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Abstract—A theoretical analysis of solutions of renormalization group equations in the minimal supersymmet-
ric standard model, which lead to a quasi-fixed point has shown that the mass of the lightest Higgs boson in
these models does not exceed 94 ± 5 GeV. This implies that a considerable part of the parameter space in the
minimal supersymmetric model is in fact eliminated by existing LEPII experimental data. In the nonminimal
supersymmetric standard model the upper bound on the mass of the lightest Higgs boson reaches its maximum
in the strong Yukawa coupling regime when the Yukawa constants are substantially greater than the gauge con-
stants on the grand unification scale. In the present paper the particle spectrum is studied using the simplest modifi-
cation of the nonminimal supersymmetric standard model which gives a self-consistent solution in this region of
parameter space. This model can give mh ~ 125 GeV even for comparatively low values of  ≥ 1.9. The spectrum
of Higgs bosons and neutralinos is analyzed using the method of diagonalizing mass matrices proposed earlier.
In this model the mass of the lightest Higgs boson does not exceed 130.5 ± 3.5 GeV. © 2000 MAIK
“Nauka/Interperiodica”.
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1. INTRODUCTION

The search for the Higgs boson remains one of the
top priorities for existing accelerators as well as for
those still at the design stage. This is because this boson
plays a key role in the standard model which describes
all currently available experimental data with a high
degree of accuracy. As a result of the spontaneous sym-
metry breaking SU(2) × U(1) the Higgs scalar acquires
a nonzero vacuum expectation value without destroy-
ing the Lorentz invariance, and generates the masses of
all fermions and vector bosons. An analysis of the
experimental data using the standard model has shown
that there is a 95% probability that its mass will not
exceed 210 GeV [1]. At the same time, assuming that
there are no new fields and interactions and also no
Landau pole in the solution of the renormalization-
group equations for the self-action constant of Higgs
fields up to the scale MPl ≈ 2.4 × 1018 GeV, we can show
that mh < 180 GeV [2, 3]. In this case, physical vacuum
is only stable provided that the mass of the Higgs boson
is greater than 135 GeV [2–6]. However, it should be
noted that this simplified model does not lead to unifi-
cation of the gauge constants [7] and a solution of the hier-
archy problem [8]. As a result, the construction of a realis-
tic theory which combines all the fields and interactions is
extremely difficult in this case. 

Unification of the gauge constants occurs naturally
on the scale MX ≈ 3 × 1016 GeV within the supersym-
metric generalization of the standard model, i.e., the
minimal supersymmetric standard model (MSSM) [7].
1063-7761/00/9106- $20.00 © 21079
In order that all the fundamental fermions acquire mass
in the MSSM, not one but two Higgs doublets H1 and
H2 must be introduced in the theory, each acquiring the
nonzero vacuum expectation value v1 and v2 where v2 =

 +  = (246 GeV)2. The spectrum of the Higgs sector
of the MSSM contains four massy states: two CP-even,
one CP-odd, and one charged. An important distin-
guishing feature of the supersymmetric model is the
existence of a light Higgs boson in the CP-odd sector.
The upper bound on its mass is determined to a consid-
erable extent by the value of  = v2/v1. In the tree
approximation the mass of the lightest Higgs boson in
the MSSM does not exceed the mass of a Z boson (MZ ≈
91.2 GeV): mh ≤ MZcos2β [9]. Allowance for the con-
tribution of loop corrections to the effective interaction
potential of the Higgs fields from a t quark and its
superpartners significantly raises the upper bound on its
mass:

(1)

Here  and  are the single-loop [10] and two-
loop [11] corrections, respectively. The values of these

corrections are proportional to , where mt is the run-
ning mass of a t quark which depends logarithmically
on the supersymmetry breaking scale MS and is almost
independent of the choice of . In [3, 5, 6] bounds
on the mass of the Higgs boson were compared in the
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minimal standard and supersymmetric models. The
upper bound on the mass of a light CP-even Higgs
boson in the MSSM increases with increasing 
and for  @ 1 in realistic supersymmetric models
with MS ≤ 1000 GeV reaches 125–128 GeV.

However, a considerable fraction of the solutions of
the system of MSSM renormalization-group equations
is focused near the infrared quasi-fixed point at  ~ 1.
In the region of parameter space of interest to us
(  ! 50) the Yukawa constants of a b quark (hb) and
a τ lepton (hτ) are negligible so that an exact analytic
solution can be obtained for the single-loop renormaliza-
tion-group equations [12]. For the Yukawa constant ht(t)
of a t quark and the gauge constants gi(t) its solution has
the following form:

(2)

where the index i has values between 1 and 3,

The variable t is determined by a standard method: t =

ln( /q2). The boundary conditions for the renormal-
ization-group equations are usually set at the grand uni-
fication scale MX(t = 0) where the values of all three
Yukawa constants are the same:

On the electroweak scale where (0) @ 1 the second
term in the denominator of the expression describing
the evolution of Yt(t) is much smaller than unity and all
the solutions are concentrated in a narrow interval near
the quasi-fixed point YQFP(t) = E(t)/6F(t) [13]. In other
words in the low-energy range the dependence of Yt(t)
on the initial conditions on the scale MX disappears. In
addition to the Yukawa constant of the t-quark, the cor-
responding trilinear interaction constant of the scalar
fields At and the combination of the scalar particle

masses  =  +  +  also cease to depend on

At(0) and (0) as Yt(0) increases. Then on the elec-
troweak scale near the infrared quasi-fixed point At(t)
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and (t) are only expressed in terms of the gaugino
mass on the grand unification scale. Formally this type
of solution can be obtained if Yt(0) is made to go to
infinity. Deviations from this solution are determined
by the ratio 1/6F(t)Yt(0) which is of the order of

1/10 (0) on the electroweak scale.

The properties of the solutions of the system of
MSSM renormalization-group equations and also the
particle spectrum near the infrared quasi-fixed point for

 ~ 1 have been studied by many authors [14, 15].
Recent investigations [15–17] have shown that for solu-
tions Yt(t) corresponding to the quasi-fixed point
regime the value of  is between 1.3 and 1.8. These
comparatively low values of  yield significantly
more stringent bounds on the mass of the lightest Higgs
boson. The weak dependence of the soft supersymme-

try breaking parameters At(t) and (t) on the bound-
ary conditions near the quasi-fixed point means that the
upper bound on its mass can be calculated fairly accu-
rately. A theoretical analysis made in [15, 16] showed
that mh does not exceed 94 ± 5 GeV. This bound is
25–30 GeV below the absolute upper bound in the min-
imal supersymmetric model. Since the lower bound on
the mass of the lightest Higgs boson from LEPII data is
113 GeV [1], which for the spectrum of heavy supersym-
metric particles is the same as the corresponding bound on
the mass of the Higgs boson in the standard model, a con-
siderable fraction of the solutions which come out to a
quasi-fixed point in the MSSM, are almost eliminated by
existing experimental data. This provides the stimulus
for theoretical analyses of the Higgs sector in more
complex supersymmetric models.

The simplest expansion of the MSSM which can
conserve the unification of the gauge constants and
raise the upper bound on the mass of the lightest Higgs
boson is the nonminimal supersymmetric standard
model (NMSSM) [18–20]. In addition to the doublets
H1 and H2, the Higgs sector of this model contains
the additional singlet superfield Y relative to the
gauge SU(2) × U(1) interactions. The most attractive
region of the NMSSM parameter space from the point
of view of theoretical analysis is that corresponding to
the limit of strong Yukawa coupling when the Yukawa
constants on the grand unification scale MX are substan-
tially larger than the gauge constant gGUT. This is the
region where the upper bound on the mass of the light-
est Higgs boson reaches its maximum, which is several
gigaelectronvolts larger than the corresponding abso-
lute bound in the MSSM. In addition, in this particular
case it is possible to select the interaction constants so
as to achieve the unification of the Yukawa constants of
a b quark and a τ lepton on the scale MX [21, 22] which
usually occurs in grand unification theories [23].

However, the mass of the lightest Higgs boson in the
NMSSM differs substantially from its upper bound [24].
In this connection, the present paper examines a very sim-
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ple model in which mh reaches its upper theoretical bound
for a specific choice of fundamental parameters. This
model is obtained by modifying the nonminimal super-
symmetric model and yields a self-consistent solution
in the strong Yukawa coupling regime where, even for
comparatively low values of  ≥ 1/9, the mass of
the lightest Higgs boson in the modified NMSSM may
reach 125–127 GeV. Although the parameter space of
this model is enlarged considerably, the theory does not
lose its predictive capacity. The proposed model is used
to study characteristics of the spectrum of superpart-
ners of observable particles and Higgs bosons. The
mass of the lightest Higgs boson in this model does not
exceed 130.5 ± 3.5 GeV. 

This bound on the mass of the lightest Higgs boson
is not the absolute upper bound in supersymmetric
models. For instance, it was shown in [25] that by intro-

ducing four or five additional 5 +  multiplets of mat-
ter, the upper bound on mh in the NMSSM is increased
to 155 GeV. Recently the upper bound on the mass of
the lightest Higgs boson has been actively discussed using
more complex expansions of MSSM theory [26–28]. In
particular, in addition to the singlet it is also possible to
introduce several SU(2) triplets into the Higgs sector of
supersymmetric models. Their appearance destroys the
unification of the gauge constants at high energies. In
order to reconstruct this, in addition to triplets we also
need to add several multiplets of matter which carry
color charge in the SU(3) group but do not participate

in SU(2) × U(1) interactions, for example 4(3 + ).
A numerical analysis made in [27] shows that unifica-
tion of the gauge constants then occurs on the scale

 ~ 1017 GeV and the mass of the lightest Higgs
boson does not exceed 190 GeV. The existence of a
fourth generation of particles in the MSSM [28], which
is extremely problematical from the point of view of the
known experimental data, also leads to an appreciable
increase in the upper bound on mh. Consequently, an
increase in the upper bound on the mass of the lightest
Higgs boson in the supersymmetric models is usually
accompanied by a substantial increase in the number of
particles in the models which may be counted as a seri-
ous disadvantage of this type of model. In the present
study, unlike those noted above [25–28], we examine the
dependence of mh and the particle spectrum on the fun-
damental parameters of the modified nonminimal super-
symmetric model in the strong Yukawa coupling regime.

2. PARAMETERS OF THE NONMINIMAL 
SUPERSYMMETRIC STANDARD MODEL

IN THE STRONG YUKAWA COUPLING REGIME

By definition the superpotential of the nonminimal
supersymmetric model is invariant with respect to the
discrete transformations  = exp(2πi/3)yα of the Z3

group [19] which means that we can avoid the problem

βtan

5

3

M̃X

yα'
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
of the µ-term in supergravity models. Z3-symmetry
usually occurs in string models in which all the fields of
the observable sector remain massless in the exact
supersymmetry limit. In addition to observable super-
fields yα, supergravity theories also contain a hidden
sector in which local supersymmetry is broken. In mod-
ern supergravity theories this sector includes singlet dila-
ton S and moduli Tm fields with respect to gauge interac-
tions. These fields always appear in four-dimensional
theory and they occur as a result of the compacting of
additional dimensions. The vacuum-averaged dilaton
and moduli fields determine the values of the gauge con-
stants on the grand unification scale and also the dimen-
sions and shape of compacted space. The superpoten-
tial in supergravity models is usually represented as an
expansion in terms of superfields of the observable sec-
tor [29]:

(3)

where (S, Tm) is the superpotential of the hidden
sector. In Eq. (3) summation is performed over the
recurrent Greek subscripts. The requirements for con-
servation of R-parity [30] and gauge invariance have
the result that the single parameter µ is retained in the
MSSM which corresponds to the term µ(H1H2) in the
superpotential (3). However, the expansion (3) assumes
that this fundamental parameter should be of the order
of MPl since this scale is the only dimensional parame-
ter characterizing the hidden (gravity) sector of the the-
ory. In this case, however, the Higgs bosons H1 and H2

acquire an enormous mass  . µ2 .  and no
breaking of SU(2) ^ U(1) symmetry occurs. In the
NMSSM the term µ(H1H2) in the superpotential (3) is
not invariant with respect to discrete transformations of
the Z3 group and for this reason should be eliminated
from the analysis (µ = 0). As a result of the multiplica-
tive nature of the renormalization of this parameter, the
term µ(q) remains zero on any scale q ≤ MX–MPl . How-
ever, the absence of mixing of the Higgs doublets on the
electroweak scale has the result that H1 acquires no vac-
uum expectation value as a result of the spontaneous sym-
metry breaking and d-type quarks and charged leptons
remain massless. In order to ensure that all quarks and
charged leptons acquire nonzero masses, an additional
singlet superfield Y with respect to gauge SU(2) ^ U(1)
transformations is introduced in the NMSSM. The
superpotential of the Higgs sector of the nonminimal
supersymmetric model [18–20] has the form

(4)

W Ŵ0 S Tm,( )
1
2
---µαβ S Tm,( )yα yβ+=

+
1
6
---hαβγ S Tm,( )yα yβyγ,

Ŵ0

mH1 H2,
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2

Wh λY H1H2( ) κ
3
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SICS      Vol. 91      No. 6      2000



1082 NEVZOROV, TRUSOV
As a result of the spontaneous breaking of SU(2) ^

U(1) symmetry, the field Y acquires a vacuum expecta-

tion value (〈Y〉  = y/ ) and the effective µ term (µ =

λy/ ) is generated.

In addition to the Yukawa constants λ and κ, and also
the standard-model constants, the nonminimal super-
symmetric model contains a large number of unknown
parameters. These are the so-called soft supersymmetry
breaking parameters which are required to obtain an
acceptable spectrum of superpartners of observable par-
ticles from the phenomenological point of view. The
hypothesis on the universal nature of these constants on
the grand unification scale allows us to reduce their
number in the NMSSM to three: the mass of all the scalar
particles m0, the gaugino mass M1/2, and the trilinear inter-
action constant of the scalar fields A. In order to avoid
strong violation of CP parity and also spontaneous break-
ing of gauge symmetry at high energies (MPl @ E @ mt)
as a result of which the scalar superpartners of leptons
and quarks would acquire nonzero vacuum expectation
values, the complex phases of the soft supersymmetry
breaking parameters are assumed to be zero and only

positive values of  are considered. Naturally univer-
sal supersymmetry breaking parameters appear in the
minimal supergravity model [31] and also in various
string models [29, 32]. In the low-energy region the
hypothesis of universal fundamental parameters can avoid
the appearance of neutral currents with changes in flavor
and can simplify the analysis of the particle spectrum as
far as possible. The fundamental parameters thus deter-
mined on the grand unification scale should be considered
as boundary conditions for the system of renormalization-
group equations which describes the evolution of these
constants as far as the electroweak scale or the supersym-
metry breaking scale. The complete system of renormal-
ization-group equations of the nonminimal supersym-
metric model can be found in [33, 34]. These experi-
mental data impose various constraints on the NMSSM
parameter space which were analyzed in [35, 36]. 

The introduction of the neutral field Y in the
NMSSM potential leads to the appearance of a corre-
sponding F term in the interaction potential of the
Higgs fields. As a consequence, the upper bound on the
mass of the lightest Higgs boson is increased:

(5)

The relationship (5) was obtained in the tree approxi-
mation (∆11 = 0) in [20]. However, loop corrections to
the effective interaction potential of the Higgs fields
from the t-quark and its superpartners play a very sig-
nificant role. In terms of absolute value their contribu-
tion to the upper bound on the mass of a Higgs boson
remains approximately the same as in the minimal
supersymmetric model. When calculating the correc-
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tions  and  we need to replace the parameter µ

by λy/ . Studies of the Higgs sector in the nonmini-
mal supersymmetric model and the single-loop correc-
tions to it were reported in [24, 33, 36–39]. In [6] the
upper bound on the mass of the lightest Higgs boson in
the NMSSM was compared with the corresponding
bounds on mh in the minimal standard and supersym-
metric models. The possibility of a spontaneous loss of
CP parity in the Higgs sector of the NMSSM was stud-
ied in [39, 40]. 

It follows from condition (5) that the upper bound
on mh increases as λ increases. Moreover, it only differs
substantially from the corresponding bound in the
MSSM in the range of small . For high values
(  @ 1) the value of sin2β tends to zero and the
upper bounds on the mass of the lightest Higgs boson
in the MSSM and NMSSM are almost the same. The
case of small  is only achieved for fairly high val-
ues of the Yukawa constant of a t-quark ht on the elec-

troweak scale [ht(t0) ≥ 1 where t0 = ln( / ) and

 decreases with increasing ht(t0). However, an analy-
sis of the renormalization-group equations in the NMSSM
shows that an increase in the Yukawa constants on the
electroweak scale is accompanied by an increase in ht(0)
and λ(0) on the grand unification scale. It thus becomes
obvious that the upper bound on the mass of the lightest
Higgs boson in the nonminimal supersymmetric model
reaches its maximum in the strong Yukawa coupling
limit, i.e., when ht(0) and λ(0) @ qi(0). 

In our previous two studies [21, 41] we analyzed the
renormalization of the NMSSM parameters in the
strong Yukawa coupling regime. We showed [21] that
as the values of the Yukawa constants on the scale MX

increase, the solutions of the renormalization-group
equations on the electroweak scale are pulled toward a
quasi-fixed (Hill) line (κ = 0) or surface (κ ≠ 0) in
Yukawa constant space, which limit the range of per-
missible values of ht , λ, and κ. Outside this range in the
solutions of the renormalization-group equations for

Yi(t) where Yt(t) = (t)/(4π)2, Yλ(t) = λ2(t)/(4π)2, and
Yκ(t) = κ2(t)/(4π)2, a Landau pole appears below the
grand unification scale and perturbation theory cannot

be applied when q2 ~ . Along the Hill line or surface
the values of Yi(t) are distributed nonuniformly. As Yi(0)
increases, the region in which the solutions of the
renormalization-group equations are concentrated on
the electroweak scale in the strong Yukawa coupling
regime becomes narrower and in the limit Yi(0)  ∞
all the solutions are focused near the quasi-fixed points.
These points are formed as a result of intersection of the
Hill line or surface with the infrared fixed (invariant)
line. This line connects the stable fixed point in the
strong Yukawa coupling regime [42] with the infrared
stable fixed point of the system of NMSSM renormal-
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ization-group equations [43]. The invariant lines and
their properties in the minimal standard and supersym-
metric models were studied in detail in [44]. 

As, with increasing Yi(0), the Yukawa constants
approach the quasi-fixed points, corresponding solu-
tions for the trilinear interaction constants Ai(t) and the

following combinations of scalar particle masses (t):

cease to depend on their initial values on the scale MX .
If the evolution of the gauge and Yukawa constants is
known, the rest of the renormalization-group equations
of the nonminimal supersymmetry model can be con-
sidered as a system of linear equations for the soft sym-
metry breaking parameters. In order to solve this sys-
tem of equations we first need to integrate the equations
for the gaugino masses and for the trilinear interaction
constants of the scalar fields Ai(t) and then use the

results to calculate (t). Since this system of differ-

ential equations for Ai(t) and (t) is linear, under uni-
versal boundary conditions we can obtain the depen-
dence of the soft supersymmetry breaking parameters

on the electroweak scale on Ai , M1/2, and  [45, 46]:

Ai(t) = ei(t)A + fi(t)M1/2,

(6)

The functions ei(t), fi(t), ai(t), bi(t), ci(t), and di(t) remain
unknown since no analytic solution of the complete
system of NMSSM renormalization-group equations
exists. It was shown in [41] that as the quasi-fixed
points are approached, the values of the functions ei(t0),
ai(t0), ci(t0), and di(t0) tend to zero whereas for Yi(0)  ∞
all Ai(t) are proportional to M1/2 and all (t) ∝  .

The weak dependence of Ai(t) and (t) in the strong
Yukawa coupling regime on the initial conditions has
the result that the solutions of the renormalization-
group equations for trilinear interaction constants and
combinations of scalar particle masses and also the
solutions for Yi(t) are focused on the electroweak scale
near the quasi-fixed points. In general under nonuniver-
sal boundary conditions the solutions for Ai(t) and

(t) are grouped near certain lines (κ = 0) or planes
(κ ≠ 0) in the soft supersymmetry breaking parameter
space. These lines and planes are almost perpendicular

to the axes At and  whereas the planes in the spaces
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(At , Aλ, Aκ) and ( , , ) are also almost paral-

lel to the axes Aκ and . Along these lines and planes
as Yi(0) increases, the trilinear interaction constants and
combinations of scalar particle masses go to quasi-
fixed points.

3. CHOICE OF MODEL

The soft supersymmetry breaking parameters play a
key role in an analysis of the particle spectrum in mod-
ern supersymmetric models. They destroy the Bose–
Fermi degeneracy of the spectrum in supersymmetric
theories so that the superpartners of observable parti-
cles are substantially heavier than quarks and leptons.
However, it should be noted that a study of the particle
spectrum in the NMSSM is considerably more complex
than a study of this spectrum in the MSSM for  ~ 1
since two new Yukawa constants λ and κ appear in the
nonminimal supersymmetric model for which the
boundary conditions are unknown. In turn, the renor-
malization of the trilinear interaction constants and the
scalar particle masses, i.e., the values of the functions
ei(t0), fi(t0), ai(t0), bi(t0), ci(t0), and di(t0), where t0 =

2ln(MX/ ) depends on the choice of ht(0), λ(0), and
κ(0) on the grand unification scale. 

The most interesting from the point of view of a the-
oretical analysis is a study of the spectrum of heavy
supersymmetric particles when the scale of the super-

symmetry breaking is  @ . This is primarily
because in this limit the contribution of new particles to
the electroweak observable ones is negligible (see, for
example [47]). As has been noted, the standard model
highly accurately describes all the existing experimen-
tal data. Additional Higgs fields and superpartners of
observable particles interacting with vector W± and Z
bosons make a nonzero contribution to the electroweak

observables. However, for  @  their contribution
is suppressed in a power fashion as (MZ/MS)2, where
any increase in the scale of the supersymmetry break-
ing leads to convergence of the theoretical predictions
for the strong interaction constant αs(MZ) which may be
obtained assuming unification of the gauge constants
[48], with the results of an analysis of the experimental
data [49]. In addition, it should be noted that the mass
of the lightest Higgs boson which is one of the central
objects of investigation in any supersymmetric model
reaches its highest value for MS ~ 1–3 TeV.

Unfortunately, in the strong Yukawa coupling regime
in the NMSSM with a minimal set of fundamental param-
eters it is impossible to obtain a self-consistent solution
which on the one hand would lead to a spectrum includ-
ing heavy superparticles and on the other could give a
mass of the lightest Higgs boson greater than that in the
MSSM. When calculating the particle spectrum, the
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1084 NEVZOROV, TRUSOV
fundamental parameters A, , and M1/2 on the scale
MX should be selected so that the derivatives of the
interaction potential of the scalar fields V(H1, H2, Y)
with respect to the vacuum expectation values v1, v2,
and y would be zero at the minimum:

(7)

Since the trilinear interaction constants and the scalar
particle masses in the strong Yukawa coupling regime
are almost independent of A, Eqs. (7) link the vacuum
expectation value of the neutral scalar field 〈Y 〉 , and the

parameters  and M1/2. The value of  is deter-
mined using the Yukawa constant of a t quark on the
electroweak scale (see below). Then a spectrum of
heavy supersymmetric particles is only achieved when
λ/κ @ 1. However, in this region of parameter space the

value of  becomes negative and the physical vacuum
is unstable which can be attributed to the strong mixing
of the CP-even components of the neutral field Y and
the superposition of Higgs doublets h = H1cosβ +
H2sinβ. 

Studies of the particle spectrum in the nonminimal
supersymmetric model [33, 45, 46, 50] have shown that
a self-consistent nontrivial solution of the system of
nonlinear algebraic Eqs. (7) for |Y | ≤ 10 TeV which
determines the position of the minimum of the interac-
tion potential of the scalar fields, only exists for λ2(t0),
κ2(t0) & 0.1. In this case a strict correlation exists
between the fundamental parameters of the NMSSM.
In particular, in order to ensure that spontaneous break-
ing of SU(2) ^ U(1) symmetry occurs and the field Y
has a nonzero vacuum expectation value of the field, the
condition |Aκ /my | ≥ 3 must be satisfied. However, the
following inequalities must also be satisfied:

Otherwise, the superpartners of leptons and quarks
acquire vacuum expectation values [51]. All these con-
straints have the result that the ratio |A/m0| varies between
3 and 4. In [52, 53] the particle spectrum in the NMSSM
is analyzed separately for  = mt(mt)/mb(mt) and
under nonuniversal boundary conditions.

The limit  @ λ2, κ2 in the nonminimal supersym-
metric model corresponds to the MSSM [33]. For κ = 0
the Lagrangian of the Higgs sector of the NMSSM is
invariant with respect to the global SU(2) ^ U(1) ^ U(1)

m0
2

∂V v 1 v 2 y, ,( )
∂v 1

-------------------------------- 0,
∂V v 1 v 2 y, ,( )

∂v 2
-------------------------------- 0,==

∂V v 1 v 2 y, ,( )
∂y

-------------------------------- 0.=

m0
2 βtan

mh
2

Al
2 3 m1

2 mEL

2 mER

2+ +( ),≤

Ad
2 3 m1

2 mDL

2 mDR

2+ +( ),≤

Au
2 3 m2

2 mUL

2 mUR

2+ +( ).≤

βtan

ht
2
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transformations. As a result of the spontaneous symme-
try breaking, only the U(1) symmetry corresponding to
electromagnetic interaction remains unbroken, which
leads to four massless degrees of freedom. Two of these
are eaten by a charged W± boson and one by a Z boson.
Ultimately, the spectrum of the nonminimal supersym-
metric model for κ = 0 contains one physical massless
state which corresponds to the CP-odd component of

the field Y. For low values of κ2 ! λ2 !  the mass of
the lightest CP-odd boson is nonzero and is propor-
tional to the self-action constant of the neutral super-
field Y. If the Yukawa constants are λ and κ ~ 10–3–10–4,
for a certain choice of fundamental parameters the
mass of the lightest CP-even Higgs boson may be only
a few gigaelectronvolts [33, 46, 54]. The main contribu-
tion to its wave function is made by the neutral scalar
field Y which makes it very difficult to search for this on
existing accelerators and those at the design stage since
the interaction constants of this type of Higgs boson
with gauge bosons and fermions are small. In this lim-
iting case, the lightest stable supersymmetric particle
having R parity of  –1 is usually the superpartner of the
neutral scalar field Y [33, 46].

However, unlike the minimal supersymmetric
model, the discrete Z3 symmetry which can avoid prob-
lems of the µ term in the NMSSM has the result that
three degenerate vacuums appear in the theory because
of the breaking of gauge symmetry. Immediately after
a phase transition on the electroweak scale the Universe
is filled equally with three degenerate phases. The
entire space is then divided into separate regions in
each of which a particular phase is achieved. The
regions are separated by domain walls with the surface
energy density σ ~ v3. Data from cosmological obser-
vations eliminate the existence of domain walls. The
domain structure of vacuum in the NMSSM is
destroyed if the vacuum degeneracy [55] caused by the
Z3 symmetry disappears. It was shown in [56] that
breaking of Z3 symmetry by introducing into the
NMSSM Lagrangian nonrenormalizable operators of
dimension d = 5 which do not break the SU(2) ^ U(1)
symmetry can be used to obtain splitting of initially
degenerate vacuums such that the domain walls disap-
pear before the beginning of the nucleosynthesis era
(T ~ 1 MeV). Although operators of dimension d = 5
are suppressed with respect to MPl in supergravity mod-
els, their introduction leads to quadratic divergences in
the two-loop approximation, i.e., to the problem of
hierarchies. Consequently, linear and quadratic terms
with respect to superfields are generated in the superpo-
tential of this theory and the vacuum expectation value
of the neutral scalar field Y is of the order of 1011 GeV. 

In order to avoid a vacuum domain structure and
obtain a self-consistent solution in the strong Yukawa
coupling regime, we need to modify the nonminimal
supersymmetric model. The NMSSM can be modified
most simply by introducing additional terms in the super-

ht
2
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potential of the Higgs sector: µ(H1H2) and µ'Y2 which are
not forbidden by gauge SU(2) ^ U(1) and R symmetries.
The additional bilinear terms in the NMSSM superpoten-
tial destroy the Z3 symmetry and no domain structures
appear in this theory since no system of degenerate vac-
uums exists. The introduction of the parameter µ
ensures that it is possible to obtain a spectrum of heavy
supersymmetric particles in the strong Yukawa cou-
pling regime in the modified model and for a certain
choice of µ' the mass of the lightest Higgs boson
reaches its upper bound. In this case the mass of the
lightest Higgs boson has its highest value for κ = 0 since
as κ(t0) increases, the upper bound on its mass is reduced
as a result of a decrease in λ(t0). In the limit κ = 0 the
CP-odd Higgs sector of the modified NMSSM contains
no physical massless states since in this case, the global
symmetry of the Lagrangian is the same as the local sym-
metry which eliminates the Yukawa self-action constant of
the neutral field Y from the analysis. Assuming that this is
zero and neglecting all the Yukawa constants except for λ
and ht, the complete superpotential of the modified
NMSSM can be expressed in the following form:

(8)

where  is the charge-coupled right superfield of a
t quark and Q is a doublet of left superfields of b and
t quarks.

In supergravity models, bilinear terms with respect
to the superfields may be generated in the superpoten-
tial (8) as a result of the additional term Z(H1H2) + h.c.
in the Keller potential [57, 58] or nonrenormalizable
interaction of the fields of the observable and hidden
sectors. The appearance of nonrenormalizable opera-
tors of this type in the superpotential of supergravity
models may be attributed to nonperturbative effects
(for instance, gaugino condensation) [58, 59]. In addi-
tion to the parameters µ and µ', this model also sees the
appearance of the corresponding bilinear interaction con-
stants of the scalar fields B and B' which for a minimal
choice of fundamental parameters should be assumed to
the equal on the grand unification scale. Thus, the nonmin-
imal supersymmetric model may include seven funda-
mental parameters in addition to the constants of the
standard model:

λ, µ, µ', A, B, m0, M1/2 .

4. CONSTRAINTS ON THE PARAMETER SPACE 
OF THE MODIFIED NONMINIMAL

SUPERSYMMETRIC STANDARD MODEL

Despite a substantial expansion of the parameter space,
the theory does not lose its predictive capacity. An analysis
of the behavior of the solutions of the NMSSM renormal-

WNMSSM µ H1H2( ) µ'Y2+=

+ λY H1H2( ) ht H2Q( )UR
C,+

UR
C
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ization-group equations in the strong Yukawa coupling
limit for κ = 0 showed that for Yi(0)  ∞ all the solu-
tions are concentrated near the quasi-fixed point:

(9)

where

Thus, at the first stage of the analysis we fixed the initial

values of the Yukawa constants λ2(0) = (0) = 10 cor-
responding to the quasi-fixed point regime (9) of the
renormalization-group equations and also the super-
symmetry breaking scale M3(1000 GeV) = 1000 GeV
which determines the mass scale of all the supersym-
metric particles.

Existing FNAL experimental data from measure-
ments of the mass of a t quark can uniquely relate  to
the Yukawa constant ht of a t quark. The running mass of a
t quark generated when the SU(2) × U(1) symmetry is
broken is directly proportional to ht(t0):

(10)

However, the value of mt( ) calculated in the 

scheme [60] is equal to mt( ) = 165 ± 5 GeV. The
inaccuracy in determining the running mass of a t-quark is
primarily attributable to the experimental error with which

its pole mass is measured (  = 174.3 ± 5.1 GeV [61]).
For each fixed set of boundary conditions ht(0) and
λ(0), using renormalization-group equations we can
calculate the Yukawa constant of a t-quark on the elec-
troweak scale and then, substituting the value obtained
ht(t0) into formula (10), we can determine the value of

. In the infrared quasi-fixed point regime we

obtain  ≈ 1.88 for mt( ) = 165 GeV (Tables 1
and 2). 

An additional constraint which fixes M3 can be used
to determine one of the supersymmetry breaking
parameters M1/2. The values of all the other dimensional
parameters µ, µ', A, B, and m0 should be selected so that
spontaneous breaking of gauge SU(2) ^ U(1) symme-
try occurs on the electroweak scale. The complete inter-

ρt
QFP t0( ) 0.803, ρAt

QFP t0( ) 1.77,= =

ρ
Mt

2
QFP t0( ) 6.09, ρλ

QFP t0( ) 0.224,= =

ρAλ

QFP t0( ) 0.42, ρ
Mλ

2
QFP t0( )– 2.28,–= =

ρt t( )
Yt t( )
α̃3 t( )
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Yλ t( )
α̃3 t( )
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ρAi
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Ai t( )
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Mλ
2

t( )
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2
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2
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2
--------------------v β.sin=
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pole MS
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Table 1.  Mass spectrum of superpartners of observable particles and Higgs bosons for λ2(0) = (0) = 10 and µeff > 0 as a
function of the choice of fundamental parameters A, m0, and M1/2 (all the parameters and masses are in gigaelectronvolts)

0 0 0 0 0

A 0 0 –M1/2 0.5M1/2 0 0

M1/2 –392.8 –392.8 –392.8 –392.8 –785.5 –196.4
mt(t0) 165 165 165 165 165 165
tanβ 1.883 1.883 1.883 1.883 1.883 1.883
µeff 728.6 841.7 726.8 730.1 1361.2 380.4
B0 –1629.1 –1935.4 –1260.0 –1813.2 –3064.4 –861.8
y –0.00037 –0.00021 –0.00043 –0.00035 –0.00006 –0.00233
µ'(t0) –1899.8 –2176.7 –1905.9 –1898.3 –3544.6 –993.1
mh(t0)* 125.0 125.1 125.0 125.0 134.9 114.8
mh(t0)** 118.4 118.5 118.4 118.4 123.2 111.9
M3 (1 TeV) 1000 1000 1000 1000 2000 500

 (1 TeV) 840.6 889.7 841.1 840.3 1652.0 447.4

 (1 TeV) 695.1 713.6 696.6 694.3 1366.2 371.6

mH (1 TeV) 898.5 1080.5 895.4 900.3 1691.0 468.8
mS (1 TeV) 2623.4 3034.3 2452.2 2706.0 4901.7 1378.0

 (1 TeV) 953.9 1113.8 1245.7 925.2 1722.6 538.2

 (1 TeV) 704.3 762.7 872.0 318.2 1366.2 302.2

(t0) 164.6 164.4 164.6 164.6 326.9 84.3

(t0) 327.8 327.6 327.8 327.8 649.4 170.1

 (1 TeV) 755.1 870.8 753.3 756.7 1404.2 400.9

|  (1 TeV)| 755.9 872.6 755.1 758.4 1405.0 404.3

|  (1 TeV)| 1931.8 2212.3 1938 1930.3 3599.0 1015.4

(t0) 327.8 327.6 327.8 327.8 649.4 169.9

 (1 TeV) 757.0 872.6 755.2 758.5 1405.2 404.5

**Single-loop approximation.
**Two-loop approximation.

ht
2

m0
2 M1/2

2

mt̃1

mt̃2

mA1

mA2

mχ̃1

mχ̃2

mχ̃3

mχ̃4

mχ̃5

m
χ̃1

±

m
χ̃2

±

action potential of the Higgs fields in the modified
NMSSM can be expressed as the sum:

(11)

V H1 H2 Y, ,( ) µ1
2 H1

2 µ2
2 H2

2 µy Y 2+ +=

+ µ3
2 H1H2( ) µ4

2Y2 λ AλY H1H2( )+ +[

+ λµ'Y* H1H2( ) λµY H1
2 H2

2+( ) h.c.+ + ]

+ λ2 H1H2( ) 2 λ2Y2 H1
2 H2

2+( )+

+
q'2

8
------ H2

2 H1
2–( )2

+
q2

8
----- H1

+σaH1 H2
+σaH2+( )2 ∆V H1 H2 Y, ,( ),+
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where ∆V(H1, H2, Y) are the single-loop corrections to the
effective interaction potential; g and g' are the constants of

the gauge SU(2) and U(1) interactions (g1 = q'). The

constants  in the interaction potential (11) are related to
the soft supersymmetry breaking parameters as follows:

where 

B(MX) = B'(MX) = B0.

5/3

µi
2

µ1
2 m1

2 µ2, µ2
2+ m2

2 µ2, µy
2+ my

2 µ'2,+= = =

µ3
2 Bµ, µ4

2 1
2
---B'µ',= =

m1
2 MX( ) m2

2 MX( ) my
2 MX( ) m0

2,= = =
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Table 2.  As Table 1 but for  µeff < 0

0 0 0 0 0

A 0 0 –M1/2 M1/2 0 0

M1/2 –392.8 –392.8 –392.8 –392.8 –785.5 –196.4
mt(t0) 165 165 165 165 165 165
tanβ 1.883 1.883 1.883 1.883 1.883 1.883
µeff –727.8 –840.9 –726.0 –731.2 –1360.7 –378.9
B0 1008 1320.3 1366.7 647.9 2050.4 495.8
y –0.00149 –0.001 –0.00128 –0.00177 –0.00020 –0.0112
µ'(t0) 1671.5 1950.6 1656.8 1690.3 3172.7 857.8
mh(t0)* 134.1 134.9 134.0 134.2 143.1 124.1
mh(t0)** 124.4 124.8 124.3 124.5 127.2 119.6
M3 (1 TeV) 1000 1000 1000 1000 2000 500

 (1 TeV) 890.2 935.6 890.5 889.8 1682.8 507.9

 (1 TeV) 630.3 652.2 632.2 628.0 1328.1 283.5

mH (1 TeV) 896.2 1078.5 893.5 899.3 1689.9 464.4
mS (1 TeV) 2147.4 2565.9 2309.2 1972.3 4126.5 1097.7

 (1 TeV) 1123.2 1219.3 931.0 1437.9 1984.8 623.1

 (1 TeV) 857.6 1017.8 545.0 886.9 1657.5 412.8

(t0) 160.0 160.5 160.0 160.0 324.4 74.9

(t0) 311.1 313.7 311.0 311.2 639.9 141.4

|  (1 TeV)| 753.7 896.6 751.9 757.2 1403.4 398.5

 (1 TeV) 764.7 878.1 763.0 768.1 1410.0 416.7

 (1 TeV) 1700.7 1983.2 1685.8 1719.6 3221.8 879.1

(t0) 310.7 313.4 310.7 310.8 639.8 139.4

 (1 TeV) 763.3 877.0 761.6 766.7 1409.1 414.5

**Single-loop approximation.
**Two-loop approximation.
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2 M1/2

2
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mt̃2
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mA2

mχ̃1

mχ̃2
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m
χ̃1

±

m
χ̃2

±

The position of the physical minimum of the interac-
tion potential of the Higgs fields (11) is determined by
Eqs. (7). Since the vacuum expectation value v and

 are known, the system of Eqs. (7) can be used to
find µ and B0. Then, it is convenient to introduce µeff =

µ + λy/  instead of µ. After various transformations
we obtain

(12)

βtan

2

µeff
2 m1

2 m2
2 βtan

2
– ∆Z µeff( )+

βtan
2

1–
---------------------------------------------------------

1
2
---MZ

2 ,–=

m1
2 m2

2 2µeff
2 λ2

2
-----v 2 ∆β µeff( )+ + + + 2βsin

=  2 Bµ
λyX2

2βcos
---------------+ 

  ,–

y my
2 µ'2 B'µ'+ +( ) λ

2
---v 2X1 ∆y µeff( ),–=
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where ∆i corresponds to the contribution of the single-
loop corrections:

and 

When calculating the single-loop corrections we
shall only take into account the contribution from loops
containing a t quark and its superpartners since their

∆β
2

v 2 2βtan
2

-----------------------∂∆V
∂β

----------- 4
∂∆V

∂v 2
-----------, ∆y+

∂∆V
∂y

-----------,= =

∆Z
1

βcos
2

-------------- 2
∂V

∂v 2
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1

v 2
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∂β
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  ,=

X1
1

2
------- 2µeff µ' Aλ+( ) 2βsin+[ ] ,=

X2
1

2
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contribution is dominant. In supersymmetric theories
each fermion state with a specific chirality has a scalar
superpartner. Thus, a t-quark incorporating left and
right chiral components has two scalar superpartners,
right  and , which become mixed as a result of the
spontaneous breaking of SU(2) ^ U(1) symmetry, and
this results in the formation of two charged scalar par-
ticles having masses  and :

(13)

where Xt = At + µeff / . Since  and  should be
positive we have

Otherwise, the quark fields acquire nonzero vacuum
expectation values and the gauge SU(2) ^ U(1) sym-
metry of the initial Lagrangian is completely broken,
which leads to the appearance of nonzero masses for glu-
ons and photons. The contribution of the single-loop cor-
rections from the t quark and its superpartners to the effec-
tive interaction potential of the Higgs fields is expressed
only in terms of their masses:

(14)

For this reason all ∆i are merely functions of µeff and do
not depend on B0 and y.

Using the first equation of the system (12) we can
find µeff . In this case, the sign of µeff  is not fixed and
must be considered as a free parameter in the theory.
Substituting this value of µeff  into the two remaining
equations of the system (12), we can eliminate B0 from
the number of independent fundamental parameters
and calculate the vacuum expectation value of the field

Y: 〈Y〉  = y/  and in order to find B0 we need to bear in
mind the relationships linking the bilinear interaction
constants B and B' in the electroweak scale with B0
obtained by solving the renormalization-group equa-
tions in the modified NMSSM (see Appendix):

(15)

t̃ R t̃ L
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mt̃1 t̃2,
2 1

2
--- mQ

2 mU
2 2mt

2+ +[=

± mQ
2 mU
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2Xt
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Xt
2 1
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2

------ mQ
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2+( ).<

∆V H1 H2 Y, ,( ) 3

32π2
----------- mt̃1

4 mt̃1

2
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-------ln 3

2
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2

q2
-------ln 3

2
---–

 
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2mt
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2

q2
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2
---–

 
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– .

2

B t( ) ζ t( )B0 σ t( )A ω t( )M1/2,+ +=

B' t( ) B0 σ1 t( )A
µ0

µ0'
----- ω1 t( )M1/2

µ0

µ0'
-----,+ +=
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where ζ(t), σ(t), σ1(t), ω(t), and ω1(t) are various func-
tions of t, ht(0), and λ(0) which do not depend on the
choice of fundamental soft supersymmetry breaking
parameters on the grand unification scale, and also on
µ0 and . For a fixed sign of µeff three different solu-
tions of the system of Eqs. (12) exist. However, only
one of these is of interest from the physical point of
view. It follows from the last equation in (12) that the
vacuum expectation value of the field Y is of the order
of y ~ λv2/MS and for the case of heavy supersymmet-
ric particles y ! v. The other two solutions give an
excessively light CP-even Higgs boson which corre-
sponds to fine tuning between the fundamental param-
eters B0 and µ'. 

The parameters µeff and B0 thus determined and also
the vacuum expectation value y depend on the choice of
A, m0, and µ'. Thus, at the next stage of the analysis of
the modified NMSSM we studied the dependence of
the particle spectrum on these fundamental parameters

using Eqs. (6) linking Ai(t0) and (t0) to A and .
Similarly we investigated the spectrum of superpart-
ners of observable particles and Higgs bosons for other
values of the Yukawa constants from the vicinity of the
infrared quasi-fixed point. Although for  ≤  2 in the
strong Yukawa coupling regime the parameters ht and λ
can be selected so that the Yukawa constants of a b quark
and a τ lepton would be the same on the grand unifica-
tion scale [21, 22], when studying the particle spectrum
in the modified NMSSM we do not confine ourselves to
the case Rbτ(0) = 1, where Rbτ = hb(t)/hτ(t). This condi-
tion arises in minimal schemes of gauge interaction
unification [23] and imposes very stringent constraints
on the parameter space of the model being studied. How-
ever, since hb and hτ for  ~1 have small absolute
values, they can be generated by means of nonrenormal-
izable operators as a result of the spontaneous symmetry
breaking on the scale MX and in this case, the Yukawa
constants of a b quark and a τ lepton may differ.

5. CALCULATIONS OF MASSES
OF HIGGS BOSONS AND NEUTRALINOS

We shall first consider the Higgs sector in the mod-
ified NMSSM which includes three CP-even states,
two CP-odd, and one charged Higgs boson. The deter-
minants of the mass matrices of the CP-odd and
charged Higgs bosons go to zero which corresponds to
the appearance of two Goldstone bosons which are
eaten by massive vector W± and Z bosons during spon-
taneous breaking of SU(2) × U(1) symmetry. The (3 × 3)
mass matrix of the CP-odd sector is formed by mixing
the imaginary parts of the neutral components of the
Higgs doublets with the imaginary part of the field Y.
However, since the determinant of this matrix is zero, the
problem of finding the eigenvalues reduces to solving an

µ0'

mi
2 m0

2

βtan

βtan
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ordinary quadratic equation. The calculated masses of the
CP-odd states in the modified NMSSM are 

(16)

where ∆i are the single-loop corrections [33, 36, 38]. 

A more complex situation is encountered in the sec-
tor of the CP-even Higgs fields which appears as a
result of mixing of the real parts of the neutral compo-
nents of the Higgs doublets and the field Y. The deter-
minant of the mass matrix of the CP-even sector is non-
zero and thus in order to calculate its eigenvalues we
need to solve a cubic equation. However, for the case of
heavy supersymmetric particles (MS @ MΖ) in the
Higgs field basis

(17)

this matrix has a hierarchical structure:

(18)

where 
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Here ∆A and ∆ij are the corrections from loops contain-
ing a t-quark and its superpartners. The hierarchical
structure of the mass matrix means that perturbation
theory from quantum mechanics can be used to diago-
nalize it. The role of the smallness parameters in the

perturbation theory are played by the ratios /  and

/ . This method of calculating the masses of
Higgs bosons in supersymmetric theories was devel-
oped in [24]. Also discussed there is the simplest
method of obtaining a hierarchical mass matrix in the
Higgs field basis (17). A numerical analysis made in
this study showed that perturbation theory can be used
to calculate the masses of Higgs bosons in the modified
NMSSM to within 1 GeV (~1%).

This method can be used to diagonalize the mass
matrix of a neutralino which occurs as a result of the
mixing of superpartners of gauge bosons W3 and B (or
Z and γ) with superpartners of neutral Higgs fields. In

the basis ( , , , , ), this matrix has the fol-
lowing form:

(19)

The fragment of the 4 × 4 matrix which includes the
first four columns and four rows is the same as the mass
matrix of a neutralino in the MSSM with A', B', C', and
D' given by

A' = MZcosβsinθW, B' = MZ sinβsinθW,

C ' = MZcosβcos θW, D' = MZ sinβcos θW.

Using the unitary transformation U:

V23 V32 λvX2 ∆23,+= =

V33
1
2
---λ2v 2 ∆33.+=

MZ
2 E2

2

MZ
2 E3

2

B̃
0

W̃
3

H̃1
0

H̃2
0

Ỹ

M̃ij

M1 0 A'– B' 0

0 M2 C' D'– 0

A'– C' 0 µeff
λ
2

-------v βsin

B' D'– µeff 0
λ
2

-------v βcos

0 0
λ
2

-------v βsin
λ
2

-------v βcos µ'
 
 
 
 
 
 
 
 
 
 
 
 
 

.=

U

1 0 0 0 0

0 1 0 0 0

0 0
1

2
------- 1

2
------- 0

0 0 1

2
-------–

1

2
------- 0

0 0 0 0 1 
 
 
 
 
 
 
 
 
 
 

,=
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Fig. 1. Mass spectrum in modified NMSSM as a function of µ' and x = A/M1/2 for (0) = λ2(0) = 10,  = 0, M3 = 1 TeV, and

µeff ≤ 0. Curves 1 and 2 give the mass of the lightest Higgs boson calculated in the single-loop and two-loop approximations, respec-
tively. Curves 3 and 4 gives the masses of heavy CP-even Higgs bosons mS and mH , curves 5 and 6 give the masses of CP-odd Higgs

bosons  and , and curve 7 gives the mass of the heaviest neutralino.

ht
2

m0
2

mA1
mA2
the matrix (19) can be reduced to the form (18)  =

U U+ and then using the ratios (MZ/µeff)2 and (MZ/µ')2

as the small parameters in the first order of perturbation
theory for the spectrum of supersymmetric particles we
obtain

(20)

The accuracy with which  is calculated is slightly
lower than that for the CP-even Higgs sector. This is

M'˜

M̃

mχ̃1
M1

A' B'–( )2

2 M1 µeff–( )
-----------------------------

A' B'+( )2

2 M1 µeff+( )
-----------------------------,+ +=

mχ̃2
M2

C' D'–( )2

2 M2 µeff–( )
-----------------------------

C' D'+( )2

2 M2 µeff+( )
-----------------------------,+ +=

mχ̃3
µeff

A' B'–( )2

2 µeff M1–( )
-----------------------------+=

+
C' D'–( )2

2 µeff M2–( )
----------------------------- λ2v 2 β π/4+( )sin

2

2 µeff µ'–( )
--------------------------------------------,+

mχ̃4
µeff

A' B'+( )2

2 M1 µeff+( )
-----------------------------––=

– C' D'+( )2

2 M2 µeff+( )
-----------------------------

λ2v 2 β π/4–( )sin
2

2 µeff µ'+( )
--------------------------------------------,–

mχ̃5
µ' λ2v 2 β π/4+( )sin

2

2 µ' µeff–( )
--------------------------------------------

λ2v 2 β π/4–( )sin
2

2 µ' µeff+( )
--------------------------------------------.+ +=

mχ̃ i
JOURNAL OF EXPERIMENTAL
primarily because the parameters used for the expansion
when diagonalizing the neutralino mass matrix according
to perturbation theory are larger. At this point we shall not
discuss the spectrum of squarks, sleptons, and charginos
in greater detail since the analytic expressions for the
masses of these particles remain the same as in MSSM. In
this case, in all the formulas we need to replace µ with µeff.
We merely note that in the principal approximation the
masses of two Dirac charginos and neutralinos ,  are
the same:  ≈ µeff and  ≈ M2.

6. RESULTS OF A NUMERICAL ANALYSIS
Results of a numerical analysis of the spectrum of

Higgs bosons and superpartners of observable particles
in the modified NMSSM are given in Figs. 1–3 and
Tables 1–3. We first need to note that for a fixed sign of µeff
there are two allowed regions of parameter space. In one
of these the mass of the lightest Higgs boson is greater
than in the MSSM (see Figs. 1a and 2a) whereas in the
other it is smaller (see Figs. 1b and 2b). The mass of the
lightest Higgs boson calculated in the first order with
respect to perturbation theory has the following form:

(21)

χ̃2 χ̃3

m
χ̃1

± m
χ̃2

±

mh
2 V11

V13
2

E3
2

-------------–≈ MZ
2 2βcos

2 1
2
---λ2v 2 2βsin

2
+=

+ ∆11

λvX1 ∆13+( )2

my
2 µ'2 B'µ'+ +

-----------------------------------.–
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Fig. 2. Mass spectrum in modified NMSSM as a function of µ' and x for (0) = λ2(0) = 10,  = 0, M3 = 1 TeV, and µeff ≥ 0. The

notation is the same as in Fig. 1. 

ht
2

m0
2

Since the matrix element is V12 ~ , we neglected its
contribution to mh . The mass of the lightest CP-even
Higgs boson reaches its highest value when

where V13 = 0 (see Figs. 1a and 2a). Thus, mh  is larger
in that region of parameter space where the signs of µ'
and µeff are opposed. In the limit µ'  ±∞ the masses
of the CP-even and CP-odd Higgs bosons correspond-
ing to the field Y become much larger than the scale of
the supersymmetry breaking. In the low energy region
their contribution to the effective interaction potential
of the Higgs fields H1 and H2 disappears and the mass
of the lightest Higgs boson is the same as in the MSSM.
For this reason, as can be seen from the graphs plotted
in Figs. 1a, 1b, and 2a, 2b, mh  reaches a constant value
when µ'  ±∞. The results of the numerical calcula-
tions plotted in these figures indicate that the two-loop
corrections [11] play a significant role in the calcula-
tions of the mass of the lightest Higgs boson. In this
particular case, they reduce its mass approximately by
10 GeV. Although the single-loop corrections increase
logarithmically as the scale of the supersymmetry
breaking increases, their increase for MS @ MZ is com-
pletely compensated by the log–log asymptotic form of
the two-loop corrections and mh remains almost con-
stant. Allowance for the loop corrections has the result
that for µeff < 0 the mass of the lightest Higgs boson is
greater than in that in the case µeff > 0. This can be

MZ
2

µ'
2µeff

2βsin
--------------– Aλ–

2∆13

λv 2βsin
----------------------,–=
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attributed to the fact that mh increases with increasing
mixing in the superpartner sector of the t quark (  and

) which is determined by the value of Xt = At +
µeff / . Since At < 0, the absolute value of the mixing

between  and  is greater than that for µeff < 0. It
should be noted that the mass of the lightest Higgs
boson is almost independent of A and m0 because of the
weak dependence of the squark mass on the corre-
sponding fundamental parameters (see Tables 1 and 2).

Since that part of the parameter space in which µeff

and µ' have the same sign is almost eliminated by the
existing experimental data, it is most interesting to
study the spectrum of Higgs bosons in the region where
the mass of the lightest Higgs boson is greater than that
in the minimal supersymmetric model. In this particu-
lar region of parameter space the bilinear soft super-
symmetry breaking constants and µeff have opposite
signs and near the maximum of mh the parameter is
µ' ~ –2µeff /sin2β (|µ' | > |µeff | ~ MS). For this reason the
heaviest particle in the modified NMSSM spectrum is
the CP-even Higgs boson which corresponds to the
neutral field Y since its mass in the principal approxi-

mation with respect to perturbation theory is  ≈

 > µ'2 and is substantially larger than the scale of the
supersymmetry breaking. It can be seen from Figs. 1c
and 2c that the mass of the other heavy CP-even Higgs

boson (mH) is almost independent of µ' since  @ .

t̃ R

t̃ L

βtan

t̃ R t̃ L

mS
2

E3
2

mS
2 mH

2
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However, the spectrum of the CP-odd Higgs sector is
determined to a considerable extent by the choice of
fundamental parameters. As µ' increases, the mass of
the CP-odd Y increases and the latter becomes one of
the heaviest particles. For values of µ' ~ B' the mass of

the lightest CP-odd Higgs boson  ≈  is very low
(see Figs. 1c, 2c), which leads to the appearance of a
constraint on µ'. Nevertheless, with this choice of fun-
damental parameters this Higgs boson is negligibly
involved in electromagnetic and weak interactions
since the main contribution to its wave function is made
by the CP-odd component of the field Y. Thus, even
when its mass is relatively low, it is extremely difficult
to detect this particle experimentally. The heaviest fer-
mion in this model is the superpartner of the field Y. Its
mass  is proportional to µ' [see (20)]. The spectrum
of remaining neutralinos, charginos, squarks, and slep-
tons does not depend on the choice of µ'. 

Since the dependence of the soft supersymmetry
breaking parameters on A disappears in the strong
Yukawa coupling regime on the electroweak scale, the
spectrum of superpartners of the observable particles
and also µeff and B whose numerical values are deter-
mined by solving the system of Eqs. (12), vary weakly
when the trilinear interaction constant of the scalar
fields varies between –M1/2 and M1/2. Despite this, the
dependence of the Higgs boson spectrum on A is con-
served. This is mainly because the bilinear interaction
constant of the neutral scalar fields B' is proportional to A.
Using the relations (15), we obtain 

where x = A/M1/2. As x increases for µeff < 0 (µeff > 0) the
bilinear interaction constant B' increases (decreases) in
absolute value and conversely. As |B'| decreases, the
masses of the CP-even and CP-odd states correspond-
ing to the neutral field Y converge. At the same time, an
increase in the absolute value of B' leads to a decrease

in  which disappears when B' ~ µ'. The dependence
of the Higgs boson spectrum on the parameter A for
m0 = 0 is studied in Figs. 1d and 2d. The parameter µ'
in this particular case is selected so that the mass of the
lightest Higgs boson coincides with the upper bound on
mh for A = 0. 

Although in some cases we assumed m0 = 0 when
analyzing the modified NMSSM, this limit is unaccept-
able from the physical point of view since in this case
the lightest (and consequently stable) supersymmetric
particle is the superpartner of the right τ lepton which
contradicts existing astrophysical observations. How-

mA2

2 mB
2

mχ̃5

B' t0( )
1

ξ t0( )
----------B t0( )=

+ σ1 t0( )
µ0

µ0'
-----

σ t0( )
ζ t0( )
-----------– 

  x ω1 t0( )
µ0

µ0'
-----

ω t0( )
ζ t0( )
-----------– 

 + M1/2,

mA2

2
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ever, as m0 increases, the mass of the superpartner of
the right τ lepton increases and even for comparatively
low values of m0/M1/2 the lightest particle in the spec-
trum of superpartners of observable particles becomes
the neutralino. The results of the numerical calculations
presented in Tables 1 and 2 can be used to assess the
influence of the fundamental constants A, m0, and M1/2
on the superpartner spectrum of the t quark, gluinos,
neutralinos, charginos, and Higgs bosons. For each set
of parameters listed above we give the values of the
upper bound on the mass of the lightest Higgs boson
calculated in the single-loop and two-loop approxima-
tions and also the corresponding µeff , B0, y, and µ' for
which V13 = 0. It can be seen from the data presented in
Table 1 that the qualitative pattern of the spectrum
remains unchanged if the parameters A and m0 vary
within reasonable limits. It should also be noted that as

 increases, the masses of squarks, sleptons, Higgs
bosons, and also heavy charginos and neutralinos
increases whereas the spectrum of the lightest particles
remains unchanged. The mass of a charged Higgs
boson which has not been mentioned before is almost
independent of A and µ' and numerically similar results
are obtained for the mass of the CP-even state mH and
for the mass of a charged Higgs boson . 

In the present paper we have made a detailed study
of the superpartner and Higgs boson spectrum for ini-

tial values of the Yukawa constants (0) = λ2(0) = 10
corresponding to the scenario of an infrared quasi-fixed
point in the NMSSM. The results of the numerical cal-
culations presented in Tables 1 and 2 indicate that for

mt( ) = 165 GeV and M3 ≤ 2 TeV the mass of the
lightest Higgs boson does not exceed 127 GeV. Other
data presented in Table 3 indicate that the distinguish-
ing features of the supersymmetric particle spectrum

are conserved for (0) @ λ2(0) and (0) ! λ2(0) as
long as the Yukawa constants on the grand unification
scale are substantially larger than the gauge constants.
Nevertheless, the upper bound on the mass of the light-
est Higgs boson, the value of , and the particle
masses calculated for 

when V13 = 0 vary as a function of the choice of (0)
and λ2(0). Nevertheless, as λ2(0) decreases from 10 to
2, the upper bound on mh for M3 = 1 TeV drops from
128 to 113 GeV (see Table 3). Thus, at the concluding
stage of the analysis of the modified NMSSM for each
fixed  we selected the Yukawa constant λ(t0) so
that mh reached its highest value on condition that per-
turbation theory can be applied as far as the grand uni-

m0
2

m
H

±

ht
2

Mt
pole

ht
2 ht

2

βtan

µ'
2µeff

2βsin
--------------– Aλ–

2∆13

λv 2βsin
----------------------,–=

ht
2

βtan
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Table 3.  As Tables 1 and 2 but for various initial values  and λ2(0) for A = m0 = 0 and mt (174 GeV) = 165 GeV

µeff < 0 µeff > 0

λ2(0) 0 2 10 10 0 2 10 10

10 10 10 2 10 10 10 2

M1/2 –392.8 –392.8 –392.8 –392.8 –392.8 –392.8 –392.8 –392.8

tanβ 1.614 1.736 1.883 2.439 1.614 1.736 1.883 2.439

µeff –821.5 –771.4 –727.8 –641.8 822.7 772.4 728.6 642.3

B0 471.7 622.5 1008.0 886.2 –743.1 –988.1 –1629.1 –1583.3

y – –0.0014 –0.0015 –0.0012 – –0.0003 –0.0004 –0.0005

µ'(t0) – 1693.9 1671.5 1749.8 – –1941.4 –1899.8 –1943.1

mh(t0)* 103.5 123.6 134.1 137.6 88.1 112.4 125.0 131.2

mh(t0)** 90.3 113.0 124.4 127.8 79.7 105.5 118.4 123.6

M3 (1 TeV) 1000 1000 1000 1000 1000 1000 1000 1000

 (1 TeV) 894.0 891.6 890.2 890.5 834.6 837.0 840.6 853.5

 (1 TeV) 613.5 622.2 630.3 648.5 692.2 693.8 695.1 696.4

mH (1 TeV) 1033.4 961.0 896.2 758.5 1035.7 963.3 898.5 761.1

mS (1 TeV) – 1999.8 2147.4 2187.2 – 2405.3 2623.4 2663.8

 (1 TeV) 1029.7 1374.8 1123.2 1294.0 1031.3 1390.6 953.9 965.1

 (1 TeV) – 949.8 857.6 735.6 – 951.6 704.3 674.3

(t0) 160.3 160.1 160.0 159.9 164.6 164.6 164.6 164.4

(t0) 312.7 311.9 311.1 309.4 328.2 328.1 327.8 326.4

|  (1 TeV)| 842.8 795.8 753.7 665.8 844.4 797.2 755.1 668.1

|  (1 TeV)| 856.4 807.8 764.7 677.1 850.6 800.9 755.9 666.7

|  (1 TeV)| – 1711.2 1700.7 1790.0 – 1960.7 1931.8 1986.5

(t0) 312.4 311.6 310.7 309.0 328.2 328.1 327.8 326.4

 (1 TeV) 854.2 806.0 763.3 676.7 849.5 800.4 757.0 669.0

**Single-loop approximation.
**Two-loop approximation.

ht
2 0( )

ht
2 0( )

mt̃1

mt̃2

mA1

mA2

mχ̃1

mχ̃2

mχ̃3

mχ̃4

mχ̃5

m
χ̃1

±

m
χ̃2

±

fication scale. The dependence mh( ) thus obtained
is plotted in Fig. 3 where we also plotted the upper
bound on mh in the MSSM as a function of . As
was to be expected, the two bounds on the mass of the
lightest Higgs boson are almost the same for large

 when the term (1/2)λ2v2sin22β in Eq. (5) tends to
zero. The curve mh( ) in the NMSSM reaches is
maximum when  ~ 2.5 which corresponds to the

βtan

βtan

βtan
βtan

βtan
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strong Yukawa coupling regime. Both bounds on the
mass of the lightest Higgs boson were obtained for
M3 ≤ 2 TeV. By varying the scale of supersymmetry
breaking we can show that the mass of the lightest
Higgs boson in the NMSSM does not exceed 130.5 ±
3.5 GeV. The indeterminacy observed in calculations of
the upper bound on mh is mainly attributable to the exper-
imental error with which the mass of a t quark is mea-
sured.
SICS      Vol. 91      No. 6      2000
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7. CONCLUSIONS

In the nonminimal supersymmetric model the mass
of the lightest CP-even Higgs boson reaches its highest
value in the strong Yukawa coupling regime when all
the solutions of the renormalization-group equations
are grouped near the infrared quasi-fixed point. How-
ever, in this region of the parameter space using the
NMSSM with a minimal set of fundamental parameters
it is not possible to obtain a self-consistent solution
which on the one hand would give a spectrum of heavy
supersymmetric particles and on the other could give a
mass of the lightest Higgs boson greater than that in the
MSSM. In order to find such a solution, we need to
modify the nonminimal supersymmetric model. In the
present paper we studied the spectrum of superpartners
and Higgs bosons using a very simple expansion of the
NMSSM which can give a self-consistent solution in
the strong Yukawa coupling regime. Although the
parameter space of this model is expanded substan-
tially, the theory does not lose its predictive capacity.

The mass matrix of the CP-even Higgs sector in the
modified NMSSM has a hierarchical structure which
means that it can be diagonalized using a method of cal-
culating the spectrum of Higgs bosons proposed earlier,
which is based on the ordinary perturbation theory of
quantum mechanics. This method can be used to calcu-
late the mass of Higgs bosons to within 1 GeV (~1%).
In this case the mass of the lightest Higgs boson near

the infrared quasi-fixed point for mt( ) = 165 GeV
and M3 ≤ 2 TeV does not exceed 127 GeV. By varying
the ratio of the Yukawa constants on the grand unifica-
tion scale, we can show that mh ≤ 130.5 ± 3.5 GeV
where the indeterminacy observed when calculating the
upper bound on mh is mainly attributable to the experi-
mental error with which the mass of the t-quark is mea-
sured. The heaviest particle in the region of parameter

Mt
pole

1

2

2

90

mh, GeV

tanβ
3 4 5 6 7 8 9

100

110

120

130

Fig. 3. Upper bound on the mass of the lightest Higgs boson
in the MSSM (curve 1) and in the modified NMSSM (curve 2)
as a function of  for M3 = 2 Tev.βtan
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space of interest is the CP-even Higgs boson corre-
sponding to the neutral field Y. 

In the present study we used the same method of
diagonalizing the mass matrices to calculate and study
neutralino masses. As a result we showed that the
heaviest fermion in the dominant region of parameter

space is , the superpartner of the neutral scalar field Y.

For values of  ≤  gluinos, squarks, heavy CP-even
and CP-odd Higgs bosons are substantially heavier
than sleptons, lightest charginos, and neutralinos. The
only exception is one of the CP-odd Higgs bosons
whose mass varies substantially depending on the
choice of parameters of the model. However, even if it
is relatively low, for example, of the order of MZ, there
are certain problems involved in recording it experi-
mentally since the main contribution to its wave func-
tion is made by the CP-odd component of the field Y.

The upper bound on the mass of the lightest Higgs
boson in the nonminimal supersymmetric model was
also studied in recent publications [25] and [62]. The
predictions obtained in these studies are 5–6 GeV
higher than the bound given above. The difference in
the predictions can be attributed to the fact that the

authors of [25] and [62] used the value |Xt/MS | = 

where MS =  to calculate the upper bound on mh

since the mass of the lightest Higgs boson reaches its
highest value for this value of Xt . However, in the
strong Yukawa coupling regime in the modified
NMSSM the ratio |Xt/MS | is 1.4–1.5. Since the mass of
the lightest Higgs boson increases with increasing mixing

between the t-quark superpartners for 0 ≤ |Xt/MS| ≤ ,

and the ratio |Xt/MS | is considerably less than , the
upper bound on mh in the realistic expansion of the
NMSSM is more stringent that the absolute bound in
the nonminimal supersymmetric model. 
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APPENDIX

Renormalization-Group Equations for the Parameters 
µ, µ', B, and B' in the Modified Nonminimal 

Supersymmetric Standard Model and Their Solution

In addition to the trilinear interaction constants and
the scalar particle masses, the modified NMSSM used
to study the particle spectrum includes µ, µ', B, and B'.

Ỹ

m0
2 M1/2

2

6

mt1
mt2

6

6
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The evolution of these constants is described by four
renormalization-group equations:

(A.1)

For κ = 0 and the minimal set of fundamental parame-
ters B(0) = B'(0) = B0, Ai(0) = A, Mi(0) = M1/2, µ'(0) =

, and µ(0) = µ0 we can show using the general solu-
tion of the system of linear differential equations that
B(t), B'(t), µ(t), and µ'(t) are given by

(A.2)

where the functions ξ(t), ξ1(t), ζ(t), σ(t), σ1(t), ω(t), and
ω1(t) determining the evolution of the fundamental
parameters depend mainly on the choice of Yukawa
constants on the grand unification scale and do not
depend on the initial values of the soft supersymmetry
breaking parameters µ0 and .
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Abstract—We consider superstrings moving in the AdS5 × S5 space-time and find their Green–Schwarz action
using the supercoset approach based on the supergroup PSU(2, 2|4). We describe several parametrizations of
the relevant supercoset and present the action in different κ-symmetry gauges. In particular, we discuss a gauge
where all the fermionic coordinates corresponding to the conformal (S) supercharges are gauged away and also
a light-cone type gauge where half of the Q and S supercoordinates are gauged away. The resulting action con-
tains terms that are quadratic and quartic in fermions. In the flat-space limit, it reduces to the standard light-
cone Green–Schwarz action. We comment on the possibility of fixing the bosonic light-cone gauge and of refor-
mulating the action in terms of two-dimensional Dirac spinors. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Further progress in clarifying the relation between
strings and large-N (non)supersymmetric gauge theo-
ries depends on better understanding the superstrings in
anti-de Sitter (AdS)-type spaces with Ramond–
Ramond (RR) fluxes [1, 2]. The simplest, most sym-
metric example is provided by the AdS5 × S5 back-
ground of the type IIB superstring theory. As with the
flat superstring, one can hope that, although this theory
is quite nontrivially dual to the large-N 1 = 4 super
Yang–Mills theory [2], it should be explicitly solvable.

To be able to treat this theory in an efficient way, one
should use the Green–Schwarz (GS) approach [3],
where one views the string as moving in a superspace

with the coordinates (xm, ), where θ are space-time
spinors. Then the coupling of the string to a RR back-
ground has a local form Γ···θ∂x∂xF… similar to its
coupling to the curvature (it is useful to note that while
the classical string “feels” the metric, it feels the RR
background only through its quantum fluctuations).

There seems to be no alternative to the GS descrip-
tion: even the simplest one-loop computation in the GS
formalism (e.g., the one described in [4]) would require
a summation of an infinite number of diagrams with
any number of flat-space RR vertex operator insertions
if done in the Neveu–Schwarz–Ramond (NSR) formal-
ism. In fact, the use of the GS action is very natural
from the modern “solitonic” point of view. If one views
fundamental strings as “electric”-type objects appear-
ing in the D = 10 supergravity, the effective action for

θα
I

θ

¶This article was submitted by the authors in English.
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the collective coordinates of a long fundamental string
naturally has a GS form as dictated by the residual
space-time (super)symmetries (with the characteristic

nonlinear ∂x Γ···θ kinetic term originating from the
standard Dirac D = 10 fermion action reduced to the
world surface of the string, with Dirac matrices becom-
ing the projected ones). The theory must of course con-
tain long and short strings that must also be described
by the same manifestly space-time supersymmetric
action.

A simple way to construct the flat-space GS action
is to view strings as propagating in the flat coset super-
space (ten-dimensional super Poincaré group)/(ten-
dimensional Lorentz group). The action is then a kind
of Wess–Zumino–Witten action with the global super-
symmetry and a local κ-symmetry ensuring the correct
number of the fermionic degrees of freedom. It is
defined in terms of the basic objects given by the left-
invariant Cartan-1 forms on the type IIB coset super-
space,

(1.1)

where  are the translation generators and G = G(x, θ) is

a coset representative. If it is chosen as

(1.2)

θ

G 1– dG LÂPÂ LIQI, LÂ+ dXMLM
Â ,= =

XM x θ,( ), Â B̂, 0 … 9, I, , 1 2,,= = =

PÂ

G x θ,( ) xÂPÂ θIQI+( ), PÂ PB̂,[ ]exp 0,= =

QI QJ,{ } 2iδIJ #Γ Â( )PÂ–=
000 MAIK “Nauka/Interperiodica”
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(where  are the gamma matrices and # is the charge
conjugation matrix), the coset space vielbeins are given
by

(1.3)

where  are flat bosonic coordinates and θI are two
left Majorana–Weyl ten-dimensional spinors. The gen-
eral form of the action is [5]

(1.4)

where M3 is a three-dimensional manifold with the
boundary ∂M3,

and we used the convention that 2πα' = 1. The two-
dimensional metric gµν (µ, ν = 0, 1) has the signature
(−, +) and g ≡ –detgµν. The first “kinetic” term in the
action has a “degenerate” metric containing only the
square of the translational Cartan forms, not the spinor
ones, because the latter would lead to an action qua-
dratic in fermionic derivatives and thus to a potential
nonunitarity. The explicit two-dimensional component
form of the GS action is [3]

(1.5)

where eµν is the antisymmetric tensor. The key observa-
tion that allows us to construct the GS action for super-
strings in AdS5 × S5 is that this bosonic space is the
coset

As a result, we can consider strings moving not in the
flat superspace but in the supercoset space with the cor-
rect bosonic coset part and the correct number of super-
symmetries: we must replace the ten-dimensional super
Poincaré group by a smaller group PSU(2, 2|4) and the
Lorentz group SO(1, 9) by its subgroup SO(1, 4) ×
SO(5); i.e., we need to consider the supercoset [6]

that still has 10 bosonic and 32 Grassmann dimensions.
The bosonic part of the GS action is simply the stan-

dard symmetric-space sigma-model action

Γ Â

LÂ dxÂ iθIΓ ÂdθI, LI– dθI,= =

xÂ

I
1
2
--- σ2 ggµνLµ

ÂLν
Âd

∂M3

∫ i *,

M3

∫+–=

* sIJ LÂ L
IΓ Â LJ∧( ),∧=

sIJ diag 1 1–,( ), d*≡ 0,=

I0 σ2 +0d∫ σ2 1
2
--- g–d∫= =

× gµν ∂µxÂ iθIΓ Â∂µθI–( ) ∂νxÂ iθJΓ Â∂νθ
J–( )

– ieµνsIJθIΓ Â∂νθ
J ∂µxÂ 1

2
---iθKΓ Â∂µθK– 

  ,

G
H
----

SO 2 4,( )
SO 1 4,( )
---------------------- SO 6( )

SO 5( )
----------------× .=

PSU 2 2 4,( )
SO 1 4,( ) SO 5( )×
--------------------------------------------
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This is obviously not a conformal sigma model; the
addition of the θ fermions converts it into a novel type
of a two-dimensional conformal model. The fermions
couple the AdS5 and S5 parts of the action together and
contribute the RR 5-form F5 to the beta-function of the
metric,

RMN – (F5F5)MN = 0,

making it vanish [6].

The superalgebra psu(2, 2|4) plays the central role in
the construction of the GS action in AdS5 × S5 [6]. Its
even part is the sum of the algebra so(4, 2) that is the
isometry algebra of AdS5 and the algebra so(6) that is
the isometry algebra of S5. The odd part consists of
32 supercharges corresponding to 32 Killing spinors in
the AdS5 × S5 vacuum [7] of the type IIB supergravity
(see [8–10]). In the 5 + 5 splitting, its generators are

given by ( , ; PA' , JA'B' ; Qαα 'I), i.e., by two sets of
translations and rotations in so(2, 4) and so(6) (A = 0,
1, …, 4; A' = 1, …, 5) and 32 supercharges (α = 1, 2, 3,
4; α' = 1, 2, 3, 4).

Following the same steps as in the above construc-
tion of the flat-space GS action, one finds [6] that there
exists a unique action of type (1.4) that has the required
properties: its bosonic part is a sigma model action on
AdS5 × S5, it has a local κ-symmetry and the global
PSU(2, 2|4) symmetry, and it reduces to the standard
GS action in the flat-space limit. The part of the action
in [6] that is quadratic in θI is a direct generalization of
the quadratic term in the flat-space GS action

(1.6)

where ρµ are projections of the ten-dimensional Dirac
matrices,

(  is the vielbein of the ten-dimensional target space
metric). The covariant derivative Dµ is the projection of
the ten-dimensional derivative

(with the dilaton field Φ and the spinor connection

) involved in the Killing spinor equation of the
type-IIB supergravity,

L Tr g 1– ∂g( )G/H[ ]2
.=

P̂A ĴAB

SF
2( ) i

2πα'
-----------=

× σ2 ggµνδIJ
e

µνsIJ–( )θIρµDνθ
J ,d∫

ρµ Γ m̂EM
m̂ ∂µXM≡ Γ AEM

A Γ A'EM
A'+( )∂µXM=

EM
m̂

DM ∂M
1
4
---ωM

m̂n̂Γ m̂n̂
1

8 5!⋅
------------Γ

M1…M5Γ MeΦΓ M1…M5
–+=

ωM
m̂n̂
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(1.7)

where the term involving  originates from the cou-
pling to the RR 5-form field strength.

The full nonlinear form of the action containing
terms of higher orders in θ is known explicitly [11, 12].
Fixing a “covariant” symmetry gauge (e.g., θ1 =
Γ0123θ2), one obtains a relatively simple action that con-
tains terms of only quadratic and quartic orders in the
fermions [13, 14]. A similar structure is found in the
covariant S-gauge discussed in what follows. The
resulting action has the same feature as the flat-space
GS action: its fermionic kinetic term is coupled to all
the bosonic string coordinates. It is nondegenerate
when expanded near a “long” string configuration [15];
thus, the GS action provides a well-defined and useful
tool for computing quantum corrections to long string
configurations ending on Wilson loops [16] at the
boundary of AdS5 [4, 15, 17].

However, to determine the fundamental closed
string spectrum in AdS5 × S5, one must learn how to
quantize the AdS5 × S5 string action in the “short” string
sector, i.e., without explicitly expanding near a nontriv-
ial bosonic string configuration.

It is well known that for the flat-space GS action,
this is achieved by choosing the light-cone gauge [3,
18]. The superstring light-cone gauge fixing consists of
two steps:

(I) the fermionic light-cone gauge choice, i.e., fixing
the κ-symmetry by Γ+θΙ = 0;

(II) the bosonic light-cone gauge choice, i.e., using

the conformal gauge1 gµν = ηµν (with the
Minkowski metric ηµν) and fixing the residual confor-
mal diffeomorphism symmetry by x+(τ, σ) = p+τ, where
τ is the world-sheet time and p+ is the light-cone
momentum.

Fixing the fermionic light-cone gauge already pro-
duces a substantial simplification of the flat-space GS
action: it becomes quadratic in θ. Choosing the bosonic
light-cone gauge, i.e., using an explicit choice of x+,
may not always be necessary (cf. [19, 20]), but it makes
derivation of the physical string spectrum straightfor-
ward.

In what follows, we concentrate on the first and cru-
cial step of fixing the fermionic light-cone gauge, i.e.,
imposing an analog of the Γ+θΙ = 0 condition. The idea
is to obtain a simple gauge-fixed form of the action

1 We use Minkowski signature two-dimensional world-sheet metric
gµν with g ≡ –detgµν.

DµθI δIJ Dµ
i
2
---e

IJρ̃µ– 
  θJ ,≡

Dµ ∂µ
1
4
---∂µxMωM

m̂n̂Γ m̂n̂,+=

ρ̃µ Γ AEM
A iΓ A'EM

A'+( )∂µXM,≡

ρ̃µ

g
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where the nondegeneracy of the kinetic term for the fer-
mions does not depend on the choice of a specific string
background in transverse directions; i.e., similarly to
the flat-space, the fermion kinetic term has the structure
∂x+ ∂θ.

There are other motivations for studying AdS5 × S5

strings in the light-cone gauge. One of the primary
goals is to clarify the relation between the string theory
and the 1 = 4 super Yang–Mills (SYM) theory at the
boundary. The SYM theory does not show a 1 = 4
supersymmetric Lorentz-covariant description but has
a simple superspace description in the light-cone gauge
A+ = 0 [22]. It is based on a single chiral superfield

where A = A1 + iA2 represents the transverse compo-
nents of the gauge field and ψi is its fermionic partner
transforming under the fundamental representation of
the R-symmetry group SU(4). In addition to the stan-
dard light-cone supersymmetry (shifts of θ), the light-
cone superspace SYM action S[Φ] also has a nonlinear
superconformal symmetry. This suggests that it may be
possible to formulate the bulk string theory in a way
that is naturally related to the light-cone form of the
boundary SYM theory. In particular, it may be useful to
split the corresponding fermionic string coordinates
into two parts possessing the manifest SU(4) . SO(6)
transformation properties, which can be the counter-
parts of the linearly realized Poincaré supersymmetry
supercharges, and the nonlinearly realized conformal
supersymmetry supercharges of the SYM theory. Also,
as was shown in [23–25], field theories in the AdS
space (in particular, the IIB supergravity) have a simple
light-cone description. There exists a light-cone action
for a superparticle in AdS5 × S5 that was used to formu-
late the AdS/CFT correspondence in the light-cone
gauge. This suggests that the full superstring theory in
AdS5 × S5 also must have a natural light-cone gauge for-
mulation, which should be useful in the context of the
AdS/CFT correspondence.

The paper is organized as follows. In Section 2, we
discuss the basic superalgebra psu(2, 2|4) and write its
(anti)commutation relations in the light-cone basis cor-
responding to the light-cone decomposition of the so(4, 2)
generators. We discuss the relations between the so(4,
1) ⊕  so(5) (or 5 + 5) basis2 of the psu(2, 2|4) super-
algebra used in [6] in the construction of the GS action
in AdS5 × S5 and the more familiar so(3, 1) ⊕  su(4) ≈
sl(2, C) ⊕  su(4) (or “4 + 6”) basis (naturally appearing
in the discussion of the 1 = 4, d = 4 superconformal
symmetry of the SYM theory). We use the latter basis
to identify the generators of the algebra in the light-
cone (or so(1, 1) ⊕  u(1) ⊕  so(2) ⊕  su(4)) basis. The
knowledge of the explicit relations between the gener-

2 We label the basis by the symmetry algebras under which the
supercoordinates transform linearly.

θ

Φ x θ,( ) A x( ) θiψi x( ) …,+ +=
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ators in the three bases is useful in finding normaliza-
tions in the forms of the string action corresponding to
the so(3, 1) ⊕  su(4) and the light-cone bases.

In Section 3, we present a version of the AdS5 × S5

superstring action using the “S-gauge” to fix the
κ-symmetry (S refers to the conformal supersymmetry
generator). In this gauge, all of the superconformal
η-fermions are gauged away.

In Section 4, we explain the transformation of the
AdS5 × S5 string action from its original form in the
so(4, 1) ⊕  so(5) basis [6] to the so(3, 1) ⊕  su(4) basis
and then to the light-cone basis. We adapt the original
AdS5 × S5 GS action of [6] to the case of the light-cone
basis of psu(2, 2|4). The resulting κ-symmetric action is
written entirely in terms of the Cartan-1 forms corre-
sponding to the light-cone basis and in an arbitrary
(e.g., Wess–Zumino (WZ) or Killing) parametrization
of the supercoset space.

In Section 5, we fix the light-cone κ-symmetry
gauge and find the corresponding Cartan-1 forms.
These light-cone gauge-1 forms are given in the Killing
parametrization of the original superspace.

In Section 6, we find the fermionic light-cone
gauge-fixed form of the action of Section 4. We present
the action in the Killing parametrization and discuss
some of its properties. We then explain the transforma-
tion of this action into the Wess–Zumino parametriza-
tion. Our fermionic κ-symmetry light-cone gauge
(which is different from the naive Γ+θI = 0 gauge but is
related to it in the flat-space limit) reduces the 32 fermi-

onic coordinates  (two left Majorana–Weyl ten-
dimensional spinors) to 16 physical Grassmann vari-
ables: “linear” θi and “nonlinear” ηi and their hermitian
conjugates θi and ηi (i = 1, 2, 3, 4), which transform
according to the fundamental representations of SU(4).
The superconformal algebra psu(2, 2|4) dictates that
these variables must be related to the Poincaré and the
conformal supersymmetry in the light-cone gauge
description of the boundary theory. The action and
symmetry generators have a simple (quadratic) depen-
dence on θi but a complicated (quartic) dependence on
ηi. We split the 10 bosonic coordinates of AdS5 × S5 into
4 isometric coordinates along the boundary directions,
the radial direction of AdS5, and the S5 coordinates.

In Section 7, we present the light-cone gauge-fixed
action in different forms and discuss some of its prop-
erties.

2. THE psu(2, 2|4) SUPERALGEBRA

We start with the commutation relations of the
psu(2, 2|4) superalgebra in the so(4, 1) ⊕  so(5) basis
given in [6]:

(2.1)

θα
I

P̂A P̂B,[ ] Ĵ AB, PA' PB',[ ] JA'B' ,–= =
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
(2.2)

(2.3)

(2.4)

where

and our conventions for the charge conjugation matrix
C are given in (6.5). Hermitean conjugation rules in this
basis are

(2.5)

(2.6)

Unless otherwise specified, we use the notation QI for
QIαi and QI for QIαi.

We use the form of the basis of the so(4, 2) subalge-
bra implied by its interpretation as the conformal alge-
bra in 4 dimensions. The generators are then called the
translations Pa, the conformal boosts Ka, the dilatation
D, and the Lorentz rotations Jab and satisfy the standard
commutation relations

(2.7)

(2.8)

where ηab = (–, +, +, +) and a, b, c, d = 0, 1, 2, 3. We
first transform the bosonic generators into the confor-
mal algebra basis. To this end, we introduce the

Ĵ
AB

Ĵ
CE,[ ] ηBCĴ

AE
3 terms,+=

JA'B' JC'E',[ ] ηB'C'JA'E' 3 terms,+=

QI P̂A,[ ] i
2
---eIJQJγA,–=

QI ĴAB,[ ] 1
2
---QIγAB,–=

QI PA',[ ] 1
2
---eIJQJγA' ,=

QI JA'B',[ ] 1
2
---QIγA'B' ,–=

Qα iI QβjJ,{ }

=  δIJ 2iCij CγA( )αβP̂A– 2Cαβ C'γA'( )ijPA'+[ ]

+ eIJ Cij CγAB( )αβ Ĵ AB Cαβ C'γA'B'( )ij JA'B'–[ ] ,

Qα iI QJβjδJICβαC ji≡

P̂A
†

P̂A, PA'
†– PA' ,–= =

Ĵ AB
†

Ĵ AB, JA'B'
†– JA'B' ,–= =

QIβi( )† γ0( )α
β

QIβjCβαC ji.–=

Pa Jbc,[ ] ηabPc ηacPb,–=

Ka Jbc,[ ] ηabKc ηacKb,–=

Pa Kb,[ ] ηabD Jab,–=

D Pa,[ ] Pa, D Ka,[ ]– Ka,= =

Jab Jcd,[ ] ηbcJad 3 terms,+=
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Poincaré translations Pa, the conformal boosts Ka, and
the dilatation D by

(2.9)

Using commutation relations (2.1) and (2.2), we can
easily verify that these generators satisfy the commuta-
tion relations given in (2.7) and (2.8).

Next, we introduce the new “charged” supergenera-
tors

(2.10)

We use the simplified notation

(2.11)

The nonvanishing values of δIJ are then replaced by
 = 1, and the Majorana condition becomes

The commutators have the form

(2.12)

(2.13)

(2.14)

(2.15)

while the anticommutators become

(2.16)

where we use the notation

(2.17)

Starting with the commutation relations for PA' and JA'B'

and applying various Fierz identities, we can prove that

Ji
j (  = ) satisfy the commutation relations of the

su(4) algebra.

Pa P̂
a

Ĵ
4a

, Ka+
1
2
--- P̂

a
– Ĵ

4a
+( ),= =

D P̂
4
.–=

Qq 1

2
------- Q1 iQ2+( ), Qq 1

2
------- Q1 iQ2–( ).≡≡

Qα i Qqα i, Qα i Qqα i.≡–≡

δqq

Qβi( )† γ0( )α
β

Qα i.=

Qα i P̂
A,[ ] 1

2
--- γAQ( )α i

,–=

Qα i Ĵ
AB,[ ] 1

2
--- γABQ( )α i

,=

Qα i P̂
A,[ ] 1

2
--- QγA( )α i,=

Qα i Ĵ
AB,[ ] 1

2
---– QγAB( )α i,=

Qα i PA',[ ] i
2
--- γA'Q( )α i

,–=

Qα i JA'B',[ ] 1
2
--- γA'B'Q( )α i

,=

Qα i PA',[ ] i
2
--- QγA'( )α i,=

Qα i JA'B',[ ] 1
2
---– QγA'B'( )α i,=

Qα i Qβj,{ }

=  2i γA( )β
α
P̂

A γAB( )β
α
Ĵ

AB
+[ ]δj

i 4iδβ
α J j

i ,–

J j
i i

2
--- γA'( ) j

i
PA' 1

4
--- γA'B'( ) j

i
JA'B' .+–≡

J j
i† J i

j

JOURNAL OF EXPERIMENTAL
Using the commutators in Eqs. (2.14), (2.15), and
(2.17) and the completeness relation for the Dirac
matrices, we can prove that

(2.18)

This demonstrates that the supercharges transform
in the fundamental representations of su(4).

In what follows, we decompose the so(4, 1) Dirac
and charge conjugation matrices in the sl(2) basis as

(2.19)

where the matrices  and  are related to the
Pauli matrices in the standard way:

(2.20)

We note that

where

We use the following conventions for the sl(2) indices:

(2.21)

with

We then decompose the supercharges in the sl(2) ⊕
su(4) basis as

(2.22)

In terms of these new supercharges, the commutation
relations become

(2.23)

Qα i J k
j,[ ] δi

jQαk
1
4
---δk

j Qα i,–=

Qα i J k
j,[ ] δ– k

i Qα j 1
4
---δk

j Qα i.+=

γa( ) β
α 0 σa( )aḃ

σa( )ȧb 0 
 
 
 

,=

γ4 1 0

0 1– 
 
 

, Cαβ
eab 0

0 e
ȧ ḃ

 
 
 
 

,= =

σa( )aȧ σa( )ȧa

σa 1 σ1 σ2 σ3, , ,( ), σa 1 σ1 σ2 σ3, , ,–( ).= =

σa( )aȧ σa( )ȧa, σa( )ȧa σa*( )aȧ,= =

σa( )aȧ σa( )bḃ
ebaeḃ ȧ

.≡

ψa
e

abψb, ψa ψb
eba,= =

ψȧ
e

ȧ ḃψ
ḃ
, ψȧ ψḃ

e
ḃ ȧ

.= =

e12 e
12

e
1̇ 2̇

– e
1̇ 2̇– 1.= = = =

Qα i 2iv 1– Qai

2vSȧ
i

 
 
 
 

,=

Qα i 2vSai 2iv 1– Qi
ȧ–,( ), v 21/4.≡=

D Qai,[ ] 1
2
---Qai, D Si

a,[ ]–
1
2
---Si

a,= =
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(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

where

Hermitean conjugation rules of the supercharges are

(2.29)

similarly for the S supercharges. The spinor sl(2) indi-
ces a, b are raised and lowered as in (2.21). From these

commutation relations, we learn that  and  can
be interpreted as the supercharges of the super Poincaré

subalgebra and  and  are the conformal super-
charges.

This completes the description of the so(3, 1) ⊕
su(4) basis. We are now ready to introduce the light-
cone basis. In the light-cone decomposition

(2.30)

we have the following generators:

(2.31)

Si
a Pa,[ ] i

2
------- σa( )aȧ

Qȧi,=

Sȧ
i Pa,[ ] i

2
------- σa( )ȧaQ

ai,–=

Qai Ka,[ ] i

2
------- σa( )aȧ

Sȧ
i ,–=

Qȧi Ka,[ ] i

2
------- σa( )ȧaSi

a,=

Qai Q j
ḃ,{ } i

2
------- σa( )aḃPaδj

i ,=

S j
a Sḃi,{ } i

2
------- σa( )aḃKaδj

i ,–=

Qai Jab,[ ] 1
2
--- σab( ) b

a
Qbi,=

Qai S j
b,{ }

=  
1
2
---e

abD
1
4
--- σab( )abJab+ 

  δj
i

e
abJ j

i ,+

σab( )ab
e

bc σab( ) c
a

,=

σab( ) b
a 1

2
--- σa( )aċ σb( )ċb a b( ).–≡

Qia†
Qi

ȧ, Qa
i† Qȧi;–= =

Qai Qi
ȧ

Si
a Sȧi

xa x+ x– x x, , ,( ), x± 1

2
------- x3 x0±( ),≡=

x x, 1

2
------- x1 ix2±( ),=

J+–, J x± , J x± , Jxx, P± ,

Px, Px, K± , Kx, Kx.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
To simplify the notation, we set

(2.32)

The light-cone form of the so(4, 2) commutation
relations can be obtained from (2.7) using the light-
cone metric elements

In this paper, the so(6) algebra is interpreted as the
su(4) one:

(2.33)

The transformation of the supercharges amounts to
attaching the + and – signs that explicitly show their J+–

charges. The corresponding supercharges are defined
by

(2.34)

(2.35)

The choice of signs in these definitions is a matter of
convention.

We describe the odd part of the psu(2, 2|4) superal-

gebra in terms of 32 supercharges , , , and

. They carry the D, J+–, and  charges, as follows
from the structure of the algebra. The commutation
relations of the supercharges with the dilatation D,

(2.36)

allow us to interpret the Q generators as the standard
supercharges of the super Poincaré subalgebra and the
S generators as the conformal supercharges. The super-
charges with the superscript + (–) have a positive (neg-
ative) J+– charge:

The  charges are fixed by the commutation relations

(2.37)

P Px, P≡ Px,=

K Kx, K≡ Kx.=

η+– η–+ 1, η xx η xx 1.= = = =

J j
i J n

k,[ ]  = δj
k J n

i δn
i J j

k , i j k n, , ,–  = 1 2 3 4., , ,

Q1i Q i– , Q2i Q+i,≡–≡

Qi
1̇ Qi

–, Qi
2̇ Qi

+,≡–≡

Si
1 Si

–, Si
2 Si

+,–≡≡

S1̇i S i– , S2̇i S+i.–≡≡

Q i± Qi
± S i±

Si
± Jxx

D Q i±,[ ] 1
2
---Q i± , D Qi

±,[ ]–
1
2
---Qi

± ,–= =

D S i±,[ ] 1
2
---S i± , D Si

±,[ ] 1
2
---Si

± ,= =

J+– Q i±,[ ] 1
2
---Q i± , J+– Qi

±,[ ]± 1
2
---Qi

± ,±= =

J+– S i±,[ ] 1
2
---S i± , J+– Si

±,[ ]± 1
2
---Si

± .±= =

Jxx

Jxx Q i±,[ ] 1
2
---Q i± , Jxx Qi

±,[ ]± 1
2
---Qi

± ,+−= =
SICS      Vol. 91      No. 6      2000



1104 METSAEV, TSEYTLIN
(2.38)

The transformation properties of the Q supercharges
with respect to the su(4) subalgebra are determined by

with similar relations for the S supercharges. Anticom-
mutation relations between the supercharges are

(2.39)

(2.40)

The remaining commutation relations between odd and
even generators have the form

The generators are subject to the hermitean conjugation
conditions

(2.41)

All the remaining nontrivial (anti)commutation rela-
tions of the psu(2, 2|4) superalgebra can be obtained
using these hermitean conjugation rules and the
(anti)commutation relations given above.

3. THE GENERAL STRUCTURE 
OF THE AdS5 × S5 STRING ACTION

The superstring action in AdS5 × S5 [6] has the same
structure as the flat-space GS action (1.4):

Jxx Si
±,[ ] 1

2
---Si

±± , Jxx S i±,[ ] 1
2
---S i± .+−= =

Qi
± J k

j,[ ] δi
jQk

± 1
4
---δk

j Qi
± ,–=

Q i± J k
j,[ ] –δk

i Q j± 1
4
---δk

j Q i± ,+=

Q i± Q j
±,{ } iP± δj

i , Q+i Q j
–,{ }+− iPδj

i ,–= =

S i± S j
±,{ } iK± δj

i , S i– S j
+,{ }± iKδj

i ,= =

Q+i S j
+,{ } J+xδj

i , Q i– S j
–,{ }– J x– δj

i ,–= =

Q i± S j
+−,{ } 1

2
--- J+– Jxx D+−+( )δj

i J j
i .+−=

Q i– J+x,[ ] Q
+i

, S i– J+x,[ ]– S+i,–= =

Q+i J x–,[ ] Q i– , S+i J x–,[ ] S i– ,= =

Si
+− P±,[ ] iQi

± , Si
– P,[ ] iQi

–,= =

Si
+ P,[ ] iQi

+,–=

Q i+− K±,[ ] iS i± , Q i– K,[ ]– iS i– ,–= =

Q+i K,[ ] iS+i.=

P±( )†
P± , P†– P,–= =

K±( )†
K± , K†– K ,–= =

J x±( )†
J x± , J+–( )†

– J+–,–= =

Jxx( )†
Jxx, D† D, J j

i( )†
– J j

i .= = =

Q i±( )†
Qi

± , S i±( )†
Si

± .= =
JOURNAL OF EXPERIMENTAL 
(3.1)

The kinetic term of the AdS5 × S5 GS action and the
3-form in its WZ term have the following form in the
so(4, 1) ⊕  so(5) basis [6]:

(3.2)

(3.3)

They are expressed in terms of the Cartan 1-forms
defined in the so(4, 1) ⊕  so(5) basis by

(3.4)

where the restriction to the bosonic part is

(3.5)

In [6], the Cartan forms used in writing the action were
given in the so(4, 1) ⊕  so(5) basis of psu(2, 2|4). This
allows one to present the AdS5 × S5 GS action in the
form that is similar to the flat-space one. Our present
goal is to rewrite the action in the light-cone basis dis-
cussed in the previous section and then to impose the κ-
symmetry light-cone gauge.

We first consider the so(3, 1) ⊕  su(4) basis and
define the bosonic (even) Cartan forms by

(3.6)

Comparing this with (3.5) and using (2.9) and (2.17),
we obtain

(3.7)

(3.8)

Using these relations in the expression for the kinetic
term (3.2) gives the action in Eq. (3.25).

We next consider the fermionic 1-forms. We define

(3.9)

I +kin

∂M3

∫ i *.

M3

∫+=

+kin
1
2
--- ggµν L̂µ

A
L̂ν

A
Lµ

A'
Lν

A'+( ),–=

* sIJ L̂
A
L

IγALJ isIJ LA'L
JγA'LJ .+=

G 1– dG G 1– dG( )bos LIα iQIα i,+=

G 1– dG( )bos L̂
A
P̂

A 1
2
--- L̂

AB
Ĵ

AB
+=

+ LA'PA' 1
2
---LA'B'JA'B' .+

G 1– dG( )bos LP
a Pa LK

a Ka LDD+ +=

+
1
2
---LabJab L j

i J i
j .+

L̂
a

LP
a 1

2
---LK

a , L̂
4a

– LP
a 1

2
---LK

a ,+= =

L̂
4

LD,–=

L j
i i

2
--- γA'( ) j

i
LA' 1

4
--- γA'B'( ) j

i
LA'B' .–=

Lq 1

2
------- L1 iL2+( ), Lq 1

2
------- L1 iL2–( );≡≡
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introduce the notation Lαi = Lqαi and Lαi = Lqαi; and use
the decomposition into sl(2) ⊕  su(4) Cartan 1-forms

(3.10)

Hermitean conjugation rules for the new Cartan
1-forms then take the same form as in (2.29). The light-
cone frame Cartan 1-forms are defined by

(3.11)

(3.12)

These relations imply

(3.13)

(3.14)

(3.15)

Representation (3.14) corresponds to the sl(2) ⊕  su(4)
basis and (3.15) to the light-cone basis.

With the relation between the Cartan 1-forms given
by Eqs. (3.9)–(3.12), we are ready to consider the
decomposition of the WZ 3-form (3.3). We start with
the AdS5 contribution given by the first term in right-
hand side of (3.3). Taking Eq. (3.9) into account and

using  = LICC ', we can rewrite the AdS5 contribution

in terms of the “charged” Cartan forms Lq and  as

(3.16)

(3.17)

Because i  is hermitean conjugate to i , we

restrict our attention to the decomposition of the first
term. We obtain

Lα i 1
2
---

v 1– LS
ai

iv LQ ȧ
i

 
 
 
 

,=

Lα i
1
2
--- iv LQai– v 1– LSi

ȧ,( ).=

LQi
1 LQi

– , LQi
2– LQi

+ ,–= =

LQ
1̇i LQ

i– , LQ
2̇i– LQ

+i,–= =

LS
1i LS

i– , LS
2i LS

+i,= =

LSi
1̇ LSi

– , LSi
2̇ LSi

+ .= =

LIα iQIα i Lα iQα i Lα iQ
α i–=

=  LQi
a Qa

i LQ
ȧiQȧi– LS

aiSai LSi
ȧ Sȧ

i–+

=  LQ
+iQi

– LQ
i– Qi

+ LQi
+ Q i– LQi

– Q+i+ + +

+ LS
i– Si

+ LS
+iSi

– LSi
– S+i LSi

+ S i– .+ + +

L
I

Lq

*AdS5
*AdS5

q *AdS5

q
,+=

*AdS5

q
L̂

A
Lqα i CγA( )αβCij' Lqβj,≡

*AdS5

q
L̂

A
Lqα i CγA( )αβCij' Lqβj.≡

*AdS5

q *AdS5

q

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
(3.18)

(3.19)

Equation (3.19) provides the representation of the AdS5
part of the 3-form in the sl(2) ⊕  su(4) basis and
Eq. (3.19) in the light-cone basis.

We now consider the S5 part of the WZ 3-form in

(3.3), i.e., isIJLA' γA'LJ. Representing it in terms of the
charged Cartan forms as in (3.16),

we obtain

(3.20)

(3.21)

(3.22)

In (3.20), we exploited relation (3.8) and used the fact

that  is symmetric in i, j; the charge conjuga-
tion matrix Cαβ is antisymmetric in α, β; and the fermi-
onic Cartan 1-forms Lq commute with each other.
Equation (3.21) provides the representation of the S5

part of the WZ 3-form in the sl(2) ⊕  su(4) basis, and
Eq. (3.22) in the light-cone basis.

To summarize, the Cartan 1-forms in the light-cone
basis are defined by

(3.23)

*AdS5

q
L̂

a
Lqα i Cγa( )αβCij' Lqβj=

– LDLqα i Cγ4( )αβCij' Lqβj i
2
--- L̂

a
LSa

i Cij' σa( )aḃ
L

Qḃ
j=

+
1
4
---LD

1

2
-------LS

aiCij' LSa
j 2LQ

ȧiCij' LQ ȧ
j+ 

 

=  
i

2
------- L̂

+
LS

i– Cij' LQ
j– L̂

–
LQ

+iCij' LS
+ j+(–

+ L̂
x
LS

i– Cij' LQ
+ j L̂

x
LS

+iCij' LQ
j–+ )

+
1

2
-------LD

1
2
---LS

+iCij' LS
j– LQ

i– Cij' LQ
+ j+ 

  .

L
I

*
S

5 *
S

5
q *

S
5

q
,+=

*
S

5
q

iLA'Lqα iCαβ C'γA'( )ijL
qβj=

=  2Lqα iCαβCik' L j
k Lqβj–

=  
1

2 2
----------LS

ai C'L( )ijLSa
j 1

2
-------LQ

ȧi C'L( )ijLQ ȧ
j–

=  
1

2 2
---------- LS

+i C'L( )ijLS
j– LS

i– C'L( )ijLS
+ j–[ ]

+
1

2
------- LQ

+i C'L( )ijLQ
j– LQ

i– C'L( )ijLQ
+ j–[ ] .

C'γA'B'( )ij

G 1– dG LP
a Pa LK

a Ka LDD
1
2
---LabJab L j

i J i
j+ + + +=

+ LQ
i– Qi

+ LQi
– Q+i LQ

+iQi
– LQi

+ Q i–+ + +

+ LS
i– Si

+ LSi
– S+i LS

+iSi
– LSi

+ S–i,+ + +
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where G is a coset representative in PSU(2, 2|4). We
also define the combinations

(3.24)

The kinetic term in (3.1) then takes the form

(3.25)

and the 3-form * in the WZ term can be written as (we
suppress the signs of exterior products of 1-forms)

(3.26)

(3.27)

(3.28)

4. THE AdS5 × S5 ACTION 
IN THE COVARIANT S-GAUGE

The results for the Cartan forms in the sl(2) ⊕  su(4)
basis described above allow us to find another version
of the κ-symmetry gauge-fixed action of the super-
string in AdS5 × S5. We start with the supercoset repre-
sentative

(4.1)

(4.2)

(4.3)

and impose the κ-symmetry gauge by

(4.4)

i.e., 

(4.5)

Because we have set to zero the fermionic coordinates
η that correspond to the conformal supercharges S, we

L̂
α

LP
a 1

2
---LK

a , LA' i
2
--- γA'( ) j

i
L i

j ,–≡–≡

C'L( )ij Cik' L j
k .≡

+kin
1
2
--- g–=

× gµν L̂µ
a
L̂ν

a
LDµLDν Lµ

A'Lν
A'+ +( ),

* *AdS5

q *
S

5
q

H.c.,–+=

*AdS5

q i

2
------- L̂

+
LS

i– Cij' LQ
j– L̂

–
LQ

+iCij' LS
+ j+(–=

+ L̂
x
LS

i– Cij' LQ
+ j L̂

x
LS

+iCij' LQ
j–+ )

+
1

2
-------LD

1
2
---LS

+iCij' LS
j– LQ

i– Cij' LQ
+ j+ 

  ,

*
S

5
q 1

2 2
---------- LS

+i C'L( )ijLS
j– LS

i– C'L( )ijLS
+ j–[ ]=

+
1

2
------- LQ

+i C'L( )ijLQ
j– LQ

i– C'L( )ijLQ
+ j–[ ] .

G gx θ, gηgygφ,=

gx θ, xaPa θi
aQa

i θȧiQȧi–+( ),exp=

gη ηaiSai η i
ȧSȧ

i–( ),exp=

ηai η i
ȧ 0,= =

Gg. f . gx θ, gygφ.=
JOURNAL OF EXPERIMENTAL
call this the S gauge. The resulting gauge-fixed expres-
sions for the Cartan 1-forms are given by

(4.6)

(4.7)

(4.8)

where  is defined as in (5.20) and the matrix U is
defined by (7.3) and (7.4). All the remaining Cartan
1-forms vanish.

Using LS = 0, we express the AdS5 part of the 3-form
* in (3.19) as

(4.9)

At the same time, Eq. (3.21) gives

(4.10)

Thus, we conclude that

(4.11)

which allows us to find the two-dimensional form of the
WZ term.

Using the above relations and Eqs. (3.25) and (3.24)

and taking into account that  = 0, we finally obtain
the kinetic and WZ parts of the AdS5 × S5 string
Lagrangian (cf. (6.13), (6.14))

(4.12)

(4.13)

where  is given by (4.6). We note that in this

S-gauge, the 1-form LA', which is given in terms of 
as in (3.24), is equal simply to the S5 1-form eA'. The
reason is that in contrast to what happens in the light-

cone gauge (5.15), the Cartan form  does not con-
tain fermionic contributions here [see (4.8)].

LP
a eφ=

× dxa i

2 2
---------- θia σa( )

aḃ
dθ

ḃ
i θi ȧ σa( )ȧbdθi

b+( )– ,

LQi
a eφ/2d̃θi

a, LQ
ȧi eφ/2d̃θȧi,= =

LD dφ, L j
i dUU 1–( ) j

i
,= =

d̃θ

*AdS5

q 1

2 2
----------dφeφd̃θȧiCij' d̃θȧ

j .=

*
S

5
q 1

2
-------eφd̃θȧi C'L( )ijd̃θȧ

j .–=

*AdS5

q *
S

5
q

+ d
1

2 2
----------eφd̃θȧiCij' d̃θȧ

j

 
  ,=

LK
a

+kin
1
2
--- g–=

× gµν LPµ
a LPν

a ∂µφ∂νφ eµ
A'eν

A'+ +( ),

+WZ
i

2 2
----------e

µνeφ∂µ
~θȧiCij' ∂ν

~θȧ
j H.c.,+=

LPµ
a

L j
i

L j
i
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5. THE COORDINATE PARAMETRIZATION 
OF CARTAN FORMS AND FIXING 

THE LIGHT-CONE κ-SYMMETRY GAUGE

To express the Cartan 1-forms in terms of the even
and odd coordinate fields, we start with the supercoset
representative

(5.1)

where

(5.2)

(5.3)

and gφ and gy depend on the radial AdS5 coordinate φ
and the S5 coordinates yA' 

(5.4)

(5.5)

The choice of the parametrization of the coset represen-
tative in (5.1) corresponds to what is usually referred to
as the “Killing gauge” in superspace.

Because the supercharges transform in the funda-
mental representation of su(4), the corresponding fer-
mionic coordinates θ and η also transform in the funda-
mental representation of su(4).

The above expressions provide the definition of the
Cartan forms in the light-cone basis. We further specify
these expressions by setting some of the fermionic
coordinates to zero, which corresponds to fixing a par-
ticular κ-symmetry gauge. More specifically, we fix the
κ-symmetry by setting to zero all the Grassmann coor-
dinates that carry a positive J+– charge [cf. (6.9)],

(5.6)

To simplify the notation, we set

(5.7)

As the result, the κ-symmetry fixed form of coset rep-
resentative (5.1) is

(5.8)

(5.9)

(5.10)

Inserting this Gg. f. in (3.23), we obtain the κ-symmetry
gauge-fixed expressions for the Cartan 1-forms

(5.11)

G gx θ, gηgygφ,=

gx θ, xaPa θ i– Qi
++(exp=

+ θi
–Q+i θ+iQi

– θi
+Q i– ),+ +

gη η i– Si
+ η i

–S+i η+iSi
– η i

+S i–+ + +( );exp=

gφ φD( ),exp≡

gy y j
i J i

j( ), y j
i i

2
--- γA'( ) j

i
yA' .≡exp≡

θ+i θi
+ η+i η i

+ 0.= = = =

θi θ i– , θi θi
–, η i η i– , η i η i

–.≡≡≡≡

Gg. f . gx θ,( )g. f . gη( )g. f .gygφ,=

gx θ,( )g. f . xaPa θiQi
+ θiQ

+i+ +( ),exp=

gη( )g. f . η iSi
+ η iS

+i+( ).exp=

LP
+ eφdx+,=

LP
– eφ dx– i

2
---θ̃i

d̃θi–
i
2
---θ̃idθ̃i

– 
  ,=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

All the remaining forms are equal to zero. We have
introduced the notation

(5.19)

(5.20)

and similarly for η. We note that  = θ2 and θ =
θdθ. The matrix U ∈  SU(4) is defined in terms of the S5

coordinates yi
j or yA' by (7.3) and (7.4). It can be written

explicitly as

(5.21)

6. THE AdS5 × S5 STRING ACTION
IN THE LIGHT-CONE GAUGE

We first review the fixing of the light-cone fermionic
gauge in flat-space. One usually imposes the
κ-symmetry light-cone gauge by starting with the com-
ponent form of the action given by (1.5). It turns out to
be cumbersome to generalize this procedure to the case
of strings in AdS5 × S5. It is more convenient to first
impose the light-cone gauge at the level of the Cartan

forms  and LI and then use them in the action taken
in its general form (1.4). The light-cone-gauge form of

 is

(6.1)

LP
x eφdx, LP

x eφdx,= =

LK
– e φ– 1

4
--- η̃2( )

2
dx+ i

2
---η̃ i

d̃η i
i
2
---η̃ idη̃

i
+ + ,=

LD dφ,=

L j
i dUU 1–( ) j

i
i η̃ iη̃ j

1
4
---η̃2δj

i– 
  dx+,+=

LQ
–i eφ/2 d̃θi iη̃ i

dx+( ),=

LQi
– eφ/2 d̃θi iη̃ idx–( ),=

LQ
+i ieφ/2η̃ i

dx+, LQi
+ ieφ/2η̃ idx+,=–=

LS
i– e φ/2– d̃η i i

2
---η̃2η̃ i

dx++ 
  ,=

LSi
– e φ/2– d̃η i

i
2
---η̃2η̃ idx+– 

  .=

θ̃i
U j

i θ j, θ̃i θ j U 1–( ) i
j

,≡≡

dθ̃
i

Ui dj θ j, d̃θi dθ j U 1–( ) i
j

,≡≡

θ̃2 θ̃d̃

U
y
2
----- iγA'nA' y

2
-----,sin+cos=

y yA'yA' , nA' yA'

y
------.≡≡

LÂ

LÂ

L+ dx+, L– dx– iθIΓ –
dθI,–= =

LN dxN , N 1 … 8,, ,= =
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where θI are subject to the light-cone gauge condition
Γ+θI = 0.3 Inserting these expressions in action (1.4) we
obtain

(6.2)

(6.3)

(6.4)

Next, we do the “5 + 5” splitting of the ten-dimensional
Clifford algebra generators, the charge conjugation
matrix #, and the supercoordinates:

(6.5)

where I is the 4 × 4 unit matrix; σn are the Pauli matri-
ces; α = 1, 2, 3, 4; and i = 1, 2, 3, 4. We also introduce
the complex coordinates

(6.6)

and use the parametrization

(6.7)

The decompositions of the so(4, 1) gamma matrices are
given in (2.19). The light-cone gauge

(6.8)

leads to

(6.9)

Using the notation

(6.10)

and inserting the above decomposition into action (6.2),
we finally obtain the expressions for the kinetic and

3 The transverse bosonic Cartan forms LN in (6.1) must not be con-
fused with the fermionic ones LI.

+ +kin +WZ,+=

+kin ggµν ∂µx+∂νx– ---–
=

–
1
2
---∂µxN∂νxN i∂µx+θIΓ–∂νθ

I+ 
 ,

+WZ ieµνsIJ∂µx+θIΓ–∂νθ
J .–=

Γ A γA I σ1, Γ A'×× I γA' σ2,××= =

# C C' iσ2, θI×× θIα i

0 
 
 

,= =

θq 1

2
------- θ1 iθ2+( )≡

θqα i v
2
----

η i–

η+i

iθ+i–

iθ i– 
 
 
 
 
 
 

.=

Γ+θI 0, Γ+ 1

2
------- Γ3 Γ0±( )≡=

θ+i η+i 0.= =

θi θ i– , η i η i– ,≡≡

θi θi( )†
, η i η i( )†

= =
JOURNAL OF EXPERIMENTAL
WZ parts of the light-cone-gauge flat-space GS
Lagrangian

(6.11)

(6.12)

It is to this form of the flat GS action that our light-cone
AdS5 × S5 action reduces in the flat-space limit. A char-
acteristic feature of this parametrization is that, while
the kinetic term is diagonal in θ and η, these variables
are mixed in the WZ term.

We now turn to the AdS5 × S5 case. Inserting the above
expressions (5.11)–(5.18) in action (3.1), we obtain the
light-cone gauge-fixed superstring Lagrangian in terms
of the light-cone supercoset coordinates:

(6.13)

(6.14)

Several remarks are in order.
(i) In the flat-space limit, this action reduces to the

GS light-cone κ-symmetry gauge-fixed action repre-
sented in the form (6.11) and (6.12). In the particle the-
ory limit as α'  0 (corresponding to keeping only
the τ dependence of fields and omitting the WZ term),
this action reduces (after an appropriate bosonic light-
cone gauge fixing and rescaling some of the fermionic
variables) to the light-cone action of a superparticle
propagating in AdS5 × S5 [24].4 

(ii) The kinetic terms for the fermionic coordinates
have a manifest linear su(4) invariance. In the remain-
ing terms, this symmetry is not manifested and is not
realized linearly.

(iii) Because the WZ term depends on θ through its
derivative, it is invariant under a shift of θ. To maintain
this invariance in the kinetic terms, the shift of θ must
be supplemented, as usual, by an appropriate transfor-
mation of x–. The action is invariant under the shifts of

4 The Hamiltonian for the superparticle in AdS5 × S5 was found in
[24] (see Eq. (12) there). The action is obtained from the Hamilto-
nian in the usual way.

+kin ggµν ∂µx+∂νx––
1
2
---∂µxN∂νxN–=

+ ∂µx+ i
2
---θi∂νθ

i i
2
---η i∂νη

i H.c.+ + 
  ,

+WZ e
µν∂µx+η iCij' ∂νθ

j– H.c.+=

+kin ggµν e2φ ∂µx+∂νx– ∂µx∂νx+( )–
1
2
---∂µφ∂νφ–

=

–
1
2
---eµ

A'eν
A' ∂µx+ i

2
---e2φ θi∂νθi θi∂νθ

i+( )+

+
i
4
--- η i∂νη i η i∂νη

i+( ) 1
2
---η̃ ieν j

i η̃ j+

+
1
8
---∂µx+∂νx+ η2( )2 η̃ i γA'( )i η̃ j

j( )
2

–[ ] 
 ,

+WZ –
e

µν

2
-------eφ∂µx+η̃ i

Cij' ∂ν
~θ j iη̃ j∂νx+( ) H.c.+=
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the bosonic coordinates xa along the boundary direc-
tions.

(iv) As in the superparticle case [24, 25], this action
is quadratic in half of the fermionic coordinates (θ) but
is of a higher (quartic) order in the other half (η). It was
the intention to split the fermionic variables in such θ
and η that motivated our choice of the supercoset
parametrization in (5.8).

(v) The action contains the terms of the type (η2)2

and ηiei
jηj that played an important role [24] in estab-

lishing the AdS CFT correspondence in the superparti-
cle case. These terms must also play a similar important
role in formulating the AdS/CFT correspondence at the
string theory level.

The fermionic variables θ and η defined in (5.1)
have opposite conformal dimensions. It is convenient,
however, to use the variables with the same conformal
dimensions.5 To achieve this, we rescale η as

(6.15)

The action in Eqs. (6.13) and (6.14) can then be written
as

(6.16)

(6.17)

where G!@ is the metric of the 5-sphere 6 and the dif-

ferential  is defined by

(6.18)

with (V!)i
j being the components of the Killing vectors

(V!)i
j∂! of S5 (and ∂! = ∂/∂y!).

We note that x+ enters the action only through the
combination e2φ∂µx+. An attractive feature of this repre-
sentation is that the terms in (6.13) involving

(γA')i
j  are now collected in the second term in the

5 Similar Grassmann variables with the same conformal dimen-
sions were used in the light-cone formulation of the superparticle
in AdS5 × S5 [24, 25].

6 We introduced the coordinate S5 indices !, @ = 1, …, 5 (to be

distinguished from the tangent space indices A', B') and set y! =

yA'.

η i 2eφη i, η i 2eφη i.

+kin ggµν e2φ ∂µx+∂νx– ∂µx∂νx+( ) -–=

–
1
2
---∂µφ∂νφ

1
2
---G!@ y( )Dµy

!
Dµy

@–

+
i

2
------- ggµνe2φ∂µx+ θi∂νθi θi∂νθ

i+[

+ η i∂νη i η i∂νη
i ie2φ∂νx+ η2( )2
–+ ] ,

+WZ e
µνe2φ∂µx+η̃ i

Cij'–=

× ∂ν
~θ j i 2eφη̃ j∂νx+( ) H.c.,+

δA'
!

Dµy
!

Dµy
! ∂µy

! 2iη i V
!( )

i
η j

j e2φ∂µx+,+=

η̃ i η̃ j
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
derivative (6.18) and, thus, have a natural geometrical
interpretation, i.e., multiplying the Killing vectors.

The Killing vectors (V!)i
j∂! satisfy the so(6) .

su(4) commutation relations (2.33) and can be written as

(6.19)

where VA' and VA'B' correspond to the 5 translations and
the SO(5) rotations respectively and are given by (cf.
(5.21))

(6.20)

(6.21)

where  is the Kronecker delta symbol and we use
the conventions

In these coordinates, the S5 metric tensor has the form

(6.22)

In this section, we have discussed the light-cone
action in the Killing parametrization of superspace. To
obtain the light-cone-gauge action in the Wess–Zumino
parametrization, one must make the redefinitions [cf.
(5.19) and (5.20)]

(6.23)

(6.24)

The fermionic derivatives ∂µ then acquire the general-
ized connection Ωµ = ∂µUU–1 (Eq. (7.7)); i.e., they
become the covariant derivatives $µ (see (7.6)). The
action is given in terms of these new variables in the
next section.

Finally, we note that our results for the AdS5 × S5

space can be generalized to AdS3 × S3 in a rather
straightforward way. To obtain the light-cone-gauge
action for this case, one could use the κ-invariant action
of [39] and then apply the same procedure of the light-
cone splitting and gauge fixing as developed in this
paper. However, our light-cone-gauge action is already
written in the form that allows a straightforward gener-
alization to AdS3 × S3: only the dimensional reduction
remains to be done. In discussing the AdS3 × S3

Lagrangian, we use the WZ parametrization where the
action has the form given by (7.1) for definiteness. To

V
!( )

i
∂j !

1
4
--- γA'B'( )i

VA'B'
j

i
2
--- γA'( )i

VA'
j ,+=

V A' y y δA'!
nA'n

!–( ) nA'n
!+cot[ ]∂!,=

V A'B' yA'∂B' yB'∂A' ,–=

δA'!

y
! δA'

!
yA' , n

! δA'
!

nA' , n
!

n!.= = =

G!@ e!
A' e@

A' ,=

e!
A' ysin

y
------------- δ!

A' n!nA'–( ) n!nA' .+=

θi U 1–( )i θi
j , θi θ jU i

j ,

η i 2eφ U 1–( ) j
i η j, η i 2eφη jU i

j .
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obtain the +B and  terms in the AdS3 × S3 case, we
must set

x =  = 0

in (7.2) and (7.5) and also assume the fermionic vari-
ables θ and η to transform in the fundamental represen-

tation of (2) and SU(2) (with the indices i, j taking
the values 1, 2). The matrix  is then given by

The matrices(γA')i
j where A' = 1, 2, 3, are now the SO(3)

Dirac gamma matrices. The quartic part of the Lagrangian

 simplifies to

(6.25)

7. DIFFERENT FORMS AND SOME PROPERTIES 
OF THE LIGHT-CONE-GAUGE ACTION

Choosing the light-cone gauge in the parametriza-
tion of the supercoset

described above, we can write the AdS5 × S5 super-
string Lagrangian of [6] (in the Wess–Zumino super-
space parametrization) as

(7.1)

where

is the standard bosonic sigma-model action with AdS5 × S5

as the target space,7

(7.2)

In this formula,  is the projection of the S5 vielbein
that in our special parametrization is given by

(7.3)

where Tr is taken over i, j. The matrix U∈  SU(4)

depends on five independent coordinates ,

7 Our index notation differs from [6]: here, we use µ, ν = 0, 1 for
two-dimensional indices; i, j for SU(4) indices; A = 0, 1, …, 4 for
AdS5; and A' = 1, …, 5 for S5 tangent space indices (repeated indi-

ces are contracted with flat metric). We set e01 = 1.

+F
2( )

x

Cij'

C' hσ2, h 1.= =

+F
4( )

+F
4( )

2 ggµνe4φ∂µx+∂νx+ η iη i( )
2
.=

PSU 2 2 4,( )
SO 4 1,( ) SO 5( )×
--------------------------------------------

+ +B +F
2( ) +F

4( )
,+ +=

+B
1
2
--- ggµνGMN X( )∂ν XM∂ν XN–=

+B ggµν–=

× e2φ ∂µx+∂νx– ∂µx∂νx+( ) 1
2
---∂µφ∂νφ

1
2
---eµ

A'eν
A'+ + .

eµ
A'

eµ
A' i

2
---Tr γA'∂µUU 1–( ),–=

U j
i ey( ) j

i
, U†U≡ I ,=

yA'
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(7.4)

where  are the SO(5) Dirac matrices. In Eq. (7.1),

 is the quadratic part of the fermionic action,

(7.5)

Here, we used the notation for the generalized spinor
derivative on S5

(7.6)

with

where σµ = (τ, σ) are two-dimensional coordinates.
This derivative has the general representation

and satisfies the relation

with Ωi
j given by

(7.7)

and can be written in terms of the S5 spin connection
ωA'B' and the 5-bein eA' as

(7.8)

 is the constant charge conjugation matrix of the
SO(5) Dirac matrix algebra:

The hermitean conjugation rules are

The P-odd eµν-dependent term in (7.5) comes from the
WZ term in the original supercoset GS action [6].

The quartic fermionic term in (7.1) depends only on
η, not on θ:

(7.9)

y j
i i

2
---yA' γA'( ) j

i
, y j

i( )∗≡ y i
j , y i

i– 0,= =

yA'

+F
2( )

+F
2( )

e2φ∂µx+=

× i
2
--- ggµν θi$νθ

i η i$νη
i iη ieν j

i η j–+( )

---– e
µνη iCij' $νθ

j i 2eφη j∂νx+( ) H.c.+

$θi dθi Ωi θj
j , $θi– dθi θ jΩ

j ,i+= =

e j
i γA'( ) j

i
eA' ,≡

$ $µdσµ, e j
i eµj

i dσµ,= =

$ d Ωi J j
j i+=

$2
0,=

Ω dUU 1– , dΩ Ω Ω∧– 0,= =

Ω j
i 1

4
--- γA'B'( )i ωA'B'

j–
i
2
--- γA'( )i

eA'
j .+=

Cij'

C'†C' I , C'T C'.–= =

θi
† θi, η i

† η i.= =

+F
4( ) 1

2
--- ggµνe4φ∂µx+=

× ∂νx+ η iη i( )2 η i γA'( )i η j
j( )

2
–[ ] .
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The action in Eqs. (7.1), (7.2), (7.5), and (7.9) has sev-
eral important properties.

(i) The dependence on x– is only linear through the
bosonic ∂x+∂x– term in (7.2). The bosonic factor in the
fermion kinetic term is simply e2φ∂x+. It is the crucial
property of this light-cone κ-symmetry gauge-fixed
form of the action that the fermion kinetic term
involves the derivative of only one space-time direc-
tion, x+; this implies that the (non)degeneracy of the
action does not depend on the transverse string profile.8 

(ii) The fact that the action has only quadratic and
quartic fermionic terms is related to special symmetries
of the AdS5 × S5 background (a covariantly constant
curvature and the 5-form field strength). The presence
of the η4 term (7.9) reflects the curvature of the back-
ground.9 As follows from the discussion in [6], the
“extra” terms in (7.5) similar to ηiei

jηj and ηC 'η∂x must
have the interpretation of the couplings to the RR
5-form background. The gauge that we considered
treats the AdS5 and S5 factors asymmetrically. In partic-
ular, the action contains only SO(5) but not SO(4, 1)
gamma matrices, and θi and ηi are not spinors under
SO(4, 1).10 

(iii) The AdS5 × S5 superstring action depends on
two parameters: the scale (equal radii) R of AdS5 × S5

and the inverse string tension or α'. Restoring the
dependence on R that was set equal to 1 in (7.1), one
finds that in the flat-space limit as R  ∞, the quartic
term (7.9) goes away, while the kinetic term (7.5)
reduces to the standard one with $µ  ∂µ. The result-
ing action is equivalent to the flat-space light-cone GS
action [3] after expressing each of the two SO(8)
spinors in terms of the two SU(4) spinors. The action
takes the “diagonal” form in terms of the combinations

 of our two fermionic variables (see (7.19) in what

8 The structure of the action is therefore similar to that of the light-
cone-gauge action for the GS string in the curved magnetic RR
background constructed in [26].

9 We note that the light-cone-gauge GS action in a curved space of
the form R1, 1 × M8 with generic NSNS and RR backgrounds [27]
(reconstructed from the light-cone flat-space GS vertex operators
[28]) generally contains, terms higher than quartic fermionic
terms multiplied be higher derivatives of the background fields.
This light-cone GS action has a quartic fermionic term [27, 29]
involving the curvature tensor

R···∂x+∂x+( Γ–··θ)( Γ–··θ) ~ R···(p
+)2( Γ–··θ)( Γ–··θ)

that is similar to the one present in the NSR string action (i.e., in
the standard two-dimensional supersymmetric sigma model).

10θ and η are not scalars with respect to SO(4, 1). Combined with
fermions eliminated by the κ-symmetry gauge, they transform in
the spinor representation of SO(4, 1) × SO(5). However, after the
gauge fixing based on gamma matrices from the AdS5 part (γ+θ = 0),
the SO(4, 1) group, with the exception of its SO(2) subgroup gen-

erated by  [23] (which is a part of the little group for the AdS5
case), is realized nonlinearly. Thus (modulo subtleties of a nonlin-
ear realization of su(4) on bosons), the algebra so(2) ⊕  su(4) is a
counterpart of the so(8) algebra in the flat-space case.

θ θ θ θ

J
xx

ψ1 2,
i
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follows). As α'  0, the action has the correct particle
limit; i.e., it reduces to the light-cone-gauge superparti-
cle action in AdS5 × S5 [24].

(iv) A special feature of this action is that the
SU(4) ≈ SO(6) symmetry is realized linearly on fermi-
ons but not on bosons. This is a consequence of the
purely bosonic factor SO(4, 1) × SO(5) in the underly-
ing supercoset

The S5 = SO(6)/SO(5) part of the bosonic action can be
represented as a special case of the two-dimensional
G/H coset sigma model with the Lagrangian

where the two-dimensional gauge field Aµ is in the alge-
bra of H = SO(5). This action does not have the mani-
fested SO(6) symmetry after Aµ is integrated out and 8
is restricted to the coset as a gauge choice.

(v) The action is symmetric under the shift θ 
θ + e supplemented by an appropriate transformation of
x–. Here, e is a Killing spinor on S5 satisfying the equa-
tion $ei = 0. It is because of this symmetry that the the-
ory is linear in θ (i.e., no quartic interactions in θ
occur).

To proceed further with quantizing the theory, one
would like, as in the flat case, to eliminate the ∂x+ fac-
tors from the fermion kinetic terms in (7.5). In the flat-
space, this was possible in the bosonic light-cone
gauge. In the BDHP formulation [30, 31] that we are
using, this can be done by fixing the conformal gauge

(7.10)

and then noting that, because the resulting equation

has a general solution

we can fix the residual conformal diffeomorphism sym-
metry on the plane by setting

An alternative (equivalent) approach is to use the orig-
inal GGRT [32] formulation based on writing the
Nambu action in the canonical first-order form (with
constraints added with Lagrange multipliers) and fixing
the diffeomorphism invariance by two conditions
imposed on one coordinate and one canonical momen-
tum:

The first approach based on the conformal gauge
does not generally apply to curved spaces with null
Killing vectors that are not the direct products R1, 1 × M8

PSU 2 2 4,( )
SO 4 1,( ) SO 5( )×
--------------------------------------------.

L Tr ∂µ88 1–
Aµ+( )

2
, 8 G∈ SO 6( ),= =

γµν ηµν, γµν ggµν, detγµν≡ 1–= =

∂2x+ 0=

x+ τ σ,( ) f τ σ–( ) h τ σ+( ),+=

x+ τ σ,( ) p+τ .=

x+ p+τ , P+ const.= =
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(the gauge conditions is inconsistent in general with the
classical equations of motion). It does apply, however,
if the null Killing vector is covariantly constant [33].
There is no need, in principle, to insist on fixing the
standard conformal gauge (7.10). Instead, one can fix
the diffeomorphism gauge by imposing two conditions:

This choice is consistent provided the background met-
ric satisfies [34]

This approach is essentially equivalent to the GGRT
approach applied to the curved space case.

The above conditions do not apply to the AdS case:
the null Killing vectors are not covariantly constant and
G+– = e2φ ≠ 1.11 It is easy to see, however, that a slight
modification of the above conditions on γ00 and x+ rep-
resents a consistent gauge choice:

(7.11)

In what follows, we do not discuss in detail the conse-
quences of fixing the bosonic light-cone gauge (7.11) in
superstring action (7.1) but follow a simplified
approach based on using a particular classical solution.

We first do not make any explicit gauge choice but
consider the superstring path integral assuming that
there are no sources for x–. The linear dependence of the
action in Eqs. (7.1) and (7.2) on x– allows us to integrate
over x– explicitly. This produces the δ-function con-
straint imposing the equation of motion for x+, which is
formally solved by setting

(7.12)

where f(τ, σ) is an arbitrary function. Because our
action (7.1) depends on x+ only through e2φ∂x+, we are
then able to integrate over x+ as well, eliminating it in
favor of the function f. The action then contains the fer-
mionic terms (7.5) and (7.9) with

(7.13)

The resulting fermion kinetic term is then nondegener-
ate (for a properly chosen f ) and can be interpreted as
the action of two-dimensional fermions in a curved

11In fact, there is no globally well-defined null Killing vector in the
AdS space because its norm, which is proportional to e2φ, van-
ishes at the horizon φ = –∞ (this point and the possibility to fix a
global diffeomorphism gauge for the AdS string were discussed
in [35]). In this paper, we use a formal approach to this issue:
since the boundary SYM theory in R1, 3 has a well-defined light-
cone description, it must be possible to fix some analogue of the
light-cone gauge for the dual string as well (assuming it is defined
on the Poincaré patch of the AdS space). A potential problem of
that approach, which will be reflected in the degeneracy of the
resulting light-cone gauge-fixed action near the horizon region,
should then be addressed at a later stage.

γ00 1, x+– p+τ .= =

G+– 1, G–– G i– 0, ∂–GMN 0.= = = =

e2φγ00 1, x+– p+τ .= =

ggµνe2φ∂νx+
e

µν∂ν f ,=

e2φ∂µx+ f µ gµν
e

νλ

g
-------∂λ f .≡
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two-dimensional geometry determined by f and gµν (cf.
[4, 37, 38]).

We can further simplify the action by making a spe-
cial choice of f and fixing a diffeomorphism gauge on
gµν in a consistent way. One possibility is to choose a
diagonal gauge on gµν [36] and f ~ σ in accordance with
(7.12), which implies that x+ ~ τ; i.e.,12

(7.14)

Similarly to the flat-space case [3] and the “long”
string cases discussed in [4], the resulting action can
then be put into the “two-dimensional spinor” form.
Indeed, the “8 + 8” fermionic degrees of freedom can
be organized into four Dirac two-dimensional spinors
defined in the curved two-dimensional geometry. Using
(7.14), we can write kinetic term (7.5) as

(7.15)

Introducing a two-dimensional zweibein correspond-
ing to the metric in (7.14),

(7.16)

we can put (7.15) in the two-dimensional form as

(7.17)

where ρm are two-dimensional Dirac matrices,

(7.18)

 = (ψi)†ρ0,  stands for , ψT denotes the
transposition of a two-dimensional spinor, and ψ are
related to the original (two-dimensional scalar) fermi-
onic variables θ and η by13

12We note that the standard conformal gauge  = diag(–1, 1)
leads to an inconsistency for generic φ if one insists on the sim-
plest f = σ choice. Consistency for generic φ is achieved only if f
(and x+) is nontrivial. However, the structure of the resulting
action is complicated.

13In our notation i ρm∇ mψ = –i (∇ 0 – ∇ 1)ψ1 – i (∇ 0 + ∇ 1)ψ2,

∇ m = .

gg
µν

f σ, x+ τ , ggµν diag e 2φ–– e2φ,( ).= = =

+F
2( ) i

2
--- θi$0θ

i η i$0η
i iη ie0 j

i η j–+( )–=

– e2φη iCij' $1θ
j i 2eφη j∂1x+( ) H.c.+

eµ
m diag e2φ 1,( ), gµν eµ

0 eν
0– eµ

1 eν
1,+= =

e–1+F
2( ) i

2
---ψρmem

µ $µψ i
2
---ψψ∂1φ–=

+
1

2
-------ψie0 j

i ρ–ψ j i 2eφ ψi( )Tπ–Cij' ψ j∂1x H.c.,+ +

ρ0 iσ2, ρ1 σ1, ρ3 ρ0ρ1 σ3,= = = =

ρ± 1

2
------- ρ3 ρ0±( ), π– 1

2
--- 1 ρ1–( ),≡≡

ψi ψψ ψiψ
i

ψ ψ1
† ψ2

†

em
µ ∂µ
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(7.19)

The quartic interaction term (7.9) takes the form

(7.20)

The total action is thus a certain G/H bosonic sigma
model coupled to a Thirring-type two-dimensional fer-
mionic model in curved two-dimensional geometry
(7.16) (determined by the profile of the radial function
of the AdS space) and coupled to some two-dimen-
sional vector fields. The interactions are such that they
ensure the quantum two-dimensional conformal invari-
ance of the entire model [6].

Properties of the resulting action and the possibility
of putting it into a simpler and more useful form remain
to be studied. It is clear of course that the action has a
rather complicated structure and is not solvable in
terms of free fields in any obvious way. A hope is that
the light-cone form of the action that we have found (or
its first-order phase-space analog) may suggest a choice
of more adequate variables that may allow further
progress.

We finish this discussion with several remarks.

The mass term ψ∂1φ in (7.17) is similar to the one
in [4] (where the background string configuration was
nonconstant only in the radial φ direction) and has its
origin in the eµνe2φ∂µx+∂νφηi θj term appearing after
the η  θ symmetrization of the eµν term in (7.5) (its
“noncovariance” is thus a consequence of the choice
x+ = τ).

The action is symmetric under shifting

where ei is the two-dimensional Killing spinor. This
symmetry reflects the fact that our original action is
symmetric under shifting θi by a Killing spinor on S5.

The two-dimensional Lorentz invariance is pre-
served by the fermionic light-cone gauge (the original
GS fermions θ are two-dimensional scalars) but is bro-
ken by our special choice of bosonic gauge (7.14). The
special form of gµν in (7.14) implies a “noncovariant”
dependence on φ in the bosonic part of the action: the
action (7.2) for the three fields φ, x,  and the 5-sphere
coordinates yA' is given by

ψi ψ1
i

ψ2
i

 
 
 
 

, ψ1
i 1

2
------- θi i C' 1–( )ijη j–[ ] ,= =

ψ2
i 1

2
------- θi i C' 1–( )ijη j+[ ] .=

e 1– +F
4( ) 1

4
--- ψi γA'( )i ρ–

j ψ j( )
2

ψiρ
–ψi( )2

–[ ] .=

ψ

Cij'

     

ψi ψi ρ–
e

i,+

x
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(7.21)

where G!@ is the metric of the 5-sphere.14 A peculiar-
ity of the gµν gauge choice in (7.14) compared to the
usual conformal gauge is that here the S5 part of the
action is no longer decoupled from the radial AdS5
direction φ.

The form of the quadratic fermionic part of the AdS5 ×
S5 superstring action expanded near a straight long
string configuration along the φ direction of AdS5 was
discussed in [4] using the “covariant” κ-symmetry
gauge condition θ1 = θ2 (an equivalent result was also
found in the θ1 = iγ4θ2 gauge used in [14, 15]). It is easy
to show that an equivalent fermionic action is also
found in the present light-cone κ-symmetry gauge.
Expanding near the configuration x0 = τ, φ = σ, x = 0,
y = 0 (which is a classical string solution, as is easy to
check) and choosing the bosonic gauge such that the
two-dimensional metric gµν is equal to the induced
(AdS2) metric

We find that the corresponding function f in (7.12) is
then equal to σ–2. The quadratic part of the fermion
action (7.17) becomes (with the η

 

 fermions redefined
by the constant unitary matrix 

 

C

 

' in (7.15))

(7.22)

Rescaling the fields as  θ  =  σθ ' and  η  =  ση ' such that
their normalization is 

 
σ

 

-independent,

and integrating by parts, we find

(7.23)

The first three terms here are similar to those in the flat
GS action, while the last term represents the 

 

AdS

 

2

 

 fer-
mion mass term and is the same as found in [4]. Indeed,
diagonalizing the action as in (7.19), we obtain

(7.24)

 

14

 

Here, we renamed the (tangent space) indices 

 

A

 

', 

 

B

 

' into the coor-
dinate space ones 

 

!

 

, 

 

@

 

 for consistency with the notation used
later in Section 6 (

 

y

 

!

 

 

 

≡

 

 

 

y

 

A

 

'

 

).

+B = ∂0x∂0x e4φ∂1x∂1x–

+
1
2
---e 2φ– ∂0φ∂0φ

1
2
---e2φ∂1φ∂1φ–

+
1
2
---G!@ y( ) e 2φ– ∂0y

!∂0y
@

e2φ∂1y
!∂1y

@–( ),

ds2 1

σ2
----- dτ2 dσ2+( ).=

τd σd σ 2– θ∂0θ η∂0η η∂1θ–+( ).∫

τd σ gθθd∫ τd σθ'θ',d∫=

τd σ θ'∂0θ' η'∂0η' η'∂1θ'– σ 1– η'θ'–+( ).d∫

τd σ ψ+∂+ψ+ ψ–∂–ψ– σ 1– ψ+ψ––+( ),d∫
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which is the special case of the general form of the qua-
dratic action (7.17) with ∂σφ in the mass term computed
for φ = lnσ.
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Abstract—Consideration is given to problems of obtaining exact and approximate solutions of kinetic equa-
tions in the multiple scattering problem. For cross sections which are rational functions of χ2 (χ = 2sin(δ/2), δ
is the scattering angle) exact solutions are obtained as a series in terms of Legendre polynomials. The limits of
validity of the kinetic equation for the distribution function in terms of the variable q = 2sin(ϑ /2) are refined [1]
and the solutions of this equation are compared with the exact solutions of the Rutherford and Mott cross sec-
tions. The problem of convergence of approximate solutions in the form of a series in terms of Legendre poly-
nomials and a series in powers of 1/B is solved. These approximations are obtained and their limits of validity
are determined. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present the problem of multiple scattering is con-
sidered using the kinetic equation for the angular distri-
bution function

(1)

which for

has the solution (Pl are Legendre polynomials) 

(2)

(3)

and also the approximate kinetic equation derived in [1]
(the notation is the same as in [1]) 

(4)

where integration is performed over the planar region

For

∂ f n i⋅ f,( )
∂t

--------------------------

=  N σ n n'⋅( ) f n' i⋅ f,( ) f n i⋅ f,( )–[ ] Ω'd
2π
--------,∫

f ϑ 0,cos( ) δ 1 ϑcos–( )=

f ϑ t,cos( )
2l 1+

2
--------------Pl ϑcos( ) Ql t( )–( ),exp

l 0=

∞

∑=

Ql t( ) Nt σ δcos( ) δsin δ 1 Pl δcos( )–[ ] ,d

0

π

∫=

∂ f q t,( )
∂t

------------------ N σ χ( ) f q c– t,( ) f q t,( )–[ ] cd
2π
------,∫=

q 2 ϑ /2( ), χsin 2 δ/2( ).sin= =

f q 0,( ) δ 1 ϑcos–( ) δ q( )/q= =
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its solution is 

(5)

(6)

In accordance with its conditions of derivation [1],
this approximation can be called the small transferred
momentum (small transfer) approximation although
within the limits of validity of the method determined
in [1] the solution (5), (6) is fairly exact for q ~ 1. The
small angle approximation is not used, i.e., the solution
is obtained for the general case of the cross section. For
the Rutherford cross section it can be expressed as the
series [1–4]

where χa is the cutoff angle [2],  is the average num-
ber of collisions along the path t, and λ is the character-
istic size of the multiple scattering region. 

It was shown in [1] that Eq. (4) can be applied over
the entire angular range and the approximate solutions
of Eqs. (1) and (4) for the Rutherford and Mott cross
sections were compared. This analysis raised various
questions, which are listed as follows.

(1) In view of the lack of exact solutions of Eq. (1), the
author used approximations for which the series (2)
converges, which led to some procedural difficulties

f q t,( ) η η J0 ηq( ) Q η t,( )–( ),expd

0

∞

∫=

Q η t,( ) Nt σ χ( )χ χ 1 J0 ηχ( )–{ } .d

0

∞

∫=

f q( )
1

λ2
----- f 0( ) X( ) B 1– f 1( ) X( ) B 2– f 2( ) X( ) …+ + +[ ] ,=

X
q
λ
---,

1
B
---

λa
2

λ2
-----, λa

2
nχa

2,= = =

n
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1116 YURCHENKO
since the results depend to some extent on the method
of truncating the series (2). 

(2) Over a wide range of λ values the solution (5)
expressed as a series in powers of 1/B allowing for three
terms of the expansion is much more exact in the single
region (q @ λ) than in the plural (q ~ (2–4)λ) and mul-
tiple (0 ≤ q ~ λ) scattering regions. Consequently, we
need to allow for a larger number of terms of the expan-
sion. 

(3) To this should be added the fact that series in
powers of 1/B diverge (see Section 4 of the present
study), i.e., questions arise in connection with estimat-
ing its accuracy and limits of validity.

(4) For these reasons it has not been possible to
completely compare the solutions of Eqs. (1) and (4)
for one particular cross section which is fundamental or
at least desirable for any approximate method. In [1]
the Monte Carlo method was used to monitor the
approximations. 

The aim of the present study is to solve these prob-
lems. Exact solutions of Eq. (1) are compared with the
solutions of Eq. (4) for the Rutherford [2]

(7)

and Mott cross sections

(8)

allowing for the atomic form factor (the cutoff angle χa).
Solutions of Eq. (1) for these cases are obtained in the
present study. The approximate solutions are analyzed,
including a converging series in powers of 1/B, from
the point of view of their suitability for a small average
number of collisions. We first consider the general case
of the cross section

(9)

where the factor κ(χ) allows for the difference between
the real cross section and the cross section (7).

2. GENERAL CROSS-SECTION CASE

We shall show that for the cross section (9) the gen-
eral formula for Ql in (2) has the form

(10)

where

σR χ( ) 2s2

χ2 χa
2+( )2

------------------------=

σM χ( ) σR χ( ) 1
1
4
---β2χ2– 

 =

σ χ( ) σR χ( )κ χ( ),=

Ql χc
2 εk 1– Clk kA ε( ) εA' ε( )+[ ] kalk–{ } ,

k 1=

l

∑=

χc
2 Nts2, ε χa

2,= =
JOURNAL OF EXPERIMENTAL
(11)

(12)

(13)

In these formulas we have

Clk are the coefficients in the representation of Pl(x) as
a hypergeometric series:

(14)

With the representation (14) in the integral (3) we have

(15)

For the cross section (9) the contribution of the kth term
(–1)k + 1Clkχ2k in this sum to the integral (we assume χ2k =

[(χ2 + ) – ]
k
 and use the Newton binomial for-

mula) has the form

(16)

where bj are various coefficients. Thus, Ql can be
expressed in the form (10) with as yet unknown (apart
from all = 0) values of alk .

In order to determine these we isolate the first k
terms in the sum (15) and write Ql as the sum of two
integrals:

A ε( )
κ χ( )

χ2 ε+
--------------2χ χ ,d

0

2

∫=

A' ε( )
κ χ( )

χ2 ε+( )2
---------------------2χ χ ,d

0

2

∫–=

alk 1–( )k 1

2k
----

γlk x( )κ x( ) xd

1 x–( )k 1+
-----------------------------,

1–

1

∫=

γlk x( ) 1 Pl x( )– 1–( )m 1+ Clmχ2m.
m 1=

k

∑–=

x δ, χ2cos 2 1 x–( ),= =

Pl x( ) 1–( )kClkχ
2k,

k 0=

l

∑=

Clk
1

k!24k
------------ l l 1+( ) j j 1+( )–[ ] , Cl0

j 0=

k 1–

∏ 1.= =

1 Pl x( )– 1–( )k 1+ Clkχ
2k.

k 1=

l

∑=

χa
2 χa

2

χc
2 εk 1– Clk kA ε( ) εA' ε( )+[ ] b jε

j

j 0=

k 2–

∑+
 
 
 

,

Ql

χc
2

----- 2χ χg χ( ) 1–( )m 1+ Clmχ2m

m 1=

k

∑d

0

2

∫=

+ 2χ χg χ( )γlk χ( ),d

0

2

∫
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where

the value of γlk is given by Eq. (13), and

The first integral, in accordance with (16), gives power
terms proportional to εm with m ≤ k – 2 and terms of the
type εm – 1[mA(ε) + εA'(ε)] with m ≤ k. Taking into
account (10) we obtain

It then follows that

which yields Eq. (12).
We note another case when

Since the negative derivative of this quantity with respect
to ε is equal to the cross section (9), integrating (10) with
respect to ε, we obtain for this case

(17)

The integration constant for ε = 0 is al0 = Ql/  which
allowing for (3) yields Eq. (12) for al0. Formula (17) can
be used to write a solution for the cross section σ(χ) =
σM(χ)κ(χ), taking into account that

(18)

The same transformations can also be made for the
solution (5), (6). Using instead of (14) the expansion

(19)

g χ( )
κ χ( )

χ2 χa
2+( )2

------------------------,=

γl0 χ( ) 1 Pl x( ), γll χ( )– 0.= =

2χ χg χ( )γlk χ( )d

0

2

∫ kalkε
k 1––=

+ εm 1– Clm mA ε( ) εA' ε( )+[ ] malm–{ }
m k 1+=

l

∑
+ terms εm m k 2–≤,∝( ).

dk 1–

dεk 1–
------------- 2χ χg χ( )γlk χ( )d

0

2

∫ε 0→
lim k!alk,–=

σ χ( )
2s2κ χ( )

χ2 ε+
------------------.=

Ql χc
2 al0 εk Clk A ε( ) alk–[ ]

k 1=

l

∑–
 
 
 

.=

χc
2

σM χ( ) 1
1
4
---εβ2+ 

  σR χ( )
1
4
---β2 2s2

χ2 χa
2+

-----------------.–=

J0 ηχ( ) 1–( )kCk η( )χ2k,
k 0=

∞

∑=

Ck η( )
1

k!24k
------------η2k=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
and repeating the previous reasoning, we obtain 

As before, A(ε) and A'(ε) are given by Eq. (11). Note
that in the case of the cross section (7), if we go over to
an infinite upper limit in the integrals in these formulas,
divergences occur in the integrals for A(ε) and ak(η)
which however cancel each other out.

The formulas (10)–(14) give a general solution of
the problem. They are structural formulas which show,
for example, that the terms in (2) depend on two con-
stants, A(ε) and A'(ε), the values of alkdo not depend on
the cutoff angle χa, and so on. These formulas can be
used to obtain exact or, bearing in mind the smallness
of ε, approximate solutions.

3. RUTHERFORD
AND MOTT CROSS SECTIONS

For κ(x) = 1 the integral in Eq. (12) is obtained in
Appendix A and

For the Rutherford cross section (7), we obtain

(20)

For the Mott cross section (8), taking into account (17)
and (18), we find

(21)

Thus, the series (2), (20) is a solution of Eq. (1) for the
cross section (7) and the series (2), (21) is a solution for the

Q η( ) χc
2=

× εk 1– Ck η( ) kA ε( ) εA' ε( )+[ ] kak η( )–{ } ,
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∞

∑
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1
k
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∑ 0,= = =
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ε
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4
4 ε+
-----------.–= =
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× εk 1– kClk
4 ε+

ε
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1
k
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-----------– .

k 1=

l

∑
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M 1 εβ2

4
--------+ 

  Ql
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2β2

4
-----------–=

× 4 ε+
ε

----------- εkClk
4 ε+

ε
----------- 2 Sl Sk–( )– 

 ln
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l

∑–ln
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.
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cross section (8). The Goudsmit–Sanderson approxima-
tion used in [1] for the Rutherford cross section

is, with insignificant differences (ε ! 1), the first term
of the expansion in Eq. (20) which includes terms to the
power zero of the factor εk while the approximation for
the Mott cross section obtained in [1] 

comprises terms to the power zero of the factor εk

in Eq. (21).
These solutions can be used to check and refine the

various approximations. It is also possible to compare
the solutions of Eqs. (1) and (4). 

For the cross section (7), Eq. (6) is reduced to the
form

The integral is equal to K0(ζ) and allowing for  =
–K1(ζ) we obtain

(22)

Expressing K1 as a series we obtain

(23)

where C is the Euler constant and Ck(η) are the coeffi-
cients in Eq. (19). Formula (20) yields (23) when 

(24)

For the Mott cross section the integral (6) diverges
unless the cross section is truncated at χ = 2. A formula
of the type (21) may be obtained using various approx-
imations. In (18) we represent

Ql
R χc

2Cl1
4
ε
--- 2 Sl S1–( )– 1–ln≈

Ql
M χc
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4
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--- 2 Sl S1–( )– 1–ln

1
2
---β2Sl–
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1
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The first term here gives a converging integral given by

and the integral of the second is approximately [1]

Taking this into account we have 

Expressing K0 as a series, we obtain

(25)

Thus, using these approximations, as for the Rutherford
cross section we obtain agreement with the solution (21)
allowing for the formulas (24). 

Using these formulas we can find solutions of Eqs. (1)
and (4) for the cross sections σ(χ) which are rational
functions of χ2. For example, for k = 1, 2 we obtain

and taking this into account we obtain solutions for the
cross sections σR(χ)κ(χ) and σM(χ)κ(χ) where 

This type of factor truncates the cross section in the
range χ2 > am and this allows us to obtain a solution
making approximate allowance for the nuclear form
factor. It can be seen that solutions are in fact required
for the cross sections

For a series in terms of Legendre polynomials these are
obtained using formula (17) where

χc
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The possibilities of series for obtaining Ql , Q(η) are
generally limited. For Q(η) for example, asymptotic
expansions are required for χaη @ 1. For Ql with large
l we need to use the substitution [1]1 

to go over to the integral 

where  = Ntσt is the average number of collisions for
a cross section truncated at χ = 2. Thus, if summation
in (2) is performed as far as l ~ 1/χa, analytic results of
the problem (4)–(6) must be used to obtain exact solu-
tions. 

In the following particular attention will be paid to
the Rutherford cross section. Results of a comparison
between the approximate and the exact solutions are
discussed in Section 6.

4. SERIES IN POWERS OF 1/B.
THE FUNCTIONS f (n)(X)

The solution (5), (22) depends on the parameters 

and / . The second of these is equal to the average
number of collisions 

since the total cross section is σt = σ2/ . Subsequently
we use the parameters λ and B. In addition to B we also
use the clearer small parameter

We define B and λ by means of [1, 3, 4]

(26)

where

1 This can be justified in the semiclassical approximation if the ini-
tial equation for Pl is written in terms of the variable χ. This equa-
tion has the form

and in the semiclassical approximation gives Pl(cosδ) ≈ J0(ηχ).
With this relationship there is no need to use the small-angle
approximation for the cross section when reducing the series (2)
to the integral (5) or when deriving Eq. (4) (see [1] on this topic).
The cross section remains exact which in our view ensures that
the solution (5), (6) is valid over the entire range of angles.

1
χ
---

χd
d χ 1 χ2

4
-----– 
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χd

d
Pl l l 1+( )Pl–=

Pl δ( )cos( ) J0 ηχ( ), η l l 1+( )=
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∞
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2

χc
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2

n χc
2/χa

2,=
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2

æ χa
2/λ2.=

B Bln– n 2C– 1, λ2+ln nBχa
2,= =

næB 1,=
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and in (5) and (22) we convert to the variables 

The series (23) will have the form (we shall subse-
quently drop the index R and we use the value of p as
the argument)

(27)

Using these transformations a transition is in fact
made to the parameters λ,  [in accordance with (26)
B = B( ) and æ = 1/ B]. The distribution function for
the Rutherford cross section has the simple form

(28)

where the function ψ only depends on λ in terms of the
relative quantity X = q/λ.

We shall assume that the average number of colli-
sions  is fairly high so that 1/B ! 1 and æ = 1/ B ! 1.
Bearing this in mind we only retain the first term of the
expansion in (27). Then 

(29)

and expressing exp(–Q) and the solution (5) as a series
in powers of 1/B we obtain [3, 4]

(30)

(31)

We note that the parameter λ is interpreted as the
characteristic size of the region of multiple scattering
(diffusion region) in which the particle distribution is
close to Gaussian (f (0)(X) = 2exp(–X2)) and most of the
scattered particles are concentrated.

For the functions f (n)(X) we find representations in
the form of series and their asymptotic expansions. In
the intermediate formulas we make the substitution 

Substituting into (31) the expansion (19), we obtain the
auxiliary series 
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The formulas for hn are given in Appendix B. 

The series is only suitable in calculations as far as
X ~ 3. Using the relationship 

obtained from the nth-order derivative of Γ(ν + 1) =
νΓ(ν), we transform this to give

It is easy to see that we have written the relationship

Allowing for

(see Appendix C) for the function 

we obtain the equation

with the initial conditions

This allows us to systematically seek functions Fn(z),
f (n)(z) having increasingly higher values of n (see Appen-
dix D). 
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A similar approach may be applied to obtain func-
tions of a more general form with m > n

The need for these functions arises when constructing
approximate solutions. The formulas for these are in fact
the same as those in the case m = n. The equation for 

for example, has the form

For small m we can use the following relationship to

obtain 

For m = 0, 1, 2 we then require the functions

For the functions Fn we can obtain an analytic recur-
rence formula. We write

where  is the Laguerre polynomial  for j = –1 and
the first term is the solution of the homogeneous equa-
tion for Fn. For ∆(z) we obtain an equation with zero
initial conditions and by integrating this consistently k
times between the limits 0 and z, we obtain

where ∆k, sk are k-fold integrals of ∆ in the limits

between 0 and z, and s = z . Solving this equation
for k = n, we obtain

Thus, the function Fn can be expressed in terms of spe-
cific integrals of Fn – 1. In the case n = 1, for example, 
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and for f (1) we obtain the well-known formula [3, 4] (we
go over to the argument X):

The series obtained from the equation for Fn (see
Appendix D) 

can be applied2 as far as z ~ 100 and are matched with
the asymptotic series 

The functions f (n)(X) are plotted in Fig. 1. For n ≥ 2 the
properties of these functions vary slowly as the number
n increases. The functions f (0) and f (1) are distinguished
by the fact that f (0) determines the behavior of the dis-
tribution function for small angles and f (1) determines
the behavior for large angles.

For large n we can obtain fairly exact approxima-
tions for these functions. The Fourier transforms of
these functions 

(32)

have maxima for p > 1 (see Fig. 2). The region of this
maximum for fairly large n makes the main contribu-
tion to the Fourier integral. We write approximately 

(33)

where fn , max is the value of fn at the maximum and the
maximum point pn0 is determined by solving the tran-
scendental equation

(34)

In formula (33) the maximum points of the functions on
the left and right and their values at the maxima are the
same. The condition for matching of the second deriv-
atives for p = pn0 has the form

2 In calculations of the terms of the series, for example for Fn using
the formula 

exp{ln|ak| – lnk! + klnz – z + lnn!}.

f 1( ) X( ) 2e z– z 1–( ) Ei z( ) zln–[ ] 2 1 2e z––( ).–=
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----zk,

k 1=
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∑+=
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k!zk n+
--------------------- αn j– k n 1+ +( ) zjln

j!
---------,

j 0=

n 1–

∑
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∑=
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k n+( )!2

k!zk n 1+ +
--------------------- βn j– k n 1+ +( ) zjln
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∑
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1
n!
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pn0 n 1 1/ pn0ln+( ).=
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The values of m and β are then determined by the con-
dition

m < µ < m + 1.

Taking this into account we have

(35)

The parameters a1, a2, α1, and α2 depend on n, the index
n being omitted for conciseness. The approximate val-

f n( ) X( ) f n max, a1e
α1z–

Lm α1z( ) a2e
α2z–

Lm 1+ α2z( )+{ } ,≈

z X2, α1

pn0

m
-------, α2

pn0

m 1+
-------------,= = =

a1

2 1 β–( )m!α1

e m– mm
---------------------------------, a2

2β m 1+( )!α2

e m– 1– m 1+( )m 1+
-----------------------------------------.= =

0

10
5 2 1

1.0

0.5

0

–0.5

0 1 2

f (n)(X)/f (n)(0)

X

Fig.1. The functions f (n)(X). The numbers on the curves give
the values of n.

1 2 3 6
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0

0 4 8 12
p

fn(p)/fn, max

Fig. 2. The functions fn(p). The numbers on the curves give
the values of n.
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1122 YURCHENKO
ues of the functions  fn and  f (n) are shown by the sym-
bols in Figs. 1 and 2.

To conclude this section we show that the series (30)
diverges. We take q = 0 when

For fairly large ν we have

Retaining in each differentiation the largest term in the
factor at Γ(ν + 1) we obtain

i.e.,  f (n)(0) ~ 2lnnn, the general term in the expansion in
(30) is proportional to [lnn/B]n and the series clearly
diverges.

Thus, we either need to allow for a finite (which?)
number of terms in the expansion or find a converging
series in powers of 1/B. For this we require convergence
of the initial integral (5) which diverges with the
approximation (29).

5. TRUNCATION OF INTEGRALS AND SERIES.
CONVERGING SERIES IN POWERS OF 1/B

In formula (27) the expression in braces becomes
negative for fairly large p so that when allowance is
made for m terms of the expansion we have

f n( ) 0( )
2
n!
----- dn

dνn
--------Γ ν 1+( )

ν n=

.=

Γ ' ν 1+( ) Γ ν 1+( )ψ ν 1+( ) Γ ν 1+( ) ν .ln≈=

dn/dνn( )Γ ν 1+( ) Γ ν 1+( ) νn ,ln∼

Q p( ) ∞–
p ∞→
lim

1 2 3 4

5

1.2

1.0

0.8

0.6

0.4

0.2

0 1 2 3 4 5
ζ

Q(ζ)/n

Fig. 3. Various approximations for Q(ζ), ζ = χaη, for  = 5:
(1–4) formula (36) for m = 1–4; (5) formula (22); symbols—

values of  using formulas (40), (22).

n

Q̃
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and the integral (5) diverges. We take into account the
next (m + 1)th term of the expansion and, assuming that
1/B is small, we drop the term ~1/B. We obtain

(36)

where the sign of the sum denotes the series (27) truncated
at the mth term. This improves the accuracy of the approx-
imation in the range of typical values p ~ 1 (η ~ 1/λ) and
also ensures convergence of the integral (5). 

A similar procedure involves combining the terms
in (27) having the same total power of the products of
the small quantities æ and 1/B, i.e., terms proportional
to æi and æi – 1/B, and then allowing for a finite number
of terms of the expansion. The terms of this expansion
tend to infinity as p increases, i.e., high values of u are
truncated (Fig. 3) and the integral converges. The
approximation with m = 0, for example, corresponds to
the first term of this expansion (with i = 0) equal to p
and describes a Gaussian distribution. For Ql a similar
approximation is obtained by going over to the initial
variables ε and η in (36) and using the correspondence
formulas (24). We obtain the truncated series (20):

(37)

For m > l the series is in fact truncated at m = l whereas
for m > l we have Clm = 0, i.e., Ql has exact values for
l ≤ m. Thus, for m ≥ 1 the normalization and the value

of  which are determined by the terms with l = 0, 1
in (2) will be exact.

The question of interpreting these approximations
then arises since they neglect nonscattered particles (it
is in fact assumed that these particles make a negligible
contribution to the solution). 

In this context it is useful to note that equations of
the type (1), (4) are obeyed by a certain class of systems
in which transitions between states form a Markov cir-
cuit. Let us assume that the system is exposed to a cer-
tain random sequence of actions and ρn(λ)dλ is the
probability of observing the system in the range of
states dλ after the nth action. We then have

(Smoluchowski equation), where W(λ, λ')dλ is the
probability of a transition into the range dλ from the initial
state λ' as a result of a single action. The probability of n
events taking place by the time t (or over the path t)
obeys a Poisson distribution with the average number

Q p( ) … æm m 1+

m 1+( )!2
---------------------- pm 1+ ,+

k 1=

m

∑≈

Ql χc
2 … m 1+( )Cl m 1+, Bεm+

k 1=

m

∑
 
 
 

.≈

q2

ρn λ( ) W λ λ',( )ρn 1– λ'( ) λ'd∫=
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of events  over time t. After this time has elapsed, the
average distribution function is given by

Differentiating this relationship with respect to , we
obtain after elementary calculations

This equation is of the same type as (1) and (4) (in the
equations it is sufficient to convert from the path cov-
ered t and the cross section σ to  = Ntσt and W = σ/σt).
It can be seen that the solutions of these equations are
averages over the Poisson distribution and for a given
value of  we need the expression

where fδ(q) = δ(q)/q and fs(q, t) are the distribution
functions of the nonscattered particles with n = 0 and

scattered particles with n ≥ 1, and 1 –  is the scatter-
ing probability.

The nonscattered particles can be isolated in the
solutions (2), (5). For example, in (22) for ζ @ 1 we
have

In general, if the cross section contains no δ-type sin-
gularities, its Fourier transform for η  ∞ tends to
zero, i.e., formulas (3) and (6) yield the limit

This limit corresponds to nonscattered particles which
can be isolated using the substitution

and taking into account the term  in the solu-
tion. The formulas obtained for the function fs , unlike
the solutions (2), (3) and (5), (6) are correct in practical
calculations since they contain no δ-type singularity.

For scattered particles we have

(38)

(39)

(40)

n

f λ n,( ) e n– nn

n!
-----ρn λ( ).

n 0=

∞

∑=

n

∂ f λ n,( )
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n
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2
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Note that for  ! 1 when Q ! 1 and  ≈ 1 – Q/
allowing for (3) and (6) we then obtain the same fairly
understandable result for Eqs. (1) and (4):

For q @ l when small η, l ! 1/λ, and Q ! 1 are impor-
tant in the Fourier expansion, we thus obtain [neglect-
ing the terms ~δ(q)] which are not required here]

In the single region this gives

We shall now return to the approximations (36), (37).

The factor  in (38), (39) truncates high values of η, l

(   0 for η, l  ∞) and in this sense the approx-
imations (36), (37) may be used for scattered particles,

i.e., we can assume  ≈ Q. It is useful to make the
refinement

(41)

This relationship valid for small η, l ! 1/λ when ,
Q ! 1 refines the large-angle distribution function if
this is taken into account to determine the values of B
and λ. For this we assume 

(42)

The series for Qs has the form

(43)

(44)

We determine the values of B and λ using the relation-
ships

(45)

We then have as = 0 and the series for Qs is the same
as (27).
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Table 1.  Rutherford cross section for the scattering of π-mesons on gold. Ekin = 50 MeV, χa = 2.77 × 10–4

No. ρt, g/cm2 λ B ξ(0), % ξmax, % ξ(2), % ξculc(2), %

1 0.00375 3.51 × 10–3 4.93 32.7 –0.096 0.61 0.002 0.002

2 0.015 8.14 × 10–3 6.61 131 0.003 0.13 0.007 0.008

3 0.060 1.81 × 10–2 8.21 523 –0.002 0.05 0.030 0.032

4 0.24 3.96 × 10–2 9.77 2.09 × 103 –0.013 0.11 0.12 0.13

5 0.4 5.26 × 10–2 10.34 3.49 × 103 –0.024 0.20 0.20 0.22

6 2 0.127 12.11 1.74 × 104 –0.14 1.28 1.01 1.07

7 4 0.185 12.86 3.49 × 104 –0.30 2.88 2.07 2.15

8 10 0.304 13.85 8.71 × 104 –0.80 8.46 5.59 5.37

9 40 0.640 15.34 3.49 × 105 –3.48 50.4 39.1 21.5

n

Finally, we have the approximation  ≈ Qs which is
more accurate for small η and approximately truncates
high values of η.

For m = 1 in (36) we obtain instead of (29)

As previously, we can expand in powers of 1/B and

obtain the series (30) with the functions 
which are determined by formula (31) with a truncating
factor after the integral equal to exp(–æp2/2). The nor-
malization of these functions is the same as in the case
æ = 0 (see Appendix C). However, these functions
depend on two variables and are inconvenient for appli-
cations.

We write the expansion in the form

Using this representation for p ~ 1 we can set

and thereby arrive at the approximation for n ≥ 2:

where cn ≈ 1, pn0 is the maximum point of the function
fn(p) [see (32), (34)], and pn is the maximum point of
the nth term of the expansion. The functions on the left
and right have maxima for p = pn. We determine the

Q̃

Q̃ p( ) p 1 pln
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-------,=
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value of an from the condition that their maxima agree.
Converting to the inverse transform we obtain

(46)

The functions  for m = 1, 2 are given in the pre-
vious section and are essentially elementary. In the lim-
its of validity of this approximate series it is sufficient
to take nm = 15, using the approximation (33), (35) for
n > 5. The normalization of the function fs(q) is deter-
mined by the term with n = 0 and is 1. The asymptotic
behavior is determined by the term with n = 1. For q @ λ
we have

The factor 1/(1 – ) appears here because of the refine-
ments (41)–(45) made above. 

6. DISCUSSION

Using the results presented in Section 3, we can
compare the solutions (38), (39) of the kinetic Eqs. (1)
and (4). For the Rutherford cross section (7) such a
comparison is made in Fig. 4 for the data from Table 1
taken from [1]. Some details of the calculations are
described in [6]. In the range of q values where the
characteristic dimension can be considered to be λ, the
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Fig. 4. The dependences ξ = ξ(q), the relative error of the solution (39), (40), (22) compared with (38), (40), (20). The numbers on
the curves correspond to the number of the variant in Table 1. The symbols on the curves in Fig. 4b correspond to  q = 2, the dashed
curves give the estimate ξculc(q) (Section 6) for variants 1–3 in Table 1.
estimates of the relative error ξ(q) of the solution of
Eq. (4) obtained in [1] are fairly accurate. The error
arises as a result of a transition from the spherical
region of integration in Eq. (1) to a planar region of
integration in Eq. (2) (see [1]). This region of q/λ values
is smaller than or of the order of a few units (regions of
plural and multiple scattering, Fig. 4a). Here we have 

In the region q @ λ the error is estimated using the
formula

where

In order to obtain this estimate in [1] we considered two
important regions of integration: the vicinity of the
cross section maximum centered at the point n and the
vicinity of the distribution function maximum centered
at the point i (Fig. 1 in [1]) and we integrated over these
regions, integration being performed over the entire
spherical surface in both cases. With a more accurate
approach the limits of integration must be constrained
since integration over Ω' should be single. It can be
seen from Fig. 1 in [1] that when integration is per-
formed near the point n (dΩ' = χdχdϕ) and near i

ξ q( )

0.3λ2/2, q q0,<–

0, q q0≈ 2λ ,=

λ2/2, q q0.>



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-------------1
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∂ q3
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q∂
∂ σ q( ),∼

a2 q2∼ Nt χ2σ χ( )χ χ .d

0

2

∫=
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(dΩ' = q'dq'dϕ), the limits in terms of the variables χ, q'
can be taken for the estimates to be

which corresponds to the vector n' directed along the
bisector of the angle ϑ . We then have

Taking this into account, we obtain a more accurate esti-
mate for the Rutherford cross section for large angles, as
can be seen from Fig. 4b (dashed curves)

In practical cases the corrections to the Rutherford
cross section (Mott cross section, nuclear form factor)
are only significant in the single region so that in the
range of q/λ values shown in Fig. 4a the main influence
remains for the Rutherford part of the cross section and
the error estimates are as before. In the single region the
error of the solution is estimated in accordance with the
dependence σ = σ(χ). For the Mott cross section we
obtain

Table 1 gives values of ξ(q) for the series (46) com-
pared with (38), (30), and (20) (ξmax is the maximum error
in the range 0 < q < 6). For approximately λ > 4 × 10–2 the
error of the series is associated with the approximate
nature of Eq. (4) and is consistent with Fig. 4 whereas
for lower values it is associated with the error of the

χm χm q( ) 2 ϑ /4( ),sin= =

a
2

q( ) Nt χ2σ χ( )χ χ .d

0

χm

∫=

ξculc q( ) a2 q( )/2.=

ξculc q( )
1
2
--- a2 q( )

1 β2q2/4–
------------------------.=
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Table 2.  Mott cross section for the scattering of electrons on aluminum. Ekin = 15 MeV, χa = 6.89 × 10–4

No. ρt, g/cm2 λ B ξ(0), % ξmax, % ξ(qe), % ξculc(qe), %

1 0.00375 9.10 × 10–3 5.01 34.8 –0.079 0.56 0.20 0.17

2 0.015 2.10 × 10–2 6.68 139 –0.002 0.12 0.81 0.66

3 0.030 3.15 × 10–2 7.49 278 –0.01 0.08 1.59 1.32

4 0.06 4.68 × 10–2 8.28 556 –0.02 0.11 3.08 2.64

5 0.12 6.93 × 10–2 9.06 1.11 × 103 –0.05 0.26 5.95 5.28

6 0.24 0.102 9.84 2.23 × 103 –0.10 0.63 11.3 10.6

7 0.4 0.135 10.41 3.71 × 103 –0.18 1.24 18.0 17.6

8 1 0.224 11.42 9.28 × 103 –0.47 5.23 39.1 44.0

9 2 0.328 12.17 1.86 × 104 –0.99 67.3 66.5 76.0

n

Table 3.  Relative error ξ(q) of the series in terms of Legendre polynomials (38), (41), (37) with different values of m as a
function of the average number of collisions .  λ = 10–2. On the right-hand side of the table the first column gives the data
for series (46) and the second column gives the data for the series (30) with nm = 2

æ × 102 B m ξ(0) ξmax ξ(0) ξmax, %

130 0.117 6.60 1 3.0 × 10–3 3.2 × 10–2 0.001 0.24

–1.4 2.8

30 0.692 4.82 1 –0.12 –0.24 –0.13 0.72

2 –2.0 × 10–4 1.4 × 10–3 –3.3 6.3

20 1.16 4.30 1 –0.48 –0.48 –0.50 1.0

2 –1.4 × 10–2 –1.4 × 10–2 –4.6 8.3

15 1.70 3.92 1 –1.3 –1.3 –1.3 1.4

2 –0.12 –0.12 –5.9 10.4

3 –2.4 × 10–2 –2.4 × 10–2

10 2.98 3.36 1 –4.7 –4.7 –4.7 –4.7

2 –1.4 –1.4 –9.7 14.7

3 –0.44 –0.44

5 0.29 0.29

7 0.80 0.80

5 8.67 2.29 1 –14.1 –14.1 –13.5 –13.9

2 –2.3 7.2 –14.6 –37.5

3 7.0 8.4

4 16.1 16.1

n

n

approximation (36) and the series (46) derived from it
for m = 1.

Data for the Mott cross section [1] allowing for (21)
are given in Table 2 where qe is the value of q for ϑ  =
150°. It can be seen that the estimates for q @ λ are
fairly reliable. We also note that ξ ~ 10–3% for curve 1
in Fig. 4, i.e., any further analysis (for lower values
of λ) has no practical meaning and the topic can be con-
sidered to be exhausted.

Data for the approximation (37) are given in Table 3.
In view of the representation (28), it is sufficient to find
the error as a function of the average number of colli-
JOURNAL OF EXPERIMENTAL
sions . Thus, the value of λ is fixed and all the param-
eters required in the problem are defined in terms of , λ.
As m increases, the accuracy of the approximation
increases but for low values of  it then begins to
decrease (variant with  = 10). It should be noted that
the value of m should not be too large to describe parti-
cle scattering since in the limit m  ∞ the approxima-
tion (37) leads to a δ-type singularity in the solution.
The associated distortion of the solution in the small
angle range will be larger, the smaller . For  = 5 the
accuracy does not improve with increasing m. Conse-

n

n

n

n

n n
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quently, the approximation (37), like the approximation
(36) together with the series (46) derived from this for
m = 1 has a natural limit of validity at  ≈ 10. We stress
that the parameter æ is still fairly small and this limit is
not determined by any physical constraints but is asso-
ciated with the fact that Eqs. (41), (36), and (37) are an

approximation for Q/γ and not for  as can be seen
from Fig. 3 and for  = 5 the approximation becomes
rough in the range η > 1/χa . 

Results for the series (30) and (46) are given on the
right-hand side of Table 3. Assuming that ξ ~ 5% is the
limiting value, the series (30) with nm = 2 is suitable as
far as  ≈ 100 [here by selecting nm for each value of ,
we can improve the accuracy for ξ(0) but not for ξmax]
and the series (46) is suitable as far as  ≈ 10. 

The approximation (37) is not much more complex
than the Goudsmit–Sanderson solution in the same way
that the series (46) is not much more complex than (30).
These approximations are valid for  ~ 10–1000 which
corresponds to a matter density ~1–10 mg/cm2. For
lower values of  we need a more accurate approxima-
tion for the function fs(q) than (46). 

7. CONCLUSIONS

In the first part of this study we obtained structural
formulas for the solutions for the cross sections taking
into account the cutoff angle χa

where χ = 2sin(δ/2), δ is the scattering angle, and the
factor κ(χ) allows for differences between the real cross
sections and the Rutherford σR and Mott σM cross sec-
tions. This means that both exact and approximate solu-
tions can be obtained.

For the Rutherford and Mott cross sections we
obtained solutions as a series in terms of Legendre poly-
nomials which can be used to obtain solutions which are
rational functions of χ2. 

These solutions were compared with the solutions of
the approximate kinetic equation obtained in [1], without
using any additional approximations for the Rutherford
cross section. Taking these results into account we deter-
mined the limits of validity of this equation for which
estimates were given in [1].

The results of the second part relate to the solution
of fundamental problems: obtaining a converging
series in powers of 1/B and functions of this series f (n).
We confirmed that even when a considerable number of
expansion terms are summed, a series in powers of 1/B
is suitable as far as the minimum average number of
collisions  ~ 10. In order to obtain a converging series
in powers of 1/B and a truncated series in terms of Leg-

n

Q̃
n

n n

n

n

n

σ χ( ) σR χ( )κ χ( ), σ χ( ) σM χ( )κ χ( ),= =

n

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
endre polynomials we need to allow for another term of

the expansion ~ compared with [3, 4].

APPENDIX A

We shall consider the integral

with a certain initial function γk(x) [the index l is omitted
from γlk(χ) for conciseness] which satisfies the following
conditions in accordance with the definition (13)

(A.1)

(A.2)

(A.3)

Formula (A.3) is derived from the fact that in the expan-
sion of χ2k in terms of Legendre polynomials Pl the
highest value of the index l is equal to k and the expan-
sion coefficient for Pk is equal to (–1)k/Ckk, as follows
from (14). 

Integrating by parts we obtain

The first term, in accordance with (A.1) is given by

(A.4)

In the integral we replace

and after integrating by parts we obtain

The first term is zero since

(A.5)

χa
2

Ik

γk x( )

1 x–( )k 1+
------------------------ xd

1–

1

∫=

γk x( ) O 1 x–( )k 1+[ ] ,=

γk x( ) AiPi x( ),
i 0=

l

∑=

Ai

Clk/Ckk, i k,=

0 i k 1 … l 1,–, ,+=

1 i– l.=





=

γk x( )

k 1 x–( )k
---------------------

1–

1 1
2k
------

2γk' x( )

1 x–( )k
------------------ x.d

1–

1

∫–

1

2kk
--------γk 1–( ).–

2

1 x–( )k
------------------ 1 x2–

1 x–( )k 1+
------------------------

1

1 x–( )k 1–
------------------------,+=

1 x2–( )γk' x( )

2k2 1 x–( )k
------------------------------

1–

1

–
1

2k2
--------

1 x2–( )γk' x( )[ ] '
1 x–( )k

------------------------------------ xd

1–

1

∫+

– γk x( )

2k 1 x–( )k 1–
------------------------------

1–

1 k 1–
2k

-----------
γk x( )

1 x–( )k
------------------ x.d

1–

1

∫+

γk' x( ) O 1 x–( )k[ ] .=
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The third term is reduced with (A.4). Finally we arrive
at the formulas:

where the initial expression for γk – 1(x) has the form

and allowance is made for formulas (A.1), (A.5), (A.2)
and the relationship

Systematically using these formulas gives

Here in the formula for γ0(x) we made the substitution

which is possible because γ0(1) = 0 and Pi(1) = 1. Bear-
ing in mind that terms with i < k are zero in the sum, and
also formulas (A.3), (14), and [4]

we finally obtain

APPENDIX B

In order to determine 

we take the (n – 1)th order derivative of

Here and subsequently Γ(ν + 1) is a gamma function,
ψ(ν + 1) is a psi function, and ζ(m, ν + 1) is a Riemann

Ik
1

2k2
-------- Ik 1– , Ik 1–

γk 1– x( )

1 x–( )k
------------------ x,d

1–

1

∫= =

γk 1– x( ) O 1 x–( )k[ ] ,=

γk 1– x( ) i i 1+( ) k 1–( )k–[ ] AiPi x( ),
i 0=

0

∑–=

γk 1– x( ) k k 1–( )γk x( ) 1 x2–( )γk' x( )[ ] '+=

1 x2–( )Pi' x( )[ ] ' i i 1+( )Pi x( ).–=

Ik
1

2kk!2
------------

γ0 x( )
1 x–
----------- x,d

1–

1

∫=

γ0 x( ) 1–( )k 1+=

× i i 1–( ) j j 1–( )–[ ] Ai 1 Pi x( )–[ ] .
j 0=

k 1–

∏
i 0=

l

∑

Pi x( ) Pi x( ) 1,–

1 Pl x( )–
1 x–

-------------------- xd

1–

1

∫ 2Sl, Sl
1
k
---,

k 1=

l

∑= =

Ik 1–( )k2k 1+ Clk Sl Sk–( ).=

hn m ν 1+,( )
1

n! Γ ν 1+( )[ ]m
--------------------------------- dn

dνn
-------- Γ ν 1+( )[ ]m=

d Γ ν 1+( )[ ]m

dν
------------------------------- m Γ ν 1+( )[ ]mψ ν 1+( ).=
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zeta function. (Information on the functions used in this
study can be found in [5].) Taking into account

and supplementing the definition

we obtain the recurrence formula:

For the case m = 1 we have

For small n (ν is an integer) 

and so on. As n increases, the explicit formulas become
increasingly complex and a recurrence formula must be
used.

For m = 2 the recurrence formula determines the
value of hn(2, ν + 1) required in the asymptotic formu-
las for Fn, f (n).

APPENDIX C

Using the expansion

the normalization integral for the function f(q) can be
obtained immediately if we take into account

Assuming η = 0, we obtain 

1
i 1–( )!

-----------------ψ i 1–( ) ν 1+( ) 1–( )iζ i ν 1+,( ), i 2 3…,= =

ζ 1 ν 1+,( ) ψ ν 1+( ),–=

hn m ν 1+,( )

=  
m
n
---- 1–( )ihn i– m ν 1+,( )ζ i ν 1+,( ),

i 1=

n

∑
n 1 2 …, h0 m ν 1+,( ), , 1.= =

hn ν 1+( ) hn 1 ν 1+,( ).≡

h1 ν 1+( ) ψ ν 1+( ), ψ ν 1+( ) C–
1
k
---,

k 1=

ν

∑+= =

h2 ν 1+( )
1
2
--- ψ2 ν 1+( ) ζ 2 ν 1+,( )+[ ] ,=

ζ 2 ν 1+,( ) π2

6
-----

1

k2
----,

k 1=

ν

∑–=

f q( ) f η J0 qη( )η η ,d

0

∞

∫=

f η f q( )J0 qη( )q q.d

0

∞

∫=

f q( )q qd

0

∞

∫ f η η 0= and f n( ) X( )X Xd

0

∞

∫ δ0n.= =
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Acting on fη with the operator

and bearing in mind that

we obtain the formula for the second moment:

From this it follows that

i.e., the value of  in the range 0 ≤ q ≤ 2 is mainly
determined by the functions with n = 0, 1.

APPENDIX D

In the equation for Fn(z) we use the representation

For ϕn we obtain

with the initial conditions

For the coefficients ak we obtain

where ck are defined in terms of the values of ak for ϕn – 1.
For n = 0 we have

Thus, we have ck = δk1 for n = 1 and assuming h1(2) =
ψ(2) = 1 – C, we have a1 = –(1 – C), a2 = 1, and so on.
Finally we obtain

L̂
1
η
---

ηd
d η ηd

d
=

L̂J0 qη( ) q2J0 qη( ),–=

q2 f q( )q3 qd

0

∞

∫ L̂ f η η 0= .–= =

f n( ) X( )X3 Xd

0

∞

∫
1, n 0=

∞, n 1=

0, n 2,≥





=

q2

Fn z( ) e 1– ϕn z( ), ϕn z( ) n!
ak

k!
----zk.

k 1=

∞

∑= =

ϕn'' ϕn'
n
z
---ϕn+– ϕn 1–'' 2ϕn 1–' ϕn 1–+–=

ϕn 0( ) 0, ϕn' 0( ) f n( ) 0( )/2.–= =

a1 hn n 1+( ), ak 1+–
k n–

k
-----------ak ck,+= =

ck
1
n
--- ak 1+ 2ak– ak 1–+[ ]n 1– , k 1 2 …,, ,= =

f 0( ) z( ) 2e z– , F0 z( ) e z– , ϕ0 1.= = =

F1 z( ) e z– C 1–( )z
zk

k 1–( )k!
---------------------

k 2=

∞

∑+ .=
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Further application of the formulas presents no difficul-
ties: in the formula for ck we have a0 = 0 and the formu-
las for hn(n + 1) are given in Appendix B. 

In order to obtain asymptotic formulas we use the
representations

For large z we have

After differentiating we obtain an asymptotic formula
for f (n)(X) (see Section 4) where 

where summation is performed over odd values of i and
the values of hn(2, ν + 1) are determined in accordance
with Appendix B. For small l (ν is an integer) we have

The coefficients αl is the asymptotic expression for
Fn can be obtained using the simple recurrence formula

with the result that
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Abstract—A variant of perturbation theory is developed to determine the characteristics and stability of trans-
versely two-dimensional spatial solitons in a Kerr medium under conditions of small deviations from paraxial.
Distributions of the transverse and longitudinal components of the soliton electric and magnetic fields are
obtained. It is shown that the power of a nonparaxial soliton in a Kerr medium increases as the propagation con-
stant increases. A linear analysis is made of soliton stability. In addition to confirming stability, this analysis
revealed “internal modes” of nonparaxial solitons and their characteristics were determined. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The final stage of the self-focusing of high-intensity
radiation in a transparent medium with a Kerr nonlin-
earity is of considerable interest and has been studied
on many occasions (see the book [1] and the literature
cited therein). Using the standard approximation of
slowly varying amplitudes (quasi-optic or paraxial
equation for the electric field envelope), the theory pre-
dicts the absence of stable spatial solitons (beams hav-
ing a constant transverse field profile) and collapse of
radiation beams having powers exceeding the critical
self-focusing power. The limitation of collapse and for-
mation of spatial solitons as predicted in [2] may occur
for various reasons. The most common of these is the
nonparaxial nature of narrow (width comparable to the
wavelength) beams [1] which precludes us from using
the approximation of the quasi-optic equation.

Although nonparaxial effects also arise for the sca-
lar nonlinear wave equation [3–6], for electromagnetic
radiation it is important to allow for its polarization.
Thus, nonparaxial self-focusing theory should be based
on a complete system of Maxwell nonlinear vector
equations. Previously, vector self-focusing theory was
preferentially developed for special cases of the polar-
ization of radiation having an axisymmetric intensity
distribution and unit nonzero electric field component
[7–10], i.e., in fact for a scalar variant. The spatial soli-
tons which may appear in this case have a power con-
siderably higher than the critical self-focusing power,
which serves as an indication of their instability [11].
For a transversely one-dimensional geometry it is pos-
sible to construct a fairly comprehensive classification
of an infinite set of localized structures [12, 13]
although in a continuous nonlinear medium all these
structures are unstable with respect to decay along the
1063-7761/00/9106- $20.00 © 21130
other transverse coordinate. As far as we are aware, the
existence of stable spatial solitons of electromagnetic
radiation in a medium with a Kerr nonlinearity has not
yet been proven. As will be shown subsequently, using
numerical calculations of the type [14, 15] to solve this
problem may not yield the correct result because estab-
lishment is extremely slow under weakly nonparaxial
conditions. 

The task for the present study is to make an analytic
investigation of the characteristics and properties of
weakly nonparaxial spatial transversely two-dimen-
sional solitons of electromagnetic radiation in a
medium with a Kerr nonlinearity. The analysis is based
on perturbation theory with a small nonparaxial param-
eter which is used to find nonparaxial corrections to the
soliton shape and to determine its stability. The initial
(zeroth) approximation is the well-studied nonlinear
Schrödinger equation and beams having an axisymmet-
ric intensity distribution and linearly polarized radia-
tion (“Townes mode”). Following [16] (see also [14]),
in Section 2 we give a derivation of the control equation
for the envelope of a weakly nonparaxial soliton field.
We then obtain its approximate solution in Section 3,
i.e., we determine the transverse distribution of the
electron and magnetic field intensities. In Sections 4
and 5 we analyze soliton stability using a method pro-
posed in [17] (see also [18]) for paraxial solitons in a
medium with saturation of the nonlinearity. For this we
use a linearized control equation whose properties are
analyzed in Section 4. The final conclusion on the sta-
bility of a weakly nonparaxial soliton is formulated in
Section 5 and calculations of various matrix elements
are presented in the Appendix. The results are dis-
cussed in the Conclusions.
000 MAIK “Nauka/Interperiodica”
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2. EVOLUTION EQUATION

The initial equations are the Maxwell equations for
monochromatic radiation of frequency ω [in complex
notation the factor exp(–iωt) is omitted, t is the time) in
a nonmagnetic medium (with unit magnetic permeabil-
ity):

(2.1)

Here E and H are the intensities of the electric and
magnetic fields, c is the speed of light in vacuum, and
D is the electric induction which has the form (Kerr
striction nonlinearity)

(2.2)

Here ε0 is the linear permittivity. The form (2.2) allows
only for self-interaction effects whereas the generation
of third and high-order harmonics is considered to be
ineffective (phase matching conditions are not satisfied
for these). 

Eliminating the magnetic field intensity from the
Maxwell equation, we obtain the generalized Helm-
holtz equation 

From this vector equation it follows that

(2.3)

Here we introduce the transverse components of the
electric field E⊥  = (Ex , Ey) and the induction D⊥  = (Dx ,
Dy). We transform the last term on the left-hand side of
Eq. (2.3) as follows. From the final Maxwell equation
(2.1) it follows that

(2.4)

In the lowest approximation (weak and continuously
varying nonlinearity) we have divE = 0 whence

(2.5)

rotE i
ω
c
----H, rotH i

ω
c
----D,–= =

divH 0, divD 0.= =

D ε0 εnl+( )E, εnl ε2 E 2, ε2 0.>= =

∂2E

∂z2
--------- ∆⊥ E

ω2

c2
------D graddivE–+ + 0,=

∆⊥
∂2

∂x2
--------

∂2

∂y2
--------.+=

∂2E⊥

∂z2
------------ ∆⊥ E⊥

ω2

c2
------D⊥ grad⊥ divE–+ + 0.=

divE
1

ε0 εnl+
-----------------E gradεnl⋅–=

=  
1

ε0 εnl+
----------------- E⊥ grad⊥ εnl⋅ Ez

∂εnl

∂z
---------+ 

  .–

Ez
i
k
--div⊥ E⊥ ,≈
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where k = (ω/c)  is the wave number in the linear
medium. For a more accurate estimate we have

We then arrive at a closed equation for the transverse
field components:

(2.6)

where

(2.7)

For a steady-state soliton we have

(2.8)

where Γ is the real propagation constant. The solitons
have a continuous spectrum with respect to Γ and the
condition Γ2 > k2 must be satisfied for the field to
decrease (tend to zero) at the soliton edge, in accor-
dance with (2.6). A measure of the nonparaxial prop-
erty is given by 

(2.9)

Inequality (2.9) implies that the propagation constant Γ
for the soliton is close to the wave number k in the lin-
ear medium. This occurs if the soliton width is consid-
erably greater than the wavelength of light, the maxi-
mum amplitude of the field is extremely small, and the
power is close to the critical self-focusing power (see
below). In this limit the order of the derivative with
respect to z can be reduced [14]. We shall assume that
the field is close to a steady-state soliton so that 

(2.10)

where the dependence of the amplitude A⊥ (r⊥ , z) on the
longitudinal coordinate z is slow (on a scale of the order
of the wavelength of light). Then, retaining terms of the
lowest order of smallness in the transformations of
∂2E/∂r2, instead of (2.6) we obtain the evolution equa-
tion

(2.11)

ε0

divE
1
ε0
----E⊥ grad⊥ εnl.⋅–≈

∂2E

∂z2
--------- ∆⊥ E⊥

ω2

c2
------ε0E⊥

ω2

c2
------ε2 E⊥

2E⊥+ + +  = Qs E⊥( ),

Qs E⊥( )
ε2

ε0
----–=

× div⊥ E⊥
2E⊥ grad⊥ E⊥ grad⊥ E⊥

2⋅( )+[ ] .

E⊥ As r⊥( )eiΓ z,=

µ2 Γ2 k2–

k2
---------------- 2

Γ k–
k

------------ ! 1.≈=

E⊥ A⊥ r⊥ z,( )eiΓ z,=

2iΓ
∂A⊥

∂z
---------- ∆⊥ A⊥ Γ2 k2–( )A⊥–+

+ k2ε2

ε0
---- A⊥

2A⊥ Qs A⊥( ) Qz A⊥( ),+=
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where

(2.12)

Note that for a stationary spatial soliton we have Qz(As) =
0. Equation (2.11) can be used not only to find a weakly
nonparaxial stationary soliton but also to investigate its
stability. In order to isolate the nonparaxial parameter
in explicit form in (2.11), we convert to dimensionless
coordinates and amplitude:

(2.13)

Then (2.11) has the form

(2.14)

where 

(2.15)

The dimensionless form (2.14) is convenient for
determining the corrections to the shape of a steady-
state soliton while the dimensional form (2.11) is con-
venient for analyzing its stability, containing deriva-
tives of the amplitudes with respect to the propagation
constant Γ.

3, NONPARAXIAL CORRECTIONS
TO SOLITON SHAPE

The right-hand side of Eq. (2.14) serves as a correc-
tion (as a result of the nonparaxial property) to the non-
linear Schrödinger equation for which µ = 0. Note that
this correction is nonlocal since it not only depends on

Qz A⊥( )
1

4k2
-------- ∆⊥ Γ2 k2–( )–[ ]=

× ∆⊥ A⊥ Γ2 k2–( )A⊥– k2ε2

ε0
---- A⊥

2A⊥+

+
ε2

4ε0
-------- ∆⊥ A⊥ A⊥*⋅( )A⊥ ∆⊥ A⊥* A⊥⋅( )A⊥ ---–





+ A⊥
2 ∆⊥ A⊥ Γ2 k2–( )A⊥– k2ε2

ε0
---- A⊥

2A⊥+




.

z'
Γ2 k2–

Γ
----------------z, x' y',( ) Γ2 k2– x y,( ),= =

A⊥'
k

Γ2 k2–
--------------------

ε2

ε0
----A⊥ , ∆⊥'

1

Γ2 k2–
----------------∆⊥ .= =

2i
∂A⊥'

∂z'
---------- ∆⊥' A⊥' A⊥' A⊥'

2A⊥'+–+

=  µ2 Qs' A⊥'( ) Qz' A⊥'( )+[ ] ,

Qs' A⊥'( ) div⊥' A⊥'
2A⊥' grad⊥' A⊥' grad⊥' A⊥'

2⋅( )+[ ] ,–=

Qz' A⊥'( )
1
4
--- ∆⊥' 1–[ ] ∆⊥' A⊥' A⊥'– A⊥'

2A⊥'+[ ]=

+
1
4
--- ∆⊥' A⊥' A⊥'*⋅( )A⊥' ∆⊥' A⊥'* A⊥'⋅( )A⊥'–[

+ A⊥'
2 ∆⊥' A⊥' A⊥' A⊥'

2
A⊥'+–( ) ] .
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the transverse components of the field intensity but also
on their derivatives in the transverse direction. We find
the field distribution for a weakly nonparaxial station-
ary [of the form (2.8)] spatial soliton by solving Eq.
(2.14) using perturbation theory with the small param-
eter (2.9). In the lowest approximation this equation
gives the standard vector nonlinear Schrödinger equa-
tion (we omit the primes in this section):

(3.1)

For the main (fundamental) soliton the functions As0x

and As0y can be considered to be real. Generally speak-
ing, the Eqs. (3.1) are written for the particular case of
a soliton with a common propagation constant for both
polarizations but a difference between these values is
only possible in the paraxial approximation [1].

We now introduce a small correction to the steady-
state soliton:

(3.2)

Equation (2.14) linearized with respect to the perturba-
tion δAs is written in the form

(3.3)

In terms of Cartesian components we have

(3.4)

(3.5)

∆⊥ As0x As0x As0x
2 As0y

2+( )As0x+– 0,=

∆⊥ As0y As0y As0x
2 As0y

2+( )As0y+– 0.=

As r⊥( ) As0 r⊥( ) µ2δAs r⊥( ).+=

∆⊥ δAs δAs As0
2δAs[+–

+ As0* δAs⋅( )As0 As0 δAs*⋅( )As0+ ] Qs As0( ).=

∆⊥ δAsx δAsx As0x
2 As0y

2+( )δAsx[+–

+ As0x
2 δAsx δAsx*+( )

+ As0x As0y δAsy δAsy*+( ) ] Qsx As0x As0y,( ),=

∆⊥ δAsy δAsy As0x
2 As0y

2+( )δAsy[+–

+ As0x As0y δAsx δAsx*+( )

+ As0y
2 δAsy δAsy*+( ) ] Qsy As0x As0y,( ),=

Qsx As0x As0y,( )
∂As0x

∂x
-------------

∂As0y

∂x
-------------+

2

As0x




–=

+
x∂

∂
As0x

∂ As0x
2 As0y

2+( )
∂x

---------------------------------- As0y

∂ As0x
2 As0y

2+( )
∂y

----------------------------------+




,

Qsy As0x As0y,( )
∂As0x

∂x
-------------

∂As0y

∂x
-------------+

2

As0y




–=

+
y∂

∂
As0x

∂ As0x
2 As0y

2+( )
∂x

---------------------------------- As0y

∂ As0x
2 As0y

2+( )
∂y

----------------------------------+




.
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As the zeroth approximation we take the linearly
polarized Townes mode having an axisymmetric field

distribution (polar coordinates r, ϕ, r = ):

(3.6)

The function F0(r) is defined as finite over the entire
range 0 < r < ∞ and the solution of the equation which
tends to zero as r  ∞ is

(3.7)

Bearing in mind the axial symmetry of the Townes
mode, Eq. (3.7) has the form 

(3.8)

We write Eqs. (3.4) for the corrections to the soliton
shape in the form

(3.9)

where

(3.10)

(3.11)

The second of linear Eqs. (3.9) (for δ ) has the
solution [see (3.7)] 

(3.12)

which corresponds to a phase shift of the initial soliton.
Since we are not interested in this shift, we can set C'' = 0
and accordingly δ  = 0. The two remaining inhomo-
geneous Eqs. (3.9) can be solved provided that their
right-hand sides are orthogonal to the solutions of the
corresponding homogeneous equations with the
boundary conditions specified above. For the last of
Eqs. (3.9) orthogonality follows from the angular
dependence of the right-hand side,

Thus, omitting the solution of the homogeneous
equation (symmetry with respect to rotation of the

x2 y2+

As0x F0 r( ), As0y 0.= =

L0F0 0, L0 ∆⊥= 1– F0
2.+=

d2F0

dr2
-----------

1
r
---

dF0

dr
--------- F0– F0

3+ + 0.=

L1δAsx' Qx0 r( ) Qx2 r( ) 2ϕ ,cos+=

L0δAsx'' 0,=

L0δAsy Qy2 r( ) 2ϕ ,sin=

L1 L0 2F0
2, δAsx+ δAsx' iδAsx'' ,+= =

Qx0 r( )
1
2
---F0

dF0

dr
--------- 

 
2

rd
d 1

r
---+ 

  F0
2dF0

dr
--------- 

 + ,–=

Qx2 r( )
1
2
---F0

dF0

dr
--------- 

 
2

rd
d 1

r
---– 

  F0
2dF0

dr
--------- 

 + ,–=

Qy2 r( )
rd

d 1
r
---– 

  F0
2dF0

dr
--------- 

  .–=

Asx''

δAsx'' C''As0, As0 As0x≡ F0,= =

Asx''

ϕ 2ϕsind

0

2π

∫ 0.=
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axes x, y), we obtain the correction δAsy in the form

(3.13)

Then Fy(r) is defined as the only finite axisymmetric
solution of the equation

(3.14)

The solution of the homogeneous equation corre-
sponding to the first of the equations (3.9) corresponds
to a shift of the initial soliton along x and y:

(3.15)

The orthogonality condition is again satisfied as a result
of the angular dependence of these solutions and the
right-hand side of this equation. Also omitting the solu-
tion of the homogeneous Eq. (3.14) (C1 = C2 = 0) we
obtain δ  in the form

(3.16)

The radial functions appearing in (3.16) are obtained as
(unique) finite axisymmetric solutions of the equations

(3.17)

Graphs of these functions obtained by solving numeri-
cally axisymmetric variants of Eqs. (3.8), (3.14), and
(3.17) with the conditions of finiteness for r = 0 and
which decrease as r  ∞ specified above are plotted
in the figure. 

δAsy Fy r( ) 2ϕ .sin=

L2Fy Qy2 r( ), L2 L1
4

r2
----.–= =

δAsx1' C1

∂F0

∂x
--------- C1

dF0

dr
--------- ϕ ,cos= =

δAsx2' C2

∂F0

∂y
--------- C2

dF0

dr
--------- ϕ .sin= =

Asx'

δAsx' F1 r( ) F2 r( ) 2ϕ .cos+=

L1F1 Qx0, L2F2 Qx2.= =

1

2

3

4

3

2

1

0

–1

–2

–3

–4
0 1 2 3 4 5

r

F

Radial profiles of the amplitudes F0 of a fundamental soli-
ton (Townes modes, curve 1) and its nonparaxial distortions
Fy (curve 2), F1 (curve 3), and F2 (curve 4).
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We shall now return to dimensional quantities. For
the electric field intensity of a steady-state soliton we
have

(3.18)

In accordance with (3.18), the field exhibits weak axial
symmetry. The main correction to the initial linear
polarization occurs as a result of the longitudinal com-
ponent of the field Ez ∝  µ2. For this correction the phase
of the field is shifted relative to the main component by
π/2 since the polarization becomes elliptic. Time oscil-
lations of the electric intensity vector are described by
a prolate ellipse in the xz plane. When additional allow-
ance is made for corrections proportional to µ3, it is
found that the slope of the plane in which the ellipse is
located varies over the beam cross section. 

The components of the magnetic intensity are
expressed in terms of the electric field intensity using
the Maxwell equations (2.1):

(3.19)

The radiation power P is defined as the integral of
the longitudinal component of the time-averaged
Poynting vector over the transverse coordinates:

(3.20)

Ex

ε0

ε2
---- µF0 r( ) µ3 F1 r( ) F+ 2 r( ) 2ϕcos[ ]+{ } ,=

Ey

ε0

ε2
----µ3Fy r( ) 2ϕ ,sin=

Ez iµ2 ε0

ε2
----

dF0 r( )
dr

--------------- ϕ ,cos=

r Γ2 k2– ρ, ρ x2 y2+ .= =

Hx
c
ω
---- Γ Ey i

∂Ez

∂y
--------+ 

 – µ3 ε0

2 ε2

------------–= =

× 2
r
---

dF0

dr
--------- F0– F0

3 2Fy+ + 
  2ϕ ,sin

Hy
c
ω
---- Γ Ex i

∂Ez

∂x
--------+ 

  Hy0 µ3 ε0

2 ε2

------------+= =

× 2F1 F0
3+( ) 2F2 F0

3 F0–
2
r
---

dF0

dr
---------+ + 

  2ϕcos+ ,

Hz
i
k
-- ε0

∂Ex

∂y
--------- iµ2 ε0

ε2

--------
dF0

dr
--------- ϕ ,sin= =

Hy0

ε0

ε2

--------µF0 r( ).=

P
c

8π
------ Re Ex*Hy Ey*Hx–( ) xd y.d∫∫=
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Substituting into (3.20) the approximate expressions
for the soliton field intensities obtained above, we
obtain the power

(3.21)

The constants P0 and p1 are defined as follows:

(3.22)

In (3.21) the term containing P0 corresponds to the crit-
ical self-focusing power which agrees with that
obtained in the paraxial limit (µ  0) where it does
not depend on the propagation constant [1]. The term
containing p1 is the nonparaxial correction to the power
which depends on the propagation constant. Note that
the increase in soliton power with increasing propaga-
tion constant, which follows from Eqs. (3.2) and (3.22),
is consistent with the Vakhitov–Kolokolov criterion [19]
for soliton stability. However, this criterion was obtained
in the paraxial approximation and thus we still need to
demonstrate the stability of a nonparaxial soliton.

4. LINEARIZED EQUATIONS

For a linear analysis of stability, we shall set [see
(3.2)]

(4.1)

Substituting (4.1) into (2.11) and linearizing this with
respect to the small perturbation δA, we find

(4.2)

Here we have

P
c2

8πωk
--------------

ε0

ε2
---- P0 µ2 p1+( ).=

P0 F0
2 r( )r rd

0

∞

∫ 11.7
2π

---------- 1.862,= = =

p1 2F0 r( )F1 r( )
1
2
---F0

4 r( )+ r rd

0

∞

∫ 5.990.= =

A⊥ r⊥ z,( ) As r⊥( ) δA r⊥ z,( ).+=

2iΓ∂δA
∂z

---------- ∆⊥ δA Γ 2 k2–( )δA k2ε2

ε0
----+–+

× As0
2 δA As0 As0 δA⋅( ) As0 As0 δA∗⋅( )+ +[ ] δQ.=

δQ δQs δQz δQk,+ +=

δQk k2ε2

ε0
---- As

2 As0
2–( )δA δAs As0 δA⋅( )+[–=

+ As0 δAs δA⋅( ) δAs δAs δA⋅( ) δAs As0 δA∗⋅( )+ +

+ As0 δAs δA∗⋅( ) δAs δAs δA∗⋅( )+ ] ,

δQs

ε2

ε0
---- div⊥ As

2δA{–=

+ div⊥ As*div⊥ δA div⊥ Asdiv⊥ δA∗+[ ]As

+ grad⊥ As grad⊥ As* δA⋅ As δA∗⋅+( )⋅[
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(4.3)

Introducing the real and imaginary parts of the
x-components of the perturbation δAx = δAr + iδAi and
the inhomogeneity δQx = δQr + iδQi, we write the linear
equation (4.2) in the form

(4.4)

and also in the matrix form

(4.5)

Here 

we have

(4.6)

The form of the operators L0, 1 in (4.6) corresponds
to the dimensional form of the relationships (3.7) and

+ δA grad⊥ As
2 ]⋅ } ,

δQz
1

4k2
-------- ∆⊥ Γ2 k2–( )–[ ]2δA=

+
ε2

4ε0
-------- ∆⊥ As

2δA As As* δA⋅( ) As As δA∗⋅( )+ +[ ]{

+ As
2∆⊥ δA As* δA⋅ As δA∗⋅+( )∆⊥ As+

– 2 Γ2 k2–( ) As
2δA As As* δA⋅( ) As As δA∗⋅( )+ +[ ]

+ k2ε2

ε0
---- As

4δA 2As As
2 As* δA⋅ As δA∗⋅+( )+[ ]

+ ∆⊥ δA As*⋅( )As ∆⊥ As δA∗⋅( )As+

+ ∆⊥ As As*⋅( )δA ∆⊥ δA∗ As⋅( )As–

– ∆⊥ As* δA⋅( )As ∆⊥ As* As⋅( )δA– } .

2Γ
∂δAr

∂z
------------ L0δAi+ δQi,=

2Γ
∂δAi

∂z
----------- L1δAr+– δQr,=

2iΓ
∂δAy

∂z
------------ L0δAy+ δQy,=

2Γ∂δA
∂z

---------- MδA.=

δA

δAr

δAi

δAy 
 
 
 
 

,=

MδA
L0δAi– δQi+

L1δAr δQr–

iL0δAy iδQy– 
 
 
 
 

,=

As0 µ
ε0

ε2
----F0 Γ2 k2– ρ( ),=

L0 ∆⊥ Γ2 k2–( )– k2ε2

ε0
----As0

2 ,+=

L1 L0 2k2ε2

ε0
----As0

2 .+=
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(3.10) with a choice of linearly polarized unperturbed
soliton (3.6) when the control equations for the pertur-
bations are simplified considerably. The properties of
solutions of the equations corresponding to the linear-
ized nonlinear Schrödinger equation (δQ  0) are
also important:

(4.7)

or in matrix form

(4.8)

We write the simplest solutions of the system (4.4)
[or (4.5)] and (4.7) [or (4.8)]. First, it follows from the
well-known symmetry with respect to the phase shift
and propagation constant of a steady-state soliton that
the linearized equations have two solutions. The first of
these

(4.9)

corresponds to the eigenvector of the matrix M (M0)
with zero eigenvalue

(4.10)

The second solution 

(4.11)

is not an eigenvalue but a root:

(4.12)

2Γ
∂δAr0

∂z
-------------- L0δAi0+ 0,=

2Γ
∂δAi0

δz
--------------– L1δAr0+ 0,=

2iΓ
∂δAy0

∂z
-------------- L0δAy0+ 0,=

2Γ
∂δA0

∂z
------------- M0δA0,=

M0

0 L0– 0

L1 0 0

0 0 iL0 
 
 
 
 

.=

δAϕ

0

Asx

iAsy 
 
 
 
 

, δAϕ
0( )

0

As0

0 
 
 
 
 

,= =

MδAϕ 0, M0δAϕ
0( ) 0.= =

δAΓ

1
2Γ
-------

∂Asx

∂Γ
----------

0

i
2Γ
-------

∂Asy

∂Γ
----------

 
 
 
 
 
 
 
 

, δAΓ
0( )

1
2Γ
-------

∂As0

∂Γ
-----------

0

0 
 
 
 
 
 

,= =

MδAΓ δAϕ , M2δAΓ 0,= =

M0δAΓ
0( ) δAϕ

0( ), M0
2δAΓ

0( ) 0.= =
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Finally, the symmetry with respect to rotation of the
x, y axes yields an eigenvector with zero eigenvalue:

(4.13)

Subsequently, disregarding the rotational transforma-
tion of the axes, we set Crot = 0. 

The following two solutions are specific to the lin-
earized nonlinear Schrödinger equation [Eqs. (4.7) or
(4.8)] whereas they are absent for the more general
form of Eqs. (4.4) or (4.5). The invariance of the non-
linear Schrödinger equation to a focusing transforma-
tion determined by Talanov [20] thus yields the solu-
tion (4.7) [21]:

(4.14)

The corresponding vector

(4.15)

is also a root:

(4.16)

The last of the solutions of linearized Eqs. (4.7) required
for the following analysis has the form [18, 22]

(4.17)

After substituting (4.17) into (4.7), we find

(4.18)

The function a(ρ) is defined as the only finite axisym-
metric solution of the equation [the conditions for sol-
ubility are satisfied because of the axial symmetry of
the right-hand side (4.19)]

(4.19)

δArot Crot

Asy–

0

Asx 
 
 
 
 

, δArot
0( ) Crot

0

0

Asx0 
 
 
 
 

,= =

MδArot 0, M0δArot
0( ) 0.= =

δAr0

∂As0

∂Γ
-----------z, δAi0

1
2Γ
------- –

ρ2

4
----- Γz2+ 

  As0,= =

δAy0 0.=

δA f

0

1

8 k2 Γ2–( )
------------------------As0ρ

2

0 
 
 
 
 
 

=

M0δA f δAΓ 0, M0
3δA f 0.= =

δAr0 a ρ( ) b ρ( )z2, δAi0+ c ρ( )z d ρ( )z3,+= =

δAy0 0.=

d As0, c
3

Γ2 k2–
----------------As0ρ

2, b– 3
∂As0

∂Γ
-----------.= = =

L1a
6Γ3

Γ2 k2–
----------------As0ρ

2,–=
JOURNAL OF EXPERIMENTAL
or 

(4.20)

We do not require the specific form of the function a(ρ).
The perturbation vector corresponding to this solution
is also a root:

(4.21)

These solutions exhaust the family of localized axisym-
metric solutions of the linearized nonlinear Schrödinger
equation with a zero eigenvalue.

Using the small nonparaxial parameter (2.9), we can
write expansions of the matrix M, the eigenvector δAϕ
and the root vector δAΓ in the form

(4.22)

Terms with a zero index are determined by the nonlin-
ear Schrödinger equation and are given in Eqs. (4.8),
(4.9), and (4.11). The remaining terms of the expansion
are obtained using the expansion for the field of a
steady-state soliton determined in Section 3. 

5. STABILITY AND OSCILLATIONS
OF PERTURBED SOLITONS

We shall now find the eigenvalue of the matrix oper-
ator M which goes to zero in the limit µ  0 (non-
paraxial soliton limit). For this we shall seek the eigen-
solution of the linearized equation (4.5) in the form

(5.1)

Here we introduce the unknown eigenvalue 

(5.2)

and the eigenvector Y which obey the following equa-
tion derived from (4.5)

(5.3)

The expansion of the eigenvector Y can be conve-
niently expressed in the form

.(5.4)

d2a

dρ2
--------

1
ρ
---da

dρ
------ Γ2 k2–( )a–+

+ 3k2ε2

ε0
----As0

2 a
6Γ3

Γ2 k2–
----------------As0ρ

2.–=

M0δAa δA f , M0
4δAa 0,= =

δAa

1

48Γ 3
------------a ρ( )

0

0 
 
 
 
 
 

.=

M M0 µ2M2 µ4M4 …,+ + +=

δAϕ δAϕ
0( ) µ2δAϕ

2( ) …,+ +=

δAΓ δAΓ
0( ) µ2δAΓ

2( ) …+ +=

δA Y x y,( )eµγz/2Γ .=

µγ µγ1 µ2γ2 µ3γ3 …+ + +=

MY µγY.=

Y = δAϕ µγδAΓ µ2Y2 µ3Y3 µ4Y4 …+ + + + +
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The first two terms on the right-hand side (5.4) are
determined by Eqs. (4.9) and (4.11). Substituting into
(5.3) the expansions of the corresponding quantities in
powers of the small nonparaxial parameter µ and equat-
ing terms of the same order with respect to this param-
eter, we find in the second order in µ [equations of
lower orders are automatically satisfied given the
choice made in (5.4)]

(5.5)

Taking into account (4.16), we find that 

(5.6)

In the third order, we have

(5.7)

so that, taking into account (4.16) and (4.21), we have

(5.8)

Finally, in the fourth order we have

(5.9)

or allowing or (5.6) and (5.8)

(5.10)

We now introduce the transposed operator matrix

 and the conjugate three-dimensional vectors 

and  using the relationships

(5.11)

In explicit form we have

(5.12)

M0Y2 γ1
2δAΓ 0.=

Y2 γ1
2δA f .=

M0Y3 2γ1γ2δAΓ 0 γ1Y2+=

=  2γ1γ2δAΓ 0 γ1
3δA f ,+

Y3 2γ1γ2δA f γ1
3δAa.+=

M0Y4 M2Y2+ γ1
2δAΓ 2=

+ γ2
2 2γ1γ3+( )δAΓ 0 γ1Y3 γ2Y2,+ +

M0Y4 γ1
2M2δA f+ γ1

2δAΓ 2=

+ γ2
2 2γ1γ3+( )δAΓ 0 3γ1

2γ2δA f γ1
4δAa.+ +

M0
† Aϕ0

†

AΓ 0
†

M0
†

0 L1 0

L0– 0 0

0 0 iL0 
 
 
 
 

,=

M0
†δAϕ0

† 0, M0
†δAΓ 0

† δAϕ0
† .= =

δAϕ0
†

As0

0

0 
 
 
 
 

, δAΓ 0
†

0

∂As0

∂Γ
-----------

0 
 
 
 
 
 

.= =
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We introduce the scalar product of the three-dimen-
sional vectors (4.6) using the relationships 

(5.13)

where we have for the complex (third) components

(5.14)

Then, as a result of the self-adjoint property of the
Laplace operator for arbitrary vectors U and V the fol-
lowing identity is satisfied

(5.15)

We now multiply the three-dimensional vector 
by the left- and right-hand sides of Eq. (5.10) and
equate these scalar products. Here we use the following
relationships for the matrix elements:

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

U V,〈 〉 1
2π
------=

× ϕ ρρ U1V1 U2V2 U3V3+ +( ),d

0

∞

∫d

0

2π

∫

U3V3 ReU3ReV3 ImU3ImV3.+=

U M0V,〈 〉 M0
†U V,〈 〉 .=

Aϕ0
†

δAϕ0
† M0Y4,〈 〉 M0

†δAϕ0
† Y4,〈 〉 0,= =

δAϕ0
† δAΓ 0,〈 〉

As0

0

0 
 
 
 
  1

2Γ
-------

δAs0

∂Γ
-----------

0

0 
 
 
 
 
 

,=

=  
1

2Γ
------- As0

∂As0

∂Γ
-----------ρ ρd

0

∞

∫ 0,=

δAϕ0
† δA f,〈 〉

=  
As0

0

0 
 
 
 
  0

1

8 k2 Γ2–( )
------------------------As0ρ

2

0 
 
 
 
 
 

, 0,=

mϕ a, δAϕ0
† δAa,〈 〉 M0

†δAΓ 0
† δAa,〈 〉= =

=  δAΓ 0
† M0δAa,〈 〉 δAΓ 0

† δA f,〈 〉=

=  
1

32Γ Γ2 k2–( )
------------------------------

∂As0
2

∂Γ
-----------ρ3 ρ,d

0

∞

∫–

mϕ Γ, δAϕ0
† δAΓ 2,〈 〉 1

2Γ
------- As0

∂δAs0

∂Γ
--------------ρ ρ,d

0

∞

∫= =
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and we also introduce the notation 

(5.21)

We then obtain an equation to determine the square of
the eigenvalue in the lowest approximation (see also
[17])

(5.22)

The two zero roots of this equation correspond to
the symmetries with respect to the phase shift and the
shift of the propagation constant conserved when
allowance is made for the nonparaxial property. In
accordance with (5.22) two nonzero eigenvalues are
split off from these (as a result of a shift of the eigen-
value corresponding to the vectors δAf and δAa for the
nonlinear Schrödinger equation). In order to determine
these it is convenient to calculate the matrix elements
appearing in (5.22) by going over to the functions
F0, 1(r) introduced earlier in the integrand expressions
(see Fig. 1 and Appendix). We then finally obtain

(5.23)

In accordance with (5.23), a weakly nonparaxial
soliton is stable (Γ > k). However, the imaginary nature
of the eigenvalue γ implies that an “internal mode”
occurs whose field distribution as given by (5.4) is close
to the soliton field (and is phase shifted by π/2). The
longitudinal period of the oscillations of the perturbed
field 2π/  increases without bound in the paraxial soli-
ton limit µ  0 (Γ  k). As a result of the weak
radiation damping of these internal modes [23–27] it is
difficult for a steady-state soliton to be established
under these conditions (an anomalously long nonlinear
medium is required).

6. CONCLUSIONS

We have demonstrated for the first time that non-
paraxial solitons of electromagnetic radiation are stable
in a medium with a Kerr nonlinearity. These solitons
may occur at the final stage of self-focusing of super-
critical-power radiation. Since the maximum intensity
of these weakly nonparaxial solitons is low, the Kerr
nonlinearity will be the dominant mechanism (no com-
peting mechanisms of nonlinearity exist at low intensi-
ties). We reemphasize that the fields of these solitons do
not possess axial symmetry and the polarization struc-
ture of the radiation strictly corresponds to elliptic
polarization which varies over the cross section. It is
important to allow for the vector nature and the nontriv-
ial polarization structure of electromagnetic radiation
solitons since their scalar description cannot be quanti-
tative. This approach can not only demonstrate the sta-
bility but can also be used to determine the correspond-

m2 δAϕ0
† M2δA f,〈 〉 .=

γ1
2 m2 mϕ Γ,–( ) mϕ a, γ1

2–[ ] 0.=

γ̃
k
-- 

 
2 1

k2
----

γ1

2Γ
------- 

 
2

43.35
Γ k–

k
------------ 

 
3

.–= =

γ̃
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ing quantitative characteristic (the eigenvalue γ). This
value characterizes the internal modes of these solitons,
i.e., the natural modes of small perturbations in an
effective light guide induced by the “strong field” of a
soliton in a nonlinear medium. 

The results obtained here for weakly nonparaxial
optical solitons serve as an additional argument to sup-
port the “needles of light” identified in [15], i.e.,
strongly nonparaxial solitons of width less than the
wavelength of the radiation in a linear medium. We also
note that since the nonlinear Schrödinger equation
describes an extremely wide range of phenomena of
various physical nature, this approach to analyze the
perturbed Schrödinger equation may not be confined
merely to optical problems.
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APPENDIX

We shall calculate the matrix elements appearing in
(5.22) which can be reduced to single integrals (over
the radial coordinate) of the functions F0, 1(r) and their
derivatives. Graphs of the functions are plotted in
Fig. 1 and their integrals were calculated numerically:

mϕ Γ,
1

2Γ
------- As0

∂δAs0

∂Γ
--------------ρ ρd

0

∞

∫ 1

2k4
--------

ε0

ε2
---- p2,= =

p2 3F0 r( )F1 r( ) F0 r( )
F1 r( )d

rd
---------------+ r rd

0

∞

∫ 5.821,= =

mϕ a,
1

32Γ Γ2 k2–( )
------------------------------

∂As0
2

∂Γ
-----------ρ3 ρd

0

∞

∫–
ε0

ε2
---- 1

k2
----–= =

× 1

32 Γ2 k2–( )
--------------------------

Γ∂
∂ Γ2 k2–( ) F0

2 Γ2 k2– ρ( )ρ3 ρd

0

∞

∫

=  
ε0

ε2
---- 1

k2
---- 1

16 Γ2 k2–( )2
----------------------------- p3,

p3 F0
2 r( )r3 rd

0

∞

∫ 2.211,= =

m2 m2s m2k m2z,+ +=
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m2s δAϕ0
+ M2sδA f,〈 〉 1

16
------

ε2

ε0
---- 1

Γ2 k2–
----------------= =

× As0

As0d
ρd

---------- 
 

2

As0ρ
2

ρd
d 1

ρ
---+ 

  As0ρ
2( )+ ρ ρd

0

∞

∫

=  
1

16k4
-----------

ε0

ε2
---- ps,

ps

F0 r( )d
rd

---------------F0 r( )r 
 

2

0

∞

∫=

+ F0 r( )
rd

d 1
r
---+ 

  F0
2 r( )d
rd

---------------F0 r( )r2

 
  rdr 1.608,–=

m2k δAϕ0
+ M2kδA f,〈 〉 k2

4 Γ2 k2–( )
------------------------= =

×
ε2

ε0
---- As0

3 δAsx0ρ
3 ρd

0

∞

∫ 1

4k4
--------

ε0

ε2
---- pk,=

pk F0
3( ) r( )F1 r( )r3 rd

0

∞

∫ 1.926,= =

m2z δAϕ0
+ M2zδA f,〈 〉 1

32 Γ2 k2–( )
---------------------------–= =

× ρρAs0
1

k2
---- ∆⊥ Γ2 k2–( )–[ ]





d

0

∞

∫

× ∆⊥ Γ2 k2–( )– k2ε2

ε0
----As0

2+ As0ρ
2( )

+
ε2

ε0
---- 3As0

2 ∆⊥ As0ρ
2( ) 2As0

2 ρ2∆⊥ As0– Γ2 k2–( )As0
3 ρ2–

+ k2ε2

ε0
----As0

5 ρ2



 1

32k4
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ε0

ε2
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pz rrF0 r( ) ∆r 1–[ ] ∆r 1– F0
2 r( )+[ ] F0 r( )r2( )d

0

∞

∫=

+ 3 rrF0
3 r( )∆r F0 r( )r2( ) 2 rr3F0

3 r( )∆r F0 r( )( )d

0

∞

∫–d

0

∞

∫
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After substituting these values into (5.22) we obtain
(5.23).
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Abstract—The special features of the propagation of electromagnetic waves in gyrotropic medium with dis-
persion and resonant dissipation (specifically, in a magnetoactive plasma) are studied. Even though the anti-
Hermitian components of the permittivity tensor are substantial in magnitude, weakly damped waves can exist
in such media. However, the well-known phenomenological expression for the energy flux of waves in a
medium with spatial dispersion is inapplicable for them. A theory extending this expression to the case studied
is developed. The modified expression for the energy flux is used to construct the Hamiltonian for the ray optics
of such media. © 2000 MAIK “Nauka/Interperiodica”.
A well-known complexity of the theory of electro-
magnetic waves is the absence of phenomenological
expressions for the group velocity, energy density, and
energy flux of waves in dissipative, dispersive media
[1–3]. Interest in this problem has increased recently in
connection with the problem of describing the propaga-
tion of resonance electromagnetic radiation in a high-
temperature magnetoactive plasma. A characteristic
feature of the propagation of electromagnetic radiation
in the cyclotron resonance bands is the existence of
weakly damped waves even in the region where the
anti-Hermitian components of the permittivity tensor
are substantial [4–6]. Thus we are dealing with the case
where for

(1)

the dispersion equation

(2)

for real ω possesses a solution with weak damping at
wavelengths

(3)

(Here

 are the anti-Hermitian and Hermitian compo-
nents of the permittivity tensor εpm of the medium, and
the symbols ω and k have their standard meanings.)

εpm
aH εpm

H∼

D ω k,( ) det Dpm 0= =

Re k  @ Im k .

Dpm δpmk2 kpkm–
ω2

c2
------εpm ω k,( ),–=

εpm
aH H,
1063-7761/00/9106- $20.00 © 21141
The weakness of the absorption could be due to the
special features of the polarization of normal waves [4–6],
and even in spite of the conditions (1) the projection of the
active component of the current in the medium on the
direction of the hf field vector is a small parameter:1 

(4)

(here E is a vector of the complex amplitude of hf field).
However, even though the absorption of waves is

relatively weak a number of difficulties arise in describ-
ing waves when the permittivity tensor is strongly anti-
Hermitian.

(i) The standard expression (i.e., obtained for van-
ishingly small “non-Hermitian component” of the per-
mittivity tensor) for the energy flux SH of waves2 

(5)

is no longer correct, since the derivative of the small

complex quantity Em  with respect to the wave
vector is not always sufficiently small (see [5]).

1 In a magnetoactive plasma the condition (4) holds for nonlongitu-
dinal propagation of electromagnetic waves relative to the mag-
netic field. In this case the circularly polarized component of the
field, rotating in the direction of Larmor rotation of the electrons
or ions—near the electronic or ionic cyclotron resonances,
respectively—is suppressed (depressed).

2 The vector SH is the sum of the Poynting vector and the energy
flux excited in the medium by hf field [1, 2, 7].

Ep*εpm
aH Em

Ep*εpm
H Em

------------------------- µ ! 1=

SH
c2

16πω
--------------Ep*Em

∂Dpm
H

∂k
-------------,=

Ep* εpm
aH
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(ii) The standard use of the dispersion function D(ω,
k, r) as the Hamiltonian for ray optics3 engenders rays
in a complex space—by virtue of the strong complexity
of the derivatives of the function D(ω, k) with respect
to its arguments—even though Eq. (2) possesses weakly
damped solutions (in his connection see [5, 6, 8]).

Physically, however, it seems almost obvious that
for weakly damped waves the difficulties in obtaining
an expression for the energy flux and the (directly
related) difficulties of constructing a geometric optics,
even under the conditions (1), are purely formal. In
plasma physics the most commonly used method for
eliminating these difficulties is to use a purely Hermi-
tian permittivity tensor of a cold collisionless plasma
[5, 6]. Then, the energy flux reduces to the standard
Poynting vector. However, this approach neglects the
characteristic behavior of waves near the cyclotron res-
onance band, where, as indicated in [9], the spatial dis-
persion induced components of the energy flux can be
determining.4 The method of investigating the propaga-
tion of waves beams in a plane-layered medium was
used in [11, 12]. In this method the wave field is
expanded in WKB modes satisfying the conditions (3).
It follows from the analysis performed in these works
that the trajectory of beams in a plane-layered medium
can be given by a real ray Hamiltonian H(r, k, ω), if for
real ω and k the condition H(r, k, ω) = 0 corresponds
to vectors k coinciding with the real part of the corre-
sponding solution of the dispersion equation (2) with
real frequencies.5 The numerical analysis performed in
[11] demonstrated that the direction of propagation of
waves beams near the cyclotron resonance bands can
differ substantially from the direction of the standard
energy flux in a medium with spatial dispersion, given
by Eq. (5). In his connection an attempt to obtain an
expression for the energy flux of weakly damped waves
that is valid at the finite anti-Hermitian component of
the permittivity tensor is interesting. It turns out that
this problem can be greatly simplified by using the
method proposed in [12] for analyzing the energy char-
acteristics of a wave field in dissipative anisotropic
media, based on expanding a smoothly nonuniform sta-
tionary field in a spectrum of normal waves. We believe
that this approach makes it possible to introduce phe-
nomenologically the definition of the energy flux of a
stationary electromagnetic wave field; such a definition
is the main content of this paper.

This paper is organized as follows. In Section 1 the
Poynting relation, which relates an hf field and the cur-
rents which it excites in a dissipative and isotropic
medium, reduces to an explicitly divergence form,
which makes it possible to determine uniquely the

3 The dependence of D on r occurs in a nonuniform medium.
4 The modification of the theory, based on the “cold” plasma

approximation, is especially needed for waves propagating “along
tangents” to the resonance surfaces [10].

5 The effect of the finite value of Imk on the expression for Rek
can be or need not be taken into account—depending on the accu-
racy required.
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direction of transfer of the radiation intensity. In Sec-
tion 2 the situations where the modified expression for
the energy flux differs substantially from the standard
relation (5) or, conversely, transforms into it are dis-
cussed; the physical meaning of the results obtained is
clarified; and, the possibility of using the results
obtained to construct a geometric optics of the corre-
sponding media is discussed.

Although the formalism developed in the present
paper is valid for an arbitrary anisotropic medium, the
exposition is primarily associated with the theory of
electromagnetic waves in a magnetoactive plasma.

1. Let a stationary high-frequency field with the
wave structure

(6)

(here E(r) is a smoothly nonuniform complex ampli-
tude, and the function E(r) also takes account of possi-
ble wave damping) be excited in a uniform anisotropic
medium with dispersion and dissipation. The condition
that the amplitude varies “slowly” has the form

(7)

The existence of a small parameter ε requires quite
weak absorption at the wavelength and a relatively nar-
row angular Fourier spectrum of the wave field. The
Poynting theorem for a field of the form (6)

(8)

(here j is the complex amplitude of the current excited
in the medium) still does not determine explicitly the
direction of transfer of the intensity of the wave field in
the medium, since the possible dependence of the cur-
rent j on the spatial derivatives of hf field can lead to the
appearance in Eq. (8) of additional divergence terms.
Specifically, in a medium with no dissipation under the
conditions (7) it follows from Eq. (8) [1, 7] that

(9)

where the vector SH is determined by the relation (5).
The situation becomes more complicated if the

medium is dissipative, i.e., the permittivity tensor con-
tains Hermitian and anti-Hermitian components.

In first place, if the anti-Hermitian tensor 
depends on the wave vector k, then according to [5] a
relation with additional spatial derivatives follows from
equation (8):

(10)

where

Ẽ E r( ) ik0 r iωt–⋅( )exp=

1
k0
---- 1

E
------ ∂E

∂r
------ ε ! 1.=

div
c2

8πω
-----------Re E* k0 E⋅[ ]×[ ] 

  1
2
---Re j E*⋅( )+ 0=

div SH 0,=

εpm
aH

div SH q Q+ + 0,=

Q
ic2

8πω
----------- Dpm

aH( ) k k0= Ep*Em=
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is the standard expression for the intensity of the
losses,

is an additional term due to the fact that dissipation and
spatial dispersion are taken into account simulta-
neously. 

In second place, in an anisotropic dissipative
medium, even in the absence of spatial dispersion (i.e.,
when q = 0), the direction of transfer of the intensity of
the hf can, in principle, be different from the direction
of the vector SH. The problem is that in an anisotropic
medium the dissipative term Q depends strongly on the
polarization of hf field, and the polarization in turn
depends on the intensity distribution nonlocally, specif-
ically—under the condition (7)—the polarization can
depend on the derivatives of the intensity with respect
to spatial coordinates6 and engender additional diver-
gence terms in the Q term.

Let us substitute the hf field (6) in the form of a com-
position of normal waves of the same type:

(11)

Here λ(k0 + ∆k) is the eigenvalue, corresponding to the
selected normal mode, of tensor Dpm(k0 + ∆k); k = k0 +
∆k is the wave vector; δ(λ) is the Dirac function that
“selects” the values of k that satisfy the dispersion
equation; e(λ) is the corresponding eigenvector (in the
normalization |e |2 = 1), which is the polarization vector
of the given normal mode7 as λi  0; Ak is a weight-
ing function of the spectral distribution.

Taking into account the “narrowness,” dictated by
the condition (7), of the spatial Fourier spectrum (∆k !
k0), the following expression can be obtained from
Eq. (11) (see also [12]):

(12)

where e(k0) is a unit polarization vector (eigenvector)
for the “central” value of the wave vector k = k0, the

6 The simplest example where the intensity distribution influences
the polarization of the wave field is a “vacuum” plane-parallel
beam with TM polarization: the narrower the beam, the stronger
the longitudinal components of electric field is.

7 Formally, the tensor Dpm has three eigenvalues λi(k) and corre-
spondingly three eigenvectors ei(λ) (here i = 1, 2, 3). The number
i corresponding to the desired normal waves in the limit λi  0
is chosen.

q
c2

16πω
--------------

∂Dpm
aH

∂k
------------- 

 
k k0=

Ep*
∂Em

∂r
----------

∂Ep*

∂r
----------Em– 

 =

E r( ) e λ( )Ak k0 ∆k+( )δ λ( )ei∆k r⋅ ∆k.d∫=

E r( ) e k0( )A r( ) i
∂A
∂rn

------- ∂e
∂kn

-------- 
 

k k0=

,–=
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quantity A(r) is an effective scalar amplitude of the
field,8 determined by the relation

(13)

We note that the second term on the right-hand side of
Eq. (12) describes, specifically, the possible influence
of dissipation on the polarization of the normal modes
of an anisotropic medium.

We now substitute Eq. (12) into Eq. (10), represent-
ing the scalar complex amplitude A(r) in the form

where I is a positive real quantity. The result is

(14)

where

(15a)

(15b)

is the modified expression for the power losses (taking
account of the difference of the “local” value of the
wave vector from the “central” value k0),

(16)

Substituting the relations

(17)

which follow from Maxwell’s equations, Eq. (14) can
be reduced to an explicitly divergence form:

(18)

where

(19)

is the modified expression for the energy flux.
Concluding this section, we note that the final rela-

tion (18) corresponds, generally speaking, to an expan-
sion in the first powers of the small parameters ε and µ.
Specifically, Eqs. (17) for the real quantities k = k0 can
be used with this degree of accuracy. Likewise, the field
intensity I, I = |E |2, appearing in the expansions (15)
and (16) can be used in the same approximation. The
second term on the right-hand side of Eq. (15a) is, at
first glance, of the order of εµ. However, in media with

8 The condition (7) makes it possible to interpret the quantity |A |2
as the intensity and the quantity arg A as the phase, determining
the “local” value of the wave vector k(r) = k0 + ∇ (argA). The

relation dr = dr is exact.A
2

∞∫ E 2
∞∫

A r( ) Ak k0 ∆k+( )δ λ( )ei∆k r⋅ ∆k.d∫=

A I1/2 iφ( ),exp=

div S W Q̃+ + 0,=

Q̃
ic2

8πω
----------- I 1

∂φ
∂rp

-------- ∂
∂kp

--------+ 
  em*enEmn

aH

k k0=

=

≈ ic2

8πω
----------- I em*epDmp( ) k k0 ∇ φ+=

W
c2

16πω
-------------- ∂I

∂r
----- Dpm

aH ∂ep*

∂k
---------em ep*

∂em

∂k
--------– 

 
k k0.=

=

Dpm
aH em Dpm

H em, ep*Dpm
aH– ep*Dpm

H ,= =

div SM Q̃+ 0,=

SM
c2

16πω
--------------I

∂
∂k
------ Dpm

H ep*em( ) k k0==
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resonant dissipation the derivative of the small “dissi-

pative term” ep with respect to the wave vector
k can be quite large: the smallness of the parameter µ
still does not guarantee that the corresponding deriva-
tives will be small. The following circumstance is also
important. The use of differentiation of the “complex-
conjugate” vectors e*k with respect to the argument k
in the expansions (15a), (16), and (19) is determined,
strictly speaking, only if the imaginary part of k is
neglected; this assumption is also valid on the basis of the
indicated expansion in small parameters.

2. The expression (19) differs from the standard
energy flux (5) by the fact that differentiation of the polar-
ization vectors with respect to the wave vector is assumed
in it. For a purely Hermitian permittivity, when

(20)

the modified energy flux vector SM automatically trans-
forms into the standard flux SH.9 Although only the
Hermitian part of the tensor Dpm appears formally in

Eq. (19), the antihermitian components  influence the
polarization vectors appearing in the expression (19).

It is evident from Eq. (19) that if the effect of dissi-
pation on the polarization of the hf field is sufficiently
weak [i.e., the condition (20) is approximately satisfied

even when the finite values of  are taken into
account], then the standard expression (5) for the
energy flux can be used to describe the propagation of
the waves—this result was also obtained in [12] for the
kinetic model of a magnetoactive plasma—with trans-
verse propagation of ordinary and extraordinary waves
at the first and second harmonics of the gyrofrequency.
In general, however, the correction to the standard
quantity SH is of the order of

(21)

where Imk is the absorption coefficients, δk is the char-
acteristic scale of variation of the function er(λ(k)) in
k space, and er is the resonance10 (i.e., determining the
absorption) component of the polarization vector of the
wave.

Thus, as expected, the corresponding correction is
important near the absorption line when the depen-
dence of the polarization on the wave vector is sharp.

As an example we shall consider the quasitransverse
propagation of an ordinary wave in a collisionless mag-

9For vanishingly small non-Hermitian component of the permit-
tivity tensor, Eqs. (5) and (19) are also identical. This case is
examined in [15].

10 In a magnetoactive plasma this is one of the circularly polarized
components.

em*Dmp
aH

Dmp
H em 0,=

εmp
aH

εmp
aH

SH SM–
c2k
ω

------- I
Im k
δk

----------,∼
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netoactive plasma. Near the electron-cyclotron reso-
nance with

(22)

(here k||, ⊥  are the longitudinal and transverse (relative to
the magnetic field H0) components of the wave vector
and βT is the ratio of the thermal velocity to the velocity
of light) we can obtain from the expressions presented
in, e.g., [2, 4, 13], for the tensor εpm that the ratio of the
“dissipative” correction forms with the Poynting vector
the ratio

i.e., it can be fundamental. The “correction” to the
Poynting vector is oriented primarily along H0 and is of
the same order of magnitude as the “nondissipative”
correction due to the spatial dispersion. The fact that
near the absorption line the spatial dispersion and dis-
sipation influence wave propagation in the same order
is very natural.

In the cold-plasma approximation with collisions
(see [2, 13]) we can obtain the estimate

where ν is the effective collision frequency. In this case
the correction is proportional to be “central” small
parameter ν/ω.

Although the relation (18) uniquely determines the
direction of transfer of the intensity of the hf field, the
existence of dissipation, of course, makes it difficult to
give a physical interpretation of the formally intro-
duced vector SM. Even with the additional assumptions
that the system (medium + field) is closed and the pro-
cesses in the medium are stationary, the difference
between the vector SM and the Poynting vector deter-
mines only part of the total energy flux excited in the
medium by the hf field. The complete information

about such fluxes under the condition  ≠ 0 can be
obtained, naturally, only by analyzing a correct model
of the medium. Such an analysis has been performed in
[12] for a kinetic model of a magnetoactive plasma. In
this work the transverse propagation of ordinary and
extraordinary waves at the first and second harmonics
of the gyrofrequency, when Eqs. (20) determine the
polarization vectors to high degree of accuracy and the
standard relation (5) is valid for the energy flux of the
waves, was studied. It was found that an additional
(excited by the field) energy flux of particles, which is
directed transverse to the magnetic field and transverse
to the “field” flux vector SM, is formed in dissipation
zone:

(23)

1 @ 
k ||

k ⊥
----- * βT

βT / k ||/k ⊥( )2,

SH SM– c2k/ω2( )Iν ,∼

εpm
aH

S⊥
iω

16π
---------ep*em

∂εpm
aH

∂k ⊥
-----------I .=
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The flux S⊥  leads to a definite shift of the energy-release
zone relative to the region of localization of the hf field,
but it does not affect the direction of transfer of its
intensity (see [12]). It is obvious that such details
always remain outside the framework of the formal
phenomenological derivation of Eqs. (15), (18), and
(19).

The expression for the energy flux (19) can be rep-

resented in another form. Since the quantity em

is the real part of the eigenvalue of the tensor Dpm, it fol-
lows from Eq. (19) that

(24)

In this form the expression for SM can also be obtained
from other, more graphic, considerations. Let us con-
sider the plane wave

Let the relation

λ(k) = 0 (25)

be the dispersion equation for a given normal mode.
For Rek = k0 and Imk = κ with |κ| ! |k0 | we have from
Eq. (25)

(26)

Since

we obtain from Eq. (26) a balance relation similar to
Eq. (18) (true, for the particular case of a plane wave).

The quantity Reλ can be used as a real Hamiltonian
of ray optics, since we have proved that the energy flux
vector and the derivative ∂Reλ/∂k are identically
directed even in the resonance absorption region, where
the derivatives of λ = Reλ + iImλ with respect to k0 can
be strongly complex functions.

The numerical calculations presented in [14] dem-
onstrate that the direction of the quantity ∂Reλ/∂k is
the same as the direction of propagation of wave beams
in a nonuniform magnetoactive plasma even when the
direction of the standard energy flux (5) differs substan-
tially from them.

CONCLUSIONS

In this paper we examined the energy relations for a
stationary wave field in an anisotropic medium with
dissipation and spatial dispersion. This question was
found to be closely related to the construction of a sta-
tionary geometric optics of such media. We showed
that if the properties of the polarization of electromag-
netic waves guarantee that wave damping is weak even
when the Hermitian and anti-Hermitian components of

ep*Dpm
H

SM
c2

8πω
----------- I

∂
∂k
------ Re λ( ) k k0= .=

E E0eik r⋅ .=

κ ∂ Re λ
∂k

-------------- 
 

k k0=
Im λ k0( )+ 0.=

∇ E0
2 2κ E0

2, i Im λ– ep*Dpm
aH em,= =
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the permittivity tensor are of the same order of magni-

tude, then the condition  ~  in itself is not an
obstacle for a phenomenological (i.e., not based on a
model of the medium) calculation of the energy flux
vector.

It has not been ruled out that the approach developed
here will make it possible to introduce correctly for
nonstationary waves an expression for the energy den-
sity of the waves and their group velocity in such
media. However, this is a more complicated problem,11

which is largely of only methodological interest.12 
It is more important to investigate the transfer of the

intensity of an hf field taking account of the modifica-
tion of the permittivity operator by the nonuniformity
of the medium (see [13]). However, the fruitfulness of
a general phenomenological approach in this problem
is by no means certain, since the model of the medium
strongly determines the influence of the nonuniformity
on the form of the nonlocal response of the medium in
an hf field.
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Abstract—An analysis is made of various self-oscillations which appear in plasma-dust systems with spatially
varying macroparticle charges. The conditions of establishment and the nature of the evolution of the two main
types of instability of these systems are analyzed. Particular attention is paid to cases of vortex particle motion.
Dust systems having parameters similar to those in laboratory experiments are modeled numerically. Calcula-
tions were made for charged particles in an external electric field and in the Earth’s gravitational field using a
molecular dynamics method. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, in the field of nonideal dusty plasmas
there is a shift in interest away from problems of crys-
tallization and phase conversions and toward problems
associated with the establishment and evolution of var-
ious instabilities of plasma–dust systems [1–10]. Publi-
cations devoted to the analysis of forced and natural
macroparticle oscillations are appearing all the time [5–
10]. Some studies have been devoted to the experimen-
tal observation of the vortex motion of dust particles in
various types of plasma: in dc gas-discharge plasmas
and nuclear-excited plasmas with various methods of
induction [7, 9]. Mention should also be made of a
recent attempt to crystallize dust particles under micro-
gravity conditions which resulted in the formation of
macroparticle vortices in an experimental rf discharge
generator [10]. 

Stable vortex motion of macroparticles in a dissipa-
tive medium such as a dusty plasma can only occur in
the presence of potential sources compensating for the
energy scattering. Then dynamic equilibrium can be
established between the incoming and dissipated
energy. These systems belong to a class of nonlinear,
thermodynamically nonequilibrium, open systems. In
equilibrium systems dissipative effects cancel out any
inhomogeneity, i.e., thermodynamic equilibrium is
established. In nonlinear open systems, dissipation
exhibits a completely different quality. Its combined
action with other processes may lead to the establish-
ment of stable steady-state structures and complex
oscillatory or chaotic regimes [11–14]. Frequently,
qualitatively different processes occur in the same
medium, whose direction may be changed by a very
small resonant action matched with the internal proper-
ties of the system. This behavior is common to nonlin-
ear media.
1063-7761/00/9106- $20.00 © 21147
Most interesting from the point of view of the influ-
ence of resonant effects on the self-organization of non-
linear systems are active media (self-oscillatory sys-
tems) in which the type of steady-state motion is
entirely determined by the properties of the medium
and does not depend on the initial conditions. In com-
plex hydrodynamic systems such as a dusty plasma a
“soft” oscillation excitation regime is most frequently
observed where oscillations appear, as it were, sponta-
neously without any initial impetus. If for some random
reason (for example, as a result of thermal fluctuations)
an oscillation having a negligibly small amplitude
appears in the active medium, it will develop if its phase
favors the pumping of energy into the system [13, 14]. 

Periodic, quasi-periodic, and stochastic self-oscil-
lating systems exist. One example of stochastic vortex
motion is turbulence and examples of periodic motion
include autowaves and dissipative structures [11–13]. A
dissipative structure is a stable inhomogeneous distri-
bution of concentrations and is a dynamic ordered
structure, unlike steady-state ordered structures such as
crystals or quasi-crystalline systems of charged macro-
particles in a highly nonideal dusty plasma. The classi-
fication into self-oscillations and dissipative structures
for a bounded dusty system is highly arbitrary. In this
sense, the motion of isolated particles can be classified
as self-oscillations while the combined result of this
motion, which gives a stable inhomogeneous distribu-
tion of concentrations in the bulk of the dust cloud, can
be classified as dissipative structures.

Vortex motion may appear in “passive” nonlinear
media as a manifestation of the soliton behavior of
these systems. These solutions are generally deter-
mined by the initial conditions of the problem and dis-
appear when allowance is made for dissipative effects.
Sources of vortex motion may include gyroscopic or
potential fields with frozen-in vortex lines. At present,
000 MAIK “Nauka/Interperiodica”
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however, no data on any appreciable magnetic fields or
on phenomena resembling barotropic are available for
laboratory plasma–dust systems. Since the vortex
motion of macroparticles is observed in various types
of plasmas, it is logical to assume that electrical forces
provide the source of this motion. Forces associated
with ion drag or focusing and also thermal convection
or thermophoresis can frequently be neglected. One
possible mechanism capable of converting the potential
energy of an external electric field into the energy of
dust particle motion is the spatial dependence of the
macroparticle charge in a dusty system [5, 8]. The pres-
ence of a macroparticle charge gradient in a plasma–
dust system is determined by their nonuniform condi-
tions of charging such as the temperature and concen-
tration gradient of the surrounding plasma component,
spatial changes in the illumination or surface tempera-
ture of the dust component when the macroparticles
comprise an emitting material, dispersion of the shape
or size of the dust particles, and so on [15]. 

In the present paper we consider cases where vari-
ous self-oscillations occur in a dusty system as a result
of a spatial change in the charge of monodisperse mac-
roparticles. We analyze conditions for the establish-
ment and evolution of two main types of instability of
these systems. Particular attention is focused on analyz-
ing the vortex motion of particles. We perform a numer-
ical simulation of macroparticle systems having param-
eters close to the conditions of existing experiments to
observe dusty structures in gas discharges. Numerical
calculations were made using a molecular dynamics
method for particles situated in an electric field and in
the Earth’s gravitational field. 

2. SELF-OSCILLATIONS OF MACROPARTICLES 
IN A DUSTY SYSTEM WITH SPATIALLY 

VARYING CHARGE

2.1. Dispersion Relations 
in Nonconservative Systems

The dispersion relations L(ω, k) = 0 are a linear ana-
log of the differential wave equations of motion and
determine the functional dependence of the oscillation
frequency ω on the wave vector k. A study of the roots
ω(k) of the relation L(ω, k) = 0 allows us to determine
the region of existence of nontrivial and unstable solu-
tions of the wave equations. 

The dispersion relations L(ω, k) = 0 corresponding
to conservative systems have no imaginary parts but the
wave equations describing the evolution of oscillations
in the weakly nonlinear limit describe competition
between nonlinearity and dispersion. The nonlinear
terms generate harmonics (only provided that the initial
wave has sufficient amplitude) which compete with dis-
persion effects, generating final equilibrium. This situ-
ation differs substantially from the case where oscilla-
tions exist in nonconservative systems since energy
scattering occurs in these systems and energy may be
JOURNAL OF EXPERIMENTAL
transferred by some mechanism such as a background
flux, temperature gradient, or charge gradient. In these
systems the dispersion relations L(ω, k) = 0 or their
roots ω(k) are complex functions ω = ωR + iωI and the
wave solutions for ωI > 0 increase exponentially and are
unstable, whereas for ωI < 0 they have a dissipative
nature and decay exponentially. 

When energy is transferred or pumped into a sys-
tem, this potential energy may be used to form oscilla-
tions and waves. Nonequilibrium nonlinear systems
frequently have some “control parameter” µ such that
this nonlinear system may become unstable (ωI > 0)
when this parameter passes a certain critical value µ = µc.
In the supercritical region µ > µc the oscillations will
draw energy from the stored potential energy. This
means that in this region infinitely small perturbations
generated in the system as a result of thermal or other
perturbations will grow. 

Existing mathematical models developed to study
the conditions for the establishment of oscillations in
nonequilibrium nonlinear systems are constructed by
analyzing differential wave equations. These models
exhibit two main types of instabilities: first, dissipative
instability for systems in which damping occurs (type I
instability) and second, dispersion instability when
there is weak or no dissipation (type II instability) [14].
The main difference between these instabilities is that
the amplitude equation f(A, x, t) for type I instability has
the first order of the time derivative whereas for type II
instabilities it contains the second derivative. The sim-
plest equations for type I instability are nonlinear diffu-
sion equations describing various vortex convective
motion, dissipative structures, and autowaves [11–14].
The amplitude of the oscillations in these systems is
limited by the existence of specific boundary condi-
tions or singularities of the spatial distribution of the
medium parameters (for example, background sources
of potential energy) which ensure a progressive
increase in dissipative losses. Examples of equations
for type II instabilities in weakly dissipative systems
may include the Van der Pol equations which simulate
the oscillations of various self-excited oscillators and
the system of Lorentz equations which is one of the
main models in stochastic oscillation theory [12–14].
The amplitude and frequency of the oscillations in
these systems may be limited as a result of dissipative
processes and as a result of dispersion effects (for
example, phase mismatch) which play a dissipative role
phenomenologically [14]. 

These instability categories can be classified if we
consider the dispersion relation L(ω, k) for the small
perturbation of a stable system G by a harmonic wave
of amplitude b:

(1)ϕ b ikx iωt–{ } .exp=
 AND THEORETICAL PHYSICS      Vol. 91      No. 6      2000
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The differential wave equations written in operator

form then have the form (ik; –iω; µ)b and the disper-
sion relation

will show whether this model contains damped terms.
If a type I instability exhibits damping, the dispersion
relation L(ω, k) will be a complex function for stable
(µ < µc) and unstable (µ > µc) states of the system since
it contains even and odd powers i. The roots of the dis-
persion relation will also be complex, ω = ωR + iωI and
Eq. (1) has the form

For ωI > 0 the solution will increase in time and is
unstable. The point where µ = µc and the value of ωI

changes sign is called the bifurcation point of the
system. 

The second type of instability occurs when there is
negligible or no dissipation. In this case, the dispersion
relation is a real function and its roots may form the
complex-conjugate pair ω = ωR + iωI. Equation (1) will
have the form

Consequently, the solution increases exponentially for
any ωI ≠ 0. For stable solutions ωI = 0 and the harmonic
perturbation will propagate dispersively and not
decrease as for a dissipative system. In this case, the
critical parameter µc determines the boundary between
the region of neutral stability of the system ωI = 0 and
its unstable state ωI ≠ 0. 

One of the important characteristics of active media
is the tendency of the system to act predominantly via
the mode corresponding to µc. In cases of strong disper-
sion, as a result of the evolution of type II instability, in
practice only one mode “survives” and the steady-state
motion is a harmonic wave of frequency corresponding
to a specific resonant frequency ωc of the system.
Under conditions of weak dispersion the form of the
steady-state regular motion may comprise pulses of
various shapes far from sinusoidal. It should be noted
that in many physical problems associated with model-
ing the behavior of hydrodynamic systems, the inclu-
sions of even weak viscosity destroys the nature, or
completely eliminates the appearance, of dispersion
solutions.

2.2. Linearization of the Discrete Problem of Motion

We shall analyze a dust system consisting of Np

charged particles in the electric field of a two-dimen-
sional cylindrical trap in the presence of the spatially
varying macroparticle charge Z = Z(ρ, y) where ρ =

. We write the equation of motion for each
particle taking into account the pair interaction Fint, the

Ĝ

L ω k,( ) detĜ≡ 0=

ϕ b ikx iωRt–{ } ωIt{ } .expexp=

ϕ b ikx iωRt–{ } ωIt±{ } .expexp=

x2 y2+
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total external force Fext of the gravitational mpg and
electric E(ρ, y) = iE(y) + jE(ρ) fields, the force of fric-
tion and the random Brownian Fbr produced by the
impacts of the surrounding gas molecules:

(2)

Here r is the interparticle spacing, mp is the particle
mass, and νfr is the friction frequency. The external
force is defined as 

and the pair interaction between the particles is
described by the force 

where

is the screened Coulomb potential with the screening
length Dp and e is the electron charge. Hence, the inter-
particle interaction force and the external forces acting
on the particle depend on its coordinates. When the curl
of these forces is nonzero, this system may perform
positive work, which compensates for the dissipative
energy losses. The system (2) is not conservative since
it contains energy scattering as a result of friction, and
energy may be transferred by means of the combined
work of the electric field forces and the Earth’s gravita-
tional field. 

It is almost impossible to make an analytic analysis
of the conditions for the establishment of oscillations
for a system described by the Eqs. (2). For a one-
dimensional chain of interacting particles the problem
can be reduced to a system of nonlinear partial differ-
ential equations [12, 14]. However, this transformation
is extremely laborious and various additional assump-
tions on the nature of the particle interaction must be
introduced to solve the spatial problem. Thus, we shall
confine ourselves to analyzing a two-dimensional equa-
tion of motion for an isolated particle situated in the
Earth’s gravitational field mpg, in the external electric
field 

and the total electric field of the charged particles in the
dust cloud

assuming that the Brownian force and the collective
effects associated with the spatial fluctuations of the

mp

d2rk

dt2
---------- Fint r( ) r rk r j–=

rk r j–
rk r j–
-----------------

j

∑=

– mpνfr

drk

dt
-------- Fbr Fext.+ +

Fext i E y( )eZ ρ y,( ) mpg+{ } jE ρ( )eZ ρ y,( )+=

Fint r( ) eZ ρ y,( )
∂φD

∂r
---------,–=

φD
eZ ρ y,( )

r
-------------------- r

Dp

------– 
 exp=

Eext ρ y,( ) iEe y( ) jEe ρ( )+=

Eint ρ y,( ) iEy
i ρ y,( ) jEρ

i ρ y,( ),+=
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particle charges in the dust cloud play a minor role at
the time of occurrence of instability. 

We shall assume that a particle having a certain
charge Z0 is situated in a stable state at an extreme point
in the dust cloud in the position (ρ0, y0) relative to its
center (Fig. 1) and we shall consider its response to cer-
tain deviations (ρ, y) from the equilibrium point (ρ0, y0)
of the system:

(3a)

(3b)

where 

are the first derivatives of the system parameters at the
point (ρ0, y0). The equality

should be satisfied because of the potential nature of the
total field both for the case of fixed charged particles
and for Z(ρ, y) = const.

mp
d2ρ
dt2
-------- mpν fr

dρ
dt
------– e Ee ρ0( ) αρ Eρ

i ρ0 y0,( )–+{–=

– ω0y ωpρ} Z0 βρρ βyy+ +( ),–

mp
d2y

dt2
-------- mpν fr

dy
dt
------– e Ee y0( ) γy– Ey

i ρ0 y0,( )+{+=

+ ω0ρ ωyy+ } Z0 βρρ βyy+ +( ) mpg,–

α dEe ρ( )
dρ

-----------------, γ dEe y( )
dy

-----------------, ωρ–
dEρ

i ρ y,( )
dρ

-----------------------,= = =

ωy dEy
i ρ y,( )
dy

-----------------------, ω0

dEρ
i ρ y,( )
dy

-----------------------
dEy

i ρ y,( )
dρ

-----------------------,≡= =

βρ
dZ ρ y,( )

dρ
---------------------, βy

dZ ρ y,( )
dy

---------------------= =

dEρ
i ρ y,( )
dy

-----------------------
dEy

i ρ y,( )
dρ

-----------------------=

eZ0

mg

–y0

+y0

eZ0

ρ0

Fig. 1. Schematic showing the position of a macroparticle of
charge eZ0 at the edge of a dust cloud.
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The linearized system (3a), (3b) will have the form

(4a)

(4b)

where

for the stationary stable state of a particle

in the position above (ρ0, +y0) or below (ρ0, –y0) the
center of the dust cloud (Fig. 1). Assuming that the clas-
sification of the wave regimes in active media is made
by analogy with the oscillating regimes in systems with
discrete parameters, we can use the system (4a), (4b) to
analyze the conditions for the evolution of instability as
a system of linearized amplitude equations neglecting
the spatial derivatives [11, 14]. 

2.3. Conditions for the Establishment 
of Self-Oscillations in a System of Dust Particles

We shall consider the response of the system to a
small perturbation ϕ = bexp{–iωt} which appears in
the ρ or y direction. In this case, we obtain various “dis-

persion” relations L(ω) ≡ det  = 0 which determine
the region of existence of nontrivial and unstable solu-

tions in the system (–iω; µ)b defined by Eqs. (4a)
and (4b):

(5)

An analysis of Eq. (5) shows that in the absence of cou-
pling between the system parameters (a12a21 = 0) allow-
ing for the fact that a22 and a11 are real and negative, this
system will be stable. For νfr ≠ 0 the solution of the sys-
tem (4a) and (4b) is also stable and will be damped

d2ρ
dt2
-------- ν fr

dρ
dt
------– a11ρ a12y,+ +=

d2y

dt2
-------- ν fr

dy
dt
------– a22y a21ρ,+ +=

a11

eZ0 α ωρ–{ }
mp

-------------------------------, a12–
eZ0ω0

mp

---------------,±= =

a22

eZ0 γ ωy–{ } mpgβy/Z0+
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Ĝ
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asymptotically (ωI < 0) for any small perturbation if the
following conditions are satisfied simultaneously:

(6a)

(6b)

The sign of the equality in Eq. (6a) determines the neu-
tral curve of purely dissipative instability (ωR = 0, ω ≡
ωI = 0). The appearance of type I dissipative instability
will be determined by the condition

(7)

The motion may have a dispersive pattern (ωR ≠ 0,
ωI = 0) near a certain resonant frequency 

when the friction in the system is balanced by the
incoming potential energy so that

(8)

Condition (8) determines the nontrivial solution of the
system (4a), (4b). In the more general case, oscillation
at a certain frequency ωc will develop when the damp-
ing does not destroy the structures of the dispersion
solution, i.e., is fairly weak [of the order of O(ε) and
does not allow any appreciable shifts of the neutral
curve where ωI = 0. In order for the oscillating solutions
to be amplified, allowing for the appearance of self-
conjugate complex roots and the condition (6a), the fol-
lowing inequality must be satisfied

(9)

Inequality (9) determines the region of dispersion insta-
bility of the problem where wave-like solutions may
appear provided that the motion of isolated particles is
synchronized in the dust cloud. It should be noted that
unlike condition (7), inequality (9) is not a criterion for
the onset of instability since the upper limit (a12 –

a21)2/4  of the frequency ωc is a maximum estimate,
which only determines the position of the neutral curve
in various particular cases close to the nontrivial solu-
tions of the problem. 

A more detailed analysis of the system (4a), (4b)
using Eq. (5) is not of particular interest since the effect
of eliminating the spatial derivatives may actuate insta-
bility mechanisms which do not occur in real systems.
For example, for the dispersion wave equations a solu-
tion which depends only on time in accordance with the
Benjamin–Feir criterion, may be unstable to secondary
modes [14]. 

From the physical point of view small perturbations
in the system (4a), (4b) will grow in the two cases con-

a11a22 a12a21 0,≥–

νfr
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2
-----------------------,=
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2
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νfr
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sidered, first when no restoring force (7) exists for them
and second, near a certain resonant frequency of the
system when the forces of friction do not suppress the
oscillating motion (9). If we use existing analogies with
known amplitude equations, in the first case we obtain
a diffusion type of motion equation. In the second case,
the equation of particle motion will be quadratic with
respect to time and the instability observed in the sys-
tem will be of the dispersion type.

We shall give a brief analysis of the conditions for
the evolution of the two different types of instabilities
in a dust system using specific values of the parame-
ters aij.

2.4. Dissipative Instability

Since purely dissipative instability only develops in
a system in the absence of a restoring force, the condi-
tions for the onset of bifurcation could be determined
using the criterion for stability of the trivial solution in
the Lyapunov sense [16]. According to this criterion,
the solution of the system (4a), (4b) neglecting the sec-
ond time derivative will become unstable when the
roots of the equation det(aij – rδij) = 0 have a positive
real part. Since the coefficients a11 and a22 for a particle
situated in a steady state at the edge of the cloud are
always negative, the condition for the onset of instabil-
ity will be determined by relation (7), which agrees
with the analysis of Eq. (5) presented above. Taking
into account the value of the coefficients aij, we obtain

(10)

Bearing in mind that

we can show that the left-hand side of (10) will be pos-
itive for any negative or small βy and the system will be
stable if βρ = 0. Then a particle situated below the cen-
ter of the cloud (ω0 < 0) will be unstable for βρ > 0
whereas for βρ < 0 instability (10) will only occur for
particles situated in the upper part of the dust system.
The case of macroparticle instability accompanying a
large positive change βy in charge in the direction of the
Earth’s gravitational field is equivalent to the unstable
position of a charged particle in an electric field having
a positive gradient (γ = –dEe(y)/dy < 0) and will not be
considered here. 

The control parameter µc of the system can be either
the parameter βρ defining the background sources of
potential energy or the value of ω0 which depends on
the shape and size of the dust cloud. For a bounded dust
cloud whose shape can be approximated by an ellipsoid
of revolution having the radius of curvature Rc(ρ0, ±y0)
and total charge QΣ uniformly distributed over its vol-
ume, we have ω0 ~ QΣ/Rc. Thus, we can assume that if
the charge has a weak spatial dependence, the stability

α ωρ–( ) eZ0 γ ωy–{ } βympg/Z0–( )

– eZ0ω0
2 ω0βρmpg/Z0.±<

α ωρ–( ) γ ωy–{ } ω0
2,>
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of the dust system will be destroyed as QΣ increases and
when clouds having shapes closer to spherical are
formed. The total charge QΣ will increase as the num-
ber Np of charged particles increases on transition from
small cluster systems to extended objects or as the mac-
roparticle concentration np in the dust cloud increases.

If the second time derivative can be neglected and
the curl of the particle velocity vector V 

is nonzero, condition (10) describes the onset of vortex
motion of the particle along a certain closed curve
which is impossible in a conservative system. The vec-
tor W determines the angular velocity of the macropar-
ticles. For monotonic spatial dependences of the elec-
tric field and charge functions the direction of rotation
of the particles in the plane parallel to the field of grav-
ity can be determined from the sign of curl Ω =
gβρ/{Z0νfr} of the linearized system of equations (4a),
(4b). Hence, the value of the parameter βy does not
influence the conditions of establishment or the direc-
tion of the vortex motion. 

It should be stressed that these conditions applied to
the evolution of instability from the steady-state posi-
tion of a particle having the velocity V(ρ0, y0) = 0. When
a cloud of weakly interacting particles forms in a highly
viscous gas, drift motion having a certain constant
velocity V(ρ, y) ≈ const compensated by forces of fric-
tion near the point (ρ0, ±y0) may become stable. A sim-
ilar pattern of motion may be achieved in nuclear
induction experiments in plasma–dust systems con-
ducted under atmospheric-pressure conditions using
weakly charged macroparticles [9]. In this case, the
coefficients aij of the system (4a), (4b) and the condi-
tion for the establishment of first-category instability
and the value of curl W also vary. 

2.5. Dispersion Instability

A typical difference between dispersion instability
and a dissipative bifurcation is that its formation is
accompanied by the evolution of perturbations at fre-
quencies ω close to some natural resonant frequency ωc
of the system.

The reliability of any analysis of the conditions for
the onset of this instability is determined by the possi-
ble consequences arising from the absence of spatial
derivatives. Thus, we shall consider a simple example
for which the solution of the system (4a), (4b) has the
clearest physical meaning. 

We shall assume that a11 ≈ a22, |a11 | @ , condi-
tion (10) is not satisfied and a restoring force exists,
Then, if a particle undergoes a certain displacement
from the equilibrium position, a damped harmonic per-
turbation appears having a certain natural frequency

W curl V= curl
dρ
dt
------ dy

dt
------, 

 ≡

ν fr
2
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ω = ωc which at the initial stages of evolution may be
expressed in the form

In this case, the system (4a), (4b) may be written in the
standard form to analyze self-oscillations:

(11a)

(11b)

Taking into account the tendency of the system to act
via the predominant mode close to the position of the
neutral curve [14], we find that ωc will obey Eq. (8) and
ω1 = ω2. The criterion for the evolution of type II insta-
bility will then be 

since the difference between the positive or negative

values of ωc is physically meaningless (  > 0). Allow-
ing for the coefficients a12 and a21 we obtain

(12)

Condition (12) is equivalent to criterion (9) from which
it follows that when the second type of instability
occurs, the frequency ωc should be close to or below
|Ω|/2. Consequently, a decrease in the friction fre-
quency νfr below a certain threshold value leads to an
increase in the parameter ωΩ = |Ω|/2 relative to the res-
onant frequency ωc of the system which first promotes
the evolution of dispersion instability [when Eq. (10) is
satisfied] and second may result in the appearance of
new instability against the background of the existing
vortex motion.

2.6. Particle Kinetic Energy

One of the important problems in studies of any
motion in nonconservative systems is the energy
exchanged by the background and the steady-state
oscillations. Since all stable motion of charged dust
particles in an electric trap is finite, their kinetic energy
for a certain direction x will be determined by the ampli-

tude A ~  where 〈x2〉 is the time-averaged particle
displacement, and the characteristic frequency ω: 

In general, the inflow of potential energy (A or ω) into
the dust system should be controlled by dissipative pro-
cesses. 

A linear analysis cannot be used to estimate the
amplitude A of the steady-state oscillations and is
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merely suitable at the initial stages of the process when
the perturbations are small since in the linear approxi-
mation for ωI > 0 the oscillations will increase without
bound. The amplitude during the evolution of the first
type of instability, i.e., regular vortex oscillations, can
be estimated taking into account the scale of the steady-
state motion:

where lp =  is the average interparticle distance,
and L is the characteristic size of the dust cloud. When
the second type of instability is established, i.e., wave-
like motion of particles in a dust cloud having a struc-
ture close to crystalline, the displacement of an isolated
particle from the equilibrium position should not
exceed the radius of a Wigner–Seitz cell: A < lp/2. 

The influence of dissipative effects on the frequency
ω of the established motion differs substantially for dif-
ferent cases of instability evolution. The stable regular
motion of the particles after the evolution of a dissipa-
tive bifurcation should obey the diffusion equation so
that the angular velocity of rotation will be compen-

sated by forces of friction so that ω2 ~ 1/ . When dis-
persion instability develops, oscillation should be
established at a certain resonant frequency ω = ωc

determined by the system parameters and condition (12)
limits the possible increase in the oscillation frequency
ω as a result of progressive dissipative losses.

We shall estimate the kinetic energy K(I) which may
be acquired by a dust particle following the evolution of
type I dissipative instability for the case of linearly
varying charge

within the particle trajectory. The value of ω2 can then
be taken as 

and the kinetic energy K(I) can be expressed in the form

(13)

where the parameter ξ = Aβρ/Z0 determines the relative
changes in charge Z(ρ) within the trajectory of a mac-
roparticle. We shall consider the values of the parame-
ter ξ for which K(I) becomes higher than the thermal
energy corresponding to room temperature Tp ≈
0.02 eV for a macroparticle of radius ap = 5 µm having
the material density ρ = 2 g/cm3 (mp ≈ 10–12 kg). We
take the friction frequency to be νfr = 20 s–1 which
approximately corresponds to the pressure P = 0.5 Torr
in neon at room temperature using the free-molecule
approximation [17]. As a result we find that for ξ ≈ 10–3

2lp A L/2,< <

np
1/3–

νfr
2

Z ρ( ) Z0 βρρ+∼
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gβρ( )2

2Z0νfr( )2
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the kinetic energy K(I) is almost an order of magnitude
higher than Tp. As the buffer gas pressure increases to
P = 5 Torr or the particle radius decreases to ap = 2 µm,
we obtain K(I) /Tp > 10 for ξ > 10–2. Consequently, even
negligible changes ξ in the charge can lead to an effec-
tive consumption of potential energy from background
sources.

The kinetic energy K(II) of a dust particle for the evo-
lution of dispersion instability can be estimated assum-
ing that for small changes in the macroparticle charge
the value of ωc characterizing the particle motion in a
selected direction will be close to the dust frequency of
the system

where k = lp/Dp. In accordance with the conditions
achieved in gas-discharge plasma experiments, we
shall take X0 to be equal to the equilibrium charge 〈Z 〉
acquired by a dust particle as a result of charging by ion
and electron fluxes from the surrounding plasma:

〈Z 〉 ≈ 2 × 103ap [µm]Te [eV],

where Te is the electron temperature [18, 19]. The
kinetic energy K(II) can then be expressed in the form 

K(II) [eV] ≈ 5.76 × 103(ap [µm]Te [eV])2χ2cn/lp [µm],  (14)

where 

is a certain parameter determining the ratio of the
amplitude A of the particle trajectory to the average
interparticle distance lp. Bearing in mind the conditions
of observation of dust structures in laboratory gas-dis-
charge plasmas, we assume k ≈ 1–2, lp = 500 µm, and
Te = 1 eV and we consider the energy which can be
acquired by a particle of radius ap =5 µm if the ampli-
tude of its steady-state motion corresponds to χ = 0.1.
In accordance with Eq. (14), this energy appreciably
exceeds Tp and is K(I) ≈ 3 eV. The maximum kinetic
energy of the particles for the evolution of dispersion
instability which does not destroy the crystal structure
of the cloud is achieved when χ = 0.5 and is 

from which we obtain

where Γ is the interparticle interaction parameter. 
These estimates of the particle kinetic energy (13)

and (14) may be exaggerated because the frequency ω
of the steady-state motion is not determined exactly.
One source of possible constraint on the value of ω are
the various collective effects caused by the presence of
strong interparticle interaction forces and phenomeno-
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logically playing a dissipative role. Spatial fluctuations
of the surrounding particles may change the frequency
of the steady-state oscillations of an isolated particle or
lead to randomization of its motion. It should be
stressed that the establishment of regular motion as a
result of the evolution of these instabilities is a particu-
lar case of the solution of the nonlinear differential
equations. If the action of these random forces Frad has
no correlation with the Brownian force Fbr , the kinetic
temperature Ts of the system will increase and its incre-
ment is given by

where η is the characteristic frequency of the action
Frad [5, 20]. 

To conclude, we note that the analysis of the condi-
tions of establishment and the pattern of evolution of
the instabilities presented in this section is very approx-
imate since it is based on an appreciable simplification
of the problem. However, it shows qualitatively that a
cloud of charged dust particles may have two different
types of bifurcations. The viability of our conclusions
and their applicability to a real system consisting of
many charged particles can be checked by means of a
numerical simulation of the complete problem of
motion (2).

3. NUMERICAL SIMULATION 
OF DUST SYSTEMS WITH SPATIALLY VARYING 

MACROPARTICLE CHARGE

3.1. Parameters of the Problem

We used the molecular dynamics method to solve
the three-dimensional motion problem (2). We consid-
ered the motion of each particle in the cloud allowing
interparticle pair interaction, the total external force of
the gravitational and electric fields, the friction force,
and the random Brownian force. The external electric
fields are assumed to be linear:

The charge function had the form

with various coefficients  and  such that the
changes in the particle charge within the dust cloud did
not exceed 30%. 

For all cases not discussed below the particle tem-
perature Tp was assumed to be room temperature (300 K),
the screening radius Dp ≈ 1000 µm, and the radial field

gradient α ≈ 3  V/cm2 (Np is the number of parti-
cles in the system). In calculations with different num-
bers of particles Np the parameters of the charge func-

tion  and  varied proportionately as . This
dependence of the external field and charge function on

∆T Frad
2〈 〉 /νfr νfr η+( ),∼

Eext ρ y,( ) i EG γy+( ) jαρ.+=

Z ρ y,( ) Z00 1 βρ*ρ2 βy*y2+ +( )=
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N p
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βρ* βy* N p
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Np could maintain an almost constant particle concen-
tration and charge at the edge of the cloud. The variable
parameters of the system (2) were the friction fre-
quency νfr, the coefficients  and , and the ratio of
the electric field gradient γ in the direction of the grav-
itational field to the radial gradient α. It should be noted
that reducing the system (2) to dimensionless parame-

ters shows that if the characteristic values mp

and αZ00/Dpmp are conserved, the problem has similar
solutions (pattern of motion, particle kinetic energy, k =
lp/Dp, and so on). The dynamic behavior of the macro-
particles also depends on the characteristic frequencies
νfr, ωp, and the angular frequency ωΩ = |Ω|/2 Eq. (12)
which allowing for the parameters of our problem may
be expressed in the form

where 

is the radial dimension of the dust cloud. 
Under the selected conditions we observed various

cases of dynamic equilibrium in the system: vortex,
oscillatory, and stochastic motion. The average inter-
particle distance lp determined from the maximum of
the pair correlation function was set in the range ~500–
2300 µm depending on the other parameters of the
problem. We considered fairly extended and also small
cluster systems of macroparticles. Illustrations of
numerical calculations for systems containing between
15 and 3000 particles are given below for the case of
monotonically varying charge and electric field in the
direction of the Earth’s gravitational field. 

3.2. Vortex Motion of Macroparticles

Unlike the turbulent vortex motion which is a partic-
ular case of stochastic self-oscillation, nonlinear sys-
tems may exhibit periodic circular motion and also
other types of vortices such as spiral, concentric, or pul-
sating. In this section we consider several different
examples of possible vortex motion of particles in sys-
tems with a charge gradient. 

Vortex motion was established in a system of dust
particles when conditions similar to Eq. (10) were satis-
fied. The stability of the system was destroyed when the

asymmetry of the dust cloud decreased (γ/α  )

and also as  and the number of particle in small clus-
ter systems increased to Np ≈ 100. With further increas-
ing Np the dynamic characteristics of the dust cloud
remained almost constant. The conditions for excita-
tion of oscillations did not depend on the friction forces
and . The direction of particle rotation was deter-
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mined by the coefficient : for  < 0 the particles
“fell” in the center of the system whereas in the oppo-
site case  > 0 they “floated.” 

The nature of the steady-state oscillations did not
depend on the initial conditions or the existence of a
certain spatial order in the particle configuration.
Replacing the quadratic charge function Z(ρ, y) with a
linear one also did not alter the qualitative nature of the
particle motion and its dependence on the viscosity of
the buffer gas. The average kinetic energy of the regular
macroparticle motion was

As νfr decreased below a certain threshold value νlim ≈
(0.1–0.15)ωp, the motion became randomized and a
near-Maxwellian particle velocity distribution was
established in the system having the temperature 

A further decrease in νfr (ωΩ  ωp) led to resonant
pumping of the dust cloud. It can be postulated that this
effect is the result of the evolution of the dispersion
bifurcation Eq. (12) against the background of vortex
particle motion (see Section 2.5). 

3.2.1. Spiral rotation of particles. The calculations
were made for the radial charge gradient defined by the
function 

where 

The ratio of the charge number Z00 to the particle mass
mp was taken as

In this case, spiral rotation of isolated particles was
observed in the system for k = lp /Dp ≈ 2, ωp ≈ 70 s–1,

and ωΩ [s–1] ≈ 1225 /νfr [s–1]. 

Figures 2a and 2b illustrate the quasi-harmonic
motion of 15 particles and the parameters of the prob-
lem are indicated in the captions, The oscillations are
quasi-periodic with two incommensurable frequencies.
The particle motion of lower frequency and larger
amplitude was synchronized over a complex spiral
about a certain base radius along which the trajectory of
the spiral motion of four “high-frequency” particles
passed. The amplitude of the regular oscillations was
almost independent of the friction frequency νfr and
was determined by the charge gradient and the trap
field. Time dependences of the amplitude of the oscil-
lations along the y-axis for an isolated particle are plot-
ted in Fig. 3 for various friction frequencies. 
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The velocity of rotation was inversely proportional
to νfr and the average kinetic energy of the particles was

〈K〉  ~ 1/  (see Fig. 4). As the friction frequency
decreased below the threshold νlim ≈ 0.15ωp the oscilla-
tions became irregular, the trajectories became more
complex, the number of harmonics with similar ampli-
tudes increased, and the oscillations became random-
ized. The particle velocity distribution became more
uniform in terms of directions (〈Ky〉 ≈ 〈Kx〉  = 〈Kz〉) and

νfr
2

(a)

(b)

Fig. 2. Particle trajectories over time t = 200/νfr in a system

having the parameters: νfr ≈ 77 s–1, γ/α = 2, Z0 = 4 × 104,

 ≈ –2 cm–2,  = 0, Np = 15; 〈Kx〉  = 〈Kz〉  ≈ 0.34 eV, and

〈Ky〉 ≈ 1.1 eV: (a) side view and (b) top view.

βρ
* βy

*

0 t , s
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Fig. 3. Time dependences of the amplitude A of the oscilla-
tions (along the y-axis) of an isolated particle with decreas-
ing friction frequency νfr ≈ 77 s–1: (a) νfr; (b) νfr/2; (c) νfr/6;
and (d) νfr/10 for t < 9 s and νfr/20 for t > 9 s.
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close to Maxwellian with the temperature Ts = 2〈K〉/3,
and we observed the establishment of the dependence
〈K 〉  ~ 1/νfr (Fig. 4). As the friction frequency decreased
further to νfr ≈ 7 s–1 (ωΩ ≈ ωp ≈ 70 s–1) a resonant
buildup of oscillations occurred, leading to “explosion
of the system.” 

When the number of particles increased to 60 or
more, the parameters of the vortex motion became sim-
ilar to those of the large-scale low-frequency oscillation
(oscillations of larger amplitude). The motion of iso-
lated particles became more complex but remained spi-
ral with respect to a certain base radius. The amplitude
of the oscillations remained independent of νfr and the
oscillation frequency was inversely proportional to the
coefficient of friction until its decrease (νfr < νlim ≈
0.1ωp) resulted in the periodicity of the motion being
destroyed and caused particle “heating” followed by

explosion of the system for νfr[s–1] < 1225 /ωp [s–1]
and ωp ≈ ωΩ ≈ 75 s–1. 

It should be noted that in our numerical experiment
the possibility of the buildup of resonant oscillations is
attributed to the modeling of a spatially unbounded
electrical trap. In this case, the system cannot “lose”
dust particles. Under real experimental conditions, for
example, under the conditions of a dc glow discharge
[5–8], the instability which evolves as the number of
particles in the dust system increases, can be stabilized

N p
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Fig. 4. The ratio 〈K 〉/1.5Τp vs. the friction frequency νfr for

a dust system having the parameters: γ/α = 2, Z0 = 4 × 104,

 ≈ –12.5  cm–2,  = 0 for various numbers of par-

ticles Np = (h) 15, (o) 60, and (n) 500. The solid curve gives

the approximation by the function  fap(νfr) ∝   and the

dashed curve gives that by the function  fap(νfr) ∝  .
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by “excess” particles being ejected from the trap
bounded by the electric field of a striation.

Calculations made for 500 particles are illustrated in
Figs. 5a–5c. Figure 5a shows successive displacements
of particles (over the interval ∆t = 1/νfr) incident in the
central cross section of the cloud in the plane parallel to
the force of gravity. Figure 5b shows all the positions of
particles observed in the central part of the cloud during
the exposure time texp = 30∆t. This figure demonstrates
that an ordered distribution of particle concentration is

0
x, m

y, m

0.01 0.03

0.01

0.03
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0
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0

0.01
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mg
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t = 0
t = ∆t
t = 2∆t

Fig. 5. (a) Successive (∆t = 1/νfr) displacements and (b) dis-
tribution of particle concentrations in the central cross sec-
tion of a trap, and also (c) trajectories of isolated particles
over the time texp = 150∆t in a system with νfr ≈ 38.5 s–1,

γ/α = 2, Z0 = 4 × 104,  ≈ –0.2 cm–2,  = 0, Np = 500;

〈Kx〉  = 〈Kz〉  ≈ 4.3 ev, 〈Ky〉  ≈ 14 eV.
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established in the dust cloud and identifies the result of
the collective particle motion as a dissipative structure.
Figure 5c shows trajectories of isolated particles in the
bulk of the cloud over time texp = 150/νfr. 

3.2.2. Annular particle motion. Calculations were
made for dust systems having the macroparticle charge
function

where

Z00 = 8 × 103, Z00/mp ≈ 2 × 1014 g–1,

The choice of this spatial dependence Z(ρ, y) was deter-
mined by the assumption of a self-consistent plasma–
dust system where the particle charge is proportional to
the electric field potential.

The average interparticle spacing corresponded to
k = lp/Dp ≈ 1.6, ωp ≈ 25 s–1. The oscillation frequency
of the isolated particles is inversely proportional to the

coefficient of friction 1/νfr (〈K〉  ∝  1/ ) until its
decrease causes heating and explosion of the dust sys-
tem similar to the case of spiral rotation. The character-
istic frequencies νfr at which randomization and reso-
nant pumping of the dust system occurred were deter-

Z ρ y,( ) Z00 1 βρ*ρ2 βy*y2+ +( ),=

βy* βρ* 50N p
2/3–  cm 2– at γ/α≈≡ 1.=

νfr
2

(a)

(b)

Fig. 6. Particle trajectories over time t = 100/νfr in a system

having the parameters: νfr ≈ 115 s–1, γ/α = 1, Z0 = 8 × 103,

 =  ≈ 5.5 cm–2, Np = 25; 〈Kx〉  = 〈Kz〉  ≈ 0.85 eV, and

〈Ky〉  ≈ 2 eV: (a) side view and (b) top view.
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mined in accordance with the varied parameters of the
problem.

Figures 6a and 6b illustrate the quasi-harmonic syn-
chronized motion of 25 particles, showing the large-
scale motion of three different particles along eight
closed trajectories and the high-frequency motion of an
isolated particle at the center of the system. Calcula-
tions made for 500 particles for similar system param-
eters are illustrated in Figs. 7a–7c. Figure 7a gives the
successive displacements of particles over the interval

0
x, m

y, m

0.01 0.02

0.01

0.02
(c)

0

0.01

0.02
(b)

0

0.01

0.02
(a)

mg

mg
t = 0
t = ∆t
t = 2∆t
t = 3∆t

Fig. 7. (a) Successive (∆t = 1/νfr) displacements and (b) dis-
tribution of particle concentrations in the central cross sec-
tion of a trap, and also (c) trajectories of isolated particles
over the time t = 150∆t in a system with νfr ≈ 115 s–1, γ/α = 1,

Z0 = 8 × 103,  =  ≈ 0.75 cm–2, Np = 500; 〈Kx〉  =
〈Kz〉  ≈ 2.3 eV, and 〈Ky〉  ≈ 5.5 eV.

βy
* βρ

*

SICS      Vol. 91      No. 6      2000



1158 VAULINA et al.
∆t = 1/νfr in the central cross section of the trap. Fig-
ure 7b shows all the possible positions of particles inci-
dent in the central cross section of the cloud over the
time texp = 30/νfr. Trajectories of isolated particles in the
bulk of the dust cloud are shown in Fig. 7c. 

The main difference between the pattern of the
macroparticle motion and the case examined in Sec-
tion 3.2.1 is that isolated groups of particles exhibit sta-
ble vortex motion whose trajectories are closed in a
bounded region of space. From this point of view, this
dissipative structure is closer to an annular autowave
than a spiral one or convective motion. 

To conclude, we shall consider a system of macro-
particles (2) having parameters similar to the condi-
tions for the observation of dust structures in a dc glow
discharge [5–8]. We shall take the particle radius to be
ap = 5 µm, the material density ρ = 3.1 g cm–3, and the
coefficient of friction νfr ≈ 11.25 s–1 in accordance with
the estimate of the approximation [17] for neon at pres-
sure P = 0.25 Torr. The charge is assumed to be Z00 =
1.5 × 104 and the screening radius Dp = 580 µm. Under
conditions of dynamic equilibrium the average inter-
particle distance was lp ~ 580 µm (k ≈ 1). Figure 8 illus-
trates the calculations made for 3000 particles. The
given positive charge gradient function  ≡  =
0.03 cm–2 ensured that the kinetic energy 〈K 〉  of the
particle motion was two orders of magnitude higher
than their thermal energy Tp corresponding to 300 K. In
this case, the change in the particle charge in the dust
cloud was less than 1% of its maximum. These changes
in the macroparticle charge may appear, for example, as
a result of a radial electron temperature gradient where

βy* βρ*

mg

t = 0
t = ∆t
t = 2∆t

5.0

2.5

0

–2.5

–5.0

y × 10–3, m

Fig. 8. Successive (∆t = 1/νfr) displacements of particles in
the central cross section of a trap in a system with νfr ≈

11.25 s–1, γ/α = 1, Z0 = 1.5 × 104,  =  ≈ 0.03 cm–2,

Np = 3000; 〈Kx〉  = 〈Kz〉  ≈ 2.1 eV, and 〈Ky〉  ≈ 6.5 eV.

βy
* βρ

*

JOURNAL OF EXPERIMENTAL 
the slower ones do not reach the walls of the gas-dis-
charge tube at negative floating potential.

3.3. Examples of “Dispersive” Particle Motion

At first glance it may seem that it is fairly difficult to
observe dispersion instability in a dust system with a
charge gradient since the conditions for the evolution of
this bifurcation should simultaneously satisfy Eq. (12)
and not come within criterion (10). However, it should
be noted that in our analysis we only studied one of the
possible cases of spatial dependence of the external
electric field when its changes in the direction of the
force of gravity and in the radial direction are indepen-
dent. This situation may not occur in real dust systems
where more favorable conditions for the evolution of
type II instability can be achieved. As an example, we
can give results of a numerical simulation of the anom-
alous heating of a dust system with a vertical charge
gradient which were reported in [5] for an external
electric field having interdependent coordinates. 

Although our article concentrates on analyzing vor-
tex motion, we shall consider two additional exam-
ples of possible particle motion for the evolution of
category II instability. These examples may be useful
for a qualitative explanation of various effects observed
in dusty plasma experiments such as the appearance of
acoustic oscillations and anomalous macroparticle
heating [5–8, 21–23]. 

The calculations were made for systems consisting
of a small number of particles, between 15 and 60. The
constraint of few particles is important in the sense that
criterion (12) is easily established for these under con-
ditions fairly close to the evolution of dissipative insta-
bility but not resulting in the appearance of vortex
motion. Since, by increasing the charge gradient βρ we
can come within the limits of relation (10), the only
available control parameter is the friction frequency νfr.
We found that when the friction frequency fell below a
certain critical value νfr = νc, the modeled systems
became unstable and the angular frequency was ωΩ ≈
(1–5)ωp. As a result of the evolution of this instability
both regular and stochastic particle motion was estab-
lished in the dust systems. 

3.3.1. Regular particle oscillations. Calculations
were made for 15–25 particles. We observed the estab-
lishment of various modes of longitudinal and trans-
verse oscillations similar to acoustic or optical ones,
and also the formation of complex pulsating oscilla-
tions. The steady-state oscillation mode depended on
the spatial configuration of the particles similar to the
oscillations of atoms and molecules in various types of
crystal lattice. As the number of particles increased, any
regular oscillations observed in the modeled systems
ceased since the spatial symmetry in the macroparticle
configuration was broken which resulted in a loss of
synchronization of the individual motion. Thus, the
existence of a specific spatial orientation in the particle
AND THEORETICAL PHYSICS      Vol. 91      No. 6      2000
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configuration is one of the main factors in the evolution
of wave-like motion in a dust cloud. For instance, the
excitation of longitudinal oscillations requires a strictly
vertical particle configuration (see Figs. 9a, 9b) which
is confirmed by experimental data from studies where
similar particle motion has been observed [2, 5–8]. 

We shall confine our illustration to regular oscilla-
tions similar to the acoustic oscillations observed in
glow discharge experiments [5–8]. Figures 9a and 9b
show a steady-state cloud consisting of 15 particles
before the onset of instability (νfr > νc ≈ 1 s–1). The
parameters of the problem are indicated in the caption.
The only difference from the parameters of the problem
described in Section 3.2.1 is the choice of ratio γ/α =
0.4 which characterizes the shape of the cloud. The
average interparticle distance corresponded to k = lp/Dp ≈
2.3, ωp ≈ 52 s–1, and the angular frequency ωΩ [s–1] ≈
218/νfr [s–1] for the critical coefficient νfr = νc was
approximately four times ωp. 

The pattern of particle motion after the evolution of
dispersive instability is shown in Figs. 10a and 10b. The
particle trajectories differed appreciably from the tra-
jectories of large-scale vortex motion (see Section 2.2)
and the frequency ωc and amplitude of the steady-state
oscillations was almost independent of the buffer gas
frequency νfr when this decreased to a certain threshold
value νlim ≈ 0.38 s–1. Nevertheless, as νfr approached
νlim, we observed an appreciable mismatch between the
phases of the isolated particle motion. A decrease in the
frequency νfr below the threshold νlim led to rapid heat-
ing of the system followed by pumping and explosion
similar to the cases considered in Section 3.2.

Time dependences of the oscillation amplitude for
isolated particles and the center of mass of the system
along the y-axis are plotted in Figs. 11a and 11b. The
frequency of the regular particle oscillations ωc ≈ 18 s–1

was lower than the characteristic dust frequency ωp of
the system. As we noted in Section 2.6, this factor may
be attributed to the existence of various collective or

(‡) (b)

Fig. 9. Particle distribution in a system having the parame-

ters: γ/α = 0.4, Z0 = 4 × 104,  ≈ –2 cm–2,  = 0, Np =

15 for νfr > νc ≈ 1 s–1. (a) Side view and (b) top view.
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dispersion effects which phenomenologically play a
dissipative role.

3.3.2. Heating of the dust cloud. In our analysis of
some of the previous examples we have already
encountered effects such as macroparticle heating and
explosion of the dust system. These effects occurred as
the number of equivalent modes in an initial harmonic
(or quasi-harmonic) self-oscillating system increased
and was followed by the evolution of oscillatory insta-
bility leading to parametric resonance. The processes
simulating heating of a dust system may take place by
a different scenario, for example, as the friction forces

1.5
4

x × 10–3, m

y × 10–3, m

5

2.5

3.5
(b)

1

2

t = 0
t = ∆t
t = 2∆t
t = 3∆t

1

2

(a)

Fig. 10. (a) Successive displacements of particles over the
interval ∆t ≈ Tc/6 (Tc is the period of the oscillations) and
(b) trajectories (t = 200Tc) of isolated particles indicated by
(1) and (2), in a system having the parameters: γ/α = 0.4,

Z0 = 4 × 104,  ≈ –2 cm–2,  = 0, Np = 15, νfr ≈ 0.96 s–1,

〈Kx〉  = 〈Kz〉  ≈ 0.15 eV, and 〈Ky〉  ≈ 2.5 eV.
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in the particle system decrease where the conditions (10)
for the establishment of large-scale vortex motion and
strict charge symmetry in selected directions are
absent. For illustration Figs. 12a and 12b show a
steady-state dust cloud consisting of 15 particles before
the onset of dispersive instability (νfr > νc ≈ 4 s–1, ωp ≈
ωΩ ≈ 55 s–1 for νfr = νc) in a dust system having param-
eters similar to those of the problem in Section 3.3.1.
The particle trajectories after the evolution of bifurca-
tion (νfr < νc) are shown in Figs. 13a and 13b for the
case νfr ≈ 1.5 s–1.

A

5 6 7 8 9 10 t, s

1

2

(b)

2 3 4 5 6 7

1

2

(a)

Fig. 11. Time dependences of the amplitude A (along the
y-axis) of the oscillations for (a) an isolated particle indi-
cated by (2) in Fig. 10a and (b) the center of mass of the sys-
tem for the cases: (1) 0.38νc < νfr < νc; (2) νfr < 0.38νc.

(‡) (b)

Fig. 12. Particle distribution in a system having the param-

eters: γ/α = 0.41, Z0 = 4 × 104,  ≈ 2 cm–2,  = 0, and

Np = 15 for νfr < νc ≈ 4 s–1. (a) Side view and (b) top view.
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The particle motion was irregular and the velocity
distributions were uniform over directions and close to
a Maxwellian distribution with the temperature Ts ≈
2〈K 〉/3 (see Fig. 14). The particle kinetic energy 〈K 〉
was not inversely proportional to νfr. For example,
when νfr decreased from 4 to 2 s–1, the value of 〈K 〉
increased from approximately 2.5Tp to 20Tp. On the
one hand, this may suggest a correlation between the
ensuing random forces and the Brownian motion of the
particles. On the other hand, the dependence of 〈K 〉  on
νfr may reflect the sequence of evolving bifurcations as

3.9
2.8

x × 10–3, m

y × 10–3, m

3.2

4.3

4.7
(b)

1

3.6

(a)

Fig. 13. (a) Illustration of particle motion over time  t = 2/νfr
and (b) trajectory (t = 20/νfr) of an isolated particle in a system

having the parameters: νfr ≈ 1.5 s–1, γ/α = 0.41, Z0 = 4 × 104,

 ≈ –2 cm–2,  = 0, Np = 15, and 〈Kx〉 = 〈Ky〉 = 〈Κ z〉 ≈ 0.5 eV.βρ
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the friction frequency νfr decreases. As we have noted,
one of the main models of stochastic motion is the
Lorentz system whose solutions are irregular functions
of time over a wide range of parameters. As a result of
a small change in the parameters of this system, its
solution becomes so complex that it leads to chaos.
This “few-mode chaos” occurs as a result of a cascade
of bifurcations which give solutions in the form of com-
plex limit cycles. In a computer analysis of the average
particle velocities in a dust system this effect will
resemble an increase in the kinetic temperature of the
macroparticles. This effect was possibly observed in
some studies of dust structures in an rf discharge
plasma or in investigations of dust crystal “floating”
with decreasing buffer gas pressure [21–23]. 

To conclude we stress that this behavior of dust sys-
tems as a result of spatial changes in macroparticle
charge successfully models the anomalous heating
effect and the formation of various types of ordered
dynamic structures. 

4. CONCLUSIONS

We have considered one possible mechanism for the
instability of plasma–dust systems associated with the
presence of a spatially varying macroparticle charge in
a dust cloud formed in a trap under the action of an
electric field and the Earth’s gravitational field. This
mechanism is attractive because it can explain a consid-
erable range of phenomena (anomalous heating of the
dust system, and the formation of vortices, regular
oscillations, and various types of motion) observed in

0 Vx

f

Fig. 14. Distribution f(Vx) of particle velocities Vx in the
direction of the x-axis (continuous curve) for a system hav-
ing the parameters: νfr ≈ 1.5 s–1, γ/α = 0.41, Z0 = 4 × 104,

 ≈ –2 cm–2,  = 0, and Np = 15, and approximation of

this curve (dashed line) by the Maxwell function at temper-
ature Tp = 2〈Kx〉 ≈ 1 eV.
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laboratory plasma–dust systems without using any
other mechanisms or background energy sources.

We analyzed two main types of instabilities in
plasma–dust systems with a charge gradient and
described results of theoretical and numerical studies of
their conditions of formation and the nature of their
evolution. The analytic results can easily be adapted to
any other nonconservative system whose linearized
equations are similar to those studied here. The numer-
ical simulation showed that as a result of the evolution
of these instabilities in a dust system, various regular
and stochastic oscillations may appear. Moreover, the
excitation of these oscillations does not require any
large spatial variations in the macroparticle charge and
even a negligible charge gradient (~1–2%) in the dust
cloud can cause appreciable rotation of the particles. 

The nonequilibrium of the dust system may be
caused by various other factors associated with temper-
ature gradients, elastic collisions between macroparti-
cles and surrounding plasma ions, fluctuations of exter-
nal fields or local charge fluctuations at isolated dust
particles as a result of the nonlinearity of the charging
processes. However, of these mechanisms only the last
two can give reasonable quantitative estimates for the
high kinetic energies which can be acquired by dust
particles in a laboratory plasma. Nevertheless, even
these mechanisms cannot explain the formation of reg-
ular collective particle motion without additional
sources to compensate for the energy scattering. The
existence of a single mechanism and source for the var-
ious regular and stochastic oscillations in laboratory
plasma-dust systems is unclear at present. The link
between the instability of real dust systems and the spa-
tial charge gradient of the macroparticles needs to be
checked experimentally. 
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Abstract—The excitation of low-lying nuclear levels in a hot, dense plasma, produced by a subpicosecond
pulse with intensity exceeding 1016 W/cm2, is investigated theoretically and experimentally. The basic channels
of electronic (inelastic scattering and inverse internal electron convergence) and photon (photoexcitation) exci-
tations of such states as well as the influence of the broadening of a nuclear level on the excitation efficiency
and the presence of hot electronic component are examined. The experimental data from measurements of the
decay kinetics of the low-lying nuclear level 6.238 keV of the stable isotope 181Ta, which were obtained on two
experimental laser systems, are presented. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A number of publications on the experimental obser-
vation of nuclear processes accompanying the interaction
of subpicosecond laser pulses with solid-state targets have
appeared recently [1–3]. These processes become possible
primarily because of the efficient generation of super-
thermal electrons in the plasma formed when a target is
irradiated with an ultrashort laser pulse with intensity
I > 10 PW/cm2 (1 PW = 1015 W). The superthermal
electrons can absorb most of the warming radiation.
These investigations essentially open up a new field
associated with laser stimulation of nuclear reactions.
Thus, for intensities greater than the so-called relativis-
tic limit Iλ2 > 103 (PW/cm2) µm2, when the electron “tem-
perature” reaches hundreds of kiloelectron volts, direct
excitation of a nucleus by electron impact or photoexcita-
tion of the nucleus by hard plasma X-rays become possi-
ble. It should be noted that in this case the nuclear reac-
tions occur not directly in the interior volume of the
plasma but rather in heavy-metal (Pb, Ag) targets specially
arranged around the interaction region. Experiments of
this kind have been reported in [2, 3].

A fundamentally different situation arises for “mod-
erate” intensities ranging from 10 to 100 PW/cm2 [4, 5].
On the one hand, the “temperature” of superthermal elec-
trons in this case ranges from 3 to 10 keV, which is suffi-
cient for direct excitation of low-lying nuclear levels of
stable as well as metastable isotopes (the standard meth-
ods of nuclear spectroscopy of such levels are based on
direct excitation via “normal” states with energies above
100 keV) [6]. On the other hand, to obtain intensities
10–100 PW/cm2 it is sufficient to use relatively cheap
1063-7761/00/9106- $20.00 © 21163
and commercially accessible table-top femtosecond
laser systems. The important fact here is that the exci-
tation of low-lying nuclear levels has a number of
promising applications ranging from nuclear spectros-
copy and separation of isotopes to producing popula-
tion inversion and gamma lasing [7–9].

The detection of gamma radiation accompanying the
decay of low-lying laser level 6.238 keV of the 181Ta iso-
tope, excited by irradiating a tantalum target with 200 fs
and 300 PW/cm2 laser pulses, was first reported in [1].
However, the kinetic decay curve of the excited state could
not be measured in [1]. The purpose of the present work
was to measure the kinetic decay curve of the excited state
of the stable isotope 181Ta and to estimate the number of
excited nuclei, as well as to study theoretically the nonsta-
tionary excitation of low-lying nuclear states in plasma
taking account of various mechanisms of broadening of a
nuclear transition in a hot, dense laser plasma.

2. NONSTATIONARY EXCITATION
OF LOW-LYING NUCLEAR LEVELS

IN A HOT DENSE PLASMA

When a solid target is heated by an ultrashort laser
pulse with intensity exceeding 1016 W/cm2 for times less
than 100 fs, a strongly ionized plasma is formed with close
to solid-state ion density and high electron temperature,
right up to 1 keV. In addition, a hot electronic component
with “temperature” T proportional to the laser radiation
intensity I [10] is formed in such a plasma:
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(here the index 16 signifies that the intensity is normal-
ized to 10 PW/cm2). These factors together result in a
large increase in the excitation efficiency of nuclear
transitions with excitation energy ε of the order of the
temperature T. In the range of intensities which we con-
sidered I < 1017 W/cm2, this limits the energy as ε < 15–
20 keV. We shall call such nuclear levels low-lying.

The excitation of low-lying nuclear levels in a hot
dense laser plasma is possible in different channels—
nuclear-electronic as well as nuclear-photonic [5]. The
excitation channels such as inelastic electron scattering
by nuclei [11], inverse internal electron conversion
(IIEC) [12], and direct photoexcitation of the nucleus
by the plasma X-rays [13] make the main contribution.
It will be shown below that the latter is the dominant
excitation mechanism in the case of a dense hot laser
plasma. A rough estimate of the ratio of the number of
photoexcited nuclei N* to the total number of ions N in
the plasma volume can be obtained assuming a Planck
X-ray radiation spectrum for the plasma [4]:

where τp is the duration of the X-ray pulse of the
plasma and Γr is the radiation width of the nuclear tran-
sition. Analysis of the experimental data shows that the
hot electronic component makes the determining con-
tribution to the X-ray spectrum of the plasma for pho-
tons in the energy range E > 3 keV [14]. For typical
parameters of the experiment, for the 181Ta isotope (ε =
6.238 keV, Γr ~ 2.5 × 103 Hz, τp ~ 1 ps, and T ~ 4 keV)
this gives 100–1000 excited nuclei in a plasma volume
V ~ 10–11 cm–3—the quantity detected in an experiment
and consistent with the first experimental data [1].

At the same time a systematic description of the
excitation dynamics of low-lying nuclear transitions in
a hot dense plasma, produced by subpicosecond laser
pulses, requires taking account of different excitation
channels as well as the specific features of the pro-
cesses occurring in such a plasma.

In the first place the lifetime of an excited low-lying
nuclear level τnuc > 1 ns is much greater than the heating
and cooling times of the plasma (not much different in
order of magnitude from the duration of the laser
pulse). Therefore, such levels are excited in a strongly
nonstationary regime.

It becomes important to take account of the broad-
ening of a nuclear transition as a result of the Doppler,
Zeeman, Stark, and other effects. Thus, the plasma ions
possess a temperature Ti of several tens of electron
volts, so that the Doppler broadening of a nuclear level
reaches

(Mi is the ion mass and c is the speed of light).

N∗
N

-------
τ pΓ r

ε/T( ) 1–exp
-------------------------------,≈

∆ωD
ε
"
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Ti/Mi

c
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A laser plasma contains quasistatic magnetic fields
[15] exceeding 1 MG, which are due to directed motion
of electrons and ions. Consequently, Zeeman splitting
of the nuclear levels, of the order of

(µn = 5 × 10–24 erg/G is the nuclear magneton and H is
the intensity of the magnetic field), is possible.

Another factor leading to broadening of a nuclear tran-
sition is homogeneous (in this case collisional) broaden-
ing. However, this broadening is difficult to estimate
because of the difficulty of determining the frequency of
elastic collisions of nuclei in plasma [5]. Consequently,
in the present paper we shall consider two cases: homo-
geneous broadening less than the reciprocal of the
plasma emission time, γ ! τp, and the opposite case
γ @ τp.

In addition, broadening exists because a plasma
X-ray photon can interact with the nucleus only for a
finite transit time through the plasma volume—transit-
time broadening. This broadening can be estimated as

where l is the characteristic size of the plasma. Since
the plasma layer can be represented as a flat cylinder
with base diameter d ~ 5 µm and a long directrix X ~
0.5 µm (the latter quantity is determined by the depth to
which the target is heated by a heat-conduction wave in
a time of the order of τp), the broadening due to the
finite transit time of the plasma is of the order of

Evidently, this broadening is of the order of the Doppler
broadening and is much greater than the Zeeman broad-
ening.

Thus, to analyze the dynamics of the interaction of
low-lying nuclear states in a hot dense plasma it is
important to take account of the nonstationary nature of
the excitation process and different kinds of broadening
of the nuclear transition. To analyze the excitation
dynamics we shall employ the equations for the nuclear
density matrix. Assuming that only one low-lying
nuclear level is excited, and neglecting transitions from
an upper level to the lower level (this is possible, since
the time for such transitions is long compared with the
lifetime of the laser plasma), we obtain the equation

(1)

Here m1 and m2 are indices which enumerate the corre-
sponding lower and upper Zeeman sublevels, Q are the
off-diagonal elements of the density matrix between

µnH
"
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the sublevels of different levels, n is the population of
the sublevels, γ is the relaxation rate of the off-diagonal
matrix elements, and H1 is the interaction Hamiltonian

(2)

where ρ and j are, respectively, the volume density of
charge and the current density of the nuclear transition,
ϕ = ϕe + ϕf , A = Ae + Af are, respectively, the scalar and
vector potentials of the electromagnetic field acting on
a nucleus and consisting of the electromagnetic fields
due to the motion of the electrons and the electromag-
netic radiation field of the plasma. We shall represent
the Hamiltonian as a multipole expansion in the form

(3)

where d and m are, respectively, the electric and mag-
netic moments of the nuclear transition and E and H are
the external, with respect to the nucleus, electric and
magnetic fields, respectively, and they also have elec-
tronic and field components.

In addition, it is necessary to write an equation for
the average squared amplitude of the resonance field.
For this, we divide the plasma volume into several vol-
umes and assume that in each volume this squared
amplitude is independent of the coordinates. To write
the equation describing the temporal dynamics of the
squared amplitude of the field in each of the volumes
we employed the law of conservation of energy of the
electromagnetic field:

(4)

Here the derivative of the energy of the electromagnetic
field in the volume stands on the left-hand side. The
first term on the right-hand side describes the exchange
of energy with the surrounding space through the sur-
face, the second term describes the absorption of
X-rays by the nuclei

(5)

where ∂nph(m2)/∂t is the derivative of the fraction of
nuclei excited by the photon mechanism, nn is the den-
sity of nuclei, V is the volume, and ω is the frequency
of the nuclear transition.

The third term on the right-hand side of Eq. (4)
describes the energy release in the volume as a result of
X-ray emission accompanying the interaction of elec-
trons with ions:

(6)
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where dW/dω is the X-ray spectrum, and the value of
dW/dω is taken at a point corresponding to the fre-
quency of the nuclear transition.

If the Zeeman splitting is neglected and it is
assumed that γ @ 1/τp, then an analytic solution can be
obtained for Eqs. (1) and (4):

(7)

where

(8)

is the resonance absorption length (d21 is the dipole
moment of the transition and nn is the nuclear density),

 is the transition matrix element, averaged
over the Zeeman sublevels. It can be concluded from the
solution obtained that for l ! la the fraction of excited
nuclei in plasma is independent of the plasma volume
V = l3 (the number of excited nuclei grows as ∝ l3).
For l @ la the fraction of excited nuclei is directly pro-
portional to l. Of course, the number of nuclei excited
in the plasma increases with the volume, but this growth
is slower (∝ l2) than for l ! la. Consequently, an increase
in the linear dimensions of the medium to a magnitude
greater than the resonance absorption length appreciably
decreases the excitation efficiency of the nuclei.

The matrix elements of the electronic-nuclear pro-
cesses were calculated in the first Born approximation
of scattering theory, and in so doing it was assumed that
the IIEC occurs on the 1s level of a hydrogen-like ion.
Under these assumptions, the matrix element of the
electronic-nuclear processes is

(9)

for a E1 transition and

(10)

for an M1 transition.
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Table 1.  Characteristics of low-lying nuclear levels of some stable isotopes

Element ε, eV α τnuc, ns K Z0 Z1 J0, eV J1, eV

57Fe 14 410 8.5 98 K 26 27 8500 9193
169Tm 8410 285 4.08 M 42 59 2665 5260
181Ta 6238 70.5 6050 M 46 63 3200 6000
201Hg 1561 ~104 1–10 N 21 43 375 1645

Note: ε, α, and τnuc—energy, internal conversion ratio, and lifetime of nuclear level; K—spectroscopic signal of the atomic shell making the
main contribution to the internal conversion ratio; Zi and Ji —ionization multiplicity and potentials of ions corresponding to the start
(i = 0) and (i = 1) of the emptying of the main conversion shell.
Here p1 and p2 are, respectively, the initial and final

momenta of the electron, p0 = , ne is the electron
density, m is the electron mass, and a is the Bohr radius.
These matrix elements include the electronic momen-
tum distribution function f(p), which is obtained as the
solution of the Boltzmann equation with a relaxational
collision integral. This function is of a non-Maxwellian
form with an additional maximum, describing the so-
called hot electronic component. The average momen-
tum of this electronic component is approximately pro-
portional to the square root of the intensity of the incident

laser field ∝  [10] and decrease with increasing the col-
lision frequency.

Among the stable isotopes with low-lying nuclear
level, the most characteristic ones are, from our stand-
point, isotopes such as 57Fe, 181Ta, 169Tm, and 201Hg,
whose characteristics are presented in Table 1. The low
excitation energy of the first level of the isotope 201Hg
should result in efficient excitation by the thermal elec-
trons of the plasma. However, the large values of the
internal conversion ratio (low probability of gamma
decay of the excited state) and probabilities of Auger
and Koster–Kronig processes from the M shell of this
atom (absence of X-rays when the vacancies in the M
shell are filled when internal conversion occurs) leave
only one possible detection channel—direct detection
of the conversion electrons. Without going into further
discussions, we note only the difficulty of experimental
detection, using this method, taking account of the
large number and wide energy spectrum of the plasma
electrons.

Gamma decay of the excited state can be detected
for the three other isotopes in Table 1. We note that for
the isotope 57Fe 14.41 keV gamma rays can be detected
simultaneously with the Kα X-rays, emitted by iron
atoms when vacancies in the K shell, which arise in the
internal conversion process, are filled. The ratio of the
number of photons in these two channels makes possi-
ble the direct measurement of the internal conversion
ratio of the low-lying excited state.

A qualitative comparison of the characteristics of
tantalum and thullium isotopes shows that the effi-
ciency of thullium in this case should be much higher
because of the larger width of the excited transition.

2mε

I
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The short lifetime τnuc of the excited nuclear state of the
thullium isotope makes it possible to count on spectro-
scopic detection, since the broadening of the plasma
spot d on account of the expansion of the plasma into
vacuum is sufficiently small to obtain good spectral res-
olution:

(Z is the average ionization multiplicity of the plasma
and Te is the temperature of the thermal electrons).

The tantalum isotope possesses two important fea-
tures for experimental implementation: in the first
place, for laser radiation intensity of about 50 PW/cm2

the temperature of the hot plasma electrons is of the
order of the excitation energy and, in the second place,
the lifetime of the excited state is quite long, which is
convenient for experimental detection of the effect on
the basis of the delayed gamma emission of the plasma.

The metastable isotope 239Pu (the excitation energy
of the first nuclear level is 7.861 keV) lies next to the
row of stable isotopes from Table 1. This isotope appar-
ently possesses the optimal parameters for performing
spectral studies (the conversion ratio α ~ 5950 and the
lifetime of the excited state τnuc = 36 ps) and, in contrast
to other metastable isotopes, its radioactivity is rela-

tively low (the ground-state lifetime  ≈ 24000 yr).

We shall consider the excitation of two stable iso-
topes: tantalum-181 and thullium-169 (see Table 1).
The resonance absorption length estimated from Eq. (8) is
3 cm for the first nucleus and 3.9 × 10–3 cm for the sec-
ond nucleus:

We note immediately that these quantities are always
greater than the characteristic dimensions of the plasma
spot in the plane of the target and inside the target.

The system of Eqs. (1) and (4) was solved numeri-
cally for various characteristics of the target and the
laser pulse. Unless otherwise stated, in the exposition
of the results below the following values are used for

d τnuc
ZTe

Mi

--------- 0.1 cm≤∝

τnuc
g( )

d21
Ta( )( )2

4 10 48–  erg cm3,×≈

d21
Tm( )( )2

2.5 10 45–  erg cm3.×≈
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EXCITATION AND DECAY OF LOW-LYING NUCLEAR STATES 1167
the parameters: laser radiation intensity I ~ 10 PW/cm2,
lifetime of the hot plasma τp ~ 10 ps, plasma volume
V ~ 10–11 cm3 (the characteristic size of the plasma
l ~ V1/3), homogeneous half-width of the nuclear tran-
sition γ ~ 1012 s–1, and the density of ions was assumed
to have the solid-state value with ion temperature Ti ~
50 eV.

To determine the role of the hot electronic compo-
nent, a calculation was performed using a purely Max-
wellian electronic distribution function. In this case the
excitation efficiency of the tantalum nuclei was 5.33 ×
10–13. The presence of a hot electronic component
increases the excitation efficiency by almost two orders
of magnitude, so that this component must be taken into
account in the numerical simulation of the process of
excitation of nuclei in a plasma.

The calculation is also performed in the absence of
photoexcitation in order to compare the contribution of
various excitation channels. Specifically, for tantalum
nuclei with the above-indicated parameters of the target
and the laser pulse, the efficiency was 7.61 × 10–14 in
the absence of photoexcitation and 1.83 × 10–11 in the
presence of photoexcitation. For thullium nuclei these
values were 7.92 × 10–10 and 1.64 × 10–9, respectively.
Thus, for tantalum photoexcitation is more efficient,
while for thullium the contributions of the electron and
photon excitation channels are comparable.

It should be noted at the same time that the kinetics
of the ionization state of the plasma, neglected in our
calculations, can also strongly influence the efficiency
of the electronic excitation channels. Thus, the ioniza-
tion multiplicity of the plasma has a large effect on the
cross section for inelastic scattering of an electron by
an ion. Moreover, the IIEC is possible only on an
unfilled, ionized, atomic shell. Even though the elec-
tron temperature and the electron and ion densities are
high in the plasma, the ionization rate can be inade-
quate for emptying the deep shells because of the short
lifetime of a hot plasma. Using the average-charge
approximation [16], we calculated the ionization kinet-
ics of the isotopes considered in a plasma with solid
state density, produced by a 200 fs laser pulse. The cal-
culation assumed that the leading edge of the electronic
temperature pulse follows the shape of the laser pulse,
and the trailing edge is described by an exponential
function with characteristic decay time of the order of
5 ps. The peak electron temperature was varied in the
range 500–1000 eV. The computational results are pre-
sented in Table 1. The table also contains data on the
spectroscopic symbol of the electron shell making the
main contribution to the total internal conversion ratio
as well as data on the range of ionization multiplicities,
which corresponds to the start and end of the emptying
of this shell during ionization of the atom. Comparing the
obtained maximum ionization multiplicities of the corre-
sponding elements with the values required for efficient
switching off of conversion shows that for 201Hg the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
N shell is essentially completely emptied for a plasma
electron temperature of 500 eV, and effective excitation
of the low-lying nuclear level in the IIEC channel can
be expected. At the same time, for 181Ta and 169Tm,
whose ionization multiplicities do not exceed 45 in the
electron temperature range considered, the excitation
channel via IIEC will be strongly suppressed. The ion-
ization multiplicity for a 57Fe isotope is small and the
IIEC process is negligible.

The numerical data are presented in Figs. 1–3. In all
figures, the excitation efficiency η for the nuclei—the
ratio of the number of excited nuclei to the total number
of nuclei located in the plasma volume—is plotted
along the ordinate. Figure 1 shows the ion temperature
dependences of the excitation efficiency of thullium
and tantalum nuclei (i.e., a dependence on the Doppler
broadening) for two different values of the homoge-
neous width γ. Two features should be noted. In the first
place the excitation efficiency of nuclei starts to
increase when the Doppler width exceeds the width of
the exciting X-ray photon. In the second place if the lin-
ear size of the medium is much greater than the absorp-
tion length (as happens for thullium with γ = 106 s–1),
then the excitation efficiency grows more rapidly with
increasing Doppler width. Hence follows an important
conclusion: the Doppler broadening of a nuclear transi-
tion plays the most important role for media of large
size (compared with the resonance absorption length).
For media of small size Doppler broadening is negli-
gible.

Figure 2 illustrates the temporal dynamics of the
excitation of the nuclei. On the nonstationary section (t <
1/γ) the efficiency increases quadratically, while on the
stationary section (t > 1/γ) it increases linearly. In addition,
the difference between the stationary (γ = 1012 s–1) and
nonstationary (γ = 106 s–1) excitation regimes is illus-
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Fig. 1. Excitation efficiency of low-lying nuclear level η
versus the ion temperature of the plasma Ti : (1) thullium,

γ = 106 s–1; (2) thullium, γ = 1012 s–1; (3) tantalum, γ =
106 s–1; and (4) tantalum, γ = 1012 s–1.
SICS      Vol. 91      No. 6      2000



1168 ANDREEV et al.
trated in Figs. 1 and 3. For large γ the excitation effi-
ciency is lower because of the acceleration of the trans-
verse relaxation of the nuclei.

Figure 3 shows the dependence of the excitation
efficiency of the nuclei on the plasma volume. On the
whole these curves confirm the behavior of the analyti-
cal solution (7). For linear size much smaller than the
resonance absorption length (l ! la), the efficiency is
essentially independent of the plasma volume, and the
number of excited nuclei grows as the volume. For l @ la
the efficiency decreases as 1/l. The number of nuclei
then increases as l2 = V2/3. Thus, increasing the linear
dimensions of a plasma above the resonance absorption
length will result in a smaller fraction of excited nuclei;
this occurs because of the strong absorption of X-rays
in plasma. It is here that Doppler broadening of the
nuclear transition plays a large role. Our calculations
also established that the Zeeman splitting of the nuclear
levels does not greatly influence the number of excited
nuclei (the excitation efficiency of tantalum nuclei was
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η, absolute units

1

2

3

4

10–9

10–12

10–11

10–10

10–5 10–1

V, cm3

η, absolute units

Fig. 2. Time dynamics of excitation of a low-lying nuclear
level: (1) thullium, (2) tantalum. Solid lines—linear approx-
imation in the range 1–10 ps, the dotted line corresponds
to a transition from nonstationary to stationary excitation
t = 1/γ.

Fig. 3. Excitation efficiency η of a low-lying nuclear level
versus the plasma volume V (see Fig. 1 for notation).
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1.833 × 10–11 in the presence of this splitting and
1.831 × 10–11 in its absence), which is due to the small-
ness of this splitting because of the small value of the
nuclear magneton.

3. DECAY OF LOW-LYING NUCLEAR STATES 
EXCITED IN A DENSE HOT LASER PLASMA

Processes occurring when the plasma undergoes
cooling and recombination as it expands into the sur-
rounding space can also have a large effect on the decay
kinetics of low-lying nuclear states. Indeed, deep ioniza-
tion of atomic shells can result in complete or partial sup-
pression of internal electronic conversion—the main
decay channel of an excited nuclear level [17]. In turn, this
can increase the lifetime of an excited nuclear state up
to values corresponding to the reciprocal of the radia-
tion width of a level. Thus, analysis of the data in Table 1
shows that such a situation can be relatively simply
realized with excitation of the low-lying level of the
isotope 201Hg. In addition, for high ionization multi-
plicity, another decay channel for low-lying nuclear
levels can open up—an electronic bridge through the
intermediate electronic states of a discrete spectrum
[18]. This process is of third-order in the electromag-
netic interaction constant for the electrons, but if the
probability of conversion decay decreases as a result of
ionization, it too can influence the decay kinetics of the
low-lying nuclear level.

The fact that the situation in which the conversion
channel for decay remains closed for only during sev-
eral picoseconds, while the laser plasma is quite dense
and hot, must be taken into account. However, when the
expansion of the plasma into vacuum, accompanied by
“quenching” of the ions, is taken into account the life-
time of the closure of the internal electron conversion
channel can be expected to increase by analogy to [17].
The crux of the ion “quenching” process consists in the
fact that the recombination rate for triple collisions is
proportional to the squared electron density, so that as
the plasma expands, when the electron density rapidly
decreases with increasing distance to the target surface,
a situation is created where the ions essentially stop
recombining. In this case the ionization state of the
plasma “becomes frozen” and the recombination rate of
the plasma is determined primarily by the processes
occurring in the residual gas in the chamber [16].

The processes occurring in the residual gas in the
chamber must be taken into account in order to study
the recombination kinetics of an expanding plasma in
greater detail. Since the temperature of the residual gas
is much lower than the ionization potential of the
plasma ions, and the degree of ionization of the residual
gas is small, z ~ 10–7, the process determining the
recombination rate of the expanding plasma will be
recombination in ion–atom collisions.
 AND THEORETICAL PHYSICS      Vol. 91      No. 6      2000
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Table 2.  Parameters of laser systems used in the experiment

λ, nm τ, fs ω, mJ d, µm I, PW/cm2

1 616 200 0.3–0.7 3 10–40

2 1053 1000 2000–5000 80 30–70

Note: λ, τ, and ω—wavelength, duration, laser pulse energy; d and I—diameter of focusing spot and laser radiation intensity on the target.
The plasma expands into vacuum with characteristic
velocities of the order of v ~ 107 cm/s. An ion requires
about 1 µs to traverse 10 cm. The recomination rate of
an ion with ionization multiplicity 50 in collisions with
neutral particles in the gas with density Na can be esti-
mated as [16]

(11)

the residual-gas pressure was assumed to be ~10–4 torr).
Then in a transit time t ~ 0.5 µs through a vacuum
chamber of size l ~ 5 cm an ion undergoes about
4 recombination acts. For 201Hg this will not result in
filling of the conversion N shell and restoration of the
probability of the conversion channel for decay. Thus,
the lifetime of the excited state will increase (since t @
τnuc), as a result of which during the entire transit time
the decay will occur only in the radiation channel. For
181Ta and 169Tm the partial closure of internal electron
conversion can occur only for higher plasma electron
temperatures of the order of 1500 eV. The thermal elec-
tronic component in the plasma of an ultrashort laser
pulse cannot reach such a temperature, since as the
intensity increases, the energy of the laser radiation is
increasingly more efficiently absorbed by superthermal
electrons, and the rate of growth of the temperature of
the thermal components slows down substantially.
Consequently, to calculate the ionization composition
of a plasma the effect of superthermal electrons must be
taken into account. The recombination of ions at resid-
ual-gas pressure ~10–4 torr will result in complete fill-
ing of the conversion M shell in the transit time up to
the chamber walls. As the pressure in the chamber
decreases to 10–5 torr, the ionization composition of the
expanding plasma can be preserved for these isotopes
for a long time. Thus, for sufficiently low pressures of
the residual gas the conversion channel of decay of the
excited state of a nucleus in an expanding plasma can
be closed for the entire flight time of the ions.

For high residual-gas pressure, the plasma recombi-
nation rate can decrease if the processes in the shock
wave formed are taken into account. A region of rar-
efaction, where plasma ions are confined and undergo
recombination, forms behind the shock wave front [16].
Indeed, the gas concentration in the region behind the
shock wave front can be hundreds of times less than the
initial value, the recombination rate of ions in this
region also decreases. In addition, the propagation
velocity of the shock wave is of the order of the velocity

Pia 9 10 17–× Z2vNa 8 106 s 1–×≈≈
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of sound, which is much less than the ion ablation rate.
Thus, the propagation of slowly recombining ions
behind the shock wave front can result in prolongation
of the closure of the conversion channel of decay right
up to relaxation of the shock wave. Estimates show that
this situation can be observed for residual-gas pressures
of the order of 10 torr, and the relaxation time of the
shock wave will be ~100 µs.

4. DECAY KINETICS
OF THE 6.238 keV LEVEL OF 181Ta EXCITED

IN A HOT DENSE LASER PLASMA

The isotope 181Ta was chosen for the experiments.
This was determined by a number of considerations
(see Table 1): the relatively low energy of the first
excited level, the quite long lifetime of the excited state,
making it possible to separate easily in time the gamma
rays and the characteristic X-rays of the plasma, and the
possibility of performing test experiments with a tung-
sten target. A tungsten plasma is essentially indistin-
guishable with respect to its integral characteristics
from a tantalum plasma, since its atomic numbers differ
by only one unit. At the same time, stable tungsten iso-
topes do not have a low-lying atomic level.

Our experiments were performed using two laser
systems with different laser-pulse parameters (see
Table 2). This made it possible to investigate the effect
of parameters such as the wavelength of the warming
radiation (which determines the temperature of the hot
electron component), the laser pulse duration (which
determines the lifetime of the hot electronic compo-
nent, and the laser pulse energy (which, for the same
intensity, determines the volume of the plasma) on the
excitation efficiency of low-lying nuclear states. The
experimental methods chosen were also due to the spe-
cific nature of each laser system. In this connection, we
shall describe the experimental schemes and results
separately for each system.

4.1.Excitation of a Plasma
by Femtosecond Laser Pulses

The details of the experimental scheme for detecting
gamma decay are presented in [1]. We shall briefly
describe only the key aspects of the method chosen.

In the course of the experiment (Fig. 4) the dye laser
radiation (no. 1 in Table 2) was focused on the surface
of a Ta or W target. To perform the measurements with
SICS      Vol. 91      No. 6      2000
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relatively low laser pulse energy, the radiation was
focused into a spot, close in size to the diffraction limit,
by a special aberration-free F/6 objective. In addition,
the small size of the chamber (about 5 cm) made it pos-
sible to perform measurements in a large solid angle
(see below). The target consisted of a 500 µm thick flat
plate and was placed in a chamber with a regulatable
residual-gas pressure. Moving the target after each
laser burst made it possible to obtain an interaction with
a “clean” surface. The experiments were performed with
residual-gas pressures in the chamber of 10–3 and 10 torr.
For 10 torr the shock wave formed with a relaxation time
of the order of 100 µs confined ions inside the chamber,
while for 10–3 torr the ions rapidly escaped from the
observation region, which decreased the number of

CSA ADS

ADS

FEU1

FEU2

Be filter

Filter
Lens

S

50 Ω

Fig. 4. Arrangement of the experiment using a femtosecond
laser system (S is radioactive test source).
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Fig. 5. Typical signal obtained from FEU1.
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detected gamma rays with long delay times relative to
the moment of plasma ignition.

The characteristic plasma X-rays and gamma rays,
corresponding to decay of an isomeric level, were
detected through the exit window of the chamber, which
consisted of 100 µm thick beryllium foil, using two X-ray
detectors FEU1 and FEU2 based on FEU-119 and a
NaI(Te) scintillator. Both detectors were placed 5 cm
from the target; this made it possible to receive radiation
in a large solid angle 0.07 rad. The FEU1 detector served
to detect the afterglow of the plasma and the gamma rays
and was connected through a 50 Ω load to a fast analog-
to-digital converter with conversion rate 100 MHz. The
signal from the FEU2 detector was fed into a charge-
sensitive amplifier (CSA) and detected using an ADC,
giving in each laser burst information about the field of
plasma X-rays with energy above 3 keV. Thus, the sig-
nal from the detector FEU2 made it possible to judge
the quality of the focusing of the laser radiation and the
plasma parameters in each experimental implementa-
tion.

The detectors were calibrated using a radioactive
source S (a 55Fe sample, emitting 5.9 keV Mn Kα1, 2
X-rays). Assuming the signal at the output of the scin-
tillation detector to be a linear function of the energy of
the X-rays, for 6.238 keV gamma rays the average
amplitude of the output signal was determined to be
1.8 ± 0.5 mV.

The basic features characteristic Ta and W were as
follows for the typical implementation of an experi-
ment in the time-resolution regime (Fig. 5) obtained
with FEU1.

(1) The initial pulse with amplitude of the order of 5 V,
caused by the detection of the characteristic X-ray radi-
ation of the plasma. The trailing edge of this pulse is
approximated well by the emission time of the fast
component of the scintillator τ ~ 250 ns.

(2) The noise component with amplitude up to
2 mV, much greater than the characteristic noise of the
detector (~0.2 mV) and smoothly varying with charac-
teristic time of the order of the emission time of the
slow component of the scintillator.

The presence of a large-amplitude pulse impedes
analysis at delay times of less than 3 µs relative to the
laser pulse; such times are eliminated from further anal-
ysis. The gamma rays are detected (see inset in Fig. 5)
against the background of a noise component whose
amplitude at the initial moments of detection is compa-
rable to the amplitude of the useful signal. In what fol-
lows, the presence of a signal of this kind in the exper-
imental realization will be called an “event.”

A control experiment with a W target was per-
formed in order to estimate the probability of detecting
gamma rays against the background noise signal. Aside
from X-rays from the plasma, the X-rays from the
source S also struck the FEU1 detector. On the basis of
the activity of the source S, we estimated, on the basis of
the 100 realizations, the probability of detecting a 5.9 keV
 AND THEORETICAL PHYSICS      Vol. 91      No. 6      2000
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Fig. 6. Result of data analysis for residual-gas pressure in the interaction chamber 10–3 torr: (a) the number of events for the W
(squares) and Ta (triangles) targets, (b) difference in the number of events on these targets.
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Fig. 7. Result of data analysis for residual-gas pressure in the interaction chamber 10 torr (see Fig. 6 for notation).
X-ray to be 50%. It should be noted that for 6.238 keV
gamma rays this probability should be somewhat
higher.

Two series of experiments, each with 120 realiza-
tions, were performed with residual-gas pressures in
the chamber of 10–3 and 10 torr, respectively. The dif-
ference in the number of events detected on the Ta and
W targets enabled us to judge the number of excited
nuclei in the Ta plasma. The events detected in the
experiments with W were of a purely noise nature, so
that we constructed, on the basis of 320 realizations, the
statistics of such noise events as a function of the delay
time relative to the moment the plasma was produced.
This made it possible to estimate the probability with
which the number of events detected on a Ta target for
a given delay does not fall within the measurement
error with respect to the number of events detected
under the same conditions on a W target. This error is
reflected in Figs. 6 and 7, which display the experimen-
tal results for two residual-gas pressures.

Figures 6a and 7a show the delay-time dependences
of the number of recorded events for Ta and W targets,
and Figs. 6b and 7b show the difference of the number
of events on the two targets. Analysis of the data shows
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
that for all delay times the difference signal is greater
than zero, and for most points the modulus of the dif-
ference is much greater than the computed error. The
time-integral excess of the signal on the Ta target above
the signal for W was 172 events for 10–3 torr pressure
and 178 events for 10 torr pressure. These values
should be interpreted as the number of gamma decays
detected in each series.

Fitting the kinetic curve obtained with a exponen-
tially decaying function

(12)

gives for the 10 Torr pressure

τnuc = 9.4 ± 1.7 µs, N0 = 80.

The estimate obtained for the lifetime of the excited
low-lying nuclear state is in good agreement with the
published value 8.7 µs [19]. For 10–3 torr the experi-
mental curve is strongly distorted by the noise for delay
times greater than 10 µs. This makes it impossible to fit
parameters by numerical methods. At the same time, a
fit of the function

N∗ N0e
t /τnuc–

=

N∗ N0e t /8.7 µs–=
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(see solid curve in Fig. 7b) to the experimental depen-
dence gives a completely satisfactory result.

An estimate of the total number of nuclei excited in
the laser plasma (taking account of the efficiency of the
detection method, the detection solid angle of the
detector, the internal electron conversion ratio) gives
(2 ± 0.5) × 104 nuclei per laser burst.

4.2. Excitation of a Plasma 
by Subpicosecond Laser Pulses

In the second series of experiments a subpicosecond
laser system based on neodymium glass [20] was used
(no. 2 in Table 2). Thus, a much larger number of
excited nuclei was expected in this experiment as a
result of the higher energy of the laser pulse (and larger
volume of the plasma) and as a result of an increase in
temperature and the lifetime of the hot electronic com-
ponent.

The same targets as in the first series of experiments
were placed in a cylindrical, 85 cm in diameter, cham-
ber (see Fig. 8). The radiation was focused on the target
using an off-axis parabolic mirror with F/3 focusing.
The target position relative to the waist of the laser
beam was chosen so that the laser spot on the target
would have a diameter of the order of 80 µm; this gave
approximately the same intensity as in the first series of
experiments. Since the plasma volume was much larger
in these experiments, the number of gamma rays
detected in each experimental realization was expected
to be large. In this connection, an image converter with
a microchannel plate (MCP), which for detection of
X-rays with energy of the order of 6 keV had a quantum
efficiency of about 10%, was used as a detector for
X-rays and gamma rays. The spatial resolution of the
image converter with the MCP makes it possible to
detect a large number of X-rays simultaneously and
independently. The image converter was placed at a dis-

Fig. 8. Experimental arrangement using a subpicosecond
laser pulse.
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tance of about 10 cm in an individual bay of the vacuum
chamber, light-insulated from the main volume. This
gave approximately the same solid angle of detection as
in the first experiment. A 100 µm thick beryllium foil
served as the entrance window of the bay. The arrange-
ment of the ICP and the image converter is shown in
Fig. 8. The exit surface of the ICP was grounded, and a
negative 1.1 kV pulse with a rising leading edge from
10 to 1000 V in 10 ns was applied to the entrance sur-
face. The pulse duration was chosen to be 50 µs, and the
time delay relative to the moment of plasma ignition
could vary from 100 ns to 100 µs. A constant 5 kV volt-
age was applied between the exit surface of the MCP
and the image converter screen. This arrangement of
the MCP prevented detection of slow electrons,
knocked out of the walls of the bay by light and corpus-
cular fluxes. The image detected by the image converter
was digitized with the aid of a CCD matrix.

Examples of the images obtained on the CCD
matrix for a Ta target and three different delays of the
amplification pulse of the MCP are presented in Fig. 9.
Each bright dot in the image corresponds to the detec-
tion of one X-ray photon—one event. The decrease in
the number of such events with increasing delay time is
clearly noticeable. Similar images were also obtained
for the W target. The presence of events even for this
reference, target can be attributed to detection of after-
glow of strongly ionized slowly recombining ions,
since a natural factor determining the spectrum of the
detected radiation in the detection scheme chosen is the
transmission spectrum of the beryllium filter (transmit-
tance 0.1 for 2.5 keV photons and 0.5 for 4 keV pho-
tons). Special image-recognition algorithms were used
to count the number of events. As a result, dependences
of the number of events on the delay time were
obtained for both targets presented in Fig. 10a. In this
case, because of the large number of events at each
point of the time scale and their independence from one
another, the experimental error was estimated assuming
Poisson statistics for the events. Analysis of the differ-
ence curve (Fig. 10b) once again, just as in the first
series of experiments, shows a statistically reliable
excess of the number of events for the Ta target over the
analogous value for the W target in the entire range of
delay times. Fitting an exponential function of the form
(12) to the latter dependence gives for the lifetime τnuc ≈
7 ± 3 µs. The total number of excited nuclei, taking
account of the solid angle of detection of the MCP, the
quantum efficiency of the MCP, and the internal elec-
tronic conversion ratio, is found to be of the order of
(5 ± 2) × 107 in each laser burst (the fact that the exper-
imental dependence is a time integral of the real kinetic
decay curve was taken into account when making the
estimate).

In the first experiment the total number of nuclei in
a plasma with volume V ≈ 3 × 3 × 0.5 µm3 is 2 × 1011.
Thus, the excitation efficiency reaches η1e ≈ (1 ± 0.3) ×
10–7. In the second experiment the total number of
 AND THEORETICAL PHYSICS      Vol. 91      No. 6      2000
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(‡)

(b)
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Fig. 9. Diagram of the exit window of an image converter with
a MCP with delay of the MCP amplification pulse relative to
the laser pulse (a) 0.1, (b) 3, and (c) 10 µs (Ta target).
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nuclei in a plasma with volume V ≈ 80 × 80 × 0.5 µm3

was 1.7 × 1014, which gives for the excitation efficiency
η2e ≈ (3 ± 1) × 10–7. The negligible discrepancy in the
estimates of the excitation efficiency, obtained in the
two independent experiments, could be due to the dif-
ferent temperature of the hot plasma electrons as a result
of the difference of the wavelengths and intensities, 

and to the long duration of the laser pulse in the second
experiment.

Comparing the experimental estimates of the excita-
tion efficiency with the theoretical estimates, which
give ηc ~ 10–9–10–10 for our experimental conditions
(depending on the homogeneous broadening γ ~ 106–
1012 s–1) gives a much larger discrepancy. One of the
factors that greatly influence the number of excited
nuclei could be the effective increase in volume in
which excitation occurs as a result of penetration of hot
electrons and X-rays into the cold region of the target.
Thus, the absorption length Lx of an X-ray with energy
Ex ~ 6 keV in tantalum is

Lx = (σ(Ex)ρ)–1 ≈ 2 µm

(σ(6 keV) ≈ 300 cm2/g is the mass attenuation coeffi-
cient of metallic tantalum, ρ = 16.6 g/cm3 is its den-
sity), which is much greater than the thickness of the
hot plasma layer and, in the case of the first experiment,
is comparable to the transverse dimensions of the
plasma spot. Therefore, the effective volume in which
excitation of low-lying nuclear levels occurs can an
order of magnitude or more greater than the character-
istic volume of the hot plasma layer, which will propor-
tionally decrease the experimental estimate of the effi-
ciency ηe . It should be noted that the uncertainty in the
estimate of the effective excitation volume can be
removed by using thin-film samples with thickness of
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Fig. 10. Number N of events versus the delay of the MCP feed pulse τ: (a) data for Ta (circles) and W (squares) and (b) difference
of the data for Ta and W.
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the order of or less than the thickness of the plasma
layer, i.e., several hundreds of nanometers.

5. CONCLUSIONS

Thus, our calculations have shown that efficient
excitation of low-lying nuclear levels with energy of
several keV occurs in a hot dense plasma produced by
an ultrashort laser pulse. The presence of a nonequilib-
rium electronic component of the laser plasma (with
energy proportional to the intensity of the incident laser
radiation) is of great importance. The most important
mechanisms leading to broadening of a nuclear level
are Doppler broadening due to the thermal motion of
ions and homogeneous collisional broadening. The
magnitude of the Doppler broadening of a nuclear level
has essentially no effect on the efficiency of electronic
excitation and strongly influences the efficiency of radi-
ation excitation. This efficiency increases sharply if the
product of the Doppler width by the lifetime of the pho-
ton exceeds 1 (for tantalum nuclei this occurs at ion
temperature 100 eV). A plasma with an anomalously
high ion temperature can be obtained by using nano-
structural targets [21].

The calculations showed that the optimal longitudi-
nal size of a plasma, from the standpoint of retaining
the maximum density of excited nuclei, is equal to the
photoabsorption length. Its decrease has virtually no
effect on the density of excited nuclei, and an increase
results in a decrease of the excitation efficiency. For a
low-lying level of a tantalum nucleus, excitation is
most efficient in the photon channel, and for a low-
lying thullium nucleus the contributions of the photon
and electron channels are close.

Our experiments made it possible to detect for the
first time the gamma decay of a low-lying nuclear level
6.238 keV of the stable isotope 181Ta, excited in a dense
hot plasma produced by an ultrashort laser pulse. Com-
paring with theoretical results showed that the excita-
tion occurs not only in the volume of the plasma but
also in a region with linear dimensions of the order of
the order of the X-ray absorption length. Our numerical
model needs further elaboration. This concerns prima-
rily taking account of the dynamics of the plasma
parameters (temperature and density of ions and elec-
trons, charge composition) in the calculation of the
excitation of low-lying nuclear transitions. A more sys-
tematic account of the structure of the atomic shells in
the calculation of the electronic mechanisms of excita-
tion of low-lying nuclear levels could also be impor-
tant.

In a hot dense laser plasma the kinetics of ionization
and recombination of plasma atoms can have a large
effect on the probability of the conversion channel of
decay of a isomeric state. Thus, for the isotope 201Hg
deep ionization of shells right up to the N shell, even at
a plasma temperature of 700 eV, can result in closure of
the conversion channel of decay with an increase in the
JOURNAL OF EXPERIMENTAL 
lifetime of the excited nuclear state from several nano-
seconds to tens of microseconds. The investigation of
electronic conversion processes in strongly ionized
atoms (with ionization energy of the last “unstriped”
shell is of the order of the excitation energy of the
nuclear level) could provide unique and direct informa-
tion about the properties of such states. At the same
time, new channels for decay of a nuclear level (elec-
tron bridge, and so on), investigation of which is also of
great interest, could open in this situation.

Our experiment is essentially the first demonstration
of newer experimental methods of nuclear spectros-
copy with direct excitation of low-lying nuclear levels
in a dense hot laser plasma. From this standpoint the
expansion of methods of investigation is undoubtedly
of interest: application of high-resolution X-ray spec-
tral devices and detection of the energy spectrum of
conversion electrons.

This field of research has undergone strong expan-
sion because low-lying nuclear levels of metastable iso-
topes are being studied. One of the problems associated
with low-lying levels of metastable isotopes could become
the search for appropriate candidates for producing popu-
lation inversion in three- and four-level schemes for a
gamma laser [7, 9]. Here pairs of close-lying levels (the
splitting between the levels being 1–20 keV), one of
which is metastable, is necessary. The ultrashort pulses
of a superstrong light field could make it possible to
create such metastable isotopes (including short-lived)
with the aid of ultrashort laser pulses with ultrarelativ-
istic intensity [2, 3], as well as excitation of the meta-
stable isotope to a close lying level with the aid of an
ultrashort laser pulse of “moderate” intensity.
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Abstract—An ecton mechanism for the operation of the cathode spot and the concept of a deep nonstationary
potential well are used as the basis to propose a model of collective ion acceleration at the spark stage of a vac-
uum discharge. It is shown that in principle a deep potential well can form in the presence of an external electric
field and the conditions for its formation in an explosive-emission diode are clarified. The proposed model can
explain the main processes leading to collective ion acceleration and shows good agreement with the experi-
mental results. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A vacuum discharge is initiated by processes which
lead to concentration of energy in microvolumes of the
cathode and the formation of a plasma source which
propagates into the interelectrode gap. The formation
of this source concludes the vacuum breakdown and the
discharge is converted to the spark stage. A spark dis-
charge in vacuum is a high-current, self-sustained dis-
charge where the resistance of the vacuum gap falls
rapidly with time. The duration of a spark discharge is
determined by the time taken for the plasma to fill the
interelectrode gap after which the discharge goes over
to the arc stage. 

Considerable progress in the study of a vacuum spark
discharge was achieved following the discovery of explo-
sive electron emission (EEE) in 1966, when it was estab-
lished that the spark current is an EEE current generated
as a result of microscopic explosions at the cathode sur-
face. Since such a microscopic explosion is short-lived,
the emission of electrons in EEE takes place in separate
portions known as ectons. The ecton concept has been
used to obtain a logical explanation for experimental
data obtained from measurements of the parameters of
a cathode plasma and the erosion characteristics of
cathodes, mechanisms for the self-sustainment of a
spark discharge in vacuum have been determined, and
so on. The current state of vacuum discharge theory is
described in a recently published book [1]. 

However, although we now have a fairly clear idea
of the physics of a spark discharge in vacuum, one of
the most interesting effects accompanying the opera-
tion of this discharge has remained the subject of dis-
1063-7761/00/9106- $20.00 © 21176
cussion and argument for some forty years. This effect
was first observed by Plyutto in a plasma diode and
involves the generation of anomalously accelerated
positive ions in the form of short-lived clusters moving
from the cathode toward the anode [2]. The energy of
these ions is considerably higher than the potential dif-
ference U0 applied to the gap: for instance, at 300 kV
the ion energies in a vacuum diode reached 10–15 MeV
[3]. An important characteristic of the light ion spec-
trum was that the maximum energy was proportional to
the ion charge ~3ZeU0 where Z is the ion charge. These
ion energies can only be attributed to the existence of
strong collective interactions between electrons and
ions of the cathode plasma. Studies have shown that the
anomalously high ion acceleration in the spark stage of
a vacuum discharge only takes place in the unstable
regime of a vacuum spark [2, 3]. This regime is charac-
terized by abrupt bursts of current density whose ampli-
tude is two to five times as great as the average and is
accompanied by an appreciable increase in the electron
beam density in the direction of ion acceleration. The
electron energy in this case may reach values of the
order of 3eU0 [4]. The current instability in an unstable
regime [5] also leads to the appearance of positive ions
moving toward the cathode having energies corre-
sponding to 60–80% of the potential difference applied
to the diode. In this case, the ion energy was propor-
tional to their charge both for light and heavy ions.

In these studies a unique relationship was established
between the current instabilities of a vacuum spark and the
appearance of anomalously accelerated ions. A detailed
study of the unstable EEE current extraction regime
000 MAIK “Nauka/Interperiodica”
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was made by the authors of [6–8]. The main results
described in these studies are as follows:

1. In the stable regime current extraction obeys the
3/2 law whereas in the unstable regime the emission
current exceeds the Langmuir limit, which is manifest
as abrupt short-lived (~5 × 10–9 s) bursts whose ampli-
tude is two to five times higher than the density of the
current preceding the burst.

2. An emission current burst is accompanied by an
increase in the potential of the plasma layers directly
adjacent to the front of the cathode jet, by up to 80% of
the potential difference U0 applied to the diode. 

Since the processes in vacuum and plasma diodes
have much in common (in a vacuum diode the emission
also takes from the outer plasma layers of the cathode
jet), common mechanisms were proposed to explain the
anomalous ion acceleration in these diodes. These
mechanisms included ambipolar acceleration of ions
by electrons in an expanding plasma, pinching of the
plasma jet at a high rate of current growth, acceleration
of a plasma cluster with a frozen-in magnetic flux, and
others (see, for example [2, 9–12]). Most of these are
the same as the mechanisms proposed to explain ion
acceleration accompanying beam injection in a neutral
gas [12]. A common disadvantage of many of the pro-
posed models is that the anomalous ion acceleration
was considered separately from the entire set of physi-
cal processes accompanying this phenomenon so that
the conclusions are qualitative and the initial assump-
tions are not linked to the experimental data. In order to
construct an accurate model of anomalous ion acceler-
ation we need to establish a link between the bursts of
explosive emission current, the increase in potential at
the front of the cathode jet plasma, and finally the
appearance of high-energy ions and electrons. In the
present study we make a first attempt to combine these
processes and obtain an overall picture of the effect. 

The proposed model belongs to a class of electro-
static models in which the ions are accelerated by the
electric field of the electron beam space charge, and in
particular by the self-induced electric field of a virtual
cathode when conditions are created for its formation at
the front of a cathode jet in a vacuum diode. A virtual
cathode which plays an important role in ion accelera-
tion during free expansion of a plasma (ambipolar dif-
fusion [2, 9]) has been observed experimentally at the
front of a cathode jet plasma [13] and was used to explain
ion acceleration in a diode [14]. However, the assumption
that a virtual cathode is accelerated by transmitted elec-
trons made in [14] is highly artificial.

The present model is based on the concept of a non-
stationary deep potential well of a virtual cathode
[12, 15] which was successfully used in a model of col-
lective ion acceleration accompanying electron beam
injection in a gas.1 The fundamental possibility of a
deep potential well being formed in a diode is shown in

1 The possible existence of an anomalous ion acceleration mecha-
nism in a diode similar to the collective acceleration of ions in a
drifting electron beam was noted by Olson [12].
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Section 2. Various regimes for extraction of current
from a cathode jet plasma are put forward in Section 3.
In Section 4 we discuss the dynamics of current bursts,
the appearance of high potential at the plasma front,
and collective ion acceleration during current bursts.

The scenario for collective ion acceleration in a vac-
uum diode may be described as follows. In the initial
(comparatively short) part of the voltage pulse, the cur-
rent in an explosive-emission diode is provided by ther-
mionic emission from the edge of the cathode jet
plasma. As the cathode plasma expands and the diode
voltage increases, conditions of current saturation are
established, limited by the emissivity of the plasma
boundary layer [1, 6]. Small changes in the potential of
the ionic layer near the cathode and in the potential of
the plasma column, with some delay at the front of the
plasma jet, promote a flow of current which corre-
sponds to the limiting Langmuir current as the diode
voltage increases [7]. This quasi-steady-state increase
in current is achieved when the potential of the plasma
front is close to the cathode potential.

The current behavior is then determined by the
nature of the plasma influx from the cathode, which is
observed as current fluctuations caused by the ecton
mechanism for operation of the cathode spot. These
fluctuations may lead to an abrupt increase in current in
the anode circuit as a result of a substantial reduction in
the space charge within the accelerating gap accompa-
nied by quenching of the cathode current and, conse-
quently, an abrupt increase in the potential at the edge
of the plasma layer of the cathode jet as far as values
comparable with the applied voltage. As a result of lag
effects fast processes at the front of the jet do not appear
in the cathode region and the cathode current does not
change. The high potential at the front of the jet gives rise
to a large electron current from the rare edge plasma and
the electrons are accelerated to high energies. In the accel-
erating gap a deep nonstationary potential well forms
near the front of the jet (see figure). Effects associated with

x

U

C A1 2 3

Potential distribution in a diode gap when a deep nonsteady-
state well is formed: (1) Region of quasi-neutral plasma,
(2) region of positively charged plasma, and (3) deep potential
well, C is cathode, and A is anode.
SICS      Vol. 91      No. 6      2000



 

1178

        

BARENGOL’TS 

 

et al

 

.

                                                                                               
its formation become significant at high diode voltages.
Most of the plasma ions near the front of the jet are trapped
in this well and the oscillation energy of the ions trapped
in the well is higher than the energy corresponding to
the applied voltage. When the well is destroyed, ions
having high energies and a large energy spread move
toward the anode and the cathode. Electrons having
energies higher than could be produced by the potential
difference applied to the diode also appear. The process
of formation and destruction of the potential well may
be repeated, results in multiple bursts of anode current
and pulse fluxes of accelerated ions.

2. DEEP NONSTEADY-STATE POTENTIAL WELL
IN A DIODE, THRESHOLD CURRENT DENSITY

It has been established experimentally that in a vac-
uum diode we repeatedly have the situation where a
potential comparable to the anode potential appears at
the front of the cathode jet. Then an electron beam hav-
ing a high initial velocity and high density is injected
into this gap from plasma layers adjacent to the front.
The process of formation of the potential well formed
by the space charge of the electrons leaving the plasma
has much in common with the formation of a deep non-
steady-state well during electron beam drift beyond the
anode plate in vacuum, when the depth of this well for
the ions is determined by [15]

(1)

where W is the electron kinetic energy, i.e., as the beam
drifts behind the anode a potential well forms whose
depth is approximately 2.7 times greater than the elec-
tron kinetic energy. As the deep well evolves, it becomes
flattened and the depth is reduced to values close to the
energy of the incoming electrons. In the limit, a nearly
steady-state potential well with small fluctuations in depth
is formed [15]. This well is stable with respect to relatively
small deviations of the beam parameters. 

In order to show that it is possible for a deep non-
steady-state potential well to form in an EEE diode, we
shall consider a problem similar to [15] but including
the external electric field. The solution of the problem,
as in [15], is sought for planar geometry using Lagrange
coordinates, where x0 is the initial electron coordinate and
t is the time. A monoenergetic beam having the electron
velocity v0 and density n0 = const is injected into the half-
space x > 0 (x = 0 is the cathode plane) at time t = 0. The
electrons propagate beyond the cathode plane in an
external electric field E0. Since we are interested in the
case where space charge effects are large, we must set
the condition that the beam stops (and forms a virtual
cathode) at a distance from the front of the cathode jet
(arbitrarily the cathode in this section) considerably
shorter than the cathode–anode gap. In addition, in our
problem the front of the cathode jet which moves in
space, is at floating potential. However, over the times
of formation of the virtual cathode the changes in the

eϕW
8
3
---W ,–=
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position of the front of the cathode jet and its potential
are negligible and we assume that the cathode layer is
fixed and at a constant potential (the positive charge
needed for this is formed by the plasma ions).

The equation for the electron motion allowing for an
external electric field has the form

(2)

where m is the electron mass, and ω2 = 4πe2n0/m is the
square of the Langmuir frequency at the front of the
cathode jet. The first integral of this equation with the
condition v(t = –x0/v0) = v0 is given by

(3)

Using the condition (∂x/∂t  = 0 we find the time
within which the first electron reflection occurs:

(4)

where

Integrating Eq. (2) with the boundary condition
x(t = −x0/v0) = 0, we obtain

(5)

Quite clearly, particles which began to move from x0 = 0
will make the greatest progress toward the anode at the
instant of the first reflection. The condition for forma-
tion of a virtual cathode for a gap of finite length d has
the form

(6)

From inequality (6) we obtain the natural condition j > jL,
where j = en0v0 is the density of the current injected
into the gap and jL is the density of the Langmuir cur-
rent. Thus, we can assume that a potential well will
form when the emission current exceeds the Langmuir
current (the steady-state potential well is well-known in
electron tubes). 

Using Eqs. (2) and (5), we can easily show that the
potential minimum in the presence of an electric field at
the time of the first reflection of the particles is situated
at the distance xmin = 2v0/ω from the cathode (the con-
dition that this distance should be small compared with
the gap, required for our analysis to be valid, is satisfied
for EEE diodes). The depth of the nonstationary potential
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well does not depend on the accelerating field (if the well
formation condition is satisfied) and is given by

(7)

Thus, a deep potential well forms when current is
injected into the diode gap, not only at zero applied poten-
tial (which is well-known and has been observed in exper-
iments to study collective ion acceleration in an elec-
tron beam drift space [12]) but also at nonzero applied
potential. 

The solution (7) is valid for all values of α satisfying
condition (6). Low values of α correspond to a vacuum
diode with a thermionic cathode in the initial part of the
current–voltage characteristic (the anode current is
much smaller than the saturation current), electron
beam injection into the half-space behind a metal
anode, an EEE vacuum diode when the plasma density
at the front of the plasma jet is high in a weak electric
field, a plasma diode under suitable conditions, and the
thermal, free expansion of a plasma, which includes
recent experiments to study the exposure of macropar-
ticles to high-power ultrashort laser pulses [16]. High
values of α correspond to an electron tube in limiting
current saturation regimes and a low-density plasma in
strong electric fields. 

When α ! 1 condition (6) leads to the well known
formation of a virtual cathode when a beam is injected
into a diode without an electric field, under the condi-
tion v0/(ωd) < 1/2 [17]. If v0/(ωd) ! 1/2, the influence
of the anode plate becomes negligible and the virtual
cathode is situated at a distance of the order of v0/ω ≈ rD
from the cathode (rD is the Debye length). Behind the
virtual cathode along the beam path the space charge
density is almost zero. However, it should be noted that
the condition j @ jL is far stronger than the condition for
the formation of a nonsteady-state well for the case
α ! 1.

This analysis has shown that in principle a deep non-
stationary potential well can form in an explosive emis-
sion diode when the current exceeds the limiting (Lang-
muir) value. In this case, the virtual cathode corresponds
to polarization of the charges at the plasma front with a
characteristic distance of the order of the Debye length.
We shall now analyze the real physical processes in an
EEE diode which leads to the formation of a deep poten-
tial well at the front of the cathode jet plasma. 

3. STABLE CURRENT FLOW, 
CURRENT BURSTS, AND MECHANISM

FOR FORMATION OF A DEEP POTENTIAL WELL

As a result of a detailed experimental study of the
transition from stable to unstable current extraction in
an EEE vacuum diode reported in [6], it was estab-
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lished that this transition was caused by a reduction in
the emission current from the edge of the expanding
plasma of the cathode jet to a level equal to the space
charge limit (Langmuir) in the gap between the front of
the jet and the anode. The results of the previous section
agree with this conclusion. In addition, on this basis the
dynamics of the collective ion acceleration in the diode
can be arbitrarily divided into two regimes correspond-
ing to stable and unstable current flow.

In the initial part of the stable current flow regime a
dense plasma having a very high emissivity appears at
the front of the cathode jet. The emission current is con-
siderably higher than the Langmuir current of the gap
and most of the emission current is returned. Near the
front of the jet a virtual cathode having a high charge den-
sity exists for a long time [7]. Since the main plasma col-
umn is at a low potential, a high positive ion charge forms
at the front of the jet so that the overall system consisting
of ions at the front of the jet and a virtual cathode is almost
electrically neutral. The applied electric field is compen-
sated by the negative space charge of the gap and a regime
of thermal plasma expansion into free space is achieved
[7, 9, 14, 16], i.e., collective acceleration of ions at the
front of the jet by the self-induced electric field of the vir-
tual cathode electrons. This acceleration can continue
until the ion velocity at the plasma front is equal to the
electron thermal velocity. In fact, the velocity of the front
of the cathode jet measured in experiments using EEE
vacuum diodes, which is the same as the ion velocity at the
front, is determined by the electron thermal velocity. The
limiting energies of the accelerated ions are higher than
the electron energies in relation to their masses although
these energies are considerably lower than those recorded
experimentally [3].

As the cathode jet expands, the plasma density at its
front decreases, and the electron density in the virtual
cathode therefore decreases and tends to zero when the
emission current approaches the Langmuir limiting
current. The second stage then begins, i.e., unstable
current flow when, as the voltage increases, the current
in the diode increases, limited only by the space charge
in the gap but the emission current from the front of the
expanding plasma does not allow this condition to be
satisfied. At this stage, the bursts of current and poten-
tial at the front of the plasma jet and, in some cases,
ions accelerated to high energies arise. 

In the unstable current flow regime the plasma column
of the cathode jet begins to play an important role. A slow
increase in current as the applied voltage increases at the
previous stage is provided by the cathode current (the
quasi-neutrality of the plasma is conserved) and the posi-
tive ion charge near the cathode causes an increase in
potential to values of the order of the electron thermal
energy at very small distances from the cathode
(~vT/ωi , where vT is the electron thermal velocity and
ωi is the ion Langmuir frequency near the cathode).

An estimate of the conductivity of the plasma under
typical experimental conditions in both regimes gives
SICS      Vol. 91      No. 6      2000
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voltage drops at the column of fractions of a volt for
typical experimental values of the currents. However,
large short-lived potential bursts comparable with the
external applied voltage are observed experimentally.
In order to explain this effect, very important informa-
tion has been provided by experiments [7] to study the
initial part of a current pulse with good time resolution,
in which lag effects were observed, i.e., a finite signal
propagation time, time variations of the macroscopic
plasma parameters from the cathode to the front of the
jet. The propagation of this type of signal in a plasma is
in fact determined by the ion sound velocity in the
plasma

where m is the electron mass, M is the nucleon mass,
and Z and A are the averaged charge and mass number
of the ions in the multicomponent plasma column. The
ion sound velocity is of the same order of magnitude as
the plasma expansion velocity in the hydrodynamic
model. A typical value is vs ~ 106 cm/s. The experimen-
tal results of [7] also give similar values for the propa-
gation velocity of a perturbation of the plasma parame-
ters at the cathode and the plasma expansion velocity. 

For each position of the jet front df , we can intro-
duce the characteristic time for propagation of a pertur-
bation of the plasma parameters at the front into the
plasma (toward the cathode):

td = df /vs.

When the processes at the front are slow (these include
the “quiescent” sections of the current pulse) and the
characteristic time of variation of the plasma parame-
ters at the front is τ ≥ td, the potential can be restored to
an almost constant value along the plasma column and
its changes at the front are negligible. Of greater inter-
est are the short-lived changes in the parameters at the
front when τ ! td. In this case, during the perturbing
pulse the plasma parameters at the jet front cannot
change as a result of rearrangement of the plasma
inside the jet.

This situation is achieved, for example, as a result of
plasma instability in the cathode region where, taking
into account the ecton mechanism of plasma formation,
current quenching can occur within a very short time.
Hence the current source disappears at the jet front. The
space charge in the gap between the jet front and the
anode decreases within a time which can be estimated
as the time taken for an electron to fly through this
diode gap:

(8)

Note that this time determines the finite electron time of
flight effects in nonsteady-state electron tube theory. In
EEE diodes the time tf is much shorter than td and deter-
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mines the time of the steep rise in anode current during
bursts. When the space charge is completely removed
from the gap a high positive potential appears near the
front of the cathode jet and decreases rapidly over the
length of the plasma column. This is directly evidenced
by the results of experiments described in [8], where it
was established using probe diagnostics that the poten-
tial far from the plasma front does not respond to abrupt
current bursts. The situation is very similar to the plasma
disruption and the formation of large potential drops over
short lengths proposed in [18]. A characteristic feature of
the process considered here is that plasma disruption
implies “emission” of electrons from the edge region of
the jet and the formation of a charged plasma within a
short time (of the order of the reciprocal ion Langmuir
frequency), i.e., the formation of a dense ion cluster at
the edge of the jet. The potential in the region adjacent
to the front provides an electron current considerably
higher than the Langmuir limit in the gap between the
jet front and the anode. The electron flux density
remains the same as in the plasma at the edge of the jet
and the electron velocity increases to values close to the
speed of light in the experiments [3]. As a result, a cur-
rent exceeding the limit and having a high electron den-
sity is injected into the gap between the jet front and the
anode and a deep nonstationary potential well is
formed.

With time, the well shifts toward the anode and its
depth decreases to values close to the depth of a steady-
state well in a diode with an emission current exceeding
the Langmuir limit. For long voltage pulses conditions are
created for the appearance of repeated bursts and the pro-
cess is repeated, as was observed experimentally.

4. ANALYSIS OF EXPERIMENTAL RESULTS
ON CURRENT BURSTS

AND ION ACCELERATION CONDITION
WHEN THE DEEP POTENTIAL WELL

IS DESTROYED

In order to check the statement that the short-lived
increase in potential at the edge of the plasma jet is
caused by the disappearance of space charge in the gap
between the jet edge and the anode, we shall give addi-
tional estimates using experimental results [3, 6]. We
shall consider the time interval T corresponding to a
current burst. We shall determine the change in the
potential ∆U at the jet edge assuming that the capaci-
tance of the gap between the jet front and the anode is
approximately equal to the capacitance of the complete
diode gap Cd and we assume that current burst pulse is
close to rectangular:

(9)

where IA is the amplitude of the anode burst current.
Substituting into formula (9) the burst current 5 kA, the
time T = 1.5 × 10–8 s, and the gap capacitance 250 pF [3],
we obtain ∆U ≈ 300 kV.

∆U IAT /Cd,≈
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In order to obtain an order-of-magnitude estimate of
the potential jumps ∆U in the experimental studies [6],
we shall take the corresponding approximate parame-
ters: capacitance per unit area of anode for an equiva-
lent planar diode cd ≈ 200 pF/cm2, jA = 103 A/cm2, T =
5 ns, and then in accordance with Eq. (9) ∆U ≈ 25 kV, i.e.,
as in the experiments [3], ∆U is of the order of the
applied voltage. 

Thus, using experimental data [3, 6] we have shown
that assuming that the current burst involves dumping of
space charge in the diode, we can predict a large potential
burst at the plasma front. The values of the potential at
the plasma front may reach the potential applied to the
diode. Note that an estimate of the burst time using
Eq. (8) gives values T ≥ tf  = 2 ns and T ≥ 1 ns too low for
the experiments described in [6] and [3] because the
potential at the jet front is, in our case, a floating potential.

In order to estimate the time taken for recovery of
the space charge as a result of the formation of a virtual
cathode in the gap between the plasma front and the
anode and thus the time taken for recovery of almost
zero potential at the jet front, we shall again use Eq. (9)
with the anode current replaced by the Langmuir current
IL since the current leaving the plasma has the same order
of magnitude. Bearing this in mind, we can write the char-
acteristic decay time for the potential U, i.e., the time
taken to form a virtual cathode, 

(10)

It follows from Eqs. (9) and (10) in particular that
the intervals between the bursts are greater than the
duration of the bursts approximately in the ratio jA/jL
which is consistent with the oscilloscope traces of the
current given in [6] where the ratio of the burst dura-
tions and the ratio of the intervals between them are of
the same order and jA/jL ≈ 2–5. Substituting into
Eq. (10) corresponding data from [3] U0 ≈ 300 kV,
IL ≈ 1 kA, and Cd ≈ 250 pF, we obtain Tv ≈ 10–7 s; however
in these experiments the maximum voltage was achieved
within approximately the same time and naturally no
repeated abrupt current peaks were observed. 

We shall now consider the possibility of ion acceler-
ation as a result of the formation and destruction of a
deep potential well. Effective acceleration can be
achieved if the lifetime of the well is comparable with
the oscillation period of the ions trapped in the well or
is at least more than half this. In order to estimate the
half-period of the oscillations we shall assume that the
depth of the well is 3U0 and the half-width is L. The
square of the ion oscillation frequency is estimated as

(11)

For the acceleration of singly charged aluminum
(A = 27), which was observed experimentally [3], at
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U ≈ 300 kV the lifetime of a deep potential well should
be greater than

(12)

Since for the experiments [3] this time can be estimated
as ≤10–8 s the characteristic half-width of the potential
well should be L ≤ 1 cm. 

However, the half-width of the potential well in
accordance with Section 2 is estimated as 

(13)

This formula holds for the weak relativity which occurred
in these experiments.

In the stable current flow regime the current density
in the experiments [3] reached values of 100 A/cm2. In
accordance with the assumed concepts of current in the
stable regime, this is provided by electrons having ener-
gies of the order of the thermal energy at the jet front,
i.e., of the order of 1 eV. The corresponding plasma
density is of the order of 1013 cm–3 and the Langmuir
electron frequency ω is approximately 2 × 1011 s–1.

Substituting these values of the Langmuir frequency
and the electron velocity into Eq. (13), we obtain the
half-width of the deep nonstationary potential well L ≈
0.3 cm (the gap length in these experiments is 2 cm).
Condition (12) required for the appearance of ions
accelerated to maximum energies of around 3ZW (W is
the energy of the accelerated electrons) during rapid
destruction of the potential well is satisfied. Bearing in
mind that a high-current spark discharge contains ions
having degrees of ionization around 10 [1], and that the
kinetic energy of the electrons leaving the plasma is of
the order of eU0, for the experimental conditions [3],
i.e., U0 = 300 kV, we obtain maximum ion energies of
10 MeV. Ions having these energies were recorded in
these experiments. Thus, the concept of a deep nonsta-
tionary potential well can explain the collective accel-
eration of ions in an EEE vacuum diode.

5. CONCLUSIONS

We have shown that it is possible for a deep nonsta-
tionary potential well to form in the presence of an elec-
tric field in the diode gap and we have proposed a model
of the current flow process and the formation of such a
well in an EEE vacuum diode taking into account an ecton
mechanism for the operation of the cathode spot, i.e., por-
tioned emission from the cathode. The proposed model of
collective ion acceleration in a vacuum discharge based on
the concept of a deep potential well shows good agree-
ment with known experimental observations. Problems
involved in refining the model and allowing for two-
dimensional effects (filament formation process, and so
on) will be explained in a subsequent simulation and
experiments. 

TW s[ ] 10 8– L.≈
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Abstract—The phase separation and vortex states in a two-component Bose–Einstein condensate consisting of
|F = 1, mf = –1〉  and |2, 1〉  internal spin states of 87Rb atoms are considered in the framework of the Thomas–
Fermi approximation. It is shown that in the nonrotating system, the atoms in the state |1, –1〉  form a shell
around the atoms in the state |2, 1〉 . The critical angular velocity for each state is calculated. These velocities
depend drastically on the relative concentrations of the components, the critical angular velocity of the outer
component being less than the angular velocity of the inner one. It is shown that the atoms in the |1, –1〉  state
can form a rotating ring around the resting core of the atoms in the |2, 1〉  state. © 2000 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

The implementation of Bose–Einstein Condensa-
tion (BEC) in dilute atomic gases offers new opportu-
nities in studying quantum degenerate fluids [1]. These
condensates, which contain thousands of atoms con-
fined to microscale clouds, have similarities to super-
fluidity and laser and provide a new testing ground for
multibody physics.

The modern theoretical description of dilute BEC
originates from Bogoliubov’s seminal 1947 paper, in
which he showed that a weak repulsive interaction
qualitatively changes the excitation spectra from the
quadratic free particle form to a linear phononlike
structure. To describe the trapped condensates at T = 0,
one can use the Gross–Pitaevskii (GP) (nonlinear
Schrödinger) equation for the condensate wave func-
tion [2]. This equation generalizes the Bogoliubov the-
ory to the inhomogeneous phase. It was widely used in
discussing the ground-state properties and collective
excitations in BEC.

Bulk superfluids are distinguished from normal flu-
ids by their ability to support dissipationless flows. This
ability is closely related to the existence of stable quan-
tized vortices. These vortices have been extensively
studied in superfluid 4He. Recently, clear experimental
evidence of the existence of a vortex in trapped BEC
[3–5] was reported. Unlike superfluid helium, the trap-
ping potential makes alkali BEC nonuniform. Theoret-
ical work has been concentrated on the critical angular
velocity of the vortex creation, the collective excita-
tions of BEC in the presence of a vortex, and vortex sta-
bility considerations [6–13]. It was shown that in con-

¶This article was submitted by the authors in English.
1063-7761/00/9106- $20.00 © 21183
trast with superfluid helium, where the vortex is locally
stable, quantized vortices existing in weakly interacting
gases can be stable only in a driven system and become
unstable without an imposed rotation. Therefore, this
system cannot be superfluid [6, 10, 11].

The most interesting behavior found in the study of
quantum fluids was in fluid mixtures. Two experimental
groups have shown trapped multiple condensates in a
magnetic trap in rubidium [14] and in an optical trap in
sodium [15]. In these experiments, the spatial separa-
tion of condensates has been observed. One can distin-
guish two types of spatial separation: (a) the potential
separation caused by external trapping potentials and
(b) the phase separation that can occur in the absence of
external potentials due to the interaction between two
condensates. It is the latter type of phase separation that
we consider in this paper. This type of phase separation
has been observed in experiments on simultaneously
trapped condensates consisting of the 87Rb atoms in the
|2, 1〉  and |1, –1〉  spin states (states 2 and 1, respectively)
[14]. In this case, the respective intraspecies and inter-
species scattering lengths denoted as a11, a22, and a12
are in the proportion a11 : a12 : a22 = 1.03 : 1 : 0.97 with
the average of the three being 55(3) Å [14, 16].

In this paper, we consider the behavior of the binary
mixture of Bose–Einstein condensates of alkali atoms.
We calculate the critical angular velocity needed to cre-
ate stable vortices in either component in the rotating
frame. This quantity is crucially important in view of
the experimental possibility of creating vortices by
rotating the confining trap [5].

The physics of interpenetrating Bose fluids is very
rich and far from complete understanding. While the
properties of rotating single-component Bose fluids
000 MAIK “Nauka/Interperiodica”
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have been studied very well [6–13], the rotating mix-
ture of alkali atoms presents a new frontier and is essen-
tially virgin territory.

In order to derive analytic results, some approxima-
tions must be used. A commonly used one is the Tho-
mas–Fermi approximation (TFA), which ignores the
kinetic energy terms. It has been shown that for one-
component condensates, the TFA results agree well
with the numerical calculations for large particle num-
bers except for a small region near the boundary of the
condensate [7, 8]. In fact, even for a small number of
particles, the TFA still usually gives qualitatively cor-
rect results. The TFA provides an excellent starting
point of study. However, the TFA should not be relied
upon when a quantitative comparison of experiment
and theory is important. In this case, a numerical
approach based on the Monte Carlo simulation
becomes necessary.

2. PHASE SEPARATION 
IN THE NONROTATING CONDENSATE

We first consider the phase separation in the binary
mixture without rotation.

For a two-species condensate, we let ψi(r) (i = 1, 2)
denote the wave function of species i with the particle
number Ni. We can then write two coupled nonlinear
Schrödinger (Gross–Pitaevskii) equations

(1)

(2)

Equations (1) and (2) were obtained by minimizing
the energy functional of the trapped bosons of masses
m1 and m2 given by

(3)

The chemical potentials µ1 and µ2 are determined by

the relations |ψi |2 = Ni. The trap potential is

approximated by an effective three-dimensional har-
monic-oscillator potential well, which is cylindrically

"
2

2m1
---------∇ 2ψ1 r( )

1
2
---m1ω1

2 x2 y2 λ2z2+ +( )ψ1 r( )+–

– µ1ψ1 r( ) G11 ψ1 r( ) 2ψ1 r( ) G12 ψ2 r( ) 2ψ1 r( )+ + 0,=

"
2

2m2
---------∇ 2ψ2 r( )

1
2
---m2ω2

2 x2 y2 λ2z2+ +( )ψ2 r( )+–

– µ2ψ2 r( ) G22 ψ2 r( ) 2ψ2 r( ) G12 ψ1 r( ) 2ψ2 r( )+ + 0.=

E ψ1 ψ2,( ) r3 "
2

2m1
--------- ∇ ψ1 r( ) 2d∫=

+
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2
---m1ω1

2 x2 y2 λ2z2+ +( ) ψ1 r( ) 2 "
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+
1
2
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2 x2 y2 λ2z2+ +( ) ψ2 r( ) 2

+
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2
-------- ψ1 r( ) 4 G22

2
-------- ψ2 r( ) 4 G12 ψ1 r( ) 2 ψ2 r( ) 2+ + .

r3d∫
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symmetric about the z-axis, with the ratio λ = ωzi/ωi

of the angular frequency in the axial direction ωzi to
that in the transverse direction. The experimental

value of λ is λ = . The interaction strengths, G11,
G22, and G12 are determined by the s-wave scattering
lengths for binary collisions of the same and distinct
bosons: Gii = 4π"2aii/mi and G12 = 2π"2a12/m, where

m–1 =  + .

We now consider the phase separation due to the
interaction between the two condensates. In this case,
we have

(4)

We can simplify the equations using dimensionless
variables. We define the length scale

(5)

and the dimensionless variables

(6)

(7)

(8)

The wave function  is normalized to 1. In terms
of these variables, the Gross–Pitaevskii energy func-
tional takes the form

(9)

where β2 = m1/m2 =  and ui = 8πaiiNi/a⊥ . In deriv-
ing Eq. (9), we used Eq. (4). Equations (1) and (2) can
be rewritten as

(10)

(11)

where  = 2µi/"ω1.

8

m1
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In the TFA, Eqs. (9), (10), and (11) are further sim-
plified by omitting the kinetic energy. The phase segre-
gated condensates do not overlap, and we can therefore
neglect the last terms in Eqs. (9), (10), and (11). In sep-
arate regions that do not overlap, Eqs. (10) and (11) are
then reduced to simple algebraic equations

(12)

(13)

where ρ'2 = x'2 + y'2. From Eqs. (12) and (13), one can
see that the condensate density has an ellipsoidal form.

In the case of phase separation, the energy of the
system can be written as

(14)

where

(15)

(16)

Equations (12) and (13) have been used in deriving
Eqs. (15) and (16).

To investigate the phase separation in the mixture,
we first assume that the condensate 1 atoms form an
ellipsoidal shell around the condensate 2 atoms (we
refer to this configuration as configuration a). This
form of the condensate is determined by the form of the
confining potential. To find the position of the boundary
between the condensates, we use the thermodynamic
equilibrium condition [17], according to which the
pressures exerted by each condensates must be equal:

(17)

The pressure is given by [18]

(18)

Condensate 2 has the form of an ellipsoid with a
long semiaxis q,

(19)

Equations (12), (13), and (17)–(19) imply the equa-
tion for q:

(20)

where κ = .
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The chemical potentials  and  can be obtained
using the normalization conditions

and are given by

(21)

(22)

where q = q' and

(23)

Equations (21)–(23) allow us to find the chemical
potentials  and  and the semiaxis of the phase
boundary ellipsoid q as functions of N1 and N2. The
energy Ea = Ea1 + Ea2 of configuration a is given by

(24)

(25)

We now consider the opposite case, where the con-
densate 2 atoms form an ellipsoidal shell around the
condensate 1 atoms (configuration b). In this case,
Eqs. (20)–(25) can be rewritten as

(26)
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(29)

(30)

where  and  are the chemical potentials in config-

uration b, q1 =  is the long semiaxis of the
boundary ellipsoid, and Eb is the energy of configura-
tion b.

To find which configuration is stable, we must com-
pare Ea and Eb. We first consider the limiting cases,
where n2 = N2/N1 ! 1 and n1 = N1/N2 ! 1.

In the first case, where n2 ! 1, the approximate solu-
tion of Eqs. (20)–(22) is given by

(31)

(32)

(33)

where

(34)

It follows from Eqs. (26)–(28) that
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Using Eqs. (31)–(38), we easily show that

(39)

This shows that ∆E < 0 for κ > 1, and configuration
a is therefore stable.

We now consider the case where n1 ! 1. An approx-
imate solution for configuration a is given by

(40)

(41)

(42)

where

(43)

For configuration b, the solution has the form

(44)

(45)

(46)

where

(47)

The energy difference is

(48)

We see from Eqs. (39) and (48) that configuration a

has a lower energy if κ =  > 1. For
m1 = m2, this is consistent with the qualitative assertion
and the experimental observation that it is energetically
favorable for the atoms with the larger scattering length
to form a lower density shell about the atoms with the
smaller scattering length [14, 19].

To evaluate ∆E in general case, it is useful to first
estimate the energy of the phase boundary that arises
due to the gradient terms omitted in the TFA. The sur-
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face tension σ = Es/S, where Es is the surface energy
and S is the interface area, can be written as [20, 21]

(49)

Taking into account that the surface area of the ellipsoid
with the semiaxis a⊥ q is given by

(50)

we can estimate the contribution of the surface energy
Es = σS to the total energy of each configuration. To be
specific, we use the parameters corresponding to the
experiments on 87Rb atoms. In this case, m1 = m2, a⊥  =
2.4 × 10–4 cm, and N = N1 + N2 = 0.5 × 106 atoms.

In Fig. 1a, we show the energies of configurations a
and b (including the surface energy) Ea/("ω1N) (solid
line) and Eb/("ω1N) (dashed line) as functions of

. One can see that Ea is always lower than Eb. Fig-
ure 1b represents the difference ∆E = (Ea – Eb)/("ω1N).
The behavior of ∆E for small and large values of n2 is
well described by Eqs. (39) and (48). Figure 1c illus-
trates the behavior of the surface energy as a function
of n2. We note that the surface energy is much smaller
than the interaction energy because the scattering
lengths aij hate very close values (see Eq. (49)).

3. VORTEX STATES
IN THE ROTATING CONDENSATE

We now consider a trap rotating with the frequency
along Ω the z-axis.

For a vortex excitation with the angular momentum
"lj, the condensate wave function is given by

(51)

In the rotating frame, the energy functional of the
system is

(52)

With the wave function for the vortex excitation in
Eq. (51) inserted in Eq. (52), the effective confinement

potential for the bosons becomes /2m1ρ2 +

/2m2ρ2 + V1 + V2, where Vi = miωi(ρ2 + λ2z2)/2 and
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ρ2 = x2 + y2. In the nonoverlapping regions, in the TFA
the density of the vortex state is therefore given by

(53)

(54)

The important new qualitative feature of a vortex in the
TFA is the appearance of a small hole of the radius ξi

such that  ∝  /µi(li), with the remainder of the con-
densate density essentially unchanged. The fractional
change in the chemical potentials caused by the vortex
[ (li) – ]/  can be shown to be small [6, 9]: on the
order of 1/N4/5. In calculating physical quantities
involving the condensate density, it is sufficient to
retain the nonvortex density and simply cut off any
divergent radial integrals at the appropriate core sizes

 = /  or  = β2 / . We note that calculating
the vortex properties using the unperturbed density cor-
responds to the hydrodynamic limit.

For the phase segregated condensate, we find from
Eqs. (51), (52) and (15), (16) that the energy change
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Fig. 1. (a) The total energies of configurations a and b,
Ea/("ω1N) (solid line) and Eb/("ω1N) (dashed line), as

functions of . (b) The difference ∆E = (Ea –

Eb)/("ω1N) as a function of . (c) The surface energies

as functions of . Solid line corresponds to surface

energy Esa for the configuration a, dashed line to the surface
energy Esb for configuration b. 
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due to the presence of the vortices, ∆E = Erot(l1, l2) –
Erot(0, 0), has the form

(55)

In the hydrodynamic limit,  is given by Eqs. (12)
and (13).

We now consider the stable configuration a. In the
hydrodynamic limit, the location of the phase boundary
is given by Eq. (19). It follows from Eq. (55) that

(56)
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Fig. 2. Critical angular velocities /ω1 and /ω1 as

functions of  for configuration a. Solid line corre-

sponds to the outer condensate 1, dashed line to the inner
condensate 2.

ΩN1
ΩN2

n2log

Table

Ω/ω1 n2 l1 l2 Etot , 107

0.1 1.0 1 0 1.296863

0.1 10.0 2 0 1.287497

0.15 1.0 2 0 1.295151

0.2 1.0 3 1 1.292344
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(57)

The critical angular velocities required to produce
the vortex states in each condensate can be determined
from the conditions  and  and are
given by

(58)

(59)

To find the asymptotic behavior of the critical angu-
lar velocities (58) and (59) for N2 ! N1 and N1 ! N2, we
use approximate solutions (31)–(34) and, thus, obtain

(60)

(61)

We see from Eqs. (60) and (61) that, as n2  0, the
critical angular velocity of the external condensate

 tends to that of the pure condensate with the scat-
tering length a11 [see Eq. (26) in [9]]. The critical angu-
lar velocity of the inner condensate  tends to the
infinity as n2  0. However, this consideration cannot
be applied to rapidly rotating gases with Ω compara-
ble to ω1, where the form of the condensate depends
on Ω [13].

∆EN2

1
2
---"ω1N2

--------------------
15l2

2 µ1'( )1/2
q'

2 µ2
0( )5/2

------------------------------ µ2'
1
3
---µ1' q'2– 

 =

×
2 µ1' µ2' q'

l2β
----------------------- µ2'

µ1' q'2

9
------------– 

 –ln
2Ωl2

ω1
------------.–

∆EN1
0< ∆EN2

0<

ΩN1

ω1
---------

5l1 µ1'( )3/2

2 µ1
0( )5/2

-----------------------
2µ1'

l1
-------- 4

3
---–ln 

 




=

–
3
2
---q' 1 q'2

3
------– 

  2µ1' q'
l1

------------- 1 q'2

9
------– 

 –ln




,

ΩN2

ω1
---------

15l2 µ1'( )1/2
q'

2 µ2
0( )5/2

------------------------------ µ2'
1
3
---µ1' q'2– 

 =

×
2 µ1' µ2' q'

l2β
----------------------- µ2'

µ1' q'2

9
------------– 

 –ln .

ΩN1

ω1
---------

5l1

2µ1
0

--------
2µ1

0

l1
-------- 4

3
---–ln 

  15l1

4µ1
0

----------
2µ1

0q0

l1
-------------- 1–ln 

  q0,–=

ΩN2

ω1
---------

3l2β
2

2µ1
0q0

2
--------------

2µ1
0q0

κ1/2l2β
----------------

 
 
 

ln 1–=

–
l2β

2

µ1
0

---------
2µ1

0q0

κ1/2l2β
----------------

 
 
 

1
4
5
---κ– 

  7
12
------κ 3

4
---–+ln .

ΩN1

ΩN2
 AND THEORETICAL PHYSICS      Vol. 91      No. 6      2000



PHASE SEPARATION AND VORTEX STATES IN THE BINARY MIXTURE 1189
In the opposite limit n1 = N1/N2 ! 1, the critical
angular velocities can be written as

(62)

(63)

In deriving Eqs. (62) and (63), we used the approximate
solutions (40)–(43). We note that, as n1  0, the crit-
ical angular velocity (63) has the same form as the crit-
ical velocity for the pure condensate with the scattering
length a22 and with the chemical potential µ0β4/5.

Figure 2 shows the critical angular velocities for the
external ( ) and the inner ( ) condensates as
functions of n2 = N2/N1 for l1 = l2 = 1.

Using Eqs. (52) and (55), one can find the vortex
configurations corresponding to the energy minimum
for a given angular velocity Ω/ω1. In the table, we rep-
resent angular momenta of condensates that correspond
to the minimum of the total energy Etot/"ω1 of the sys-
tem for different values of the angular velocity and n2.
In the calculation, we use the parameters for the 87Rb.
Etot is calculated as the sum of E (Eq. (14)), the surface
energy Es [Eqs. (49) and (50)],  [Eq. (56)), and

 (Eq. (57)].

4. CONCLUSIONS

We have shown that, in the 87Rb condensate, the
atoms in state 1 form a shell about the atoms in state 2,
the critical angular velocity for each state being drasti-
cally dependent on the relative concentrations. The crit-
ical angular velocity of the outer component is less than
the angular velocity of the inner one. When the ratio of
the number of state 2 atoms to the number of state 1
atoms is sufficiently small, the critical angular velocity
of the inner state becomes very large; in the framework
of the hydrodynamic approximation, it is larger than
the oscillator frequency characterizing the confining
potential and decreases smoothly with increasing the
number of atoms in state 2. From the table, one can see
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that atoms in state 1 can form a rotating ring around the
resting core of the atoms in state 2.
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Abstract—A submicron, spatially periodic, structure consisting of a sequence of oriented layers of a nematic
liquid crystal (NLC), separated by isotropic polymeric walls, was obtained experimentally. This was accom-
plished by polymerization induced by the interference pattern of UV laser radiation in a NLC-containing pre-
polymer mixture. It was established that such a structure occurs when phase separation and nematic ordering
are prevented during the polymerization process. These structures are the diffraction elements, whose efficiency
is much greater than that of a standard grating of polymer-dispersed liquid crystals [1–4] which is obtained in
the same initial mixture. Specifically, a diffraction efficiency of 60–70% was obtained for structures with the
period Λ = 0.2 µm, even in mixtures where a grating with Λ < 6 µm cannot be obtained at all by the standard
technique.
1. INTRODUCTION

Starting with the works of Sutherland et al. at the
beginning of the 1990s [1, 2], the use of polymer-dis-
persed liquid crystals (PDLC) for electrically controlla-
ble diffraction and holographic components became
just about the main topic of interest in electro-optic
effects based on PDLC. The reason for such interest is
obvious (see, e.g., [3–5])—it is due to the possibility of
obtaining inexpensive elements for commercial
devices.

To obtain high diffraction efficiency and high opti-
cal quality for gratings and holograms it is necessary to
obtain lines with quite uniform morphology. Then,
optical nonuniformities (due to nematic drops) with the
same spatial size as the wavelength of the radiation
used for diffraction can be avoided. There are two obvi-
ous ways to accomplish this.

The first one, used in [1–4], consists in obtaining
drops of a liquid crystal (LC) which are much smaller
in size than the wavelength mentioned above. This is
the approach employed in the conventional methods of
obtaining polymer-dispersed liquid crystals using UV
radiation with spatially uniform intensity. In this case
the only internal spatial scale in the problem is the min-
imum size of a thermodynamically stable drop and,
possibly, the size of the radiation intensity nonunifor-
mities arising after drop formation starts.

The second method is based on the possibility of
obtaining uniform stripes of polymer and nematic rather
than, say, PDLC stripes with nematic content varying
from the maximum to the minimum of the intensity distri-
bution, or if polymer stripes alternating with PDLC
stripes. Of course, this situation is impossible in the tra-
1063-7761/00/9106- $20.00 © 21190
ditional method of obtaining PDLC using spatially uni-
form radiation. Indeed, in this case phase separation is
a threshold (with respect to the radiation intensity) sto-
chastic process, starting in a sample with initially uni-
form concentrations of a nematic and a monomer and
accompanied by efficient mass transfer. A process of
this kind leads to a quite random morphology of the
sample. However, when the initial mixture is irradiated
with a spatially periodic intensity distribution (an inter-
ference pattern) and therefore a periodically nonuni-
form degree of polymerization it is logical to infer that
mass transfer starts long before phase separation occurs
(and it could be completed before the isotropic-liquid–
nematic (I–N) phase transition starts). Thus, if such a
scenario is possible, then it will also be possible to
obtain not drops but rather quite uniform regions of
nematic and polymeric isotropic phases, provided that
during photoinduced polymerization phase separation
and a transition are prevented by means of an additional
external action. Then no random processes will occur,
and one can validly expect to obtain quite regular mod-
ulation of the nematic concentration within a period of
the grating.

On the other hand if the indicated preventative
action is suppressed after polymerization is completed,
then the rigid polymeric structure will make it impossi-
ble for random deformations of the polymer stripes to
occur during a I–N transition, which can occur in NLC
rich regions of the sample.

The successful results of such an approach are dem-
onstrated in the present paper.
000 MAIK “Nauka/Interperiodica”
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2. EXPERIMENTAL APPARATUS

Three types of initial systems were used. They con-
sisted of a free polymeric mixture (monomer–photoini-
tiator) and nematic components with high solubility in
the prepolymer.

The first type consisted of the prepolymer composi-
tion SAM-114 (Merck), diluted with a 5CB nematic.
This is the conventional acrylate prepolymer system.
Its components are highly mutually soluble, the initial
weight concentrations CN of the NLC from 0 to 95%
were thermodynamically stable and formed a spatially
uniform isotropic mixture.

The second prepolymer system employed was a
SAM-114 composition, diluted by the nematic BL036
(Merck), which possesses a nematic–isotropic (N–I)
transition temperature above 90°C and virtually the
same room-temperature optical properties as the 5CB
nematic. The maximum thermodynamically stable
concentration of this nematic in the prepolymer is
CN = 55%.

The third mixture was a standard prepolymer mix-
ture NOA-65, diluted with the nematic 5CB. This mix-
ture also exhibits mutual solubility in the range 0–
100% of the NLC concentration with the resulting mix-
ture being up to 92% isotropic.

The samples consisted of thin (11 µm thick) plane-
parallel layers between two glass plates with standard
transparent electrodes (ITO).

The optical arrangement is shown in Fig. 1. A trans-
verse–unimodal beam from an argon laser, operating at
the wavelength λB = 0.3548 µm (Coherent Innova 90C)
with power monitored with a standard measuring
device in a range 3–100 mW, was expanded with a tele-
scope BE to a diameter of approximately 25 mm. The
beam edges were cut off with an iris diaphragm, so that
the intensity in the remaining aperture (2–5 mm in
diameter) was uniform to within 4–5%. Next, a beam
splitter BS split the beam into two beams with approx-
imately the same intensity (I1/I2 = 0.95 ± 0.02). These
beams interesected one another on the entrance plane
of the sample, creating an interference pattern whose
spatial period varied in range Λ = 6.3–0.2 µm. The
polarization was of s type, i.e., the E vector of the radi-
ation was directed along the lines of the grating.

The diffraction efficiency of the grating was mea-
sured with a slightly focused (beam diameter about
1 mm inside the sample), approximately 1 mW, probe
beam, which was also s polarized, from an He–Ne laser
(ΛR = 0.63 µm). The power of the transmitted probe
beam (zeroth order of diffraction) and in the first dif-
fraction order were recorded with PDT, D photodiodes,
respectively. It should be noted that everywhere below
the data for the diffraction efficiency η are scaled to the
power of the transmitted beam before polymerization
onset.

W note that in short-wavelength part of the above-
mentioned range of grating periods the wave mismatches
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
∆L for the first order of diffraction can reach values of
about 3–4 rad, thereby suppressing the required to dif-
fraction maximum. The only possibility of avoiding
these mismatches for an individual diffraction order is
to make the appropriate choice of the required angle of
incidence of the probe beam (see Fig. 2). The angle of
incidence of the probe been kR is chosen so that the
bisector of the angle between the beams k1, 2 producing
the pattern is also the bisector of the angle between the
beams kR and kd, the latter of which is some order of its
diffraction (in our case—the first order). It is easy to see
that for this, and only for this, maximum the wave mis-
match ∆L = 0, while for all other possible maxima ∆L ≠ 0
and therefore they are suppressed to a greater or lesser
degree (∝ sin2(0.5∆L)/(0.5∆L)2). Therefore, in all experi-
ments described below the probe been was adjusted
appropriately so as to correspond to the geometry shown
in Fig. 2. Therefore, none of the diffraction efficiency
data contain errors associated with wave mismatches.

He–Ne-laser

Ar-laser

BE

BS

M

I

PDD

PDT

S
L

Fig. 1. Optical arrangement for writing and investigating
gratings (explanation in text). 

k2

x

z

L

∆

q
kRk1

kd

k

Fig. 2. The diffraction geometry employed: k1, 2 are wave
vectors of the writing beams, q is wave vector of the grating,
kR, d are wave vectors of the probe and the first order of dif-
fraction, k is away factor of the second order of diffraction,
∆ is wave mismatch of the latter, L is sample thickness, and
x and z are coordinate axes.
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It should also be noted that for Λ < 0.317 µm it is
impossible to perform diffraction efficiency measure-
ments of this kind, since a diffraction maximum is a
nonuniform wave. Consequently, for gratings with a
shorter spacing the data were obtained when one beam,
forming the interference pattern, was used as the probe
after the polymerization process was completed.

To avoid ambiguity associated with such a differ-
ence of the wavelengths of the probe beam for large and
small Λ in the interpretation of the data, the diffraction
efficiency of the gratings was compared for both wave-
lengths (λR and λB) in range 0.5 µm > Λ > 0.35 µm. This
comparison revealed that in entire indicated range both
the diffraction efficiencies differ only by a constant fac-
tor associated with the difference of the optical thick-
nesses nL/λ of the sample for these wavelengths. For
convenience in making comparisons, the data “renor-
malized” to the wavelength λR = 0.63 µm are presented
everywhere below.

The morphology of the samples obtained was mon-
itored with a standard polarized microscope with reso-
lution of the order of 0.5 µm and recorded using a stan-
dard CCD camera.

Naturally, the individual lines of a grating were not
resolved for short periods. In this case the microscope was
used only for monitoring the orientation of the anisotropic
medium obtained.

3. EXPERIMENTAL RESULTS

Our approach to the problem of searching for an
external action that prevents phase separation and an
I–N transition during the polymerization process con-
sisted of the following.

In the first place, as already mentioned above, we used
a monomer and a nematic which dissolve well in one
another. Moreover, the nematic concentrations used in the
experiments were only slightly higher than the thresh-
old for phase separation when the mixture was irradi-

(‡) (b)

Fig. 3. Photomicrographs of gratings obtained in a sample
with CN = 59.9% with intensity 5 mW/cm2: (a) T = 22°C
and (b) T = 55°C. Here and below the vertical arrangement
of the lines in the photomicrographs corresponds to the sto-
chastic orientation of the axes of the drops, and an arrange-
ment inclined by 45° corresponds to a uniform orientation
along the lines.
JOURNAL OF EXPERIMENTAL 
ated with a uniform beam with the same intensity range.
Thus, the amount of the nematic in the experimental sam-
ple corresponded to almost complete solubility not only
in the initial monomer but also in the corresponding
polymer.

In second place, before irradiation with an inter-
ference pattern the sample was heated (with a stan-
dard liquid optical thermostat) to temperatures above
the N–I transition temperature of a pure nematic
component. Such heating made it possible to prevent
an I–N transition during the polymerization process,
simultaneously increasing the above-indicated solubil-
ity and thereby preventing phase separation during the
polymerization process.

Under such conditions mass transfer can be due
only to the spatial modulation of the degree of polymer-
ization within a period of the interference pattern. The
corresponding mass transfer itself consists of diffusion
of the nematic (and also, possibly, the monomer and
low-molecular reaction products) during and after the
completion of the photoinduced polymerization. Pro-
cesses of this kind have been observed and investigated
in a recent work [6] for the first of the above-enumer-
ated types of initial mixtures. Specifically, it was estab-
lished that processes of this kind can result in very high
degrees of spatial modulation of the nematic concentra-
tion (up to 90–95%). This modulation, even in the
absence of an I–N transition engenders a diffraction
grating (called in [6] a “pregrating”), which has a quite
low diffraction efficiency (1–2%) but is of high-quality
(there is no spontaneous scattering characteristic of
PDLC).

3.1. SAM-114–5CB Mixtures

The range of nematic concentrations CN = 50–70%
was investigated for mixtures of this type. Samples of
thickness L = 11 µm were irradiated for 10 min, which
is sufficient for polymerization to be completed in this
system (see [6]). The grating morphology obtained for
Λ = 6.3 µm is presented in Fig. 3. Both gratings pre-
sented were obtained in the same sample with CN =
60% using the same radiation intensity IB = 5 mW/cm2.
The first one (Fig. 3a) was irradiated at room tempera-
ture, so that phase separation started during irradiation.
It is evident that this is an ordinary PDLC grating (see,
for example, [1–3]) with stochastically oriented nematic
drops. At the same time the second grating (Fig. 3b), irra-
diated at temperature 55°C and slowly (in 40–50 min)
cooled to room temperature, contains uniformly ori-
ented stripes of an extended nematic phase with very
sharp, undistorted changes.

The typical temperature dependences of the diffrac-
tion efficiency of such gratings are presented in Fig. 4.
It follows from the figure that, as expected, the depen-
dences decay rapidly near the point of the N–I transi-
tion, which occurred for mixtures of this type near
25°C (the N–I transition of a pure nematic 5CB starts at
AND THEORETICAL PHYSICS      Vol. 91      No. 6      2000
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37°C, but the fact that the substance in the nematic
stripes of the grating is strongly diluted by nonme-
sogenic reaction products must be taken into account).
It is evident from the figure that the diffraction effi-
ciency reaches 25%, while for the grating obtained at
room temperature the diffraction efficiency for mixtures
of this type does not exceed 7%. Such a sharp increase in
the diffraction efficiency is explained primarily by the
absence of losses due to stochastic scattering in PDLC.

We did not perform systematic measurements of the
dependences of the diffraction efficiency on the radiation
intensity and the period of the pattern, since the reproduc-
ibility of such measurements was poor because the tem-
perature of the N–I transition was close to room temper-
ature. On the other hand there is also room for improve-
ment of the longevity of the gratings obtained in these
mixtures. Although in some samples the grating mor-
phology remained unchanged after one year of storage,
in most samples the nematic ordering at room temper-
ature vanished in hours—several days, i.e., the samples
transformed into a “pregrating” state [6]. Such a loss of
ordering is due to slow diffusion of the nematic from
the stripes into the surrounding exposed region of the
solution and back diffusion of the monomer from the
solution.

3.2. SAM-114-BL036 Mixtures

Samples with a thickness of 11 µm were irradiated
at 65°C for 10 min, which, as experiments showed, was
adequate for polymerization to be completed. This means
that irradiation for a longer time would not change the
properties of the gratings obtained.

The results obtained to reduce, qualitatively, to the
following. In the first place, it must be underscored that
SAM-BL036 mixtures were found to be more than
unsatisfactory from the standpoint of the obtaining
gratings by the conventional methods [1–3] (i.e., at
room temperature). Specifically, even for optimal irra-
diation intensities (see below) it was impossible to
obtain diffraction efficiencies above η1 = 2–3%. Even
such values could be obtained only in a very narrow
range of nematic concentrations CN = 33–35%; for all
other concentrations the diffraction efficiency did not
exceed the “pregrating” level (<1%). This was due to
the extremely high losses of the probe beam to stochas-
tic scattering. Even the above-indicated values of the
diffraction efficiency could be reached only for rela-
tively large grating periods Λ = 6.3 µm. For smaller val-
ues of Λ the diffraction efficiency was below the thresh-
old of experimental detection, which is 0.2%.

This is due to the morphology of the gratings obtained
(see Fig. 5a). The grating lines are almost overlapped by
individual drops of the nematic, which typically are at
least 4 µm in size. Probably, the surface tension at the
nematic–polymer interface for mixtures of this type is
very large and the indicated drop size is the minimum
thermodynamically admissible value.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
The results obtained using the above-described heat
cycle differ radically from the results presented. On the
whole it should be noted that diffraction efficiencies
exceeding 20% were observed for any grating periods
in the range Λ = 6.3–0.22 µm. Moreover, the grating
morphologies presented in Figs. 5b–5d exhibit, just as
for mixtures of the first type, a sequence of layers of an
oriented nematic phase with sharp straight boundaries
separated by an isotropic polymer. There are no drop
defects, and consequently there is no stochastic scatter-
ing of the probe wave. Of course, for a more accurate
proof of the nematic nature of the layers obtained it
would be desirable to perform electron-microscopic
investigations. However, an indirect confirmation of the
nematic nature is that extended disclinations, character-
istic of nematics, are sometimes present in the anisotro-
pic stripes observed (see Fig. 6).

We shall now present the quantitative results. We
shall confine ourselves to the case of the “best” (for

20

0

T, °ë

η1, %

30 40 50

10

20

Fig. 4. Temperature dependences of the diffraction effi-
ciency of gratings recorded at T = 55°C; CN = 59.9%; I =

(s) 15 and (j) 10 mW/cm2.

(‡) (b) (c)

(d) (e)

Fig. 5. Photomicrographs of gratings: (a) Λ = 6.3 µm, T =
22°C; (b–d) Λ = 6.3, 4.8, and 1.44 µm, respectively, T =
65°C; and (e) Λ = 1.44 µm, the phase separation threshold
is exceeded; (d, e) the microscope does not resolve individ-
ual lines.
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Fig. 6. Disclinations in nematic layers.

20

0

T, °ë

η, %

25 30 35 40 45 50

20

60

40

Fig. 7. Temperature dependences of the diffraction effi-
ciency of a grating for SAM-BL036 mixtures; Λ = 1.8 µm.
Radiation power: (j) 5 (s) , 30, and (d) 15 mW.
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Fig. 8. Diffraction efficiency versus the radiation intensity
for the mixture SAM-BL036; Λ = (h) 0.31 and (d) 8 µm.
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obtaining high diffraction efficiency) concentration of
the nematic in the initial mixture, CN = 32%. For other
concentrations in the range CN = 25–40% the to diffrac-
tion efficiency was somewhat lower. This can be easily
explained qualitatively. Specifically, for lower concen-
trations of the nematic, the width of the nematic stripes
obtained was already equal to half the grating period,
while for higher concentrations the stripes were wider
than half the period, and in the limit of very high con-
centrations the stripes even overlapped. The concentra-
tion CN = 32% corresponded experimentally to stripes
whose width was equal to half the period, which is opti-
mal for obtaining high diffraction efficiency.

It should be noted that, in contrast to mixtures of the
first type, in the present experiments the irradiation
temperature (65°C) was lower than the N–I transition
temperature for a pure nematic (about 100°C). The
problem is that irradiation at 100°C did not give the
result: i.e., no gratings or subgratings were obtained.
This is probably due to melting of the polymer at such
temperatures. In this case the polymer chains acquire
mobility and they is no reason for spatial modulation of
the concentration (see [6]).

Thus, phase separation and the I–N transition in the
polymerization process are possible in principle. This
was observed experimentally above a certain critical
value of the radiation intensity Ith(Λ), which depended
strongly on the period of grating. The texture of the
grating was partially damaged by drop defects as well
as by scattering isotropic inclusions present in the poly-
mer layers (see Fig. 5e). The temperature dependences
of the to diffraction efficiency of the gratings obtained
are presented in Fig. 7 for the period Λ = 1.8 µm. The
qualitative form of the dependences for other periods
investigated is identical.

The radiation intensity dependences of the diffrac-
tion efficiency are presented in Fig. 8. It is evident that
for each Λ there exists an optimal value of the radiation
intensity, which depends on Λ. The dependences of the
optimal intensity and of the corresponding value of the
diffraction efficiency on the grating period are pre-
sented in Figs. 9a and 9b, respectively. It is evident that
the diffraction efficiency reaches 70% even for short
periods Λ = 0.22 µm, which correspond to Bragg
reflection of green light at normal incidence; the dif-
fraction efficiency is at least 20%.

The optimal intensity increases sharply at the grat-
ing period decreases. We also note that there exists a
critical value of the latter, in this case Λ = 0.19 µm,
below which it is impossible to obtain a grating even
with the intensity exceeding the optimal value by a fac-
tor of 20 for Λ = 0.22 µm.

The longevity of the gratings obtained was quite
poor. As a rule, a grating degraded after 40–50 h of stor-
age at room temperature. However, the degradation
processes themselves in this case are quite curious and
have nothing in common with the degradation occur-
ring in SAM-5CB mixtures. Microscopic observation
 AND THEORETICAL PHYSICS      Vol. 91      No. 6      2000
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Fig. 9. Optimal writing intensity the (a) and maximum attainable diffraction efficiency (b) versus the grating period for the mixture
SAM-BL036. 
reveals formation and growth of nematic “lakes,” local-
ized at the nematic–composite interfaces.

On the other hand if an exposed sample was held at
the exposure temperature for more than one week, no
textural defects were observed after cooling, and the
diffraction efficiency was the same as that obtained
with immediate cooling after exposure.

It seems that in this case the degradation of the grat-
ings has nothing in common with real physical–chemi-
cal processes occurring in the interior volume of a sam-
ple. Judging from everything, the degradation is due to
the difference of the temperature expansion coefficients
of the nematic and the polymer. This results in mechan-
ical stresses in a cooled sample, causing the polymer
layers to detach from the substrate and the nematic to
flow into the gap that is formed. Thus, this degradation
is most likely a technical defect of the mixture rather
than a serious process that must be studied in detail.

3.3. NOA-65-5CB Mixtures

For mixtures of this type it should be noted, first and
foremost, that in contrast to preceding mixtures the dif-
fraction efficiency of the gratings, recorded at room
temperature (with phase separation during polymeriza-
tion and formation of PDLC), was not so bad. Conse-
quently, in this case we performed comparative investi-
gations for two cases: measurements at room and
higher temperatures. The thickness of the samples was
also 11 µm, and the exposure time needed to complete
polymerization was slightly less than 7 min in this case.
The nematic concentration in the initial mixture was
50% for all results presented below (which simply cor-
responds to the experimental optimal; see preceding
section).

The morphologies of the gratings obtained at room
temperature (T = 22°C) corresponded to the ordinary
alternation of the layers of the polymer and PDLC, as
in Fig. 3a. The only differences were that the character-
istic drop size was much smaller (of the order of 0.5 µm)
and the director in the nematic in the drops was oriented
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
along the grating lines (70–80% of the drops according
to a visual count).

Figure 10 shows the dependences of the diffraction
efficiency on the radiation intensity with room-temper-
ature exposure. It is evident that here the intensity is
optimal, but its value does not depend on the period of
the grating. The diffraction efficiencies obtained are
moderate: 30% for Λ = 1.8 µm and less for shorter grat-
ing periods. Substantial losses (up to 20% of the power
of probe beam) due to stochastic scattering are
observed.

For high temperatures (T = 45°C, which is higher
than the N–I transition temperature in pure 5CB) the
analogous dependences are presented in Fig. 11. It is
easy to see that the diffraction efficiencies are twice the
values at room temperature. This is due primarily to the
absence of scattering losses (the grating morphology is
virtually identical to that presented in Fig. 3b). The
optimal intensities turned out to be much higher than
for the room-temperature case, and they increased as
the grating period decreased. The dependences of the opti-
mal intensity and the corresponding diffraction intensity
are presented, respectively, in Figs. 12a and 12b for both
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η, %

20

30

4 12 16

Fig. 10. Intensity dependence of the diffraction efficiency
for NOA-5CB mixtures irradiated at T = 22°C, Λ = (j) 1.8,
(h) 0.56, (d) 0.38, and (s) 0.22 µm.
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exposure regimes. It is evident that the “hot” exposure
regime, aside from everything else, substantially expands
the range of admissible grating periods toward shorter val-
ues. Specifically, it is possible to obtain a grating with a
period of 0.17 µm (compared with your 0.25 µm at room
temperature). Even though this difference seems negli-
gible, it is of central importance from the standpoint of
the possibility of recording Bragg reflection gratings
and holograms. The second value presented above
(0.25 µm) corresponds to a reflection grating for λ =
0.66 µm (far red part of the spectrum, almost the infra-
red range); the first value (0.17 µm) corresponds to λ =
0.51 µm (green line of the argon laser).

The longevity of the samples in these experiments
was much better than for the two preceding mixtures.
The properties of the gratings remained unchanged for
at least one month.

4. DISCUSSION AND CONCLUSIONS

We shall now formulate the basic qualitative results
obtained.

(1) The technique described above makes it possible
to obtain an actually new type of composite material—

0 20

20

I, mW/cm2

η, %

40

60

40 60 80 100

Fig. 11. Intensity dependence of the diffraction efficiency
for NOA-5CB, T = 45°C, Λ = (j) 1.8, (s) 0.38, and (s) 0.22 µm.
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a spatially periodic sequence of submicron layers of a
polymer and a liquid crystal. The texture of the grating
formed is free of defects with scale of the order of the
wavelength of the optical wave; this makes it possible
to obtain, specifically, a diffraction grating whose effi-
ciency is much higher than that of PDLC.

(2) The spatial period of the gratings formed can be
substantially shorter than that of PDLC gratings in the
same initial material. This makes it possible, specifi-
cally, to obtain reflective gratings and holograms.

(3) The nature of the processes leading to the forma-
tion of the above-described gratings lies not in the opti-
cally induced phase separation, as in for PDLC but
rather in the induced spatially nonuniform polymeriza-
tion of the mass transfer (diffusion) of the components
of the initial mixture. Consequently, the texture of the
grating obtained does not contain stochastic defects
which are characteristic of random processes such as
nucleation with phase separation.

(4) The dependence of the diffraction efficiency of the
gratings obtained on the intensity of the writing radiation
exhibits a peak whose magnitude and position depend
on the period of the grating.

(5) The lower limit on the grating period below which
it is impossible to write a grating for any intensity (by
analogy to radio engineering we shall call it the “cut off
period”) is observed for each specific type of initial
mixture used.

(6) Degradation processes occur in the structures
described above, but these processes are quite simple and
in all probability they can be prevented.

We propose the following scenario of the processes
which are responsible for the formation of gratings. We
believe that this scenario leads to a qualitative correspon-
dence of the gratings to the observed properties. First,
even though before mass transfer starts the nematic has
a spatially uniform distribution, we assume that the
processes can be described on the basis of the standard
Fick diffusion.

However, this diffusion occurs not in the entire vol-
ume of the sample but only in its “active” part, which is
(‡) (b)
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Fig. 12. Optimal intensity (a) and maximum attainable diffraction efficiency (b) versus the grating period  Λ for the mixture NOA-5CB;
T = (j) 45 and (h) 22°C.
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not occupied by stationary polymer chains (the “passive”
volume). We assume that only part of the nematic mole-
cules, which approximately corresponds to the solubility
of the nematic in the polymer, remains in the passive vol-
ume. The excess domestic is displaced into the active vol-
ume, where its concentration is spatially modulated and
ordinary diffusion, tending to equalize the concentration,
starts. Thus, the average concentration of the nematic over
the entire volume (which is responsible for modulation of
the index of refraction) is spatially modulated. Thermody-
namically, this formulation of the problem is essentially
analogous to osmotic processes, where the passive vol-
ume of the stationary polymer acts like a membrane.
The corresponding thermodynamic analysis was per-
formed in [6]. It was based on considerations of spatial
uniformity of chemical potentials of the components in
the final equilibrium state. This analysis is quite simple,
but, unfortunately, it is fruitless from the standpoint of
predictions, since many unknown parameters, such as
the intermolecular interaction energy, are used.

Diffusion of the monomer, which likewise tends to
equalize its concentration in the active volume, starts
simultaneously with diffusion of the nematic. This enriches
with the monomer the regions where the reaction rate is
highest (these regions correspond to the maximum of the
interference pattern of the radiation). This process pre-
sumes to possible reaction machines. The first one (slow
polymerization) is a regime where the reaction is slow
enough (for a given grating period) so that the monomer
can diffuse before it is consumed in the reaction. In the sec-
ond regime the reaction is quite rapid and there is not
enough time for mass transfer of the monomer to occur.

At first glance the slow regime is preferable, since it
gives additional modulation of the concentration of the
reaction products, delivering the monomer to the actively
reacting regions. However, the final judgment concern-
ing this question requires a more detailed analysis,
since it is necessary to determine what the above-indi-
cated passive volume, whose “concentration” controls
the mass-transfer processes, is.

A distinguishing feature of the passive volume is its
constituent macromolecules are stationary. Conse-
quently, not all reaction products, but only chains with
sufficient length N, can be associated to the passive vol-
ume. On the other hand it is known [7] that for radical
polymerization, which is typical for the systems con-
sidered, the chains formed are all the longer, the slower
the reaction. Thus, we can arrive at the opposite conclu-
sion. Specifically, the diffusion of the monomer removes
the initial material from the regions where long chains are
produced (corresponding to the minima of the interference
pattern), thereby decreasing the final modulation of the
nematic concentration. Consequently, the question of the
preferability of one reaction regime over another requires
a quantitative analysis.

We shall now examine qualitatively the fast regime,
which is simpler. For very low intensities virtually all
polymer chains—at the maxima and minima of the inter-
ference pattern—are long enough so that they can be asso-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
ciated to the passive volume. Consequently, its “concen-
tration” is high but almost uniform, and therefore the mod-
ulation is weak. Conversely, for very high intensities only
short chains are formed everywhere—the “concentration”
of the passive volume is low and therefore the modulation
is also weak. Thus, we arrive at the following conclusion,
qualitatively corresponding to the experimental data, that
a maximum is present in the dependence of the diffrac-
tion efficiency on the radiation intensity.

Finally, in the slow regime a situation where the dif-
fusion time over a period becomes comparable to the
lifetime of the radicals which nucleate chains can arise
as the grating period decreases. This lifetime does not
depend on the intensity [7]. In this case diffusion within
a period of the grating equalizes the concentration of
the radicals. This means that even though the initiating
radiation is initially uniform (interference pattern), the
reaction as such proceeds essentially uniformly in
space without resulting in a grating. This argument
agrees with the observed presence of a “cut off period”
for a given mixture.

Thus, in all probability the propose scenario of “spa-
tially limited diffusion” can explain the observed prop-
erties of the gratings obtained. We have constructed a
quantitative formulation of the scenario, but it will be
presented in a separate publication because the corre-
sponding mathematical apparatus is quite complicated.
We merely note that the results actually demonstrate qual-
itative agreement with experiment. Therefore there are
grounds for believing that this model will be capable of
predicting results in this field, whose completely empirical
nature today [1–6] is severely holding back research.
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Abstract—A theoretical model is proposed for describing the drift of a 180° domain wall in a weak ferromag-
net in the field of elastic stresses produced by a strong sound wave propagating in the plane of the wall. The
dependence of the drift velocity on the frequency, amplitude, and polarization of the sound wave is found. It is
predicted that drift of a striped domain structure is possible. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The investigation of the influence of the magne-
toelastic interaction on the static and dynamic proper-
ties of magnets is one of the classical problems of the
physics of magnetically ordered media. The theoretical
and experimental works devoted to this interaction
study its effect on the spectrum of linear excitations of
a magnet (spin waves), magnetoacoustic resonance,
and so on. A substantial body of work on the influence
of the magnetoelastic interaction on the nonlinear exci-
tations of a magnet is devoted to the analysis of the
phonon stopping of domain walls, the scattering of
sound by a domain structure, and the mutual excitation
of acoustic and domain vibrations [1–7]. The direct
interaction of domain walls with an elastic stress field
produced by an external sound wave has been much
less studied, though this interaction results in a variety
of interesting effects, specifically, the so-called drift
motion of domain walls in an oscillating external field.
The theory of such motion, based on the method of
averaging when solving the approximate Slonczewski
equations, is given in [2, 3]. A direct experimental
observation of this effect was made in [8].

A more systematic approach to the theoretical
description of drift of domain walls in the field of a
sound wave, based on an analysis and direct solution of
the nonlinear equations of motion for the magnetization
vector (Landau–Lifshitz equations), has been proposed
in [9]. In this work, just as in [2, 3], the simplest, from
the standpoint of theoretical analysis, case of the prop-
agation of a sound wave perpendicular to the plane of a
domain wall is studied. At the same time, in direct
experimental study of the interaction of ultrasound with
a domain wall [8], directed drift of a domain wall has
been observed in a different geometry, specifically, the
propagation of an elastic wave in the plane of a domain
wall.
1063-7761/00/9106- $20.00 © 21198
In this paper, a theory is developed for the drift
motion of a 180° domain wall in the field of a sound
wave propagating in the plane of the wall for the exam-
ple of a two-sublattice model of a weak ferromagnet.
This theory makes it possible to describe, specifically,
the magnetic subsystem of rare-earth orthoferrites.

2. EQUATIONS OF MOTION

We shall describe the nonlinear macroscopic
dynamics of a two-sublattice weak ferromagnet on the
basis of the Lagrangian density L, represented in terms
of the unit vector of the antiferromagnet l, l2 = 1. For a
weak ferromagnet, such as rare-earth orthoferrites with

characteristic symmetry  (the Cartesian x-, y-, and
z-axes are oriented along the a-, b-, and c-axes, respec-
tively, of the crystal), the Lagrangian density L(l), tak-
ing account of the magnetoelastic interaction, can be
written in the form 

(1)

where the dot indicates a time derivative, M0 is the
modulus of the magnetization vector of the sublattices,
c = gM0(α/β)1/2/2 is the characteristic velocity, which
corresponds with the minimum phase velocity of the
spin waves, δ and α are, respectively, the uniform and
nonuniform exchange interaction constants, g is the
gyromagnetic ratio, β1 and β2 are the effective anisot-
ropy constants, uik is the elastic deformations tensor,
and γ is the magnetoelastic constant. In Eq. (1) we do
not include a term describing the energy of the elastic
subsystem as such, since in what follows we shall con-

2x
–2z

–

L l( ) = M0
2

× α
2c2
--------l2 α

2
--- ∇ l( )2 β1

2
-----lz

2–
β2

2
-----ly

2– γuiklilk––
 
 
 

,
.

000 MAIK “Nauka/Interperiodica”



        

NONLINEAR DYNAMICS OF A DOMAIN WALL IN THE FIELD OF A SOUND WAVE 1199

                               
sider the sound wave as a prescribed external field,
neglecting the back effect of the magnetic subsystem
on the elastic wave.

We now introduce the angular variables θ and ϕ,
parameterizing the unit vector l:

(2)

in terms of which the Lagrangian density (1) assumes
the form

(3)

The dynamic retardation of the domain wall, due to
dissipative processes, is taken into account by the dissi-
pative function Q:

(4)

where λ is a phenomenological relaxation constant.
The equations of motion in terms of the angular

variables θ and ϕ have the form

(5)

(6)

If 0 < β1 < β2, then in a weak ferromagnet, in the
absence of external fields, the orientation of l along the
x-axis is the equilibrium orientation and far from the
spin reorientation region a 180° domain wall with the l
vector rotating in the (xz) plane is stable. This domain
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wall corresponds to θ = θ0 = π/2, and the angular vari-
able ϕ = ϕ0(y) satisfies the equation

(7)

(we assume that the magnetization distribution in the
domain wall is nonuniform along the y-axis; a prime
denotes differentiation with respect to the coordinate).
A static 180° domain wall, in which the function ϕ0(y)
satisfies the boundary conditions

is described by the relations

(8)

where y0 = (α/β1)1/2 is the thickness of the domain wall.

3. PERTURBATION THEORY

To analyze the motion of a domain wall in the field
of a sound wave we shall use, following [9–11], a ver-
sion of perturbation theory for solitons, assuming the
amplitude of the sound wave to be sufficiently small.
We shall determine the collective variable Y(r⊥ , t) as the
local coordinate of the center of the domain wall (i.e.,
the points y = Y(r⊥ , t), where ϕ0 = π/2) at an arbitrary
time t and we shall seek the solution of the equations of
motion in the form

(9)

where ξ = y – Y(r⊥ , t), r⊥  = (x, z), and the indices n =
1, 2, … indicate the order of smallness of the quantity
with respect to the amplitude of the sound wave. The
function ϕ0(ξ) has the same structure as the static solu-
tion ϕ0(y) (8), and the terms ϑn and ψn (n = 1, 2, …)
describe the distortion of the shape of a domain wall as
a result of excitation of spin waves accompanying the
interaction of the domain wall with a sound wave.

We note that when a sound wave propagates perpen-
dicular to the plane of the domain wall [9] (i.e., for kx =
kz = 0, ky ≠ 0) the flexural distortions of the domain
wall, which are associated with the dependence of the
position of the center of the wall on the transverse coor-
dinate r⊥ , are absent, Y = Y(t), and the distortions of the
form of the domain wall are due only to the excitation
of spin waves. However, in the case considered in the
present paper, where waves propagate in the plane of
the domain wall (ky = 0, kx ≠ 0, kz ≠ 0), the local position
of the center of the domain wall depends not only on
time but also on the transverse coordinate r⊥ , Y =
Y(r⊥ , t).
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We shall determine the drift velocity of a domain
wall as the average value of the instantaneous velocity

V(r⊥ , t) = (r⊥ , t) over a period of the oscillations, Vdr =

 (the bar denotes averaging over a period of the
sound wave).

Assuming the sound wave propagating parallel to
the plane of the domain wall to be monochromatic with
frequency ω, u(r⊥ , t) = u0exp(ikr⊥  – iωt), and setting
Y = Y1 + Y2 +…, the equations of the first approxima-
tion in the amplitude u0 of the sound wave can be writ-
ten in the form

(10)

(11)

where ∆⊥  = ∂2/∂x2 + ∂2/∂z2, σ = (β2 – β1)/β1, and ω0 =
c/y0 is the frequency of activation of the lower branch
of the volume spin waves, ωr = λδgM0/4 is the charac-
teristic relaxation frequency, k is the wave vector of the
sound wave, k = |k | = ω/s, and s is the speed of the
wave.

The operator  has the form of the Schrödinger
operator with a nonreflective potential:

(12)

The spectrum and wave functions of the operator 
(12) are well known. The spectrum possesses one dis-
crete level with eigenvalue λ0 = 0, which corresponds to
the localized wave function

(13)

and a continuous spectrum λp = 1 + p2 , which corre-
sponds to the eigenfunctions

(14)

where bp =  and L is the length of the crystal.
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The functions {f0, fp} form a complete orthonormal
set, and it is natural to seek the solutions of the equa-
tions of the first approximation (10) and (11) in the
form of an expansion in terms of this set:

(15)

(16)

The following important circumstance should be
noted here. The equations of the first approximation
(10) and (11) describe the excitation of linear spin
waves against the background of a domain wall. The
last term in the expansion in the function ψ1(ξ, r⊥ , t)
corresponds to a shear (goldstone) mode, i.e., the
motion of a domain wall as a whole. However, the cor-
responding degree of freedom of the system has already
been taken into account by introducing the collective
coordinate Y(r⊥ , t) in the definition of the variable ξ.
Consequently, the shear mode in the expansion (16)
must be dropped, i.e, we must set d0 = 0 (see the mono-
graph [12] for a discussion of this question).

The coefficients in the expansions (15) and (16) are
found in the standard manner by multiplying the right-
hand side of Eqs. (10) and (11) by  or  and inte-
grating over the variable ξ. For a monochromatic sound
wave u = u0cos(ωt – kr⊥ ) with frequency ω we obtain
from Eqs. (10) and (11)

(17)

(18)

Here we have introduced the notation

ϑ 1 ξ r⊥ t, ,( )

=  Re cp f p ξ( ) c0 f 0 ξ( )+
p

∑ ikr⊥ iωt–( )exp
 
 
 

,

ψ1 ξ r⊥ t, ,( )

=  Re dp f p ξ( ) d0 f 0 ξ( )+
p

∑ ikr⊥ iωt–( )exp
 
 
 

.

f p* f 0*

ψ1 ξ r⊥ t, ,( ) γ
β1
-----Re ax ϕ0 ξ( )cos[{=

+ az ϕ0 ξ( ) ] ikr⊥ iωt–( ) } ,expsin

ϑ 1 ξ r⊥ t, ,( ) γ
β1
-----=

× Re b1B ξ( ) b2G1 ξ( )+[ ] ikr⊥ iωt–( )exp{ } .

ax

ikxu0y

1 σ q1– iq2–+
-------------------------------------, az

ikzu0y

σ q1– iq2–
---------------------------,= =

b1 iB ξ( ) kzu0z kxu0x–( ),=

b2 iG1 ξ( ) kzu0x kxu0z+( ),–=

B ξ( )
y0

2
----

ξ /y0( )tanh pξ( )cos py0 pξ( )sin+
λ p q1– iq2–( ) πpy0/2( )cosh

----------------------------------------------------------------------------------d p,

∞–

∞

∫=
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where q1 = (ω/ω0)2 and q2 = ωωr/ .

The condition d0 = 0 determines the equation for the
velocity of the domain wall in an approximation linear
in the field Y1(r⊥ , t):

(19)

Since the right-hand side of Eq. (19) is zero,
Eq. (19) possesses only a trivial solution (we are inter-
ested only in forced solutions of the equations of
motion). Thus, in an approximation linear in the wave
amplitude sound does not give rise to motion of the
domain wall, but rather it leads only to excitation of
localized and nonlocalized spin waves, which is
described by the expressions (17) and (18). We note
that a similar result—absence of forced motion of a
domain wall in the linear approximation—also occurs
for propagation of a sound wave perpendicular to the
plane of the wall [9].1

We shall now analyze the equations of the second
approximation in the amplitude of the acoustic wave.
Taking account of the solutions found above for the
equations of the first approximation (10) and (11), the
second-approximation equation for the function ψ2(ξ, t)
can be put into the form

(20)

The second-approximation equation for the func-
tion ϑ2(ξ, r⊥ , t) does not contain a second-order term in

1 The experimentally observable oscillations of a domain wall in
ferromagnets [8] under the action of a sound wave are due to the
nonuniformity of the wall, specifically, the presence of Bloch
lines in it. A sound wave gives rise to oscillations of Bloch lines,
and the gyrotropic forces exerted by the latter result in oscilla-
tions of the entire domain wall.

G1 ξ( )
y0

2
----

ξ /y0( )tanh pξ( ) py0 pξ( )cos–sin
λ p q1– iq2–( ) πpy0/2( )sinh

---------------------------------------------------------------------------------d p,

∞–

∞

∫=

ω0
2

∆⊥ Y1–
1

c2
----

∂2Y1

∂t2
----------- λ

αgM0
--------------

∂Y1

∂t
---------+ + 0.=

L̂ψ2 ξ r⊥ t, ,( ) ∆⊥ Y2–
1

c2
----

∂2Y2

∂t2
----------- λ

αgM0
--------------

∂Y2

∂t
---------+ +

 
 
 

=

× y0 ϕ0

∂Y1

∂x
--------- 

 
2 ∂Y1

∂z
--------- 

 
2 V1

c
------ 

 
2

–+
2ϕ0sin
2

-----------------+sin

+
y0

2

c2
----V1ψ̇1' ξ r⊥ t, ,( ) 2y0ϑ 1 ξ r⊥ t, ,( )ϑ 1' ξ r⊥ t, ,( ) ϕ0sin–

+ ψ1
2 ξ r⊥ t, ,( ) 2ϕ0

γ
β1
-----Re 2 kxu0x kzu0z–( )[{+sin

× ψ1 ξ r⊥ t, ,( ) 2ϕ0 kxu0y ϕ0 kzu0y ϕ0cos–sin( )–cos

× ϑ 1 ξ r⊥ t, ,( ) 2 kzu0x kxu0z+( )+

× ψ1 ξ r⊥ t, ,( ) 2ϕ0 ] ikr⊥ iωt–( ) } .expsin
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the expansion of the collective coordinate Y2, and con-
sequently it will be of no interest to us below.

The solution of Eq. (20) can once again be sought as

an expansion in the eigenfunctions of the operator ,
similar to Eq. (16). Just as for the first-approximation
equations, we must require that the expansion coeffi-

cient , corresponding to a shear mode, must vanish.
Consequently, to calculate the velocity of the domain
wall there is no need to find the complete solution of

Eq. (20); it is sufficient to calculate the coefficient 
and equate it to zero. The result is an equation for the
function Y2(ξ, r⊥ , t), which, using the solutions (17) and
(18), can be put into the form 

(21)

where

(22)

The explicit form of the coefficients N1 and N2,
whose structure is similar to that of Eq. (22) but is more
complicated, is not presented here, since on subsequent
averaging of the solution of Eq. (21) the terms with N1
and N2 vanish.

The Eq. (21) describes the dynamics of a domain
wall in second-order perturbation theory in the ampli-
tude of the sound wave.

4. DRIFT OF THE DOMAIN STRUCTURE

The relations (21) and (22) describe periodic oscil-
lations of the wall and the drift motion of the domain
boundary, the effect of interest to us. Integrating
Eq. (21) and averaging the obtained solution over a
period of the sound wave, we obtain the desired drift

velocity of the domain wall Vdr =  = :

(23)

L̂

d0
2( )

d0
2( )

∆⊥ Y2–
1

c2
----

∂2Y2

dt2
----------- λ

αgM0
--------------

∂Y2

∂t
---------+ +

 
 
 

=  N N1 2iωt( )exp N2 2iωt–( ),exp+ +

N Re dξ ϕ0

V1y0
2

c2
-----------ψ'˙– 2yϑ 1ϑ 1' ϕ0sin+





sin

∞–

∞

∫=

– ψ1
2 2ϕ0 2 kxu0x kzu0z–( )ψ1 2ϕ0cos[–sin

+ 2 kzu0x kxu0z+( )ψ1 2ϕ0 kxu0yϑ 1 ϕ0sin–sin

+ kzu0yϑ 1 ϕ0 ] iγ
β1
----- 

  ikr⊥ iωt–( )exp




.cos

V2 ∂Y2/∂t

Vdr µt ω( )kxkzu0y
2=

+ µl ω( )[kxkz u0z
2 u0x

2–( ) u0xu0z kz
2 kx

2–( )] ,+
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where µt and µl are the nonlinear mobilities of the
domain wall in the field of an acoustic wave:

(24)

µ0 = ν0δ(γM0)2/4β1, ν0 = πy0g2/4ωr is the characteristic
nonlinear mobility of the domain wall in a weak ferro-
magnet in an ac magnetic field [11], and η is a numeri-
cal factor of the order of 10–3.

We note that the characteristic frequency depen-
dence of the nonlinear mobilities µt and µl, just as that
of the characteristic quantities determining the drift of
a domain wall in an oscillating magnetic field [11], is of
a resonance character at the frequencies ω0, ω0(1 +
σ)1/2, and ω0σ1/2. The first two frequencies correspond
to the activation frequencies of volume spin waves in a
weak ferromagnet, and the third frequency corresponds
to the activation frequency of a spin wave localized on
the domain wall.

For a sound wave propagating perpendicular to the
plane of the domain wall [9] the nonlinear mobilities
µij(k) possess a somewhat different dependence on the
frequency and the parameters of the weak ferromagnet.2

In the long-wavelength approximation (ky0 ! 1)

(25)

i.e., µij ∝  ω2, and in the short-wavelength approxima-
tion (ky0 @ 1)

(26)

and the velocity Vdr ∝  ω–2.
We shall now examine in greater detail the depen-

dence of the drift velocity on the polarization of the
sound wave. We note that the frequency ω and the com-
ponents of the vector k which appear in Eqs. (23) and
(24) are not independent; they are related with one
another by the standard dispersion law for sound waves
ω = sk, k = |k |, where the sound speed s is different for
longitudinal and transverse waves.

2 The corresponding expressions for the nonlinear mobility for a
wave propagating perpendicular to the plane of the domain wall,
which are presented in [9], are not exact and, consequently, they
differ from the expressions presented above.

µt ω( ) µ0

q2
2

1 σ q1–+( )2 q2
2+[ ] σ q1–( )2 q2

2+[ ]
-------------------------------------------------------------------------------------

 
 
 

,–=

µl ω( ) µ0
πη
8

------- 1

1 q1–( )2 q2
2+

-------------------------------- 
  ,=

µxx

µ0
-------

π
2
---

ky0q2

σ 1 σ+( )2
-----------------------,

µzz

µ0
------

2ky0q2

σ2 1 σ+( )
-----------------------,= =

µxz

µ0
-------

ky0( )2

σ 1 σ+( )
--------------------- σ 1

2
--- 1

π
--- 1

3π 1 σ+( )
------------------------+ + 

  π
3
---– ,=

µxx

µ0
-------

8
3π
------

q2

ky0( )5
---------------,

µzz

µ0
------–

4
3π
------

q2

ky0( )5
---------------,–= =

µxz

µ0
------- 1

2
--- 4

π
---+ 

  1

ky0( )4
---------------–=
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Since the wave propagates in the plane of the wall,
i.e., in the (xz) plane, we set k = (kx, 0, kz) = k(cosϕs, 0,
sinϕs). The following polarizations of the sound wave
are possible:

(1) A transverse wave with the displacement vec-
tor perpendicular to the plane of the wall. For it u =
u0(0, 1, 0), and the drift velocity at a prescribed fre-
quency of sound can be represented as

(27)

where kt = ω/st and st is the speed of transverse sound.

(2) A transverse sound wave with displacement vec-
tor lying in the plane of the wall, u = u0(−sinϕs, 0, cosϕs).
In this case the drift velocity is given by the expression

(28)

(3) A longitudinal wave, for which u =
u0(cosϕs, 0, sinϕs). In the field of this wave we have

(29)

Here kl = ω/sl, where sl is the speed of longitudinal
sound. 

For comparison, we note that for a sound wave
propagating perpendicular to the plane of the domain
wall [9], the wall can drift only if the polarization of the
wave is transverse.

We now present some numerical estimates, using
the parameters of the well-studied weak ferromagnet
YFeO3 [13]: M0 ≈ 103 Oe, y0 = 10–6 cm, g ≈ 1.76 ×
107 s−1 Oe–1, γ  ≈ 107 erg/cm3, ω0 = c/y0 ≈ 2 × 1012 s–1,
ωr ≈ 0.7 × 1010 s–1, and the nonlinear mobility of the
domain wall in a magnetic field ν0 ≈ 3.5 × 10–2 cm/(s Oe2)
[11]. It is found that for all reasonable values of the fre-

quency q2 = (ωωr/ ) ~ 10–15ω ! 1, and consequently

the nonlinear mobility in a transverse wave µt ~  in
Eq. (24) is negligibly small at all frequencies except
resonance frequencies. At the resonance frequencies
ω1 = ω0σ1/2 and ω2 = ω0(1 + σ)1/2, which coincide with
the activation frequencies of the localized and the top
volume spin-wave branches, respectively, for the max-
imum admissible value of the deformation tensor ku0 ~
10–5 we obtain the following value for the drift veloc-
ity (27):

In the field of a longitudinal sound wave outside the
resonance region

Vdr
1
2
---µt ω( ) ktu0( )2 2ϕ s,sin=

Vdr
1
2
---µl ω( ) ktu0( )2 4ϕ s.sin=

Vdr
1
2
---– µl ω( ) klu0( )2 4ϕ s.sin=

M0
2

ω0
2

q2
2

Vdr ω ω1 2,≈( ) µ0 ku0( )2 cm/s 10 1–  cm/s.≈∼

Vdr µl ku0( )2 10 4–  cm/s.∼ ∼
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Near the activation frequency of the bottom branch
of volume spin waves the nonlinear mobility µl pos-
sesses a “resonance–antiresonance” singularity. The
drift velocity reaches the maximum value

Comparing our results with the results obtained in
[9] shows that in order of magnitude the drift of a
domain wall is somewhat greater when the sound wave
propagates perpendicular to the plane of the domain
wall. However, if the wave propagates along the plane
of the domain wall, drift is also possible in the field of
a longitudinal sound wave. The highest value of the
drift velocity should be expected in magnets possessing
a high magnetoelastic coupling constant and small sat-
uration magnetization, damping, and anisotropy.

Our results agree qualitatively with the theoretical
calculations of [2, 3], where the interaction of a trans-
verse sound wave with a domain wall in a single-sub-
lattice ferromagnet was studied using an approach with
an abbreviated description of the dynamics of the
domain wall.

In conclusion, we note that in the field of a sound
wave propagating parallel to the plane of a domain wall
(as in the case of a sound wave propagating orthogo-
nally to the plane of a domain wall [9]) drift motion of
not only a single domain wall but also a plane-parallel
domain structure is possible. For this, a definite match-
ing of the direction of rotation of the vector l of the anti-
ferromagnet in neighboring domain walls is necessary.

We now introduce the topological charge of a
domain wall lz(±∞) =  and a parameter describing
the direction of rotation of the vector l on the wall
lx(y = 0) = ρ, assuming the value +1 or −1 (the magne-
tization distribution on the 180° domain wall (8) stud-
ied above corresponds to the values R = ρ = +1). In gen-
eral the drift velocity of a domain wall with given val-
ues of the parameters R and ρ is determined by the
formula

(30)

Since the neighboring domain walls possess oppo-
site values of the topological charge R, for drift of a
striped domain structure formed by such walls the
parameters ρ on neighboring domain walls also must be

Vdr ω ω0≈( ) ηµ0

ω0

ωr

------ 
 

2

ku0( )2 1 cm/s.∼ ∼

R+−

Vdr ρR µt ω( )kxkzu0y
2{=

+ µl ω( ) kxkz u0z
2 u0x

2–( ) u0xu0z kz
2 kx

2–( )+[ ] } .
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different. In other words the vector l must have opposite
orientations on neighboring domain walls and the
direction of rotation must be the same (this question is
discussed in greater detail in [9]). As one can see from
Eq. (30), drift of a domain structure is possible in trans-
verse and longitudinal sound waves propagating paral-
lel to the plane of a domain wall. 
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Abstract—The properties of phase transitions in two-dimensional and layered systems are investigated on the
basis of a discrete φ4 model by numerical and analytical methods. The only parameter a of the discrete φ4 model
determines the behavior of the system and makes it possible to investigate phase transitions ranging from tran-
sitions of the displacement type (a  +0) to order–disorder type (a  +∞). The behavior of a two-dimen-
sional system is investigated in a wide range of values of the parameter a. The temperature dependences of the
squared order parameter η2(T) and the phase transition temperature Tc as a function of the thickness N of the
system are obtained for three characteristic values of the parameter a using the Monte Carlo method. The prop-
erties of phase transitions in the discrete φ4 model are investigated on the basis of the mean-field approximation
and the independent-mode approximation. The results obtained in the numerical experiments are compared
with the analytical approximations. It is shown that the mean-field approximation qualitatively describes the
behavior of the phase-transition temperature Tc as a function of the thickness N of the system for a wide range
of values of the parameter a, and the independent-mode approximation describes quantitatively, to within 5%,
the results of the numerical simulation for small values of a. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The so-called structural phase transitions form an
important class of phase transitions in physical systems.
The main property of these transitions is the change in the
point symmetry group of the medium at the phase-transi-
tion point [1]. Among physical objects with structural
phase transitions, ferromagnets and ferroelectrics have
been investigated most widely both theoretically and
experimentally.

Order–disorder phase transitions are observed in
most ferromagnetic materials. Transitions of this type
can be studied on the basis of the following consider-
ations. Let an element of the unit cell have several (for
example, two) possible positions. Then at a temperature
above the transition point the magnetic moment can
occupy with equal probability both possible positions,
and at a temperature below the phase-transition point
the average number of atoms in one state becomes
greater than in the other state [2].

At the same time displacement- and mixed-type
transitions are observed in ferroelectric materials. In
these cases the position of the charged ions in a unit cell
changes continuously. A displacement-type transition
is a collective phenomenon, in which a lattice consist-
ing of atoms of one kind is displaced relative to a lattice
consisting of atoms of another kind [2]. In systems with
displacement-type transitions phonons are well-sub-
stantiated quasiparticles, and the phase transition itself
is due to the appearance of a soft mode in the struc-
ture—a mode whose frequency vanishes at the transi-
tion point. This criterion is convenient from the experi-
1063-7761/00/9106- $20.00 © 21204
mental standpoint because the phonon spectrum is rel-
atively easy to measure [3, 4]. We note that in some
ferroelectric materials the properties of the observed
phase transitions are close to those of order–disorder
transitions [5–7] or to mixed-type transitions, which
strictly cannot be classified as order–disorder or dis-
placement type transitions [8].

The properties of phase transitions in two-dimen-
sional and layered ferromagnetic films are being widely
investigated experimentally [9–11] and theoretically
[12–16]. At the same time the question of the properties
of two-dimensional and layered ferroelectric systems
has not been adequately studied theoretically. Such sys-
tems have recently been obtained experimentally in
Langmuir ferroelectric films based on the polymer
P(VDF-TrFE 70:30) [17, 18]. Experimental investiga-
tions of the properties of thin Langmuir films are now
being performed using dielectric measurements [17–19]
and nonlinear-optical methods [20, 21]. For example,
experiments investigating structures with various thick-
nesses are described in [17]. It can be concluded from
the data obtained that the phase transition temperature
decreases as the number of layers in the system
decreases. These works show that a detailed investiga-
tion of the microscopic models describing phase transi-
tions in thin ferroelectric films are needed.

One of the most often used microscopic models for
describing phase transitions in ferroelectric systems is
the so-called discrete φ4 model [22]. The system stud-
ied in this model is a collection of classical anharmonic
2–4 oscillators with harmonic interaction with nearest
000 MAIK “Nauka/Interperiodica”
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neighbors. Thus the potential energy of the lattice is
written in the form [22, 23]

(1)

where xn is the one-dimensional displacement of the
nth element of the lattice; A, B, and C are parameters of
the model; σnn' becomes 1 for nearest neighbors and 0
in other cases. A phase transition exists in the system
for any A, B, C > 0. In this model the quantity η = 〈xn〉 ,
which vanishes at temperatures above the phase transi-
tion point and is different from zero otherwise, is the
order parameter.

Using appropriate scales for the energy and the
coordinates, V can be written in a form containing only
the parameter a = A/C, which completely determines
the behavior of the system:

(2)

(energy is measured in the units CA/B and the coordi-

nate is measured in the units ). For the system (2)
the order parameter η = 〈xn〉  at zero temperature is one.
The value of the parameter a determines the type of tran-
sition: as a  +0 displacement-type phase transition
occurs in the system and as a  +∞ an order–disorder
type transition occurs [24]. In the latter case the φ4 model
transforms into the Ising model. The dimensionless
transition temperature is a function of the parameter a.

Universal properties of the φ4 model are well
known–the values of the critical exponents describing
the behavior of the basic physical quantities near phase-
transition points [22].

The phase-transition temperatures Tc in limiting cases
can be obtained for systems with various dimensions from
the Ising model (a  +∞) [22, 25] and the approxima-
tion of independent phonon modes (a  +0) [22].

For small values of the parameter a the dependence
η2(T) is nearly linear virtually up to Tc, i.e., it can be
described using Landau’s phenomenological theory.
However, even for a ≈ 10 the critical behavior η(T) ∝
(Tc – T)β extends to temperatures comparable to Tc

[26, 27]. For small values of a the discrete φ4 model is
a lattice analog of the field φ4 model. In this context the
behavior of the coupling constant for the 1D and 2D
cases was investigated in [28, 29] numerically and ana-
lytically in the φ4 model. In [30] the φ4 model was
investigated for a 2D lattice. Numerical simulation gave
the dependences of the specific heat, energy, magnetiza-
tion, and susceptibility as functions of two parameters of
the model [30]. In addition the phase diagram was
obtained in [30] by a numerical method. New applica-
tions of the Monte Carlo method have been studied for
the 2D lattice of the φ4 model [31, 32].
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4
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2
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2
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n
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a
4
--- xn
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n

∑ 1
2
--- xn xn'–( )2σnn'

n n',
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We note that, even though extensive investigations
of the φ4 model have been performed, the question of
the properties of the model in a wide range of values of
the parameter a (from a  +0 to a  +∞) for 2D
lattices remains open. The three-dimensional case was
recently studied in [33]. There the discrete φ4 model for
a 3D lattice was investigated numerically and analyti-
cally. The Monte Carlo method was used to obtain the
phase transition temperature Tc as a function of the
order parameter a of the model, which in the limits
a  +∞ and a  +0 is identical to the well-known
asymptotics of order–disorder and displacement transi-
tions, respectively (see table). The simplest mean-field
approximation was used as an analytical approximation
to describe the numerical results, and an analytical
scheme, which is a combination of the mean-field and
independent-modes approximations, which describes
to a high degree of accuracy the numerical results for a
wide range of values of the model parameter a was pro-
posed.

Layered systems have not been studied on the basis
of the discrete φ4 model. Such investigations have been
confined only to the Ising model, in the first place
because of the simplicity of the model and, in the sec-
ond place, in view of their urgency because of the
experiments being performed with thin ferromagnetic
films [9, 10]. The Ising model is a typical microscopic
model for describing order–disorder type transitions
[1, 34]. The first investigations of layered systems in
the Ising model were published quite a long time ago
[35–38]. Numerical methods and the mean-field approx-
imation were used in these works. In addition the effect
of the interaction in the surface layers of the structures on
the phase-transition temperature was investigated in the
works indicated. However, there is still great interest in
studying layered systems in the Ising model [12–16].
New analytical approximations are being proposed and
discussed in detail [12, 13, 15], and the effect of various
types of lattices and the properties of the spin (Ising or
Heisenberg) on the phase-transition temperature is being
investigated [16] and the behavior of the effective critical
exponents in the entire temperature range (from 0 up
to Tc) is being studied [14].

In the present paper the results of investigations of
the properties of two-dimensional and layered struc-
tures by numerical and analytical methods on the basis
of the discrete φ4 model, for which the Ising model is
one of the limits (a  +∞), are presented. Attention
is devoted primarily to the following: first, the study of
the behavior of the main parameters for a wide range of
values of the parameter a; second, the study of layered

Table

Dimension 3D 2D 1D

Tc(a  +0) 2.64 Tens to zero Does not exist

Tc(a  +∞) 9.02 4.53 Does not exist
SICS      Vol. 91      No. 6      2000



1206 SAVKIN, RUBTSOV
systems in the context of the discrete φ4 model; and,
third, comparison of the results of an investigation
which were obtained by numerical and analytical meth-
ods. The main parameters of the model (the order
parameter η = 〈xn〉  and the phase-transition temperature
Tc) are studied as a function of the number N of layers
in the system under study for various values of the
parameter a. The investigation is performed on the
basis of Monte Carlo simulation (Section 2) and using
very simple analytical mean-field and independent-modes
approximations (Section 3). The analytical schemes pre-
sented are discussed as a method of describing the
results obtained by numerical methods.
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Fig. 1. Temperature dependence of the squared order
parameter for a 2D lattice in a wide range of values of the
parameter a of the discrete φ4 model. The curves were
obtained by numerical simulation. The extreme left-hand
dependence corresponds to a = 0.98 and the extreme right-
hand dependence corresponds to a = 4000. Between neigh-

boring curves the parameter a differs by a factor of .2

0
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lna

Tc

2 4 6 8

2
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5

Fig. 2. Phase transition temperature Tc versus the parameter
a of the discrete φ4 model for a 2D lattice. The data were
obtained from Fig. 1. The horizontal straight line corre-
sponds to the transition temperature of the 2D Ising model:
Tc = 4.53.
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2. NUMERICAL SIMULATION

Monte Carlo simulation on the basis of the discrete
φ4 model was performed for various values of the
parameter a, determining the type of phase transition,
and for systems of various thicknesses. To this end it is
convenient to use the expression in the form (2) for the
potential energy.

Numerical experiments were performed on a 15 ×
15 × N lattice of atoms, where N determines the thick-
ness of the system; N = 1 corresponds to the 2D case.
Periodic boundary conditions were used for the first
two directions, and free boundary conditions were used
for the third direction, determining the thickness of the
system. The effect of the finiteness of the size of the
atomic lattice in the Monte Carlo simulation, for exam-
ple, for the 3D case, can be found in [33]. The number
of averages for each lattice element far from a phase-
transition point (with respect to temperature) was 5000,
while for temperatures close to the transition tempera-
tures the number of averages was taken to be 15000.
For large values of the parameter a, with probability 0.1
the so-called “magic” displacements were used, which
change the sign of the coordinate xn, so that the system
under study could reach thermodynamic equilibrium
quite rapidly. Standard criteria were used to analyze the
displacements xn for each atom.

The squared order parameter was determined as

(3)

where

is the Fourier transform of the displacement xn and N*
is the total number of atoms in the lattice. Taking
account of the first harmonic in the expression for the
squared order parameter makes it possible to decrease
the magnitude of the fluctuations at high temperatures
and near a phase transition.

The behavior of the order parameter for various val-
ues of the parameter a was investigated for a 2D lattice
and for layered systems. For definiteness the tempera-
ture dependences of the squared order parameter for a
2D lattice are presented in Fig. 1. The model parameter
a varies from 4000 (extreme right-hand dependence) to
0.98 (extreme left-hand dependence). Between neigh-
boring dependences the parameter a differs by a factor

of . The dependence of the phase transition temper-
ature on the parameter a was determined from the
dependences obtained (Fig. 2). The horizontal line
shows the asymptotics for the 2D Ising model. The
phase transition temperature Tc was determined as the
inflection point of the function η2(T) or, which is the
same thing, as the minimum of the first derivative. The
correctness of this criterion can be checked by chang-
ing the lattice dimensions. If Tc does not change as the

η2 X0
2 X1

2–〈 〉 ,=

Xk
1

N*
----------- xn ikn( )exp

n

∑=

2

 AND THEORETICAL PHYSICS      Vol. 91      No. 6      2000



TWO-DIMENSIONAL AND LAYERED STRUCTURES 1207
size of the system increases, then the transition temper-
ature determined in this manner has the correct value.
Figure 3 shows results for a case close to the 2D Ising
model (a = 4000). The transition temperature deter-
mined in this manner does not change as the lattice size
is doubled and it agrees well with the known value of
the transition temperature for the 2D Ising model.
These assertions are valid for a wide range of values of
the parameter a of the discrete φ4 model.

2
–1.6

T

dη2/dT

3 4 5 6 7

–1.2

–0.8

–0.4

0

Tc

Fig. 3. Temperature dependences of the derivative of the
squared order parameter, which were obtained using the
Monte Carlo simulation for the 2D lattice. The parameter of
the discrete φ4 model a = 4000. Two dependences corre-
sponding to different sizes of the atomic lattices are shown:
open circles—15 × 15 atoms, filled circles—30 × 30 atoms.
The phase transition occurs at the point where the derivative
has a minimum value. The transition temperature deter-
mined in this manner (indicated by the arrow) is 4.6 and
remains unchanged as the lattice size increases. The exact
value of the transition temperature in the 2D Ising model is
4.53 [22].
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Fig. 4. Temperature dependences of the squared order
parameter obtained by Monte Carlo simulation for layered
systems. The parameter of the discrete φ4 model a = 0.98.
Six curves corresponding to system thickness N = 1, 2, 3, 4,
5, and 6 layers are shown. The extreme left-hand curve cor-
responds to a single-layer system and the extreme right-
hand curve corresponds to a six-layer system.
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Numerical experiments for layered structures were
performed with systems with N = 1, 2, 3, 4, 5, and 6 lay-
ers. The dependence Tc(a) for the 3D case has a mono-
tonic form with two asymptotic forms for small (~1)
and large (~3000) parameters a. The values of the tem-
peratures Tc in the indicated asymptotic forms are 2.64
and 9.02, respectively (see table). The system for the
2D case (Fig. 2) also shows a similar behavior but with
asymptotics 0 and 4.53 for small and large values of the
parameters a, respectively (see table). The case of small
parameters a (a < 1) has already been investigated (see,
e.g., [30]). In the present work three characteristic val-
ues of the parameter a were chosen, close to the lower
and upper asymptotics, corresponding to displacement
and order–disorder type transitions, respectively, as
well as for an intermediate case. The values considered
for the parameter a are 0.98, 44.2, and 4000 (Fig. 2); the
data for the 3D systems with such parameters are pre-
sented in [33].

The results of numerical experiments for three val-
ues of the parameter a and systems with various thick-
nesses are presented in Figs. 4–6. These figures show the
temperature dependences of the squared order parameter.
The dependences in Fig. 4 correspond to the case of dis-
placement-type phase transitions and the dependences in
Fig. 6 correspond to order–disorder transitions. The phase
transition temperatures Tc were determined from the
curves obtained in the manner described above. The
results are presented in Fig. 7. This figure shows the
dependences of the phase transition temperatures as a
function of the number of layers in the system for the
corresponding parameters a of the discrete φ4 model
(dark symbols). The transition temperatures indicated
by the horizontal lines for the 3D case are taken from
[33] for each parameter a considered.
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Fig. 5. Temperature dependences of the squared order
parameter obtained by Monte Carlo simulation for layered
systems. The parameter of the discrete φ4 model a = 44.2.
Six curves are shown in the system, corresponding to system
thickness N = 1, 2, 3, 4, 5, and 6 layers. The extreme left-hand
curve corresponds to a single-layer system, and the extreme
right-hand curve corresponds to a six-layer system.
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As shown above, the case a = 4000 corresponds to
order–disorder transitions. This assertion can be sub-
stantiated as follows. In the first place the transition
temperature for a = 4000 is identical to the known value
of the transition temperature for the 2D Ising model
(Fig. 2). In the second place, as noted in the introduc-
tion, it is sufficient to investigate layered systems in
detail for the Ising model [14–16]. This makes it possi-
ble to compare with our results. Figure 8 shows three
dependences

two of which are taken from the literature [14, 39]
while the third corresponds to data for a = 4000 from
Fig. 7. It is evident that the results for a = 4000 agree,
to a high degree of accuracy, with the results obtained
previously for the Ising model. This makes it possible
to talk in this case about order–disorder type phase
transitions.

3. ANALYTIC APPROXIMATIONS
The mean-field and independent-modes approxima-

tions on the basis of the discrete φ4 model are considered
as the analytic approximations. These analytic schemes
have been well studied for the 3D and 2D cases. Exten-
sions of these analytic approximations to the case of
layered systems, which we studied, in the discrete φ4

model will be used below.

3.1. Mean-Field Approximation

In the mean-field approximation the real interaction
of the particles is described by the mean field acting on
each particle. This field is independent of the positions

f N( ) 1
Tc N( )

Tc 3D Ising,( )
--------------------------------–=
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Fig. 6. Temperature dependences of the squared order
parameter obtained by Monte Carlo simulation for layered
systems. The parameter of the discrete φ4 model a = 4000.
Six curves are shown in the system, corresponding to system
thickness N = 1, 2, 3, 4, 5, and 6 layers. The extreme left-hand
curve corresponds to a single-layer system, and the extreme
right-hand curve corresponds to a six-layer system.
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of the particle and its immediate environment. The crux
of this analytic scheme is that the fluctuations of the
resulting force acting on each particle are neglected [2].

We shall consider this approximation for the dis-
crete φ4 model. In this case the introduction of a mean
field consists of replacing the sums over n and n' in the

3D-

3D-

3D-

0
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Fig. 7. Phase transition temperatures versus the system
thickness. The curves obtained from the curves presented in
Figs. 4–6 at the points of the minimum of the derivative
(filled symbols) and from a calculation in the mean-field
approximation (open symbols). The circles correspond to
the model parameter a = 0.98, the squares correspond to a =
44.2, and the triangles correspond to a = 4000. The horizon-
tal lines indicate that 3D limits for each of the three model
parameters, taken from [33].
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Fig. 8. The function f(N) = 1 –  versus the

thickness of the system N. Circles are data from [14],
crosses are data from [39], and triangles are results obtained
in the present work for the parameter a of the discrete φ4

model, equal to 4000.
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TWO-DIMENSIONAL AND LAYERED STRUCTURES 1209
last term of the potential energy (2) by the expression
E xn, where

E = 4dη (4)

is the mean-field considered (d is the dimension of the
system). The order parameter η can be calculated as an
ordinary thermodynamic average:

(5)

where

(6)

The equations (4)–(6) determine the self-consistent
system, whose solution is the temperature dependence
of the order parameter η(T) or the temperature depen-
dence of the mean field E(T). The phase transition tem-
perature is determined at the point Tc , where η(Tc) = 0.
Since near a phase-transition point the order parameter
η assumes its minimum values, the transition tempera-
ture Tc can be obtained by expanding the right-hand

n∑

η xn〈 〉
x V E x,( )– /T( )exp xd∫

V E x,( )– /T( )exp xd∫
-----------------------------------------------------,= =

V E x,( ) 2d
a
2
---– 

  x2 a
4
---x4 Ex.–+=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
side of Eq. (5) in a series in this small parameter. The
dependences of the transition temperature on the
parameter a Tc(a) for the discrete φ4 model are mono-
tonically increasing curves with two asymptotic values
for large and small parameters a as a function of tem-
perature: 12 and 4 for the 3D case and 8 and 2.5 for the
2D case. These results can be compared with the exact
results from the table. In the mean-field approximation
a phase transition exists even in the one-dimensional
case, while in reality the fluctuations destroy the order
in any one-dimensional systems with short-range
action [1]. It should be noted that the mean-field approxi-
mation, for example, for the 3D case of the discrete φ4

model, repeats qualitatively correctly the dependence
Tc(a). However, this approximation gives a systematic
identical quantitative error for all values of the parame-
ter a.

Various variants of the mean-field approximation have
been used in the literature for layered systems [15, 16]. We
shall employ the following approximation for multi-
layer structures. We shall assume that the order param-
eter depends on the number N of layers. Then according
to Eq. (5) the quantity 〈xn(n)〉  can be expressed as
(7)xn n( )〈 〉
x V xn n( ) xn n( )〈 〉 xn n 1–( )〈 〉 xn n 1+( )〈 〉, , ,( )/T–[ ]exp xd∫

V xn n( ) xn n( )〈 〉 xn n 1–( )〈 〉 xn n 1+( )〈 〉, , ,( )/T–[ ]exp xd∫
-----------------------------------------------------------------------------------------------------------------------------------------,=
where the potential energy V(xn(n), 〈xn(n)〉 , 〈xn(n – 1)〉 ,
〈xn(n + 1)〉) is determined by the expression

(8)

The constant α is determined according to the number
of nearest neighbors for the layer with number n:

(9)

Here it is assumed that 〈xn(n)〉  = 0, if n > N or n < 1. For
definiteness we shall write the system of equations for
a lattice consisting of three layers:

V xn n( ) xn n( )〈 〉 xn n 1–( )〈 〉 xn n 1+( )〈 〉, , ,( )

=  α a
2
---– 

  xn
2 a

4
---xn

4 8 xn n( )〈 〉 xn–+

– 2 xn n 1–( )〈 〉 xn n 1+( )〈 〉+( )xn.

α
5, n 1 N,=

6, n 1 N .,≠



=

xn 1( )〈 〉
x V xn xn 1( )〈 〉 xn 2( )〈 〉, ,( )– /T[ ]exp xd∫

V xn xn 1( )〈 〉 xn 2( )〈 〉, ,( )– /T[ ]exp xd∫
-------------------------------------------------------------------------------------------,=
(10)

where

(11)

xn 2( )〈 〉

= 
x V xn xn 2( )〈 〉 xn 3( )〈 〉 xn 1( )〈 〉, , ,( )– /T[ ]exp xd∫

V xn xn 2( )〈 〉 xn 3( )〈 〉 xn 1( )〈 〉, , ,( )– /T[ ]exp xd∫
----------------------------------------------------------------------------------------------------------------,

xn 3( )〈 〉
x V xn xn 3( )〈 〉 xn 2( )〈 〉, ,( )– /T[ ]exp xd∫

V xn xn 3( )〈 〉 xn 2( )〈 〉, ,( )– /T[ ]exp xd∫
-------------------------------------------------------------------------------------------,=

V xn xn 1( )〈 〉 xn 2( )〈 〉, ,( ) 5 a
2
---– 

  xn
2 a

4
---xn

4+=

– 8 xn 1( )〈 〉 xn 2 xn 2( )〈 〉 xn,–

V xn xn 1( )〈 〉 xn 2( )〈 〉 xn 3( )〈 〉, , ,( ) 6 a
2
---– 

  xn
2 a

4
---xn

4+=

– 8 xn 2( )〈 〉 xn 2 xn 1( )〈 〉 xn– 2 xn 3( )〈 〉 xn,–

V xn xn 2( )〈 〉 xn 3( )〈 〉, ,( ) 5 a
2
---– 

  xn
2 a

4
---xn

4+=

– 8 xn 3( )〈 〉 xn 2 xn 2( )〈 〉 xn.–
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If only the transition temperature needs to be deter-
mined, then since 〈xn(n)〉  are small near the phase-tran-
sition point, the right-hand sides of the equations of the
system can be expanded in a series in this small param-
eter. We shall determine the phase transition tempera-
ture by equation to zero the determinant of the system
of equations obtained in this manner. From the N roots
of this determinant we choose only the one root for
which each component 〈xn(n)〉  is zero. For three layers
this determinant has the form

(12)

where

(13)

The functions f1(x) and f2(x) are defined as

The results of calculations in the mean-field approx-
imation are presented in Fig. 7. The phase-transition
temperatures Tc were obtained as a function of the
parameter a of the discrete φ4 model for systems con-
sisting of several layers (from one layer (the 2D case)
up to five layers). The dependences of the transition
temperatures on the thickness of the system were
obtained from the indicated curves for three different
values of the model parameter a, taken from numerical
experiments (Fig. 7). The curves presented show that
the mean-field approximation (open symbols) have the
same qualitative behavior as the curves obtained from
numerical experiments (filled symbols).

3.2. Independent-Modes Approximation

In the independent-modes approximation the sys-
tem in the Fourier representation is treated as a collec-
tion of independent harmonic oscillators. It is assumed
that a phase transition in this system occurs at the

P T( ) R T( ) 0

Q T( ) S T( ) Q T( )

0 R T( ) P T( )

0,=

P T( ) f 1 x( ) 1 8x2

T
--------– 

  x,d∫=

R T( ) f 1 x( ) 2x2

T
--------– 

  x,d∫=

Q T( ) f 2 x( ) 2x2

T
--------– 

  x,d∫=

S T( ) f 2 x( ) 1 8x2

T
--------– 

  x.d∫=

f 1 x( ) 5 a
2
---– 

  x2 a
4
---x4+

1
T
---–

 
 
 

,exp=

f 2 x( ) 6 a
2
---– 

  x2 a
4
---x4+

1
T
---–

 
 
 

.exp=
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moment when oscillators with zero characteristic fre-
quency appear (condensation of elementary excitations
in the soft mode occurs) [22]. For this reason the inde-
pendent-modes approximation is used primarily to
describe displacement-type phase transitions. If this
approximation is studied with respect to the discrete φ4

model, then in this case only one point, corresponding
to a displacement-type transition, a  +0, can be
described correctly. The larger the value of the param-
eter a, the more strongly correlated the modes become
and in consequence this approximation gives a worse
description of the behavior of the system. In this sense
the independent-modes approximation is related to
Landau’s phenomenological model.

To obtain an equation to determine the temperature
dependence of the order parameter the basic equations
of the independent-modes approximation must be
used [22]:

ω2(q) = –1 + 4dF(q) + 3(I + η2), (14)

(15)

η3 + (3I – 1)η = 0. (16)

Here Eq. (14) determines the spectrum of the system,
Eq. (15) determines the average value of the squared
Fourier-transform coordinate for the classical harmonic
oscillator, Eq. (16) is the coupling equation for the
order parameter and the quantity I, and

(17)

The equation for determining the dependence of the
temperature on the order parameter η is obtained from
the equations described above and has the following
form:

(18)

In the 3D case a transition is observed at the point
where the order parameter η = 0. In this case the tran-
sition temperature is 2.64 (see table). In the 2D case the
integral in the denominator with η = 0 diverges loga-
rithmically. This divergence indicates that the indepen-
dent-modes approximation is inapplicable near the
transition point, where correlations in the phonon
modes with large occupation numbers can no longer be
neglected.

The independent modes approximation can be
extended to the case of layered systems as follows. In a
layer of finite thickness the dispersion law for phonons
is identical to the law for the 3D case, but the momentum
component qz, perpendicular to the plane of the layers,
can assume only a discrete set of values (the z-axis is

I
1

2π( )d
------------- ddq

T

ω2 q( )
-------------,∫=

F q( ) 1
1
d
--- qi.cos

i 1=

d

∑–=

T
1 η2–

3

2π( )d
------------- 4 d qicos

i 1=

d

∑–
 
 
 

2αη2+

1–

ddq∫
----------------------------------------------------------------------------------------------= .
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normal to the surface). In a system of N layers with free
boundary conditions qz = kπ/N, k = 0, 1, …, N – 1.
These values can be obtained by solving the problem of
a one-dimensional chain of atoms with a harmonic
interaction with nearest neighbors [40]. Now, besides
integrating over the components qx and qy , summation
over qz with weight 1/N must be performed in the for-
mulas of the independent-modes approximation. Spe-
cifically, Eq. (18) becomes

(19)

In the limiting cases N = 1 and N  ∞ we obtain the
formulas for the 2D and 3D systems.

The temperature dependences of the order parame-
ter for systems with various thicknesses can be deter-
mined from this equation. The investigations were per-
formed for parameters a < 1. The results for the case
a = 0.98 are presented in Fig. 9. As one can see in Fig. 9,
the order parameter does not vanish for any nonzero
temperature or for any finite N. As already mentioned,
such behavior is a consequence of the inapplicability of
the independent-modes approximation near the transi-
tion point. Actually, the same difficulties also arise for
3D systems, where the independent-modes approxima-
tion erroneously predicts a first-order transition [22].
However, as a  +0 the fluctuation region where the
independent-modes approximation does not work is
small, which makes it possible to determine the transi-
tion temperature. We determined the transition temper-
ature for layered systems as the maximum of T(η) (Fig. 9).

T 1 η2–( ) 3

2π( )2N
------------------ 4 3 qzcos–

∫
qz

∑




=

---– qycos qzcos– 
 2αη2+

1–

dqxdqy




1–
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Fig. 9. Temperature dependences of the order parameter in
the independent-modes approximation. The parameter of
the discrete φ4 model a = 0.98. Five curves corresponding to
system thickness N = 1, 2, 3, 4, and 5 layers are shown. The
transition temperatures are determined at the points of the
maximum of the function T(η). The transition temperature
for a system consisting of five layers is marked in the figure.
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The results of numerical experiments and calculations
in the mean-field and independent-modes approxima-
tions for the parameter a = 0.98 are compared in Fig. 10.
In this case the independent-modes approximation
describes the results of the numerical experiments not
only qualitatively but also quantitatively.

4. CONCLUSIONS

In the present paper the properties of phase transi-
tions in two-dimensional and layered systems were
investigated on the basis of the discrete φ4 model by
numerical and analytic methods. The discrete φ4 model
makes it possible to introduce a single model parameter a,
which determines the type of phase transition (from
displacement type transitions with a  +0 to order–
disorder type transitions with a  +∞). Two quanti-
ties were varied to study the properties of phase transi-
tions in the discrete φ4 model: the parameter a and the
thickness N of the system.

A discrete φ4 model was investigated, using the
Monte Carlo method, for a wide range of values of the
parameter a, specifically, for a 2D lattice. In addition
the behavior of the order parameter as a function of
temperature was investigated for three characteristic
values of the parameters of the model a, equal to 0.98,
4000, and 44.2, corresponding to displacement and
order–disorder type phase transitions as well as an
intermediate case, respectively. The transition tempera-
tures Tc were found, from the results obtained, as func-
tions of the thickness N of the system (from one to six
layers) for the three cases described, and the depen-
dence of the transition temperature on the parameter a
for the 2D system was also found. On the basis of these
results, which are presented in Fig. 7, it can be con-
cluded that as the number of layers increases, the tran-
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Tc

2 3 4 5
1
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4

Fig. 10. Phase transition temperature versus the system
thickness. The parameter of the discrete φ4 model a = 0.98.
Filled points are results of numerical simulation (the data
were obtained from Fig. 7), open points are mean-field
approximation (data obtained from Fig. 7), and crosses are
independent modes approximation (data obtained from Fig. 9).
The independent-modes approximation describes to within
5% the results obtained by numerical simulation.
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sition temperature increases monotonically, and the
system is strongly sensitive to the addition of one or
two layers to the first layer, after which the dependence
slowly approaches the 3D asymptotics.

The numerical results obtained were compared with
calculations performed in the mean-field and indepen-
dent-modes approximations. It was shown that for a
wide range of values of the parameter a the mean-field
approximation qualitatively correctly describes the
dependences of the phase transition temperatures Tc on
the thickness N of the system, which were obtained in
the numerical experiments, though it overestimates Tc

by 30–100%. For the parameter a = 0.98 the results of
the numerical calculations were compared with the cal-
culation performed in the independent-modes approxi-
mation. In this case the independent-modes approxima-
tion describes the Monte-Carlo curves not only qualita-
tively but also quantitatively, to within about 5%.
However, as the parameter a increases, the increase in
the correlations in the phonon modes makes this
approximation inapplicable.
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Abstract—The thermodynamic potential of a system of Peierls vortices in a thin superconducting film, con-
taining radiation defects, in a perpendicular external magnetic field is calculated. The equilibrium tempera-
ture dependences of the densities of free vortices and vortices trapped by defects are found in the mean-field
approximation for various magnitudes of the external field. It is shown that the equilibrium magnetization of
a thin superconducting film exhibits the same features that were observed experimentally in the reversible
magnetization of high-temperature superconductors. An asymptotic expression is obtained for the difference
of the magnetizations of perfect and irradiated films. According to this expression, the difference depends on
the pinning energy of a vortex on a defect and the density of defects. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The layered structure of high-temperature super-
conductors is responsible for their quasi-two-dimen-
sional behavior, which is manifested in the thermody-
namic and kinetic properties. According to modern
ideas this behavior is due to the possibility of the exist-
ence of two-dimensional (2D) topological defects—
magnetic vortices—in superconducting layers of these
materials [1–3]. A system of such vortices can occupy
individual and collective states.

In an individual state the magnetic energy of a vor-
tex diverges logarithmically and is cut off by the size of
the sample. In a superconductor such 2D vortices can
occupy only bound states with finite energy. In the
absence of an external field these are dipoles consisting
of two vortices, arising as thermal fluctuations, with
oppositely directed fluxes. In an external field they can
also be present in the form of bound states forming
Abrikosov vortices.

However, if the system contains a finite density of
free 2D vortices, then as a result of Debye screening the
energy of a vortex becomes finite and depends on the
density of free vortices [4]. In this state the 2D vortices
in a superconductor can form a gas of free vortices. The
behavior of a system of vortices in these states is radi-
cally different. A transition of the system between
states can occur as a Berezinskii–Kosterlitz–Thouless
(BKT) phase transition [5, 6].

The reversible magnetization of high-temperature
superconductors is one manifestation of the quasi-two-
dimensional behavior of a system of vortices in a col-
lective state. Experiments on the magnetization of
high-temperature superconductors [7–11] have shown
that in sufficiently high magnetic fields and at suffi-
ciently high temperatures the magnetic moment of a
1063-7761/00/9106- $20.00 © 21213
sample is a function of the state. It has been observed
that at a certain temperature T* the magnetic moment
of the sample does not depend on the magnitude of the
external magnetic field. The temperature dependences
of the magnetic moment M(T) overlap at this point, and
below it the magnetic moment of the sample is essen-
tially a linear function of the temperature.

The theoretical interpretation of the experimental
results [12–14] was based on the concept of 2D vorti-
ces. As a result, the basic reason for this behavior of
high-temperature superconductors became clear. In
ordinary superconductors the magnetic flux is pro-
duced by a system of Abrikosov vortices which form a
rigid lattice. The configurational energy of the system
of vortices makes the main contribution to the free
energy and hence to the magnetization. The entropy
part of the free energy is negligibly small.

The behavior of magnetic fluxes in high-tempera-
ture superconductors differs from that of ordinary
superconductors. Neutron scattering experiments [15]
and measurements of the Josephson plasma resonance
[16, 17] show that in magnetic fields above 0.05 T there
is no correlation between the positions of the vortices in
different layers and the vortices do not form vortex
lines. This suggests that the magnetic flux is produced
by a high-entropy gas of 2D vortices. The configura-
tional and entropy contributions of the system of vorti-
ces enter in the magnetization with different signs. At
the point T*, close to or equal to the BKT transition
temperature, these contributions compensate one
another, which is why the magnetic field is independent
of the external field.

A thin superconducting film also demonstrates
quasi-two-dimensional properties. In the Peierls limit
[18], where the film thickness d is much less than the
000 MAIK “Nauka/Interperiodica”
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London length λ, the behavior of a system of vortices
in a film is essentially identical to that of 2D vortices.
The main difference is due to the existence of a large
but finite effective Peierls length Λ = 2λ2/d. This length
limits the logarithmic growth of the self-energy of a
Peierls vortex, which is finite. A system of Peierls vor-
tices, just as a system of 2D vortices, can occupy indi-
vidual as well as collective states. However, since the
energy of Peierls vortices is finite, they can occupy an
individual state in a superconductor not only bound in
dipoles but also as free vortices. Here the individual and
collective states differ not qualitatively, as in a system
of 2D vortices, but only quantitatively. In an individual
state the Debye screening length δ > Λ and the energy
of a vortex is essentially independent of the density of
the free vortices. In the opposite limit the energy of a
Peierls vortex is cut off by the Debye screening length
δ and the behavior of a system of Peierls vortices is
identical to that of a system of 2D vortices in a collec-
tive state.

Hence it follows that at sufficiently high tempera-
tures and in a sufficiently strong magnetic field, when a
system of Peierls vortices is in a collective state, its
reversible magnetization should exhibit that same char-
acteristic features as in a system of 2D vortices. The
calculation of the thermodynamic properties of a sys-
tem of Peierls vortices in an external magnetic field
[19] has shown this to be true.

The penetration of radiation defects into high-tem-
perature superconductors strongly affects the process
of reversible magnetization of the samples [20, 21]. A
characteristic value of the magnetic field Bφ appears; it
is comparable to the defect density Nd/S in the sample,
Bφ = Ndφ0/S. In weak (He ! Bφ) and strong (He @ Bφ)
external magnetic fields the magnetization decreases
approximately as the logarithm of the external field
with increasing field. In intermediate fields, near Bφ, the
magnetization no longer decreases but increases,
switching from the low- to the high-field asymptotic
behavior.

The main reasons for such behavior of the magneti-
zation were correctly understood in the works cited
above. Since the energy of a vortex trapped by a defect
is less than the energy of a free defect by the amount of
the energy of a normal nucleus or, equivalently, by the
pinning energy, these are the first positions to be filled
when the sample is magnetized. Consequently, the low-
field part of the magnetization curves is due primarily
to trapped vortices. The equilibrium number of trapped
vortices in a sample with a low magnetic field is always
larger than the equilibrium number of free vortices in a
perfect sample. This circumstance is responsible for the
difference of the magnetizations of the irradiated and
perfect samples, which depends on the pinning energy.
In fields He @ Bφ most defects are filled and the free
vortices determine magnetization.

A more systematic theoretical analysis of the equi-
librium magnetization of layered superconductors is
JOURNAL OF EXPERIMENTAL
performed in [22]. Here the entropy of the system and
the correlation length of the system are taken into
account in the London approximation. A drawback of
this work, in our view, is that only vortices oriented in
the direction of the field are taken into account. This
approach rules out taking into account the dissociation
of vortex dipoles under the influence of thermal fluctu-
ations and limits the applicability of the theory to low
temperatures, where the concentration of the vortices
oriented in a direction opposite to the field is negligibly
small.

In the present paper a theory that takes account of
the influence of radiation defects on the equilibrium
magnetization of a thin superconducting film is pro-
posed. It takes account of the configurational energy
and entropy of a system of free and Peierls vortices and
Peierls vortices trapped by defects as well as the mag-
netic flux energy of the samples. The free energy of a
system of Peierls vortices in an external magnetic field
is obtained in Section 2. The equilibrium density of free
and trapped vortices in an external field are examined
in Section 3. The equilibrium magnetization of a
Peierls sample with radiation defects is discussed in
Section 4.

2. FREE ENERGY OF A SYSTEM 
OF PEIERLS VORTICES IN A MAGNETIC FIELD

Let us consider a thin superconducting film with
area S, containing Nd radiation defects occupying ran-
dom points Xα. We represent the defects as sections of
the order of the superconductor coherence length ξ in
size, where superconductivity is completely sup-
pressed. At finite temperatures such a system can con-
tain N+(–) free vortices and Nt+(t–) vortices trapped by
defects with different directions of the magnetic flux.
The vortices can be created and annihilated in pairs,
and they can also be trapped by and become detached
from defects. To calculate the thermodynamic proper-
ties of such a system it is necessary to estimate its grand
partition function.

The partition function of a system of vortices in a
zero external magnetic field has been written down and
estimated in [23]. In this case the chemical potentials of
the vortices are zero and the equilibrium properties of
the system are obtained by minimizing the free energy.
However, if the system is in a nonzero magnetic field,
then the equilibrium values of the chemical potentials
are different from zero, and the equilibrium values of
the densities of the vortices are determined by the con-
ditions that the thermodynamic potential G is mini-
mum:

Ξ βG–{ }exp βF–{exp
N± Nt±,
∑= =

+ β µ+N+ µ–N– µt+Nt+ µt–Nt–+ + +( ) }
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(1)

The operation Sp denotes summation over all possible
configurations of the system

Here F is the free energy of a system with a fixed num-
ber of vortices, µi are the chemical potentials of the vor-
tices, β = 1/T, E0 is the energy of the normal nucleus of
a vortex equal to the pinning energy on radiation
defects, and U(X) is the interaction energy of Peierls
vortices, free vortices, and vortices trapped by defects.
The summation in the exponential extends indepen-
dently over both indices, and terms with the same indi-
ces give the self-energy of the vortices. The quantity
Nd – Nt+ – Nt– is the number of free defects. We neglect
their interaction energy with vortices when estimating
the configuration part of the energy, since it decreases
rapidly with distance [24], but we include their contri-
bution to the entropy of the system.

Before estimating the free energy of the system, we
shall determine the equilibrium values of the chemical
potentials. In a superconductor the free energy of a sys-
tem of Peierls vortices in an external magnetic field is a
function of temperature T and the induction, deter-

mined in this case as B = S–1 dxh(x) = φ0(N+ + Nt+ – N– –

Nt–)/S. The equilibrium of a system of vortices in an
external field occurs when the Gibbs potential G
reaches a minimum value. Ordinarily, it is determined
as a function of the internal field Hi, which is identical
to the external field He only for a long cylinder:

We cannot use such a geometry to calculate the magne-
tization of a thin film. Consequently, we shall consider
a film as a flattened ellipsoid of revolution of height d
and diameter D @ d. In a magnetic field directed along
the axis of rotation, the external field He is related with
Hi and the induction B as follows [25]: (1 – n)Hi = He –
nB, where n = 1 – d/πD is a demagnetizing factor.

=  β µ+N+ µ–N– µt+Nt+ µt–Nt–+ + +( ){ }exp
N± Nt±,
∑

× N+!N–!Nt+!Nt–( ) 1– N+ N–+( )βE0–{ }exp
Nd Nt+– Nt––( )!

-----------------------------------------------------

× Sp
β
2
--- U xi x j–( )

i j,
∑ β U xi Xα–( )

i α,
∑––





exp

–
β
2
--- U Xα Xγ–( )

α γ,
∑





.

Sp xd

πξ2
--------∫ 

  N+ N–+

X

∑ 
 
 

Nt+ Nt–+

.=

∫

G F
BHi

4π
----------.–=
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Using a Legendre transformation we can obtain the
Gibbs energy for a system as a function of the external
field He [26]:

(2)

The equilibrium distribution of magnetic fluxes in
the system is determined by minimizing the Gibbs
energy [27]:

Since we wish to determine the potential G, following
from Eq. (1), and noting that ∂/∂N± = ∂/∂Nt± =
±(φ0/S)∂/∂B, we find a relation between the equilibrium
chemical potentials of the system and the external field:

(3)

We shall now estimate the free energy of a system of
vortices. We expand the logarithm of the partition func-
tion (1) in a series. This series contains only irreducibly
connected diagrams [28]. The coordinates of the vorti-
ces correspond to the vertices of the diagrams, and the
bonds correspond to the interaction energy. Integration
over the entire area S of the film is performed over the
coordinates of the free vortices. If vortices trapped by
defects are present in the system, then the diagrams cor-
responding to them and the configuration energy now
depend on their coordinates.

We shall assume that the radiation defects in the
samples occupy fixed random positions. The fluctua-
tions of the coordinates of the defects, associated with
thermal vibrations of the crystal lattice, can be
neglected, since they are negligibly small compared
with the fluctuations of the order parameter of the
superconductor, i.e., the fluctuations of the coordinates
of the free vortices. Thus, the free energy must be aver-
aged over an ensemble of defect configurations. We
shall assume that the defects are distributed over the
entire area of the film with equal probability. We shall
perform the averaging by integrating the free energy
over the coordinates of all vortices, with weight 1/S,
trapped by defects. The result is that the trapped vorti-
ces make the same contribution to the average free
energy as do the fluctuating free vortices. The only dif-
ference is that the energy of the nuclei of the trapped
vortices is zero.

This result seems to us to be entirely natural, since
the statistical averaging over an ensemble of fixed
defect configurations is equivalent to time averaging
[29], which must be performed in the case of fluctuat-
ing vortices. Only the probability of realization of var-
ious configurations is important. Here we adopted the
hypothesis that the configurations are equally probable
for free vortices and for defects, which is what deter-
mines the answer obtained.

G F
1

4π
------

BHe

1 n–
-----------.–=

∂F
∂B
------

1
4π
------

He

1 n–
-----------.=

∂F
∂N±
---------- ∂F

∂Nt±
----------- µ± µt±

1
4π
------

φ0

S
-----

He

1 n–
-----------.±= = = =
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We now separate the part of the free energy of the
system that is due to the nonzero total topological
charge associated with the fact that in an external mag-
netic field the numbers of vortices oriented parallel (N+,
Nt+) and antiparallel (N–, Nt–) to the field are not equal
to one another. This is the energy of the magnetic flux
in a superconductor. It does not depend on the configu-
ration of the flux and can be taken into account simi-
larly to the way the positive background is taken into
account in a one-component model of a plasma [28]:

(4)

The summation in this expression extends indepen-
dently over the coordinates of all free and trapped vor-
tices, and the integration extends over the entire volume
V of the sample.

It is now easy to estimate the configuration energy.
The sequence of ring diagrams [28] turns out to be the
leading sequence for the long-range interaction of par-
ticles, which the interaction of Peierls vortices is [26].
This expression corresponds precisely to the phenome-
nological Debye–Hückel approach and is actually its
microscopic substantiation. The microscopic approach
to the calculation of the free energy makes it possible to
decrease the number of phenomenological parameters
in the theory, which in our case is the energy E0 of the
nucleus of a vortex and the coherence length ξ(T). In
the Debye–Hückel approach we required another rela-
tion between the probabilities of dissociation and
recombination of vortex dipoles. The expression for the
configuration energy of a system of Peierls vortices in
the ring approximation has been obtained in [26]. We
need only substitute, together with the number of free
vortices N±, the sum of the numbers of free and trapped
vortices N± + Nt±.

Thus, we now have all the constituent parts of the
free energy of a system of Peierls vortices, specifically,
the entropy part, obtained from the factorial factors in
Eq. (1), the configuration energy, and the magnetic-flux
energy (4). Introducing the dimensionless parameters
ni = πξ2Ni/S and f = πξ2βF/S we obtain

(5)

1
2
---

rid
V
------

r jd
V

-------U xi x j–( )∫
i j≠
∑

=  V
φ0

2 n+ nt+ n–– nt––+( )2

8π 1 n–( )
------------------------------------------------------ V

B2

8π
------ 1

1 n–
-----------.=

f n+ n+ln 1–( ) n– n–ln 1–( ) nt+ nt+ln 1–( )+ +=

+ nt– nt–ln 1–( ) nd nt+– nt––( )+

× nd nt+– nt––( )ln 1–( ) p n+ n– nt+ nt–+ + +( )+

× 1 8 p n+ n– nt+ nt–+ + +( )ln–[ ]

+
1

4Λ2
---------W 32 pΛ2 n+ n– nt+ nt–+ + +( )[ ]

+ p n+ n–+( )e0 4 pκ2 n+ nt+ n–– nt––+( )2

1 n–
------------------------------------------------.+
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All lengths are given in units of the coherence length ξ,

p = /16π2ΛT, Λ = λ2/2d is the effective Peirels length,
κ = λ/ξ, pe0 = βE0, and

We have used dimensionless quantities to make the
quite complicated expressions for the free energy and
the equations of equilibrium more compact. We shall
require notation for the external magnetic field he =
πξ2He/φ0 and the magnetic moment of the sample m =
πξ24πM/φ0. With this method of obtaining dimension-
less quantities, except for the characteristic temperature
dependence, the temperature dependence of the coher-
ence length ξ(T) is obtained. Sometimes this is conve-
nient, just as for the concentration of vortices when the
dimensionless concentration determined in this manner
is simply the fraction of positions occupied by vortices
among all possible positions at a given temperature. For
the magnetic field or moment this is not so convenient.
Consequently, in such cases, when the dependence ξ(T)
is ruled out, we shall label the corresponding quantity
with the index 0. Thus, the quantity he depends on tem-
perature and he0 does not.

3. THE EQUILIBRIUM STATE

The equilibrium concentrations of vortices in the
system are given by the conditions (3), which lead to
the system of equations

(6)

Subtracting the second equation of the system (6)
from first one and the fourth equation from the second
one, we obtain a relation between the concentrations of
vortices oriented parallel and antiparallel to the field:

(7)

φ0
2

W x[ ] 1
2
--- x

4
--- 1 x–

1

x 1–
---------------arctan

π
2
---, x 1≥–

1
2
--- 1 1 x–+

1 1 x––
-------------------------, x 1.≤ln

+ln=

n±ln p 8 p n+ n– nt+ nt–+ + +( )ln–

+ 8 pW' 32 pΛ2 n+ n– nt+ nt–+ + +( )[ ]

± 8 pκ2 n+ nt+ n–– nt–– he–+( )
1 n–

--------------------------------------------------------- pe0+ 0,=

nt±ln p 8 p n+ n– nt+ nt–+ + +( )ln–

+ 8 pW' 32 pΛ2 n+ n– nt+ nt–+ + +( )[ ]

± 8 pκ2 n+ nt+ n–– nt–– he–+( )
1 n–

---------------------------------------------------------

– nd nt+– nt––( )ln 0.=

n+

n–
-----ln

nt+

nt–
------ln 16 pκ2m–= =
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with the magnetic moment of the sample determined by
the expression

The ratios of the densities of free and trapped vortices
are equal because of the two subsystems are in chemi-
cal contact with one another. From the conditions of
equilibrium (6) follows another relation between the
concentrations of the free and trapped vortices

(8)

This expression shows that the concentration nt± of
trapped vortices tends to 0, if the total concentration of
free vortices decreases more rapidly than the exponen-
tial function in the denominator. This behavior is char-
acteristic for an individual state of a system of vortices,
when the Debye screening interaction length δ is
greater than the effective length Λ and obtains at com-
paratively low temperatures and for low magnitudes of
the external field, falling outside the range of reversible
magnetization.

However, if the concentration of free vortices

decreases more slowly than , then the trapped vor-
tices tend to fill all defects. This is observed in a collec-
tive state of a system of vortices (δ < Λ), which makes
the process of magnetizing a superconductor revers-

4πM
B He–
1 n–

----------------.=

nt±
n±nd

n+ n– e
pe0–

+ +
---------------------------------.=

e
pe0–

0.7
10–5

0.8 0.9 1.0

10–4

10–3

10–2

10–1

n

T/TÇäí

nt+

nt–
n–

n+

Fig. 1. Equilibrium concentrations of free vortices and vor-
tices trapped by defects versus the temperature in an exter-
nal field he0 = 4 × 10–3 with defect density nd0 = 0.013.
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ible. In what follows, we shall be interested only in this
range of temperatures and fields.

The equilibrium concentrations of the vortices as a
function of temperature for various values of the exter-
nal magnetic field, which were obtained by solving
numerically the system of Eqs. (6), are shown in Figs. 1
and 2. The temperature behavior of the concentrations
of the free vortices and the vortices trapped by defects
is qualitatively different in low (He ! Bφ) and high
(He @ Bφ) external magnetic fields. Figure 1 shows the
temperature dependences of the vortex concentrations
in a system with a low magnetic field he0 = 4 × 10–4 with
defect density nd0 = 0.013. For temperatures T > TBKT

the concentration of vortices increases rapidly as a
result of the Kosterlitz–Thouless instability. The con-
centration of free vortices here is higher than the con-
centration of trapped vortices, since the latter is limited
by the number of defects.

In the temperature range T < TBKT the concentration
of free vortices at first exceeds that of the trapped vor-
tices. As the temperature decreases, the thermal fluctu-
ations resulting in the dissociation of vortex dipoles
become weaker and the concentration of free vortices
rapidly becomes less than that of the trapped vortices.
At these temperatures the concentration of vortices
trapped by defects changes very little. These vortices
are primarily the ones that form the flux of the magnetic
field through the sample in weak external fields, since
this state of the system of vortices is energetically more
favorable.

0.7
10–5

T/TÇäí

n

he0 = 1 × 10–1

5 × 10–2

0.8 0.9 1.0

10–4

10–3

10–2

10–1

100

2 × 10–2

1 × 10–2

1 × 10–3

1 × 10–4

Fig. 2. Equilibrium concentrations of free vortices and
defect-trapped vortices oriented along the field versus the
temperature for various values of the external magnetic field
with defect density nd0 = 0.013.
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In high external fields the trapped vortices can no
longer give an equilibrium magnetic flux, and conse-
quently the concentration of free vortices increases. In
Fig. 2 the solid lines show the concentration of free vor-
tices and the dashed lines show the concentration of
trapped vortices, oriented along the field. It is clearly
seen how the ratio between the concentrations of the
free and trapped vortices changes as the external field
increases. The concentrations of vortices oriented
opposite to the field, for T < TBKT, is always much less
than the concentration of vortices oriented along the
field, as shown in Fig. 1.

The numerical calculations were performed for a
model film with the parameters κ = 50, Λ/ξ = 500, n =
0.99, and e0 = 3 and with defect density nd0 = 0.013.

4. EQUILIBRIUM MAGNETIZATION 
OF THE SAMPLE

The equilibrium dependences of the magnetic
moment of a sample on the external magnetic field for
various values of the temperature are shown in Fig. 3
(solid lines) for a sample with defect density nd0 =
0.013 and for an unirradiated sample (dashed lines). All
the basic features of the magnetization curves, which
are observed in experiments on single-crystal samples
of high-temperature superconductors, are clearly seen
here [20, 21]. In weak, He ! Bφ (he ! nd), and strong,
He @ Bφ (he @ nd), fields the magnetization of the sam-
ple decreases as lnHe, which is especially clearly seen
for low temperatures, T < 0.85TBKT. For He ≈ Bφ the

10–4

–8

∆m

he0

m0 × 10–5

10–3 10–2 10–1

–6

–4

–2

0

0.75

0.80

0.70

0.85

0.90

0.95

0.975

T/TÇäí = 1.00

Fig. 3. Magnetic moment of a perfect (dashed lines) and
irradiated (solid lines) sample of a thin superconducting film
versus the external magnetic field for various temperatures.
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decrease of the magnetization is replaced by an
increase of magnetization, and then once again by a
decrease, switching from the low- to the high-field
asymptotic behavior.

This behavior of the magnetization is due to the
coexistence of two subsystems of magnetic vortices in
the sample—free and trapped. In low fields and at low
temperatures, when the total number of vortices is less
than the number of defects, the concentration of
trapped vortices is higher than that of free vortices,
since their energy is lower. Consequently, the magnetic
flux in this sample is primarily due to the vortices
trapped by defects. In high fields, He @ Bφ, virtually all
defects are occupied and most of the flux is due to free
vortices. Since their energy is higher, it is more difficult
for free vortices to enter the sample than the trapped
vortices. As a result, the magnetization of the sample is
greater by the amount ∆M than the magnetization that
the trapped vortices would give.

The quantity ∆M can be easily estimated for low
temperatures, where n+ @ n–. Using this smallness, an
asymptotic expression, in good agreement with the
numerical solution for temperatures T < 0.85TBKT, can
be obtained:

(9)

The asymptotic value of the concentration of free vor-
tices oriented along the field is given by the expression

(10)

The concentrations n– and nt± can be estimated accord-
ing to Eqs. (7) and (8). To estimate ∆M, we shall find
the high- and low-field asymptotic forms of the expres-
sion (9). For large values of the external field, He @ Bφ,

additional smallnesses he @ nd, , appear in the
problem and the expression (10) simplifies to n+ ≈ he. In
this limit the magnetization has the form

(11)

Physically, the expression for the magnetization has
been simplified because we neglected the contribution
of trapped vortices to the magnetic flux through the
sample. At the temperature T = 0.7TBKT the dependence
m(he), determined by the expression (11), is identical to
the expression found numerically for a perfect film (the
lower dashed line in Fig. 3). It lies somewhat below the
magnetization curve of the irradiated sample, since in
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the latter a part of the magnetic flux is due to the
trapped vortices.

In the opposite limit of a weak external field it can

be assumed that hd @ ne, , and n+ ≈ he /nd. In
this limit the expression (9) becomes

(12)

In this case we neglected the contribution of free vorti-
ces to the magnetization. The dependence m(he) in this
limit is shown in the figure for the temperature T =
0.7TBKT by the straight dashed line, close to the numer-
ical solution for low values of the external field.

Thus, we obtain for the difference of the magnetiza-
tions the expression

(13)

As follows from the expression obtained, the difference
of the magnetization is determined by two factors: the
density of defects and the energy of the normal nucleus
of a vortex or the pinning energy. In dimensional nota-
tion this expression is

where Upin = E0 is the pinning energy of a vortex on a
defect and Hc2 = φ0/(2πξ2) is the second critical field.

As temperature increases, thermal fluctuations
begin to make a substantial contribution to the behavior
of the system of vortices. Dissociation and recombina-
tion of vortex dipoles are activated in the system. The
equilibrium concentrations of the vortices oriented par-
allel and antiparallel increase, which causes the depen-
dences m(he) to deviate from the asymptotic form (9).

As one can see in Fig. 3, the temperature T*, at
which the magnetization does not depend on the exter-
nal magnetic field, for a perfect sample is somewhat
less than the temperature TBKT. For a sample with radi-
ation defects this possibility obtains for T = TBKT only
for a weak external fields, He ! Bφ, as in the experi-
ments of [20, 21].

5. CONCLUSIONS

In the present paper the effect of radiation defects on
the equilibrium reversible magnetization of a thin
superconducting field containing radiation defects was
investigated. The nature of the reversible behavior of
magnetic fluxes is not discussed here. In order to under-
stand it, the thermodynamic properties of a system of
vortices in the superconductor, which interact with the
edges of the sample and with the Meissner current,
must be studied. This is a much more complicated
problem.

e
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e
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As follows from everything presented in this paper,
the reversible magnetization of a Peierls film with radi-
ation defects possesses the same features as the magne-
tization of high-temperature superconductors. The the-
oretical study of such an object is interesting from two
points of view. In the first place this is a real object,
which can be investigated experimentally. On the other
hand it is a theoretical model, which is simpler than a
layered superconductor, since problems due to Joseph-
son coupling between layers and to the contribution of
bound states of 2D vortices in different layers to the
thermodynamics do not arise. In our view the effect of
these two factors on the magnetic properties of layered
superconductors is small and will not produce any qual-
itative differences from the properties of a thin film.
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Abstract—The relation between the orbital ordering and magnetic structure of the crystal LaMnO3 is investi-
gated. The dependence of the exchange parameters on the angle Φ of the orbital structure is determined. When
the isotropic exchange interaction and the single-ion anisotropy, which depends on the angle Φ and the rota-
tional distortions, are introduced into the spin Hamiltonian, a four-sublattice structure (AX, FY, GZ) is obtained
with orientation of the magnetic moments of the sublattices near the long axis of the orthorhombic cell of the
crystal in the basal plane of the crystal (AX @ GZ, FY). The effect of a magnetic field on the magnetic structure
and the antiferromagnetic resonance spectrum are investigated taking account of the nonequivalent, anisotropic,
orbitally-dependent g tensors. The spin-flop and spin-flip transition fields are calculated. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The discovery of colossal magnetoresistance in com-
pounds based on LaMnO3 rekindled interest in this com-
pound and led to a large number of investigations
devoted to this crystal.

For LaMnO3 strong coupling of the spin, charge,
and orbital degrees of freedom is characteristic. It is
also important to determine the characteristic features
of this relationship for the parent compound LaMnO3
in order to explain the properties of doped compounds.

The existence of orbital structure in LaMnO3 is due
to the nontrivial magnetic properties of this compound.
The orbital structure of Jahn–Teller compounds has
been discussed in a number of theoretical works [1, 2].
Recent investigations of resonance X-ray scattering [3]
have confirmed the existence of orbital structure in lan-
thanum manganite. The appearance of orbital order was
attributed to the exchange mechanism and electronic-
vibrational interaction. The first model is now com-
monly used in theoretical works [4, 5] in connection
with the idea of coupling of the orbital and magnetic
subsystems and the possibility of calculating the cou-
pled spectra of the orbital and magnetic excitations.
However, the second model seems to us to be more jus-
tified because the electronic-vibrational coupling is
quite strong in this crystal. The experimental data of
[3], which confirm that the orbital structure is also pre-
served after magnetic order is disrupted, right up to the
transition into the O* phase without Jahn–Teller distor-
tions, also attest to this.

The magnetic structure of lanthanum manganite has
still not been unequivocally explained. The experimen-
1063-7761/00/9106- $20.00 © 21221
tal investigations [6, 7] have shown that below the tem-
perature TN = 140 K the crystal possesses A-type mag-
netic structure (see Fig. 1) with the magnetic moments
of the sublattices oriented along the long orthorhombic
axis in the basal plane O' of the crystal structure (sym-
metry group Pnma). A qualitative analysis based on the
Goodenough–Kanamori rules [1] makes it possible to
explain the ferromagnetic sign of the isotropic
exchange interaction in the basal plane; the orientation
of the magnetic moments along the orthorhombic axis
was attributed to the single-ion anisotropy of rank 4 [6].
The weak ferromagnetic moment along the Y-axis [6]
(group Pnma) is usually attributed to antisymmetric
exchange.

3
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c

(‡)

3

3 3
2

4 4

44
1
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c

(b)

Fig. 1. Orbital and magnetic structures of pure manganite in
two neighboring planes along the Y-axis (parts a and b). The
oxygen and lanthanum ions are omitted. The arrows indicate
the main directions of the magnetic sublattices. The thick
lines denote the orientations of the eg orbitals. The numbers
enumerate the magnetic sublattices.
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There now have appeared a number of neutron-scat-
tering investigations [8, 9] of the spectrum of spin
waves in LaMnO3. These experiments make it possible
to determine the exchange integrals in this compound;
this makes it possible to construct the dependence of
the exchange parameters on the orbital structure.

Until recently it was believed that it is impossible to
investigate the resonance properties of LaMnO3 because
the spectrum contains a large gap [8, 9]. Nonetheless,
measurements of the temperature [10] and field [11]
dependences of the antiferromagnetic resonance frequen-
cies in the submillimeter range have appeared recently;
this made it possible to determine certain characteristic
features of the magnetic excitations spectrum, which are
accessible to measurement using neutron scattering.

On account of their high accuracy resonance methods
for investigating magnets have always been regarded as
more informative than diffraction methods. In the Jahn–
Teller magnets, where the magnetic interaction is strongly
anisotropic and there is a large number of different
weak effects, which is associated with the orbital struc-
ture of these compounds, resonance makes it possible
to investigate the characteristics of the magnetic struc-
ture to a high degree of accuracy. Advances in the tech-
nique of resonance investigations have made it possible
to investigate magnets whose spectrum contains a large
gap. Thus, it is now possible to study the resonance
properties of LaMnO3, and this is certainly of interest.

From the standpoint of a theoretical explanation of
the spin-wave and antiferromagnetic resonance spectra,
the authors of [8–11] adhere to phenomenological
models on the basis of the experimentally known mag-
netic structure of LaMnO3. They employ a two-sublat-
tive magnet model with single-ion anisotropy, which
aligns the magnetic moments precisely along the X-axis
(group Pnma). This is sufficient to describe the disper-
sion properties of spin waves [8, 9]. Antisymmetric
exchange with vector directed along the Z-axis and iso-
tropic Zeeman interaction were added in order to
describe the field dependence of the antiferromagnetic
resonance [10, 11]. This model described the depen-
dences well, but it does not agree with symmetry con-
siderations and cannot be explained from the micro-
scopic standpoint.

In the present work calculations of the magnetic
structure and antiferromagnetic resonance spectrum
were performed taking account of the orbitally depen-
dent magnetic interactions. Our model consists of the
following:

strong electron-vibrational interaction is responsi-
ble for the cooperative distortions Qθ and Qε of the oxy-
gen octahedra and for establishment of orbital ordering
in the crystal;

the crystal possesses a regular structure and is com-
pletely stoichiometric;

the only form of the exchange interaction in the
crystal is superexchange;
JOURNAL OF EXPERIMENTAL
the exchange and Zeeman interactions, as well as
the single-ion anisotropy, depend on the orbital struc-
ture; and

anisotropic exchange is neglected; the entire depen-
dence on the rotational distortions is contained in the
exchange and Zeeman interactions as well as in the sin-
gle-ion anisotropy.

This model assumes that the magnetic structure is
determined by the orbital ordering. Consequently, the
dependences of all magnetic interactions on the param-
eter characterizing the orbital structure are constructed.
In this model the spin-flop and spin-flip transitions, as
well as the behavior of the magnetization of the sublat-
tices in an external magnetic field, were calculated. In
addition, the characteristic features of the field depen-
dences of the antiferromagnetic resonance frequencies
and the total magnetization were explained.

2. CRYSTAL AND ORBITAL STRUCTURES

The LaMnO3 crystal possesses a distorted perovs-
kite structure [6, 7, 12, 13]. At low temperatures this
substance is in an orthorhombic O' phase, and at higher
temperatures or with weak doping it transforms into a

quasicubic phase O*. The space group Pnma 
corresponds to both phases.

The orthorhombic distortion of an ideal perovskite
lattice can be represented in the form of three basic dis-
tortions [14, 15].

(1) A distortion of the R type is a rotation of the oxy-
gen octahedra around the [110]p axis of an ideal perovs-
kite with cell doubling along all three axes ({k13}τ9
(C1C10) in Kovalev’s notation [16] or (ϕϕ0) in the nota-
tion of [17]). The angle ϕ = 12° [18].

(2) The M type distortion is a rotation of oxygen
octahedra around the [001]p axis with cell doubling
along two axes ({k11}τ3 (00C2) in the notations of [16]
or (00ψ) according to [17]). The angle ψ = 10° [18].

(3) The ε type distortion (Qε) describes an e-type
deformation of the crystal octahedron with doubling
along two axes ({k11}τ5in the notations of [16] and with
the choice of the ray [1/2 1/2 0]p). Distortions of this
type are illustrated in Fig. 2.

The corresponding basic distortions are accompa-
nied by adjustment of the lattice.

The orbitally degenerate ground state 5E of the man-
ganese ions is split as a result of the cooperative Jahn–
Teller effect. The orbital state with the wave function

(1)

where (ϕθ, ϕε) are the basis functions for the E level and
the angle Φ satisfies (see Fig. 1)

(2)

D2h
16( )

ψn

Φn

2
------ϕnθsin

Φn

2
------ϕnε,cos+=

Φ1 Φ2 Φ3– Φ4 Φ,= = = =
 AND THEORETICAL PHYSICS      Vol. 91      No. 6      2000



        

ANTIFERROMAGNETIC RESONANCE SPECTRUM IN LaMnO

 

3

 

1223

        
is established on each manganese ion. The value of this
angle is expressed in terms of the distortion in the crystal:

(3)

Here Φ = 107° [18].
The orbital structure of manganite is shown in Fig. 1.

3. ORBITAL DEPENDENCE
OF THE MAGNETIC INTERACTIONS

3.1. Isotropic Exchange

Taking account of the metal–ligand distances rb and
rac and the superexchange coupling angles ϕb and ϕac,
the authors of [19] obtained for pairs of interaction ions
along the zp axis and in the basal plane the dependences
for the parameters of the isotropic exchange of manga-

nese ions in a manganite crystal with structure  on
the orbital structure (J12 = J34 = Jb, J14 = J23 = Jac in
accordance with the notations used in Fig. 1):

(4)

where

(5)

J0, α, and β are parameters that depend on the type of
magnetic ions in a pair and the type of intermediate ion
(they can be determined from the experimental data),
and Φ is the angle of the Jahn–Teller distortions. The
parameters in the relation (5) are determined in [19]:
J0 = 1.24 × 103 meV Å10, α = 0.9, β = 4.9. The depen-
dence of the exchange integrals on the Jahn–Teller dis-
tortion angle is presented in Fig. 3. The structural
parameters for LaMnO3 were taken from [18] and are
rb = 1.96 Å (the distance between the manganese and
oxygen ions along the b axis), rac = 2.04 Å (the average
of the length of the long and short distances between
the manganese and oxygen ions in the ac plane), ϕb =
155.1° (the superexchange binding angle along the
b-axis), and ϕac = 153.8° (the superexchange bond angle
in the ac plane).

It is obvious that the presence of a ferromagnetic
exchange interaction in the basal plane is due to the pres-
ence of a definite orbital structure, since the orbitally inde-
pendent part of the exchange is antiferromagnetic.

A characteristic feature of the dependence (5) is a
possible change in magnitude and sign of the exchange

Φsin
Qε

Qθ
2 Qε

2+
-----------------------, Φcos

Qθ

Qθ
2 Qε

2+
-----------------------.= =

D2h
16

Jb

J0 ϕbcos
2

rb
10

----------------------Fb Φ( ),=

Jac

J0 ϕaccos

rac
10

----------------------Fac Φ( ),=

Fb Φ( ) 1 2α Φ β Φcos
2

+cos+[ ] ,=

Fac Φ( ) 1 α Φ β Φcos
2 3

4
---– 

 +cos– ,=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
parameter in the ac plane (the minus sign denotes a fer-
romagnetic interaction), which is due to the change in the
magnetic structure with the crystal structure remaining

unchanged . This distinguishes the Jahn–Teller
compounds from other magnetic dielectrics.

3.2. Single-Ion Anisotropy and the Zeeman Interaction

The single-ion anisotropy appears in second-order
perturbation theory with respect to the spin-orbital
interaction. From microscopic calculations using per-

turbation theory P ≈ – /(12∆), where ζ3d is the spin-
orbit interaction constant and ∆ is the energy gap
between the 5E ground state and the 3T1 excited state of
the manganese ion. Taking ζ3d = 17.1 meV [6] and ∆ =
169.5 meV gives P = –0.15 meV.

D2h
16( )

ζ3d
2

Y, zp

xp

yp

Z X
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b

c

Fig. 2. Fragment of a LaMnO3 cell with ε-type distortion.

The La3+ ions are omitted; (X, Y, Z) is orthorhobic coordi-
nate system; (xp, yp, zp) is quasicubic coordinate system.
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Fig. 3. Angular part of the exchange integrals along the b
axis (Fb) and in the basal plane (Fac) versus the Jahn–Teller
distortion angle (angle of orbital structure) Φ.
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An expression for the single-ion anisotropy is obtained
in [19] in the local axes of the oxygen octahedra. It
depends on the orbital ordering angle:

(6)

where

(7)

(8)

The values of Dn are positive (cosΦi < 0, P < 0) and
are the same for all magnetic ions in a cell, and En

changes sign on switching to a neighboring magnetic
ion in the basal plane.

The quantity P can be determined according to the
magnitude of the gap for the lower branch of the spin
waves ∆E = 2.7 meV [8]: P = –0.13 meV [19]. For val-
ues of ∆E from [10, 11], P ≈ –0.1 meV. In subsequent
calculations we shall employ this value. In the section
devoted to the antiferromagnetic resonance spectrum
we shall examine the determination of the constant P in
greater detail.

On account of the Jahn–Teller effect the g tensors of
neighboring ions are not equivalent [3]. This greatly
complicates the magnetic structure of the compound in
an external nonzero magnetic field. The components of

Han
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the g tensors also depend on the angle Φ. We shall write
down the Zeeman interaction operator for the corre-
sponding symmetry [20]:

(9)

where Xθ, ε are orbital operators which act in the space
of the functions (ϕθ, ϕε) of the ground-state E term:

(10)

We now average it over the wave functions (1) and
obtain an effective spin Hamiltonian in local axes of the
oxygen octahedra

(11)

where

ĤZeem
n( )

g1µB Sn H⋅( )=

+
1
2
---g2µB 3Snzp

Hzp
Sn H⋅–( )Xnθ[

+ 3 Snxp
Hxp

Snyp
Hyp

–( )Xnε ] ,

Xθ
1– 0

0 1 
 
 

, Xε
0 1

1 0 
 
 

.= =

ĤZeem µB H gi Si⋅ ⋅( ),
i

∑–=
(12)

g1 g2

g1 g2 Φ 2π
3

------– 
 cos+ 0 0

0 g1 g2 Φ 2π
3

------+ 
 cos+ 0

0 0 g1 g2 Φcos+ 
 
 
 
 
 
 
 

,= =

g3 g4

g1 g2 Φ 2π
3

------+ 
 cos+ 0 0

0 g1 g2 Φ 2π
3

------– 
 cos+ 0

0 0 g1 g2 Φcos+ 
 
 
 
 
 
 
 

.= =
The parameters g1 and g2 were estimated in second-
order perturbation theory to be g1 = 1.89 and g2 = 0.047
(for ζ3d = 17.1 meV and ∆ = 169.5 meV [6]).

4. RESULTS AND DISCUSSION
The following Hamiltonian was used to calculate

the magnetic properties of lanthanum manganite:
(13)

Ĥ Jb Sm Sn⋅( )
m n>

interplane

∑=

+ Jac Sm Sn⋅( )
m n>

in plane

∑ Ĥan
n( )

n

∑ ĤZeem
n( )

.
n

∑+ +
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The rotational distortions of oxygen octahedra are
taken into account not only in the exchange Hamilto-
nian (4) but also in all other terms. For spin variables, a
transformation is made in the terms of the single-ion
anisotropy and Zeeman interaction from a local coordi-
nate system tied to axes of the octahedron into a general
orthorhombic system using the matrix

(14)

The correspondence between the rotation angles and
the orbital structure in a primitive magnetic cell is given
as follows:

(15)

After appropriate transformations the Hamiltonian (13)
can be rewritten as the energy of the magnetic sub-
system in terms of the basal vectors of the magnetic
structure for four sublattices (in the nearest-neighbors
approximation):

(16)

where N is the number of magnetic ions in the sublat-
tice, F = S1 + S2 + S3 + S4, G = S1 – S2 + S3 – S4, A =
S1 – S2 – S3 + S4, and C = S1 + S2 – S3 – S4 are the basal
vectors of the four-sublattice magnetic structure [21],
Jb and Jac are the exchange integrals in LaMnO3 (Jb =
1.16 meV, Jac = –1.66 meV [9], Jb = 1.21 MeV, Jac =
−1.67 meV [8]), and the single-ion anisotropy and Zee-

M ϕ ψ,( )
ψcos ψsin 0

ψsin– ψcos 0

0 0 1 
 
 
 
 

=

×

ϕ
2
---cos2 ϕ

2
---sin2 ϕsin

2
-----------–

ϕ
2
---sin2– ϕ

2
---cos2 ϕsin

2
-----------

ϕsin

2
-----------–

ϕsin

2
----------- ϕcos

 
 
 
 
 
 
 
 
 
 

1

2
------- 0

1

2
-------

1

2
------- 0 1

2
-------–

0 1 0 
 
 
 
 
 
 
 

.

Mn1 ϕ ψ Φ, ,( ) Mn2 ϕ ψ Φ, ,–( ),,
Mn3 ϕ ψ Φ–,–,( ) Mn4 ϕ ψ Φ–,–,–( ).,

E
N
4
---- Jb F2 G2– A2– C2+( ){=

+ 2Jac F2 G2– A2 C2–+( ) a FX
2 GX

2 AX
2 CX

2+ + +( )+

+ b FY
2 GY

2 AY
2

CY
2+ + +( ) c FZ

2 GZ
2 AZ

2
CZ

2+ + +( )+

+ d FX AY FY AX GXCY GYCX+ + +( )

+ e FXCZ FZCX GX AZ AXGZ+ + +( )

+ f FYGZ FZGY AZCY AYCZ+ + +( )

+ 4µB HX g11FX g21AX+( )[
+ g22HYFY HZ g13FZ g23AZ+( )+ ] } ,
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man interaction parameters are expressed in terms of
the structural parameters as follows:

(17)

(18)

The following values of the parameters enumerated above
were used for quantitative description of the properties of
LaMnO3: Jb = 1.16 meV, Jac = –1.66 meV [9], P =
−0.1 meV, a = –0.06 meV, b = 0.09 meV, c = 0.06 meV,
d = 0.06 meV, e = –0.3 meV, f = 0.01 meV, g11 = 1.865,
g21 = 0.005, g22 = 1.83, g13 = 1.825, and g23 = –0.005
(calculated using Eqs. (17) and (18) and the parameters
ϕ, ψ, and Φ of the crystal and orbital structures).

4.1. Magnetic Structure in an External Magnetic Field

Minimizing the magnetic energy in the model (16)
leads to a four-sublattice magnetic structure, which pos-
sesses a noncollinear form and is classified as (AX, 0, GZ)
(see Fig. 4a) neglecting the rotational distortions and as
(AX, FY, GZ) (see Figs. 4a, 4b) taking these distortions
into account.

The expression (16) makes it possible to determine
immediately the main components of the magnetic

a 3P Φ 2ψ,sinsin=

b P 3 Φ ϕcos
2

3 Φ ϕsin
2

2ψsinsin–cos( ),=

c P 3 Φ ϕsin
2

3 Φ ϕcos
2

2ψsinsin–cos( ),=

d 2 3P Φ 2ψ ϕ ,sincossin–=

e 2 3P Φ 2ψ ϕ ,coscossin=

f P 2ϕ 3 Φ 3 Φ 2ψsinsin+cos( ),sin=

g11 g1 2ψ 1
2
---g2 Φ ψ,coscos–cos=

g21
3

2
-------g2 Φ ψ,sinsin=

g22 ϕ g1 g2 Φcos+( ),cos=

g13 ϕ ψ g1
1
2
---g2 Φcos– 

  ,coscos=

g23
3

4
-------g2 Φ 2ψ.sinsin–=

2, 3 1, 4

(‡)

c
1

(b)

b

a
42

3

Fig. 4. Magnetic structure of LaMnO3: (a) AX and GZ com-
ponents; (b) AX and FY components.
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structure. Comparing the coefficients of the squared
components of the basal vectors of the magnetic struc-

ture F, G, A, and C shows that the components  and

 have the most negative coefficients: (–Jb + 2Jac + a)
and (–Jb + 2Jac + c). It is obvious that for LaMnO3 AX is
the main component of the magnetic structure.

It is easy to see that in the absence of rotational dis-
tortions in the crystal the coefficients of the energy (16)
a = c = d = f = 0, whence follows that in this case the
structures (AX, 0, GZ) and (AX, FY, GZ) become equiva-
lent. This agrees with symmetry considerations, since
in the absence of rotational distortions the symmetry of

the crystal is tetragonal  and the X- and Z-axes
are equivalent.

On account of the presence of orbital structure the
easy magnetization axis of the crystal is singled out
(a ~ sinΦ) and nonlinear components of the magnetic
structure appear: GZ (e ~ sinΦ) and FY (d ~ sinΦ). The
FY component appears also because the orthorhombic
nature of the crystal is taken into account (d ~ sinΦ,
f ~ sin2ϕ). The corresponding components of the mag-
netic structure can be written as

(19)

Thus, in our calculations the values of the compo-
nents of the magnetic moments on one manganese ion
are µX ≈ 3.7µB, µY ≈ 0.05µB, and µZ ≈ 0.09µB (assuming
the magnetic moment of the Mn3+ ion to be 3.7µB [18]).
According to the experimental data, µY ≈ 0.1µB [6]. The
order of magnitude of µY agrees with experiment even
without including in the Hamiltonian the antisymmetric
Dzyaloshinskiœ–Moriya exchange, which we neglected.

It follows from the expression for the energy (16)
that the single-ion anisotropy contributes to the terms
responsible for the noncollinearity of the structure, specif-
ically, the weak ferromagnetism. As a result of the large
anisotropy, these terms are large enough to neglect the
antisymmetric exchange.

For orthoferrites, where the oxygen environment of
a magnetic iron ion is close to an ideal octahedron and
the single-ion anisotropy, second-order in the spin, is
negligibly small, the antisymmetric Dzyaloshinskiœ–
Moriya exchange plays a decisive role in the formation
of the weakly ferromagnetic structure. In manganites,
on account of the cooperative Jahn–Teller effect and the
strong spin-orbit interaction, giving rise to a large sin-
gle-ion anisotropy, the role of antisymmetric exchange
in the formation of magnetic structure can be assumed
to be secondary. In some calculations, including the

AX
2

AZ
2

D4h
5( )

AX 4S,≈

FY 4S
ef 2d a c– 4Jac+( )+

f 2 4 a c– 4Jac+( ) a b– 2Jb–( )–
-------------------------------------------------------------------------------,–≈

GZ 4S
2e a b– 2Jb–( ) df+

f 2 4 a c– 4Jac+( ) a b– 2Jb–( )–
-------------------------------------------------------------------------------.–≈
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present work, it can be rejected, since the role of orbital
and crystal structures in the formation of the magnetic
order is obvious even without this interaction. However, in
the O* phase the single-ion anisotropy is small, and then
the role of antisymmetric exchange becomes appreciable.
According to experimental investigations [22] this interac-
tion is approximately the same in both phases.

Nonetheless, in most works (e.g., [8–11]) the contri-
bution to the energy, responsible for the coupling of the
AX and GZ components, was neglected. However, the
constant e, determining the magnitude of this contribu-
tion and depending primarily on the orbital structure, in
our model is quite large and must necessarily be
included in the analysis.

In [6], where the magnetic structure of LaMnO3 in
the initial model was studied, the orientation of the mag-
netic moments along the long axis was explained by
including the anisotropic terms which are of fourth-
order in the spin variables. In our model the easy axis is
singled out because of the orbital structure of the crystal.

The behavior of the magnetic structure of an easy-
axis antiferromagnet in an external magnetic field is
ordinarily studied in a simple model. Neglecting the
orbital structure and the rotational distortions the Zee-
man contribution to the energy has the form −µBg(F · H).
In this case the magnetic structure in a field directed
along the easy axis remains unchanged up to some
magnitude of the field (Hc1), after which “flipping” of the
magnetic sublattices (spin-flop transition) perpendicular
to the field occurs. As the external field increases further,
the direction of the magnetic moments gradually
approaches the direction of the field until saturation occurs
(spin-flip transition at Hc2). In this approach the behavior
of the nonlinear components is not studied.

In our model the behavior of the magnetic structure
is more complicated. This, in turn, is due to the fact that
the nonlinear components of the magnetic structure are
taken into account. The rotational distortions make the
interaction of F and H anisotropic. The orbital structure
changes by the magnitude of the components of the g
tensors and in the presence of rotational distortions
adds to this interaction antiferromagnetic components
of the structure, specifically, AX and AZ . Consequently,
we present below the results of numerical calculations.

Let us consider an external magnetic field applied
parallel to the easy magnetization axis. For H < Hc1 the
directions of the projections of the magnetic moments
of the sublattices on the basal plane remain unchanged.
The total ferromagnetic moment (Y component)
increases depending on the field in a manner so that in
the sublattices parallel to the external field the Y com-
ponent increases and in other sublattices it decreases
(see Fig. 5). In other words for H < Hc1 the FY and the
AY components of the magnetic structure increase. The
remaining components change very little.

When the field reaches the value Hc1 the direction of
the total ferromagnetic moment changes. In this mag-
 AND THEORETICAL PHYSICS      Vol. 91      No. 6      2000
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netic field a spin-flop transition occurs from AX into AZ

and from FY into FX . The component AY continues to
increase with the field. The component AY begins to
decrease for H > Hc2, when AZ reaches zero. When the
field reaches the value  the magnetization curve
tends to saturation. Complete saturation is not attain-
able in our model because of the anisotropy of the g ten-
sors. The critical fields were Hc1 = 19 T, Hc2 = 52.5 T, and

 ~ 100 T. The value of the field Hc1 agrees with the
value found experimentally in [11] and is 21 T. The val-
ues of the other critical fields have not been measured.

Thus the behavior of the total magnetization of the
crystal measured in [11] and calculated in our work
(see Fig. 6) can be explained. The computed depen-
dence is qualitatively identical to the characteristic fea-
tures of the experimental curve: the nonlinear growth
up to Hc1, a jump at H = Hc1, linear dependence of the
magnetization on the field for H > Hc1.

The nonlinearity of the growth of µ is associated
with the growth of the FY component of the magnetic
structure. The jump in µ near a spin-flop transition is
due to the change in the direction of the ferromagnetic
component of the total moment. A quantitative diver-
gence is noticeable in fields below the spin-flop transi-
tion field. In [11] this behavior was explained by the
presence of domains (twins) in the crystal, for which
the external magnetic field is directed along the Y-axis.

4.2. Spin Waves and Antiferromagnetic Resonance

The dispersion dependences of magnons were investi-
gated for the energy (16) in the linear spin-wave approxi-
mation. As a result of the four-sublattice model of the

Hc2'

Hc2'

0

10

0.1

H, T

MY, µB/formula unit

0.2

0.3

0.4

20 30 400

0 10 20 30 40
–2
–1

0
1
2

MY, µB/formula unit

H, T

Fig. 5. Total Y component of the magnetic structure µY ver-
sus the external magnetic field H. Inset: Y component of the
magnetic sublattices versus the external magnetic field H.
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magnetic structure, the spin-wave spectrum has four
branches. The spectrum is divided into two bands, each
having two closely spaced branches.

For k = 0 the energy spectrum of the magnetic exci-
tations can be observed with the aid of antiferromag-
netic resonance (see Fig. 7).

Without an external magnetic field the lower
branches of the spectrum are split slightly and sepa-
rated by an energy gap. The formation of such a gap is
characteristic for an easy-axis antiferromagnet. In a
two-sublattice model the gap width is determined by
the square root of the product of the exchange parame-
ter and the single-ion anisotropy. In our model the gap
width is determined by the square root of a complicated
combination of the exchange interaction and single-ion
anisotropy parameters. Neglecting the rotational distor-

0 10

0.5

20 30 40

1.0

1.5

2.0

H, T

M, µB/formula unit

Fig. 6. Total magnetization (per formula unit) µ versus the
external magnetic field H. Thick line is the result of mea-
surements from [11].
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Fig. 7. Antiferromagnetic resonance frequencies f versus the
external magnetic field H. Solid line is this calculation,
points are the results of [11].
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tions the expressions for the squared energies of the anti-
ferromagnetic resonance as a function of the parameters
Jb, Jac, b, and e can be written as follows:

(20)

The expressions for the energies taking into account the
rotational distortions are even more complicated, and
for this reason only the numerical calculations are pre-
sented below.

It is easy to see that the main parameters determin-
ing the width of the gap in the antiferromagnetic reso-
nance spectrum are P, Jb, and Jac . In contrast to “stan-
dard” phenomenological models the gap width depends
not only on the antiferromagnetic exchange. Ferromag-
netic intraplanar exchange also makes an important
contribution to the gap width at the Γ point of the mag-
netic Brillouin zone. This is due to the influence of
orbital structure.

To estimate the parameter P we compared the
numerically determined quantity (∆E1 + ∆E2)/2 with
the gap width obtained in [8, 9, 11] and with the aver-
age of two energies obtained in [10]. Since the depen-
dence of the splitting δE at H = 0 on the parameters (17)
is quite complicated, we did not adjust P to this splitting,
especially since the structural parameters on which the
constants (17) depend were assumed to be given.

According to our calculations the gap width is ∆E =
2.33 meV, and the splitting of the lower branches was
δE = 0.18 meV. Our calculations agree well with the
experimental values of these quantities (∆E = 2.7 [8],
2.6 [9], 2.28 [11], 2.18 meV; δE = 0.12 meV [10]). The
main indication that the model is adequate is the agree-
ment between the splitting and the experiment value [10],
since this parameter is obtained by using structural data.

In the models used in [8, 9] the formation of a gap is
explained well, but the splitting of the branches cannot be
explained. In the models of [10, 11] this splitting is attrib-
uted to the presence of the Dzyaloshinskiœ–Moriya inter-
action. However, in these works the values of the anisotro-
pic parameters are introduced phenomenologically and
are not tied to the crystal and orbital structures. The
direction of the antisymmetric exchange vector, taking
account of the crystal symmetry, has a more compli-
cated form than that assumed in [9, 10]. This is shown,
for example, in [22, 23]. The two-sublattice model is
inadequate here, since the change in the bond angle
between the manganese ions, located in the same plane,
must also be taken into account, which ordinarily is not
done.

∆E1( )2 "γS
2

--------- e2

Jac

------- 16Jac+ 
 =

× e2

Jac

-------– 4 b 4Jac– 2Jb+( )+ 
  ,

∆E2( )2 "γS
2
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2Jac

----------– 4b+ 
  e2

Jac

------- 8Jb– 
 =

– 2e2 2 b
Jac

-------+ 
  2–
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-------+ 
  .
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In our model the lifting of the degeneracy for the
branches of the spectrum of an easy-axis magnet is asso-
ciated with the specific form of the single-ion anisotropy,
specifically, the presence of the term e(AXGZ + AZGX),
which depends on the orbital structure. The increase in
the number of sublattices, which is associated with the
orbital structure, gives rise not only to doubling of the
magnetic cell but also lifting of the degeneracy of the
pairs of branches at the Γ point. When the rotational
distortions are taken into account in the Hamiltonian
the quantity δE decreases.

In addition, the field dependence of the antiferro-
magnetic resonance frequencies with H || a was taken
into account. The behavior of the field dependence of
the frequencies is characteristic for an easy-axis anti-
ferromagnet. As the field in the direction of the easy
magnetization axis increases, the two bottom branches
of the spectrum diverge even more. At H = Hc1 a sharp
jump associated with the spin-flop transition is observed.
In ordinary antiferromagnets the lower branch possesses
zero energy at this field. This is not so in our model.
This effect is due to the fact that the magnetic structure
is not strictly collinear, and the g tensors are anisotro-
pic. As a result, the magnetic field cannot be directed
strictly along the direction of the easy magnetization
axis. The special features of the spin-flop transition in
LaMnO3 and the absence of complete saturation are
associated with this.

5. CONCLUSIONS

In summary, in the present work a simple model
describing the dispersion [8, 9] and field [10, 11] depen-
dences of the spin-wave energies and the field dependence
of the total magnetization [11] was presented. The model
included the orbital-dependent interactions: exchange,
single-ion anisotropy, Zeeman interaction; the orbital
structure is assumed to be fixed and independent of the
magnetic interactions. There is no anisotropic exchange in
the model, and all rotational distortions are taken into
account in other interactions.

As a result of the simplicity of the model the depen-
dence of the magnetic structure on the orbital and crys-
tal orderings can be clearly traced. For the same reason
it is possible to give a qualitative explanation of the for-
mation of the magnetic structure [19] and its behavior
in an external magnetic field.
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Abstract—Emission Mössbauer spectroscopy on 67Cu (67Zn) and 67Ga (67Zn) isotopes was used to show that
for the superconductors Nd1.85Ce0.15CuO4, La1.85Sr0.15CuO4, and Tl2Ba2CaCuO8 in the temperature range T > Tc
the temperature dependence of the center of gravity S of the Mössbauer spectrum is determined by the second-
order Doppler shift, while in the range T < Tc the Bose condensation of Cooper pairs influences the value of S
(here Tc is the superconducting transition temperature). The spatial nonuniformity produced in the electron den-
sity by a Bose condensate of Cooper pairs was observed for La1.85Sr0.15CuO4. © 2000 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

Superconductivity is due to the appearance of Coo-
per pairs and the formation of a Bose condensate,
which is described by a single coherent wave function
[1]. This means that the electron density distribution at
the lattice sites of a superconductor should be different
at temperatures above and below Tc—the supercon-
ducting transition temperature.

Since the isomeric shift I.S. of the Mössbauer spec-
trum is determined by the electron density on the nuclei
investigated, it is in principle possible to observe the
formation of Cooper pairs and a Bose condensate by
measuring the temperature dependence of the center of
gravity S of the Mössbauer spectrum of superconduc-
tors. The temperature dependence of S at constant pres-
sure P is determined by three terms [2]:

(1)

The first-term in Eq. (1) is the dependence of the
isomeric shift I.S. on the volume V, the second term
describes the influence of the second-order Doppler
shift, I.S., and in the Debye the approximation it has the
form [2]

(2)

where kB is the Boltzmann constant, E0 is the isomeric
transition energy, M is the mass of the probe nucleus, c
is the velocity of light in vacuum, Θ is the divine tem-
perature, and F(T/Θ) is the Debye function. Finally, the
third term in Eq. (1) describes the temperature depen-
dence of the isomeric shift I.S. at constant volume. The
appearance of this term is due to the change in the elec-
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tron density at the Mössbauer nuclei, and this effect is
expected when the matrix transforms into the supercon-
ducting state.

However, attempts to observe the formation of Coo-
per pairs and a Bose condensate by measuring the tem-
perature dependence of the center of gravity S of the
Mössbauer spectrum of 119Sn for the classical super-
conductor Nb3Sn were unsuccessful [3]: the observed
dependence S(T) was described satisfactorily by the
second-order Doppler shift and no features in the
behavior of S(T) which could be attributed to the
change in the isomeric shift were observed near Tc.
Similarly, no anomalous change in S of the Mössbauer
spectrum of the impurity atoms 57Fe in high-tempera-
ture superconductors was observed (YBa2Cu3O7 – x [4],
(Bi,Pb)2SrCu3O10 [5], (Tl,Pb)Sr2Ca2Cu3Oy [6]). These
facts are explained by the small value of ∆I.S./2G (here
∆I.S. is the maximum achievable difference of the iso-
meric shift of the Mössbauer spectrum in the ordinary
and superconducting phases, G = "/τ0 is the natural
width of the nuclear level, and τ0 is the average lifetime
of the nuclear level), which for Mössbauer spectros-
copy on the isotopes 57Fe and 119Sn does not exceed 6.

The observation of Cooper pairs by Mössbauer
spectroscopy should be most favorable for high-tem-
perature superconductors (which have the minimum
Cooper-correlation scale), if a probe for which ∆I.S. @ 10
is used. The choice of objects for investigation should
also take account of the need to introduce a Mössbauer
probe at the lattice sites. All these conditions are satis-
fied for the Mössbauer probe 67Zn in copper metal-
oxide lattices when using the emission variant of Möss-
bauer spectroscopy on the isotopes 67Cu (67Zn): ∆I.S./2G ≈
200 for 67Zn and the parent isotope 67Cu can be intro-
000 MAIK “Nauka/Interperiodica”



EXPERIMENTAL OBSERVATION OF BOSE CONDENSATION 1231
duced at the copper sites during synthesis, so that the
daughter isotope 67Zn also occupies the copper sites in
the lattice [7]. However, if the emission variant of spec-
troscopy on the isotope 67Cu (67Zn) is used, then for
copper metal oxides containing rare-earth metals the
parent isotope 67Ga occupies the rare-earth metal sites
[8], and it becomes possible to investigate the spatial
nonuniformity produced in the electron density by the
Bose condensate of Cooper pairs. Finally, we note that
the Mössbauer probe 67Zn is a dielectronic center with
negative correlation energy [9]—its charge state can be
changed only by transferring simultaneously two elec-
trons, and the electron pair localized on the center pos-
sesses zero total angular momentum, orbital angular
momentum and spin. On the other hand, according to
be BCS model, for T < Tc electrons with opposite
momentum are paired, so that the total angular momen-
tum, orbital angular momentum, and spin of a Cooper
pair are also zero. It is the combination of these factors
that should be favorable for observing Bose condensa-
tion using a 67Zn probe.

In the present paper the results of such investigations
are presented for a 67Zn probe in Nd1.85Ce0.15CuO4,
La1.85Sr0.15CuO4, and Tl2Ba2CaCu2O8 lattices. Corprous
oxide Cu2O was chosen as the control, for which a tran-
sition into the superconducting state is not observed.

2. EXPERIMENTAL RESULTS AND DISCUSSION

The the Mössbauer sources Nd1.85Ce0.15CuO4,
La1.85Sr0.15CuO4, Tl2Ba2CaCu2O8, and 67Cu2O were pre-
pared by the diffusing radioactive carrier-free 67Cu into
polycrystalline samples Nd1.85Ce0.15CuO4 (Tc = 22 K),
La1.85Sr0.15CuO4 (Tc = 37 K), Tl2Ba2CaCu2O8 (Tc = 60 K),
and Cu2O in evacuated quartz ampuls at 450°C for 2 h
in an oxygen stream. For La1.85Sr0.15CuO4 diffusion of
radioactive carrier-free 67Ga was also conducted under
similar conditions. No appreciable change in Tc was
observed for the control samples.

The Mössbauer spectra were obtained using the
absorber 67ZnS. The absorber temperature was 10 ± 2 K
for all samples, while the source temperature could
vary from 10 ± 1 to 80 ± 1 K.

The Mössbauer spectra of all ceramics in the chosen
temperature range consisted of well-resolved quadrupole
triplets, whose isomeric shift corresponds to 67Zn2+ ions.
The typical spectra for the ceramic La1.85Sr0.15CuO4

are displayed in Fig. 1. For the 67Cu (67Zn) spectra it
was assumed that in the diffusion process the parent
atoms 67Cu occupy the copper sites (the data from [10–12]
attest to this), and therefore the probe 67Zn2+, which
forms after 67Cu decays, occupies the copper sites. For
the spectra of La1.85Sr0.15CuO4 : 67Ga it was assumed
that as a result of diffusion doping the parent 67Ga
atoms occupy lanthanum sites and therefore the probe
67Zn2+, formed after 67Ga decays, also occupies the lan-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
thanum sites. This is supported by the fact that in the
C–Vzz diagram constructed in [8] on the basis of emis-
sion Mössbauer spectroscopy data obtained on the iso-
tope 67Cu (67Zn) for the compounds RBa2Cu3O7 : 67Ga
(Fig. 2) the point for La1.85Sr0.15CuO4 : 67Ga falls on a
straight line plotted assuming that the parent 67Ga atoms
(and therefore the daughter probes 67Zn2+) occupy the
rare-earth metal sites R (here C is the quadrupole inter-
action constant for the 67Zn2+ probe, determined from
the experimental spectrum, and Vzz is the principal compo-
nent of the tensor of the crystal gradients of the electric
field, calculated according to the point-charge model).

It was found that the quadrupole interaction con-
stants C for all ceramics are essentially temperature-
independent. Since for the Zn2+ probe the electric-field
gradient at the 67Zn nuclei is produced only by the lat-
tice ions [9–12] and the variations of the lattice con-
stants in the temperature range 4.8–80 K are negligibly
small [13, 14], the temperature independence of C is
not unexpected.

The temperature dependences of the center of grav-
ity S of the spectrum, which were measured relative to
its value at Tc, differ substantially for the control and
superconducting materials (as an example, Fig. 3 dis-
plays such curves for La1.85Sr0.15CuO4 and Cu2O),

1

2

3

4

5

6

N

–60 –40 –20 0 20 40 60

–15 –10 –5 0 5 10 15

V, µm/s

V, µm/s

Fig. 1. Mössbauer spectrum of the compounds
La1.85Sr0.15

67CuO4 (1–3) and La1.85Sr0.15CuO4 : 67Ga (4–6)
for various source temperatures (absorber temperature 10 ±
1 K, N is the count rate in arbitrary units): 10 K (1); 11 K(4);
37 K (2, 5); 70 K (3); 75 K (6).
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though no sharp jumps in S are observed at a transition
through Tc in any of the compounds.

The temperature dependence of S is determined by
the expression (1) and, as calculations show [15], the

C, åHz Tm Y Gd Eu

–1.6

–2.0

–2.4

–2.8

–0.16 –0.14 –0.12 –0.10
Vzz, e/Å3

Fig. 2. Quadrupole interaction constant C for rare-earth
metal sites (the experimental data, obtained by emission
Mössbauer spectroscopy of  67Ga (67Zn) versus the princi-
pal components of the tensor of the crystal gradient of the
electric field Vzz at the same sites (the computational results
were obtained in the point-charge approximation) for
RBa2Cu3O7, R = Y, Eu, Gd, Tm (small filled squares) [8].
The large open square represents our data for lanthanum
sites in the La1.85Sr0.15CuO4 lattice.

4

2

0

–2

–4

–6

0 20 40 60 80
T, K

S, µm/s

Fig. 3. Temperature dependences of the center of gravity S of
the Mössbauer spectrum of 67Zn, measured relative to its value
at 37 K, for La1.85Sr0.15

67CuO4 (j), La1.85Sr0.15CuO4 : 67Ga

(n), and 67Cu2O (h). The theoretical temperature depen-
dence of S is presented for the second-order Doppler shift
with Θ = 400 K.
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first term in Eq. (1) for the case 67Zn can be neglected,
since for the temperature range chosen it does not
exceed 0.03 µm/s and, and in the temperature range
10−80 K no structural phase transitions are observed in
any of the compounds investigated [16].

The second term in Eq. (1) describes the effect of
the second-order Doppler shift. As one can see from
Fig. 3, the experimental data for the control sample
Cu2O in chosen temperature range are satisfactorily
described by the dependence (2), drawn for Θ ≈ 400 K.
For superconducting samples the experimental data for
temperatures T > Tc are also described by the depen-
dence (2) plotted for Θ ≈ 360 (Nd1.85Ce0.15CuO4), 400
(La1.85Sr0.15CuO4), and 260 K (Tl2Ba2CaCu2O8)
(according to specific-heat measurements the Debye
temperatures for Nd2CuO4, La2 – xSrxCuO4, and
Tl2Ba2CaCu2O8 are, respectively, 300 [17], 420 [18],
and 270 K [18]).

Finally, the third term in the expression (1)
describes the temperature dependence of the isomeric
shift I.S., and this term appears because the electron
density changes at the 67Zn nuclei. The quantity I.S. at
a given temperature T can be found as the difference

(here ST and DT are, respectively, the center of gravity
of the spectrum and the Doppler shift at temperature T).
The fact that [I.S.]T increases with decreasing tempera-
ture in the range T < Tc shows that the electron density
increases on the 67Zn nuclei as result of the appearance
of Cooper pairs and their Bose condensation. The limiting

I .S.[ ]T ST DT–=

1

2

3

6

4

2

0 20 40 60
Tc, K

[I. S.]0, µm/s

Fig. 4. [I.S.]0 versus Tc. The symbols represent the com-

pounds Nd1.85Ce0.15
67CuO4 (1), La1.85Sr0.15

67CuO4 (2),

and Tl2Ba2Ca67Cu2O8 (3).
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values of I.S. in the limit T  0, ,
should depend on the size of the Cooper pairs, i.e., on Tc.
The validity of this conclusion is illustrated in Fig. 4,
which shows the dependence of [I.S.]0 on Tc: as Tc

increases (i.e., as the Cooper-correlation radius
decreases), the quantity [I.S.]0 increases; this reflects
the fact that the electron density on the 67Zn2+ nuclei
increases. Ii is significant that the quantity [I.S.]0 = 1.5 ±
0.3 µm/s for 67Zn2+ centers at the lanthanum sites is
much smaller than [I.S.]0 = 3.8 ± 0.3 µm/s for 67Zn2+

centers at the copper sites (see Fig. 3). Evidently, this is
a consequence of the spatial nonuniformity produced in
the electron density by the Bose condensate of Cooper
pairs.

Thus, it has been established that for the supercon-
ductors Nd1.85Ce0.15CuO4, La1.85Sr0.15CuO4, and
Tl2Ba2CaCu2O8 the temperature dependence of S in the
range T > Tc is determined by the second-order Doppler
shift, while in the temperature range S the appearance
of Cooper pairs and their Bose condensation also influ-
ence the value of S. As the temperature decreases, the
influence of the indicated process on S increases, since
the Bose-condensate fraction increases with decreasing
temperature.

In general, the temperature dependence of the effec-
tive density of superfluid electrons, ρ(T), can be written
[1] as

where EF = /2m is the Fermi energy, m is the particle
mass, k is the wave number, kF is the wave number at
the fermi surface, Ek is the energy of the k state, and β
is the reciprocal of the binding energy of the superfluid
component.

On the other hand it should be expected that

Consequently, the theoretical dependence of ρ on the

parameter x = 1.76(kBT/∆) (∆ = 3.06kB  is
the energy gap in the elementary exultations spectrum
of the superconductor), taken from [1], is presented in
Fig. 5 together with our data on the dependence of
[I.S.]T/[I.S.]0 on the parameter x for the emission spec-
troscopy of 67Cu (67Zn). It is evident that the agreement
between the calculated and the experimental values is
satisfactory. In other words Mössbauer spectroscopy on
the isotope 67Zn is an effective method for investigating
the formation of Cooper pairs and their Bose condensa-
tion in high-temperature superconductors.
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3. CONCLUSIONS

It was shown for the compounds Nd1.85Ce0.15CuO4,
La1.85Sr0.15CuO4, and Tl2Ba2CaCu2O8 by emission
Mössbauer spectroscopy on the isotopes 67Cu (67Zn)
and 67Ga (67Zn) that the transition into the supercon-
ducting state is accompanied by a redistribution of the
electronic density of the crystal, and emission Möss-
bauer spectroscopy of 67Zn is an effective method for
investigating Bose condensation of Cooper pairs.
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Abstract—The temperature behavior of the coherent electron transport that arises in the presence of Andreev
reflections is studied near the boundary of a hybrid system consisting of aluminum (N) and indium (S). The
qualitative change of the temperature behavior upon changes in the electron mean free path lel as a result of the
elastic deformation of the sample is observed for the first time on the same sample, at probes mounted in the
normal region at fixed distances and from the boundary. As the temperature is lowered, the measured effective
resistance decreases for lel ! L1, 2 and increases in a certain temperature region in which lel ~ L1, 2. It is shown
that phenomena of this kind correspond to quantum-interference features in the scattering of coherent electronic
and Andreev hole excitations on elastic centers. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

This paper is a continuation of research on electron
transport in very pure normal metals in contact with a
superconductor. The use of such metals in systems is of
fundamental importance, since for them the dissipative
transport in the temperature region corresponding to
elastic scattering is substantially coherent (determined
by the scattering of coherent electronic excitations and
hole (Andreev) excitations) at macroscopic distances
from the boundary. This, of course, is due to the fact
that in pure metals the ballistic mean free path of the
electrons reaches macroscopic values, and the spec-
trum of Andreev excitations is always resolved at bal-
listic distances from an boundary. In such a situation it
becomes possible to carry out experimental studies of
the fundamental problems associated with quantum
interference of coherent excitations and their dissipa-
tive contribution to the conductivity. This is the main
difference between the experimental setup studied here
and the study of coherent transport in mesoscopic sam-
ples [1, 2], in which this transport is only a small cor-
rection to the diffusion contribution on account of the
extremely short ballistic mean free paths of the elec-
trons (several orders of magnitude smaller than for pure
metals). Studies [3–5] of systems containing pure met-
als (Cu–Sn, Pb(N)–Pb(S), Sn(N)–Sn(S)) have con-
firmed the theoretical expectations of an unusual mani-
festation of quantum interference of coherent electrons
in the conductivity [6–8] under conditions such that the
scattering of coherent excitations on elastic centers is
predominant, as in pure metals at distances of up to sev-
eral millimeters from an boundary. Previously we have
studied hybrid systems in which a contact between a
normal metal and a superconductor was either formed
by melting [3, 4] or arose as a boundary between nor-
1063-7761/00/9106- $20.00 © 21235
mal and superconducting phases in the intermediate
domain state of a type-I superconductor in a magnetic
field [5]. In the present paper we investigate the features
of the coherent transport in a system with yet another
type of contact—a contact of a purely mechanical type.

2. EXPERIMENTAL PROCEDURE
AND RESULTS 

The inset in Fig. 1 shows the construction of the
sample holder with a hybrid system consisting of sin-
gle-crystal aluminum and indium (shaded). The mean
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Fig. 1. Temperature dependence of the effective resistance
(normalized to the value at T = 4.2 K) of aluminum at a short
elastic mean free path lel ≈ 0.2 µm and linel > L2,  @ lel;

(1) at an NN boundary, (2) at an NS boundary for T < . The

lines connect the experimental points. The inset shows the con-
struction of the sample holder with the hybrid NS system. 
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free path in the system was varied by applying uniaxial
compression with a spring and screw mechanism. Alu-
minum sample had a cross section of mm and a total
length of around 1 cm. Copper measuring probes were
spot welded to the sample at distances of L1 ≈ 0.1 mm
and L2 ≈ 0.5 mm from the contact with the indium. The
resistance ratio (room-to-helium temperature) mea-
sured at these probes prior to compression and after
compression had values of 14490 (lel ≈ 0.1 mm) and 19
(lel ≈ 2 × 10–4 mm), respectively. The first cooling to
helium temperature of the stressed sample was done
immediately after its mechanical compression. After a
cycle of measurements the entire structure containing
the sample was held at room temperature for a week.
The subsequent measurements of the of aluminum
(≈14020) revealed a practically total recovery of this ratio
to the above-indicated value for the initial unstressed state,
with the absolute values of the resistance of the sample at
helium and room temperatures decreasing by four and two
orders of magnitude, respectively. This means that the
deformation of the sample did not exceed the limits of
elasticity and that the change in the mean free path
occurred mainly on account of a change in the concen-
tration of point defects of the vacancy type, which, as
can be seen from the value of after the stress was
relieved, have a “self-healing” capability. The stress
was relieved through a loss of elasticity of the spring
after thermocycling and the plastic flow of the indium
spacer between the aluminum and the spring. 

The sample and holder were placed in a small super-
conducting solenoid with an inner diameter of 8 mm in
order to permit changing the state of the boundary by
destroying the superconducting state of the indium. 
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Fig. 2. Temperature dependence of the unnormalized effec-
tive resistance of aluminum: (1) for a large elastic mean

free path m and lel ≈ 100 µm with the NS boundary at T < ;

(2) the same, with an NS boundary (the points on this curve
were obtained with the superconducting state of the indium
destroyed by an external magnetic field); (3) the unnormal-
ized curve 2 from Fig. 1. The lines connect the experimental
points.

Tc
In
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The resistance of the layer of normal metal with a
volume of the order of l3 at l = lel ~ 100 m is 10–8–
10–9 Ω . Therefore, at reasonable measuring currents
(≤1 A), investigation of resistive effects of this order
requires a resolution of the potential U differences at
the level of δU = (10–11–10–12) V or better. Such a reso-
lution was achieved by employing a null method of
measuring potential differences with the use of a super-
conducting modulator [9]. 

Curve 1 (asterisks) in Fig. 1 shows the temperature
dependence of the normal effective resistance mea-
sured at probes and for a contact between aluminum
and a metal that maintains a normal state over the entire
temperature interval investigated. The contact is either
mechanical (with copper) or welded (with platinum).
The form of curve 1 is the same for both types of
boundaries and does not depend on the quality of the
contact. It is seen that the change of the resistance with
temperature over the temperature interval shown is a
fraction of a percent. 

A completely different picture is observed in the
contact of a sample with indium when the sample is
elastically compressed until the mean free path is
decreased to ~2 × 10–4 mm (curve 2, squares). Up until
the transition of indium to the superconducting state,
the temperature-dependent part of the resistance of the
aluminum between the measuring probes and behaves
the same as for any other type of normal boundary,
maintaining a practically constant absolute value inde-
pendently of the value of the total resistance, i.e., of the
elastic mean free path of the electrons; this situation is
described to good accuracy by the Matthiessen rule.
However, after the transition of the indium to the super-

conducting state (at the critical temperature ) and
the formation of an boundary, the conductivity of the
aluminum region bounded by the probes increases
strongly as the temperature is lowered. The change in
resistance of this region as the temperature is reduced

from T =  to the lower boundary of the measurement
interval is around 2% of the value of the resistance at

T =  rather than the value measured at a normal
boundary, i.e., the change is nearly 100 times larger. 

Curve 1 in Fig. 2 shows the temperature dependence
of the renormalized effective resistance of the aluminum
region between the same pair of probes after recovery of
the elastic mean free path of the electrons to its initial
value in the unstressed sample, lel ~100 µm. The two
separate points are the values of the resistance of the
aluminum when the superconducting state of the
indium is destroyed by the field of the solenoid, equal
to the critical fields of indium, 49 and 140 G, at the
respective temperatures. (At lower temperatures, i.e., at
higher critical fields, the magnetoresistive effective dis-
torts the values of the normal resistance of aluminum
and for this reason are not used here.) These values,

together with the part of curve 1 at T > , can give an
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approximate idea of the temperature dependence of the
resistance of the region [L1; L2] of aluminum in the
absence of an boundary over the entire temperature
interval of the measurements (dashed curve 2). For
comparison, we also show in this figure the temperature
dependence of the unnormalized resistance for the
stressed sample (curve 3). It follows from the form of
curve 1 that for an elastic mean free path of the elec-
trons comparable to the extent of the normal region
from the site of contact with the superconducting
indium, the effective resistance of the region manifests
unusual nonmonotonic behavior as the temperature is
lowered, initially increasing after the formation of the
boundary and then decreasing at temperatures lying

below approximately 0.8 . 

3. DISCUSSION OF THE RESULTS 

The results obtained in the experiment give a clear
idea of the features of the interaction of coherent elec-
trons with elastic scattering centers and permit making
qualitative and quantitative estimates of a number of
important microscopic parameters pertaining to coher-
ent transport in the presence of an boundary. Although
some of these features have been reported in our previ-
ous papers [3, 4], the corresponding data were obtained
either on different samples or with a replacement of the
probes or with the current applied through a point
boundary, when the ratio of the mean free path not only
to the thickness but also to the width of the normal layer
is important and the pattern of current spreading is
undetermined (sample Sp4 of [4]), so that it is difficult
to make quantitative estimates. The experiment of the
present study is free from these limitations. 

3.1. Theory

We shall show below that the phenomena observed
in this study are qualitatively and quantitatively incor-
porated in ideas about the features of the interaction of
coherent excitations which are due to Andreev reflec-
tions at an boundary and which are responsible for the
transport in the normal metal in a region adjacent to the
boundary on a scale of the phase coherence length,
which is comparable to the inelastic mean free path of
the coherent excitations linel . In view of the lack of a
theoretical treatment of the temperature behavior of the
coherent transport in metals layers with a thickness of
the order of linel , in this Subsection we shall use these
ideas to obtain a suitable analytical expression for
describing the temperature behavior of the conductance
of such a layer as a whole. We shall show that in the
case when a layer of normal metal of thickness  @ lel
contains a large number of elastic centers, which scatter
excitations with a loss of momentum but not of the
phase of the wave function (linel ≥ ), the conductance
of this layer can increase as the temperature is lowered

Tc
In

L

L
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on account of the thermal expansion of the region of
phase coherence (an increase in linel) and, as a conse-
quence, a decrease in the fraction of dissipative coher-
ent trajectories (with a length that depends on the num-
ber of Andreev reflections at the boundary), on which
the phase of the wave functions relaxes in the equilib-
rium region. 

In Subsection 3.2.2 we shall show that when the
thickness of the layer of normal metal adjacent to the
boundary is comparable to the distance between elastic
centers (linel >  ~ lel) and with the thermal length λT ≈
"vF/kBT (vF is the Fermi velocity and kB is Boltzmann’s
constant), in addition to the aforementioned behavior a
temperature behavior of the opposite character should
also appear, due to the independent dissipative contri-
bution of coherent trajectories which is not related to
the position of the equilibrium region (to linel), i.e., tra-
jectories on which the phase of the wave functions does
not relax. The contribution of this group of trajectories
is related to the size λT of the thermal layer, and it is the
increase in the size of this thermal layer as the temper-
ature is lowered that determines the temperature behav-
ior of this contribution. The competition of these two
quantum mechanisms of dissipation near the boundary
under these conditions is analyzed for the experimental
results obtained. 

Previously we have studied in detail the latter of
these dissipation mechanisms [4] and have shown that
it corresponds to the fundamental conclusion of the the-
ory that there is a twofold increase in the scattering
cross section of an elastic center for an electron under-
going coherent Andreev reflection at the boundary [6].
In view of this circumstance, with allowance for the
multiple coherent scattering on all the impurities in a
layer of thickness λT adjacent to the boundary, the resis-
tance of the metal measured at a distance from the
boundary should include the following correction to the
value that obtains in the absence  of an boundary (  ≥
lel > λT ,  .  –  for Li ~ lel [4]): 

(1)

where  is the effective scattering probability for elec-
trons undergoing Andreev reflection in the layer λT as a
whole [8]. An analysis of  showed [4] that expression (1)
correctly describes the experimentally observed growth
of the resistance of layers of normal metal located at a
distance of the order of the elastic mean free path from
the boundary when the temperature is lowered below
the temperature of the onset of the superconducting
state of the metal in contact with the normal metal. 

However, as was made clear in a study [4] of the
hybrid system Cu–Sn and is clearly confirmed by the
results of the present study, the resistance of layers
adjoining the boundary and having thicknesses satisfy-
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ing the condition lel !  < linel can exhibit temperature
behavior that is directly opposite, decreasing strongly
as the temperature is lowered (Figs. 1 and 2). The prob-
lem of the temperature dependence of the excess con-
ductivity due to coherent scattering under the indicated
conditions has not yet been analyzed theoretically, but
this can be done in terms of the Landauer concept
(which has been confirmed by numerous experiments)
as to the nature of dissipation under conditions of a ran-
dom, elastically scattering potential. According to this
concept, complete thermalization of the electron is the
result not of momentum relaxation but of relaxation of
the phase of the wave function due to inelastic scattering
in regions with an equilibrium distribution (regions that
are sinks and sources of charges), called reservoirs. The
Landauer concept was used, in particular, in [7], in a cal-
culation of the conductivity of an system. We shall follow
the scheme of this calculation to determine the tempera-
ture contribution of coherent excitations in such a system.
One of the important results of [7] was obtained by mod-
eling a continuous random walk of an elastically scattered
particle in a three-dimensional layer of the metal: the (dif-
fusional) mean free path 〈L〉  depends linearly on the
width of the normal layer. In terms of the Landauer
concept, the layer width in our case should be under-
stood to mean the distance between the boundary and
the region of equilibrium distribution (reservoir), which
is of the order of magnitude of the inelastic mean free
path, d ~ linel . Since the probability (r for and excita-
tions to pass from the boundary to the reservoir is
inversely proportional to the layer width, it follows

from the linear relation between 〈L〉 and d that 〈L〉 ~  ~
linel . In [7] the probability of passage τr is introduced
in the form τr = lel /d. However, it is also necessary to
take into account the probability of realizing a diffu-
sional trajectory by equating its length to the elastic
mean free path, or, equivalently, equating the length 〈L〉 ~

 (D ~ vFlel is the diffusion coefficient) to the

real length of the trajectory. Since 〈L〉  =  and t =
L/vF, we have 〈L〉/L = lel /〈L〉 . In addition, we shall
assume that the only temperature-dependent cause of
inelastic scattering is inelastic electron-phonon collisions,

with a corresponding mean free path linel ~  ~ T–3.
This last quantity can be normalized (i.e., a normalizing
coefficient can be found) according to some reliably
determined value. This is most simply done from the
temperature dependence of the resistance of the pure
normal metal at some temperature T* ! Θ (at which
the elastic effective electron-phonon length is numeri-
cally equal to lel , so that 

(2)

L

τ r
1–

"D/kBT

Dt

linel
e–ph

linel T( ) linel* T*
T

------ 
 

3

,=
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where Θ is the Debye temperature and is the exponent
in the temperature dependence of the resistance of the
normal metal for T ! Θ. 

As a result, the effective probability for coherent
excitations to pass through the phase coherence region
in elastic scattering can be written in the form 

(3)

In accordance with the Landauer concept, we find the
relative contribution to the conductance in the phase
coherence region by equating the fraction of coherent
trajectories (those that return to the reservoir after
reflections from the boundary, starting with the trajec-
tory with and their contribution to the current and sum-
ming over all trajectories: 

(4)

where δG = G – G0, G0 ≡ GT = 0, 

F(m) = (1 – τr)m – 1 (m ≠ 0).

The probabilistic contribution to the current from a
charge on trajectory with reflections is [7,11] 

I(m) = 1 + |reh(m)|2 – |ree(m)|2,
|reh(m)|2 + |ree(m)|2 = 1,

where |ree(m)|2 and |reh(m)|2 are the probabilities for an
electron incident on the boundary to leave the bound-
ary, after reflections (Fig. 3), in the form of an electron
wave or hole (Andreev) wave, respectively. The expres-
sion for I(m) shows that for a large enough number of
reflections, which increases the probability of Andreev
reflection to such a degree that |reh(m)|2  1, the con-
tribution of the corresponding trajectory to the current
increases by a factor of 2. If all of those trajectories
reached the reservoir, the dissipation would be increased
by the same factor. Formally this is a consequence of the
same fundamental conclusion of the theory which was
mentioned above: that in coherent Andreev reflection the
efficiency of the elastic scattering of the electron momen-
tum increases as a result of the interference of the and
excitations [6, 8]. Actually, the fraction of the coherent
trajectories that returns to the reservoir decreases rap-
idly with increasing distance to the reservoir from the
boundary and with increasing number of reflections,
which determines the length of the trajectory; thus we
have the directly opposite result. In fact, assuming that
for low electron energies (eV/("vF/lel) ! 1) and a large
contact area the main contribution to the change in con-

linel* le–ph* T*
Θ
------ 

 
n 3–

, le–ph* α Θ
T*
------ 

 
n

lel,= = =

τ r

lel

linel
-------

lel

L〈 〉
--------- βT3.5,= =

β lel
3/2 "v F

kB

---------- 
 

1/2–

linel* T∗ 3[ ]
1–
.=

δG
G0
------- F m( )I m( ),

m 1=

∞

∑=

τ r
2

 AND THEORETICAL PHYSICS      Vol. 91      No. 6      2000



FEATURES OF THE DISSIPATIVE ELECTRON TRANSPORT 1239
ductivity is from coherent trajectories with large num-
bers of reflections, so that I(m) ≈ 2, and changing the
sum in expression (4) to an integral, we find to a second
approximation: 

(5)

The upper limit of integration m* is the number of reflec-
tions corresponding to a certain critical length for a coher-
ent trajectory L that reaches the reservoir. Longer trajecto-
ries (with larger give an exponentially small contribution
to the change in conductivity, as do trajectories with a
smaller number of reflections and shorter length, which
do not reach the reservoir. Since varies in a direct rela-
tion with the number of reflections, while 〈L〉 , as we
have said, is inversely proportional to τr , for W @ linel
(W is the transverse dimension of the contact) the upper

limit of integration can be introduced as m* = γ  with
a certain coefficient γ that is to be determined experi-
mentally. Substituting m* into (5), we finally obtain 

(6)

This effect wherein the conductance increases appreciably
with decreasing temperature is actually of the same nature
as the growth of the conductivity as the number of elastic
centers increases [7]. It consists in the fact that the
number of trajectories leaving from the number of
attainable reservoirs increases in the long-range phase
coherence region, i.e., an ever greater number of trajec-
tories appear on which the phase of the coherent wave
functions does not relax; this decreases the dissipation.
Thus, in accordance with (5), one expects that the tem-
perature dependence of the relative effective resistance
measured at probes separated by distances within the
phase coherence region will be in the form of a function
that decreases with decreasing temperature: 

(7)

where R0 =  and RN ≡ RAl(T = ) for the system
under study. 

In addition to this behavior, under certain conditions
mentioned above there can also be an effect wherein the
conductivity decreases according to Eq. (1). As we see
in Fig. 3, besides the trajectories of types 1 and 3, which
escape to the reservoir, for multiple Andreev reflections
a doubled contribution to the dissipation which is inde-
pendent of the position of the reservoir is given by
momentum scattering on closed coherent trajectories of
the type 2. At temperatures close to the temperature of
the onset of the boundary, when |reh(m)|2 ! 1 (∆ ! kBT,
where ∆ is the energy gap in the superconductor in con-
tact with the normal metal) and is close to zero, the
main contribution to the dissipation, as follows from
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Eq. (1), is given by just such trajectories in a layer with
a thickness of the order of the thermal coherence length
λT . Thus in the case when the phase coherence length is
comparable to the ballistic (elastic) mean free path, the
temperature dependence of the effective resistance
measured at probes placed a distance for the boundary
of the order of this same distance can exhibit a maxi-
mum from which one can determine experimentally
such an important theoretical parameter as the coher-
ence length in a given metal. 

3.2. Comparison with Experiment

3.2.1.  @ lel , linel > L2. Figure 4 demonstrates the
application of expression (6) (the solid curve) to a
description of the temperature dependence of the effec-
tive resistance of an elastically deformed region located
a distance  from the boundary that is a factor of 103
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Fig. 3. An example of a trajectory with multiple Andreev
reflections (from [7]): 1 and 3—the part of the trajectory on
which the phase of the wave functions relaxes in the reser-
voir; 2—the part of the interference trajectory between
reflections, on which the phase shift does not relax. 
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greater than the elastic mean free path (0.2 m), for a
coefficient A = 3.6 × 10–4 [K–3.5]. The good agreement
of the theory and experiment makes it possible to estimate
some of the parameters characterizing the quantum-inter-
ference effect wherein the conductivity increases under
conditions of a strong interaction of the coherent excita-
tions. The given value of implies that γ ≈ 45. Measure-
ments of the temperature dependence of the resistivity
of aluminum at temperatures below 20 K give n = 4, T* ≈
10 K,  = 3.5 µm, β ≈ 102  [cm–1.5][K–3.5]. This
corresponds to the following estimates for the parame-
ters: τr ~ 5 × 10–4, m* ~ 5 × 105 for linel from 0.1 mm at
3 K to 0.44 mm at 2 K. If the number of reflections
obtained is multiplied by the distance between nearest
elastic centers, ∆L which for the case under consider-

ation is of the order of (lel / )1/3 ~ 10–2 (σ is the

cross section of an elastic center,  is of the order of
the screening radius (2–5 Å), so that m*∆L ~ linel , i.e.,
the main part of the length of the important coherent
trajectories is indeed governed by the number of reflec-
tions, as we have assumed from the very beginning. 

3.2.2.  ~ lel . We subtract the normal scattering
contribution (curve 3 in Fig.2) from the temperature
dependence of the resistance measured at the same probes
after the elastic strain was removed and a large elastic
mean free path had been restored (curve 1 in Fig. 2). The
result of this subtraction, normalized to the value of the
resistance at the temperature of formation of the bound-

ary T = , is shown by curve 1 (squares) in Fig. 5. 
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Fig. 5. Temperature dependence of the effective resistance

(normalized to the value at T =  of aluminum for  ~ lel ,

in comparison with the theory: (1) experiment; (2) theoreti-
cal (solid) curve, corresponding to expression (7); (3) the
same curve normalized to (R/RN) = 1; (4) the contribution to
the growth of the resistance from trajectories of the type 2
from Fig. 3 in a layer of thickness "vF/kBT as a whole. 
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We apply Eq. (7) to the descending part of this curve.
As we see in the figure, the theoretical curve 2, with a
coefficient A = 3.87 × 10–3 [K–3.5] describes the experi-
ment well. We decompose the experimental curve 1
into two competing components, consisting of the con-
tributions (1) and (7). To do this we normalize Eq. (7)
with the coefficient A determined above in such a way

that (R/RN) = 1 for T >  (curve 3) and subtract the
resulting curve from curve 1 and add 1 to the differ-
ence. The result is shown by curve 4 in Fig. 5. It corre-
sponds to the positive contribution (1) of coherent exci-
tations to the conductivity of normal aluminum at dis-
tances from the boundary comparable to the elastic
mean free path. The character of the curve is com-
pletely analogous to that which we were able to observe
directly under similar conditions in an system with a
different pair of metals: Cu–Sn [3,4]. It follows from
the form of curve 4 that this contribution amounts to 

from which, in accordance with (1) for  ≈ 125 µm and
 ~ 1, it follows that λT ≈ 25 µm at the theoretical value

of the coherence length ("vF/kBT)A1 = 20 µm for T =
2.5 K. The other parameters for the case considered
are: γ ≈ 3.5 and τr ≈ 0.03, from which we get m* ~ 102

for the same value of the phase coherence length linel as
in the “dirty” case discussed in Subsection 3.2.1. 

4. CONCLUSION 

For an aluminum-indium hybrid system with
mechanical contact of the two metals, we have studied
the temperature behavior of the transport in the normal
aluminum in a temperature interval that includes the
superconducting transition temperature of indium. The
measurements were made at fixed probes near the con-
tact in two regimes, in which the elastic mean free path
of the electrons is much shorter than or is comparable
to the distance from the probes to the contact. After the
transition of the indium to the superconducting state
and the formation of an boundary, two nonstandard
types of behavior of the conductivity with decreasing
temperature arose. In the first of the regimes indicated,
which was brought about by increasing the concentra-
tion of elastic scattering centers by elastically deform-
ing the sample, a decrease in the effective resistance
was observed after formation of the boundary, while in
the second regime the resistance was found to first
increase and then decrease as the temperature was low-
ered. The change in conductivity is an order of magni-
tude or more greater than the usual change at helium
temperatures in the absence of an boundary. It is shown
that the observed phenomena completely correspond to
the ideas about those features of the coherent transport
which are due to the quantum-interference interaction
of coherent excitations arising in Andreev reflections,
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within the phase coherence region, which is limited by
the scale of the inelastic mean free path. The observed
features were used to estimate a number of microscopic
parameters in aluminum—in particular, the phase and
thermal coherence lengths. 
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Abstract—The degree to which the interpretation of the existence of a pseudogap and a superconducting gap
in cuprates on the basis t–t '–U of the Hubbard–model corresponds to the data obtained from the photoemission
spectra is discussed. The pseudogap in the model is interpreted as the work function of electrons from the insu-
lating parts of the Brillouin zone boundary. On this basis one can explain the angle dependence of the gap mea-
sured in the photoemission spectra and its evolution on changes in doping and temperature. In particular, an
explanation is found for the decline in the ratio of the angle derivative of the gap near the site, v∆ =
(1/2)d∆(ϕ)/dϕ, to the maximum value of the gap, ∆max, with decreasing doping. That behavior and the different
temperature dependence of the gap ∆(ϕ) for different angles are due to the presence of two contributions to ∆
with different anisotropies—from the pseudogap and from the superconducting gap. The calculation of the
spectral functions confirms the sharp Fermi boundary observed in the direction and the smeared edge of the
distribution along the path Γ(0, 0) – M(π, 0) – Y(π, π). © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION 

Many important results have now been obtained on the
electronic structure of cuprates (see reviews [1–5]).
These include the demonstration of the symmetry of
the superconducting order, the discovery of anisotropy
of the pseudogap of the normal state, the “small” Fermi
surface of underdoped cuprates, the possible destruc-
tion of the Fermi surface in the region k ~ (π, 0) [6, 7],
and the direct measurement of the superconducting gap
in tunneling spectroscopy [8–11]. Recently, a detailed
study of the angle-resolved photoemission (ARPES)
has revealed exotic temperature dependence of the gap
and doping dependence of its anisotropy [15]. An
apparent difference between these data and the charac-
teristics obtained from measurements of the penetra-
tion depth was established. It was shown that the angle
dependence of the gap ∆(ϕ) according to the ARPES
data cannot be fitted by a simple function ∝ cos(2ϕ) and
that the form of ∆(ϕ) depends on the doping. In partic-
ular, the ratio ξ = v∆/∆ of the derivative v∆ =
(1/2)d∆(ϕ)/dϕnear the site of the gap ϕ = π/4 to the
maximum value of the interval ∆ falls off appreciably
with decreasing doping in underdoped samples.
Finally, the standard form of the Fermi surface for over-
doped bismuth ceramics was recently re-examined
[16]. The ARPES data [16] were interpreted in the
framework of a “large” Fermi surface with regions of
the electronic type near the points M(π, 0) instead of a
continuation of a standard arc around the point Y(π, π).
Here the standard notation is used for the symmetric
points in quasimomentum space k = (kx , ky). 

New experiments on the angle dependence of the
gap could be of help for choosing among the various
1063-7761/00/9106- $20.00 © 21242
interpretations of the presence of a pseudogap [1].
According to one of the hypotheses that have been dis-
cussed, the pseudogap of the normal state is a precursor
of superconducting pairing. However, the pairs formed
are incoherent in a pseudogap normal state in the situa-
tion where phase fluctuations destroy the coherence of
the pairs [17]. 

Another view of the origin of the pseudogap and the
phase diagram in cuprates has arisen from studies of the
Hubbard t–t '–U and t–t '–J models [18–22]. It attributes
the appearance of the pseudogap to a specific structure
of the split Hubbard bands, namely, to a change in the
topology of the Fermi surface upon optimal doping. We
shall call this mechanism of formation of the
pseudogap the structural-band mechanism. Various
approaches are used to describe the correlation mecha-
nism of superconducting pairing. One such approach is
the spin-polaron approximation in the t–t '–J model
[18]. Another, the variational approach, takes into
account the correlation of the type of valence bonding
(the band analog of Anderson’s RVB states) in the Hub-
bard t–t '–U model. Since in this method the structure of
the quasiparticles is characterized in explicit form, it is
the most transparent method. Common to each of these
models is a Hubbard splitting of an initially unified
band due to long-range antiferromagnetic spin correla-
tions. Here the fine details of the upper edge of the
lower Hubbard subband, which depend on t ', determine
the structure of the Fermi surface and govern the low-
energy phenomena. Here is the hopping interaction of
the next-nearest neighbors located along the diagonal.
In particular, plays an important role in the formation of
the pseudogap of the normal state, and the sign of deter-
mines its anisotropy. For systems with t '/t  > 0, the coin-
000 MAIK “Nauka/Interperiodica”
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cidence of the position of the Van Hove singularity in
the density of states with the chemical potential corre-
sponds precisely to the optimal doping δopt. It is at this
value of the doping that the change of the topology of
the Fermi surface occurs. At the transition from under-
doped to overdoped systems the hole pockets around
the points k = (π/2, π/2) and the “small” Fermi surface
give way to a large Fermi surface. For δopt, in the under-
doped region, the Van Hove singularity in the spectrum
of states lies below the chemical potential µ. As a result,
certain parts of the boundary of the magnetic Brillouin
zone near kM = (π, 0) turn out to be insulating regions.
According to [20], the work function for the electrons
that are removed in photoemission from the levels in
the regions of this kind is just the pseudogap of the nor-
mal state observed in ARPES and other experiments. 

Another criterion for checking the models is the
shape of the Fermi boundary and the distribution func-
tion of the electrons in photoemission from states with
different directions of the quasimomentum. Up till now
the topological change predicted in the t–t '–U and t–t '–
J models has been confirmed only by the observation of
a “small” Fermi surface in the region δ < δopt . However,
the predicted crossing of the segment Γ(0, 0) – M(π, 0)
near the point by the Fermi boundary for systems with
δ > δopt has not been confirmed. According to the mod-
els of [18–22], small Fermi-boundary regions of the
electronic type arise near the point for δ > δopt . How-
ever, it is in this region of quasimomenta that the smear-
ing of the distribution functions of the photoelectrons
creates ambiguities in the interpretation of the ARPES
data. In particular, a new interpretation of the ARPES
data for BiBCCO at δ > δopt apparently confirms the
crossing of the segment Γ – M by the Fermi boundary
[16]. In view of the remaining uncertainty, it is of inter-
est to study the properties of the one-electron spectral
functions of the t–t '–U model and the influence of spin
fluctuations on them even in the case of the simplest
solutions. 

The goal of the present study is to understand the
degree to which the model based on a structural-band
origin of the pseudogap can describe new experiments
on the anisotropy of the gap as determined from the
photoemission data. For this purpose in Section 2 we
calculate the doping dependence and temperature
dependence of the anisotropy of the total gap resulting
from the combined contributions from the supercon-
ducting gap and the pseudogap. The calculation is done
on the basis of the simplest variational approach to the
description of the correlated state [20]. The initial state
is one with correlations of the type of valence bonding
and antiferromagnetic spin order, reflecting the long-
range spin fluctuations. In Section 3 the manifestations
of the Fermi boundary in the single-particle spectral
functions nk and A(k, ω  0) and the shape of the
Fermi surface in different directions of are discussed
for the simplest antiferromagnetic and helical spin
states of the mean field model. The high sensitivity of
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
the position of the Fermi boundary in the region k ~ (π, 0)
to spin fluctuations is in qualitative correspondence
with the observed destruction of the Fermi boundary in
this region [6, 7], while a sharp Fermi boundary is pre-
served in the direction kx = ky . 

2. DEPENDENCE OF THE ANISOTROPY
OF THE GAP ON DOPING AND TEMPERATURE 

Calculations were done for the t–t '–U–V Hubbard
model by the method proposed in [20]. The formula of
the model has the form 

(1)

Here H(U, t) is the Hamiltonian of the basic Hubbard
model with a one-center interaction and a hopping inte-
gral for neighboring centers. The additional term ∆H
includes the hopping interaction of next-nearest (diag-
onal) neighbors and an interaction of the Coulomb type
between nearest sites. 

There are deep reasons for including the interaction t'.
For a one-band model of the CuO plane [23, 24] this
parameter is determined by the competition of the con-
tribution from direct hops between the orbitals of oxy-
gen (~tpp) and the contribution from the second-order

process ~ /(ep – ed). As a result, the parameter turns
out to be sensitive to the parameters of the initial three-
band model and can be different for different cuprates
[25]. Another aspect is the strong influence of on the
structure of the bands near the Fermi boundary and on
the low-energy properties of the system [18–22]. 

The variational correlation state Ψ with correlations
of the type of the valence bonds is constructed [20] with
the aid of a unitary transformation of the uncorrelated
state Φ: 

(2)

For Φ we consider an uncorrelated state of the most
general type, viz., a function of the BCS type with
anomalous averages of symmetry and with a doubled
magnetic cell for testing the possibility of antiferro-
magnetic spin ordering and superconductivity in the
channel. The unitary operator W(α) responsible for the
formation of the valence bonds depends on the varia-

H H U t,( ) ∆H V t',( ),+=

∆H V t',( ) V nnnm

nm〈 〉
∑=

+ t' cnσ
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σ
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nm〈 〉〈 〉
∑

t pd
2

Ψ Ŵ α( )Φ, Ŵ α( ) α Znm

nm〈 〉
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1
2
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tional parameter α, and the operator Znm in Eq. (2) per-
tains to the bond 〈nm〉  of nearest centers. 

The meaning of this transformation and its efficacy
in lowering the energy of the system can be explained
for the example of a two-center system with molecular

orbitals qσ(uσ) = (aσ ± bσ)/ . In this case the operator 

W = exp(αZab) ≡ exp[α( u↓u↑ – H.c.)]

transforms the uncorrelated two-hole state F(a, b) =

 > H.c. to an exact singlet state Ψ of the dimer for
the corresponding optimum value of the parameter α.
In the case of a large ratio U/t this state describes a
localized singlet of the valence bond. At medium values
of it becomes possible to optimize the charge state of
the bond or the degree of localization of holes at sites
of the bond. 

The unitary transformation (unlike a nonunitary
transformation of the Gutzwiller type) makes it possi-

ble to derive an effective Hamiltonian  that operates
in the basis of uncorrelated states {Φ} and to obtain an
exact value for the average energy: 

(3)

Thus one can use a self-consistent procedure of mini-
mizing  with respect to Φ and α simultaneously.
Such a treatment of the Hamiltonian (3) in the mean
field approximation determines the electronic bands

Ek, λ and the single-particle Fermi operators ,
which are the eigenvalues and eigenoperators of the
localized effective Hamiltonian ( )L [20]. In contrast
to the dimer structure with nonoverlapping valence
bonds [26], in the case of a homogeneous state of the
valence bonds (2) the effective Hamiltonian was found
to the two lowest orders in α: 

(4)

Thus the treatment is limited to Hubbard models with
U/t ≤ 9, which correspond to small values of the opti-
mal parameter α ≤ 0.22. The detailed procedure of the
solution is given in [20]. Practically all of the calcula-

tions were done using the effective Hamiltonian  =

(α, U, t) + ∆H(V, t '), in which only the principal part
H(U, t) was subjected to the transformation H(U, t),
while for small interactions ∆H in (1) only the zeroth
order in α is retained. 

The attraction of holes in the channel is induced
mainly by the correlated hopping terms, 

~αU[ cmσnn, –σnm, –σ + H.c.], (5)

2

g↑
† g↓

†

g↑
† g↓

†

H̃

H̃ α( ) W† α( )HW α( ),=

H ΨHΨ〈 〉 ΦH̃Φ〈 〉 .= =

H
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†

H

Ĥ α( ) H α H Z,[ ] α2

2
----- H Z,[ ] Z,[ ] .+ +≈
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Ĥ

cnσ
†
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that arise in the effective Hamiltonian upon the forma-
tion of valence bonds. Unlike the empirical interaction
of correlated hops, such as that introduced by Hirsch
[27], the interaction constant in (5), which is propor-
tional to α, is determined by a variational procedure.
Further, unlike the t–J model, the application of the
mean field approximation to the new effective Hamilto-
nian (4) is admissible, since here doubly occupied con-
figurations of the centers are not strictly forbidden, as
they are in the t–J models. Minimization of the energy
with respect to α optimizes the charge configurations of
the bonds and the degree of localization of charges on
them [20]. The band energies Ekλ (eigenvalues of the

linearized effective Hamiltonian ) correspond to the
self-consistent solution Φ and to the optimum value
of α. 

The investigated homogeneous solutions exhibit
two-dimensional antiferromagnetic spin order in a
wide doping region, δ = |1 – n| ≤ δc ~ 0.3, which is sub-
stantially greater than the region of bulk antiferromag-
netic order (δc ~ 0.05). This means that the finite anti-
ferromagnetic spin correlation length is considerably
larger than the lattice constant. Under such conditions
the mean-field solutions and the picture of the antifer-
romagnetically split band can serve as a basis for
describing the structure of the quasiparticles and low-
energy phenomena. In the normal state the lower Hub-
bard subband has the following structure [20]: 

(6)

Here only the leading contributions from the lower har-
monics cx(y) = coskx(y) are written in explicit form, and
d0 = 〈(–1)nSzn〉  is the value of the alternating spin. In a
superconducting state of symmetry the quasiparticle
energies in the self-consistent solution are very close to
the form 

(7)

Here Wk is determined by the superconducting order

parameter wl = ,  = 1, , 3. The
form factor Fk is determined by the structure of the qua-
siparticles, which are single-particle states of the lower
Hubbard band, and the constants ki, j, the second deriv-
atives of the mean energy with respect to and wi, wj .
A calculation with all the contributions exactly taken
into account shows that the first harmonic w1 gives the
main contribution to the superconducting gap function
Wk and that its angle dependence is close to Wk ~ (cx – cy). 

The doping dependence of the superconducting
transition temperature Tc(δ) for the Hubbard model
with the parameters U/t = 8, t '/t = 0.05, and V/t = 0.1 is

H̃L

Ek e0 4t'cxcy …+ +[ ]=

– Ud0 …+[ ]2 2t cx cy+( ) …+[ ]2+ .

Ekλ Ek µ–( )2 Wk
2+ ,±=

Wk Fk k11 cx cy–( )w1 …+[ ] .∼

lx
2 ly

2–( ) cn↑
† cn l ↑,+

†〈 〉 l 5
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Fig. 1. (a) Doping dependence of the superconducting transition temperature Tc(δ) in units of [0.01t]. (b) Twice the value of the shift
of the photoemission edge 2∆M(δ) as a function of doping for k = (π, 0) (1) and the corresponding superconducting gap 2Wk(π, 0)
(2) in the same units. (c) Ratio ξ = v∆/∆Μ (1) and ξW = v∆/Wk(π, 0) (2) as a function of doping. (d) Angle dependence of the gap

∆(ϕ) at different temperatures for an underdoped system with δ = 0.14, Tc/  = 0.55 at T/Tc = 0.4 (1), 0.6 (2), 0.8 (3), 0.9 (4),

1.2 (5). 

Tc
max
shown in Fig. 1a. We note that for the value of the max-

imum temperature  increases by a factor of 1.64
[20]. Curve 1 in Fig. 1b shows the doping dependence
of WM(δ) = W(kM), the value of the superconducting gap
Wk at the point k = kM = (π, 0). The calculation was done
at a temperature T/t = 0.002. According to Eq. (7), how-
ever, the quasiparticle energy and the corresponding
shift ∆ = ∆ω of the edge of the photoelectron distribu-
tion function at k = (π, 0) is determined not only Wk by
but also by the corresponding band energy |Ek – µ| of
the lower Hubbard band relative to the chemical poten-
tial. Unlike the unsplit band Ek, the levels of the lower
Hubbard subband are periodic within the magnetic
Brillouin zone. The functions Ek pass through a maxi-
mum at the boundary of this zone as is varied k along
any path connecting the points Γ(0, 0) and Y(π, π). This
makes for a different doping dependence of the ratio
ξ = v∆/∆M in the under- and overdoped regions (Fig. 1c).

Tc
max
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Here v∆ = (1/2)d∆/dϕ is the angle derivative of the gap
at ϕ = π/4, and ∆M is the value of the gap ∆ at k = (π, 0). 

For the overdoped regime each Γ – Y path crosses
the “large” Fermi boundary: Ek – µ = 0 at k = kF, and at
Ek – µ > 0 all values k of on the boundary of the mag-
netic Brillouin zone. In this case the gap ∆(ϕ) in the
excitation spectrum is determined solely by the d-wave
superconducting gap Wk at the Fermi boundary k = kF.
Consequently, the anisotropy of the gap ∆(ϕ) coincides
with ∆(ϕ) = Wk(ϕ) ~ z(ϕ) = 0.5(coskx – cosky) at k = kF.
The corresponding ratio ξ = v∆/∆M of v∆ to the gap mea-
sured at the point k = kM is given byξ =
(1/2)(dWk/dϕ)/WM. It is close to the constant value
expected for a purely-wave superconducting order
without a pseudogap. 

In underdoped systems with t '/t > 0, hole pockets
form in the region k = (π/2, π/2) with a “small” Fermi
boundary around them. Here the segments of the mag-
netic Brillouin zone near M(π, 0) become insulating
SICS      Vol. 91      No. 6      2000
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segments of the boundary, on which Ek – µ < 0. The
shift ∆(kM) in the photoelectron distribution function in
ARPES at kM = (π, 0) here is given by ∆(kM) =

. Here WM is the value Wk of at kM, and the
quantity ∆N = |Ek – µ| at kM is the pseudogap of the nor-
mal state, which is equal to the work function for elec-
trons being removed from levels k ~ kM of the normal
state. For bands described by expression (6), the value
of ∆N increases with decreasing doping. For the same

reason the total shift ∆(ϕ) =  of the
photoemission edge from the insulating parts of the
magnetic Brillouin zone differs substantially from the
anisotropy of the superconducting gap Wk(ϕ). For the
underdoped regime (∆N ≠ 0) we have 

where W '(ϕ) = dWk/dϕ at ϕ = π/4. The value of ξ falls
off sharply (Wk  0) as the doping decreases, in com-
plete agreement with the experimental behavior of ξ(δ)
[15]. Unlike ξ(δ) the quantity ξW(δ) = v∆/WM calculated
with allowance for the superconducting gap in the
numerator remains nearly constant (curve 2 in Fig. 1c). 

Figure 1d shows the anisotropic shift ∆(ϕ) of the
photoemission edge for highly underdoped systems

(δ = 0.14, Tc/  = 0.55). The function ∆(ϕ) was cal-
culated as the vector k moved along a generalized
Fermi boundary consisting of the nonshadow parts of
the “small” Fermi boundary and the insulating seg-
ments of the boundary of the magnetic Brillouin zone
(see [20]). A number of features of the calculated
anisotropy are in agreement with the anisotropy mea-
sured in ARPES experiments. 

(1) The deviation of ∆(ϕ) from a linear dependence,
∆(ϕ) ~ z(ϕ) = |coskx – coxky|, is actually observed in Bi-
Sr-Ca-Cu-O (BSCCO) in the underdoped regime [15],
and the signs of the coefficient in front of the next har-
monic in ∆(ϕ) are the same for the calculation and
experiment. 

(2) For underdoped systems the function ∆k turns out
to be more sensitive to changes in temperature at values
of in the region k near the sites of the gap than for k ~
(π, 0). The shift ∆(ϕ) for ∆(ϕ) ~ π/4 vanishes as T 
Tc, whereas the pseudogap of the normal state in the
region k ~ (π, 0) retains a nonzero value, ∆M = ∆N = µ –
E(π, 0) > 0, at T > Tc. This property also corresponds to
experiment [12, 13], which showed a different temper-
ature sensitivity of ∆(ϕ) for different ϕ. The calculation
gives a sharp bend in the linear dependence ∆(z(ϕ)),
unlike the smoothed curve in the experiment. The rea-
son may be that the dispersion with kz respect to was
neglected in the calculation, as was the finite resolution
with k respect to in the experiment. 

(3) The calculated ratio η = 2∆M/kTc has larger val-
ues in the underdoping region. For example, for δ =

∆N
2 WM

2+

∆N
2 ϕ( ) Wk

2 ϕ( )+

ξ 0.5 W' π/4( )[ ] / ∆N
2 WM

2+ .∼

Tc
max
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0.16 (Tc = 0.9 ) it has the value η = 9.5. At the same
time, at optimum doping and in the overdoped region
the total gap is determined solely by the superconduct-
ing part, ∆ = W(kF), and the values η ≈ 5 obtained for
the ratio are close to the value η = 4.5 obtained in the
empirical BCS models with d-wave pairing. The
decrease of the ratio 2∆/kTc with increasing doping is in
agreement with experiment [1]. 

Independent estimates of the anisotropy of the gap
near its sites are obtained in [15] from data for the
superconducting hardness ρs at low temperatures on the
basis of the relation between v∆ and the penetration
depth for T  0. This relation dρs(T)/dT ~ d(λ–2)/dT ~
1/v∆, gives a doping dependence of v∆ that differs from
the mutually agreeing functions v∆(δ) obtained from
the ARPES data and our calculations. The reasons for
the differences remain unclear. 

3. REFLECTION OF THE FERMI BOUNDARY
IN THE PHOTOELECTRON SPECTRA 

AND THE INFLUENCE OF SPIN FLUCTUATIONS 

To check the structural-band origin of the
pseudogap which was proposed in [18–22] and to con-
firm the topological rearrangement of the Fermi surface
upon optimum doping, it is of interest to study how the
change in the topology of the Fermi surface and the
appearance of insulating regions on the boundary of the
magnetic Brillouin zone in the underdoped region are
manifested in the density of states and in the features of
the single-electron spectral functions. Such a study,
even in the framework of the simplest mean-field solu-
tions for the t–t '–u model, can be useful. 

Another goal of such calculations is to illustrate the
influence of spin fluctuations on the photoelectron
spectra for different directions of the quasimomentum.
The strong influence of the low-frequency collective
spin modes is well known [28]. In the simplest version
the spin waves are described by states with a helical
spin structure. In this section we therefore carry out a
comparative study of the density of states and the spec-
tral reflections of the band structure for antiferromag-
netic and helical states of the t–t '–U–V Hubbard model
(1). This study is of a qualitative character. For this rea-
son and for the sake of simplicity we restrict the calcu-
lations to the mean field approximation without allow-
ance for correlations of the type of valence bonds. 

The standard helical state ΨQ with helicity vector Q
is a mean-field state with one-electron averages

 = b0exp[iQn]. For Q  QAF = (π, π) it goes
over to an antiferromagnetic state. Neglecting correla-
tions of the type of the valence bonds has a substantial
effect on the energy of the system and causes the criti-
cal doping level, at which the antiferromagnetic (or
helical) mean-field solutions go over to paramagnetic
solutions, to shift to higher values [20]. For the same
reason, minimization of the energy with respect to at a

Tc
max

cn↑
† cn↓〈 〉
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given doping δ overestimates the difference between
the optimum vector Q(δ) and QAF = (π, π). For this rea-
son the calculations and the comparative discussion of
the density of states and the spectral functions are given
for the helical states with an arbitrary helicity vector
without a minimization of the energy with respect to at
each δ. 

For mean-field states without allowance for the cor-
relations of the type of valence bonds and without
superconducting pairing, we determined the regions of
under- and overdoping of the t–t '–U–V model as those
regions for which the Van Hove singularity in the sys-
tem of states lies below or above the chemical potential
of the system. Then the “optimal” doping corresponds
to the situation when the position of the Van Hove sin-
gularity is precisely coincident with the chemical
potential µ. For the calculated model with parameter
U/t = 8, t '/t = 0.5, and V/t = 0.1 such a determination
gives a value δopt ~ 0.3 for the optimum doping in the
case of an antiferromagnetic state. This value is greater
than δopt ~ 0.19 for the same system in the antiferro-
magnetic state with valence bonds, for which the corre-
lations of the type of valence bonds was taken into
account. 

Figure 2 shows the density of states of the lower
Hubbard band for the antiferromagnetic and helical
states for different directions of the helicity vector with
Q, |Q – QAF| = 0.3. The density of states with a single
Van Hove singularity for the antiferromagnetic state
transforms into a density of states with split singulari-
ties for the helical states. The formation of the spin
structure with a preferred direction lifts the degeneracy
of the Van Hove singularity for k = (±π, ±π) in analogy
with how the lattice distortions lift this degeneracy in
the ordinary Jahn–Teller effect [3]. 

Below is a comparative analysis of the influence of
the spin structure on the occupation function 

in momentum space and the single-particle spectral
functions A(k, ω) at low frequencies ω  0: 

(8)

Here Ei and Ef are the energies of the initial and final
states, Z is the partition function of the system, and the
standard δ function δ(Ei – Ef − ω) has been replaced by
a Lorentzian of width γ. 

Figure 3 shows the functions nk and A(k, ω = 0) cal-
culated for k varying along the contour Y(π, π) – Γ(0, 0) –
M(π, 0) – Y for mean-field states of the t–t '–U–V model
for two doping values—in the underdoped region δ <
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δopt and in the overdoped region δ > δopt . Here the opti-
mal doping δopt = 0.3. The model parameters are U/t = 8,
t '/t = 0.5, V/t = 0.1 and the width in (8) γ = 0.003t. 

Some of the properties of the spectral functions
obtained are partially known. 

Even in antiferromagnetic states, for which the band
energy is periodic within the magnetic Brillouin zone,
the spectral functions nk and A(k, ω) do not possess
such periodicity. Fine details aside, we see that the
occupied nk > 0.5 and empty nk < 0.5 quasimomentum
states correspond to regions around the Γ or Y points,
respectively, in analogy with the case of noninteracting
particles. This property is well known [29] and holds
true for the spiral states as well. 

On the segment Γ – Y the sharpest falloff of occurs
for and corresponds to the crossing of the nonshadow
Fermi boundary (i.e., located in the main magnetic
Brillouin zone) with the line Γ – Y. Putting in a helical
spin order instead of the antiferromagnetic order does
not alter the position of the Fermi boundary in this
direction. The corresponding peak in A(k, ω = 0) is the
most intense one for any doping and is not affected by
spin fluctuations, since it does not depend on the helic-
ity vector Q. This finding agrees with the fact that the
experimentally observed Fermi boundary in the Γ – Y
direction is well defined for any doping [6]. The second
peak of the function A(k, ω = 0) in this same direction,
corresponding to a step in nk, pertains to the shadow
Fermi boundary. The intensity of this peak is much
lower, and its position depends substantially on the
helicity vector. This means that this feature will be
smoothed by spin fluctuations. 
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Fig. 2. Density of states of (1) the lower Hubbard band for
an antiferromagnetic mean-field state and for helical states
with (2) Q2 = (0.9π, π) and (3) Q3 = (0.93π, 0.93π).
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Fig. 3. Occupation functions nk (solid curves) and A(k, ω = 0, γ) for γ = 0.003t (dotted curve) for the antiferromagnetic and helical
states of models that take into account the underdoping (left) and overdoping (right). The vector  k varies along the path T – Γ – M – Y. For
the helical states the vector Q was specified by the values q' = 0.8π and q = 0.86. The dashed curves on the segments Γ – M – Y (upper
plots) correspond to the antiferromagnetic state at nearly “optimal” doping,  δ = 0.3. 
Another situation takes place in the region of the
point M(π, 0). The occupation function nk varies
smoothly with k along Γ – M – Y, and the low-frequency
excitation peaks in A(k, ω = 0) have a rather high energy
in a wide region k of near the point M. The maximum
intensity is reached at the optimum doping. The same
situation, but with a lower intensity, takes place at any
doping: both for underdoped systems, when in the
region k in the vicinity of the point M becomes insulat-
ing (E(π, 0) – µ < 0), and for overdoped systems, when
the point lies between the main and shadow Fermi
boundaries (E(π, 0) – µ > 0). This smearing (or destruc-
tion) of the Fermi boundary in the region of the point
has been observed in the ARPES data [6, 7]. A large
total photoemission intensity from the region k ~ (π, 0)
has in fact been observed [16] in BSCCO, but it turned
out to depend on the photon energy, a circumstance that
cannot be described on the basis of two-dimensional
models alone. The model must be generalized to take
into account the interlayer interaction. 

4. CONCLUSIONS 

We have shown on the basis of the t–t '–U Hubbard
model that the hypothesis of a structural-band origin of
the pseudogap can explain a number of features in the
behavior of the anisotropy of the gap ∆(ϕ) observed in
photoemission experiments. The change in topology of
the Fermi surface at optimum doping, which is due to
the structure of the edge of the low Hubbard band,
causes the flat parts of the band in underdoped systems
to become insulating, and a pseudogap ∆N(ϕ) of the
normal state opens up. This pseudogap and the super-
JOURNAL OF EXPERIMENTAL
conducting gap ∆SC(ϕ) together determine the total
shift ∆(ϕ) of the photoemission edge. The different
dependence of each of the components ∆N and ∆SC on
temperature, doping, and the direction k of make it pos-
sible to describe the following observed features of the
anisotropy of the gap in the underdoped region. 

(1) The presence of higher harmonics in ∆(ϕ), i.e., a
deviation from a simple d-wave form ∝  [coskz – cosky]. 

(2) the appreciable falloff, with decreasing doping,
of the ratio ξ = v∆/∆ of the slope of the angle depen-
dence of the gap v∆ = (1/2)d∆(ϕ)dϕ near the site of the
gap ϕ = π/4 to the maximum value of the gap ∆. 

(3) The stronger temperature dependence of the gap
in the region of its site (ϕ = π/4) than in the region of
the maximum of the gap. 

(4) The increase in the ratio ∆/Tc with decreasing
doping. 

The spectral functions for the antiferromagnetic and
helical mean-field states of the t–t '–U model qualita-
tively confirm the presence of a sharp Fermi boundary
in the region of the site of the gap and a smeared Fermi
boundary in the region k ~ (π, 0), with a sharp increase
in the total photoemission intensity from this region at
optimum doping. 

The main unsolved problem for this interpretation
of the origin of the pseudogap is to match it up with the
observed tunneling spectra. The difficulties of such a
matching in the underdoped region have been discussed
in [30]. In the t–t '–U model the tunneling gap ∆tunn is
due solely to the superconducting contribution, while
the pseudogap controls only the asymmetry of the spec-
tra outside the optimum doping region. On the contrary,
 AND THEORETICAL PHYSICS      Vol. 91      No. 6      2000
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the observed tunneling gap in underdoped compounds
coincides with the pseudogap [8–11]. 
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Abstract—Long-term resistance relaxations induced by uniaxial compression in (001)p-GaAs/Al0.5Ga0.5As
heterostructures are observed, and the main properties of these relaxations are investigated: the dependence of
their character on the direction of the uniaxial compression, the change in concentration of current carriers dur-
ing the relaxation processes, and the quenching of the relaxations by temperature, illumination, and high elec-
tric fields. It is found that the character of the relaxation process is different for compression directions [110]

and [1 0]: in the first case the concentration of two-dimensional holes in the quantum well decreases in the course of
the relaxation, while in the second case it increases. A model is proposed in which the cause of the relaxations of the
piezoresistance and the anisotropic character of these relaxations is assumed to be the piezoelectric field, the value of
which, according to estimates, is |Ez| = 1.152 × 104 V/cm per kbar. © 2000 MAIK “Nauka/Interperiodica”.

1

1. INTRODUCTION

The long-term relaxations of the resistance in semi-
conductors and heterostructures based on them are a
manifestation of nonequilibrium processes in the sys-
tem of charges and have attracted steady interest for
several decades now. It was noted long ago [1, 2] that
this phenomenon is due to the existence of energy bar-
riers of various natures in the material. In massive semi-
conductors these barriers may be a consequence of the
inhomogeneity of the material [1, 2], while in hetero-
structures the inhomogeneity at the heterointerface and
the energy barriers associated with it are expressly cre-
ated during growth of the system. The importance of
studying nonequilibrium processes in the materials and
structures that underlie modern solid-state electronics
would be hard to overestimate. 

The long-term relaxations of the resistance can be
induced by various external influences, e.g., light, high
electric fields, and changes in temperature. At low tem-
peratures the characteristic relaxation times can reach
very large values (t > 105 s), as a result of which meta-
stable states are formed. The processes that have been
studied most are the nonequilibrium processes arising
as a result of irradiation by light with different wave-
lengths. 

Recently we observed the long-term resistance
relaxations induced by uniaxial compression in
p-GaAs/Al0.5Ga0.5As heterostructures at liquid-nitrogen
and liquid-helium temperatures [3]. To the best of our
knowledge, the long-term relaxations of the piezoresis-
1063-7761/00/9106- $20.00 © 21250
tance in heterostructures had not been reported before
that, although similar phenomena occur in massive sam-
ples of gallium antimonide upon the application and
removal of a uniaxial load [4]. 

In this paper, we present results of a detailed study
of the properties of the relaxations of the electrical
resistance and residual piezoresistance observed in
p-GaAs/Al0.5Ga0.5As heterostructures and propose a
most likely mechanism by which the set of observed
effects can be explained.

2. SAMPLES AND EXPERIMENTAL PROCEDURE 

The relaxations of the piezoresistance were studied
on samples prepared from two p-GaAs/Al0.5Ga0.5As
heterostructures with different levels of beryllium dop-
ing. The samples were grown my molecular beam epi-
taxy at the Niels Bohr Institute of Copenhagen Univer-
sity. The growth direction [001] was determined by the
orientation of the GaAs substrates. The main growth
parameters and characteristics of the heterostructures
are given in Table 1. 

The samples were punched out along the natural slip
planes from a wafer on which a heterostructure had
been grown; they were {110} in the form of parallelepi-
peds mm in size 3 × 0.8 × d mm is the thickness of the
wafer in mm), with the long side directed along either

[110] or [1 0]. Hall bridges (mesas) were fabricated on
the (001) plane of the structure by a photolithographic
method. The contacts were formed by depositing Zn/Au

1
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Table

Structure 

HCO218 HCO251 

Manufacturer of the GaAs substrate Sumitomo Outokumpo

Substrate thickness, mm 0.625 0.5

Substrate temperature, °C 630 630

Rotation speed, rpm 20 20

Growth rate, µm/h 0.628 0.637

Undoped GaAs* (buffer), µm 1.0 1.0

Undoped Al0.5Ga0.5As (spacer), nm 7.0 7.0

Al0.5Ga0.5As doped with beryllium (active layer), nm 50 50

Be concentration in the Al0.5G0.5As, 1018 cm–3 1 0.5

GaAs doped with beryllium, nm 5.0 5.0

Be concentration in the GaAs, 1018 cm–3 2 1

Concentration of 2D holes, 1011 cm–2 9.8 7.6

Mobility in the direction at 4.2 K, m2 V–1 s–1 4.7 4.5

* A GaAs/AlAs superlattice was deposited between the substrate and buffer layer.
with a subsequent “alloying in” for 3 min at a tempera-
ture of 380°C. The quality of the contacts was moni-
tored from the linearity of the current-voltage charac-
teristics, which was preserved at least to 50 µA, while
the working current was 1–2 µA. Uniaxial compression
to a pressure of 3 kbar along the long axis of the sample
was effected by the technique described in Ref. [5]. Dur-
ing the measurements the samples were shielded from
external radiation by a copper screen. Sixteen samples of
the HCO218 heterostructure and four samples of the
HCO251 heterostructure were investigated. 

3. EXPERIMENTAL RESULTS 

While the effect of uniaxial pressure on the optical
transitions in AIIIBV heterostructures has been studied
for quite some time [6,7], the behavior of the transport
properties of the charge carriers in them has practically
escaped attention. This is apparently because the occur-
rence of long-term relaxations of the resistance upon
the application and removal of an external uniaxial load
was detected only comparatively recently [3]. The
essence of the observed phenomenon is demonstrated
in Fig. 1 for the heterostructures whose parameters are
given in Table 1, for the cases when the uniaxial com-

pression is directed along [110] and along [1 0]. The
effect consists in the fact that immediately after appli-
cation of the load (intervals 1–2 in Fig. 1) the system of
two-dimensional (2D) holes is found in a nonequilib-
rium state, and the corresponding electrical resistance
slowly relaxes to its equilibrium value over a time that

1
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can reach 103–104 s at liquid-nitrogen temperatures and
can exceed 105 s at 4.2 K. The equilibrium state (dashed
lines) can be obtained by thermal cycling, i.e., by heating
the sample to 180–200 K followed by a slow cooling to
the temperature of the experiment (intervals 3–4). If the
relaxation process continues for a long enough time or
the equilibrium state has been reached by the afore-
mentioned thermal cycling under pressure, then after
removal of the load (intervals 5–6) the system is again
found in a metastable state, in which the resistance is
higher (or lower) than the initial equilibrium value ρ0 at
zero pressure P = 0. By analogy with the residual pho-
toconductivity one can speak of a residual positive or
negative piezoresistance. The initial value ρ0 (denoted
by the dotted line) can also be reached by thermal
cycling (intervals 7–8). 

3.1. Anisotropic Character of the Relaxations 

A distinctive feature of the relaxations of the
piezoresistance is that its character changes when the
compression direction is changed, as is clearly seen in
Fig. 1. After the application of pressure along the [110]
direction, the resistance in the loaded state relaxes to a
higher value, and after the load is removed it exceeds
the initial value of the resistance ρ0, i.e., there is a pos-
itive residual piezoresistance (Figs. 1a, 1c). In the case
when a compressive stress is applied in the perpendic-

ular direction (along the [1 0] axis) the resistance
relaxes to a lower value after application of the load,
and it takes on a lower value than ρ0 upon recovery to

1
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Fig. 1. Long-term resistance relaxations induced by uniaxial compression at T = 4.2 K for compression directions [110] (a, c) and

[1 0] (b, d) in samples of the HCO218 (a, b) and HCO251 (c, d) heterostructures. A uniaxial pressure of 1 kbar is applied in the time
intervals 1–2 and removed in the intervals 5–6. In the intervals 3–4 and 7–8 the samples were heated to 200 K and slowly cooled
back to 4.2 K. The dashed and dotted lines correspond to the equilibrium values of the resistance in the loaded and unloaded states,
respectively. 

1

the unloaded state, i.e., one can speak of a residual
piezoconductivity (Figs. 1b, 1d). Here it should be
noted that the difference of the values of ρ0 in the two

mutually perpendicular directions [110] and [1 0] for the
same heterostructure is a consequence of the anisotropy of
the mobility of 2D holes in the plane of the structure [8]. 

Figure 1 demonstrates the identical behavior of sam-
ples of the heterostructures HCO218 and HCO251 both in
the nature of the response to the application of pressure
and in relation to the different directions of the com-
pressive stress. In what follows we shall give the results
for the HCO218 samples, which were investigated in
greater detail. 

1
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3.2. Dependence of the Amplitudes of the Relaxations
on The Value of the Pressure 

The amplitude of the relaxations here is understood
to mean the difference ∆ρA of the resistances in the
metastable and equilibrium (obtained after thermal
cycling) states. A certain error in the determination of
this difference arises because of the fact that even at
4.2 K in the first minutes after the application (removal)
of the load there is a slight but noticeable relaxation of
the electrical resistance, the value of which, however, is
small compared to ∆ρA (Fig. 1). Figure 2 shows the
dependence of the resistance on the load, ρ(P), for two
directions of uniaxial compression: [110] (Fig. 2a) and
AND THEORETICAL PHYSICS      Vol. 91      No. 6      2000
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Fig. 2. Resistance of a two-dimensional hole gas versus pressure at 4.2 K for uniaxial compression directions (a) [110] and (b) [1 0].
The filled symbols correspond to metastable states after application (removal) of the pressure, and the unfilled symbols to the equi-
librium states obtained by heating the sample to 200 K and slowly cooling it to 4.2 K (thermal cycling). The arrows indicate the
sequence in which the experimental points were obtained. 

1

[1 0] (Fig. 2b). The filled points correspond to the value
of the resistance immediately after the application
(removal) of the load, while the unfilled symbols are for
the equilibrium state obtained after thermal cycling to
200 K. 

There are two noteworthy characteristic features that
follow from the curves plotted in Fig. 2. 

(1) The amplitude of the relaxations on both appli-
cation and removal of the load increases with increas-
ing applied (removed) pressure.

(2) In the case of uniaxial compression along [110] the
amplitude of the relaxations after removal of the load was
noticeably larger than the amplitude of the relaxations
after application of the load (Figs. 1a, 2a), whereas for

the [1 0] direction the picture changes to the opposite
(Figs. 1b, 2b). 

3.3. Time Dependence of the Resistance Relaxations 

The time dependence of the piezoresistance during
the relaxation process is of a nonexponential character.
In the majority of cases this process can be described by
a logarithmic law like that given in [9, 10]: 

R–1(t) = R–1(t = 0) ± Aln , (1)

which is valid for the recombination of spatially separated
carriers with a rectangular profile of the spatial distribu-
tion of charge traps. Here it is assumed that the measure-
ment time t @ τ0, where τ0 is the characteristic lifetime of

1

1

t
τ0
----
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the charge carriers in the absence of their spatial separa-
tion from the trapping centers. It should be noted that in
many cases [11, 12] just such a logarithmic time depen-
dence gives a good description of the relaxation of the
residual photoconductivity in n-GaAs/AlxGa1 – xAs. 

Figure 3a shows the characteristic time dependence
of 1/ρ in the linear and logarithmic time scales for one
of the samples in the [110] orientation after the removal
of a pressure P = 0.85 (curve 1) and 1.7 kbar (curve 2)
at a temperature of 77 K. It should be noted that two lin-
ear segments can be discerned on the logarithmic plots.
Analysis of the time dependence of the resistance
relaxations at 4.2 K (Fig. 3b) after the application
(curve 4) and removal (curve 3) of the load also reveals
the presence of two processes, the faster of which obeys
a logarithmic law, while the other is practically “fro-
zen.” Here the first linear parts of the curves in Fig. 3
pertain to a relaxation process which even at low tem-
perature lasts only a few minutes. This relaxation pro-
cess can be seen in Fig. 1 immediately following the
application (removal) of the pressure, and its contribu-
tion to the change in resistance is insignificant. It is most
likely due to the tunneling of charge from residual ionized
impurities lying nearby in the buffer layer. We are mainly
interested in the long-lived metastable state described by
the second linear segments of the curves. 

3.4. Memory Effect 

If the loading-unloading cycle is repeated without
intermediate thermal cycling but the relaxation process
under load goes on for a rather long time (tens of minutes),
SICS      Vol. 91      No. 6      2000



1254 KRAVCHENKO et al.
10–2

4.1

1

(‡)

1/ρ, 10–4(Ω/M)–1

2

10–1 100 101 102

4.2

4.3

4.4

4.5

4.1

4.3

0 60 120

1/ρ, 10–4(Ω/ M)–1

t, min

t, min

1

2

3

10–1

43.6

43.7

43.8

54.8

54.9

4

100 101

t, min

1/ρ, 10–4(Ω/M)–1

(b)

Fig. 3. Sheet conductance of a two-dimensional hole gas versus time for T = (a) 77 and (b) 4.2 K. Curves 1, 2, and 4 are recorded
after the removal of pressures of 0.85, 1.7, and 0.35 kbar, respectively, and curve 3 after the application of a load of 0.35 kbar. The inset
ρ–1(t) shows plotted on a linear time scale. 
then, after the load is removed, a residual piezoresistance
is also observed, but its value now depends not only on the
value of the pressure applied prior to the removal but also
on the duration of the relaxation process under load. At
helium temperatures this process, as we have said, does
not go to completion in the time intervals actually real-
izable in experiment. If the pressure is removed imme-
diately after it is applied, then the system returns nearly
to its initial state: no relaxation process occurs in the
loaded state. 

This is the basis for the memory effect, wherein the
sample “remembers” previous loadings and relax-

1
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6 7
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25 50 75
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Fig. 4. Sheet resistance of a two-dimensional hole gas ver-
sus time at T = 77 K when the load is applied and removed.
In the time intervals 1–2, 5–6, and 9–10 a uniaxial pressure
P = 0.85 kbar was applied to the sample along the [110]
direction, and in the intervals 3–4, 7–8, and 11–12 the load
was removed. 
JOURNAL OF EXPERIMENTAL
ations. This effect is demonstrated in Fig. 4. For exam-
ple, if the relaxation process after removal of the load
(interval 4–5) is interrupted by a brief cycle in which a
uniaxial stress of the same magnitude is applied and
removed (interval 5–6–7–8), the resistance of the sam-
ple “remembers” its state prior to the last loading cycle,
and the subsequent relaxation (8–9) is a continuation of
the previous relaxation process (4–5). This does not
occur if the relaxation in the loaded state continues for
a long enough time (10–11). In that case after the load
is removed the relaxation process 12–13 is not a continu-
ation of the relaxation process 8–9, i.e., the resistance of
the sample also “remembers” the relaxation processes that
have occurred in the previous loaded state. It is clear that
in order to exactly reproduce the states of the sample
before each new measurement cycle it must be brought
to an equilibrium state by thermal cycling. 

A memory effect is also characteristic for the previ-
ously observed nonequilibrium processes induced by
illumination [4], for example. 

3.5. Quenching of the Relaxations
of the Piezoresistance by Temperature, Illumination,

and a High Electric Field 

Quenching of the relaxations of the piezoresistance
in the thermal cycling process has in fact already been
demonstrated in Fig. 1. When the sample is heated from
4.2 to 200 K and then slowly cooled, the residual piezore-
sistance is “erased” (intervals 7–8 in Fig. 1) and the sam-
ple is brought back to the initial equilibrium state. By
analogy, in this case one can regard the relaxation pro-
 AND THEORETICAL PHYSICS      Vol. 91      No. 6      2000
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cycle is carried out at 77 K with a load of P = 1 kbar (2); (b) relaxation of the residual piezoresistance ∆ρ after removal of a
pressure P = 0.85 kbar at different temperatures. 
cess under load as being quenched by thermal cycling,
which brings the system of charge carriers to an equi-
librium state. The temperature dependence of the resis-
tance in the unloaded equilibrium state and after a load-
ing-unloading cycle with P = 1 kbar is shown in Fig. 5a.
The fact that the two states have already become indis-
tinguishable at 120 K is explained by the increase in the
rate of relaxations as the temperature is raised (Fig. 5b). 

If the heating brings the system of charge carriers to a
thermodynamic equilibrium state, as a result of which a
temperature quenching of the relaxations of the piezore-
sistance occurs, then illumination or a strong electric field
pulse can themselves cause nonequilibrium processes
leading to charge redistribution in the system. This is
apparently the basis for their quenching effect on the
long-term relaxations induced by uniaxial compression
and for the residual piezoresistance at low tempera-
tures. For the illumination we used red light with a pho-
ton energy of 1.9 eV from a (Al)GaAs light-emitting
diode. Figure 6a illustrates the quenching of the resid-
ual piezoresistance by illumination at 77 K: when the
diode is turned on briefly (point 5) the residual piezore-
sistance induced by a loading-unloading cycle with a
pressure of 0.5 kbar is “dumped,” and the electrical
resistance rapidly relaxes to its equilibrium value. If the
loading (unloading) of the sample is carried out under
illumination, then the relaxation process and the resid-
ual piezoresistance are not observed at all. The quench-
ing of the relaxations of the piezoresistance by illumi-
nation persists at helium temperatures, but in that case
the effect takes place against the background of the
residual photoconductivity. 

For studying the effect of a high electric field on the
relaxation of the piezoresistance we used a pulsed
method to preclude overheating of the sample. Square
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
voltage pulses 30–400 ns long and with a repetition fre-
quency of 1–100 Hz were produced by a generator
across a mercury relay. At a temperature of 77 K the effect
of the high electric field pulses E ≥ 3000 V/cm is mani-
fested in a substantial acceleration of the relaxations of the
piezoresistance, so that 2–3 min after application of the
electric field pulses the resistance will essentially reach its
equilibrium value (Fig. 6b, for a perturbing uniaxial pres-
sure of 1.5 kbar). At helium temperatures a high enough
electric field E ≥ 200 V/cm will itself cause switching
of the samples into a long-lived high-resistance state
that is sensitive to illumination. 

3.6. Behavior of the Total Concentration
of 2D Holes During Relaxation of the Piezoresistance 

The concentration of 2D holes was monitored from
the Hall effect and the frequency of quantum oscilla-
tions of the magnetoresistance at a temperature of 1.7 K.
It was found that in the course of the relaxations of the
piezoresistance the total concentration of 2D holes in
the quantum well varies in correlation with the change
in the electrical resistance. Figure 7 shows the charac-
teristic curves of the total concentration of holes as a
function of the uniaxial compressive stress during the
application and removal of pressure along the [110]

(Fig. 7a) and [1 0] (Fig. 7b) axes; the cycles of appli-
cation and removal of the pressure were carried out
with an intermediate thermal cycling to accelerate the
relaxations. As we see from Fig. 7a, in the case of com-
pression along [110] the hole concentration in the well
decreases in the course of the relaxations after the
application of pressure, while after the removal of pres-
sure the hole concentration increases in the relaxation

1
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process. For compression along [1 0] (Fig. 7b) the oppo-
site picture is observed: after loading of the sample the
concentration of 2D holes relaxes to a higher value, while
after removal of the load it relaxes to a lower value. 

1
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Despite the qualitative difference, the dependence
of the concentration on the uniaxial compression along

the [110] and [1 0] directions has the following fea-
tures in common: 

1
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(1) the strain dependence of the total hole concen-
tration in the quantum well in the metastable state is the
same for both compression directions—the hole con-
centration falls off slightly with increasing pressure (by
2–3% at P = 2 kbar); 

(2) the removal of pressure from a sample in an
equilibrium stressed state (obtained by thermal cycling) is
always accompanied by an appreciable decrease in the
concentration of 2D holes, independent of the direction
of the uniaxial compression.

4. DISCUSSION 

The observed properties of the relaxations of the
piezoresistance, such as quenching of the metastable
state by illumination, the application of a high electric
field, and heating to a comparatively low temperature
(around 200 K), indicate that the relaxations of the elec-
trical resistance and the residual piezoresistance are not
due to the introduction of some new defects in the crys-
tal during the uniaxial compression. Therefore the
observed effect should be considered from the stand-
point of the electron-hole system and the internal prop-
erties of the structure itself. 

Since a two-dimensional hole gas is formed in a
quantum well on account of ionization of the Be accep-
tor impurity in the Al0.5Ga0.5As active layer, in an anal-
ysis of the causes of the resistance relaxations one must
consider the possibility that they can be explained by
the tunneling of holes from the quantum well to Be
impurity levels separated from the two-dimensional
layer by an undoped spacer. However, according to the
data of [13], the characteristic times for tunneling in
this process at 4.2 K is t ≈ 10–8 s, whereas the observed
relaxations of the piezoresistance are characterized by
times t > 105 s. 

It is known that nonequilibrium processes with such
long relaxation times may be due to deep traps. It is
possible that in our case, too, the resistance relaxations
can be attributed to such widely known deep centers in
GaAs and (Al)GaAs as DX and EL2 centers. However
the problem is that they and all the other point defects
of the crystal lattice, in view of the symmetry of the
three-dimensional crystal, cannot account for the dif-
ference observed in this study in the character of the
relaxations for compression in the directions [110] and

[1 0] (Figs. 1, 7). The causes of the relaxations of the
piezoresistance must be sought first among those mech-
anisms for which such a difference exists. Gallium ars-
enide, like other AIIIBV compounds, exhibits piezoelec-
tric properties on account of the absence of inversion
symmetry of the lattice along the [111] crystallographic
direction. Therefore, such a difference can be given by
the piezoelectric effect, since the strain-induced elec-
tric field along the [001] direction changes sign when
the compression direction is changed from [110] to

[1 0]. 

1
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The piezoelectric effect in such materials is deter-
mined by the off-diagonal components of the strain ten-
sor εxy and it therefore absence for compression along

[100]. For compression along the [110] and [1 0]
directions of interest to us here, the strain components
εxy ≠ 0, taking the values εxy = S44P/4 and εxy = –S44P/4,
respectively, where S44 is a component of the elastic
compliance tensor. As a result, in the absence of com-
pensating charges in the crystal, an electric field arises
along the [001] axis, with a value given by the expres-
sion [14] 

(2)

where e14 is the piezoelectric constant, ε is the static
dielectric constant, and ε0 is the permittivity of free space.
Using the values ε = 13.18 and e14 = –0.16 × 10–4 C/cm2

for GaAs [15], we find that at the strain corresponding
to a uniaxial pressure of 1 kbar, a piezoelectric field
with a value of |Ez| = 1.152 × 104 V/cm should arise in
GaAs. The electric field is positive (directed from the
substrate toward the heterointerface) for compression

along [1 0] and negative (directed from the heteroint-
erface toward the substrate) for compression along
[110]. 

In the Al0.5Ga0.5As layer, since it is doped with beryl-
lium and there is a two-dimensional hole gas at the
GaAs/AlGaAs heterointerface, the strain-induced elec-
tric field should be compensated in a time of less than
1 s by a redistribution of charge in the active layer and
quantum well [13]. In the GaAs buffer layer, on the
other hand, the electric field that arises cannot be imme-
diately compensated, since the compensating charge
carriers must penetrate from impurity states in the
GaAs buffer and substrate into the quantum well at the
GaAs/Al0.5Ga0.5As heterointerface through the entire
GaAs buffer layer, which is 1 µm thick. The piezoelec-
tric field distorts the band structure, leading to the
changes shown schematically in Fig. 8. 

An estimate using the model presented by the
authors of Ref. [10] shows that in such a case the life-
time of the metastable state corresponding to different
positions of the Fermi quasilevel near the heterointer-
face and in the substrate takes on very large values and
is apparently limited at finite temperatures mainly by
thermally activated processes involving residual impu-
rities and defects in the material of the substrate and
buffer layer. At helium temperatures the probability of
such processes is extremely small and the metastable
state is practically frozen, whereas heating to 200 K
promotes the rapid formation of a charge that compen-
sates the piezoelectric field, so that the material is
brought to an equilibrium state. 

For compensation of the piezoelectric field in the
GaAs buffer layer at a pressure of 2 kbar it is necessary
that a charge density of 2.69 × 10–8 C/cm2 be formed at

1

Ez

2e14εxy

εε0
-----------------,–=

1
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Fig. 8. Piezoeffect-induced change in the band structure in p-GaAs/Al0.5Ga0.5As under uniaxial compression. The solid curves cor-
respond to the unloaded equilibrium state, and the dotted curves to the equilibrium state immediately after application of a uniaxial

pressure of 1 kbar along the (a) [110] and (b) [1 0] directions. The dashed curve corresponds to the position of the equilibrium Fermi

EF level, and the dot-and-dash curve to the nonequilibrium Fermi  level immediately after application of the load. 

1

EF'
its boundaries; this value corresponds to an additional
concentration of holes or electrons (depending on the
direction of the field due to the piezoelectric effect) at
the GaAs/Al0.5Ga0.5As heterointerface of ∆N = 1.68 ×
1011 cm–2. This estimate of the density of compensating
charge carriers is in rather good agreement with the
observed difference between the values of the concen-
tration of 2D holes in the metastable and equilibrium
states (Fig. 7). 

In accordance with the direction of the field Ez the
compensating charge should preferentially increase the
hole concentration in the well in the case when the pres-

sure is applied along [1 0] and decrease it in compres-
sion along [110] (accordingly, in the equilibrium state
under pressure the hole concentration should be higher
or lower, respectively, than in the metastable state).
This correlates completely with the experimental data
(Fig. 7). 

The total change in the carrier concentration in the
quantum well under pressure is determined not only by
the influence of the piezoelectric field but also by a set
of other factors such as the change in the band structure
and the value of the discontinuity of the bands at the
heterointerface, the ionization energy of the Be acceptor
impurity in the active layer, and the state of the defects and
deep centers near the heterointerface. The present uncer-
tainty in the values of some of the parameters and their
strain dependence makes it difficult to interpret the total
pressure dependence of the concentration of 2D holes.
Using the difference in the time scales of the transient pro-
cesses for different mechanisms responsible for changes
in the concentration of free holes, we have attempted to
separate and analyze the contributions due to several of
them. 

As we have said, all of the processes of redistribution
of the holes between shallow acceptors in the active layer
and the 2D layer at the heterointerface occur over rather

1
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short times. Therefore, we can assume that the change in
concentration due to the changes of the band structure
and the activation energy of Be shallow acceptor levels
occur practically simultaneously with the application
of the pressure. 

On the other hand, such processes as the recharging of
deep centers and the tunneling of carriers through the
GaAs buffer layer occur very slowly at helium tempera-
tures, and the corresponding characteristic times can
exceed 105 s. 

Starting from this fact, we can write the change in
concentration under pressure, ∆N(P), in the form of a
sum: 

∆N(P) = ∆N1(P) + ∆N*(P),

where ∆N1(P) is the contribution of “fast” processes
due to changes in the band structure and to the redistri-
bution of holes between the 2D layer and the Be shal-
low acceptors in the Al0.5Ga0.5As active layer and
∆N*(P) is the change in concentration due to the long-
term processes: the recharging of deep centers and the
tunneling of carriers through the GaAs buffer layer. 

The first term ∆N1(P) is determined from the depen-
dence N(P) obtained at 1.7 K without thermal cycling,
when the long-term relaxation processes cannot appre-
ciably influence the concentration of 2D holes at the het-
erointerface. Arguing in favor of the interpretation that it is
these values that correspond to changes of the band struc-
ture and to the redistribution of holes between the 2D layer
and shallow acceptors in the active layer is the fact that
when the pressure is removed, the concentration of 2D
holes in this case (i.e., without thermal cycling) returns
to its initial value. The ∆N1(P) curves obtained from
Fig. 7 are presented in Fig. 9a. 

The concentration change ∆N*(P) responsible for
the long-term relaxation of the resistance can be
 AND THEORETICAL PHYSICS      Vol. 91      No. 6      2000
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1

obtained on the basis of Fig. 7 by the simple subtrac-
tion 

∆N* = ∆N(P) – ∆N1.

Here one notices a difference in the value of the change
in concentration of 2D holes when the total relaxation
(after thermal cycling) occurs under load and after the
load is removed (Fig. 7), whereas the corresponding
numbers of carriers entering and leaving the quantum
well should be equal to each other if only the piezoelec-
tric field is responsible for this effect. 

In addition, the two compression directions [110]

and [1 0] have a common feature, which was men-
tioned in Subsection 3.6: in both cases when the load is
removed from a sample in the equilibrium state under
pressure, the concentration of 2D holes decreases notice-
ably (Fig. 7). In view of the identical behavior for the com-

pression directions [110] and [1 0], this phenomenon can-
not be attributed to the piezoelectric effect. Apparently, the
long-term relaxation processes also involve some mecha-
nism for which these directions are equivalent. 

That mechanism might be due to the presence of point
defects, which have been observed in large numbers near
heterointerfaces in n- and p-type GaAs/AlxGa1 – xAs
[16, 17] and are identified as deep centers. Their concen-
tration reaches ~1010 cm–2 [17]. If we suppose that elec-
tron traps with a pressure-dependent thermal activation
barrier exist near the heterointerface, we can assume
that these states, being occupied as a result of thermal

1
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cycling under load, will easily give up the trapped elec-
trons when the pressure is removed, thus reducing the con-
centration of 2D holes in the quantum well. On this basis,
the piezoeffect-induced change in the hole concentration,
∆N2, is defined as the difference between the values of the
concentration in the equilibrium state at and in the non-
equilibrium state after the pressure is removed. Then on
the basis of the curve (Fig. 7) it is proposed that the change
in concentration ∆N* in the two states can be separated: 

∆N* = ∆N2 + ∆N3,

where the main contribution ∆N2 is due to the piezoef-
fect, and the considerably smaller part ∆N3 that is sym-
metric with respect to the compression direction is due
to deep traps. The result of this separation is shown in
Figs. 9b and 9c. The data obtained on the concentration
∆N2 of the holes that compensate the piezoelectric field
are in good agreement with the estimates given above
on the basis of formula (2). The change in the hole con-
centration due to deep centers also appears completely
realistic in accordance with the known published data
on the concentration of the latter near a GaAs/AlxGa1 – xAs
heterointerface [17]. 

The quenching of the metastable states by light and
electric field pulses can be explained in the proposed
model as being due to the formation of additional free
electrons and holes due to the optical radiation and high
pulsed electric field, which promotes the rapid forma-
tion of the compensating charge. 
SICS      Vol. 91      No. 6      2000
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As we have said, the logarithmic time dependence
of the resistance in the course of the relaxations of the
residual photoconductivity is predicted for the case of
recombination of spatially separated charge, when the
carriers of one type are captured by traps and those of
the other type remain free and participate in the con-
duction [10]. The charge separation in this model pre-
supposes the presence of barriers, which are formed in
heterostructures and which arise as a result of fluctua-
tions of the composition or of the doping impurity. The
logarithmic time dependence of the resistance here is
due to the fact that the damping of the photoconductiv-
ity is slowed as the recombination front moves away
from the layer of free charge carriers. Apparently, such
a model can be used to explain the time dependence of
the resistance relaxation due to the compensation of the
piezoelectric field, since in that case we are dealing
with the motion of the charge carriers through the
buffer layer, with the participation of the residual impu-
rities in the process. Since the probability of ionization
of these impurities increases with increasing tempera-
ture, the rate of relaxations must also grow accordingly,
which explains the quenching of the relaxations by the
temperature. 

It should be noted that besides the piezoeffect, there
exists another mechanism in terms of which one might
interpret both the main properties of the relaxations of
the piezoresistance and also the different signs of the
change in concentration of the 2D holes in the course of
the relaxations for the compression directions [110]

and [1 0]. Such a difference can be given by misfit dis-
locations at the (001) GaAs/(Al)GaAs heterointerface,
the chemical nature of which differs for these two
directions: exclusively α dislocations (with As atoms in
the dislocation core) are arranged along [110], and only
β dislocations (with Ga atoms in the core) are arranged

along [1 0]. A model in which the change in concentra-
tion of 2D holes due to uniaxial compression is attrib-
uted to the recharging of the cores of misfit edge dislo-
cations is described in detail in [18]. 

This mechanism is undoubtedly important for het-
erojunctions with a large lattice misfit of the epitaxial
layers and should be taken into account in the fabrica-
tion of structures of such materials as GaAs/(Ga)InAs,
GaAs/GaAs(P), and InSb/GaAs. In our case, however,
the lattice misfit of GaAs and Al0.5Ga0.5As is small and,
according to [19, 20], should not lead to any misfit dis-
locations at the heterointerface. In spite of the fact that
the question of whether misfit dislocations can form in
such structures is far from an unambiguous answer, and
there are examples that contradict this assertion (e.g., see
[21]), we have been unable to detect the characteristic pat-
tern of misfit dislocations in a scanning cathodolumines-
cence study of the structures investigated here. 

ACKNOWLEDGMENTS

We are deeply grateful to V.I. Petrov for assistance in
the scanning cathodoluminescence studies, to V.I. Panov

1

1

JOURNAL OF EXPERIMENTAL
and the staff of his laboratory for collaboration in the
monitoring of the orientation of the samples on a scan-
ning atomic force microscope, and to S.D. Beneslavskiœ
and E.V. Bogdanov for a helpful discussion. 

This study was supported by the Russian Founda-
tion for Basic Research (project nos. 00-15-96784 and
97-02-17685). 

REFERENCES
1. M. K. Sheœnkman and A. Ya. Shik, Fiz. Tekh. Polupro-

vodn. (Leningrad) 10, 209 (1976) [Sov. Phys. Semicond.
10, 128 (1976)].

2. A. Ya. Shik and A. Ya. Vul’, Fiz. Tekh. Poluprovodn.
(Leningrad) 8, 1675 (1974) [Sov. Phys. Semicond. 8,
1085 (1974)].

3. V. N. Kravchenko, N. Ya. Minina, Ya. S. Olsen, et al.,
Pis’ma Zh. Éksp. Teor. Fiz. 61, 417 (1995) [JETP Lett.
61, 424 (1995)].

4. A. Ya. Vul’ and A. Ya. Shik, Fiz. Tekh. Poluprovodn.
(Leningrad) 8, 1952 (1974) [Sov. Phys. Semicond. 8,
1264 (1974)].

5. N. B. Brandt, V. S. Egorov, M. Yu. Lavrenyuk, et al., Zh.
Éksp. Teor. Fiz. 89, 2257 (1985) [Sov. Phys. JETP 62,
1303 (1985)].

6. C. Mailhiot and D. L. Smith, Phys. Rev. B 36, 2942
(1987).

7. G. Platero and M. Altarelli, Phys. Rev. B 36, 6591
(1987).

8. A. M. Savin, C. B. Sorensen, O. P. Hansen, et al., Semi-
cond. Sci. Technol. 14, 632 (1999).

9. H. J. Queisser, Phys. Rev. Lett. 54, 234 (1985).
10. H. J. Queisser and D. E. Theodorou, Phys. Rev. B 33,

4027 (1986).
11. E. F. Schubert, A. Fisher, and K. Ploog, Phys. Rev. B 31,

7937 (1985).
12. M. J. Chou and D. C. Tsui, Appl. Phys. Lett. 47, 609

(1985).
13. A. Dargys, N. Zurauskiene, and K. Bertulis, J. Phys.:

Condens. Matter 9, L557 (1997).
14. C. Mailhiot and D. L. Smith, Phys. Rev. B 35, 1242

(1987).
15. Sadao Adachi, J. Appl. Phys. 58, R1 (1985).
16. O. P. Hansen, J. Szatkowski, E. Placzek-Popko, et al.,

Cryst. Res. Technol. 31, 313 (1996).
17. P. Krispin, R. Hey, and H. Kostial, J. Appl. Phys. 77,

5773 (1995).
18. V. N. Kravchenko, Candidate’s Dissertation in Mathe-

matical Physics (Mosk. Gos. Univ., Moscow, 1999).
19. J. W. Matthews and A. E. Blakeslee, J. Cryst. Growth 27,

118 (1974).
20. B. C. Cooman, C. B. Carter, Kam Toi Chan, et al., Acta

Metall. 37, 2779 (1989).
21. D. Cherns, D. Loretto, N. Chand, et al., Philos. Mag. A

63, 1335 (1991).

Translation was provided by AIP
 AND THEORETICAL PHYSICS      Vol. 91      No. 6      2000



  

Journal of Experimental and Theoretical Physics, Vol. 91, No. 6, 2000, pp. 1261–1267.
From Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 118, No. 6, 2000, pp. 1456–1462.
Original English Text Copyright © 2000 by Khalatnikov, Kamenshchik.

                              

SOLIDS
Electronic Properties

  
A Diagram Technique for Perturbation Theory Calculations 
of the Effective Conductivity of Two-Dimensional Systems¶

I. M. Khalatnikova–c, * and A. Yu. Kamenshchika, b

aLandau Institute for Theoretical Physics, Russian Academy of Sciences, Moscow, 117334 Russia
bLandau Network-Centro Volta, 22100, Como, Italy

cSchool of Physics and Astronomy, Raymond and Sackler Faculty of Exact Sciences, Tel Aviv University,
Ramat Aviv, 69978 Israel

*e-mail: landau@ICIL64.CILEA.IT
Received July 27, 2000

Abstract—The perturbation theory for calculating the effective conductivity of the plane consisting of pieces
of different conductivities is constructed, and a convenient diagram technique is elaborated for this perturbation
theory. It is shown that for the chessboard, perturbative calculations give results that are in agreement with the

well-known formula σeff = . The components of the effective conductivity tensor for the anisotropic
three-color chessboard are calculated. It is shown that the isotropic (symmetric) part of the effective conductiv-
ity calculated up to the sixth order of perturbation theory satisfies the Bruggeman effective medium equation
for symmetric three-color structures with equally partitioned components. We also consider an isotropic three-
color chessboard with nonequal weights of colors. In this case, the perturbation theory in the fourth order con-
tradicts the results following from the Bruggeman equation for nonequal weights. © 2000 MAIK “Nauka/Inter-
periodica”.

σ1σ2
1. INTRODUCTION

The problem of calculating the effective conductiv-
ity of composite materials is of interest from theoretical
and phenomenological points of view and has been
attracting the attention of theorists since the nineteenth
century [1]. The most developed is the theory of the
effective conductivity of the plane, where one can use
the duality between conductivity and resistance, which
is typical only of the two-dimensional Ohm’s law. This
duality consists in the fact that rotating the plane by π/2
simultaneously with interchanging the current density
vector j and the electric field E does not change Ohm’s
law. The most interesting two-dimensional result is the
one by Dykhne [2], who considered the plane covered
by regions with two different conductivities σ1 and σ2.
If the distribution is stochastic and the statistical
weights of the two conductivities are equal, one can
show that

(1.1)

The same result also holds for some regular structures
of two-conductivities on the plane (for convenience, we
call them two-color in what follows), in particular, for
the chessboard, as was shown by Keller in his earlier
paper [3].

The main goal of this paper is to construct the per-
turbation theory for calculating the effective conductiv-
ity on the plane for an arbitrary distribution of the con-

σeff σ1σ2.=

¶This article was submitted by the authors in English.
1063-7761/00/9106- $20.00 © 21261
ductivity and to represent the resulting formulas in a
convenient graphical form. As applications of this the-
ory, we rederive the Keller–Dykhne formula for the
two-color chessboard. Using our diagram technique,
we calculate the components of the effective conductiv-
ity tensor for the three-color chessboard representing
an anisotropic structure with equal weights. It is shown
that the isotropic part of the effective conductivity cal-
culated up to the sixth order of perturbation theory sat-
isfies the Bruggeman effective medium equation for
symmetric three-color structures with equally parti-
tioned components [4].

We also consider the isotropic three-color chess-
board with nonequally partitioned components and
show that the corresponding Bruggeman equation fails
in this case.

We note that numerical simulation of the conductiv-
ity of regular, isotropic equal-weighted three-color
structures on the plane was performed and analyzed in
a recent paper [5]. Three-component dielectric media
were also considered in [6].

The structure of the paper is as follows. In Section 2,
we construct the perturbation theory for the effective
conductivity and give a convenient diagram representa-
tion for this technique. Section 3 is devoted to the appli-
cation of this technique to the deduction of the formula
for the effective conductivity of the two-color chess-
board. In Section 4, we use the perturbative technique
to calculate components of the effective conductivity
tensor for the three-color two-dimensional chessboard
000 MAIK “Nauka/Interperiodica”
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and show that its isotropic part satisfies the Bruggeman
equation. We then consider the isotropic three-color
chessboard with nonequal weights and show that in this
case, fourth-order calculations contradict the predic-
tions following from the corresponding Bruggeman
equation.

2. PERTURBATION THEORY
FOR THE EFFECTIVE CONDUCTIVITY

We begin with constructing the perturbation theory
for the effective conductivity. The idea of using pertur-
bative methods for calculating the effective conductiv-
ity has been considered by Herring [7], Dykhne [8], and
Bergman [9]. We note that Herring obtained a formula
for the effective conductivity tensor of a locally aniso-
tropic medium in the second order [7], while we
develop the technique applicable to arbitrary orders of
perturbation theory for locally isotropic media.

Ohm’s law for a locally isotropic medium has the
form

(2.1)

where j is the current density; σ is the conductivity,
which in general depends on the coordinates x and y;
and ϕ is the electric potential. The charge conservation
rule for a stationary distribution of currents is

(2.2)

Inserting Eq. (2.1) in Eq. (2.2), we obtain

(2.3)

We now assume that

(2.4)

Here, the average value of σ(x, y) is chosen equal to 1
for convenience, and α(x, y) is a small function whose
average over the plane, denoted by 〈 〉 , is equal to zero.

We represent the potential ϕ as

(2.5)

where the vector field E must be chosen such that the
relation

(2.6)

is satisfied. For isotropic conductivity distributions, we
can introduce the effective conductivity by the relation

(2.7)

where J = 〈j〉 . For anisotropic distributions of α(x, y),
relation (2.7) becomes a tensor one,

j σ∇ ϕ ,=

div j ∇ j 0.= =

∆ϕ ∇ σ ∇ ϕ⋅ln+ 0.=

σ x y,( ) 1 α x y,( ),+=

α〈 〉 0.=

ϕ E r⋅ ψ x y,( ),+=

∇ ψ〈 〉 0=

J σeffE,=
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(2.8)

Inserting ϕ from (2.5) in Eq. (2.3), we obtain the
Laplace equation

(2.9)

It is convenient to introduce Fourier expansions for
the small functions α and ψ:

(2.10)

(2.11)

With these expansions in Eq. (2.9), we obtain

(2.12)

Solving Eq. (2.12) by iterations, one can find a per-
turbative expansion for the function ψk. Using the for-
mulas found for ψkin Eqs. (2.7) or (2.8), one can then
find the components of the effective conductivity ten-
sor.

We now temporarily forget about condition (2.6)
providing the correct definition of the macroscopic vec-
tor E. One can write the following formulas for the per-
turbative corrections to the potential ψk and for the iso-
tropic part of the effective conductivity tensor:

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

and so on.
By induction, one can show that

Ji σeff ijE j, i j, 1 2.,= =

∆ψ ∇ 1 α+( ) E ∇ ψ+( )⋅ln+ 0.=

α αk ik r⋅( ),exp
k

∑=

ψ ψk ik r⋅( ).exp
k

∑=

k2ψk

=  ∇ α α2

2
-----– α3

3
----- α4

4
-----– …+ + 

  E ∇ ψ+( )⋅
k
.

σeff
1
2
--- σxx σyy+( ),≡

ψk1

iαk k E⋅( )
k2

-------------------------,=

σeff2
k E⋅( )2

E2k2
------------------αkα k– ,

k

∑–=

ψk2 i
p E⋅( ) p k⋅( )

k2p2
--------------------------------αpαp k– ,

p

∑–=

σeff3
k E⋅( ) p E⋅( ) p k⋅( )

k2p2E2
-------------------------------------------------αpαk p– α k– ,

p k,
∑=
(2.18)σeffn 1–( )n 1+ k1 E⋅( ) k1 k2⋅( )… kn 2– kn 1–⋅( ) kn 1– E⋅( )
E2 k1

2…kn 1–
2⋅

------------------------------------------------------------------------------------------------------αk1
αk2 k1– …αkn 1– kn 2–– α kn 1–– .

k1 … kn 1–, ,
∑=
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Thus, all the corrections to the effective conductivity
have a “chain” form and can be graphically represented
as

However, to satisfy condition (2.6), it is necessary to
subtract all the disconnected nth-order diagrams con-
sisting of two chains from this diagram and then add the
diagrams consisting of three chains. The construction
of this alternating sum corresponds to the elimination
of the terms containing the corrections proportional to
possible homogeneous vector harmonics ∇ψ .

We now analyze the structure of expression (2.18)
and the corresponding diagram in some detail. This dia-
gram contains “vertices” corresponding to the coeffi-
cients of the Fourier expansion (2.10) and “propaga-
tors” corresponding to two-dimensional wave vectors k.
The propagators appear in three forms:

It is remarkable that Eq. (2.18) (after the subfraction
of the alternating sum, as explained above) contains
information about all the elements of the effective con-
ductivity tensor. The diagrams corresponding to the
isotropic part of this tensor defined in (2.13) contain an
even number of the F propagators and an even number
of the G propagators. The diagrams corresponding to
the anisotropic part of the diagonal elements of this ten-
sor,

(2.19)

contain an odd number of the F propagators and an
even number of G. Finally, the diagrams corresponding
to off-diagonal elements of the effective conductivity
tensor σxy contain an odd number of the G propagators.

3. PERTURBATIVE CALCULATIONS
FOR THE TWO-COLOR CHESSBOARD

To show how this perturbation theory and the dia-
gram technique work, we consider the chessboard case.
We assume that

(3.1)

E

αk1
αk2 – k1

αkn –1 – kn –2
α–kn –1

Ekn – 2 kn – 1k1 k2

≡ 1/2

≡ kxky/(k
2
x  + k2

y)

≡ 1/2[(k2
x  – k2

y)/(k2
x  + k2

y)]
F

G

σanysotr
1
2
--- σxx σyy–( ),≡

σ1 1 δ,+=

σ2 1 δ.–=
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Then,

(3.2)

To reproduce this formula by means of perturbation
theory, we must calculate the Fourier coefficients for
the function α(x, y). Let α(x, y) be a periodical function
with the periods 2π in each coordinate such that

(3.3)

see Fig. 1.
Then,

(3.4)

(3.5)

It is easy to see that all the diagrams with an odd
number of vertices give a zero contribution. Indeed, the
sum of wave numbers of all the vertices in a diagram
must vanish (see Eq. (2.18)) and only odd values of
wave numbers can occur (see Eqs. (3.4)–(3.5)). How-
ever, the sum of an odd number of odd numbers cannot
vanish. Thus, we must consider only even orders of the
perturbation theory.

Next, if a diagram contains an odd number of prop-
agators G, the contribution of this diagram is equal to
zero because, for any set of momenta k = (kx, ky), there
is the set k' = (–kx, ky) giving the contribution of the
opposite sign. Similarly, the diagrams containing an
odd number of propagators F give vanishing contribu-
tions because the contribution of any diagram with a
certain set of momenta k = (kx, ky) is cancelled by that
with the momenta k = (ky, kx). Thus, σanisotr and σxy are
equal to zero, and the effective conductivity of the
chessboard is isotropic.

σeff 1 δ2– 1 δ2

2
-----–

δ4

8
-----–= =

–
δ6

16
------ 5δ8

128
---------– 7δ10

256
----------– … .+

α x y,( ) δ if 0 x π, 0 y π,< << <–=

α x y,( ) +δ if π x 2π, 0 y π,< << <=

α x y,( ) +δ if 0 x π, π y 2π,< << <=

α x y,( ) δ if π x 2π, π y 2π,< << <–=

α2k m, αn 2l, 0,= =

α2k 1+ 2l 1+,
16δ

2π( )2 2k 1+( ) 2l 1+( )
-----------------------------------------------------.=

y

x2π0 π

–δ

π

2π

δ–δ

δ

Fig. 1.
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Now, we are in a position to calculate the diagrams
corresponding to the effective conductivity of the
chessboard. In the second order of the perturbation the-
ory, we only have the diagram

that corresponds to the expression

(3.6)

Using the well-known formula [10]

(3.7)

we obtain

(3.8)

The set of the fourth-order diagrams is given by

Here, the first connected diagram gives the contribution
δ4/8. The combination of the second and the third dia-
grams again gives δ4/8, the disconnected diagram gives
the contribution δ4/8, while the last two connected dia-
grams do not give a contribution. Thus, the result is

(3.9)

Next, we present only the diagrams giving nonvan-
ishing contributions in the sixth order of the perturba-
tion theory with the corresponding results:

σeff2
1
2
--- αkα k–

k

∑–=

=  
256δ2

2 2π( )4
---------------- 1

2k 1+( )2 2l 1+( )2
--------------------------------------------.

l ∞–=

∞

∑
k ∞–=

∞

∑–

1

n2
-----

n 1=

∞

∑ ζ R 2( )
π2

6
-----,= =

σeff2
δ2

2
-----.–=

G

2

G

G G

FF

F F2

σeff4
δ4

8
-----.–=

2π/3 4π/3 2π0 x

y

–δ δ

2π/3

4π/3

2π

δ

δ

–δ

–δ

0

0

0

Fig. 2.
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Summing these, we have

(3.10)

Quite similarly, we can also obtain

(3.11)

and

(3.12)

The results of perturbative calculations in Eqs. (3.8)–
(3.12) coincide with those obtained by expanding the
general formula (3.2). This confirms the reliability of
the perturbation theory developed here and encourages
us to apply it to more complicated situations.

4. PERTURBATIVE CALCULATIONS
FOR THE THREE-COLOR CHESSBOARDS

We now consider three-color structures with a
square lattice symmetry, which we call the three-color
chessboards. To do it, we again turn to formula (1.1). It
is easy to notice that Eq. (1.1) can be rewritten as

(4.1)

Equation (4.1) was written by Bruggeman [4] as an
approximative one (in the dipole approximation), but it
appears to be exact for a large class of two-color cover-
ings [2]. One can try to generalize this equation for the
case of three conductivities (a three-color system) with
equal weights as

(4.2)

G G

G

GG

G G

G G

G

G G

F

F

F

F F

FF

FF

F

F

F F F

G G

–2

–2

–2

2

2
+

1
32

1
32

1
32

1
16

1
32

1
16

1
16

σeff6
δ6

16
------– .=

σeff8
5δ8

128
---------–=

σeff10
7δ10

256
----------.–=

σeff σ1–
σeff σ1+
--------------------

σeff σ2–
σeff σ2+
--------------------+ 0.=

σeff σ1–
σeff σ1+
--------------------

σeff σ2–
σeff σ2+
--------------------

σeff σ3–
σeff σ3+
--------------------+ + 0,=
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which is equivalent to

(4.3)

There are different tessellations of the plane allow-
ing three-color (i.e., three-conductivity) coverings (see,
e.g., [11]). Here, we consider the simplest tessellation:
it is again a chessboard but is covered by three colors
with the same statistical weights. We again introduce
the function α(x, y) that is periodic with the periods 2π
and is defined by the rules

(4.4)

see Fig. 2.
Obviously, this function corresponds to the periodic

distribution of three conductivities

(4.5)

and the corresponding Fourier coefficients are given by

(4.6)

(4.7)

(4.8)

Now, we are in a position to calculate perturbative
contributions to the isotropic part of the effective con-

σeff
3 1

3
--- σ1 σ2 σ3+ +( )σeff

2+

–
1
3
--- σ1σ2 σ1σ3 σ2σ3+ +( )σeff σ1σ2σ3– 0.=

α x y,( ) δ if 0 x
2π
3

------, 0 y
2π
3

------,< << <=

α x y,( ) 0 if
2π
3

------ x
4π
3

------, 0 y
2π
3

------,< << <=

α x y,( ) δ– if
4π
3

------ x 2π( ), 0 y
2π
3

------,< << <=

α x y,( ) δ– if 0 x
2π
3

------,
2π
3

------ y
4π
3

------,< << <=

α x y,( ) δ if
2π
3

------ x
4π
3

------,
2π
3

------ y
4π
3

------,< << <=

α x y,( ) 0 if
4π
3

------ x 2π,
2π
3

------ y
4π
3

------,< << <=

α x y,( ) 0 if 0 x
2π
3

------,
4π
3

------ y 2π,< << <=

α x y,( ) δ– if
2π
3

------ x
4π
3

------,
4π
3

------ y 2π,< << <=

α x y,( ) δ if
4π
3

------ x 2π,
4π
3

------ y 2π,< << <=

σ1 1 δ,+=

σ2 1 δ,–=

σ3 1,=

α3k m, αn 3l, 0.= =

α3k 1+ 3l 1+, α3k 2+ 3l 2+, 0,= =

α3k 2+ 3l 1+, α3l 1+ 3k 2+,*=

=  
9 3ieiπ/3

2π( )2 3k 2+( ) 3l 1+( )
-----------------------------------------------------.
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ductivity for the three-color chessboard. In the second
order of the perturbation theory, we again have only
one diagram, which contributes

(4.9)

where Eq. (3.7) was used again. In the fourth order, we
have the following set of diagrams with nonvanishing
contributions:

These result in

(4.10)

In calculating the sums corresponding to the above dia-
grams, we have used the formula [10]

(4.11)

We now present the set of all the sixth-order dia-
grams giving nonvanishing contributions:

Summing these contributions, we have

(4.12)

Thus, we have calculated the symmetric part of the
effective conductivity tensor

σeff2
δ2

3
-----– ,=

G G

FF

1
12

1
18

1
18

σeff4
δ4

12
------– .=

S
1

3k 1+
---------------

k ∞–=

∞

∑≡ 1
3k 2+
---------------

k ∞–=

∞

∑–=

=  1
3k 1+( ) 3k 2+( )

----------------------------------------
k 0=

∞

∑–
π

3 3
----------.=

1
48

1
72

1
36

1
108

1
216

1
108

5
108

G

–2

+
2

2

–2

–2
G

FF
F

GG

F

F

F

F

G

G

G

G

G

G

F

F

F

F F

F

F F

F

G

G

G G

G

G

σeff6
17δ6

432
-----------– .=

σeff σsym≡ σxx σyy.= =
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We can now substitute the expression for the isotro-
pic (symmetric) part of the effective conductivity found
up to the sixth order of the perturbation theory,

(4.13)

into the three-color Bruggeman equation (4.2). We then
see that this equation is satisfied. This gives us some
grounds to think that this equation describes precisely
the effective conductivity for the chaotic three-color
distributions of conductivity on the plane just like it
does for the two-color distributions, where Bruggeman
formula (4.1) coincides with the exact Dykhne formula.

It is necessary to stress that, for the chessboard with a
conductivity described by the function α(x, y) in Eq. (4.4),
there is an anisotropic term already in the second order of
the perturbation theory corresponding to the diagram

This term is equal to

(4.14)

We stress that for isotropic structures, the conduc-
tivity is purely local in the second order and has a uni-
versal form that does not depend on its particular struc-
ture. In anisotropic structures, we encounter nonlocal
propagators already in the second order and the results
are not universal.

We now consider another three-color chessboard
with nonequal weights, which however is isotropic in
contrast to the previous one. The conductivity is given
by the formulas

(4.15)

σeff 1 δ2

3
-----– δ4

12
------ 17δ6

432
-----------– …,––=

G

σxy
486δ2

2π( )4
--------------–=

× 1

3k 2+( ) 3l 1+( ) 3k 2+( )2
3l 1+( )2

+( )
----------------------------------------------------------------------------------------------- 0.06δ2.≈

k l, ∞–=

∞

∑

α x y,( ) 0 if 0 x π, 0 y π,< << <=

α x y,( ) +δ if π x 2π, 0 y π,< << <=

α x y,( ) δ– if 0 x 2π, π y 2π,< << <=

α x y,( ) 0 if π x 2π, π y 2π,< << <=

2π

π

0

x

y

–δ

δ

0

0 2π

π

Fig. 3.
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see Fig. 3.
Although this chessboard is a three-color one, it

possesses all the symmetries of the two-color chess-
board and is isotropic.

The nonzero Fourier coefficients are given by

(4.16)

(4.17)

It is convenient to denote these Fourier coefficients by
different vertices: the coefficient in (4.16) by a black
circle and the one in (4.17) by a white circle.

The contribution of the second order of perturbation
theory to the effective conductivity is given by the dia-
gram

and is equal to

(4.18)

The fourth-order diagrams have the form

Thus, the fourth-order contribution is

(4.19)

On the other hand, the Bruggeman equation for this
structure can be written as [4]

(4.20)

or equivalently,

(4.21)

In our case, where

we easily obtain

. (4.22)

It is obvious that in the fourth order of the perturbation
theory, there is a contradiction between the results of
perturbative calculations (4.19) and those following
from the Bruggeman equation (4.22).

α2k 1+ 0,
1

iπ 2k 1+( )
-------------------------,=

α0 2l 1+,
1

iπ 2l 1+( )
------------------------.=

σeff2
δ2

4
-----.–=

1
16
1
32

– 1
16

σeff4
δ4

32
------.–=

2
σeff σ1–
σeff σ1+
--------------------

σeff σ2–
σeff σ2+
--------------------

σeff σ3–
σeff σ3+
--------------------+ + 0,=

σeff
3 σ2 σ3+

2
-----------------σeff

2+

–
σ1 σ2 σ3+( )

2
---------------------------σeff σ1σ2σ3– 0.=

σ1 1, σ2 1 δ, σ3+ 1 δ,–= = =

σeff 1 δ2

4
-----– δ4

16
------– …–=
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Abstract—The features of the dynamics of the self-effects of the wave field are considered for the case when
the dynamics is described by the nonlinear Schrodinger equation (NSE) with a hyperbolic spatial operator. An
analytical investigation of the characteristic regimes of the self-effects is carried out; these regimes are due to
the spatial competition of the self-focusing compression of the wave packet in one direction and its defocusing
in another. The initial distributions of the wave field are analyzed with the goal of using them in a numerical
modeling for illustration of the features of the self-effects. It is shown that three stages can be discerned in the
evolution of the localized distributions: self-focusing filamentation of the wave field in the transverse direction,
and compression and subsequent fragmentation in the defocusing (longitudinal) direction. The strongest non-
uniformities are excited in the self-similar collapse of the wave field to hyperbolas (to the characteristic curves
of the hyperbolic operator of the NSE). The stabilization of the development of the fragmentation instability is
discussed separately. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION 

In addition to the well-known nonlinear Schrod-
inger equation (NSE), the dynamics of the self-effects
of wave packets is widely studied by means of the non-
linear Schrodinger equation (NSE) with a hyperbolic
spatial operator [1]: 

(1)

In the two-dimensional case (the Laplacian operator
with respect to the transverse coordinates has the form
∆⊥  = ∂2/∂x2) it governs the dynamics of the self-effects
of a wave on the surface of a liquid [1–4] and the spatial
evolution of wave beams in a magnetized plasma in the
parameter region corresponding to saddle points on the
refractive index surface [5–7]. Recently, however, most
of the interest has focused on the study of the self-
effects of ultrashort laser pulses in media with normal
dispersion of the group velocity ∂vgr/∂ω < 0 (in this
case, t corresponds to the coordinate of the centroid of
the wave packet) [8–15]. 

A distinctive feature of Eq. (1) is that the distortion
of the phase fronts due to the nonlinearity leads to
focusing of the waves in the transverse direction and to
dispersive spreading (defocusing) in the longitudinal
direction. The competition between these two pro-
cesses can result, in particular, in stabilization of the
transverse collapse of an axially symmetric wave beam
which would occur in the case ∂/∂z = 0 [8]. The possi-
bility of the onset of singularities in the evolution of a
localized three-dimensional distribution is still in dis-
pute [8, 14, 15]. 

i
∂u
∂t
------ ∆⊥ u

∂2u

∂z2
--------– u 2u+ + 0.=
1063-7761/00/9106- $20.00 © 21268
The peculiarity of the self-effects of the waves in the
framework of Eq. (1) is manifested even in the stage of
modulational instability of a plane wave. The growth
rate of this instability is given by the expression 

(2)

where A0 is the amplitude of the plane wave, k⊥  and kz

are the transverse and longitudinal wave numbers of the
disturbance. The value of γ reaches a maximum not on
a sphere, as in the NSE case, but on the hyperbolic sur-
face 

(3)

i.e., in the framework of Eq. (1) the instability can
occur on any arbitrarily small scales (L ≈ 1/k), provided
that the characteristic longitudinal (L ≈ 1/kz) and trans-
verse (L ≈ 1/k⊥ ) scales of the nonuniformity satisfy rela-
tion (3). The most “large-scale” of the instabilities is
the self-focusing instability (k|| = 0, k⊥  = A0). The evo-
lution of wave packets which are rather “narrow” in the
transverse direction, for which the stratification due to
the development of this instability does not occur, has
been considered in Refs. [5–10, 13, 15]. 

Numerical studies have shown that the dynamics of
the self-effects is determined by the dimensionality of
the problem [5, 8]. In a two-dimensional (one-dimen-
sional in the transverse coordinate r⊥  = x) case a non-
uniform compression of the wave field is accompanied
by its fragmentation in the longitudinal direction [5]. In
the central part of the localized distribution of the wave
packet, where the intensity of the field is maximum,
the compression is faster and the wave field becomes

γ2 k ⊥
2 kz

2–( ) 2A0
2 k ⊥

2 kz
2–( )–[ ] ,=

k ⊥
2 kz

2– A0
2,=
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separated in z direction into two isolated parts. This
sequence of processes (compression, fragmentation
into halves, etc.) is repeated several times against the
background of the spreading of the wave field as a
whole. The tendency to spread obviously follows from
the equation for the second moments of the field distri-
bution 

which can be obtained from (1): 

(4)

Moreover, the rate of expansion of the localization
region of the field is described by the same expression
[the right-hand side of Eq. (4)] as in a linear medium.
The nonlinearity governs the deformation of this region
as the system evolves: 

(5)

where H is the Hamiltonian of the system, 

(6)

In the case of a smooth initial axially symmetric dis-
tribution which is highly elongated in the longitudinal
direction z, fragmentation occurs if the power per unit
length along z exceeds the critical power for self-focus-
ing of an axially symmetric beam [this corresponds to
H < 0 in Eq. (5)] [8, 13, 14]. 

These common properties of the self-effects of wave
packets apparently depend on the specifics of the form
of the spatial operator in (1). However, even from
expression (2) for the growth rate of the modulation
instability of a plane wave it is clear that these specifics
can play an important role. 

In the present study we examine several new self-
effect regimes which derive from the hyperbolicity of
the spatial operator of the initial Eq. (1) and whose real-
ization depends on the form of the initial distribution
u(r⊥ , z). It is shown that some of them are initiated by
an initial stratification of the wave field in the trans-
verse direction, while others have the opposite property
of weakening the development of the longitudinal and
transverse instabilities on account of a competition
between them. In a numerical study we have considered
a two-dimensional version (∆⊥  = ∂2/∂x2) of the initial
equation. In contrast to earlier studies, here our atten-
tion is focused on investigating the long-term evolution
of the system. The analytical results have a wider range
of applicability, since, as will be easily seen, they are
comparatively easy to generalize to the three-dimen-
sional case. 

a2 x2 y2+( ) u 2 r, b2d∫ z2 u 2 r,d∫= =

d2

dt2
------- a2 b2+( ) 8 ∇ u 2 r.d∫=

d2

dt2
------- a2 b2–( ) 8H ,=

H ∇ ⊥ u 2 uz
2– u 4

2
--------– 

  rd .∫=
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2. ANALYTICAL STUDY OF THE FEATURES 
OF THE SELF-EFFECTS 

Let us consider some general features of the self-
effects of a wave system described by the nonlinear
Schrodinger equation with a hyperbolic spatial opera-
tor (1), after first analyzing the stationary and self-mod-
eling structures described by this equation and examin-
ing its hydrodynamic analog. 

2.1. Stationary Self-Effects 

The existence of a stationary spatially bounded dis-
tribution of the wave field is contradictory to the inte-
gral equations (4) and (5). They attest to the fundamen-
tally dynamic character of the evolution of the field. Let
us consider the structural features of nonlocalized sta-
tionary solutions in the case of a hyperbolic NSE for the
purpose of further investigation of the dynamics of
such initial field distributions. 

We write the solution of the initial two-dimensional
equation (1) in the form u(x, z, t) = Aexp(iϕ), where
A(x, z, t) and ϕ(x, z, t) are real functions. As a result, we
obtain 

(7)

(8)

In contrast to the corresponding equations for the stan-
dard NSE, in (7) and (8) the derivatives with respect to
z appear with a minus sign, i.e., the energy fluxes enter
the continuity equation (8), for example, with different
signs. One can construct a stationary solution 

A2(x, z) = const, (9)

in which these fluxes compensate each other. Then the
following relations will clearly hold: 

(10)

where Φ is an arbitrary function. If Φ is chosen in
accordance with the equation 

(11)

then it is easy to see from (10) that ϕ satisfies the same
equation (11): 

(12)

At the same time, we find from Eq. (7) under condition
(9) that 

(13)

∂ϕ
∂t
------

∂ϕ
∂x
------ 

 
2 ∂ϕ

∂z
------ 

 
2

– A2 Axx Azz–
A

---------------------,+ +=

1
2
---∂A2

∂t
---------

x∂
∂ ϕ x A2

z∂
∂ ϕ zA

2.–=

ϕ x A2 ∂Φ
∂z
-------, ϕ zA

2 ∂Φ
∂x
-------,= =

∂Φ
∂x
------- 

 
2 ∂Φ

∂z
------- 

 
2

– 0,=

ϕ x
2 ϕ z

2– 0.=

ϕ A2 Axx Azz–
A

---------------------+ 
  t.=
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Substituting (13) into (12), we obtain the following
equation for determining the stationary distribution of
the field amplitude: 

(14)

This equation, like the initial equation (1), contains
wave operators and therefore does not have localized
solutions [16]. To form a spatially bounded stationary
distribution one can use a superposition of several
nonlocalized wave structures. In what follows (see
Section 3.3) we use extremely simple solutions of the
form 

(15)

where B and C are arbitrary constants. 
The initial localized distribution of the wave field

constructed from solutions of the type (15) has the fol-
lowing distinctive feature. In accordance with the
method used to construct the solution (9) for each indi-
vidual component of a stationary structure of the type
(15), the expression Axx – Azz is equal to zero. In the
present case of the hyperbolic NSE this term describes
“diffraction” of the wave field. Thus the stationary dis-
tribution (9) is formed from a set of “nondiffracting”
structures. The “diffraction” inherent to the wave field
is obviously due to the presence of a transition region
from one nonlocalized distribution (15) to another. 

2.2. Self-Similar Structures 

The axially symmetric solution of the NSE in the
present case of a hyperbolic two-dimensional spatial
operator corresponds to a self-similar field distribution
that is a function of ζ = x2 – z2. The quantity ζ = const
is an invariant that is conserved in coordinate transfor-
mations of the “Lorentz” type (such a coordinate trans-
formation leaves Eq. (1) unchanged). As a result, we
arrive at the following equation for the self-similar field
distribution: 

(16)

The introduction of the new variable η =  reduces
(16) to an equation that is well known in the theory of
self-focusing and describes axially symmetric wave
beams [17]: 

(17)

In the sector x2 – z2 = ζ > 0 (we call this the focusing
sector) the distribution with H < 0 suffers a collapse.
However, unlike the corresponding process in the NSE,
here compression occurs not toward the axis of the sys-
tem (x = 0, z = 0), but toward the hyperbola x2 – z2 =
ζ0 > 0. It is clear that if the initial distribution is sym-
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JOURNAL OF EXPERIMENTAL
metric with x and z respect to and there will be two such
hyperbolas, and, hence, one expects that simulta-
neously with the collapse there will be a stratification of
the wave field in the transverse direction, as occurs in
the self-focusing instability in the NSE. It is also
important that the self-similar distribution localized
with respect to ηζ is nonlocal with respect to the coor-
dinate orthogonal to η. 

In the sector x2 – z2 = ζ < 0 the analogous transfor-

mation η =  reduces (13) to the equation 

(18)

which describes self-defocusing of the wave field. 
It should be specially noted that Eq. (17), which

governs the evolution of the self-similar distributions,
has the following feature. In the two-dimensional case
under discussion the initial equation (1) describes a
process of “one-dimensional” self-focusing weakened
by defocusing. Equation (17), on the contrary, has the
form of the “two-dimensional” NSE, which attests to
the possibility of “strong” self-focusing (collapse) of a
nonlocalized (with respect to the coordinate orthogonal
to η) wave field in the system under study. 

For an analysis of the process in which the collapse
is weakened as a result of defocusing, it is convenient
to transform to an orthogonal coordinate system ζ =
x2 – z2, µ = xz. As a result, we arrive at the following
equation, which is equivalent to the initial equation (1): 

(19)

From this equation we see that for an initial distribution
that depends weakly on µ, the derivatives with respect
to µ in Eq. (19) can be neglected, and we naturally
arrive at Eq. (17), which describes a collapse. However,
as the collapse occurs the distribution becomes “one-
dimensional” near ζ ≈ ζ0, and the role of the defocusing
term ζ∂2u/∂µ2 becomes appreciable. A detailed numer-
ical investigation of the features of the self-effects in
this case is presented in Section 3.2. 

2.3. Solenoidal Distributions 

As in the case of the NSE, the system of Eqs. (7), (8)
for the amplitudes and phases of the field can be written
in the form of hydrodynamic equations. Setting ρ = A2

and introducing a velocity v vector with components
vx = –ϕx, vz = ϕz, we obtain the equations of ideal
hydrodynamics: 

(20)

(21)
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i–
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∂η
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i
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∂ζ
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∂ζ∂µ
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∂µ2
--------–+ + 

  u 2u+ +  = 0.

∂ρ
∂t
------ div ρv( )+ 0,=

∂v
∂t
------ v∇( )v+ divP̂=
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with a specific form of the pressure tensor, 

(22)

which reflects all of the features of the evolution of the
solutions of the NSE with a hyperbolic spatial operator.
In particular, it turns out that the solenoidal motions of
the liquid are strongly coupled to the potential motions.
For example, the azimuthal modes of the NSE in the
present case correspond to complex wave fields speci-
fied at t = 0 in the form 

Ψ ∝  exp(iαxz). (23)

A hyperbolic phase of just this type (ϕ = αxz) deter-
mines the circulation of the flux of the wave field
around the origin of the coordinate system. This is
because the fluxes along x and z appear in the continuity
equation (7) with different signs. During the evolution
of the system the “solenoidal” process, which is deter-
mined by the initial distribution (23), is damped out.
One can see this by examining the linear part of the
eikonal equation (5): 

(24)

Substituting the initial (solenoidal) distribution of the
phase front ϕ = ϕ0 = αxz into the right-hand side of
Eq. (24), we see that it produces ϕt = α(z2 – x2) a phase
distribution ϕ ∝  z2 – x2, which determines the potential
motion of the liquid. The potential distribution of the
phase, as is easily seen from (24), generates itself but
with the opposite sign, i.e., the complex conjugate wave
field. 

Thus, the initial distributions of the form (23), con-
taining a “solenoidal” phase, can be of interest, since
the averaging of the spatial disturbances on account of
rotation can actually lead to stabilization of instabili-
ties. The evolution of the wave field in the radial direc-
tion, in the presence of the circulation of its flux with
respect to angle, occurs under conditions of a sort of
averaged and therefore weakened nonlinearity. The
results of a numerical study which demonstrate the
development of the fragmentation instability are pre-
sented in Section 3.1. 

For enhancement of instability, on the other hand,
one can choose, for example, an initial condition of the
form 

u ∝  exp(iαx2z2). (25)

Such a phase of the wave field, together with the para-
bolic one ordinarily used [14], guides the energy flux
into the focusing sector and weakens the spreading of
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the distribution in the defocusing region. The features
of the evolution of a distribution of the type (25) are
discussed in Section 3.2. 

3. NUMERICAL STUDY 
OF THE SELF-EFFECTS 

Let us consider several characteristic regimes of the
dynamics of the self-effects of a wave field. A numeri-
cal simulation was done by the spectral method, using
a fast Fourier transform (see [18]) in a square with a
side equal to 30. 

The initial study was done using 128 × 128 Fourier
harmonics. However, the generation of strong nonuni-
formities in the self-effects of the wave field reduced
the reliability of the numerical calculations consider-
ably. Therefore, in the final versions discussed below
we used the maximum possible number of harmonics
in our situation (750 × 750). The accuracy of the calcu-
lations was monitored by checking the integrals of the
equation. Let us first consider the evolution of the wave
field with an initial transverse form of Gaussian distri-
bution, and then the dynamics of other localized distri-
butions that more realistically reflect the specific fea-
tures of the initial NSE (1) with a hyperbolic spatial
operator. 

3.1. Wave Packet with Gaussian 
Field Distribution

Let us consider a wave field with an initial distribu-
tion of the form 

(26)

The evolution of a packet with such a form is given
in Fig. 1 for the parameter values u0 = 25 and u = 3. The
initial field amplitude was three times larger than the
value used in [5], making it possible to observe the
transverse filamentation of the beam. 

In the first stage (Fig. 1a) the process occurred as
described in [5]. The nonuniform compression of the
wave field in the transverse direction as a result of self-
focusing and the expansion in the longitudinal direction
(defocusing) give rise to a dumbbell-shaped distribu-
tion. The redistribution of the wave field is accompa-
nied by the formation of a maximum of the field at the
ends of the “dumbbell” (Fig. 2). 

Further, in the stage of expansion of the wave field
as a whole one should distinguish two characteristic
processes. First, it is seen that the regions of maximum
field, as they expand along the z-axis (one to the right,
the other to the left), excite a wave field with the char-
acteristics of the hyperbolic operator (ζ = x + z, η = x – z)
(Fig. 1b). It has the form of a shock wave. Initially, at a
high intensity of the source of the shock wave, the
development of the fragmentation instability is
observed at the leading edge (Fig. 1c). As the wave-
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Fig. 1. Level lines |u(x, z, t*)| of in the evolution of a field with a Gaussian distribution. 
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Fig. 2. Distribution of the wave field |u(x, z, t* = 0.2)|2. 
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Fig. 3. Spatial spectrum of the wave field |Fu(kx, kz, t* =
0.45)|2. 
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field region expands and the maximum value of the
field decreases, a weakening of the nonuniformities
occurs behind the front of the shock wave (Figs. 1e, 1f). 

In the central region one sees the development of a
self-focusing filamentation of the wave field. Initially
there is a structure with pronounced layering in the
transverse direction (Fig. 1b), and then the fragmenta-
tion instability leads to the excitation of longitudinal
nonuniformities as well. As the wave field expands, the
number of transverse filaments grows. The maximum
number of them corresponds to the number of filaments
excited over the characteristic transverse dimension of
the wave field as a result of the development of a self-
focusing instability (for kz = 0). In the longitudinal
direction the layers extend along hyperbolas (Fig. 1c).
We note further that for t > 0.4 there occurs a strong
broadening of the spectrum. Up until that time the spec-
trum has a strong maximum at the center, which subse-
quently bifurcates (Fig. 3). We note that the regime of
initial collapse turns out to be dominant not only in the
case of Gaussian wave packets extending in the defo-
cusing direction but also for fields which are more
highly localized in that direction. A predominant non-
uniformity of the wave field with respect to x leads to
enhanced defocusing. As a result of the weakening of
the “maximum” value of the field the self-effect pro-
cess takes place in a manner analogous to the previous
case, only more slowly than before, when the character-
istic transverse scales of the wave field were the same
(a = b = 3). 

Let us conclude this section by considering the pos-
sibility of stabilizing the instability development. For
 AND THEORETICAL PHYSICS      Vol. 91      No. 6      2000
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this we use a complex generalization of the initial dis-
tribution (26) in the form 

(27)

with the same values of u0 and a. A weakening of the
effective (angle-averaged) nonlinearity was success-
fully achieved for n = 3 (n = 1 turned out to be insuffi-
cient). It is seen in Fig. 4 that the compression of the
wave field occurs not toward the z-axis, as for n = 0, but
toward some straight line in the xz plane. The distribu-
tion remains smooth up to t = 0.25, which is twice as
long as in the case n = 0 (the self-focusing instability
(see Fig. 1) turns out to be suppressed). The process
culminates in multiple fragmentation. This fragmenta-
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Fig. 4. Level lines of |u(x, z, t*)| in the evolution of a sole-
noidal distribution (27), u0 = 25, u = 3. 
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
tion process differs from the previous versions of the
formation of rather asymmetric nonuniformities. 

3.2. Evolution of a Horseshoe-Shaped Field 
Distribution 

Let us consider the evolution of a field distribution
of the type 

(28)

The parameters a and b are chosen almost equal in
order to study the role of a weak initial hyperbolicity of
the distribution in the dynamics of a wave packet. Fig-
ure 5 shows the evolution of the wave field for a = 3,
b = 3.5, and u0 = 25. We note that with these parameters
the initial distribution differs little from a product of
super-Gaussian functions, 

the dynamics of which we consider below for compar-
ison. 

The peculiarity of this self-effect regime is demon-
strated in Figs. 5–7. A stratification of the wave field in
the transverse direction develops immediately in the
first stage. As a result, the field is concentrated in the
focusing sector (Fig. 5b). Then the field increases rather
sharply and becomes localized near the hyperbolas ζ =
x2 – z2 = ±3. This stage (Fig. 5c) was mentioned above
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Fig. 5. Level lines of |u(x, z, t*)| in the evolution of a distribution with a slight hyperbolicity. 
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Fig. 7. Level lines of the spatial spectrum |Fu(kx, kz, t*)|. 
in the discussion of the self-similar structures. The sub-
sequent increase in the field is accompanied by multi-
ple fragmentation of the wave field along the hyperbo-
las ζ = ±3 and an ultimate compression of the distribu-
tion in the focusing direction. The characteristic time
for this process to take place is an order of magnitude
shorter than that of the previous stage. It culminates in
the formation of the structure shown in Fig. 6a. 

Then one can see the following. The longitudinal
(along the hyperbolas) nonuniformities are somewhat
smoothed out, and the wave field localized near the
hyperbola is stratified in the transverse direction
(Fig. 5d). Thus two spatially bounded regions appear
near the hyperbolas, with a consequent development of
multiple fragmentation. This sequence of processes is
repeated once again. As a result, the central region is
filled with stronger nonuniformities than in the case of
the evolution of a wave field with an initial Gaussian
distribution. The number of transverse nonuniformities
here is the same as in the previous version (Fig. 5e).
However, the time of formation of the structure, with its
considerably stronger nonuniformities, is about a factor
of two shorter. 

In the last stage (Figs. 5f, 6b) a rather uniform
expansion of the wave field occurs as the nonuniformi-
ties fill the defocusing sector. 
JOURNAL OF EXPERIMENTAL 
The main feature of the dynamics of the system in
the case under consideration is an anomalous broaden-
ing of the spectrum of the wave field. A noticeable
broadening begins after the self-similar collapse of the
distribution toward the hyperbolas and the subsequent
multiple fragmentation in the longitudinal direction. 

This process can be explained as follows. As a result
of the one-dimensional “collapse toward the hyperbo-
las” and the formation of a quasi-soliton field distribu-
tion in the transverse direction, the wave field exhibits
a nonlinear frequency shift determined by the field A
amplitude u ∝  exp(iA2t/2). It is clear that in the devel-
opment of the fragmentation instability the phase is
spatially modulated along the hyperbolas. This is man-
ifested in a noticeable broadening of the spectrum. We
note that the spectrum of the field amplitude is much
narrower. The further modification of the spectrum is
due to stratification of the hyperbolas. 

The level lines of the modulus of the spectrum are
shown in Fig. 7. The initial spectrum of the wave field
(t = 0) is bounded by the region of the central peak
(Fig. 7a). As the fragmentation instability develops and
the hyperbolas become stratified, the level lines of the
spectrum take on a rather exotic form (see Fig. 7). 

It should be noted first that the distribution of the
spatial spectrum is much smoother than the field distri-
bution in coordinate space (cf. Figs. 5 and 7). A charac-
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teristic feature of the spectrum is due to the presence of
noticeable peaks (Fig. 7) at kx ≈ ±kz = ±5. This is a
reflection of the rather periodic structure of the nonuni-
formities of the wave field which are excited as a result
of the stratification and fragmentation instabilities. At
long times the stratification of the spectrum and its
localization in the central part and near the hyperbolas
are more and more clearly visible (see Fig. 7c). The part
of the spectrum on the hyperbola corresponding to non-
uniformities whose growth rate is maximum (2) in a
field with amplitude uA = 5, i.e., in the mean field. 

As u0 falls off, the effect of a slight hyperbolicity in
the initial distribution is manifested for quite a long
time, all the way to u0 = 3. Here there is a natural
decrease in the number of “hyperbolas” that are gener-
ated in the course of the self-focusing filamentation of
the wave beam. For u0 < 3 the dominant process in the
initial stage becomes the spreading of the wave field in
the defocusing direction. 

Analogous results are obtained for a somewhat dif-
ferent specification of an initial distribution with a
slight hyperbolicity of the level lines: 

(29)

The development of self-focusing of the wave field
near the hyperbolas and the subsequent multiple frag-
mentation in the longitudinal direction can be stabi-
lized, for example, in the case of a complex generaliza-
tion of the initial condition of the form (28): 

(30)

The presence of the phase –ix2z2/2 in the initial distri-
bution (30) leads to a solenoidal motion with a flux of
the wave field into the defocusing sector. As a result,
the formation of the field distribution occurs as in the
development of the fragmentation instability of a wave
packet with an initial Gaussian form (26) (Fig. 1a). The
further evolution of the wave field takes place in an
analogous way. 

In the case of an initial distribution that is the com-
plex conjugate of expression (30), the flux of the wave
field is directed into the focusing sector. As a result, two
rather strong peaks of the field initially form in the
focusing sector, and then, as they spread in the defocus-
ing direction, a multiple fragmentation develops. The
subsequent evolution occurs as in the case of an initial
distribution with a slight hyperbolicity (28). 

Concluding this section, we note the results of a
numerical study of the evolution of a super-Gaussian

distribution (with a = 3, b = a/ , u0 = 25, and in
Eq. (28)). Analysis shows that the processes develop in
an analogous way (see Fig. 5) but more slowly. The
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absence of a stage of self-similar collapse toward
“hyperbolas” leads to field amplitudes that are insuffi-
cient for the onset of multiple fragmentation. The pro-
cesses of stratification of the wave field and the frag-
mentation into halves occur as in the case of Gaussian
beams (Fig. 1). 

3.3. Evolution of Nonsmooth Distributions

Using a nonlocalized nondiffracting structure of the
form (25), u = u0[(2a ± x ± z)/a3]1/2, one can construct
various spatially bounded initial distributions. We have
investigated the dynamics of the self-effects for the
three distributions whose square moduli are shown in
Fig. 8. The first of them (Fig. 8a) is a quadrangular
prism. The field distribution has the form 

(31)

The second distribution (Fig. 8b) is specified with
respect to z in a smaller interval |z | ≤ a and is bounded
in the defocusing direction by the vertical planes z = ±a.
Finally, the third distribution (Fig. 8c) is defined in a
square |x | ≤ a, |z | ≤ a and is additionally bounded by
vertical planes at x = ±a. We note that in the numerical
investigation the initial distribution shown in Fig. 8 is
approximated by a finite number of Fourier harmonics
and is therefore smoothed accordingly. By sectioning
the distribution of the prism type (Fig. 8) by vertical
planes, one can form a “two-scale” distribution
(Fig. 8c) analogous, for example, to the super-Gaussian

distribution (28) with b = a/ . 

A detailed numerical investigation of the dynamics
of the self-effects of the distributions presented in
Fig. 8 shows that the evolution of the wave field is
largely analogous to that in the cases considered above,
although the growth of the filamentation and fragmen-
tation instabilities is substantial slower and the nonuni-
formities and wave-field generation that arise are
smoother despite the nonsmooth nature of the initial
distribution. For example, for initial conditions corre-
sponding to Fig. 8a, the sequence of processes is the
same as in the decay of a Gaussian distribution (26).
First there is a focusing of the wave field in the trans-
verse direction and its localization near the axis of the
system, then the fragmentation instability develops,
and only then comes the self-focusing instability
accompanied by transverse stratification. The abrupt
falloff of the initial field distribution in the defocusing
direction due to the vertical planes (Fig. 8b) leads to a
decrease in the spreading of the field in that direction.
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Fig. 8. “Nonsmooth” initial distributions. 
The introduction of an additional bounding of the
region of initial localization of the field in the focusing
direction (Fig. 8c) makes the picture of the self-effects
similar to the evolution of a beam of the super-Gaussian

form (28) with b = a/ . 

4. STATISTICAL DESCRIPTION 
OF THE LONG-TERM EVOLUTION 

Numerical studies of the dynamics of the self-
effects reveal the excitation of a broad spectrum of non-
uniformities and thereby justify the use of a statistical
approach for analysis of the subsequent behavior of the
wave field. It is of particular interest to consider the
long-term evolution of the system under study. 

In a stochastic approach the wave field is described
by a set of correlation functions. In the case of a uni-
form weak turbulence, i.e., in the spatially uniform
case, the problem can be described by an equation for
the spectrum of the radiation intensity [19]. 

In the spatially nonuniform wave field considered
here, for solving the stated problem it is convenient to
use the correlation function 

Γ = 〈u(r1, z1, t)u*(r2, z2, t)〉 , (32)

where the angle brackets denote a statistical averaging.
The equation describing the evolution of Γ12 is obtained
from the initial equation (1) for a complex amplitude by
the necessary multiplications and ensemble averaging,
in the same manner as the equations for the density
matrix are found in quantum mechanics. The main dif-
ficulty in the nonlinear case under consideration is due
to the necessity of decoupling the higher-order correla-
tions. However, for a cubic nonlinearity on the assump-
tion that the statistics of the field in a nonlinear medium
differ only slightly from the initial Gaussian statistics,
the equation for the correlation function turns out to be
closed (see [17, 20] for details). In the variables 

(33)

24

R
r1 r2+

2
---------------, r r1 r2,–= =

z
z1 z2+

2
---------------, q z1 z2–= =
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it has the form 

(34)

We assume that for t = 0 the problem under study
has translational symmetry with respect to t the corre-
lation function Γ12 is determined by the expression 

(35)

where a and b are the widths of the wave field in the
transverse and longitudinal directions, respectively, ρ
and h are the effective correlation lengths of the field in
the corresponding directions (they are related to the
correlation lengths of ρ0 and h0 by the expressions ρ–2 =

 + a–2, h–2 =  + b–2, and is the power of the wave
field. In an aberrationless description of the processes
we shall seek the solution of the equation in the form
(35), where the parameters are functions of t. For the
paraxial part of the beam (R ! a) the Gaussian intensity
distribution Γ11(R + r/2, z + q/2, t) and Γ22(R – r/2, z –
q/2, t) are replaced by series expansions. Then to a first
approximation for Γ11 – Γ22 we find 

(36)

Further, as usual, we substitute expression (35) into
Eq. (34) with allowance for relation (36). Equating to
zero the coefficients of different powers of Rn · rm and
zkqp (n, m, k, and p are integers), we obtain equations
for the parameters of the distribution (35). 

We should mention first that the number of spatial
nonuniformities in the nonlinear medium in the longi-
tudinal and transverse directions, as in the analogous
equation (34) corresponding to the standard NSE [8],

i
t∂

∂ ∇ R∇ r ∇ z∇ q–+ 
  Γ12 2 Γ11 Γ22–( )Γ12.=

Γ12
W
ab
------ R2

a2
------

r2

ρ2
-----+–





exp=

+ iα R r⋅( ) z2

b2
----- q2

h2
----- iβzq+ + +





,

ρ0
2– h0

2–

Γ11 Γ22–
W
ab
------ R r⋅

a2
----------- zq

b2
-----+ 

  .=
 AND THEORETICAL PHYSICS      Vol. 91      No. 6      2000



MULTIPLE FRAGMENTATION OF WAVE PACKETS 1277
remains constant: 

(37)

When these invariants are taken into account, the equa-
tions for the width of the intensity distribution in the
focusing and defocusing directions have the form 

(38)

where P = W/4. 
These equations obviously also describe the self-

effects of a coherent field (Nr = 1, Nz = 1) in the paraxial
approximation. A detailed study of the dynamics of the
system (38) for Nr = 1, Nz = 1 was carried out in [5]. It
showed that for P/b0 > 1 (b0 = b(t = 0)) the system after
a certain number of oscillations in the transverse direc-
tion goes over to a regime of smooth spreading. In the
cases considered in the present study the qualitative
picture remains the same. However, the analytical
results of Ref. [5] cannot be used to the fullest extent.
The development of the instabilities and the formation
of nonuniformities in the initial stage determine the val-
ues of Nr and Nz . The further evolution of the system is
governed by Eqs. (35) and (36). 

Numerical calculations show that the number of
transverse nonuniformities Nr is determined by the self-

focusing instability (Eq. (2) for kz = 0, Nr = 2 /π2. As
a result of the generation of nonuniformities and the
expansion of the wave field in the longitudinal direc-
tion, the right-hand side of (36) changes sign and, con-
sequently, the self-focusing compression gives way to a
spreading in the transverse direction. No such definite
conclusion can be reached for the value of Nz. It is evi-
dent and is confirmed by the numerical calculations
that Nz > Nr , (the longitudinal fragmentation develops
even in the absence of the self-focusing stratification
[5]). Thus relations (35) and (36) show that in the long-
term evolution of the system, the number of nonunifor-
mities remains constant (38); their excitation leads to
enhancement of the spreading of the wave field a ~

z, b ~ z. 

5. CONCLUSION 

We have considered a number of new scenarios for
the dynamics of the self-effects of the wave fields in a
system described by a nonlinear Schrodinger equation
(1) with a hyperbolic spatial operator. For these scenar-
ios there are characteristically three successive stages:
self-focusing filamentation, compression, and frag-
mentation of transverse nonuniformities in the defocus-
ing direction. The strongest nonuniformities are excited
in the development of the fragmentation instability

Nz
β t( )
h t( )
--------- Nz t = 0( ),= =

Nr
α t( )
ρ t( )
--------- Nr t = 0( ).= =

a''
Nr

a3
------

P

a2b
--------, b''–

Nz

b3
------

P

b2a
--------,+= =

P

Nr Nz
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along hyperbolas during the self-similar collapse
toward them (see Section 3.2). 

The other scenarios, with initial distributions of the
type in (27) and (31), are characterized by a slower
development of the processes and the excitation of
smoother nonuniformities. A statistical approach to the
study of the long-term evolution of the system showed
that the “number” of longitudinal and transverse non-
uniformities is conserved during the expansion of the
wave field. 

Our results are applicable, e.g., to wave fields on the
surface of a liquid. The investigated structural features
in the behavior of wave packets should manifest them-
selves under suitable conditions. For example, the frag-
mentation of wave structures localized near hyperbolas
(see Fig. 5) was observed in [21] in a study of the exci-
tation of surface waves by nonuniform flows of a liquid. 

For problems of the propagation of short laser
pulses in media with normal dispersion of the group
velocity a generalization of the analytical results to a
three-dimensional geometry is necessary. For example,
the self-similar variable is ζ = r2 – z2, and the investi-
gated equation (1) admits a solution that collapses near the
surface of “hyperboloids.” The other analytical relations
are generalized in a corresponding way. The main observ-
able effect should be anomalous broadening of the spec-
trum of the laser pulse along the propagation path. 

It should be noted that when the growth rate of the
stratification and fragmentation instabilities is
increased, especially in the self-similar regime of col-
lapse to the “hyperbolas,” it becomes necessary to go
beyond the framework of the equations with “quadratic
dispersion.” Clearly, taking the higher derivatives with
respect to z into account will have a stabilizing effect.
For example, it can be shown that when a third-deriva-
tive term ∝  i∂3Ψ/∂z3 is added to the initial equation (1),
the average of the maximum instability growth rate for
a plane wave will remain as before (γ ≈ |u0 |2). However,
the instability becomes convective, and the distur-
bances are carried out of the region with a velocity pro-

portional to  (k⊥  ~ kz). From this, one can estimate
that the characteristic scale of the nonuniformity L ~
1/kz is stabilized at the level L ~ 1/|u0 |. Among the other
mechanisms stabilizing the fragmentation instability,
the most notable is multiphoton absorption [22]. 
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Abstract—A new geometric approach to the description of phase transitions and fluctuations in membranes
with nontrivial topology is proposed. The method is based on the possibility of representing real membranes
and vesicles, defined in the space R3, as minimal surfaces embedded in S3. A change in the genus of the physical
membrane corresponds to the formation of holes in the minimal surface. In the framework of mean field theory
a model is constructed for a phase transition that can be characterized as the crystallization of holes in S3. In
real membranes this corresponds to a phase transition from a cubic phase to a sponge. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION 

Membranes are thin, flexible layers of so-called
amphiphilic molecules (i.e., having a polar head with a
high affinity to a given solvent (usually water) and a
hydrocarbon tail having an anomalously low affinity
for the solvent). This structure makes membranes
extremely unusual objects, much different from super-
ficially similar systems such as the interface between
liquids or solid shells. At interfaces between liquids an
exchange of particles between the two bulk phases
occurs, and this corresponds to a finite (as a rule, of the
order of 102 erg/cm2) surface tension. For a membrane
found in equilibrium with a solution of the amphiphilic
molecules of which it is made, the number of molecules
of the membrane is fixed, which by definition means
that the surface tension is zero. 

Thus the energy of a membrane is determined not by
surface tension but only by the elastic energy of its
bending. For liquid membranes, which are the subject
of the present paper, the characteristic bending modu-
lus κ ≈ 10–14 erg (i.e., of the order of the temperature).
This circumstance leads to fundamental differences
between membranes and solid shells. The energy of the
latter (like that of membranes) is determined mainly by
the bending modulus. However, for solid shells this
modulus is of the order of 1011 erg (i.e., 25 orders of
magnitude (!) larger than for liquid membranes).
Therefore, for a description of membranes one must
use the formalism of statistical physics, whereas solid
shells are described by the equations of mechanics. 

In solutions, membranes can form closed surfaces
called vesicles. The typical size of a vesicle is 1–10 µm.
Vesicles and membranes have been the subject of many
publications (see, e.g., monographs [1–3] and reviews
1063-7761/00/9106- $20.00 © 21279
[4, 5]). However, there are a number of questions on
this topic that have not yet had much light shed on them
in the literature. We are talking about vesicles and
membranes with nontrivial topology (genus g > 1).
There have been several publications devoted to inves-
tigating vesicles with the topology of a torus (g = 1) and
Lawson surfaces (g = 2) [6–8]; some qualitative obser-
vations were made, and their shape fluctuations were
discussed. 

Usually the three simplest types of membrane
shapes are considered: spherical, cylindrical, and pla-
nar (lamellar). There also exist more complex aggre-
gates with nontrivial topology. The following circum-
stance will be important for further discussion: Spheri-
cal aggregates (vesicles) are naturally bounded in size,
whereas cylindrical or lamellar vesicles can in principle
have an infinite extent in one or two directions, respec-
tively. 

These supermolecular aggregates in turn can self-
organize on large scales, forming phases with some
type of orientational and/or translational order. For
example, spherical vesicles can form a three-dimen-
sional cubic lattice, or infinite cylinders can be packed
into a two-dimensional hexagonal lattice. We note that
in these examples we are talking about crystalline order
occurring on large scales (in typical cases of the order
of 10–4 cm), whereas on smaller scales the system is a
liquid. Various kinds of structures made up of infinite
layers are also possible. The simplest example is a one-
dimensional lattice of nearly planar layers (such a
structure, which is an analog of smectic liquid crystals,
is called lamellar and is usually denoted as Lα. There
are also phases having cubic spatial symmetry, the
structural unit of which is an infinite periodic surface
000 MAIK “Nauka/Interperiodica”
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formed by a bilayer and having a complex topology.
This type of structure is denoted as Qα. Schematically
it can be described as a three-dimensional cubic struc-
ture of “handles” (the number of handles Nh is equal to
the topological genus of the surface, and for the surface
under consideration we have Nh  ∞ or g  ∞ in
the thermodynamic limit). From this we already see the
fundamental difference of the Qα phase from the cubic
structure of spherical vesicles considered above, which
has a trivial topology. 

In the case of melting of the periodic distribution of
handles an isotropic “sponge” phase forms, conven-
tionally denoted as L3. The structural unit of the phase
L3 is an aperiodic infinite minimal surface (i.e., in other
words, a surface with zero mean curvature at every
point) and a finite density of handles or genus of the
surface g, although the spatial distribution of g is char-
acterized by only short-range order. 

In this paper we present a new method of describing
and classifying the possible types of structures formed
by membranes. In Section 2 we describe the mathemat-
ical aspects of the classification method. In Section 3
that method is used to study the phase transitions
involving a change of the topology and structure of the
membranes. Section 4 is devoted to an analysis of the
number of so-called conformal degrees of freedom
(zero modes of the Helfrich energy [9] that describes
the deformation of the membranes and vesicles), which
exist only in membranes having a nontrivial topology
(g > 1). In principle the thermodynamic and geometric
characteristics of membranes can be studied by stan-
dard physical methods (e.g., the scattering of light or
X-rays), which are determined by the spectrum of the
Laplacian operator on the given surface (the latter can
be measured, in principle, from the distribution of the
concentration of marker atoms or temperature on
the surface). We briefly discuss the connection between
the physical and topological characteristics of mem-
branes. In Section 5 we summarize the main results of
this study. 

2. RELATION OF WILLMORE SURFACES IN S3

TO MINIMAL SURFACES IN R3

In this section we discuss the mathematical facts
that enable one to describe phase transitions in mem-
branes. 

We recall the basic definitions. 

Let M2 be a surface (closed, with an edge or non-
compact) embedded in a three-dimensional Euclidean
space R3. 

The surface M2 is called a Willmore surface if it is an
extremum of the Helfrich–Willmore functional [9, 10]: 

(1)F H2 A,d

M
2

∫=
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where H2 is the square of the mean curvature and dA is
an element of area. According to the Gauss–Bonnet
theorem, the functional (1) is equivalent to the func-
tional 

where k1 and k2 are the principal curvatures of the sur-
face, H = (k1 + k2)/2. Therefore the minima of the func-
tional (1) describe the flattest surface of the given topol-
ogy. 

We shall make important use of an observation due
to Weiner [11], which consists in the following. 

Statement 1. Let  be a minimal surface in S3,
and let γ be a stereographic projection S3  R3. Then 

γ( ) = M2 and F(M2) = σ( ), (2)

where σ( ) is the area of the minimal surface. 
This assertion is true both for closed surfaces and

for surface with a boundary. The Willmore surfaces M2

do not exhaust all the projections of minimal surfaces
in S3. For example, there exists an infinite family of
Willmore tori (this family was constructed by Pinkal
[12]) that do not correspond to minimal tori in S3. How-
ever, these tori, although they are extrema of the func-
tional (1), do not give local minima. This result is
apparently valid for surfaces of arbitrary genus. The
Willmore surfaces of arbitrary genus, obtained from the
minimal surfaces in S3, are constructed in [13, 14]. 

It is important to note that the Willmore surfaces
embedded in R3 satisfy the relation 

where n is the number of self-crossing points (of differ-
ent types in projection [15]). 

From this and the estimate of the area of the mini-
mal surfaces embedded in S3 it follows that all Willmer
surface (for g ≥ 2) have at least crossing points.1 

3. DESCRIPTION OF PHASE TRANSITIONS 
INVOLVING A CHANGE OF MEMBRANE 

TOPOLOGY 

In the previous section we showed that the Willmore
surfaces that give a minimum of the Helfrich energy in
a given topological class (i.e., under the condition that
the genus of the surface g = const) is related to the min-

1 Equivalence between the given class of Willmore surfaces and the
minimal surfaces, which follows from Statement 1, leads to a far-
ranging analogy with string theory. The minimal surfaces M2 ⊂ S3

are “world” sheets of a string with the Nambu–Goto action, defined
in the sphere S3. The surfaces M2 play the role of instantons in a
field theory of the Yang–Mills type, defined in the space S3.

k1
2 k2

2+( ) A,d

M
2

∫

M̃
2

M̃
2

M̃
2

M̃
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H2 A 4πn,≥d

M
2

∫
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imal surfaces M2 ⊂ S3, which give a minimum of the
area functional σ(M2). Therefore, instead of calculating
the partition function for the Helfrich Hamiltonian (1),
we can calculate the partition function determined by
the Gibbs factor 

for the minimal surfaces in S3. This approach is espe-
cially convenient for describing structures with a com-
plex topology, e.g., cubic and sponge phases formed by
membranes. Both of these types of structures are
phases with a finite density of g. In the language of min-
imal surfaces S3 in such structures correspond, accord-
ing to (2), to minimal surfaces with a finite density of
punched-out points (holes). 

Before going on to a more detailed discussion of this
correspondence, we need to say a few words about the
physical structure of the cubic and sponge phases. The
ordinary crystals studied in solid-state physics are infi-
nitely repeating motifs of a single building block (the
unit cell). The unit cell usually consists of a small num-
ber of atoms rigidly fixed in their equilibrium positions
by the interatomic interaction potential. 

Cubic phases of membranes are constructed differ-
ently. Cubic crystals of complex liquids form infinite
threefold-periodic liquid surfaces. The unit cell of such
a structure (from 100 to 1500 Å in size) contains a large
number of molecules, which can freely diffuse along
the membrane. The cubic structure is described in this
case by a periodic distribution of the mass density ρ(r)
and related characteristics (including g(r)). The
(sponge) phase L3 is characterized by only short-range
order in the distribution ρ(r) or g(r). In the language of
the dual system (holes on the minimal surface in S3),
we can talk about a periodicity (in the case of the cubic
phases L3) or an amorphous (in the case of the sponge
phase) distribution of the hole density n(r). 

If the energy Eh associated with the formation of a
hole in the minimal surface is finite, then the average
density of holes can be estimated as follows: 

(3)

where ξ is the average size of the unit cell formed by
holes on the minimal surface [and is related to the aver-
age size of the physical unit cell of the cubic structure
by the transformation (2)]. Formula (3) has the mean-
ing of a dimensional estimate of the area per hole mul-
tiplied by the probability of formation of a hole. To find
ξ we can make use of the following observation. We
write the Helfrich-Willmore functional (1) out com-
pletely, i.e., with the Gaussian curvature taken into
account K: 

(4)

1
T
--- σ M2( ) Ad∫–exp

n
1

ξ2
-----

Eh

T
-----– 

  ,exp≈

F
κ
2
--- H2 Ad∫ κ K A.d∫+=
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Here we have introduced two elastic moduli κ and ,
which determine the deformation of the membrane
with respect to changes in the mean and Gaussian cur-
vature, respectively. The formation of a sponge or cubic
phase involves the spontaneous rise of the topological
genus of the surface (i.e., the spontaneous creation of
handles or, what is the same, passages between layers).
In turn the spontaneous creation of handles occurs for

 > 0, since, according to the Gauss–Bonnet theorem,
for a closed surface the second term in Eq. (4) is equal
to 4π (1 – Nh), where Nh is the number of handles.
This process of spontaneous creation of handles will
inevitably lead to the appearance of an ever greater
number of ever smaller handles. The process stops at a
certain equilibrium scale ξ (which we are to find) such
that the positive definite terms of higher order in the
curvature become equal to the negative contribution
from the Gaussian curvature. For finding ξ we must
take into account in expansion (4) the terms propor-
tional to H–4 and K–2. Minimizing the energy thus
obtained yields the equilibrium size ξ: 

where we have used the natural estimate κa2 (a is the
molecular size) for the fourth-order elastic moduli. 

It is important to note that the minimal surface in S3

possesses surface tension (the energy determined by
the functional (2) is proportional to the area, the
coefficient of proportionality having the meaning of
a surface tension).2 Therefore the interaction between
holes in such a manifold will necessarily be short-
ranged (unlike physical membranes, where, because of
the absence of surface tension in the Helfrich energy,
this interaction is long-ranged) [16]. 

A natural estimate for the interaction energy is the
temperature. If R is the characteristic interaction radius,
then if the distance between holes is smaller than R, the
interaction energy will be U ≈ T, while for large dis-
tances the interaction can be neglected. What we have
said can be formalized in the form the following
expression for the free energy of a system of holes on a
minimal surface in S3: 

(5)

Here e ≡ exp(1), and n0 is the characteristic hole density
in the dilute solution. The first term in (5) specifies the
free energy of an ideal gas of holes, while the second

2 Of course, the effective surface tension σeff of the minimal sur-

faces in S3 depends on the physical parameters of the real mem-
branes in R3 in an extremely complicated way. To find the relation
between them is a complicated problem whose solution is beyond
the scope of this paper. We shall regard σeff as a phenomenologi-
cal parameter that permits a description of phase transitions in
physical membranes of nontrivial topology. 

κ

κ

κ

ξ κ
κ
---a,≈

Fh Tn
n

en0
--------ln Tn 1 nξ2–( ).ln–=
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gives the increase in the free energy due to overlap of
the deformed regions created by neighboring holes. 

The free energy (5) can be used to describe the tran-
sition from a dilute hole phase to a dense liquid phase.
We recall that the formation of a hole on a minimal sur-
face in S3 corresponds to an increase in the genus of the
physical membrane (of the Willmore surface in R3).
Therefore the dilute hole phase can be used as a model
for the lamellar phase Lα for membranes with infre-
quent “passages” between layers. The hole liquid phase
can model the sponge phase L3. For describing the
ordered distributions of holes on the minimal surface
(cubic phases formed by physical membranes) it is nec-
essary to include in (5) terms which depend not only on
the average hole density but also on the hole distribu-
tion on the minimal surface. 

In the mean field approximation one can introduce
the following single-particle distribution function for
the displacements of the holes u relative to their equi-
librium positions: 

(6)

where ε(q) is the energy of deformation of the hole dis-
tribution, and 

is a normalization factor. 

The energy ε(q) can be expanded in a natural way as 

ε(q) = τeff + σeff q2, (7)

where the contribution τeff is determined from the
energy of condensation of the dense phase, and the energy
of deformation is related to the surface tension σeff. 

From Eq. (7) we can find the mean-square displace-
ment 

and apply the classical Lindemann criterion for the
melting of a crystal [17] 

(8)

which determines the melting temperature of a crystal
of holes on the minimal surface or (in accordance with
the aforementioned equivalence of the minimal sur-
faces and physical membranes) the temperature of the
cubic-sponge phase transition: 

Tc ≈ 0.1ξ2σeff . (9)

ρ1 u( )
1
Z
--- 1

2T
------ ε q( ) u q( ) 2

q

∑– ,exp=

Z Du q( ) 1
2T
------– ε q( ) u q( ) 2

q

∑exp∫=

u2 T

τeff

----------- 1
σeff
--------=

T

τeff

----------- 1
σeff
-------- 0.1ξ2,≈

τeff
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We also note that this type of phase transition (the
ordering of holes on the minimal surface or of topolog-
ical handles on the Willmore surface) should not be
accompanied by the a significant change in the average
density and can therefore be a weak first-order transi-
tion (the so-called weak-crystallization phase transi-
tions; see, e.g., [18]). In this case one expects that there
will be appreciable fluctuational pre-transition effects.
It is entirely possible that these effects are responsible
for the flow-induced anomalous birefringence observed
in sponge phases [19]. Indeed, in the isotropic sponge
phase the birefringence δeik can be induced by a gradi-
ent of the hydrodynamic velocity γik ≡ ∇ ivk. In the sim-
plest approximation we have the following linear rela-
tion: 

where α is a coefficient of proportionality, ω is the fre-
quency, τ ∝  α/B is the relaxation time, and B is the
characteristic elastic modulus of the cubic phase.
Therefore, anomalous birefringence is expected at a
weak first-order transition (when the modulus B is
small and the coefficient α is large). 

Let us recall once again that the characteristics of
the minimal surface in S3 the effective surface tension
σeff and the effective hole condensation energy τeff are
related to the physical characteristics of the real mem-
brane in R3 in an extremely complicated way. To estab-
lish the relation we would need a complete theory of
phase transitions involving a change of the shape and
topology of the membranes, and such a theory does not
exist at present. The main content of this Section is the
statement that a phenomenological theory can be easily
formulated for minimal surfaces in S3, but with
unknown coefficients σeff and τeff, which are phenome-
nological parameters of the theory. 

The restrictions on these coefficients follow directly

from the fact that the formation of stable holes in  ⊂
S3 is possible. It is easy to understand, for example, that
with a surface tension σeff = const (independent of the
sizes and distribution of the holes) the formation of
holes is altogether impossible. Indeed, the energy of
formation of a single hole includes the energy cost of
the line tension γeffL, where γeff is the phenomenological
coefficient of linear tension (like the coefficients σeff
and τeff introduced above, it depends on the physical
parameters of the real membranes R3 in a complicated
way), and L is the perimeter of the hole. There is also
an energy benefit coming from the energy of surface
tension, i.e., σeffA (A is the area of the hole). Thus for a
circular hole of radius we have 

Eh = 2πγeffr – πσeffr2. (10)

In the case of constant γeff and σeff the energy (10)
has only one stable minimum, r = 0, which means the

δeik α
∇ iv k

1 iωτ+
------------------,=

M̃
2
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absence of a hole. Furthermore, the energy (10) has a
maximum at rc = γeff/σeff, i.e., an energy barrier 

such that for r < rc the hole should collapse and for r >
rc it should grow to infinity. However, all of this discus-
sion presupposes constant parameters σeff and γeff, i.e.,
the absence of a back effect of the holes on the proper-
ties of the surface (or, equivalently, an effect of the han-
dles back on the properties of the physical membrane).
Of course that is generally not the case, and the effec-
tive surface and linear tensions are far from being con-
stant but depend in a complicated way both on the
physical parameters of the real membrane in R3 and on
the external conditions and, in particular, on the sizes
and distribution of the holes on S3. 

For example, in the presence of many holes one
must take into account the entropy of their distribution
and also the interaction between them. In addition, a
membrane can have a certain orientational order. This
order is also present in the minimal surface in S3. The
formation of a hole in the minimal surface can lead to
deformation of the orientational field present at the sur-
face and thereby bring about the aforementioned back
effect of holes on σeff and γeff (the details of this “instan-
ton” mechanism of stabilization of the holes is
described in [20]). We note also that for any feedback
mechanism (i.e., influence of holes on the properties of
the surface) σeff and γeff depend on the material param-
eters of the different media: σeff is a characteristic of the
solvent, and γeff is mainly determined by the properties
of the amphiphilic molecules making up the mem-
brane. 

4. CONFORMAL MODES IN VESICLES 
AND MEMBRANES 

In this section we discuss the properties of the con-
formal symmetry of the Helfrich–Willmore functional.
The conformal modes of this functional are responsible
for the anomalously strong fluctuations of the mem-
branes. We begin with the intuitive, “physical” aspects
of the conformal symmetry of the Helfrich–Willmore
functional and then consider the mathematical aspects
of this problem. 

The main property of the Helfrich–Willmore func-
tional is its invariance with respect to conformal trans-
formations of the enveloping space R3. The following
assertion, which was proved back in the 1920s by
Thomsen [10], is valid. 

Statement 2. Let M2  R3 be a smooth embedding
(immersion) of the compact surface M2. The Helfrich–
Willmore functional [defined in Eq. (1)] is invariant
with respect to the conformal group G(R3). The confor-
mal group G(R3), according to the classical Liouville
theorem, is generated by transformations of the motion:

∆E
γeff

2

σeff
--------≈
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O(3) rotations scale transformations and translations,
and the “nontrivial” inversion transformation 

(11)

where a is a constant vector. 
The group G(R3) is isomorphic to the Lorentz group

O(4, 1). 
Note. This result generalizes to the groups G(Rn)

(n > 3): G(Rn) ~ O(n + 1, 1). 
It follows from Statement 2 that the number of geo-

metrically nontrivial parameters of the group G(R3),
i.e., those that alter the shape of the surface, is equal to
four. 

To estimate the total number of independent confor-
mal modes of the Helfrich–Willmore functional, it is
necessary to take into account the restrictions imposed
by the physical conditions. Since the liquid inside a
vesicle is incompressible, the condition 

V = const, (12)

where V is the volume of the vesicle, must hold for all
admissible transformations. The amphiphilic mole-
cules forming the vesicle are close-packed on the sur-
face of the vesicle. Therefore, the area of the surface is
also fixed: 

A = const. (13)

Using the arguments presented above, it is easy to
comprehend the description of the conformal modes
(and the conformal diffusion due to their existence). 

4.1. General Case 

We recall that the number of classes of conformally

nonequivalent compact Riemann surfaces  depends
on the genus of the surface and is equal to 

(14)

By comparing (14) with the Liouville theorem, we
obtain the following result. 

Statement 3. The number of (real) conformal modes k
inducing conformal diffusion is equal to 

k = 0 for g = 0,

k = 1 for g = 1,

k = 6g – 8 for g ≥ 2.

4.2. Minimal Willmore Surfaces 

For the Willmore surfaces obtained by projection
from minimal surfaces embedded in S3, the answer is
considerably different. Conditions (12) and (13) are no

r'

r'2
----- r

r2
---- a,+

Mg
2

dimRMg
2 6g 6 for g 2,≥–=

dimRM1
2 2 for g 1,= =

dimRM0
2 0 for g 0.= =
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longer independent, and an estimate of the dimension
of the space of moduli (parameters) mg of the Willmore
surface requires the use of a more detailed differential-
geometric technique. In the case of compact minimal

surfaces  embedded in S3, we can use the arguments

given, e.g., in [21]. Let  be the moduli space of the

surfaces . To estimate  we proceed as follows. 

Every surface  admits a conformal metric and a
holomorphic quadratic differential Q(z)dz2. It is known
that for any differential Q(z)dz2there exists a conformal
metric that defines the surface, including the minimal
surface in S3. The dimension of the space of such sur-
faces is 12g – 12. This follows from an estimate of the
dimension of the space of quadratic differentials 6g – 6
and of the moduli space of the Riemann surface 6g – 6.

The number of different immersions of the surfaces 
is determined by the number of different spinor struc-

tures on . More precisely, if ϕ1 and ϕ2 are different
solutions of the Gauss–Weingarten equation for the

surface , then ϕ2 determines the same spinor

structure on . We choose on the surface  a basis
of homological cycles ai, bi (i = 1, …, g), corresponding
to the canonical conjugated lines of the surface. The
spinor structure is determined by the monodromy trans-
formation of the solutions ϕi (i = 1, 2): 

where αi, βi ∈  (0, 1). 
The numbers [α, β], where α = (α1, …, αg) and β =

(β1, …, βg), are called the θ characteristics of the sur-

face  The θ characteristics [α, β] depend on the

choices of bases (α, β) of the surface . The parity of
[α, β] is invariant: 

With the aid of parity one can classify the embed-
dings of the surfaces with respect to regular homo-

topies. Pinkal [22] showed that two surfaces,  and

, can be transformed into each other by a smooth
homotopy if and only if the parities of their θ character-
istics are the same. 

Using this result, it is easy to estimate the number of
conditions that specify a unique embedding of the sur-

face . It is determined by the triviality of the mono-
dromy of the solutions ϕi with respect to an arbitrary

M̃g
2

M̃g

M̃g
2

M̃g

Mg
2

Mg
2

Mg
2

Mg
2 ϕ1

1–

Mg
2 M̃g

2

ϕ i 1–( )
α i 1+ ϕ i,

ϕ i 1–( )
βi 1+ ϕ i,

M̃g
2

M̃g
2

α β,[ ] α iβi.
i 1=

g

∑=

Mg
2

Ng
2
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2

JOURNAL OF EXPERIMENTAL
cycle c, since the monodromy is determined by the

mapping of the fundamental group π1( ) of the sur-

face : π1( )  SU(2). Since π1( ) is specified
by generators with one commutation relation and the
motion along each basis cycle is determined by the
motion of the conformal group CL(2C), we obtain con-
ditions 6(2g – 1). Adding in the more general global
transformation of S3, we obtain a total of conditions
12g – 12. Thus the number of equations and the number
of parameters determining a compact minimal surface
in are equal. This number is obviously finite for fixed
S3.3 Known examples of minimal compact surfaces
embedded in are the surfaces of Lawson [13] and of
Karcher, Pinkal, and Sterling [14]. 

We note in concluding this Section that many phys-
ical characteristics of membranes and vesicles can be
determined, e.g., from the distribution of the concentra-
tion of marker atoms or of the temperature on their sur-
faces. They are determined from the diffusion equation 

where u is the physical field under study, D is the coef-
ficient of diffusion, and ∆ is the covariant Laplace-Bel-
trami operator, defined on the surface M2. The station-
ary distribution of the field (e.g., the concentration or
temperature) in turn is found from the spectrum of the
operator ∆. The Laplace–Beltrami operator for a sur-
face with a metric has the form 

where  is the determinant of the metric tensor. 

Determination of the shape and other geometric
characteristics of a surface from the spectrum of a
Laplacian operator defined on it for surfaces of constant
Gaussian curvature is a classical mathematical prob-
lem. In particular, from the spectrum of the Laplacian
one can recover (in the case of a compact surface) the
lengths of the closed geodesics. Moreover, in that case
one can say that the number of different surfaces of a
fixed genus is finite. 

In our case the Willmore surface is determined from
the equation 

∆H + H(H2 – K) = 0

(H is the mean curvature and K is the Gaussian curva-
ture) and need not be a surface of constant Gaussian
curvature. However, as we have said, the number of dif-
ferent compact surfaces of genus g ≥ 2 is clearly also
finite and, consequently, the problem of recovering the
main geometric and topological characteristics of Will-

3 From our analyses it follows that toric minimal surfaces do not
have conformal diffusion.

Mg
2

Mg
2 Mg

2 Mg
2

∂u
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------ D∆u,=

∆ 1

q̃
------- ∂k gik g̃
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more surfaces from the spectrum of the Laplacian oper-
ator is also entirely sensible. 

5. CONCLUSION 

In this study we have proposed a new geometric
approach to the description of phase transitions and
fluctuations in membranes with nontrivial topology.
The method is based on the possibility of representing
real membranes and vesicles, defined in the space R3, as
minimal surfaces embedded in S3. The change in the
genus of the physical membrane corresponds to the for-
mation of holes in the minimal surface. In the frame-
work of mean field theory we have constructed a model
for a phase transition that can be characterized as a
crystallization of holes in S3. In real membranes this
corresponds to a phase transition from a cubic to a
sponge phase. The formation of holes on the minimal
surface in S3 corresponds to an increase in the genus of
the physical membrane (of the Willmore surface in R3).
Therefore the dilute hole phase can be used as a model
for the lamellar phase Lα of membranes with infrequent
“passages” between layers. The hole liquid phase mod-
els the sponge phase L3. For a description of the ordered
distributions of holes on the minimal surface (cubic
phases formed by physical membranes) the free energy
must include terms that depend not only on the mean
density of holes but also on their distribution on the
minimal surface. A periodic distribution of holes on the
minimal surface corresponds in our approach to an infi-
nite threefold-periodic Willmore surface having cubic
symmetry. One of the possible realizations of such a
cubic phase is the Schwarz surface [3, 10]. 
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