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Abstract—Results of experimental studies of the field of currentsin the shelf zone of the Sea of Japan are dis-
cussed. The studies were carried out in 2001-2002 near the Gamov Peninsula, in the region of the acoustical-
hydrophysical site of the II’ichev Pacific Oceanological Institute (Far East Division, Russian Academy of Sci-
ences). The purpose of the studies was related to the problems of developing the systems for long-term remote
sensing of the climatic variability of the sea medium and for acoustic tomography of the dynamic processesin
ashallow sea. In the experiment, combined acoustic transmitting and receiving systems (transceivers) and com-
plex phase-manipulated signals with a carrier frequency of 2500 Hz were used. The velocities of currents cal-
culated from the acoustic data agree satisfactorily with the vel ocities measured by standard methods of ocean-

ography. © 2004 MAIK “ Nauka/Interperiodica” .

Acoustic methods of studying the currents in shal-
low-water regions of oceans and seas are advantageous
for developing systems for a long-term monitoring of
the climatic variability of the seamedium. Our previous
publications [1-4] reported on the experimental data
that were obtained by applying the method of opposite-
direction sensing to measuring the velocity of currents
in ashallow sea by using phase-manipulated signals. It
was shown that the use of complex signals allows one
to distinguish and identify the signal arrivals over dif-
ferent trajectorieswith simple engineering means based
on single bottom-moored receiving and transmitting
systems. Such an approach provides quantitative esti-
mates of thefield of currentsin both horizontal and ver-
tical planes. The studies were performed in August and
September 2000 at the shelf of the Sea of Japan on a
18-km-long fixed path. For the opposite-direction sens-
ing of the sea medium, phase-manipulated signals
(M-sequences) with acarrier frequency of 250 Hz were
used. This frequency was chosen to monitor a basin of
several hundred kilometers in size. In particular, this
method was used in the experimental sensing of the sea
medium on a 550-km-long path, which was carried out
in cooperation with researchers from the United States
and South Korea[5, 6].

In this paper, we discuss the results of studying the
field of sea currents by the method of opposite-direc-
tion sensing. The data were obtained in September
2001 in the same shelf region of the Sea of Japan as
described in [2]. The objective of the studies was the
improvement of the accuracy and information output of
the measurements on shorter paths. In the measure-
ments on a 3-km path, complex phase-manipulated sig-

nalswere used with acarrier frequency of 2500 Hz. These
signals were orthogonal 511-symbol M-sequences with
thefield equations X® + X* + 1 and X° + X> + 1, asymbol
length of four periods of the carrier frequency, and a
bandwidth of 1250 Hz. The improvement of the resolu-
tion at higher frequencies was experimentally con-
firmed in many-hour-long synchronous transmission on
fixed paths in the same region of the Sea of Japan. The
signal propagation on these pathsis governed by multi-
path and waveguide effects.

Figure 1 showsthe layout of the experiment on mea-
suring the velocity of currents by the method of oppo-
site-direction sensing. This figure also shows the verti-
cal profile of the temperature field averaged over the
diurnal period. In this experiment, piezoceramic trans-
ceivers (combined sound transmitters and receivers)
were used that were bottom-moored at depths of 40 and
56 m. Figure 2 presents the results of measuring the
velocity and direction of the current by an SM-2 hydro-
logical probe (Japan) at three depths, for ten hours, at
the site of the second transceiver. It is shown that the
current undergoes substantial time-dependent varia-
tions in both its direction and absolute value and
depends on the horizon.

The opposite-direction signal transmission was car-
ried out for 15 hours, with 1-min intervals. The signals
received by thefirst and second transceiverswere trans-
mitted to the coastal station via a cable and a radio
channel, respectively. Then, the cross-correlation pro-
cessing was performed for the transmitted and received
signals propagating in opposite directions relative to
each other. The resulting impulse responses of the
waveguide were compared. From thetime differencein
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Fig. 1. Layout of the experiment on the opposite-direction
sensing and the averaged vertical profile of the temperature
field.
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Fig. 3. Impulse responses of the waveguide (low water).

the ray arrivals, the projection of the velacity of current
on the propagation path was determined according to
therelationstaken from [2, 7]. Figures 3 and 4 show the
fragments of the waveguide impulse response obtained
from the signals received by the transceivers at 15:00,
at the time of low water, and at 21:00, at the time of
high water, when the near-bottom current changed its
direction. Figure 3 showsthat the signals of both hydro-
phones exhibit up to five arrivals that are clearly sepa-
rated in time and that have time shifts caused by the
influence of the sea current on the speed of sound prop-
agation in opposite directions. It is worth mentioning
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Fig. 2. Velocities (m/s) and directions of the current versus
time at depths of 5, 20, and 40 m.
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that, by 21:00, the noise level became higher at the sec-
ond transceiver, and the validity of the reciprocity prin-
ciple reliably held for only the first and fifth arrivals
(Fig. 4).

According to [1-4], when the summer- and autumn-
type profiles of the sound speed exist and the sound
transmitters and receivers are near the bottom, the first
signa arrivals are formed by the rays that propagate
within the near-bottom water layer, without touching
the sea surface. The thickness of this layer depends on
the frequency of sounding and the value of the negative
sound speed gradient. The remaining arrivals are
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Comparative data on the measured velocity of current (cm/s)

Data obtained with the oceanographic probe | Data obtained by opposite-direction sensing
Depth of measurement, m
15 h (low water) 21 h (high water) 15 h (low water) 21 h (high water)
5 18 10 20 12
20 5 12 20 12
40 6 -4 12 -5

formed by the rays that undergo different numbers of
reflections from the bottom and surface. Thus, the res-
olution and identification of the ray arrivals determines
the accuracy of reconstructing the vertical structure of
the current. The result of measuring the time of the first
arrival isespecially important, because the complicated
dynamics of interaction between the acoustic and
hydrodynamic fields in the near-bottom water layer
makes it impossible to resolve individual raysin some
Cases.

To estimate the efficiency of the proposed method, a
comparison was performed between the acoustically
determined velocities of current and those measured by
standard oceanographic means. The table summarizes
the projections of the velocities of current onto the
propagation path for the measurements performed with
the SM-2 probe at 15:00 (the low-water period) and at
21:00 (the high-water period), at depths of 5, 20, and
40 m. The table also presents the velocity projections
calculated from the acoustically measured time shifts.

In the high-water phase, the values of the vel ocity of
current reached —10 and 15 cm/s, as measured from the
time shift of thefirst and fifth arrivals, respectively. For
the sound profile at hand, the initial signal arrivals cor-
respond to the near-bottom ray trajectories, while other
arrivals are formed by the rays propagating through the
entire waveguide thickness. Thus, not only the integral
variability of the velocity of water current on the path
was measured, but also its vertical components were
estimated. Some differences between the data obtained
with the use of the oceanographic probe and the acous-
tic method are caused by the fact that the probe mea-
sures the velocity of current at a single point while the
opposite-direction acoustic sensing yields the velocity
averaged over the entire 3-km-long path. In our opin-
ion, an important result is that both methods detected a
change in the direction of the near-bottom current after
20:00.

Thus, the experimental results of this study and the
results presented in [1, 6] demonstrate the feasibility
and good prospects of using the method of opposite-
direction sensing for monitoring the field of currentsin
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sea areas of several to several hundred kilometers in
size. A possible continuation of this work may consist
in the adaptation of the method of matched nonreci-
procity [8] to the methodological and technological
features of the experimental devices and to the optimi-
zation of the characteristics of the probing signals.
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Abstr act—Reflection and refraction of surface acoustic waves by a periodic domain structure formed in lithium nio-
bate is studied. A second harmonic generation is observed. A mechanism underlying the linear and nonlinear inter-
actions of acoustic waves with a periodic domain structure is proposed. © 2004 MAIK “ Nauka/Interperiodica” .

Characteristic features of acoustic wave propagation
in nonlinear media have been attracting the interest of
researchers for years because of the unusua physical
properties and the possibilities of practical application
[1]. Recently, crystals with periodically varying values
of some of their physical parameters have become
objects of investigation and even actual application in
nonlinear acoustics and optics. It was found that such
periodic structures possess a number of unusual prop-
erties and, in particular, the localization of electron
states and optical, elastic, and piezoel ectric parameters.
The first theoretical publications concerned with the
generation and propagation of acoustic waves through
grown domain structures appeared as early asthe 1970s
[2-4]. Then, experimental studies of the reflection and
refraction of bulk acoustic waves by grown [5] and
induced [6-8] periodic domain structures (PDSs), as
well as photoinduced gratings [9], were carried out.
However, none of these and the following publications
reviewed in [10] reported on the frequency intervals of
the total reflection and total transmission of acoustic
waves through PDSs or considered the problems of
nonlinear interaction of acoustic waves with PDSs.
Being motivated by these unsolved problems, we car-
ried out amore comprehensive study of the propagation
of surface acoustic waves (SAWSs) through a PDS
formed in lithium niobate.

The propagation of SAWs through a PDS was stud-
ied using an experimenta setup schematically repre-
sented in Fig. 1. The PDS was formed by the electrical
method [7] near the XZ surface of alithium niobatesingle
crystal with the dimensions 20 (X) x 2 (Y) x 20 (2) mm.
The structure consisted of alternating domains of the
“head-to-head” type with a period of 50 = 2 um and
contained 20 periods arranged aong the Z axis (see
object 1 in Fig. 1). Surface acoustic waves in the form
of short pulses (T ~ 1 pus) with a repetition period of
0.1-1 ms were generated by (5) a tunable pulser with
the use of (2) a broadband angular transducer and

detected by (3, 4) two similar transducers (transducer 4
for the transmitted pulse and transducer 3 for the
reflected pulse). The angle between the wave vector of
the incident pulse and the axis of the PDSwas 14°. The
transmitted and reflected pulses were received by (6) a
superheterodyne receiver whose resonance frequency
was synchronously varied with the pulser frequency.

Experimental results show that, in the frequency
range from 20 to 200 MHz, aseries of intensity maxima
is observed for the acoustic pulses reflected from the
PDS (Fig. 2). These intensity maxima observed for the
reflected pulses in the frequency bands 32—-35, 62-65,
95-100, 125-133, and 192—-198 MHz correspond to the
intensity minima for the acoustic pulses transmitted
through the PDS. At a fixed pulser frequency within
32—-35 MHz and with the variation of the frequency of
the superheterodyne receiver, in addition to the funda-
mental frequency signals we also observed signals of
acoustic pulses reflected from the PDSin the frequency
band of 60-65 MHz, which corresponds to the second
harmonic of the initial acoustic pulses. The reflection
coefficient for the second harmonic was almost an order
of magnitude smaller than that for the fundamental fre-
quency. On the average, it was ~10-2, which is approx-
imately two orders of magnitude greater than the reflec-

NEL 7

6

Fig. 1. Block diagram of the experimental setup for study-
ing the propagation of acoustic waves through the PDS:
(1) domain structure, (2-4) end transducers, (5) pulser,
(6) superheterodyne receiver, and (7) sample.
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Fig. 2. Spectrum of acoustic pulses reflected from the PDS:
(2) theoretical and (2) experimental spectra.
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Fig. 4. Dependences of the intensities of the (1) first and
(2) second harmonic of SAWs on the voltage applied to the
transducer.

tion coefficient for asimilar transformation with the use
of only a homogeneous acoustic nonlinearity in asimi-
lar lithium niobate single crystal. With an increase in
the pulse amplitude at the fundamental frequency, the
second harmonic pulse amplitude exhibited anonlinear
growth (Fig. 3). At the same time, the dependence of
the intensity at the fundamental frequency, I(w), on the
amplitude of the alternating voltage across the trans-
ducer, u(w) (Fig. 4), exhibits a nonlinear decrease in
I(w) with increasing u(w), which is related to the non-
linear growth of the intensity of the second harmonic,
[Qw).

A similar intensity behavior was observed for the
generation of the second harmonic at frequencies cor-
responding to higher resonances; f = 63 MHz, 2 f =
126 MHz, and so on, at all subsequent harmonics.

The theoretical interpretation of these experimental
resultsisbased on anumber of characteristic features of
the PDSs formed in a ferroel ectric-piezoelectric crys-
tal. It iswell known that, at any local distortion of the
surface characteristics, which manifests itself as a
change in the continuity of such physical parameters as
the strain and stress components, the electric potential,
and the electric induction, a reflection of SAWSs from
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Fig. 3. Dependence of theintensity of the second harmonic
of SAWSs on the intensity of the first harmonic: (1) calcu-
lated data and (2) experiment.
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Fig. 5. Geometry of the Bragg reflection for a system con-
sisting of N periods.

the boundaries of inhomogeneities arises. For PDSs in
piezoelectrics, the main feature is the periodic change
of signs of the piezoelectric constants e at the domain
boundaries while the elastic and dielectric properties
remain unchanged.

Thus, the Bragg reflection from the PDS occurs as a
result of the interference between the incident wave and
the waves reflected from the internal boundaries
between the domains. A PDS consisting of N periods
(Fig. 5) contains 2N — 1 boundaries of the types of +/—
and —/+, where the plus and minus signs refer to the
domains with opposite polarizations. In our experi-
ments, the duration of the SAW pul se exceeded thetime
of the pul se propagation through the PDS, which means
that the interaction of the pulse with the PDS can be
considered in a quasi-continuous mode.

The PDS can be compared with a one-dimensional
crystal that is invariant with respect to the trandations
by the lattice constant. Therefore, in describing the
propagation of an acoustic wave through the PDS, it is
possible to use aformal analogy with the quantum the-
ory of electronsin acrystal and to apply such notions
as Bloch waves and allowed and forbidden zones. This
model already was used in a number of publications
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[13, 14] for atheoretical description of the propagation
of acoustic waves or acoustic phononsthrough periodic
structures.

Since the medium is periodic, the tensor e can be
expanded into aFourier seriesin termsof the PDSwave
vectors k:

da-z@“z (1)

where k = 2mmmy/AA; A = 2d isthe period of the PDS, and
d isthe domain size. The values of g(m) correspond to
order m of the Bragg reflection.

A constructive interference occurs when the phase
difference between the waves reflected from sequential
domain boundaries is equal to an integral number of
wavelengths. Thus, the wave vector of the PDS can be
put in correspondence with the wave vector of SAWS,
k= w/V, where V is the SAW velocity. The total field
inside each domain consists of thefields of theincident
and boundary-reflected waves. The complex ampli-
tudes of these two waves have the following form for
the mth domain:

u® exp[—ik, (r —mA)] exp[—i(k,y — wt)]; ®
ury exp[ik, (r —mA)] exp[—i (k,y — wt)].,

where the superscriptsi and r refer to the incident and
reflected waves, respectively.

The wave fields of adjacent domains (1 and 2) are
related by the continuity conditions at the boundary
between the domain, and, according to [12, 13], these
fields can be expressed through each other by the
matrix equation

(lb % BE%J(Z)D 3)

DJ“D ac DDEU(ZD
where A = exp(-iKA) - 2iexp(-ik,d), B =
2iexp(ik,d), C = 2iexp(ik,d), D = iexp(iKA) +

2iexp(ik,d), and K isthe Bloch wave number given by
the equation

Kk, w) = 1arccos[%(A+ D)]

AN

The common factor exp[—i(k,y—owt)] does not
depend on the periodic structure and, therefore, is
excluded from the consideration.

Inasimilar way, we can determine the coefficient of
reflection, Ry, from the structure consisting of N peri-
ods. In this case, Ry is the ratio of the complex ampli-

tude u(r) of the reflected wave at the PDS input to the
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amplitude ug) of theincident wave (Fig. 5). The matrix
transformation (3) is replaced with

N
o _ HABH g
B~ Bcoo b
The solution to Eq. (4), which is obtained by raising

of the consistent matrix to the Nth power with the use
of the Lyapunov exponent [15]

“

1Pn
v = limEs s
has the form [12]
EA BL — EAUN—l_UN—Z BUn-: %,
ocbO 0O CUy_, DUy_,;—Uy_,0
_sin(N+1)KD
where Uy = EETTCEEE

Then, the amplitude reflection coefficient Ry can be
represented as
bo _ CU N-1

Rh=—=2——""—"—
N ag AUy_;—-Uy_,

Thisyields the expressions
C2
Ry = 5)
c2 4+ OSNKA | sinKA D
CEinNKAD

K = arccosﬁg[cos(kzd)—qzsin(kzd)]z}—lg, ©)
A 0

where ¢ is the electromechanical coupling coefficient.

It should be stressed that expression (5) qualitatively
coincideswith the quantity |Ry|* obtained by theimped-
ance method for the reflection of SAWSs from a system
of N equidistant trapezoidal steps[11].

The value of the coefficient C? is directly related to
the coefficient R, of reflection from a single domain
(N =1) by the formula

cl’ R,|®
Ri? = L8 or o = LB
ICl"+1 1-[Ry
SinceR, =, tan® < 1, the value of |C|? approaches

that of R, P.

The frequency analysis of Eg. (5) shows that the
structure of thereflection spectrum isdetermined by the
periodic dependence of the second term in the denomi-
nator of Eq. (5) on K(w, k). The dispersion dependence
of K on wandk,, which isdetermined by Eq. (6), allows
one to estimate the range of values of k, for which
|coskA| < 1 and, hence, K is a rea quantity. These
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regions, which are also called allowed bands, are char-
acterized by azero reflection coefficient. The boundaries
of these zones are given by the condition cosKA = =1 or
KA=mm(m=1,2, 3, ...), and thereflection coefficient
takesthe form

2

[ :
ICI”+ (UN)?
i.e., at sufficiently large values of N, the reflection coef-
ficient tends to unity.
When |coskA| > 1, the quantity K iscomplex. These
values correspond to forbidden zones for which K =
Z_T/T{D + iK. The reflection maximum is realized at the

centers of the forbidden zones, and the formulafor |Ry[
takesthe form

|RN|2 =

[ |
2 . (SinhKA 7
1"+ B rANKAD

For greater values of N, the second term in the
denominator of Eq. (7) exponentially tends to zero, as
exp[-2(N — 1)KA]. Therefore, the reflection coefficient
at the center of a forbidden zone proves to be close to
unity.

As follows from the analysis of Egs. (5) and (6),
between two principal reflection maxima given by
Eq. (7), N—2 subordinate maxima satisfying the condi-

IRy® = %

tion KA = % (1 4+ 2m) are present. Thus, from Eg. (5),

it follows that the quantity |R| has periodic maxima at
k.d = 2rm, which correspond to the frequencies

f. = Vm/2d. 8)

Thevaluesof |R| calculated for k=0.32, d =52 um,
and N = 20 (Fig. 2) agree well with the measured spec-
trum of waves reflected from the PDS. The decrease in
the reflected pulse amplitude of the harmonics can be
explained by the dependence of the higher Fourier
components of the piezoelectric constant tensor e on
the number m. Presumably, only for thefirst order m=1,
one can ignore the higher Fourier components, because
the experimental value of |R]? is close to the calculated
one. However, thisissue requires specia consideration.

It is necessary to note the difference between the
spectraof wavesreflected from the PDS and the spectra
of waves generated on the PDS by an aternating elec-
tric field [7] or by alaser beam [16]. While the reflec-
tion occurs at the interference of waves reflected from
the boundaries of onetype and their resonance frequen-
cies are described by Eq. (8), the maxima of the gener-
ated acoustic waves appear at the interference of waves
from the neighboring boundaries and f,, = Vimy/d; i.e,,
the resonance frequencies are two times higher than in
the case of the reflection.
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A nonlinear interaction of two acoustic waves
(direct and reflected ones) with a frequency w on the
PDS, which leads to the second harmonic generation
(2w) in the inverse direction, is possible under the
phase-matching condition [17] k,, + 2k, — k, = 0.

The set of equations describing a three-wave inter-
action for all point symmetry groups has the genera
form

0A(®) _

= I ALAexp(ik,2), (9a)

OA(®) _ A A, exp(—ik,2z), (9b)
0z

% = T A A, exp(—ik,2), (%)

where T isthe two-wave interaction factor.

In solving the set of equations (9), we assume that,
at the transformation to the second harmonic, the power
loss of the input beam (w) is vanishingly small, so that
0A(w)/0z = 0 and, upon integration, Eg. (9c) takes the
form

ik,L
rA‘Z”expi(IL , )’

where L isthe length of the PDS. Using the diffraction
approximation, we represent the intensity of the second
harmonic as

AZw =

(10)

Thus, the intensity 1(2w) exhibits a quadratic
dependence on I(w), which is observed in Fig. 3. A
certain decrease in the intensity I(w) with increasing
u(w) (Fig. 4) can be explained by a nonlinear increase
in the intensity of the second harmonic and, hence, an
increase in the energy transfer from the first harmonic
to the second one.

The attenuation of SAWSs (a) in the course of their
propagation through the PDS is described by the addi-
tional term of the form of exp(aNA), which isignored
in Egs. (2) and (9). This attenuation limits the use of
these equationsin the case of alarge number of periods
of the PDS. However, as follows from our previous
results [9], for N < 40 such an attenuation can be
neglected, and formulas (5) and (10) are quite applica
blein our case.

Thus, in this study, the reflection and refraction of
SAW by a periodic domain structure is observed in the
linear and nonlinear regime. The analysis shows that
the reflection of SAWSs is related to the periodic
changes of sign of the piezoelectric constants at the
domain boundaries. It is demonstrated that the second
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harmonic generation occurs owing to the interaction of
the direct and reflected waves in each layer under the
phase-matching conditions.
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Abstract—In works on statistical pattern recognition that use learning and examination, results of the learning
depend not only on the feature efficiencies, but also on the proportion between the capacity of the decisionrule,
length of the learning sample, and number of features. It is usually difficult to calculate the recognition errors,
which connect these basic quantities for a particular classifier, while the calculations are approximate and do
not clearly characterize the results obtained in the process of the study.

The purpose of thiswork isto develop asimple, clear, and efficient technique for the experimental estimation
of the expected classification errors of the recognition engine employed in learning. The algorithm produces a
sample of random noise segments, which isincluded in the recognition algorithm instead of the features of real
signals. Portions of this uniform sample imitate different classes. The false learning function is produced as a
result of a successive increase in the number of random features used in the recognition. The corresponding
growth of the probability of recognizing artificial classesin such afalse learning depends on the length of the
learning sample and on the capacity of the decision rule employed.

The main result of thiswork isthe false learning function proposed for any particular classifier. The functionis
obtained for the same length of the learning sample asthat of the one used to recognizereal signals. Thevalidity
of results obtained in real signals can be estimated by comparing this function with experimental signal recog-
nition probabilities with the same number of features.

The simple false learning function is useful to characterize the validity of any experimental results on the sta-
tistical signal recognition in acoustics, seismoacoustics, and hydroacoustics; in speech recognition; in medical

and industrial diagnostics; in radar; and in other fields. © 2004 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

To develop a new recognition system for a classifier
of complex acoustic signals or patterns that consist of a
combination of different independent components pro-
duced by various processes in the sources [1-4], the
designer searches for the most informative set of char-
acteristics that constitute a multidimensional classifica-
tion space. This search is often performed over alim-
ited amount of learning and examining material. At this
stage, it is particularly important to assess the validity
of results, because the recognition probability signifi-
cantly depends on the proportion between the length of
the learning sample and the dimension of the feature
space of the statistical recognition system. An example
for recognizing acoustic signals of acomplex structure
may, in particular, be the noise inside passenger air-
planes [1]. Based on the analysis and classification of
the spectrum of this noise, the state of particular mech-
anismsistested in order to reduce their noiselevel or to
diagnose their technical condition. Another example:
the complex structure of acoustic noise of centrifugal
pumps, whose spectrum consists of an irregular contin-
uous part and discrete spectral lines, complicates the
problem of timely recognizing the approach of the dan-
gerous cavitation in the liquid [2]. In this situation, the
use of a combination of different spectrum featuresin
addition to the most informative discrete component

can increase the probability of diagnosing the cavita-
tion. Similarly, spectra of hydroacoustic noise of mari-
time abjects contain many different independent com-
ponents, and it is necessary in many problems to clas-
sify the sources of the received signals based on their
spectral structure as accurately as possible [3]. In
another topical problem of speech recognition [4], to
provide a recognition validity, stringent requirements
are imposed on the information content of individual
physical and formal featuresin order to select an effi-
cient combination of classification featureswith the use
of the optimal decision rule.

In many such problems, the amount of raw data is
limited; at the same time, domains of the classes being
recognized partialy overlap in the multidimensional
feature space and cannot be satisfactorily separated
based on the small number features, while the require-
mentsimposed on the recognition validity are stringent.
In such cases, the problems are solved by increasing the
number n of featuresinvolved and by employing amore
complex and stronger decision rule [5, 6]. However, a
small length L, of thelearning sample strictly limitsthe
maximum admissible number N of features used simul-
taneoudly (i.e., in the statistical recognition, the dimen-
sion of thefeature space), aswell asthe acceptable clas-
sifier complexity (capacity and number of parameters
changed during the learning) [7]. When these con-
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straints are violated, the results of recognition are over-
estimated. In this regard, it is very important to have a
possibility of rapidly estimating the validity of results
obtained in searching for an efficient combination of
features. Itismostly for the Gaussian distribution of the
feature probability density that various calculation
methods exist, which relate the main interdependent
guantities: error probabilities a and (3 of the first- and
second-kind classification; lengths of the learning L,
and examining L., samples; number N of features or
dimension of the classification space; and the Mahal-
anobis distance d between the mean elements of
domains of classes in the multidimensiona space,
which, for features distributed by the Gaussian law and
for equal covariance matricesM in classes s, and s,, has
the form

& = (m,—m)™™(m, - m,), (1)

where m; and m, are the mean vectors of multidimen-
siona (n-dimensional) domains of classes s, and s,, M
is the common covariance matrix, and the T symbol
means transpose. The physical meaning of the quantity
d is the distance between the mean elements of classes
normalized by the variance of their distributions.

As aresult of learning a recognition system by lim-
ited-length samples of classes with a successively
increasing dimension of the feature space, one usually
obtains an increasing function of recognition probabil-
ity versus the number of features. With samples of a
limited length, the recognition probabilities obtained
experimentally have a lower statistical vaidity, the
higher the dimension of the decision rule. Thisis asso-
ciated with an inevitably increasing requirement on the
size of statistics for obtaining multidimensional distri-
butions of a higher dimension in the feature space. The
problem arises of assessing the validity and statistical
confidence of results on the multidimensional recogni-
tion. It is difficult to compare experimental results on
the recognition probability of real signals with analyti-
cal calculations of these probabilities, because such cal-
culations are complex and mostly refer to the Gaussian
feature distributions. Therefore, in order to get an
approximate but simple and fast validity assessment of
experimental recognition probabilities of real signals,
we propose to use for the comparison another recogni-
tion function aso based on learning. Learning realiza-
tions for this second function are obtained from frag-
ments of uniform noise, which imitate samples with
class features that are used to learn the same recogni-
tion system with similarly increasing dimension of the
multidimensional space of random features. For such
short noise samples at a high capacity of the decision
rule, the probability of recognition of such conditional
classes grows rather rapidly with dimension of the fea-
ture space and may even approach 1.0 as soon as the
number of random featuresis on the order of 10. Let us
call this second function “false learning function.” It
uses the same sample lengths as those for the real sig-
nals. By comparing it with results of learning to recog-
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nize real signals, we can quickly assess the possibility
of quite randomly selecting real features for the multi-
dimensional set in the current experiment and thereby
assess the validity of the achieved probability of recog-
nition based on leaning by real signals with an increas-
ing dimension of the feature space for the length of
learning samples used in the recognition system. Aswe
noted above, another possible method of assessing the
validity of experimental results from the recognition
probability isto compare them with results of analytical
calculations of the corresponding probabilities.
Although this method is possible, it involves complex
numerical methods.

Analytical methodsfor cal culating the classification
errors are mostly addressed in theoretical works[7-12,
13]. These works report general theoretical depen-
dences of recognition errors a, B(L,,, L, N) and give
typical examples for particular source data, which are
mostly applicable to Gaussian and certain symmetric
distributions of ensembles in classes. Also, distribu-
tions are observed that are close to Gaussian distribu-
tions, and the effect of distribution tails is taken into
account in a certain approximation [10]. Nonparamet-
ric statistical recognition methods do not consider
errors associated with allowance for these tails because
of the necessity to have amuch greater number of sam-
ples to obtain satisfactory estimates. These methods
usually consider standard decision-making criteria and
typical cases, when either prior distributions or only
mean and covariance matrices, aswell astheir estimates
obtained from nonparametric methods with unknown
distributions and parameters, are known [8-14].

However, the known theoretical works on methods
of statistical recognition in multidimensional space
actually imply that not only the general population is
distributed by the Gaussian or asymmetric law, but also
that initial distributions and their parameters are con-
stant and independent of conditions under which the
sources operate, propagation conditionsin the medium,
etc. But these are the factorsthat, in real problems (het-
erogeneous sample), cause both the main parameters of
distributionsin classes (trend of means, changein vari-
ances, etc.) and types of these distributions (specified or
being sought) to change, resulting in multimodality and
quite atypical distributions of domains of classesin the
feature space. These effects make it more difficult to
use the above-mentioned analytical methods for calcu-
lating the recognition errors.

As for the Gaussian distributions of features and
domains of classes, calculations of recognition errors
steadily become more complex with increasing uncer-
tainty intheinitial data. Below, we will consider typical
analytical methods of analyzing the classification errors
and show how much the numerical methods of estimat-
ing the recognition probability actualy rely on the
Gaussian distribution of domains of classes and also
how they are complex to apply at the critical initial
stage of designing arecognition system and in the pro-
2004
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cess of searching for the most informative multidimen-
sional feature space. In some cases, we will particularly
note the absence of alowance for losses in vaidity in
theoretical estimates of the recognition probability. Fur-
ther, we will briefly consider several typical calculation
methods in order of their increasing complexity.

ANALYTICAL METHODS FOR CALCULATING
THE RECOGNITION ERRORS

For the Gaussian distribution of probability densi-
ties of domains of two equiprobable classes in a space
of n features with different meansm, and m, and equal
covariance matrices, with the use of the Bayesian clas-
sifier, ageneral expression was obtained in [8] for esti-
mating the classification errors. A family of curveswas
calculated for a particular case that relate the recogni-
tion error probability p, to the quantity d defined by for-
mula (1), p«(d), and to the parameter of the family,
namely, the dimension of the feature space: py(d; n) for
n=1, 3, 10, and 20. The plots were presented on alog-
arithmic scale (Fig. 5.3 in [8]). Estimates of the mean
value and variance of p, were also obtained for the case
when the covariance matrices are not equal and for dif-
ferent lengths of the learning sample L = 12, 50, 100,
200, and 400. A more demonstrative dependence p.(d)
was obtained in [9] for a similar smple case of recog-
nizing two equiprobable classes s, and s,, p(s)) = p(S,) =
0.5 with the Gaussian distribution in a one-dimensional
feature space using the Bayesian classifier. Thissimple
example of calculations only illustrates the expressions
obtained for amore general case of recognizing severa
classes s, ; with prior probabilities p(s) and p(s) when
the probability of the recognition error is a sum of
errors over class s and over class s

P, = P(3)0 T\ ~3d../a.5

1
+ P(Sj)[l—fb%\ + Edijgljd_i,—g}

where A = In[P(s)/P(s)] isthelogarithm of the decision
taking threshold 8 = P(s)/P(s) for class s, P(s) is the
prior probability of pattérns of class s, @ is the tabu-
lated error function of the Gaussian distribution, and
d; = (m;—m)™™-'(m; — m;) isthe Mahalanobis distance
between classes 5 and s.

When the prior probabilities of classes are equal,
P(s) = P(s), the threshold is equal to 1 and, accord-
ingly, A is equal to 0. Then, expression (2) takes the
form [9]

Pe = 1/2(=1/2,/d;) + 1/2[1 - ®(1/2.,/d}))]

2

= I (1/./2m) exp(—y*/2)dy. ©)

(112),/d;
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Using expression (3) for the case of two classes, the
function py(d) was plotted (Fig. 4.4 in[9]). It isclearly
seen from the plots that the region where the main drop
of classification errors occurs from the maximum val-
ues to 5% or lower is observed in the range of d from
the minimal values to 10-15, which corresponds to
domains of classes that only weakly overlap, are suffi-
ciently separated, and are clearly distinguished.

Somewhat more generalized theoretical calculations
for similar simple cases are reported in [10], where the
authors mainly concentrate on the methods for calcul at-
ing the recognition errors. Addressing the possibility of
enhancing the recognition validity by increasing the
length of the sample, the classification error a is
expressed in terms of the tabulated probability integral
as afunction of the generalized parameter Ld:

o =1-®[(c, + Ld2)//Ld],

where ¢, = —% In(2a,,) < dis the condition for the rec-

ognition error to be no higher than a specified level q,,
and o, is Chernov’s upper bound for classification of
Gaussian populations.

For the particular case of recognition of two Gauss-
ian classes in an n-dimensional feature space with dif-
ferent means, the same covariance matrix M, and
threshold ¢, = 0, the expression for errorsa and B is

a=pB=1-d(/Ld/2).

The monotonically decaying function a(Ld) calculated
under these conditions is presented in the form of a
plot; asfor dinexpression (3), recognition errors of less
than 5% refer toLd > 11, asisseen from theillustration.

We always focus the reader’s attention on the illus-
trations for the following reasons. The learning sample
is normally used for developing the classifier; the
examining (test) sample, for estimating its efficiency
[9]. We therefore reckon that, at the first stage of
designing a recognition system, it is fundamentally
important to have asimple procedurefor cal culating the
relationship between the number of features, length of
the sample, and classification errors, as well asthat the
corresponding estimation curves should be clear, which
simplifies the rapid assessment of current results.

In somewhat more complex problems than the pre-
vious ones, the theoretical analysis of the relationship
between classification errors and length of the sample
for given N-dimensional Gaussian distributions of
classes with different means (m, and m,) and different
covariance matrices (M, and M,) appears to be already
associated with complex calculations and can be real-
ized with the use of the Monte Carlo statistical model-
ing method (Section 3.4, Pt. 3in[10]). In this problem,
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the analysis uses dichotomous classification and a like-
lihood-ratio decision rule

L
1 _
M= 5y [00=ma) My —m,)
=1 . (4)
= (X, =my) M3 (x,—m,)]
+(L/2)In(detM,/detM,) = 0,

where A isthelogarithm of thelikelihood ratio; 8 =Inc
isthe threshold for choosing between the classes s, and

s,, which is defined in compliance with the above qual-
ity criterion; L isthe number of realizationsin the sam-

ple, | =1, ..., L; m; and m, are the mean vectors of
classess, and s,; X = (X, ..., X}, ... X_) isthe N-dimen-
sional vector of features x(™, n= 1, ..., N in sample

realizationswith indices|, where each realization of the
sample with index | is represented by a set of n particu-
lar real values x, | of features, and M, and M, are the
covariance matrices of classes s, and s,.

To obtain analytical resultsand plotsof ay, & (L, Le,)

and f3,, fS(L,,, Lo, let us replace the parameters of the
Gaussian distributions in (4) with their estimates m,,

M,, M1, and M, so that the results converge to the
limiting values a, and 3, only asymptotically as the
lengths of the learning samples taken for both classes
grow without limit: (L,);, (L,), — 0. Particular plots
were calculated from formula(4) aa6=0,N=3, (L), =

(I—Ir)z’

i’ 0lg 41 05050
m; = BE; m, = BJ% M, = 50.5 10 E;
n (9.5 005 0 10

0 0

0 15 0.750.75
M, =0075 15 0 O
0075 0 15[

For this case, the regions of a considerably slower
decay in errorsof thefirst and second kind (o and 3) for
the three-dimensional feature space correspond to sam-
plelengths of L ~ 15-30, for which the error probabili-
ties are, respectively a, B = 0.05-0.02, these limits for
o and 3 being substantially dependent on lengths of the
corresponding samples. For L from 30 to 70, the errors
o and 3 asymptotically tend to zero.

Searching for the recognition error probability func-
tion versus the sample length when the type of one-
dimensional distribution function in each feature is
unknown and, therefore, nonparametric decision rules
are used is associated with more complex calculations,
which employ experimental estimates of the distribu-
tion laws, and uses dedicated programs (Section 5.3 in

GONCHAROV

[10]) even for the two-alternative one-dimensional non-
parametric recognition. For the multidimensional non-
parametric recognition, the analysis and calculation of
error probabilities already becomes relatively complex
and intricate.

Methods used in the statistical optimization of the
feature space include not only feature decorrelation and
sample extension techniques, but also methods that
provide a given classification error probability through
a justified extension of the number of features n and
determine the minimal number of these as afunction of
generalized parameter p (Ch. 5.4in[10]):

p= n[ sz: 1((Llr)k + Le()]’ n's<n,

where nistheinitial number of features, n' is the num-
ber of features after the optimization, (L,), are the
lengths of learning samplesfor each k of classes s,, and
L, isthe length of the examining sample.

The calculation complexity of such problems of
optimizing the characteristics of nonparametric learn-
ing is aready significantly dependent on the degree of
overlap of class regions and on the uncertainty of the
effect of feature distribution tails. Note that, to obtain
sufficient statistics for the tails, areally representative
sample of the general population is necessary, whereas,
to assess their effect, information on the recognition
validity is necessary. Below, we numerically integrate
the expression for errors and replace the Mahalanobis
distance with its estimate. If the calculations predict
that the length of samples required to obtain the desired
level of the recognition error is greater than the avail-
ablelength, the problem should be tackled in adifferent
way; namely, one should try to reduce the errors
through increasing the number features n. Publication
[10], whichisactually devoted to these prablems, again
reduces the solution (Ch. 5.4) to the use of Gaussian
distributions under additional constraints: the means
over both classes are unknown, the variances are equal,
the common matrix is assumed to be diagonal, and
thereby the smplified Mahalanobis distance d of Eqg. (1)
is replaced with its lower estimate. The accuracy of
measuring d is determined by the actual resolution Ad
of the system and is particularly assumed to be Ad =
0.1. Under these conditions, the quality criterion was
taken in the form of the conditions (2L, + Lg)N —
minand a(L,, L, N) < a,,.

The equation for optimization of the error probabil-
ity with respect to the number of samples and number
of features can be solved through successive iterations
by the numerical integration technique. The depen-
dence a(n; L, L) was obtained as a function of the
dimension of the feature space. The family of curvesis
presented in the form of aplot (Fig. 5.2in[10]). In par-
ticular, optimization was performed for aset of increas-
ing maximum admissible L from (L) = 20 and
(Leo)max = 50 t0 400 and 200, respectively. These values
were chosen in accordance with the given d, o, and N
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and also based on sample lengths, which are tightly
limited by the admissible learning time. The optimized
number N' of features that are necessary to achieve the
given error probabilities a from 0.09 to 0.02 for the
above set of increasing L steadily decreased from N' =
7 to 1, respectively. The optimized length of required

learning and examining samples, L,, and L, aso
steadily decreased and amounted, for the maximum
L, , to just 120 instead of the initial value of 400; for

Lo, just 160 instead of 200. Families of curves o
were calculated for N = 1-14, L,, = 10200, and L, =
200-400. For long samples (L > 100-200), the curves
rapidly approach the a = (0.01-0) level at the number
of features of N < 3-5. On the whole, the theoretical
families of curves a(N) with L,, and L, as parameters,
presented as anillustration, together with the data pre-
sented above, show that they also actually use weakly
overlapping and well-distinguishable domains of
classes with the features distributed in these domains
by the Gaussian law and with sufficiently long sam-
ples. However, if the required samplelengthis greater
than the maximum length available, then, to achieve
the given recognition validity, the method of increas-
ing the number of featuresis used. It should be noted
that this is usually performed without estimating the
corresponding degradation of the recognition validity.

FALSE LEARNING FUNCTION

Thus, as follows from the above concise analysis of
several typical analytical methods for calculating the
statistic recognition error probability versusthe dimen-
sion of the feature space and lengths of the learning and
examining samples, al these methods, as arule, prove
to be rather intricate and mostly refer to the Gaussian
distributions of domains of the classes and to traditional
versions of decision rules. At the same time, when a
new recognition system is being developed, it is at this
important stage that, on the one hand, the basic
approach to the synthesis of the structureis established,
but on the other hand, by this time, a sufficient amount
of samples is not as yet gathered, neither physical nor
formalized features are defined, and satisfactory esti-
mates of their distributions are not obtained. This situ-
ation makes it problematic to use such calculations in
instant estimates of the validity of results of experimen-
tal studies (see [5-7, 11, 12, 14] and Sections 1.3, 2, 7,
and 8 in [13]). Also, at the first stage of developing a
new recognition system, the decision rule itself, which
often has a significant specifics, is chosen either from
available possibilities or based on tentative information
about the feature distributions in classes, while optimi-
zation of the system isonly possible at the second stage
of the development, when the most efficient collection
of featuresis selected, transformed in an optimal fash-
ion to reduce its dimension, and, finally, adecision rule
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compatible with the structure of the class boundariesin
the multidimensional feature space obtained is chosen.

Inthisregard, itisclear that it is at the first stage of
research that a sufficiently simple method is especially
needed for the quick estimation of the maximum
admissible number of features used in their multidi-
mensional sets that are tested for the information con-
tent. The method must provide a simplified validity
assessment of the results on the recognition probability
asafunction of the number of features and of the actual
length of the learning sample of the general population.
At the same time, such amethod must take into account
the capacity of the particular decision rule with allow-
ancefor al its practical specific properties added on the
basis of heuristic considerations. Asfor the capacity of
the decision rule alone, in particular, the dichotomic
capacity C, of the decision function (unlike the capac-
ity of acriterion) isdefined as C, = 2(k + 1), wherek is
the number of controlled parameters. For separating
boundaries in the form of hyperplanes, C, equals to
2(n + 1), where n isthe dimension of the feature space;
for hyperspheres, 2(n + 2); for quadric surfaces, (n +
1)(n + 2); and for polynomial surfaces of degreer,

2C., (here, C isthe number of combinations) (Sec-
tion 2.5.3in[9)]).

To construct an efficient multidimensional feature
space, it is also necessary for such a method of assess-
ing the validity of recognition results to allow for spe-
cific properties of proceduresthat algorithmically form
and assess the information content of the classification
parameters when analyzing and selecting them for an
effective set of features. The complexity of such an
allowance for agorithmic properties of the classifier in
numerical methods of estimating the recognition errors
isclear, in particular, from the theoretical assessment of
the relationship between the necessary sample length
and the given resolution in measuring the features.

In addition to the dependence of the classification
probability on factors of information uncertainty of the
source data, on dimension of the feature space, and on
lengths of the learning and examining samples, the rec-
ognition error and the required sample length depend
on the step size A8, in searching for the optimum
threshold 6,,, which separatesthe class domains, in each
feature x,. This step size is calculated in accordance
with the feature distributions in classes, with resolution
(AXy)e = (Am,), in measuring the features x,, and the dis-
tance between means in classes for areal system, and
with the given cost of the first- and second-kind errors
for each of the classes. The error in the distance
between mean values of features over classes normal-
ized by the variances (i.e., the Mahalanobis distance d)
is not only estimated with allowance for the resolution
(Am,),, but also must be no smaller thanitisin the opti-
mal case; in the simplest version,

(Ad)min 2 (Am)s/o, (Ad)min > 0. (5)
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When the recognition problem imposes higher
reguirements on the accuracy of measuring the distance
Ad between the mean values, this actualy means that
the admissible minimum distance between means over
the classes measures a corresponding fraction of the
variance. For example, if Ad = 0.01 is specified, this
means that the problem may further be solved with
mean values that differ by 0.010 [10].

Such a problem of optimizing the lengths of the
learning and examining samples as a function of the
required recognition validity (errors of the first and sec-
ond find) and in accordance with the given accuracy of
the measured normalized difference (Ad),,,, between
the means over the classes was mathematically solved
in [10] (Ch. 5.1) for the case of one-dimensional para-
metric recognition. All equations for this case were
derived and solved under the following conditions: the
number of classesK = 2, the distributions of domains of
classes are Gaussian, the means over the classes are
unknown and the variances are equal, the decision is
taken in terms of the maximum likelihood criterion, and
the probabilities of recognition errors a and (B are
assumed to be equal and are cal culated from the proba-
bility function. In accordance with these conditions, the
following initial expression for the error probability
was used:

a =B = F(-m/o,)F(m/o,)
+ F(m/o,)F(—-m/o,),
wherem' = (m, —my)/o and F(2) isthe probability func-
tion: F(X) = [PX/A2)2] +

(6)

%, where d(x) =

2/ ) ﬁf exp(—Z°) dz for Gaussian x.

After appropriate substitutions, this expression is
used for optimizing the recognition system, i.e., for
finding such lengths L|; and L}, that satisfy the con-

straints and minimize the chosen criterion p in accor-
dance with the expressions

p=(CL;+Lg) — min;
o =B =F(Ad/J2/L,)F[-Ad/.J(2/L,) + (4/Lo)]

+ F(=Ad/ J2/L,)F[ADLJ(2/L,,) + (4/Lg)] <0, = By.

Or, after transformations, the optimization problem
takesthe form

Ad® = (2L, + L) — min;
d(Ad/ /L [2)P[-Ad/2,/(1IL,,) + (2/Ly)] (D
>1-2a,,

where @ is the probability function ®(x) =
2/ T o exp(—zz)dz and a,, is the given upper bound of

errors of thefirst kind, a, = 3,.

GONCHAROV

To solve this problem is to obtain the optimum val-
ues L} and L%, . For each particular Ad = Am, the opti-

mum lengths L. and L}, are determined by solving
Egs. (6), (7) using standard methods of integer pro-
gramming. The desired sample lengths are expressed in

the generalized form as L}, (Ad?) and L}, (Ad?) and

obtained as a function of the given recognition proba
bility (1 —a).

Cadlculations performed for a particular example of
this problem in formulation (7) show that, if the
required accuracy of measuring the distance between
the mean values over the classes increases (i.e,, Ad
decreases) by afactor of a (for example, for the initial
value of 0.1, the new accuracy will be 0.1/a), the
required sample length increases by afactor of a’ with
respect to the initial length L, (i.e., becomes equal to
L,a%) at least for any recognition probability p higher
than 0.9 (Ch. 5.1 in [10]). Because the necessary sam-
plelengths are usually relatively high, such anincrease
is significant and not always feasible.

It is clear from the analysis of numerical methods
for calculation of classification errors why, at initial
stages of research, the validity of the experimenta
results on the multiparameter classification is estimated
at the intuitive level. This statement refersto results on
both learning and examining. Especially for recogni-
tion errors estimated at closeto 1.0, the results obtained
prove to be too optimistic and their physical interpreta-
tion is inadequate due to the statistical learning error
associated with the excess dimension of the feature
space or with too high a capacity of the decision rule
with respect to the insufficient length of the learning
sample. Also, real recognition agorithms usually
include a series of heuristic operations, which signifi-
cantly affect the classification errors, but are too com-
plex to be taken into account in calculations.

The experimental probability of the multiparameter
classification is known to be very critical to the actual
proportion between the sample length and the number
of features. It is known in particular that, for the 100%
classification of L realizations (patterns) arbitrarily
grouped in the L-dimensional feature space, it is suffi-
cient to use L linear separating boundaries (Section 2.5.3
in [9]). Such a classification is possible even when
domains of the classes overlap completely. This may
not be accompanied by any generalization, i.e., learning
in the classification. Let us call such alearning “false
learning.”

Therefore, experience in solving various recogni-
tion problems, in particular, in acoustics, shows that it
is necessary to have asimple estimate of validity of the
multiparameter classification probabilities obtained in
real studies. This is particularly important when the
probabilities obtained are close to 1, because such
results may to a great extent be caused by too large a
number of features used with a sample of a limited
length [5-7, 11, 12].
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To provide a simpler practical procedure for esti-
mating the classifier's statistical errors in learning or
examining, the statistical false learning function (FLF)
IS proposed.

Falselearning function isthe term that appliesto the
probability p, of classification of learning samples of
length L, with random features x ,, | = 1, ..., L,
selected from auniform noise, considered as afunction
of anincreasing number of randomfeaturesn, =1, ..., N,
in terms of a multidimensional decision rule at afixed
sample length. Thus, if it is necessary to recognize, for
example, two classes A and B of real acoustic signals,
two samples of lengths LA and LB are formed, which
contain particular realizations with sets of features x;, of
real signas: (x )~B 1=1,...,LABn=1,...,N.To
construct the false learning function, one should form
noise learning samples of arandom process, for exam-

ple, with a discrete uniform distribution, of lengths Lf
and L., whose individual realizations consist of ran-

dom features (), =1, ..., L% n =1, ., N,
with corresponding probability distri but|ons.

Experimentally, the FLF p/(n/L, is obtained
through learning by different portions of a single noise
sample, these portions being artificialy identified with
different classes. Theoretically, the Mahalanobis dis-
tance between classes s and s over al featuresn, for an
unlimited uniform sample of the random noise process

is zero: d; = 0. However, at small sample lengths Lf
and L7, its estimate dij for some n, may give arandom

possibility of false classification at dj; (), > 0, because
the smaller the sample, the greater the variance of the
sample means over the classes and the higher the prob-
ability of finding such (x,), that the difference between
the meansis significantly greater than zero.

Thus, the FLF is obtained by passing artificially
generated noise realizations through the same mecha-
nism of selecting features and classification as the one
used to classify the real signals. As the number n, of
random features used in the multidimensional decision
rule is increased, the uniform noise sample L,, artifi-
ciadly divided into “classes” gradualy becomes
increasingly better to classify.

Therate at which the probability of thisfalse classi-
fication increases with the number of features, p,(n,),
also significantly depends on capacity of the decision
rule.

Below, we consider an example of applying the FLF
to the development of a recognition system. To facili-
tate the understanding of the example, we will describe
the algorithm used by the classifier and the set of rea
classification features of a complex acoustic signal.

The agorithm used by the classifier has a compara
tively high capacity of the decision rule. It relies on the
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method proposed in [15-17] (V.A. Fedoseev; V.L. Brai-
lovskit; modified versions were realized by A.N. Cher-
nov, Andreev Acoustics Institute). This statistical mul-
tiparameter recognition algorithm uses the Bayesian
approach to realizethelinear divisioninto classesin the
selected most informative multidimensional feature
subspaces estimated in terms of the likelihood ratio.

Fundamentally, the algorithm consists of two basic
parts. preprocessing of features from statistics of the
sample and taking a decision in the multidimensional
feature space. The source two-dimensional arrays of
particular feature values x,, | in realizations of learning

samplesof lengths L} intheclassA: IA=1, ..., L}, and

L. intheclassB: 1B=1, ..., L{ arecreated separately
for each class, (x, )* and (x,,)®. Each realization num-
ber | of both classes contains N features, n= 1, ..., N;
the index n of each physical feature X, | is fixed and is
the same in al sample realizations of classes A and B.

At first, using the learning sample L,,, the prepro-
cessing procedure finds estimates of one-dimensional
distributions of the features x,,, n =1, N, in the
classes or calculates the means over the classes and
dividesthe interval between them into a number of sec-
tions. Our version of the algorithm estimates the infor-
mation content of the features through projecting the
distributions onto the coordinate axes. projection onto
random directionsis not considered here. Next, optimal
thresholds for the pairs of classes for each feature are
calculated in terms of a certain decision-taking crite-
rion (the ideal observer, Neyman—Pearson, or maxi-
mum likelihood one). Of the total number of features,
the most informative features are selected whose num-
ber isafactor of 5 to 10 greater than the number that is
expected to be used in the ultimately created multidi-
mensiona decision rule. Then, the algorithm codes the
values of these features according to their thresholds
(possibly, in the binary, ternary, quaternary, and so on,
notation) and calculates an individual likelihood ratio
estimate A for each element of the multidimensional
discrete hypercube feature space. Let us describe the
algorithm in more detail .

Let samples of N-dimensional fesature vectors,
which represent the classes A and B to be recognized
(the dichotomy case), be applied to the input of the sys-
tem:

= (xfl, ...,xfn,...,fo), | =1, ...,LA;
n=1..,N,
= (xﬁl, ...,xﬁn,...,fo), | =1, ...,LB,

where LA and LB are the numbers of learning realiza-
tions (patterns) in classes A and B, respectively, andnis
the total number of features.

The samples L” and LB for each feature x, are used
to calculate the estimates of minimum, maximum, and
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mean values over the classes (or over the source values,
or interms of arobust estimate):

(Xﬁ)min! (Xr?)min; (Xs)maw (Xr?)max;
xf xF; n=1,..,N.

If the algorithm relies on the mean values over the
classes, the distance between them in each feature,

|®X,0 — 8|, is divided by bounds 8" in a certain
number E of intervals A" ;

®)

6" = inf( k[, 3¢ F) + (| [ - ¢ F|/E)en”,
AB ©)

wheree =1, ..., E—1; A" (x,) is the step size of dis-
cretely changed class boundaries; and (E — 1) is the
number of segments on theinterval [X,(, OX,[].

The quantity E may be varied. For each of the

bounds, as for the test threshold eg"’ , Which separates

the classes A and B by the criterion of, for example, an
ideal observer, we further estimate the total recognition
error p, (if prior class probabilities are unknown, P(A) =
P(B) = 0.5) from the sample. By exhaustively searching

through e<“> in expression (9), such ¢ is finally found
that minimizes the total error p,= o + B, pI” (8") =

a™ o™y + 38" in separating the sample into
classes by each feature .

p” = inf(p(e")], &= 1. E-L

Here, G and B are the estimates of the recognition
errors of the first and second kind, respectively. In the
version of the agorithm that we used, estimates

P (8™ of error probabllltles or the corresponding

recognition errors p™ [8" ] =1 - p” [8(" ] are deter-
mined in terms of Flsher S maX|mum likelihood crite-

rion with the threshold that corresponds to the mini-
mum mean error:

pre) = sgp[(lé‘+|§)/(LA+LB)],

where 12 and I are the numbers of recognized ele-
ments of the learning samples LA and LB in classes A
and B, respectively, with the test bound eﬁn) astheclass
separation threshold.

Note that the relationship between the resolution
(AXx,), in the measurement of the source features, the
distance (Am,), between the mean values (or, in accor-
dance with formulas (8), the minimum and maximum

values), and the Mahalanobis distance (Ad(” ), ON
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the one hand, and the step size AB,, = Af:") (X, in search-
ing for the optimum threshold, on the other hand, may
significantly affect the probability of recognizing real
signals and the FLF. As we have shown above in this
section, when the given measurement accuracy Ad is
actually high or excessive with respect to the feature
measurement accuracy, i.e., when (Ad),, < (Am,),/0,
the required length of the learning sample may signifi-
cantly increase (expression (5) and further). However,
if the actually available samples are short, then, due to
the insufficient statistics, the validity of the obtained
probabilities, |et them even be high, of recognizing real
signals in the multidimensional feature space will be
much lower and the corresponding FLF will grow faster
with the dimension of the solution.

Next, the algorithm used in the experiment fixes the
bounds corresponding to the maximum recognition
probabilities in each feature X, as the thresholds 6,,. All

features in al sample reaizations, xf , and x,?n, are
then coded according to these thresholds in a binary
manner (0, below the threshold; 1, above the threshold)
to obtain the binary-coded features yf , and y,Efn . Each
binary domain (O; 1) of each feature (y, ,=0ory, ,=1)
corresponds to an individual proportion between the

numbers of realizations from classes A and B that fall
into it and an individual recognition probability

pr = 1LY Py = 1L,

An = (IZILMIOBILR) or An = (1IBLB)I(1AILH,

Wherel,? and I,? are the values of IEA andlf at the opti-

mum values of 6" . When estimating the information

content of featuresy, for each domain with respect to
the threshold (0; 1), in addition to the total recognition
probability, these domains are identified by the classto
which they belong.

The binary-coded featuresy,, are arranged according
to their information content (p,) and only those of

them whose information content is no lower than a cer-
tain value are used in the further processing, so that,
after thisreduction, their number will beN', N' < N. Dif-
ferent pairs of features of all realizations of the learning
sample are coded anew based on these binary arrays of
the selected features. In the new array, each pair of fea-
turesintherealization is associated with atwo-bit binary
code, each of whose bits equalsto the vaue (0; 1) of one
of the featuresy,, Y, . » in thisrealization. A new coded
array is obtained consisting of two-bit binary codes for

different combinations (Cﬁ ) of pairs of featuresy, Vi a

and this array forms the following subspaces in the two-
dimensional festure space: 00, 01, 10, 11.

A procedure for estimating the conditional distribu-
tion probabilities of the sample elements over these
subsapaces was described as early asin [15-17]. Here,
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we only briefly note that this version of the algorithm
performs an exhaustive search through all pairs of fea
tures to estimate the information content of the sub-

spaces obtained in terms of the value p,,. ., for each

such pair y,, V... thereby actualy alowing for the
relationship between them. In this way, the most infor-
mative pair is determined from the learning sample. Its
corresponding set of sample estimates A, of the classi-
fication information content is simultaneously stored
for each of the four feature subspaces (00, 01, 10, 11),
which correspond to the statistic material of the learn-
ing sample. Further, the algorithm supplements the best
pair of features selected with an additional (without
exhaustively searching through all possible combina-
tions of three features) feature taken from those that
have previously been selected as the most informative
ones. Here, the algorithm uses athree-bit binary coding
for the three features of each redlization of the sample,
and the method for estimating the information content
corresponds to the previous cycles. The example of
applying the FLF illustrated in the figure uses aversion
of the algorithm that supplements the best pair with up
to eight additional best features, so that the final quan-
tized recognition feature space is ten-dimensional.

To construct the hyperplane that separates the
classes in the multidimensional binary feature space,
the algorithm uses not al of its elements (atotal of N'
hypercubes, which correspond to different multibit
code sets of Os and 1s). Those of them for which the
ratio A for realizations of classes appeared to be rela

tively closeto 1.0 (A = (P} /pn) =1 £g,g=0.1-0.3)
are not used, because, otherwise, the recognition prob-
ability of the system as awhole may decrease [16, 17].
The domain of each hypercube is identified with the
class A or B, and the recognition probability of patterns
that fall into this region is determined by the above
ratios pl, p2, and An.

Subspaces with dimensions of 2-10, consisting of
particular sets of informative elementary regions (hyper-
cubes) for each class, are separated by the hyperplanein
the total multidimensional feature space. As a result of
the synthesis of the decision rule from the learning sam-
ple, the main parameters of the total feature space are
stored along with parameters of subspaces of each of the
classes and of the separating hyperplane. The efficiency
of thisrecognition system is estimated from the statistics
of the test (examining) sample.

RESULTS OF THE EXPERIMENT
ON APPLYING THE FLF

The figure shows an experimental FLF p,(n,/L,) for
the recognition algorithm described above. The most
informative features are preliminarily selected by the
criterion of an ideal observer, and then a decision is
taken in the hypercube space with a separating bound-
ary realized in the form of logica Boolean functions.
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Recognition probability versus the dimension of the feature
space: (1) real signal, Ly = 206, and Lg = 214; (1) real sig-

nal, L = 100, and Lg = 100; and (Il1) noise sample, L/ =
L> =216,

(This experiment was performed with the classification
software developed at the Andreev Acoustics Ingtitute,
Moscow.) As seen from the figure (curve 1), with the
use of 9 to 10 random features, this decision rule is
capable of separating a uniform finite sample of model
noiseinto artificial classes with the probability of 0.96.
This experiment was performed under the following
conditions:

(i) The number of realizations (patterns) in the two

artificially created classeswas L/ = L =216 (thetotal
noise sample of 432 realizations was cut in two).

(i) The noise generator had auniform discrete prob-
ability density, and the values generated in the range
from O to 1 were rounded with an accuracy of (Ax,), =
(Am,), = 0.001; thisis asimplified model of the distri-
bution of the normalized components of the signal’s
averaged energy spectrum, which actually have the 3
distribution of the probability density.

(iii) 64 random numbers were generated for each
realization, which imitated 64 source features N, = 64,
from each of which the algorithm described above pre-
liminarily selected N; = 40 best features, i.e., those
that, being taken separately, give the higher probability
of separating artificial classes.

(iv) In the search for the optimum threshold for each
selected random feature, the algorithm divided the dif-
ference between the mean values in the classes into

eight segments and analyzed seven test bounds 8",

€=1,...,7,asinthe case of estimating theinformation
content of features of real signals; the above rounding
of the generated random numbers to the accuracy
(AX,), = (Am,), of 0.001 was not checked by condi-
tion (5): (Ad)pin = (AM) /0.

(v) The most informative random feature allowed
the decision rule to tell one half of the noise sample
from the other with the probability of p, = 0.53.
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(vi) The two most informative random features,
found through exhaustively searching through all pairs
out of 40 features, together (the two-dimensional fea-
ture space and the decision rule) gave the probability of
false recognition of p, = 0.58.

(vii) A gradual increase in the number of additional
informative random features increasingly enhances the
rate of growth of the false classification probability up
top, =0.96 at thetotal of ten random features, i.e., with
aten-dimensiona decision rule.

The statistical FLF plotted in the figure (curve 111)
corresponds to the decision rule described above at a
fixed number of redizations in the classes (216 in
each). It is clear that the behavior of the FLF changes
with a change not only in the decision rule or sample
length but also in the probability distribution function
of the model noise, in the number of source or selected
features, and in the selection rule.

To use the FLF in practice, it is necessary to com-
pare it with experimental results on the classification
based on learning with real signals. A result of applying
the FLF is given in the figure.

Curves| and Il refer to experimental results on clas-
sification of real acoustic signals. These results were
obtained at the early stage of our study aimed at how to
find the most efficient set of features for recognizing
two classes of these complex signalsin the multidimen-
sional feature space. Curve Il isthe FLF for the same
preprocessing, the same decision rule, and the same
values of the parameters. Curves I, I, and Ill are
obtained for the classification learning with the above
statistical recognition algorithm. To construct a real
learning sample, the current energy spectrum G(w) was
first calculated from each realization of the received
acoustic signals x(t):

G(w) = lim IS ()T,

where Sy(w) is the current spectrum, i.e., the Fourier
transform of the sample x(t):

SHw) = J’Zx(t) eiotgt = J’; x(t) e,

where T isthelength of the sample of realization of sig-
nal x(t).

The spectra were calculated from discrete sample
values of the source signal by Cooly and Tukey's fast
Fourier transform algorithm.

A specia algorithm was used to automatically ana-
lyze the spectrum of acoustic signals and construct
64 different spectral features of the signal, which repre-
sented together the minimal compl ete system of the sig-
nal’s spectral features. One part of the features was
associated with different parameters of particular dis-
crete components, i.e., of narrowband spectrum spikes
that do not enter harmonic scales. Another part was
associated with different parameters of groups of dis-
crete components of multiple frequencies that enter
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harmonic scales. Thethird part of the features consisted
of parameters of the continuous part of the signal spec-
tra. The number of classes was 2, and they corre-
sponded to different sources of the acoustic signals
being studied.

In accordance with the algorithm described above,
from thetotal of 6164 features, the preprocessing pro-
cedure selected the 40 most informative of them for the
particular sample of acoustic signals in terms of the
maximum likelihood criterion. By exhausting the com-
binations of 40 features by 2 at a time, the pair was
found that minimizes the mean sample classification
error in the two-dimensional space. From the 38 remain-
ing selected best features, the best features additional to
the first pair were chosen beginning from the best one:
at first, one feature was added; then two, three, and so
on, for three-, four-, and more-dimensional decision
rules, respectively. As we see from the figure, because
the feature correlation is strong (the decorrelation is not
shown), the probability of classification (curves | and
[1) of real signals of two classes slowly grows. Curvell
corresponds to approximately half the total number of
realizations (100 from each class). Curve | was
obtained from the total amount of the experimental data
(216 and 208 redlizationsin classes A and B).

Placing the experimental probability p(n) of classi-
fication of rea acoustic signals from samples L,
together with the FLF curve p,(n,) for the noise sample
L, on the same figure allows us to interpret the results
of the study much more objectively. For this case, itis
clear that no more than a total of five to six formal
acoustic features of those that enter the multidimen-
sional set can be used. Then, the probability of random
classification based on FLF aready appears to be close
to p,(n, = 6) ~ 0.7. With the number of features of n =
n, > 5-6, the comparison with the FLF clearly shows
the low validity of further selecting real signal features
into the set for this decision rule and sample length.
This is associated with an inadmissible growth of the
probability of actually random selection of further fea-
tures of thereal signal and, consequently, with thefalse
learning. The results obtained on the basis of the FLF
were used for designing a multialternative statistical
classifier of acoustic signals, which used only three fea-
tures for carrying out pairwise dichotomies.

Note that nature also avoids decision rules of an
increased dimension in its mechanisms of brain opera
tion, although it islavish with very complex, elaborate,
and diverse processing of the same vitally important
acoustic signals. For example, the auditory system of
dolphins performs the processing of pulsed signals so
as to recognize the important characteristics of the
received pulsed signals by no more than three features
in succession, beginning with the most important one
[18]. Studies have also shown that, to take a decision,
the human brain represents information mostly in a
two-dimensional form; more rarely, in a three-dimen-
siona form.
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In contrast to traditional recognition algorithms, for
which the FLF is specified in terms of probabilities, for
nondeterministic algorithms (neural networks and per-
ceptrons), the FLF may be defined as, for example, the
number Q of cycles of the algorithm needed to adap-
tively solve the problem. In particular, for a three-
layer perceptron with error back propagation (from
MATHLAB's Neural Networks Tools software pack-
age), a rapidly decaying function of the number of
adaptive cycles taken to tune the perceptron’s structure
to a given recognition probability of p = 0.9 was
obtained as the FLF. The algorithm was slow to recog-

nize two random samples L” = L? = 20 from noise

with adiscrete uniform distribution when it used one or
two features (at n, = 1 or 2, it took 300 to 500 cycles:
Q(n, = 1-2) = 300-500). The agorithm was much faster
when it used n, = 3 to 10 features. In this case, the FLF
had the form of an exponentially decaying curve Q(n,),
which was equal to 30-50 cycles at n, = 9-10. Without
averaging, the spread with respect to the approximating
exponential function was 20-30%, so that the percep-
tron’s FLF had the form of Q(n,) ~ Q,exp(-na)[l +
(0.2 -0.3)].

In conclusion, note that the simplicity of generating
the FLF is the basis for its wide application together
with the current results on multiparameter recognition.
By comparing the results of learning a system to recog-
nize real signals for any particular decision rule, one
can approximately but quickly assessthe validity of the
data obtained with multidimensional setsof featuresfor
the signal under study. The FLF proposed above can
also be used to properly design the experiment and
more unbiasedly interpret the results on multi parameter
recognition of real signalswhen devel oping adetermin-
istic statistical classifier or a neural-network-based sys-
tem.

It isclear that, if the recognition system’s algorithm
is modified, a new FLF adequate to the new version
must be generated. Such modifications are changes in
the algorithm or parameters of the preprocessing proce-
dure and feature estimation criteria, a change in the
decision rule, a change in the normalization of the ini-
tial feature space, achangein the step sizewhen search-
ing through the test thresholds, and a change in the
number of initial or best features when selecting the
most informative of them.

The application of asimple and clear false learning
function is useful for characterizing the validity of any
experimental results on the automated statistical recog-
nition of signalsin acoustics, hydroacoustics, and seis-
moacoustics, in the recognition of speakers by their
pronunciation; in medical diagnostics; in malfunction
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diagnosis of mechanisms from noise and vibrations; in
the recognition of visua patterns; in radar; and in other
fields.
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Abstract—The main characteristics of various types of plate electroacoustic waves propagating in piezoelec-
tric single-crystal plates of various thickness are numerically studied. A number of piezoelectric plates and ori-
entations in them with record high values of the electromechanical coupling coefficient for transverse plate
waves are proposed. © 2004 MAIK “ Nauka/Interperiodica” .

Asiswell known [1-5], a set of plate waves of two
classes, Lamb waves and transverse waves, can propa-
gate in a piezoelectric crystal plate. Plate waves propa-
gating in piezoelectric crystal plates provide the basis
for developing a variety of acoustoelectronic pressure
and temperature sensors, gas and liquid analyzers, and
so on [6-8].

The objective of the present study is the numerical
analysis of the main parameters of various types of
plate waves propagating in plates (whosethicknessH is
comparabl e with the wavelength A) made of piezoelec-
tric single crystals of any crystalographic symmetry
class. For various piezoelectric crystal plates, atheoret-
ical search for orientations corresponding to the opti-
mal parameters of plate waves (a high el ectromechani-
cal coupling coefficient K> and a minimal temperature
coefficient of delay) is performed.

Figure 1 shows the coordinate system for the prob-
lem under investigation. Let the X, axis be the direc-
tion of wave propagation and the X, axis be perpendic-
ular to the plane of a plate of thickness H. For conve-
nience, we place the plane X; = 0 in the middle of the
plate.

Asisknown [9], acoustic waves propagating in iso-
tropic plates are subdivided into two classes: Lamb
waves with vertical-longitudinal polarization and plate
waves with transverse polarization (SH waves [1, 5]).
In piezoelectric crystal plates, depending on the crystal
symmetry class and the specific direction in the crystal,
plate waves may have various structures, but they are
always accompanied by a quasistatic electric field. The
analysis of the properties of plate waves propagating in
a piezoelectric plate of any crystallographic symmetry
class and any orientation can be performed only by a
numerical method. In the analysis, the standard Far-
nell-Jones technique [10] can be used. The genera
solution for the mechanical displacements u, and the

electric potential ¢ can be represented as a sum of eight
partial waves:

8

U= A exp(ikB"” Xs)exp{ik[ X, ~ i} ,
n=1
; (1)
0=y A exp(ikB Xa) exp{iK[ X, — ]} .
n=1

Here, al” (i = 1, 2, 3) and A, are the amplitude

coefficients, B™ are the attenuation coefficients along
the X; axis, K isthe wave number, V is the velocity of
wave propagation, and t is time. Substituting general
solution (1) into the coupled equations of the theory
of elasticity for a piezoelectric medium [10], we
obtain the Christoffel matrix equation (Eq. (2)
below), from which all eight attenuation coefficients

B™ (n = 1-8) and the amplitude coefficients a!

be found:

" can

Fig. 1. The coordinate system.
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Here,
Gy = Cgsﬁz +2*ClsB + Cyy —p* V2,
Gy, = Gy = CiB®+(Cyy+ Cse)*B + Cy,

Gy = Gy = CESBZ +(C3+ Cg5)*B + Cys,

Gu = Gy = E5B°+(e5+€5)*B+ey,
Gy = ZABZ + 2% Cjsf3 + Cos —P* Vv’
Gy = Gy = C5B°+(Cys+ Cys)* B+ Cas,

_ _ 2
Goy = Gy = 5B + (e, + €5)* B + ey,

3)

G = Chp’ +2*ClB + Cos—p* V7,
Gy = Gy5 = e§382 + (€3 +€55)* B + €y,

Gy = —(8;:332 +2%eB + £y),

where C;, g;, and g;; are the tensors of elastic, piezo-
electric, and dielectric constants of the material repre-
sented in the contracted matrix form [10] and p is the
density of the material.

Note that, depending on the crystal symmetry and
direction of wave propagation [11], Eq. (2) may be con-
fluent and simultaneously have two independent solu-
tions, because zero terms may appear in it. If the fol-
lowing conditions are satisfied for the elastic and piezo-
electric constants of the piezoelectric crystal in the
accepted coordinate system,

Cpy = Cys = Cg = Cg5 = Cps = Cg5 = 0;
€y = €5 = €y = €5 =0,

“)

one of the independent solutions of Eq. (2) corresponds
to piezoactive Lamb modes of the vertical-longitudinal
polarization with two components of mechanical dis-
placement and an electric potentia (u,, u;, and ¢), and
the other independent solution corresponds to a nonpi-
ezoactive, purely transverse wave with one transverse
component of mechanica displacement u,. If the con-
dition
Cpy = Cis = Cg = Cgg = Cps = Cg6 = 0;
€1 = €3 = €5 =€ = €3~ €5=0

&)

is satisfied, one of the independent solutions corre-
sponds to a piezoactive plate wave of the transverse
polarization with one transverse displacement compo-
nent and an electric potential (u,, ¢) and the other inde-
pendent solution corresponds to honpiezoactive Lamb
modes of vertical-longitudina polarization with two
components of mechanical displacement (u,, u,).

Thus, if the symmetry conditions (4) and (5) are sat-
isfied, Eq. (2) will aways have two independent solu-
tions for Lamb modes of any order, because the sym-
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metry conditions (4) and (5) and their effect on Eq. (2)
do not depend on the boundary conditions.

For the most general case of crystal symmetry,
Eqg. (2) has a unique solution and the modes propagat-
ing in the piezoel ectric plate have al three components
of mechanical displacement and an electric potentia
(ul’ U2, U3, and ¢)

To determine the unknown amplitude coefficients
A, it is necessary to use eight boundary conditions at
the upper (X; = H/2) and lower (X; = —H/2) boundaries
of the piezoelectric plate. These conditions are the zero
value of the normal components of the stress tensor at
the upper and lower boundaries of the plate

T31 = O, T32 = O, T33 = O fOI‘ X3 = iH/Z; (6)

the continuity of the normal component of the electric
induction at the boundary between the piezoelectric
plate and the vacuum (for an open surface)

D;= D3 for X;=H/2 and (or) X;=—H/2 (7a)

or the zero value of the electric potential at the bound-
ary when the surface is short-circuited (metallized)

¢ =0 for X;=H/2 and (or) X;=-H/2. (7b)

Then, substituting general solutions (1) into bound-
ary conditions (6) and (7), we aobtain a set of homoge-
neous complex boundary equations, the solution of
which yields the unknown amplitude coefficients A,
and phase velocities V| of all modes propagating in the
piezoelectric plate.

One of the difficulties arising in the numerical
search for the plate wave solutions consists in the fact
that, in a piezoelectric plate of a certain thickness H,
there is a family of plate modes and each mode hasits
own phase velocity V,. Therefore, in the search for
every individual mode (search for the zero of the func-
tion of boundary equations), it is necessary to choose a
sufficiently narrow interval of the velocity search AV
that would contain only two values of velocity for the
same mode: for an open and a short-circuited surface
(to calculate the electromechanical coupling coefficient
K?). For areliable determination of such aninterval, we
visualized the plot of the function of boundary condi-
tions in the program window.

After finding the phase velocity V, of some mode, it
ispossible to determine the electromechanical coupling
coefficient (K?). Usually, the electromechanical cou-
pling coefficient for a surface acoustic wave (SAW) is
calculated from the expression [10]

K2 =2(Vy - VoV, ®)

where V,, and Vg are the phase vel ocities of the wave at
the open and metallized surfaces of the crystal, respec-
tively. For asemi-infinite crystal, this quantity issingle-
valued for the given orientation. This relation can also
be used for calculating the value of K? for plate waves.
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Fig. 2. (1-3) Electromechanical coupling coefficient K2 and
(4) the velocity of SAW propagation V versus the normal-
ized plate thickness H/A for the (a) low-velocity and
(b) high-velocity zero-order mode. The lower surface is
(2) open or (2) short-circuited; (3) both surfaces are either
open or short-circuited.

In this case, the electromechanical coupling coefficient
K? for different modes has a spatial dispersion (it
depends on the relative thickness of the piezoelectric
plate H/A).

Note that the phase velocity of plate waves in a
piezoelectric plate also depends on the electrical
boundary conditions at the lower boundary of the plate
(an open or short-circuited surface). Hence, in calculat-
ing the electromechanical coupling coefficient K2 from
the relative difference in the velocities along the open
and short-circuited surfaces, one should take into

DVOESHERSTOV et al.

account the eectrical boundary conditions at the lower
surface, which may be either open or short-circuited. If
the lower surface is electrically short-circuited, the
mode velacities will differ from the velocities for an
open lower surface. The electromechanical coupling
coefficient K2 calculated from Eq. (8) will also differ in
this case. And, findlly, instead of V, in Eq. (8), one can
substitute the velocity corresponding to both surfaces
being open, and instead of Vg, the velocity correspond-
ing to both surfaces being short-circuited. Thus, it is
possible to obtain three values of the electromechanical

coupling coefficient Ki2 (i = 1-3), which correspond to

three different ways of short-circuiting the electric field
a the plate boundaries. Figures 2a and 2b show the

three variants of calculated dependences of Ki2 on H/A

for zero-order Lamb modes propagating in a YZ-cut
LiNbO, plate. From these figures, one can see that the
dependence of K2 on H/A has a complicated form with
maxima at certain values of H/A (see curves /-3). With
an increase in the thickness of the piezoelectric plate
H > 3A, the phase velocities of both zero modes
(curves 4), approach the velocity of a SAW in a semi-
infinite medium (Vq,w = 3.487 km/s): one from below,
starting from the zero value, and the other from above,
starting from a value approximately equal to the
velocity of the bulk longitudinal wave. However, the
value of the electromechanical coupling coefficient K?
approaches the corresponding value for the SAW (K? =
4.38%) not in all cases, whichisseenfromFig. 2. If the
lower surfaceis open, the value of K for the low-veloc-
ity mode (curve I in Fig. 2a) approaches the corre-
sponding value for the SAW, while K? for the high-
velocity mode (curve I in Fig. 2b) approaches zero. If
the lower surface is short-circuited, the quantities
behave conversely (curves2 in Figs. 2a, 2b). If we cal-
culate K? by Eq. (8) from the velocities determined on
the condition that both surfaces are either open or short-
circuited, then, for both zero modes, as the plate thick-
ness grows, K? approaches the value corresponding to
the SAW (curves 3 in Figs. 2a, 2b). In addition, in this
case, we have the highest value of K? equal to about
11% for the low-velocity mode near H/A = 0.55
(curve 3 inFig. 2a). Thecurvesin Fig. 2 also show that,
for any plate thickness, for both zero-order modes, the
condition K3 = K2 + K3 is satisfied (here, the sub-
scripts correspond to the curve numbersin Fig. 2). Note
that, for the orientation considered, symmetry condi-
tion (4) is satisfied and the zero-order Lamb modes have
two components of mechanical displacement, u, and us,
and an eectric potential ¢ [11]. Figure 3 demonstrates
the calculated distributions of the amplitudes of mechan-
ical displacements u, and u; (curves u, and u;) over the
thickness (H = 0.5A) of a YZ-LiNbO; plate for the high-
velocity zero-order mode (here and below, the ampli-

tudes are normalized t0 Uy = /|Ugs|?+ |Ugol > + |Uogl %
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where u,; arethe amplitudes at the surface X; = H/2). As
is seen from Fig. 3, the distribution of the displacement
amplitude u, over the plate thickness is symmetric and
the distribution of u, is antisymmetric.

If the symmetry conditions (5) are satisfied, atrans-
verse plate wave (SH wave) propagates in the piezo-
electric plate. It is a shear-horizontal high-velocity
wave that does not contain the component of mechani-
cal displacement u; normal to the plate surface. Owing
to this, the SH wave can propagate in a plate contacting
a liquid without any radiation loss due to the wave
energy leakage into the liquid medium. Another feature
of the SH wave consistsin thefact that, at acertain plate
thickness, the electromechanical coupling coefficient
K2 may bevery high. For example, for alithium niobate
plate, the cuts and directions were found [4, 5], in
which a quasi-SH wave propagates: athough, in the
directions found, the symmetry conditions (5) are not
satisfied and the wave has all three mechanical dis-
placements, the condition u,, u; < u, issatisfied. For an
XY-cut LiNbO; plate with the thickness H = 0.1A, the
electromechanical coupling coefficient isK? = 35% and
the phase velocity isV = 4.372 km/s.

In the present study, the parameters of SH wavesin
piezoel ectric plates with a strong piezoel ectric coupling
aretheoretically calculated. We considered a potassium
niobate crystal (KNbO;) [12] and a lead-treated potas-
sium niobate crystal (PKN) [13] belonging to the rhom-
bic and orthorhombic systems, respectively. In these
crystals, symmetry condition (5) is satisfied for the ori-
entations (0°, 90°, 180°m), wherem=0, 1, 2, ... [14].
Figure 4 displaysthe calculated velocities V (curves V1,
V2, V3, and V4), which were obtained under the condi-
tion that both surfaces were open, and the quantity K2
(curveskl, k2, k3, and k4), calculated under the condi-
tion that the lower surface was open, versusthe normal-
ized plate thickness H/A for the crystals (90°, 90°, 0°)
LiNbO;, (0°, 90°, 0°) KNbO;, (0°, 90°, 0°) PKN, and
(90°, 90°, 0°) LiTaO;. The materials constants for
KNbQO,;, PKN, LiNbO;, and LiTaO; were taken from
[12, 13, 15]. Asisseen from Fig. 4, the maximal values
of K? are asfollows: for XY-cut LiNbO;, K? = 35% and
the phase velocity V = 4.35 km/s at H/A = 0.06; for
YX-cut KNbO;, K> =99.3% and V = 4.67 km/s at H/\ =
0.12; for YX-cut PKN, K> =54.5% and V = 3.04 km/s at
H/\ =0.02; and for XY-cut LiTaO;, K?=10.7%and V =
3.75 km/s at H/\ = 0.06. Such record high values of K?
inthese crystals open up the possibilitiesfor an efficient
control of the SH wave velocity, e.g., by bringing acon-
ducting screen near the plate surface. This feature can
be used in devel oping high-efficiency acoustoel ectronic
Sensors.

We also studied theoretically the temperature prop-
ertiesof Lamb wavesin alangasite (LGS) piezoelectric
plate with the (0°, 138.5°, 23°) orientation, which is
thermostable for a SAW [16]. The calculations showed
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Fig. 3. Distributions of the relative amplitudes u; and us
over the thickness of a YZ-cut LiNbO5 plate for the high-
velocity zero-order mode.
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Fig. 4. Velocity of SAW propagation V and the electrome-

chanical coupling coefficient K2 versusthe normalized plate
thickness H/A for (V1, k1) XY-cut LiNbOg3, (V2, £2) YX-cut
KNbO3, (V3, £3) YX-cut PKN, and (V4, k4) XY-cut LiTaOxs.

that the value of the temperature coefficient of delay
[10] rather strongly depends on the thickness of the
piezoelectric plate and on the mode number. Figure 5
shows the computed values of this coefficient for low-
and high-velocity zero-order Lamb modes versus H/A.
The value of the temperature coefficient of delay is
close to zero for the high-velocity mode at the plate
thickness H = 0.6A, H = 1.3\, and H > 1.5A (both sur-
faces are open); for the low-velocity zero-order mode,
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Fig. 5. Temperature coefficient of delay versus the normal-
ized plate thickness H/A for thelow- and high-velocity zero-
order Lamb modesin a (0°, 138.5°, 23°) LGS plate.
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Fig. 6. Distributions of the relative amplitudes U;, U,, and
U; over the thickness of a (0°, 138.5°, 23°) LGS plate. The
plate thicknessisH = A.
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Fig. 7. Distributions of the relative amplitudes U, U,, and
U; over the thickness of a (0°, 138.5°, 23°) LGS plate. The
plate thicknessisH = 3A.
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itisclosetozeroat H=0.35A, H= 0.9\, and H > 1.7A.
The materials constants for LGS were taken from [17].

Now, we consider the distribution of the mechanical
displacements u,, u,, and u, of the Lamb modesfor dif-
ferent ratios H/A. Figure 6 showsthe distributions of the
normalized amplitudes of mechanical displacements
for the low-velocity zero-order mode (velocity V =
2.686 km/s, both surfaces are open) in a (0°, 138.5°,
23°) LGS piezoelectric plate of thickness H = A. It is
seen from Fig. 6 that the distribution of the amplitudes
of mechanical displacements over the plate thicknessis
of acomplex character. There are several characteristic
maxima and minima of the displacement values across
the plate thickness (curves U,, U,, and U,). At the thick-
ness H = 3A (Fig. 7), the structure of this mode (V =
2.729 km/s) approaches the structure of a common
SAW (V = 2.733 km/s). As is seen from Fig. 7, all
mechanical displacements are concentrated near the
plate boundaries and die out in the middle of the plate
(curvesU,, U,, and U,).

Thus, in this paper, we calculated the main charac-
teristics of plate waves propagating in LiNbO;, LiTaO;,
LGS, KNbO;, and PKN piezoelectric plates. The cuts
and directionsin which SH waves have record high val-
ues of the electromechanical coupling coefficient are
determined. In particular, for the YX-cut KNbO; plate,
the value of this coefficient is K? = 99.3%, and for the
YX-cut PKN plate, K? = 54.5%. It is shown that, at cer-
tain plate thickness values, low- and high-velocity
Lamb modes propagating in a (0°, 138.5°, 23°) LGS
plate have zero values of the temperature coefficient of
delay.
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Abstract—It is shown that the method proposed earlier for calculating the speed of sound in seawater from the
known ion concentrations, in astrict sense, can be applied for computing the sound speed in seasif, asamodel of

. .. .. . .. . 2—
seawater, one Uses asol ution containing six ions or asolution containing four ions, namely, Na“, Mg?*, SO; ™, and

ClI~, with the mole concentration of Na* being replaced by the sum of mole concentrations of Na* and K* and the
mole concentration of Mg?* being replaced by the sum of mole concentrations of Mg?* and Ca*. An agorithm of
calculation is proposed. It is demonstrated that, when the seawater is considered as a solution containing six ions,
the computed value of the speed of sound does not depend on the choice of the specific ion whose concentration
is determined from the condition of electric neutrality. © 2004 MAIK “ Nauka/lnterperiodica” .

At present, the effect of composition of dissolved
components on the speed of sound in seawater U,y iS
taken into account by using only one variable, namely,
thesalinity S[1]. Thisapproach isappropriate when the
concentration ratios of dissolved components are con-
stant. However, this constancy is often violated, for
instance, in passing from oceans and seas connected
with the oceans or neighboring seas by wide straits to
the inland seas or seas connected with the neighboring
seas by narrow straits [1]. We proposed an approach
based on considering the seawater as an ideal isopiestic
solution, that is, an ideal mixture of binary isopiestic
solutions, which makes it possible to calculate the
sound speed for arbitrary ratios of concentrations of
dissolved components [2]. Isopiestic solutions are the
solutions that have the same values of the chemical
potential of water pus[3].

The deviations of the computed values of sound
speed in seawater u,,, from the values found by the
interpolation of experimental dependences of sound
speed in seawater on Swere 0.5-1.0 ms™! [2]. After ana
lyzing the agorithm of calculation, we decided to
change the method of approximating the concentration
dependences of osmotic coefficients of binary solutions
and other properties of these solutions. The polynomi-
alsused in [2] to approximate the concentration depen-
dences of binary solutions have the form

(I) Z A(|)~J/2, (1)

where m; isthe molality of a binary solution of the ith
dissolved component. The superscript in parentheses (1)

of the quantity f indicates the specific property of the
binary solution that is approximated by polynomial (1).

The value | = 1 corresponds to the osmotic coeffi-
cient of the binary solution; the value |l = 2 corresponds

to the density of the binary solution, p;; | = 3 corre-
sponds to the heat capacity of the mass of the binary
solution that contains 1 kg of solvent, Cp;; | = 4 corre-
sponds to the coefficient of thermal expansion of the
binary solution, a; ; and | = 5 corresponds to the sound
speed in a binary solution of the ith dissolved compo-
nent U; . The subscript i indicates the specific dissolved
component under consideration. The molality and ther-
modynamic properties of abinary solutionwith an arbi-
trary a, are marked by the superscript ~ above the cor-
responding quantity.

All the coefficients Ai(jl) were determined by the
least squares method. As aresult, the values of the first

coefficients Ai(jo) in Eq. (1) differed from the values of

the property f for pure water. (The value of A,(O’ for the
osmotic coefficient equals unity) [4].

In the present paper, we propose to approximate the
concentration dependences of the properties of binary
solutions by polynomials of the form

o

i = f"'H,0 —f(')H 0

- Z B(|)~J/2. (2)

Thevalue of fi(') H,O =1 correspondsto the osmotic
coefficient of the binary solution, and, for other |,

1063-7710/04/5005-0518%$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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Table 1. Algorithm of computing the sound speed in a mixed solution containing four ions.

Experimental
dependences of the

C or Approximation
osmotic coefficients

I C of the dependences
of binary solutions
d,(m) [4] )
on the concentration

—1

of the form given
by Eq. (2)

$,(m;) by polynomialsf—

. Zero
Calculation of approximation
mf (i=1,2,3,4) [=— of thesolvent
activity
a®

=1

Experimental
concentration
dependences of the

Approximation
of the dependences

properties of binary [Py
solutions £O(m,) [5, 6] by polynomials (2)
1=2,3,4,5
Calculation of the
values of
D (Y
S lon concentrations
in seawater
Calculation of ;i Calculation of pgile

f ) H,0 means the val ue of the corresponding property
for pure water.

Table 1 shows the agorithm of calculation of the
sound speed in amixed solution of four salts serving as
amodel of seawater.

For a solution containing four ions, Na‘*, Mg*,

SOff , and Cl-, with the molalities of the first threeions
equal to their molalitiesin seawater at S=35.004%o and

the molality of SO;~ found from the condition of elec-
tric neutrality of the considered solution, the following
values of molalities of salts in the mixed solution, m
(m, = 0.484056, m, = 0.0005118, m; = 0.026535, and
m, = 0.028753), and moldlities of binary isopiestic
solutions, m* (m; =0.544983, m; =0.406078, m} =
0.370913, and m; = 0.737312), were found. The indi-

cesl, 2, 3,and 4, asin[2], correspond to the saltsNaCl,
Na,SO,, MgCl,, and MgSO,, respectively. For the
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mixed solution of four salts under consideration, S=
33.235%0, the calculated density value is puix =
1021.846 kg/m?, and the value of sound speed com-
puted using the aforementioned values of salt concen-
trations equals 1532.99 m/s. The value found from the
interpolation of the dependence of sound speed in sea
water on salinity [1] for S = 33.235%0 is equal to
1533.24 m/s.

The molality and thermodynamic properties of a
binary solution with the same val ue of the solvent activ-
ity a5 asthat of the mixed solution under consideration
are marked with the superscript *. Remember that the
symbol m, denotes the molality of the ith dissolved
component of the mixed solution.

As is shown above, when the concentrations of all
ions but one are equal to the concentrations of these
ions in seawater at the salinity S =35.004%. and the
concentration of oneion isfound from the condition of
electric neutrality of the system, the consideration of
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four ions gives avalue of salinity of the mixed solution
different from the value of S of the seawater and the
value of the sound speed u,,;;, in this mixed solution is
closer to the sound speed determined by the interpola-
tion of the dependence U, (S [1] for the value of Scor-
responding to this solution, as compared to the sound
speed in seawater for S= 35.004%o.. Therefore, we con-
sider the solution containing four ionsfor the case when
the concentrations of al ions but two, namely, Na+ and
Cl-, are equal to the concentrations of theseionsin sea-
water at S= 35.004%o and the concentrations of the Na*
and Cl- ions are computed from the condition of elec-
tric neutrality of the mixed solution and the equality of
its salinity to the value of Sin seawater. The computed
value of sound speed in the solution containing four
ions equals 1535.97 m/s. The value of sound speed
determined from an experimental dependence of sound
speed in seawater on salinity for S= 35.004%o. is equal
to 1535.00 m/s.

Thus, the use of asolution containing four ions, Nar,

Mg+, SO;, and CI-, makes sense only for testing the
proposed method by comparing the computed value of
Ui, With the value found by the interpolation of an
experimental dependence of sound speed in seawater
on S[1]. In the initial variant, the concentrations of
three out of four ions are taken to be equal to the con-
centrations of these ions in seawater for S= 35.004%o.
For this solution, S= 33.235%o.

It should be noted that the solution containing the
aforementioned four ionswith the concentrations equal
to the concentrations in seawater at S = 35.004%. has
the salinity S= 33.24%0 and the value of sound speed
Uni, Calculated for this solution is close to u,,, deter-
mined by the interpolation of the dependence of sound
speed in seawater on salinity [1] for S= 33.24%o rather
than to the value of u,;, corresponding to the real sea-
water with the same concentrations of these four ions.

The second variant of using the model of a solution
containing four ionsis based on the change of the con-
centrations of at least two out of four ions for reaching
thevalue of S=35.004%o. The use of the second variant
is not consistent with the aim of the proposed method,
that is, with the cal culation of the sound speed from the
known concentrations of ionsfor the systemsfor which
the application of such characteristic as salinity is not
quite correct, since the concentration ratios of ions dif-
fer from the concentration ratios of the aforementioned
ions typical of ocean water.

Obtaining a value of sound speed in seawater close
to the value found by the interpolation of the experi-
mental dependence of u,,;, on Sfor S=35.004%., which
characterizes the seawater under consideration, by
using the model of an ideal isopiestic solution of four
saltsispossibleif the mole concentration of Na* corre-
sponding to seawater at S= 35.004%o isreplaced by the
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sum of mole concentrations of Na* and K* correspond-
ing to the mentioned salinity, and the mole concentra-
tion of Mg?* corresponding to seawater at S= 35.004%o
is replaced by the sum of mole concentrations of Mg**

and Ca’ corresponding to the aforementioned salinity.
The concentration of Cl-in this solution is equal to the
concentration of Cl- in seawater for S= 35.004%., and

concentration of SOff is determined from the condi-

tion of electric neutrality of the solution. The salinity of
this mixed solution is 34.760%..

The calculation gives the following values of mola-
lities of the mixed solution: m;, = 0.495527, m, =
0.0000653, m; = 0.0367397, and m, = 0.0291997; and
the values of molalities of isopiestic binary solutions

are m; =0.571140, mj =0.426879, m; = 0.388483,

and mj; = 0.775279. For the solution under consider-
ation, ppx = 1023.045 kg/m? and the computed val ue of
Ui = 1534.72 m/s only dlightly differs from the afore-
mentioned value of u,;, determined from the interpola
tion of an experimental dependence of sound speed in
seawater on Sat S = 35.004%o, which corresponds to
the massion concentrations used in the calculation.

For a solution containing six ions, Nat, Mg*, K+,

Cat, SOi_, and ClI-, with the molalities of thefirst five
ions equal to the molalities of these ions in seawater at
S = 35.004%0 and the moldity of Cl- found from the
condition of electric neutrality of the solution, we
determined the molalities of salts in a mixed solution,
m (m, = 0.44297, m, = 0.02105, m; = 0.05229, m, =
0.00300, my = 0.00016, mg = 0.00521, and m, =

0.01065), and in binary isopiestic solutions, m* (m; =
057285, m; = 0.42824, m; = 0.38963, m; =

0.77776, mi = 057777, mg = 0.42993, and m}; =
0.39297). Theindices 5, 6, and 7 denote the quantities
corresponding to the sats KCl, K,SO,, and CaCl,,
respectively. The value of u,;, = 1534.83 m/s cal cul ated
for this system is close to the value of uy,, following
from the experimental dependence of u,,;, on Sfor S=
35.004%o.

The evaluation of the effect of changes in ion con-
centration on the sound speed in a mixed solution U,
is made by the example of an ideal isopiestic solution
of four salts, NaCl, Na,SO,, MgCl,, and MgSO,. The
quantities corresponding to these salts are denoted by
theindices 1, 2, 3, and 4, respectively. We consider aset
of solutions containing the four above-mentioned ions.
In one of the solutions of this set, the concentrations of

Nat, Mg?*, and soi‘ ions are equal to the mass con-
centrations of these ions in seawater for S = 35.004%o
[1], which are given in the first line of Table 1. The
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Table 2. Molalities of ions and saltsin seawater and the sound speed computed by a complete formula[10]

Na Mg?* Sor Cl- NaCl Na,SO, | MgCl, | MgSo, Upnix —:mi_x — Emm
mix H,O
0.485079 | 0.055288 | 0.029265 | 0.537125 | 0.427185 | 0.028947 | 0.054970 | 0.000318 1533.65 0
0.504482 | 0.057500 | 0.030436 | 0.558610 | 0.443825 | 0.030329 | 0.057393 | 0.000107 1535.05 +0.038
0.504482 | 0.057500 | 0.028094 | 0.563293 | 0.448697 | 0.027893 | 0.057298 | 0.000202 1535.00 +0.037
0.504482 | 0.053077 | 0.030436 | 0.549764 | 0.444101 | 0.030191 | 0.052832 | 0.000245 1534.58 +0.026
0.504482 | 0.053077 | 0.028094 | 0.554447 | 0.448754 | 0.027864 | 0.052847 |0.000230 1534.53 +0.024
0.465676 | 0.057500 | 0.030436 | 0.519804 | 0.404805 | 0.030436 | 0.057500 |0.0000001| 1532.77 -0.024
0.465676 | 0.057500 | 0.028094 | 0.524486 | 0.409586 | 0.028045 | 0.057450 | 0.000049 1532.71 -0.026
0.465676 | 0.053077 | 0.030436 | 0.510958 | 0.405366 | 0.030155 | 0.052796 |0.000281 1532.29 —0.038
0.465676 | 0.053077 | 0.028094 | 0.515640 | 0.410212 | 0.027732 | 0.052714 |0.000362 1532.24 —0.039

other solutions of the set differ from the aforemen-
tioned one, at least, by the concentration of one of the

ions, Na, Mg+, or SO;~ . The relative deviation of the
concentrations of at least one of the aforementioned
ions from the concentration of this ion in the solution
with the same mass concentrations of Nat, Mg**, and

SO;™ as that of the seawater for S= 35.004%0 equals

+4%. The concentration of CL-in all casesiscalculated
from the condition of electric neutrality of the solution
containing four ions.

For the nine possible combinations differing at |east
by the concentration of one of the ions, using experi-
mental data on the density of the solutions [5, 6] and
seawater [1], we calculated by the method reported in
[2] the following quantities: the concentrations of
NaCl, Na,SO,, MgCl,, and MgSO, in mixed and binary
isopiestic solutions; the water activity values corre-
sponding to these concentrations; the values of the
properties of binary isopiestic solutions, including the
density p;*, the thermal coefficient of expansion o,
and the isobaric heat capacity of the mass of solution
containing 1 kg of pure water; and the values of the
sound speed in the mixed solutions under consider-
ation, Upy.

Table 2 represents the ion molalities and the corre-
sponding salt molalities.

The next to last column contains the values of U,y
and the last column contains the ratio of the deviation
of uix corresponding to the salt concentrations givenin
the relevant line from the value of uy;, givenin thefirst
lineto the deviation from the sound speed in pure water
Un,o =1497.2 m/s[7].

Table 3 presents the values of the sound speed Uiy
and analogous ratios of the sound speed deviations
computed using the formula for the sound speed
reported in [8] for the case of two dissolved compo-
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nents, this formula being derived by neglecting the dif-
ference between the adiabatic and isothermic com-
pressibility.

In the genera case, as follows from the formula for
Umix [8], the aforementioned assumption leads to the
relation

+m x 10~ MD
P} D

mkE;L+mkMk><10
(P Uk)

_2_

mIX

3)

><Dl+10 Zml BDZ

=1

where m and m® are the molalities of the ith dis-
solved component in the mixed and binary isopiestic
solutions, r is the number of dissolved components,
Px isthe density of the isopiestic binary solution of
the kth component, u; is the sound speed in the
binary isopiestic solution of the kth component, and
M, is the mass of a mole of the kth component. Con-
centration dependences of the sound speed in binary
solutions are presented in [9].

Asonewould expect from the formulagiven in [10]
for computing u,,, from the data on binary solutions, a
change in the concentration of Na* has the strongest
effect on the variation of u,;,. Asis seen from Tables 2
and 3, the simplified formulacan be used for evaluating
the effect of variationsin theion concentration on Uy.

For the solution containing six ions, wetried to eval-
uate the effect of the choice of theion whose concentra-
tionisfound from the condition of electric neutrality of
the solution with given concentrations of the other five
ions. The values of molalities of the Na*, K*, Mg**,
Ca’*, and Cl- ions were chosen to be equal to the values
corresponding to the seawater at S = 35.004%0. The

molality of the SOff ion was computed from the con-
dition of eectric neutrality. For the solution under con-
sideration, S = 35.004%o. The use of the method pro-
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Table 3. Molalities of saltsin seawater and the sound speed computed by the simplified formula (1)
Unix ~ Umix1
NaCl N&a,SO, MgCl, MgSO, Upix —_—
Upnix — uHZO
0.427185 0.028947 0.054970 0.000318 1533.65 0
0.443825 0.030329 0.057393 0.000107 1535.06 +0.039
0.448697 0.027893 0.057298 0.000202 1535.01 +0.037
0.444101 0.030191 0.052832 0.000245 1534.59 +0.026
0.448754 0.027864 0.052847 0.000230 1534.54 +0.024
0.404805 0.030436 0.057500 0.0000001 1532.78 —-0.024
0.409586 0.028045 0.057450 0.000049 1532.72 —0.025
0.405366 0.030155 0.052796 0.000281 1532.30 —-0.037
0.410212 0.027732 0.052714 0.000362 1532.25 —-0.039

posed in [2] gave the following values of molalities of
theisopiestic solutions: m; =0.57289, m; = 0.42827,
m =0.38966; m; =0.77782; mi = 0.57782; m§ =
0.42996; and my = 0.39301; and it gave the following
values of molalities of the mixed solution: m, =
044270; m, = 0.02119; my = 0.05248; m, = 0.00280;
ms = 0.00013; my, = 0.00522; and m, = 0.01065. The
corresponding value of uy,, = 1534.89 m/s dightly dif-
fersfrom the value calcul ated above: u,,, = 1534.83 m/s.
Therefore, it may be concluded that the choice of the
ion whose concentration is computed from the condi-
tion of electric neutrality for the given concentrations of

other ions only dlightly affects the computed value of
the sound speed.
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Abstract—Noise that accompaniesthe wave front inversion of sound signalsis considered. It isshown that this
noise is a consequence of the interference phenomena occurring in complex media with multiple signal reflec-
tions, which lead to a noisglike nature of the spectrum modulus. A method of the wave front inversion that
allows one to reduce the interference noise is proposed. The aforementioned phenomena are numericaly ana-

lyzed. © 2004 MAIK “ Nauka/Interperiodica” .

A universal method exists for extracting a signal
from noise: the method of matched filtering. The
matched filter is the one whose response is com-
plex-conjugate with the signal spectrum. Such afil-
ter is most efficient when the signal with which the
filter is matched is a complex signal in the sense
that it has a great (much greater than unity) product
of its duration and the frequency bandwidth. It is
assumed that the modulus of the signal spectrum is
approximately constant within the frequency band
Af and vanishes outside this band. Let us denote the
signal complexity as N. If the signal duration is T,
the complexity is

N = AfT. (1)

L et the signal spectrum be G(w). Then, the response
of the matched filter to the signal will be [1]

W(t) = zl -[S@E@epiond. @

Here and further, the bar over a function means
complex conjugation. The function W(t) belongs to the
class of so-called positive definite functions. Such func-
tions cannot have complexity (1) greater than unity. At
the sametime, function (2) has the same spectrum width
as the signa. This statement follows from Eqg. (2).
Hence, function (2) must be shortened in time by afac-
tor of N, where N is given by Eq. (1).

Let ustakethesignal in the form of acomputer-gen-
erated noise realization. The signal values are uncorre-
lated at each pair of points. Let the separations of the
adjacent samples of the realization be equal to 1. Then,
according to the sampling theorem, the spectrum width
isAw =21, or Af = 1. With the realization length T, the
signal complexity isN = T. The signa of form (2) will
be shortened to asingle interval of sampling.

Let us consider the actual result of transformation (1)
shownin Fig. 1la. Indeed, thereisasharp peak, withthe

duration of asingle sampling interval at zero delay. But
what can be seen in the vicinity of that point? Thisis
just the noise that is the subject of our consideration.
The source and nature of this noise can be determined
from Eq. (2). According to this expression, the response
of the matched filter to the signal is the spectrum of the
squared modulus of the signal spectrum. Such a spec-
trum has a constant component, because it is the spec-
trum of aquantity that is positive everywhere. The con-
stant component is precisely the narrow peak of asin-
gle-sample width that was interpreted by us as the
matched filter response to the signal. However, our sig-
nal isarealization of random noise. The spectrum mod-
ulusis also arandom quantity. Hence, the spectrum of
the squared signal modulus should not have only one
constant component. The spectrum should have com-
ponents at other nonzero frequencies. It isjust what we
can seein Fig. 1a: the correlation noise.

Let usconsider thelevel of the correlation noise. For
anoise redlization, it is characteristic that the level of
the constant component of the spectrum is approxi-
mately equal to the energy of the varying component,
that is, to the energy of the correlation noise. Thus, if
the constant component of the spectrum (the response
of the matched filter tothe signal) isN, the energy of the
correlation noise will also be N and its amplitude will

be /N . In our case, N = 1024, which corresponds to a
level of correlation noise that is 30 dB lower than the
level of the central correlation peak. Earlier (in the
1950s [1]), this fact was used to solve only one prob-
lem: to extract asignal from noise. If the signal is com-
bined with noise with which the correlation peak of the
signal is dtill visible (say, 10 to 15 dB lower than the
peak), the correlation noise will be fully masked by this
noise. That is why one was not interested in the corre-
lation noise: it did not prevent extracting the signal
from the masking background. Today, transformation (2)
is used not only for extracting weak signals from noise
but also for other purposes. In particular, this transfor-
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Fig. 1. Correlation function (the output signal of the matched filter) for different processing algorithms: (a) ordinary processing by
convolution of the spectrum with or its multiplication by the complex-conjugate spectrum; (b) processing by dividing the spectra
of the same signals; (c) processing by dividing the spectra with a special sounding signal whose spectrum does not involve small

values.

mation serves for solving the problems of wave front
inversion [2].

Suppose that an initially short sound pulse propa-
gatesin acomplex medium with multiple signal reflec-
tions. To implement the wave front inversion (WFI) in
acoustics, it is sufficient to receive this pulse, which is
now long due to multiple reflections; to store it; and to
transmit it again in reverse time with a complex-conju-
gated spectrum. For real signals, both procedures are
equivalent and should not be doubled. For complex sig-
nals, both procedures are required [2, 3]. As aresult of
the WFI, the reradiated signal, upon propagation
through the complex medium, will arrive at the trans-
mission point as a short pulse. The latter pulse will be
similar to the initial one with asingle exception: it will
pick up correlation noise. Such anoise can be seenfrom
numerous illustrations given in [2]. Let us clarify the
process of the formation of the correlation noise.

Let usintroduce the frequency response k(w) of the
medium [3] with alowance for al signal reflections.
The received signal can be represented by combining
the Fourier transform y,(w) of the initia pulse and the
frequency response k(w) asfollows[3]:

(<)

YO = 55 [Yel@k(@ep(ioddo. @)

Let theinitial pulse be so short that its spectrum is
constant in the entire frequency band: y (w) = 1.
According to Eq. (3), the spectrum of the received
pulse has the form of the frequency response k(w).
Now the same signal, but with the complex-conjugate
spectrum, should be sent to the transmission point
through the same medium. It is assumed that the fre-
guency response of the medium is the same for both
direct and inverse directions of sound propagation:

ACOUSTICAL PHYSICS Vol. 50
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thisisthe condition for the WFI to be feasible[2]. For
the signal arriving at the transmission point, Eq. (3)
takes the form

o]

a(t) = %1 [ K@)k(w) expictde. )

Relation (4) obtained for the signal arriving at the
transmission point after the WFI fully coincides with
Eq. (2) characterizing the output of the matched filter.
Thisresult is especialy emphasized in [2]. Aswe have
already learned, the correlation noise is the conse-
quence of the fact that the squared modulus of the sig-
nal spectrum has anoiselike form. In ordinary matched
filtering, the noiselike nature of the spectrum modulus
is caused by the choice of the signal shape. In the WFI
procedure, the frequency response is determined by the
interference phenomenain signal propagation. Hence,
the correlation noisein the WFI can be explained by the
interference. For the signal propagating in a complex
medium with multiple reflections, the interference is
inevitable and aways present. Does it mean that the
WFI isalways accompanied by the correlation noise? I
so, the problem would be complicated, because, in the
WFHI, the correlation noise is commonly masked by
nothing and is quite pronounced [2].

However, a radical method exists to get rid of the
correlation noise. This method is effective for the WFI.
One should simply replace the traditional algorithm of
signal processing by anew one. Let usconsider the new
algorithm for the matched filter as an example.

It is well known [4] that the matched filter can be
obtained by not only constructing its frequency
response to be complex-conjugate with the signal spec-
trum. The frequency response of the matched filter can
also be equal to the inverse complex spectrum of the
signal. In this case, Eq. (2) takes the form

1 G(w)exp(iwT)
21 G(w)

This expression accounts for the fact that the signal
can be delayed by T in time. At the filter output,
according to Eq. (5), anarrow pulse is obtained whose
duration is equal to a single sampling interval. Now,
there is no correlation noise. Moreover, a similar nar-
row pulse will be obtained even if the signal has a
highly nonuniform spectrum whose width does not
cover al possible frequencies. Thisfact has been long
known. Studies [4, 5] exist that consider the possibil-
ity of applying Eq. (5) to the signal processing. How-
ever, these studies do not recommend using Eq. (5) in
practice. Why isit so?

There are two reasons for transformation (5) to lack
popularity. Thefirst one is that this transformation can-
not be implemented by analog methods. Nowadays,
with commonly used computers for signal processing
and constructing filters, this reason fails. However, the
second reason still exists. It consistsin that the matched

W(t) = exp(iwt)dw. %)
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filters are used for extracting weak signals from strong
noise. Algorithm (5) does not solve this problem. The
point is that the procedure of dividing by the signal
spectrum does not offer noise immunity. This problem
isjust the subject of [4, 5].

The signal spectrum can be represented as
G(w) = |G(w)exp(iarg(G(w))). (6)

The argument of the spectrum has no significant
effect on the procedure of division. Thisis not true for
the modulus of the spectrum: it can be very small or
even zero-valued at some frequencies. However, Eq. (5)
does not lack sense, because both the numerator and the
denominator have precisely the same behavior at these
frequencies. If the signal is added with noise, the situa-
tion changes drastically. At frequencies where the spec-
trum modulusis small, the noise substantially increases
and the noise immunity of Eq. (5) fails [4—6]. The fact
that Eq. (5) yields no correlation noise in the case of a
high additive noise does not matter.

Figure 1 illustrates the af orementioned statements.
All plots correspond to the same ratio of signal to
additive noise: 83 dB. With such asignal-to-noiseratio,
the correlation noise is quite pronounced. Figure 1b is
obtained by using transformation (5) for the signal
that is arealization of a random pulse sequence char-
acterized by a normal distribution with a zero mean
value and a unit variance. Well-pronounced additional
low-level signals that have other delays are also seen
in the plot. No such signals can be seen in Fig. 1a,
whichisobtained by using the “classical” expression (2)
for the same signal.

Figure 1c corresponds to the output of the matched
filter as given by Eq. (5), but for another signal. This
signa was obtained from the signa used in plotting
Figs. 1laand 1b in the following way. The spectrum of
the signal to be processed was modified depending on
the spectrum modulus. If the spectrum modulus was
greater than some limiting value, say 0.5, the value of
the modulus itself was used in the calculations. If the
spectrum modulus was lower than the limiting value,
thislatter value was used. The resulting modulus of the
spectrum was supplemented with an appropriate phase:
the spectrum moduluswas multiplied by an exponential
of theimaginary unit multiplied by the argument of the
signal spectrum. The change in the spectrum is illus-
trated by Fig. 2, which shows the moduli of the spec-
trum before and after transformation. The signal
obtained by the aforementioned transformation is
called the signal with truncated spectrum.

Figure 3 showsthe signal-to-noiseratio at the output
of the matched filter as a function of the same ratio at
the filter input for two processing algorithms and two
signal types. Number / labels the dependence obtained
by the classical algorithm of Eq. (2). The figure shows
that this dependence tendsto the level of the correlation
noise as the input noise decreases. Number 2 indicates
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Fig. 2. Moduli of the spectra of arandom signal (a) before the transformation and (b) after the truncation of the spectrum.

the dependence for the same signal processed with the
new algorithm (5). Here, no correlation noise can be
noticed, but the entire curve passes above the values
given by algorithm (2) for low signal-to-noise ratios at
the filter input. With higher noise levels at the output,
the algorithm becomes less efficient in extracting weak
signals. The reason is that the effect of noise increases
at the frequencies where the modulus of the filter
response is minimal. The latter statement is confirmed
by the dependence labeled with number 3. This depen-
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Fig. 3. Noise-to-signal ratio at the output of the matched fil -
ter versus the signal-to-noise ratio at the filter input for dif-
ferent processing algorithms and signals: (1) ordinary pro-
cessing with Eq. (2); (2) processing with Eq. (5); (3) same
for the signal with the limited minimal value of the spec-
trum modulus; and (4) the input value of the noise-to-signal
ratio.

dence is obtained with the processing algorithm of
Eqg. (5) for the signal with atruncated spectrum (Fig. 2b)
whose modulusisfree of small values. The curve coin-
cideswith that labeled with 1 in the band where no cor-
relation noise is noticeable and then passes lower, with-
out any correlation noise. Such a signal is most appro-
priate for using matched-filtering algorithm (5).
Straight line 4 corresponds to the case when the
changes in the signal-to-noise ratio remain constant at
the input and output. This line is useful for estimating
the gain in the signal-to-noiseratio provided by all pro-
cessing methods used. The distance measured along the
vertical fromacertainlinetoline (4) isequal tothegain
in the signal-to-noise ratio obtained along thisline.

Now let us consider the wave front inversion. The
signal generated by the WFI can involve an additive
noise of arather low level, and the lowest signal level
can be governed by the correlation noise. In the WFI-
processing, the signal shape cannot be arbitrary. It is
advantageous to realize the case number 2 in Fig. 3. By
doing so, the effect of the additive noise will be some-
what enhanced but the correlation noise will be fully
suppressed. Such a suppression can be quite efficient
(seeFig. 3).

Algorithm (5) is recommended for the WFI proce-
dure. In practice, such a procedure can be implemented
as follows. One receives the signal and storesiit. Then,
the Fourier spectrum of this signal is found. The spec-
trum is reversed by dividing unity by it. The inverse
Fourier transform is applied to the inverse spectrum
found. The signal obtained is transmitted into the same
medium. At the point of transmitting the initial signal,
transformation (5) yields a narrow pulse that is free of

ACOUSTICAL PHYSICS Vol. 50

No. 5 2004



CORRELATION NOISE IN THE ACOUSTIC WAVE FRONT INVERSION 527

correlation noise. Such atransformationisfeasible only
in acoustics. The author does not know if anybody has
ever put the aforementioned algorithm to practice, in
spite of the fact that transformation (5) is well known
and the correlation noise was actually observed in the
WFI [2].

It is useless to introduce changes into the spectrum
modulus, because such changes cannot be taken into
account in the received signal. Therefore, the two sig-
nals will have different shapes, and transformation (5)
will not be applicable to them.
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Abstract—A segmentation method for biomedical acoustic images is reported which efficiently classifies the
groups of similar image elements (pixels) and separates them into particular characteristic regions. Asthe input
data, the method uses the pixel intensities of the source image. The classification is performed by learning vec-
tor quantization neural networks, which separate the main classes (structures, tissues, artifacts, etc.) present in
the image. Because this type of neural network implies that the number of the classes is known and that the
network should be trained by instruction, an expert must participate in the process of generating the input data.
Results obtained by processing test acoustic (ultrasonic) images demonstrate that the method is capable of
effectively solving sonography classification problems. The accuracy of the method is estimated by comparison
with the segmentation performed manually. © 2004 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Image segmentation is a process that divides an
image into regions with identical characteristics[1]. In
recent decades, a variety of approaches have been
developed for solving this problem, most of which han-
dle binary or monochrome imagery. The segmentation
techniques for such images can conventionally be cate-
gorized into the following groups [2]:

(a) segmentation based on the detection of bound-
aries between the regions (contour segmentation),

(b) clustering,

(c) region growing method, and

(d) split-and-merge method.

The advances in modern means of diagnostics have
made it possible to create color and three-dimensional
images, which entailed the development of new pro-
cessing methods. M odifications of the above segmenta-
tion techniques may be applied to both color and three-
dimensional images. All segmentation methods can
also be regarded as belonging to one of two types,
binary or fuzzy, depending on what logic, binary or
fuzzy, they rely upon. Binary segmentation always
gives a definite answer (“yes’ or “no”) to the question
whether or not a pixel belongs to a particular region.
Fuzzy segmentation does not necessarily make a
unique decision: to each pixel it assigns a probability of
belonging to a particular structure.

The methods based on detecting the boundaries of
regions deal with digital characteristics of the images by
analyzing therange of thelocal data, aswell asthe entire
two-dimensional vector space, using the gradients calcu-
lated in this space. After finding the boundaries, an addi-
tional postprocessing is necessary to create objects and
segments which characterize the elements present in the
image. Other contour segmentation methods also exist,

such as the contour-tracing method [1], which uses a
certain algorithm to move a point along the object’s
boundary, thereby tracing its contour, and the edge
detection method [3], which relies on the fact that the
region of interest is usually separated from adjacent
regions of the image by stepsin its brightness.

The region-growing and split-and-merge methods
mostly operate in terms of threshold brightness val-
ues. The first method defines a region by a collection
of points, which are "connected” with the “point of
growth” and have “similar” values. The algorithm
includes pixelsin the region that are near the point of
growth and whose values are within m — ¢t to m + ¢,
where mis the average brightness of the region and t
is the threshold value specified by the user. The sec-
ond method starts with splitting theimage into alarge
number of uniform regions, which are subsequently
merged anew to remove the artificial boundaries gen-
erated by the splitting procedure. Both the splitting
and merging processes use brightness fluctuations
across the region as a measure of its uniformity.
Although this method is one of the simplest to under-
stand, to obtain acceptable results in practice, one
should impose constraints on the growth process,
some of them being rather stringent [4].

The most frequently used method of separating dif-
ferent classes in the clustering problem is the “fuzzy
c-means’ method (or method of fuzzy centers) [5, 6].
The main limitation of thismethod isthat the total num-
ber of classes must be known a priori.

We should aso note the achievements in other sta-
tistical methods, such as wavelet anaysis [7, 8] and
Markov models [9], which are successfully used at
present to solve segmentation and pattern recognition
problems.

1063-7710/04/5005-0528%$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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Artificial neural networks have found increasing
application in various fields, including the signal pro-
cessing, pattern recognition, medical information sci-
ence, speech recognition and analysis, and commerce.
They form a data processing system, whose structure
has much in common with biological neural networks.

The analysis of works associated with application of
neural networks in mathematical physics problems
shows that the neural-network approach is advanta-
geous over conventional mathematical methodsin three
cases[10]. First, when the problem, duetoits particul ar
features, does not lend itself to adequate formalization,
because it contains elements of ambiguity that cannot
be formulated in terms of conventional mathematical
methods. Second, when the problem can be formalized,
but there are presently no tools for solving it. Third,
when the problem can be formalized and an appropriate
mathematical tool exists, but its implementation by
available computers fails to satisfy the requirementsin
terms of time, size, mass, power consumption, etc. In
this situation, one has either to simplify the algorithm,
which degrades the quality of the solution, or to apply
an appropriate neural network approach if it provides
the required quality of solving the problem.

In spite of ample literature devoted to neura net-
works on the whole and to their specific applications, it
was not until quite recently that a steady interest
emerged in the study of the potential of applying neu-
ral-network approaches to various inverse mathemati-
cal physics problems, including the problems of image
generation, reconstruction, and interpretation.

Three main directions of the current research efforts
in acoustics and rel ated areas of radio-wave physicscan
be indicated: the application of multilayer perceptrons
in data interpretation [11-16], the design of neural net-
works of a special architecture for solving scalar elec-
tromagnetic and acoustic introscopy problems [17],
and the solution of linearized versions of tomography
and holography problems using Hopfield networks
[18-22].

The purpose of this study isto apply the neural net-
work approach to the segmentation of ultrasonic
images. The reason why the neural network approachis
chosenisthat the statistical properties of biological tis-
sues are in most cases known a priori. Therefore, the
algorithms that combine learning and self-organization
should provide a higher segmentation fidelity. The ele-
ments of learning supply the classification process with
experience of a diagnostician, while the self-organiza-
tion enhances the robustness of the method against
errors and widens its scope, allowing it to be applied to
images of various types.

Let usfirst detail the topology of the learning vector
quantization neural networks, beginning with the self-
organizing Kohonen map.
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Fig. 1. Self-organizing Kohonen map.

1. SELF-ORGANIZING KOHONEN MAP

Artificial neural networks are computationa sys-
tems that are similar to biological neura networks,
which contain neurons, axons, dendrites, neuron layers,
transfer functions, etc. [23, 24]. In genera, artificial
neural networks can be categorized into two large
groups in terms of the amount of information needed
for the learning phase: trained (learned by instruction)
networks and self-organizing networks.

Trained neural networks use a prior information
about the desired network outputs in order to decrease
the error between real input and desired output data to
atolerable value. Self-organizing networks themselves
determine the distribution of the internal weighting
coefficients for the data applied to their inputs and do
not require learning by instruction.

Self-organizing networks, also known as Kohonen
neural networks, are networks that contain a topology
map, i.e, take into consideration the topological
arrangement of their elements. Such a neural network
has alayer of input neurons and a layer of output neu-
rons. Each neuron of the input layer is connected to
each neuron of the output layer. At each stage of the
learning phase, the neuron whose weighting coeffi-
cients providethe best fit (usually, in terms of the small-
est Euclidean distance) with the output signa is
declared the winner. This output neuron and neurons of
its nearest neighborhood tune their weighting vectors
such that they get closer to the input vector. The degree
of this tuning is different for different neurons: it is
higher near the winning neutron and decreases as the
distance from the winner increases.

Figure 1illustrates the simplest structure of the self-
organizing Kohonen map. The output neurons can have
an arbitrary spatial distribution; usually, itisalinear or
two-dimensional array. A vector X of length m is
applied to the input of the network. Neurons |, |, ...,
I, only serve as branching points of the vector X. Each
neuron of theinput layer is connected to each neuron of
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the Kohonen layer through an individual weight w,,,.
Theweightsthat refer to the nth neuron of the Kohonen
layer form the weight vector W,, = {wW;,, Wy, ..., W }-
As the training time passes, the size of the nearest
neighborhood of the winning neuron and the degree of
tuning of the weighting vector decrease. In general, the
number of neurons in the Kohonen layer may be arbi-
trary and only depends on the parameters of the prob-
lem for which the network is used.

2. LEARNING MODE

The Kohonen map is trained through self-learning,
which proceeds without a teacher. It is therefore diffi-
cult (and unnecessary) to predict what particular
Kohonen neuron will be active for agiven input vector;
it isonly necessary to guarantee that, as a result of the
self-learning, the neural network will adequately col-
lect similar vectorsinto separate clusters. Each process-
ing element of the Kohonen layer calculates its input
intensity K|, according to the formula

Ky = D(X, Wy), ey

where X = {X,, X,, ..., Xy} istherow vector, W, = {w,,,
Wap, ..., Wy} 1S the column vector, and D is a certain
measure (metric) of the distance between W, and X.

There are two most general forms of the function
D(X, W,): the Euclidean distance

dX, W) = [X-WI = [ On=We)®  (2)

and the angle between the vectors

XIOWN ]
A(X, W) = arccosH2> = , 3
(XW) I IwiC @
where X - Wand ||X|| - |W||is the scalar product of vec-
tors X and W.

As the measure of distance, we take the Euclidean
distance d(X, W). The Kohonen rule is realized as fol-
lows. As soon as each output neuron calcul atesitsfunc-
tion K,,, they start competing in order to find out whose
K, isthelowest. When the winner of this competitionis
found, its output y, is set equal to 1, while the outputs
of al the remaining elements are set equal to 0.

At thismoment, all the weights change according to
the Kohonen learning rule [20]:

Wn(t + l) = Wn(t) + hcn(t)(X_Wn(t))yn’ (4)

wheret is the epoch number (discrete time) and h(t) is
the neuron neighborhood function, which isafunction of
distance r . between the winning neuron and neighboring
neurons in the network and is nonincreasing with time.

The function h,,(t) can be represented as a product
of two functions: a function of distance and a function
of time describing the learning rate:

hcn(t) = h("rc_rn”at)a(t)a (5)

IL’IN, RYCHAGOV

where r,, is the neuron coordinate in the network and
a(t) is the learning rate, which fals off as a linear or
hyperbolic function.

One of the following two functions of distance are
commonly used: the rectangular function

Cconst, d<ao(t),

h(d,t) = 5
R S ETE ©
or the Gaussian function
0 dn
h(d, t) = exp———-~=, 6)

where o(t) isthe so-called learning radius.
The Gaussian function usually gives the best result.

Initially, the learning radius is taken to be suffi-
ciently large; then, it is gradually decreased, so that,
finally, the winning neuron aone remains learning.
Most often, o(t) is adecreasing linear function.

3. FUNCTIONING MODE

Initssimplest form, the Kohonen layer functions by
therule“to thevictors belong the spails’; i.e., for apar-
ticular input vector, one and only one Kohonen neuron
outputs logical 1 (becomes active), while al the rest of
the neurons output 0. Asin the learning mode, a vector
isapplied to theinput and the Euclidean distanceiscal-
culated from EqQ. (2). The Kohonen neuron with the
smallest d(X, W) becomes the winner. Its output is 1,
while all other neurons output O:

_ O, d(X, W) = min{d(X, W)},

. (7
. d(X, W) £ min{ d(X, W)} .

Yn

The Kohonen layer classifies the input vectors into
groups of similar vectors. This means that, if the input
vectors are similar, they activate one and the same out-
put neuron.

It would be ineffective to associate an element of a
monochrome biomedical image with a particular bio-
logical tissue based on its brightness alone, because
such images are often contaminated with noise and
show a low contrast. Therefore, when classifying an
image element, we consider it not separately but
together with its neighborhood. To this end, for each
element, we generate a vector whose components are
the brightness values of the element and its eight near-
est neighbors. Thus, the vector carries information not
only about the brightness of one element but also about
the structure of the image in its neighborhood.

The vectors obtained were used to train the network
so that, as we noted above, similar vectors activate after
thistraining one and the same neuron of the output layer,
which is a criterion for the image elements correspond-
ing to these vectors to be ascribed to the same class.

No. 5
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Fig. 2. Learning vector quantization neural network.

Owing to this property, the self-organizing Kohonen
map can be used for image segmentation. However, this
algorithm sometimes fails to provide a successful seg-
mentation. The reason is that the Kohonen network
functions without an instructor. The impossibility of
controlling the learning process sometimes causes
regions corresponding to different (but similar in their
properties) biological tissues to merge into one region.
Therefore, although the learning in most cases proceeds
successfully, we decided to reject this type of network
and use its more complex version, namely, the learning
vector quantization network.

4. LEARNING VECTOR QUANTIZATION
NETWORK

The learning vector quantization network combines
two agorithms: the self-organizing Kohonen map and
the Grossberg layer. Figure 2 shows a simplified ver-
sion of the learning vector quantization network.

When the Kohonen neural network is used, it is
doubtful to predict which output neuron will be associ-
ated with a particular region of the image. The learning
vector quantization network makes such a prediction
possible, because training of this network includes ele-
ments of learning by instruction.

Consider the learning process in more detail. Let
neuronskK;, K,, and K; extract subclasses, which belong
to finite class 2 of the Grossberg layer, in the space of
input vectors. Then, the neurons K, K,, and K; will be
connected by unit weights to neuron G, and by zero
weights to other Grossberg neurons. Thus, neuron G,
will output 1 if one of the three Kohonen neurons (K,
K,, or K;) becomes the winner and outputs 1. We a pri-
ori know the portion of Kohonen layer neurons that
must be classified into particular classes of the Gross-
berg layer; therefore, we can specify the elements of the
weight vectors for the Grossberg layer beforehand.
Nevertheless, a learning procedure should be executed
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to obtain a correct classification into subclasses for
each of the input vectors.

L earning of the network in the Kohonen layer relies
on a set of pars of inputtarget vectors. {X,, T,},
(X0, T}, oo {Xg Tot

Each target vector has only one 1, the rest of its ele-
ments being zero; the 1 indicates the proper classification.

Consider the following pair of vectors:

0
0
X =2, Ti=| |
-9
0

Then, the input vector consists of three elements and
must be ascribed to one of the four finite classes.
Accordingly, the neural network must be trained so as
to ascribe the above vector to the third of the four finite
classes; i.e., thevector X; must activate the third neuron
of the Grossherg layer. For the learning vector quanti-
zation architecture, the topology of the Kohonen mapis
not of fundamental importance and the location of the
Kohonen neurons that belong to the same class may be
arbitrary, because they are grouped into a particular
class by the Grossberg layer. Therefore, the Kohonen
learning rule can be replaced with its simpler modifica-
tion: the algorithm of competitive training, which tunes
the weight of the winning neuron aone.

To train the network, first, the vector X is applied to
itsinput, after which the winning neuron isfound based
on the rule given by Eq. (7). Let the ith neuron of the
Kohonen layer be the winner. Then, the neuron K; out-
puts 1, while al the remaining neurons output O.

At the next stage, the procedure of finding the win-
ner neuron is applied to the Grossberg layer. Asaresult,
the jth Grossberg neuron wins and outputs 1, thereby
ascribing our input vector to the jth finite class. Of
course, this classification can be correct or incorrect
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Fig. 3. (a) Original ultrasonic image and (b) the manually segmented reference image.

depending on whether or not the input vector belongsto
the jth finite class.

If the classification is correct, the vector W, changes,
approaching the input vector by the formula

Wi(t+1) = Wi(t) +a(t)(X-W(1)); ®)

otherwise, the weight vector recedes from the input
vector.

The final state of the neural network depends on
three main factors:

(a) theinitial state of the weighting coefficients,
(b) the data set used to train the network, and

(c) the characteristics (parameters) of the neural net-
work itself.

The initial values of the weighting coefficients are
small and are chosen in arandom manner; their contri-
bution to the final state of the network decreases with
increasing number of test data sets. The parameters of
the network, such as the number of neurons in the
Kohonen layer, the degree of reducing the size of the
winning neuron’s neighborhood, and the rule for updat-
ing the weighting coefficients, are the basic parameters
that determine the final result. It should also be noted
that the procedure used for preprocessing the input data
plays an important part in training the network and,
consequently, in forming its final state. We consider
finding the optimal preprocessing procedure as one of
the most important lines of further investigation in this
area of research.

5. EXPERIMENTAL

Our experiment used ultrasonic images borrowed
from the atlas on child and adolescent clinical diagnos-
tics which was issued under the SONO-2000 project
[25]. In Fig. 3a, one can distinguish a region of a dark

biological tissue surrounded by lighter regions and also
the presence of a grain pattern typical of this kind of
image.

To create atraining sample set from the image, the
user selects 45 typical pixes for each of the three tis-
sues. For each of these pixels, an input vector consist-
ing of brightnesses of this pixel and of eight of its near-
est neighbors taken sequentially is constructed. As a
result, a column vector X = {X;, X,, ..., Xy} IS obtained.
Thus, each input vector consists of nine elements,
which contain information about not only the bright-
ness of the pixel but also the image structure in its
neighborhood. Each such vector is associated with the
target vector Y, which contains information about the
finiteclassit belongsto. Asaresult, aset of 135 vector—
target pairs, which is used to train the network, is
obtained. The process of creating the set of input vec-
torsisillustrated in Fig. 4.

A smaller number of training vectors gives alower
accuracy of the method. When the number of input vec-
tors was increased, no noticeable accuracy improve-
ment was observed. Presumably, this is caused by the
relatively small size of the initial image.

6. ACCURACY ESTIMATION

The result of the segmentation was quantitatively
evaluated by comparing it with the image segmented
manually. This reference image is shown in Fig. 3b.
After the segmentation, the image obtained was com-
pared with the referenceimage, pixel by pixel, and the
segmentation accuracy was calculated by the formula

A = % x 100%, )
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Fig. 5. Segmentation of (&) the original and (b) blurred images.

where A is the segmentation accuracy, C is the number An example of segmentation by the method
of pixels classified correctly, and N is the total number  described above is shown in Fig. 5a. The segmentation
of pixelsin theimage. accuracy was on the average 82%. Figure 5b showsthe

ACOUSTICAL PHYSICS Vol.50 No.5 2004
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result of segmentation of the same image subjected to
Gaussian blurring to reduce the effect of the grain pat-
tern. The use of this procedure improved the accuracy
to 84% and al so smoothed the boundaries of theregions
and removed the fine features, which is an unavoidable
result of the blurring.

CONCLUSION

The segmentation method described in this paper
relies on the processing of the image pixel intensity
data. The segmentation procedure is performed by the
learning vector quantization neural network. The net-
work training vectors are generated from theimage pix-
els selected by the user. After the network istrained, it
becomes possible to classify each pixel of the image.

The experimental results prove that the method can
be used to clearly recognize the regions in the image,
and the accuracy estimates show that the method pro-
vides an acceptabl e robustness.
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Abstract—A hydrophone calibration procedure that considerably reduces the error caused by the acoustic
field distortions in a hydroacoustic tank is proposed. The procedure is based on the definition of the reduced
electric transfer impedances of transducers (i.e., the electric transfer impedances reduced to the spherical
wave propagation law) and consists in measuring the electric transfer impedances for different distances
between hydroacoustic transducers. The sensitivity of the hydrophone under calibration is calculated from
the far-field values of the reduced electric transfer impedances. The latter are determined using a mathemat-
ical model of the hydrophone in the form of a system that contains a point sensing element and a finite num-
ber of point sources of acoustic signals (point reflectors). A method of determining the number and coordi-
nates of the point reflectors from the analysis of the acoustic “images’ of the hydrophone’sreflecting surface
is proposed. The measuring technique, the algorithms of mathematical processing, and the results of exper-
imental studies are considered. A comparative analysis of the results of the hydrophone calibration with
respect to the field by the reciprocity method is performed for the cases of using the conventional technique

and the proposed method. © 2004 MAIK “ Nauka/Interperiodica” .

In calibrating ahydrophonein alaboratory hydroa-
coustic tank, it is impossible to provide the far-field
conditions, because the casing of the hydrophone and
its mounting elements are not acoustically transpar-
ent. The interference of the signal produced by the
radiator and the signals reflected from the structural
and mounting elements of hydrophones leads to dis-
tortions of the acoustic field, the degree of the distor-
tions depending on the calibration frequency. These
distortions substantially contribute to the measure-
ment errors.

The characteristic size of a measuring hydrophone
may considerably exceed the size of its active element.
In this case, when the hydrophoneis calibrated in alab-
oratory hydroacoustic tank, it isimpossible to provide
the conditions with a plane wave incident on the hydro-
phone. Theinterference of the direct wave produced by
the radiator and the waves reflected from the structural
and mounting elements of the hydrophone may intro-
duce considerable distortions into the results of mea-
surements. In this paper, we describe the procedure of
calibration in a free field on the basis of using the
hydrophone model that consists of a point active ele-
ment and a finite number of point reflectors [1].

The canonica expression for determining the
receiving sensitivity My, of a measuring hydroacoustic
transducer H in a free field by the reciprocity method

with the use of auxiliary radiating P and reversible T
transducers hasthe form [2, 3]

_ DEZPHZTHrPHrTHDUZ
Ms Opf Zpr 1 U M

where Zpy, Zpt, and Zyy are the values of the electric
transfer impedances of the transducers; rp is the dis-
tance between the source P and the transducer H under
calibration; rp; isthe distance between the source P and
the reversible transducer T operating in the receiving
mode; rqy is the distance between the transducer H
under calibration and the reversible transducer T oper-
ating in the transmitting mode; p is the density of the
medium; and f is the frequency.

The values of the electric transfer impedances Zp,,
Zpr, and Zyy, are determined from the measured currents
lpn, lpr @nd Iy flowing through the transducers P and
T operating in the transmitting mode and from the
open-circuit voltages Upy, Upy, and Uqy measured at
the outputs of the transducers H and T operating in the
receiving mode;

7. = Upy
PH — I 1
PH

Upr

1
lpr

U
ZTH:j

ITH

Zpr =

Formula (1) isvalid for the spherical wave propaga
tion law. Therefore, to obtain acceptable far-field con-
ditionsin the measurements, it is necessary that the dis-
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Fig. 1. Simplified model for analyzing the effect of the
hydrophone under calibration on the acoustic field.

tances between the transducers be sufficiently large to
consider the transducers as point objects [4].

The auxiliary transducers (radiators and reversible
transducers), which are used for the calibration by the
reciprocity method, are usually designed with minimal
dimensions. A measuring hydrophone to be calibrated
has a casing and some mounting elements. Their
dimensions may be fairly large, so that the criterion of
minimal acceptable distance cannot be satisfied under
the conditions of alaboratory hydroacoustic tank. Asa
result, the measurements are performed in a spatial
region within which the interference of the direct
acoustic signal and the signalsreflected from the casing
of the transducer to be calibrated and from its mounting
elements causes distortions of the acoustic field. Under
these conditions, the use of the standard calibration
procedure may lead to considerable measurement
errors.

To analyze the effect of the hydrophone under cali-
bration on the acoustic field, we consider a simplified
model shownin Fig. 1. We assume that the radiator and
the hydrophone are separated by asufficiently large dis-
tance, which allows us to represent their respective
active elements as a point radiator P characterized by a

transmitting sensitivity Sp and a point receiver H char-

acterized by areceiving sensitivity My . The reflecting
properties of the casing and the mounting elements of
the hydrophone can be described by a point reflector R
with a complex reflection coefficient Wi = wRe_m)R .
Elements P, H, and R lie in the XZ plane, as shown in
Fig. 1. Receiver H is at the origin of coordinates; radia-
tor P ison the X axis at a point with coordinates (x;, 0);
and reflector R has the coordinates (0, zg).

The sound pressure acting on the receiver H is a
result of interference of two coherent spherical waves:
the direct acoustic wave with a complex amplitude
expressed as

. g To —jk(rpy=ro)
pPstplPHr_e e

PH

ISAEV et al.

and the wave reflected from the reflector R with acom-
plex amplitude

o e_j(k(rPR+rRH_r0)+¢R).

Pry = SelpHWg
lpr T I'rH

Here, r, isthereference distance, which usually istaken

tobeequal to1m; k= % is the wave number; and ¢

is the sound velocity in water.
The complex amplitude of the voltage at the hydro-
phone output, Upy, has the form

. oo g —jk(rey—ro)
Uph = MySplpy—2e ™7 °

I'ey (2)

—j(kug+dg)

X (L+WwgYr(rpy)e ),
where Ug = rpg + gy — ey @nd
'eH 1
lprt I'rH

The following consideration is based on the defini-
tion of the electric transfer impedance reduced to the
propagation law of acoustic waves. For radiator P and
hydrophone H separated by a distance rpy, we deter-
mine the electric transfer impedance reduced to the
spherical wave propagation law (below we call it
reduced transfer impedance):

O<ygr(ren) =

. | r ik _
Zon(r) = Lenlergikre—ro) 3)
pr To

One can easily verify that the reduced transfer
impedance of the point radiator P and point receiver H
in an unperturbed field of a spherical acoustic wave
does not depend on the distance between P and H and

is equal to the product My S . We denote the reduced

transfer impedance of the point radiator and point
receiver in the unperturbed spherical wave field as

ZPHD-

In the spherical wave field perturbed by the wave
produced by areflector, the reduced transfer impedance
depends on the distance between the radiator and the
receiver of the acoustic signal. Substituting the expres-
sion for the output voltage of the hydrophone into
Eq. (3) at wg << 1, we obtain an approximate expression
for the magnitude of the reduced transfer impedance

Zpy(r) = ZPHO/\/(l + 2WrYRr(rpn) cOS(kug + §g)), (4)

where Zp, = My Sp.

Figure 2 shows the spatial dependences of the
reduced transfer impedance Zp,(r) measured at fre-
guencies of 30, 40, and 60 kHz for the radiator and the
hydrophone manufactured in the form of piezoelectric
spheres 7 mm in diameter suspended on thin electric

ACOUSTICAL PHYSICS Vol.50 No.5 2004
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cables. The impedance Z(r) was measured using a
reflector, which was made in the form of an empty
sphere 30 mm in diameter and fixed to the cable of the
hydrophone at a distance of 250 mm along the vertical
from the active element. The distance between the
transducers was varied from 440 to 1540 mm. The val-
ues of Zyy(r) shown in Fig. 2 are expressed in percent
of Zpy, - Thelatter, in turn, were measured for each fre-
quency without the reflector on the hydrophone cable.
From Figs. 1 and 2, one can see that, as the distance
between transducers increases, the difference Ar = rpg —
rey between the radiator—reflector and radiator—
receiver distances decreases. Hence, the phase differ-
ence between the direct and reflected acoustic waves,
which are superimposed at the reception point H, var-
ies. Astheradiator movesfromtheinitial positionto an
infinitely distant point, the reduced transfer impedance

Ary

A

decreasing spatial periodicity (A is the wavelength of
2
I'rRH

A
reduced transfer impedance tends to a constant value:

lim (Zpy(r))

Tpy —

at a frequency f undergoes oscillations with a

theacoustic signal). At rp > , the magnitude of the

Zpy, =

&)

= ZPHQA/(]- + 2WRCOS(Kr gy + OR)).

For the receiving sensitivity My, of the hydrophone asa
system consisting of a point active element and a point
reflector, we can write the expression

My = My /(1 +2wgcos(Kr gy + 9g)).-

A similar expression isvalid for the transmitting sensi-
tivity S of the radiator when the hydrophoneis a point
receiver and the reflector is concentrated at the radiator:

S> = Sod/(1+2wgeos(Kr gy + $)).

The calculation of the sensitivity of the hydrophone
with the use of the values of the electric transfer imped-
ances determined at arbitrarily chosen distances
between the transducers|eads to aconsiderable error in
theresult. As seen from Fig. 2, the deviation of the val-

ues of the reduced transfer impedance from Zp,,  may

reach a double amplitude of the envelope, which
amounts to about 7% at a frequency of 30 kHz and
about 6% at a frequency of 40 kHz.

Let us show how the information on the spatial
dependence of the reduced transfer impedance Zpy(r)

can be used for the determination of Zpy, and Zpy,_.

First, we consider the problem of determining the
coordinates of thereflector. For this purpose, we usethe
following approach. Assume that, for a set of distances

ren, (i =1, ..., N), we know the values of the squared
ACOUSTICAL PHYSICS  Vol. 50
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Fig. 2. Spatial dependences of the reduced transfer imped-
ances of apair of spherical transducers with asingle reflec-
tor at frequencies of (@) 30, (b) 40, and (c) 60 kHz. The dots
represent the experiment, and the lines refer to the model.

magnitude of the reduced transfer impedance Z2,, (r);.
We place avirtua point reflector V with aunit reflection
coefficient at some point of the plane with the coordi-
nates (xy, z,) (see Fig. 1). For the virtua reflector V, at

the aperture D € (e i=1, ..., N), we determine the
functional
1 2 2
V,D) = ———— "(V,D "(V, D))", (6
QV, D) = g (QV, D)+ (Q'(V, D)), 6
where

Q(Vv,D) = z Uiyv(rgn,)cos(kdy,),
N

Q'(v,D) = z Oiyy(ren)sin(kdy,),

By, = Tpy,—Tpn + Num,s

and (V, D) isthe normalizing function.

One can easily see that the functional Q(V, D) hasa
globa maximum at the point with coordinates (xy = Xg,
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Fig. 3. (a) Acoustic image of the reflector at afrequency of 30 kHz and (b) the values of functional Q(V, D) at x=0.

z, = Zz). Hence, by scanning with the virtual reflector
overthearea xy, 1 (Xg—a, Xg+ @), 2, [ (zg—b, Zz+ b)
inthe expected region of thereflector R and by mapping
the values of the functional Q(V, D) by gradations of
brightness for each position of reflector V, we obtain an
image of thereflector Rin the form of abright spot cor-
responding to the intersection of two beams at the point
with coordinates (Xg, Zg)-

Figures 3a—5a show acoustic images of the reflector
at frequencies of 30, 40, and 60 kHz. The images were
obtained from the spatial dependences of the reduced
transfer impedances presented in Fig. 2. In calculating
functional (6), we used the approximation

N
Zow, =5 3 Zan(T): %
i=1

The virtual reflector scanned the space within —400 to
+400 mm along the X axis and within 0 to 700 mm
along the Z axis with respect to the center of the active
element of the radiator. Figures 3b-5b show the values
of the functional Q(V, D) versusthe Z axis. In all three
plots, the functional Q(V, D) reaches its maximum in
the same spatial region, near the point with the coordi-
nates (0, 250). This result agrees well with the experi-
ment and testifies to the stability of the method.

The proposed method was used to reconstruct the
reflecting surface of a hydrophone to be calibrated. In
Fig. 6, the dots represent the spatial dependences of the
magnitude of the reduced transfer impedance Zp,(r)
measured experimentally for aB&K 8104 hydrophone
at frequencies of 40, 60, and 120 kHz. The values of

Zpyy(r) are given in percent of Zp, , which was esti-

mated by Eq. (7) for each frequency. The distance
between the hydrophone and the radiator was varied
from 480 to 800 mm. The hydrophone was placed ver-
tically in a hydroacoustic tank at a depth of 3 m and
fixed with its cable to two thin titanium strings by a
plastic clamp, whose pc parameter was close to that of
water. The maximal size of the clamp did not exceed
50 mm. The clamp wasfixed at adistance of 550-570 mm
from the geometric center of the sensing element of the
hydrophone. As radiators, we used piezoelectric spheres
with diameters of 20 (at a frequency of 40 kHz) and
7 mm (at frequencies of 60 and 120 kHz). The temporal
selection of signalsreflected from the boundaries of the
hydroacoustic tank was provided by radio-pulse mea
surement mode. The duration of radio pulses was no
greater than 50 periods of the carrier frequency. The
position of the geometric center of the active element of
the B&K 8104 hydrophone was taken to be the origin
of coordinates. Experimental dependences of the mag-
nitude of the reduced transfer impedance were used to
obtain the acoustic images of the reflecting surface of
the hydrophone. The scanning by the virtual point
reflector was performed over the area lying within
+400 mm along the X axis and 0 to 700 mm along the
Z axis (with respect to the position of the center of the
sensing element of the B&K 8104 hydrophone). The
resulting acoustic images are shown in Figs 7a—9a,
while Figs. 7b—9b represent the val ues of the functional
Q(V, D) within 0 to 700 mm along the Z axis (passing
through the casing, cable, and clamp of the hydro-
phone). From Fig. 7, one can seethat, at afrequency of
40 kHz, the casing and the cable of the hydrophone can
be considered as acoustically transparent. The bright
spot corresponding to the maximum of the functional
Q(V, D) at the point (0, 560) isthe acoustic image of the

ACOUSTICAL PHYSICS Vol. 50
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Fig. 4. (a) Acoustic image of the reflector at afrequency of 40 kHz and (b) the values of functional Q(V, D) at x = 0.
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Fig. 5. (a) Acoustic image of the reflector at afrequency of 60 kHz and (b) the values of functional Q(V, D) at x = 0.

clamp. As seen from Fig. 8, at a frequency of 60 kHz,
the functional retainsits extremum at the point (0, 560),
but the casing and cable of the hydrophone cease being
acoustically transparent and begin manifesting them-
selves as an additional reflector positioned at a distance
of 230 mm from the sensing element. At afrequency of
120 kHz (see Fig. 9), the effect of the casing and cable
of the hydrophone can be interpreted as that of areflec-
tor positioned at a distance of 170 mm from the sens-
ing element. The effect of the clamp at afrequency of

ACOUSTICAL PHYSICS  Vol. 50
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120 kHz does not manifest itself because of the tempo-
ral selection of the direct signal and the signal reflected
by the clamp.

The resulting images can be conveniently approxi-
mated by asimplified model in the form of aset of point
reflectors. Let us place reflectors at the points corre-
sponding to the maxima of the functional Q(V, D) on
the Z axis and, for each frequency, obtain a smplified
hydrophone model in the form of apoint active el ement
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Fig. 6. Spatial dependences of the reduced transfer imped-
ances of a spherical radiator and a B&K 8104 hydrophone
at frequencies of (a) 30, (b) 40, and (c) 60 kHz. The dots
represent the experiment, and the lines refer to the model.

with a receiving sensitivity of My, and a system of
M point reflectors with reflection coefficients w,,, and
with known coordinates. Whenw,, < 1 (m=1, ..., M),
the squared magnitude of the reduced transfer impedance

ISAEV et al.

can be represented by the following function of 2M + 1
unknown parameters Zpy , Wy, Wi, ..., Wy, Wy :

M

0
Z3u(r) = ZI23H0E1+ 2 z )
0 o=

®)
1 1] . D
X(WmCOS(kUm(pr))—Wmsm(kUm(pr)))51
where
Um = Tprm + MroH — TpHs
l'pH
ey) = ——————,
YnlTew) Ferm * I'RmH
w, = Re(W,), W, =Im(W,), m=1 .., M.

One can easily verify that the problem of determining

the unknowns in the expression for ZﬁH (r) is reduced

to the well-known problem of optimal linear filtering
for the measurement equation

M
Ro + Z ER;nym(rPH,) cos(kuy(ren,))
m=1

M
- z ReYm(Ten) SN(kO(ren)) = i +¢,
m=1
where g; isarandom error,

S = Zag(r),
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Fig. 7. (a) Acoustic image of the reflecting surface of the B&K 8104 hydrophone at a frequency of 40 kHz and (b) the values of

functional Q(V, D) at x=0.
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Fig. 8. (a) Acoustic image of the reflecting surface of the B&K 8104 hydrophone at a frequency of 60 kHz and (b) the values of
functional Q(V, D) at x=0.
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Fig. 9. (a) Acoustic image of the reflecting surface of the B&K 8104 hydrophone at a frequency of 120 kHz and (b) the values of
functional Q(V, D) at x=0.

and the components of the vector of unknown parame- Let us consider more closely the case of estimating
ters have the form the parameters of the reduced transfer impedance with
R = 72 allowance for the indeterminacy o in distances between

0 = &PHy

the centers of the active elements of transducers, rpy, .

2w}nZ,23H0, Assume that the transducers are placed at distances
dpy, from each other, and the values of the distances

are chosen arbitrarily but are uniquely determined (e.g.,

=
=
1

N = 2wy Zpy .
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Fig. 10. Results of calibration of the H 52-50 hydrophonein
afreefield (a) with the use of the proposed procedure and
(b) with the conventional technique.

as the distance between the points of suspension of the
hydrophone and the radiator). Taking into account that

0= dpy — Ipy and assuming that & < dpy , we obtain
the following expression for ZﬁH (d):
0
Zow(d) = Zpu(r) + 25——=Zou(r).
dpy —0
Then, the measurement equation can be reduced to the
form convenient for solving by the iteration technique:

M
Mo+ Z m;nym(dPHi_6) cos(kup(dpy, —0))
m=1
M
— S Riyaldhy -8 SN(kU(dp ~8)) )
m=1
~ 22X,
+ 6& = '(:Si + nlv
dpp,
where
Si= Zpu (), 0y = msi-

fi
At thefirst iteration, the estimates i, 1, N7, ...,
N, RAu, 0 are calculated under the assumption that

ISAEV et al.
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Fig. 11. Resultsof calibration of the B&K 8104 hydrophone
inafreefield (a) with the use of the proposed procedure and
(b) with the conventional technique.

0 = 0. At each subsequent iteration, the solutions to

Eq. (9) are determined by replacing & by the value 5
obtained at the preceding iteration. As a simple crite-
rion of termination, we can use the convergence of esti-

mates & to aconstant value.

After the termination of the iteration procedure, the
valuesof Zp,, and Zpy arecalculated by theformulas

Loy, = m,

Zpp,

M
= /\/mo"‘ Z (N meos(Kr gp) = Nnsin(Kr gn)).
m=1

Thereduced transfer impedances Zpy , Zpr_, Z1y,,

and Z;,_ are determined in the same way. The pro-
posed method allows one to determine the values of the
reduced transfer impedance of the active elements of
transducers, Zpy, , and the reduced transfer impedance

of transducersin the far-field zone, Z;,_, aswell asto

calculate the dependence of the reduced transfer
impedance on the distance between the transducers,
Zoy(r). In Figs. 2 and 6, the solid lines represent the
approximations of the spatial dependences of the
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reduced transfer impedances, which were obtained
from Eg. (8) with the substitution of the estimates of the
unknown parameters determined by solving the mea
surement equation. These approximations based on
modeling the reflecting hydrophone surface as a set of
point reflectors agree well with the experimental data.

After thevaluesof Zpy, , Zpy , Zpr,s Zp1, s Z1h,>»
and Z;,_ are determined, the receiving sensitivity of
the active element of the hydrophone under calibration,
M}, , can be calculated by the formula

. [EB)ZPHOZTH(DUZ.

Mu = Upf Zpr, O

(10)

Theformulafor calculating the sensitivity of the hydro-
phone, My, with allowancefor the effect of its structure
takes the form

M. = [&)ZPHwZTH@l/Z
" pf Zpr. O

Figures 10 and 11 show the results of calibrating
H 52-50 and B&K 8104 hydrophonesin afreefield in
a laboratory hydroacoustic tank by the method
described above. Curves 3.1-3.3 represent the val ues of
M,, obtained from Eq. (10) in three frequency sub-
bands. In each of these subbands, different types of
auxiliary transducers were used, and zones of overlap-
ping of the calibration frequencies were provided (see
the regions of overlapping of curves 3.1-3.3). For the
H 52-50 hydrophone, the frequency subbands were 2—
20, 1665, and 40-100 kHz (curves 3.1-3.3, respec-
tively). For the B& K 8104 hydrophone, the frequency
subbands were 10-20, 1560, and 40-150 kHz
(curves 3.1-3.3, respectively). The overlapping fre-
guencieswere chosen to beintheregionswherethefre-
guency dependence of the hydrophone’s sensitivity had
pronounced features. The results of calibration that
were obtained with different types of auxiliary trans-
ducers differ at the overlapping frequencies by no more
than 0.07 dB for H 52-50 and 0.16 dB for the B&K
8104 (in the zones of frequency overlapping, curves
3.1-3.3in Figs. 10aand 11a practically coincide). The

frequency dependences of M,, obtained for both

hydrophones are relatively smooth and exhibit a mono-
tonic behavior. In contrast to the results typical of con-
ventional calibration methods, these dependences
exhibit no jumplike fluctuations at neighboring fre-
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guencies, which testifies to the reliability of the results
of our measurements and to the correctness of the pro-
posed procedure. The results of calibrations per-
formed according to the conventional technique using
formula (1) are shownin Figs. 10b and 11b (in decibels

relative to the values of My, curves I and 2). Curves /

and 2 were obtained using two different reference set-
ups realizing the standard procedure of the reciprocity
method in a free field. The results represented by
curves 2 were obtained with fixed distances between
the transducers. Curves ] represent the results of cali-
bration with the electric transfer impedances being
determined as the average values of the results of mea-
surements performed with two different distances
between the transducers. The values of hydrophone
sensitivity obtained for both setups noticeably differ

from the values of My, . The difference in the results

reaches 0.6 dB for the H 52-50 and 1.2 dB for the B& K
8204. The behavior of curves 1 and 2 in Figs. 10b and
11bisof irregular character and exhibits the influence
of measurement errors caused by the distortions of the
acoustic field in the hydroacoustic tank. This conclu-
sion ismost evident for the H 52-50 hydrophone in the
low-freguency region, where the frequency characteris-
tic of sensitivity isamost uniform (see Fig. 10a).

The study described above showed that the proposed
procedure makes it possible to considerably reduce the
errors caused by the distortions of the acoustic field and
by the indeterminacy in the distances between the cen-
ters of the active elements of transducers. One can aso
expect that the proposed procedure should considerably
dacken the requirements imposed by the dimensions of
hydroacoustic tanks on the calibration of large-size
hydroacoustic measurement means.
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Abstract—Reflection and refraction of longitudinal and transverse acoustic waves at aplane boundary between
an antiferromagnet and a dielectric are studied. The antiferromagnet is assumed to have an easy-plane anisot-
ropy and to bein the state near the orientational phase transition in the magnetic field. A possibility of control-
ling the angles of the wave-type transformation upon reflection and the refraction angles, as well as al four
coefficients of the wave transformation upon reflection and refraction, by the magnetic field is demonstrated.
Conditions for the formation of the critical angles of internal reflection and the effect of the magnetic field on
their values are specified. A possibility of the radiation of a grazing wave into the material bulk in the vicinity
of the phase transition is analyzed. © 2004 MAIK “ Nauka/Interperiodica” .

If a plane acoustic wave is incident on a boundary
between two isotropic solids, two waves arise on both
sides of the boundary in the general case [1]. In this
paper, we study the reflection of an elastic wave at the
boundary between a magnet and a dielectric, where
both the diel ectric and the magnetic crystal are assumed
to beisotropic in their elastic and magnetoel astic prop-
erties. It is necessary to note that, in magnetically
ordered crystals, the magnetoelastic interaction effec-
tively grows as the orientational phase transition is
approached and leads to a change in the spectrum of
long-wave transverse acoustic oscillations from linear
to quadratic at the point of orientational phase transi-
tion [2]. In this case, an anisotropy of dynamic eastic
moduli, which causes areduction of the velocity of lon-
gitudinal sound and especially the velocity of trans-
verse sound (its experimentally measured change was
up to 50% in hematite[3]), arises near the orientational
phase transition even for a magnetic material isotropic
in its elastic and magnetoel astic properties.

Earlier, the reflection of magnetoacoustic waves
from afree surface of a semi-infinite antiferromagnetic
crystal with an easy-plane anisotropy, which wasin the
state near the orientational phase transition in magnetic

field ﬁ applied in the basic xy plane of the crystal

(ﬁ Il f/ the point of the orientational phasetransitionis
determined by the condition H = 0), was studied in [4].
For the aforementioned magnet with a strong decrease
in sound velocity near the orientational phasetransition
and for other magnets with this property, we will use
the term “ magnetoacoustic materials.” The most typical

examples of such materials easily grown in the form of
massive crystals are antiferromagnets like hematite
(a-Fe,Oy), iron borate (FeBO,), ferromagnets like dys-
prosium (Dy) and terbium (Th), and intermetallic com-
pounds with heavy rare-earth elements of the type
R-Mn,Ge, (R=Gd, Th, Dy, Ho, Er, and Tm) [5]. Here,
we consider the case where the surface of a magneto-
acoustic material borders not the vacuum but a semi-
infinite dielectric half-space. In this case, one should
expect new specific features of magnetoacoustic wave
propagation in such a structure.

Let usgive an expression for the el astic component

of free energy of the antiferromagnet mentioned
above[2]:

1
Foy = é)\zug,ii + uzU§,ik—2u21U§, Xy’ (D

where A, and |, are the Lame coefficients for the mag-

netoacoustic material; u, i is the elastic strain tensor;
2

Eme

(=—

€,
1k

€me = 9./2HH . isthe magnetoelastic gap in the spin
wave spectrum; g is the gyromagnetic ratio; €; =

is the parameter of magnetoelastic coupling;

JO2(ak)?+ €2 + €2, is the energy of low-frequency

magnons; &, = g,/H(H + Hp) isthe magnetic part of
the gap that vanishes at the point of orientational phase
transition (H = 0); Hg, Hp, and H,,. are the effective
exchange, Dzyaloshinski, and magnetostriction fields,
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respectively; @, isthe Néel temperature; |’< isthe wave
vector; and a is the lattice constant. The acoustic prop-
erties of the dielectric are described by first two terms
in Eq. (1).

The values of the material constants for the com-
pound substances of the structureto be calculated are as
follows [6]: for quartz, s, = 5000 m/s, s;; = 3800 m/s,
and p, = 2650 kg/m?; for hematite, s, = 6760 m/s, s, =
4200 m/s, p, =5290 kg/m?, He = 9.2 MOe, Hp =22 KOe,
and H . = 0.63 Oe. Proceeding from these data, we esti-
mate the magnetoel astic part of the gap: We= /% =
34 GHz; i.e., within the frequency range w <€ W, Of
real ultrasonic transducers, the following approxima
tionisvalid: the dynamics of the spin systemisnot con-
sidered in the explicit form and its effect upon the
acoustic system is reduced to the respective renormal -
ization of the elastic dynamic moduli or, what is the
same, to the renormalization of the velocities of longi-
tudinal (LA) and transverse (TA) sound, S, and S,,, in

the magnetoel astic material. We ignore the attenuation
of ultrasonic waves|[7, g].

Using the expressions for the free energy of the
dielectric and the magnetoelastic materid, it is easy to
obtain wave equations for mechanical displacements.
Trying the solutions to these equations in the form of
plane harmonic waves, we obtain the following expres-
sionsfor the TA and LA velocities [4]:

Sy = J“—2(1—1cos22a), )
P2

= Ay + 21,
o ”\/ P2

where the angle a is measured with respect to the neg-
ative direction of the y axis counterclockwise; s, =

ng and s, = ,?%2112 are the TA and LA velocities
2 2

far from the orientational phase transition, respectively;

(1- nZsm 20a), 3)

Ho 52t
andn= Inthedi€lectric, s;; = I and
Ay + 2|, s§| e
S, = )%2“1 respectively.
1

Let LA be incident under the angle a to the normal
to the boundary (y = 0) of the dielectric (y > 0) from the
magnetoelastic materia (y < 0). It generates two
reflected waves (LA and TA) and two refracted ones (LA
and TA). In the case of plane harmonic waves, the elas-
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tic displacements u, can be represented in the form (see

Fig. 1)
o g
i, @

= u'zmmsnamexp[i(k'z,xsina + Ky ycosa — oy t)]
Ceosa!
(w5 0
| R [
2. )

sna . .
u,H Dexpli(kKExsina — kS ycosa —wit)],
[Lcoso

(U5,
| R U
2 ©)
0S . .
: U?m%;ngﬂexp[l(kzxsmﬁ—kinOSB—w;t)],
[y, [
0 T [l
s ™
iny . .
= uI.oEfosﬁexph(kasnv +kyycosy —wyt)],
|:UT
0 f%
i) ®)
= uLOEr;_:?]S;aexp[i (kixsind + ki,ycosd — wyt)] ,

where u, and w are the wave amplitude and frequency.

The boundary conditions, which are the continuity
of the normal components of the mechanical stressten-
sor Ty, and the elastic strain tensor u;, in this case can be
ertten in the form [4]

I R R T T
Toniyt Taiy* Toviy = Tagiy* Taiys )

| R R _ T T
Uy i F Uyt Uy = Uyt Uy 5. (10)

Here, theindices|, R, and T correspond to theincident,
reflected, and transmitted waves and i = X, y. From
boundary conditions (9) and (10) with the substitution

of Egs. (4)~(8) and the stresstensor T;; = guF
i

that, at any time moment t, Wy = Wy = Wy = Wy, =

,itfollows

Wy = wand, at any point of the planey = 0, Ky , =
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Fig. 1. Geometrical construction of wave vectorsfor theincident LA wave, the reflected LA and TA waves, and the refracted LA and
TA waves at the hematite—quartz boundary for H = 0.1 (solid line) and 2 KOe (dashed line). The vector represented by adashed line

corresponds to the case of incidence of atransverse TA wave.

ks x = ki x = ki1« = k,. Hence, the directions of wave
propagation are determined by the relations
sind

Sit

sna _ sinB _ sny _
Sy(a)  sx(B) Sy
and can also be determined graphically on the basis of

(1)

this expression proceeding from the geometrical con-
struction of the surfaces of inverse phase velocities for
all waves, asisdemonstrated in Fig. 1.

From Eq. (11), taking into account Egs. (2) and (3),
we determine the expressionsfor the angles of thewave
transformation:

2 4Znsm o(1l+ cos 0() 1+J(4Znsm 0((1+ cos O() 1) —16¢(1- Z)n sn’ 0(

snp = (12)
8Znsm a
sinfy = p—Sna__ . (13)
1-{nsin 2a
. 2
§n’d = e, (14)
1-{nsin 2a

whereb = /sy, andc = s2,/S5, .

According to Egs. (12)—14), Fig. 2 givesthe depen-
dences of thereflection angle 3 and the refraction angle
y on the angle of incidence a for different degrees of
closeness of the magnetoacoustic material to the point
of orientational phase transition. One can see from the

figuresthat, by changing the external magneticfield ﬁ ,
itispossibleto control thereflection anglefor thetrans-
formed TA and also the refraction anglesfor LA and TA
arising in the dielectric.

After substituting Egs. (4)—(8) into Egs. (9) and
(10), it is possible to determine the amplitude coeffi-
cient of reflection for the incident LA wave, R, =

Uz o/ Ubyo ; the coefficient of itstransformationinto TAin
the case of its reflection, R, = Us/Us,; the coefficient
of its transmission into the dielectric, Ty, = uj;o/Ubo;
and the coefficient of its transformation into TA in the

case of its refraction, Ty, = Uj,o/Uyo. All these four
parameters can be determined by the Gaussian method
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from the system of linear equations corresponding to
the boundary conditions given by Egs. (9) and (10):

Hi(1-0)%i (a)sin20R,

HF Ho(1-0) i (B) cOS2BR,

§+ WSy SN2y T, — 1,S; c0s28T,,
0= Uo(1-0)&;(a)sin2a,

H- (A2 + 21,008 @)81 (@) Ry + 1,55 (B) Sn2BR,
Hr (A + 2p,€087y)s; T + g3 sin23T,,

(15)

F (h + 2m,008°a)5; (@),
E—cosa R, + sinBR;—cosyT, —sindT,; = —cosd,
%sin(x R, + cosBR;—sinyT, + cosdT,; = —sina.

Since the solution to Egs. (15) for R, R;, T, and
T, is awkward, we do not give it here. The system of
Egs. (15) was solved numerically for specific layered
structures. In particular, Figs. 3 and 4 present the results
of calculationsfor a quartz—hematite structure with dif-
ferent degrees of closeness of hematite to the point of
orientational phase transition. Note that, in the cases of
normal (a = 0°) and grazing (o = 90°) incidence of the
wave, no wave-type transformations take place.

Anaysis of Egs. (12)—(14) shows that two critical
angles of incidence a, ., and a, ,, Can exist. Starting
from these angles, at o >, ,, LA begins to propagate
along the boundar