con-
tours.

Definition (4), (5) is heuristic in character. However,
the related separation of particles into internal and sur-
face usually corresponds with what is apparent. A typi-
cal shape of the cross section of a cluster is given in Fig. 2.
The thickness of the cross section is of the order of the
mean interparticle distance. The figure shows that the
surface particles form a monolayer strongly curved by
thermal fluctuations. Insignificant deviations from the
monolayer structure arise because the particles shown
in the figure do not lie in one plane. The number of
bonds formed by internal particles is not less than ten,
and particles with four or less bonds form virtual
chains.

The obtained number-of-bonds distribution func-
tions for surface F1(b) and internal F2(b) particles
shown in Fig. 1 are satisfactorily described by the
Gaussian exponential functions on the right-hand side
of formula (3) (except for asymptotic behavior at large b,
which cannot be Gaussian because of strong interparti-
cle repulsion at r < a). We also calculated the F0(b)
number-of-bonds distribution function for the particle
closest to the center of mass (the central particle deter-
mined during simulations at every time step). This
function is independent of the cluster size at g > 300
and can also be represented in the form of the Gaussian
exponential function (dashed curve in Fig. 1)

where

is the factor that normalizes the F0(b) distribution with
respect to the number of internal particles, b0 = 13.19,
and c0 = 2.06. The obtained parameters show that the
distributions for the central and internal particles are
almost indistinguishable; that is, the whole region
occupied by internal particles is homogeneous. It also
follows from the calculation results that, in accordance
with the definition of bonds that we use, the number of
bonds per particle in the continuous liquid equals 13.2.

The number-of-bonds distribution functions of sur-
face and internal particles obtained for smaller clusters
are plotted in Fig. 3. A comparison of Figs. 1 and 3
shows that the distributions have a well-defined bimo-
dal character independent of size, but the ratio between
the modes changes. The number of surface particles
increases as g decreases, and the distribution maxima
noticeably shift to the lower b values because of a
decrease in the density of particles in small clusters.
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Fig. 2. Typical form of cluster cross sections at various clus-
ter sizes g and layer thicknesses h: (1) g = 1592, h = 1.39a
and (2) g = 2230, h = 1.57a. Solid circles are internal parti-
cles, hatched circles are surface particles, and open circles
are virtual chains; gas particles are not shown. Given at the
right are fragments of cross sections with numbers of bonds
formed by each particle.
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Fig. 3. Distribution functions for surface (left curves) and
internal (right curves) cluster particles. The solid, dashed,
and dot-and-dash curves correspond to g = 316, 198, and 72,
respectively.
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Changing the size of clusters also changes the average
number of bonds of surface particles,

(Fig. 4). In small clusters, the 〈bs〉  value is insignifi-
cantly different from two; that is, surface particles pre-
dominantly form virtual chains. The 〈bs〉  value
increases in parallel with g, first slowly and then (at g >
15) at a higher rate. At g > 27, 〈bs〉  linearly depends on
g–1/3. This circumstance allows the obtained depen-
dence to be extrapolated to a plane gas–liquid inter-
phase boundary (g = ∞), which gives 〈bs〉  ≈ 9.58. Note
that the 〈bs〉 /b0 ratio is close to the corresponding ratio
for the face of an ideal hexagonal crystal, which equals
9/12.

It follows from the aforesaid that particles constitut-
ing a cluster separate into two phases with sharply dif-
ferent properties, namely, the surface and internal
phases. Consider a simplified model that allows these
results to be interpreted.

3. THE TWO-PHASE CLUSTER MODEL

The numerical simulation results allow a cluster
comprising two parts (phases), a nucleus and a surface
layer, to be considered. For simplicity, we will use a
spherically symmetrical model. As follows from
numerical simulations, spherical cluster symmetry is
strongly perturbed by thermal fluctuations, and the
number of surface particles in a real cluster therefore

bs〈 〉

bF1 b( )
b 1=

∞

∑

F1 b( )
b 1=

∞

∑
-------------------------=

10

8

6

4

2

0 0.2 0.4 0.6
g–1/3

〈b
s〉

Fig. 4. Mean number of surface particle bonds in clusters of
various sizes. Squares are numerical simulation data, and
the straight line is the extrapolation to the plane surface.
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exceeds the number of surface particles in a spherically
symmetrical monolayer introduced in the model under
consideration. For convenience of characterizing the
cluster as a whole, model surface particles are assigned
numbers of bonds different from the true numbers and
the concept of the mean number of surface particles is
introduced. This effective number can be related to the
total number of particles g as follows. Consider a clus-
ter with nucleus radius R1 and outside surface layer
radius R2. Suppose that the concentration of particles in
the nucleus coincides with concentration nl in the con-
tinuous liquid and that the concentration of particles in
the surface layer is ηnl, where η is a model parameter.
By the definition of the equimolar radius Re for a cluster
in a homogeneous vapor with the concentration nv , we
have

(6)

Using the notation

and assuming that η @ nv/nl, we can rewrite (6) in the
form [25]

(7)

where g0 and g1 = (4π/3) nl are the effective numbers
of particles in the surface layer and cluster nucleus,
respectively. The λ and δ parameters can be related to
some thermodynamic value characterizing the cluster.
For instance, if the chemical potential of the cluster is
used, then δ is the Tolman length for a plane interphase
boundary [24] and

where σ is the surface tension coefficient of a plane sur-
face of the liquid, T is the temperature, K2 is the equi-
librium dimerization constant, and n1 is the concentra-
tion of monomers in saturated vapor. In addition, λ and
δ determine the number of cluster particles,

(8)

at which the nucleus contains a single particle (we set
g0 = g at g < z). Usually, λrl is of the order of the inter-
particle distance in the liquid, and z approximately
equals the number of nearest neighbors [25].

Note that the model under consideration can also be
applied to bubbles in liquids. It is assumed that vapor in
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a bubble and the liquid are separated by a layer λrl thick
with the ηnl concentration of particles. The first equa-
tion in (7) then becomes

where g = (4π/3) nl is the equimolar size of the bub-
ble. The second equation in (7) remains unchanged.
The bubble and cluster problems can therefore be com-
bined as follows:

(9)

where κ = 1 for the cluster and κ = –1 for the bubble, in
accordance with the sign of the radius of curvature of
the corresponding surfaces.

Consider the size dependence of the total number of
bonds in a cluster (B). This dependence can be
described using the linear interpolation procedure for
the thermodynamic potentials of clusters [25]. Accord-
ing to Fig. 4, 〈bs〉  ≈ 2 in small clusters. It in turn follows
from Fig. 5 that virtually all particles in such clusters
are surface particles. The total number of bonds then
linearly depends on the size of clusters, namely, B =
2(g – 1) = 2(g0 – 1). In a large cluster, the fraction of
surface particles is negligibly small, and the gbl number
of bonds, where bl ≈ b0 is the number of bonds of a par-
ticle in the continuous liquid, is proportional to the
clusters size. The limiting cases of small and large clus-
ters can be combined by the formula

(10)

Equations (10) and (7) can be used to calculate the size
dependence of B for the two-phase cluster model. In
particular, for g  ∞, we obtain

where α = (3/4π )(bl – 2)(δ + λ/2) is the “deficiency”
in the number of bonds per unit surface area. It follows
that surface particles in the two-phase cluster model
can be assigned an arbitrary effective number of bonds
beff satisfying the condition 2 < beff < bl. The δ + λ/2 fac-
tor should then be replaced by (δ + λ/2)(bl – 2)/(bl –
beff). The g0/g fraction of surface particles also
increases (bl – 2)/(bl – beff) times. The applicability of
the model is, however, limited at small g values at
which the cluster does not contain internal particles.

It follows from (10) that the total number of bonds
(B) can be used to determine the effective number of
surface particles with two bonds,

(11)
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along with the true number of surface particles

The numerical experiment data represented in the form
of the size dependence of the g0 effective number are
shown in Fig. 5. The g0 value was calculated using λ
and δ obtained in [24] for an argon-like system with
potential (1) parameters at the temperature that coin-
cided with the temperature of our numerical experi-
ments. The λ = 2.124 and δ = –0.175 values describe
the internal energy of the cluster, and λ = 2.386 and δ =
–0.420 describe its chemical potential. Figure 5 shows
that these sets of parameters give close g0 values, which
are in satisfactory agreement with the numerical simu-
lation data. The largest discrepancy is observed in the
transition region, in which clusters contain several
dozen particles. Naturally, the accuracy of describing
simulation results can be noticeably improved by prop-
erly selecting λ and δ. The specific effective number of
surface particles g0g–2/3 is seen to tend to a constant
value as g  ∞, and the true number of surface parti-
cles is noticeably larger than their effective number.
Note that the z = 13.3 value corresponding to both pairs
of λ and δ values [see (8)] is close to b0. It follows that
the two-phase cluster model can be used to describe the
size dependence of the number of bonds in clusters,
which is evidence for the applicability of this model
also to describing the equilibrium properties of clusters.

gs F1 b( ).
b 1=

∞

∑=

5

0.2 0.4 0.6
g–1/3

4

3

2

1

1

2

γg
–2
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Fig. 5. Number of particles on the surface of a cluster as a
function of its size: γ = gs (circles, the true number of sur-
face particles), g0 (squares, the effective number of parti-
cles), and gvc (triangles, the number of particles in virtual
chains). Curves were calculated by (11) for (1) internal energy
and (2) chemical potential parameters [24]; γ = g0 (solid
curves) and g (dashed curve, depicted for comparison).
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4. DISCUSSION

The numerical simulation results are evidence that a
monolayer of particles separating two homogeneous
phases is formed at the liquid–gas interphase boundary.
The shape of this layer is substantially different from
spherical (or plane for separation of macroscopic
phases) and fluctuates as time passes. This allows us to
claim the existence of a new surface phase. In the Gibbs
theory, this phase is sometimes called “surface azeo-
trope” [3]. In the classical theory, the thermodynamic
properties of curved surfaces are usually considered on
the assumption that the Tolman length does not depend
on surface curvature. In the two-phase cluster model,
the thickness of the surface phase rather than the Tol-
man length is constant.

As mentioned in Section 2, part of the surface parti-
cles form virtual chains anchored to the cluster surface.
In large clusters, the fraction of such particles relative
to the total number of surface particles under the
numerical experiment conditions is not large and
amounts to 0.14 at g = 2200. But the bond energy
between particles in virtual chains is minimum. It
should therefore be expected that vaporizing particles
separate precisely from virtual chains. The role played
by virtual chains was studied by recording each vapor-
ization event (using time steps of τ0/2) and determining
the number-of-bonds distribution function for the parti-
cles that were bonded with the vaporized particle at the
preceding step. We found that the form of the distribu-
tion function was virtually independent of g at g > 500.
The results of averaging this function over the interval
1500 < g < 2500 (Fig. 6) showed that the function con-
tained three singularities corresponding to three vapor-

1.6

0 4 8 12 16
b

F

1.2

0.8

0.4

Fig. 6. Number-of-bonds distribution function for particles
bonded with a vaporizing particle; the curve reproduces
smoothed numerical simulation results; symbols are num-
ber-of-bonds distributions for small clusters, g = 4 (circles)
and 5 (squares).
JOURNAL OF EXPERIMENTAL
ization mechanisms. The first one (a sharp maximum)
was situated at the b = 2 number of bonds characteristic
of virtual chains; this was evidence that such chains
played the determining role in vaporization. The distri-
bution function in Fig. 6 is normalized in such a way
that its first maximum has the height equal to that of the
number-of-bonds distribution function for the cluster
comprising four particles. Figure 6 shows that the func-
tion under consideration is situated between the distri-
bution functions for the clusters with four and five par-
ticles, g = 4 and 5. This circumstance leads us to con-
clude that the characteristic number of particles in a
surface virtual chain is of the order of four. The number
of bonds for virtual chain particles was therefore lim-
ited to four, as suggested in Section 2. The presence of
particles with more than two bonds takes into account
both the existence of branching points and admixtures
of compact virtual chain states with the number of
bonds larger than its minimum value [26].

The second singularity of the F(b) function is situ-
ated at b ≈ 〈bs〉; it is likely to correspond to splitting off
of vaporizing particles from surface particles (a small
shift of this singularity to the left of 〈bs〉 may be related
to splitting off of particles predominantly from convex
regions). The third singularity is a poorly defined max-
imum at b ≈ b0. It corresponds to direct splitting off of
surface particles that do not form virtual chains from
internal particles. Clearly, the third vaporization mech-
anism has a low probability.

The suggestion was made in [27] that vaporizing
particles were split off from spontaneously formed con-
vex liquid surface regions. The results of this work sub-
stantiate and refine this suggestion; indeed, surface vir-
tual chains can be treated as the limiting case of protu-
berances.

It would be interesting to consider the size depen-
dences of the number of surface particles gs and the
number of particles constituting virtual chains,

per unit cluster surface (Fig. 5). At large g, the gvcg–2/3

value almost linearly depends on g–1/3,

where C1 and C2 are constants. According to classical
nucleation theory [11], the rate of vaporization of parti-
cles from unit cluster surface is proportional to

exp(8πσ /3kBTg1/3), where σ is taken to be indepen-
dent of g in large clusters (g > 300). At large g, the
exponent is smaller than one and
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If vaporizing particles are only split off from virtual
chains, the rate of vaporization should be proportional
to gvcg–2/3, which gives

For the potential function cutoff radius and temperature
used in our numerical experiments, we have σ =
0.52e/a2 and rl = 0.68a [16]. This gives C2/C1 = 2.48, in
agreement with the C2/C1 ≈ 3 value obtained in numer-
ical simulations (Fig. 5).

The size dependence of the gs number of surface
particles may be evidence of changes in the fractal
dimension of the surface phase. It is likely that the same
effect explains the size dependence of the 〈bs〉  mean
number of bonds of surface particles at large g (Fig. 4).
Note that the gs/g fraction of surface particles fairly
slowly decreases as g increases. For instance, the clus-
ter with g = 37 contains 90% surface particles (Fig. 5),
and gs/g = 0.5 at g = 1000. The extrapolation of these
data to very large g values gives gs/g = 0.1 at g ~ 105.
The latter size can, we believe, be considered threshold;
a cluster with this size acquires the properties of a mac-
roscopic drop.

The analysis of the gs(g) and gvc(g) dependences
given above is only qualitative in character. Topical
problems are a detailed study of surface structures of
the type of virtual chains (in particular, the refinement
of their definition) and the determination of the fractal
dimension of the surface phase.

When the size of a cluster decreases, approxima-
tions of F1(b) and F2(b) by Gaussian exponential func-
tions (3) become less accurate, and distribution maxima
shift to the left. This can be related to gradual disap-
pearance of the nucleus of internal particles as g
decreases. A nucleus can be assumed to form at g > 200,
because increasing the size above this value has virtu-
ally no effect on the density of particles in the cluster
center. It follows that the size range z < g < 200 is a tran-
sition region in which the nucleus of clusters is formed.
According to its physical meaning, the two-phase clus-
ter model (Section 3) should be applicable at g > 200.
At g < 200, the results obtained using this model should
be treated as extrapolation results. It is therefore not
surprising that the largest discrepancies between these
results and the numerical experiment data are observed
at 7 < g < 20.

It is natural to identify the number of bonds for an
internal particle with the number of nearest neighbors
in the liquid. As follows from the b0 parameter value, it
equals 13.19 under the conditions of our experiments.
This number exceeds the number of nearest neighbors
in hexagonal crystals (twelve), which is not surprising,
because, in crystals, the concept of atomic shells rather
than the rb length parameter is used. With the rb value
used in this work, which approximately equals the dis-

C2

C1
------ 8πσrl

2/3kBT .=
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tance to the first radial distribution function maximum
in the liquid, the number of “nearest neighbors” in crys-
tals increases to nineteen.

Strong cluster surface shape fluctuations in combi-
nation with the existence of a sharp boundary that sep-
arates homogeneous gas and liquid can be interpreted
as capillary waves at the interphase boundary. From
this point of view, the results obtained in this work sub-
stantiate the capillary-wave model of the boundary
[12–14]. It follows from the simulation results that the
internal transition layer thickness usually introduced in
theory equals the thickness of the layer of surface par-
ticles, which is close to the mean interparticle distance.
The total thickness is determined by averaging the posi-
tion of the interphase boundary.

One of the difficulties of the theory of thermocapil-
lary waves is the divergence of the spectrum of these
waves [14]. This divergence may arise because ther-
mocapillary waves are treated as macroscopic waves
and the surface tension σ value for a plane surface is
used. However, if the wavelength is of the order of the
interparticle distance, a size correction to σ should be
taken into account. Equation (9) may prove useful in
solving this problem. The development of the capillary
wave theory of the interphase boundary is a topical
problem whose solution would allow not only the equi-
librium but also the transport properties of the surface
to be described.
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Anisotropy of the Raman Scattering Measured in the xy Plane
of a Nontwinned YBa2Cu3O7 – x Single Crystal
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Abstract—The temperature dependence of anisotropy of the phonon and electron Raman scattering compo-
nents was studied by measurements in the xy plane of a nontwinned YBa2Cu3O7 – x single crystal. It is shown
that the sign of the orthorhombicity parameter γ = (Iyy – Ixx)/(Iyy + Ixx) for the full-symmetry phonons (150, 340,
and 435 cm–1 modes) generated by the displacements of ions in the CuO2 plane is opposite to the sign of this
parameter for the phonons generated by the out-of-plane barium and bridging oxygen displacements (120 and
500 cm–1 modes). In the superconducting state, the γ value decreases in the region of low frequencies, but the
frequency renormalization of the 340 cm–1 mode measured in the xx and yy spectra is the same to within the
experimental error. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The knowledge of how superconductivity modifies
the Raman spectrum of a solid was provided by a pio-
neering work of Abrikosov and Fal’kovskiœ [1], where
it was demonstrated that the superconducting state fea-
tures a new scattering channel related to breakage of the
Cooper pairs. As a result, the electron Raman scattering
spectrum exhibits a new peak at a frequency of Ω = 2∆,
whereas no scattering takes place in the region of
Ω < 2∆ for a superconductor with an isotropic gap of
the s type even if such scattering was observed in the
normal state.

Since the discovery of high-temperature supercon-
ductivity, Raman scattering has became one of the
methods that provide information about basic parame-
ters such as the superconducting gap width and symme-
try, the energy and damping of the low-energy electron
excitations in various regions of the Fermi surface, and
the electron–phonon interaction characteristics [2]. The
typical Raman spectrum of a high-temperature super-
conductor (HTSC) comprises a rather intense structure-
less electron continuum bearing relatively narrow
phonon lines. In the normal state, the electron contin-
uum extends up to frequencies exceeding 1 eV [3] and
exhibits no maximum in the region of the vF q fre-
quency (vF is the velocity on the Fermi level, q ≈ 1/δ is
the transferred momentum, and δ is the optical penetra-
tion depth). Upon transition to the superconducting
state, the electron continuum exhibits a polarization-
dependent redistribution in the low-frequency region.
Using the positions of the electron Raman scattering
peaks (related to the Cooper pair breakage), it is possi-
ble to judge the superconducting gap width, anisotropy,
1063-7761/02/9402- $22.00 © 20345
and (in some cases) preferred symmetry [1, 2]. It should
be noted that a relative change in the electron contin-
uum intensity is usually small, which complicates accu-
rate determination of the peak positions. In some
HTSCs, additional information concerning the super-
conducting gap can be gained from the phonon renor-
malization effect related to the antiphase displacements
of oxygen ions in the cuprate plane [4]. However, a
large magnitude of the electron–phonon interaction
related to corrugation of the CuO2 planes and the crys-
tal field asymmetry [5] is only partly responsible for the
phonon mode “softening” in the superconducting state
and does not indicate that this phonon plays any signif-
icant role in the formation of this state [6].

Although the real symmetry of an HTSC crystal is
usually below tetragonal, convenient simplifications
are offered by the groups of a higher symmetry pro-
viding a common description for various HTSC
classes with an allowance for the circumstance that
the tetragonal symmetry is dominating in most of the
theoretical models employed. The simplification is
justified by the fact that the high-temperature super-
conductivity takes place in CuO2 cuprate layers with
square lattices, in which deviations from the tetrago-
nal symmetry are crystallographically small. In appli-
cation to electron Raman scattering, this tetragonal
approximation is confirmed by the fact that most of
the HTSC crystals belonging to various classes (pro-
vided close degrees of doping) exhibit surprisingly
like Raman scattering spectra measured in a coordi-
nate system related to the directions of CuO bonds in
the cuprate plane. In optimum-doped HTSCs, the
2∆/Tc values determined from the full- symmetry A1g

spectra and/or nondiagonal B2g spectra are always smaller
002 MAIK “Nauka/Interperiodica”
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(by approximately 30%) than the analogous values
measured in the B1g spectra [2].

In the case of B1g symmetry, the excitations are mea-
sured in the x’y' polarization probing predominantly a
part of the Fermi surface near the principal axes [2]
(here and below we use Porto’s short notation αα  for
various scattering polarizations, where the first and the
second symbols denote polarizations of the exciting
and scattered light beams, respectively; the phonon
wavevector for the spectra taken in the xy plane is
always directed along the z axis). In the B2g spectra
measured in the xy polarization, a maximum contribu-
tion is from the Fermi surface regions along diagonals
of the Brillouin zone. The polarized spectra with ei || es

give a full-symmetry component always containing an
admixture of the B representations depending on the
electric field vector orientation in the basal plane [2].
This fact indicates that the superconducting gap on the
CuO2 plane is anisotropic, reaching a maximum width
for the reciprocal space directions coinciding with ori-
entations of the CuO bonds in the cuprate plane. More-
over, the electron Raman scattering for Bi2Sr2CaCu2O8
in both normal and superconducting states obeys the
selection rules for the tetragonal group [7]. This fact
confirms that the main contribution to the scattering is
from the electron states in the tetragonal CuO2 plane. At
the same time, a number of active phonons in the
Raman spectrum of this crystal possess a pronounced
anisotropy related to a one-dimensional modulation in
the BiO planes [7].

We may expect that a different situation takes place
in YBa2Cu3O7 – x (YBCO) crystals containing one-
dimensional chains representing conducting channels
for the charge carriers. Although an orthorhombic char-
acter of the phonon spectra of YBCO was reported long
ago [8], no detailed analysis of anisotropy of the
phonon and electron Raman spectra was undertaken
until now. Of special interest are the recent communi-
cations [9] concerning the xy anisotropic softening of
the 340 cm–1 mode, from which it was concluded that
the superconducting gap exhibits a considerable anisot-
ropy in the x and y directions. However, a critical anal-
ysis of these results showed that the anisotropic soften-
ing results from incorrect processing of the experimen-
tal data and that the conclusion about a large (>20%)
difference between the superconducting gap widths in
the kx and ky directions in the k space is most likely mis-
leading [10].

This paper analyzes in detail the manifestation of
orthorhombicity (i.e., unequivalence of the x and y
crystallographic directions) in YBCO single crystals as
revealed by the Raman scattering spectra. Special atten-
tion is paid to separation of the electron and phonon
scattering components and to analysis of the tempera-
ture dependence of the orthorhombicity parameter
determined from a comparison of the Raman spectra
measured for various polarizations.
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2. EXPERIMENT, RESULTS, AND DISCUSSION

The Raman scattering spectra were measured in a
twin-free ab basal plane of an YBCO crystal. The mea-
surements were performed in a backscattering geome-
try in a temperature range from 10 K to room tempera-
ture. The oxygen chains were aligned in the b direction
and a Cartesian coordinate system was selected so that
x || a, y || b, and z || c. Prior to mounting in a cryostat, the
YBCO crystal was oriented using the Laue diffraction
pattern. According to the results of magnetic measure-
ments, the sample had a superconducting transition
temperature of Tc = 92 K, which showed evidence of a
nearly optimum doping level.

The Raman scattering spectra were measured with a
triple spectrometer equipped with a multichannel
detector. The spectra were excited with an Ar+ laser
(λ = 488 nm). In order to avoid overheating of the sam-
ple, the radiant power density did not exceed 10 W/cm2.
The excitation area (for a characteristic laser beam spot
size of 100 µm) was monitored with a microscopic
attachment, which allowed the same (to within 10 µm)
twin-free region of a sample crystal to be studied in var-
ious experiments. The spectra were recorded for the
same orientation (45° relative to the spectrometer
entrance slit) of the electric field vector E in the scat-
tered beam. This orientation, adjusted with the aid of a
polarization attachment, eliminated the need for addi-
tional normalization related to the polarization depen-
dence.

The Raman scattering spectrum of an YBCO crystal
possessing the orthorhombic D2h symmetry exhibits
signals due to 15 active phonons. Ten of these possess
a symmetry lower than that of the crystal lattice. Most
clearly pronounced for nondiagonal phonons, the crys-
tal orthorhombicity leads to a difference of the B2g and
B3g mode frequencies. Removal of the tetragonal
degeneracy is most clearly pronounced for the phonon
modes of the out-of-plane ions, reaching up to 100 cm–1

for the nondiagonal modes of bridging oxygen [8]. Five
full-symmetry phonons are detected in the polarized
Raman scattering spectra at 120, 150, 340, 435, and
500 cm–1. These phonons are generated by the axial dis-
placements of metal (Ba and Cu2) and oxygen (O2, O3,
and O4) ions [8]. Among the full-symmetry phonons, the
340 cm–1 mode (generated by the antiphase displace-
ments of oxygen atoms from the CuO2 plane) possesses
special transformation properties and can be detected
not only in the polarized xx, yy, and x’x' spectra, but in
the depolarized x’y' spectrum as well. This fact indi-
cates that the tensor

a

b

c 
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of this mode has the elements a ≈ –b and c ≈ 0, thus vir-
tually coinciding with the tetragonal B1g tensor

.

In contrast to the in-phase displacements of the
same oxygen atoms (corresponding to the 435 cm–1

mode), the antiphase displacements exhibit no mixing
with the displacements of bridging oxygen O4 [5]. The
activity of this mode is due to violated symmetry of the
single CuO2 plane (which is related to the asymmetry of
chemical bonds and the crystal environment) and is
mediated by the care transfer between oxygen ions in
the CuO2 plane [5, 11].

Figure 1 shows the Raman scattering spectra mea-
sured in various polarizations upon excitation of the ab
basal plane of a nontwinned YBCO single crystal. The
electron Raman scattering spectrum offers the most
convincing evidence of crystal orthorhombicity: this
spectrum shows a maximum intensity in the case when
the electric field vector E is parallel to the oxygen
chains (E || b). The orthorhombicity is also manifested
in the phonon scattering spectrum, where the relative
intensities of phonon modes are different for the spectra
measured in the xx and yy polarizations. It should be
specially pointed out that the 340 cm–1 mode appears in
the x’x' spectrum with a rather large intensity, which is
indicative of the mixed symmetry (A1g + B1g) of this
band measured in the tetragonal D4h group basis. For a
purely tetragonal B1g symmetry, the mode cannot
appear in the x’x' spectrum because the matrix elements
are equal (in absolute value) and the B1g tensor trace is
zero. A deviation from the tetragonal symmetry for this
phonon mode is also manifested by different intensities
of this mode in the xx and yy spectra.

In order to evaluate the orthorhombicity of a crystal
studied, we may separate the corresponding contribu-
tion in the Raman scattering spectra by subtracting the
xx spectrum from the yy spectrum and normalizing the
difference to the sum of these intensities, which yields
the parameter γ = (Iyy – Ixx)/(Iyy + Ixx). A plot of this
orthorhombicity parameter versus frequency for two
temperatures is presented in Fig. 2. As can be seen, the
main contribution to γ in the entire frequency range
studied is related to the electron scattering component,
while the out-of-plane phonons produce an additional
increase in the orthorhombicity. It is remarkable that
the signs of the orthorhombicity parameter, determined
by the difference of the diagonal elements of the full-
symmetry tensor

,

b

b–

0 
 
 
 
 

a

b

c 
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are opposite for the phonon modes generated by ion
displacements from the CuO2 plane and for the modes
with dominating displacements of ions occurring out-
side the cuprate plane. This is clearly illustrated by a
comparison between the 150, 340, and 435 cm–1 modes
generated by ion displacements from the CuO2 plane
and the 120 and 500 cm–1 modes in which the out-of-
plane ion displacements are dominating. In the former
case, b > a and the γ value exhibits minima, while the
latter phonons are characterized by b < a and give peaks
in the orthorhombicity parameter spectrum.

It should be noted that, although the reported Raman
spectra were not normalized to the light penetration
depth in the sample, this cannot significantly influence
the results because the optical penetration depth for the
yy polarization (E || y) is smaller than that for the xx
polarization (E || x). This implies that the ratio of the
matrix elements b/a is greater than the ratio of the cor-
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Fig. 1. The Raman scattering spectra measured at T = 245 K
in various polarizations for YBa2Cu3O7 – x single crystal
excitation in the ab basal plane.
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responding intensities; determined by the scattering
cross section, the orthorhombicity parameter will only
increase in magnitude while retaining the same sign. It
is also interesting to note that the excitation of phonons
in the CuO2 plane leads to a decrease in the orthorhom-
bicity parameter, whereby the γ value approaches zero
in the given frequency range. This effect is most signif-
icant for the 150 and 340 cm–1 modes and less pro-
nounced for the 435 cm–1 mode, which is probably
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Fig. 2. The frequency dependence of the orthorhombicity
parameter γ at two temperatures: (s) T = 295 K; (d) T = 10 K.
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Fig. 3. The temperature variation of the 340 cm–1 mode fre-
quency determined from the xx (,) and yy (d) Raman scat-
tering spectra.
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explained by the mixing of displacements of the in-
plane and bridging oxygen for this mode [11].

Since the orthorhombicity of the Ba mode (as well
as that of the bridging oxygen mode) is due to the CuO
chains and reflects additional electron transitions
(allowed only for the E || y polarization) in the O4–
Cu1–O1 chain complex, the resonance dependence of
the scattering intensity suggests that the orthorhombic-
ity parameter would decrease with increasing excita-
tion wavelength [12]. For the 435, 340, and 150 cm–1

modes, the presence of oxygen chains results in a non-
uniform corrugation of the CuO2 plane (with O2 and
O3 ions differently displaced along the c axis relative to
the Cu ions). This nonconformity probably accounts for
the anisotropy of the phonon response observed for var-
ious full-symmetry polarizations.

For an YBCO crystal in the superconducting state,
the orthorhombicity parameter exhibits a maximum
variation in the region of low frequencies. The transi-
tion into a superconducting state renders the crystal
more “tetragonal,” whereby the orthorhombicity
parameter decreases. This is caused by stronger sup-
pression of the electron scattering and by the supercon-
ductivity-induced growth in the phonon intensity for
the yy polarization (although the latter effect is not as
pronounced for the laser wavelength used in the exper-
iment [13]). At the same time, no xy softening anisot-
ropy for the 340 cm–1 mode is observed to within the
experimental accuracy (see Fig. 3). The phonon line
shape was fitted using a standard Fano formula, while
the frequency and damping were not fixed for various
polarizations. Even under these conditions, the fre-
quency difference between the xx and yy polarizations
fell within the experimental error (see Fig. 3); the fre-
quency coincided with that observed in the x’x' spectra
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Fig. 4. Superconductivity-induced full-symmetry electron
Raman scattering component determined from the xx (d),
yy (s), and x’x' (n) Raman scattering spectra.
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(not depicted in the figure). Simple physical consider-
ations suggest that the frequency and damping for the
seeding parameters of phonons in various polarizations
must be identical [10]. The fitting parameters are the
intensity of the electron continuum and the phonon line
asymmetry: these quantities are different for various
polarizations in both normal and superconducting
states. However, a difference existing in the normal
state is evidence of the orthorhombicity of the system
studied, rather than of the xy anisotropy of the super-
conducting sate.

In addition, the positions of full-symmetry electron
peaks presented in Fig. 4 (rather than the peak intensi-
ties [7]) coincide for the xx, yy, and x’x' spectra. This
indicates (by analogy with the case of Bi2Sr2CaCu2O8
[6]) that the superconducting gap widths in the x and y
directions coincide (at least to within a few percent).
Note that this by no means implies that the gap is iso-
tropic: the superconducting gap of an HTSC is aniso-
tropic because the electron peak of the Raman scatter-
ing in the x’y' polarization in the superconducting state
occurs at a higher frequency (approximately at 550 cm–1)
as compared to the full-symmetry peaks [2].

3. CONCLUSION

A comparative analysis of the Raman scattering
spectra of a nontwinned YBa2Cu3O7 – x single crystal
showed that the orthorhombicity parameter possesses
opposite signs for the phonons generated by ion dis-
placements in the CuO2 plane and the displacements of
ions situated out of the cuprate planes. The contribution
of the electron Raman scattering component to the
orthorhombicity parameter dominates and coincides in
sign with a contribution due to the out-of-plane
phonons. To within the experimental accuracy, the fre-
quency renormalization for the 340 cm–1 mode is iden-
tical in the xx and yy polarizations. This, together with
the data on the electron Raman scattering, is indicative
of the absence (to within the experimental accuracy) of
differences between the superconducting gap width in
the kx and ky directions in the reciprocal space.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
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Abstract—The optical absorption spectra of LaMnO3 single crystals, pure and slightly doped with Ce and Sr
(7%), were studied in the middle IR region. Ellipsometry measurements were performed in the visible region
to determine real and imaginary permittivity parts. The energies of the onset of indirect transitions in LaMnO3
at 293 and 80 K were found to be 0.30 and 0.40 eV, respectively. Impurity absorption bands corresponding to
transition in hole and electron clusters were observed. The anomalous temperature dependence of IR absorption
was explained by the existence of conducting droplets in the insulated doped crystal matrices at temperatures
below the temperature of the appearance of a ferromagnetic contribution. The existence of such a contribution
was proved by studying the equatorial Kerr effect. Because of the separation of phases, manganites slightly
doped by a nonisovalent admixture can be treated as optically nonuniform media whose properties are similar
to those of a composite system with metallic inclusions. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Interest in doped manganites with perovskite struc-
tures of the La1 – xAxMnO3 type, where A = Cr2+, Sr2+,
or Ba2+, stems from the giant magnetoresistance that
they exhibit. It is believed [1] that the separation of
phases occurs in manganites at doping levels below the
percolation threshold, which implies the coexistence of
conducting ferromagnetic and insulating antiferromag-
netic regions.

Various data are indicative of magnetic nonunifor-
mity. The optical data [2] are, however, the only evi-
dence of the existence of conduction regions (droplets).
The resistance of slightly doped manganites (sample-
average characteristic resistance) has an activation
character below TC, similarly to the resistance of com-
posite systems with metallic inclusions [3]. In the pio-
neer work [2], proof for the existence of conducting
(absorbing) regions in an insulating (transparent)
matrix was obtained in a study of optical absorption by
polycrystalline La1 – xCaxMnO3 in the spectral region of
light interactions with charge carriers (in the middle
infrared region). In [4], these results were confirmed by
measuring optical absorption by La0.9MnO3 and
La1 − xSrxMnO3 (x = 0.1) single crystals. Do metallic
droplets exist at divalent ion concentrations lower than
x = 0.1? How does n-type doping with tetravalent Ce
1063-7761/02/9402- $22.00 © 20350
ions affect the optical spectra? What is the optical spec-
trum of undoped LaMnO3? Our goal is to answer these
questions. Note that only data on crystals heavily doped
with cerium are available [5].

Of a great many studies on the properties of manga-
nites, quite a number are concerned with their optical
properties. As a rule, the reflectance spectra of manga-
nite polycrystalline samples or single crystals are
recorded and processed according to Kramers and Kro-
nig to obtain σ(ω) optical conductivity spectra (e.g., see
[6]) or the absorption spectra of poly- or single-crystal-
line films on various substrates are studied. The absorp-
tion spectra of manganite single crystals were only
reported in [4, 7], although precisely measurement of
absorption by single crystals is a direct optical method.

2. PROCEDURE FOR MEASUREMENTS 
AND SAMPLES

In this work, we studied manganite single crystals
in the IR region (0.08–0.8 eV). In the visible region
(1.0–5.0 eV), we used ellipsometry to record the per-
mittivity and optical conductivity σ(ω) spectra. The
equatorial Kerr effect was studied in the spectral region
of 1.5–3.8 eV at temperatures of 40 to 300 K in a 3 kOe
magnetic field.
002 MAIK “Nauka/Interperiodica”
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The LaMnO3 (LMO), La0.93Ce0.07MnO3
[LCMO(Ar)], and La0.93Sr0.07MnO3 (LSMO) single
crystals were grown by the floating zone method under
radiation heating [8] in argon; the La0.93Ce0.07MnO3
[LCMO(air)] single crystal was grown in air. All crys-
tals were orthorhombic at room temperature.

3. RESULTS AND DISCUSSION

Resistance ρ of all crystals has a semiconducting
character in the temperature range 77–300 K, and the
thermoelectromotive force is positive at 300 K. The
largest resistance at room temperature is observed for
LCMO(Ar) (2 × 103 Ω cm), and the lowest resistance,
for LSMO (3 Ω cm). The ρ300 K value for LMO and
LCMO(air) equals 2 × 102 and 4 × 102 Ω cm, respec-
tively. Magnetic measurements are evidence of the
appearance of a ferromagnetic contribution in LMO,
LCMO, and LSMO at TC = 140, 135, and 125 K,
respectively. The spontaneous magnetizations of
LCMO(air), LCMO(Ar), LMO, and LSMO equal 4.3,
4.7, 6.5, and 44.7 G cm3, respectively. The details of the
magnetic and electric properties of the crystals require
a separate discussion. The absorption spectra of LMO
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Fig. 1. (a) Absorption spectra of manganite single crystals
at 293 and 80 K (the spectra of L0.9MO were taken from
[6]) and (b) photon energy dependence of K for L0.9MO.
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are shown in Fig. 1a in comparison with the spectra of
the La0.9MnO3 (L0.9MO) single crystal taken from [4]
and the spectrum of LSMO. The spectra of the
LCMO(Ar) and LCMO(air) crystals are shown in Fig. 2.
The temperature dependences of transmission (or the
intensity of light that passed through the samples) are
shown in Fig. 3. According to Figs. 1a and 2, undoped
manganites and manganite doped with cerium have
small absorption coefficient K values in the “transpar-
ency window,” that is, in the region bounded by the
beginning of the phonon spectrum on the side of low
energies and the absorption band edge at about 2.0 eV
on the side of high energies (Fig. 4).

The dependence of  on energy E is shown in
Fig. 1b for La0.9MnO3 in the absorption band edge
region. This dependence is evidence that the absorption

band edge is related to indirect transitions. The (E)
dependence for LaMnO3 has a similar shape. The Egi

energy of the onset of indirect transitions equals 0.30 ±
0.02 eV at 293 K and 0.40 ± 0.02 eV at 80 K for both
samples. An analysis of these data and a comparison
with the phonon spectra [9] show that La vacancies
have a substantial influence on the relative contribu-
tions of various optical phonons that allow the indirect
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of the spectra of LCMO(air) recorded at 80 and 130 K is
shown in the inset.
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transition. In LaMnO3 and La0.9MnO3, the most active
phonons have wave numbers θi = 594 [9] and 287 cm–1,
respectively; both phonons have B3u symmetry.

In the transparency window of a usual semiconduc-
tor, impurity absorption bands are observed, and, when
free carriers appear, the absorption coefficient grows as
energy decreases (the Drude contribution). In all sam-
ples studied in this work including “pure” LMO, a com-
plex absorption band approximately at an energy of
0.14 eV is observed. In [4], this band was related to

transitions in the hole pseudo-Jahn–Teller 
cluster in terms of the model of polar centers [10].

The presence of a band at an energy of about
0.14 eV in the spectra of pure LMO is evidence of the
presence of hole centers in a low concentration. The
energy positions of the narrow lines that constitute the
band at approximately 0.14 eV do not change as a result
of either doping or temperature changes. As follows
from Figs. 1a and 2, the intensity of this band at room
temperature increases as the sample is depleted of La
and as a result of doping with Sr2+. This is likely to be
related to an increase in the number of hole clusters
(Mn4+). A decrease in resistance caused by p-type dop-
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(5) LSMO single crystals at (a) 0.14 and (b) 0.3 eV energies.
Different scales are used to plot data on different composi-
tions.
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ing is in agreement with this suggestion. For instance,
in the spectrum of L0.9MO, the intensity of the band at
about 0.14 eV is higher and the resistance at 293 K is
two orders of magnitude lower [4] than the correspond-
ing characteristics of LMO.

Manganites with n-type doping (Ce) are partially
electrically compensated; the crystal grown in argon is
compensated to the greatest degree. When crystal
growth occurs in air (in an oxygen-containing atmo-
sphere), the formation of a large number of vacancies
(Mn4+ ions) in the cation sublattices is more probable
than in argon, because the atmosphere of argon is more
reducing than air.

The thermoelectromotive force of samples doped
with cerium (7%) remains positive. It can therefore
be suggested that the fraction of vacancies in the cat-
ion sublattices of LaMnO3 is approximately 7–8%.
This estimate may be exaggerated, because the
cerium valence may differ from four. Note that,
according to the photoemission spectroscopy data on
La0.67Ce0.33MnO3 [11], the valence of cerium is larger
than three but not four, and, generally, the concentration
of additional electrons is lower than the concentration
of cerium.
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The temperature behavior of optical absorption in
the low-frequency spectral region related to new phase
nuclei (Fig. 3a) gives fundamentally important infor-
mation about the character of phase separation in man-
ganites.

In pure LMO, optical absorption near the 0.14 eV
band decreases as temperature lowers (Fig. 1a). Figure 3a
shows that transmission (the reverse of absorption)
monotonically increases. The transmission of the other
single crystals in this energy region also increases as
temperature decreases. Conversely, below TC, transmis-
sion decreases. The difference of the absorption spectra
of LCMO(air) at temperatures below TC (80 and 130 K)
is shown in the inset in Fig. 2a. An increase in absorp-
tion when energy decreases is indicative of a contribu-
tion of free carriers. It follows that the normal (for a
usual semiconductor) increase in transmission caused
by cooling pure LMO (Fig. 3a) changes as a result of
nonisovalent substitution to an anomalous decrease in
transmission, which is naturally related to the appear-
ance of a “metallic” contribution at temperatures below
TC. As shown by us in [2, 4], the possibility of detecting
the contribution of free carriers in spectra is determined
by the concentration of carriers in separate high-con-
ductivity droplets, which give a quasi-Drude contribu-
tion against the background of a transparent (insulat-
ing) matrix. Indeed, if the sample were in the homoge-
neous dielectric state, light absorption would decrease
with cooling because of a decrease in conductivity. The
observed increase in absorption (decrease in transmis-
sion) as temperature lowers below TC is therefore evi-
dence of the presence of regions in which conductivity
increases, as is characteristic of metals.

It follows that the optical data are evidence of a
charge separation of phases in slightly doped mangan-
ites. Although the ferromagnetic contribution in LMO
and L0.9MO manifests itself at close temperatures (of
about 140 K), the smaller size and/or concentration of
droplets in pure LMO prevent them from being
detected in optical spectra.

To summarize, nonisovalent substitution and/or La
vacancies result not only in the appearance of a band at
0.14 eV but also in a quasi-Drude increase in absorp-
tion. Such a behavior fully conforms to the concept of
phase separation. For instance, in the polar center phase
model [10], nonisovalent substitution in strongly corre-
lated oxides is accompanied by the formation and
growth of nuclei of a new variable-valence metallic
phase, which, in the limiting case, consists of electron

and hole clusters of the  and 
types, respectively. The optical “portrait” of such a
nucleus includes intracenter transitions and a quasi-
Drude contribution of charge fluctuations.

An additional absorption band at an energy of about
0.3 eV is observed for crystals doped with Ce. This
band is likely to be related to transitions in the

 pseudo-Jahn–Teller electron cluster [4].

MnO6
10–[ ] JT MnO6

8–[ ] JT

MnO6
10–[ ] JT
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The crystal doped with 7% Sr may also contain a band
related to the electron center which is not resolved
because of strong absorption. In [4], this band was
observed in the spectrum of the La0.9Sr0.1MnO3 single
crystal. The simultaneous existence of hole and elec-
tron clusters in manganites, which, as a rule, have devi-
ations from stoichiometry in all sublattices, can be
related to the low disproportionation threshold for reac-
tions of the type

2Mn    + ,

where Mn  are the main clusters corresponding to
Mn3+ ions.

The band corresponding to the electron center in the
spectra of LMO and L0.9MO, possibly, lies higher in
energy and is not resolved against the background of
the absorption band edge. A broad band centered at
0.6 eV is observed in experiments on photoinduced
absorption of LaMnO3 [11].

As follows from the shape of the spectrum and the
absorption coefficient value (Fig. 1a), the number of
clusters and the contribution of free carriers in the crys-
tal doped with Sr are substantially larger than in the
crystals doped with Ce.

Light doping with Ce and Sr influences the energy
position of the optical conductivity band at 2.0 eV (Fig. 4).
This is especially clearly seen in the spectrum of the
imaginary part of permittivity ε2 (Fig. 4b). In pure
LMO, the band maximum is situated at "ωmax = 2.20 eV
and shifts to "ωmax = 1.45 eV as a result of p-type dop-
ing with Sr. In the L0.9MO crystal, the maximum of
this band is situated at 1.85 eV. The opposite behavior
of the band is observed under n-type doping with Ce.
The band then shifts to the higher energies ["ωmax =
2.35 eV for LCMO(air)].

The reason for the observed shift of the band maxi-
mum in LSMO may be a considerable contribution of
charge carriers to impurity absorption. The violation of
a monotonic dependence of absorption at 0.6 eV in the
crystal doped with Sr is evidence that the contribution
of charge carriers to the absorption spectrum is still
substantial at this energy value. In L0.9MO and n-type
doped LCMO crystals, charge carries do not make a
noticeable contribution at energies above 0.6 eV, as is
seen from the absorption spectra (Figs. 1a and 2) and
the monotonic temperature dependence of absorption
(Fig. 3b).

The nature of the optical conductivity band at about
2.0 eV (inset in Fig. 4a) was discussed by various
authors. One of the possible explanations is based on
the one-electron band model [13]. Theoretical state
density curves were used to interpret the optical con-
ductivity spectra of La0.7Sr0.3MnO3 in the ferromag-
netic region; the conclusion was drawn that the band at
about 2.0 eV was largely formed by O(2p) – eg(d) 
eg(d) interband transitions in the system of spin-upward

O6
9– MnO6

8–[ ] JT MnO6
10–[ ] JT

O6
9–
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bands, and the band corresponding to an about 5.0 eV
energy was a superposition of electronic transitions in
both systems of spin bands [14]. The surprise is that
light doping causes a large shift of the band related to
the interband transition.

In the cluster model, the band at about 2.0 eV is nat-
urally related to the 5Eg–5T2g d–d transition in Mn3+

ions, and an increase in ε2 at energies higher than 3 eV,
to the lower O2p–Mn3d charge transfer transition in
(MnO6)9– octahedral complexes. The crystal field is
screened by hole density partly localized on surround-
ing oxygen ions in the sample doped with Sr and in
L0.9MO. The partial screening of the negative charge
of oxygen ions should decrease the crystal field split-
ting parameter and, hence, the 5Eg–5T2g transition
energy. On the contrary, the electron doping must lead
to an increase in the splitting parameter and the transi-
tion energy. A small displacement of the center of grav-
ity of the band at 2.0 eV toward higher energies is
indeed observed in the Ce-doped crystal.

The observation of the equatorial Kerr effect with
temperature lowering (Fig. 5, inset) substantiates the
existence of a ferromagnetic contribution in doped
crystals. Figure 5 shows that, similarly to spontaneous
magnetization, the Kerr rotation value is one order of
magnitude larger for the crystal doped with Sr than for
the Ce-containing sample. This is in close agreement
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Fig. 5. Equatorial Kerr effect spectra of LSMO and LCMO
single crystals at 40 K in a 3 kOe magnetic field. Tempera-
ture dependences of the Kerr effect are shown in the insets.
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with a larger absorption caused by charge carriers in the
spectra of LSMO compared with LCMO. It follows that
the optical and magnetooptical data lend support to the
picture of phase separation in slightly doped mangan-
ites, in which “metallic” regions are characterized by
ferromagnetic ordering. The positions of the low-
energy (about 2.0 eV) band in the Kerr rotation spectra
of the samples doped with Sr and Ce, in contrast to the
ε2 spectra (Fig. 4b), virtually coincide (Fig. 5). The dif-
ference between the equatorial Kerr effect spectra at
energies higher than 2.5 eV is evidence of different
ratios between Mn3+, Mn4+, and Mn2+ magnetically
active ions in the single crystals doped with Sr and Ce.
According to [15], the magnetooptical activity of man-
ganese-based oxides (or manganese perovskites) is
determined by the allowed electric dipole charge trans-
fer transitions in the (MnO6)9– and (MnO6)8– octahedral
complexes (3.5 and 4.3 eV, respectively) and the spin-
allowed d–d transitions in the Mn3+ and Mn4+ ions (2.5
and 2.6, 3.1 eV, respectively). Transitions in Mn2+ ions
should make an additional contribution to the equato-
rial Kerr effect spectrum of the Ce-doped single crystal.

Our experiments prove the existence of “metallic”
ferromagnetic droplets, but do not allow the size and
shape of the droplets to be estimated. The literature
contains estimates of magnetic inhomogeneity sizes,
but these estimates are to a great extent determined by
the special features of the methods of study and the
presence of twins in crystals. For instance, the neutron
data on the twin-free La0.94Sr0.06MnO3 crystal [17]
show that ferromagnetic clusters formed as a result of
charge segregation have the shape of platelets stretched
along the [110] direction whose maximum size
amounts to 17 Å. The results on twin crystals are
explained by the existence of isotropic droplets.

4. CONCLUSION

To summarize, charge and magnetic separation of
phases in manganites slightly doped with nonisovalent
impurities makes these materials optically nonuniform;
their properties are in a sense similar to those of com-
posite systems with metallic inclusions [16]. Metallic
ferromagnetic droplets are detectable by optical meth-
ods in crystals slightly p-type doped with Sr (7%) and
n-type doped with Ce. The influence of doping with Ce
on the optical spectra is much weaker than that of dop-
ing with strontium. The absorption edge of the initial
LaMnO3 crystal is related to indirect transitions, whose
onset energy equals 0.30 and 0.40 eV at 293 and 80 K,
respectively.
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Abstract—Purely antiferromagnetic intrinsic oscillations of magnetic ions in a tetragonal ferrimagnet are con-
sidered. The magnetic ions occupy two double positions (forming four magnetic sublattices) so that the center
of symmetry for each position is not a closed element. Not involving the total magnetization vector, the oscil-
lations are not excited by the magnetic field; however, the oscillations can be excited by an alternating electric
field or by a combination of a constant electric field and the alternating magnetic field of a certain frequency.
This phenomenon is a dynamic manifestation of the magnetoelectric interaction. These oscillations, represent-
ing a new special type of spin waves (magnons), were called antimagnons. The intrinsic frequencies of anti-
magnons, as well as the corresponding susceptibilities, were determined. Quantitative estimates were obtained
for a Mn2Sb-based ferrimagnetic phase in both easy-axis and easy-plane orientation states. © 2002 MAIK
“Nauka/Interperiodica”.
1. WHAT IS ANTIMAGNON?

Until recently, spin waves of three types were well
known and extensively studied in magnetically ordered
substances (magnets):

(a) A purely ferromagnetic mode in which the oscil-
latory variables are represented by two components of
the total local magnetization vector M(r);

(b) A quasiferromagnetic mode, in which the oscil-
lations involve, in addition to the two components of
vector M, components of the antiferromagnetic
moment vector (or vectors) L;

(c) A quasiantiferromagnetic mode featuring, in
addition to the oscillations of vectors L, the one-dimen-
sional oscillations (one component) of the magnetiza-
tion vector M.

It is surprising that, until very recently, researchers
did not pay attention to the fact that there is one more
(i.e., the fourth) possible type of spin waves [1–4] (see
also the remark in Appendix). We imply the purely anti-
ferromagnetic oscillations not involving vector M and,
hence, not excited by a magnetic field of the corre-
sponding frequency.1 Provided certain crystallographic
and magnetic structure of a magnet featuring magneto-
electric interaction, oscillations of this type can be
excited by an alternating electric field E(t). One of us
predicted [1] that such purely antiferromagnetic oscil-

1 For fairness sake, we must point out that, calculating the antifer-
romagnetic resonance frequency in the two-sublattice model of
an antiferromagnet in a constant magnetic field with a strength
sufficient for the spin flip of the sublattice magnetization vectors,
Gurevich and Melkov [5] found a solution corresponding to a
mode that could not be excited by the magnetic field. However,
data were presented neither on the crystallochemical and mag-
netic structures in which this effect can take place nor on the pos-
sible methods of exciting oscillations in this structure.
1063-7761/02/9402- $22.00 © 20356
lations can exist, in particular, in a purely ferromagnetic
two-sublattice phase (magnetic structure). The main
attention was paid to the problem of symmetry pertain-
ing to this phenomenon.

Thus, excitation of the purely antiferromagnetic
oscillations in a purely ferromagnetic phase presents, at
first glance, a rather paradoxical situation. In order to
distinguish these unusual electric-field-excited purely
antiferromagnetic spin waves from the aforementioned
spin waves, it was suggested [1] to term the new mode
the “antimagnon waves” and refer to the corresponding
quasiparticles as “antimagnons.”

Recent reports made at EASTMAG-2001 [2, 3]
were devoted to antimagnons excited in a magnet with

four magnetic sublattices (4c position of the 
group), including the cases of both a collinear purely
ferromagnetic phase and weakly noncollinear magnetic
structures (either with or without weak ferromag-
netism). It was shown that the antimagnons can be
excited by an alternating magnetic field H(t) provided
that a constant electric field E = E0 = const is simulta-
neously applied. The corresponding antimagnon-elec-

tric ( ) and antimagnon-magnetic ( ) susceptibility
tensors and the related thermal losses were calculated.
These functions represent the linear response of the
vector (or vectors) L to the applied electric or magnetic
field of a given frequency. In the simple case of a two-
sublattice ferromagnet, the spatial dispersion was taken
into account in the form of the intrinsic oscillation fre-
quency depending on the wavevector k [2].

The main results obtained previously [1–4] can be
summarized as follows:

(i) The antimagnon frequency ω(k) usually falls
within the optical (exchange) range. Situations were

D2h
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indicated when this frequency can be rather low (e.g.,
in the microwave range), which corresponds to a quasi-
two-dimensional system featuring a weak exchange
interaction between sublattices (atomic layers).

(ii) The most important sign of a magnet featuring
antimagnons is the presence of magnetic ions (atoms)
in the multiple site position with a center of symmetry
not representing a closed element. This center permutes
the magnetic ions (and, hence, magnetic sublattices) for
one another.

(iii) The new susceptibilities (antimagnon-electric
and antimagnon-magnetic), introduced in order to
describe the excitation of antimagnons and related to
the magnetoelectric interaction, differ in the intrinsic
symmetry both from each other and from the conven-
tional susceptibilities (electric, magnetic, and magneto-
electric). It should be noted that such a dynamic mani-
festation of the magnetoelectric interaction can also
take place in a phase featuring no static magnetoelectric
effect.

The previous investigations [1–3] considered the
simplest possible examples demonstrating the exist-
ence of antimagnons and some related phenomena, but
did not describe particular magnets featuring antimag-
nons. Only the phases (magnetic structures) in which
all magnetic ions belonged to the same multiple site
position were studied.

The main purpose of this study is to theoretically
predict the existence and consider the features of anti-
magnons in a real ferrimagnet (characterized with
respect to other properties), in which the magnetic ions
occupy the positions of two types not connected by
any symmetry transformation. The most appropriate
structure of this kind might be offered by the yttrium
iron garnet (YIG), in which the iron ions occupy the
required two positions (a and d), one of which (d) pos-
sesses the aforementioned property (ii) necessary for
the existence of antimagnons. Unfortunately, the mag-
netic structure of YIG comprising 20 sublattices [6] is
too complicated for the first study of antimagnons in
ferrimagnets. For this reason, we have selected a fer-
rimagnet possessing simpler crystal and magnetic
structures, namely, the ferrimagnetic compound
Mn2Sb with a tetragonal crystal lattice. The tetragonal
lattice is an important point, since previously [1–4]
mostly the crystals possessing a rhombic symmetry
were considered. It was interesting to know what can
change upon going to uniaxial systems, in particular,
to crystals possessing a major symmetry axis of the
third, fourth, or sixth order.

However, Mn2Sb has one disadvantage: this com-
pound possesses a metallic conductivity that would cer-
tainly complicate the excitation of antimagnons by an
electric field. This problem will be considered in the
last section of our paper.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
2. CRYSTALLOCHEMICAL
AND MAGNETIC STRUCTURES

The intermetallic compound Mn2Sb (with the Curie
point at Tc = 550 K) possesses a unit cell containing two
pairs of magnetic Mn ions occupying (see the figure)
positions a (MnI) and c (MnII). A characteristic feature
is that ions in each pair are related via a center of sym-
metry [7, 8], so that both ion pairs possess the property
(ii). Thus, below we will consider the properties of anti-
magnons in ferrimagnets using Mn2Sb as an example.

The crystal lattice symmetry of the tetragonal ferri-

magnet Mn2Sb belongs to the P4/nmm( ) group.
The neutron diffraction investigations [7] showed that
the magnetic exchange structure of this compound
comprises the (001) planes of MnI and MnII ions occu-
pying various positions and, hence, possessing different
magnetic moments.

As can be seen from the figure, Mn atoms in posi-
tions a [1(0, 0, 1/2) and 2(1/2, 1/2, 1/2)] and in positions
c [3(0, 1/2, 1/2 + z) and 4(1/2, 0, 1/2 – z)] are actually

related via the center of symmetry . In the interval of
temperatures between 240 and Tc = 550 K, the atomic
magnetic moments of Mn2Sb are parallel to the crystal-
lographic axis c (the easy magnetization axis state),
whereas, in the interval 0 K < T < 240 K, these moments
are perpendicular to axis c (the easy magnetization
plane state) [7].

Note that, according to the figure, the magnetic
exchange structure contains a group of atoms belonging
to three layers MnII–MnI–MnII (four atoms per unit
cell), which is repeated in every next period along the z
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A schematic diagram of the unit crystal cell of Mn2Sb. Only
positions of the magnetic ions MnI (black circles) and MnII
(black squares) in a magnetic structure of the easy axis type
are indicated. In the text, we also consider an easy-plane
state, whereby the magnetic moments are oriented as
Ma ↓↑  Mc || H || y. Open circles correspond to the centers
of symmetry; also indicated are the rotation axes 4 || z and
2d || [110].
SICS      Vol. 94      No. 2      2002



 

358

        

MIRSAEV, TUROV

                                                               
Table of transformations of the M, L, H, and E vectors

Γi
H, E
M, L (–) 2x(–) 2y(–) 4z(–) 4z(+)

Γ1 Mx, Hx +1 +1 –1 My, Hy

Γ2 My, Hy +1 –1 +1 –Mx, –Hx

Γ3 Mz, Hz +1 –1 –1 Mz, Hz

Γ4 Lx, Ey –1 –1 +1 –Ly, –Ex Ly, –Ex

Γ5 Ly, Ex –1 +1 –1 Lx, Ey –Lx, Ey

Γ6 Lz –1 +1 +1 –Lz Lz

Ez –1 –1 –1 Ez

Note: Given on the left of the double vertical line are the transformations for the Pmmn group (a subgroup of P4/nmm); symbols +1 and –1
indicate whether the function sign changes or not, respectively, under the action of the corresponding symmetry element; the right-hand
part of the table gives the transformation rules for the elements 4z( ) completing Pmmn to P4/nmm.

1

+−
                   
axis. Within each group of this type, the total magnetic
moment is nonzero since the moments of MnI (position
a) and MnII (position c) are different, amounting to
(2.13 ± 0.20)µB and (3.87 ± 0.40)µB, respectively. The
magnetic moments of MnI and MnII layers are ordered
antiparallel relative to each other in both easy axis and
easy plane states, which is generally characteristic of a
ferrimagnet. We will consistently consider both cases
of the magnetic orientation.

The four-sublattice magnetic exchange structure of
Mn2Sb with the magnetizations Mn (n = 1, 2, 3, 4) is
conveniently treated as combination of two-sublattice
subsystems a and c with the basis set vectors of ferro-
magnetic Mξ and antiferromagnetic Lξ (ξ = a, c)
moments:

(1)

Shown in the figure are the independent crystal sym-

metry elements, including the center of symmetry ,
a fourth-order symmetry axis parallel to the z axis, and
a diagonal binary axis of symmetry 2d || [110], which
can be considered as generators of the P4/nmm group.
In terms of these symmetry elements, the types of all
positions can be coded by indicating the order of ion
permutation: self-substitution (1  1, 2  2, and
3  3, 4  4) versus one for another (1  2 and
3  4). Accordingly, a symmetry element is pro-
vided with an index (+) or (–). As can be readily seen
from the figure, the ion positions under consideration
correspond to the following codes:

(2)

Note that, if the binary axis 2x = 2d × 4z were used
instead of the 2d axis, both positions would be charac-
terized by 2x ≡ 2x(–) and the codes of a and c would dif-

Ma M1 M2, La+ M1 M2,–= =

Mc M3 M4, Lc+ M3 M4.–= =

1

          
               
     

a( ) 1 –( )4z –( )2d +( ),

c( ) 1 –( )4z +( )2d –( ).
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fer only by signs at the 4z axis (minus versus plus).2

Note that we deal here only with the permutation prop-
erties of the symmetry elements with respect to the
position under consideration, irrespective of the mag-
netic exchange structure (ferro-, ferri-, or antiferromag-
netic). In accordance with the above considerations, a
necessary condition for the existence of antimagnons

excited by the electric field is  ≡ (–). In the given (ii),
this condition is satisfied for both positions.

3. THE TABLE OF TRANSFORMATIONS 
AND SPIN-WAVE REPRESENTATIONS

The calculation of intrinsic oscillation frequencies
for a given ground state (phase) is simplified when it is
known how the dynamic (oscillatory) variables are sep-
arated between the so-called spin-wave representations
for this phase [4, 9–11].

In the case under consideration, this can be achieved
in the following way. First, let us determine the spin-
wave representations for the rhombic group Pmmn,
which is a subgroup of the true tetragonal P4/nmm

group since  = 2z = 2x × 2y (taking into account the

fact that 2z ≡ 2z(+) = (±) for both positions). For this
purpose, we will use a part of the table of transforma-
tions, presented below for the Mi and Li components
(i = x, y, z), acted upon by generators of the above sub-

group (–)2x(–)2y(–) that are the same for both posi-
tions a and c (see the top left part of the table). The
right-hand part of the table indicates how the functions

2 The notation (2) for the symmetry elements g = g(+) and g = g(–)
was taken from the theory of antiferromagnetism [4], where the
element g(+) permutes the magnetic moments belonging to the
same magnetic sublattice (or to the sublattices with parallel mag-
netizations), while g(–) permutes the magnetic moments of sub-
lattices with opposite magnetization orientations. In that theory,
the antiferromagnetic structures g(+) and g

 

(–) are referred to as
the even and odd, respectively. Below we will call 

 

g

 

(+) and 

 

g

 

(–)
the closed and open elements, respectively.

1 1

4z
2

4z
2

1                                                                                                      
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presented in the second column transform under the
action of element 4z for position a, 4z(–) and c, 4z(+).
Thus we take into account the fact that the two one-
dimensional representations Γ1 and Γ2 (or Γ4 and Γ5)
have to be replaced by a single two-dimensional repre-
sentation Γ12(Mx, My) or Γ45(Lx, Ly), since the functions
Mξx are mixed with Mξy and the functions Lξx are mixed
with Lξy (ξ = a, c). Note that the invariants in the rhom-
bic symmetry group Pmmn can now be refined using an
additional requirement of invariance with respect to
elements 4z(–) or 4z(+).

3.1. Easy-Axis Phase Γ3(Mξz) with Ma ↓↑  Mc || H || z
We begin an analysis of the spin-wave representa-

tions for an easy-axis phase with Ma ↓↑  Mc || H || z, the
ground state of which is characterized by M1 ↓↓  M2↓↑
M3 ↑↑ M4 || z. In terms of the Pmmn group (see the
table), both positions possess the same spin-wave rep-
resentations (for the algorithm, see [4, 9]):

, (3)

(4)

Here, the sign ∆ at M and L indicates that we deal with
the oscillatory variables, although ∆Mi ≡ Mi and ∆Li ≡
Li (i = x, y). The same representations determine the
independent modes upon taking into account the ele-
ments 4z(±), since there are no symmetry elements mix-
ing Mξ with Lξ (according to the table, these compo-

nents transform differently as a result of inversion :

M = M, L = –L. The products MaiMci and LaiLci (i =
x, y), being independent invariants of the rhombic
group Pmmn (factors of a product transform identi-
cally), form different combinations upon going to the
tetragonal symmetry group P4/nmm to yield, respec-
tively,

and

The difference is related to dissimilar parity of the ele-
ments 4z(–) and 4z(+). The same factor accounts for the
presence of an exchange invariant Ma · Mc and the
absence of invariant La · Lc. Note that it is the invariants
I1 and I2 that connect the magnetic moment oscillations
in positions a and c.

The table also indicates the rules of transformation
for the other variables required for our description,
namely, the vectors of magnetic (H) and electric (E)
fields. Thus, the table contains all the symmetry-related
information necessary for analysis of the problem
under consideration.

It should also be noted that the spin-wave represen-
tation (3) corresponds to ferromagnons (the oscillatory

Γ12 ∆Mξx ∆Mξy,( )

Γ45 ∆Lξx ∆Lξy,( ).

1

1 1

I1 MaxMcx MayMcy+=

I2 LaxLcx LayLcy.–=
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variables include only components of the Ma and Mc

vectors), while representation (4) corresponds to anti-
magnons (the oscillations involve only the La and Lc

vectors).

3.2. Easy-Plane Phase Γ2(Mξy) with Ma ↓↑  Mc || H || y
Since the anisotropy in the basis plane xy is not

taken into account, we can direct the magnetic field, for
example, as H || y. In this case, the total magnetization
M = Ma + Mc, as well as the total magnetization for
position c (|Mc | > |Ma |), will be parallel to the field H,
so that

M ↑↑  Mc ↑↑  H || y ↓↑  Ma. (5)

In terms of the Pmmn group, we obtain (using the table)
the following spin-wave representations for this phase:

(6)

Note that these representations are not mixed even after
taking into account the elements 4z(±) because of the
different transformation properties of vectors M and L.

4. THERMODYNAMIC POTENTIAL 
AND EQUATIONS OF MOTION: 

EASY-AXIS PHASE

In what follows, we will consider the model of equal
moduli in which

and, hence,

(7)

Assuming for the ground state that Ma0 ↓↑  Mc0 || H || z,
where H is the constant magnetic field, we can write the
thermodynamic potential density in a bilinear homoge-
neous exchange approximation (taking into account the
transformation rules for the basis set vectors Mξ and Lξ
indicated in the table) in the following form:

(8)

Here, Aa > 0 and Ac > 0 are the exchange interaction
constants for the ions in positions a and c, respectively,
and B > 0 is the constant of exchange between these
positions. Generally speaking, the expression for the
potential (8) must also take into account exchange

terms of the type  and ; however, this would
only lead, by virtue of the first condition (7), to renor-
malization of the Aa and Ac constants. In addition,
expression (8) for the potential Φ includes the Zeeman

Γ13 ∆Mξx ∆Mξ z,( ), Γ46 ∆Lξx ∆Lξ z,( ).

M1 M2

Ma0

2
---------, M3 M4

Mc0

2
---------,= = = =

Mξ
2 Lξ

2+ Mξ0
2 , Mξ Lξ⋅ 0, ξ a c.,= = =

Φ 1
2
--- AaLa

2 AcLc
2+( ) BMa Mc MzHz–⋅+=

–
Da

M0
-------Mz ExLax EyLay–( )

Dc

M0
-------Mz ExLcx EyLcy+( ).–

Ma
2 Mc

2
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energy in the magnetic field H || z and the magnetoelec-
tric interaction represented by terms with the coeffi-
cients Da and Dc.

As for the latter terms, it is important to take into
account that these quantities involve the total magneti-
zation Mz = Maz + Mcz, rather than the Ma and Mc values
(z components). (In the ground state with M = M0 || z,
the ratio Mz/M0 = 1 is written only so as to check for the
invariance.) It is evident that the expression (8) for Φ
must also include the analogous terms with the total
z projection of the antiferromagnetic vector L = Mc – Ma

(possessing the same symmetry as that of M, Ma, and
Mc, since there are no symmetry elements relating the
ions in positions a and c). It should be emphasized that
we are speaking about the total antiferromagnetic
moment vector L, rather than about vectors corre-
sponding separately to positions a and c. We have
retained only terms containing the total projection Mz

because, first, L || M for the field strengths Hz up to
large values determined by the interposition exchange
constant B and, second, it is the total magnetization M
through which the magnetic field H acts upon the entire
ferromagnetic structure (see, e.g., [5, section 3.3]).
Under these conditions, we may assume that the terms
involving L are included in the corresponding magne-
toelectric terms involving M. Strictly speaking, the
coefficients in the two last terms should be written in
the following form:

(9)

The condition of equal moduli (7) implies that the
longitudinal components Mξz (ξ = a, c) are quadratic
functions of the transverse components of vectors Mξ
and Lξ:

(10)

where ξ = a, c;  = –Ma0 and  = Mc0 (see figure).
As can be seen from relationships (10), the excitation of
antimagnons (even due to the thermal motions) leads,
as well as the excitation of usual magnons, to a decrease
in the magnetization (longitudinal) for one position
(Mc0) and an increase in the magnetization for another
position (Ma0), the total magnetization (M0) changing
accordingly. Taking into account these relationships,
we can separate in the thermodynamic potential (8) a
quadratic (with respect to homogeneous oscillations of
Lξx and Lξy) part corresponding to the antimagnon
modes:

(11)

da1Maz
0 da2Mcz

0 or Da
MM0z Da

LL0z,+ +

dc1Maz
0 dc2Mcz

0 or Dc
MM0z Dc

LL0z.+ +

Mξ z Mξ z
0 1

2Mξ0
------------ Mξx

2 Mξy
2 Lξx

2 Lξy
2+ + +( ),–≈

Maz
0 Mcz

0

Φ2
1
2
--- Ãa Lax

2 Lay
2+( ) 1

2
--- Ãc Lcx

2 Lcy
2+( )+=

– Da ExLax EyLay–( ) Dc ExLcx EyLcy+( ).–
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Here,  and  are the exchange constants renormal-
ized with an allowance for the interposition exchange
constant B and the external magnetic field H || M0 || z
(M0 = Ma0 + Mc0):

(12)

The quadratic forms in Mξx and Mξy determining the fer-
romagnetic modes for each position ξ can be separated
from (11) (where any common terms are absent). This
yields the known results (see [5]) not considered below.

In order to determine the oscillation frequencies and
amplitudes for the antimagnons excited by the alternat-
ing electric field

we will use the Landau–Lifshitz equations (applicable
to the approximation of equal moduli) [4, 9]:

(13)

where ξ = a, c and γ is the absolute value of the magne-
tomechanical ratio. As can be seen from Eqs. (13), the
purely antiferromagnetic mode Γ45(Lξx, Lξy) of the
Γ3(Mξz) phase with Ma0 ↓↑  Mc0 || z is described by the
equations

(14)

where ξ = a, c and Γ is the Bloch damping parameter
(introduced in the simplest way according to [12],
assuming Γa = Γc).

5. INTRINSIC OSCILLATION FREQUENCIES 
AND SUSCEPTIBILITIES

Substituting expression (11) for Φ2 into Eqs. (14),
we obtain

(15)

Here,  are the antimagnon-electric susceptibility ten-
sors related to positions a and c, for which

 (16)

Ãa Ãc

Ãa Aa

BMc0 Hz–
Ma0

-------------------------,+=

Ãc Ac

BMa0 Hz+
Mc0

--------------------------.+=

Ex y, t( ) iωt–( ),exp∝

Ṁξ γ Mξ
∂Φ
∂Mξ
----------- Lξ

∂Φ
∂Lξ
---------×+× 

  ,=

L̇ξ γ Mξ
∂Φ
∂Lξ
--------- Lξ

∂Φ
∂Mξ
-----------×+× 

  ,=

L̇ξx Γ Lξx+ γMξ z
0 ∂Φ2

∂Lξy

----------,–=

L̇ξy Γ Lξy+ γMξ z
0 ∂Φ2

∂Lξx

----------,   =

Lξx βxx
ξ Ex βxy

ξ Ey,+=

Lξy βyx
ξ Ex βyy

ξ Ey.+=

β̂
ξ

βxx
ξ ωξΩξ

ωξ
2 ω̃2–

------------------, βxy
ξ i

ω̃Ωξ

ωξ
2 ω̃2–

------------------,–= =
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where ξ = a, c and the other components are determined
from the relationships

(17)

(18)

The different signs in Eqs. (17) and (18) reflect the fact
that the magnetoelectric interaction for the ions in posi-
tions a and c is described in the thermodynamic poten-
tial (8) by different invariants Mz(LξxEx ),
where the signs minus and plus refer to positions a and
c, respectively.

In expressions (16), the quantities

(19)

determine the antimagnon resonance frequencies,

(20)

are the characteristic parameters (also having the
dimensionality of frequency) of the magnetoelectric

interaction, are exchange constants given by formu-
las (12), and  in (16) is the complex fre-
quency taking into account the dissipation. Thus,
expressions (16) and (19) describe two independent
antimagnon modes, which correspond to positions a
and c. According to Eqs. (15)–(18), these antimagnons
are elliptically polarized. The polarization ellipses are
different for positions a and c, being close to circles for
ω  ωξ (the formulas are omitted).

Now let us determine the thermal losses Q = Qa + Qc

related to the antimagnons excited by an electric field

Since the factors at Ex and Ey in the potential (11) play
the role of the electric polarization, we can write [13]

(21)

where ξ = a, c and the upper bar indicates averaging
over a time t @ 2π/ω. Here and below, the signs minus
and plus in the notation ( ) refer to positions a and c,
respectively. Substituting Eqs. (15)–(18) into expres-
sion (21), we obtain

(22)

βxx
a βyy

a , βxy
a– βyx

a ,= =

βxx
c βyy

c , βxy
c –βyx

c .= =

 LξyEy+−

ωξ γMξ0 Ãξ=

Ωξ γMξ0Dξ=

Ãξ

ω̃ ω iΓ+=

E t( ) E0 iωt–( ).exp=

Qξ Dξ Lξx

∂Ex

∂t
--------- Lξy

∂Ey

∂t
---------+− 

  ,=

+−

Qξ
1
2
---ωDξ–=

× βxx''
ξ

E0
2 iβxy'

ξ
E0xE0y* E0x* E0y–( )+[ ] ,
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where  =  + i  and

(23)

Now we will consider the possibility of exciting
antimagnons by an alternating magnetic field H(t). This
may take place provided that a constant electric field
E = E0 is simultaneously applied in a certain direction
[1−3]. In particular, this possibility is offered by invari-
ants of the type

(24)

Note that there are magnetoelectric invariants of the
type

(25)

which also allow the field H to interact with Lx and Ly.
However, this implies that the system in the field E0 || z
also features invariants obtained from (25) by substitut-
ing Hx  Mx and Hy  My. These invariants pro-
duce mixing of the ferromagnon (3) and antimagnon (4)
modes, thus giving rise to a common quasiferromag-
netic mode (Mx, My, Lx, Ly). The latter mode is just what
will be excited by the field H(t) ⊥  z.

The invariants (24) have to be substituted for the last
two terms in expression (8). The corresponding invari-
ants are obtained upon substituting

The corresponding solutions given by Eqs. (14) are now
as follows:

(26)

where

(27)

are components of the antimagnon-magnetic suscepti-
bility tensor. Here, the parameters

(28)

are determined, in contrast to the analogous quantities
(20), by the constants Gξ, while ωξ are the antimagnon
resonance frequencies given by formulas (19).

β̂
ξ

β'ˆ ξ
β''ˆ ξ

βxy'
ξ ΩξΓ ωξ

2 ω2+( )

ωξ
2 ω2–( )2

4ω2Γ2+
-----------------------------------------------,–=
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ξ 2ωωξΩξΓ
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2 ω2–( )2

4ω2Γ2+
-----------------------------------------------.=

G
M0
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LxHx LyHy+−( )E0z,

Mz Hz t( ) iωt–( ), Dξ Gξ ,exp∝
Ex E0x, Ey E0y.

Lξx δxz
ξ Hz, Lξy δyz

ξ Hz,= =

δxz
ξ Ωξ ωξE0x iω̃E0y–( )

M0 ωξ
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----------------------------------------------,=

δyz
ξ Ωξ ωξE0y iω̃E0x+( )

M0 ωξ
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-----------------------------------------------+−=

Ωξ γMξ0Gξ ,=
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It should be noted that tensors βij and δij represent
susceptibilities of a new type, differing in the intrinsic
symmetry both from each other and from the conven-
tional susceptibilities (electric κij, magnetic χij, and

magnetoelectric αij). Indeed, the operators of spatial ( )
and temporal (1') inversion transform βij and δij as the
products LiEj and LiHj, respectively, whereas the con-
ventional tensors κij, χij, and αij transform as PiEj, MiHj,
and PiHj, respectively (where P is the polarization vec-
tor).

Thus, the above considerations show that, in the
exchange approximation, each position (a and c) of the
magnetic ions corresponds to its own antimagnon
branch with the corresponding intrinsic oscillation fre-
quency.

Now we will present the results of analogous calcu-
lations performed in the exchange approximation (with
an allowance for the Zeeman energy at H || M0 || y) for

antimagnons in the easy-plane phase Γ2( ) (see Sec-
tion 3.2). The initial quadratic form with respect to the
oscillatory variables Lξx and Lξz for the antimagnon
mode is

(29)

where  are given by formulas (12) with Hz replaced
by Hy. The last two terms in expression (29) are due to
invariants of the type (MxEx  MyEy)Lξz for Mx = Ex = 0.

Since the anisotropic terms in expression (29) are
not taken into account, it is evident that the antimagnon
resonance frequencies will again be represented by for-
mulas (19) with the aforementioned replacement. Now,

the antimagnon-electric susceptibilities  for the
easy-plane state can be expressed through the compo-

nents of susceptibility  determined for the easy-
axis phase:

(30)

Similar relationships take place for the antimagnon-
magnetic susceptibility tensor components, which are
obtained by replacing the two last terms in expression
(29) by products of the type

(31)

The resulting antimagnon-magnetic susceptibilities

 for the easy-plane phase can be expressed through

1

Mξy
0

Φ2
1
2
--- Ãa Lax

2 Laz
2+( ) 1

2
--- Ãc Lcx

2 Lcz
2+( )+=

+ DaLazEy t( ) DcLczEy t( ),–

Ãξ

+−

β̂ ⊥( )

β̂ ||( )

βxy
ξ ⊥( ) βxy

ξ ||( ),–=

βzy
ξ ⊥( )    β xx 

ξ ||( ) .=  +−

Gξ

M0
-------E0yLξ zHy t( ).

δ̂ ⊥( )
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components of the  tensor (27) determined for the
easy-axis state at E0x = 0:

(32)

Note that the invariants for E0 || z cannot be used
instead of (31) in expressions for the easy-plane state
(nor in those for the easy-axis state), because the former
invariants relate the antimagnon mode Γ46 (for H  M)
to the quasiferromagnetic Γ13 mode.

6. ANISOTROPY, ORIENTATIONAL PHASE 
TRANSITIONS, AND RELATIONSHIPS 

BETWEEN THE ANTIMAGNON MODES 
OF POSITIONS a AND c

The orientational phase transitions considered
below are related to the magnetic anisotropy. These
transitions were treated in sufficient detail both gener-
ally for ferrimagnets [6] and in particular for Mn2Sb
[14]. Determining the orientational ground states and
the phase transition between these states, the anisotropy
certainly influences the antimagnon spectrum as well.
Taking into account the magnetically anisotropic rela-
tivistic interactions and their contributions to the spec-
trum, it would be inconsistent to employ an expression
for Φ without the relativistic invariant

(33)

This invariant, while not influencing the ground state,
may significantly affect the spectrum by connecting the
antimagnons of positions 

 

a

 

 and 

 

c

 

, which are indepen-
dent in the exchange approximation.

Now we will list the phase transitions related to the
problem of antimagnons in ferrimagnets within the
framework of a model studied. Note that this model,
albeit based on a particular compound (Mn

 

2

 

Sb), admits
a rather broad variation of the parameters. This implies
that the model is applicable to other ferrimagnets with
similar crystal and magnetic structures.

The first one that we mention is the orientational
phase transition from the easy-axis to easy-plane state
occurring in cooled Mn

 

2

 

Sb at 

 

T

 

 = 240 K, which is
related to a temperature-induced change in the mag-
netic anisotropy. In a bilinear approximation, the aniso-
tropic contribution to  Φ  determining the orientational
ground state ( L 

ξ
  = 0) is

(34)

Proceeding without violation of the antiparallel mutual
orientation of magnetizations 

 

M

 

a

 

0

 

 and 

 

M

 

c

 

0

 

, the orienta-
tional phase transition from the easy-axis to easy-plane
state and back is related to a change in the sign of the
following combination of constants 

 

K

 

a

 

, 

 

K

 

c

 

, and 

 

K

 

ac

 

:

(35)
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δxy
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ξ ||( ), δzy
ξ ⊥( )– δyz

ξ ||( ).= =

Λ LaxLcx LayLcy–( ).

Φan
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2
---KaMaz

2–
1
2
---KcMcz

2– KacMazMcz.+=
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whereby K > 0 corresponds to the easy-axis and K < 0,
to the easy-plane state. The point K = 0 corresponds to
the first-order phase transition, although no hysteresis
takes place in the approximation (bilinear anisotropy)
under consideration. The hysteresis appears when
terms of a higher order are taken into consideration in

the expression for  [14].

A transition from the state Ma0 ↓↑  Mc0 || z to Ma0 ↓↑
Mc0 ⊥  z may also take place under the action of an
external field H ⊥  z (e.g., for H || y). The total magneti-
zation M0 = Ma0 + Mc0 gradually rotates within the
interval of field strengths

(36)

The boundary values indicate two points of the second-
order phase transition corresponding to the beginning
(Hy = 0) and end (Hy = HA) of the magnetization rota-
tion.

In addition, there are two points of the second-order
phase transition related to overcoming the exchange
interaction between positions a and c (parameter B) in
a field H || M (in the easy-axis and easy-plane states).
The first point,

(37)

corresponds to the onset of deviation from collinear
(antiparallel) orientation and the rotation of vectors Ma0
and Mc0 in the direction of H (the so-called angular
phase). This rotation terminates at the point

, (38)

where the spin flip takes place and a phase with Ma0 ↑↑
Mc0 || H is formed at H > HB2. With the magnetic anisot-
ropy taken into account, additional terms HK1 and HK2
(different for the easy-axis and easy-plane states)
appear in the right-hand parts of Eqs. (37) and (38),
respectively.

Our task was to trace variation of the antimagnon
frequencies during the above phase transitions, to
determine whether the antimagnon modes exhibit soft-
ening in the vicinity of these points, and to establish the
role of the interposition interaction (33) in these pro-
cesses. Not dwelling on the details of analysis, we only
present the results.

In the easy-axis state (Γ3(Mξz) phase) corresponding
to the interval of field strengths

, (39)

the system features antimagnons with the frequencies
ω1 and ω2 given by the expressions

(40)

Φan
0

0 Hy HA< < K
M0
-------.=

H HB1≥ B Mc0 Ma0–( ),=

HB2 B Mc0 Ma0+( )=

0 Hz HB1<≤ B Mc0 Ma0–( )=

ω1 2,
2 1

2
--- ωc

2 ωa
2 2ωΛ

2+ +[=

± ωc ωa+( ) ωc ωa–( )2 4ωΛ
2+ ] ,
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where

(41)

By the same token, the easy-plane state (Γ2(Mξy)
phase) corresponding to approximately the same inter-
val of field strengths (Hz  Hy) features the antimag-
nons with

(42)

where

(43)

An analysis of expressions (40)–(43) leads to the
following conclusions:

(i) The bound a–c antimagnons possess different
frequencies ω1 and ω2 in the easy-axis and easy-plane
states, respectively. The difference is related both to the
magnetic anisotropy and to the interaction (33)
between positions a and c. The relative relativistic
smallness of corrections is determined by the ratios
K/Aξ and (Λ/Aξ)2. An exception is offered by a particu-
lar structure with ωa = ωc, in which case the second
ratio is replaced by Λ/Aξ.

3

(ii) Formulas (42) and (43) for the frequencies ω1
and ω2 are applicable in the case when the state with
M0 ⊥  z is obtained from the easy-axis state under the
action of a field with Hy > HA. As the field strength Hy

decreases from the region of large fields, no one of the
antimagnon frequencies goes to zero at the phase tran-
sition point Hy = HA, although one of these frequencies
exhibits a certain softening when this point is
approached from above (ωc decreases and ωa increases

3 This equality may, in principle, take place if initially ωa > ωc at
H = 0 and then ωa decreases while ωc increases with growing H.
The magnetic field strength H at which the ωa and ωc values
become equal must be smaller than that determined by condition
(37), otherwise the aforementioned phase transition involving the
rotation of Ma0 and Mc0 would begin. The estimates showed that
this situation can hardly take place in Mn2Sb.

ωc γ Ac Kc+( )Mc0 B Kac+( )Ma0 Hz+ +[ ] ,=

ωa γ Aa Ka+( )Ma0 B Kac+( )Mc0 Hz–+[ ] ,=

ωΛ
2 γ2Λ2Ma0Mc0.=

ω1 2,
2 1

2
--- ωc

2 ωa
2 ωc

2 ωa
2–( )2 ωΛ

4+±+ ,=

ωc
2 γ2 AcMc0 BMa0 Hy+ +( )=

× Ac Kc–( )Mc0 BMa0 Hy+ +[ ] ,

ωa
2 γ2 AaMa0 BMc0 Hy–+( )=

× Aa Ka–( )Ma0 BMc0 Hy–+[ ] ,

ωΛ
4 γ4Λ2Ma0Mc0=

× Aa Ka–( )Ma0 BMc0 Hy–+[ ]
× Ac Kc–( )Mc0 BMa0 Hy+ +[ ] .
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with decreasing Hy), reaching a possible minimum at
the point where the reverse transition begins.

(iii) Approximately the same behavior is observed at
the phase transition points HB1 and HB2 bounding the
angle phase for both H || M0 || z and H || M0 ⊥  z. The

antimagnon frequencies  do not go to zero at any
of these points. Apparently, the phase transition at these
points involves some other mode—a quasiferromag-
netic mode Γ12 for the Γ3(Mξz) phase or Γ13 for the
Γ2(Mξy) phase—and that mode exhibits softening (see,
e.g. [4, Section 11.3]).

(iv) The points HB1 and HB2 exhibit an interesting
feature: the antimagnon frequencies determined at
these points in the exchange approximation are equal.
This can be readily checked using the corresponding
expressions.

Finally, there is an important (in our opinion, non-
trivial) result concerning corrections to the antimag-

non-electric susceptibility  given by formulas (16),
related to the interaction term (33). For example, omit-
ting for simplicity the magnetic anisotropy term, we
obtain instead of formulas (16) the following expres-
sions for the antimagnon-electric susceptibility tensor
of the easy-axis phase Γ3(Mξz):

(44)

For position c, the susceptibilities  and  can be
calculated using formulas (44) by substituting the

indexes a  c. The other components ( , ) are

obtained from the  and  values using relation-
ships (17) and (18).

Thus, the corrections depend on the frequency 
and possess a resonance character, being maximum at
the frequency ωc in position a and at the frequency ωa

for position c. It is important to note that the corrections
are linear with respect to interaction parameter Λ. At
the resonance point, the relative magnitude of these
corrections, determined by the ratio Λ/Γ, can probably
be not small. 

7. CONCLUSIONS AND QUANTITATIVE 
ESTIMATES

Let us summarize the above considerations. It is
established that ferrimagnets (in particular, Mn2Sb)
containing magnetic ions connected to each other via

the symmetry center  can feature the spin waves of
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a new type termed antimagnons. These are oscillations
of the purely antimagnon mode (not involving the total
magnetization vector), which can be excited by an
alternating electric field E(t) both in the presence and in
the absence of a magnetic field. These oscillations can
also be excited by an alternating magnetic field H(t),
provided that a constant electric field E0 is simulta-
neously applied in a certain direction. The antimagnon-
electric and antimagnon-magnetic susceptibility ten-
sors βij [Eqs. (16)–(18) and (30)] and δij [Eqs. (27) and
(32)] describing these excitations exhibit a resonance
dependence on the frequency of the exciting field. In
contrast to a ferrimagnet with a single-position mag-
netic structure [1], the two-position material under con-
sideration possess two antimagnon resonance frequen-
cies, ωa and ωc (19), which correspond to the bound
self-oscillations of a pair of magnetic moments in posi-
tions a and/or c. The presence of two antimagnon

branches in the spectrum is related to the fact that  =

 for both positions.

In the exchange approximation, the oscillations of
vectors La and Lc are not interconnected, although,
according to Eqs. (19) and (12), the exchange interac-
tion between positions a and c determined by the
parameter B influences the frequencies. In this approx-
imation, equal frequencies ωa and ωc are obtained for
the two (easy-axis and easy-plane) orientational states
considered, given the corresponding field orientation
(H || z and H ⊥  z, respectively). A difference between a
and 

 

c 

 

frequencies in the easy-axis and easy-plane states
arises on taking into account, first, the magnetic anisot-
ropy and, second, the relativistic interposition interac-
tion (33). This interaction links the oscillation compo-
nents 

 

L

 

a

 

 and 

 

L

 

c

 

 into a unified system with the intrinsic
frequencies 

 

ω

 

1

 

 (40) and 

 

ω

 

2

 

 (42) for the easy-axis and
easy-plane states, respectively. Neither of the obtained
antimagnon modes is soft (i.e., none goes to zero at the
phase transition points). There are grounds to believe
that the corresponding phase transitions involve the
aforementioned quasiferromagnetic mode (not consid-
ered in this study), and just that mode turns out to be
soft.

An important nontrivial result consists in establish-
ing the resonance character of the effect of interposition
interaction (33) upon the antimagnon-electric suscepti-

bility .

An essential aspect of this study is that we have con-
sidered only homogeneous antimagnons representing
an energy gap in the antimagnon spectrum, which are
excited by a homogeneous electric field 

 

E

 

(

 

t

 

). Although
we believe that this restriction is justified for the first
study of antimagnons in ferrimagnets, an urgent task in
the further investigation of the antimagnon waves in
ferrimagnets is making allowance for the spatial disper-
sion. This is necessary, first of all, for the description of

1

1 –( )

β̂
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phenomena involving the interaction of antimagnons
with the waves of other types (electromagnetic, elastic,
etc.). The study of such phenomena is an important sub-
sequent step in further analysis of the antimagnon prob-
lem. In addition, the conducting ferrimagnets are pene-
trated by the field E(t) to a finite depth as a result of the
skin effect. Even this factor alone leads to an inhomo-
geneous field distribution, which results in the excita-
tion of inhomogeneous antimagnons. Moreover, this
situation implies the need for formulating and solving
the problem of surface antimagnons.

Although the results obtained above are, generally
speaking, also applicable to other types of magnets
(including a two-position ferromagnet with four mag-
netic sublattices), it would be interesting to obtain some
necessary quantitative estimates at least for Mn2Sb.

First, we can use the molecular field theory [15] to
express the exchange parameters Aξ through the Curie
point (Tc = 550 K):

(45)

Here, N ≈ 1022 cm–3 is the concentration of magnetic
ions; kB is the Boltzmann constant; Sa = 3/2, Sc = 5/2 are
the atomic spins [14] and Ma0 ≈ 400 G, Mc0 ≈ 700 G are
the magnetizations in positions a and c, respectively.
Performing the calculations, we obtain

which yields, according to (19), the antimagnon fre-
quencies

Note that the parameter B is significantly smaller than
the Aξ values and, hence, does not influence ωξ in order
of magnitude. The same is valid for the anisotropy con-
stants, which are smaller than Aξ by 2–3 orders of mag-
nitude [14].

Now we have to estimate the depth of penetration of
the electric field E(t) at the frequency ωξ. Using exper-
imental data [16] on the electric conductivity and the
Hall effect, it is easy to show that the frequencies of
interest in this study fall within the so-called classical
absorption range (see, e.g., [17]) in which ω < 1/τ (τ is
the free path time) and the skin layer thickness is

(46)

where c is the velocity of light and σ is the specific elec-
tric conductivity. The calculation yields

δ ≈ 10–5 cm.

Aξ 6N
kBTc

Mξ0
2

-----------
Sξ

Sξ 1+
-------------- 

  .≈

Aa 1.7 104, Ac 6.6 103,×≈×≈

ωa 1.2 1014 s 1– , ωc 0.8 1014 s 1– .×≈×≈

δ c

2πσω
-------------------,=
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This estimate is much smaller than the electromag-
netic wavelengths corresponding to the frequencies ωξ,
thus pointing once again to the importance of consider-
ing the surface antimagnons. Although the above esti-
mates were obtained using room-temperature parame-
ters, the results would change only slightly for lower
temperatures.
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APPENDIX

This article was already written and prepared for
publication when the authors found the paper by
Yablonskii and Krivoruchko [18] (unfortunately, the
source was previously unknown to the authors), in
which the basic ideas concerning the existence of
purely antiferromagnetic oscillations excited by an
electric field were formulated before the same was done
in [1]. Three earlier publications of the same research-
ers are cited in [18], in which they use an alternative,
probably more adequate, term for the purely antiferro-
magnetic spin waves: electroactive waves, in contrast to
the usual (magnetoactive) spin waves excited by a mag-
netic field. To our consolation, the problems considered
in the above papers by Yablonskii and Krivoruchko do
not overlap with the main content and results of our
article. Not speaking of the dissimilar approaches
employed, different types of magnets were studied: a
two-position ferrimagnet in our case against antiferro-
magnets in [18]. Moreover, the materials belong differ-
ent crystal symmetry classes, since the tetragonal struc-
tures were not considered in [18]. All the results
obtained in our study are new as well.
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Abstract—The electronic structure and magnetic properties of the Cu2MnA, Ni2MnA, Pd2MnA, Co2MnA, and
Fe2FeA compounds with cubic lattices, where A is a nontransition element anion (A = Al, In, Ge, As, Sn, Si,
or Sb), are studied. An analysis is performed in terms of the generalized Hubbard model with an infinite elec-
tronic repulsion energy within the same atom. Equations for determining the spin magnetic susceptibility
of the compounds are obtained. These equations are used to determine the conditions of ferromagnetic
instability and to construct the phase diagram for the existence of ferromagnetic ordering. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

In this work, we establish the possibility of the rise
of ferromagnetic instability in Me2MnA ordered com-
pounds depending on the d and p shell occupancies in
transition element Me cations and nontransition ele-
ment A anions.

The corresponding shell occupation numbers ne, nd,
and np are related to the mean number of d electrons in
the manganese shell by the electrical neutrality condi-
tion

(1)

Here, κe, d is the number of d electrons in the incom-
pletely occupied shell of the corresponding neutral
atom, Zp – 2 is the number of p electrons in the unoccu-
pied shell of neutral atom A, and h is the mean number
of holes.

2. THE MATTHIAS RULE

Ferromagnetic Heusler alloys can be divided into
subgroups according to the total number of electrons in
the incompletely occupied n shell. All these subgroups
are listed in Table 1.

Note that the Curie temperature as a function of n
has two maxima, at n = 27 and n = 30 (see Fig. 1).

Similar maxima were observed by Matthias [2] in
studying the dependence of the superconducting transi-
tion temperature on n.

Note also (Fig. 1) that Table 1 is a continuation of
the corresponding table for the A3C superconducting
compounds with the A15 structure [3].

n 2ne nd np+ + Z p 2– 2κ e κd,+ += =

h 36 n.–=
1063-7761/02/9402- $22.00 © 20367
The position of the Curie temperature maximum at
n = 27 coincides with that of the minimum of the super-
conducting transition temperature.

We will show that these trends have the same phys-
ical nature and are caused by a sharp dependence of the
scattering amplitude on the relative energy of electronic
excitations.

3. EQUATIONS OF STATE

In this work, the rise of ferromagnetism in Heusler
alloys is studied based on the concept of strong interac-
tions between electrons of the same atom. The corre-
sponding matrix elements (also called Hubbard energy)
for copper, nickel, cobalt, iron, and manganese (equal
to 20, 19, 18, 16.5, and 15 eV, respectively) exceed the

30
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Tc, K (Al5) Tc, K (Heusler)

ne

Fig. 1. Matthias rules. The scale on the left is for A15 super-
conductors. The right scale corresponds to ferromagnetic
Heusler alloys.
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energy of electron transfer to neighboring atoms and
are considered infinite in what follows.

Ideally, the unit cell of an ordered Heusler alloy con-
sists of one FCC lattice of two transition elements and
one FCC lattice containing Mn or Fe and nontransition
element Me anions (see Fig. 2 and, e.g., [4]).

The cation positions at the origin and in the unit cell
center (1/2, 1/2, 1/2) can conveniently be used as a basis.

We select three FCC cell vectors

(2)

as three elementary translation vectors, were ek is the
unit vector in the orthogonal coordinate system. The
system of basis cations forms a lattice of the NaCl type.

a1
1
2
--- ex ey+( ), a2

1
2
--- ey ez+( ),= =

ae
1
2
--- ez ex+( )=

Table 1

n h  AB2C (A and B are transition elements 
and C is a nontransition element)

26 10 Fe2FeSi (380; 2 × 1.51 + 2.15 = 5.17), 
Co2MnGa (694; 4.1)

27 9 Co2MnSi (982; 5.1), Co2MnGe (905; 
5.1), Co2MnSn (829; 5.1)

28 8 Ni2MnGa (379; 4.2), Ni2MnIn (323; 4.4)

29 7 Ni2MnSn (344; 4.1), Pd2MnGe (170; 3.2), 
Pd2MnSn (189; 4.2)

30 6 Ni2MnSb (360; 3.3), Pd2MnSb (247; 4.4)

30 6 Cu2MnAl (600; 3.6), Cu2MnIn (520; 4.0), 
Au2MnAl (258; 3.1)

31 5 Cu2MnSn (530; 4.1)

32 4 Cu2MnSb (TN = 380); h = hd + hp + 2he

Note: Given in parentheses are the Curie temperature (in kelvins)
and the mean saturation magnetic moment [1].

Mn

A

Me

Me

Me

Mn

Mn
Mn

A

A

A

Fig. 2. Unit cell of ordered Heusler alloys (compounds
Fe2FeSi, Ni2MnA: Me = Fe, Co, Ni, Cu, Pd, and Au; A =
Al, Ge, In, Sn, Sb, As, Si, and Ga).

Me
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The elementary basis is augmented by cations with the
coordinates (1/4, 1/4, 1/4) and anions with the coordi-
nates (3/4, 3/4, 3/4).

We can conveniently pass to the hole representation
hd = 10 – nd, hp = 6 – np, and he = 10 – ne. Next, it follows
from Table 1 that the conditions of the rise of ferromag-
netism should be studied in the fairly wide region

(3)

The last three inequalities determine the regions where
the bottom halves of hole shells, for which the tendency
toward ferromagnetism is most probable (see below),
are occupied.

The second inequality refers to Fe or Mn cations, in
which the number of holes cannot be smaller than two
or three.

The hybridization of the e and p states at a given rp =
ep – ee energy difference is related to transitions
between nearest neighbor cations and anions of the
third and fourth FCC sublattices. The mean hp numbers
are then expressed in terms of normal coordinates and
three energy spectrum branches as

(4)

The equations of state for the d and e hole excitations
are written similarly,

(5)

Here and above, [hk] is the integral part. The other val-
ues calculated in the simplest zero-loop approximation
[5, 6] for each [hk] ≤ hk ≤ [hk] + 1 integer interval are
listed in Table 2.

Generally, the  normal coordinates are pro-
portional to the diagonal minors of the inverse Green’s
function matrix,

(6)

4 2he hd hp 10, 3 hd 5,≤<≤+ +<
0 he 5, 0 hp 3.≤ ≤≤ ≤

hp hp[ ] gp
2

f pRpK p,+=

K p Ap
λ p( )nF ξ λ( ) p( )( ).

p λ,
∑=

hd hd[ ] gd
2 f d RdKd,+=

Kd Ad
λ p( )nF ξ λ( ) p( )( ),

p λ,
∑=

he he[ ] ge
2 f eReKe,+=

Ke Ae
λ p( )nF ξ λ( ) p( )( ).

p λ,
∑=

Ak
λ( ) p( )

Ĝω
1–

p( )

=  

iω ee   –  f ˜ e τ 
e d

 
, p ( )  –  f ˜ e τ 

e p
 

, p ( )–  

f

 

˜

 

d

 

τ

 

d e

 

,

 

p

 

( )  – – i ω e d  – 0 

f

 
˜

 

p

 

τ

 

p e

 

,

 

p

 

( )   – 0  i ω e p –  
 
 
 
 
 

 

,
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Table 2

∆hd fd Kd hd Γd

0…1 1 (10 – 9hd)/10 hd/(10 – 9hd) 10Kd/(1 + 9Kd) 0

1…2 3/2 (5 – 2hd)/30 (hd – 1)/(5 – 2hd) (1 + 5Kd)/(1 + 2Kd) –1/3

2…3 2 (6 – hd)/120 3(hd – 2)/(6 – hd) 6(1 + Kd)/(3 + Kd) –2/3

3…4 5/2 (3hd – 4)/200 8(hd – 3)/(3hd – 4) 4(6 – Kd)/(8 – 3Kd) –1

4…5 3 (19hd – 70)/150 25(hd – 4)/(19hd – 70) 10(10 – 7Kd)/(25 – 19Kd) –4/3

∆he fe Ke ne Γe

0…1 1 (4 – 3ne)/4 ne/(4 – 3ne) 4Ke/(1 + 3Ke) 0

1…2 3/2 (2 + ne)/12 4(ne – 1)/(2 + he) 2(2 + Ke)/(4 – Ke) –1/3

2…3 3/2 (6 – ne)/12 3(ne – 2)/(6 – ne) 6(1 + Ke)/(3 + Ke) +4/3

3…4 1 (3ne – 8)/4 4(ne – 3)/(3ne – 8) 4(3 – 2Ke)/(4 – 3Ke) +1

∆hp fp Kp hp Γp

0…1 1 (6 – 5hp)/6 hp/(6 – 5hp) 6Kp/(1 + 5Kp) 0

1…2 3/2 (4 – hp)/18 2(hp – 1)/(4 – hp) 2(1 + 2Kp)/(2 + Kp) –1/3

2…3 2 (5hp – 6)/36 9(hp – 2)/(5hp – 6) 6(3 – Kp)/(9 – 5Kp) –2/3

gd
2

ge
2

gp
2

      
where

Using the convenient notation Ek = iω – ek, we obtain

(7a)

(7b)

The  fk  end multipliers and the sums of the  squares
of fractional parentage coefficients determined for each
integer interval of hole concentrations are summarized
in Table 2.

The above equations of state correspond to the pos-
sibility of factorization into simple multipliers with the
coefficients that are found from the general expressions
for normal coordinates,

ω i 2n 1+( )πT , f̃ k gk
2 f k.= =

Ka T eiωδ EdEp

detω p,
--------------,

ω p,
∑=

detω p, EeEpEd Ed f̃ e f̃ pτe p, p( )τ p e, p( )–=

– Ep f̃ e f̃ dτe d, p( )τd e, p( ),

Kd T eiωδ EeEp f̃ e f̃ pτe p, p( )τ p e, p( )–( )
detω p,

-------------------------------------------------------------------,
ω p,
∑=

K p T eiωδ EeEd f̃ e f̃ dτe d, p( )τd e, p( )–( )
detω p,

------------------------------------------------------------------.
ω p,
∑=

gk
2

Ae

EdEp

detE'
------------,=
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(8)

The Ae coefficient can be determined from the obvious
relation Ae = 1 – Ad – Ap.

The problem is considerably simplified if integer
magnetic moment values at which either Kd or Kp van-
ishes are considered.

In the limit of ed  ∞ or Kd  0, we have two
spectrum branches, which are determined from the
equation

(9)

Passing to the Ed ≈ –ed  –∞ limit yields

detE' EpEd EeEd EeEp+ +=

– f̃ e f̃ pτe p, p( )τ p e, p( ) f̃ e f̃ dτe d, p( )τd e, p( ),–

Ad

EeEp f̃ e f̃ pτe p, p( )τ p e, p( )–( )
detE'

-------------------------------------------------------------------,=

Ap

EeEd f̃ e f̃ dτe d, p( )τd e, p( )–( )
detE'

------------------------------------------------------------------.=

EpEe f̃ e f̃ pτe p, p( )τ p e, p( )–

≈
Ep

ed

------ f̃ e f̃ dτe d, p( )τd e, p( ).–

Kd
1

ed
2

---- f̃ e f̃ dτe d, p( )τd e, p( )A λ–( ) p( )nF ξd
λ p( )( ),

p λ,
∑=
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(10)

where u = 4τ2 fp fe/ ,  = ,  = , rp =
ep – ee, and µ = –(ep + ee)/2.

In the Ep ≈ –ep  –∞ limit, we obtain equations
similar to (9) and (10) but with d replaced by p and p
replaced by d. Assuming that multiparticle high-spin
states may exist for e holes as well, the corresponding
parameters can be obtained by replacing d  e in
Table 2.

The dependence on momentum p enters into the

definition of excitation energies through the  func-
tion, which is proportional to 1 + cospxcospy +
cospycospz + cospzcospx. We can therefore perform
calculations using the known function for the density of
FCC lattice states

It can be shown that, at z ≈ –1 + x, the density of
states corresponds to one-dimensional motion, ρ0 ≈
1/ . At high energies (z ≈ 3 – y), the density of states
corresponds to a three-dimensional isotropic spectrum,

ρ0 ≈ .
It follows that, for simplicity of calculations, it is

expedient to denote the  function by e2 and to assign
it the semielliptic density of states

(11)

4. FERROMAGNETIC INSTABILITY 
CONDITIONS

Calculations of the spin part of magnetic suscepti-
bility will be performed by differentiating the equations
of state written in the zero-loop approximation (the
Hubbard I approximation).

After the diagonalization of the zeroth Hamiltonian
corresponding to the nonoverlapping atomic states, the

K p Aλ p( )nF ξd
λ p( )( ),

p λ,
∑=

Ke A λ–( ) p( )nF ξd
λ p( )( ),

p λ,
∑=

A ±( ) p( )
1
2
--- 1

rp( )sgn

1 utp
2+

--------------------±
 
 
 

,=

ξd
λ p( ) λ

rp

2
-------sgn 1 utp

2+ µ– ,=

gp
2 ge

2 rp
2 f̃ d gd

2 f d f̃ e ge
2 f e

tp
2

ρ0 z( ) z px py py pz pz pxcoscos–coscos–coscos–( ).
p
∑=

x

y

tp
2

ρ e( )
4
π
--- 1 e

2– for 0 e 1.< <=
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creation and annihilation operators take the form of
expansions in all possible transitions between the N-
and (N + 1)-hole states (see [7]),

(12)

Here, indices α and β correspond to the mutually
reverse s  m transitions; that is, β(m, s) = –α(s, m).

The  values are called fractional parentage coeffi-
cients and are calculated below.

The equations for the nm mean occupation numbers
are found from the definition of the temperature
Green’s functions calculated for each pair of adjoint X
operators (see [8]),

(13)

The one-particle Green’s function is calculated using
the simplest zero-loop self-consistent field approxima-
tion. In this approximation, the Fourier components of

the  one-particle Green’s function only differ

from the so-called virtual Green’s function  by
the fβ coefficients. The virtual Green’s function in turn
satisfies the Dyson-type equation

(14)

Here, em – es is the transition energy corresponding to
transition number α and ω = T(2n + 1)π.

At given one-particle transition numbers β(m, s),
each fβ end multiplier by definition equals the sum of
the mean occupation numbers of the initial and final
states. On the other hand, the eigenenergy part is, in our
approximation, the sum of the products of the end mul-
tiplier by the generalized matrix of jumps and the one-
loop correction, which does not depend on either fre-
quency or momentum,

(15)

âm σ,
+ r( ) gα

m σ, X̂r
α
,

α
∑=

ân σ, r( ) gβ
n σ, X̂r

β
.

β
∑=

gα
m σ,

Dα β, r τ ; r τ',,( ) Θ τ τ'–( ) Xr
α τ( )rXr'

β τ'( )〈 〉–=

+ Θ τ' τ–( ) Xr'
β τ'( )rXr

α τ( )〈 〉 .

Dω
α β, p( )

Gω
α β, p( )

Dω
α β, p( ) Gω

α β, p( ) f β,=

Ĝω
1–

p( ){ } iω em– es+{ }δ α β+( ) Σω
α β, p( ).–=

f α s m,( ) ns nm, Σα β, p( )+ f α tβ
α p( ) Σα β, ,+= =

tβ
α p( ) gα

k σ, ts
k p( )gβ

s σ, .=
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The  mean occupation numbers for final states m
are found from the diagonal component at β = –α,

(16)

Equations (15) determine all f(a(s, m)) = ns + nm end
multipliers that appear in the definition of the diagonal
components of the one-particle Green’s function,
which, in turn, is written via all possible end multipli-
ers. The one-loop eigenenergy parts are not taken into
account in the zero-loop approximation because they
are considered independent of indices Σα, β and are
therefore added to the chemical potential.

If we restrict our analysis to transitions between the
high-spin N- and (N + 1)-hole states, we can conve-
niently use the projection of the spin of the (N + 1)-hole
state with spin S = (N + 1)/2 instead of indices α and β
(e.g., see [9]). The squares of the fractional parentage
coefficients are then determined by the S spin value and
its projection M,

(17)

The mean occupation numbers present in the Green’s
function definition (14) are also determined from the
total spin value and its projection. When a magnetic
field is switched on, energy level splitting occurs,
which determines corrections to mean occupation num-
bers. Suppose that the splitting of levels is equidistant,
that is, that Zeeman splitting with some effective factor
g occurs. We then have

After excluding the nN(0)gµB/T factor that appears in
this expression, we obtain relations that do not explic-
itly depend on magnetic field variations,

(18)

It follows that these expressions allow all variations for
given N to be expressed through a single variation, for
instance, through the variation of occupation numbers
with a minimum spin projection, namely, δnN(Sz) =

nN 1+
m

Dα β, r τ ; r τ δ+,,( )
δ 0+→
lim

=  T Dω
α β, p( ) iωδ( )exp

ω p,
∑δ 0+→

lim

=  Xr
β m s,( )Xr

α m s,( )〈 〉 Xr
m s, Xr

s m,〈 〉=

=  Xr
m m,〈 〉 nN 1+

m .=

gS M( ) S M+
2S

--------------,=

M S S 1 S 2 … S.–, ,–,–,=

δnN Sz( ) nN 0( )δ
E Sz( )

T
------------– 

 exp nN Sz( )δ
E Sz( )

T
-------------,–= =

δE Sz( ) gµBSzδH .=

Sz 1–( )δnN Sz( ) SzδnN Sz 1–( ),=

δnN Sz–( ) δnN Sz( ).–=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
SzδnN (Sz = 1) for even N and δnN(Sz) = 2SzδnN 

for odd N. The relation between the variations of the N-
and (N + 1)-particle states can be expressed via the
mean value of the diagonal component of the Green’s
function at a zero magnetic field value,

where

The expressions for Kd, Kp, and Ke are given by (7), (8),
and (10).

To obtain equations for determining the end multi-
pliers, let us average the T product of annihilation oper-
ator (12) by a linear combination of adjoint X operators

with arbitrary coefficients ,

Here, we use the expansion of annihilation operator
(12) with the known fractional parentage coefficients

. After the passage to the τ'  τ, τ' > τ limit, we
obtain equations for determining all (N + 1)-particle

occupation numbers :

(19)

Let us substitute Green’s function (14) written in the
zero-loop approximation into these equations and take
the variation of the resulting equations with respect to
the applied magnetic field value,

(20)

K0
T
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β
.

β
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n σ, γβ
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α
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s
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α
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∑
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× Dω
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k σ, iωδ( ).exp
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α
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∑

ICS      Vol. 94      No. 2      2002



372 ZAŒTSEV, TEREKHINA
It can be shown that, in the zero-loop approximation,

(21)

with the K0 coefficient independent of number β.
In the H  0 limit, the end multipliers prove to be

independent of transition number β; that is, .

Suppose that the  auxiliary coefficients sat-
isfy the condition of orthogonality to the fractional par-

entage coefficients,  = 0. The right-
hand side of (20) is then transformed as follows:

(22)

Bearing in mind that, at a zero magnetic field, K0 is the
same value as in the equation of state, we obtain

(23)

Let us write all variations through the variation of occu-
pation numbers with a minimum spin projection,

Taking into account the  = 0 orthogonality
condition allows the sums over M to be reduced, and,
after the substitutions (N + 1)/2 = S and N/2 = S – 1/2,
we obtain
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This leads us to conclude that, for an arbitrary spin pro-
jection Sz, the variation of (N + 1)-particle states is
related to the corresponding variation of N-particle
states as

Put Sz = 1 for odd N. This gives

(24a)

For even N, we can write Sz = –1/2. Therefore,

(24b)

It follows that all occupation number variations can be
expressed through the δnN + 1(1) or δnN + 1(1/2) varia-
tion.

To eventually determine the ferromagnetic instabil-

ity condition, let us write (20) for1  = .

In other words, we average the product of creation
and annihilation operators (12),

(25)

Let us substitute the explicit expression for the frac-
tional parentage coefficients [Eq. (17)] into the left-
hand side of (25) and express all occupation number

variations through the  or  variation.

After transforming the left-hand side, the equation
of state takes the form

(26)

Here, the notation  = f0  = f0g2 and δJ =

 is used.

The K0 diagonal components of the one-particle
Green’s function depend on invariant combinations of

the  type. Both the variation of K0 and the

1 This relation in combination with all possible orthogonality con-
ditions makes up a complete system of independent conditions

that can be imposed on the  coefficients.
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AND THEORETICAL PHYSICS      Vol. 94      No. 2      2002



THE SPECIAL FEATURES OF FERROMAGNETISM IN ORDERED HEUSLER ALLOYS 373
whole right-hand side of (26) are therefore expressed

through δJ = .

Assume for definiteness that (N + 1)-particle states
have integral spin S, and N-particle states have spin S – 1/2.

Let us write the variations for given projection M
through the variation with a minimum projection and
use explicit equation (17) for the fractional parentage
coefficients. This gives

Further, let us write the δnN(1/2) variation through
δn1 + N(1). Using formula (24a), we obtain

It remains to perform the summations

This eventually yields a general expression valid for
occupations not exceeding one half:

(27a)

where

This formula is also valid for half-integer spins.
Substituting (27a) into (26) yields

where index s numbers various multiplets (in our prob-
lem, s = p, d, e).

We can conveniently introduce new variables δyk =
(1 + 2Sk)δnN(k) + 1(1)/4, which transforms the system of
homogeneous equations into
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A solution to this system exists, provided that

(28)

If the shell is more than half-filled, the partially hole
symmetry transformation K0  1 – K0 yields

(27b)

where S is, as previously, the maximum spin for a given
group of transitions.

In our three-component model, the condition of the
rise of ferromagnetism is found from the equation

(29)

In the T  0 limit, all possible Rmn matrix element
products drop out of consideration, and the condition
for the rise of ferromagnetism takes the form

(30)

Here, Kn are defined by (7) and (8), and the Ln values

are their derivatives, Ln = (δKn)/δ .

In the limit of integer magnetic moment Sd or Sp val-
ues, we have
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and, for integer Sd, we can therefore write

(31)

For integer Sp moments, we have the same relation but
with p replaced by d and d replaced by p.

Consider the situation most favorable for meeting
ferromagnetism condition (31), when the lower hybrid-
ization subband is filled and all Ln coefficients are pos-
itive.

In the T = 0 limit, two energy parameters ep, e can
conveniently be replaced by
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Fig. 3. Magnetic phase diagram of Fe3Si at T = 0: hd = 2 (at the left) and hp = 1 (at the right). Ferromagnetic regions are hatched.
The transition to the integration with the use of the den-
sity of states (11) yields equations reducible to elliptic
integrals of the first and second kind,

(33)

Differentiating these relations at given µ and rp yields

(34)

(35)

Equation (31) together with equations of state (10)
determines the phase boundary in the space of two vari-
ables hp and he at a given hd integer value, hd = 2, 3, 4.
The phase boundary is a curve formed by the intersec-
tion between the phase surface and the electrical neu-
trality plane characteristic of each compound.

The same equations [(31)–(35)] but with p replaced
by d and d replaced by p apply to integer hp values,
hp = 0, 1, 2, 3.
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At large total spin values, when hp = 3 and hd = 4,
dimensionless amplitude Γ equals –1 and –4/3, and the
boundary of the ferromagnetic region corresponds to
filling the upper hybridization subband (λ = +1). In this
region, relations (33) and (35) take the form

(36)

(37a)

(37b)

Equations (36) and (37) actually determine continu-
ations of phase curves (33)–(35), which reach the
boundary corresponding to filling the lower hybridiza-
tion subband.

5. PHASE DIAGRAM

As follows from the principal equation (31), ferro-
magnetic ordering exists in all regions corresponding to
the onset of filling the lower hybridization subbands,
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Fig. 4. Two characteristic phase diagrams for integer manganese cation spins at hd = 3 + 0 (at the left) and hd = 4 + 0 (at the right).
Ferromagnetic regions are hatched.
for which dimensionless exchange scattering ampli-
tudes Γk have signs opposite to those of variational
derivatives Lk. In other words, when the d, e, and p
shells are less than half filled, ferromagnetic instability
exists in the regions where occupation numbers hk

slightly differ from their integer values [hk].

The three-dimensional phase diagram in the hd, he,
hp variables that satisfies condition (31) is a combina-
tion of separate surfaces situated between electrical
neutrality planes (3).

Fist, consider plane phase diagrams that intersect
the hp + 2he + hd = 10 electrical neutrality plane corre-
sponding to the Fe3Si compound characterized by the
high-spin states 2 < hd < 3 and 3 < he < 4. The corre-
sponding electrical neutrality plane is situated within
the ferromagnetic instability region, which is always
adjacent to the region of small deviations from integer
values, hk – [hk] ! 1.

This is illustrated by two phase diagrams for integer
d-hole spins Sd = 2 and p-hole spins Sp = 1. In both dia-
grams, the electrical neutrality line intersects the ferro-
magnetic region in its broad part.

Table 2 shows that all ferromagnetic Heusler alloys
except Fe3Si contain the manganese cation with three to
five holes in the incompletely occupied 3d shell as the
central magnetic atom.

The measured magnetic moments do not strongly
differ from the corresponding integer values. Consider-
ing a plane phase diagram at given integer hd = 3 + 0
and hd = 4 + 0 values will not therefore be meaningless.
Taking into account the hd ≥ 5 region would not make
sense, because the Γd scattering constant in this region
is positive, and the region of the existence of ferromag-
netism is virtually absent.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
For the same reason, we considered all possible
plane regions for which 0 < hp < 3 and 0 < he < 5.

For each integer interval of hp and he variations, we
have a phase diagram topologically equivalent to one of
the two phase diagrams shown in Fig. 4.

For integer hd = [hd] occupation numbers, we have
rd > 0 and u  0.

It follows that, in the whole region adjacent to finite
integer hole variable hd values, the region of the exist-
ence of ferromagnetism expands along the hd and he

variables, because the passage from hd = 3 to hd = 4
increases the –Γd value from 1 to 4/3.

This is the reason why ferromagnetism exists in a
broad concentration region of hp and he values. The
boundary at which ferromagnetic ordering disappears
corresponds to the hp and he values at which the
exchange scattering amplitude is positive and so large
that it compensates the contribution of Γd, which is
large in magnitude. Accordingly, at hd = 3 + 0, the fer-
romagnetism boundary lies within the region corre-
sponding to complete filling of the lower hybridization
subband (λ = –1) and touches its boundary curve rp = 0
(see the left part of Fig. 4). If hd = 4 + 0, the ferromag-
netic ordering boundary at rp = ep = ee lies within the
region corresponding to the onset of filling the upper
hybridization subband (λ = 1) and can intersect this
subzone at finite rp values (see Fig. 4, right part).

The special features of ferromagnetism depending
on the total number of holes were studied by calculating
phase diagrams for various integer numbers of holes hp

in the incompletely occupied nontransition element
shell (see Fig. 5, where characteristic phase diagrams
for the completely occupied shell with hp = 0 are
shown). For these states, exchange scattering ampli-
SICS      Vol. 94      No. 2      2002
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tudes Γp do not exceed one in magnitude and therefore
do not lead to ferromagnetism per se. For this reason,
ferromagnetism only exists in a fairly narrow rage of hd

and he variations at all integer hp. This difference can be
noticed by comparing the phase diagrams shown in
Figs. 4 and 5.

Note also that, at a given number of hole p states hp,
the h = 2he + hp + hd electrical neutrality line only inter-
sects one of the ferromagnetic regions, either that adja-
cent to hd = 3 or the region adjacent to hd = 4. More
exactly, a ferromagnetic region with fixed [hd] = 3 or
[hd] = 4 corresponds to each integer hp value and a given
parity of the total number of holes h.

According to Fig. 5, ferromagnetism exists in a
fairly narrow region at he < 1 and 3 < hp < 4. The 2he +
hp + hd = 4 electrical neutrality line of Cu2MnSb inter-
sects this region.

The Cu2MnSn compound with a magnetic moment
of 4.1 can unambiguously be assigned to the region 4 <
hd < 5, 0 < he < 1, and hp = 0, where there is a ferromag-
netic region adjacent to hd = 4. Here, the 2he + hp + hd =
5 electrical neutrality line intersects the ferromagnetic
region at the he ~ 1 number of holes, and ferromag-

2

1

0
3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

hd

7

8

6

5
4

he

Fig. 5. Phase diagram for integer anion spins (at hp = 0).
Ferromagnetic regions are hatched.
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netism of Cu2MnSn is therefore determined by the
interaction of copper one-hole states and manganese
three-hole states.

If the total number of holes exceeds 5, h > 5, the
magnetic properties of Heusler alloys cannot be inter-
preted with the use of plane phase diagrams. It can,
however, be claimed that the nonmonotonic depen-
dence of the Curie temperature on the total number of
hole states is determined by the possibility of exchange
scattering amplitude sign changes in going from the
center of the Brillouin zone to its boundary. In the lan-
guage of hole variables, this leads to alternation of fer-
romagnetic and nonferromagnetic regions within a
given integer interval of variations of each of the three
hole variables.

This explains the observation that the Matthias rules
originally discovered for superconducting compounds
are also qualitatively applicable to Heusler ferromag-
netic alloys.
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Abstract—A new method is developed for numerical simulation of the magnetization of layered superconduc-
tors with defects that is based on the Monte Carlo algorithm. The minimization of the free energy functional of
a two-dimensional vortex system enables one to obtain equilibrium configurations of vortex density and calcu-
late the magnetization of a superconductor with arbitrary distribution of defects in a wide temperature range.
Magnetization curves are obtained for the first time for a defective superconductor under conditions of cyclic
variation of the external magnetic field for different temperatures. The magnetic induction profiles and the mag-
netic flux distribution inside a superconductor are calculated, which support the validity of Bean’s model. It is
demonstrated that the process of magnetization reversal is accompanied by the emergence of an annihilation
wave, i.e., the motion of a zone with zero magnetic induction at the leading front of the incoming magnetic flux.
© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The behavior of the magnetization M of type II
superconductors as a function of external magnetic
field H is of considerable interest. Given the depen-
dence M(H), one can determine both the fundamental
parameters of a superconductor, for example, the upper
and lower critical fields, and the quantities of practical
importance, namely, the value of critical current Jc and
the hysteresis loss in the superconductor. Quite a few
papers are devoted to the theoretical description of the
magnetization of defect-free superconductors (see, for
example, the review [1]). In weak fields, the magnetiza-
tion within the London model is well described by Fet-
ter’s formula [2]. In the vicinity of the upper critical
field, Abrikosov’s expression is valid [3]. The behavior
of magnetization in the entire range of fields from Hc1
to Hc2 is described in [4, 5]; and, finally, Pogosov et al.
[6] proposed a variational method enabling one to find,
in a self-consistent manner, the dependence of magne-
tization of a type II superconductor on the magnetic
field. At the same time, note that all of the proposed
methods treat defect-free superconductors and do not
make it possible to calculate (using a unified approach)
a closed magnetization loop under conditions of cyclic
variation of the magnetic field for superconductors with
defects.

The analytical solution of the problem on the behav-
ior of magnetization of high-temperature superconduc-
tors (HTSC) with an arbitrary preassigned arrangement
of pinning centers is extremely complicated and calls
for inclusion of numerous parameters; therefore, it is
advisable to use numerical methods, including the
Monte Carlo method. For example, in [7–12], the
1063-7761/02/9402- $22.00 © 20377
Monte Carlo method was used to investigate the phase
transitions and dynamics of a two-dimensional vortex
lattice. It has been demonstrated that, in the absence of
defects, a phase transition of melting of a triangular lat-
tice to vortex fluid is observed. In the presence of
defects, the phase of “revolving lattice” arises between
the phases of vortex crystal and vortex fluid. The vortex
system in this phase is represented by lattice islands
revolving around the pinning centers.

Attempts at performing the numerical calculation of
the magnetization of a two-dimensional superconduct-
ing layer with defects under conditions of increasing
and decreasing magnetic field were made by Reich-
hardt et al. [13] using the method of molecular dynam-
ics. However, in the studies involving the use of the
method of molecular dynamics, the effect of the bound-
ary on the processes of magnetic flux penetration was
ignored, and all calculations were performed for zero
temperature.

In this paper, we present the results of numerical cal-
culation of the magnetization of a quasi-two-dimen-
sional HTSC plate with an arbitrary distribution of pin-
ning centers. We have developed a method based on the
Monte Carlo algorithm for a grand canonical ensemble,
which involves a number of singularities reflecting the
behavior of vortex systems in layered HTSC materials.
This method enables one to obtain an equilibrium dis-
tribution of the vortex density upon variation of the
external magnetic field H and to calculate the depen-
dence of the magnetization M on H under conditions of
arbitrary arrangement of pinning centers and different
temperatures. Our approach is characterized by a num-
ber of fundamental differences compared with the
known calculation techniques, namely, the most correct
002 MAIK “Nauka/Interperiodica”
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inclusion of the effect of the plate boundary, a wide
range of the working temperatures 0 < T < Tc, and the
possibility of allowing for any distribution of defects of
any types.

2. THE MODEL AND CALCULATION 
PROCEDURE

We will treat a three-dimensional sample of an
HTSC layered in the xy plane. The sample has a finite
thickness in the x direction and infinite dimensions in
the y  and z directions (Fig. 1). It is placed in a magnetic
field parallel to the z axis, which rules out the possibil-
ity of demagnetization effects. We will assume a weak
interaction between layers in the HTSC and will treat,
for calculations, only a quasi-two-dimensional xy plate
of thickness d, which will simulate the superconducting
layer; i.e., on the z axis we will “cut out” a layer of
thickness d and treat this layer in what follows.

In the external magnetic field H inside the plate, we
treat a two-dimensional system of Abrikosov vortices
in the form of model classical particles with a long-
range potential.

The Gibbs thermodynamic potential of a vortex sys-
tem in such a plate will have the form

where 

is the intrinsic vortex energy [6] (ξ0 is the size of the
vortex core at T = 0); NdΦ0H/4π is the energy of inter-
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Fig. 1. The geometry of calculations.
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action with the external field H;

is the pairwise vortex interaction;

is the energy of interaction of the ith vortex with the
Meissner currents flowing along the plate surface in the
y direction; Up(ri) is the energy of interaction of the ith
vortex with the pinning centers; Usurf is the energy of
interaction of the vortex system with the superconduc-
tor surface; Φ0 = hc/2e is a magnetic flux quantum; d is
the superconducting layer thickness; λ is the depth of
the magnetic field penetration into the superconductor;
and N is the number of vortices in the system.

The interaction between an individual vortex and the
superconductor surface in a plate of width a (–a/2 < x <
a/2) is conventionally represented as the vortex interac-
tion with its mirror image (antivortex),

In order to investigate the behavior of a system with
defects, pinning centers were introduced. In this case,
the energy of interaction with a pinning center was
selected in the model form

(α is a dimensionless parameter characterizing the
depth of potential well of a defect). This choice of the
dimensions and depth of pinning corresponds to the
case where only one vortex may be secured on a pin-
ning center.

The magnetic field induction in this geometry was
calculated by the formula

The latter expression includes the contribution of the
Meissner currents. In addition, we have allowed for the
fact that the flux carried by each vortex depends on the
distance to the plate edge, i.e.,

The latter expression was derived with due regard for
the vortex image at the boundary and for the system
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geometry. Strictly speaking, the formula was derived
for a semi-infinite superconductor. However, if the
plate is fairly wide (a @ λ), the effect of the second
boundary may be ignored.

The algorithm developed for calculation differed
considerably from the conventional Monte Carlo
method for a canonical ensemble, which was previ-
ously employed in [7–12]. In the present approach, we
have abandoned the use of a 3D mesh and assumed the
phase space to be continuous. A unit change in the vor-
tex position is not restricted to the mesh spacing; it is
selected at random from the permissible domain, for
example, the plate area. The configurations are selected
in accordance with the Gibbs weight. In order to raise
the counting efficiency, all vortex interactions in the
system are tabulated depending on the distance with an
accuracy of at least 1 Å; this rules out the possibility of
errors characteristic of algorithms allowing for the 3D
mesh.

In order to calculate the magnetization, one must
deal with a grand canonical ensemble, i.e., take into
account the production and annihilation of vortex fila-
ments. The processes of creation and annihilation of
vortices were allowed in a boundary strip of width λ
along the y axis. In this manner, the magnetic flux pen-
etration into the plate is simulated. The competition
between repulsion on the part of the Meissner currents
and attraction to the boundary brings about the emer-
gence of a surface barrier (of the Bean–Livingston
type) which is naturally included in this approach.

In addition, for a smooth description of the pro-
cesses of magnetization reversal, vortices with oppo-
sitely directed currents (antivortices) are formally intro-
duced into the treatment. For the principle of detailed
balancing to be valid, the process of annihilation of a
pair consisting of a vortex and an antivortex (annihila-
tion), if they are spaced at a distance of the order of sev-
eral ξ from one another, is added to the scheme in addi-
tion to the standard annihilation process. Therefore, as
the sign of external magnetic field H changes, vortices
are automatically replaced by antivortices; i.e., the pro-
cess of magnetization reversal of the plate is simulated.
This is especially important in the case of correct treat-
ment of freezing of magnetic flux on defects and non-
uniformities.

All in all, processes of four types are treated in the
suggested Monte Carlo scheme, namely, the vortex
motion, the production of a single vortex (or antivor-
tex), the annihilation of a single vortex (antivortex), and
the annihilation of a vortex–antivortex pair. The annihi-
lation of a single vortex is likewise allowed only in the
boundary strip λ, which corresponds in a real situation
to the exit of magnetic flux only through the supercon-
ductor boundary.

For the principle of detailed balancing to be valid,
all of the direct and inverse subprocesses are weighted
in pairs. The probabilities of creation, Pc, and annihila-
tion, Pa, are multiplied by 1/(N + 1) and by N to include
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
the variation of the number of vortices N before and
after the process, respectively, so that the final probabil-
ities have the form

Here, Wa, c denote conventional Gibbs weights, and R
is the ratio of the inversion probability to the respec-
tive vortex (~1/N) and to the space point for the cre-
ation of vortex (1/aLy) and for annihilation. This
scheme of detailed balancing allows an arbitrary
choice of R: this quantity may be multiplied by any
constant factor (the same for Ra and Rc), which will
not disturb the balance but will make possible to
optimize the renewal of configurations.

The parameters of a real layered Bi2Sr2CaCu2O8
superconductor were used for simulation, namely, d =
0.27 nm, λ0 = 180 nm, ξ0 = 2 nm, and Tc = 84 K [14].
The calculations were performed for 5 × 3 µm plates.
The size of the region being treated was selected such
that, on the one hand, we could restrict ourselves to the
first terms in the vortex–surface interaction and, on the
other hand, the use of periodic boundary conditions
would not bring about considerable errors in calculat-
ing the vortex interaction. The maximal range of varia-
tion of the external field H is limited only by the com-
puter power and, accordingly, by the count time. In our
calculations, the range of external field variation was
−0.12 T ≤ H ≤ 0.12 T.

3. RESULTS AND DISCUSSION

3.1. Magnetization Curves M(H)

Figure 2 gives, by way of illustration, a typical mag-
netization loop at T = 5 K and the number of defects
Nd = 100, obtained for increasing and decreasing exter-
nal magnetic field. No vortices are produced or pene-
trate into the plate upon the initial increase in the exter-
nal magnetic field. In the graph, this region corresponds
to a straight line (up to point 1). After reaching the field
of superheating of the Meissner state, the vortices start
entering the plate, with the magnetization decreasing
(segment 1–3). After H = 0.1 T, the external field
decreases; however, the surface barrier prevents the
vortices from leaving the plate. Therefore, the magneti-
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zation behavior becomes irreversible. When the exter-
nal magnetic field decreases to zero, the surface barrier
disappears, and a number of vortices leave the plate
(segment 3–4). However, residual magnetization exists,
which is due to the presence of vortices secured on pin-
ning centers. As the external magnetic field of opposite
sign increases, the vortices remain secured on the pin-
ning centers, and the surface barrier prevents antivorti-
ces from entering the sample (segment 4–5). As the
external magnetic field continues to increase, the anti-
vortices penetrate into the plate and annihilate the vor-
tices secured on the pinning centers; i.e., the plate expe-
riences magnetization reversal (segment 5–6). In the
case of inverse variation of the external magnetic field,
the pattern is repeated, and the magnetization curve
closes. Note that one observes the closure both of the
total magnetization curve and of small loops formed
upon variation of the magnetic field direction (see Fig. 2).
Therefore, the method developed by us enables one to
correctly reproduce the real process of magnetization
reversal of a superconductor in a unified calculation.

A temperature variation brings about a magnetiza-
tion loop variation. Shown by way of example in Fig. 3
are two loops of magnetization M(H) calculated at T = 1
and 20 K. As the temperature increases, one observes

(1) a reduction of the loop area,

(2) a decrease in the field corresponding to the
beginning of the entry of vortices into the plate (super-
heating of the Meissner state), and

(3) the emergence of the field of reversibility of the
magnetization loop.

We will trace the variation of magnetization loops
with increasing number of pinning centers. For this pur-
pose, we calculated the magnetization curves for a fixed

0.05

0.1

–4πM, T

H, T

–0.05

–0.1

1

2
3

4

5

6

Fig. 2. A magnetization loop for Nd = 100 and T = 5 K. The
dark circles indicate small magnetization loops formed upon
variation of the direction of the external magnetic field.
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temperature T = 5 K and different numbers of pinning
centers. The depth of defects was selected such as to
eliminate the process of thermal depinning and
amounted to 0.1 eV. The pinning centers were arranged
at random. The effect of defects on the behavior of
magnetization varies as their number increases; in fact,
the mechanism of irreversibility varies. One can see in
Fig. 4 that, as the number of pinning centers increases,

0.05

0.1

–4πM, T

H, T

–0.05

–0.1

Fig. 3. Magnetization loops at T = 1 K (light circles) and
20 K (dark circles). The number of defects Nd = 100.

0 0.05

–4πM, T

H, T
0.15–0.15

0.1

–0.1

0.04

–0.04

0.1–0.1
0

Nd = 100

Nd = 500

–4πM, T

Fig. 4. Magnetization loops for different numbers of
defects; T = 5 K. In the inset, a magnetization loop at Nd = 0
is given.

H, T

–0.05
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residual magnetization increases, as well as the loop
area. With a large number of defects, the loop width is
actually defined by residual magnetization; the latter, in
turn, depends on the number of pinning centers. There-
fore, one can conclude that, in the case of an “impure”
sample, the irreversibility of magnetization is largely
defined by the number of defects rather than by the sur-
face barrier. The irreversibility of a magnetization loop
due to surface barrier is significant only in the case of a
low concentration of defects or of their complete
absence (see the inset in Fig. 4).

An increase in the pinning hardness, namely, an
increase in the number of pinning centers, leads to a
considerable variation of the shape of the magnetiza-
tion loop. Figure 5 gives the magnetization for the cases
of Nd = 100, 250, 500, and 1000. A broadening of the
magnetization loop is observed as the number of
defects Nd increases from 100 to 250; on the contrary,
with a very large number of defects Nd = 500 and 1000,
the magnetization loop contracts. From the physical
standpoint, this behavior of the M(H) curves is associ-
ated with the fact that, as the pinning becomes stronger,
the region penetrated by the magnetic flux front
decreases, this leading both to a decrease in the magne-
tization and to a reduction of the area of the magnetiza-
tion loop. One can compare magnetization loops with
one another only under conditions in which the maxi-
mal field exceeds the field of penetration for all types of
pinning being treated. By the field of complete penetra-
tion is meant the value of the external applied field at
which the magnetic flux completely fills the supercon-
ductor. Evidently, the value of the field of complete
penetration depends on the degree of imperfection of
the superconductor. It is interesting to note that the
slope of the branch of the magnetization curve corre-
sponding to the fields somewhat exceeding Hc1 likewise
depends on the concentration of defects (see the inset in
Fig. 5). Note that, at H = Hc1, the slope of the magnetiza-
tion curve changes sign in the case of a small number of
defects Nd = 100; in the case of strong pinning, Nd = 250
and 500, the slope only decreases compared with the
initial diamagnetic segment of the curve. The slope sign
varies at a higher value of the field H*. For Nd = 1000,
the sign of dM(H)/dH in the calculated range of fields
does not vary at all. This result is due to the strong
repulsive interaction between surface pinned vortices
and new incoming vortices which “try” to penetrate
into the sample under conditions of increasing external
magnetic field.

3.2. Magnetic Flux Profiles

By calculating the equilibrium configuration of vor-
tices, we can analyze the range of validity of Bean’s
model [15]. According to this model, the current den-
sity in hard (i.e., with strong pinning) superconductors
may have only three values, namely, –Jc, 0, and Jc,
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
where Jc is the critical current density independent of
magnetic induction. This postulate leads to a number of
results. In particular, from Bean’s model there follows
a linear decrease in magnetic induction inside a hard
superconductor. Our method may be used to directly
calculate the profiles of magnetic induction in a super-
conductor.

We will now give predicted profiles of magnetic flux
for different cases. Figures 6a and 6b give magnetic
flux profiles for plates with Nd = 100 and 500. One can
see that, by and large, the flux profiles correspond to the
concept of critical state in the superconductor volume
according to Bean’s model (the linear pattern of the
B(x) dependence), except for the Meissner regions in
the vicinity of the surface. The linearity is also absent
in the case of a low concentration of defects. As the
magnetic field increases, the slope of the B(x) curves
varies; i.e., a decrease in the critical current density is
observed. The dependence of the slope of the magnetic
induction profile dB(x)/dx on the external magnetic
field correlates well with the same dependence of the
width of the magnetization loop on H (Fig. 7), which
points to the possibility of determining the critical flux
density from the width of the magnetization loop of a
hard superconductor. Note, however, that this proce-
dure is incorrect in the case of a superconductor with
weak pinning. Indeed, the magnetization loop given in
the inset in Fig. 4 has a reversible pattern and a finite
width. At the same time, the reversibility in this case is
defined by surface, rather than bulk, pinning, and
Bean’s model is invalid.

0.05

–4πM, T

H, T

0.05

–0.05

0.05

0.05

–4πM, T

–0.05

H, T

Fig. 5. Magnetization loops for different numbers of
defects; Nd = (d) 100, (h) 250—a case of total penetration
of magnetic field, and (e) 500 and (n) 1000—cases of par-
tial penetration of magnetic field. In the inset, initial seg-
ments of magnetization curves, which are not shown in the
figure, are given.
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Fig. 6. Profiles of magnetic induction for different numbers
of pinning centers Nd = (a) 100 and (b) 500.
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Fig. 7. The width of magnetization loop and the slope of
magnetic induction profiles as functions of the intensity of
external magnetic field. ∆M: Nd = (d) 500, (h) 100; dB/dx:
Nd = (n) 500.
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3.3. Penetration and Distribution of Magnetic Flux
in Superconductors

The basic result of all calculations is the equilibrium
configuration of the density of probability of finding
vortices in the plate being treated at a preassigned tem-
perature, external field, and selected configuration of
defects. By adding up magnetic fields from each vortex,
we can obtain a visual pattern of magnetic flux distribu-
tion in a superconductor at any point of its magnetiza-
tion curve. For example, we will trace the flux distribu-
tion at points 1–6 of the magnetization curve in Fig. 2.
The magnetic flux distribution is given in Fig. 8. The
dark background corresponds to the absence of a mag-
netic field, and the white dots correspond to vortex
magnetic fields.

Point 1 corresponds to the lower critical field of the
given system (with due regard for the superheating of
the Meissner state). At H < Hc1, the field does not pen-
etrate into the superconductor except for strips of width
λ at the plate edges. When Hc1 is exceeded, one
observes the entry of vortices into the plate and a grad-
ual advance of the magnetic flux front deep into the
superconductor. For the field value at which a complete
penetration occurs, the magnetic flux takes up the entire
plate (point 2). The distribution of magnetic induction
corresponds to Bean’s model. A further increase in the
external magnetic field leads to an increase in the mag-
netic induction in the plate. In this case, the vortices
tend to form a triangular vortex lattice (point 3). Point 4
corresponds to residual magnetization. Following the
change of sign of the external magnetic field, vortices
of opposite sign (antivortices) start to enter the plate
(point 5). The annihilation of vortices and antivortices
results in the formation of a clearly defined region with
zero magnetic induction at the incoming flux front; this
region advances deep into the superconductor as the
amplitude of the external magnetic field increases
(point 6). The effect of motion of a zone with zero mag-
netic induction from the edge of a superconducting
plate toward its center was given by us the name of
“annihilation wave.” The annihilation wave arises each
time when the sign of the external magnetic field is
changed.

In order to trace the dynamics of magnetic flux pen-
etration into superconductors with different defective
states, we treated three cases, namely, 250 defects with
Upin = 100 meV, 250 defects with Upin = 10 meV, and
10 defects with Upin = 100 meV. We will refer to these
cases as strong, moderate, and weak pinning, respec-
tively.

We will treat the distribution of magnetic induction
upon an increase in the magnetic field.

At first, for 0 < H < Hc1, the magnetic flux does not
penetrate into the plates except for fringe strips of width
λ. Further patterns of flux distribution are given in
Figs. 9a–9f.
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point 1 point 4

point 2 point 5

point 3 point 6

Fig. 8. The magnetic flux distribution for different external fields. Points 1–6 correspond to Fig. 2. The dark background corresponds
to the absence of a magnetic field, and the white color corresponds to a vortex magnetic field.
In Fig. 9a, the external magnetic field H = 0.0375 T
exceeds Hc1. The vortices start entering the supercon-
ductor. In the cases of strong and moderate pinning, the
magnetic flux front moves gradually from the plate
edges to its center. The magnetic flux line is curved,
which reflects the local nonuniformity in the distribu-
tion of pinning centers. In the case of weak pinning, the
magnetic flux fills the superconductor almost immedi-
ately.

In Fig. 9b, the magnetic field H = 0.05 T is the field
of complete penetration for moderate pinning. In the
case of strong pinning, the central part of the plate is
still free of magnetic flux. For weak pinning, an
increase in the vortex density is observed, with a ten-
dency to formation of a triangular lattice.

In Fig. 9c, the magnetic field H = 0.075 T. The mag-
netic flux reaches the plate center in the case of strong
pinning as well.
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In Fig. 9d, the magnetic field H = 0. After the mag-
netic flux increases to H = 0.08 T and then decreases to
zero, the magnetic flux pinning is observed in all three
cases. It is significant that residual magnetization for
strong and moderate pinning is formed by both pinned
and free vortices owing to collective interaction; in the
case of weak pinning, residual magnetization is defined
only by pinned vortices.

In Fig. 9e, the magnetic field H = −0.04 T. After the
change of direction of the external magnetic field, vor-
tices of opposite sign start entering the plates. In the
forefront, one can clearly see the regions of annihilation
of vortices and antivortices or annihilation waves (indi-
cated by white arrows). The velocity of motion of an
annihilation wave is the higher, the weaker the pinning.
In the case of weak pinning, the annihilation is almost
instantaneous. The annihilation wave disappears when
the external magnetic field exceeds the field of com-
SICS      Vol. 94      No. 2      2002
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(a) H = 0.0375 T (b) H = 0.05 T (c) H = 0.075 T

(d) H = 0 T (e) H = –0.04 T (f) H = –0.07 T

strong
pinning

moderate
pinning

weak
pinning

strong
pinning

moderate
pinning

weak
pinning

Fig. 9. The magnetic flux distributions for different external magnetic fields for the cases of strong, moderate, and weak pinning.
White arrows indicate annihilation waves. 

H = 0.01 T H = 0.055 T H = 0.07 T

T = 5 K

T = 50 K

T = 60 K

Fig. 10. The magnetic flux distributions for different external magnetic fields for three temperatures T = 5, 50, and 60 K; Nd = 250.
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plete penetration (Fig. 9f). The next annihilation wave
arises after the next change of sign of the external mag-
netic field. The velocity of an annihilation wave further
depends on temperature. As the temperature increases,
the velocity of the annihilation front is higher. Figure 10
gives the magnetic flux for three temperatures T = 5, 50,
and 60 K.

In the case of a superconductor with a nonuniform
distribution of defects, the annihilation front is highly
distorted and may close around regions with a high
local concentration of defects. In Fig. 11, one can see an
annihilation wave encircling the region of an opposite-
sign magnetic field pinned on defects.

Note that annihilation waves similar to those calcu-
lated by us were actually observed both during static
measurements of magnetic flux penetration into an
HTSC involving the use of scanning Hall probes and
during dynamic magneto-optical investigations [16].

4. CONCLUSIONS

We have presented a new method for numerical cal-
culation of magnetization curves and magnetic flux in a
two-dimensional superconductor plate with defects of
any type that is based on the Monte Carlo algorithm.
The effect of the boundary has been included as cor-
rectly as possible, and the calculations have been per-
formed in a wide temperature range. Given by way of
illustration are the results of calculations of magnetiza-
tion loops for different concentrations of defects and
different temperatures. It has been demonstrated that
the concentration of defects affects considerably the
shape of the magnetization loop and that Bean’s model
of the critical state is valid in the case of high concen-
tration of defects. Visual patterns of penetration and

Fig. 11. The magnetic flux in a superconductor with a non-
uniform distribution of pinning centers. White arrows indi-
cate annihilation waves.
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distribution of magnetic flux in two-dimensional super-
conductors have been calculated. It has been demon-
strated that the process of magnetization reversal is
accompanied by the motion of an annihilation wave,
i.e., of a zone with zero magnetic induction.

In conclusion, note that it is still not clear how the
results of calculation of magnetization obtained using
a two-dimensional model will change upon transition
to a three-dimensional model. Apparently, in spite of
the clearly defined anisotropy of layered HTSCs, one
cannot fully ignore the interaction between layers.
The interaction between layers has an effect on the
H−T phase diagram of the vortex lattice, as was
pointed out, for example, in [17, 18]. Our preliminary
data on calculation of magnetization in a three-dimen-
sional case with due regard for electromagnetic and
Josephson interactions between two-dimensional vor-
tices in different layers are in qualitative agreement
with the results given in the present paper. The three-
dimensional case will be treated in detail in the pro-
cess of further study.
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Abstract—The current–voltage (IV) characteristics of SIS junctions are calculated in the framework of a multi-
band model with an anisotropic effective order parameter of HTSC. The results of calculations show that the
shape of the IV characteristic and of the density of electron states changes significantly depending on the param-
eters of the model. A theoretical explanation is proposed for the experimentally observed s-like behavior of the
IV characteristics of SIN and SIS junctions with BSCCO-type superconductors. The dependence of the super-
conducting peak asymmetry on the mutual arrangement of the bands is analyzed. The difference between the
obtained results and the results of one-band models with the s and d symmetries of the order parameter is dis-
cussed. © 2002 MAIK “Nauka/Interperiodica”.
The lack of a generally accepted explanation of the
pairing mechanism in high-temperature superconduc-
tors (HTSC) makes the interpretation of numerous
experimental data (including the results of tunnel
experiments) difficult. The complexity of the crystal
structure of HTSC compounds also complicates the sit-
uation. In most cases, it is difficult to explain peculiari-
ties in the tunnel characteristics within in the frame-
work of the standard Bardeen–Cooper–Schrieffer (BCS)
model. Such peculiarities include the variety of the sub-
gap structure ranging from a linear d-type structure to a
nearly planar structure of the s type [1], the asymmetry
of superconducting peaks at the edge of the gap [2, 3],
and nontrivial behavior of the tunnel density of states of
SIN junctions and of the current–voltage characteristics
of SIS junctions outside the gap region. In some exper-
iments [4, 5], strongly suppressed (dI/dV) characteris-
tics with very narrow peaks typical of s-type supercon-
ductors were obtained in the subgap region, which con-
tradict at first glance the available data on strong
anisotropy of the order parameter in the CuO2 plane [6].

A large number of theoretical models have been pro-
posed to explain the aggregate of experimental data.
These include the models based on various features of
the band structure (taking into account, for example,
the closeness of the Van Hove singularities to the chem-
ical potential [7, 8]), on the choice of the order param-
eter symmetry [8], and on the properties of the tunnel
matrix element [9] in the one-band BCS scheme. Even
the slave-boson approach [10] was used for explaining
the asymmetry of the superconducting peaks and the
inhomogeneity of the density of electron states in the
normal state. A series of publications [11–14] is
devoted to the role of inelastic scattering, including the
inelastic scattering at antiferromagnetic spin fluctua-
tions. The results of theoretical investigations show that
1063-7761/02/9402- $22.00 © 20387
the inclusion of Van Hove singularities and the use of
the (s + d) symmetry of the order parameter are obvi-
ously essential for a correct explanation of the most
experimentally observed properties of the tunnel con-
ductance of HTSC. For this reason, the experimental
investigation of the properties of the electron spectrum
of high-temperature superconductors in the normal
state is very important.

In our opinion, it is precisely the analysis of the
crystal structure that makes it possible to explain a
number of results of tunnel measurements in high-tem-
perature superconductors. This paper aims at explain-
ing the features of tunnel characteristics using the
model with an anisotropic effective order parameter,
which is based exclusively on the properties of the elec-
tron spectrum of HTSC [15]. The spectrum of the
model in the problem under investigation corresponds
to the band structure of compounds of the BiSrCaCuO
(BSCCO) type. An important feature of this approach is
that the initial electron–electron interaction leading to
pairing is treated as isotropic in the CuO2 plane. The
anisotropy of the order parameter and of the excitation
spectrum is determined by the symmetry properties of
the crystal lattice. According to calculations, many fea-
tures of the tunnel characteristics typical of HTSC com-
pounds can be explained by using a rather universal
approach which will be described below.

We analyze the problem of the effect of symmetry in
the initial bands of the superconductor on the current–
voltage characteristics of SIS junctions. Let us consider
the electron system of the CuO2 plane with a model
Hamiltonian of the form

H ε
z

2 ci σ,
+ ci σ,

i σ,
∑ εd di σ,

+ d j σ,

i σ,
∑+=
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(1)

Here,  and  are the creation operators for elec-

trons with spin σ on the  and  orbitals of the

ith site of copper;  and  are the cre-
ation operators for electrons with spin σ on the px and
py orbitals of the ith site of oxygen (Fig. 1); εp, εd, and

 are the energies of the p levels of oxygen and of the

 and  levels of copper, respectively, measured

from the chemical potential (µ = 0); and  =  ≡

 and  = –  ≡  are the matrix elements

of one-particle transitions between the  and 

orbitals of copper and the p orbitals of oxygen. For the
sake of simplicity, we assume that superconductivity is
associated with the isotropic attraction  < 0 of elec-

trons on the  orbital. It should be noted that a more
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Fig. 1. Schematic diagram of atomic orbitals in the CuO2
plane and transitions between these orbitals included in
Hamiltonian (1). The inset shows schematically the
arrangement of energy bands and levels corresponding to
Hamiltonian (4).
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complicated account of the isotropic superconducting
interaction would not lead to a considerable difference
from the case considered here. We also assume the
presence of the isotropic effective electron–electron
interaction Ud on the  orbital of copper.

Introducing new operators  (β = 1, 2, 3) in the k
representation in accordance with the formulas

(2)

we diagonalize the Hamiltonian term describing one-
particle transitions between the  orbitals of cop-

per and the p orbitals of oxygen. The coefficients Cd and
 in formulas (2) have the form

where α = 2, 3 and

Similarly, the matrix element of a transition between
the  orbitals of copper and the p orbitals of oxygen

in the k representation can be written in the form

Since the matrix elements  and  depend on the

indices of different sites, the quantities tx(y) and 

must be functions of k. Operators , , and

 are the creation operators for electrons with spin
σ and quasimomentum k in the bands formed by
hybridized p orbitals of oxygen and  orbitals of

copper, having the dispersion relation

(3)
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As a result of transformation (2), the system Hamil-
tonian in the mean-field approximation assumes the
form

(4)

where

(5)

and new order parameters

(6)

have been introduced, in which

(7)

The arrangement of the energy bands corresponding to
Hamiltonian (4) is shown in the inset to Fig. 1. In the
framework of a realistic description of BSCCO-type
compounds [16], it is assumed that the chemical poten-
tial µ and the z2 level of copper lie close to the middle
of the upper band ε3(k). The remaining parameters of
the problem are chosen in such a way that

Since, in the following, we will be interested in the
energy range near the chemical potential (on the order
of several ), we can disregard the two lower bands

ε1(k) and ε2(k) taking into account the relation between
parameters and confine our analysis to the upper band
ε3(k) only. In addition to one-particle transitions
included in Hamiltonian (1), we can take into account
the additional hybridization of the  orbital with the

atoms surrounding the CuO2 plane, including BiO and
SrO complexes of the BSSCO-type compounds as well
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as direct transitions between the  orbitals of differ-

ent copper atoms. In this connection, we assume that
the initial z2 band is characterized by the dispersion
relation

with a width much smaller than for the ε2(k) and ε3(k)
bands. Thus, in the chosen approximation, the initial
problem can be reduced to a two-band model in which
the initial band  and the ε3(k) band with the one-

particle hybridization W3(k) between these bands and
the order parameters  and ∆33(k) in them are consid-

ered.
We introduce the following time Green’s functions:

where  = i . Using the equations of motion for oper-

ators  and ck, σ and passing to the frequency repre-
sentation, we obtain the following system of equations
for the z2 Green’s functions:

(8a)

(8b)

(8c)

(8d)

where

(9)

Henceforth, we will use the quasiparticle density of
states in the z2 band,
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The retarded Green’s function is obtained by the solu-
tion of the system of equations (8) and has the form

where the coherence factors are defined as

The dispersion relations for two branches of the
excitation spectrum have the form

(11)

The system of equations (8a)–(8d) can be reduced to
the system of two equations for Green’s functions 

and  with the effective order parameter defined by
the formula

(12)

The sign of the order parameter ∆3(k) from (9) is deter-
mined by the sign of the parameter ∆d from (7), which
can be positive or negative depending on the type of
interaction Ud (repulsion or attraction). The value of

∆d = 0 if Ud = 0 or for Ud >  > 0, where  is a

certain critical value of repulsion on the  orbital

of copper, for which superconductivity in the system is
completely suppressed. It can be seen from formula
(12) that, in the case of a nonzero interaction Ud on the

 orbital (∆d ≠ 0), the order parameter depends on

quasimomentum, while, in the case of repulsion,
∆3(k)/  < 0 (Ud > 0), the quantity (k) changes its

sign.
The approach considered above explains the strong

anisotropy of the order parameter as a consequence of
the symmetry properties of the one-particle matrix ele-
ment of the interband hybridization W3(k) [15], which
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has nodes along the diagonals of the Brillouin zone due
to the difference between the types of symmetry of the
initial bands. In this case, the branch E–(k) of the exci-
tation spectrum vanishes at points located on lines in
the k space [6] at which the effective order parameter

(k) is equal to zero. It should be noted that the initial

interaction is regarded as isotropic; i.e., the effect con-
sidered above does not depend on the origin of the pair-
ing mechanism. In addition, the above-mentioned
approach does not require a strong anisotropy of the
spectrum and, hence, can be used for various types of
high-temperature superconductors. The model pro-
posed in [17] also leads to formulas of the type (11),
(12), but it is based on the exotic condition of the inter-
action sign reversal in various regions of the Fermi sur-
face.

The diagonalization of the one-particle part of
Hamiltonian (1) leads to the problem with anisotropic
attraction in energy bands. The effective order parame-
ters in the bands may have nodes, but possess no pure d
or (s + d) symmetry since their anisotropy is deter-
mined by the band representations of the space symme-
try group of the lattice [15, 18, 19].

The formulated model of the order parameter
anisotropy makes it possible to obtain the (dI/dV) char-
acteristics of SIS junctions for superconductors of the
BSCCO type. Taking into account the crystal structure
of these compounds, we will assume that tunneling
along the c axis occurs mainly through the  orbitals

of copper in the CuO2 plane (and through the apical
oxygen which is not included explicitly in the model
under investigation). For break junctions, we assume
that the matrix element of tunneling is independent of
momentum (Tkp = T = const) in view of the random for-
mation of bonds between the  orbitals on both sides

of the junction. Thus, tunneling between two supercon-
ductors (CuO2 layers) is treated as proceeding through
a number of point contacts.

The expression for the dependence of the quasipar-
ticle tunnel current on the voltage applied to the junc-
tion in this case assumes the standard form

(13)

where

is the Fermi distribution function and N(ω) is defined
by formula (10). All calculations were made for tem-
perature T = 0. An important aspect of this approach is
that N(ω) is not the average density of states in the con-
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Fig. 2. Normal density of states in the z2 band:  = 1.5 (a) and 0 (b) for  = 0 (curves a), –1.5 (curves b) and −10 (curves c).

Peaks 1 and 1' are associated with the Van Hove singularities of the initial z2 band, peaks 2 and 2' are formed by the Van Hove sin-
gularities in the ε3(k) band, and peaks 3 are connected with the  level.
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duction band (as in the one-band BCS model), but is a
partial density on the  orbital.

In order to find the density of states N(ω) and the
tunnel conductance dI/dV in accordance with the cho-
sen approximation, we used the values of parameters
from the strong coupling model, which correspond to
the calculations of the band structure of HTSC [20]. If
all parameters are measured in the units of  and the

position of energy levels is measured from the chemical
potential, we have td – p = 75,  = 15, εd = –75, and

εp = –50. In all calculations, we assumed the exist-
ence of a finite relaxation constant γ = 0.05. The
parameter determining the width of the initial (k)

band is  = 1.5.

For the chosen values of the parameters, we ana-
lyzed the behavior of the characteristics N(ω) and dI/dV
depending on the intensity of interaction between elec-
trons on the  orbital of copper and on the position

of the center ( ) of the initial z2 band relative to the

chemical potential (Figs. 2–4). The obtained depen-
dences were compared with cases of one-band model of
the s- and d-types of symmetry of the order parameter
(accordingly, ∆ = const and ∆ ∝  (coskx – cosky)).

Figure 2a shows the N(ω) curves calculated for the
normal state (  = 0). These curves display split peaks

associated with the Van Hove singularities of the initial
(k) band for various positions of its center relative to

the chemical potential, as well as the next peaks formed
by singularities of the ε3(k) band. Figure 2b shows the
same curves in the case when the (k) spectrum is

replaced by a dispersionless level (  = 0).
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Figure 3a presents the N(ω) dependences in the
superconducting state for the case when the z2 band is
far away from the chemical potential (  = –10). It can

be seen from the figure that if there is electron–electron
repulsion on the  orbital (∆d = –0.5), the density

of quasiparticles is similar to that calculated in a model
with the d symmetry of the order parameter (in particu-
lar, it is a linear function of ω in the vicinity of ω = 0).
If there is no interaction on the  orbital, the dis-

tance between the superconducting peaks and their
height increase. According to analytical estimations,
N(ω) ∝  ω3/2 for very small frequencies. Similar results
can also be obtained in the one-band model with a non-
trivial spectrum and an effective order parameter of
some symmetry. It was noted above taking into account
the above approximations that the diagonalization of
the one-particle part of Hamiltonian (1) leads to the
one-band model with anisotropic pairing. In this case,
the symmetry of the corresponding order parameter can
be approximated by an (s + d)-type symmetry.

If the center of the initial z2 band is close to the
chemical potential (see Figs. 3b and 3c), the difference
between the a and b curves (with and without taking
into account repulsion) disappears due to the dominant
role of the Van Hove singularities on energy scales on
the order of . In both cases, the behavior of the den-

sity of quasiparticles becomes of the s type. The calcu-
lated density of states demonstrates the asymmetry of
peaks, which is associated with the distribution of Van
Hove singularities in the normal density of states (see
Fig. 2). The Van Hove singularity closest to the chemi-
cal potential increases the height of the corresponding
peak in the density of states in the superconducting
state. A comparison of Figs. 3b and 3c shows that, for a
certain intermediate value of , the specular switch-
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Fig. 3. Density of states in the normal and superconducting states in the z2 band: (a)  = –10,  = 1.5; (b)  = –1.5,  = 1.5;

(c)  = 0,  = 1.5; (d)  = –1.5,  = 0. Curves a are plotted in the absence of interaction on the  orbital (Ud = 0), curves b

take into account the repulsion on the  orbital (Ud > 0), curves c are plotted in a model with the s symmetry of the order param-

eter, curves d are plotted, in a model with the d symmetry of the order parameter, and curve e illustrates the normal density of states.
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ing of the asymmetry of peaks, which is associated with
the model spectral structure, takes place.

The curves presented in Fig. 3a show that the dis-
tance between the superconducting peaks is smaller
than 2  even if we disregard the repulsion on the

 orbital for a large distance between the  level

and the chemical potential (  = –10). As the  level

approaches the chemical potential, the distance
between the superconducting peaks increases, and the
position of the peaks on the N(ω) curve for  = 0 cor-

responds to the parameter . In this case, the height

of the peaks increases significantly. The distance
between the peaks changes as a result of the displace-
ment of the  level relative to the chemical potential

for the fixed values of the remaining parameters. How-
ever, a more detailed analysis of this phenomenon
requires the solution of the self-consistent model spec-
trum structure equations for order parameters as func-
tions of the parameters of the problem as well as the
determination of the interaction constants  and Ud

∆
z

2

d
x

2
y

2–
ε

z
2

ε
z

2 ε
z

2

ε
z

2

∆
z

2

ε
z

2

U
z

2

JOURNAL OF EXPERIMENTAL
taking into account the specific mechanism of pairing,
which is beyond the scope of the present paper. The
dependence of the distance between the superconduct-
ing peaks on the position of the chemical potential in
the model with the (s + d) symmetry of the order
parameter was also discovered theoretically in [13].

A comparison of the N(ω) dependences determined
in the model under investigation with one-band models
with the s- and d-types of symmetry of the order param-
eter was carried out taking into account the location of
the Van Hove singularities associated with the initial

(k) band. A noticeable (on the scales of energy

higher than ) asymptotic tendency of model densi-

ties of states of the s and d types to the density of states
in the given problem, calculated for both the normal
and the superconducting state (see Fig. 3c), was
observed.

A comparison of the results presented in Figs. 3b
and 3d shows that, as the width of the initial z2 band
determined by the parameter  decreases (  = 1.5 in

Fig. 3b and  = 0 in Fig. 3d), the heights of the super-

conducting peaks increases, since the singularity in the
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Curves a are plotted in the absence of interaction on the  orbital (Ud = 0), curves b take into account the repulsion on the

 orbital (Ud > 0), curves c are plotted in a model with the s symmetry of the order parameter, and curves d are plotted in a

model with the d symmetry of the order parameter.
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normal density of states in this case is displaced
towards the chemical potential (see Fig. 2).

Figure 4 shows the (dI/dV) characteristics for an SIS
junction, which were calculated using formula (13)
using the determined N(ω) dependences for three posi-
tions of the  level relative to the chemical potential

(  = −10, −1.5, and 0), which can be in model corre-

spondence with different HTSC families. The common
feature of these characteristics is (when repulsion is
taken into account) that the superconducting peak
emerges at lower voltages and is lower, but the curve at
low voltages lies higher than in the absence of interac-
tion on the  orbital of copper. If the center of the

initial z2 band lies far away from the chemical potential
(  = −10), the (dI/dV) characteristics are similar to

those calculated in a model with the d symmetry of the
order parameter (Fig. 4a). As the  level approaches

the chemical potential, the curves tend to the depen-
dences obtained in the model with the s symmetry of
the order parameter (Figs. 4b and 4c). For low voltages
(V < ), the IV characteristic of an SIS junction is

strongly suppressed. In analogy with the N(ω) depen-
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dences, the (dI/dV) characteristics exhibit extremely
narrow superconducting peaks. This corresponds to a
number of experimentally observed results for
BSCCO-type compounds, e.g., optimally doped [4],
overdoped [5], and underdoped [21] Bi2Sr2CaCu2O8 + δ.

Thus, the electron density of states and current–volt-
age characteristics of SIS junctions are calculated in the
framework of the multiband HTSC model with an
anisotropic effective order parameter. We took into
account the hybridization between the px and py orbitals
of oxygen and the  orbitals of copper in the CuO2

plane and assumed the presence of electron–electron
attraction on the  orbital of copper. The performed

calculations demonstrate the possibility of explaining
the results of experimental measurements of the elec-
tron density of states and the tunnel properties of SIN
and SIS junctions (e.g., s-type characteristics of
BSCCO-type compounds) on the basis of the model
taking into account the structure of the electron spec-
trum of HTSC. It is important to note that anisotropy of
the order parameter and of the excitation spectrum is
explained exclusively by the symmetry of the crystal
lattice and atomic orbitals and does not depend on the
nature of pairing.
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The main result of this work is that for a strongly
anisotropic order parameter ∆(k) (12) (including d-type
parameters) and in the presence of zero points in the
excitation spectrum of a superconductor, even the sim-
ple inclusion of the real band structure of the HTSC in
a wide range of variation of the model parameter leads
to the experimentally observed [4, 5, 21] s-type behav-
ior of the current–voltage characteristics of SIN and SIS
junctions. A comparison of the curves calculated for
various values of the parameters of the problem under
investigation and in the simplest cases of models with
the s and d symmetries of order parameters indicates a
strong dependence of both the density of states and the
(dI/dV) characteristics on the electron band structure of
high-temperature superconductors. These characteris-
tics also depend on the crystal lattice symmetry and on
the presence of an additional interaction between elec-
trons, which was introduced in the model on the 

orbital of copper. The above analysis necessitates the
inclusion of the band structure of HTSC for interpreting
of the results of tunnel experiments.
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Abstract—The dielectric dispersion of Cd2Nb2O7 pyrochlore in a weak electric field was studied in a broad
frequency range (100 Hz to 13 MHz) using the crystal samples slowly cooled (0.5 K/min) in the temperature
interval from 300 to 80 K. As the temperature decreased down to Tc = 196 K and Tmax ~ 190 K, the dielectric
permittivity exhibited deviation from the Curie–Weiss law. It is suggested that this behavior is related to the

development of a short-range correlation between microscopic polar regions formed at T  . The local

order parameter q(T) ~ 〈PiPj〉1/2 was calculated using the permittivity ε'(T) measured at various frequencies.
The variation of this parameter is compared to that of the spontaneous polarization Ps(T) determined from the
measurements of a pyroelectric current in the external electric field Edc = 0.95 kV/cm. In the frequency range
from 100 Hz to 13 MHz, the dispersion of the dielectric response in the temperature region of 180–192 K is
characteristic of a relaxator ferroelectric featuring a glasslike behavior. The parameters of this state were deter-
mined, including the activation energy of the polarization fluctuations (Ea ≈ 0.01 eV), the relaxation rate at
T  ∞ (f0 = 1.9 × 1012 Hz), and the polarization fluctuation freezing temperature (Tf = 183 K). In Cd2Nb2O7
pyrochlore, in contrast to the known relaxator ferroelectrics of the PMN type studied previously, this state coex-
ists with the normal ferroelectric state appearing at Tc. © 2002 MAIK “Nauka/Interperiodica”.

Tmax
+

1. INTRODUCTION

In the large family of pyrochlores (belonging to the

cubic space group –Fd3m), the compound
Cd2Nb2O7 is the most interesting object featuring
numerous phase transitions and involved dielectric
behavior [1, 2]. With respect to the electric properties,

pyrochlores of the  type containing Cd2+

(4d10) ions represent insulators, provided that cation B
is Nb5+ (4d0), Ta5+ (5d0), or Sb5+ (4d10) [1], and metals
if cation B represents Re5+ (5d2) or Os5+ (5d3) [3, 4].

In common for the compounds Cd2Nb2O7 and
Cd2Ta2O7 are the same ion radii of cations B (0.64 Å for
Nb5+ and Ta5+) [5] and the identical room-temperature
lattice parameters (10.372 Å) [6]. Both these com-
pounds are characterized by the same (albeit rather sel-
dom) limiting case of the deformed coordination poly-
hedra (BO6)n– and (AO8)n–, whereby the octahedron
around ion B exhibits a maximum distortion, while the
polyhedron around ion A is close to a regular cube [5,
7, 8]. The structure stability on both cases is provided
by the dynamic displacements of Cd2+ ions relative to
the central position in the (CdO8)n– polyhedra [6].
Despite the identical structural features of the two pyro-
chlores, these compounds are different with respect to

Oh
7

A2
2+B2

5+O7
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susceptibility toward a symmetry decrease and struc-
tural phase transitions.

In the temperature interval from 10 to 300 K,
Cd2Nb2O7 exhibits a sequence of five phase transitions:
extrinsic ferroelastic (below Ts = 205 K)–intrinsic fer-
roelectric–ferroelastic (below Tc = 196 K)–incommen-
surate phase (below Tinc = 85 K)– commensurate phase
(below Tcom = 46 K)–glassy state (below Tg = 18 K) [2].
In the same interval, Cd2Ta2O7 exhibits a single phase
transition (at 204 K) [9].

The dielectric behavior of Cd2Nb2O7 in the ferro-
electric state (4 K < T < Tc) is characterized by the fol-
lowing features:

(a) A maximum value of the permittivity ε'(T) for
frequencies below 1 MHz is observed at a temperature
Tmax within the interval 180–192 K [2, 10–14], which is
below the temperature of the ferroelectric phase transi-
tion (Tc = 196 K).

(b) In the temperature interval from 180 to 192 K
(i.e., below the ferroelectric phase transition),
Cd2Nb2O7 exhibits a polydisperse dielectric relaxation
typical of the so-called relaxator (disordered) state of
the system [10, 11, 15], whereby  increases, while

 and Tmax decrease, with decreasing frequency. In
the vicinity of Tmax, neither the domain structure notice-

εmax'

εmax''
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ably changed [13, 16, 17] nor did the values of heat
capacity [16, 18, 19], spontaneous polarization [14,
20], and refractive index significantly vary [21]; the
crystal symmetry did not decrease either [10, 22, 23].

(c) Below Tc, the domains of the ferroelectric phase
coexist with the domains of the preceding ferroelastic
phase (observed at Tc < T < Ts). The latter domains
gradually decrease in size on cooling below 180 K, to
become indistinguishable by optical methods in the
region of 150 K [13, 16, 17, 22].

(d) Far from Tc (at Tg ! Tc) the system features a dis-
ordered glassy state [24].

Manifestations of the above states in the relaxation
processes, as well as evolution of these states with the
temperature and their relation to the ferroelectric prop-
erties, are still unclear because of a complicated dielec-
tric response of Cd2Nb2O7. The relaxator behavior of
this compound is also insufficiently substantiated,
which is explained by a relatively weak frequency
dependence of  and Tmax as compared to that
observed in the relaxator dielectrics with perovskite

( –Pm3m) structures such as Pb(Mg1/3Nb2/3)O3

(PMN) and Pb(Sc1/2Ta2/3)O3 (PST) [15, 25]. Elucida-
tion of these questions is of a fundamental importance
in the physics of relaxator ferroelectrics and the physics
of disordered states in highly symmetric condensed
media.

The purpose of this study was to reveal the possible
additional characteristic features in the relaxation pro-
cesses in Cd2Nb2O7 in the temperature region of 180–
192 K providing evidence for the relaxator behavior of
the system and elucidating a relationship between the
relaxator and ferroelectric states of the system.

As is well known, the relaxator ferroelectrics are
characterized, in addition to the properties mentioned
in point (b) above, by deviation of the temperature
dependence of ε' from the Curie–Weiss law in the
paraelectric phase, by a decrease in the relaxation rate
with decreasing temperature (deviation from the Arrhe-
nius law), by the absence of a macroscopic spontaneous
polarization at temperatures below Tmax (in a sample
cooled in zero electric field Edc = 0), by the coexistence
of microscopic polar regions at temperatures signifi-
cantly higher than Tmax, etc. [15, 26–28]. The results of
our investigations presented below indicate that
Cd2Nb2O7 pyrochlore exhibits all features of the dielec-
tric behavior typical of ferroelectrics of the PMN type.

We have studied the Cd2Nb2O7 samples by the
dielectric spectroscopy method in a broad range of fre-
quencies (100 Hz to 13 MHz) and temperatures (80–
300 K). The temperature and frequency dependences of
the complex dielectric permittivity were analyzed from
the standpoint of modern notions about features of the
relaxator ferroelectricity [26–28]. Previously, the
dielectric dispersion was studied in a much narrower
frequency range (500 Hz to 1 MHz) [10–12, 14], which

εmax'

Oh
1

JOURNAL OF EXPERIMENTAL 
hindered elucidation of the nature of relaxation pro-
cesses developed in the narrow temperature interval in
the region of Tc.

2. EXPERIMENTAL METHODS

Taking into account that the same sequence of phase
transitions is observed in both single crystals and
ceramics of Cd2Nb2O7 [2, 10–14], we employed the
ceramic samples. An advantage of using ceramic sam-
ples in the study of dielectric properties consists in the
relatively simple sample preparation and in the possi-
bility of obtaining samples possessing any desired
dimensions. The samples of Cd2Nb2O7 ceramics were
prepared by a standard procedure [5, 14, 29, 30]. The
relative density of ceramic disks with a diameter of
10 mm and a thickness of about 2 mm was 94–96% of
the theoretical value. An analysis of the samples by the
method of X-ray powder diffraction at room tempera-
ture (DRON-2 diffractometer, CuKα radiation, Ni filter)
confirmed the pyrochlore structure and showed the
absence of other phases in the samples studied.

The dielectric measurements were performed on
plane-parallel plate samples with either Au electrodes
deposited in vacuum or Ag-paste electrodes applied to
the parallel surfaces. The permittivity ε'(T) and losses
ε''(T) of the samples were measured in a weak electric
field (Eac ≈ 2 V/cm) with the aid of an HP-4192A capac-
itive bridge. The frequency dependences were studied
in a range from 100 Hz to 13 MHz, using a set of fre-
quencies in each decade equal to fm, 3fm, 5fm, and 7fm

(where fm is the lower decade frequency). The measure-
ments were performed on the samples slowly cooled at
a rate of 0.5 K/min. The sample temperature at each
point was stabilized to within ±0.1 K.

The spontaneous polarizations Ps(T) were calcu-
lated by integrating the temperature dependence of the
pyroelectric current measured with the aid of a Keithley
6514 System Electrometer in the course of heating the
sample at a rate of 1 K/min in a relatively weak electric
field (Edc~ 0.95 kV/cm). The constant field Edc was
applied to the sample at a room temperature, and the
sample was cooled at an arbitrary rate down to 90 K.
This field changes neither the dielectric permittivity of
Cd2Nb2O7 pyrochlore in the region of Tc nor the size of
domains in the ferroelectric phase at T < Tc (the ferro-
electric domains in this compound begin to change only
in the field with a strength of Edc ≥ 4 kV/cm [12, 17,
30]), while decreasing the permittivity in the region of
Tmax [11, 12]. At the same time, it is known that this
field is capable of changing the long-range interaction
between microscopic polar regions in the relaxator fer-
roelectrics at T ! Tmax [31].
AND THEORETICAL PHYSICS      Vol. 94      No. 2      2002
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Fig. 1. The experimental temperature dependences of ε', ε'', and 1/ε' measured at various frequencies on the samples of Cd2Nb2O7
ceramics slowly cooled (0.5 K/min) in an alternating electric field Eac ≈ 2 V/cm (Edc = 0): (a) ε'(T) measured at 0.5 (1), 10 (2), 100 (3),
5000 (4), and 13000 kHz (5) and the 1/ε'(T) curve for 5 kHz; (b) ε''(T) measured at 0.5 (1), 5 (2), 100 (3), 500 (4), and 1000 kHz (5);
(c) ε''(T) measured at 1000 (1), 3000 (2), 5000 (3), 10 000 (4), and 13 000 kHz (5). The straight lines in Fig. 1a show the approxi-
mation of 1/ε'(T) by the Curie– Weiss law at 5 kHz in a broad temperature interval above Ts (solid line) and in the interval
Tc < T < Ts (dashed line).
3. RESULTS AND DISCUSSION

3.1. Temperature and Frequency Dependences 
of the Complex Dielectric Permittivity

Previously, it was reported that Cd2Nb2O7 can fea-
ture several relaxation processes at T < Tc (i.e., in the
ferroelectric state), which was explained by the pres-
ence of ferroelectric domains of various types and by
changes in the structure of these domains [2, 10–14, 18,
22, 30]. However, neither the nature of relaxation pro-
cesses observed in the region of Tc was elucidated, nor
was a relation between these processes and the ferro-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
electric behavior of the system established. For this rea-
son, our analysis of the temperature and frequency
dependences of the dielectric response was aimed pri-
marily at clarifying these questions.

Figure 1 shows the experimental curves of ε'(T),
ε''(T), and 1/ε'(T) measured at several fixed frequencies
in the range from 100 Hz to 13 MHz. The phase transi-
tion at Ts = 203.5 K is manifested by clearly pro-
nounced anomalies on the ε'(T) and ε''(T) curves. It
should be noted that small changes (between 201 and
206 K) in the temperature of this phase transition rela-
SICS      Vol. 94      No. 2      2002
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tive to the value (Ts = 205 K) most typical of the given
pyrochlore were also reported previously for both sin-
gle crystals and ceramics [11–14, 17, 21]. Note that, in
most cases, the value of Tc ≈ 195–196 remained virtu-
ally unchanged. It was suggested that the observed
changes in Ts are related to the presence of uncontrolled
impurities in the samples, which leads to a local break-
age of the ideal pyrochlore structure [18, 19, 21, 32].
On the whole, elucidating the reasons for the observed
behavior of Ts and Tc in Cd2Nb2O7 would require a
deeper analysis.

The phase transition at Tc = 196 K corresponds to a
small bending in the ε'(T) curve (Fig. 1a) and to a clear
anomaly in the ε''(T) curve at frequencies below
500 kHz (Fig. 1b, curves 1–4). Above 500 kHz, the Tc
determines a limiting shift of the intense anomaly in the
ε''(T) curve toward higher temperatures (Fig. 1b, curves
4 and 5; Fig. 1c, curves 1–5). In the entire frequency
range studied, the maxima in the ε'(T) and ε''(T) curves
are observed at T < Tc. As the frequency increases from
100 Hz to 13 MHz, the permittivity ε'(T) in the region
of Tc decreases, whereas the losses ε''(T) tend to grow.
This behavior is characteristic of a normal ferroelectric
phase transition and the related relaxation of the
domain wall oscillations in a weak electric field Eac

[33].

The behavior of ε'(T) and ε''(T) at T < Tc observed
with decreasing frequency—namely, the dispersion of

 and  in a broad range of frequencies (100 Hz

to 13 MHz), the shift of  and  toward lower

temperatures, a relatively small variation in  at a

strong change in , the broadening of ε'(T) in the
region of ~150 K (Fig. 1a), and the asymmetric anom-
aly in ε''(T) in the region of ~150 K at frequencies
below 1 MHz (Fig. 1b)—is evidence that several
dielectric relaxation processes occur simultaneously in
the ferroelectric phase of Cd2Nb2O7.

The process developed in the region of 180–192 K

is characterized by an increase in  and by a slow
shift of Tmax toward lower temperatures with decreasing
frequency (from Tmax = 191.6 K at 12 MHz to 189 K at
100 Hz). Simultaneously, another relaxation process is
developed in the region of ~150 K (Fig. 1a). This pro-
cess was repeatedly mentioned [2, 10, 11, 14, 18], but
the nature of this feature remains unclear. The maxi-

mum in the ε''(T) curve, in contrast to the  value,
rapidly decreases with decreasing frequency and shifts
toward lower temperatures. This variation is nonmono-
tonic, being determined by different processes at fre-
quencies above 1 MHz (Fig. 1c) and below this value
(Fig. 1b). One of these processes dominates in the tem-
perature region of 180–192 K (below the characteristic
temperature Tf ~ 182 K, the characteristic ε'' value

εmax' εmax''

εmax' εmax''

εmax'

εmax''

εmax'

εmax'
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becomes virtually independent of the frequency; see
Fig. 1c, curves 2–5).

At a frequency of 1 MHz, the ε''(T) curve exhibits
strong broadening, becomes asymmetric (toward T >
Tmax), and changes curvature in the regions of Tc and
T ~ 175 K. This variation implies that, in addition to the
relaxation of domains and the aforementioned process
dominating at 180–192 K, a considerable contribution
to the dielectric losses at a frequency of 1 MHz is pro-
vided by another relaxation process dominating at a
lower temperature (in the region of ~150 K). Below
1 MHz, the ε''(T) curves shows two clear anomalies: a
relatively weak anomaly in the region of the phase tran-
sition at Tc and a strong one at ~150 K. The  peak
corresponding to the latter anomaly more rapidly shifts
toward lower temperatures than does  observed in
the region of 180–192 K. However, this study is not
aimed at elucidating the relaxation process developed
at 150 K. The behavior of the dielectric response
observed in the region of 180–192 K is generally char-
acteristic of the relaxator ferroelectrics [26, 27]. Below,
we will analyze the dielectric response of the com-
pound studied in terms of the models describing the
relaxator ferroelectrics.

Before proceeding with the discussion of our exper-
imental results, let us point out another special feature
in the dielectric behavior of Cd2Nb2O7. In the region of
Tmax, the ε'(T) and ε''(T) curves are rather broad for both
ceramic and single crystal samples [10–14, 30]. At the
same time, significant broadening of the dielectric
curves for the ceramics in comparison to those of the
single crystals in the region of Tmax, as well in the vicin-
ity of Ts and Tc (second-order phase transitions [17, 18,
21, 22]), was neither observed in our experiments nor
reported by other researchers. These facts indicate that
the behavior of Cd2Nb2O7 in the region of Tmax is deter-
mined by the internal properties of this compound,
rather than by the quality of the samples studied. More-
over, a broad maximum in the ε'(T) and ε''(T) curves at
Tmax is characteristic of the relaxator ferroelectrics [15,
25–27].

3.2. Deviations from the Curie–Weiss Law
in the Paraelectric Phase

The temperature dependence of the inverse dielec-
tric permittivity of Cd2Nb2O7 (Fig. 1a) in the paraelec-
tric phase (T > Tc) exhibits two regions separated by the
phase transition at T = Ts. Both in a broad range of tem-
peratures above Ts and in the interval Tc < T < Ts, the
behavior of 1/ε' is described by the Curie– Weiss law
1/ε'(T) = [(T – θ)/C]. However, the Curie constants C
and the Curie–Weiss temperatures θ in the two temper-
ature intervals are not the same. At first glance, this dif-
ference can be related to a weak anomaly (break) on the
ε'(T) curve at Ts. However, it will be shown below that
the relaxator state in the vicinity of Tmax may also influ-

εmax''

εmax''
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ence the C and θ values in the aforementioned temper-
ature intervals. Evaluation of these parameters above
and below Ts at a frequency of 5 kHz yields C = 0.61 ×
105 and 0.18 × 105 K and [theta] = 161 and 188 K,
respectively. For the comparison, we have also deter-
mined the Curie constant and the Curie–Weiss temper-
ature in the region of T > Ts at a frequency of 12 MHz:
C = 0.64 × 105 K; θ = 160 K.

The ε'(T) curve calculated using the C and θ values
determined from the slope of 1/ε'(T) in the interval Tc <
T < Ts significantly deviates from the experimental
curve observed for the paraelectric phase at T > Ts (Fig. 2).
If the parameters C and θ are determined from the slope
of 1/ε'(T) in the broad temperature interval above Ts, the
calculated ε'(T) curve deviates from the experimental
plot on approaching the ferroelectric phase transition

(T  ). A reason for which the empirical parame-
ters fail to describe the variation of permittivity in the
region of the ferroelectric phase transition consists in
that the behavior of ε'(T) in the vicinity of Ts and above
this temperature (i.e., in the interval for which the
parameters C and θ were calculated) is determined by
the superposition of processes related to the ferroelec-
tric and ferroelastic phase transitions. The contribution
of the latter process can be ignored only at temperatures
above ~250 K (Figs. 1a and 1c). Actually, the behavior
of the dielectric permittivity of Cd2Nb2O7 in the
paraelectric phase should be described using the C and
θ values calculated in a broad temperature interval
above 250 K (i.e., at temperature significantly higher
than Tmax, Tc, and Ts).

The Curie constants calculated in the interval of
temperatures above Ts for various frequencies are
smaller as compared to the values reported for
Cd2Nb2O7 (~1.2 × 105 K) [12–14, 20, 33] and the values
characteristic of most ferroelectrics of the displacement
type [33]. One possible reason for this discrepancy in
the Curie constants can be related to the fact that previ-
ous ε'(T) measurements were performed on the samples
cooled and heated at a higher rate (3 to 10 K/min). It
was shown [10, 19] that a decrease in the sample heat-
ing rate leads to a significant decrease in the dielectric
permittivity far from the phase transition temperature
and especially in the region of Tmax, Tc, and Ts. Also pre-
viously observed was a continuous decrease in ε'(T)
either in the course of multiply repeated cooling–heat-
ing cycles in the region of Tmax or upon keeping the
sample for a prolonged time at a fixed temperature in
the region of 180–192 K; the system did not attain an
equilibrium state even after a 3-h period of time [16, 19,
20]. At the same time, the values of Tmax, Tc, and Ts
exhibited no variation with decreasing cooling/heating
rate and with repeated cooling–heating cycles. After
heating the sample up to room temperature followed by
cooling at the same rate, both the initial ε'(T) value and
the shape of this curve were reproduced. All the above

Tc
+
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facts are indicative of a nonequilibrium character of
processes in the vicinity of Tmax and in the region of
180–192 K, suggesting that these processes start at a
temperature much higher than Tmax. These features are
generally typical of a relaxator ferroelectric featuring a
glasslike behavior [31, 34]. Thus, the phase transitions
at Ts and Tc take place on the background of rapidly
developing nonequilibrium processes in the system.
This may account both for a change in the C and θ val-
ues with decreasing cooling rate and for the different
character of this variation observed above Ts (i.e., far
from Tc) and on approaching Tc (Tc < T < Ts). Appar-
ently, the same factors may account for a small varia-
tion of C and θ with the probing field frequency in the
temperature interval above Ts. The Curie constant of
Cd2Nb2O7 above Ts was reported to decrease during
uniaxial [35] and hydrostatic compression [36]. For
example, when the uniaxial pressure was increased up
to 1.5 MPa, the C value first rapidly dropped from
1.2 × 105 to 0.6 × 105 K and then varied only slightly [35].

Figure 2 shows the temperature dependence of the
dielectric permittivity of Cd2Nb2O7 at two frequen-
cies approximated by the Curie–Weiss relationship

1200

180 200
T, K

1800

2400

220 240

(b)

1200

ε'

1800

2400
(a)

Fig. 2. The plots of ε'(T) for (a) 1 kHz and (b) 3 MHz: (open
circles) experiment; (solid curve) the Curie–Weiss relation-
ship ε'(T) = [C/(T – θ)] calculated by formula (1) for C =
0.61 × 105 K and θ = 161 K (T > Ts); (dashed curve) the

Curie–Weiss relationship calculated for C = 0.18 × 105 K
and θ = 188 K (Tc < T < Ts).
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ε'(T) = [C/(T – θ)]. A strong deviation from the Curie–
Weiss law is observed on approaching Tc and Tmax; the
difference increases with decreasing frequency and
temperature. In the region of Tmax, the experimental
ε'(T) curve lies above the C/(T – θ) function calculated
for C = 0.61 × 105 K, θ = 161 K and below this function
calculated for C = 0.18 × 105 K, θ = 188 K. As was
noted above, the calculated ε'(T) values are smaller than
the experimental ones as a result of using “understated”
parameters C and θ. The fact is that the C and θ values
were determined in the interval of temperatures fea-
turing processes related not only to the ferroelectric
phase transition, but to the ferroelastic phase transi-
tion and the nonequilibrium state as well (rather than
at T > 250 K).

A decrease in the dielectric permittivity accompa-
nied by deviation from the Curie–Weiss law in the
region of Tmax (as revealed by comparing the experi-
mental curve to that calculated for C = 0.18 × 105 K and
θ = 188 K) can be interpreted by analogy with the
behavior of spin glasses [37] and relaxator ferroelec-
trics of the PMN type [26–28]. It is suggested that
microscopic polar regions may appear in these systems
far from the phase transition temperature. A strong cor-
relation developed between these local regions with
decreasing temperature may significantly suppress the
dielectric permittivity. Indirect evidence for the forma-
tion of microscopic polar regions far from Tc and Ts in
Cd2Nb2O7 is provided by behavior of the permittivity in
response to changes in the regime of temperature scan-
ning (see above), by the microscopic (11–15 nm in size)
polar clusters observed in the ferroelectric phase [38],
and by the impossibility of establishing a long-range

0

140 160

q

T, K
180 200 220

0.1

0.2

0.3

120 160 200 240
0.6

0.4

0.2

0

T, K

p s

Fig. 3. Plots of the order parameter q (solid and dashed
curves) measures at a probing field frequency of 1, 3000,
and 12 000 kHz (left to right, respectively) and the reduced
spontaneous polarization ps (open circles) in Cd2Nb2O7.
The q(T) curve was calculated by formula (1) using devia-
tions from the Curie–Weiss law determined at the corre-
sponding frequencies (Edc = 0); the ps(T) curve was con-
structed using data on the pyroelectric current measured in
an external electric field of Edc ~ 0.95 kV/cm.
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order in the orientation of Cd–O–Cd dipole chains
in the (CdO8)n– sublattice in the pyrochlore structure
[6, 22, 39].

Deviation of the dielectric permittivity from the
Curie–Weiss law, the ambiguous behavior of ε'(T) in
the vicinity of Tc and Tmax related to the use of two sets
of parameters C and θ, and the uncertainty in determin-
ing the C and θ values in the temperature interval above
Ts (see the considerations above)—all these facts sug-
gest that the parameters C and θ in Cd2Nb2O7 are tem-
perature-dependent, which reflects the appearance of
local polar regions in the system at high temperatures.
Under these conditions, we can describe deviations
from the Curie–Weiss law with the aid of the Sher-
rington–Kirkpatrick relationship [37]

(1)

where q(T) is the local order (spin or dipole glass)
parameter. Description of the experimental ε'(T) curves
in the range of frequencies from 100 Hz to 13 MHz
using relationship (1) with C = 0.61 × 105 K and θ =
161 K provides for a good coincidence (Figs. 2a and 2b).
This implies that we can explain the dielectric behavior
of Cd2Nb2O7 in terms of a model involving the develop-
ment of a correlation between microscopic polar
regions with decreased temperature and reduced ther-
mal disorder. In this case, a change in the permittivity
on approaching Tc and Tmax is determined as ∆ε' ~
q(T) ~ 〈PiPj〉1/2 [33], where Pi and Pj are the polarization
vector components of the adjacent clusters.

Figure 3 shows the q(T) curves calculated for sev-
eral frequencies by formula (1) using the deviation of
ε'(T) from the Curie–Weiss law (by analogy with the
case of spin and dipole glasses [26, 37]). The higher the
frequency, the greater the deviation from the Curie–
Weiss law. This is characteristic of the spin and dipole
glasses [37] and the relaxator ferroelectrics featuring a
glasslike behavior [26–28]. As the temperature
increases from 140 to 190 K, the q value decreases
almost linearly, not going to zero at the characteristic
temperature Tf ~ 182 K (see also Fig. 1c). At all fre-
quencies, the further decrease in q exhibits a tendency
of delay to higher temperatures. However, the phase
transitions taking place at Ts and Tc hinder the analysis
of q at high temperatures and the determination of a Td
value at which the local polarization disappears and
q(T) goes to zero (Td is always higher than Tc) [28]. In
contrast to the q value, the reduced polarization ps =
Ps(T)/Ps (100 K) exhibits a nonlinear variation in the
temperature interval from 140 to 190 K and goes to zero
at a certain temperature above Tc, these changes taking
place within a rather narrow temperature interval (Fig. 3).

The phase transition temperature (Tc = 200 K) deter-
mined from the temperature dependence of the reduced
polarization in the external field with a strength of
0.95 kV/cm is higher than the value (Tc = 196 K) deter-
mined from the temperature dependence of the permit-

ε' c 1 q T( )–[ ] / T θ 1 q T( )–( )–[ ] ,=
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tivity obtained in our experiments and reported in [11–
14, 19, 20], as well as from data on the domain structure
variation [16, 17] and the lattice dynamics [22]. As is
well known, a field strength of about 1 kV/cm does not
affect the permittivity of Cd2Nb2O7 in the vicinity of Tc,
but decreases this value in the vicinity of Tmax [11, 12,
17, 30]. On the other hand, the applied electric fields
with Edc up to 15 kV/cm do not change Tc of this com-
pound [11, 12, 30, 38]. Apparently, the shift of ps(T)
toward higher temperatures in a relatively weak electric
field Edc is related to the fact that the ferroelectric phase
features, in addition to the reversible polarization typi-
cal of the normal ferroelectric, a local polarization of
microscopic clusters (with a size of 11–15 nm [38])
characteristic of a relaxator ferroelectric. The latter
polarization determines behavior of the system in the
external electric field at temperatures above Tc.

3.3. Decrease in the Dielectric Relaxation Rate 
at 190 K

Figure 4 shows a change in the inverse temperature
of the maximum permittivity (1/Tmax) in the region of
190 K as a function of the frequency. As can be seen,
the dielectric relaxation rate characterizing the process
in this interval nonlinearly decreases with decreasing
temperature, which is typical of relaxator dielectrics
[26, 27]. The dispersion was modeled by the empirical
Vogel–Fulcher relationship [40]

(2)

where f0 is a factor related to the nature of the relaxation
mechanism (and determining the relaxation rate at
T  ∞), Ea is the relaxation activation energy, k is the
Boltzmann constant, T is the absolute temperature, and
Tf is the characteristic polarization fluctuation freezing
temperature. A good coincidence with the experimental
data was obtained in the frequency range from 1 to
13 MHz for Ea ≈ 0.01 eV, Tf = 183 K, and f0 = 1.9 ×
1012 Hz. The polarization fluctuation activation energy
(Ea) and the preexponential factor (f0) for Cd2Nb2O7 are
on the same order of magnitude as the analogous values
in relaxator dielectrics of the PMN type [26, 27], being
characteristic of a thermoactivated process. The Tf

value is close to a temperature at which the dielectric
losses in Cd2Nb2O7 become frequency-independent
(Fig. 1c). According to [41], this implies that behavior
of the system below Tf becomes nonergodic.

Deviation of the experimental points from the calcu-
lated curve in the frequency range from 100 Hz to
1 MHz is probably related to a superposition of the pro-
cess dominating at 190 K and another process dominat-
ing at 150 K (Figs. 1b and 1c). For this reason, approx-
imation of the experimental data in terms of the Vogel–
Fulcher relationship in the entire frequency range stud-
ied (100 Hz to 13 MHz) yields physically unreasonable
values of the activation energy Ea in the region of 190 K

f f 0 Ea/k T T f–( )–[ ] ,exp=
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and the polarization fluctuation freezing temperature Tf

(f0 ~ 1013 Hz): Ea = 0.003 eV, Tf = 189 K. Provided that
the factor f0 ~ 1013 Hz determining the nature of the
relaxation mechanism does not change, a good coinci-
dence of the experimental and calculated curves can be
obtained only for certain Ea and Tf values, which
restricts the possibility of varying these parameters.

4. CONCLUSION

In order to elucidate the nature of a polydisperse
dielectric response of Cd2Nb2O7 in the temperature
region of 180–192 K and the influence of a relaxation
process taking place in this region on the dielectric
behavior of the system during the ferroelectric phase
transition (Tc = 196 K), we have studied this pyrochlore
by dielectric spectroscopy methods in a broad range of
frequencies (from 100 Hz to 13 MHz) and temperatures
(from 80 to 300 K). The temperature and frequency
dependences of the complex dielectric permittivity of
the system were analyzed taking into account the mod-
ern notions about features of relaxator ferroelectricity,
based on the Curie–Weiss, Vogel–Fulcher, and Sher-
rington–Kirkpatrick relationships [26–28]. We have
demonstrated that the dispersion of the dielectric
response in Cd2Nb2O7 in the frequency range from 100 Hz
to 13 MHz in the temperature region of 180–192 K is
characteristic of a relaxator ferroelectric featuring a
glasslike behavior. The parameters of this state were
determined, including the activation energy of the
polarization fluctuations (Ea ≈ 0.01 eV), the relaxation
rate for T  ∞ (f0 = 1.9 × 1012 Hz), and the polariza-
tion fluctuation freezing temperature (Tf = 183 K). In
Cd2Nb2O7 pyrochlore, in contrast to the known relax-
ator ferroelectrics of the PMN type studied previously
[26, 27], this state coexists with the normal ferroelectric
state appearing at Tc.
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1000/Tmax, K–1

Frequency, kHz
102 10410–2
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Fig. 4. The plot of the inverse temperature of maximum per-
mittivity in the region of 180–192 K versus frequency:
(open circles) experiment; (solid curve) calculation by the
Vogel–Fulcher relationship (2).
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Abstract—Diffusion of a particle in a medium in the presence of absorbing traps of various size is considered.
A theory describing the kinetics of particle trapping in the entire interval of time is suggested. Analytical rela-
tions for the probability of a particle survival in situations when many-body effects are weak and when they
dominate are obtained. It is shown that polydispersity of traps leads to the slowdown of particle trapping and to
attenuation of many-body effects inherent in the problem. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Processes in which transformation and loss of active
particles is controlled by diffusion are widespread
throughout physics, chemistry, and biology. Among
them are, for example, absorption of optical and mag-
netic excitations in solid [1], fast chemical reactions
[2], quenching of fluorescence [3], and ligand binding
to proteins [4]. The study of kinetics of diffusion-con-
trolled processes leads to the problem of survival of a
Brownian particle in a medium with randomly distrib-
uted traps [5, 6].

The simplest model of spatially noncorrelated
spherical traps of identical radius, which was first con-
sidered in the classical work by Smoluchowski [7], is
best studied. Smoluchowski’s approach is based on the
approximation that ignores the mutual influence of
traps on the loss of particles. Later, the original one-
body theory was elaborated in order to take into
account many-body effects, which are inherent in the
problem (see the recent monographs [8, 9] and refer-
ences therein). Although an exact solution was obtained
only in the one-dimensional case [10], a quite satisfac-
tory understanding of the process kinetics has been
achieved for the space of arbitrary dimension in the
entire interval of time. In particular, for the most impor-
tant three-dimensional case, the following facts have
been established:

(i) Particle trapping always proceeds slower than is
predicted by the time dependence of the survival prob-
ability found by Smoluchowski,

(1)

where b and c are the radius and concentration of traps,
and D is the particle diffusion coefficient. At the initial

PSm t; b( ) –4πbcDt 8b2c πDt–( ),exp=
1063-7761/02/9402- $22.00 © 20403
stage of the process, Eq. (1) provides a good approxi-
mation, and taking into account many-body effects only
yields a correction that reflects the trapping slowdown
at this stage [11].

(ii) At the final stage, the process goes much slower
than at the beginning. This so-called fluctuation slow-
down occurs due to the fact that the long-time kinetics
is determined by the survival of particles that remain,
from the very beginning, in fluctuation voids not con-
taining traps. The asymptotic behavior of the exact
solution to the problem at t  ∞,

, (2)

was found in [10, 12–14] on the basis of the optimal
fluctuation method suggested by Lifshits in [15] for the
calculation of the density “tail” of a quantum particle in
the field of randomly distributed scatterers.

However, the model of traps with various radii,
which is important for many applications, is less under-
stood. We are aware of only several attempts to take
into account the polydispersity of traps in the kinetics
of diffusion-controlled reactions [16–19]. In these stud-
ies, many-body effects were neglected, and the empha-
sis was placed on determining the rate constant in the
steady-state case on the basis of data obtained by com-
puter simulation.

In this paper, we suggest a many-body theory of
Brownian particle trapping by polydisperse traps. The
theory not only provides a description of the process on
the same completeness and accuracy level as those
available for identical traps, but also demonstrates new
features introduced by the polydispersity factor in the
reaction kinetics. While developing the theory, we gen-
eralized the approach to the analysis of many-body

P∞ t( ) 5
3
--- 2π4( )2/5

c2/3Dt( )3/5≈ln–
002 MAIK “Nauka/Interperiodica”
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effects in the kinetics of diffusion-controlled reactions
suggested in [11] and successfully used to study the
influence of trap clustering [20] and an external field
[21] on the particle trapping rate. The main idea of this
approach is in the representation of the particle survival
probability as the mean of an appropriate Brownian
motion functional over all factors that cause the proba-
bilistic properties of the process. For identical traps,
there are two such factors—the stochasticity of the
Brownian motion and a random distribution of traps. In
the problem considered here, there exists one more
probabilistic factor—the random size of traps. We show
that the new factor, along with the random distribution
of traps and the random nature of the Brownian motion,
leads to the process slowdown. Moreover, the polydis-
persity of traps manifests itself at the initial stage of the
process, while the fluctuations studied earlier cause
substantial deviations in the kinetics only at asymptoti-
cally long times.

In Section 2, it is shown how the additional probabi-
listic factor can be taken into account, and a general
expression for the particle survival probability (for a
given distribution of traps in size) is obtained as a path-
integral. Comparing this expression with the similar
one for identical traps (Section 3), we will see that, at a
fixed concentration and volume fraction of traps, their
polydispersity at least does not deteriorate the condi-
tions of particle survival. This effect is most pro-
nounced at the initial stage of the process, where the
mean-field approximation is applicable. An analysis of
the mean-field dependence (Section 4) shows that the
trapping process is the fastest when the traps are identi-
cal, and it is the slower the greater the size spread. In
Section 5, we use the cumulant expansion of the sur-
vival probability to derive a correction to the mean-field
dependence due to many-body effects. This correction
reflects the slowdown of particle trapping at the initial
stage of the process. Finally, in Section 6, we discuss
the kinetics of particle trapping at the final stage of the
process and show that in this case the fluctuation slow-
down (2) takes place as in the case of identical traps.
Although the polydispersity of traps does not modify
the dependence characterizing the kinetics at the final
stage of the process, it leads to the decrease in the frac-
tion of particles trapped at this stage. This observation
clearly demonstrates that the polydispersity of traps
attenuates many-body effects.

2. STATEMENT OF THE PROBLEM 
AND AN APPROACH TO ITS SOLUTION

Consider a point particle that diffuses in a medium
with randomly distributed static traps. The concentra-
tion of traps is assumed to be c. As in the conventional
model, we assume that the traps are perfectly absorbing
spheres (i.e., a particle is absorbed as soon as it touches
the trap) uniformly distributed in space. However, in
contrast to the conventional model, we assume that the
traps are different in size; more precisely, the radius of
JOURNAL OF EXPERIMENTAL A
the trap ξ is a random variable (continuous or discrete)
described by the probability density f(ξ) normalized to
unity:

(3)

Here, bmin and bmax are the minimal and maximal radius
of the traps. The distribution of radii can also be

described by the set of moments  (k = 1, 2, …):

(4)

We assume that the volume fraction of the traps

is small, i.e., φ ! 1. The problem is to find the time
dependence of a particle survival probability, P(t), that
determines the process kinetics and to exhibit the effect
of trap polydispesrity. We assume that the concentra-
tion and the volume fraction of traps (“the volume of
the absorbing phase”) are always the same.

First, we consider the simplest model in which a
Brownian particle starts from the origin and moves
along a Wiener trajectory Wt in the presence of a single
trap of radius ξ centered at the point r. In order to
describe the particle survival, we introduce the quantity
P(t |Wt |r |ξ) that is equal to unity if the particle survives
during the time t and to zero if the particle is trapped.
The survival condition is formulated in a very simple
form if we consider the process from the particle’s point
of view. Then, the particle is at rest at the point r, and
the trap center moves along the trajectory Wt. Then, the
trap covers the region ωξ(Wt) that is a tube of radius ξ with
the trajectory Wt as its axis. In the theory of stochastic pro-
cesses, this ξ neighborhood is called the Wiener sausage
[22, 23]. The particle survives if and only if the region
ωξ(Wt) does not contain the point r. This means that

where I(r; ω) is the indicator function that is equal to
unity if r belongs to ω and is zero otherwise. Notice that
the volume of the region ωξ(Wt) can be written in the form

(5)

When there are many traps such that the location and
radius of each of them is fixed and equal to rk and ξk for
the kth trap, respectively, then the survival of the parti-
cle is characterized by the quantity

(6)

f ξ( ) ξd

bmin

bmax

∫ 1,=

ξk

ξk ξk f ξ( ) ξ .d

bmin

bmax

∫=

φ 4
3
---πcξ3=

P t Wt r ξ( ) 1 I r; ωξ Wt( )( ),–=

v ξ Wt( ) v ωξ Wt( )[ ]≡ I r; ωξ Wt( )( ) r.d∫=

P t Wt rk ξk( )
k

∏ 1 I rk; ωξk
Wt( )( )–[ ]

k

∏ .=
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So far, we have not considered randomness. Actu-
ally, we deal with a randomly moving particle and a
random distribution of traps of random sizes. This
means that the survival probability P(t) is the mean
average of (6) over various realizations of trajectories
Wt, trap locations {rk}, and their radii {ξk}.

First, we find the average over the trap size, which
we will denote by a bar. Then, we find the average over
the trap distribution. Taking into account that the trap
centers have the Poisson distribution, this can be done
by the conventional method (an auxiliary volume Ω
containing N = cΩ trap centers is introduced that then
tends to infinity):

(7)

In the derivation of the last formula in (7), we used rela-
tion (5).1 This formula shows that the survival probabil-
ity of a particle that moves along a fixed trajectory in a
medium with various traps is simply the product of the
probabilities to avoid its absorption by traps of each
type. Indeed, the probability for the particle to avoid the
traps of radius ξ with the concentration cf(ξ)dξ is equal
to the part of the configurations of such traps whose
centers are at a distance greater than ξ from Wt. Since
the positions of traps are independent of each other, this
part is

Finally, averaging P(t |Wt) over the trajectories of the
particle Wt, which is denoted by angle brackets, we
obtain the following expression for the particle survival
probability:

(8)

This is the fundamental relation for our approach. In its
derivation, we actually passed from the conventional
model of a point particle and spherical traps to the
equivalent model of a spherical particle and point traps.
In these terms, taking into account the polydispersity of
traps means that we must take into account the random
size of the particle, ξ. Under this approach, the key role

1 According to the definition of the survival probability, P(0) = 1.
Generally, (7) does not satisfy this condition, since in its deriva-
tion we took into account the particles that started from the region
occupied by a trap. However, it can be readily shown that the cor-
rect normalization is obtained if the proper volume of the particle
is excluded from the Wiener sausage volume (in (7), integration
must be performed over the domain r ≥ ξ), i.e., if the volume is
counted from its value at t = 0 as is done below.

P t Wt( ) 1

ΩN
------- … 1 I rk; ωk Wt( )( )–[ ] rkd

k 1=

N

∏
Ω
∫

Ω
∫Ω ∞→

lim=

=  1
1
Π
---- I r; ωξ Wt( )( ) rd

Ω
∫–

N

Ω ∞→
lim

=  c I r; ωξ Wt( )( ) rd∫–exp cv ξ Wt( )–[ ] .exp=

cv ξ Wt( ) f ξ( )dξ–[ ] .exp

P t( ) cv ξ Wt( )–[ ]exp〈 〉 .=
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is played by the partial mean of the Wiener sausage vol-

ume , and the problem is essentially reduced to
the analysis of statistical properties of this random vari-
able, which describes the Brownian motion of a ran-
dom-radius particle in the space free of traps.

3. THE GENERAL INEQUALITY

For monodisperse traps of radius b, the probability
density

and, as it should be, Eq. (8) is reduced to the expression
for the survival probability obtained in [11], where
trapping by identical traps was considered:

(9)

Let us compare the survival probabilities in the case
of polydisperse (8) and identical (9) traps assuming that
the concentration and the volume fraction of traps are
the same in both cases, i.e., 

(10)

for any f(ξ). It can be shown that v ξ(Wt) is a concave
function of ξ3 for any trajectory Wt. Then, by the well-
known Jensen’s inequality [24], the expected value of
the concave function of a random variable does not
exceed the function of the expected value of this vari-
able. In our case, this means that for any trajectory

;

hence, trapping by different traps proceeds, at any rate,
no faster than that by identical traps (this is true for all
time intervals), i.e.,

(11)

It will be demonstrated below that (11) turns into a
strict inequality at the initial stage of the process and
turns into an equality at its final stage.

4. THE MEAN-FIELD APPROXIMATION

The principal difficulty in the kinetics analysis
based on the representation of the survival probability
in form (8) is related to the fact that there are no means
to obtain an analytical estimate of the integral over
Wiener trajectories. As in the case of identical traps
[11], the simplest and the most effective way to over-
come this difficulty is to invoke the mean-field approx-
imation, which neglects fluctuations of the Wiener sau-
sage volume. At the initial process stage, the applicabil-
ity of this approximation is justified by the fact that up
to asymptotically long times the main contribution to

v ξ Wt( )

f ξ( ) δ ξ b–( )=

P t; b( ) cv b Wt( )–[ ]exp〈 〉 .=

ξ3 b3=

v b Wt( ) v ξ Wt( )≥

P t( ) P t; b( ).≥
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the survival probability is made by typical trajectories,
which determine the mean (over trajectories) value of
the Wiener sausage volume. Using the dependence of
the mean Wiener sausage volume 〈v b(Wt)〉  on time (see
[25]),

(12)

it is easy to show that, in this approximation, Eq. (9) is
reduced to the Smoluchowski formula (1).

In the case of polydisperse traps, the functional

 is the key quantity. It is a linear combination of
Wiener sausage volumes corresponding to different
radii of particles that move along the same trajectory
Wt. The mean-field approximation, which ignores fluc-

tuations of the random variable , is equivalent to
neglecting volume fluctuations of each Wiener sausage.
Under this approximation, the mean of the exponent in
Eq. (8) can be replaced by the exponent of the mean,
and the kinetics of the process is determined by the total

mean value of the Wiener sausage volume :

(13)

Substitution of Eq. (12) into Eq. (13) yields the follow-
ing formula for the mean-field solution:

(14)

This formula is a generalization of the Smoluchowski
result (1) for polydisperse traps. It implies that, in the
mean-field approximation, the probability of a particle
survival among traps of various radii is equal to the
product of the probabilities to avoid the reaction with
identical traps of each radius. The latter are described
by the Smoluchowski formula. This is quite natural,
since the mean-field approximation neglects the mutual
influence of traps both of the same and of different radii
(i.e., many-body effects).

Let us show that, at the initial stage of the process,
when the mean-field approximation is applicable, the
general Eq. (11) turns into a strict inequality. Compar-
ing the survival probabilities (1) and (14) under condi-
tion (10), we see that, by virtue of the well-known ine-
quality between the moments of the positive definite
random variable [24], we have

(15)

(the equality sign corresponds to the case when ξ takes
only a single value with a nonzero probability, i.e.,
when the size of all traps is identical). The mean Wiener
sausage volumes satisfy the inequality

(16)

v b Wt( )〈 〉 4πbDt 8b2 πDt,+=

v ξ Wt( )

v ξ Wt( )

v ξ Wt( )〈 〉

Pmf t( ) c v ξ Wt( )〈 〉–[ ] .exp=

Pmf t( ) 4πξcDt– 8ξ2c πDt–( ).exp=

ξ33 ξ2 ξ≥ ≥

v b Wt( )〈 〉 v ξ Wt( )〈 〉 .>
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Hence, for the survival probabilities, we have

(17)

Note that the greater the fluctuations in the distribution
of traps in size, the stronger the inequalities (15)–(17).
Thus, at the initial stage (when the majority of particles
are trapped), the process proceeds the most fast for
identical traps and slows down as the trap size spread
becomes greater.

Formula (14) makes it possible to estimate the aver-
age survival time of a Brownian particle as

(18)

The main contribution to integral (18) is made by rather
small time values, where the mean-field approximation
is applicable. Hence, the substitution of (14) into (18)
yields a rather accurate estimate

(19)

where efrc(z) is the complementary error function [26],
and the main term of expansion 〈t 〉0 and the effective
volume fraction of traps Φ are determined by

(20)

In accordance with the conclusion made in the preced-
ing section, 〈t 〉0 and, consequently, the mean survival
time of a particle increase as the trap size spread
increases. We also note that, by virtue of the Schwarz
inequality [24],

the effective volume fraction of traps Φ is less than the
actual one, Φ < φ.

5. REFINING THE MEAN-FIELD DEPENDENCE

Particles are always trapped more slowly than pre-
dicted by the mean-field dependence (14). Indeed, by
the well-known inequality

we have

(21)

for all t, and the equality is true only for t = 0. In order
to derive a correction to (14) that reflects this slowdown
(for time values where the mean-field approximation is
applicable), it is convenient to represent, on the basis of

Pmf t( ) PSm t; b( ).>

t〈 〉 t
P t( )d

td
------------– td

0

∞

∫ P t( ) t.d

0

∞

∫= =

t〈 〉 mf t〈 〉 0 1 3Φ 3Φ
π

------- 
  erfc 3Φ

π
-------exp–=

≈ t〈 〉 0 1 3Φ–( ),

t〈 〉 0
b2

D
----- 1

3φ
------ ξ33

ξ
---------, Φ ξ22

ξ3ξ
--------φ.= =

ξ22
/ ξ3ξ( ) 1,<

e x–〈 〉 e x〈 〉– ,≥

P t( ) Pmf t( )≥
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the general expression (8), the logarithm of the survival
probability as the expansion in the cumulants of the

random variable :

(22)

Here, the n cumulant Kn(t) is a rational function of the

volume moments  of orders not exceeding n
(see [24]). The first cumulant, which is equal to the total
mean value of the Wiener sausage volume,

is easily found from (12). The second cumulant is the

variance of ,

It is calculated for t @ /D by the method suggested
in [25] (the calculation is outlined in the Appendix):

(23)

where

Comparing this formula with the well-known formula
of the variance of the volume visited by a Brownian

particle of radius b in the course of the time t @ /D
[25],

we note that when the particle radius is random, the
variance of the Wiener sausage volume, as well as its
mean value (see inequality (16)), is less than in the case
of a fixed radius (however, the estimate of the relative

fluctuation K2(t)/  shows that a random value of
the particle can lead both to an increase and decrease of
this quantity).

The approximation of series (22) by its first term
corresponds to the mean-field approximation (see
(13)). In the case under consideration, when the volume
fraction of traps is small, φ ! 1, this term is much
greater than the sum of all other terms at times when the
majority of particles are trapped; then, the mean-field
dependence (14) provides a good approximation.
Retaining the second term in expansion (22) refines
Eq. (14), making it possible to take into account fluctu-
ations of the Wiener sausage volume (many-body
effects) and reflect the slowdown of the kinetics corre-

v ξ Wt( )

P t( )ln
c–( )n

n!
------------Kn t( ).

n 1=

∞

∑=

v ξ Wt( )

K1 t( ) v ξ Wt( )〈 〉 ,=

v ξ Wt( )

K2 t( ) σ2 t( ).=

bmax
2

σ2 t( ) 16π2Dtξ22 Dt

beff
2

------- 
  ,ln≈

bmax beff bmin.≥ ≥

b2

σ2 t( ) 16π2b4Dt Dt/b2( ),ln≈

K1
2 t( )
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
sponding to inequality (21). Under this approximation,
we have

(24)

The mean-field approximation gives the first two
terms in the expansion of 〈t 〉  in the small parameter φ
(see Eq. (19)). Formula (24) yields the next term of this
expansion, which reflects (in the first approximation)
many-body effects. Substituting (24) into (18) and esti-
mating the corresponding integral up to the linear terms
(in φ), we obtain

(25)

This formula is a generalization of the result by Mattern
and Felderhof in [27] obtained for identical traps to the

case of polydisperse traps. Note that (1)  > 〈t 〉mf,
as it must be according to inequality (21); (2) at the ini-
tial stage of the processes, the trap polydispersity leads
to an attenuation of many-body effects, since the effec-
tive volume fraction of traps Φ decreases as the trap
size spread becomes greater.

6. LONG-TIME ASYMPTOTIC BEHAVIOR

Taking into account a finite number of terms in
expansion (22) refines the mean-field dependence at
rather short times where the subsequent terms are small
compared to the first one. Since Kj(t) increase with
time, this procedure becomes useless at long times.

As in the case of identical traps [10, 12–14], the
long-time behavior of the process is determined by rare
fluctuations of the Wiener sausage volume, which man-
ifest themselves in the kinetics due to fluctuations in the
arrangement of traps. We show that the asymptotic
behavior of P(t) in our model is exactly the same as the
behavior in the model with identical traps. This fact fol-
lows from the obvious inequality

(26)

According to (2), the probabilities P(t; bmin) and P(t;
bmax), which describe the survival of particles among
identical traps of radii bmin and bmax, respectively, as
t  ∞ are the same (with a logarithmic accuracy).
Hence, the asymptotic behavior of lnP(t) as t  ∞ is
also described by (2). Note that this result can be
obtained directly from the general Eq. (8). Indeed, at
large time (see the similar reasoning in [11] for identi-
cal traps), the major contribution to P(t) is made by
multiply self-intersecting trajectories generating
Wiener sausages, the volume of which is much less
than the mean one.

P t( ) Pmf
c t( )≈ –c v ξ Wt( )〈 〉 1

2
---c2σ2 t( )+exp=

≈ Pmf t( ) 1
3
2
---Φ t
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  .
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Thus, as t  ∞, the general inequality (11) turns
into an equality. However, we stress that, although the
polydispersity of traps does not lead to a change in
dependence (2), it results in a decrease in the fraction of
particles trapped in the fluctuation regime. To show
this, we introduce the characteristic time t* such that
Pmf(t*) = P∞(t*):

(27)

At t ! t*, the probability of survival is described by the
mean-field solution Pmf(t) (14); for t @ t*, it is
described by the fluctuation asymptotic dependence
P∞(t) (2). Estimating the fraction of particles e = P(t*)
that are trapped in the asymptotic mode (2), we
obtain

(28)

where

is the fraction of particles whose trapping is described
by the nonexponential kinetics (2) in the case of identi-
cal traps. We see that, as fluctuations of the trap size
increase, e becomes substantially less than em. This and
the fact that was mentioned in the analysis of the initial
stage of the process (see the remark at the end of the
preceding section) lead to the conclusion that the poly-
dispersity of traps always contributes to the attenuation
of many-body effects. 

APPENDIX

According to the definition of variance,

(A.1)

in order to calculate it, we have to find  and

. The mean value of the Wiener sau-

sage volume for a particle of fixed radius, 
(see formula (12) in the main part of the paper), is
immediately obtained from definition (5) with regard
for the fact that

where q(r, ξ; t) is the probability for a particle to be
trapped in time t by a trap of radius ξ such that the trap

t∗ 55/2π3

54 φ
------------- ξ3

ξ3
----- t〈 〉 0.≈

e em( ) ξ3/ξ
3

,=

em
55/2π3

54 φ
-------------–  ! 1exp=

σ2 t( ) v ξ Wt( )v ξ' Wt( )〈 〉[∫
bmin

bmax

∫=

– v ξ Wt( )〈 〉 v ξ' Wt( )〈 〉 ] f ξ( ) f ξ'( )dξdξ',

v ξ Wt( )〈 〉
v ξ Wt( )v ξ' Wt( )〈 〉

v ξ Wt( )〈 〉

I r; ωξ Wt( )( )〈 〉 q r ξ ; t,( ),=
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is initially at the distance r > ξ from the particle:

(A.2)

In order to find , we write, on the basis
of definition (5),

(A.3)

The quantity  is the frac-
tion of trajectories that start from the origin and visit at
time t both the ξ neighborhood of the point r and the
ξ' neighborhood of the point r'. It is easy to see that this
quantity can be written as

(A.4)

where the first two terms are the probabilities for the
particle starting from the origin to be trapped at time t
by a single trap located at the point r (of radius ξ) or at
the point r' (of radius ξ'). The third term is the probabil-
ity for the particle to be trapped in the presence of both
traps described above.

The probability for a particle to be trapped by a sin-
gle trap is known (see (A.2)). Attempts to calculate this
quantity for two arbitrarily located traps fail. However,
we need only the integral of this quantity over various
configurations of traps. For times

,

the major contribution to this integral is made by con-
figurations with traps rather far apart,

For such configurations, the probability of a particle to
be trapped can be determined approximately by repre-
senting it in terms of the known probabilities of being
trapped by a single trap.

For this purpose, we represent the probability q(r, ξ;
r', ξ'; t) as a sum of the conditional probabilities

(A.5)

where q(r, ξ; t |r', ξ') is the probability of the particle to
be trapped at the time t by a trap of radius ξ located at
the point r under the condition that there is one more
trap of radius ξ' located at the point r'; q(r', ξ'; t |r, ξ) is
defined similarly. These conditional probabilities

q r ξ ; t,( )
ξ
t
--erfc

r ξ–

2 Dt
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v ξ Wt( )v ξ' Wt( )〈 〉
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r' ξ'≥
∫

r ξ≥
∫
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=  q r ξ ; t,( ) q r' ξ'; t,( ) q r ξ ; r' ξ'; t,,( ),–+

t @ ξ ξ '+( )2/D

r' r–  @ ξ ξ '.+
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approximately satisfy the following system of integral
equations:

(A.6)

The approximation is such that we place the start-
ing point of the particle that arrives at the time t' in
the ξ (ξ ') neighborhood of the point r (r') just at the
point r (r').

Using the Laplace transformation

it easy to find a solution to system (A.6) and the
Laplace transforms of q(r, ξ; r', ξ'; t) (A.5) and

 (A.4). We assume that the
equations obtained are true not only for traps that are
far apart but also for all configurations satisfying the
condition

.

The resulting error does not exceed the accuracy of our
computation. Taking into account the fact that

we obtain, after some straightforward algebraic manip-
ulations,

(A.7)

where

(A.8)

Expanding (A.7) into a series in small s, we find the
main terms of the long-time asymptotic behavior

 neglecting linear and higher order
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terms with respect to time. Substituting these terms into
(A.1), we arrive at Eq. (23) in the main part of the paper.
An accurate estimate of this computation shows that the

error does not exceed Dt by the order of magni-
tude.
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Abstract—In the framework of perturbation theory, the first several one-particle energies and wave functions
for electrons and holes (six for each) in spherical silicon quantum dots are obtained in the envelope function
approximation (kp method). It is shown that the model of an isotropic dispersion relation with the mean recip-
rocal effective mass is applicable for the ground state of holes in the valence band. Anisotropy of the disper-
sion relation, which takes place for bulk semiconductors, becomes significant for the electron ground state
in the conduction band as well as for all excited (both electron and hole) states. © 2002 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

Optical properties of various heterostructures with
semiconductor quantum dots which can be used for
obtaining radiation in the near-IR range and even in the
visible part of the spectrum have been investigated both
experimentally and theoretically in recent years. Sili-
con is one of the most promising materials for optoelec-
tronics in view of its abundance. In this connection, it
would be interesting to calculate the band structure of
silicon quantum dots.

The band structure of silicon quantum dots was cal-
culated earlier using various methods including the
method of pseudopotential [1], the tight-binding model
[2, 3], and the local density approximation [4]. All these
methods are rather complicated and involve cumber-
some computer calculations. Their application is justi-
fied for very small crystallites (with a size smaller than
one or two nanometers), when the effective mass
approximation fails to provide satisfactory results.

The effective mass approximation (or the kp
method) itself was also used for calculating the electron
structure of silicon nanocrystals of a slightly larger size
(exceeding two or three nanometers) [3, 5–7]. How-
ever, these calculations, as well as those made in [1, 2,
4], were mainly aimed at determining the energy of the
basic transition in quantum dots, i.e., the transition
from the lower level of the conduction band to the
upper level of the valence band. The models of the
envelope function Hamiltonian used in this case for cal-
culating the two ground states in the valence band and
in the conduction band were insufficiently accurate
(this will be discussed in greater detail below) and
require considerable corrections.

In this work, we will carry out an analysis of the
electron and hole spectra of spherical (of radius R) sili-
con quantum dots in the envelope function approxima-
tion. We will assume that the size of crystallites is not
small enough to transgress the validity of our calcula-
1063-7761/02/9402- $22.00 © 20411
tions. We will calculate the energies of not only the
ground states in the valence band and in the conduction
band, but also of several excited states and the wave
functions of all these states, which is required, for
example, for determining the probabilities of various
interband and intraband transitions.

2. VALENCE BAND

2.1. Computational Technique

It is well known (see, for example, [8]) that, in the
envelope function approximation, the Hamiltonian in
the valence band disregarding the spin-orbit interaction
(which is rather weak in silicon) is a 3 × 3 matrix oper-
ator owing to the triple degeneracy of the spectrum at
the Γ point. The diagonal elements of this matrix have
the form

(1)

while the nondiagonal elements are given by

(2)

In expressions (1) and (2), m0 is the mass of a free elec-

tron;  = –i∇  is the wave vector operator; and numbers
L, M, and N are dimensionless empirical parameters,
which are equal to 6.8, 4.43, and 8.61, respectively [9].

Hamiltonian  is the result of averaging over all
directions of any diagonal element.

Ĥ jj Ĥ0 V̂ jj+
"

2

2m0
--------- L 2M+

3
------------------k̂

2
–= =

+
"

2

2m0
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3
-------------- k̂

2
3k̂ j

2
–( ),

Ĥij V̂ ij
"

2

2m0
---------Nk̂ik̂ j.–= =

k̂

Ĥ0
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The problem involves the solution of the matrix
equation

(3)

where Fj(r) is the envelope function and % is the
energy. We assume that a quantum dot is in a layer of a
wideband material (e.g., SiO2) so that the potential bar-
riers both for holes and for electrons can be regarded as
infinitely high. In accordance with these assumptions,
the values of envelope functions at the boundary must
vanish.

It was mentioned above that the calculations made
in [5–7] are apparently insufficiently rigorous. For
example, the spectrum for the valence band was calcu-
lated either by using the Luttinger Hamiltonian [5]
(when the initial 6 × 6 Hamiltonian splits into two: 4 ×
4 and 2 × 2), which is hardly justified for silicon in view
of the smallness of spin-orbit splitting, or by using a
model of the dispersion relation in which anisotropy is
determined by two effective masses [7], which requires
an additional substantiation. In [3], a 6 × 6 Hamiltonian
was used, but the energy of the ground state alone was
calculated. For this reason, a more detailed and com-
prehensive analysis of the hole and electron states is
required.

We will try to solve the eigenfunction and eigen-
value problem (3) in the framework of perturbation the-
ory choosing the Hamiltonian

(4)

as the zeroth approximation. In this case, all nondiago-

nal elements (2) and anisotropic terms  in the diag-
onal elements are regarded as perturbations.

It should be noted that anisotropy in silicon is quite

strong; in particular, the nondiagonal elements  are

comparable in order of magnitude with  and, hence,
can hardly be treated as small. However, we must take
into account the specific form of the perturbation: it
cannot bind “neighboring” states of the unperturbed
Hamiltonian (e.g., s and p, p and d, etc.) and binds only
states of the same parity. The criterion of applicability
of perturbation theory is hence the smallness of the
matrix elements of a perturbation relative to the energy
of the corresponding allowed transition, equal to the
energy difference, say, between the d and s states,
which is quite large indeed.

The perturbation theory series in this case can be
constructed almost in the conventional way (see, for
example, [10]). A specific feature of our problem is that
each energy level in the valence band has three times
higher degeneracy due to the matrix form of Eq. (3). We
will seek the envelope functions in the form of an

ĤijF j r( ) %Fi r( ),=

Ĥij
0( ) δij Ĥ0=

V̂ ij

V̂ ij

Ĥ0
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expansion in the basis of the eigenfunctions |α〉 of the

unperturbed Hamiltonian :

(5)

We will denote by Greek letters the states of the unper-
turbed problems and by Roman letters the index of the
Bloch function in the valence band, which changes
from 1 to 3. The explicit form of eigenfunctions |α〉 is
well known: their radial component is a first-kind

spherical Bessel function jl( r/R), where  is the nth
root of the given function; the angular component will
henceforth be chosen in the form of a superposition of
spherical harmonics Ylm(θ, ϕ) taken with the same num-
ber l, but with different numbers m. Substituting expan-
sion (5) into Eq. (3), we ultimately obtain the following
equation for determining energy % and the expansion
coefficients Cjα:

(6)

where Eβ are the eigenvalues of operator  in state |β〉
and  = 〈α| |β〉. After this, the solution of Eqs. (6)
is carried out in the standard manner and leads to the
following results.

2.2. Energies and Wave Functions of Holes
in the Valence Band

We start with calculating the corrections to the
ground 1s state of the unperturbed problem. While
determining the first-order corrections to the energy
value and the regular wave functions in the zeroth
approximation, we confine the summation over α in
Eqs. (5) and (6) only to the 1s state. It turns out that the
first-order corrections to energy are equal to zero and
that the energy value itself,

(7)

does not change and nor do the wave functions

(8)

Here, v x(r), v y(r), and v z(r) are the Bloch functions
corresponding to the Γ point of the Brillouin zone, and
|0〉  is the function of the 1s state of the unperturbed

Hamiltonian . In formula (7), we have introduced
the effective mass of a hole,

Ĥ0

F j r( ) C jα α| 〉 .
α
∑=

µl
n µl

n

% Eβ–( )Ciβ C jαVij
βα,

j

∑
α
∑=

Ĥ0

Vij
βα V̂ ij

%0h
"

2π2

2mhR2
----------------,–=

Ψ0 1( ) v x r( ) 0| 〉 , Ψ0 2( ) v y r( ) 0| 〉 ,= =

Ψ0 3( ) v z r( ) 0| 〉 .=

Ĥ0

mh

3m0

L 2M+
------------------.=
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A nonzero correction to energy appears in the sec-
ond order when the 1d and 2s states are taken into
account in Eqs. (5) and (6) of the unperturbed problem
(the remaining d and s states make a much smaller con-
tribution). However, this correction does not exceed a
few percent and hence will not be taken into account.

The spin-orbit interaction is usually taken into
account in an analysis of the hole spectrum of semicon-
ductors with the structure of diamond or zinc blende.
According to calculations, the spin-orbit splitting of the
1s level occurs in a quantum dot as in the case of a bulk
semiconductor: the fourfold degenerate (taking spin
into account) level ascends to the top of the valence
band by ∆/3 ≈ 0.015 eV, while the doubly degenerate
level descends by 2∆/3 to the bulk of the band. How-
ever, the spin-orbit splitting is of the same order of
smallness as the second-order correction, and, hence,
the spin-orbit splitting is not taken into account either.

Thus, expressions (7) and (8) remain valid to a high
degree of accuracy; consequently, the ground state of
holes is correctly described by an isotropic model with
the effective mass mh equal approximately to 0.19m0
even in the presence of a strong anisotropy of the spec-
trum.

Let us now calculate corrections to the 1p states. In
this case, we will also confine our analysis to first-order
corrections to energies, which are now nonzero, and
construct the regular functions of the zeroth approxima-
tion. Solving Eq. (6) without taking spin into account,
we find that, in the first order, the ninefold degenerate
level splits into four levels, the highest of which is triply
degenerate and has the energy

(9)

where the factor in front of the parentheses is the energy
value for the 1p state and µ1 is the smallest root of the
spherical Bessel function j1(x). In this case, the correc-
tion is quite significant and amounts exactly to half the
initial value E1h according to estimates. The value of
energy %1h becomes very close to energy %0h (the dif-
ference between the two values is on the order of 2%).

Since the energy %1h remains triply degenerate, the
choice of wave functions is ambiguous as before. In
particular, these functions can be chosen in the form

(10)

%1h

"
2µ1

2

2mhR2
---------------- 1 2 2N L M–+( )

5 L 2M+( )
------------------------------------– 

  ,–=

Ψ1 1( )
v y r( ) x| 〉 v x r( ) y| 〉–

2
--------------------------------------------,=

Ψ1 2( )
v x r( ) z| 〉 v z r( ) x| 〉–

2
-------------------------------------------,=

Ψ1 3( )
v z r( ) y| 〉 v y r( ) z| 〉–

2
-------------------------------------------,=
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where |x〉 , |y〉 , and |z〉  are the real normalized wave func-
tions of 1p states, which are transformed like coordi-
nates x, y, and z.

The next energy level is doubly degenerate and has
the energy

(11)

and the wave functions

(12)

The correction to energy turns out to be smaller than in
the previous case, but is still significant (more than
30%) and positive; i.e., the %2h level is located closer to
the top of the valence band as compared to the unper-
turbed energy value.

The remaining two levels obtained as a result of
splitting of the 1p state are shifted to the bulk of the
valence band relative to E1h. One (triply degenerate)
level increases the energy by almost 40%, while the
other (nondegenerate) level, by 100%. We will not give
here the expressions for the energies and wave func-
tions of these four states since they lie quite deep in the
valence band and the results obtained for these states
may turn out to be too rough for several reasons. In par-
ticular, the quadratic approximation for elements of the
matrix operator (1), (2) is in all probability insufficient
for such energy values; the 1p1f hybridization, which
was disregarded by us here, may also noticeably affect
the position of the levels.

The splitting of the 1p level is found to be very
strong, and the approximation with an isotropic disper-
sion relation is obviously inapplicable in this case. It
should be noted that, in spite of the large values of first-
order corrections, higher orders of perturbation theory
do not lead to significant modifications (the corre-
sponding corrections amount to a few percent accord-
ing to estimates). We also disregard the spin-orbit cou-
pling which gives corrections for the 1p states which
are two orders of magnitude smaller than for the 1s
state. The spin-orbit interaction will be neglected
everywhere in the subsequent analysis.

The 1d state is characterized by fifteenfold degener-
acy; it should be borne in mind, however, that the E0h

%2h

"
2µ1

2

2mhR2
---------------- 1 4 N L– M+( )

5 L 2M+( )
---------------------------------– 

 –=

Ψ2 1( )
1 3+

6 2 3+( )
----------------------------v x r( ) x| 〉=

+
1

6 2 3+( )
----------------------------v y r( ) y| 〉 2 3+

6
----------------v z r( ) z| 〉 ,–

Ψ2 2( )
1 3+

6 2 3+( )
----------------------------v x r( ) x| 〉=

– 2 3+
6

----------------v y r( ) y| 〉 1

6 2 3+( )
----------------------------v z r( ) z| 〉 .+
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level of the 2s state lies very close to the 1d energy level
E2h. For this reason, the 2s state must also be taken into
account while solving the secular equation obtained
from Eq. (6) in the first order of perturbation theory.
Thus, the total number of unknown coefficients is equal
to eighteen.

As a result of the solution of the given system of
equations, we obtain seven different energy values,
from which four levels (two triply degenerate, one non-
degenerate, and one doubly degenerate) appear as a
result of splitting of the 1d level, while three triply
degenerate levels appear as a result of the 1d2s hybrid-
ization. As before, we will only write the expressions
for energy levels displaced more strongly towards the
top of the valence band as compared to their unper-
turbed values and, hence, located not very deep in the
valence band.

The uppermost level is the triply degenerate energy
level obtained as a result of the 1d2s hybridization,

(13)

and characterized by the largest correction (slightly
exceeding 50%) relative to the energy of the 1d level.
The parameter µ2 in this expression is the first root of
the spherical Bessel function j2(x). The wave functions
will be chosen as follows:

%3h –
"

2

2mhR2
----------------

µ2
2 4π2+

2
--------------------

"
2µ2

2

2m0R2
----------------+=

× 12 2πN

15µ2 4π2 µ2
2–( )

----------------------------------------- N 2L 2M–+
14

--------------------------------–
 
 
 

,
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(14)

where |200〉  is the wave function of the 2s state.

The next (in the direction to the bulk of the valence
band) is also the triply degenerate level

(15)

which has a correction slightly smaller than 50% rela-
tive to the E2h energy (the factor in front of the paren-
theses). This level is obtained as a result of splitting of
the unperturbed 1d level without an “admixture” the 2s
state. The three wave functions corresponding to
energy (15) have the form

Ψ3 1( )
1

2
-------=

× v x r( ) 200| 〉
v y r( ) xy| 〉 v z r( ) xz| 〉+

2
--------------------------------------------------– 

  ,

Ψ3 2( )
1

2
-------=

× v y r( ) 200| 〉
v x r( ) xy| 〉 v z r( ) yz| 〉+

2
--------------------------------------------------– 

  ,

Ψ3 3( )
1

2
-------=

× v z r( ) 200| 〉
v x r( ) xz| 〉 v y r( ) yz| 〉+

2
-------------------------------------------------– 

  ,

%4h

"
2µ2

2

2mhR2
---------------- 1 6N

7 L 2M+( )
--------------------------– 

  ,–=
(16)

Ψ4 1( )
3N /2 L M–+( )v x r( ) x2 y2–| 〉 3 3z2 r2–| 〉+( ) 3N v y r( ) xy| 〉 v z r( ) xz| 〉–( )+

18N2 3N 2L 2M–+( )2+
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------,=

Ψ4 2( )
3N /2 L M–+( )v y r( ) x2 y2–| 〉 3 3z2 r2–| 〉–( ) 3N v z r( ) yz| 〉 v x r( ) xy| 〉–( )+

18N2 3N 2L 2M–+( )2+
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------,=

Ψ4 3( )

3N 2 L M–( )+( )v z r( ) x2 y2–| 〉 3 3N v y r( ) yz| 〉 v x r( ) xz| 〉–( )+

54N2 3N 2L 2M–+( )2+
------------------------------------------------------------------------------------------------------------------------------------------------------,=
where |xy〉, |xz〉, |yz〉, |x2 – y2〉 , and |3z2 – r2〉  are the func-
tions of the 1d state.

It should be noted that expressions (13)–(16) are not
exact even in the first approximation; however, a more
rigorous inclusion of the discarded terms would
improve the accuracy of the result only by a few per-
cent, rendering expressions (13)–(16) much more cum-
bersome. Taking into account the fact that we disregard
the second-order corrections, which also amount to a
few percent, the presentation of expressions (13)–(16)
in a simpler form is quite justified.
 

Finally, the last level whose value of energy will be
given here is doubly degenerate and is obtained from
the 1d level,

(17)

and the wave functions of the two degenerate states can
be chosen in the form

%5h

"
2µ2

2

2mhR2
---------------- 1 3N 4L 4M–+

7 L 2M+( )
-----------------------------------– 

  ,–=
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(18)

The correction to the E2h level slightly exceeds 30%.

3. CONDUCTION BAND
3.1. Computational Technique

The analysis of the electron spectrum and wave
functions in the conduction band of silicon can be car-
ried out in the same way as for the valence band, i.e.,
using perturbation theory. As the zeroth approximation,
we can take, as before, the Hamiltonian operator aver-
aged over all directions, the basis of its eigenfunctions,
and the spectrum of eigenvalues.

It is well known that, in the conduction band of sili-
con, energy minima are located symmetrically relative
to each of the X points on the boundary of the Brillouin
zone. At the X points proper, energy branches intersect,
giving rise to double degeneracy of the spectrum at
each of the three physically nonequivalent X points
(sixfold degeneracy in the whole).

The electron spectra in the conduction band of sili-
con are usually analyzed using the model of constant-
energy surfaces in the form of an ellipsoid of revolution
in the k space with two effective masses ml and mt (lon-
gitudinal and transverse). However, such a representa-
tion is valid only for not very high energies in the vicin-
ity of any of the six minima. Considering that the
energy difference between an X point and the point of
minimum amounts to only 0.115 eV [11], while the size
quantization energies in the system under investigation
is several times higher, we conclude that the model of a
constant-energy surface in the form of an ellipsoid of
revolution is inapplicable in this case.

Instead, we must write the kp Hamiltonian of the
problem in the vicinity of each of the three X points
rather than in the vicinity of the energy minimum as
was done in [11, 12]. This will enable us to consider-
ably extend the energy range under investigation. For
the sake of definiteness, we choose one of the three X
points, say, that corresponding to the z direction [001]
and calculate the electron spectrum in the vicinity of
this point. Naturally, the spectrum at the other two X
points will be the same.

In view of double degeneracy of the Bloch states at
each X point, the Hamiltonian of the problem has the

Ψ5 1( )
1 3+

6 2 3+( )
----------------------------v x r( ) yz| 〉=

+
1

6 2 3+( )
----------------------------v y r( ) xz| 〉 2 3+

6
----------------v z r( ) xy| 〉 ,–

Ψ5 2( )
1 3+

6 2 3+( )
----------------------------v x r( ) yz| 〉=

– 2 3+
6

----------------v y r( ) xz| 〉 1

6 2 3+( )
----------------------------v z r( ) xy| 〉 .+
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form of a 2 × 2 matrix operator [11, 12] with the ele-
ments

(19)

where the values of mt and ml are respectively 0.19 and
0.92 of the free electron mass; k0 = 0.144(2π/a) is the
distance from an X point to the nearest energy mini-
mum in the k space; a = 0.543 nm is the lattice constant;
and the values of k and energy are reckoned from the X
point.

Averaging matrix (19) over directions, we obtain the
zeroth-approximation Hamiltonian in form (4), where

operator  is now equal to "2 /2me, and me is the
effective isotropic electron mass obtained as a result of
averaging of reciprocal effective masses:

All the terms which do not appear in the averaged

Hamiltonian  will be regarded as a perturbation. In
particular, the diagonal elements of the matrix perturba-
tion operator have the form

while the nondiagonal elements of the perturbation

operator coincide with  and .
The basis of envelope eigenfunctions of the unper-

turbed problem in the conduction band is exactly the
same as the hole basis in the zeroth approximation for
the valence band, while the spectrum differs only in the
value of the effective mass, which is now equal to
0.26m0. Accordingly, as was done in the hole spectrum
calculations, we will classify electron states in the basis

of Hamiltonian  and solve the problem using again
expansion (5) and the equation for the expansion coef-
ficients (6) in which the summation over j is now car-
ried out from 1 to 2.

3.2. Electron Spectrum and Wave Functions
in the Conduction Band

We begin with corrections to the ground 1s state. In
contrast to the hole Hamiltonian (1), (2), the nondiago-
nal elements of Hamiltonian (19) contain terms linear

in . For this reason, the 1s and 1p states can be mixed.
A preliminary analysis shows that the splitting of the 1p
level without taking into account its coupling with the
1s state is quite strong as on the valence band, and the
lowest of the split p levels virtually overlaps with the 1s
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Ĥ12 Ĥ21
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level. In the valence band, a perturbation could not cou-
ple the s and p states; for this reason, the s and p levels
were obtained independently. In the conduction band, a
perturbation may couple the s and p states; for this rea-
son, the s and p states start interacting with one another
upon convergence.

In view of what has been said above, we will seek
the regular functions in the zeroth approximation (5) in
the form of superpositions of the wave functions of the
1s and 1p states. In this case, Eq. (6) leads to a system
of equations for the expansion coefficients of 8 × 8
dimension, which splits into four 2 × 2 systems from
which only two are different, while the other two are
completely identical to the first equations. This indi-
cates double degeneracy of each of the four obtained
levels, which is apparently a consequence of complete
symmetry of two valleys relative to the X point in a bulk
semiconductor. The 1s state is mixed with the pz state,
and the px and py states mix with each other.

The ground state in the conduction band is obtained
as a result of the spz hybridization and has the energy

(20)

where Ee and E1e are the energies of the 1s and 1p states,
and U and V are the absolute values of matrix elements,
which are defined as

(21)

The wave functions can be chosen in the form

(22)

where  and  are the Bloch functions at the
X point and angle λ is defined by the relations

Here and below, we will not write expressions for sec-
ond-order energy corrections since these expressions,
as in the case of the valence band, are quite cumber-
some, as a rule, and the values of corrections do not
exceed a few percent.

The px and py energy levels split very strongly. The
upper split level ascends to a considerable height, and
its position is of no interest for our analysis. The level
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split in the downward direction is located next to the
ground state and has the energy

(23)

which decreases relative to the unperturbed value by
approximately 45%. We choose the wave functions in
the form

(24)

The next level %2e is also obtained as a result of the spz

hybridization as the second solution of the 2 × 2 system:

(25)

The wave functions corresponding to this level are writ-
ten in the form

(26)

It should be noted that the dependence of energies %0e

and %2e on the size of a quantum dot is described by a
more complex function than R–2 (it is intermediate
between R–2 and R–1 due to the presence of terms linear

in  in the Hamiltonian of the perturbation).
Let us now consider the 1d state. In view of the

closeness of the 2s state, we again construct the regular
wave functions in the zeroth approximation and calcu-
late the first-order energy corrections taking into
account in expansion (5) the wave functions of the 1d
and 2s states and neglecting the effect of all the remain-
ing corrections. It should be noted from the very outset
that, in contrast to calculations for the valence band, the
1d and 2s states can now mix with the 1p states and,
hence, we must also include in expansion (5) the func-
tions of the 1p states. However, our calculations show
that such a hybridization has virtually no effect on the
position of the levels: the shifts turn out to be no larger
than the second-order corrections which are disre-
garded. For this reason, the hybridization of the 1d and
2s states with the 1p states will also be neglected to sim-
plify the form of the final expressions.

As a result, we find that the 2s state is hybridized
with the |xy〉  and |3z2 – r2〉  states, but the state obtained
due to the interaction of the |xz〉  and |yz〉  states possesses
the lowest energy

(27)
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The wave functions corresponding to this doubly
degenerate energy value can be written in the form

(28)

The splitting of the dxz and dyz states generates one
more energy level; however, like the level of the

state, it possesses a high energy since it lies

above the unperturbed state. For this reason, these
states will not be considered here.

The two states resulting from the 2sd hybridization
(the third hybridized state also splits to a considerable
height and is not considered by us) possess a slightly
higher energy. However, one must solve a cubic equa-
tion for determining the energy of these two states. An
explicit analytic solution of this equation cannot be
obtained. For this reason, we carry out its numerical
solution, which gives

(29)

where  = (E0e + 2E2e)/3. The corresponding wave
functions can be written in the form

(30)

The energy levels (27) and (29) obtained from the 1d
and 2s levels of the unperturbed problem have close
energy values, the difference in the values of %3e and
%4e being smaller than one percent, and the energy %5e

differs from these values by approximately 4%.
The dependence of the energies of electrons and

holes on the quantum dot radius is shown in the figure.
The energy in the figure is reckoned from the top of the
valence band. Two dashed lines mark the forbidden gap
for bulk silicon, whose width is taken at 1.1 eV. Both in
the valence band and in the conduction band, the first
six energy levels are indicated. The difference in ener-
gies %0h(R) and %1h(R) is insignificant (a few percent);
for this reason, these two curves in the figure virtually
merge into one. A similar situation takes place for the
energy levels %3h(R) and %4h(R) as well as for the
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%3e(R) and %4e(R) curves in the conduction band (the
difference in this case is still smaller). The %5e(R)
curve, which also merges with the previous two upon
an increase in the radius, lies slightly higher than the
%3e(R) and %4e(R) energy levels.

The energies of all levels except %0e(R) and %2e(R)
decrease with increasing radius of the quantum dot in
proportion to R–2. It was noted above, however, that the
energies of the ground and the second excited state in
the conduction band exhibit a certain intermediate (not
power) dependence between R–2 and R–1, which is
determined by the spz hybridization.

It should be emphasized once again in conclusion
that each energy level in the conduction band is sixfold
and not doubly degenerate. The wave functions of the
remaining four states can be obtained from those given
above simply by changing the notation of the coordi-
nate axes.

It should also be noted that since all (both electron
and hole) states remain degenerate, a certain arbitrari-
ness exists in the choice of the wave functions for these
states. For example, they can be written as a superposi-
tion of these functions (corresponding to a given energy
level) whose expressions were given above.
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Abstract—The presence of even a very small concentration of slowly reoriented dipole impurities in a quantum
paraelectric leads to strong changes in the dielectric response of the sample. This is manifested by the appear-
ance of a giant dielectric susceptibility, colossal frequency dispersion, and several peaks in the temperature
dependence of the susceptibility; in addition, the temperature dependence of the relaxation time deviates from
exponential. The experimental results are presented for KTaO3 samples slightly or moderately doped with lith-
ium. General relationships between the dielectric response and the concentration of impurities, the temperature,
and the frequency are established. A theory is proposed which qualitatively explains the observed complex phe-
nomena and sometimes quantitatively describes the results with high precision. © 2002 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

An analysis of the dielectric susceptibility of per-
ovskite-like oxides KTaO3 and SrTiO3, usually treated
within the framework of the Curie–Weiss theory, sug-
gests that these substances must behave as ferroelec-
trics when the temperature approaches absolute zero.
However, the experimental behavior of the soft
TO-mode frequency ωc significantly deviates from that
predicted by the Curie–Weiss law [1]. In order to explain
the discrepancy, Rechester [2] and Khmel’nitskiœ and
Shneerson [3] suggested a quantum-mechanical treat-
ment of the critical lattice TO mode with an allowance
for the soft mode dispersion. Somewhat later, Vaks [4]
developed this idea using a more realistic model of the
lattice dynamics in perovskitelike crystals. It was dem-
onstrated that, provided the square critical frequency at

T = 0 is positive (  > 0), the behavior of the soft mode
frequency in the region of small temperatures (T !
"ωc/2kB) is qualitatively close to that predicted by Bar-

rett [5]:  ∝  T 3/2exp(–"ωc/2kBT) (note that the pre-
exponential term in the Barrett formula [5] is inde-

pendent of the temperature). However, when  < 0
at T = 0, the soft mode frequency goes to zero at a cer-
tain temperature. In this case, behavior of the soft mode
frequency near the phase transition on the paraelectric

phase side was shown to obey the relationship  ∝

T 2 – , which is significantly different both from the
Barrett formula and from the Curie–Weiss law.

Recently, Farhi et al. [6] thoroughly measured the
phonon frequencies in a low-temperature branch of the

ωc
2

ωc
2

ωc
2

ωc
2

Tc
2

1063-7761/02/9402- $22.00 © 20419
phonon spectrum of KTaO3 by the method of inelastic
phonon scattering. These data allowed the temperature
variation of the critical mode frequency to be calculated
with high precision [7]. It was established that, owing
to the quantum effects, ferroelectric phase transitions
take place neither in SrTiO3 nor in KTaO3, both com-
pounds remaining in the paraelectric state at low tem-
peratures. In other words, the quantum oscillations
break the dipole order. For this reason, the crystals
under consideration are called quantum paraelectrics.
The increase in the dielectric susceptibility of quantum
paraelectrics at low temperatures exhibits saturation
(see, e.g., the review [8]).

At the same time, slowly reoriented dipole impuri-
ties introduced into a quantum paraelectric crystal sig-
nificantly modify behavior of the dielectric permittivity
and lead to the appearance of new structural effects and
phase transitions [1, 9]. For example, very small lith-
ium impurity concentrations on the order of 1% in
potassium tantalate give rise to strong anomalies in the
dielectric characteristics of the samples. In particular,
the permittivity exhibits a sharp frequency dependence
typical of relaxators, rather than soft-mode systems.
The low-temperature phase state of such samples is
referred to as a dipole glass. It should be emphasized
that the very small impurity concentrations by no
means correspond to the magnitude of the observed
effects, that is, the impurity as such could not lead to
such large changes in the dielectric susceptibility. This is
indicative of a strong interaction of impurities with the
crystal lattice, in particular, with the soft lattice mode.

In this study, we have developed a consistent theory
of the soft-mode systems interacting with reoriented
002 MAIK “Nauka/Interperiodica”
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dipole impurity centers. It will be shown that this inter-
action leads to very strong changes in the dielectric
response of a quantum paraelectric, which are mani-
fested by the appearance of a giant dielectric suscepti-
bility, colossal frequency dispersion, several peaks in
the temperature dependence of the susceptibility, and
deviation of the temperature dependence of the relax-
ation time from exponential. We give a quantitative
description of these phenomena in the case when the
concentration of slowly reoriented dipole impurities
exhibiting a linear interaction with the order parameter
(polarization) is not too large, that is, insufficient to
induce a normal ferroelectric phase transition.

The models taking into account the interaction of
relaxators with soft modes were previously developed
for description of the complex dynamics of a crystal lat-
tice of KDP [4, 10], KTaO3:Li (with a lithium concen-
tration of x > 0.02) [9, 11, 12], SrTiO3:Ca [13, 14], and
PbTiO3 and KNbO3 [15]. In this study, the theory of
such interactions is developed based on the fact that
adding impurities leads to renormalization of the soft
mode as a result of the impurity-mode interaction. This
interaction is just what accounts for the appearance of
intense peaks in both imaginary and real parts of the
dielectric permittivity, with a strong frequency disper-
sion. After formulation of the theory, the results will be
applied to interpretation and treatment of the experi-
mental data. It will be demonstrated that the results of
such treatment provide new information about the char-
acteristics of impurity centers in the crystals studied.
For example, it will be shown that the potential barrier
of the lithium impurity in KTaO3, which was previously
considered as independent of the temperature, actually
drops quite rapidly with the temperature. This leads to
a conclusion of the self-localized character of this
impurity (of the polaron type) in the crystals.

The experiments were performed with K1 – xLixTaO3
(KLT) crystals with a lithium concentrations of x =
0.006 and 0.043. The samples were grown by a sponta-
neous crystallization method described, for example, in
[16]. The lithium impurity concentration in the crystals
was determined by the method of plasma emission
spectroscopy possessing a sensitivity threshold of x =
3 × 10–5 with respect to lithium. The selected high-qual-
ity colorless transparent single crystal samples were
preliminarily annealed in air for three hours at 400 K.
Examination of the samples in an optical microscope
with crossed polarizers showed that the crystals con-
tained no visible impurities and boundaries characteris-
tic of the possible twins [17]. The measurements were
performed on thin 〈100〉-oriented single crystal plates
with dimensions 3 × 3 × 0.2 mm provided with gold
electrodes deposited onto opposite polished surfaces.
The complex dielectric permittivity components ε'(T, f)
and ε''(T, f) were measured with the aid of a Hewlett-
Packard Model 4192 analyzer operating in the fre-
quency range from 100 Hz to 1 MHz. The samples were
placed into a computer-controlled flow helium cryostat,
JOURNAL OF EXPERIMENTAL
which allowed the permittivity measurements to be per-
formed in a temperature range from 5 to 300 K at a tem-
perature variation rate of ±(10–100) mK/s.

2. A MODEL OF IMPURITY-FREE
QUANTUM PARAELECTRIC

A starting point of the theory was selecting a Hamil-
tonian for the system of independent phonons. An
appropriate Hamiltonian, proposed in [18, 19], was
written in a special coordinate system with one of the
axes directed along the wavevector and the other two
lying in the perpendicular plane. In this coordinate sys-
tem, the Hamiltonian is diagonal at the center of the
Brillouin zone because the crystal possesses a cubic
symmetry. We have strictly considered only a small
region in the vicinity of the Brillouin zone, assuming
that the other part of this zone does not significantly
contribute to the temperature dependence of the critical
mode frequency because of a relatively large energy of
the critical oscillations outside the central region of the
Brillouin zone. This approximation is justified by a
very strong dispersion of critical oscillations observed
in oxides of the perovskite family. For this reason, the
elements of the dynamic matrix and the perturbation
potential were expanded into series with respect to the
wave vector and only the first terms of this expansion
were taken into consideration.

The final equation for determining the soft mode
frequency is as follows [4]:

(1)

where the integral is taken over the Brillouin zone.
Here, λ is a coefficient relating the permittivity of a

confined crystal to the soft mode frequency ε = λ/
(in terms of the theory of metals, this coefficient can be
considered as the squared plasma frequency);

(2)

n1, n2, and n3 are the unit vector components along the

wave vector; n⊥  = ; q is the electrostriction con-
stants; b are the electric nonlinearity constants; and xki

are the TO components of the phonon modes. The
model constants St, Vt, At, Sa, Va, Aa, and Al estimated
from the experimental data were reported elsewhere [4, 7].
Our task is to calculate the temperature dependence of
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the squared critical mode frequency (T) (determined
by the anharmonic corrections) at the center of the Bril-
louin zone. As can be seen, the right-hand part of
Eq. (1) depends on the critical frequency and, hence,
should be determined using a self-consistent procedure.
Such a procedure has never been performed thus far
using real values of the parameters determined from
experimental data (preliminary results were reported at
the conference [7]). For this reason, we attempted at
analyzing the results of calculations so as to assess the
influence of the method employed and the effect of
some parameters.

Figure 1 shows the results of our calculations of the
soft mode frequency in KTaO3 as a function of the tem-
perature by the above formula. In contrast to the esti-
mates reported in [4], our data were obtained taking
into account the self-consistent phonon frequency in
the intrinsic energy part, the anisotropy of the disper-
sion relation, and the interaction of optical and acoustic
modes; we also employed the electrostriction and elas-
tic corrections derived in [4]. It was found that large
values of the wavevector introduce a significant contri-
bution to the final result despite a relatively large
phonon energy. This fact can be explained by the den-
sity of states being much greater for large wavevectors
than for small ones. In connection with this, the radius
of truncation of the wavevector used in the Vaks theory
should be considered as a fitting parameter. A compar-
ison of the theoretical results to the experimental data
shows that a good coincidence is observed for a trunca-
tion radius of 0.43.

In order to provide for a quantitative agreement
between theory and experiment, we used the plasma

frequency  = 4.7 × 1013 Hz instead of 4.0 × 1013 Hz
experimentally determined in [20]. There are both the-
oretical and experimental grounds for this selection. We
have also calculated the temperature dependence of the
critical oscillation frequency by integrating the final
expressions over the entire Brillouin zone. In contrast
to the experiment, the temperature dependence of the
critical frequency calculated in this way is nonlinear
(quadratic) at temperatures above 25 K, although the
absolute value of the frequency at 80 K coincides with
the experimental data even without a change in the
experimental plasma frequency. In principle, the exper-
imentally observed linear relationship could be
obtained assuming that the nonlinear electrostatic coef-
ficients depend in a certain manner on the temperature
[21]. However, in that case, it would be impossible to
justify the scheme employed in the region of small
wavevectors.

Thus, the Vaks model is capable of describing the
experimental data, provided that the radius of trunca-
tion of the wavevector and the plasma frequency are
properly selected. On the other hand, this model is at
variance with experiment in describing the temperature
behavior by integrating the corrections to Hamiltonian

ωc
2

λ
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over the entire Brillouin zone. Apparently, the model
can be improved further by providing a more precise
description of the phonon spectrum and the anharmonic
interaction constants at large wavevectors, as well as by
taking in to account the temperature dependence of
these quantities. This task was fulfilled within the
framework of the theory of anharmonically polarized
oxygen ions [22], but this theory did not take into
account anharmonicity of another nature.

3. RELAXATORS RELATED TO THE SOFT MODE

3.1. Interaction between the Dipole Clusters 
and the Soft Mode

In order to describe a system of dipoles interacting
with the soft mode, we propose a Hamiltonian consist-
ing of several parts, including the self-consistent
phonon Hamiltonian (Hph) presented in the preceding
section, a Hamiltonian of the Ising model (describing
the dipole impurities), and a cross term responsible for
the coupling of dipoles to the lattice polarization. In
addition, we took into account the interaction between
dipole impurities, including the interaction between
clusters composed of these impurities. A reason for the
appearance of clusters will be considered below (in a
section devoted to the percolation approach).

The total Hamiltonian for the problem under consid-
eration is as follows:

(3)
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Fig. 1. The temperature variation of the soft-mode fre-
quency in KTaO3. A comparison of the experimental data
(black squares) taken from [6] with our theoretical calcula-
tion (solid curve).
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where µn is the dipole moment of the nth cluster (index
n = refers to single dipole impurities); λn is the constant
of the nth cluster coupling to polarization; Jijnm is the
integral of interaction between ith and jth ions belong-

ing to the nth and mth clusters; and  is the quasi-spin
operator. Solving the problem for a polarization-depen-
dent local field on the dipoles, we obtain

(4)

where χ0 is the lattice susceptibility,

(5)

and nm is the concentration of the mth clusters. The lat-
tice susceptibility can be determined from the condition
of stable free energy:

where e is a random field created by lithium (impurity)
atoms. The macroscopic polarization is obtained by
averaging:

where [9]

Taking the derivative of P0 with respect to E, we find

(6)
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where 

(7)

Finally, an expression for the total susceptibility can
be written in the following form:

(8)

As can be seen, the susceptibility increases due to the
interaction of dipole impurities with the soft mode,
which leads to a decrease in the denominator in (8). The
effect grows with increasing interaction constant and
impurity concentration and with decreasing frequency
of the measurements. This is also accompanied by an
increase in the effective dipole moment of the impurity
(M1 substituted for µ1) and in the dipole–polarization
coupling constant (Λ1 substituted for λ1). An additional
averaging has to be performed over the impurity relax-
ation times and potential barrier heights. Note that the
first term in (8) is much smaller than the second and can
be ignored in the case of small impurity concentrations.

The above consideration referred to the interaction
of dipole clusters with the soft mode. Virtually the same
conclusions are derived from an analysis of the interac-
tion of clusters with single impurities. Thus, the single
impurities play the role of a soft mode.

Previously, researchers analyzed only the second
contribution (χd) in expression (8) [9]. This implies that
the phase transitions in dilute solid solutions of virtual
ferroelectrics were considered as resulting from an
effective (indirect) interaction of dipoles via the soft
mode, while the influence of dipoles upon this soft
mode was ignored. However, it is seen that this contri-
bution is also significant and has to be taken into
account in the interpretation of experimental data. At
temperatures above the critical value, the interaction of
dipoles with the soft mode can actually be ignored for
two reasons. First, the term A(T, p) at such a tempera-
ture becomes large due to the anharmonic effects
described in the preceding section, and, hence, the rel-
atively small term Q(T, p) can be ignored. Second,
Q(T, p) additionally decreases (as T –1) with increasing
temperature, which leads to vanishing of the dipole–
phonon coupling at sufficiently high temperatures.
Since A(T, 0) ~ T – Tc for large T values, the susceptibil-
ity at these temperatures obeys the Curie–Weiss law. As
the temperature decreases, the growing dipole–phonon
interaction leads to a deviation from the Curie–Weiss
law. This behavior will be described below.

Here, it should be noted that, besides the above low-
temperature effects, the virtual ferroelectrics exhibit an
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additional deviation from the Curie–Weiss law, which
is caused by the quantum effects. Indeed, the systems at
high temperatures obey the classical statistics in which
the potential height in the temperature dependence of
the relaxation time (described by the Arrhenius law) is
measured from the potential well bottom. At low tem-
peratures, the quantum statistics is operative and the
potential has to be measured from the ground state
energy level in the well. Thus, the transition from clas-
sical to quantum statistics is accompanied by accelera-
tion of the relaxation processes. In the general case, it
is also necessary to take into account the possible tun-
neling of impurities between various noncentrosym-
metric states, which leads to the same consequences.

In the locally inhomogeneous solid solutions, there
is another factor leading to a deviation from the Curie–
Weiss law, which is related to finiteness of the polar
regions in disordered crystals. As a result, the correla-
tion radius and, hence, the lattice susceptibility exhibit
saturation below the temperature at which the correla-
tion radius equals the size of the polar regions. This fac-
tor results in the behavior of the temperature depen-
dence of the dielectric susceptibility being the same as
in quantum paraelectrics, whereby the susceptibility
saturates below a certain temperature.

The interaction of the impurity dipoles with the soft
mode leads to an effective dispersion of the soft mode
frequency due to the dependence of Q on ω. This dis-
persion is significantly enhanced as compared to the
case of an isolated relaxator and leads to a strong fre-
quency dispersion of the permittivity in the temperature
region of the dielectric susceptibility maximum.

Assuming the dipole impurities to be ordered on the
nanoscale, we may suggest that the influence of the
mean square polarization upon A(T, p) would reduce
the rate of the susceptibility growth with decreasing
temperature. An estimate is provided by a linear rela-
tionship between the polarization and random internal

field in the clusters: 〈p2〉  = K , where χ0 is the initial
lattice susceptibility and K is a constant coefficient.
According to this estimate, the mean square polariza-
tion becomes especially large near the susceptibility
maximum (and then saturates for the reasons consid-
ered above).

3.2. Small Impurity Concentrations

In the case of small impurity concentrations, we
may ignore the probability of formation of percolation
clusters or the presence of clusters of some other
nature. For this reason, each lithium ion is character-
ized by a single mean relaxation time related to the
impurity hopping between two nearest potential wells.
As demonstrated below (see Section 3.4), deviations
from the mean are mostly determined by the Gaussian
distribution of the potential barrier heights near the
mean value. This scatter is probably related to the ran-
dom fields created by the surrounding impurities and

ε0
2χ0

2
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defects. Thus, in the case of very small impurity con-
centrations considered here, for which the distances
between impurity ions are significantly greater than the
correlation radius of fluctuations in the ferroelectric
order parameter of the matrix, we can restrict the con-
secration to a much simpler scheme as compared to that
described above.

Here, this simplified scheme is studied theoretically
and illustrated by the results of experimental investiga-
tions for a lithium concentration of x = 0.006. At this
concentration, the impurity ions are spaced by approx-
imately 5.5 lattice constants of the matrix, whereas the
fluctuation correlation radius in potassium tantalate
even at very low temperatures is on the order of 3.7 lat-
tice constants. This estimate by no means implies that
the impurity clusters are not formed at all. Based on the
percolation calculations presented below, it will be
demonstrated that the random distribution of impurities
over lattice sites is just what accounts for the formation
of a small number of small clusters even in the case
under consideration. However, these clusters probably
do not play any significant role in the lattice dynamics.
Indeed, the experimental data available for the indi-
cated impurity concentration show that the temperature
dependences of both real (see Fig. 2a) and imaginary
parts of the dielectric permittivity exhibit a single relax-
ation peak attributed to the hopping of lithium impurity
ions between nearest-neighbor potential wells.

Before proceeding with the case of a small lithium
ion concentration in the potassium tantalate lattice, it
should be noted that below we will also consider the
case of intermediate impurity concentrations for which
lithium ions occur at a relatively small mean distance
from each other, although the lithium ion displace-
ments in the lattice are not fully ordered because of
their random distribution (the order can be induced by
applying an external electric field in the course of cool-
ing of a sample). The case of intermediate impurity
concentrations will be illustrated by the data for KLT
with a lithium concentration of x = 0.043.

Now let us consider in more detail the case of a
small concentration of lithium ions in the lattice of
potassium tantalate. This system will be described in
terms of a simplified Hamiltonian representing isolated
impurity dipoles interacting with the soft mode (the full
Hamiltonian includes the intrinsic energy of the matrix
lattice):

(9)

where notation is the same as above, but only isolated
impurity dipoles of a single type are considered.

Figure 2a shows the experimental temperature
dependence of the real part of the dielectric permittivity
in a KLT crystal with x = 0.006. This lithium content
can be considered as small [1], since this value is lower
as compared to the lower critical concentration (xcr = 0.01)
at which the KLT crystal features a transition to the
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Fig. 2. (a) Experimental and (b) theoretical temperature dependences of the real part of the complex dielectric permittivity in KLT
(x = 0.006) for various frequencies: (1) 400 Hz; (2) 11 kHz; (3) 1 MHz.
polar glass state. The dipole moment of the impurity
was selected based on independent experimental data:
µ = 0.6e Å [23]. The dipole–lattice coupling constant
λ1 = 0.12µ1/3ε0 was selected so as to provide for a good
fit of theory to experiment and proved to be close to
purely theoretical estimates [24]. The impurity poten-
tial barrier height U and the relaxation time τ0 at high
temperatures were determined using the Arrhenius law:
U = 908 K; τ0 = 2 × 10–13 s. The soft mode frequency
was described by the Barrett formula

with T0 = 0 K and Ts = 44 K, which ensured a good
reproduction of the high-temperature part of the sus-
ceptibility. A relatively large value of the saturation
temperature Ts agrees with the results of investigation
of the giant Raman scattering [25]. The value of K =
5.6 × 10–6 was determined from the condition of a good
fit of theory to experiment in the region of the permit-
tivity maximum. A comparison of the results of theoret-
ical calculations (Fig. 2b) and experimental measure-
ments (Fig. 2a) shows a good qualitative and semiquan-
titative coincidence of the data for various frequencies.
A reasonable agreement between theory and experi-
ment was observed for the imaginary part of the com-
plex permittivity as well.

3.3. Intermediate Impurity Concentrations

Now let us proceed to an analysis of the case of
intermediate concentrations of lithium ions in KLT. We
have studied the samples with a lithium concentration
of x = 0.043. The results of experimental investigations
showed that the temperature dependences of both real
and imaginary parts of the complex permittivity at such
impurity concentrations (above the lower critical
boundary, but below the level x = 0.06 at which the fer-
roelectric phase transition takes place [26]) exhibit two
peaks (Fig. 3). In connection with this, a theoretical

ωc
2 Ts Ts/T( )coth T0–∝
JOURNAL OF EXPERIMENTAL 
description of the experimental results was based on a
more complicated Hamiltonian of the type

(10)

Figure 3 shows the experimental temperature
dependences of both real and imaginary parts of the
complex permittivity in comparison with the results of
our theoretical calculations for KLT with x = 0.043. As
can be seen, there is a good agreement between theoret-
ical and experimental data. The relaxation times and
potential barriers heights used in the calculations were
determined based on the Arrhenius representation of
the experimental data. We obtained τ0 = 9 × 10–13 s and
U = 914 K for the first relaxator and τ0 = 1.36 × 10–15 s
and U = 2695 K for the second relaxator. The constant
factor K = 5.6 × 10–6 was the same as that in the case of
small concentrations. The coupling constants (λ1 = 0.05
and λ2 = 0.025) were smaller as compared to those for
small concentrations, which is probably explained by
the soft mode hardening (related to the random fields)
with increasing impurity concentration.

Let us discuss the nature of two relaxators experi-
mentally observed in KLT with an intermediate impu-
rity concentration. It was suggested [27] that the first
peak is related to the relaxation of isolated lithium ions,
while the second peak reflects the relaxation of ion
pairs. However, this interpretation encounters signifi-
cant difficulties: the preexponential factor in the tem-
perature dependence of the relaxation time for the sec-
ond relaxator is too small to correspond to a cluster
character of the impurity dynamics. Below (see Sec-
tion 3.5), we will demonstrate that this factor should be
corrected so as to take into account that the mean poten-
tial barrier height is a function of the temperature.

According to the results of the ab initio calculations
[28–30], a potential barrier for the impurity hopping
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Fig. 3. A comparison of the theoretical (solid curves) and experimental (black squares) temperature dependences of (a) real and
(b) imaginary parts of the complex permittivity for KLT with x = 0.043.
with the dipole moment rotation through 90° is signifi-
cantly lower than a barrier for the dipole rotation
through 180°. For this reason, we may suggest that
some of the lithium ions occurring close to each other
are strongly correlated and, hence, contribute to the
dielectric permittivity in pairs. In such pairs, the (z, z)
configuration is energetically favorable while the (x, x)
and (x, –x) configurations possess greater energies.
Hence, only two states, (z, z) and (–z, –z), separated by
a 180° barrier are important for lithium ion dynamics in
such pairs, which corresponds to the ideas of Douss-
ineau et al. [27]. 

3.4. The Frequency Dependence
of the Dielectric Permittivity

Studying the frequency dependence of the dielectric
permittivity, we established the fact that the Debye
description is insufficient to explain the experimental
data. In the Debye description of the dielectric function,
even with an allowance for the dipole interaction with
the soft mode, the relaxation peak width in the imagi-
nary part of the frequency dependence of the suscepti-
bility is smaller than that observed in experiment. For
this reason, we attempted at searching for an appropri-
ate function describing a distribution of the impurity
barrier heights. Assuming that this distribution is
described by a Gauss function, the agreement between
theory and experiment in the region of relatively high
frequencies can be significantly improved.

However, the region of low frequencies still exhibits
some discrepancy. Apparently, the region of intermedi-
ate lithium concentrations under consideration features
an additional contribution in the low-frequency range.
This can be related to the cooperative phenomena (e.g.,
the cluster contribution) and/or the contributions from
the dipoles occurring in an additional electric (defor-
mation) field of the surrounding ions. We have estab-
lished that, at a temperature of about 140 K, the addi-
tional contribution in the entire frequency range studied
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
can be described by a constant (Fig. 4). However, at
lower temperatures, this contribution has to be
described by a function that can be considered as con-
stant only at low frequencies, while sharply decreasing
in the region of high frequencies. In the region of satu-
ration, the low-frequency contribution (constant value)
increases with decreasing temperature, while the width
of this region gradually narrows. Elucidating the micro-
scopic nature of this contribution would require addi-
tional investigations. Analogous results were obtained
in the region of still lower temperatures featuring a
rapid relaxation process.

Upon fitting the parameter of the potential barrier dis-
tribution function, we obtained a mean halfwidth of this
distribution of about 200 K. This result is quite reasonable
if we take into account that the dipole impurities in the
intermediate concentration range occur in a random field
generated by the surrounding impurity ions. We may
expect that the width of the potential barrier distribution
function would decrease when the dipoles are ordered as a
result of local or global polarization or under the action of
an external electric field.

3.5. The Temperature Dependence of the Potential 
Barrier Height for Lithium Impurity in KTaO3

It is usually accepted that the relaxation time obeys
the Arrhenius law:

(11)

where the potential barrier height U is assumed to be
independent of the temperature. In the case of interme-
diate impurity concentrations under consideration (see
Section 3.3), both relaxation processes must be
described by formula (11) with the corresponding
potential barriers and preexponential factors.

Using the general expressions obtained in Section 2,
we established that the mean values of the potential bar-
riers in the system studied linearly decrease with the
temperature. Figure 5 shows the experimental values of

τ τ 0 U/kBT–( ),exp=
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the mean potential barrier height for the slow relaxation
component. A similar plot, but with approximately half
the rate of the barrier height decrease with the temper-
ature, was obtained for the fast relaxation component.
It should be emphasized that the experimental data
were processed without assuming a certain analytical
expression for the temperature dependence of the
potential barrier. The result is essentially an experimen-
tal fact.

A linear dependence of the potential barrier height
on the temperature is known for polarons [31]. How-
ever, we relate the relaxation process studied to neither
electrons nor polarons for the reasons indicated below.
We believe that the observed relaxation proceeds by
hopping of the lithium ions between nearest potential
wells, while the existence of these wells is related to the
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Fig. 4. A comparison of the theoretical (solid curves) and
experimental (black squares) frequency dependences of the
imaginary part of the complex permittivity for KLT with x =
0.043. The calculations were performed (1) with and
(2) without taking into account the additional low-fre-
quency contribution. T = 140 K. 

Fig. 5. Temperature dependence of the mean value of the
potential barrier for the slow relaxation in KLT with x = 0.043.
Black squares represent the values calculated from the fre-
quency dependence of the permittivity; solid line shows the
best linear approximation U = U0 – 5.5kBT. 
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fact that large displacements of the impurity ions sig-
nificantly influence the positions of the surrounding
matrix atoms. The shifted matrix atoms create deep
potential wells for the lithium ions, so that the corre-
sponding energy of the lithium impurity is mostly due
to the self-localization of lithium ions in one of the non-
centrosymmetric positions related to polarization of the
surrounding ions [28–30]. We believe that the potential
barrier of lithium exhibits a certain “trembling” in
response to the dynamics of surrounding ions. The
amplitude of these vibrations increases with the tem-
perature, thus leading to a decrease in the mean effec-
tive potential barrier. In this respect, a lithium ion in the
KTaO3 lattice may be called an ion polaron—by anal-
ogy with the electron polaron; however, it should be
recalled that the observed relaxation is by no means
related to the electron polarons.

A linear temperature dependence of the potential
barrier in formula (11) results in that the preexponential
factor determined from the Arrhenius plot describing
the temperature dependence of the relaxation time is
significantly (by several orders of magnitude) smaller
than the experimental value. Indeed,

(12)

where  = τ0e–ξ. This conclusion is explained by the
fact that the preexponential factor determined from the
Arrhenius plot for the second relaxator at intermediate
lithium concentrations (see above) falls within the
region of electron relaxation rates, rather than within
the region of reasonable ion relaxation rates. A correc-
tion based on the linear temperature dependence of the
potential barrier height leads to relaxation times quite
acceptable for the ion relaxation. This fact is just what
gives grounds for not relating the observed relaxation
processes to the electron polarons.

It should be emphasized that the linear temperature
dependence of the potential barrier, established using
the experimental data on the frequency dependence of
the imaginary part of the dielectric permittivity, cannot
be derived from the Arrhenius plot (i.e., from the tem-
perature dependence of the relaxation time) because
this linear dependence leads only to an effective
decrease in the preexponential factor in the Arrhenius
relationship.

3.6. Deviations from the Curie–Weiss Law

The interaction of lithium dipoles with the soft
mode in the case of small impurity concentrations gives
rise to an interesting kinetic phenomenon, whereby the
temperature dependence of the dielectric permittivity
deviates from the Curie–Weiss law. Note that the direc-
tion of this deviation is the same as that for the fre-
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quently employed Vogel–Fulcher empirical relation-
ship. Taking this into account, we can propose an alter-
native interpretation of the experimental data for dilute
solid solutions of ferroelectrics in which the tempera-
ture dependence of the mean relaxation time deviates
from the Arrhenius law.

It is commonly accepted that a deviation from the
Arrhenius law and fitting to the Vogel–Fulcher relation-
ship are due to the “freezing” of dipoles at a certain
(nonzero) temperature Tg. Unlike this, an increase in
the relaxation time with decreasing temperature and the
related deviation from the Arrhenius law in our case are
related to an increase in dielectric permittivity of the
medium. Indeed, the dipole relaxation proceeds in a
dielectric medium, while the medium is sensitive with
respect to changes in the dipole orientation. Apparently,
the interaction between these subsystems is mediated
by the local electric and deformation fields. It should be
noted that below we will restrict the consideration to
the case of small lithium concentrations, when the sys-
tem features a single relaxation process.

To a first approximation, a local electric field El on
the impurity dipoles linearly depends on the polariza-
tion of the matrix:

(13)

On the other hand, the local electric field Eh on the host
lattice ions linearly depends on the dipole polarization:
Eh = E + λPd/2µ + e, where e is the random electric
(deformation) field. Writing as above the free energy of
the lattice

we can express the macroscopic polarization as

where f(e) is the random field distribution function.
Using the condition of thermodynamic equilibrium of
the lattice, we obtain

Below, we will employ an approximate estimate

where K is a constant factor. Substituting the expression
for polarization into formula (13), we obtain
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In the relaxation time approximation, we can write

(15)

where θ is the initial relaxation time and  =
ndµ2El/NkBT [32]. Finally, formula (13) yields

(16)

A well known solution to this equation is

(17)

where χ∞ = A–1(T).
In the first equality (17), the numerator in the right-

hand part corresponds to the Arrhenius law, while the
denominator exhibits a critical dependence on the tem-
perature. This is just what leads to a deviation from the
Arrhenius law, which is usually interpreted as the criti-
cal retardation of relaxators near the second-order
phase transition. However, no phase transition may take
place in our case, and, moreover, a change in the dielec-
tric susceptibility is not directly related to the behavior
of relaxators. This change is mostly due to the temper-
ature-affected behavior of the soft mode related to
anharmonicity of the thermal oscillations of atoms in
the matrix.

The temperature dependence of the dielectric per-
mittivity in KLT with x = 0.006 was treated in terms of
the relationship

(18)

which is readily derived from the first equality (17) by
substituting the Barrett formula for the soft mode fre-
quency. The results of fitting are presented in Fig. 6.
The values of parameters determined from this fitting
procedure are consistent both with the known experi-
mental data and with the results of theoretical calcula-
tions. In particular, the constant of coupling of the lith-
ium dipoles to the soft mode determined from these
data is about 0.1, in good agreement with the previous
theoretical estimates [9, 11, 24]. The good fit of theory
to experiment observed in Fig. 6 is evidence for the
validity of our description. However, at still lower tem-
peratures, the quantum effects begin to play a more sig-
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nificant role and the experimental data deviate from the
Arrhenius law in the other direction, corresponding to a
decrease in the relaxation time (calculated by quantum-
mechanical methods) as compared to the classical value
(given by the Arrhenius law). As noted above, an
important role in this region belongs to the tunneling
processes [33].

The aforementioned effect is small in the sense that
it takes into account the temperature dependence of the
preexponential factor in the Arrhenius relationship
(11), related to the temperature dependence of the
dielectric permittivity. At the same time, the Arrhenius
relationship implies the temperature dependence of the
exponent in (11). If the temperature dependence of the
dielectric permittivity is a smooth function of the tem-
perature, a deviation from the Arrhenius law is very dif-
ficult to observe in experiment. However, it was found
that this effect is readily observed in the case of small
lithium concentrations; moreover, the values of param-
eters obtained by treating the experimental data in
terms of the model of relaxators interacting with the
soft mode agree well with the theoretical estimates.

At first glance, it might seem that explanations of
the effects studied in this and preceding sections are
contradictory. Indeed, in both cases we are dealing with
the temperature dependence of the potential barrier of
lithium ions. In the first case, it was demonstrated that
this behavior is described by a linear function of the
temperature, whereas, in the second case, the function
is essentially nonlinear (logarithmic). However, it must
be emphasized that these cases refer to essentially dif-
ferent effects. The first is explained by “trembling” of
the potential barrier in response to the dynamics of sur-
rounding ions and is determined by the mean square of
the order parameter. In contrast, the second effect is due
to the interaction of dipoles with the ferroelectric order
parameter mediated by the local fields and is deter-
mined directly by the order parameter. In addition, the
first effect related to the potential “trembling” (leading
to a linear temperature dependence of the potential bar-
rier height) is not manifested in the Arrhenius plot
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Fig. 6. A comparison of the theoretical (solid curves) and
experimental (crosses) temperature dependences of the relax-
ation time in KTaO3:Li. The calculations were performed
using (1) the Arrhenius law and (2) the proposed model. 
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because this implies no deviations from a linear rela-
tionship between the logarithm of the relaxation time
and the inverse temperature. Therefore, a small devia-
tion from the Arrhenius law observed for a small lith-
ium impurity concentration in KLT (x = 0.006) is
entirely due to the interaction of lithium dipoles with
the soft mode.

As noted above, the effect considered in this section
is small. Being observed at small impurity concentra-
tions, this effect is hardly manifested at the intermedi-
ate concentration interval, at least in the frequency
range studied. This can be theoretically explained by
the fact that, as the impurity concentration grows, the
constant of coupling of the lithium dipoles (relaxators)
to the soft mode decreases, while the soft mode fre-
quency grows due to random electric fields and
stresses. Thus, on the one hand, the interaction of relax-
ators with the soft mode leads to an increase in the
dielectric permittivity, while, on the other hand, the ran-
dom fields introduced by the impurities lead to a
decrease in the permittivity. As a result, the permittivity
increases with the impurity concentration in the region
of the peak (or peaks) and decreases in the adjacent
region.

Thus, the effect described in this section is readily
observed for very small lithium concentrations, in
which case the impurity ions can be considered as inde-
pendent relaxators interacting only with the soft mode
but not with each other. This is just what explains the
effect observed in the region of small concentrations
(x = 0.006) where only one significant relaxation pro-
cess takes place, while being weak in the region of
intermediate concentrations (x = 0.043), at least in the
frequency range studied. In any case, this effect is weak
as compared to that considered in the preceding sec-
tion.

3.7. Percolation Description

Here, we will take into account that the lithium
impurity ions are randomly distributed over the corre-
sponding sites in the A sublattice of KTaO3. Some of
these ions are closely spaced from each other, while
some others are rather distant. The closely spaced ions
may form clusters characterized by a common direction
of their dipole moments acquired as a result of the indi-
rect interaction through the soft mode. The problem of
determining the interaction radius can be solved by
comparing the magnitude of the indirect interaction to
the potential barrier height. Thus, the task is to describe
the statistics of such clusters composed of impurity
ions.

The problem is conveniently solved using percola-
tion theory, according to which the macroscopic means
are described in terms of power functions determined
by the critical indexes. One of the usually calculated
parameters is the so-called cluster size s or, in fact, the
number of impurities in the cluster. As the temperature
 AND THEORETICAL PHYSICS      Vol. 94      No. 2      2002



THE DIELECTRIC RESPONSE OF QUANTUM PARAELECTRICS 429
decreases, the cluster size grows because the indirect
interaction between impurities increases as a result of
further softening of the soft mode responsible for this
interaction. The increase in the interaction magnitude
implies an increase in the radius of interaction of the
individual impurity ions, which leads, in particular, to
coalescence of the initial relatively small clusters into
clusters of a greater size. In fact, the formation of very
big clusters is unlikely because a potential barrier for
the coalescence of small clusters, involving the rotation
of their dipoles in the same direction, is rather large.

In order to take into account the real situation,
whereby the dipole moments of large clusters cannot be
rotated in the random fields (viscosity) existing in the
system, we introduce a restriction on the size of clusters
that can merge together. For simplicity, we used the
condition

(19)

where si and sj are the dimensions of clusters to be com-
bined. By comparing the theory to experiment, we have
determined the constant in (19) that provided for the
best coincidence with the available data.

The calculation procedure was as follows. The cubic
lattice was divided into blocks, each containing several
lattice sites. The impurities were distributed over
blocks and then over sites in each block with the aid of
a random number generator. The block size was
approximately equal to the maximum correlation radius
rc in a given temperature interval, which can be readily
estimated using the relationship rc ∝  1/ωc (ωc is the crit-
ical frequency). The coefficient of proportionality in
this relationship, representing the rate of variation of
the soft mode frequency depending on the wavevector,
can be determined from experiment [34]. The division
into blocks was necessary in order to determine
whether the impurity belongs to a given cluster by
checking the distances between impurities occurring in
the adjacent blocks. Otherwise it would be necessary to
check for all distances in the ion pairs, which can sig-
nificantly increase the required computational time.

In the first step, the calculation was performed for a
relatively high temperature and a given maximum dis-
tance at which lithium ions are considered as belonging
to a cluster. The interaction radius was assumed to be
proportional to the correlation radius, with the propor-
tionality coefficient selected so as to obtain a correct
temperature of the percolation phase transition using a
comparison between theory and experiment in a broad
concentration range. As a result, ions belonging to dif-
ferent clusters were determined and the statistical
means were calculated. As the temperature decreased,

the correlation radius increased as 1/  (if the
quantum effects were taken into account, this relation-

ship became more involved: 1/ ,
where Ts is the saturation temperature and T0 is the crit-
ical Curie–Weiss temperature determined by extrapola-

sis j const,<

T Tc–

Ts Ts/T( )coth T0–
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
tion from the side of large T values). The interaction
radius and the cluster size also increased with decreas-
ing temperature. Thus, all the cluster characteristics
were determined as functions of the temperature in the
same calculation.

The results of calculations of the mean cluster size
(i.e., of the number of ions in the cluster) are presented
in Fig. 7. As can be seen from these data, the mean clus-
ter size grows with decreasing temperature in accor-
dance with the above assumptions. As a result, we have
established that clusters formed for a lithium concen-
tration of 0.6% are composed of several tens of impu-
rity ions, while the lithium concentrations of 2% and
6% lead to the appearance of clusters containing sev-
eral hundred and several thousand impurity ions,
respectively. These results are in good agreement with
the experimental data on the second harmonic genera-
tion [35].

4. CONCLUSION

It is commonly accepted that individual slowly
relaxing impurity centers contribute to the dielectric
susceptibility of substances, this contribution being
dependent on the frequency of the applied electric field
and on the temperature. If the impurity concentration is
below the so-called critical value, the corresponding
contribution to the total dielectric susceptibility of the
system must be relatively small. The experimental data
presented above and reported by other researchers indi-
cate that small impurity concentrations in quantum fer-
roelectrics give rise to large macroscopic effects. We
have demonstrated that these effects are due to the
interaction of dipole impurities with the soft mode.
Thus, the dynamics of impurity atoms and the soft
mode are no longer independent.

The new phenomena related to the temperature and
frequency dependences of the dielectric permittivity of
KLT crystals with small and moderate lithium concen-
trations were explained within the framework of a com-
mon approach. These results, albeit resembling to a cer-
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Fig. 7. Plots of the mean cluster size (mean number of lith-
ium ions in the cluster) versus temperature in KLT with x =
0.008 (a), 0.022 (b), and 0.063 (c).
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tain extent the analogous findings in the polaron theory
(where the electron subsystem coupled to the lattice
oscillations changes the kinetic, optical, and some other
properties), are not related to the electron polarons. In
connection with this, we propose the new term “ion
polaron,” which implies that light lithium ions appear to
be “trapped” due to the lattice polarization created by
the same ions. In this context, we can explain a linear
decrease in the mean potential barrier observed for the
first time in processing the frequency dependence of the
imaginary part of the dielectric permittivity. This effect
is due to the impurity potential barrier “trembling”
caused by the dynamics of surrounding atoms. We have
demonstrated that this effect leads to significantly
underestimated values of preexponential factors in the
Arrhenius relationship, determined from the tempera-
ture dependence of the relaxation time. As a result, the
values of the preexponential factor may even fall within
the interval of “electron” relaxation. However, correc-
tions determined using the experimental data on the fre-
quency dependence of the dielectric permittivity yield
values typical of ion oscillations.
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Abstract—Behavior of the de Haas–van Alphen (dHvA) oscillations depending on the angle between the mag-
netic field direction and the perpendicular to conducting layers in the quasi-two-dimensional organic metal
α-(BETS)2KHg(SCN)4 was studied in detail. The angular dependence of the dHvA oscillation amplitude exhib-
its a series of minima (at ±43.2°, ±64.6°, and ±72.0°) related to the “zero spin” effect, through which it is pos-
sible to estimate the splitting factor. An analysis of this value suggests that many-body interactions in the com-
pound studied are either absent or at least radically weakened. © 2002 MAIK “Nauka/Interperiodica”.
In the past decade, the family of isostructural quasi-
two-dimensional organic metals of the α-
(ET)2MHg(XCN)4 type (where ET = bis(ethylene-
dithio)tetrathiafulvalene; M = K, Tl, Rb, NH4; and X =
S, Se) has become an object of extensive investigation
in the physics of organic conductors [1]. The main rea-
son is that the Fermi surface of these metals features the
coexistence and interaction of the corrugated open
sheets characteristic of quasi-one-dimensional electron
systems and the corrugated cylinder typical of a quasi-
two-dimensional metal. As a result, a number of phe-
nomena were simultaneously observed in this system
that are typical of quasi-one- and -two-dimensional sys-
tems.

An example is offered by the quantum oscillations
of various types (related to the closed orbits) and a
phase transition of the Peierls type (accompanied by
nesting of the open sheets of the Fermi surface)
observed in the compounds with M = K, Tl, Rb and
X = S at T ≤ 10 K [1]. The nature of a state below the
transition temperature is still unclear, but recent exten-
sive investigations of the phase diagram of these sys-
tems [2, 3] provided convincing evidence that this is a
state with the spin density wave. The other metals of the
aforementioned family retain their Fermi surfaces
down to very low temperatures [1], and one of these
compounds, α-(ET)2NH4Hg(SCN)4, passes into the
superconducting state at T ≈ 1 K [4].
1063-7761/02/9402- $22.00 © 20431
Quite recently, the quasi-two-dimensional organic
metals α-(BETS)2KHg(SCN)4 and α-
(BETS)2NH4Hg(SCN)4, isostructural to the ET-based
analogs from the above family, were synthesized using
another organic molecule—bis(ethylenedithio)tetrase-
leniumfulvalene (BETS) differing from ET by sele-
nium atoms partly substituted for sulfur atoms. Taking
into account that the conductivity of the ET-based met-
als is provided by overlap of the atomic orbitals of sul-
fur in the conducting layer, we may expect that this sub-
stitution will significantly influence the properties of
new complexes. Indeed, the organic metals α-
(BETS)2KHg(SCN)4 and α-(BETS)2NH4Hg(SCN)4
exhibited neither the Peierls transition nor the super-
conducting transition with decreasing temperature [5].
An analysis of the Shubnikov–de Haas oscillations in
these metals suggested that the main factor suppressing
the transitions is the partial weakening of the Coulomb
electron–electron repulsion [5].

Based on the thorough investigation of the de Haas–
van Alphen (dHvA) oscillations in the organic metal
α-(BETS)2KHg(SCN)4, we propose a model explain-
ing suppression of the low-temperature transitions by
fully absent or radically weakened electron–electron
and electron–phonon interactions.

We have studied single crystal samples of α-
(BETS)2KHg(SCN)4 weighing 120–150 µg. The dHvA
effect was observed using the method described else-
where [6], according to which the magnetization varia-
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Examples of (a) the torque oscillations observed in α-(BETS)2KHg(SCN)4 at T = 0.45 K and θ = 12.6° and (b) the Fourier
spectrum of these oscillations.
tions were monitored by the torque of a capacitive mag-
netometer. The field strength was varied from 0 to 14 T
at a temperature fixed within the interval from 0.45 to
1.3 K.

The dHvA oscillations were observed for various
directions of the applied magnetic field (an example is
presented in Fig. 1a. The oscillation spectrum shows a
single fundamental frequency (Fig. 1b) depending on
the angle θ between the magnetic field direction and the
perpendicular to conducting layers in the sample. This
dependence is described by a relationship typical of the
metal with a cylindrical Fermi surface:

The quantity F(0) ≈ 675 T, determining the area of the
cylinder cross section by the conducting plane, agrees
well with the results obtained in [5], while being about
20% greater than the value theoretically predicted by
Seo et al. [7]. The cyclotron mass of the charge carriers
related to the cylindrical part of the Fermi surface was

F θ( ) F 0( )/ θcos 675 T[ ] / θ.cos≈=
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Fig. 2. The angular dependence of the de Haas–van
Alphen oscillation amplitude in α-(BETS)2KHg(SCN)4 at
T = 0.45 K.
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calculated using the temperature dependence of the
dHvA oscillation amplitude. For the field parallel to the
cylinder axis, this quantity amounted to

,

where m* is the effective mass of electron and m0 is the
free electron mass.

The angular dependence of the dHvA oscillation
amplitude (Fig. 2), exhibits several minima. The mini-
mum at θ = 0 is related to certain features of the exper-
imental method employed [6]. The nature of the min-
ima at θ = –32.3° and –54° is still not completely clear.
However, these minima are most probably related to
corrugation of the cylindrical Fermi surface. The min-
ima at θ = ±43.2°, ±64.6°, and ±72.0° represent the so-
called “zero spin” effect related to the magnetic-field-
induced splitting of the Landau levels [8]. The spin
“zeros” take place under the condition

where p is the harmonic number and g is the g factor.
The existence of three spin “zeros,” under the assump-
tion that the effective mass of an electron is related to
the angle θ by a relationship µ(θ) = µ(0)/cosθ typical of
the metals with a cylindrical Fermi surface, allows us to
calculate with good precision the splitting factor for the
first harmonic:

(here, θn are the positions of spin “zeros”; n = 1, 2, 3).
Thus, to within the experimental error,

(1)

The influence of many-body interactions on the
splitting factor is described by the expression [8]

(2)

µ m*/m0 1.09 0.02±= =

πµpg/2( )cos 0,=

S
gµ 0( )

2
--------------

2n 1+( ) θncos
2

----------------------------------- 1.09 0.03±= = =

S µ 0( ).≈

S
gµ 0( )

2
--------------

µc 0( )gs 1 γ+( )
2 1 γ'+( )

------------------------------------,= =
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where µc(0) is the relative band mass that depends
only on the law of dispersion; gs is the g factor deter-
mined from the EPR data (for the known organic met-
als, gs ≈ 2 [1]); and γ and γ' are the electron–electron
correction constants for the effective mass and the
g factor, respectively. Calculated from the temperature
dependence of the dHvA oscillation amplitude, an
expression for the effective mass µ(0) taking into
account the many-body interactions is as follows [8]:

(3)

where λ is the electron–phonon correction constant for
the electron mass.

The most natural way to satisfy condition (1) with
an allowance for relationships (2) and (3) is to assume
that γ = γ' = λ = 0, which implies that the many-body
interactions are absent or very weak. In this case, the
effective mass is equal to the band mass. Generally
speaking, condition (1) could also be satisfied with a
random combination of three constants and the corre-
sponding band mass. Evidence for this variant is the
theoretical estimate of the band mass µc(0) ≈ 0.6 [7].
However, it was previously demonstrated that condi-
tion (1) is satisfied for the isostructural complex α-
(BETS)2TlHg(SeCN)4 [9] and, which is more impor-
tant, for the complex κ-(BETS)2GaCl4 [10] possessing
different crystal and electron structures. The situation
when three different compounds meet the condition (1)
as a result of a random combination of the aforemen-
tioned constants is unlikely. Therefore, the assumption
about a radical weakening of the many-body interac-
tions in α-(BETS)2KHg(SCN)4 seems to be justified.
In this case, it is easy to explain the absence of both
superconducting and Peierls transitions in the organic
metal studied.

µ 0( ) µc 0( ) 1 γ+( ) 1 λ+( ),=
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Abstract—We discuss a new concept of the subcritical transition to turbulence in unbounded smooth (nonin-
flectional) spectrally stable shear flows. This concept (the so-called bypass transition) follows from considering
the nonnormality of the linear dynamics of vortex disturbances in shear flows and is most easily interpreted by
tracing the evolution of spatial Fourier harmonics (SFHs) of the disturbances. The key features of the concept
are as follows: the transition of the flow by only finite-amplitude vortex disturbances despite the fact that the
phenomenon is energetically supported by a linear process (the transient growth of SFHs); the anisotropy of
processes in the k space; the onset of chaos due to the dynamical (not stochastic) process—nonlinear processes
that close the transition feedback loop by the angular redistribution of SFHs in the k space. The evolution of
two-dimensional small-scale vortex disturbances in a parallel flow with a uniform shear is analyzed within the
weak turbulence approach. This numerical test analysis is carried out to prove the most problematic statement
of the concept, the existence of a positive feedback caused by the nonlinear process. Numerical calculations
also show the existence of a threshold: if the amplitude of the initial disturbance exceeds the threshold value,
the self-maintenance of disturbances becomes realistic. The latter is a characteristic feature of the flow transi-
tion to the turbulent state and its maintenance. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Shear flows are permanently interesting because
they are widespread both in the terrestrial and astro-
physical environment (galaxies, stars, jets, planet atmo-
spheres, oceans, etc.) and in the laboratory and industry
(tokamaks, MHD facilities, etc.). Some simple and
important hydrodynamic shear flows (e.g., the Couette
flow) remain insensitive to infinitesimal disturbances at
any Reynolds numbers but become turbulent at finite
disturbances even at moderate (subcritical) Reynolds
numbers. Moreover, the transition to turbulence occur-
ring in such flows strongly depends not only on the
amplitude of the initial disturbances but also on their
type and spectrum. The physics of these facts was not
explained even one decade ago [1–6].

Specific features of shear flows rigorously estab-
lished recently [7] led to difficulties in studying linear
phenomena in the framework of the canonical modal
analysis, i.e., the technique where all the disturbed
quantities are expanded in Fourier integrals in time. The
point is that the operators arising in this approach are
not self-adjoint [8]. Their eigenfunctions are not
orthogonal to each other, which yields a strong interfer-
ence among them. As a result, even if all the imaginary
parts of all eigenfrequencies are negative and the eigen-
functions monotonically decay with time (i.e., the flow

¶This article was submitted by the authors in English.
1063-7761/02/9402- $22.00 © 20434
is spectrally stable), a particular solution can reveal a
large relative growth over a finite time interval. The
analysis of separate eigenfunctions and eigenfrequen-
cies is therefore not sufficient to arrive at definite con-
clusions on the linear evolution of disturbances. In
addition, taking the interference into account usually
leads to insurmountable complications. This has given
impetus to the so-called nonmodal analysis as a tool for
describing the evolution of disturbances in smooth
shear flows (i.e., those without the inflection point), pri-
marily in a parallel flow with a uniform shear of veloc-
ity. Within this approach, the temporal behavior of the
spatial Fourier harmonics (SFHs) of disturbances is
studied without any spectral expansion in time. Being
an optimal tool, the nonmodal analysis considerably
simplifies the mathematical description of the pro-
cesses and is capable of revealing the key phenomena
that escape perception in the modal approach (in partic-
ular, the phenomena caused by the nonnormality of the
linear dynamics). Many new unexpected results on time
evolution of both the vortex mode [9–17] and acoustic
wave [18, 19] disturbances have already been obtained
within this approach; it was also successfully applied to
the study of the MHD waves [20–22]. New linear
mechanisms of the mutual transformation of wave
modes [23–25] and conversion of vortices to waves
[26–29] have been discovered. A new concept of the
subcritical transition to turbulence in smooth shear
002 MAIK “Nauka/Interperiodica”
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flows (those without the inflection point) has been for-
mulated [30–37]. The latter, named the bypass transi-
tion, is the subject of our analysis.

According to this concept, the subcritical transition
to turbulence that occurs in spectrally stable shear flows
is caused by the interplay among four (linear and non-
linear) basic phenomena. The transition scenario based
on this concept is presented in detail (in qualitative
terms) in Section 2. In Section 2, we also consider the
philosophical problem of turbulence, i.e., how a com-
pletely deterministic and causal system can have cha-
otic solutions. In Section 3, we give numerical test cal-
culations to prove the most problematic statement of
the concept—the existence of a positive nonlinear feed-
back. The subsequent results of numerical calculations
are also presented in Section 3. We have restricted our-
selves to the investigation of the action of nonlinearity
for a two-dimensional symmetric disturbance (which is
quite simple and most suitable for testing) in the weak
turbulence approximation. In reality, the shear flow tur-
bulence has a three-dimensional (3D) nature. However,
from the discussion presented in Section 4, it follows
that nonlinear processes should more easily cope with
the mission of the positive feedback in the actual 3D
case than in the 2D one. The weak turbulence equation
for a 2D vortex mode disturbance in a parallel flow with
a uniform shear is derived in the Appendix.

2. SCENARIO OF THE SUBCRITICAL 
TRANSITION TO TURBULENCE

Vortex mode (aperiodic/nonoscillating) distur-
bances are the creator of turbulence in the unbounded,
parallel flow with a constant shear rate and a uniform
density that we consider here. Therefore, the presented
scenario involves disturbances of only this type. The
nonmodal formalism allows the following specific fea-
tures in the evolution of SFHs to be revealed:

(a) The wave number of a SFH along the axis
orthogonal to the flow velocity (i.e., along the flow
shear) varies in time; in the linear approximation, there
is a drift of a SFH in the wave-number space, i.e., in the

 

k

 

 space.

Actually, in a parallel flow with uniform shear (cf.
[9–28]),

(1)

(where 

 

A

 

 is a shear parameter that is assumed to be pos-
itive), disturbances cannot have the form of a simple
plane wave because of the effect of the shearing back-
ground on the wave crests. The SFH wave numbers are
then time-dependent: if a SFH with the wave numbers
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then the evolution of its phase for 

 

t

 

 > 0 is determined by
the equations

(3)

(4)

that describe the linear drift of the SFH in the wave-
number space.

The values of the spatial characteristics (i.e., 
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k
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(

 

t

 

), and 

 

k

 

z

 

) define the energy exchange intensity
between SFHs and the background flow to a greater
extent. Therefore, the linear drift leads to a variation in
the intensity of this exchange.

(b) Not all SFHs can draw energy from the shear;
only the SFHs that are located in a certain region of the

 

k 

 

space (called the amplification region below) are
amplified. Moreover, each SFH is amplified during a
limited time interval until it leaves the amplification
region as a result of the linear drift. In addition, the
presence of SFHs in this region imposes conditions
mainly on the direction (and not the magnitude) of their
wave vector. Therefore, the process of the energy
exchange between vortex mode disturbances and the
shear flow has a pronounced anisotropic character in
the 

 

k 

 

space. The physics of this process is described in
detail in [38].

Therefore, vortex mode disturbances at the linear
stage of the evolution are pumped by the background
shear flow and grow within a limited time interval, i.e.,
exhibit a transient growth. There is an essential differ-
ence between the transient growths of 2D and 3D SFHs
[16–20], which can be seen by comparing the evolution
of their energy, as in Fig. 1. This figure shows time evo-
lution of the normalized energy of 2D and 3D SFHs.
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Fig. 1.

 

 Time evolution of the normalized energy of 2D and
3D SFHs defined in the linear stage and in the inviscid case
(i.e., with only processes (a) and (b) involved). Thin solid
line corresponds to a 2D SFH with the parameters 
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 are related to the
wave numbers of the SFH (see Fig. 2). 
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It corresponds to the linear dynamics of separate SFHs
in the inviscid case (i.e., when only processes (a) and
(b) are at work).

The amplification region in the k space is much
wider for 3D SFHs than for 2D ones. Moreover, in con-
trast to 2D SFHs, the energy of 3D SFHs does not
decrease after passing the amplification region (3D
SFHs do not return energy to the flow) but saturates and
approaches a value that may be much higher than their
initial value. In reality, however, a viscous dissipation
becomes efficient as |ky(t)|  ∞ and (if no new phe-
nomena, e.g., nonlinear phenomena, are involved) con-
verts the energy of SFHs into heat. We list the viscous
dissipation as item (c).

Thus, the nonmodal approach demonstrates not only
the possibility of the algebraic/transient growth of
SFHs of vortex mode disturbances in shear flows, but
also the anisotropic properties of linear processes in the
wave-number space. This anisotropy is also observed in
nonlinear processes.

(d) Nonlinear processes, apart from the usual frag-
mentation of the disturbance scale, are also responsible
for the angular redistribution of SFHs in the k space;
i.e., they could “supply” SFHs to the amplification
region, closing a feedback loop of the transition to tur-
bulence. In a forced shear flow, the nonlinear terms do
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Fig. 2. A conventional separation of regions of the action of
the basic physical processes that are responsible for the
onset of turbulence/chaos in accordance with the bypass
transition. The energy exchange between the disturbances
and the background flow is essential (a transient growth
takes place) in regions II(II') dashed by vertical lines; non-
linear processes (e.g., of the type k' + k''  k) and the lin-
ear drift are effective in all regions I(I'), II(II’), and III(III’)

inside the circle  < kν. The viscous dissipation of

SFHs dominates outside the circle  > kν.
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not contribute to the energy transfer between the mean
flow and disturbances.

Processes (a) and (b) are quantitatively analyzed and
well acknowledged in papers devoted to the nonmodal
approach. The existence of a positive feedback (caused
by the nonlinear processes) has been checked using
model equations [34, 35]. In Section 3, we prove it
using the Navier–Stokes equation in the weak turbu-
lence approach.

It is plausible that the angular redistribution of SFHs
in the k space is the main process caused by the nonlin-
earity. The nonlinear processes then indirectly favor the
energy extraction by SFHs from the shear flow (the
SFH scale decrease to the dissipative scale should be
ensured by the linear drift of SFHs in the k space).

The scenario of the subcritical transition to turbu-
lence (called the bypass transition) is based on the inter-
play of the linear and nonlinear basic phenomena item-
ized above. In presenting this scenario, we schemati-
cally describe these processes in the plane kz = const
(which is parallel to the plane kxky). It is obvious that the
boundaries of the k space regions where phenomena (b)
and (c) occur are vague. We fix the regions where these
phenomena are operative for clarifying the analysis.
The viscous dissipation becomes essential for harmon-
ics with the wave numbers satisfying the inequality

where the value of kv depends on the Reynolds number.
As follows from Fig. 1, the real growth of the distur-
bance energy occurs when the ratio |ky(t)/kx| reaches
moderate values (the dashed region in Fig. 2). We can
therefore separate three regions inside the circle

I(I'), II(II'), and III(III'). We now discuss what happens
to a SFH of the vortex mode disturbance injected into
region I(I'), for instance, at point 1 (see Fig. 2). The
wave number of the SFH varies in time, thereby leading
to a drift in the direction marked by the arrows. After a
certain moment, when the harmonics passes point 2, its
energy starts to grow. This growth is transient and lasts
until the SFH leaves the amplification region II(II')
(point 3 in Fig. 2). Continuing its drift, the harmonics
then reaches point 4, where the dissipative processes
are switched on and convert the disturbance energy into
heat. Consequently, if the nonlinear phenomena are
inefficient, nothing interesting can occur as regards the
transition, and the disturbances eventually disappear. A
permanent extraction of the shear energy by distur-
bances is necessary for their maintenance. This is pos-
sible in the case of the permanent existence of distur-
bances in regions I(I') and II(II') that can be provided by
nonlinear processes, in particular, by the three-wave
processes

k' + k''  k

kx
2 ky

2+ kν,>

kx
2

ky
2+ kν:<
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(see Fig. 2), four-wave processes

k' + k'' + k'''  k,

five-wave processes, etc. This means a predominant
transfer of the disturbance energy by the nonlinear pro-
cesses from region III(III') to regions I(I') and II(II').
However, there are no restrictions on the reverse trans-
fer (from regions I(I') and II(II') to region III(III')). But,
as is shown in Section 3, the nonlinear processes ensure
a preferential transfer of the disturbance energy to the
amplification region.

The reproduction of disturbances in region I(I')
depends on both the amplitude and the spectrum of the
initial disturbances. The nonlinear decay processes are
insignificant at low amplitudes and are not able to resist
the linear drift of SFHs in the k space. As a result, low-
amplitude disturbances are damped without any trace,
i.e., without inducing the transition to turbulence. The
higher the initial disturbance amplitude, the more
noticeable nonlinear effects occur. At a certain ampli-
tude (which evidently depends on the initial distur-
bance spectrum and the Reynolds number), nonlinear
processes can compensate the action of the linear drift,
thereby ensuring the permanent return of SFHs to the
amplification region (this is justified by simulations in
Section 3). This eventually ensures a permanent extrac-
tion of energy from the background flow and the main-
tenance of disturbances. Therefore, a certain threshold
must occur in accordance with the scenario discussed
here.

Any theory aiming at explaining the transition to
turbulence must distinctly answer the question of how
a completely deterministic and causal system can have
chaotic solutions. In accordance with the above sce-
nario, the onset of turbulence/chaos occurs because of
dynamical (not stochastic) processes and can be
explained as follows.

We assume that we initially have a spatially local-
ized vortical disturbance with sufficiently regular fea-
tures: a package of spatial Fourier harmonics. In gen-
eral, a disturbance of some physical variable, e.g.,
velocity can be represented as

(5)

where  and  are real functions of k and
t. We assume that the initial phase, , is a weakly
varying function of k. In this case, the initial distur-
bance v(r, 0) is regular and sufficiently smooth in
space.

What kinds of processes govern the phase evolution
at any point of the k space?

We consider processes at an arbitrarily chosen point
in the k space inside the package. Following the sce-
nario, the SFH that happens to be at the point at the ini-
tial moment of time leaves this point because of the lin-
ear drift. But this loss is compensated by the linear and
nonlinear processes: a portion of energy arrives as the

v r t,( ) k ṽ k t,( ) iϕ k t,( ) ik r⋅+[ ] ,expd∫=

ṽ k t,( ) ϕ k t,( )
ϕ k 0,( )
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result of the linear drift; portions of energy are trans-
ferred from numerous points of the k space as a result
of the nonlinear decay processes (three-wave, four-
wave, etc.) described above. The total energy of the
SFH at the chosen point is composed of these portions.
Naturally, all these portions have their own phases. It is
clear that the Fourier harmonic phase at the point must
be a certain sum of these phases. It is evident that the
phase ϕ(k, t) becomes a strongly varying function of k
with the passage of time, because the phases of SFHs at
neighboring points of the k space can differ from each
other by any value. Consequently, an initially regular
disturbance becomes more and more irregular, thereby
tending to chaotic behavior.

3. THE WEAK TURBULENCE APPROACH

In accordance with the above scenario, nonlinear
processes do not contribute to the energy transfer
between the mean flow and perturbations. They result
in (i) the fragmentation of the disturbance scale, i.e., the
energy transfer from large scales to smaller ones and
finally to dissipative ones, and (ii) the angular redistri-
bution of SFHs in the k space. It must be noted that the
energy transfer to small dissipative scales also occurs
because of the linear drift of SFHs (process (a)), which
could be even more operative than the nonlinear frag-
mentation of the disturbance scale. We again emphasize
that the main role of the nonlinear processes in the pre-
sented scenario consists in (ii) rather than (i), because
in doing so they could supply SFHs to the amplification
region, closing the feedback loop of the transition to
turbulence. The existence of a positive nonlinear feed-
back is the most problematic statement of the concept.
It has been verified using model equations [34, 35]. In
this section, we attempt to prove it using the Navier–
Stokes equation. We performed numerical calculations
for a 2D symmetric vortex mode disturbance in the
weak turbulence approximation. As we see in what fol-
lows, the 2D symmetric disturbance is most suitable for
testing the existence of a positive nonlinear feedback.

The weak turbulence equation describing the evolu-
tion of the energy spectral density of a 2D disturbance
is derived in the Appendix,

(6)

where

and Ek is the energy density of the 2D vortex mode dis-
turbances at a fixed point of the k space. (In other
words, Ek is the spectral density of energy.) The term

 is defined by Eq. (A.36). As can be seen from Eq. (6)

∂Ek
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--------- ∇ k VEk( )

2Akxky

kx
2 ky

2+
-----------------Ek–+

+ ν kx
2 ky

2+( )Ek N̂Ek,=

∇ k ∂/∂kx ∂/∂ky,( ),=

V Akx 0,–( ),=

N̂Ek
SICS      Vol. 94      No. 2      2002



438 CHAGELISHVILI et al.
(and as described in Section 2), the energy spectral den-
sity (∂Ek/∂t) changes because of the following reasons.

(1) The linear drift of SFHs in the wave-number
space (the second term on the left-hand side). This term
does not cause a variation in the total disturbance
energy,

but results in a transfer of SFHs from the amplification
region to the attenuation one.

(2) The energy exchange between disturbances and
the background flow (the third term on the left-hand
side). Assuming that A > 0, we can state that the 2D
SFHs for which ky(t)/kx > 0 gain energy from the back-
ground flow and their amplitude increases, whereas the
amplitudes of SFHs for which ky(t)/kx < 0 decrease.

(3) The viscosity (the last term on the left-hand
side), which transforms the disturbance energy into
heat and which is significant for large wave numbers.

(4) The nonlinear three-wave processes (the term on
the right-hand side), leading to the energy exchange
between different SFHs [39–41]. It is easy to show that

i.e., the nonlinear term leads only to the energy redistri-
bution in the k space (not to a change in the total distur-
bance energy).

The conditions for wave vectors (k' + k'' = k) and
frequencies (ω1 + ω2 = ω) are usually imposed on three-
wave processes in the weak turbulence equations [39–

k∇ k VEk( )d∫ 0,=

kN̂Ekd∫ 0,=

0
kx

0

ky

Fig. 3. The spectral density distribution of the disturbance
energy in the kxky plane for the time instant t = 0, i.e., initial
conditions for the numerical solution of Eq. (6). The
absence of SFHs with large wave numbers is related to the
action of viscosity. SFHs with small wave numbers are also
absent, because we consider small-scale disturbances.
JOURNAL OF EXPERIMENTAL
41]. Because both conditions cannot be simultaneously
satisfied for waves with certain wave vectors, the
restriction of three-wave processes arises. Moreover,
these conditions cause the existence of some com-
pletely nondecaying spectra. The vortex mode distur-
bances considered here are aperiodic (ω1, ω2, ω = 0)
and therefore automatically satisfy the second condi-
tion (ω1 + ω2 = ω). Hence, there are no forbidden three-
wave processes for SFHs in our case. However, they
have different probabilities. For example, the probabil-
ity of the processes k' + k' = k is equal to zero, although
it is not forbidden in principle. Therefore, the nonlinear
term in Eq. (6) is equal to zero if a single SFH mode is
disturbed. This explains the following well-known fact:
a single SFH mode is an exact solution of the complete
incompressible Navier–Stokes equation, while a super-
position of modes is usually not.

The net effect of all three-wave processes depends
on two factors: the probability with which different
decay acts occur (the coefficients of Ek'Ek'' and EkEk'' in
Eq. (A.36)) and the distribution of SFHs in the k space
(the values of Ek'Ek'' and EkEk''). If the spectral density
of energy is increased in the first and third quarters of
the k space at the cost of the second and fourth ones, we
can say that the three-wave processes lead to the pref-
erential transfer of SFHs to the amplification region,
i.e., lead to the regeneration of SFHs, which can gain
shear energy (lead to positive feedback). This trend of
nonlinear processes can be revealed by showing their
asymmetry in the k space with respect to the Kx axis. To
proceed, we consider the initial 2D disturbance with the
highest possible symmetry with respect to the Kx axis
(see Fig. 3). In this case, processes (a) and (c) are sym-
metric with respect to Kx and process (b) is asymmetric
because it results in removal of SFHs from the first and
third quarters of the k space to the second and fourth
ones; process (b) is therefore asymmetric in the oppo-
site direction to nonlinear process (d). That is why the
symmetric 2D disturbance presented in Fig. 3 is most
suitable for determining the trend of the nonlinear
transfer of SFHs.

3.1. Results of the Numerical Calculation
of the Weak Turbulence Equation

We consider the 2D initial disturbance with the
spectral density of energy that is symmetric in the k
space (see also Fig. 3),

(7)Ek t 0=( )

B β1 kν
2 kx

2– ky
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where B defines the value of the initial disturbance

energy; k0 and kν = 1/  are the minimum and max-
imum values of the disturbance wave vectors, respec-
tively; and β1 and β2 denote the sharpness of the distur-
bance boundaries in the k space. The calculations are
carried out at β1 = 0.07, β2 = 0.8, k0 = 0.3, and kν = 10
(i.e., A = 1 and ν = 0.01). The absence of SFHs with
large wave numbers is justified by the action of viscos-
ity. SFHs with small wave numbers are also absent,
because we consider small-scale disturbances. The evo-
lution of Ek was numerically investigated for a short
time interval (At ≤ 1) because of two reasons. First,
Eq. (6) is obtained in the weak turbulence approxima-
tion, and it is therefore correct only for a relatively short
time interval (t & 1/A). Second, the trend of nonlinear
processes is revealed even for such short time intervals.

Initially, we tried to answer the question of what the

redistributing action of the nonlinear term  in the

k space is—specifically, whether the term  trans-
fers disturbance energy to the amplification region. For
2D disturbances, the amplification region covers the
first and third quarters of the kxky plane (where kxky > 0)
and the attenuation region covers its second and fourth
quarters (where kxky < 0). Introducing polar coordinates

ϕ =  and k = , we can say that
the angle ϕ between 0 and π/2 corresponds to the
amplification region, and between −π/2 and 0 to the
attenuation one.

Obviously, the value and sign of  depend on ϕ
and k. Taking the integral over k, we obtain the function
that describes the nonlinear redistribution of energy
only in ϕ,

(8)

It is easy to see that if the conditions

(9)

are satisfied, we can unambiguously state that the non-
linear processes transfer the disturbance energy to the
amplification region, thereby realizing a positive feed-
back.

We thus determine the dependence of Ψ on ϕ. The
result of our calculations at the instance time At = 0.1 is
shown in Fig. 4. It is seen that conditions (9) are satis-
fied; i.e., the nonlinear three-wave processes lead to the
preferential energy transfer to the amplification region.
Because we used a symmetric initial disturbance (with
SFHs having the same weight in the amplification and
attenuation regions), we can conclude that the nonlin-
ear three-wave processes do have the tendency to trans-
fer SFHs to the amplification region. This conclusion
can be considered as a numerical confirmation (in the
weak turbulence approximation) of the suggestion
given in (4).

Aν

N̂Ek

N̂Ek

ky/kx( )arctan kx
2 ky

2+

N̂Ek

Ψ ϕ t,( ) kkN̂Ek.d∫≡

Ψ ϕ t,( ) 0 ϕ π/2< < 0, Ψ ϕ t,( ) –π/2 ϕ 0< < 0<>
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Figure 5 presents the disturbance normalized total
energy Etot(t)/Etot(0) vs. time, where

The three curves correspond to different values of the
parameter B (see Eq. (7)), i.e., to different values of the

initial disturbance energy . The first curve per-

tains to low values of B = B1 at which the effect of non-

Etot t( ) kEk.d∫=

kEkd∫

0
–0.02

–0.01

0

0.01

0.02

–π/2 π/2

Ψ(ϕ, 0.1)

ϕ

Fig. 4. The phase factor Ψ(ϕ, t) (see Eq. (8)) for different
ϕ =  at At = 0.1. It can be seen that the non-

linear term  results in a transfer of the 2D SFH energy

from the attenuation region –π/2 < ϕ < 0 to the amplification
one 0 < ϕ < π/2.

ky/kx( )arctan

N̂Ek

Etot t( )

Etot 0( )
--------------

Fig. 5. The disturbance normalized total energy vs. time.
Each curve corresponds to a different amplitude of the ini-
tial disturbance (i.e., to a different value of the initial distur-
bance energy), B1 ! B2 < B3 (see Eq. (7)). The first is well-
suited to low values of B = B1 at which the effect of nonlin-
ear processes can be ignored. In this case, the total energy
of the disturbance is gradually decreasing. For the other two
values B = B2 and B3 (with B1 ! B2 < B3), the effect of non-
linear processes is significant and the initial decrease in the
total energy of disturbances is replaced by its growth.
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linear processes can be ignored. As seen from Fig. 5,
the total disturbance energy gradually decreases if non-
linear processes are negligible. For the other two values
B = B2 and B3 (with B1 ! B2 < B3), at which the effect
of nonlinear processes is significant, the initial decrease
in the total energy is replaced by its growth. The higher
the initial energy, the sooner the growth begins. The
results shown in Fig. 5 can be explained only by the
nonlinear transfer of energy of the disturbances to the
amplification region. The following arguments may
prove this conclusion.

Only the unstable and dissipation processes ((b) and
(c)) lead to changing the total disturbance energy. Vis-
cosity (process (c)) always causes a decrease in the dis-
turbance energy. As for process (b), its net effect
depends on the distribution of the energy spectral den-
sity in the amplification and attenuation regions. If the
weight of SFHs in the amplification region is heavier
than that in the attenuation region, the net effect of pro-
cess (b) causes an increase in the total energy of the 2D
disturbance. Vice versa, if the “weight” of SFHs is
“heavier” in the attenuation region, process (c) causes a
decrease in the total energy. It follows from the above
argument that, in accordance with Eq. (6), the total
energy of 2D disturbances can become higher only if
the weight of SFHs in the amplification region is
heavier than that in the attenuation region. In addition,
the weight must be so much heavier that the net effect
of the third term in Eq. (6) dominates over that of the
viscous term.

Initially, the SFHs of the 2D disturbance considered
here (see Eq. (7) and Fig. 3) have the same weight in the
amplification and attenuation regions. If we assume
that the effect of nonlinear processes is negligible, the
disturbance is transferred to the attenuation region with
time by the linear drift. This causes an increase in the
weight of SFHs in the attenuation region toward higher
values than in the amplification region, and the total
energy of the disturbance under study must therefore
begin to decrease. It is the temporal history that can
explain the B = B1 curve run in Fig. 5. The behavior of
the curves with B = B2 and B3, namely, the fact that the
initial decrease in the total disturbance energy is
replaced by its growth, thus unambiguously indicates
that, beginning with a certain time instant (which
occurs the earlier the larger the disturbance amplitude),
the weight of SFHs in the amplification region domi-
nates over the weight of SFHs in the attenuation one.
This fact can be explained only by the preferential
transfer of SFHs to the amplification region caused by
the nonlinear processes. It also follows from Figure 5
that there exists some threshold Bth for the initial distur-
bances. If B > Bth (e.g., B2, B3 > Bth), the initial decrease
in the total disturbance energy is replaced by its growth,
which must eventually lead to the self-maintenance of
disturbances. We did not calculate the threshold
because of the following simple reasons. In our calcu-
lations, the threshold must appear at large times At @ 1,
JOURNAL OF EXPERIMENTAL 
where the weak turbulence approach becomes invalid.
In addition, we made calculations for a definite distur-
bance, and the calculation of the threshold in the partic-
ular case would not enrich the theory; much more
important is the establishment of the threshold exist-
ence.

4. DISCUSSION

The aim of this paper was to prove the existence of
a positive nonlinear feedback, the most problematic
statement of the bypass transition to turbulence. We
performed numerical calculations for the 2D case in the
weak turbulence approximation. The results of calcula-
tions shown in Fig. 4 describe the preferential nonlinear
transfer of the disturbance energy to the amplification
region, and the results in Fig. 5 provide evidence for the
preferential transfer that can crucially change the tem-
poral history: the total disturbance energy decrease can
be replaced by its growth at certain amplitudes. This
behavior makes the self-maintenance of the disturbance
realistic. This is in turn the characteristic feature of the
flow transition to the turbulent state and its mainte-
nance.

We can therefore conclude that our numerical test
calculations prove the existence of a positive nonlinear
feedback in the 2D case. In reality, the shear flow turbu-
lence has a 3D nature (cf. [6]). However, the qualitative
analysis in Section 2 implies that nonlinear processes
easier cope with the positive feedback in the actual 3D
case than in 2D one. Indeed, we refer to the case dis-
cussed in Section 2, where SFHs of incompressible vor-
tical 3D disturbances are initially in region I(I') (see
Fig. 2) and then drift along the ky axis, thus falling in the
amplification region II(II'). They are amplified and
reach region III(III') because of the drift. In contrast to
2D SFHs (see Fig. 1), 3D SFHs do not become weaker
after leaving the amplification region. The spectral
energy density of 3D disturbances must therefore be
higher in region III(III') than in region I(I'). Combining
this fact with the preferential nonlinear transfer of the
SFH energy to the amplification region, we conclude
that the positive nonlinear feedback must be more eas-
ily realized in the 3D case than in the 2D one.

In accordance with the bypass transition to turbu-
lence, the transient growth of disturbances is a key ele-
ment of the subcritical transition. (The flow is spec-
trally stable.) At the same time, triggering the nonlinear
positive feedback nonlinear regeneration of the SFH
that can draw the mean flow energy is a necessary step
to the transition. These facts require the existence of a
sufficiently high level of initial disturbances in the sys-
tem for the subcritical transition. It is obvious that finite
disturbances can be produced by external forces. For
instance, a pair of oblique waves with small but finite
amplitudes were used in [42, 43] as the initial condition
in numerical simulations of the transition. However,
finite disturbances must also have an intrinsic fluctua-
tion origin according to [44, 45]. (These results shed
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new light on the fluctuation background of the vortex
mode fluctuations in laminar Couette flow.) Namely,
according to [44, 45], the background of the vortex
mode fluctuations in a certain subspace of the wave-
number space is sufficiently strong at high Reynolds
numbers and the level of its spectral energy density by
far exceeds the level of the white noise. This must in
turn trigger a nonlinear positive feedback and lead to
the transition. The reality of this time history should be
proved by direct numerical simulation.
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APPENDIX

Derivation of the Weak Turbulence Equation

We let the x axis of a Cartesian coordinate system lie
along the velocity of the mean flow and the y axis along
the flow velocity shear, U0(Ay, 0, 0). The fluid is
assumed to be incompressible. Considering that the dis-
turbed variables are independent of the z coordinate, the
continuity equations and the equation of motion for the
disturbances are given by

(A.1)

(A.2)

(A.3)

where v x and v y are the respective disturbance veloci-
ties in the Cartesian coordinate system along the x and
y axes and P is the pressure disturbance normalized by
the undisturbed density of the fluid ρ0. The action of
viscosity in the weak turbulence equation is taken into
account in the end. It is significant that we consider dis-
turbances with the characteristic length scale much less
than the distance between the flow boundaries. This
allows us to neglect the boundary effects.

To simplify subsequent transformations, we intro-
duce a coordinate system x1y1, with its origin and the x1
axis coinciding with those of xy and the y axis convect-
ing with the mean flow. This is equivalent to changing
the variables as

(A.4)

∂v x
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---------+ 0,=
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∂
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∂
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∂y
---------+ +

∂P
∂y
------,–=

x1 x Ayt, y1– y, t1 t,= = =
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(A.5)

In terms of the new variables, Eqs. (A.1)–(A.3) can be
rewritten as

(A.6)

(A.7)

(A.8)

Substitution (A.4) is not a physical transition to a
new coordinate system, because in Eqs. (A.6)–(A.8) (as
well as in Eqs. (A.1)–(A.3)), the quantities v x and v y are
components of the disturbance velocity in the Cartesian
coordinate system xy. The coefficients of the original
set of linear equations (A.1)–(A.3) depend on the spa-
tial coordinate y. As a result of the transformation, this
spatial inhomogeneity is changed to a temporal one
(Eqs. (A.7) and (A.8)).

The disturbed variables can be Fourier decomposed
with respect to the Eulerian (laboratory) coordinates (x,
y) and the Lagrangian (convected) coordinates (x1, y1),

(A.9)

(A.10)

The two Fourier representations in Eqs. (A.9) and
(A.10) are different, although they coincide at the initial
moment (t = 0) because x ≡ x1 and y ≡ y1. This difference
is manifested in the dynamics of SFHs in the wave-
number space. The wave vector k1 of a particular SFH
is constant in time in the convected coordinates, while
it varies in laboratory coordinates. Each of these two
methods has its advantages. In the linear theory,
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Eq. (A.10) is convenient in studying the real spatial
Fourier harmonics moving with them. However, in ana-
lyzing the weak turbulence equation (thus assuming the
excitation of many degrees of freedom), it is impossible
to follow the evolution of each Fourier harmonics. In
the latter case, it is more convenient to study what
occurs to the energy at a fixed point of the k space, i.e.,
to describe the variation of the spectral density of the
disturbance energy at a fixed point of the k space.

In spite of this, expansion (A.10) is also useful for
intermediate transformations.

To derive the weak turbulence equation, we insert
expansion (A.10) in (A.6)–(A.8),

(A.11)

(A.12)

(A.13)

Eliminating  from these equations gives a sym-
metric equation for v y

k1xṽ k1x k1y t, ,( )
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  ∂ṽ y k1 t,( )

∂t
----------------------- 2Aṽ y k1 t,( )–
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where

Introducing the function

(A.15)

we rewrite Eq. (A.14) in a more convenient form (cf.
[39–41])

(A.16)

where

(A.17)

We note that Ck is related to the vorticity of the spatial
Fourier harmonics.

Supposing that many degrees of freedom (modes)
are excited, we use the random phase approximation
(cf. [39]), which can be expressed by

(A.18)

where 〈…〉  denotes the phase average.
To use the methods of the weak turbulence theory,

we expand Ck as

(A.19)
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which means that the nonlinearity is taken into account
within perturbation theory. Using Eqs. (A.19)–(A.21),
it follows from (A.16) that

(A.22)

We next use the relations between higher correlations
accepted in the weak turbulence theory,

(A.23)

(A.24)

As can easily be seen, we then have

(A.25)
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where

Changing the variables in the second part of the integral
as

and taking into account that

(A.27)

we continue the transformations as

(A.28)

Inserting the expressions for  and  (see

Eq. (A.26)) in the time integrals and integrating, we
obtain

(A.29)

(A.30)

As mentioned above, it is convenient to obtain the
equation for the energy density at a fixed point of the
k space in order to construct the weak turbulence
theory. For this, we use Eqs. (A.4)–(A.5) to transform
Eqs. (A.28)–(A.30) to the new variables kx and ky,
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(A.31)

where

(A.32)

On the other hand,

(A.33)

whence

(A.34)

Ek is the energy density of the 2D vortex mode dis-
turbances at a fixed point of the k space. In other words,
this is the spectral density of energy.

Inserting integrals (A.29) and (A.30) in Eq. (A.28),
changing the variables in accordance with (A.4), and
using (A.34), we obtain the equation for the spectral
density of the disturbance energy at a fixed point in the
k space,

(A.35)
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In the derivation of Eqs. (A.35) and (A.36), the vis-
cosity term was omitted. It was then added in
Eq. (A.35) (the fourth term on the left-hand side).
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Abstract—A new method of polarization of atoms and nuclei by pulsed bichromatic resonance radio-fre-
quency fields is proposed to produce an initial state of a quantum computer constructed with the use of cubits
representing impurity atoms in a solid matrix having the hyperfine structure. It is shown that this method can provide
strong polarization without using ultralow temperatures. The problem is considered for the interaction of three- and
four-level systems with bichromatic and two-phase fields. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The problem of creation of a quantum computer is a
topical problem attracting the attention of many
researchers [1–3]. The search for physical systems that
can be used as information media for quantum calcula-
tions is actively pursued. A solid medium containing
two-level nuclear spin systems is one of the main can-
didates for the development of such systems [4]. On the
one hand, a two-level system can carry one bit of quan-
tum information. On the other hand, a variety of algo-
rithms for quantum calculations can be realized by
exciting this system by pulses of resonance high-fre-
quency fields with specified parameters and using vari-
ous mechanisms of the interaction between these sys-
tems. Such a two-level system is called a cubit. It has
been proved that any quantum calculation algorithm
can be represented as a sequence of transformations of
the state of individual cubits and operations with pairs
of the interacting cubits, when the result of the action of
the field on one of the cubits in the pair depends on the
state of another cubit (the CNOT operation) [5].

Before the action of the field, a cubit quantum sys-
tem is in the state |Ψ(0)〉 , which represents a superposi-
tion of the eigenstates of the Hamiltonian of the system
interacting with a permanent magnetic field. For a two-
level system, this state is written as |Ψ(0)〉  = a(0)|0〉  +
b(0)|1〉 . After irradiation by a pulses of duration t of the
oscillating field, which is perpendicular to a permanent
field and is much weaker than the permanent field, the
system performing Rabi oscillations will be found in the
state |Ψ(t)〉, which is |Ψ(t)〉 = a(t)|0〉  + b(t)|1〉 for a two-
level system. Similar processes occur in nuclear mag-
netic resonance, and the description presented above is
equivalent to the formalism used for the description of
NMR [6].

One of the problems encountered in the develop-
ment of a quantum computer is the creation of the ini-
tial state in which cubits are in the lower energy state
1063-7761/02/9402- $22.00 © 20446
|Ψ(0)〉 . Such a state can be produced by cooling solids
down to microkelvin temperatures, which is, however,
a technically complicated problem.

Earlier [7], we considered repopulating a system
consisting of the hyperfine-structure components of the
ground state of an atom and of its excited level upon the
interaction with laser fields. This effect underlies the
well-known optical phenomenon of coherent popula-
tion trapping. In addition, we proposed theoretically the
procedure of polarization of the Zeeman levels of the
nuclear spin of an impurity atom in a magnetically
ordered crystal matrix or of the hyperfine-structure lev-
els of an impurity in the ground state in dielectrics upon
the interaction with a bichromatic radio-frequency
wave [8]. We have shown that this method provides,
under certain conditions, a substantial repopulating of
the quantum-system levels. We believe that these meth-
ods can be used for creation of a quantum computer
based on nuclear spins of impurities in solid matrices
without their cooling down to ultralow temperatures.
We propose to use two levels of a three-level or a four-
level system of nonequidistant hyperfine-structure lev-
els as a cubit, which interacts with a pulsed resonance
coherent bichromatic or two-phase field. The polariza-
tion of such a system of quantum levels is considered
assuming that all the levels are populated before the
field action, i.e., the system is in the state of the type
|Ψ(0)〉  with nonzero a(0) and b(0).

2. THREE-LEVEL NONEQUIDISTANT SYSTEM 
IN A BICHROMATIC RESONANCE

HIGH-FREQUENCY FIELD

The Hamiltonian of a system of quantum levels in a
field has the form

(1)H t( ) H0 V t( ),+=
002 MAIK “Nauka/Interperiodica”
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where H0 is the Hamiltonian of the quantum system
interacting with fields that are stationary during the
pulse and V(t) is the operator of interaction of this sys-
tem with the oscillating field. Assuming that H0 @ V(t),
we will perform calculations using time-dependent per-
turbation theory. We assume that the distances between
the levels are smaller than kT and all the levels are pop-
ulated differently in the general case before the HF field
switching. Let us assume that the time of interaction of
the system with the field is shorter than all relaxation
times, namely, the longitudinal and transverse relax-
ation times. This condition allows us to study the inter-
action process in terms of the amplitudes, assuming
that the system is in the state described by a wave func-
tion representing a superposition of the eigenfunctions
of the Hamiltonian H0, which also includes weak sta-
tionary perturbations which make the hyperfine-struc-
ture levels nonequidistant:

(2)

Here, bi(t) are the population amplitudes for the ith
level, which satisfy the initial conditions

(3)

where Ai is the amplitude of the initial population of the
ith level,

(4)

and αi is the amplitude of the initial population of the
ith level. Because the interaction time is assumed to be
shorter than all the relaxation times, no stochastic per-
turbations of the system are present during the interac-
tion. In addition, we assume that the period of Rabi
oscillations is also shorter than all the relaxation times.
This means that the interaction of an impurity center, an
ion or an atom with a thermostat is much weaker than
the interaction with the external field. Therefore, we
should first find the probabilities of repopulating the
levels of the system caused by the external field during
the pulse and then average them over an ensemble of
impurity centers or atoms. In this case, the amplitudes
bi(t) are always proportional to constant phase factors
exp(iαi) and can be written in the form

(5)

the functions ai(t) being independent of αi at any time
and equal to

(6)

for t = 0. The wave eigenfunctions Fi can be redeter-
mined as

(7)

where the functions  are independent of phases αi

and are also the eigenfunctions of the Hamiltonian H0.

Ψ t( ) bi t( )Fi.∑=

bi 0( ) Ai iα i( ),exp=

Ai
2 bi 0( ) 2,=

bi t( ) ai t( ) iα i( ),exp=

ai 0( ) Ai=

Fi Fi' iα i–( ),exp=

Fi'
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As a result, expression (2) takes the form

It follows from this that the coherent repopulation of
the levels is independent of the initial phases of the pop-
ulation amplitudes if these phases are constant during
the interaction. The system of equations for the ampli-
tudes ai(t) can be obtained from the Schrödinger equa-
tion for the wave function Ψ(t):

(8)

Consider the interaction of a system of three non-
equidistant levels with a bichromatic field of the form

(9)

The components of the bichromatic field are coherent
with each other, their phases ϕi and their relative phase
∆ϕ = ϕ2 – ϕ1 remaining constant during the interaction.
Below we assume that ϕ1 = 0 and ϕ2 = ∆ϕ. The system
of levels interacting with the field is shown in Fig. 1. We
will assume that the first component with the frequency
ω1 is resonant to the transition between levels 1 and 3,
while the second component is resonant with the fre-
quency ω2 to the transition between levels 2 and 3. The
third level is common and lies between levels 2 and 3.

The system of equations of the time-dependent per-
turbation theory for the amplitudes ai(t) in the reso-
nance approximation has the form

(10)

where Vij are the matrix elements of the operators of
interaction with the field components that are resonant
to the corresponding transition. We assume in (10) and
below that " = 1.

Ψ t( ) α i t( )Fi'.∑=

i"
dΨ t( )

dt
------------- H t( )Ψ t( ).=

H t( ) H1 ω1t ϕ1+( )cos H2 ω2t ϕ2+( ).cos+=

da1

dt
-------- iV13a3,–=

da2

dt
-------- iV23a3,–=

da3

dt
-------- iV31a1– iV32a2,–=

δ

1

2

3

Fig. 1. System of three nonequidistant levels.
SICS      Vol. 94      No. 2      2002



448 ZARETSKIŒ, SAZONOV
In the general case, the solution of the system of
equations (10) for the case when all the levels are pop-
ulated for t = 0 has the form

(11)

Here, Ω is the frequency of Rabi oscillations,

where V1 and V2 are the real parts of matrix elements.
They are proportional to the strengths of the corre-
sponding components of the bichromatic field Hi:

To estimate the degree of the level repopulation, we
will pass from amplitudes to populations:

For all Ai = 1 and equal Vi, we have

a1 t( )
V2A– V1A+ Ωt( )cos+

Ω2
----------------------------------------------------

iV1A3 Ωt( )sin
Ω

----------------------------------,–=

a2 t( )
V2A+ Ωt( ) V1A––cos

Ω2
---------------------------------------------------

iV2A3 Ωt( )sin
Ω

----------------------------------–=

× i∆ϕ–( ),exp

a3 t( ) A3 Ωt( )cos
iA+ Ωt( )sin

Ω
----------------------------,–=

A+ A2V2 i∆ϕ( )exp A1V1,+=

A– A1V2 A2V1 i∆ϕ( ).exp–=

Ω2 V1
2 V2

2,+=

V13 V1, V23 V2 –i∆ϕ( ).exp= =

ρii ai t( ) 2.=

ρ11 1
∆ϕcos

2
---------------–

∆ϕ Ωt( )cos
2

cos
2

-------------------------------------+=

+
Ωt( )sin ∆ϕ 1 Ωt( )cos–[ ]sin

2
--------------------------------------------------------------------,

1.6

π

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0 π/2 3π/2 2π
Ωt, rad

ρ11, ρ22

ρ33

Fig. 2. Level populations in a three-level system after the
interaction with pulses of the bichromatic field of different
durations; ∆ϕ = π.
JOURNAL OF EXPERIMENTAL
(12)

Figure 2 demonstrated the repopulation of the levels for
∆ϕ = π upon irradiation by pulses of different durations.
Note that for Ωt = π/2, 3π/2, the intermediate level 3 is
completely deleted. Therefore, the situation can be pro-
duced in a subsystem consisting of two levels, for
example, of the first and third levels, when the lower
level is populated, whereas the upper level is empty,
which corresponds to the initial state of a cubit.

This can be achieved differently by using pulsed
fields of duration exceeding the Rabi period but shorter
than all relaxation times. If the duration of the high-fre-
quency pulse is greater than the Rabi period Ω–1, the
population can be determined by averaging over Rabi
oscillations. For the averaged populations after the ter-
mination of the field pulse, we obtain

(13)

Consider the typical situation. Let the relation |A+|2 = 0
be fulfilled. This can take place, for example, when
∆ϕ = π and

(14)

Then, the averaged populations are described by the
expressions

(15)

One can see from (15) that, after irradiation by the field
pulse, the population of the level 3 decreases by half.
After repeated irradiation by N pulses, by preliminarily
changing Vi according to (14), the population of this

ρ22 1
∆ϕcos

2
---------------–

∆ϕ Ωt( )cos
2

cos
2

-------------------------------------+=

–
Ωt( )sin ∆ϕ 1 Ωtcos+[ ]sin

2
----------------------------------------------------------------,

ρ33 1 ∆ϕ Ωt( )sin
2 ∆ϕ 2Ωt( )sinsin

2
-------------------------------------.+cos+=

ρ11
V2

2 A–
2

Ω4
-----------------

V1
2 A+

2

2Ω4
-----------------

V1
2A3

2

2Ω2
------------,+ +=

ρ22
V1

2 A–
2

Ω4
-----------------

V2
2 A+

2

2Ω4
-----------------

V2
2A3

2

2Ω2
------------,+ +=

ρ33
A3

2

2
------

A+
2

2Ω2
-----------.+=

V1

V2A2

A1
------------.=

ρ11 A1
2 A2

2A3
2

2 A1
2 A2

2+( )
--------------------------,+=

ρ22 A2
2 A1

2A3
2

2 A1
2 A2

2+( )
--------------------------,+=

ρ33

A3
2

2
------.=
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level will decrease by a factor of 2N. In this way, the
middle common level can be virtually completely
deleted.

Therefore, the levels 1 and 3 will form a two-level
subsystem, which can be used as a cubit of the informa-
tion medium prepared in the initial state. By switching
then only the component of the field that resonantly
couples the levels 1 and 3, we can realize the calcula-
tion algorithms of a quantum computer. Of course, the
levels should by nonequidistant strongly enough, at
least so that the action of the remaining field component
on the transition between the levels 2 and 3 could be
neglected.

3. THREE-LEVEL WEAKLY NONEQUIDISTANT 
SYSTEM IN A TWO-PHASE RESONANCE

HIGH-FREQUENCY FIELD

Consider now the interaction of the three-level
weakly nonequidistant system (Fig. 1) with a two-
phase resonance field, which represents two coherent
waves of the same frequency resonant to the transition
between the levels 1 and 3 and shifted in phase with
respect to each other:

(16)

If the levels are weakly nonequidistant (δ ! ω), one
should take into account the influence of both field
components (16) on the transition between the levels 1
and 3, to which both components are resonant, and on
the transition between the levels 2 and 3, to which both
components are detuned by the quantity δ.

The system of equations of the time-dependent per-
turbation theory for the population amplitudes, which is
similar to (10), has the form

(17)

Here, W is the matrix element of interaction with the
field (16), which consists of two terms:

(18)

Let us represent it in the form

(19)

Let us overdetermine the amplitude a2(t) as

(20)

H t( ) H1 ωt( )cos H2 ωt ∆ϕ+( ).cos+=

da1

dt
-------- iW∗ a3,–=

da2

dt
-------- iW iδt( )a3,exp–=

da3

dt
-------- iWa1– iW∗ iδt–( )a2.exp–=

W V1 V2 i∆ϕ–( ).exp+=

W Ω0 iα /2( ),exp=

Ω0 V1
2 V2

2 2V1V2 ∆ϕcos+ +( )1/2
,=

α 2 V2 ∆ϕ / V2 V1 ∆ϕcos+( )sin[ ] .arctan–=

a2' t( ) a2 t( ) iδt–( ).exp=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
By substituting (20) into (17), we obtain the system of
equations

(21)

The quantity Ω0 in (19) determines the repopulation
rate and depends, in the case of a two-phase field, not
only on the field strength but also on the phase differ-
ence ∆ϕ. It follows from (19) that for

(22)

we have Ω0 = 0, and, hence, no repopulating will occur.
Note that, for V1 = V2, we have α = –∆ϕ.

The system of linear differential equations (21) cor-
responds to the characteristic equation

(23)

We will solve this equation approximately under the
condition that the deviation from the equidistant level
spacing ∆ is less than Ω0. Let us introduce a small
parameter η = δ/Ω0. We obtain the following approxi-
mate expressions for the level populations in the case of
equal initial populations for all the levels (Ai = 1):

(24)

da1

dt
-------- iW∗ a3,–=

da2'

dt
-------- –iWa3 iδa2' ,–=

da3

dt
-------- –iWa1 iW∗ a2' .–=

∆ϕcos
V1

2 V2
2+

2V1V2
------------------–=

k3 iδk2 2kΩ0
2 iδΩ0

2+ + + 0.=

ρ11 8 4 α Xsin
2

8 2 α /2( )sin–cos–[=

× X Y 8 α X Y η R11+sincossin+cossin ] /8,

R11 α /2( ) 2X( )cos 3+[ ]cos–=

– 2 α 2X( )sinsin 4 α /2( )cos X Ycoscos+

– 2 2 α X Ysinsincos

+ 2 α X Y 4 α /2( )sin X Y ,sincos–cossinsin

ρ22 8 4 α Xsin
2

8 2 α /2( )sin+cos–[=

× X Ycossin 8 α X Y η R22+sincossin– ] /8,

R22 α /2( ) 5 2X( )cos–[ ]cos=

– 2 α 2X( )sinsin 4 α /2( )cos X Ycoscos–

+ 2 2 α X Ysinsincos 3 2 α X Ycossinsin+

– 4 α /2( ) X Y ,sincossin

ρ33 8 8 α Xsin
2 η R33+cos+[ ] /8,=

R33 2 α /2( ) 2X( )cos 1–[ ]cos=

+ 2 2 α 2X( ) 4 2 α X Ycossinsin–sinsin

+ 8 α /2( ) X Y .sincossin
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Here, X = Ω0t and Y = δt/4. Figure 3 shows the level
populations as functions of α after irradiation by the
π/2 pulse (X = π/2) for η ! 1. One can see that for α =
3π, using the π/2 pulse, we can prepare the system in
the state in which only the lower level is populated. At
the same time, the same pulse produces the inverse pop-
ulation in a subsystem consisting of two levels 1 and 3
when α is close to 3π/2, which can be used as a cubit.

4. FOUR-LEVEL SYSTEM IN A TWO-PHASE 
RESONANCE HIGH-FREQUENCY FIELD

The level repopulation in the system of four non-
equidistant hyperfine-structure levels caused by the
field (16) can be considered similarly. It has been
shown in paper [9] that particles with the spin 3/2 hav-
ing four energy levels also can used as carriers of the
quantum information. It has been shown that in this
case the CNOT operation can be performed for one par-
ticle, using two pairs of levels of this particle as two
coupled cubits, rather than for two particles with the
help of the interparticle interactions.

The system of equations for the population ampli-
tudes of the four-level system shown in Fig. 4 has the
form

2

da1

dt
-------- i 3W iδt( )a2,exp–=

ρ11ρ22

ρ33

1.0

2π

0.2

0 π 3π 4π
α, rad

0.8

0.6

0.4

Fig. 3. Level populations in a weakly nonequidistant three-
level system for different phases α after irradiation by the
π/2 pulse of the two-phase field.

µ2 1

µ1

µ2

µ1

ω 2

3
4

Fig. 4. System of four nonequidistant levels.
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(25)

The deviation from the equidistant level spacing in (25)
or the detuning of the field (16) from the resonance,
equal to it, is δ = µ1 + µ2 (see Fig. 4). The nonequidis-
tant system of levels shown in Fig. 4 corresponds to that
of the Zeeman levels of the nucleus with the spin 3/2
of an impurity atom in a solid matrix, which appears
due to the quadrupole interaction of the nucleus with
the electric crystal field. We solve the system of equa-
tions (25) similarly to (17), by introducing the ampli-
tudes

The characteristic fourth-degree equation is decom-
posed in this case into two quadratic factors:

(26)

As in the three-level case, we solve this problem
approximately for δ < Ω0. By introducing the small
parameter η = δ/Ω0, we obtain, in the case of the initial
conditions Ai = 1,

(27)

da2

dt
-------- i 3W∗ iδt–( )a1 2iWa3,–exp–=

da3

dt
-------- 2iW∗ a2– i 3W iδt–( )a4,exp–=

da4

dt
-------- i 3W∗ iδt( )a3.exp–=

a1' iδt–( )a1, a4'exp iδt–( )a4.exp= =

k k iδ+( ) 3Ω0
2 + 2iΩ0 k iδ+( )+[ ] k k iδ+( )[

+ 3Ω0
2 – 2iΩ0 k iδ+( ) ] 0.=

ρ11 8 4 3 αcos–( ) 2Z1 6X( )sin+[=

– 6Z2 2X( )sin 3η α 6X( )sinsin–

+ 3 3η α 2X( )sinsin ηQ+

+ Z6 4X( )cos 2Y( )cos Z3 4X( ) 2Y( )sinsin–

– Z7 2X( ) 2Y( )sincos Z4 2X( ) 2Y( )cossin+ ] /32,

ρ22 8 4 3 αcos+( ) 6Z1 6X( )sin–[=

+ 2Z2 2X( )sin 3 3η α 6X( )sinsin+

– 3η α 2X( )sinsin ηQ– Z6 4X( )cos 2Y( )cos–

+ Z3 4X( )sin 2Y( )sin Z8 2X( )cos 2Y( )sin–

+ Z5 2X( )sin 2Y( )cos ] /32,

ρ33 8 4 3 αcos+( ) 6Z1 6X( )sin+[=

– 2Z2 2X( )sin 3 3η α 6X( )sinsin–

+ 3η α 2X( )sinsin ηQ– Z6 4X( )cos 2Y( )cos–

+ Z3 4X( )sin 2Y( ) Z8 2X( )cos 2Y( )sin+sin
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where

Figure 5 shows the level populations as functions of
α after irradiation by the π/2 pulse (X = π/2) for η ! 1.
For α ≈ 3π/2, the subsystem of levels 2 and 3 and the
subsystem of levels 1 and 4 will be in the state in which
their corresponding lower levels are populated,
whereas the upper levels are empty. For α ≈ 5π/2, on the
contrary, these subsystems will be inverted.

5. CONCLUSIONS

The results obtained in this paper show that the sys-
tems of hyperfine-structure levels used as cubits of the
information solid medium in a quantum computer can
be rapidly polarized by short pulses of a bichromatic or
two-phase field without cooling to ultralow tempera-
tures. Note once more that all the effects of coherent
repopulation occur if the pulse duration is shorter than

– Z5 2X( )sin 2Y( )cos ] /32,

ρ44 8 4 3 αcos–( ) 2Z1 6X( )sin–[=

+ 6Z2 2X( )sin 3η α 6X( )sinsin+

– 3 3η α 2X( )sinsin ηQ+

+ Z6 4X( )cos 2Y( )cos Z3 4X( )sin 2Y( )sin–

+ Z7 2X( )cos 2Y( )sin Z4 2X( )sin 2Y( )cos– ] /32,

Z1 3α /2( )sin 2 3 3–( ) α /2( ),sin+=

Z2 3 3α /2( )sin 2 3 1+( ) α /2( ),sin–=

Z3 4 3 2 3–( ) α /2( )cos=

– 12 3α /2( ) 2 3η α ,cos+cos

Z4 12 3α /2( )sin 4 3 2 3+( ) α /2( )sin+=

+ 4 3η α ,sin

Z5 12 3α /2( ) 4 3 2 3+( ) α /2( )sin+sin=

– 4 3η α ,sin

Z6 8 3 αcos ηQ,–=

Z7 16 3 αsin=

+ 2η 3 3α /2( )sin 3 α /2( )sin+[ ] ,

Z8 16 3 α 2η 3 3+( ) α /2( ),sin–sin=

Q 2 3 3+( ) α /2( )cos 3 3α /2( ),cos–=

X Ω0t, Y δt/4.= =
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the longitudinal and transverse relaxation times and the
interaction with the field is stronger than the interaction
of the spin system with the thermostat.

The procedures of application of the bichromatic or
two-phase field have some special features. Thus, a
quantum system can be polarized by the bichromatic
field by using pulses of duration exceeding the period
of Rabi oscillations. In this case, to obtain a high degree
of polarization, it is necessary to produce a series of
pulses by changing the component strength in a proper
way before each new pulse. This method cannot be
applied for a system of weakly nonequidistant levels.
When the system is polarized by the two-phase field, a
substantial effect can be achieved using one pulse
whose duration should be, however, comparable with
the Rabi period. The two-phase field can be used in the
case of weakly nonequidistant levels as well.

Note that when the system is polarized by short
pulses of the bichromatic or two-phase field, whose
duration is comparable with the Rabi period, a cubit
state can be changed by changing only the phase differ-
ence of the field components, the pulse duration being
fixed.

We believe that we deal with quite solvable techni-
cal problems, concerning both the preparation of the
initial state of a quantum computer and, probably, the
construction of algorithms for quantum calculations. It
should be emphasized once more that the method for
polarizing impurity centers in a solid matrix proposed
here allows one first of all to obtain the ground state of
a system of cubits representing the hyperfine-structure
levels in these centers. If the wavelength of the reso-
nance field greatly exceeds the distance between the
centers, then the ground state of the cubit system for
quantum calculations can be obtained in a macroscopic
volume. The cubits in a solid matrix are coupled by the
dipole–dipole interaction. This coupling should be
taken into account in the construction of the algorithm
for quantum calculations. The application of this
method, taking into account magnetic interactions in
the cubit system, requires a separate analysis.

ρ11ρ44

ρ33

1.0

π

0.2

0 π/2 3π/2 2π

0.8

0.6

0.4

ρ22

α, rad

Fig. 5. Level populations in a weakly nonequidistant four-
level system for different phases α after irradiation by the
π/2 pulse of the two-phase field.
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