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Abstract—The latest results of experimental and theoretical research into phase conjugation of nonlinear ultra-
sonic beams are generalized, and prospects for the development of nonlinear ultrasonic imaging are outlined.
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Interest in the implementation of nonlinear wave
phenomena in acoustic imaging systems for medical
purposes and nondestructive testing has noticeably
quickened in the last few years. For example, images of
biological objects obtained using the second harmonic
of an incident ultrasonic wave show a higher resolution
due to the narrowing of the focal distribution of the sec-
ond harmonic, as well as a reduction of the level of
sidelobes and reverberation noise in comparison with
the fundamental frequency wave [1–5]. An analysis of
the harmonics of a nonlinearly propagating wave can be
easily adapted to existing diagnostic systems. It is
believed that “harmonic imaging” systems will soon
become common to ultrasonic medical diagnostics. It is
necessary to note that the use of the second harmonic in
acoustic microscopy was apparently proposed for the
first time more than quarter of a century ago [6]. Today,
the methods of nonlinear acoustics are implemented
more and more actively in ultrasonic nondestructive
evaluation [7, 8].

Along with the aforementioned investigations, stud-
ies concerned with phase conjugation in acoustics have
been progressing rapidly [9–14]. The interest in the
application of phase conjugation in ultrasonic imaging
is connected with the well-known capability of phase-
conjugate waves to compensate for phase distortions
introduced by a propagation medium. A compensation
for phase distortions by phase conjugation was demon-
strated experimentally in acoustic microscopy [13, 14].
At the same time, the possibility of an extension of the
phase-conjugation technique to the case of nonlinear
ultrasonic imaging is not a priori evident because of the
partial violation of the invariance of nonlinear acoustic
equations with respect to time reversal. The reasons for
this violation can be, in particular, an anomalously
strong sound attenuation at a shock wave front or a non-
1063-7710/04/5006- $26.00 © 20623
coincidence of the amplitudes of incident and phase-
conjugate waves. The latter fact becomes especially
important under the conditions of phase conjugation
with amplification, which is of practical interest.

At ultrasonic frequencies, a giant amplification
(over 80 dB) is practically implemented in the case of
parametric phase conjugation beyond the threshold of
the absolute instability of phonons in magnetoacoustic
active media [15, 16]. Over-threshold (supercritical)
phase-conjugating amplifiers, which are the sources of
the stimulated radiation of phase-conjugate phonon
pairs, are now one of the basic instruments for the
experimental investigation of nonlinear wave processes
in the case of ultrasound phase conjugation [17]. Non-
linear distortions of quasi-plane phase-conjugate sound
beams generated by an over-threshold phase-conjugat-
ing amplifier were discovered and studied in [18]. In
[19, 20], the space–time structure and harmonic com-
position of focused nonlinear phase-conjugate beams
propagating in a homogeneous medium were studied.
The compensation for phase distortions in the case of
the retrofocusing of a nonlinear beam in an inhomoge-
neous medium was discovered in the process of imag-
ing a test object with the help of the second harmonic
of a phase-conjugate wave in an acoustic microscope
[21]. The theoretical interpretation of the phenomenon
on the basis of the nonlinear geometrical acoustics of
inhomogeneous refractive media without dispersion is
proposed in [21, 22]. An experimental study of the field
structure of a parametrically amplified phase-conjugate
wave for a focused beam transmitted through an aber-
ration layer was reported in [23]. A high quality of auto-
focusing of both the second and higher harmonics in the
focal region of an incident wave was demonstrated.
Narrowband parametric amplification basically pro-
vides an opportunity to perform phase conjugation of
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Fig. 1. Experimental scheme. Optical stroboscopic visualization of the incident and phase-conjugate beams is given on the right
side [19].
the single harmonics of nonlinear acoustic beams. In
this case, in particular, phase conjugation with amplifi-
cation of the second harmonic of an incident wave leads
(in the process of backward propagation) to the gener-
ation of the fourth and even higher (with respect to the
spectrum of the incident wave) harmonics. Thus, it
becomes possible to obtain acoustic images using
higher harmonics without increasing the order of the
nonlinearity of wave interaction in a medium. A similar
frequency multiplication for imaging of a test object
with the help of the fourth harmonic of the incident
wave in a phase-conjugating microscope was demon-
strated in [24]. In this case, the conservation of the
property of compensation for phase aberrations was
noted in the process of autofocusing under the condi-
tions of the selective phase conjugation of the single
harmonics of an incident wave.

The purpose of this review is to generalize the latest
results of experimental and theoretical research into the
phase conjugation of nonlinear ultrasonic beams and to
outline prospects for the development of nonlinear
phase-conjugation ultrasonic imaging.

1. FIELD STRUCTURE OF A NONLINEAR 
PHASE-CONJUGATE FOCUSED WAVE

Because of the high amplification provided by over-
threshold parametric phase-conjugating amplifiers
employing magnetostrictive ceramics, the intensity of
ultrasonic phase-conjugate beams can be sufficiently
high (over 1 W/cm2) for an effective generation of har-
monics on the path of the backward propagation of such
beams to the source. As is well known, this leads to a
nonlinear distortion of the initial sinusoidal time profile
of a wave and, as a consequence, to the growth of its
attenuation. In the case of focused beams, which are
commonly used in ultrasonic imaging, nonlinear effects
manifest themselves most strongly. Apart from distort-
ing the time profile, the influence of nonlinearity mani-
fests itself, in particular, in a shift of the amplitude max-
imum on the beam axis towards the source. Moreover,
the shape of the wave front in a nonlinear beam that is
inhomogeneous over its cross section is distorted in
comparison with the linear case, which can lead to a
nonlinear focusing and defocusing of the beam [25].
All of these factors can affect the quality of phase-con-
jugate focusing in a nonlinear medium and, therefore,
they need special investigation and evaluation. In this
section, we give the results of experimental and numer-
ical simulation that were lately obtained [17–20] and
reflect on the major specific features of the behavior of
nonlinear focused phase-conjugate ultrasonic beams in
a homogeneous medium.

A typical scheme for the experimental investigation
of such beams is given in Fig. 1, where, on the right
side, the optical visualization of fields of incident and
phase-conjugate beams is shown as an illustration. An
ultrasonic pulse with a frequency f = 5.0 MHz and a
duration of 30 µs was radiated into water by a spheri-
cally focused Panametrics V307-SU transducer with a
diameter of 27 mm and a focal distance of 84 mm. The
pressure amplitude of the incident wave was small
(~0.2 MPa at the focus) and, therefore, its propagation
could be considered to be linear. The distance between
the transducer and a phase-conjugating amplifier was
202 mm. A direct measurement of acoustic field param-
eters was performed using a sound-transparent wide-
band membrane PVDF hydrophone with a sensitive
element 0.5 mm in diameter. This provided an opportu-
nity to conduct virtually nondistorting measurements
for both the incident and phase-conjugate beams. The
hydrophone was connected with a two-coordinate posi-
tioning system that scanned the acoustic field with a
minimum step of 0.2 mm. A signal from the hydro-
phone after amplification was digitized by a Tektronix
TDS-340A oscilloscope, and then the data were fed to
a computer. The generation of a phase-conjugate ultra-
sonic pulse at a carrier frequency of 5 MHz was per-
formed by an active magnetostriction phase-conjugat-
ing element on account of the over-threshold paramet-
ric interaction of a 10-MHz magnetic pumping field
and the incident acoustic field. The active element was
cylindrical, with a length of 150 mm and a diameter of
36 mm. To expand the angular operation range of the
ACOUSTICAL PHYSICS      Vol. 50      No. 6      2004
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Fig. 2. (a) Wave profiles and (b) spectra of a phase conjugate wave at the focus point. (a) The solid line refers to measurements, dots
refer to exact calculation by the Khokhlov–Zabolotskaya–Kuznetsov equation, and the dotted line refers to calculations taking into
account only the four first harmonics. (b) Columns represent the experiment, and segments, the calculation [19].
system and to improve the quality of phase conjugation,
a system of cylindrical grooves was formed on the oper-
ation surface of the active element (see [26, 27]).
Because of the parametric pumping of electromagnetic
energy into the energy of acoustic waves, the amplitude
of the latter grows exponentially during the interaction
time and reaches levels sufficient for the intense devel-
opment of nonlinear effects in a phase-conjugate wave
in the process of its propagation in water towards the
transducer.

To numerically simulate the propagation of axisym-
metric ultrasonic beams in a nonlinear medium, one of
the most precise techniques based on the algorithms of
the numerical solution of the Khokhlov–Zabolotskaya–
Kuznetsov equation and taking into account nonlinear-
ity, absorption, and diffraction was used [28]. This
approach provides a good qualitative agreement with
experiment [19, 29]. A numerical simulation was con-
ducted with parameters corresponding to the experi-
mental conditions; i.e., linear propagation was assumed
for the incident beam and nonlinear propagation for the
phase-conjugate beam. Moreover, the finiteness of the
aperture of the phase-conjugating element was taken
into account, and finally, the amplitude distribution of a
phase-conjugate wave in the plane z = 202 mm, which
corresponded to the position of the output of the phase-
conjugating amplifier, was multiplied by a coefficient
determined by amplification in the phase-conjugating
system.

The results obtained are given in Figs. 2–4. Figure 2
shows the characteristic nonlinear wave profiles and the
spectra corresponding to them that are observed in the
focus of a phase-conjugate beam [19]. As one can see,
the measurements give a peak pressure value that is
lower than the calculated one, and the measured wave
profile itself does not have the shock front predicted by
the calculations. This discrepancy arises because of the
limiting character of the frequency range of the hydro-
phone, which provides an opportunity, in this case, to
measure correctly up to four harmonics in the phase-
conjugate wave (see the frequency spectrum in Fig. 2b).
If, in the process of calculation of waveforms, one takes
ACOUSTICAL PHYSICS      Vol. 50      No. 6      2004
into account only four harmonics, then, as one can see
from Fig. 2a, a better agreement of the calculations with
the measurements is obtained.

A comparison of the measurements and calculations
for axial and focal (in the plane z = 84 mm) pressure
distributions in the beams under investigation are given
in Fig. 3 [29] in the right and left parts of the figure,
respectively. The curves in Fig. 3a demonstrate the lin-
ear character of the propagation of an incident beam.
Distributions for a phase-conjugate beam are given for
two values of the aperture of a phase-conjugating ele-
ment, namely, 36 mm (Fig. 3b) and 20 mm (Fig. 3c), in
order to show the effect of diffraction together with the
influence of nonlinearity. One can see from Fig. 3b that
higher harmonics are also present in the phase-conju-
gate beam in the focal plane and that they constitute a
noticeable part of the amplitude of the fundamental har-
monic. For example, the second harmonic is only two
times smaller than the first one. However, as one can
see from the comparison of focal distributions in Figs.
3a and 3b, nonlinearity practically does not affect the
quality of phase-conjugation focusing. At the same
time, the diffraction arising due to the finiteness of the
aperture of the phase-conjugating element, which wid-
ens the principal maximum of the focal pressure distri-
bution and smoothes the axial distribution in the phase-
conjugate beam (Fig. 3c), leads to a strong deterioration
in the quality of phase conjugation.

The good agreement of the numerical calculations
and of the measurements provides the grounds and the
opportunity to monitor, via a numerical simulation, the
behavior of phase-conjugate ultrasonic beams up to
high values of intensity that have not yet been reached
experimentally. The results of such a numerical calcu-
lation (in the case of the unrestricted aperture of a
phase-conjugating system) are given in Fig. 4 [20]. The
dimensionless nonlinear parameter Nf, defined as the
ratio of the length of the near field to the length of shock
formation in a plane wave, takes on values from 0.1,
which corresponds to a weak nonlinearity, to 1.0, when
a pronounced shock front arises (Fig. 4c). One can see
that, as Nf grows, the maximum of the axial pressure
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Fig. 3. Comparison of measured (solid line) and calculated (dotted line) data of axial (on the left side) and focal (on the right
side) pressure distributions in the plane z = 84 mm in the incident (the first row) and phase-conjugate (the second and third rows)
beams [29].
distribution is shifted towards the source positioned at
σ = 0 (Fig. 4a) and the oscillations of the focal pressure
distribution become smoothed (Fig. 4b) together with a
simultaneous decrease in the pressure amplitude at the
beam axis (Figs. 4a, 4b). Nevertheless, it is possible to
assert that even the formation of a shock front in a
phase-conjugate beam is not an obstacle for retaining
its focusing ability. Thus, the major factor contributing
to the deterioration of the quality of phase conjugation
in a homogeneous medium and, in particular, the qual-
ity of the reproduction of the focal distribution, is the
finiteness of the aperture of the phase-conjugating ele-
ment.

2. PROPAGATION OF A PHASE-CONJUGATE 
NONLINEAR WAVE

THROUGH AN ABERRATION LAYER

As follows from the results of the preceding section,
nonlinearity does not hinder the high-quality phase-
conjugation focusing in a homogeneous medium even
under the conditions of shockwave formation. At the
same time, from a practical point of view, the case in
which some inhomogeneities are located in the path of
wave propagation is of major interest. If inhomogene-
ities introduce phase aberrations, then in the case of a
linear medium the distortions in an incident wave,
which are caused by these inhomogeneities, can be
compensated for by the effect of phase conjugation. In
this section, we present the main experimental results
concerning the transmission of a nonlinear phase-con-
jugate beam through an aberration layer and demon-
strating the possibility of phase-conjugation compensa-
tion of phase distortions in a nonlinear medium with
inhomogeneities [23].
The experimental scheme presented in Fig. 1 is
taken as the basis. A special layer R that distorts the
acoustic field is introduced into an acoustic path to sim-
ulate the inhomogeneities of a medium (Fig. 5).

The layer was manufactured of a silicon polymer.
The layer material had the following acoustic parame-
ters: a density of 850 kg/m3, a sound velocity of 1160 m/s,
and an attenuation of 6 dB/cm at a frequency of 5 MHz.
One side of the layer was flat and the other side had cha-
otically located conelike irregularities. The sizes of the
bases and heights of the irregularities lay within the
range 2–5 mm. Thus, the difference between the phase
shifts in water and in the layer at for example, a distance
of 3 mm, was greater than 4π. The acoustic impedance
of the layer provided sufficiently good acoustic cou-
pling with water. Taking into account the comparatively
small layer thickness, it was possible to assume that the
distortions introduced into the acoustic beam were
mainly of a phase character and that the contribution of
the amplitude losses was inessential.

The ability of the layer to introduce noticeable dis-
tortions into the transmitted wave at a sufficiently small
distance was studied in the case of its position as indi-
cated by number 1 in Fig. 5. The distance of the flat
layer surface from the focus was 20 mm. The field pro-
duced by the radiator in the focal plane was measured
under these conditions. The characteristic form of the
curve obtained is given in Fig. 6. The focal field distri-
bution in the absence of the layer is also given for com-
parison. One can see that the presence of the layer that
destroys the focusing strongly affects the distribution
typical of a spherically focused beam. Multiple repeti-
tions of such measurements with parallel shifts of the
layer by retaining a constant distance to the source pro-
duced focus destruction results that were similar in
ACOUSTICAL PHYSICS      Vol. 50      No. 6      2004



        

NONLINEAR ULTRASONIC PHASE-CONJUGATE BEAMS 627

                                                         
30

–π 0

Nf = 1.00

τ

2

0
3.0

Prms

σ

2

0 0.05

Prms

ρ

(b)

0.10 0.15 0.20 0.25

4

6

8

10

12 Nf = 0

0.25

0.50
0.75

1.00

π

Nf = 0.50

Nf = 0.25

20

10

0

0

20

40

40

30

20

10

0

–10

Nf = 0.10

–10

0

10

20

(‡) (c)

4

6

*

10

12

2.5 2.0 1.5 1.0 0.5 0

Nf = 0
0.25

0.50

0.75

1.00

P
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the focal plane and the wave profiles at the focus (right side) for the phase-conjugate beam in the case of a varying nonlinearity
parameter Nf; σ is the distance to the source normalized to the focal length d: σ = z/d, where z is the longitudinal coordinate [20].
form and differed in position, shape, and number of
peaks. Thereby, a satisfactory quality of the layer as a
medium that introduces phase aberrations was con-
firmed.

For experiments with a phase-conjugate wave, the
phase layer was shifted symmetrically with respect to
the focus from position 1 to position 2. In this geome-
try, aberrations were introduced into the incident wave
after it passed the focal area. In this case, it was neces-
sary to eliminate the losses connected with a part of a
scattered beam missing the aperture of the phase-con-
jugating amplifier. A metal tube T with an internal
diameter of 36 mm and a length of 101 mm, which
played the role of an acoustic waveguide, was posi-
ACOUSTICAL PHYSICS      Vol. 50      No. 6      2004
tioned between the layer and the amplifier for this pur-
pose. Otherwise, as was discovered in the correspond-
ing experiments, the reproduction of the spatial struc-
ture of the field of the incident beam was violated.

The results of measurements of the field of a phase-
conjugate beam along the axis are given in Fig. 7. A
dotted line conditionally denotes the layer position. The
scanning region started directly from the layer and had
a length of 30 mm. The dashed line shows, for compar-
ison, the pressure distribution in the incident wave. The
time profile of the phase-conjugate wave at the initial
scanning point is demonstrated in Fig. 7a on the right
side, at the bottom. At the left layer boundary, a phase-
conjugate wave is clearly nonlinear; i.e., the amplitude
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of the second harmonic makes up 18% of the amplitude
of the first harmonic; the amplitude of the third har-
monic, 8%; and the amplitude of the fourth harmonic,
4%. The longitudinal profile of the phase-conjugate
beam, on the whole, reproduces well the profile of the
incident beam.

Figure 8 gives the transverse distributions of (a) the
effective pressure values and (b) the harmonic pressure
amplitude in the phase-conjugate beam that were mea-
sured in the focal plane of the source. The field distri-
bution in the incident beam is shown by the dashed line.
The time profile of the phase-conjugate wave in the
focus is plotted at the top in Fig. 8a, on the right side.
The amplitude ratio for the fundamental harmonics of
the phase-conjugate and incident waves was about 10.
In this case, the peak differential pressure in the phase-
conjugate wave, i.e., the difference between the positive
and negative peaks of the wave profile, was 6.95 MPa.

PVDF

T C

(1) X
Z
(2)

S

RR

Fig. 5. A simplified scheme of the experiment. The dashed
lines show the propagation of incident and phase-conjugate
sound waves in the absence of the layer. Here, S is an ultra-
sonic source, C is a phase-conjugating amplifier, T is a
metal tube, R is a phase layer, (1) and (2) are the layer posi-
tions, and X and Z are the directions of the hydrophone posi-
tioning axes [23].
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Fig. 6. Focal distribution of the normalized pressure ampli-
tude in the incident wave (1) in the absence of the phase
layer and (2) with the layer present at position 1. Here, X is
the distance from the beam axis [23].
Despite the increase in the relative level of sidelobes in
the fundamental harmonic, the field of the nonlinear
phase-conjugate wave on the whole demonstrates a
high quality of phase-conjugation focusing of an ultra-
sonic beam in both the position with respect to the axis
of the incident beam and the width of the principal
maximum. From the point of view of nonlinear ultra-
sonic imaging, the fact that the energy of higher har-
monics is much better localized in the focus region than
that of the first harmonic is especially interesting. Thus,
this specific characteristic of homogeneous nonlinear
media is also retained when the medium is inhomoge-
neous.

The results of experiments on phase conjugation
with amplification that were described in the first sec-
tions provide an opportunity to judge the reproduction
quality of the acoustic field at the maximum pressure
amplitude of the phase-conjugate wave. One can see
that automated phase-conjugation focusing of ampli-
fied phase-conjugate waves with compensation for
phase aberrations produced by the inhomogeneities of
the propagation medium is possible even in the case of
a considerable nonlinear distortion of the waveform.

3. GENERATION OF THE SECOND ACOUSTIC 
HARMONIC BY A PHASE-CONJUGATE WAVE

IN AN INHOMOGENEOUS REFRACTIVE 
MEDIUM WITHOUT DISPERSION: 
APPROXIMATION OF NONLINEAR 

GEOMETRICAL ACOUSTICS

Results of experimental observations of the com-
pensation of phase distortions in the process of nonlin-
ear propagation of a phase-conjugate wave in the pres-
ence of aberration layers [21, 23, 24] were substanti-
ated theoretically in [21, 22]. In the approximation of
nonlinear geometrical acoustics, it was demonstrated
that retrofocusing in this case is a consequence of two
effects: the phase conjugation at the fundamental fre-
quency and the strong correlation of the phases of har-
monics generated by the phase-conjugate wave.

For example, within the framework of nonlinear
geometrical acoustics, i.e., the approach developed for
dispersionless inhomogeneous media in [21], the pro-
cess of the second harmonic generation in a quasi-lin-
ear approximation is described by the following set of
equations:

(1)

where An are the amplitudes of harmonics (n = 1, 2) and

the operator  is represented in the form

L A1{ } 0,=

L A2{ } 2iωβA1
2,=

)

)

L̂

L̂
∂
∂z
----- v x—⊥( ).+ +=
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Here, x = c∇ ⊥ ψ; v  =  + ; and ρ, c,

and β are the density, sound velocity, and normalized
nonlinear parameter, respectively. The eikonal ϕn =
−inωΨ(r) of the harmonics is described by the general
equation [30]

(2)

where Φ(r) is the inhomogeneous part of the refrac-
tive index of the medium. The identity of the eikonals
reflects the well-known specific feature of the interac-
tion of nonlinear wave harmonics in a dispersionless
medium that leads to their cascade generation up to
the shock front formation in the case of a fully devel-
oped nonlinearity.

∂
∂z
-----– ρcln
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2
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Fig. 7. Distribution of sound pressure along the beam axis:
(a) the normalized effective value and (b) the amplitudes of
the first four harmonics. The solid curves correspond to the
phase-conjugate wave, and the dashed line, to the incident
wave. The dotted line indicates the position of the phase
layer R; numbers 1–4 indicate the numbers of the harmonics,
and Z is the distance to the source. The shape of the phase-con-
jugate wave at the beam axis at the point Z = 97 mm is given
on the right side of Fig. 7a, at the bottom [23].
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In the case of the second harmonic generation under
study, the amplitude of the second harmonic can be
obtained from Eq. (1) in the form

(3)

where the function Q(r) depends on the eikonal gradi-
ent and the parameters of the medium and satisfies the
equation

(4)

Equation (3) shows that, within the framework of
nonlinear geometrical acoustics, the spatial distribution
of the second harmonic amplitude is modulated by the
intensity of the fundamental component in a randomly
inhomogeneous medium. Due to the phase conjugation

A2 r( ) Q r( )A1
2 r( ),=
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Fig. 8. Focal distribution of the sound pressure field: (a) the
normalized effective value and (b) the amplitudes of the first
four harmonics. The solid curves correspond to the phase-
conjugate wave, and the dashed line, to the incident wave;
numbers 1–4 indicate the numbers of the harmonics, and X
is the distance from the beam axis. The shape of the phase-
conjugate wave at the point X = 0 is given at the top, on the
right side [23].
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of the fundamental component, one can expect that the
second harmonic is concentrated within the aperture of
the primary acoustic beam propagating from the focus
to the phase-conjugating amplifier.

The problem of propagation of the second harmonic
in a homogeneous medium between an aberration layer
and the focal plane (see Fig. 9) is analogous to the prob-
lem on the “phase screen” studied in [31], as applied to
the propagation of shockwaves. In a homogeneous
medium with the parameters c0, ρ0, and β0, the phase of
the focused primary beam is described by the expres-

sion ψ = f(z) /c0. According to the principle of phase
conjugation, it is necessary to assume that the funda-
mental harmonic reproduces its phase–amplitude dis-
tribution after being transmitted through an aberration
layer. In this case, Eqs. (1–4) have the solution

(5)

where

Here, F[x, y] is the function describing the boundary
conditions for the second harmonic amplitude at the
output of the aberration layer (z = 0):

(6)

where G is the gain factor of the focusing system and d
is the distance between the layer and the focal plane.

The first term in Eq. (5) describes the generation of
the second harmonic in the region between the layer
and the focal plane. The second term corresponds to the
generation in an inhomogeneous layer. The solution
Q(r⊥ , z) to Eq. (4) in the region z0 < z < 0 with the

r⊥
2

A2 r⊥ z,( ) A1
2 r z,( ) Q1 z( ) Q2 r⊥ z,( )+[ ] ,=

Q1 z( ) 2iω0β0
1

γ z( )
---------- γ z( ) z,d
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z

∫=

Q2 r⊥ z,( ) γ z( )F xγ z( ) yγ z( ),[ ] .=
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y
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0
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Fig. 9. Statement of the problem: IW refers to the incident
wave, and PCW, to the phase-conjugate wave [21].
boundary condition Q(r⊥ , z0) = 0 at the output of the
phase-conjugating amplifier (z = z0) defines the func-
tion F as F[x, y] = Q(r⊥ , z = 0). The eikonal in Eq. (4)
is tried as a solution to Eq. (2) with the boundary con-

dition ψ(z = 0) = f(0) /2c0. The latter condition is a
consequence of the identity of eikonals for the funda-
mental and second harmonics. The analysis of a series
of particular cases of inhomogeneity (transverse inho-
mogeneity with an arbitrary dependence on the longitu-
dinal coordinate Φ(r⊥ , z) = Φ(z) and a linear or qua-
dratic dependence of Φ(r⊥ , z) on the transverse coordi-
nate r⊥ ) shows that the solution Q(r⊥ , z) = Q(z) does not
depend on r⊥ ; i.e., F[x, y] = const. A more complex
case, in which the inhomogeneity of the refractive
index distribution is a periodic function of the trans-
verse coordinate Φ(r⊥ ) = Asin2(qy + θ), is investigated
numerically in [22]. The corresponding pattern of
acoustic rays that coincides for both harmonics because
of the aforementioned coincidence of eikonals is given
in Fig. 10. The evolution of the transverse distribution
of the second harmonic amplitude in the course of
approaching the focal plane is shown in Fig. 11. One
can see that the major part of the energy of the second
harmonic is also concentrated near the focus in this suf-
ficiently complex case. A qualitatively analogous result
was obtained for the case of a transversely shifted layer,
in which θ = π/2.

The examples considered above provide an opportu-
nity to conclude that the high quality of retrofocusing in
the course of the nonlinear propagation of phase-conju-
gate beams in an inhomogeneous dispersionless acous-
tic medium is a rule rather than an exception, which is
confirmed by the data from experiments conducted
under different conditions [21, 23, 24]. As for the
observed narrowing of the focal distribution of the sec-
ond harmonic of the phase-conjugate wave in compari-
son with the incident wave, this effect is explained qual-
itatively by the expressions of the type of Eqs. (3) and (5).

r⊥
2

0.002

0

–0.002

0 0.002 0.004 0.006 0.008 0.010
z, m

y, m

Fig. 10. Acoustic ray pattern in a multilayer medium in the
case of a varying refractive index according to the law
Φ(r⊥ ) = Asin2(qy + θ) [22].
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A detailed investigation of the behavior of phase-conju-
gate beams in the focal region requires one to go
beyond the framework of nonlinear geometrical acous-
tics and to apply some numerical techniques.

In concluding this section, it is necessary to note that
the time–space synchronization of harmonics that fol-
lows from the eikonal equation (Eq. (2)) occurs not
only in the process of second harmonic generation but
is rather a general property of the nonlinear retrofocus-
ing of phase-conjugate waves in dispersionless acoustic
media. In the last section of this review, this property is
illustrated by the example of the phase conjugation of
the second harmonic of the primary wave of finite
amplitude with the further nonlinear propagation of a
phase-conjugate beam.

4. COMPENSATION OF PHASE DISTORTIONS
IN A PHASE-CONJUGATING MICROSCOPE

IN THE LINEAR MODE OF ULTRASONIC WAVE 
PROPAGATION

The first experiments on the application of paramet-
ric phase conjugation in linear ultrasonic imaging were
conducted using model objects with the employment of
a piezoceramic active medium in the subthreshold
mode of electromagnetic pumping [14]. Figure 12 pre-
sents an ultrasonic imaging scheme, and Fig. 13, acous-
tic images of a test object under the conditions in which
a layer introducing strong phase aberrations (Fig. 13a)
is present in the acoustic channel: the picture in Fig. 13b
is obtained in a common “transmission” way, and the
picture in Fig. 13c, via parametric phase conjugation.
Comparison of Figs. 13b and 13c clearly demonstrates
the effect of compensation for phase distortions, which
makes the images of letters clearly visible, unlike the
images obtained with the conventional method.

In contrast to the subthreshold mode in piezoceram-
ics, the over-threshold mode implemented in magneto-
striction ceramics with pumping by a magnetic field
[15, 16] provides many more opportunities in different
areas of ultrasonic technology, including ultrasonic
imaging. By shifting the amplification necessary to
compensate for the attenuation losses from radio-elec-
tronic circuits to a phase-conjugating system, it is pos-
sible to improve the signal-to-noise ratio in an image. In
contrast to the noise of receiving circuits, the noise (or
non-phase-conjugate) components of a phase-conjugat-
ing amplifier are subjected, as a rule, to efficient spatial
filtration by means of the automated adaptation of
phase-conjugate waves to inhomogeneities of the
medium and to the geometry of the radiating–receiving
transducer. Such spatial filtration in the case of the
amplification of a phase-conjugate wave was observed
experimentally [32]. In this section, we present experi-
mental data on the visualization of the internal structure
of a standard serially produced fracture microchip with
the help of over-threshold phase conjugation.
ACOUSTICAL PHYSICS      Vol. 50      No. 6      2004
A simplified scheme of ultrasonic imaging with a
phase-conjugating amplifier on the basis of magneto-
strictive ceramics is shown in Fig. 14 [14]. A transducer
and an object were positioned in a water tank. The
object was placed in the focal plane of an ultrasonic
transducer with a diameter of 10 mm and a focal length
of 3 cm (in water). A cylindrical phase-conjugating ele-
ment with a diameter of 15 mm and a length of 35 mm,
which was made of Ni–Co magnetostrictive ceramics,
was located symmetrically with respect to the object in
such a way that the cylinder axis coincided with the
acoustic axis of the transducer. The distance between
the input plane of the phase-conjugating element and
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Fig. 11. Evolution of the transverse distribution of the sec-
ond harmonic amplitude as the distance to the focal plane
decreases (A2 is the relative amplitude) [22].
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Fig. 12. A model ultrasonic imaging scheme with a phase-
conjugating element employing piezoceramics [14].
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Fig. 13. (b, c) Test acoustic images obtained in the absence
of (a) the layer by (b) the conventional transmission method
and (c) using the subthreshold parametric ultrasound phase
conjugation [13].
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Fig. 14. Simplified model ultrasonic imaging scheme with
a phase-conjugating amplifier employing magnetostriction
ceramics [14].
the transducer was 85 mm. The working surface of the
parametrically active element was introduced in water
through an aperture in the basin wall, which was cov-
ered by a thin rubber membrane whose external surface
was coated with a special acoustic gel to provide an
acoustic contact with the ferrite. The transducer was
excited by radio pulses with a duration of 2 µs and a
carrier frequency of 10 MHz from generator 1. At the
moment when the probing ultrasonic pulse entered the
active zone of the phase-conjugating element, a pulse
of alternating magnetic field at double sound frequency
(i.e., 20 MHz) and with a duration of 20 µs was fed to
it from generator 2 through the pumping coil. Under
these conditions, the amplification of the phase-conju-
gating system was 80 dB. A pulse of a phase-conjugate
wave, focused at the sample and generated in the phase-
conjugating element, propagated in water and was
detected by the transducer. In this case, the processes of
spatial filtration of the noise component and compensa-
tion for phase distortions took place.

The sample that was studied was a standard fracture
microchip specially coated with a layer of colophony,
which played the role of the medium that introduced
aberrations. The layer with the average thickness 3.5 mm
was manufactured in several stages in such a way that
each subsequent layer was deposited after the end of the
crystallization of the preceding one. This procedure
provided for the introduction of sufficiently strong dis-
tortions into the probing focused ultrasonic beam leav-
ing the layer.

The sample was moved at a step of 100 µm in the
focal plane of the transducer with the help of a two-
dimensional positioning system. The size of the resulting
images was 10 × 5 mm2. In the case of line-by-line scan-
ning for each position of the object, a signal from the
transducer was digitized in a 10-bit oscilloscope
(Le Croy 9430), after which the data arrays fed from the
oscilloscope to a computer were transformed into a two-
dimensional image obtained in grayscale. As was deter-
mined with the help of special measurements, the spatial
resolution of the system was 500 µm, which is close to
the theoretical limit for these experimental parameters.

Despite the fact that the same transducer was used to
radiate and receive the ultrasound, the scheme under
consideration is evidently close to the classical “trans-
mission” version of an acoustic microscope. Therefore,
to demonstrate the advantages of phase conjugation,
images of the same object were obtained using a conven-
tional scheme, in which the phase-conjugating element
was replaced by a receiving transducer identical to the
radiating one. Here, for the purpose of illustration, two
cases were studied: with an aberration layer and without
it. The image obtained in the latter case was the “refer-
ence” one.

Figure 15a presents a photographic picture of a frac-
ture microchip with the aberration layer deposited on it.
The image of the internal structure of the fracture
microchip without a layer, which was obtained accord-
ACOUSTICAL PHYSICS      Vol. 50      No. 6      2004
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(‡) (b) (c) (d)

Fig. 15. (a) Photograph of a fracture microchip with a colophony aberration layer applied on top of it with a random shape and structure.
(b) Image of the internal structure of the fracture microchip without the layer, with the use of the classical transmission scheme with
two transducers. (c) Image of the same fracture microchip region that is distorted by aberrations introduced by the layer. (d) Image
obtained using the effect of over-threshold phase-conjugation for the same conditions as in the case of image (c) [14].
ing to the classical “transmission” scheme with two
transducers, is given in Fig. 15b. The image of the same
fracture microchip region distorted due to the aberra-
tions introduced by the layer is shown in Fig. 15c.
Finally, Fig. 15d presents the image obtained using the
effect of over-threshold phase conjugation for the same
conditions as in Fig. 15c. From a comparison of Figs.
15b–15d, one can see that, although it was impossible
to achieve a complete reproduction of the image in Fig.
15b in Fig. 15d, the image in Fig. 15d, obtained with the
help of phase conjugation, demonstrates an evident
increase in the quality of reproduction of even the fine
details of the microcircuit’s internal structure in com-
parison with the image in Fig. 15c, which was obtained
by the conventional method.

Generally speaking, it is impossible to improve an
image with the help of phase conjugation if the aber-
ration layer located between the transducer and the
object introduces distortions that are so strong that
they almost completely destroy the focusing of the
probing beam. Nevertheless, as was indicated in [14],
when sufficiently thin layers are additionally depos-
ited on the side of the object that faces the transducer,
acoustic imaging with compensation for phase aberra-
tions proves to be possible.

5. PHASE-CONJUGATION MICROSCOPY
USING THE SECOND HARMONIC

OF THE PHASE-CONJUGATE WAVE

The technology of over-threshold phase conjugation
provides an opportunity to combine the advantages
given by both the technique of phase conjugation and
the method of harmonic acoustic imaging. In this sec-
tion, we present the results of experiments designed to
demonstrate the feasibility of acoustic imaging with the
help of the second harmonic of the phase-conjugate
wave [21, 24].

The experimental scheme used in this case is basi-
cally analogous to the scheme given in Fig. 14 for the
linear mode. The differences are as follows: since, in
the receiving mode, a nonlinear ultrasonic wave
enriched with harmonics was incident on the trans-
ducer, the signal received by the transducer was repre-
sented in the form of a Fourier spectrum. The ampli-
tudes of two first harmonics of the received signal were
measured for each point of the scanning region, which
ACOUSTICAL PHYSICS      Vol. 50      No. 6      2004
provided an opportunity to obtain images using both
the first and second harmonics of the phase-conjugate
wave during a single cycle. A cylindrical phase-conju-
gating element of an increased size (with a length of
150 mm and a diameter of 29 mm) with a wavy work-
ing surface was used in this and subsequent experi-
ments to improve the quality of phase conjugation. The
object consisted of two crossed wires 0.12 mm in diam-
eter, which provided an opportunity to determine, in a
sufficiently simple way, the resolution achieved in any
specific case according to the image obtained. The
transverse resolution was measured as the minimal dis-
tance between two minimal amplitudes of the received
signal that were resolved in a line. The duration of the
probing and pumping pulses was 50 µs.

The layer introducing aberrations was manufactured
of a silicon polymer and was close in its properties to
the one described in Section 4. The average layer thick-
ness was 2 mm. The experimental evaluation of trans-
mission losses in the layer was equal to 4.5 dB at a fre-
quency of 5 MHz.

(‡) (b) (c) (d)

Fig. 16. Acoustic images of the region of wire intersection
(a, b) without and (c, d) with the layer. Images obtained at the
frequency of 10 MHz are on the left side, and those obtained
at the frequency of 20 MHz are on the right side [24].
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The resulting acoustic images of the intersection of
the wires are shown in Figs. 16–17 [24]. The dimensions
of the region presented in the images are 2.5 × 10 mm. In
the case of a scanning step equal to 50 µm, the number
of image dots was 50 × 200 = 10000.

Figure 16 presents two pairs of images obtained (a, b)
without and (c, d) with the layer with the help of two
focused transducers in the transmission mode (see Sec-
tion 4). The images obtained using the first harmonic
(10 MHz) are on the left side (a, c), and those obtained
using the second harmonic (20 MHz) are on the right
side (b, d). Images in Fig. 17 are grouped according to

(‡) (b)

n = 137

Fig. 17. Acoustic images of the region of wire intersection
that were obtained without a layer with the help of phase
conjugation. Images obtained at the frequency of 10 MHz
are on the left side, and those obtained at the frequency of
20 MHz are on the right side [24].
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Fig. 18. Distribution of signal level along the row 137 in
Fig. 17. The dashed line refers to the signal frequency of
10 MHz, and the solid line, to 20 MHz [24].
the same principle, but the difference is that they were
obtained using phase conjugation. According to Figs. 16a
and 17a, the resolution of the system in both conven-
tional and phase-conjugation versions was 450 and
250 µm at frequencies of 10 and 20 MHz, respectively.

The following conclusions can be drawn from the
comparison of Figs. 16 and 17. All images correspond-
ing to the case without the layer differ only slightly.
Quite a different situation is observed in the case in
which aberrations are introduced into the acoustic
channel. One can see that the layer introduces such
strong distortions into the images obtained by the con-
ventional technique that the intersection image is
almost completely masked. At the same time, in the
images obtained with the help of phase conjugation at
both harmonics, the intersection can be seen fairly
clearly despite the presence of the dark spots originat-
ing from uncompensated amplitude distortions.
According to the results of Sections 2 and 3, the con-
junction of the phase of the second harmonic of the
wave radiated by the phase-conjugating element to the
phase of the fundamental component provides retrofo-
cusing for the second harmonic as well. Taking into
account the corresponding frequency increase, this pro-
vides an opportunity to use the nonlinearity of the
phase-conjugated wave for acoustic imaging in a
phase-inhomogeneous medium with a resolution
higher than that in the linear case. The latter property is
illustrated in Fig. 18, where the distributions of the sig-
nal level along the line shown by dashes in Fig. 17 are
shown. One can see that the minimum corresponding to
one of the wires is not observed for the signal of the
fundamental component (10 MHz), while for the signal
of the second harmonic (20 MHz) it is clearly distin-
guished. In the experiment considered, the system res-
olution was 600 and 300 µm at frequencies of 10 and
20 MHz, respectively, which differs little from the case
in which the object was located in a homogeneous
medium.

6. SELECTION OF HARMONICS
AT A PARAMETRIC PHASE CONJUGATION
OF ULTRASOUND AND THE FREQUENCY 

MULTIPLICATION IN PHASE-CONJUGATING 
MICROSCOPY

In the previous sections, we considered the specific
features of the formation of phase-conjugate ultrasonic
beams of finite amplitude in the mode of phase conju-
gation with an amplification and under the conditions
when the nonlinearity of the incident wave can be
ignored. In this case, the fundamental component of the
spectrum of the phase-conjugate wave almost repro-
duced the structure of the field of the incident wave and
synchronized the phases of the harmonics generated in
the process of its propagation back to the source. At the
same time, the parametric technique of phase conjuga-
tion can also be used, due to its relatively narrow band,
in the mode of selective phase conjugation of single
ACOUSTICAL PHYSICS      Vol. 50      No. 6      2004
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harmonics of the incident wave, when its intensity is
sufficient for a noticeable manifestation of the propaga-
tion nonlinearity. A specific property of phase conjuga-
tion in this case is the fact that the field of the phase-
conjugate harmonic, even in the ideal case, cannot
reproduce the field of the same harmonic in the incident
wave because of the lack of interaction with the har-
monic at the fundamental frequency that is necessary
for the time reversal. The feasibility of retrofocusing
under these conditions becomes questionable. At the
same time, the effects of selective phase conjugation of
single harmonics are of interest from the point of view
of applications and, in particular, because of the pros-
pect of a considerable increase in frequency in systems
of harmonic imaging already in the lower orders of
nonlinearity. The increase in the resolution of an acous-
tic microscope in the case of phase conjugation of the
second harmonic 2f of an incident nonlinear wave at a
frequency f with a further analysis of the image of the
test object at a frequency 4f was demonstrated experi-
mentally in [24]. It was demonstrated that the compen-
sation for phase distortions and the retrofocusing at the
object also occur for the 4f harmonic. The latter stimu-
lated detailed experimental studies and numerical sim-
ulations of the field of a phase-conjugate wave under
conditions of selective phase conjugation with amplifi-
cation of the second harmonic. The experimental
results and numerical simulations [33] confirmed that,
in the case of a homogeneous nonlinear medium, the
retrofocusing of a phase-conjugate harmonic is possi-
ble under these conditions, including the case of its
nonlinear propagation. A theoretical description of the
mechanism of compensation for phase distortions in
the process of phase conjugation of the second har-
monic with its further propagation in an inhomoge-
neous nonlinear medium is given in [22].

The simplified experimental scheme [33] is the
same as that in Fig. 1. A focusing transducer (Panamet-
rics M307) with a diameter of 27 mm and a focal length
of 84 mm radiated an ultrasonic pulse into water. The
pulse duration was 30 µs and the carrier frequency was
f = 3 MHz. The wave excited by the radiator was suffi-
ciently intense so that the generation of higher harmon-
ics (2f, 3f, and so on) occurred in the process of propa-
gation. The level of the second harmonic at distances of
20–25 mm from the radiator did not exceed –35 dB of
the level of the first harmonic, which agrees well with
the calculation for the case of purely monochromatic
radiation. A phase-conjugating element was installed
coaxially with the radiator at a distance of 206 mm
through an opening in the basin wall. The design and
the principle of operation of the phase-conjugating sys-
tem used and the method of the measurement of the
acoustic fields were described in Section 1. The phase
conjugation of the second harmonic of the incident
wave was provided by parametric pumping. It was a
pulse of alternating magnetic field with a duration of
50 µs and a carrier frequency of 2 × 2f = 12 MHz,
which was generated by a special coil along the axis of
ACOUSTICAL PHYSICS      Vol. 50      No. 6      2004
the phase-conjugating element at the moment when a
pulse of the incident wave entered it. In this case, the
amplitude of the generated phase-conjugate wave (at
the frequency 2f = 6 MHz) was, in its turn, sufficient for
the intense generation of harmonics (4f, 6f, 8f, …) in the
course of propagation, which is doubtless of interest for
many practical applications.

The simulation of the process considered was con-
ducted on the basis of the numerical solution of the
Khokhlov–Zabolotskaya–Kuznetsov equation in the
time domain. The nonlinear propagation of the incident
wave to the phase-conjugating element was calculated
under the assumption of piston radiation. The second
harmonic of the frequency spectrum (2f) was separated
with the help of a Fourier transformation in the plane of
the working surface of the element, and the values of
the Fourier components outside the system aperture
were assumed to be equal to zero. The complex conju-
gate field of the second harmonic was transformed back
into the time domain, and, in this case, the value of the
system amplification obtained in the experiments was
taken into account. Then, the nonlinear propagation of
the phase-conjugate and amplified wave back to the
radiator was calculated.

The results of measurements and the corresponding
calculations are given in Figs. 19–22. Figure 19 pre-
sents the (a) axial and (b) transverse distributions of
pressure in the incident beam. Transverse scanning was
performed at the point z = 82 mm, where the second
harmonic maximum, which is of interest, is located.
The measurements agree quite well with the calcula-
tions, and the dependences are typical of a focused
beam of finite amplitude. The generation of higher har-
monics is observed, their amplitudes grow with dis-
tance, and they reach their peaks near the focus. In the
focal region, the width of the principal maximum and
the relative level of side components decrease with the
increase of the harmonic numbers. The time profile of
the incident wave at the focal point had typical nonlin-
ear distortions, and the amplitudes of the harmonics 2f,
3f, and 4f made up 15.6, 3.5, and 2.8% of the first har-
monic amplitude, respectively.

The measured distributions of the fundamental har-
monic of the phase-conjugate wave (at the frequency
2f) are given in Fig. 20 in comparison with the incident
wave component that is to be phase conjugated. One
can see that the phase-conjugate wave is focused. The
width of the focal maximum of the fundamental com-
ponent of the phase-conjugate beam and its axial posi-
tion differ little from that of the second harmonic of the
incident beam. The pressure distributions of the first
four harmonics of the beam to be phase conjugated (2f,
4f, 6f, and 8f) in the plane z = 82 mm and along the
beam axis are given in Figs. 21 and 22, respectively. It
follows from Fig. 21a that the data on the focal mea-
surements of the harmonics agree well with the numer-
ical model. The calculated and experimental curves for
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axial distributions are presented separately in Figs. 22a
and 22b for better clarity.

Thus, it was demonstrated both numerically and
experimentally that the field of the phase-conjugate
wave is also focused and, on the whole, it reproduces
well the field of the second harmonic of the incident
wave.

As was already indicated, it is possible to design
high-resolution systems of phase-conjugation ultra-
sonic imaging on the basis of the phase conjugation of
harmonics. In the case of the same frequency of the
phase-conjugate wave, the systems with phase-conju-
gation of the second harmonic can be better than sys-
tems implementing the phase conjugation of the funda-
mental component because of the reduction of rever-
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Fig. 19. Distribution of pressure amplitudes for the first
three harmonics in the incident beam (a) along the axis and
(b) across the beam, at the focus of the second harmonic.
Here, z is the distance from the source and x is the distance
from the beam axis. The solid lines correspond to the exper-
iment, and the dashed lines, to the calculations. Numbers I–
III correspond to the numbers of harmonics with the fre-
quencies f = 3 MHz, 2f = 6 MHz, and 3f = 9 MHz, respec-
tively. The dashed line indicates the position of the plane of
transverse scanning [33].
beration in the course of propagation due to the reduced
relative level of side peaks in the second harmonic of
the incident wave and their weakening in the phase-
conjugate wave. In the case of a sufficient amplification
of the phase-conjugate wave, which provides for its
nonlinear propagation back to the source, an acoustic
image can be obtained using harmonics, for example, at
the fourfold frequency of the incident wave with a cor-
responding resolution increase.

A simplified scheme of a model of an acoustic
microscope implementing the indicated features [24] is
similar to that given in Fig. 14. The differences were as
follows: an Imasonic transducer with a wide frequency
range was excited at a frequency of 5 MHz and used as
a receiver for the analysis of pulses at carrier frequen-
cies of 5, 10, and 20 MHz. The crossed thin wires
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Fig. 20. Comparison of the fields of the fundamental har-
monic of a phase-conjugate wave and the second harmonic
of an incident wave (a) along the beam axis and (b) across
the axis, at the point z = 82 mm. The solid line corresponds
to the phase-conjugate wave, and the dashed line, to the sec-
ond harmonic of the incident wave [33].
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described in Section 5 were used as a test object. To
simulate a medium producing phase aberrations, a spe-
cial silicon layer, also described in detail in the preced-
ing sections, was used. 

The pumping pulse duration was 50 µs, and the car-
rier frequency was 20 MHz, which provided the over-
threshold mode of parametric phase conjugation with
the amplification of ultrasonic pulses of the carrier fre-
quency of 10 MHz. According to the above description,
the version in which the carrier frequency of the pulse
radiated by the transducer was f = 5 MHz and the ampli-
tude was sufficiently large for the generation of har-
monics on the propagation path to the phase-conjugat-
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Fig. 21. Transverse distribution of pressure in the phase-
conjugate beam at z = 82 mm. (a) Harmonic amplitudes.
The solid lines correspond to experiment, and the dashed
lines, to calculation. Here, I–IV are the numbers of harmonics
with the frequencies 2f = 6 MHz, 4f = 12 MHz, 6f = 18 MHz,
and 8f = 24 MHz, respectively. (b) Comparison of experi-
mental data on phase-conjugation focusing with the help of
the phase conjugation of harmonics I and II. (1) harmonic II
of the incident wave (2f = 6 MHz) is phase-conjugated;
(2) the fundamental harmonic of the linear incident wave at
the frequency of 6 MHz is phase-conjugated [33].
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ing element was implemented. In this case, the effect of
parametric phase conjugation occurred for the second
harmonic (2f = 10 MHz) of the incident wave, and the
pumping frequency was 20 MHz, as before. After the
phase conjugation with amplification, as in the first case,
the amplitudes of the two first harmonics (10 and
20 MHz), corresponding to the second and fourth har-
monics of the incident wave, were measured.

Figure 23 shows the object images obtained accord-
ing to the conventional transmission scheme without
using an aberration layer. The “reference” images in
Figs. 23a and 23b were obtained according to the con-
ventional transmission scheme, in which a phase-con-
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638 BRYSEV et al.
jugating element was replaced by a focusing receiving
transducer that detected the first (5 MHz) and second
(10 MHz) harmonics of the acoustic signal. The analy-
sis of these images produced the following values of the
system resolution: 450 and 250 µm at 10 and 20 MHz,

(‡) (b) (c) (d)

Fig. 23. Acoustic images of the region of wire intersection (a,
b) without and (c, d) with the layer. Images obtained at the
frequency of 5 MHz are on the left side, and images obtained
at the frequency of 10 MHz are on the right side [24].

(‡) (b)

n = 137

Fig. 24. Acoustic images of the region of wire intersection
that were obtained in the presence of a layer with the help
of phase conjugation of the second harmonic of the incident
wave. Images obtained at the frequency of 10 MHz are on
the left side, and images obtained at the frequency of
20 MHz are on the right side [24].
respectively. The images in Figs. 23c and 23d were
obtained in the same conventional way but in the pres-
ence of an aberration layer. At both frequencies, they
demonstrate an almost total masking of the object.

The images obtained using phase conjugation of the
second harmonic (10 MHz) of the incident wave in the
presence of the layer are given in Fig. 24. In this case,
the (a) first and (b) second harmonics of the phase-con-
jugate wave (10 and 20 MHz, respectively) were
detected. Thus, the experimental conditions were iden-
tical to the case shown in Fig. 23.

A comparison of the images obtained via the two
methods indicated the following. First, both images
obtained using phase conjugation demonstrate the
effect of distortion compensation: the object becomes
visible. This can be explained by the synchronization of
the phase of the second harmonic of the phase-conju-
gate wave with the phase of the fundamental compo-
nent of the incident wave, which is reconstructed by
means of the effect of time reversal (see also Section 3).
The field distribution for the second harmonic of the
phase-conjugate wave follows the distribution for the
focused first one in the course of its propagation through
the aberration layer. The plot in Fig. 25 shows the ampli-
tude distribution of the signal along one of the lines of
the images shown in Fig. 24. The measured value of the
resolution at the frequency of 10 MHz was equal to
500 µm, and it was 300 µm at the frequency 20 MHz,
which is close to the values obtained according to the
data of Fig. 18. Note again that, in this case, the phase
conjugation was performed for the second harmonic of
the incident wave generated by a radiator operating at a
frequency of 5 MHz. The relatively high noise level in
Figs. 17b and 24b can be explained by the droop of the
amplitude–frequency characteristic of the transducer
with the resonance frequency 10 MHz. It is also clear
that the distortion compensation at the frequency
20 MHz is incomplete.

The results given in Figs. 20–22, 24, and 25 provide
grounds for the following conclusions. Over-threshold
phase-conjugation can be used successfully for the
phase conjugation of selected harmonic components of
incident radiation. The amplitude of the phase-conju-
gate wave in the case of over-threshold phase conjuga-
tion with amplification can be sufficiently high for the
wave to evolve nonlinearly in the process of propaga-
tion. In this case, the aberrations introduced by the
propagation medium are compensated by both the gen-
eral properties of the effect of phase conjugation and
the synchronization of harmonic phases in the nonlin-
ear acoustic wave. The resolution obtained for a certain
frequency of the received signal (10 or 20 MHz) is
approximately the same, independently of which (the
first or the second) harmonic of incident radiation was
phase conjugated. Therefore, in the case of radiation of
an incident wave at a frequency of 5 MHz in the pres-
ence of strong phase distortions, a higher resolution
was obtained for the second and fourth harmonics.
ACOUSTICAL PHYSICS      Vol. 50      No. 6      2004
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Implementation of the technique of over-threshold
phase conjugation provides an opportunity to combine
spectral selection with parametric phase conjugation
and a subsequent generation of higher harmonics. In
this case, a simultaneous growth of the system resolu-
tion and compensation for phase distortions in acoustic
images are observed. It is necessary to note in conclu-
sion that, due to the high amplification realized in the
case of over-threshold phase conjugation, the scheme
considered above can be also used with higher harmon-
ics, for example, the third and fourth ones.

CONCLUSIONS

The experimental and theoretical results described
above demonstrate many fundamental features of the
phenomenon of phase conjugation under the conditions
of nonlinear propagation of ultrasonic waves. As has
been demonstrated above, a violation of the invariance
of the acoustic field with respect to time reversal under
the conditions of phase conjugation with amplification
does not prevent automated retrofocusing of phase-
conjugate waves in dispersionless nonlinear media. The
compensation for phase distortions introduced by inho-
mogeneity of the propagation medium is observed in
the retrofocusing of a phase-conjugate wave not only in
the linear propagation mode but also under the condi-
tions of a cascade harmonic generation up to the forma-
tion of shockwave profiles. It is demonstrated that the
retrofocusing in an inhomogeneous refractive medium
is observed in both the phase conjugation of the funda-
mental harmonic and the selective phase conjugation of
the single harmonic components of the incident nonlin-
ear sound wave.

The results obtained can serve as a basis for the appli-
cation of phase conjugation in nonlinear ultrasonic imag-
ing. The possibility of combining the advantages of the
phase-conjugation technique and harmonic imaging
with simultaneous compensation for phase distortions
and a higher resolution of acoustic imaging is demon-
strated.

0.5

0 0.5
Coordinate, mm

1.0 2.01.5 2.5

1.0

Fig. 25. Distribution of the signal level along row 137 in
Fig. 24. The dashed line corresponds to the signal frequency
of 10 MHz, and the solid line, to 20 MHz [24].
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The experiments described above reveal the good
prospects for the utilization of phase-conjugation
amplifiers operating in the over-threshold mode of
magnetoacoustic parametric interaction as an efficient
instrument for physical studies in nonlinear acoustics.
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Abstract—Measurements of response, gain, and noise immunity are carried out for an underwater compensated
additive receiving array with randomly spaced hydrophones that is moored at the bottom of a man-made lake with
multimode sound propagation. The in-sea locating ability of a similar array is demonstrated with the sources of
noiselike signals at frequencies of 5–100 Hz. A dedicated numerical processor is developed and tested for process-
ing the signals received by a random underwater array. © 2004 MAIK “Nauka/Interperiodica”.
Receiving underwater acoustic arrays moored at the
sea bottom are used for monitoring ship traffic in
watched regions [1]; for exploring biological [2], seis-
mic [3], and other sources of sound signals; and for
studying sound propagation in the ocean. If some
hydrophones fail or shift from their positions, the array
elements become randomly spaced with a mean dis-
tance b > λ/2 between the array nodes (λ is the acoustic
wavelength). By using the methods of acoustical posi-
tioning, one can measure the coordinates of the shifted
hydrophones and, by properly compensating the array,
restore its working ability [4].

The theory [5–7] offers a way of obtaining the char-
acteristics of random compensated thinned arrays in a
homogeneous medium that does not distort signals. In
natural underwater waveguides with inaccurately spec-
ified parameters and multimode propagation, the calcu-
lations of the array characteristics prove to be unreli-
able and experimental studies become important. In
natural environments, the array response, rather than its
directivity pattern, [8, 9] is usually measured. In some
cases, it is advantageous to perform such measurements
in freshwater basins of sufficient size [9]. Such naviga-
ble basins are close to coastal sea regions in character
of sound propagation and in sources of ambient noise.
With some restrictions, data from measurements car-
ried out in freshwater basins can be recalculated to the
conditions of sea regions with an appropriate scale fac-
tor K, which characterizes the increase in all sizes,
including the acoustic wavelength. In comparison with
in-sea experiments, the freshwater measurements are
much less expensive, simpler in implementation, and
not limited by meteorological factors and time.

This paper reports on the measurements of the
response, gain, and noise immunity of a randomly
thinned compensated additive array in the Ivan’kovskoe
freshwater man-made lake (the so-called Moscow Sea).
The specific feature of this lake is an abnormally low
1063-7710/04/5006- $26.00 © 20641
velocity Òb = 100–300 m/s of the compressional waves in
the upper layer of the bottom sediments, which is caused
by the presence of small methane bubbles produced by
anaerobic bacteria [10–13]. Similar values of Òb = 76–
168 m/s have been obtained in a freshwater basin in the
USA [14].

According to measurements at kH ≥ π and r/ç > 2–3,
normal-wave (mode) sound propagation takes place in
the Ivan’kovskoe lake [10]. Here, k = 2π/λ, r is the hor-
izontal distance between the transmission and reception
points, and H is the lake depth. At π ≤ kH < 6.5, only
the first mode propagates (for single-mode propaga-
tion, the experimental data agree with the calculations).
At kH > 6.5, modes of the first and higher orders prop-
agate [10].

In view of the aforementioned considerations, let us
use the approximate expressions proposed in [12]:

(1)

where p(t) is the varying sound pressure, t is the current
time, r is the distance, p0 is the amplitude of the sound
pressure normalized to r = 1 m, i is the imaginary unit,
w = 2πf, f is the frequency, mn and ln are the horizontal
and vertical components of the wave vector, n is the
ordinal number of the mode, N is the maximal number

p t( ) p0r–1/2 iwt( )exp=

× mn
1– /2 imnr–( ) lnz0( ) lnz ),(sinsinexp

n 1=

N

∑

mn k2 ln
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=
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of the propagating mode, and ∆H = 0.15 m. A point
omnidirectional sound source is at a depth z0.

At ξ ! 1, one can set ln = nπ/Hb, and the phase
velocity of the signal is

v n = Ò[1 – (nλ/2Hb)2]–1/2. (2)

The amplitude of the nth mode takes the form

(3)

The attenuation coefficient of the nth mode can be
written as

(4)

and the amplitude distribution in this mode is

pn(Z) ≈ sin(πnz/Hb)sin(πnz0/Ηb). (5)

The aforementioned expressions were confirmed in
a laboratory experiment with the use of an experimental
system modeling the underwater sound channel with
the given parameters and pressure-release boundaries.
Qualitatively, the equations were also confirmed in
measurements [12] performed at the Ivan’kovskoye
lake at a frequency of 3200 Hz with kH = 27.7.

In [13], the sound pressure and oscillation velocity
computer-calculated with a more accurate algorithm
were compared with the data obtained at the
Ivan’kovskoye lake on the propagation of a tonal signal
at N > 1. A qualitative but not quantitative confirmation
of the calculations was demonstrated. At kr @ 1, the
phases of the modes are rather sensitive to changes in
their phase velocities under the influence of varying
depths and acoustic parameters of the bottom along the
propagation path. One cannot measure these parame-
ters with the required accuracy and detail, and reliable
calculations are impossible. However, the calculations
can serve as qualitative estimations and for the elucida-
tion of the experimental data.

Let us proceed to our experiments at the
Ivan’kovskoye lake. First of all, the propagation con-
ditions were tested on the experimental path. The
depths were measured, and the water and sediments
were sampled along the path. Water temperature, wind
speed, and the height of wind waves were periodically
measured. The temperature was constant within the
water layer and equaled +7°ë. The water salinity
proved to be lower than the sensitivity of the probe

pn r( ) p0r 1/2– αnr–( )mn
1/2– lnz0( ),sinexp=

mn k2 nπ/Hb( )2–[ ] 1/2
.=

αn ρbcbcn2/4ρ f 2Hb
3 I nλ /2Hb( )2–[ ] 1/2

,=

Table 1

f, Hz , m H, m H0, m k kr N Ne

290 3.7 3.8 4.7 4.8 91.4 1 1

400 3.9 4.0 4.9 11.2 126.1 2 1

3150 4.4 4.5 5.4 62.1 993.2 19 8

H H
(less than 1‰). The calculated sound speed in the
water was Ò = 1434.8 m/s. The wind speed was lower
than 2 m/s with a resulting rms elevation of the surface
of σ ≈ 2 cm, which was much lower than the acoustic
wavelength !λ; hence, the surface scattering was
weak. The distance was r = 72 m, and the depths along
the propagation path deviated from the mean value 
by ±0.9 m with a horizontal roughness scale of about
30 m. Table 1 summarizes the depths H0 and H at the

transmission and reception points, the parameter k ,
and the calculated higher numbers N and NÂ of the prop-
agating and energy-dominating modes. The latter
modes are treated as those that, in total, contain 90% or
more of the signal energy at the distance r. The different
depths in the measurements at different frequencies are
caused by the variable operation regime of the nearby
hydroelectric station and overflow dam during the
experiment. According to Eq. (4), the attenuation coef-
ficient of the modes is approximately proportional to
n2, and the modes with numbers n > Ne are strongly
attenuated at kr @ 1. The quantities N and Ne were cal-
culated according to Eqs. (1)–(4).

The sound source was deployed on a cable at the
depth z0, which was measured from the water surface to
its geometric center. The lifting device was installed on
a platform mounted on piles. At the distance r = 72 m
from the source, a marked vertical mast, along which
the receiving hydrophone could move, was bottom-
moored. The mast was also used to measure the water
level and the depth ç. The ratio of the signal to the
interfering noise was higher than 20 dB. Figure 1 shows
the measured and calculated dependences |p(z)| of the
signal amplitudes on depth. The calculations were per-
formed according to Eqs. (1)–(5). At frequencies of 290
and 400 Hz, the experimental dependences agree well
with the calculated ones. At 290 Hz, the first mode is
the only propagating one, while at 400 Hz the first and
second modes propagate. However, the attenuation
coefficient of the second mode is relatively high, and
the first mode predominates at the reception points. The
data obtained agree well with the model of the under-
water sound channel with pressure-release bound-
aries, which is given by Eqs. (1)–(5). At the frequency
3150 Hz, the measured dependence |p(z)| does not coin-
cide with the calculated one but rather corresponds to
the interference of at least five energy-dominating
modes. These results are in qualitative agreement with
the channel model at hand.

On the whole, these results agree well with those
obtained earlier [10–13]. In further calculations, Eqs. (1)–
(5) are used, and, according to the recommendations of
[10], the following values are specified: Òb = 200 m/s
and ρb = 1950 kg/m3.

On the extension of the path used in measuring
|p(z)|, a random antenna array was bottom-moored. The
signal source was at the same point specified earlier:
z0 = 3 m and H0 = 4.7 m. A continuous noise signal was

H

H
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Fig. 1. Calculated (dashed curve) and measured (dots and crosses) depth dependences of the pressure amplitude for tonal sound
signals. The amplitudes are normalized to their maximal values. The distance is 72 m from the source. The signal frequencies are
as follows: f = (a) 290, (b) 400 (crosses indicate the results of a repeated measurement), and (c) 3150 Hz. According to [12], the
value of H is increased by 0.15 m in the calculations.
transmitted in the frequency band 2500–3000 Hz with

the central frequency  = 2750 Hz. At Ò = 1434.8 m/s,
the mean acoustic wavelength λ = 0.52 m corresponded
to the latter frequency. The array was mounted on a flat
rigid frame and then bottom-moored. The number of
hydrophones was J = 8, and their centers were at a
height of 0.5 m above the bottom. The depth of the
basin was  = 4.2 m on the path and at the point where
the array was placed. Figure 2 shows the layout of the
experiment. The array is inscribed into a rectangle with
the dimensions 7.5 × 2.5 m. The random offsets of the
hydrophone phase centers from the ones shown was no
greater than 0.5 cm. The position of the array relative to
the transmission point was determined by a measuring
tape and amended by acoustic means. In the latter pro-
cedure, the source of the noise signal was replaced by a
sparker that was deployed at the same point A and emit-
ted intense short pulses. The difference in the arrival
times t1j of the sound pulses was measured at the
receiver points 1 and j with the standard deviation σt =
1.3 × 10–5 s. The standard deviation of the distance dif-
ferences from point A to points 1 and j is σr1j = U1σt,
where U1 is the calculated group velocity of the first
mode. In our case, U1 ≈ c and σr1j ≈ 0.02 m at frequen-
cies of several kilohertz. According to the layout of the
experiment, the length of the array baseline is d = BC =
7.5 m = 14.4λ. The rms deviation of the array nodes
from the baseline is 0.8 m. The rms deviation of the
nodes from those of the equivalent equidistant linear
array with the parameters N = 8, d = 7.5 m, and the
internode distance b = 1.07 m is 0.37 m along the base-
line. The array can be treated as a thinned one, because

f

H
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b > λ. The distance from the transmission point to the
array center is AD = r = 112.7 m with kr = 1361.8.
Table 2 summarizes the calculated mode parameters at
point D. It is permissible to assume that the sound field
is formed by six initial modes at the array nodes. Modes
of higher numbers undergo strong attenuation in their
propagation or are only weakly excited.

In processing the outputs of the array hydrophones,
powers of both signals and noise were measured along
with the normalized cross-correlation functions of the
signals and noise received by pairs of hydrophones, the
array response as a function of the compensation angle,
and the noise immunity of the array. A standard algo-

B

D

C

E

1
2

3
4

5 6
7
8

θs

A

Fig. 2. Layout of the experimental random array in the hor-
izontal plane: (1–8) the array nodes; (BC) the array base
line; (DE) the perpendicular to the center of line BC (the
directrix); and (A) the transmission point. The distance to
the transmission point is AD = r = 112.7 m; θs = 32°.
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rithm for processing the output of an additive compen-
sated array was used:

(6)

where Dasp(θ) is the measured array response, i.e., the
energy of the signal plus noise at the output of the pro-
cessing system at the compensation angle θ; q is the
ordinal number of the signal sample; j is the ordinal
number of the node and the corresponding array chan-
nel; J is the number of nodes; êspj is the amplitude of
the input signal plus noise for the qth sample; τ1j (θ) is
the instrumental delay time in the jth channel relative to
the first one at the compensation angle θ; τ1j(θ) =
d1j sinθkj /v 1, θkj = (θ + θ1j); θ1j is the angle between
the line connecting the first and jth nodes and the
array baseline; and d1j is the distance between the first
and jth nodes. The time of signal accumulation is
T = (Q – 1)/fd, where fd is the sampling frequency. In
our case, Q = 4096 and T = 0.2 s.

Thus, the signal processing procedure consisted of
the time compensation in each array channel, then the
summing and squaring of the signals, and, finally, their
accumulating over the realization with duration T.

Dasp θ( ) pspj tq τ1 j θ( )–[ ]
j 1=

J

∑
 
 
 

2

,
q 1=

Q

∑=

Table 2

n αn vn, m/s |pn|/ |p4|

1 2.19 × 10–5 1434.4 0.66

2 8.82 × 10–4 1445.2 0.77

3 2.02 × 10–3 1458.6 0.54

4 3.62 × 10–3 I478.0 1.0

5 5.74 × 10–3 1504.1 0.17

6 8.85 × 10–3 1537.8 0.15

7 1.18 × 10–2 1581.0 0.005

0.4
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0
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Fig. 3. Measured array response versus the compensation
angle θ. The response is normalized to its maximal value at
θ = θs.
The array response Dap(θ) to noise was determined
according to Eq. (6), where the quantity pspj was
replaced by the noise sample ppj at a switched-off signal
source.

Upon averaging over all array channels at the input
of the processing system, the energy Dsp of the signal
plus noise, the energy Dp of noise, and the energy Ds of
the signal were calculated as follows:

The input signal-to-noise ratio averaged over all
channels is E = Ds/Dp, and, in our case, E = 1800 and
Ds ≈ Dsp.

The array response to the signal is Das(θ) = Dasp(θ) –
Dap(θ). The signal-to-noise ratio at the output of the pro-
cessing system is Ea(θ) = [Dasp(θ) – Dap(θ)]/Dap(θ) ≈
Dasp(θ)/Dap(θ), Ea(θ) @ 1, and Das(θ) ≈ Dasp(θ) in our
case.

Figure 3 shows the measured dependence of the
array response for the compensation angle θ. This
dependence is normalized to its maximal value at θ = θs.
The side lobes of the response are irregular, which is
common to a random array, and all side lobes are lower
than the main one in their levels. The maximal level of
the side lobes is 0.56; this value is 2.5 dB lower than the
level of the main lobe. Thus, a unilateral bearing of a
single sound source can be measured. The mean level
of the side lobes, which is equal to 0.21, is much higher
than the value of 1/E = 5.5 × 10–4, and, therefore, the
external noise practically does not distort the array
response.

The mean level of the side lobes must be close to the
value 1/J = 0.125, which is 2.3 dB lower than the mea-
sured level, if the signal is fully correlated (Rsij = 1) over
the array aperture for the compensation angle θs and if
the interfering noise is fully decorrelated (Rpij = 0, i ≠ j).

The measured angular width of the main lobe in the
array response is ∆θe = 7° at a level of –3 dB. For the
sake of comparison, we estimate the width ∆θT of the
main lobe in the directivity pattern of a linear compen-
sated array with our values of d, λ, and θs. According
to [15],

(7)

If λ = V1/  = 0.52 m, we obtain ∆θT = 5°.
The observed increase in the width of the main lobe

and the deterioration of other array characteristics can
be attributed to the decrease in the spatial signal corre-
lation in the course of multimode propagation in the
underwater sound channel. To prove this statement, let
us estimate the spatial correlation of the signal in view
of the phase velocities of the energy-dominating
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modes. Let the reception points i and j be positioned at
the same depths in a vertically stratified waveguide and
at the distances ri and rj from the transmission point:
ri – rj = ∆r > 0. A noiselike signal with a uniform spec-
trum in the frequency band w2 – w1 = ∆w > 0 propagates
as a sum of energy-dominating modes with the ordinal
numbers 1, …, N, which have equal amplitudes and
phase velocities v 1, …, vN, vN – v 1 = ∆v  > 0. At point
i, the phase of a tonal signal with frequency w1 is ϕi(w1) ∈

, . Similar relations are valid

for the frequency w2 at point j. If the instrumental time
delay ∆t = ∆r/v 1 is introduced into the signal at point j,
the phase of the signal will be within the interval ϕj(w1) ∈

,  at the frequency w1.

Then, for the frequencies w1 and w2 at points i and j, the
maximal phase difference of the signals will be

ϕijm(w1) = w1  and ϕijm(w2) = w2 . The

cross-correlation function rij of the tonal signals at
points i and j is related to their phase difference as fol-
lows: Rij = cosϕij. Specifying  ≈ ϕijm/2 for the mean
phase difference of the noiselike signal, we arrive at the
following estimate:

At ϕijm(w1), ϕijm(w2) ! 1, sinx ≈ x – x3/6, and

(8)

Equation (8) shows the need for limiting the array
size, the central frequency, and the operative frequency
band in order to retain the spatial correlation of the sig-
nal over the array aperture. In addition, for lower signal
frequencies, the correlation undergoes a lower loss due
to scattering by random inhomogeneities in the under-
water sound channel and to errors in positioning the
array nodes.

In our measurements, f1 = 2500 Hz, f2 = 3000 Hz,
v i = 1437.4 m/s, vN = 1537.8 m/s, and ∆v  = 100.4 m/s,
and, according to Eq. (8), Rij ≥ 0.5 at ∆r ≤ 2.5 m. This
condition is met for the array nodes with numbers 2 to
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5, for which the aperture is d25 = 3.56 m and the angle
is θs = 2°. Hence, only half of the array efficiently
works. Actually, Eq. (7) yields the following value for
a solid array with d25 = 3.56 m and θs = 2°: ∆θT = 7.5°,
which is close to the measured value.

With a full correlation of the signal at all array
nodes, the array gain is KT = 20 . At J = 8, KT =
18.1 dB. In our case, the measured gain value is Ke =
10 (θs)/Ds = 15.5 dB. The gain loss ∆K = KT –
Ke = 2.6 dB is caused by the signal decorrelation. It can
be shown that

(9)

if the signal powers are equal at all array nodes. Here,
 is the normalized cross-correlation function aver-

aged over all channel pairs:

In our measurements,  = 0.5, J = 8, and, according
to Eq. (9), K = 15.5 dB.

Some loss in the gain may be caused by errors in
positioning the array nodes. This loss can be estimated
by the following formula [4]: ∆K = –10 1 –
(2σr/λ)2]. In our case, σr = 0.02 m, λ = 0.52 m, and
∆K = 0.15 dB.

According to [1, 15], the following expression can
be used to estimate the noise immunity π of an additive
array with equal signal-to-noise ratios at all its nodes:

(10)

Here, Rpij is the normalized cross-correlation function
of noise in the pairs of nodes with numbers i and j. With
Rpij = 0 at i ≠ j and Rpij = 1 at i = j, we obtain

(11)

In our case  = 0.5, Rpij ≈ 0, and, according to
Eq. (11), Π = 6.5 dB. The measured value is ΠÂ =
10 /E = 6.8 dB. With a full correlation of the sig-

nals Rij ≡ 1 and J = 8 Πí = 10  = 9 dB. The loss in
noise immunity due to the signal decorrelation will be
∆Π = Πí – ΠÂ = 2.2 dB.

Thus, the observed deterioration of the useful prop-
erties of a randomly thinned additive compensated
array, namely, the broadening of the main lobe in the
array response, the increase in the level of the side
lobes, and the losses in the gain and noise immunity,
can be explained by the decorrelation of the signals in
the course of the multimode waveguide propagation
rather than by the drawbacks of the array itself. In such
an environment, the same losses would be also
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observed with an equidistant half-wave array with the
same length. The measured losses were no higher than
3 dB. The array retained the ability to indicate the uni-
lateral bearing of the noise source, and, hence, it still
could operate efficiently.

On the basis of the results obtained, a dedicated
numerical processing system (DNPS) was developed
for processing signals of random fixed and drifting
arrays. In a compact casing of the DNPS, the following
devices were mounted: a 16-channel analog-to-digital
converter, a dedicated processor, and a display terminal
at which the information was displayed in digital and
graphical forms. The frequency band of the input sig-
nals is 2–100 Hz. The sampling frequencies are 250 to
2000 Hz. The accumulation time is 8.2 to 65.6 s. The
maximal length of the compensated array is 3 km along
the direction to the source. The coordinates of the array
nodes are entered into the processor by a keyboard. An
operation mode is possible when the array nodes are
automatically positioned with the use of pulsed or con-
tinuous noiselike signals that are emitted from two or
more spaced points. Up to 32 lobes of the directivity
pattern can be formed, along with up to seven distance
focusing zones if the source is in the Fresnel zone of the
array. Four responses of the array can be stored in the
system memory. The operator can display a chosen
response. From each array lobe, the signal can be fed to
an additional external device, either in analog or in dig-
ital form.

The DNPS was tested in combination with an exper-
imental fixed underwater receiving array that was linear
and equidistant. The array was laid on the bottom of a
sea shelf slope at a depth of 460 m. At the array nodes,
omnidirectonal hydrophones were placed at steps of
10 m. The array received the signals in the frequency
band of 5–100 Hz.

For processing by the DNPS, 16 hydrophones were
chosen and were randomly spaced at 10–60 m. These
hydrophones formed a random linear array with a
600-m aperture. With the DNPS, 32 lobes were formed
within a sector of 180°. Because of the symmetry of the
array, similar lobes were also formed on the other side
of the array baseline. Thus, an all-around scanning took
place, which resulted in a bilateral bearing: two bear-
ings that were symmetric about the array baseline cor-
responded to each noise source. The signals received in
each directivity lobe were fed to a digital spectrum ana-
lyzer with a resolution of 1 Hz. Simultaneously with the
acoustic measurements, the sea region was surveyed by
a radar station. The acoustic observations were per-
formed for several days. One to six noise sources were
detected in the area scanned by the array. The spectral
analysis showed the existence of harmonic components
in all detected noise sources, which is characteristic of
signals produced by rotating ship propellers. According
to the radar observations, most of the noise sources
detected were ships passing at distances of 10–50 km
from the array. In some cases, the array–DNPS system
detected the sounds of rotating propellers that were not
identified by the radar. The acoustically obtained bear-
ings coincided with those detected by the radar to an
accuracy of 1°–2° near the array directrix and 10°–20°
near the array baseline; these values corresponded to the
calculated widths of the lobes of the directivity pattern.
The angular accuracy of the radiolocation was about 1°.

The experimental measurements and the tests carried
out in the freshwater basin and in the coastal sea region
demonstrated the possibility of using long, fixed, bot-
tom-moored compensated additive arrays with random
hydrophone positions for locating sources of noise sig-
nals that propagate in an underwater waveguide in the
form of a sum of normal waves. Also, the efficiency and
reliability of the system developed for the processing of
signals received by a long (up to 600 m) random array
were revealed at frequencies of several tens of hertz.
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Abstract—The method of active impedance matching is applied to the well-known problem of an acoustically
transparent body. Two laws of active force control, by velocity and by pressure, are obtained for solving the
problem. © 2004 MAIK “Nauka/Interperiodica”.
The problem of making an arbitrary body acousti-
cally transparent (nonscattering) was formulated and
solved in the 1960s by several authors independently
[1–6]. All solutions obtained at that time were based on
the factorization of the acoustic field (i.e., on the sepa-
ration of the field into the incident and scattered com-
ponents) using the Helmholtz–Huygens integral opera-
tor and on the subsequent compensation of the scattered
field component by additional sources of sound (actua-
tors). In the method proposed by Malyuzhinets [2, 3], a
body is surrounded by four acoustically transparent
closed surfaces. Two inner surfaces carry continuously
distributed sensors for measuring the pressure and the
normal velocity, which are necessary for the factoriza-
tion of the field. Two outer surfaces (also called Huy-
gens surfaces) carry continuously distributed monopole
and dipole actuators, which radiate into the outer region
and thus compensate the scattered component without
distorting the total field in the inner region. The actua-
tors are controlled by the signals received from the sen-
sors. The main disadvantage of the Malyuzhinets solu-
tion and other solutions based on the Huygens princi-
ple is the difficulty of realizing in practice measuring
and active surfaces with the aforementioned proper-
ties: these surfaces, which are covered with closely
spaced material sensors or actuators, should be acous-
tically transparent. The use of discretely positioned
transducers instead of continuously distributed ones
1063-7710/04/5006- $26.00 © 20647
partially overcomes the aforementioned difficulty but
also creates other ones [7–10]. Therefore, the problem
of an acoustically transparent body, a particular case of
the more general problem of the scattered acoustic
field control, which has a wide practical application,
continues to attract the interest of researchers (see,
e.g., [10–15]).

The present paper suggests a new way of solving the
problem of an acoustically transparent body without
using the Huygens principle. The problem is solved by
the method of active impedance matching [16], which
requires no preliminary factorization of the field. In
practice, the solution is realized by a set of vibration
sensors and actuators positioned on the surface of a
body; for example, this may be a thin active (smart)
coating. The paper presents a theoretical solution illus-
trated by an example with a spherical scatterer.

Consider an inhomogeneous elastic body placed in
a medium that is not necessarily homogeneous and
unbounded. The body occupies a volume V and is
bounded by a surface S, which is the contact surface
between the body and the medium. In the medium out-
side the body, some sources are present. In the absence
of the body, they produce a pressure field pi(x), which
is called the incident field in the following consider-
ation. In the presence of the body, whose acoustic prop-
erties are assumed to be different from those of the
medium, the field component ps(x) scattered by the
004 MAIK “Nauka/Interperiodica”
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body is present. The problem is formulated as follows:
by using an additional (active) force fa(s) applied to the
contact surface and generating an active field compo-
nent pa(x), it is necessary to compensate the scattered
component so as to obtain ps(x) + pa(x) = 0, where x is
the coordinate of an arbitrary point of the medium out-
side the body.

Let us refine the statement of the problem. The total
pressure field consists of three components:

p(x) = pi(x) + ps(x) + pa(x). (1)

The quantities available for the measurements are the
current values of pressure p(s) and normal velocity v(s)
of the total field at the surface of the body, s ∈  S. We
assume that the vibrations of the medium and the body
are linear with the conventional boundary conditions
that are satisfied at the contact surface S; namely, the
normal velocities of the body and the medium at the
surface are identical, the normal stresses in the elastic
body are equal to the pressure in the medium, and the
tangential stresses are equal to zero. The vibrations
are assumed to be harmonic in time, and the factor
exp(–iωt) is omitted in the following calculations.

The problem will be solved by the method of active
impedance matching [16], which, in the case under
consideration, is as follows. The surface S is divided
into N small elements ∆Sj, and, within each element, the
pressure and the normal velocity are taken to be con-
stant. Let us introduce the vectors p and v, whose com-
ponents are the amplitudes of the forces and normal
velocities, respectively, of the total field (1) at the sur-
face S:

p = [p(s1)∆S1; …; p(sN)∆SN]T, v = [v (s1); …;v(sN)]T. (2)

Here, sj is the coordinate of a point of the surface ele-
ment ∆Sj. Similar notations can be introduced for each
component of the total field (1): for example, ps and v s
are N-vectors of type (2) for the scattered field, etc.

Now, let us introduce three square matrices of order
N: Z, Zi, and Zr. Matrix Z is the impedance matrix of the
body in vacuum. It determines the relation between the
vector of external forces f = [f1, …, fN]T applied to sur-
face elements ∆Sj and the vector of normal velocities
v = [v 1, …, vN]T acquired by the surface elements
under the effect of these forces: f = Zv. The matrix Zi is
determined in a similar way: it is an N × N impedance
matrix of the medium in the volume of the body, i.e.,
the impedance matrix of an isolated volume V filled
with the medium, with respect to N external forces fj,
each of which is uniformly distributed over its respec-
tive surface element ∆Sj (j = 1, …, N). Finally, the third
matrix Zr is the impedance matrix of the medium out-
side the body, i.e., the radiation matrix of the body.
The positive direction of forces and normal velocities
at the surface S is assumed to be the direction of the
outer normal.
It can be easily verified that the field components
satisfy the relations:

(3)

For example, for the incident field, the quantity (–pi)
is the N vector of forces acting on the medium enclosed
in the volume V from the side of the medium outside this
volume. Since, by definition, these forces are related to
the vector of response v i via the matrix Zi, the first of
relations (3) is satisfied. Other relations are verified in
the same way.

Let us introduce two N × N matrices of scattering
coefficients, R and Q, for pressure and for normal
velocity, respectively, to describe the relation between
the scattered and incident field components on the sur-
face S of the body:

ps = Rpi,  v s = Qv i. (4)

Using relations (3), we obtain the formulas

(5)

where I is the unit matrix of order N; and Y = Z–1, Yi =

, and Yr =  are mobility matrices. Formulas (5)
represent the generalization of the known Fresnel for-
mulas, which describe the scattering (reflection and
transmission) of plane waves by flat obstacles, to an
arbitrary case of scattering. From Eqs. (4) and (5), it
follows that the scattered field is completely deter-
mined by the three impedance matrices introduced
above and, naturally, by the incident field. From these
formulas, it also follows that the scattered field is
absent and the body is acoustically transparent only if
the impedance matrix Z of the body in vacuum is iden-
tical to the matrix Zi of the medium enclosed in the vol-
ume V of the body; i.e., if the body does not differ from
the medium in terms of the response of the surface S to
an external acoustic action. In particular, this means
that none of the bodies, neither active nor passive, with
a locally responding surface, i.e., with a diagonal
impedance matrix Z, can be acoustically transparent,
because the matrix Zi of the medium is nondiagonal.

Let an active force vector fa = [fa1, …, faN]T be
applied to the surface S of the body, where faj is the
resultant of active forces acting on the surface element
∆Sj. Then, the velocity vector given by Eq. (2) takes the
form

v = v i + Qv i + (Z + Zr)–1fa. (6)

Assume that the active forces are proportional to the
amplitudes of the total normal velocity of the surface:
fa = Av, where A is the matrix to be determined. Substi-
tuting this expression in Eq. (6), we obtain that the total

pi Ziv i+ 0, ps Zrv s– 0, pa Zrv a– 0,= = =

pi ps Z v i v s+( )+ + 0.=

Q Zr Z+( ) 1– Zi Z–( ) YZr I+( ) 1– YZi I–( ),= =

R Yr Y+( ) 1–
Yi Y–( ) ZYr I+( ) 1–

ZYi I–( ),= =

Zi
1– Zr

1–
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velocity v  of the surface is equal to the velocity of the
incident field, v i, on the condition that A = Z – Zi. It can
be easily verified that, in this case, the total pressure p
on the surface coincides with the pressure pi of the inci-
dent field. Thus, under the effect of active forces

fa = (Z – Zi)v , (7)

the total field at the surface of the body does not differ
from the incident field; i.e., the scattered field compo-
nent proves to be compensated by the active compo-
nent. Consequently, the active field component also
compensates the scattered component at any point out-
side the body (this statement can be proved, e.g., by
using the Helmholtz–Huygens integral) and the body
becomes nonscattering.

Now, let us assume that the active forces are propor-
tional to the pressure amplitudes of the total field given
by Eq. (2) at the surface S: fa = Bp. Then, from Eq. (6),
in the same manner as above, we obtain B = I – ZYi, and
the active forces

fa = (I – ZYi)p, (8)

applied to the surface of the body also completely com-
pensate the scattered field, which makes the body
acoustically transparent.

Thus, two laws are obtained for controlling the
active forces—Eqs. (7) and (8)—and these laws solve
the problem under study. If law (7) is used, the active
forces are proportional to the current velocity ampli-
tudes measured on the surface of the body. In the case
pertaining to law (8), the active forces are proportional
to the pressure amplitudes of the total field, which are
measured at the surface of the body. To decide which of
the two laws is preferable, one should consider the spe-
cific (additional) conditions of the problem, for exam-
ple, which quantity is measured with the higher accu-
racy or whether or not the body itself is a source of radi-
ation. However, in both cases of control, either by
velocity or by pressure, the matrices Z and Zi (or Yi) are
assumed to be known. The impedance matrix Zi of the
medium in the volume of the body is calculated from
the density of the medium ρ, the velocity of sound in
the medium c, and the geometric parameters of the
body. The matrix Z of the “dry” body can be calculated
in simple cases. In the general case, it can be obtained
experimentally by measuring the scattered field with a
special excitation by external sources of sound. One of
the versions of this method is described in [17].

The above consideration suggests the following
conclusions. An arbitrary body can be made acousti-
cally transparent by active methods only. No passive
coating can make the body nonscattering in the general
case. When any active method is used, the active forces
must act on the whole closed surface of the body, and
the control over these forces must be global in the sense
that the active force applied to each surface element
depends on the field amplitudes measured on all other
surface elements. No active system with local control
(when each active force is only controlled by the field
ACOUSTICAL PHYSICS      Vol. 50      No. 6      2004
measured at the point of its application) can provide a
complete compensation for the scattered field compo-
nent (except for certain limiting cases). Finally, from
the solution presented above, it follows that the prelim-
inary factorization of the field (the separation of the
scattered component) is not necessary for solving the
problem: the body can be made nonscattering by using
the active forces that are controlled by the current
amplitudes of the total field at the surface of the body.

As an example, let us consider a spherical body of
radius a in a homogeneous unbounded space. The aim
is to make this body acoustically transparent by using
an active force of type (7) or (8) distributed over its sur-
face. This problem can be solved analytically, and,
instead of dividing the surface of the body into ele-
ments, it is more convenient to use continuous depen-
dences and impedances with respect to the forces dis-
tributed in spherical harmonics.

Let an incident field pi(r, θ) (where r and θ are
spherical coordinates), generated by some external
source, be present in the space in the absence of the
body. For simplicity, this field is assumed to be axially
symmetric (independent of the third coordinate). At the
surface r = a, the field can be expanded in spherical har-
monics ψn(θ) as

The expansion coefficients of these series are related
by the formulas

(9)

Here, the quantity Zin is the specific impedance of the
medium in the spherical volume of radius a with
respect to the external action in the form of the nth
spherical harmonic applied to the surface r = a.

Now, let us place a spherical elastic body of radius a
at the coordinates origin. The properties of this body
with respect to continuously distributed external
actions are assumed to be axially symmetric and,
hence, can be characterized by a set of surface imped-
ances in vacuum Zn (where n = 0, 1, …), which corre-
spond to distributions in spherical harmonics. The pres-
ence of the body gives rise to a scattered field of the
form

At the surface of the body, the pressure and the
radial velocity of this field are expressed as

pi a θ,( ) pinψn θ( )
n 0=

∞

∑= , v i a θ,( ) v inψn θ( ).
n 0=

∞

∑=

v in

pin

Zin

-------, Zin iρc
jn ka( )
jn' ka( )
---------------, n– 0 1 … ., ,= = =

ps r θ,( ) psnψn θ( )
hn kr( )
hn ka( )
----------------.

n 0=

∞

∑=

ps a θ,( ) psnψn θ( ), v s a θ,( )
n 0=

∞

∑ v snψn θ( ),
n 0=

∞

∑= =
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where

(10)

are the specific impedances of the exterior of the body,
or, in other words, the radiation impedances of the body
vibrating in spherical harmonics. At the surface of the
body, the following boundary conditions are satisfied:

pin + psn + Zn(v in + v sn) = 0, n = 0, 1, 2, … .

Substituting Eqs. (9) and (10) in this expression, we
obtain the nth scattering coefficients for pressure and
velocity (by analogy with Eqs. (5)) in the form

Let us apply a velocity-controlled active force to the
surface of the body:

(11)

where v n is the amplitude of the nth spherical harmonic
of the current radial velocity component of the vibrat-
ing surface of the body. For this velocity amplitude, the
following equation of the type of Eq. (6) is valid:

v n = v in + Qnv in – Qnv n.

This yields vn = v in, and, performing some simple trans-
formations, we obtain pn = pin. Thus, active force (11)
completely compensates for the scattering. In a similar
way, it can be shown that a pressure-controlled active
force also completely compensates for the scattered
field component and makes the body acoustically trans-
parent.

v sn

psn

Zrn

------- Zrn iρc
hn ka( )
hn' ka( )
---------------- n,=, 0 1 …, ,= =

Rn

psn

pin

-------
Yin Yn–
Yrn Yn+
------------------- Qn,

v sn

v in

--------
Zin Zn–
Zrn Zn+
-------------------.= = = =

f a θ( ) v n Zn Zin–( )ψn θ( ),
n 0=

∞

∑=
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Abstract—This study is devoted to the development of the ray theory of diffraction in application to arbitrary
(nonconvex) smooth obstacles in the scalar case. A three-dimensional problem is considered. An asymptotic
method of estimating the diffraction integrals is described. The method is based on the multidimensional sta-
tionary phase approach. The diffraction integrals are obtained on the basis of the generalization of the Kirchhoff
physical theory of diffraction. Explicit expressions are derived for the pressure in the reflected wave in the cases
of its single and double reflections. © 2004 MAIK “Nauka/Interperiodica”.
A precise investigation of the scattering of high-fre-
quency waves by surfaces in continuous media encoun-
ters considerable difficulties when the wavelength is
much smaller than the average size of the obstacles [1].
In this case, numerical methods, such as the finite-ele-
ment and boundary-element methods, require a grid
with a large number of nodes, which leads to an insta-
bility in the calculations.

To overcome this difficulty, different asymptotic
approaches have been developed, such as the Keller
geometrical theory of diffracted rays, the Kirchhoff
theory, creeping waves, etc. Analytical methods suit-
able for this class of problems are described in detail
in [2–5].

The main limitation of the ray methods is related to
the fact that they mainly apply to convex obstacles,
because only for these objects can the “light” and
“shadow” zones be easily separated.

Among the recent publications, one should note the
paper [6], which uses a method based on the analytical
continuation of the scattered field, the idea of which
dates back to Rayleigh’s works.

The diffraction problem is considerably compli-
cated when the boundary surface of the scatterer allows
rereflections of waves. In principle, multiple reflections
can be studied in terms of the ray rereflections, for
example, on the basis of the Keller geometrical theory
of diffraction. However, no publications can be found
to provide the formulas for multiple reflections in an
explicit form. Only particular two-dimensional prob-
lems are known [7], the solutions to which are obtained
for reflectors of canonical shape in the case of twofold
reflections.

The alternative method developed in this paper is
based on the study of the Kirchhoff multiple diffraction
integrals with the use of the multidimensional station-
1063-7710/04/5006- $26.00 © 20651
ary phase approach. The proposed method makes it
possible to represent the amplitude of the rereflected
wave field in a unique explicit form for an arbitrary
number of rereflections from the surface of one or sev-
eral scatterers [8]. The present paper is devoted to the
study of a particular case of twofold reflections, which,
in the framework of the proposed method, provides the
basis for studying the problem of an arbitrary number
of multiple reflections.

Let us first describe the method for determining the
pressure in a singly reflected wave.

Let a high-frequency monochromatic spherical
wave originating from a point x0 of an acoustic medium
be incident on the surface S of an obstacle. One of the
main informative parameters of the scattered field is the
pressure in the reflected wave at a point x. The pressure
in the reflected wave is known to be determined by the
direction of the wave incidence and by the small vicin-
ity of the point of specular reflection, y* ∈  S. Hence, for
higher frequencies, the pressure in the reflected wave
can be determined in terms of the ray concepts on the
basis of the stationary phase approach. This approach
was used earlier in solving the planar problem [9, 10].

If any ray of the form of x0 – y – x is reflected from
the surface S (y ∈ S) only once (Fig. 1), then, according
to the Kirchhoff physical theory of diffraction, the pres-
sure p(x) in the reflected wave is determined by the inte-
gral [11]

(1)

provided that the boundary S of the obstacle is acousti-
cally hard, i.e., ∂p/∂n|S = 0. Here, pinc(y) is the pressure
in the incident wave at the boundary S, Φ is the poten-
tial of the fundamental solution (Green’s function), ny is

p x( ) 2 pinc y( )∂Φ
∂ny

-------- S,d

S

∫∫=
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the outer normal to the surface S at the point y, k is the
wave number, and

(2)

For k  ∞,

(3)

where γ is the angle between the normal ny and the
direction of incidence of the ray x0 – y; |x0 – y| and |x – y|
are the distances between the points x0 and y ∈  S and
between the points x and y, respectively.

When the ray is incident from the point x0, the sur-
face S has a point y* where the ray intersects it and
where the normal to the surface together with the inci-
dent ray determine the plane in which the reflected ray
lies. Let us denote |x0 – y*| = L0 and |x – y*| = L. Then,
from Eqs. (1)–(3), we obtain the following basic repre-
sentation (the nonoscillating functions are factored out
from under the integral sign):

(4)

The ray representation can be obtained from Eq. (4)
by using the stationary phase approach [12]. When esti-
mating integral (4), it is necessary to take into account
the points y from a small vicinity of the point y*. Let us
relate the small vicinity of the point y* ∈  S to the right-
handed coordinate system determined by the normal

pinc y( ) x0 y– 1– ik x0 y–( ),exp=

Φ 4π( ) 1– x y– 1– ik x y–( ).exp=

∂Φ
∂ny

-------- = ik γ 4π( ) 1– x y– 1–cos

× ik x y–( ) 1 O k 1–( )+[ ] ,exp

p x( ) ik
2π
------ γcos

L0L
----------- ikϕ( ) S,dexp

S

∫∫=

ϕ x0 y– x y– .+=

x

L

n L0

x0

y*

y

Fig. 1. Single reflection of a high-frequency acoustic wave
from a smooth obstacle.
and the surface curvature lines at the point y* ∈  S. Then,
an arbitrary point y ∈  S from the vicinity of the point y*
will have the coordinates y[∆s1, ∆s2, –0.5(k1(∆s1)2 +
k2(∆s2)2)], where ∆s1 and ∆s2 are the arc increments

along the curvature lines, k1 =  and k2 =  are the
principal curvatures and R1 and R2 are the principal cur-
vature radii of the surface S at the point y* ∈  S, and
k1(∆s1)2 + k2(∆s2)2 is the second quadratic form of the
surface at the point y* of surface S with respect to the
curvature lines.

Let us apply the cosine theorem to the triangles
x0y*y and xy*y:

(5)

From the scalar product of the vector {cosα, cosβ,
cosγ}, which is the unit vector of y*x0, with ∆s = {∆s1,
∆s2, 0.5[(k1(∆s1)2 + k2(∆s2)2]} and the scalar product
of the vector {–cosα, –cosβ, cosγ}, which is the unit
vector of y*x, with ∆s, we obtain

If we ignore the quantities that are small compared
to (∆s1)2, ∆s1∆s2, and (∆s2)2, from Eqs. (5) we obtain the
representations

Hence,

R1
1– R2

1–

x0 y– 2 L0
2= ∆s 2 2L0 ∆s x0y*y,∠cos–+

x y– 2 L2 ∆s 2
2L ∆s xy*y.∠cos–+=

–

∆s x0y*y∠cos ∆s1 α ∆s2 βcos+cos=

+ 0.5 k1 ∆s1( )2 k2 ∆s2( )2
+( ) γ,cos

∆s xy*y∠cos ∆– s1 α ∆s2 βcos–cos=

+ 0.5 k1 ∆s1( )2 k2 ∆s2( )2
+( ) γ.cos

x0 y– L0 ∆s1 α ∆s2 βcos–cos–=

+ 0.5 L0
1– αsin

2
k1 γcos+( ) ∆s1( )2

– L0
1– α β∆s1∆s2coscos

+ 0.5 L0
1– β k2 γcos+sin

2( ) ∆s2( )2
,

x y– L ∆s1 α ∆s2 βcos+cos+=

+ 0.5 L 1– αsin
2

k1 γcos+( ) ∆s1( )2

– L 1– α β∆s1∆s2coscos

+ 0.5 L 1– β k2 γcos+sin
2( ) ∆s2( )2

.

ϕ L0 L 0.5d11 ∆s1( )2
d12∆s1∆s2+ + +=

+ 0.5d22 ∆s2( )2,
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where

The absence of the first degrees of ∆s1 and ∆s2 in the
phase ϕ means that the point y* of the direct ray reflec-
tion corresponds to a stationary value of the phase ϕ.
Thus, the principal term of the asymptotics of integral (4)
is determined by the coefficients multiplying (∆s1)2,
∆s1∆s2, and (∆s2)2 and can be derived from Eq. (4) by

d11 L0
1– L 1–+( ) α 2k1 γ; cos+sin

2
=

d12 L0
1– L 1–+( ) α β;coscos–=

d22 L0
1– L 1–+( ) β 2k2 γ.cos+sin

2
=
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applying the two-dimensional stationary phase
approach [12]:

where D2 is the Hessian of the symmetric structure
(dij = dji; i, j = 1, 2) and δ2 =  is the difference
between the numbers of positive and negative eigenval-
ues of matrix D2.

With allowance for the equality d21 = d12, the final
result has the following form:

p x( ) γ

i k L0 L+( ) π
4
--- δ2 2+( )+

 
 
 

exp

L0L det D2( )
----------------------------------------------------------------------------cos ,=

signD2
(6)p x( )

i k L0 L+( ) π
4
--- δ2 2+( )+

 
 
 

exp

L0 L+( )2
2L0L L0 L+( ) k2 α k1 βsin

2
+sin

2( ) γ 4L0
2L2K+cos

1–
+

----------------------------------------------------------------------------------------------------------------------------------------------------------------.=
Here, K = k1k2 is the Gaussian curvature of the sur-
face S at the point y* and {–cosα, –cosβ, –cosγ} is
the vector that determines the direction of incidence
of the ray x0 – y* in the chosen coordinate system.

For formula (6), we consider two limiting cases. If
k1 = k2 = 0, Eq. (6) yields the known result for the
pressure in a wave reflected from a plane: p(x) = –(L0 +
L)–1exp[ik(L0 + L)].

In the case of backscattering in the far field,
Eq. (6) coincides with the representation given in [11]:

p(x) = 0.5i exp  + .

Formula (6) was derived for the case of a high-fre-
quency wave incident on a convex surface. If the wave
is incident on a concave surface, the principal curva-
tures k1 and k2 should be considered as negative.

Formula (6) for the pressure in a wave singly
reflected from an acoustically hard surface is given in
[13]. There, it is derived in terms of the Keller geomet-
rical theory of diffraction. This means that the principal
term of the asymptotics of the diffraction integral coin-
cides with the result of calculating the pressure in the
reflected wave with the geometrical theory of diffrac-
tion. At the same time, the application of the Keller geo-
metrical theory of diffraction, which is based on the use
of divergence coefficients, becomes fairly cumbersome
even in the case of a twofold reflection. If we consider
the problem of an N-fold (N is arbitrary) reflection of a
high-frequency wave from a surface, it is more conve-
nient to rely on the estimate of a 2N-fold diffraction
integral using the multidimensional stationary phase
approach. For studying the general case of an arbitrary

L0
2– R1R2 i 2kL0

 π
4
---δ2



number of rereflections, the basic problem is that of a
twofold reflection, which is considered below.

A direct application of the Kirchhoff approximation
is impossible in this case [4], because it does not
describe multiply reflected waves. If in Green’s formula
we replace pinc(y) by the geometrical-optics primary
field, the Kirchhoff approximation will yield a singly
reflected wave. A twice-reflected wave is obtained only
when the boundary pressure pinc(y) includes both the
primary field and its single reflection. To solve the
problem of the twofold reflection, we begin with the
modification of the Kirchhoff approximation [4]. We
determine the twice-reflected waves by performing the
integration over the vicinity S2 of the second point of
specular reflection  for the rays obtained as a result
of the single reflection from the vicinity S1 of the first
point of specular reflection . This modification
means that, when determining the principal term of the
asymptotics of the fourfold diffraction integral, we
operate in the framework of calculating the pressure
amplitude in the twice-reflected wave in terms of the
geometrical theory of diffraction.

Let us consider the secondary reflection of the ray
x0 –  –  – x3 issuing from the point x0 and arriving

at the point x3 (Fig. 2). The points  and  may
belong to one surface or to two different surfaces. The
pressure at the point of reception, p(x3), is given by the
formula

y2*

y1*

y1* y2*

y1* y2*

p x3( ) 2 p y2( )∂Φ
∂n2
-------- S2.d

S2

∫∫=
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Here, p(y2) is the pressure in the incident wave at the
point y2 ∈  S2 of the vicinity of the point ; this pres-
sure is determined after the first reflection from the
vicinity S1 of the point .

At the same time, the pressure p(y2) is expressed by
a similar formula:

Taking into account that the pressure

determines the incident field caused by the point source
x0, we can write the following basic representation:

(7)

(8)

As in the case of a single reflection, we relate the
vicinities of the points of direct specular reflection,

 ∈ S1 and  ∈  S2, to the right-handed Cartesian
coordinates determined by the normals n1 and n2 and by
the curvature lines. Along the curvature lines, we deter-

mine the arc lengths ∆  and ∆  in the vicinity S1

of the point  and the arc lengths ∆  and ∆  in

y2*

y1*

p y2( ) 2 pinc y1( )∂Φ
∂n1
-------- S1.d

S1

∫∫=

pinc y1( ) x0 y1– 1– ik x0 y1–( )exp=

p x3( ) k
2π
------ 

 
2 γ1 γ2coscos

L0L1L2
---------------------------- eikϕ S1 S2,dd

S1

∫∫
S2

∫∫–=

ϕ x0 y1– y1 y2– y2 x3– ,+ +=

x0 y1*– L0, y1* y2*– L1, y2* x3– L2.= = =

y1* y2*

s1
1( ) s2

1( )

y1* s1
2( ) s2

2( )

x3

x0

L1

L0

L2

y2 y2
*

y1
*

y1

n1

n2

Fig. 2. Double reflection of a high-frequency acoustic wave
from a smooth obstacle.
the vicinity S2 of the point . As above, for small ∆

and ∆  (i = 1, 2), we obtain

Let us find the term |y1 – y2| = |y2y1| in the phase ϕ given
by Eq. (8). We consider this distance in the coordinate
system related to the point . In this coordinate sys-
tem, we denote the coordinates of the points y2(ξ2, η2, ζ2),

y1(ξ1, η1, ζ1), and ( , , ). Then, we represent
the vector y2y1 in the form

Here, the matrix A = (aij) (i, j = 1, 2, 3) is an orthogonal
matrix determining the change from the basis of the
Cartesian coordinate system at the point  to the basis

of the Cartesian coordinate system at the point .

Note that the second integral in Eq. (7) is only deter-
mined by the distances |x0 – y1|, |y1 – y2|, and |y2 – x3| and
by the shapes of the surfaces S1 and S2 and does not
depend on their rotation about the ray  –  when
the relative positions of S1 and x0 and the relative posi-
tions of S2 and x3 are retained. In this connection, in the
case of the twofold reflection of the ray x0 –  –  – x3,
when the surfaces S1 and S2 with the planes formed by
the normal n1 and the ray x0 –  and by the normal n2

and the ray  – x3, respectively, rotate as a solid whole

about the ray  – , the pressure p(x3) at the point x3

will remain unchanged. In what follows, we consider

y2* s1
i( )

s2
i( )

x0 y1– L0 ∆s1
1( ) α1 ∆s2

1( ) β1cos–cos–=

+ 0.5 L0
1– α1sin

2
k1

1( ) γ1cos+( ) ∆s1
1( )( )

2

– L0
1– α1 β1∆s1

1( )∆s2
1( )coscos

+ 0.5 L0
1– β1sin

2
k2

1( ) γ1cos+( ) ∆s2
1( )( )

2
,

y2 x3– L2 ∆s1
2( ) α2 ∆s2

2( ) β2cos+cos–=

+ 0.5 L2
1– α2sin

2
k1

2( ) γ2cos+( ) ∆s1
2( )( )

2

– L2
1– α2 β2∆s1

2( )∆s2
2( )coscos

+ 0.5 L2
1– β2sin

2
k2

2( ) γ2cos+( ) ∆s2
2( )( )

2
.

y2*

y1* ξ1
0 η1

0 ζ1
0

y2y1 y2*y1* Ay1*y1 y2*y2,–+=

y2y1 ξ1 ξ2 η1 η2 ς1 ς2–,–,–{ } ;=

y2*y1* ξ1
0 η1

0 ς1
0, ,{ } ,=

yi*yi ∆s1
i( ) ∆s2

i( ) 0.5 k1
i( ) ∆s1

i( )( )
2

k2
i( ) ∆s2

i( )( )
2

+( )–, ,{ } ,=

i 1 2.,=

y2*

y1*

y1* y2*

y1* y2*

y1*

y2*

y1* y2*
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the pressure p(x3) when the ray x0 –  –  – x3 lies in
a single plane.

Then, the elements aij of the orthogonal matrix A
have the form

With allowance for the properties of an orthogonal
matrix and with the relations

the term |y1 – y2| in the phase ϕ given by Eq. (8) is
reduced to the form

y1* y2*

a11

a21 
 
 

G12
1– β1

β2cos

α2cos– 
 
 

cos=

– α1

α2cos

β2cos 
 
 

cos γ1 γ2+( )cos ,

a12

a22 
 
 

G12
1– α1

– β2cos

α2cos 
 
 

cos=

– β1

α2cos

β2cos 
 
 

cos γ1 γ2+( )cos ,

a13

a23 
 
  – α2cos

– β2cos 
 
  γ1 γ2+( )sin

γ2sin
-----------------------------,=

a31

a32 
 
  α1cos

β1cos 
 
  γ1 γ2+( )sin

γ1sin
-----------------------------,=

a33 γ1 γ2+( ), G12cos– γ1 γ2.sinsin= =

a11ξ1
0 a21η1

0 a31ζ1
0+ +

=  L1 a11 α2cos a21 β2cos a31 γ2cos+ +( )
=  L1 α1,cos

a12ξ1
0 a22η1

0 a32ζ1
0+ +

=  L1 a12 α2cos a22 β2cos a32 γ2cos+ +( )
=  L1 β1,cos

a13ξ1
0 a23η1

0 a33ζ1
0+ +

=  L1 a13 α2cos a23 β2cos a33 γ2cos+ +( )
=  L– 1 γ1cos

y1 y2– L1 1–( )i 1+ ∆s1
i( ) α icos{ ∫

i 1=

2

∑+=

+ ∆s2
i( ) βi bi ∆s1

i( )( )
2

ci ∆s2
i( )( )

2
}++cos

– L1
1– α i βi∆s1

i( )∆s2
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Hence, we have

where

(9)

The absence of terms with the first degrees of ∆
(i, j = 1, 2) in the phase ϕ shows that the points  ∈  S1

and  ∈  S2 of the direct ray reflection correspond to a
stationary value of the phase ϕ (Eq. (8)).
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The final result can be obtained from Eq. (7) by
applying the stationary phase approach [6]:

(10)

where B = cosγ1cosγ2 and D4 = (dij) (i, j = 1, 2, 3, 4) is
the Hessian of the symmetric structure with its ele-
ments dij, i ≤ j being reduced to formula (9). Here, δ4 =

 is the difference between the numbers of posi-
tive and negative eigenvalues of the matrix D4.

Explicit expressions (6) and (10) obtained above
show that the pressure p(x) in the reflected wave is
determined by the principal curvatures, the Gaussian
curvature of the surface at the points of specular reflec-
tion, the distances between the points of specular
reflection, the distances of these points from the source
of waves and from the point of reception of the reflected
wave, and the directions of the incident waves.

The method developed above is asymptotic. Formu-
las (6) and (10) for calculating the amplitudes of singly
reflected and a twice-reflected waves, respectively, are

valid for kd @ 1, k  @ 1, and k  @ 1, where d is

the characteristic size of the scatterer and  and

 (m = 1, 2) are the principal curvature radii of the

surface at the points of specular reflection  and .

The proposed method opens up the way for deter-
mining an expression in a closed form for the ray
amplitude in the case of an arbitrary number of rereflec-
tions of acoustic or elastic waves.
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Abstract—Experimental data are presented on the measurement of the cross-correlation coefficients and the dif-
ferences in the arrival times (temporal spectra) of acoustic signals transmitted through a 210-km-long quasi-sta-
tionary track in the Atlantic Ocean. At the summit of the Josephine Seamount, a continuous pseudonoise signal
was emitted in the one-third-octave band with a mean frequency of 630 Hz. The signal was received at the Ampere
Seamount by a 40-m flexible vertical array with a directivity pattern in the form of a static fan of 32 lobes. The
width of each lobe was ~3°. At a signal-to-noise ratio of about 3 dB and with an incomplete resolution of multipath
signals by the array, the correlation coefficients reached a value of 0.48. The rms fluctuations of the differences in
the arrival times varied from 1.8 to 3.1 ms depending on the signal arrival angles. The factors responsible for the
low correlation coefficients and the relatively high fluctuations of the arrival time differences are discussed. Appar-
ently, one of the factors is the presence of short-period internal waves. © 2004 MAIK “Nauka/Interperiodica”.
Recently, particular emphasis has been placed upon
the problems of sound propagation in complicated
acoustic oceanic conditions. Many publications are
devoted to modeling the sound fields for the case of sig-
nal propagation in a shallow sea, on a coastal shelf, and
in the presence of internal waves [1–4]. However, to
make theoretical predictions about the sound field
structure that corresponds to actual characteristics and
their variability is rather difficult in many cases, espe-
cially in complicated conditions of sound propagation.
In light of this, it is necessary to carry out experimental
measurements on stationary tracks with a subsequent
comparison of the field data with the results of calcula-
tions.

The interest in studying acoustic signal propagation
on a coastal shelf or on continent slopes is dictated by
the necessity of constructing stationary hydroacoustic
systems. These are necessary for monitoring certain
oceanic regions, as well as for the reception of acoustic
signals caused by some large-scale natural phenomena,
such as, e.g., underwater earthquakes generating tsu-
nami. In these cases, it is necessary to take into account
the spatial and temporal features of the sound field
structure that are caused not only by the hydrological
characteristics of a specific oceanic region but by the
bottom relief as well.

It is known that the reasons for the instability of
sound waves propagating in a water medium can be
both spatial-temporal variations in the oceanic charac-
teristics, primarily in the sound velocity field, and a
change in the positions of the transmission and recep-
tion points, for example, during an experiment with
drifting ships. In order to separate the influence of the
1063-7710/04/5006- $26.00 © 20657
spatial instability of the experimental geometry from
that of oceanic spatial-temporal variations on the char-
acteristics of signals propagating between the source
and the receiver, an attempt was made to construct a
stationary track. To construct such a track in the open
ocean with depths of several kilometers is a very diffi-
cult problem. Therefore, for carrying out such investi-
gations, two research vessels (transmitting and receiv-
ing) were anchored at the summits of the Josephine and
the Ampere seamounts. The seamounts are located in
the eastern part of the Atlantic Ocean, near the Strait of
Gibraltar. The ocean depth around them reaches 4000–
4900 m.

Let us consider acoustic-hydrological conditions of
the experiments in more detail.

Just before the ships were anchored, extensive topo-
graphic surveys were made in the region of the sea-
mounts. For example, Fig. 1a presents the results of
such a survey around the Josephine Seamount, and
Fig. 1b shows the image of this seamount that was
obtained using special echo sounders. Several duplicate
images of the summit of this seamount in Fig. 1b were
obtained because of the multiple reflections of the
echo-sounder pulse from the summit itself and from the
ocean surface. It is seen that the summit represents an
almost smooth plateau with very steep (up to 30°)
slopes.

In accordance with the data on the bottom relief in
the region of the selected seamounts, the transmitting
ship was anchored at the summit of the Josephine Sea-
mount at the sea depth H ~ 180 m, while the receiving
ship was anchored at the summit of the Ampere Sea-
mount, at H ~ 140 m. The separation between the points
004 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) Results of a topographic survey around the Josephine Seamount and (b) the relief of the seamount obtained by a special
echo sounder. The cross indicates the position of the emitting ship.
of emission and reception was ~210 km. As is known,
the length of train cables put overboard is usually
greater than the sea depth by a factor of 1.5. Therefore,
the positions of the ships could be changed within some
limits determined by both the length of the train cables
and the wind situation or the underwater currents. Since
possible changes in the distance between the sound
source and the receiving system are generally small,
such tracks are commonly considered to be stationary.
However, in a strict sense, the experiments were carried
out on a track that should be considered to be quasi-sta-
tionary.

In connection with the fact that the slopes of the sea-
mounts in the immediate vicinity of their summits were
within 15° to 30°, the ocean depth reached 4000 m at a
distance of 20 km from the sound source and at a dis-
tance of 30 km from the receiving system. The maximal
depth along the propagation track was ~4900 m. Thus,
the sea depth exceeded 4 km for the major part of the
210-km-long track of sound-signal propagation. The
source was put down to a depth of 110 m, and the center
of a 40-m receiving system was at a depth of 55 m. Fig-
ure 2 shows the general bottom relief along the track,
and the inset in the middle of this figure shows the mea-
sured depth dependence of the sound velocity c(z).

As is seen, the sound propagation conditions are
characterized by the presence of the two coupled
waveguides: the underwater sound channel with its axis
at a depth of ~500 m and the underwater sound channel
with its axis at a depth of ~2000 m. During the acoustic
experiments, the wind speed at the emission and recep-
tion points varied within 8–10 m/s. On the ocean sur-
face, the wind waves predominated and the surface
state corresponded to Beaufort IV (the rms deviation of
the surface was 0.3–0.5 m).

The experiments were carried out as follows. An
omnidirectional sound source carried by the ship that
was anchored at the Josephine Seamount emitted a con-
tinuous pseudonoise signal in the one-third-octave
band from 560 to 710 Hz with a mean frequency of
630 Hz. The multipath signal was received on the other
ship anchored at the Ampere Seamount with the use of
a 40-m vertical line array consisting of 296 nonequidis-
tantly arranged receivers. The latter were combined
into 74 phase centers. Being formed digitally, the static
fan of 32 lobes of the directivity pattern provided the
survey of the angular structure of the sound field in the
vertical plane in the range of ±48° (here, the plus and
minus signs refer to the signals arriving from above and
from below, respectively). At the mean signal fre-
quency of 630 Hz, the spatial resolution for each of the
32 lobes of the directivity pattern was ~3° (at the level
of 0.7). Note that the correlation interval determined by
the frequency band of the emitted signal was 7 ms.

For the correlation processing, we took only the
lobes that were related to the signal arrival angles in the
vertical plane and that had the highest signal-to-noise
ratio. The cross-correlation coefficients were deter-
mined, as were the arrival-time differences (the so-
called temporal spectrum) between the signals received
by different lobes of the static fan, i.e., between the sig-
nals received under different angles.

Let us consider now the results of the correlation
processing of the signals.

Figure 3 (on the left) shows the signal amplitudes A
received by three lobes of the directivity pattern of the
ACOUSTICAL PHYSICS      Vol. 50      No. 6      2004
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Fig. 2. General bottom relief along the 210-km-long track and the sound velocity profile (the inset in the middle).
static fan. The amplitudes averaged over a one-second-
long realization of the received signals are represented
on a linear scale along the ordinate axis; the observation
time (in minutes) t is represented by the abscissa; the
interval between the measurements is 1 min. The slope
angles of the lobes of the directivity pattern of the static
fan α are indicated on top: α1 = 2.7°, α2 = –6.7°, and
α3 = – 5.4°. It is necessary to note that all amplitudes in
the realizations under consideration (Figs. 3a–3c) are
normalized by the same maximum value that occurred
in one of them. As a reference for calculating the cross-
correlation functions, we choose the signal that had the
maximal signal-to-noise ratio. It is taken from the real-
ization for which the temporal amplitude variations of
the signal and its spectrum are shown in Fig. 3a. In each
of the plots of A(t) (Figs. 3a–3c), the first values (the
thicker lines) allow us to estimate the levels of interfer-
ence arriving under the indicated angles α, since they
were recorded at the instants when the useful signal was
not emitted.

The energy spectra S(f) of the received signals are
shown on the right of Fig. 3 (on the logarithmic scale).
As seen from the curves S(f), the signal-to-noise ratio
in the frequency range of 0.56–0.71 kHz does not
exceed 3 dB. The small value of the signal-to-noise
ratio in the experiment is explained not only by the
losses in the signal levels due to reflection from the bot-
tom and partially from the rough surface of the ocean
but also by the relatively high noise of the working
mechanisms of the receiving ship. In particular, the
center of the receiving array was at a distance of 55 m
from the ship hull, while the upper receivers were
only at a distance of 35 m from it.

The dependences of the cross-correlation coefficient
R on the time delay τ that were obtained by averaging
over 1.024 s are shown in Fig. 4. The cross-correlation
coefficient R is represented on the linear scale along the
ordinate axis, and the abscissa represents the delays τ
STICAL PHYSICS      Vol. 50      No. 6      2004
between the signals in the interval of ±100 ms. Here,
16 sequential realizations R(τ) corresponding to a
15-min observation are presented for two pairs of direc-
tions of the signal arrivals. Figure 4a refers to the case
in which the determination of the cross-correlation
between the signals falling into two lobes of the direc-
tivity pattern, one of which is directed under the angle
α1 = 2.7° and the other under the angle α2 = –6.7°. Fig-
ure 4b shows similar plots of the cross-correlation
between the signals with the arrival angles α1 = 2.7°
and α3 = –5.4°.

The multimodal character of R(τ) is a consequence
of the multipath propagation. It is caused by the fact
that some signals, although they propagate over various
rays, have very close arrival angles and, therefore, fall
into a common lobe of the array directivity pattern. As
seen from Fig. 4, practically every subsequent realiza-
tion R(τ) differs in the form of its correlation peaks
from the previous realization separated from it by only
a 1-min interval. In addition, many realizations contain
different numbers (in some cases, up to 5–7) of correla-
tion peaks. Naturally, the cross-correlation coefficient
for each of the signals received by two different lobes
of the directivity pattern noticeably decreases. This is
related to the fact that other signals that fall in the same
lobes but that arrive outside the correlation interval
determined by the frequency band play the role of sig-
nal-generated noise. Therefore, the values of the corre-
lation coefficients, even for the largest peaks in every
realization, are small and lie within 0.32–0.44 for the sig-
nals with the arrival angles α1 and α2 and within 0.27–
0.48 for the signals with the arrival angles α1 and α3.

The temporal spectra, i.e., the set of arrival-time dif-
ferences of the same signal received by various lobes,
are presented in Fig. 5. For the signals with the arrival
angles α1 and α2, they are shown in Fig. 5a, and for the
signals with the angles α1 and α3, in Fig. 5b. Here, the
time delays τ corresponding to the positions of the cor-
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Fig. 3. Amplitudes (on the left) and frequency spectra (on the right) of the signals received by the directivity patterns of the static
fan for the arrival angles: (a) α1 = 2.7°, (b) α2 = –6.7°, and (c) α3 = –5.4°.
relation peaks on the τ axis in Fig. 4 are represented by
the ordinate, and the instants of their recording, by the
abscissa. Various symbols correspond to different val-
ues of the cross-correlation coefficient |R|: the dark cir-
cles refer to |R| ≥ 0.3, and the crosses, to |R| < 0.3. In
spite of the instability of the delays τ, one can trace sev-
eral more or less stable components in the temporal
spectra (Fig. 5). They precisely indicate that several
signals fall into the same lobes of the directivity pattern.
These signals propagate with the different arrival times
over various rays, which can be resolved in the correla-
tion processing. These components have the mean val-
ues of arrival-time differences ~–3, ~13, and ~ 43 ms
for the signals with the turning angles of the lobes α1 =
2.7° and α2 = –6.7° (Fig. 5a), as well as 0 and ~14 ms
for α1 = 2.7° and α3 = –5.4° (Fig. 5b). The rms fluctua-
tions στ (averaged over 9–15 measurements) vary
within 2.1–3.1 and 1.8–2.5 ms, respectively. These val-
ues of στ exceed similar values obtained in the experi-
ments studying sound propagation in an underwater
sound channel through the same distances in the deep
ocean.

A special feature of the ray pattern of sound propa-
gation shown in Fig. 6a is the clear separation of the
rays into two groups: one part of the signals propagates
only in the upper sound channel, and the other group
travels over the whole thickness of the waveguide. The
calculation of the sound-field structure on the track
under study showed that the energy signals propagating
only in the upper sound channel have launch angles at
the source located over the summit of the Josephine
Seamount that do not exceed ~±5°–6°. In this case, the
signals are reflected no less than once from the sloping
bottom at the seamount summit. All the rest of the
energy signals traveling over the rays with launch
angles greater than 6° are also reflected from the bot-
tom, but now they pass over the whole waveguide thick-
ness. In the region of the Ampere Seamount, the signals
again are reflected from the sloping bottom and arrive
at the receiving array. The rays corresponding to the
arrival directions of these signals are shown in Fig. 6b.
Considering this end segment of the track, one can see
three groups of rays. According to the calculation, each
group contains several rays with close grazing angles.
One group has the arrival angle ~2°, the second has
~–8.5°, and the third, ~–6°.

It is precisely these three groups of signals that were
received in the experiment by three lobes of the static
fan of the directivity pattern of the array. The rest of the
29 lobes of the fan did not detect the signals, because
the latter were below the noise level. The reception of a
great number of the signals by each of the three lobes
of the pattern resulted in both the multimodal character
of the correlation functions and the decrease in each
separate peak. In addition, the structure of the correla-
tion functions undergoes noticeable changes within one
minute.

However, such variability of the temporal spectra
and the correlation coefficients should not be directly
related to the fact that the measurements were carried
out on a quasi-stationary track, i.e., under certain
changes in the distance between the emitting and
ACOUSTICAL PHYSICS      Vol. 50      No. 6      2004
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Fig. 4. Variability of the cross-correlation coefficient between signals with the following arrival angles: (a) α1 = 2.7° and α2 = −6.7°;
(b) α1 = 2.7° and α3 = –5.4°.
receiving systems because of the underwater currents
and the wind effect on the anchored ships. Under the
conditions of a quasi-stationary track, the separation
between the ships during such a short time could be
changed due to the above-mentioned factors only by
several tens of meters (20–30 m). Moreover, as the cal-
culations show, the distance between the anchored
ships during the whole experiment (under very adverse
conditions) could be changed by no more than several
ACOUSTICAL PHYSICS      Vol. 50      No. 6      2004
hundreds of meters (200–300). Such changes, when
operating in the deep ocean at distances of ~200 km, do
not lead to noticeable modifications of the sound field
structure. It is known, for example, that even on drifting
ships the correlation characteristics of the signals, as
well as the angular and temporal spectra of the sound
field, prove to be stable and reproducible in subsequent
measurements [5–7], including during operation on the
deep-water part of the track under study [8]. A quite dif-
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ferent situation arises in our case, in which the emission
and reception points are located in shallow water with
a sloping bottom. Their movement relative to the bot-
tom changes the sites from which the signals are
reflected, and the reflections are different for various
rays. Therefore, small changes in the positions of the
corresponding points influence in different ways the
temporal delays of signals falling onto the same lobe,
although the signals propagate over different rays.
However, calculations show that a small displacement
of the correspondents, which may happen during one
minute, should not lead to such changes of the field
structure as were observed in the experiments.

Another reason for the sound-field variations and,
apparently, the main one, may be the short-period inter-
nal waves that are related to the presence of a pro-
nounced thermocline (Fig. 2). This thermocline is
located at depths from 65 to 110 m, where the sound
velocity varies by 10.5 m/s. As the depth increases, the
sound velocity decreases to the very bottom at each of
the seamount summits but with smaller gradients. First,
such a depth dependence of the sound velocity leads to
a situation in which all the rays are reflected from the
bottom at very short initial and end sites of the track (as
we noted previously). Second, in the test regions on
shallow-water parts of the track in the thermocline,
short-period internal waves must be present. Their
upper frequency corresponds to the Brunt–Vaisala fre-
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Fig. 5. Variability of temporal spectra for the signals with
the following arrival angles: (a) α1 = 2.7°, α2 = –6.7°;
(b) α1 = 2.7° and α3 = –5.4°.
quency. The latter is determined from the following for-
mula (see, for example, [9]):

where N is the circular frequency, g is the gravitational
acceleration, ρ is the water density, z is the depth, and c
is the sound velocity in water.

For the aforementioned velocity difference, ∆ρ ≈

1.33 × 10–3 g/cm3 and, therefore,  ≈ 2.9 × 10–5 g/cm4;

then, N ≈ 1.7 × 10–5 s–1, and the minimal period of an
internal wave is T ≈ 6.5 min.

Thus, the experiments described above were most
likely carried out in the presence of the short-period
internal waves with a period of 10–20 min, which is
typical for the conditions under consideration. Such
waves, as is known, propagate with a speed of 1–1.5 m/s.
Therefore, in shallow water, the hydrological condi-
tions in the narrow upper water layer, even within one
minute, continuously varied, which caused changes in
the vertical ray refraction. It should be noted that, con-
trary to horizontal refraction, the internal waves affect
the vertical refraction for any direction of their propa-
gation relative to the track. A variable vertical refrac-
tion in the upper layer leads to much greater spatial
changes of the sites on the sloping bottom where the
signal reflections happen, as compared to the small
movements of the corresponding points in space, with
all ensuing consequences.

Having considered the results of the experiments on
the quasi-stationary track including the Josephine and
the Ampere Seamounts, we can sum up our results.

The correlation characteristics of continuous pseud-
onoise signals in the frequency range 0.56–0.71 kHz
and the stability of their temporal spectra were investi-
gated on a 210-km-long track.

It is shown that almost each realization of the cross-
correlation function of the signals arriving in various
lobes of the directivity pattern differs from the previous
realization separated by a short one-minute interval.
This is related to the fact that each lobe of the pattern
receives several signals, sometimes up to seven in num-
ber. Therefore, even small fluctuations of the signal
intensity and the travel times over the rays connecting
corresponding points lead to noticeable changes in the
shapes of separate correlation peaks.

It is shown that, because of the multipath character of
the sound propagation that leads to the appearance of sig-
nal-generated noise, the maximum of the cross-correla-
tion coefficients of the signals received under different
angles in the vertical plane does not exceed 0.44–0.48.

Different factors are considered that, in a short one-
minute interval, can change the cross-correlation func-
tions and the differences in the signal-arrival times at
the site of the receiving system. It is noted that, most likely,

N
g
ρ
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Fig. 6. (a) Ray pattern of the sound field between the Josephine and the Ampere seamounts and (b) a fragment at the site of the
receiving array.
the main factor is the presence of short-period internal
waves with a period of 10–20 min, which exist in the
region of the summits of the Josephine and Ampere sea-
mounts. Owing to this, the rms fluctuation of the differ-
ences in the signal arrival times reaches 2.5–3.1 ms, which
noticeably exceeds the corresponding values obtained at
the same distances in the deep ocean.
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Abstract—A technique is developed for measuring the modulus of elasticity of a material with a Nanoscan
scanning force microscope on the basis of measuring the dependence of probe vibration frequency on the pen-
etration depth of the needle into the specimen. This technique makes it possible to study materials with elastic
moduli from 50 to 1000 GPa. The Young moduli of dense films of carbon nanotubes oriented at angles of 45°
and 90° to the quartz substrate are measured. From their ratio, the Young modulus in the direction perpendicular
to the tubes and the anisotropy of the elastic moduli are determined. A comparison of these values with the cor-
responding values obtained for a nanotube film deposited on a silicon substrate is carried out. On the basis of
this comparison, a conclusion is made concerning the interaction between single-layer nanotubes and between
nanotubes in a mixture of single-layer and multilayer ones. © 2004 MAIK “Nauka/Interperiodica”.
Since the discovery of a new carbon modification,
namely, carbon nanotubes, in 1991, the physical prop-
erties of these objects have been intensively studied all
over the world [1, 2]. Experiments were carried out
with both isolated nanotubes and nanotube bundles, as
well as with layers formed by various methods. These
layers may consist of oriented and disoriented nano-
tubes, and the tubes may be single-layer or multilayer
ones, integrated into bundles or not integrated. The
properties of nanotubes and their layers proved to be
unique in many respects. In particular, carbon nanotubes
have a very high value of the Young modulus (above 1
TPa), with a considerably smaller shear modulus [3];
their electrical properties strongly depend on deforma-
tion [4]; they may be in a metallic or semiconductor
state, and ballistic electron transport with zero electric
resistance is possible in them; the interior of nanotubes
can be filled with atoms of various elements; and nano-
tube layers exhibit an intense autoelectronic emission.
Every year, new prospects arise for the application of
this unique material. The layers of nanotubes are used
to produce efficient “cold” cathodes [5]; nanotubes are
filled with various materials for their storage and slow
consuption; composites are strengthened with nano-
tubes [3]; nanotubes are used in the fabrication of vac-
uum microelectronic devices; and, finally, different
ways of using nanotubes in medicine are being investi-
gated.
1063-7710/04/5006- $26.00 © 20664
Since many methods exist for fabricating nanotube
layers, and every method introduces its own structural
features in the material, no generally recognized values
of the physical parameters of nanotube layers have been
determined until now. A somewhat better situation
occurs for isolated nanotubes.

The present paper is aimed at studying the elastic
properties of dense layers of oriented carbon nano-
tubes. We study films of nanotubes uniformly oriented
relative to the substrate at angles of 90° and 45°. These
are of particular interest because of the anisotropy of
the physical properties of individual nanotubes. Each
nanotube in the layers has an exit both to the substrate
and to the opposite side.

The nanotube layers were fabricated by depositing
carbon atoms on a substrate surface using an electron-
beam vacuum evaporation of pure graphite. The details
of this method can be found in [6]. We used silicon and
quartz substrates. The layers on the silicon substrate
consist of a mixture of multilayer tubes from 3 to 5 nm
in diameter and single-layer tubes of diameter 1.1 nm.
The layers deposited on a quartz substrate consist, for
the most part, of single-layer nanotubes about 1 nm in
diameter. Figure 1 shows a photograph of the structure
of a nanotube layer deposited on a quartz substrate,
which was obtained using a scanning tunnel micro-
scope. The tubes are arranged in bundles with a bundle
radius of 3–5 nm and a distance of 1–2 nm between the
004 MAIK “Nauka/Interperiodica”
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bundles. The bonds between the nanotubes in the bun-
dles are covalent and, between the bundles, they are van
der Waals.

The measurements were performed with the use of
a Nanoscan scanning probe microscope (SPM)
intended for investigating the surfaces and mechanical
properties of materials (including superhard ones) and
thin films (coatings) [7].

A piezoceramic resonator with a high flexural rigid-
ity of the cantilever (kÁ ~ 104–105 N/m) and a resonance
frequency of about 12 kHz was used as a probe. A tri-
hedral diamond pyramid with an apex angle of about
60° was used as a needle; the effective radius of the nee-
dlepoint is about 100 nm. The instrument makes it pos-
sible to obtain an image of the relief and a map of the
distribution of the elastic properties, as well as to per-
form the measurements of the hardness and the elastic
modulus of materials, including materials with high val-
ues of mechanical parameters (hardness up to 100 GPa
and elastic modulus up to 1000 GPa). The values of
the Young modulus and Poisson’s ratio of the needle
are E = 1140 GPa and ν = 0.07, respectively.

The procedure for measuring the elastic modulus of
the material is based on recording the change in the fre-
quency of probe vibration with the penetration of the
needle into the specimen. In the process of measure-
ment, the cantilever with the needle fixed to its free end
vibrates in the direction normal to the specimen sur-
face. The base of the cantilever moves step by step nor-
mally to the surface, and the change in the resonant fre-
quency ∆f = f – f0 is measured as a function of the dis-
placement of the cantilever base. Unlike the widely
known “loading curves,” these dependences may be
called “advance curves,” since the displacement, rather
than the load, is the quantity represented by the abscissa
axis.

For the interpretation of the advance curves, a model
of the interaction of the probe with the specimen and a
model of the contact of the needlepoint with the surface
were proposed (Figs. 2a, 2b). The mechanical model of
the interaction between the probe and the specimen can
be represented as a load vibrating between two springs
(Fig. 2a). The cantilever is represented as an elastic ele-
ment with a rigidity kp. The rigidity of the contact area
is designated by kc and is determined by the magnitude
of deformation and by the elastic properties of the nee-
dle and the material under study. The model of the con-
tact of the needlepoint with the surface is constructed
under the assumption that the main contribution to the
interaction between the needle and the specimen is
made by the elastic repulsive forces caused by the
deformation of the material.

In the models, the following designations are used:
kp is the constant of flexural rigidity of the cantilever in
the direction of vibrations, kc is the rigidity of the con-
tact area, m = kp/(2πf0)2 is the effective mass of the sys-
ACOUSTICAL PHYSICS      Vol. 50      No. 6      2004
tem, f0 is the natural resonance frequency of the canti-
lever in the absence of contact with the surface, h is the
displacement of the cantilever base, σ is the deforma-
tion of the needle, and τ is the deformation of the spec-
imen. The elastic moduli of the needle and the speci-
men are denoted by En and E, respectively.

Below, by the modulus of elasticity E we mean the
quantity E = E'/(1 – ν2), where E' is the Young modu-
lus and ν is Poisson’s ratio. Since, for the great major-
ity of materials, Poisson’s ratio lies in the range from
0 to 0.5, it is the Young modulus that plays the domi-
nant part in the quantity E. For the case of hard and
superhard materials, which are characterized by high
values of elastic moduli and low values of Poisson’s
ratio, the difference between the quantities E' and E
usually does not exceed 5%.

The solution of the equation of motion of the system
represented in Fig. 2a gives the following dependence
of the variation in probe vibration frequency on the
rigidity of the contact area:

∆f = (f0/2kp)kc(h). (1)

2 nm

Fig. 1. A photograph of the structure of a layer of carbon
nanotubes deposited on a quartz substrate; the photograph
is taken by a scanning tunnel microscope.

Probe

Needle

Surface

h = σ + τ

σ
τ

(‡) (b)

kp

kc(h)

m

Fig. 2. (a) Mechanical model of the interaction between the
needle and the specimen and (b) the model of the contact of
the needlepoint with the surface.



 

666

        

GOGOLINSKIŒ 

 

et al

 

.

                                                              
The rigidity of the contact area kc(h) may be deter-
mined by using the Hertz model [8]. Denoting the force
arising owing to the summary deformation h in the
Hertz model by FH and the needle radius by R, we
obtain

(2)

The final formula for the dependence of the change
in the probe vibration frequency on the displacement of
its base h has the form

(3)

Taking the square of Eq. (3), we obtain

(∆f)2 = α2h,

where

It is convenient to introduce the probe coefficient cp
for describing the combined parameters of the probe
and the needle, which are usually known with insuffi-
cient accuracy. Thus, if we construct a plot of (∆f)2 ver-
sus h, a straight line will be observed in the operating
range. Measuring the slope of this line and taking the
square root of its value, it is possible to determine the
value of α, which is the main quantity to be measured.

Before the measurement, the needle and the probe
should be calibrated using a standard specimen for
determining the coefficient cp. To determine cp, the
advance curve is measured for a standard specimen
with a known value of its elastic modulus Est. Then, the

slope  is determined from the curve. The value of cp

is calculated from the expression cp = αst/ . The pro-
posed method makes it possible to measure the elastic

kc h( ) ∂FH/∂h 2 R
EnE

En E+
--------------- h.= =

∆f
f 0 R

kp
-------------E

En

En E+
--------------- h.=

α
f 0 R

kp
-------------E

En

En E+
---------------

f 0 R
kp

-------------E* cpE*.= = =

α st
2

Est*

0 2

0.4

0.3

0.2

0.1

864 h, nm

F(h), mN

90

45

Fig. 3. Pressing force as a function of the depth of needle
penetration into the film for the 90° and 45° films of nano-
tubes on a silicon substrate.
moduli of materials with respect to a standard mate-
rial with a known modulus of elasticity. The experi-
mental evaluation of this method was carried out with
a number of specimens with known values of elastic
moduli [9].

In the experiment involving the measurement the
elastic modulus of a layer of nanotubes, the condition
En @ E was satisfied so that the correction for the nee-
dle deformation could be neglected. Then, Eq. (3) can
be reduced to

(4)

In [10], the advance curves were obtained for a layer
of nanotubes deposited on a silicon substrate with an
orientation of 90° relative to the substrate.

In [11], the dependence of the pressing force F on
the displacement of the cantilever base h for 90° and
45° films deposited on a silicon substrate was deter-
mined:

(5)

This plot, taken from [11], is given in Fig. 3.
In this study, we present the results of measuring the

dependence of the square of the frequency shift on the
probe displacement for 90° and 45° films deposited on
a quartz substrate. The corresponding curves are shown
in Fig. 4. In these measurements, the needlepoint radius
R was about 100 nm and the constant of flexural rigidity
of the probe kp was about 6 × 104 N/m. Figure 5 shows
the relief of the surfaces of the investigated films. The
measured map of mechanical properties (moduli of
elasticity) practically reproduces the surface relief: the
convex parts of the surface have a greater modulus of
elasticity. As is seen from Fig. 4, there are two rectilin-
ear portions of the curves with an inflection at the pen-
etration depth of 5–6 nm from the beginning of the fre-
quency rise or 3–4 nm from the point of touching the
film surface. We believe that the modulus of elasticity
of the film is determined by the first rectilinear portion
of the curve and that the inflection and the second por-
tion are connected with the beginning of the deforma-
tion of the substrate. The first rectilinear portion for a
90° film corresponds to the value of the Young modulus
of 100 ± 9 GPa, and the second rectilinear portion
corresponds to the value of 148 ± 7 GPa. For the 45°
film, the first rectilinear portion corresponds to the
value of the Young modulus of 84 ± 9 GPa, and the
second rectilinear portion corresponds to the value of
118 ± 10 GPa.

Let us briefly consider the factors responsible for the
decrease by an order of magnitude in the Young modu-
lus of a nanotube layer compared to the Young modulus
of a single nanotube. The main factor is the bend of the
nanotubes. The forces required bend to a nanotube that
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Fig. 4. Frequency shift squared as a function of the probe displacement for the (a) 45° and (b) 90° films of nanotubes on a quartz
substrate.
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Fig. 5. Surface relief for the (a) 45° and (b) 90° films of nanotubes on a quartz substrate.
is already bent are several times smaller than the forces
required for stretching or compressing a nanotube [3].
In the specimens under study, nanotubes are combined
into bundles. In the bundles, the nanotubes are bent. An
isolated bundle of nanotubes, unlike a separate nano-
tube, has a Young modulus on the order of several hun-
dreds of GPa [3], which is close to the values deter-
mined for the nanotube layers under study. In [12], the
elastic modulus of a layer of normally oriented nano-
tubes (produced by a similar method) deposited on
plates made of yttrium aluminum garnet was measured
using a microwave resonator. The initially measured
elastic modulus across the layer was of the order of 1
TPa. However, after two weeks it became almost three
times smaller. In [12], this effect was explained by the
self-doping of the carbon nanotube layer with substrate
atoms. A similar effect cannot be completely ruled out
in our measurements.

Below we show that, using the results of our study
and the results reported in [11], it is possible to find the
yet unknown Young modulus corresponding to com-
pression in the direction perpendicular to the nanotube
ACOUSTICAL PHYSICS      Vol. 50      No. 6      2004
orientation for both silicon and quartz substrates. The
comparison of these moduli will allow us to draw a con-
clusion regarding the character of interaction between
the nanotubes.

Let us consider a layer of nanotubes oriented at an
angle β to the substrate (Fig. 6). In Fig. 6, instead of a
layer, a single nanotube is shown. The upper surface of
the layer coincides with the xy plane. The origin of
coordinates coincides with the needlepoint at the first
instant of contact. The pressing force of the needle F,
which is directed along the z axis, can be resolved into
two components at the point of contact: along the nan-
otube and perpendicular to it (F = F1 + F2). The compo-
nent F1 produces a displacement u1 along the nanotube,
and the component F2 produces a displacement u2 in
the perpendicular direction. These displacements, to a
certain accuracy, are connected with the force F by the
relations [8]

(6)u1 F β( ) 1
πE1r
------------, u2sin F β( ) 1

πE2r
------------,cos= =
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where E1 and E2 are the moduli of elasticity along and
across the nanotubes, respectively, and r = (x2 + y2 + z2)1/2.
The displacement along the z axis is

(7)

For E1 = E2 = E, we obtain the relation given in [8] for
the displacement in the z direction as a function of the
applied force for an isotropic medium:

Thus, for the modulus of elasticity measured in the
direction of the z axis, we can write

(8)

For β = 45°, Eq. (6) for the elastic modulus takes the
form

(9)

Similarly, for β = 90°, E90 = E1. The difference ∆ in the
elastic moduli, which we will determine for the 90° and
45° films, is equal to

(10)

The relative change in the elastic modulus at the transi-
tion from a 90° film to a 45° one equals
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Fig. 6. Illustration to the calculation.

Table

h , nm F45(h)/F90(h) = b

2 0.5

4 0.29

6 0.26

8 0.27
(11)

From the experimental value of d, we determine the
modulus E2:

(12)

It is possible to measure the ratio b of the elastic
modulus of a 45° film to the elastic modulus of the 90°
film:

(13)

Using the quantity b, the modulus E2 can be repre-
sented as

(14)

The values of b determined for various values of h
from the curve in Fig. 3 are given in the table. The ratio
F45(h)/F90(h) coincides with the ratio b of the corre-
sponding moduli.

As follows from the table, the mean value of b is
equal to 0.33. Then, the value of b/(2 – b) is 0.20, so that
E2 = 0.20E1. As was found in the present study, E1 is
approximately equal to 100 GPa, which yields E2 =
20 GPa for the film on the silicon substrate. The value
of b obtained in this study for the quartz substrate is
about 0.84, which gives b/(2 – b) = 0.72. In this case,
E2 = 72 GPa. Thus, the forces arising with the displace-
ments in the direction normal to the tubes proved to be
3.5 times greater for the single-layer films compared to
the films consisting of a mixture of single-layer and
multilayer tubes.

In [13], the Young moduli were theoretically calcu-
lated for a film consisting of single-layer nanotubes
arranged parallel to each other according to the triangu-
lar lattice rule. The estimates made in [13] for the
Young modulus across the tubes give a value as small
as several GPa. As is shown in the present work, the
experiment gives an order of magnitude (or even two
orders of magnitude) greater value for this modulus.
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Abstract—The properties of slit electroacoustic waves that propagate in a system of two semi-infinite piezo-
electric media separated by a vacuum gap, in a system consisting of a thin piezoelectric plate and a semi-infinite
piezoelectric medium separated by a gap, and in a system consisting of two thin piezoelectric plates separated
by a vacuum gap are studied. The process of transformation of slit electroacoustic waves to generalized surface
acoustic waves or to Lamb waves is considered. © 2004 MAIK “Nauka/Interperiodica”.
As is known [1–4], slit electroacoustic waves
(SEAWs) may propagate in a system of two semi-infi-
nite piezoelectric crystalline media separated by a thin
air gap. The energy of these waves is localized near the
boundaries of the piezoelectric half-spaces and expo-
nentially decays on both sides of the gap toward the
depth of both piezoelectric media. Mechanical dis-
placements in the two piezoelectric media are related to
each other through the air gap by the electrostatic field
accompanying the wave. It should be noted that an
SEAW can also propagate in more complex configura-
tions of piezoelectric media. These include, for exam-
ple, a system consisting of a thin piezoelectric plate
and a piezoelectric half-space with a gap between
them or a system of two thin piezoelectric plates sep-
arated by a gap (when the plate thickness is H ≈ λ,
where λ is the wavelength). The interest in studying
this type of waves arises from the fact that the SEAWs
can be used in designing various kinds of acoustoelec-
tronic pressure and temperature sensors or liquid and
gas analyzers [4, 5].

An analytical calculation of the properties of
SEAWs propagating in a system of two identical piezo-
electric half-spaces separated by a gap was first carried
out in [1–3]. In these publications, transverse slit acous-
tic waves with displacements u2 in the boundary plane
were studied, because the piezoelectric crystal cuts
considered there satisfied the crystallographic symme-
try conditions [6]. From the theory of surface acoustic
waves (SAWs), it is known that, if the X1X3 saggital
plane is perpendicular to the axis of twofold rotation of
the crystal about one of the crystallographic axes of the
crystal, i.e., the X, Y, or Z axis, then, X1 is the direction
of propagation of the “pure” acoustic mode (the
Gulyaev–Bleustein mode) characterized by only one
purely transverse component of mechanical displace-
ment u2 and an accompanying electric potential ϕ. If the
saggital plane is a mirror symmetry plane of the crystal,
1063-7710/06/5006- $26.00 © 20670
the X1 axis is the direction of propagation of the “pure”
acoustic mode characterized by two components of
mechanical displacement, u1 and u3, and an accompa-
nying electric potential ϕ (the pure Rayleigh mode). In
all other cases, a SAW has all three components of
mechanical displacement, namely, u1, u2, and u3, and an
electric potential (ϕ). The same crystallographic sym-
metry conditions can be applied to SEAWs.

In this paper, we theoretically study the properties of
the general type of SEAWs propagating in a system of
two piezoelectric crystals of any crystallographic sym-
metry. In the most general case, in both media the
SEAWs will have not one transverse u2 but rather all
three components of mechanical displacement ui,
where i = 1, 2, 3. We also study the properties of more
complex SEAWs that propagate in a system of two dif-
ferent semi-infinite piezoelectric media separated by an
air gap, in a system consisting of a thin piezoelectric
plate and a semi-infinite piezoelectric medium with a
gap between them, and in a system of two thin piezo-
electric plates separated by a gap. We theoretically cal-
culate the basic parameters of different modes of the
SEAWs (the phase velocity V, the electromechanical
coupling coefficient K2, and the temperature coefficient
of delay TCD).

Let us first consider a system that consists of two
semi-infinite piezoelectric media separated by a vac-
uum gap whose width H is smaller than the wave-
length λ (Fig. 1). Let the plane X3 = 0 lie in the middle
of the gap. The X1 axis is the direction of propagation
of a SEAW with a wave number K = 2π/λ. The electric
energy of the SEAW is localized within the gap, and the
mechanical displacements reach their maxima at the
boundaries of the piezoelectric media, X3 = ±H/2, and
exponentially decay on both sides of the gap in the
depths of the two media. If the two piezoelectric media
are identical and have the same orientation, the distri-
bution of the electric potential ϕ in the gap may be sym-
004 MAIK “Nauka/Interperiodica”
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metric or antisymmetric and, hence, in this case, both
symmetric and antisymmetric modes of the SEAW may
propagate in the system under consideration. Unlike the
classical SAW propagating over a free surface of the
crystal, the velocity V of the SEAW depends on the
wavelength λ. This spatial dispersion is related to the
presence of a finite size (the gap width H) in the given
structure and is analogous to the dispersion of waves in
waveguides [3].

The general solution for such a wave can be
obtained by solving the equations of the elasticity the-
ory and electrostatics for both media [6, 7]. In addition,
it is necessary to use ten boundary conditions. The
mechanical and electric boundary conditions at the
boundaries of piezoelectric media 1 and 2 (X3 = ±H/2)
with a gap are as follows:

the zero values of the normal components of the stress
tensor T3i are

(1)

and the continuity of the electric potential ϕ and the
normal component of the electric induction D3 are

(2)

In the general form, the displacements ui and the
potential ϕ in each piezoelectric medium (media 1 and
2) can be represented as a sum of four partial waves
(u4 = ϕ):

(3)

Here, Am, Cim, Bm, and Dim are the amplitude factors,

 are the coefficients of attenuation along the X3

axis, V is the wave velocity, and i and m are the indices:
i = 1–4 (coordinates and potential) and m = 1–4 (partial
mode number), where a summation is implied over
repeated indices m.

Substituting these solutions into the set of equations
of the elasticity theory, we obtain the Christoffel equa-
tions, from which we can calculate the partial wave

amplitudes Cim and Dim and the coefficients . Since
the displacement amplitudes should decay in the depths
of the media, from the complex attenuation coefficients

 found for the first and second media it is necessary
to chose the coefficients that have a physical meaning,
i.e., that comply with the condition of the wave local-
ization near the surfaces of the two crystals.

T31
1 0, T32

1 0, T33
1 0 at X3 H/2,= = = =

T31
2 0, T32

2 0, T33
2 0 at X3 H– /2,= = = =

ϕV ϕ1, D3
1

D3
V at X3 H/2,= = =

ϕV ϕ2, D3
2

D3
V at X3 H– /2.= = =

ui
1

AmCim jKβm
1

X3( ) jK X1 Vt–( )[ ] ,expexp=

ui
2

BmDim jKβm
2

X3( ) jK X1 Vt–( )[ ] .expexp=

βm
1 2,

βm
1 2,

βm
1 2,
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The electric potential inside the vacuum gap, ϕV, is
determined from the solution to the Laplace equation
and can be represented in the form

(4)

The unknown coefficients Φs, Φa, Am, and Bm are
determined from the set of ten complex homogeneous
equations that are obtained from the boundary condi-
tions formulated above.

The number of unknowns and the number of equa-
tions can be reduced to eight if we preliminarily express
the coefficients Φs and Φa in terms of the potentials of
both media at their boundaries. The two ways of deter-
mining the coefficients Φs, Φa, Am, and Bm are fully
equivalent. Then, using the Farnell–Jones approach [6],
we can determine the phase velocity V of the SEAW by
solving the set of linear homogeneous boundary equa-
tions obtained from conditions (1) and (2).

As an example, in Fig. 2 we present the calculated
dependences of the phase velocity V on the normalized
width of the vacuum gap H/λ for the antisymmetric
(curve A) and symmetric (curve S) modes of the SEAW
propagating in a system of two identical lithium niobate
piezoelectric crystals specified as YX-cut LiNbO3 with
the Eulerian angles φ = 0°, θ = 90°, and Ψ = 0° [8].
From Fig. 2, one can see that the velocity of the modes
of the SEAW exhibits a dispersion and, when H/λ >
0.01, the modes of the SEAW transform to a common
SAW (VSAW = 3.7178 km/s) propagating in the given
direction of the piezoelectric crystal.

If two different piezoelectric crystals or identical
piezoelectric crystals of different cuts are used, the very
structure of the wave becomes asymmetric with respect
to the center of the gap. In this case, the existence of
purely symmetric and purely antisymmetric modes of
the SEAW is impossible. However, solutions exist for
the distorted quasi-symmetric and quasi-antisymmetric
modes of the SEAW. The greater the difference
between the piezoelectric crystals in their material
properties and crystallographic symmetry, the stronger
the distortions of the SEAW modes are. As an example,
Fig. 3 presents the calculated values of the phase veloc-
ity of the SEAW modes propagating in a system of two
identical piezoelectric media of different crystal cuts,
namely, YX-cut LiNbO3(0°, 90°, 0°) and XY-cut

ϕV Φs K X3( )cosh Φa K X3( )sinh+( )=

× jK X1 Vt–( )( ).exp

X3

X1

Piezoelectric 1

Piezoelectric 2

H Vacuum gap H < λ

Fig. 1. System of two semi-infinite piezoelectric media sep-
arated by a gap.
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LiNbO3(90°, 90°, 0°), separated by a gap. For these
crystal cuts, the crystallographic symmetry conditions
[6] are not satisfied. From Fig. 3, one can see that solu-
tions exist for two quasi-symmetric modes (curves S1
and S2) and two quasi-antisymmetric modes (curves A1
and A2) of the SEAW. As the gap width increases
(H/λ > 0.01), these modes are transformed to SAWs
propagating in the YX-cut (VSAW = 3.7178 km/s) and
XY-cut lithium niobate (VSAW = 3.696 km/s), respec-
tively.

An analysis of the properties of SEAWs propagating
in a system that consists of a thin piezoelectric plate and
a semi-infinite piezoelectric medium with a gap
between them is of special interest, because precisely
this type of structure seems to be promising for the
development of acoustoelectronic sensors. To find the
solutions, one can use the method described above.
However, if the thickness of the piezoelectric plate H2
is comparable with the wavelength λ, the energy of the
wave will be distributed over the whole thickness of the
plate and, therefore, the solution for ui in the plate
should be represented as a sum of eight partial waves
with allowance for all eight attenuation coefficients βm
(m = 1, 2, …, 8) along the X3 axis. It is also necessary
to add four boundary conditions for the upper free
boundary of the piezoelectric plate: the zero values of
the normal components of the stress tensor T3i and the
continuity of the normal component of the electric
induction. Then, one has to solve a set of 14 complex
homogeneous boundary equations (or 12 equations, if
the coefficients Φs and Φa are preliminarily deter-
mined).
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3.700

3.705

3.710

3.715

3.720

h/λ

V, km/s

LiNbO3(0°, 90°, 0°), SEAW

S
A

Fig. 2. Dependence of the phase velocity V on H/λ for the
(A) antisymmetric and (S) symmetric modes of the SEAW
in a system of two identical piezoelectric media, YX-cut
LiNbO3.
Figure 4 shows a family of curves representing the
calculated phase velocities of the symmetric mode of
the SEAW versus the normalized gap width H/λ in a
system consisting of a piezoelectric plate made of
YX-cut quartz SiO2(0°, 90°, 0°), a vacuum gap, and a
semi-infinite piezoelectric crystal of YX-cut quartz
SiO2(0°, 90°, 0°) for different values of the thickness of
the upper plate: H2/λ = 0.2, 5, 6, 7, and 10 (curves
denoted as H2 = 0.2, H2 = 5, H2 = 6, H2 = 7, and H2 =
10). From this figure one can see that, as the thickness
of the upper plate H2/λ decreases, the phase velocity of
the SEAW mode also decreases. When the gap width
increases to H > 0.1λ, the SEAW mode transforms to
a SAW propagating in the YX-cut quartz (VSAW =
3.1605 km/s). In addition, two solutions exist simulta-
neously for electroacoustic symmetric and antisymmet-
ric Lamb modes [9, 10] propagating in the upper piezo-
electric quartz plate. These Lamb modes exhibit a
velocity dispersion. Unlike the case of a single free
piezoelectric plate, in the system under consideration
the values of the Lamb mode velocities depend on both
the plate thickness H2 and the gap width H. Figure 5
shows the calculated dependences of the velocity of the
antisymmetric Lamb mode on the gap width H/λ for
two different values of the thickness of the YX-cut
quartz plate: H2/λ = 0.2 with the Lamb mode velocity
V = 1.657 km/s (curve H2 = 0.2), and H2/λ = 1 with the
Lamb mode velocity V = 2.97898 km/s (curve H2 = 1).

Note that the structure considered above is funda-
mentally asymmetric with respect to the center of the
gap. Therefore, even if the piezoelectric plate and the
medium are made of the same material and have iden-
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Fig. 3. Dependence of the phase velocity of the SEAW modes
on H/λ in a system of two piezoelectric media: YX-cut
LiNbO3 and XY-cut LiNbO3 with a gap between them.
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tical orientations, the SEAW modes will also be quasi-
symmetric or quasi-antisymmetric. When the gap width
increases, one mode transforms to a SAW propagating
along the surface of the half-space and the other mode
transforms to a Lamb mode propagating in the upper
piezoelectric plate.

In a system consisting of two thin piezoelectric
plates separated by a gap, the propagation of piezoelec-
trically active modes of the SEAW is also possible. Let
us consider the system shown in Fig. 6. Here, H1 and
H2 are the thicknesses of the upper and lower piezo-
electric plates and H is the width of the gap between
them. This kind of system is of interest because it
allows one to study the process of transformation of the
SEAW modes. For example, if the thicknesses of the
two plates are H1, H2 @ λ, in the general case we
obtain two classical modes of the SEAW that propagate
in a system of two piezoelectric half-spaces separated
by a gap. As the gap width increases, the SEAW trans-
forms to the common SAWs propagating along the sur-
faces of the two piezoelectric media. If the thicknesses
of the two plates are H1, H2 ≈ λ, an increase in the gap
width will lead to a transformation of the SEAW to
electroacoustic Lamb modes propagating in the piezo-
electric plates. When the thickness of one plate is com-
parable to the wavelength λ and the thickness of the
other plate is much greater than λ, the SEAW will trans-
form to a common SAW propagating in the piezoelec-
tric medium and to Lamb modes propagating in the
piezoelectric plate.

A general solution for the SEAW in such a system
can be obtained by representing the corresponding
solutions for the mechanical displacements and the
electric potential in the form of eight partial waves
propagating in each of the plates. In this case, the num-
ber of boundary conditions will be greater, and it is nec-
essary to find a solution to a set of 18 complex homo-
geneous boundary equations (or 16 equations).

As an example, Fig. 7 shows the calculated veloci-
ties of the symmetric and antisymmetric modes of the
SEAW (the curves marked as mode 1 and mode 2)
propagating in the system of two identical piezoelectric
plates made of langasite (LGS) with the (0°, 140°, 25°)
orientation and with the thickness H2 = H1 = λ versus
the gap width H/λ. As the gap width increases to H/λ >
0.1, the velocities of these modes tend to the velocities
of the Lamb modes propagating in the piezoelectric
plates. This means that the SEAW modes transform to
the corresponding Lamb modes. Figure 8 displays the
calculated velocities of the fundamental symmetric and
antisymmetric Lamb modes (curves S and A) versus the
plate thickness H1/λ. It should be noted that, in a single
plate, an increase in its thickness to H1 > 0.5λ leads to
the appearance of a family of electroacoustic Lamb
modes of higher orders [9, 10] (not shown in the figure),
which transform to common SAWs as the plate thick-
ness increases. In a system of two piezoelectric plates
separated by a gap, symmetric (VS = 2.8153 km/s) and
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antisymmetric (VA = 2.6773 km/s) modes of the SEAW
(see Fig. 7) transform to Lamb modes with an increase
in the gap width (see Fig. 8). Finally, when the thick-
nesses of the two langasite plates are H2, H1 > 5λ, an
increase in the gap width to H > 0.1λ leads to the
transformation of the SEAW to a common SAW prop-
agating over the free surface of the langasite (VSAW =
2.744 km/s).

It should be noted that one of the difficulties in solv-
ing the equations described above is that, in such com-
plex piezoelectric crystal structures, several solutions
simultaneously exist for one or another type of wave.
Therefore, when searching for a specific mode, it is
necessary to chose a sufficiently narrow interval of
velocities, because, according to the Farnell–Jones
approach, the phase velocity of the wave V is the
parameter of the problem that is scanned to find the
zero determinant of the boundary conditions [6, 11].

After calculating the phase velocity of the wave, it is
possible to determine all other parameters of the wave.
As is known [6], the electromechanical coupling coef-
ficient K2 for a SAW, which determines the efficiency of
the wave excitation by an interdigital transducer posi-
tioned on the surface of the piezoelectric crystal, is cal-
culated by the formula K2 = 2(V0 – VS)/V0, where V0 and
VS are the SAW velocities along the open and metal-
lized surfaces of the piezoelectric crystal.

Unlike SAWs, SEAWs propagate in a system of two
piezoelectric crystals separated by a gap. If one of the
piezoelectric crystal surfaces is metallized, the SEAW
itself disappears, because the electric field connecting
the oscillations in the two piezoelectric media proves to

0 0.02
2.6737

2.6742

0.04 0.06 0.08 0.10

2.6757

2.6767

2.8135

2.8130

2.8155

H/λ

V, km/s

2.8140

2.8150

2.8145

2.6747

2.6752

2.6762

2.6772

mode 1

mode 2

LGS(0°, 140°, 25°), H1/λ=1, H2/λ =1
SEAW modes

V, km/s

Fig. 7. Dependences of the velocities of the symmetric and
antisymmetric modes of SEAW (modes 1 and 2) on H/λ in
a system of two piezoelectric plates made of langasite
(LGS) with the orientation (0°, 140°, 25°).
be shorted out, and the two half-spaces become com-
pletely isolated. However, to estimate the efficiency of
excitation of the SEAW, it is possible to determine the
electromechanical coupling coefficient ä2 in a similar
way. For example, if the SEAW is excited by an inter-
digital transducer positioned on the surface of the upper
piezoelectric crystal, we have

(5)

where V0 is the velocity of the SEAW and VS is the
SAW velocity along the metallized surface of the upper
piezoelectric crystal. If the SEAW is excited by an
interdigital transducer placed on the surface of the

lower piezoelectric crystal, we have  = 2(V0 – VS)/V0,
where V0 is the velocity of the SEAW and VS is the SAW
velocity along the metallized surface of the lower
piezoelectric crystal.

For a system of two thin piezoelectric plates sepa-
rated by a gap, the value of K2 for SEAWs can be deter-
mined for a greater number of variants, depending on
the positions of the interdigital transducers (four vari-
ants of positioning on one of the four surfaces) and on
the state of each of the outer surfaces (metallized or
free) that carries no interdigital transducer.

We used formula (5) to calculate the value of  for
the SEAW as a function of the normalized gap width
H/λ in a system of two piezoelectric media consisting
of langasite LGS with the orientation (0°, 140°, 25°).

The calculations showed that the value of  drasti-
cally decreases with increasing gap width. For exam-
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ple, for the gap width H = 0.0001λ, we obtain  =

0.22%, and for H = 0.05λ,  = 0.0046%. This means
that the efficiency of the excitation of SEAWs drasti-
cally decreases as the gap width increases.

It is well known [12, 13] that, in a single thin piezo-
electric plate made of lithium niobate (lithium tantalate,
etc.) of a given orientation (an XY-cut, YX-cut, or ZX-cut
plate), the propagation of a quasi-SH-wave is also pos-
sible, and this wave has a very high value of K2 (up to
33%) at a certain plate thickness. For example, for an
XY-cut LiNbO3 plate with the thickness H = 0.1λ, the
value of K2 is K2 ≈ 36% and the phase velocity is V =
4.372 km/s [12, 13]. In fact, this is a fast transverse
shear-horizontal wave propagating in the piezoelectric
plate and containing almost no mechanical displace-
ment component u3 normal to the surface. Hence, the
SH wave can propagate in a plate that is in contact with
a liquid without any radiation loss caused by the energy
transfer from the wave to the liquid medium.

In a system of two thin piezoelectric plates sepa-
rated by a gap, the propagation of a fast SH mode of the
SEAW is possible, and this mode has a high value of K2

and a velocity V equal to that of the SH wave propagat-
ing in a single plate. Figure 9 shows the calculated
velocities V0 of the fast SH mode of the SEAW (curves
V(0.1), V(0.2), and V(0.5)) and the values of K2 (curves
K(0.1), K(0.2), and K(0.5)) for three values of the thick-
ness of both piezoelectric plates made of XY-cut
LiNbO3 (H1/λ = H2/λ = 0.1, 0.2, and 0.5) versus the
gap width H/λ. The value of K2 was calculated in this
case under the condition that the interdigital transduc-
ers are placed on the outer surface of the upper plate
(i.e., VS and V0 in formula (5) refer to this surface) while
other three surfaces are free. From Fig. 9, one can see
that, as in the case of a single plate, the maximal value
of K2 calculated from Eq. (5) is obtained for the SH
mode of the SEAW when the thickness of both plates is
H1/λ = H2/λ = 0.1. For example, when the gap width is
H/λ = 0.01, we have K2 ≈ 9%, which is noticeably
greater than the value of K2 for a SAW in lithium nio-

bate (  ≈ 5.5%).

In a system of two plates separated by a thin gap, as
well as in a single plate, many solutions and many
modes are possible. In addition to the solutions shown
in Fig. 9, there are modes with lower and higher veloc-
ities. For example, for the same conditions as in Fig. 9,
for H1/λ = H2/λ = 0.1 (plates) and H/λ = 0.01 (gap),
there is a wave with a lower velocity V0 = 4.04727 km/s
and K2 ≈ 20.7% and a wave with a higher velocity V0 =
6.4753 km/s and K2 ≈ 4.83%.

Another important parameter of the wave is the tem-
perature coefficient of delay (TCD). For a SAW in a
single medium, TCD = α – TCV = α – 1/V × (∂V/∂t),
where α is the coefficient of linear thermal expansion of
the medium, TCV is the temperature coefficient of
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2

KSAW
2
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velocity of the SEAW, and t is the temperature. In the
case of the SEAW, the value of TCV for the SEAW is
uniquely determined. However, since we have a system
of two different piezoelectric media, an ambiguity
arises in the determination of the TCD for the SEAW,
because the value of α may be different in different
media. Hence, we can determine two values of the TCD
for the SEAW: one for the upper and one for the lower
piezoelectric media with respective coefficients of lin-
ear expansion. The TCD of a real device will be deter-
mined by the coefficient of linear thermal expansion of
the medium on which the interdigital transducers are
placed, because the thermal expansion of the other
medium will have no effect on them in this case.

Our calculations showed that, even in the case of
two identical piezoelectric media with the same orien-
tation, the values of TCD for SEAW somewhat differ
from the value of TCD calculated for common SAWs.
For example, in a system of two piezoelectric media
thermally stable for SAWs, namely, LGS(0°, 140°, 25°)
(TCDSAW = –0.09 × 10–6/K), with a gap H = 0.5λ
between them, the value of TCD for the SEAW is equal
to –1.5 × 10–6/K and depends on the width of the gap.

The materials constants for LiNbO3, SiO2, and LGS
were taken from [14–16].

Thus, in this paper we described the method for a
numerical calculation of the parameters of various
kinds of SEAWs that propagate in piezoelectric media
of any crystallographic symmetry class and their con-
figurations. We considered the processes of transforma-
tion of SEAWs to SAWs in the case of two half-spaces
or to electroacoustic Lamb modes in the case of a sys-
tem of two thin piezoelectric plates separated by a gap.
We showed that the velocity of SEAW modes is deter-
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mined by the properties of both piezoelectric media and
depends on the width of the gap. We proposed a system
of two thin piezoelectric plates made of XY-cut (or
YX-cut) lithium niobate with a gap between them, for
which the slit electroacoustic wave has a high value
of the electromechanical coupling coefficient. This
structure can be used in the design of high-efficiency
acoustoelectronic pressure sensors and gas and liquid
analyzers.
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Abstract—Results of measuring the monochromatic sound field with a dipping probe in the deep ocean are
presented. The sound speed profile in the region of measurements had a minimum at a depth of 1600 m. The
experiment was carried out in the Atlantic Ocean with the use of two vessels separated by a distance of approx-
imately four ray cycles (~240 km). The experimental data are compared with the calculations based on a new
concept of the Brillouin waves for describing the vertical structure of the sound field produced by rays. It is
shown that a satisfactory agreement between experiment and calculation can be achieved by fitting the param-
eters of the experiment. Such a procedure allows one to refine or even to determine the experimental conditions,
which not are always known. The proposed method of calculation offers an opportunity for solving inverse
problems of ocean acoustics. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION AND THE STATEMENT
OF THE PROBLEM

In view of development of the methods of ocean
tomography, measurements of the vertical distribution
of the sound field become topical. This distribution is
what mainly determines the amplitudes of rays (modes)
in oceanic waveguides. The measurements of the verti-
cal structure are usually carried out with the use of ver-
tical arrays [1, 2]. However, they cover a small range of
depths, because the development and installation of
sufficiently long arrays encounters engineering difficul-
ties. The usual length of vertical arrays is no greater
than 100 m [1, 2]. A different method of measuring the
vertical structure, which allows one to substantially
increase the range of depths, is also known. This
method involves using a dipping hydrological-acousti-
cal probe (DHAP), which simultaneously measures the
sound pressure and the depth of the receiving device
[3]. The use of the DHAP is advantageous in that, first,
an equivalent of a continuous array is obtained and, sec-
ond, this array can be rather long.

Different methods of processing the vertical profiles
of the sound field are known. In [4], a special method of
averaging was proposed to eliminate fine fluctuation
maxima and minima from the sound field amplitude.
By applying this method, the conclusion was drawn
that the positions of zones with a relatively high con-
centration of sound energy can be adequately predicted
by computations based on the ray theory. Another
method of averaging the fluctuations of the sound field
amplitude is also possible, namely, the spectral analysis
of experimental data. With this method, one changes
from the amplitude description of the sound field to the
1063-7710/04/5006- $26.00 © 0677
spectral one, and the fluctuations are flattened out in the
calculated spectra.

To explain the results of the processing of experi-
mental records, a comparison with some theoretical
model is required. Nowadays, studies are in progress to
refine the methods of calculating the sound field in oce-
anic waveguides with an underwater sound channel
(USC) [3, 5–7].

The objectives of this work are to measure the verti-
cal structure of the sound field in the ocean by using a
uniformly deployed DHAP, to perform a spectral pro-
cessing of the measured structure, to calculate the ver-
tical sound field profile for the experimental conditions
with the use of the method described in [3, 6], and to
compare the experimental data with the calculations.

EXPERIMENTAL PROCEDURE AND RESULTS

The experimental measurements of the vertical
sound field structure were performed in November
1989, in the deep-water part of the Atlantic Ocean. The
USC axis was at a depth of 1600 m. A near-surface
maximum in the sound speed occurred at a depth of
60 m. The sound speed near the bottom was higher than
in the near-surface maximum. The acoustic pressure
and the immersion depth were measured by the DHAP,
which was uniformly lowered. The signal from the
DHAP was recorded on magnetic tape. The length of
the vertical survey with the DHAP was about 100–150 m
at depths of 360–520 m. A monochromatic sound
source that operated at a frequency of 233.3 Hz was at
the depth of the near-surface maximum of the sound
speed.
2004 MAIK “Nauka/Interperiodica”
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The ocean depth remained constant (5 km) on the
main part of the path between the sound source and
the receiving system. However, the experimental site
was above the flank of an underwater mount that was
located behind the propagation path. Therefore, the
ocean depth in the region of measurements was sub-
stantially smaller than the depth on the entire path,
namely, about 2.6 km. According to the bottom pro-
files available, the angle α between the mount flank
and the horizontal was about ~8°. With these values
of the depth and bottom slope, the length of the flank
towards the transmitting vessel was 17 km in the hor-
izontal.
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Fig. 1. Spatial spectra obtained from the records of the ver-
tical profile of the sound field: DHAP survey nos. (a) 11,
(b) 6, and (c) 12.
During the experiment, both vessels, one with the
sound source and the other with the receiving DHAP
system, drifted at a distance of less than 230–240 km
from each other; this distance could vary only due to the
drift. Approximately an hour before the experiment, the
ocean depth in the region of the DHAP immersion and
the coordinates of both vessels were measured. The
depth was 2.6 km, and the calculated distance was x =
233 km. This distance corresponds to the end of the
fourth cycle of the ray trajectories, between the turning
point near the bottom and the point of reflection from
the surface. The relief and the exact value of the bottom
slope remained unknown. The rate of deployment of
the DHAP was constant. The duration of the recording
of the sound field varied from 100 to 150 s, depending
on the depth range surveyed. The time interval between
successive surveys, including the probing duration
itself, was 4 to 5 min. Twelve surveys were performed
in the experiment.

The processing of the records consisted in obtaining
the spatial spectrum for the vertical distribution of the
sound field. The specificity of processing of the DHAP
data consisted in that the signal was recorded in succes-
sive instants of time as the probe was lowered rather
than over the entire depth simultaneously, as in the case
of an ordinary vertical array. Therefore, the signal was
represented as a time sequence by taking into account
the dependences of the signal phase and the probe depth
on time.

Because the signal recorded during the DHAP
immersion was actually a time signal, its coherence was
verified. To do so, the record of an individual survey
was broken up into two or three parts. The spectral anal-
ysis was performed for both the entire survey and its
parts. The result is that the main maxima in the spectra
of the entire record and the parts coincide. Therefore,
one can treat the recorded sound field as a coherent one
for the whole interval of depths surveyed.

Let us consider the results of the spectral processing
of the vertical sound field profiles obtained. Figures 1a–
1c show the spatial spectra for profile nos. 11, 6, and 12.
The depth intervals were 127, 70.5, and 129 m, respec-
tively. The horizontal axis represents the spatial fre-
quency γ (in units of 2π/m) for the vertical profile of the
sound field. The vertical coordinate is the absolute
value of the spectral amplitude. The resolution of the
spectral analysis is individual to each plot and equals
the separation of the adjacent dots in the spectrum.

The spatial spectra noticeably differ from each
other. This feature indicates the changes in the bathy-
metric parameters for different profiles. The spectra
shown exhibit several maxima at both positive and neg-
ative spatial frequencies (the same is true for other
spectra). For instance, negative frequencies predomi-
nate in the spectrum of profile no. 12. A sort of symme-
try can be seen in Figs. 1a and 1b. At the same time, the
absolute values of the frequencies in the maxima are
different on either side of the point γ = 0. Thus, they are
ACOUSTICAL PHYSICS      Vol. 50      No. 6      2004
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equal to –0.34 and +0.3 2π/m in Fig. 1b. Apart from a
slight difference in these values, the spectrum can be
treated as that of a single mode excited in the
waveguide.

The values of the spatial frequencies (γ ~ 0.3–0.4 2π/m)
are characteristic of rays propagating at high grazing
angles. Actually, the greatest value of γ corresponds to
the USC axis for the purely water-propagating rays. For
the conditions at hand, it does not exceed 0.25 2π/m.
Higher spatial frequencies correspond to rays propagat-
ing at higher grazing angles. However, such rays
undergo multiple reflections from the bottom and sur-
face along the entire path, and their contribution to the
received signal is insignificant. Therefore, the most prob-
able explanation for the values of γ > 0.25 2π/m is the
assumption that the signal arrives at the DHAP after a
single reflection from the inclined bottom area in the
vicinity of the reception point. Actually, at the reflec-
tion from the inclined surface, the propagation angle of
the ray changes by a doubled value of the surface slope
α relative to the horizontal. The addition of 2α = 16° to
the propagation angle of the water rays leads to an
increase in the spatial frequency in the vertical spec-
trum to the values of 0.3–0.4 2π/m. Let us confirm the
experimental results and their explanation by calcula-
tions.

CALCULATIONS AND COMPARISON
WITH EXPERIMENT

In addition to the sound speed, the main quantities
that govern the vertical structure of the sound field are
the distance to the source, the depth, and, in our case,
the slope of the bottom. We did not aim to achieve an
exact coincidence between the experimental data and
the calculations. Our task was, first, to obtain a qualita-
tive (and quantitative, as far as possible) agreement
between calculations and experiment and, second, to
determine the intervals of parameter variations that lead
to noticeable changes in the calculated spectra of the
sound field.

The calculations were performed using the method
described in [3, 6]. The vertical coordinates were calcu-
lated for the rays that intersect the plane x = const as a
function of the launch angle at the source. These coor-
dinates are denoted as z(θ), where θ is the launch angle
(relative to the vertical). The projections γ(z) of the
wave vector on the vertical axis z were also computed.
From the values of the function γ(z), the vertical sound
field profile produced by all rays was calculated. The
spectrum of the calculated sound field was compared
with the spectrum of the experimental profile for the
depth interval surveyed by the DHAP. Note that the
function z(θ) indicates the vertical coordinates (at the
end points of the trajectories) for all rays in the vertical
plane x = const, and the function γ(z) gives a general
idea of the spectrum of the vertical structure of the
sound field.
ACOUSTICAL PHYSICS      Vol. 50      No. 6      2004
To clarify the influence of the sloping bottom on the
formation of the vertical profile of the sound field along
the path, let us consider the sound propagation in a
waveguide with a flat bottom at a depth of 5 km, α = 0.
Because of the source position at the horizon of the
near-surface maximum of the sound speed, all water
rays touch the surface.

Figures 2a and 2b show the vertical coordinates z(θ)
for the rays leaving the source at the angle θ and cross-
ing the plane x = 231 km. The projections γ(z) of the
wave vectors on the z axis are also shown for these rays.
The horizontal axis in Fig. 2a represents the absolute
value of the launch angle θ (relative to the z axis). The
vertical coordinate is the waveguide depth measured
from the surface. The solid and dashed curves corre-
spond to the rays that leave the source towards the sur-
face (θ < 0) and towards the bottom (θ > 0), respec-
tively. Figures 2a and 2b show how many rays arrive at
each point z. The water rays do not reach the depth z <
2 km or, hence, the DHAP. Here, we do not present the
calculated sound field and its spectrum for two rea-
sons. First, as was mentioned above, the rays do not
produce vertical structures with frequencies γ > 0.25
2π/m in the waveguide of the type at hand. Second, in
our case, the water rays do not reach the DHAP at all.
Such a calculation is described in [3] for α = 0 and x =
240 km (a part of the rays that arrived at the DHAP in
this experiment). Let us consider the features of the
curves z(θ) and γ(z) (Figs. 2a and 2b) in more detail,
because these features are also characteristic of rays
reflected from the inclined bottom.

The specificity of the function z(θ) is the presence of
extrema. The vertical coordinates of the rays, z(θ), first
decrease with a varying angle θ and, then, upon reach-
ing the minimal value, increase as θ monotonically var-
ies. As in an ideal waveguide, the rays produce two
branches of vertical coordinates, in which z changes in
opposite directions. These two branches of the function
z(θ) can be treated as an analog of counter-propagating
waves (the Brillouin waves) in an ideal waveguide,
where they exist because of the opposite-signed (but
equal-valued) projections of the wave vector on the
z axis. According to Fig. 2b, the projections of the wave
vector are different in value and equal in sign for the
rays corresponding to different branches of z(θ). Thus,
the vertical structure of the sound field in the USC is
close to that produced by the Brillouin waves in an ideal
waveguide but differs from it in both sign and value of
the wave-vector projection on the z axis. This situation
is considered in more detail in [6], where a generalized
concept of the Brillouin waves is introduced, as applied
to the USC. The fact that a sound field structure similar
to that produced by the Brillouin waves exists in the
USC allows one to assume that an analog of modes is
present in the spectrum of the sound field.

Let us consider a probable explanation for the
extrema of the function z(θ). In considering the hori-
zontal structure of ray trajectories, it is common to use
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Fig. 2. Calculated characteristics of the vertical profiles of the sound field for x = 231 km, H = 5 km, and α = 0°. The solid and
dashed curves correspond to the rays leaving the source towards the surface and bottom, respectively: (a) depth z(θ) of ray arrivals
at the z axis versus the launch angle, (b) projections γ(z) of the wave vector of the rays on the z axis, (c) trajectories of adjacent rays
producing the caustic, and (d) caustic on an enlarged scale.
the concept of the envelope of the ray family (the caus-
tics) at which the focusing factor tends to infinity,
because the derivative of the horizontal coordinate with
respect to the launch angle tends to zero: dx/dθ = 0 [8].
When the vertical structure of the sound field is consid-
ered, the derivative of the z coordinate will appear in the
focusing factor. Let us show that the point with the
coordinates x = 231 km and z = zmin, where dz/dθ = 0,
belongs to a caustic. Figure 2c shows a group of ray tra-
jectories. The central trajectory in the group is one that
ACOUSTICAL PHYSICS      Vol. 50      No. 6      2004
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passes through the minimum of the function z(θ) of
Fig. 2a for the rays that leave the source towards the
bottom. Two other curves are chosen so that their near-
bottom turning points are 25 m shallower or deeper,
respectively, than the turning point of the central curve.
A caustic domain can be clearly seen where the three
trajectories nearly coincide. This domain is shown in
Fig. 2d on a larger scale. The two trajectories adjacent
to the central one lie on the same side of the central
one. More information on caustics can be found in [8]
(page 48). Returning to Fig. 2a, note that the maximum
of the function z(θ) on the solid curve near θ ~ 90° is
not the caustic: it is produced by the rays in the vicinity
of the near-bottom turning point. This conclusion will
be confirmed below.

Let us consider the functions γ(z), the projections of
the ray wave vector on the z axis at x = 231 km, from
Fig. 2b. As usual, the positive direction of γ(z) coincides
with the direction of the z axis. The notations of the
curves are the same as in Fig. 2a. The curves with dif-
ferent signs of the launch angles are close to each other,
except for the domains of the caustics. In our case,
γ(z) < 0 for most of the rays. An exception is a small
group of rays leaving the source towards the surface at
angles close to 90°. For these rays, the turning point lies
near the bottom, where γ(z) = 0. After turning, the func-
tion γ(z) changes its sign, as seen from Fig. 2b. Note
that the absolute values of γ(z) are much lower than the
experimental values of the spectral components of the
sound field (Figs. 1a–1c). The functions γ(z) and z(θ)
are both double-valued. The rays arriving at the same
point have different values of γ(z). This difference leads
to beatings in the sound field along the z axis, and two
close frequencies can be observed in the spatial spec-
trum if the resolution is sufficient [3].

Let us now consider the waveguide with an inclined
bottom. By fitting the distance, depth, and bottom slope
in computations, we tried to obtain a spectrum that is
close to that shown in Fig. 1a. This spectrum has the
simplest shape, with two main maxima. It is evident
that such a shape may correspond to a signal reflected
by a smooth area of the inclined bottom. The informa-
tion on the sea depth can be treated as reliable. In fitting
the parameters of the calculation, we specified the fol-
lowing values: the distance 231 km between the source
and the DHAP, the depth 2.6 km, and the bottom slope
α = 7°. The bottom surface is assumed to be smooth in
the computations.

Figures 3a and 3b show the curves z(θ) and γ(z) cal-
culated with the inclined bottom. The curves are much
more complicated than those in Figs. 2a and 2b. The
water rays remain only in the domain z > 2 km with θ ~
85°–87.2° and do not arrive at the DHAP. All rays,
except for the water ones, undergo a single reflection
from the flank. Thus, all rays arriving at the DHAP are
singly bottom-reflected rays. Their coordinates are
accentuated by solid curves. The trajectories of the rays
leaving the source towards the bottom and arriving at
ACOUSTICAL PHYSICS      Vol. 50      No. 6      2004
the DHAP at z = 0.36–0.52 km are shown in Fig. 3c. As
in the case of α = 0, two opposite branches of the func-
tion z(θ) exist. The rays that have positive projections of
the wave vector on the z axis appear: γ(z) < 0 at θ > θref
and γ(z) > 0 at θ < θref, where θref is the launch angle of
the ray reflected from the surface at x = 231 km. Thus,
in contrast to Fig. 2b, γ(z) > 0 for a large number of rays
at this distance, the absolute value of the vertical spatial
frequencies increased up to 0.4 2π/m, and many rays
have become closer to the surface. In addition, the
structure of the vertical distribution has become more
complicated, and new caustics have appeared. The
functions z(θ) and γ(z) are now multivalued rather than
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Fig. 3. Calculated characteristics of the vertical profiles of
the sound field for x = 231 km, H = 5 km, and α = 7°. The
solid and dashed curves correspond to the rays leaving the
source towards the surface and bottom, respectively:
(a) depth z(θ) of ray arrivals at the z axis versus the launch
angle, (b) projections γ(z) of the wave vector of the rays on
the z axis, and (c) trajectories of the boundary rays leaving
the source towards the bottom and arriving at the DHAP.
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Fig. 4. Spatial spectra of the vertical structure of the calculated sound field for H = 2.6 km and α = 7° at different distances from
the source: x = (a) 230, (b) 230.5, (c) 231, and (d) 232 km.
two-valued (as in Figs. 2a and 2b). Therefore, a greater
number of rays arrive at one point. For instance, nine
rays arrive at z = 0.8 km.

To estimate the effect of small changes in distance
from the source, the sound field and its spectrum were
calculated at four distances, 230, 230.5, 231, and 232 km,
for the rays that arrived at the DHAP. The functions z(θ)
and γ(z) for these distances are similar to those pre-
sented in Figs. 3a and 3b for x = 231 km. The difference
is in the number of caustics, in their positions on the θ,
z plane, and in the value of θref. The calculated spatial
spectra are shown in Figs. 4a–4d. The spatial frequency
is expressed in units of 2π/m. At all four distances, the
spectrum consists of two maxima at positive and nega-
tive frequencies. The shape and amplitude of the max-
ima vary as the distance x changes. When x increases,
the amplitude of the negative-frequency maximum
decreases. At positive frequencies, the amplitude first
increases, then decreases. The difference in the shapes
of the maxima is caused by caustics occurring in the
depth interval surveyed by the DHAP. These caustics
lead to either broadening of the maximum, as in Fig. 4a,
or to an increase in the spectrum basement, as in Fig. 4d.

The absolute values of the frequencies correspond-
ing to two maxima are slightly different: –0.39 and
+0.35. Their values do not vary as the distance from the
source changes, except for in Fig. 1a, where the caustic
exists. The calculated spectrum shown in Fig. 4b, x =
230.5 km, is the one closest to the experimental spec-
trum shown in Fig. 1b. The frequencies of the maxima
in Fig. 1b are –0.34 and +0.3 2π/m. The calculated and
measured values of the spatial frequencies coincide to
an accuracy of a single interval of resolution. Thus, by
fitting a number of parameters, the calculated vertical
spectrum of the sound field is found to be rather close
to the experimental spectrum, both in its shape and in
the values of the spatial frequencies. In our case, small
variations of the distance lead to noticeable changes in
the amplitudes of the spectral maxima. The frequencies
of the main maxima do not change as the distance from
the source varies. Only their shape and amplitude
exhibit variations. Note that, apart from a small differ-
ence in the frequencies of the maxima, both the calcu-
lated and experimental (Fig. 1a) spectra are similar to
the spectrum of a single mode. This closeness confirms
the validity of the generalized concept of Brillouin
waves for the USC.

Let us consider how the change in the bottom slope
influences the spectrum of the sound field. Figures 5a–
5d show the spectra for different bottom slopes: α =
6.2°, 6.5°, 6.7°, and 8°, respectively. The spectra of
Figs. 5a and 5b are calculated for x = 230 km: those of
Figs. 5c and 5d correspond to x = 231 km. Generally, an
increase in the slope from 6.2° to 8° leads to an increase
in the absolute values of the frequencies corresponding
to the maxima. The similarity of the negative maxima
ACOUSTICAL PHYSICS      Vol. 50      No. 6      2004
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α = (a) 6.2° and (b) 6.5°. Same at x = 231 km: α = (c) 6.7° and (d) 8°.
in Figs. 5a and 5b and the positive maxima in Figs. 5b
and 5c can be caused by the presence of caustics of the
function z(θ) in the DHAP depth interval. The absolute
values of the frequencies corresponding to the max-
ima slightly increase as the bottom slope increases:
from –0.28 to –0.43 2π/m for γ < 0 and from +0.31 to
+0.39 2π/m for γ > 0.

Figures 6a and 6b illustrate the effect of depth vari-
ations in the region of the DHAP immersion. Figure 6a
shows the calculated spectrum of the vertical structure
of the sound field for an ocean depth of 2.4 km, with a
distance of 230 km from the source and a bottom slope
of α = 7°. With these values of the parameters, no neg-
ative frequencies occur in the spectrum, and the posi-
tive frequency of the maximum is lower than in Fig. 4a,
where the ocean depth is 2.6 km. Such a behavior
occurs despite the fact that the bottom slope did not
change. The decrease in the frequency of the maximum
can be explained by assuming that, prior to reflections
from the flank, the bottom-reflected rays had smaller
grazing angles than in Fig. 4a. In Fig. 6b, the bottom
ACOUSTICAL PHYSICS      Vol. 50      No. 6      2004
slope is also changed: α = 8°. As a result, a maximum
appeared at the negative frequency, and the positive fre-
quency of the maximum became higher that in Fig. 6a.

The calculations performed above lead to the con-
clusion that changes in each of the three parameters
cause a change in the rays that constitute the sound
field. This phenomenon cannot be avoided, and, hence,
one cannot exactly predict how the spectrum will
change when a parameter changes.

Let us compare the experimental and calculated
characteristics of the sound field in more detail. First of
all, note that the fitted distance and bottom slope lead to
a good agreement between the calculated spectrum and
one of the spectra obtained from the experimental data.
This agreement confirms the correctness of the fitted
parameters and proves the validity of the proposed
mechanism governing the formation of the vertical pro-
file of the sound field by the rays reflected from the
inclined bottom. As for other experimental spectra,
their complicated structure can be caused by the rough-
ness of the flank surface, that is, by differently inclined



684 DIDENKULOV et al.
γ, 2π/m

(‡)

40

0
–0.5 0 1.00.5–1.0

160

80

120

γ, 2π/m

(b)

50

0
–0.5 0 1.00.5–1.0

250

150

200

100

Fig. 6. Spatial spectra of the vertical structure of the calculated sound field at the depth H = 2.4 km for x = (a) 230 and (b) 231 km
and α = (a) 7° and (b) 8°.
areas of the flank. Because of a slow drift of the vessels,
a change in the reflecting surfaces occurred, along with
a change in the ray trajectory segments that touch the
bottom. All of these factors determined the complicated
structure of the spectra and caused their variation from
one survey to another.

We did not consider the effect of variations in the
sound speed profile, c(z), along the path on the vertical
structure of the sound field. As it was mentioned above,
the maximal value of γ(z) is determined by the value of
c(z) at the channel axis and by the maximal sound speed
at one of the waveguide boundaries. The variations of
these values will lead to a change in the maximal value
of γ(z). In the experiment at hand, variations of c(z)
along the path were not measured. Evidently, such vari-
ations of c(z) will influence the depth of rays arriving at
a given distance. Therefore, the result of fitting all the
parameters that characterize the experiment will also
depend on the variations of c(z) along the path. The
effect of the variations can be taken into account in the
framework of the ray theory.

The study described in this paper led to the follow-
ing conclusions. The use of the DHAP for measuring
the vertical structure of the sound field proved to be
quite advantageous. This conclusion can be confirmed
by the good agreement of the calculated spectrum with
that obtained in one of the measurements. Such an
agreement offers an opportunity for solving some
inverse problems of ocean acoustics. By appropriate
calculations, one can determine unknown experimental
parameters or refine their values. From the sound field
profile measured in one region of the ocean, the sound
field in another region can be determined.
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Abstract—On the basis of earlier results (V. A. Zverev, Radiooptics (1975)), the principle of the time reversal
of waves (TRW) with the use of a time-reversed signal is considered (M. Fink et al., Time-Reversed Acoustics,
Rep. Prog. Phys. 63 (2000)). Both the common mathematical basis and the difference between the TRW and
holography are revealed. The following conclusions are drawn: (i) to implement the TRW, it is necessary that
the spatial and time coordinates be separated in the initial signal; (ii) two methods of implementing the TRW
are possible, namely, the time reversal and the use of an inverse filter; (iii) certain differences exist in the spatial
focusing by the TRW and holography; and (iv) on the basis of the theory developed, a numerical modeling of
the TRW becomes possible. © 2004 MAIK “Nauka/Interperiodica”.
Earlier [1–5], an original concept of the time rever-
sal of waves was considered. Until now, this concept
has only found application in acoustics. To implement
the time reversal of waves (TRW) in propagation
through a complex (scattering and dispersion) medium,
one should store the received signal, reverse the direc-
tion of time in it, and send the time-reversed signal into
the same medium. In [1–5], such a technique is called
“time-reversed acoustics.” To clarify the essence of the
proposed technique and to prove its feasibility, the
authors of [1–5] refer to the general theoretical consid-
erations, although they rely on brilliantly performed
experiments as well. Based on the general theoretical
considerations of [1–5], one cannot perform any quan-
titative estimations. These considerations also do not
provide the validity conditions of the TRW. The com-
parison [1–3] with the wave-front inversion (WFI),
which is carried out in a monochromatic wave field,
does not fully reveal the essence of the problem stated.
On the one hand, it is argued [1–3] that the procedure
of TRW is mathematically equivalent to that of WFI for
a monochromatic wave, because the time Fourier trans-
form of p(r, –t) is the complex conjugate Fourier trans-
form of p(r, t). On the other hand, it was shown exper-
imentally [2] that there is no full analogy between the
TRW and WFI procedures. Actually, both statements
are true. There is a common mathematical basis for the
TRW and WFI, which should be considered so as to
demonstrate both the similarity and the difference
between the two methods along with their applicability.
This is the main problem to be solved here. The solu-
tion of this problem is substantially simplified by the
fact that, as early as 1975 [6], a unified mathematical
1063-7710/04/5006- $26.00 © 20685
approach was used to develop two descriptions of wave
fields, namely, the spatial and time descriptions. The
spatial description of a monochromatic wave field was
related to WFI, while the time description, to the TRW.

According to [6], let us transform the mathematical
descriptions of WFI and TRW to a common form. Let
us begin with WFI. To describe the propagation of
monochromatic wave fields, the concept of a complex
amplitude p(x, y, z) is usually applied. Such an ampli-
tude is a complex function whose modulus is the wave
amplitude and whose argument is the wave phase.
Here, x, y, and z are the coordinates in the Cartesian
coordinate system, with the z axis directed along the
direction of wave propagation. The propagation of a
monochromatic wave from the plane z = 0, at which the
initial distribution of the complex amplitudes is speci-
fied, to the plane z = z is described by the formula [6]

(1)

Here, u1, 2 are the spatial frequencies corresponding to
the transverse coordinates x and y, g(u1, u2) is the Fou-
rier spectrum of the complex amplitude p(x, y, 0) in the
plane z = 0, and ζ(z, u1, u2) is the spatial frequency
response of the propagation channel between the planes
z = 0 and z = z. For a free space, this response is

(2)

where z is the distance passed by the wave in free space,
k = 2π/λ, and λ is the wavelength.

p x y z, ,( ) 1

4π2
-------- g u1 u2,( )ζ z u1 u2, ,( )∫∫=

× iu1x iu2y+( )du1du2.exp

ζ z u1 u2, ,( ) iz k2 u1
2– u2

2–( ),exp=
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In the spectral representation, Eq. (1) takes the
form [6]

(3)

where gz is the spatial spectrum of the field in transverse
coordinates in the plane z = z and g0 is the same spec-
trum in the plane z = 0.

Equations like (1) and (3) can be interpreted, with
the use of the functional diagram of Fig. 1, as a signal
p(x, y, 0) passing through a filter with the frequency
response ζ(z, u1, u2). Below, the WFI procedure for a
monochromatic wave is considered on the basis of
Eq. (3). Such a form corresponds to wave propagation
in free space. If the space involves inhomogeneities,
such as lenses or other volume scatterers, the wave
propagation in such complex media cannot be
described by a single formula of form (3). Therefore, let
us restrict our consideration to the WFI procedure in
free space, which is quite sufficient for the problem at
hand.

To implement the WFI, one should take the complex
conjugate of function (1) obtained at the filter output
and use it as the initial wave field. Methods of obtaining
the complex conjugate distributions of complex ampli-
tudes by analog methods exist in both optics and acous-
tics. We do not consider these methods here. Let the
wave fields at hand be such that they can be stored and
then reproduced by introducing the required correc-
tions into them. The complex conjugate field p*(x, y, z)
should be passed through the same filter (a fraction of
the free space with the same length). As a result, substi-
tuting the complex conjugate field p*(x, y, z) into Eq. (3),
we obtain the relation

(4)

By substituting the expression for  of Eq. (3) into
Eq. (4), we derive

(5)

The latter equation is just the desired form of the
mathematical representation of the WFI. The complex
amplitude of the signal obtained in the WFI procedure
will be found as the inverse Fourier transform of Eq. (5).
Such a transformation of the wave field is performed in
holography. Therefore, for the WFI in a monochro-

gz u1 u2,( ) ζ z u1 u2, ,( )g0 u1 u2,( ),=

g2z u1 u2,( ) ζ z u1 u2, ,( )gz* u1 u2,( ).=

gz*

g2z u1 u2,( ) ζ z u1 u2, ,( )ζ* z u1 u2, ,( )g0* u1 u2,( ).=

1
2

3

Fig. 1. Functional diagram of the linear system: (1) the
input signal, (2) the filter, and (3) the output signal.
matic field in free space, one can use the term “holog-
raphy.”

Let us consider the problem of representing the out-
put TRW signal in a form analogous to Eq. (5). To begin
with, let us generalize Eq. (1) to the case of polychro-
matic wave fields. In doing so, we use the method given
in [6]. Now, the polychromatic wave field A(x, y, 0, t) is
specified in the plane z = 0. Let us find the Fourier spec-
trum of this field as a function of a single argument,
namely, time t. We denote this spectrum as CA(x, y, 0,
ω). Then, the process of wave propagation can be again
represented in form (1), if the initial complex amplitude
CA(x, y, 0, ω) is specified as

(6)

Here, gC(u1, u2, ω) is the spatial Fourier spectrum of the
function CA(x, y, 0, ω).

To proceed to the TRW, it is necessary that the initial
function A(x, y, 0, t) be a function with independent
variables of the type [6]

(7)

A point wave source of the following form is an exam-
ple of such a function:

(8)

Substituting Eq. (8) into Eq. (6), we obtain

(9)

where CF(ω) is the Fourier spectrum of the function F(t)
and p(x, y, z, ω) is the complex amplitude given by
Eq. (1); p(x, y, z, ω) is a function of ω, because k = ω/c,
where c is the velocity of wave propagation. The depen-
dence obtained can be interpreted by the diagram of
Fig. 1, in analogy with Eq. (1). Thus, a time description
of wave propagation has been obtained that can be
applied to the case of Eq. (8). The complex amplitude
p(x, y, z, ω) as a function of frequency can serve as the
frequency response of the time filter obtained.

The resulting time-domain description of wave
propagation is the theoretical basis for the TRW proce-
dure. This process consists of two steps [1]. At the first
step, a short pulse is produced by a point source. The
transmitted signal propagates as a spherical wave,
which is scattered by the inhomogeneities of the
medium. As a result of scattering, a train of partially
overlapping pulses arrives at the reception point:

P x y z t, , ,( ) 1

8π3
-------- gC u1 u2 ω, ,( )ζ ω u1 u2, ,( )

∞
∫

∞
∫

∞
∫=

× iu1x iu2y iωt–+( )du1du2dω.exp

A x y z t, , ,( ) An x y z, ,( )Fn t( ).
n

∑=

A x y 0 t, , ,( ) δ x x0–( )δ y y0–( )F t( ).=

P x y z t, , ,( )

=  
1

2π
------ CF ω( )p x y z ω, , ,( ) iωt–( )exp ω,d∫
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(10)

Here, F(t) is the form of the initially transmitted pulse,
tj is the time of signal propagation from the transmis-
sion to reception point with scattering by the jth scat-
terer, and Rj is the scattering coefficient for this scat-
terer.

In the spectral representation, Eq. (10) has the form

(11)

where z(ω) is the temporal frequency response of the

propagation channel: z(ω) = exp(iωtj).

The received signal given by Eq. (10) is stored.
This procedure is obligatory for proceeding to the sec-
ond step. At the second step, the stored signal is time
reversed and again transmitted from the same recep-
tion point into the same medium, which is supposed to
be frozen for the time of the first and second steps of
the procedure. Thus, we have a time-reversed signal
y(–t) at the second step. Its spectrum is the complex
conjugate of the spectrum of the initial signal. The
spectrum of the signal transmitted at the second step
is the complex conjugate of spectrum (11): .
The spectrum of the signal received at the transmis-
sion point can be found from a formula of the form of
Eq. (11) under the assumption that the form and the
spectrum of the frequency response of the propagation
channel remain unchanged during the signal propaga-
tion in both directions, because the distribution of the
delays is independent of the propagation direction.
Thus, as a result of the first and second steps, the spec-
trum of the signal received at the transmission point
takes the form

(12)

At the second step, the form of the signal at the trans-
mission point is given by the inverse Fourier transform
of Eq. (12).

Thus, we have obtained the result of the TRW in a
form analogous to that of holography (i.e., to the result
of the WFI in a monochromatic wave field in free
space), that result being expressed by Eq. (5).

Relations (5) and (12) can be interpreted in a com-
mon way with the use of the functional diagram of
Fig. 1. The two former factors, appearing in Eqs. (5)
and (12), play the role of the frequency response of the
wave-reversing filter (WRF), and the third factor is the
spectrum of the signal at the WRF input. The fre-
quency responses of both WRFs are the squared abso-
lute values of the functions and contain a constant
component that does not depend on frequency. There-
fore, in both cases the input signal is produced at the
WRF output. In the case of the TRW, this signal is

y t( ) R jF t t j–( ).
j

∑=

Cy ω( ) CF ω( )z ω( ),=

R jj∑

Cy* ω( )

Cr ω( ) z ω( )z* ω( )CF* ω( ).=
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F(t), i.e., the initial pulse as a function of time. In the
case of WFI, it is the input image. Because of the
interference phenomena in the medium, the WRF fre-
quency response of the TRW procedure is entirely
nonuniform, which results in the correlation noise [7].
In the transparency band, the WRF frequency
response of the WFI procedure is uniform and, hence,
free from the correlation noise.

The impulse responses (spectra of the frequency
responses) of both WRFs are the autocorrelation func-
tions of the free-space impulse responses in the case of
holography or those of the time-domain wave system in
the case of the TRW [6]. The properties of these fre-
quency responses differ entirely from each other, and,
respectively, the WFI and TRW procedures are differ-
ent in spite of the similar forms of Eqs. (5) and (12) that
describe the procedures. Thus, the autocorrelation
function of the free-space impulse response, which is
the Fourier transform of the modulus of Eq. (2), has the
following form [6] at z @ λ:

(13)

where J1(r) is the first-order Bessel function of r. At z @
λ, such a frequency response transmits all spatial fre-
quencies without distortions in the frequency band sat-
isfying the condition [6]

(14)

This condition determines the maximum spatial
width of the spectrum of the signal with a complex
amplitude for the WFI procedure. According to Eq. (5),
the shape of the signal at the WFI output is governed by
the shape of the complex conjugate input signal p*(x, y,
0) in the spatial frequency band given by Eq. (14). In
this case, if the initial signals have a finite spatial spec-
trum limited by Eq. (14) (the situation that is character-
istic of holography), the WFI procedure produces the
output wave field that is identical to the input one.

Let us consider the TRW transformation from the
same point of view. The WRF frequency response of
the TRW procedure does not imply limitations like
Eq. (14). In the TRW, the time-domain spectrum of the
signal is limited by nothing but the passband of the
medium.

In contrast to the WFI, which is considered in the
spatial domain, the TRW transformation produces a
result that depends on both time and space. The time
dependence is directly governed by Eq. (12), but the
dependence on the spatial coordinates is not deter-
mined by this equation: it is rather described by a sim-
ilar relation through the spatial dependence of the cor-
relation function of the time-domain impulse
responses. To obtain the spatial dependence of the

Φ x y,( ) k

2π x2 y2+
---------------------------J1 k x2 y2+( ),=

u1
2 u2

2 k2.≤+
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TRW, one must change the second step of the proce-
dure. If, at the second step, the signal is received at
some point differing from that of transmission, Eq. (12)
should be written as follows:

(15)

Here, as in Eq. (12), z*(ω) is the transfer function from
the transmission point to the reception point at the first
step of the procedure. A new function za(ω) appeared,
which is the transfer characteristic from the transmis-
sion point at the first step to the reception point at the
second step. The function

(16)

which is the spectrum of the cross-correlation func-
tion of the corresponding filter responses, determines
the spatial dependence of the TRW result or the
focusing of the TRW-produced signal. This feature
makes the spatial transformation produced by the
TRW considerably different from holography. As was
mentioned above, the WFI spatial transformation cor-
responds to the input signal (see Eq. (14)). In the
TRW, the spatial transformation (focusing) does not
depend on the signal form and is fully determined by
Eq. (16) or by the cross-correlation of the filter
responses. Thus, one cannot accept the statement of
[2] that the TRW procedure is nothing but a broad-
band WRI and the WFI procedure is just a narrow-
band TRW.

For focusing of waves in the TRW, the same restric-
tions are imposed on the spectrum of spatial frequen-

Cra ω( ) za ω( )z* ω( )CF* ω( ).=

Z a ω,( ) za ω( )z* ω( ),=
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Fig. 2. Shape of the pulses received at the second step. The
data are taken from [8] and transformed according Eq. (12)
with (a) full and (b) truncated realizations.
cies as in the WFI. The point is that the signals in the
TRW also propagate in the form of waves, and waves of
an arbitrary nature are limited by a condition similar
to Eq. (14). Actually, waves with spatial frequencies
that do not satisfy inequality (14) are inhomogeneous
ones, and their amplitudes exponentially decrease with
distance.

This fact is clearly illustrated by the brilliant
experiment described in [8]. The two measurements of
[8], which differed from each other in time windows
at the second step of the procedure, led to entirely dif-
ferent sizes of the focal areas. With the shortened sig-
nal (measurement (a)), the size of the focal spot was
λ/2, while the time window of the full length signal
(measurement (b)) led to a focal spot with a size of
λ/14, equal to the size of the signal transmitter. If con-
dition (14) could be ignored, the results of measure-
ments (a) and (b) should coincide. A full-scale exper-
iment does not allow one to ignore inequality (14), but
a numerical experiment does. Figure 2 illustrates the
numerical experiment based on Eq. (12) with the same
parameters as in [8]. The signals are shown in the form
of the second-step time dependences at the reception
point. The numerically obtained time dependences
corresponding to measurements (a) and (b) are rather
similar to each other: they both follow the shape of the
initial pulse (with the reversed time). Relation (15),
which governs the spatial focusing, has the same math-
ematical structure as Eq. (12). Therefore, according to
the numerical simulation, the results of the spatial
focusing in measurements (a) and (b) are also identi-
cal if one ignores inequality (14).

The difference in the data of measurements (a) and
(b), which was clearly demonstrated by the experiment,
is the consequence of the fact that, in measurement (b),
the signal traveled no distance in the medium, and,
hence, condition (14) had no influence on the experi-
mental results. Measurement (a) is quite different in
this sense. In this measurement, because of the shorter
transmitted pulse, the signal passed through some dis-
tance in the medium and underwent a spatial filtration
according to Eq. (14). Therefore, the size of the focal
spot increased to λ/2. The difference in the distances
traveled by the signal in the medium in measurements (a)
and (b) is caused by the fact that the points of transmis-
sion and reception coincided in this experiment. In this
case, with the full-length window (measurement (b)) at
the first stage, the initial signal travels no path in the
medium and immediately arrives at the receiver where
it is stored. At the second step, the time-reversed signal
is transmitted. In this case, the initial part of the signal
changes to the last one, which also travels no distance
in the medium. The situation changes if the initial part
of the signal is eliminated. At both the first and the sec-
ond step, the signal passes through some distance in the
medium. Therefore, the result of the experiment is
ACOUSTICAL PHYSICS      Vol. 50      No. 6      2004
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strongly influenced by the failure to satisfy condition
(14). This is the fact that was clearly confirmed by the
experiment described in [8], and that is why the data of
the experiment are far from confirming the effect of
overcoming the diffraction limit (as the authors of [8]
mistakenly argue). On the contrary, the experiment
clearly shows the existence of the diffraction limit. It
should be noted that the term “diffraction limit” is usu-
ally attributed to focusing systems, but no such systems
were present in the experiment of [8].

There is one more substantial difference between
the WFI and the TRW. While the WFI procedure can be
performed in a unique way, two methods can be used to
implement the TRW [7]. With the second method, the
signal processing at the second step changes. Namely,
instead of the time-reversed signal at the second step, a
signal is formed whose form is determined by the Fou-
rier spectrum of the inverse frequency spectrum and
then sent to the transmission point. The spectrum of
such a signal received at the transmission point is as fol-
lows:

(17)

As a result, one obtains unity divided by the spec-
trum of the transmitted signal at the transmission point.
To find the form of the transmitted signal, the received
signal should be additionally processed. Namely, one
must divide unity by the spectrum of the received signal
and then take the Fourier transform of this fraction. No
additional processing is needed if the function F(t) has
a uniform spectrum (F(t) = δ(t)) in the entire frequency
band used. Let us denote this processing method as
inverse filtration. The inverse-filtration method has an
advantage in that it leads to no noise in the TRW time
realization. The inverse filtration can be applied only to
those parts of the signal spectrum at which the modulus
of the function z(ω) differs from zero. The parts at
which this modulus is equal to zero should be excluded.
With the inverse filtering procedure, the TRW spatial
focusing is governed by the ratio of the frequency
responses: za(ω)/z(ω). This ratio is influenced by the
correlation noise.

The aforementioned considerations are sufficient to
numerically demonstrate a number of important TRW
features mentioned in [1–5]. Let us consider the exper-
iment reported in [1, 2], in which focusing was studied
in the course of wave propagation through a layer of
volume inhomogeneities. Figure 3 shows the layout of
the numerical implementation for the experiment simi-
lar to that described in [1, 2]. This layout corresponds
to that of the experiment discussed in [1] and shown in
Fig. 1 of this paper. A point source A of a short pulsed
signal is shown at the left (Fig. 3). The pulse is specified
so that the spectrum of function F(t) is equal to unity in

CY ω( ) 1
z ω( )CF ω( )
---------------------------z ω( ).=
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the frequency band at hand. In this case, the function
F(t) can be treated as a delta function. In Fig. 1 of [1],
a reflector of the signal is shown as the source. Note that
the result of the experiment will agree with that
reported in [1] if the signal scattered by the reflector is
very short. Evidently, it is not always possible to excite
such a pulse by manipulating, from the transmission
point, the view of the propagation through an arbitrary
scattering layer.

At the right of Fig. 3, the receiving antenna array
consisting of 64 elements is shown. As will be demon-
strated below, the number of antenna elements is of no
fundamental importance. To obtain the effect of spatial
focusing shown [1], it is sufficient to use a receiving
array that consists of a single element. Between the
source A located at the origin of coordinates and the
receiving array, 32 point scatterers are placed to form
the scattering volume. It is supposed that each scatterer
scatters the incident radiation in all directions. In [1, 2],
a volume scatterer is used that consists of a number of
wires, just as in our layout.

Note that the numerical experiment implies a single
scattering, while the experiment of [1, 2], as the authors
of these works argue, was accompanied by multiple
scattering. Multiple scattering is difficult to numeri-
cally model, and one should be sure that it is really
needed before making an attempt to do so. However,
the multiplicity of scattering is not proven in [1, 2], and
one may suppose that there was actually a single scat-
tering. For the TRW procedure, the problem of the scat-
tering order is of no importance. Therefore, the experi-
mental results give no information on that subject, but
the experimental layout of illuminating the scatter does
give the necessary information. The illumination was
performed by the central element of the transmitting–
receiving antenna array positioned behind the scatterer.
The specificity of such a layout is that the signal emit-
ted by the only central element and then scattered by
the scatterer is not composed of a single short pulse. It
rather takes the form shown in Fig. 4. With such a pulse,
the experiment cannot yield the result obtained in [1, 2].

A

x

y

z

b

b

Fig. 3. Layout of the numerical experiment. The z axis of
the Cartesian coordinate system is directed from the source
of the pulsed signal (point A) to the center of the b–b line,
along which the elements of the transmitting–receiving
array are positioned.
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Fig. 4. Signals at the receiving element positioned at the center of the transmitting–receiving array.
Why, then, was this result nevertheless obtained in [1,
2]? The reason is that the scatterers used (wires) had a
small target strength. Therefore, the scattered signal
was observed on the background of a much more
intense signal transmitted through the medium sur-
rounding the wires. The shortness of this signal allowed
the experimenters to use the method of illuminating the
scatterer that was reported in [1, 2]. Because the scat-
tering is weak in comparison with the direct signal, one
can neglect the effects of multiple scattering by the
wires and mathematically model the experiment [1, 2]
in the way used here.

The modeling was performed in the following way.
From the geometrical considerations (Fig. 3), the dis-
tance from the transmission point to each scatterer was
determined to be

(18)

Here, m is the ordinal number of the scatterer, and xm,
ym, and zm are the coordinates of this scatterer. Then, the
distance between the transmission point and each ele-
ment of the receiving array was found to be

(19)

Here, an is the coordinate of the nth array element and
r is the distance to the transmitting–receiving array. The
distance between the transmission point and each array
element through each of the m scatterers is given by the
sum of Eqs. (18) and (19):

(20)

In view of Eqs. (18)–(20), Eq. (10) was used to find
the response of each element of the receiving array to
the pulse sent by the transmitter. Figure 4 shows an
example of such a response.

Then, the TRW procedure was modeled. Both the
aforementioned methods of implementing the TRW
were used in the modeling. Let us begin with the corre-
lation procedure (Eq. (15)) proposed in [1–5].

Rm xm
2 ym

2 zm
2+ + .=

Ram n, xm
2 ym an–( )2 r zm–( )2+ + .=

Dm n, Rm Ram n, .+=
Let us find the transfer characteristics of the channels
(filters) from the transmission point A to each element of
the receiving array. Such frequency characteristics are
fully determined by the delays given by Eq. (20):

(21)

Neither the distribution nor the values of the delays
depend on the direction of wave propagation. Hence,
Eq. (21) equally describes the channel of signal propa-
gation in the reverse direction, from the output of the
filter to its input. Let us transform the signals received
by n elements of the array in a way implied by the TRW
procedure. One should change the sign of the time in
each received signal and then send it back to the trans-
mitter. The spectrum of the signal with the reversed
time is the complex conjugate (Eq. (21)). To find the
signal at the filter output as a function of time, let us use
Eq. (12) with a subsequent Fourier transformation of
the result. We obtain

(22)

This relation determines the response of the
matched filter to the function with which it is matched,
or the correlation function of the response of the device
at hand to the short pulse sent from point A (Fig. 3).
Thus, the result of the TRW procedure is obtained as a
function of time at point A. This result can be found in
[1, 2].

It is advantageous to obtain the result of the TRW
procedure not only at point A but also at neighboring
points along the y axis (Fig. 3) in order to estimate the
effect of the focusing of the reversed wave. To do so,
according to Eq. (15) one should change the shape of
the frequency response of the filter through which the
time-reversed signal passes. To the frequency response,
it is necessary to add the differences in the path lengths
from each mth scatterer to each point q of the y axis. (Let

zk n, i
2π
L

------kDm n, 
  .exp

m

∑=

yn t( ) 1
2π
------ zk n,* zk n, i

2π
L

------kt 
  .exp

k

∑=
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us suppose that there are 64 such points with spacings
equal to unity.) The desired distance can be found to be

(23)

This relation should replace the quantity Rm in Eq. (20)
to specify the set of delays for the signal propagating in
the backward direction. The resulting formula takes the
form

(24)

Here, zok, n, q is the frequency response of the filter for
backward propagation. This response is obtained from
Eq. (21) in view of Eq. (23).

To make use of the entire array aperture, one should
sum Eq. (24) over all n transmitting–receiving ele-
ments:

(25)

The second method of implementing the TRW,
which is based on the use of the inverse filter (Eq. (17)),
is built from the same bricks as the first method, though
they put together in a different order. These bricks are
the filter frequency responses (Eq. (21)) and the quanti-
ties zok, n, q appearing in Eq. (24). In the second TRW
method, the same frequency responses are used in a dif-
ferent combination. The final formula has the following
form:

(26)

There is a caveat in using Eq. (26): the quantity zk, n
appearing in the denominator of Eq. (24) can become
zero at certain points. To avoid errors caused by these
zeros, it is sufficient to set Eq. (26) to be equal to zero
if the modulus of zk, n takes a value below some thresh-
old level.

Figures 5–7 illustrate the calculations performed
with Eqs. (24)–(26). In Fig. 5, the responses of the
time-reversed signals are shown as functions of time.
These responses were obtained with the value of q that
corresponds to point A, i.e., to the point of transmission.
This figure illustrates both methods of implementation
of the TRW. Note that the entire receiving array is not
used. The plots show the TRW results obtained in trans-
mitting the time-reversed signal from a single point.
According to Fig. 5, a short pulse is observed, which is
similar to the signal obtained in the experiment
described in [1, 2]. Figure 6 illustrates the focusing of
the signal in space and time. This focusing is numeri-

Rm q, xm
2 ym q–( )2 zm

2+ + .=

yn q, t( ) 1
2π
------ zok n q, ,* zk n, i

2π
L

------kt 
  .exp

k

∑=

Yq t( ) yn q, t( ).
n

∑=

Y2q t( ) 1
2π
------

zok n q, ,

zk n,
--------------- i

2π
L

------kt 
  .exp

k

∑
n

∑=
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cally obtained without using the entire transmitting–
receiving array: only individual (arbitrary) array ele-
ments are used. What, then, is the role of the array, and
is it necessary at all?

The experiments described in [1, 2] show that the
signal is focused more sharply in the TRW procedure
than in using the array in free space. In [2], experi-
mental data are presented for various numbers of ele-
ments in the receiving array: from 1 to 128. In all
cases, the focusing effect was observed independently
of the number of array elements. The calculations lead
to the same conclusion. To implement the focusing
observed, there is no need for a receiving array: a single
point receiver is quite sufficient. The focusing
obtained in the experiments is a direct consequence of
Eqs. (25)–(27). The point is that the filter through
which the secondary signal passes is the matched one
only in the case in which the points of transmission
and reception coincide. Otherwise, Eqs. (25) and (27)
differ from each other, and the filter proves to be par-
tially matched or completely unmatched. A similar
result will be obtained if the signal formed by the
TRW procedure is considered for a different direction
from point A. Near point A, the response is close to
the signal at point A in its amplitude. But if one moves
away in an arbitrary direction to a considerable dis-
tance, the filter will become unmatched and the
response will decrease.

One could possibly draw the following conclusion:
that in the experiment, one can restrict the array to a sin-
gle element instead of the antenna consisting of 128 or
more receiving elements, and the result should be the
same. However, the situation is somewhat more com-
plex. The experiment with a single receiver instead of
the array may fail. Here, the key factor is not in the

–1

–600 –400

Amplitude

Time

0

1

–2
–200 0 200 400 600

Fig. 5. The TRW result observed at point A (Fig. 2) as a
function of time. Only one element of the b–b array is used.
The upper and lower plots correspond to the correlation
transformation [1] and the inverse filtration, respectively.
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Fig. 6. TRW result as a function of time and y coordinate. Only one element of the transmitting–receiving array is used. The plots
(a, c) on the left and (b, d) on the right correspond to the correlation transformation [1] and the inverse filtration, respectively. In the
plots (c, d) with isocurves, the time and the y coordinate are represented by the vertical and horizontal axes, respectively.
directivity of the array but rather the noise immunity of
the 128 independent receiving channels in comparison
with a single one. This statement is confirmed by the
experiment described in [2], as well as by calculations.
The TRW effect with a single receiver will exist, but it
will be weak. Instead, if the effects of 128 receivers are
summed, the TRW gain will significantly increase and
become quite noticeable. Figure 7 illustrates this state-
ment: here, the output of the entire array is shown
according to Eqs. (25) and (26). The signal is substan-
tially stronger and less polluted than in Fig. 6 corre-
sponding to a single array element.

Figures 6 and 7 show the data obtained both at the
second step of the TRW procedure and with the
method of inverse filtration. Both methods provide
spatial focusing. The inverse-filtering method offers
more noise immunity only in finding the time-domain
response. In other situations, this method leads to a
lower noise immunity. Figures 6 and 7 confirm the
latter statement. It is especially noticeable in the
isocurves of Figs. 6d and 7d, which illustrate the
space–time focusing: there is a white strip across the
plots. This strip is free of the correlation noise. With
the inverse filtration, the noise is higher in other
points of the time–coordinate plane. The origin of
such a lower noise immunity is clear: small values of
z(ω) increase the noise. Nevertheless, the inverse-fil-
tration method is of fundamental importance in spite
of its evidently low noise immunity. The existence of
this method prevents efforts to fully reduce the TRW
procedure “to the time reversal of the signal,” as in
[1–5].

To conclude, let us emphasize the common features
of the TRW and WFI. Both the TRW and WFI proce-
dures realize wave inversion with focusing in space.
Both methods allow one to obtain the inverse field free
of the influence of the medium in which the waves
propagate. It is especially important that both the TRW
and WFI, when repeatedly applied, offer the opportu-
nity to separate the received signals in their intensities,
as in [1, 9, 10].

Because of its similarity to holography and the
simplicity of its implementation, the TRW method is
a great advantage for acoustics. The TRW method has
ACOUSTICAL PHYSICS      Vol. 50      No. 6      2004
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Fig. 7. The TRW result as a function of time and y coordinate. The entire transmitting–receiving array, consisting of 64 elements, is
used. Plots (a, c) on the left and (b, d) on the right correspond to the correlation transformation [1] and the inverse filtration, respectively.
In the plots (c, d) with isocurves, the time and the y coordinate are represented by the vertical and horizontal axes, respectively.
already given rise to a number of new ideas [7–13].
Undoubtedly, this method will also yield new interest-
ing results in future.
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Abstract—A plane acoustic layer bounded by elastic membranes is considered. Dispersion relations for symmetric
and antisymmetric waves are derived. The limit behavior of dispersion curves is investigated for wave numbers tend-
ing to zero and to infinity. With the use of the resulting asymptotic expansions, the two-point Pade approximations
are constructed. The orthogonality relations for eigenmodes are presented. © 2004 MAIK “Nauka/Interperiodica”.
Multiple papers dealing with the Rayleigh–Lamb
transcendental equations for a plane elastic layer (see,
e.g., [1, 2]) form the current methodology of linear
waveguide dispersion analysis. This methodology
includes, in particular, the consideration of the limit
behavior of dispersion curves for different relation-
ships between the wave number and the angular fre-
quency. The corresponding asymptotic dependences
offer important initial information for constructing
universal models describing the dynamics of plates
and shells [3].

This paper extends the qualitative approach devel-
oped for the Rayleigh–Lamb equation to the case of
wave dispersion in a plane acoustic layer bounded by
elastic membranes. Such a waveguide is of interest for
modeling a number of man-made and biological
hydroelastic systems with flexible walls. In this con-
text, we note that motions of the membranes are
described by the equations of the theory of elasticity for
a prestressed body in the low-frequency asymptotic
approximation [4].

In what follows, we derive asymptotic formulas for
the roots of the derived dispersion equation near the
zero and cutoff frequencies and for the wave number
tending to infinity. With these formulas, we determine
the asymptotic laws of acoustic pressure distribution
throughout the layer thickness. We suggest (possibly
for the first time) describing the dispersion curves in
terms of the two-point Pade approximations, which, in
the limiting cases, turn into the conventional long- and
short-wave approximations. The efficiency of the
approximate formulas is demonstrated by correlating
the approximate results with those obtained numeri-
cally from the initial dispersion equation. The disper-
sion analysis is concluded with a derivation of the
orthogonality conditions for oscillation modes, which
1063-7710/06/5006- $26.00 © 20694
are, in a certain sense, similar to the orthogonality con-
ditions for the Lamb waves in a plane elastic layer (see,
e.g., [5]).

1. DISPERSION RELATIONS

Consider a plane acoustic layer with flexible walls
in the form of membranes spaced by a distance 2H
(Fig. 1). The equations of motion for the membranes
and the acoustic medium can be written in the form

(1.1)

where x and y are the longitudinal and transverse coor-
dinates, t is time, c is the velocity of an elastic wave in
a membrane, c0 is the velocity of sound in the acoustic
medium, h is the membrane thickness, ρ is the density
of the membrane material, ρ0 is the density of the
medium, w and v  are the displacements of the mem-
branes and the medium, p is the acoustic pressure, and
the plus (minus) sign in the first equation corresponds
to the upper (lower) membrane (see Fig. 1). The condi-
tion of no leakage through the membranes is as follows:

(1.2)

∂2w

∂x2
---------

1

c2
----∂2w

∂t2
---------–

p

c2ρh
-----------± 0,=

∂2 p

∂x2
-------- ∂2 p

∂y2
--------

1

c0
2

-----∂2 p

∂t2
--------–+ 0,=

∂2v

∂t2
---------

1
ρ0
-----∂p

∂y
------,–=

v y H±= w.=
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We introduce dimensionless variables and unknowns
according to the formulas

(1.3)

In the further analysis, we will omit the asterisk.
After a direct substitution of Eqs. (1.3), system of

equations (1.1) assumes the dimensionless form

(1.4)

 

where κ =  and ε = .

Consider the propagation of a harmonic wave with a
dimensionless frequency ω and a dimensionless wave
number χ. We seek the solution in the form

(1.5)

Then, system of equations (1.4) assumes the form

(1.6)

In the case of symmetric oscillation modes (the
amplitude P(ζ) is an even function), the solution to the
boundary-value problem in (1.6) and (1.2) is given by
the formulas

(1.7)

with α2 = ε2χ2 – ω2 and β2 = χ2 – ω2, where ω and χ sat-
isfy the dispersion equation

(1.8)

In the antisymmetric case (the amplitude P(ζ) is an
odd function), we have

(1.9)

ξ ζ τ, ,[ ] x y c0t, ,[ ] /H ,=

w v,[ ] H w* v *,[ ] , p c0
2ρ0 p*.= =

ε2∂2w

∂ξ2
--------- ∂2w

∂τ2
---------– κp± 0,=

∂2 p

∂ξ2
-------- ∂2 p

∂ζ2
-------- ∂2 p

∂τ2
--------–+ 0,=

∂2v

∂τ2
---------

∂p
∂ζ
------,–=

Hρ0

hρ
---------- c

c0
----

w v p, ,[ ] W V ζ( ) P ζ( ),,[ ] i ωτ χξ–( )[ ] .exp=

W
κP

ε2χ2 ω2–
----------------------,±=

d2P

dζ2
--------- ω2 χ2–( )P+ 0,=

dP
dζ
------- ω2W .=

P ζ( ) ω2 βζ( )cosh
β βsinh

------------------------------W , V ζ( ) βζ( )sinh
βsinh

----------------------W ,= =

α2β2

ω2
----------- β( )tanh

β
------------------- κ .=

P ζ( ) ω2 βζ( )sinh
β βcosh

----------------------------W , V ζ( ) βζ( )cosh
βcosh

-----------------------W= =
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under the condition that the dispersion relation

(1.10)

holds. Figures 2 and 3 show the dispersion curves of the
fundamental and higher-order modes for symmetric
and antisymmetric cases at ε = 0.1 and κ = 1.

2. ASYMPTOTIC ANALYSIS

Let us analyze the limit behavior of the dispersion
curves for the wave numbers tending to zero and to
infinity. Expanding Eqs. (1.8) and (1.10) in powers of
the wave number χ for χ  0, we obtain the long-
wave asymptotics of the fundamental mode. It has the
form

(2.1)

in the symmetric case and

(2.2)

in the antisymmetric case.
As the wave number tends to infinity, the symmetric

and antisymmetric fundamental modes turn into the

α2β2

ω2
----------- β( )coth

β
------------------- κ=

ω ε
κ

-------χ2 O χ4( )+=

ω ε
1 κ+

----------------χ O χ3( )+=

y

–H

Membrane

Acoustic medium x
0

H

Membrane

Fig. 1. Geometry of the problem.
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Fig. 2. Dispersion curves for the symmetric case.
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surface wave whose limiting velocity of propagation
coincides with the velocity c of waves in the mem-
brane. Replacing the hyperbolic tangent and cotan-
gent in Eqs. (1.8) and (1.10) with unity and setting α2

~ ω, we obtain the asymptotic formula

(2.3)

At χ = 0, dispersion equations (1.8) and (1.10) yield
equations for cutoff frequencies bn, n = 1, 2, …:

(2.4)

The corresponding high-frequency long-wave
asymptotics have the form

(2.5)

where

(2.6)

Unlike the fundamental modes, the phase velocity
of higher-order modes at infinity tends to the velocity of
bulk waves c0 in the acoustic medium. We seek the
asymptotic behavior of these modes for χ  ∞ in the
form

(2.7)

ω κε

2 1 ε2–
---------------------– εχ O

1
χ
--- 

  , χ  @ 1( ).+ +=

bn bn( )tan κ ; bn π n 1–( ), n @ 1,≈=

bn bn( )cot –κ ; bn –
π
2
--- πn, n @ 1.+≈=

ω bn

An

bn

------χ2 O χ4( ),++=

An
1
2
---

εκ
bn

2 κ2 κ+ +
--------------------------.+=

ω χ
Cn

χ
------ O

1

χ2
----- 

  .+ +=
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Fig. 3. Dispersion curves for the antisymmetric case.
Substituting expansion (2.7) in dispersion rela-
tions (1.8) and (1.10), we obtain the equations for Cn:

(2.8)

The method of the two-point Pade approximations
(see, e.g., [6]) allows the transformation of the asymp-
totics obtained above into fractionally rational formulas
that exhibit a given limit behavior near zero and at infin-
ity. They have the form

(2.9)

for the symmetric fundamental mode,

(2.10)

for the antisymmetric fundamental mode, and

(2.11)

for the higher-order modes.
Figures 4 and 5 show the dispersion curves obtained

for the fundamental modes from the exact solution and
asymptotic formulas (at ε = 0.1, κ = 1) suitable for esti-
mating the behavior of the dispersion equation roots
near the cutoff frequencies (Eqs. (2.1) and (2.2)) and for
large wave numbers (Eq. (2.3)); in addition, these fig-
ures show the corresponding Pade approximations
(Eqs. (2.9) and (2.10)). Figures 6 and 7 show similar
curves for higher-order modes. One can see that the
quality of Pade approximations degrades with increas-
ing mode number n, which is related to the increase in
the coefficient Cn in formula (2.11).

The above expansions offer the possibility of
obtaining the asymptotic laws for the acoustic pressure
distribution throughout the layer thickness. For funda-
mental modes, they have the form

(2.12)

in the symmetric case and

(2.13)

in the antisymmetric case.

2Cn 2Cntan
κ

1 ε2–
-------------; Cn

1
2
---π2 n 1–( )2
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1 ε2–
-------------;=
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8
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ε
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2 1 ε2–
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1 χ3+
-------------------------------------------------------------=

ω

ε
1 κ+
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2 1 ε2–
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1 χ2+
--------------------------------------------------------------------=

ω
bn

An

bn

------χ2 Cnχ
4 χ6+ ++

1 χ5+
-----------------------------------------------------=

P
ω
χ
---- 

 
2

W , χ  ! 1( )=

P ζ( ) ω2ζW , χ  ! 1( )=
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For the symmetric higher-order modes, we have

(2.14)

(2.15)

Similar formulas for the antisymmetric higher-order
modes have the form

(2.16)

 (2.17)

3. ORTHOGONALITY RELATIONS
Let us reduce Eq. (1.6) to the eigenvalue problem

(3.1)

P ζ( ) ω2W
bn bn( )sin
----------------------- bnζ( ) ---cos–=

–
2An 1–
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

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
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
χ2 , χ  ! 1( ),
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ω2 2Cnζ( )cos

2Cn 2Cn( )sin
----------------------------------------W , χ  @ 1( ).–=

P ζ( ) ω2W
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+
2An 1–
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


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5

0

χ

ω

4

3

2

1

0.083 0.170 0.250 0.330 0.420 0.500

Fig. 4. Symmetric fundamental mode (solid line) and its
asymptotics (dotted lines) for χ @ 1 and χ ! 1, and the Pade
approximation (dashed line).
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with boundary conditions

(3.2)

where

and introduce the spectral parameter λ = –β2. Because
the boundary conditions depend on the spectral param-
eter, problem (3.1), (3.2) does not belong to the class of
problems described by the classical Sturm–Liouville
theory [7]. To determine the orthogonality relations in

dP
dζ
------- a λ( )P± 0, ζ 1±=( ),=

a λ( ) κω2

ε2λ– ω2 1 ε2–( )+
--------------------------------------------=
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0.083 0.170 0.250 0.330 0.420 0.500

Fig. 5. Antisymmetric fundamental mode (solid line) and its
asymptotics (dotted lines) for χ @ 1 and χ ! 1, and the
Pade approximation (dashed line).

5

0

χ

ω

4

3

2

1

0.92 1.83 2.75 3.67 4.58 5.50

Fig. 6. Asymptotics for the symmetric higher-order modes
(solid lines) (n = 1, 2) and their asymptotics (dotted lines)
for χ @ 1 and χ ! 1, and the Pade approximations (dashed
lines).
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our case, we write Eq. (3.1) for eigenfunctions Pn and
Pm (n ≠ m) and the corresponding eigenvalues λn and λm
and subtract the second equation from the first one. The
result will be

(3.3)

Integrating Eq. (3.3) from –1 to 1 and taking into
account the fact that

(3.4)

we obtain the integral form of Eq. (3.3):

(3.5)

where

(3.6)

As a consequence, we obtain

(3.7)

d
dζ
------ PnPm' PmPn'–[ ] λ n λm–( )PnPm+ 0.=

ε2λ i ω2 ε2 1–( )+ κω2Pi 1( )
Pi' 1( )
-------------=

=  κω2Pi 1–( )
Pi' 1–( )
----------------, i n m,=( ),–

λn λm–( ) ε2

κω2
---------Fnm Pn ζ( )Pm ζ( ) ζd

1–

1

∫+ 0,=

n m,≠

Fnm Pn' 1( )Pm' 1( ) Pn' 1–( )Pm' 1–( ).+=

ε2

κω2
---------Fnm Pn ζ( )Pm ζ( ) ζd

1–

1

∫+ 0, n m.≠=

6.0

0

χ

ω

5.4

4.8

4.2

3.6

3.0

2.4

1.8
1.2

0.6

1 2 3 4 5 6 7 8 9

Fig. 7. Asymptotics for the antisymmetric higher-order
modes (solid lines) (n = 1, 2) and their asymptotics (dotted
lines) for χ @ 1 and χ ! 1, and the Pade approximations
(dashed lines).
Calculating now the left-hand side of Eq. (3.7) for
n = m, we obtain the orthogonality relation for the
eigenfunctions of problem (3.1), (3.2) in the form

(3.8)

where

(3.9)

(3.10)

and δnm is the Kronecker delta.

Note that similar orthogonality conditions for
acoustic waveguides with flexible walls were suggested
earlier in [8].
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Abstract—A monopole scattering of sound by microparticles in a liquid is considered for microparticles of two
types: spherically symmetric particles similar to gas bubbles in a liquid and disk-shaped gas-filled particles
whose bases may oscillate in antiphase. A transformation of the scattering amplitude to the function that, in par-
ticular, describes the oscillations of a particle removed from the liquid is proposed. This function extends the
possibilities of the acoustic diagnostics of such particles. Estimates of the sound velocity in water containing
disk-shaped particles suggest that the sound velocity increase observed in sea water with plankton can be
explained by the monopole scattering of sound from a single plankton particle modeled as a rigid gas-filled disk
with oscillating parts of its bases. © 2004 MAIK “Nauka/Interperiodica”.
In problems of sound behavior in media with dis-
crete inhomogeneities (particles), it may be necessary
to develop a model of acoustic wave scattering by indi-
vidual particles, which, in principle, allows one to
describe the acoustic field in the medium and, in a num-
ber of cases, to identify the particles. For example, in
[1], an attempt is made to determine the shape and type
of plankton from backscattered acoustic waves; in [2],
an anomalously high attenuation of acoustic waves in a
liquid containing zero-buoyancy plankton is explained
by oscillations of particles whose center of mass is off-
set from the point at which the buoyancy force is
applied. Of interest are the experimental measurements
of the velocity of sound in sea water containing plank-
ton [3, 4], where the velocity of sound was found to
increase with respect to that in the pure liquid in the fre-
quency range from a few kilohertz to hundreds of kilo-
hertz. Whereas the model developed in [1] refers to
acoustic wavelengths equal to anywhere from fractions
of the particle size to a few particle sizes, the wave-
lengths dealt with in [3, 4] are much longer than the
particle size, which allows one to categorize the inter-
action between the particles and sound by the type of
the scattering: monopole, dipole, etc. In this case, the
characteristics of individual scattering types can exper-
imentally be found by measuring this process for one
particle and revealing how the particle parameters
(elasticity, mass, added mass of the liquid, etc.) respon-
sible for this type of oscillations are related to the
amplitude of the scattered acoustic waves. Of course,
this study cannot do without theoretical models of par-
ticle oscillations, which should be individual for each
scattering type. In this paper, we discuss two models of
the particles that cause a monopole scattering of sound.
These are the spherical particle, whose properties are
close to those of a gas bubble in the liquid, and the pla-
1063-7710/04/5006- $26.00 © 20699
nar (disk-shaped) particle, whose bases oscillate with-
out deformation.

Consider the scattering of an acoustic wave by a
spherical particle whose radius R is small in terms of
wavelength. We represent the particle as a gas-filled
space enclosed in a shell whose mass per unit area is m.
For harmonic oscillations at the circular frequency ω,
the amplitude Rs(r) of the pressure of the scattered
acoustic wave P(t) = P0exp(iωt) can be written as

(1)

where r is the distance from the particle center to the
observation point; k is the wave number; and χ and P0
are the amplitudes of the scattered and incident waves,
respectively. To calculate χ, we use the boundary con-
ditions at the surface of the particle and the gas law
inside it (see, e.g., [5, 6]). The only difference between
the description of the particle under study and that of a
gas bubble is the additional term in the relationship
between the pressure Pg in gas and the pressure Pl in
liquid:

(2)

where ξ is the amplitude of oscillations of the particle’s
boundary. As a result, we obtain the following expres-
sion for the amplitude of the scattered wave:

(3)

where ω0 = (1/R)(3γPst/ρ)1/2; Pst is the static pressure in
the particle; σ is the internal loss factor; γ is the adia-
batic index of gas in the particle; and ρ and ν are the
density of liquid and its kinematic viscosity coefficient,
respectively. Exact values of ω0 and σ with allowance

Ps r( ) χ R/r( ) ikr–( )P0,exp=

Pg Pl ω2mξ ,–=

χ [ ω0
2/ω2( ) 1– m/R( )–=

+ i kR 4ν/ωR2( ) ω0
2σ/ω2+ +( ) ] 1–

,
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for heat-transfer processes and surface tension, which
can be regarded in this case as elasticity of the particle’s
surface, are given in [6]. An expression for the ampli-
tude χ of the wave scattered by a particle with an elastic
mass shell of a nonzero thickness is obtained in [7].

The quantity χ depends on the frequency ω in a res-
onance manner, and the position of the resonance (ω =
ωr) on the frequency axis is determined by the condi-
tion

(4)

and depends on the added mass of the liquid 4πρR3, as
well as on the mass of the boundary 4πmR2. To retrieve
the parameters of the particle from the scattered field
according to Eq. (1), one must measure the product Rχ
and, if the particle radius R is somehow determined, for
example from the float-up velocity as in [10], then ω0
and σ can be found from condition (4) of the resonance
and from its Q factor at m = 0. Otherwise (R is unknown
and m ≠ 0), Rχ must additionally be measured at other
points, for example, far from the resonance at low fre-
quencies, where

(5)

In this situation, it may be useful to transform χ to
the function W(ω, Ref) by the formula

(6)

where Ref can be defined arbitrarily. Formulas (3) and
(6) yield the following expression for W (kRef is small):

(7)

It can be seen that function W has lost its emission loss
coefficient kR for all Ref while retaining the resonance
dependence on ω, but not for all Ref. The position of the
resonance ωef on the frequency axis is now given by the
formula

(8)

which is valid when

(9)

The quantity Ref = R/(1 + m/ρR) gives an infinite ωef and
transforms Eq. (7) to the expression

(10)

which is proportional to χ from Eq. (5) but now is valid
for the entire range of frequency ω. At m = 0, this
behavior of the function W in the vicinity of the reso-
nance of the amplitude χ of the scattered wave deter-

ω0
2/ωr

2 1 m/ρR+=

χ ω 0( ) ω2/ω0
2( ) 1 i 4ωυ /ω0

2R2( ) σ+–[ ] .=
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 
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.
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2/ωef

2 1 m/ρR R/Ref ,–+=

R/Ref 1 m/ρR+( ).≥

W ω2/ωr
2( ) 1 i 4ων/ω0

2R2 σ+( )–[ ] ,=
mines the particle radius R. At m ≠ 0 and Ref = R, Eq. (7)
takes the form

(11)

where  = 3γPst/Rm is the eigenfrequency in the
absence of liquid.

Let us show how function W(ω, Ref) can be used to
calculate the parameters of the particle. Let us assume
that, from the field scattered by the particle, using for-
mula (1), the resonance frequency ωr and the values of
the product Rχ are determined at the frequencies ω1 and
ω2, for example to the left and to the right of the reso-
nance frequency ωr, which are close enough to the coef-
ficient σ to be constant. By substituting these values of
Rχ into Eq. (6) for W and setting its real part equal to
ReW given by Eq. (10), where the frequency ω must be
taken equal to ω1 or ω2, we obtain Ref = R1 and Ref = R2,
which must be equal and satisfy equality (9), i.e.,

(12)

Also, ImW(ω1, R1) = A1 and ImW(ω2, R1) = A2 must be
equal to the imaginary part of Eq. (10) at the corre-
sponding frequency. With formula (12), we obtain the
equations

(13)

which yield R and σ in the form

(14)

Equality (12) can be used to calculate ω0 and m. Setting
m = ν = σ = 0 and R = R* in Eq. (3) produces expres-
sion (12) for  from [7], while the above procedure
yields the value R*, which is equal to R1 rather than R.
In the case we study, it is the viscosity of the liquid that
allowed us to separate R and R1.

Thus, the transformation of the product Rχ accord-
ing to Eq. (6) eliminates the radiation loss while retain-
ing, in general, the resonance frequency behavior of the
function W. At Ref = R, function W describes the oscil-
lations of the particle without the liquid, because the
added mass of the liquid disappears. At Ref = R/(1 +
m/ρR), the resonance frequency behavior of W changes
to the quadratic behavior of its real part, which is equal
to unity at the resonant frequency (ω = ωr) for any Ref.

Let us focus on the following significant drawback
of the above model. Let the parameters ω0 and R be

W ρR/m( ) ωi
2/ω2( ) 1–{=

+ i 4νρ/Rm( ) ωi
2/ω2( )σ+[ ] } 1–

,

ωi
2

R/R1 1 m/ρR+ ω0
2/ωr

2.= =

A1 ω1
2/ωr

2( ) 4ω1νR1/ωr
2R3( ) σ+[ ] ;–=

A2 ω2
2/ωr

2( ) 4ω2νR1/ωr
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4νR1ω1

2ω2
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found from Eqs. (12) and (14). Then, the pressure Pst
may be calculated from the definition of ω0 (see com-
ments to Eq. (3)), but this pressure may differ from the
actual pressure in the particle even with allowance for
the elasticity of its surface. For example, it may be
much lower than the external static pressure. In this
case, the model can be improved so as to introduce an
additional parameter affecting the frequency ω0. To this
end, consider the monopole scattering of sound on a
disk-shaped particle. Let the particle be planar (its
thickness be much less than the longitudinal dimen-
sion), arbitrarily shaped in the longitudinal plane, and
filled with gas of volume V. Let, at a certain point of the
particle, two aligned holes be cut in its plane surfaces to
connect the internal and external spaces, and two pis-
tons of radius ‡ and mass å be inserted into these holes
and be capable of oscillating in antiphase with the same
amplitude ξ without deformation. The walls of the par-
ticle are also presumed to preserve their shape.

Two components can be distinguished in the field
scattered from this particle. One component is attrib-
uted to the scattering of sound from a perfectly rigid
particle and is equal to the monopole component of the
expansion of the incident field P0 into spherical func-
tions. Therefore, its amplitude is proportional to k2b2

(b is the particle size) [8] and is small. The dominant
contribution to the scattering is produced by the particle
compressibility through the displacement of the pistons
in the holes. To describe this process, we introduce a
rigid boundary in the particle symmetry plane, which
allows us to reduce the problem to oscillations of a cir-
cular rigid piston in a rigid screen (see [9]). The acous-
tic field (here, the scattered field Ps) produced at an
arbitrary point in space due to the displacement ξ of the
piston is given by the formula

(15)

where the integration is performed over the piston sur-
face S; r' = |r – rs |; and r and rs are the vectors originat-
ing from the center of the piston and ending at the
observation point and at the center of the piston’s sur-
face element ds, respectively. Far from the piston, at
r2 @ a2, Eq. (15) yields

(16)

The comparison of expressions (16) and (1) gives the
relationship

(17)

where R is as yet unknown and will be found.
Consider the oscillations of the piston: they are

described by Newton’s equation

(18)

Ps r( ) ω2ρξ/2π( ) ikr'–( )/r'exp[ ] S,d

S

∫–=

Ps r( ) ω2ρξa2 ikr–( )/2r.exp–=

χRP0 ω2ρa2ξ /2,–=

Mω2ξ– SPg Ps rs( ) S SP0.–d

s

∫–=
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Here, the integration is also performed over the piston
surface S, and the vector rs goes from the center of the
piston to the element ds. The gas pressure Pg in the par-
ticle is related to ξ through the gas law with an allow-
ance for losses σ (oscillations of the two pistons must
be taken into consideration):

(19)

The third term on the right-hand side of Eq. (18)
describes the action of the field P0 unperturbed by the
particle on the piston; the second term is the response
of the liquid to the oscillations of the piston, which is
also calculated in [9]:

(20)

The first term on the right-hand side of Eq. (20) is pro-
portional to the added mass of the liquid

(21)

associated with piston oscillations, and the second
term, with the energy loss coefficient due to the acous-
tic emission. By substituting Eqs. (19) and (20) into
Eq. (18), we obtain the equation for the piston displace-
ment

(22)

where ω0 is given by the formula

(23)

Taking the radius R from Eqs. (1) and (17) to be equal to

(24)

and substituting ξ from Eq. (22) into Eq. (17), we
obtain the following expression for the scattering
amplitude:

(25)

This expression includes the loss coefficient 4ν/ωR2

due to the radial oscillations of the liquid. The follow-
ing reasoning can be advanced in favor of this
description. At the radius R given by Eq. (24), χ given
by Eq. (25) coincides with expression (3), including
the loss coefficient kR due to the acoustic emission.
Furthermore, the added mass appears to be close to the
added mass of a pulsating sphere; therefore, the energy
loss due to the tangential component of the potential
velocity of liquid particles at the boundary |r | = R is
small; i.e., the planar particle oscillates as the spherical
one. The energy loss due to the vortex component of the
velocity of the liquid near the piston is considered to be
included into the coefficient σ. If the particle volume is
represented as V = 4πR3α/3, formula (23) yields the

Pg 8γSPst/V( ) 1 iσ+( )ξ .–=

Ps rs( ) Sd

s

∫ ω2ρ 8/3( )a
3

1 3π/16( )ika–[ ]ξ .–=

Mc 8/3( )a3ρ,=

ξ 3πP0/8ω2aρ( ) ω0
2/ω2( ) 1– M/M( )c–{–=

+ i 3π/16( )ka ω0
2/ω2( )σ+[ ] } 1–

,

ω0 8γS2Pst/V Mc( )1/2
.=

R 3π/16( )a=

χ ω0
2/ω2( ){ 1– M/Mc( )–=

+ i kr 4ν/ωR2( ) ω0
2/ω2( )σ+ +[ ] } 1–
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expression ω0 = (2/R) , which contains an
additional parameter α. The latter can be defined, with
the help of the procedure mentioned above, from the
known γ and Pst.

Unlike the scattering cross-section, which is deter-
mined by the magnitude of the scattering amplitude, to
obtain the scattering function itself the phase must be
known, which imposes more stringent requirements on
the accuracy of measuring the field scattered by the par-
ticle. The measurement methods realized experimen-
tally—for example, the one proposed in [10], which
measures the acoustic field during its several periods—
cannot actually be used for this purpose. In this case,
the diagnostics of the particle placed at the center of a
spherical resonator seems to be methodically promis-
ing. Then, it is necessary to measure the coefficient of
reflection of a spherically converging acoustic wave
from the particle. For a gas bubble, the reflection coef-
ficient is determined in [5] using boundary conditions
on the bubble. For a particle of an arbitrary shape, this
method can hardly be used. We calculate this quantity
by a somewhat different method.

Let a unit-amplitude spherically converging pres-
sure wave (R/r)exp(ikr) be incident on the particle; the
reflected wave will have the form β(R/r)exp(–ikr),
where β is the reflection coefficient. For r2 @ R2 and
(kr)2 ! 1, the total field can be written in two ways:

(26)

According to Eq. (1), the second term on the right-hand
side of Eq. (26) can only describe the scattered field
produced by the incident field uniform in r and given by
the first term; i.e., 2ikRχ(R/r)exp(–ikr) = (R/r)(1 +
β)exp(–ikr), which yields the relationship between β
and χ:

(27)

Interestingly, for a bubble at a frequency ω = ωr, which
corresponds to the resonance in χ described by Eqs. (3)
or (25), we obtain the expression for β:

(28)

which, under the condition

(29)

yields a zero β and a total absorption of the acoustic
field incident on the particle. For an air bubble, using
data on σ borrowed from [6], we obtain in this case a
radius of 0.5 cm.

Finally, let us estimate the velocity of sound in water
containing phytoplankton under the assumption that the
individual particles can be modeled by a circular gas-
filled disk with the following parameters: the disk
radius is b = 25 µm, the disk thickness is d = 10 µm, the
radius of the pistons is a = 5 µm, and the gas volume is
V = 2 × 104 µm3. With these parameters, Eq. (24) gives

3γPst/αρ

R/r( ) ikr( ) β i– kr( )exp+exp[ ]
≈ 2ikR R/r( ) 1 β+( ) i– kr( ).exp+

β 1– 2ikRχ .+=

β 1– 2kR/ kR 4ν/ωrR
2( ) ω0

2/ωr
2( )σ+ +[ ] ,+=

kR 4ν/ωrR
2( ) ω0

2/ωr
2( )σ,+=
the radius as R = 3 µm; the eigenfrequency expressed
from Eq. (23) in terms of the radius and volume V is
given by the formula

(30)

where γ = 1.4 and Pst = 105 Pa. In [3], where the particle
parameters were close to those chosen above, the vol-
ume particle content in water was about 10–4. Let the
volume gas content in the particle be 0.1, which pro-
vides an approximately zero particle buoyancy. The rest
of the volume is occupied by the disk walls; i.e., the
volume gas content in the water is 10–5. The number of
particles n per unit volume is 10–5/V = 0.5 × 103 (1/cm3).

The average wave number km of the acoustic field in
the liquid containing monopole scattering particles is
given by the formula [11]

(31)

which yields the following relative variation in the
velocity of sound ∆ = (cm – c)/c:

(32)

Here, cm and c are the velocities of sound in the mixture
and the pure liquid, respectively; f is the frequency of
sound; and χ is taken from Eq. (25) at M = 0 and is suf-
ficiently far away in frequency f from the resonant fre-
quency fr, where the imaginary part may be neglected.
By substituting c = 1.5 × 103 m/s, f = 3 × 105 Hz, and
the above values for R, n, and fr into Eq. (32), we obtain
∆ = 8.3 × 10–3, which satisfactorily agrees with the data
reported in [3]. For the sake of comparison, we provide
the estimates of the sound-velocity variation in water
containing gas bubbles with the same volume content
of 10–5 but with two different radii determined by the
following conditions: (i) the area of the pistons equals the

bubble surface area, i.e., 2πa2 = 4π , which yields R1 =
3.5 µm, n1 = 0.54 × 103 (1/cm3), and fr1 = 0.9 × 106 Hz;
and (ii) the gas volume in the particle equals the bubble
volume. In this case, R2 = 16 µm, fr2 = 2 × 105 Hz, and
the particle concentration remains the same (equal to
the particle concentration n). Then, Eq. (32) at f = 3 ×
105 Hz yields a negative value ∆1 = –0.6 × 10–3 in the
first case and a positive value ∆2 = 6 × 10–2 that is too
high in the second case. These estimates allow us to
assume that the effect of the sound velocity increase
observed in sea water containing plankton, at least at
frequencies above 100 kHz, can be attributed to the
monopole scattering of sound by individual plankton
particles, which can be modeled by the particle consid-
ered above.
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Abstract—Experimental studies of the scattering of a monochromatic sound signal by a rough sea surface are
carried out. The signal is produced by a point source in a shallow-water basin. The measurements are performed
with the use of horizontal and vertical linear receiving arrays. The experimental data are compared with the esti-
mates obtained on the basis of the model developed by the authors for resonant sound scattering by surface
roughness. A satisfactory agreement between the experiments and the calculations is achieved. It is shown that
the scattered signal is formed within small surface areas, whose sizes have the same order of magnitude as the
first Fresnel zone with respect to the source and the receiving system. © 2004 MAIK “Nauka/Interperiodica”.
A number of publications ([1–3], for instance) con-
sider the amplitude and phase fluctuations that accom-
pany the propagation of low-frequency (up to 300–
400 Hz) sound waves in the sea. Such fluctuations can
be caused by various phenomena: the sound scattering
by the wavy surface or by moving volume inhomogene-
ities, the influence of turbulence and internal waves, the
interference produced by the motion of the sound
source and the receiver, and so on. A review of publica-
tions on acoustic fluctuations in a shallow sea can be
found in [4], where a general approach is developed for
the case of several-mode sound propagation, with the
modes interacting due to random processes in the
medium. The directivity of the sound scattering by sur-
face waves is well known and thoroughly studied [1–3].
We should also mention the recent publication [5], in
which the scattering characteristics are studied for the
case of a directional sound source.

The present paper presents the experimental data on
the characteristics of the fluctuations caused by surface
waves on short shallow-water acoustic paths with tonal
sound sources. In the experiments, the sound wave-
length λ was comparable to the length Λ of surface
gravity waves. The measurements were performed in
the Baltic Sea and on the Sankhar Lake (Vladimirskaya
oblast, Russia). The transmitted frequencies corre-
sponded to a large number of propagating modes: 10λ &
H, where H is the depth of the basin. The signals were
received by linear horizontal (in the sea and lake exper-
iments) and vertical (in the lake experiment) antenna
arrays. Simultaneously with the acoustic measurements
on the lake, the spectrum of the surface waves was also
measured.

In this paper, we quantitatively compare the mea-
sured and calculated fluctuations of the sound signals.
1063-7710/04/5006- $26.00 © 20704
It is shown that, with monopole (omnidirectional)
sound transmission with the wavelengths λ ~ Λ, the
scattering of sound by the wavy surface is substantially
contributed to by localized areas of the surface. The
centers of such areas correspond to the conditions of
resonant scattering, and their sizes are determined by
the size of the first Fresnel zone with respect to the posi-
tions of the sound source and the receiver.

The paper has the following structure. In Section 1,
the conditions of resonant scattering and a model for
calculating the scattered signals are considered. Sec-
tion 2 presents the experimental data for short propa-
gation paths in the Baltic Sea and on the Sankhar
Lake. The results obtained and the validity domain of
the calculation model are discussed in Section 3. The
formulas used in the calculations are presented in
Appendix A.

1. CALCULATION OF THE LEVELS
OF RESONANT SOUND SCATTERING

BY SURFACE WAVES

The conditions of the Bragg or combination scatter-
ing can be written as follows [1]:

(1)

where ks and ki are the horizontal projections of the
wave vectors in the scattered and incident waves and k
is the wave vector of the surface roughness (κ = 2π/Λ).
Figure 1 shows the layout of scattering for positive
Doppler frequencies of the scattered signal: ks = ki + k.

Suppose that low grazing angles are responsible for
resonant scattering [1], so that the absolute values of the
horizontal projections are equal to each other: ki = ks =

ks ki k,±=
004 MAIK “Nauka/Interperiodica”
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k = 2π/λ. In this case, the angles θi, θs, and φ (Fig. 1) are
related by the following equalities:

(2)

(3)

where ξ =  = . The quantities  and  cor-

respond to scattering with positive and negative Dop-
pler shifts, respectively. The range of angles φ in which
the conditions of resonant scattering can be met is
determined by the expression

(4)

This angular sector is shadowed in Fig. 1. Thus, if the
transmitted frequency increases (the value of ξ
decreases), condition (1) is satisfied for vectors k that
are close to the normal SO. Evidently, the actual values
of angles θi, s and φ should satisfy the inequalities

(5)

It can be shown that the areas of resonant scattering (A
and B in Fig. 1) belong to the arcs of circles of radius R,
which pass through the transmission and reception
points:

(6)

Both at high frequencies, when λ ! Λ, and at low fre-
quencies, when λ/2 ~ Λ, radius (6) of the circles tends
to infinity. However, the positions of the areas that are
responsible for resonant scattering (Eq. (1)) are differ-
ent. At high frequencies (ξ ! 1), these areas lie on the
arcs that are close to the line connecting the source and
the receiver. At low frequencies (ξ ~ 1), the areas of res-
onant scattering lie on the arcs that are most distant
from the SO line (see Fig. 1).

It is shown in Appendix A that the sizes of the
regions A and B that are responsible for the resonant
scattering are determined by the sizes of the Fresnel
zones. With multimode propagation, the relative inten-
sity of resonant scattering is given by Eq. (A8). This
intensity is governed by expression (A9') for low grazing
angles that correspond to the total internal reflection
from the bottom if the surface wave is a plane one.

Note that, in the first approximation of the perturba-
tion theory (Eq. (A1)), the scattered intensity (Eq. (A9))
is proportional to the squared Rayleigh parameter: 5 =

50sinχ1, where 50 = 2k , 〈η 2〉  is the squared sur-
face deviation, and χ1 is the grazing angle of the inci-
dent plane sound wave. Equation (A9) is obtained in the
first approximation of the small-perturbation theory
[1]. In this case, the problem is considered in relation to
the scattering of a cylindrical wave generated by a

φ π
2
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+( )sgn
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+( ) θs
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ξ
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κ
2k
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2Λ
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2k κ or Λ λ /2.>>

R
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4ξ 1 ξ2–
------------------------.=

η2〈 〉
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localized omnidirectional sound source. Within the
scattering area, the spatial structure of the surface
roughness is supposed to be coherent, and condition (1)
is met. Then, the area S will be limited by the Fresnel
sizes with respect to the positions of the source and the
receiver (see also Section 3), and the scattered intensity
will be proportional to the squared value of S, because
the contributions of different roughness elements are
coherently combined.

The derivation of Eq. (A9) is somewhat tedious.
Therefore, let us obtain an expression similar to Eq. (A9)
from energy considerations. Equation (A2) defines the
field produced by a monopole sound source with a
capacity Q in the waveguide. By averaging the squared
sound pressure over the coordinates of the source and
the receiver (over the interference structure of the
waveguide), we arrive at the following estimate:

(7)

where r is the distance between the source and the
receiver (|SO| in Fig. 1), H is the waveguide thickness,
χ∗  is the capture angle for the rays leaving the area of

excitation of the sound waves, I00 = , ω is the

I0 r( ) I00
2χ*
rH
---------,=

ωρQ
4π

------------ 
 

2

ψ2ψ2ψ2

ψ1ψ1ψ1
O

ki
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ks

Y
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φ
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1κ
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sO

XY
A

R
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S

Fig. 1. Layout of the resonant scattering of sound by a wavy
surface: S is the sound source, and O is the center of the ver-
tical linear antenna array consisting of N hydrophones.
Gray ellipses lying on the circular arcs schematically indi-
cate possible positions of the surface areas responsible for
the resonant scattering. The sectors of angles Ψ1, 2 indicate
the possible directions of arrival of the scattered signals for
low (λ/2 ~ Λ) and high (λ ! Λ) frequencies, respectively.
The dashed angular sector corresponds to possible direc-
tions of the wave vector κ.
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transmitted frequency, and ρ is the density of water.
The quantity I00/R2 corresponds to the intensity of the
sound field produced by a monopole source in an infi-
nite homogeneous space.

With a perfectly reflecting bottom, the capture angle
is χ∗  = π/2, and Eq. (7) coincides with Eq. (5.53) of [1]
if there is no loss in the sound propagation. Equation (7)
can be readily obtained from formulas presented in
Section 5.6 of [1] for the averaged sound intensity in
shallow water. In doing so, one should assume that the
number of reflections of the attenuated rays with χ > χ∗
is so large that they contribute nothing to the received
signal.

The range dependence of intensity (7) implies that
there is no sound attenuation for the rays corresponding
to χ ≤ χ∗  and that the sound speed is constant in depth
(the isovelocity Pekeris waveguide without bottom
absorption). Equation (7) is valid for a great number of
propagating modes, that is, for sufficiently short dis-
tances at which the attenuation and decay of higher
modes can be neglected [1].

In the case of large-scale surface waves, the reflec-
tion coefficient is |9| = 1 – 2k2〈η 2〉sin2χ, where 〈η 2〉  is
the squared surface deviation from the mean level [1].
The distance between consecutive reflections is L ≥
2H/ . Thus, the distance between the source and
the receiver should be sufficiently short for the relation
|9|N . 1 to be valid, where N = |SO|/L. Hence, the fol-
lowing restriction on the distance SO must be imposed:

(8)

The experimental data discussed below satisfy inequal-
ity (8).

With a coherent summation of the contributions
within the scattering area S, the time-averaged intensity
Is of the scattered signal is proportional to the squared
surface deviation 〈η 2〉  multiplied by the squared area S
and by k4sin2χ1sin2χ2. The quantity Is is also propor-
tional to the intensity produced by the source in
region A (Fig. 1). In view of Eq. (7) for the field decay,
the integration over grazing angles χ1, 2 leads to the
expression

(9)

Intensity (7) produced by the source at the reception

point is I0 = . The power spectral density Is of

the scattered field normalized to I0 is given by the
expression

(10)
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where 3(Ω) is the power spectral density of the surface
waves at the frequency Ω, f(χ∗ ) = (2χ∗  – sin2χ∗ )2/2χ∗ .

If condition (1) of resonant scattering is satisfied for
regions A or B (Fig. 1), the value of S is determined by

the Fresnel sizes and is equal to . This
expression is satisfied to the accuracy of a constant fac-
tor that is unity in its order of magnitude and the
accounts for the orientation of region A relative to the
source-to-receiver direction (see Appendix A). By sub-
stituting the area in Eq. (10) by the product of the
Fresnel sizes, we arrive at expression (A9').

The assumptions accepted in deriving Eq. (10) have
simple physical meaning. The independence of the
results on distances |SA| and |AO| is caused, first, by the
geometry of the wave front and, second, by the coher-
ent nature of scattering: Is(Ω) ∝ S2. The dependence on
the ratio |SO|/H is governed by the cylindrical symme-
try of the wave front and by normalizing to the intensity
of the incident wave at the reception point. In deriving
Eqs. (10) and (A9), the sound attenuation was
neglected. The monotone increase in the scattering
level as a function of distance will be limited by the
propagation loss and the loss due to the reflections from
the bottom and the rough surface (see inequality (8)).

The experimental data presented below lead to a
conclusion that the assumption on the coherent nature
of sound scattering by wind waves is not as absurd as it
seems at the first glance. In Section 3, we will return to
considering the validity limits of the theoretical model
proposed here.

2. RESULTS OF MEASUREMENTS

As we have mentioned in the Introduction, the
acoustic measurements were carried out in the Baltic
Sea and in a deep-water lake. In the lake experiment,
the sound-signal reception was accompanied by mea-
suring the hydrographic parameters: the wind speed
and direction, the vertical displacements of the lake
surface, the temperature distributions in depth, and the
variations of the temperature field [6]. Therefore, in
calculating the level of fluctuations caused by the
waves on the lake surface, we used the measured
power spectrum 3(Ω) of surface waves. This spectrum
was not measured in the sea experiment. In analyzing
the experimental records obtained in the sea, we used
a model spectral function 3(Ω) in the Pierson–Mosk-
owitz form [7]:

(11)

where α = 0.0041, Ω is the cyclic frequency of surface
roughness, V is the wind speed (in m/s), and g is the
acceleration of gravity.

λ2 SA AO⋅ ⋅

3 Ω( ) αg 3– V5 g
ΩV
-------- 

 
5

0.74
g

ΩV
-------- 

 
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– 
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Fig. 2. Layout of the experiment on the Sankhar Lake. Symbol E denotes the position of the source placed at a depth of 9 m, 1 m
above the bottom. Abbreviations VA and HA correspond to the vertical and horizontal antenna arrays, and S labels the sensor of
surface waves. The resonant scattering areas are labeled by symbols A and B. The arrow labeled as w shows the direction of the
southeast wind at the time of acoustic measurements.
2.1. Measurements on the Sankhar Lake

The Sankhar Lake is in the Vladimirskaya oblast of
Russia. It is a rather deep-water lake, which was formed
at the site of a karstic dip. The deep-water part of the
lake has a size of 800 × 500 m, with a depth of 10–15 m.
The maximal length of the lake, with allowance for a
bay with a mean depth of 3–5 m, is 1.5 km. Figure 2
presents the map of the lake with approximate positions
of the measuring systems. On the right, an echo-
sounder record is presented, which was obtained in
passing along the propagation path.

To obtain the values of surface displacements and
their spectral levels, the measurements were performed
with the use of a capacitance sensor (S in Fig. 2) that
was fixed to the lake bottom. Sensor S was placed at a
distance of about 50 m from the acoustic antenna
arrays. The power spectral density of surface waves is
presented in Fig. 3. The measurements of June 17, 1998
were performed during the day, with a stable southeast
wind whose speed was 2.5 m/s and whose direction was
constant during the recording time. The wind speed was
measured at a height of 3 m above the lake surface.

The wind-wave spectrum (Fig. 3) measured at the
Sankhar Lake differs from that of developed surface
waves for an open sea (Eq. (11)). The specificity of the
lake surface waves consists in the presence of spectral
components with frequencies lower than g/V. Such
components are caused by the finiteness of the basin
and by the existence of low-frequency resonances in
ACOUSTICAL PHYSICS      Vol. 50      No. 6      2004
large-scale gravity waves (surface seiches), whose
lengths are comparable with the characteristic size of
the lake [6]. The measured spectral density of the sur-
face displacements is adequately described by the
dependence [8] 3(Ω) = βg2Ω–5 with β = 0.0123 (the
dotted curve in Fig. 3). Such a dependence is valid for

the equilibrium frequency band: Ωmax ! Ω !  .
15 s–1, where Ωmax ~ g/V is the frequency corresponding
to the maximum in the spectral density and σ is the
coefficient of surface tension.

The spectral maximum “I” in Fig. 3 is shifted
towards higher frequencies in comparison with Eq. (11),
and the maximum “II” appears at the frequency corre-
sponding to the synchronism between waves and wind.
Such a spectrum shape has been observed earlier [8]
and is well known for the case of short fetches. The dif-
ference between the measured and expected spectral
levels in the domain of saturation can be attributed to a
weak decrease in the value of β for shorter fetches. The
experimental data [8] indicate that the value of β is dou-
bled as the dimensionless fetch + = Lg/V2 decreases by
a factor of 500. The value β = 0.0123 corresponds to
+ ~ 105. In the experiments at hand, + ~ 102.

The sound signals generated by the tonal source
were received by horizontal and vertical antenna arrays,
each of which consisted of 64 hydrophones. The length
of both arrays was La = 12 m. The horizontal array was
mounted at a depth of 7.5 m with the first hydrophone
at 30 cm from the bottom. The distance between the

4g3/σ4
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Fig. 3. Power spectral density of surface displacements. The dots indicate the experimental data for the lake measurements. The
level of the instrumental noise (analog-to-digital converter and signal amplifier) is 10–8 m2/Hz. The model spectrum (the solid
curve) is calculated according to Eq. (11) for a wind speed V = 2.5 m/s. The dashed curve corresponds to the equilibrium spectrum.
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Fig. 4. Spectrum of the sound signal obtained by incoherent averaging over the 64 hydrophones of the horizontal array (omnidirec-
tional reception). The calculated spectrum is shown by the thick curve.
arrays and the source was |SO| = 450 m. The mean lake
depth was H = 15 m along the propagation path. The
signals received by each hydrophone were heterodyned
(at the frequency of transmission) and digitally filtered.
The filter passband was 8 Hz, which allowed us to
receive scattered signals with frequencies |Ω/2π| ≤ 4 Hz.
The experiment at the Sankhar Lake is described in
more detail in [6, 9].

Figure 4 shows the spectra of the sound signals
received by the hydrophones of the horizontal array for
a transmission frequency of 1480.4 Hz. These data are
obtained by incoherent summation over the hydro-
phones: such a method corresponds to an omnidirec-
tional reception. By comparing the plots of Figs. 3 and
4, one can see that the spectrum of sound fluctuations is
narrower than that of wind waves. The narrowing of the
fluctuation spectrum relative to the surface spectrum
has been mentioned by many researchers [10]. This
phenomenon can be explained in terms of the resonant
scattering. On the one hand, condition (1) cannot be sat-
ACOUSTICAL PHYSICS      Vol. 50      No. 6      2004
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Fig. 5. Frequency-angular spectrum of the sound signal received by the horizontal array (averaged over 24 signal realizations). The
circled area corresponds to the source position. Other marked areas correspond to scattering by surface waves.
isfied for frequencies of surface waves that are higher
than 1.8 Hz (ξ > 1). On the other hand, the shores of the
lake limit the allowable values of the angles θi and θs
and additionally reduce the frequency band within
which the scattering of type (1) can be observed.

Figure 5 shows the frequency-angular spectrum of
the sound signal with a carrier frequency of 1480 Hz.
Here, the domains that correspond to the source (Ω = 0,
γ0 . 5°) and to the scattering by the surface roughness are
accentuated. Table 1 summarizes the measured angles θs

of scattering and the angles θi and φ calculated according
to Eq. (2). The domains labeled as “+” and “h” in Fig. 5
correspond to regions A and B in Fig. 2, respectively.

The experimental value ξ = sin  = 0.57

agrees well with the estimate ξ . 0.6 (Table 1).

It is worth mentioning that the direction of the wave
vector κ of the surface wave nearly coincided with the
wind direction in the experiment: there was a stable
wind from the south east (Fig. 2). Maxima labeled by
symbols “×” and “h” in Fig. 2 correspond to region B
that is close to the lake shore, opposite the bay (this
region is indicated by dashes in Fig. 2). These maxima
are more pronounced than those labeled by “+.” The lat-
ter fact can be explained by the length of the fetch,
which is greater for region B than for region A with
south-east winds. The maximum “×” corresponds to the
bearing θs that is close to that of the maximum “h,” but

θs
+( ) θs

–( )–
2

---------------------- 
 
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with opposite sign of the Doppler frequency shift. The
maximum “×” in the spatial-angular spectrum seems to
be caused by the reflection of the surface wave from the
nearby shore (Fig. 2, Table 1).

The sum of the levels for the signals scattered in the
domains indicated in Fig. 4 is close to the levels of the
modulation components with omnidirectional recep-
tion (Fig. 4). Hence, it is local areas of the lake surface
that are responsible for the scattering by the rough sur-
face.

Let us compare the measured levels of the modulation
components (Fig. 4) with the estimates of Appendix A.

Table 1.  Angles θs = –γ correspond to the maxima of the fre-
quency-angular spectrum (Fig. 5). The quantities φ and θi are cal-
culated according to Eq. (2). The angle θi for the maximum
labeled as “×” is calculated with Eq. (3) at ξ . 0.6, which
corresponds to the maximum in the power spectrum of sur-
face waves at the frequency Ω/2π . 1.1 Hz (Figs. 3 and 5)
and to dispersion relation (A5). The experiments are per-
formed for a small Rayleigh parameter: 50 . 9.3 × 10–3 (the
value of η2 is obtained by integrating the measured power
spectrum presented in Fig. 3)

Scattering area
in Fig. 5

Angle θs,
deg

Angle θi,
deg

Angle φ,
deg

“+” (Ω > 0) –59 +10 –114.5
“□” (Ω < 0) +10 –59 –114.5
“×” (Ω > 0) +6 –59.4 +57.3



710 LEBEDEV, SALIN
First of all, note that propagating modes with low grazing
angles correspond to the experimental conditions. The
angular spectrum of the sound signal received by the ver-
tical array is shown in Fig. 6. According to this figure,
90% of the energy comes from directions |χ| ≤ 35°. Such
values for the angle agree with the estimate of the critical
angle χ∗  for a sandy lake bottom with cb = 1800 m/s:

χ∗  =  . 34°.

The calculation of the modulation components illus-
trated by Fig. 4 was carried out according to Eq. (A9')
with χ∗  = 35°, H = 15 m, and |SO| = 450 m, under the
assumption that the angular spectrum of wind waves is
narrow. The measured power spectrum 3(Ω) of wind
waves (Fig. 3) was used in the calculations. The esti-
mates obtained from the formulas of Appendix A agree
well with the measurements.

c/cb( )arccos

0

–10

–20

dB

–60° –30° 0° 30° χ

Fig. 6. Angular spectrum of the sound signal received by the
vertical array. The signals are incoherently averaged over
five frequencies of transmission around 1.5 kHz: 1459,
1470, 1480, 1491, and 1502 Hz.
Note the difference in the levels of the modulation
components for the frequencies Ω > 0 and Ω < 0. This
difference seems to be caused by the difference in the
amplitudes of the surface oscillations in the vicinity of
the scattering areas of the lake (Fig. 5). It is clear that
local features in the surface spectrum can be governed
by the closure of the basin and by the influence of the
lake shores. It is advantageous to analyze the spectra of
acoustic fluctuations caused by sea surface waves.

2.2. Measurements in the Baltic Sea

For sound sources, bottom-moored tonal transduc-
ers with frequencies of 200–400 Hz and acoustic power
of 0.1–1 kW were used in the sea experiments. The
direct and scattered signals were received by a linear
horizontal antenna array consisting of 32–64 hydro-
phones spaced at 3 m (the maximal length of the arrays
used was 200 m). The arrays were stationary mounted
at levels that were 1/3 to 1/2 of the sea depth. The main
objective of experimenting in the Baltic Sea was to esti-
mate the ultimate capability of the coherent signal pro-
cessing [9]. Therefore, weather conditions with the
lowest sea states were chosen. Table 2 presents the
description of the sea propagation paths on which the
acoustic measurements were performed. The data pre-
sented in Table 2 demonstrate the variability of wind
speeds during experimentation.

Figure 7 shows the frequency-angular spectra that
were used to determine the areas responsible for the
resonant scattering by the surface roughness. In the sea
experiment, the scattering patches are more clearly local-
ized than in the lake (compare with the data of Fig. 5).
There are no maxima produced by reflections of surface
waves from the shores, and two domains of increased
scattering levels exist in the spectrum. Positive and neg-
ative Doppler shifts correspond to these two domains.
In Fig. 7, the arrows indicate the positions of the max-
Table 2.  Experimental conditions on fixed propagation paths in the Baltic Sea. The expected values of  are cal-
culated according to Eq. (3) for the value of Λ that corresponds to the frequency of the maximum in the power spectrum of
surface waves and to dispersion relation (A5). The maximal value of the Rayleigh parameter corresponds to path 1: 50 = 0.11 (the
value of 〈η 2〉  is obtained by integrating Eq. (11))

Ordinal number (1) (2) (3) (4) (5)

Date of measurements Sep. 9, 1990 Aug. 23, 2001 Sep. 15, 1998 Aug. 26, 2001 Sep. 13, 1990

V, m/s 5–8 1–4 3–5 2–6 3–4

Frequency of modulation maximum Ωmax/2π, Hz ±0.18 ±0.24 ±0.315 ±0.33 ±0.4

Value of ξ(Ωmax) 0.07 0.11 0.11 0.2 0.32

–

θs
+( ) θs

–( )–

Path length, km
Mean depth, m
------------------------------------- 1.5

80
------- 3

60
------ 8

60
------ 27

53
------ 10

80
------

Transmitted frequency, Hz
Number of hydrophones
---------------------------------------------------------------- 206.1

64
------------- 246

48
--------- 420.17

32
---------------- 246

48
--------- 237.5

64
-------------

θs
+( ) θs

–( )–
measured
expected
----------------------- 8.4°

8.5°
---------- 14.3°

13°
------------- 14.3°

13°
------------- 18.4°

24.2°
-------------
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Fig. 7. Frequency-angular spectrum of fluctuations in the Baltic Sea. The brightness scale indicates the power spectral density of
the sound signal in decibels. The horizontal dashed lines indicate the angular positions of the sound source relative to the normal to
the horizontal linear array. The arrows indicate the positions of the maxima in the power spectrum of the scattered signal.
ima of the fluctuation level. The measured values of the
scattering angles are presented in Table 3.

According to Table 3, the wind direction was
nearly perpendicular to the acoustic propagation path.
Such an orientation corresponds to the layouts of mea-
ACOUSTICAL PHYSICS      Vol. 50      No. 6      2004
surements 1–4. The values of ξ (Table 2) correspond to
a narrow angular sector (record no. 4) of the directions
of vector κ, in which the conditions of resonant scatter-
ing are met. Record no. 5 was obtained at low sea state,
when the direction of surface waves noticeably differed
Table 3.  Positions and amplitudes of maxima in the frequency-angular spectra (Fig. 7)

Marked domains

a b c d e f g h

γ0 –4.2° +11.7° +34.8° +58.6°
γs –10.5° –2.1° +4.7° +19° +32.3° +46.6° +50.8° +69.2°
θs = –(γs – γ0) –6.3° +2.1° –7° +7.3° –2.5° +11.8° –7.8° +10.6°
φ +87.9° +90.2° +94.7° +91.4°
Is/I0, dB –24° –23° –37° –29° –22° –22° –27° –26°
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Fig. 9. Spectrum of the sound signal for record nos. 1, 3, and
4. The symbols correspond the results of the measurements.
The solid and dashed curves correspond to the calculations
by Eqs. (A9) and (A9'), respectively. The function 3(Ω)
was specified by Eq. (11). The wind speed V was 6.5, 4.1,
and 3.9 m/s for record nos. 1, 3, and 4, respectively. The
arrows show the frequencies starting from which condi-
tion (1) of resonant scattering is violated.
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Fig. 8. Frequency angular spectrum of the sound signal on
path 5 (Table 2). The modulation components with frequen-
cies of wind waves are spread, and the localization of the
scattering areas on the wavy surface cannot be observed.
from the normal to the acoustic propagation path. In
this case, according to Fig. 8, the scattered signal man-
ifests itself as fuzzy and asymmetrical domains of
increased signal level in the band of surface-wave fre-
quencies.

Suppose that, just as in the lake, the bottom of the
Baltic Sea leads to a decay of modes with grazing
angles higher than χ∗  ~ 30°–40°. Let us compare the
measured scattering levels with the theoretical esti-
mates of Appendix A. Figure 9 shows the spectra Is(Ω)
of the fluctuations for record nos. 1, 3, and 4. The spec-
tra are obtained by incoherently averaging the signals
received by the hydrophones of the horizontal array
with the normalization to I0. In the sea experiments, the
hydrological parameters were not measured. Therefore,
the spectrum of surface waves was defined by the
model dependence (11). The wind speed changed over
a wide range (Table 2), and the value of V appearing in
Eq. (11) was specified so that the frequency of the max-
imum in the power spectrum corresponded to the exper-
imental data.

The sector of angles φ that allow for condition (1) to
be met is narrow. Therefore, let us estimate the fluctua-
tion levels for a spatial spectrum of form δ(φ – π/2) with
χ∗  = 35°. In the experiment, the level of noise in the
receiving channel was –30 dB relative to the value of I0.
To make the data more illustrative, to the calculated val-
ues of Is/I0 (Fig. 9) we added a value of 0.001 that cor-
responded to the instrumental noise.

According Fig. 9, a satisfactory agreement exists
between the levels measured in the experiment and cal-
culated by Eqs. (A9) and (A9'). This agreement persists
for different distances between the source and the
receiver, at different depths, and at different sound fre-
quencies. It is worth mentioning that, as the distance
between the sound source and the receiving system
increases (record nos. 1, 3, and 4), the calculated and
measured scattering levels begin to differ from each
other at modulation frequencies that are higher than the
frequency Ωmax corresponding to the maximum in the
power spectrum of surface waves.

3. DISCUSSION OF THE RESULTS

Let us discuss the data obtained. The acoustic mea-
surements in the lake and in the Baltic Sea, together
with the calculations performed, show that the signal of
a concentrated source is scattered by local areas of the
surface to produce the sound fluctuation at the receiver.
This conclusion is true when the frequencies are low
and the lengths of the surface and acoustic waves are
comparable. The sizes of the scattering surface areas
are determined by the sizes of the first Fresnel zones
with respect to the source and the receiving system. The
calculated levels of the fluctuations proved to be close
to those measured in both the lake and the sea.

There are no experimental data for long propagation
paths and high wind speeds. That is why we cannot
ACOUSTICAL PHYSICS      Vol. 50      No. 6      2004
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determine the validity limits for the proposed method
of estimating the levels of fluctuations caused by coher-
ent sound scattering by a wavy surface. According to
the data of Section 1, the functional dependences (A9)
of the fluctuation levels can be obtained by using the
energy considerations while taking into account the
character of the field decay in the waveguide and the
fact that the scattering area is limited by the Fresnel
sizes. Estimation of the integral in Eq. (A6) by the sta-
tionary phase method implies that the spectral compo-
nents of 3(Ω) are produced by a regular spatial distri-
bution of surface displacements. Note that record nos. 3
and 4 are obtained in similar weather conditions (Table 2)
and with similar wind directions (Table 3). At the same
time, Fig. 9 shows that, for record no. 4, the estimated
scattering levels are 5–10 dB higher than the measured
levels for the frequencies Ω > Ωmax. The decrease in the
measured scattering level, in comparison with the esti-
mate (A9) for the angular surface spectrum of the form
δ(φ – φ0), can be explained, first, by the broadening of
the spectrum at the frequencies Ω > Ωmax [11, 12] and,
second, by the degradation of the surface coherence for
large sizes of the scattering area.

Because measurements 3 and 4 were performed
under similar weather conditions, one can assume that
the angular distributions of vectors κ weakly differ in
these two cases. According to Fig. 9, the experimental
data of record no. 3 agree with the calculations in the
entire band of the surface-wave frequencies. The
decrease in the level of fluctuations under the influence
of the broadened angular spectrum at Ω > Ωmax depends
on the distance |SO| due to the factor # =

 in Eq. (A8). The value of # is close to

unity (compare the solid and dotted curves in Fig. 9)
and weakly depends on the coordinates of the station-
ary-phase point (hence, on the angle φ as well). There-
fore, for record no. 4, the disagreement between the cal-
culation and the experiment can be hardly explained by
the broadening of the angular surface spectrum at the
frequencies Ω > Ωmax.

Let us estimate the size of the scattering surface area
relative to the length of the surface wave: n =
D/Λ(Ωmax). For the Baltic experiment, the sizes D of the
Fresnel zones are D1 ~ 75, D3 ~ 120, and D4 ~ 290 m for
paths 1, 3, and 4, respectively. The values of n are n1 ~
1.6, n3 ~ 8, and n4 ~ 20 for these paths. The values of n1
and n3 are rather small, which, presumably, accounts
for the highly localized scattering areas in Fig. 7 and
for the good agreement between the measured and cal-
culated levels of fluctuations (Fig. 9). The value n∗  ~
10–20 seems to be a characteristic length of the train of
surface waves. If n > n∗ , the spatial distribution of the
deviations of the surface S in Eq. (10) becomes irregu-
lar, and the coherence of the secondary sources respon-
sible for the scattering decreases. The maximal distance

l1l2

λ r0rs r0 θ0,( )
----------------------------------
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|SO| between the source and the receiver at which the

scattering is coherent is max|SO| . Λ2(Ωmax)/λ.

Equations (A9) and (A9') can be used with minimal
information on the experimental conditions, namely,
the transmitted frequency, the distance from the source
to the receiver, the mean depth along the propagation
path, and the angle of total internal reflection by the
bottom.

It is advantageous to analyze experimental data on
shallow-sea sound propagation for broader ranges of
the speed and direction of wind, the transmitted fre-
quency, the distance |SO|, and the angle χ∗ . Such an
analysis would allow one to determine the scale of spa-
tial coherence for surface waves and to establish the
validity limits for Eqs. (A9) and (A9').
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APPENDIX A.
POSITIONS AND SIZES

OF RESONANT SCATTERING AREAS

The Rayleigh parameters were small in the experi-
ments. Therefore, one can use the small-perturbation
method. According to this method, the distribution of
the secondary dipole sources that are caused by the
small-scale surface roughness can be related to the
height of the surface waves in the following way [1]:

(A1)

Here, (r, θ, z) are the distance, direction, and depth in a
cylindrical coordinate system with the z axis passing
through the sound source; p0(·) is the distribution of
sound pressure generated by the source; and η(·) is the
distribution of surface roughness, which, being aver-

aged over time, yields  = 0. Thus, z = 0 is the
unperturbed surface. The quantity η(r, θ, t) is supposed
to be a stationary uniform process.

Let us consider a monopole source with capacity Q.
The pressure field generated by this source can be rep-
resented in the form of a series [13]:

(A2)

n*
2

ps r θ z t, , ,( ) z 0=
∂ p0 r θ z t, , ,( )

∂z
--------------------------------

z 0=

η r θ t, ,( ).–=

η r θ t, ,( )t

p0 r θ z t, , ,( )

=  
iωρQ–

4
----------------- H0

1( ) κmr( )ψm z( )ψm z0( )
m 0=

∞

∑ iωt–( ),exp
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where ω is the frequency of transmission, ρ is the water

density, and (·) is the Hankel function of the zeroth
order (an isotropic monopole radiation) and of the first
kind. The use of the Hankel function corresponds to the
omnidirectional monopole source and satisfies the
Zommerfeld radiation condition (below, we omit the
index “1” in the Hankel function). In Eq. (A2), κm

denotes the horizontal projection of the wave vector
corresponding to the mth mode for the waveguide with
the pressure distribution ψm(z) in depth. The basis ψm(z)
is supposed to be orthonormalized, and the functions
ψm(z) themselves satisfy the boundary conditions and

the differential equation (z) + (ω2/c2(z) – )ψ(z) = 0,
where c(z) is the sound speed profile. The horizon z0
corresponds to the depth of the source.

To calculate the pressure field generated by the dis-
tributed dipole sources (A1), we use Green’s function
for the power source. As a result, the field of the
sources (Eq. (A1)) is represented as an integral of the
convolution type:

(A3)

where rs(r, θ) =  and R is the
source-to-receiver distance (|SO| in Fig. 1).

It is the squared field characteristic, namely, the

scattered intensity Is =  that must to be found. The
surface roughness is a statistically uniform and station-
ary. Therefore, by changing to the power spectral den-
sity and supposing the spatial distribution to be regular
at each frequency Ω of the surface wave, we arrive at

the following expression for (Ω):

(A4)

H0
1( )

ψm'' κm
2

ps R z t, ,( )

=  
ωρQ

16
------------ iωt–( )exp

× H0 κmr( )H0 κnrs r θ,( )( )[
m n, 0=

∞

∑
0

2π

∫
0

∞

∫

× ψm' 0( )ψm z0( )ψn z( )ψn' 0( )η r θ t, ,( ) ]rdr θd ,

R2 r2 2Rr θcos–+

ps
2t

Îs

Îs Ω( ) ωρQ
16

------------ 
 

2

=

× 3 Ω( ) r r r̃ r̃ θ θ̃ φ H0 κmr( )
lq 0=

∞

∑
m n, 0=

∞

∑d

0

2π

∫d

0

2π

∫d

0

2π

∫d

0

∞

∫d

0

∞

∫

× H0 κnrs r θ,( )( )H0* κ l r̃( )H0* κqr̃s r̃ θ̃,( )( )

× ! Ω φ,( ) iκ r θ φ–( )cos r̃ θ̃ φ–( )cos–( )[ ]exp

× ψm' 0( )ψm z0( )ψn z( )ψn' 0( )ψl' 0( )ψl z0( )ψq z( )ψq' 0( ).
Here, (·)* denotes complex conjugation, (Ω) is the
power spectral density of scattering, Ω is the modula-
tion frequency (the frequency of wind waves, Ω ! ω),
3(Ω) is the power spectral density of wind waves, and
!(Ω, φ) is the angular spectrum of surface waves with

the normalization (Ω, φ)dφ = 1 for all frequen-

cies Ω. The wave number of the surface waves, κ =
2π/Λ, is determined by the dispersion relation for
gravity waves. In deep water (Λ ! H, where H is the
depth), we have [14]

(A5)

where g is the acceleration of gravity.

The Hankel function of the first order has a weak
logarithmic singularity, which makes a small contribu-
tion to the quantity Is in integration (below, it will be
shown that this statement is true when the conditions of
resonant scattering are met). Let us assume that the
main contribution to integral (A4) comes from areas
that are far from the source and the receiver. Then, one
can replace the Hankel function by its asymptotic expan-

sion [15]: H0(x) . exp(+i(x – π/4)), x @ 1.

To specify the model for the waveguide, we use the
Pekeris waveguide [1, 13]. At long distances from the
source in such a waveguide, the wave numbers κm/k >
c/cb (where cb is the sound speed in the bottom) corre-
spond to undamped modes (or to weakly attenuated
modes if the loss in the bottom is present). Let us per-
form averaging over the interference structure. Such an
approach is justified if many modes propagate in the
waveguide. Then, to calculate the functions (0), we

specify the functions ψm(z) as ψm(z) . sinζmz,
ζm = π(2m + 1)/2H, which correspond to a waveguide
with an acoustically stiff bottom. Equation (A4) can be
represented as follows:

(A6)

where µ = k0R @ 1 and ε = r/R. Upon averaging over the
interference structure, the intensity of the unperturbed

field produced by the source will be I0 = χ∗ . The

phase function 6(ε, θ) in the integral of Eq. (A6) is deter-

Îs

!
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2π∫

κ Ω2/g,=

2/πx

ψm'

2/H

Îs Ω( )
I0
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8π2
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2
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mined by the following expression (ξ = λ/2Λ): 6(ε, θ) =

ε(cosχ1 + 2ξcos(θ – φ)) + cosχ2 .

Let us estimate integral (A6) with the use of the sta-
tionary phase method [13] by assuming that µ @ 1. It
can be shown that the position of the point of the sta-
tionary phase is determined by the conditions of reso-
nant (Bragg) scattering. Let us determine the centers
(ε0, θ0) of the regions that are responsible for resonant
scattering together with their sizes (l1, l2):

In the vicinity of the point (ε0, θ0), the phase varia-
tions are determined by the quadratic form: 6(ε, θ) –

6(ε0, θ0) = a11x2 + 2a12xy + a22y2 = x2 + 2 xy +

y2, where x = ε – ε0 and y = ε0(θ – θ0). The quan-

tities aij are given by the expressions

After rotating the coordinate system through an
angle α that is defined as  = –2a12/(a22 – a11), the
quadratic form ||aij|| becomes diagonal, so that 6(ε, θ)

– 6(ε0, θ0) =  +  and  = a11cos2α +

a12sin2α + a22sin2α,  = a11sin2α – a12sin2α +
a22cos2α. If the points of stationary phase exist (ε0 > 1,
Im(θ0) = 0), the equal phase lines are ellipses in the
vicinity of (ε0, θ0). The semiaxes of the ellipses are
determined from the condition that the phase changes

by π: l1 = , l2 = . The quantity

1 ε2
2ε θcos–+

∂6
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+
ε0 θ0cos–( ) χ2cos
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1
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ã11 x̃2 ã22 ỹ2 ã11
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 is equal to the size of the first Fresnel zone with
respect to the source, and the integral can be calculated
as

(A7)

Thus, the resonant scattering by surface roughness
occurs within spatially localized surface areas with
sizes that are determined by the first Fresnel zones.
After simple transformations in light of Eq. (A7), inte-
gral (A6) takes the form

(A8)

If the capture angle of the waveguide is small, χ∗  ! 1,
the trigonometric functions in integral (A8) can be
replaced with their asymptotic expansions with a small
argument: cosχ1 . 1, cosχ2 . 1, sinχ1 . χ1, and sinχ2 .
χ2. Then, Eq. (A8) can be integrated over the grazing
angles χ1, 2. To calculate the integral over φ, one should
specify the angular spectrum of surface waves. Many
models [1, 7, 8] exist for the angular distribution !(Ω, φ).
Near the maximum of the power spectrum, the spatial
spectrum is narrow, with a pronounced maximum in the
direction of the wind [11, 12]. For the sake of simplic-
ity, let us assume the surface spectrum to be infinitely
narrow, so that !(Ω, φ) = δ(φ – φ0), and the wind
direction φ0 to be such as will allow for the existence
of the stationary-phase point (the conditions of reso-
nant scattering are met). Then, Eq. (A8) is simplified

(r0 = Rε0, rs(r0, θ0) = R ):

(A9)

where f(χ) = (2χ – sin2χ)2/χ . 16χ5/9. It can be shown

that the quantity # =  is close to unity,

and significant deviations from unity occur if the reso-
nant scattering areas are near the source or the receiver.
Evidently, such situations cannot be described by
Eq. (A8), because this equation is obtained by using the
high-frequency asymptotic form of the Hankel func-
tions (κmr0, κmrs @ 1). Therefore, Eq. (A9) can be sim-
plified:

(A9')
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Abstract—Using the theory of spheroidal wave functions, the total acoustic impedance is determined for a pro-
late spheroid performing transverse translational and rotational oscillatory movements. Expressions for the
radiation resistance, the added mass, and the added moment of inertia are derived. It is shown that, in the low-
frequency approximation, this mass and moment of inertia reach limiting values identical to hydrodynamic
ones. The components of the total acoustic impedance are calculated for spheroids of different relative thick-
nesses at an arbitrary frequency. © 2004 MAIK “Nauka/Interperiodica”.
In solving the problems of sound radiation by bod-
ies of spheroidal shape, it is necessary to determine
their radiation resistances and the added liquid
masses. It is of interest to compare these quantities
with the results of solving a similar classical problem
for an oscillating sphere. The present paper is devoted
to the determination of the radiation resistance, the
added mass, and the added moment of inertia of a pro-
late spheroid performing transverse oscillatory move-
ments by means of determining its total acoustic
impedance. Let us denote the longitudinal axis of the
spheroid by z and consider harmonic translational
movements of the spheroid along the x axis and its
rotational movements about the y axis (Fig. 1). In this
paper, the dependence of the oscillatory processes on
time t is assumed to have the form exp(–jωt), where ω
is the angular frequency.

Expressions for the total acoustic impedance of a
spheroid performing oscillations along the x axis with a
linear velocity Vx or rotations about the y axis with an
angular velocity ωy, Zx, or Zy have the form [1]

(1)

respectively. Here, Fx and My are the driving force
and moment with which the spheroid acts on the liq-
uid when the two aforementioned types of oscilla-
tory motion take place, Rx and Ry are the respective
radiation resistances, Mx is the added mass of the
liquid in the case of translational oscillations of the

Zx

Fx

V x

------ Rx jωMx,–= =

Zy

My

ωy

------- Ry jωIy,–= =
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spheroid, and Iy is the added moment of inertia of
the liquid mass in the case of rotational movement.

The driving force and moment can be determined by
integrating the pressures produced in the liquid by the
oscillating spheroid (denote this pressure by px) or by
the rotating spheroid (py) over the spheroid surface:

(2)

Here, n is the outer normal to the spheroid surface; the
direction cosines are given by the formulas

Fx px n x,( ) s,dcos

s

∫=

My py n z,( )x n x,( )zcos–cos[ ] s.d

s

∫–=

η = 0

L

d

η = 1

η = consty

0ϕ

ξ0

P(ξ, η, ϕ)

x

n

z

Projection
onto the xoy plane

Fig. 1. Geometry of the problem and the prolate spheroidal
coordinate system.
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(3)

ξ, η, ϕ are the prolate spheroid coordinates [1]; and d is
the focus spacing of the spheroid (Fig. 1).

The pressures produced by the spheroid performing
oscillatory movements can be sought in the form of a
series:

(4)

that satisfies the radiation condition at infinity. In Eq. (4),

(h, ξ) are the prolate radial spheroidal functions of
the third kind, S1n(h, η) are the prolate angular spheroi-
dal functions, h = kd/2 is the wave size of the spheroid,
and k is the wave number of sound in the liquid. This
approach is conventionally used in solving similar
problems (see, e.g., [2]). The unknown coefficients Px, y
can be determined from the boundary condition at the
spheroid surface:

(5)

where Vn is the normal component of the velocity
amplitude, ρ is the density of the liquid, c is the velocity
of sound in it, and gξ is the metric tensor element
expressed as [1]

The normal velocity component Vn is related to the
velocity Vx by the formula

When the spheroid performs rotational oscillations
about the y axis, the linear velocity of the points of its
surface along the x axis is

The presence of the factor cosϕ in the direction cosine
cos(n, x) given by Eq. (3) corresponds to the geometry
of the problem under study and dictates the choice of
precisely this type of dependence on ϕ in Eq. (4).

n x,( )cos ξ 1 η2–

ξ2 η2
–

---------------- ϕ ,cos=

n z,( )cos η ξ2 1–

ξ2 η2
–

----------------;=

ds
d2

4
----- ξ2 1–( ) ξ2 η2–( ) η ϕ ;dd=

px y, Px y, R1n
3( ) h ξ,( )S1n h η,( ) ϕ ,cos

n 1=

∞

∑=

R1n
3( )

Vn
1

jkρc
-----------∂p

∂n
------ 1

jkρc
----------- 1

gξ
-----∂p

∂ξ
------, ξ ξ 0,= = =

gξ
d
2
--- ξ2 η2–

ξ2 1–
----------------.=

Vn V x n x,( ).cos=

V x ωyz ωy
d
2
---ξ0η .= =
Let us substitute the latter formulas and Eqs. (3) and
(4) into boundary condition (5), multiply its both sides
by the function S1k(h, η), and integrate them over η
from –1 to +1. Then, using the orthogonality property
of the prolate angular spheroidal functions [1],

we determine the coefficients Px, y from expansion (4)
for both translational and rotational movements of the
spheroid. After performing the aforementioned proce-
dures, we arrive at the following results:

(6)

Here, (h) and (h) are the expansion coefficients
for the prolate angular spheroidal function expansions
in terms of the associated Legendre functions [1].

Now, substituting expressions (6) into Eqs. (1)–(3),
we obtain the desired expressions for the total acoustic
impedance:

(7)

for an oscillating spheroid and

for a rotating spheroid.

The radiation resistances and the added mass and
moment of inertia can be derived from these series
either analytically (in the low-frequency approxima-
tion) or by numerical calculation (for an arbitrary fre-
quency). Assuming that the wave size of the spheroid

Smn h η,( )Smk h η,( ) ηd

1–

+1

∫
Nmn h( ), k n=

0, k n,≠



=

px V x
4
3
--- jhρc

ξ0

ξ0
2 1–

------------------ ϕcos=

×
d0

1n h( )R1n
3( ) h ξ,( )S1n h η,( )

N1n h( )R1n
3( )' h ξ0,( )

-------------------------------------------------------------,
n 1 3 …, ,=

∞

∑

py ωy
2
5
--- jhρc

dξ0
2

ξ0
2 1–

------------------ ϕcos=

×
d1

1n h( )R1n
3( ) h ξ,( )S1n h η,( )

N1n h( )R1n
3( )' h ξ0,( )

-------------------------------------------------------------.
n 2 4 …, ,=

∞

∑

d0
1n d1

1n

Zx
2π
9

------ jωρξ0
2
d3 d1

1n h( )[ ] 2
R1n

3( ) h ξ0,( )
N1n h( )R1n

3( )' h ξ0,( )
------------------------------------------------

n 1 3 …, ,=

∞

∑=

Zy
π
50
------ jωρξ0

2
d5 d0

1n h( )[ ] 2
R1n

3( ) h ξ0,( )
N1n h( )R1n

3( )' h ξ0,( )
------------------------------------------------

n 2 4 …, ,=

∞

∑=
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tends to zero, from Eq. (7) with the use of [1, 3], we
obtain

(8)

where (ξ0) and (ξ0) are the associated Legendre
functions of the second kind; λ11 is the added mass of
the liquid in the case of a uniform motion of the spher-
oid along the x axis, which is widely used in hydrody-
namics [3]; and λ55 is a similar added moment of iner-
tia of the liquid mass in the case of a uniform rotation
of the spheroid about the y axis [3]. From Eq. (8) one
can see that, in the low-frequency limit, acoustics and
hydrodynamics yield identical descriptions for the
added masses of a spheroid performing oscillatory
movements while its radiation resistances tend to
zero.

In the higher frequency region, the radiation resis-
tance, the added mass, and the added moment of inertia
of the spheroid can be determined by calculating the
real and imaginary parts of Eq. (7) and comparing them
with Eq. (1). However, unlike the hydrodynamic
approximation, owing to the use of the spheroidal wave
functions these quantities should depend on frequency
and should take into account the wave motion of the liq-
uid. The calculations were performed using the tables

Zx
h 0→
lim

π
6
--- jωρξ0

2d3 Q1
1 ξ0( )

Q1
1' ξ0( )

----------------- jωλ11,–= =

Zy
h 0→
lim

π
120
--------- jωρξ0

2d5 Q2
1 ξ0( )

Q2
1' ξ0( )

----------------- jωλ55,–= =

Q1
1 Q2

1

2

3

4

5

1

420 6 8
kL/2

Rx/S, Ry/Is
0.50

0.25

Fig. 2. Radiation resistance of a spheroid as a function of its
wave half-length: (1) an oscillating spheroid, Rx/S, ξ0 =
1.01; (2) an oscillating spheroid, Rx/S, ξ0 = 1.1; (3) an oscil-
lating sphere, Rx/S; (4) a spheroid performing rotational
oscillatory movements, Ry/Is, ξ0 = 1.01; and (5) a spheroid
performing rotational oscillatory movements, Ry/Is, ξ0 = 1.1.
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of spheroidal wave functions [4–6]. The results of the
calculations were normalized as follows:

(i) Rx, by the spheroid surface area S calculated as

(ii) Ry, by the moment of inertia of the spheroid sur-
face area with respect to the y axis, which is equal to

(iii) Mx, by the mass of the floating spheroid whose
density is equal to the density of the liquid,

(iv) Iy, by the moment of inertia of the floating spher-
oid with respect to the y axis,

Figures 2 and 3 show the calculated components of
the total acoustic impedance for two spheroids of dif-
ferent relative thickness as functions of the wave half-
length of the spheroid kL/2, where L is the spheroid
length. The first spheroid is characterized by ξ0 = 1.01
(a length-to-width ratio of 7.12), and the second spher-
oid, by ξ0 = 1.1 (a length-to-width ratio of 2.40). For
comparison, the same figures show the data from simi-

S
πd2

2
-------- ξ0

2
1– ξ0

2 1– ξ0
2 1

ξ0
-----arcsin+ 

  ;=

Is
πd4

64
-------- ξ0

2
1– ξ0

2 ξ0
4 5ξ0

2 4–+( ) 1
ξ0
-----arcsin=

---– ξ0
2 1– ξ0

4 5ξ0
2 2+–( ) ;

M
π
6
---ρd3ξ0 ξ0

2
1–( );=

I
π

120
---------ρd5ξ0 ξ0

2
1–( ) 2ξ0

2
1–( ).=

1

2

3

4

5

420 6 8
kL/2

1.0

0.5

Mx/M, Iy/I

Fig. 3. Added mass and moment of inertia of a spheroid as
functions of its wave half-length: (1) an oscillating spher-
oid, Mx/M, ξ0 = 1.01; (2) an oscillating spheroid, Mx/M, ξ0 =
1.1; (3) an oscillating sphere, Mx/M; (4) a spheroid perform-
ing rotational oscillatory movements, Iy/I, ξ0 = 1.01; and
(5) a spheroid performing rotational oscillatory movements,
Iy/I, ξ0 = 1.1.
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lar calculations for an oscillating sphere as a function of
its wave radius (in the case of rotational oscillatory
movements of the sphere, the radiation resistance and
the added moment of inertia are equal to zero). Using
the plots shown in Figs. 2 and 3, it is possible, from a
given wave size of a spheroid, to determine the radia-
tion resistance of the latter and its added mass or
moment of inertia.
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Abstract—The problem of the nonlinear interaction between the fourth sound and an acoustic wave propagat-
ing in a porous medium filled with superfluid helium is solved. Based on the Landau equations of quantum fluid
dynamics and on the Biot theory of mechanical waves in a porous medium, nonlinear wave equations are
derived for studying the aforementioned interaction. An expression is obtained for the vertex that determines
the excitation of an acoustic wave by two waves of the fourth sound. The possibility of an experimental obser-
vation of this process is estimated. © 2004 MAIK “Nauka/Interperiodica”.
Fluid-filled porous media are the object of intensive
studies, both experimental and theoretical. This is
explained not only by the scientific interest in revealing
the physical properties of these complex systems but
also by the technological significance of such media. In
studying the dynamics of a porous medium, the use of
superfluid helium as a liquid for filling the pores proves
to be rather effective (see, e.g., [1–5]). If the transverse
size of the capillaries of a porous medium is compara-
ble to the mean free path of excitations or is smaller
than it, a situation is realized in which, in the course of
wave propagation in helium, the normal component of
the superfluid is decelerated and becomes stationary
with respect to the solid component of the porous
medium. This is the well-known effect of fourth sound
in superfluid helium (see, e.g., [6, 7]). According to the
Biot theory [8–10] of the acoustics of fluid-filled
porous solids, such media are characterized by the pres-
ence of two independent oscillation branches: the so-
called fast and slow compressional waves. While the
slow wave often represents a strongly attenuated relax-
ation oscillation with the solid and liquid components
moving in antiphase, the fast wave is, in essence, a
common sound wave with the solid and liquid compo-
nents moving almost in phase. In [11] it was shown
that, in the context of a porous medium, the fourth
sound in liquid helium is equivalent to the slow wave of
the Biot theory, which in this case is not a strongly
damped wave but an essentially undamped wave,
because it only includes the motion of the superfluid
component containing no excitation gas. Various prob-
lems of linear wave propagation, including the propa-
gation of the fourth sound, in porous media filled with
superfluid helium are also considered in [12]. The
velocity of the slow wave (the fourth sound) c1 in a dis-
ordered porous medium differs from the velocity of the
fourth sound in a straight capillary u1 (which, at suffi-
ciently low temperatures, is equal to the velocity of the
1063-7710/04/5006- $26.00 © 0721
first sound in helium to a fair degree of accuracy): c1 ≈
u1/α1/2, where α is the structure constant from the Biot
theory. This constant takes into account the complex
geometry of a porous medium with nonstraight chan-
nels (pores), which considerably changes the acoustic
path. The slow and fast oscillation branches of a porous
medium are independent in the linear approximation.
When the wave intensities are sufficiently high, nonlin-
ear interactions between these two branches may man-
ifest themselves.

The purpose of the present study is to consider the
nonlinear interaction between the slow wave (fourth
sound) and the fast (acoustic) wave in a porous medium
filled with a superfluid. Until now, no such studies have
been carried out. Meanwhile, nonlinear wave interac-
tions may provide valuable information on the parame-
ters of the medium that govern these processes and on
the properties of the excitations and physical phenom-
ena that underlie the interactions of interest. In addi-
tion, by taking into account the nonlinear phenomena,
one gains a better insight into the phenomena observed
in experiments with waves of relatively high intensities.

To solve the problem of nonlinear wave interaction
in a porous medium filled with a quantum fluid, let us
use the superfluid helium II equations [13] together
with the Biot theory of mechanical waves in porous
media [8–10]. The nonlinear equations of a superfluid
in application to narrow capillaries can be represented
in the form

(1)

∂ρ
∂t
------ div j+ 0,=

∂vs

∂t
-------- ∇

v s
2

2
------ µ+ 

 + 0,=

∂ ρs( )
∂t

-------------- div ρsu( )+ 0.=
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Here, ρ is the density of helium; j is the density of the
mass flux density of the liquid; ρs and vs are the density
and velocity of the superfluid component; µ is the
chemical potential; s is the entropy per unit mass; and
u is the velocity of the normal component of superfluid
helium, which in the given case coincides with the
velocity of the capillary wall, i.e., with the velocity of
the solid phase of the porous medium. For the differen-
tial of the chemical potential µ, the following relation is
valid [13]:

where P is the pressure in the superfluid and ρn is the
density of the normal component. Therefore, the sec-
ond equation of system (1), correct to the quadratic
nonlinearity in the velocities, can be represented in the
form

Note that, according to [14], in a fourth sound wave in
He4 the relative amplitude of the temperature oscilla-
tions is much smaller than the relative amplitude of the
pressure oscillations:

where T0 and P0 are equilibrium values of temperature
and pressure and the coefficient is κ ~ –10–4 at T ≈ 1.5K.
Therefore, in the problem under consideration, we can
ignore the temperature oscillations. Moreover, it is
known that, at sufficiently low temperatures, the den-
sity of the normal component is much smaller than the
density of the superfluid component. For example,
already at T = 1.5K, we have ρn ≈ 0.1ρs. Hence, with
reasonable accuracy, we can assume that ρs ≈ ρ (ρ = ρn +
ρs). In this case, we can ignore the last equation of system
(1), which is the equation of entropy conservation, the
entropy transfer being associated with normal motion.
Below, the velocity of the superfluid component vs is
everywhere denoted as v.

Equation (1) is written for the case of a straight
channel. For a disordered porous medium, the equa-
tions should be modified according to the Biot theory
[8], taking into account the geometry of the pores. The
Biot equations complemented with nonlinear terms
have the form

(2)

Equations (2) are represented in one-dimensional form,
because such a consideration is sufficient for revealing

dµ sdT–
1
ρ
--- P

ρn

ρ
----- u vs–( )d u vs–( ),–d+=

∂vs

∂t
--------

1
ρ
--- ∇ P s∇ T

1
2
--- ∇ v s

2 ρn

2ρ
------ ∇ u vs–( )2

–+–+ 0.=

T '/T0 κP'/P0,=

ρ11
∂v
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------- 1

2
---ρ11

∂v 2

∂x
--------- ρ12

∂u
∂t
------ 1

2
---ρ12

∂u2

∂x
--------+ ++ m

∂P
∂x
------,–=

ρ22
∂u
∂t
------ 1

2
---ρ22

∂u2

∂x
-------- ρ12

∂v
∂t
------- 1

2
---ρ12

∂v 2

∂x
---------+ + +

=  
∂σxx

∂x
---------- 1 m–( )∂P

∂x
------.–
the essential features of the nonlinear interactions dis-
cussed below. In these equations, v  and u – x are the x
components of the particle velocities of the liquid and
solid phases; m is the porosity of the medium;

(3)

where ρm is the density of the solid phase and α is the
structure constant; σxx is the effective stress in the
porous medium; in the linear approximation [15],

(4)

where k and ks are the bulk moduli of the frame and its
constituent grains, respectively;  is the shear modulus
of the frame; Uxx is the frame strain tensor; and Pl is the
linear part of pressure in the liquid, which is determined
by the relations [16]

(5)

Here, kf is the bulk modulus of the liquid phase, V is the
displacement of the liquid, U is the displacement of the
frame, and ξ is the liquid volume flowing into the vol-
ume element of the medium or out of it. Note that, in
reality, the bulk modulus of liquid helium kf is much
smaller than the bulk modulus of the solid phase ks.
Therefore, in the case under consideration, G ≈ m/ks,
provided that m is not too close to zero. In relation (5),
it is convenient to change from the variables ξ and U to
the variables δρ and δρm:

(6)

where ν = 1 – m – k/ks. Equation (2) does not involve
the Biot frequency correlation function taking into
account the viscous loss due to the relative motion of
phases, because the superfluid component of the quan-
tum fluid has no viscosity. Generally speaking, if the
density of the normal component is not neglected, the
absorption of the fourth sound is caused by the viscous
mechanisms of dissipation and by heat conduction.
However (see, e.g., [17]), the contribution of heat con-
duction is vanishingly small compared to the viscous
loss, and the main mechanism of viscous absorption is
the slip of the normal component relative to the walls of
the channels. The value of the absorption coefficient for
the fourth sound is virtually zero at sufficiently low
temperatures T < 1.2–1.5 K [17]. The absorption of a
wave propagating in the solid phase because of the fric-
tion inside the frame and other possible mechanisms
can theoretically be described by replacing the bulk
moduli and the shear moduli of the frame by operators

ρ11 αmρ, ρ12 α 1–( )mρ,–= =

ρ22 1 m–( )ρm α 1–( )mρ,+=

σxx
l k

4
3
---µ̃+ 

  Uxx
k
ks

----Pl,+=

µ̃

Pl G 1– ξ FdivU,–=

G
1 m–

ks

------------- m
k f

-----
k

ks
2

-----, F–+ 1 k
ks

----– 
  G 1– ,= =

ξ mdiv U V–( ).=

Pl G 1– m
ρ
----δρ ν

ρm

------δρm+ 
  ,=
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describing the inelastic response of the solid compo-
nent of the porous medium [16, 18]. Below, it is noted
that the absorption inside the frame has virtually no
effect on the development of the nonlinear interactions
discussed in this paper.

The first equation of system (2) corresponds to the
second equation of system (1). Equation (2) should be
complemented with continuity equations for the liquid
and solid phases:

(7)

The first of these equations, written for an ordinary liq-
uid, corresponds to the first equation of system (1) for
the superfluid with allowance for the fact that, at the
temperatures under consideration, ρs ≈ ρ (as was noted
above).

Taking into account the nonlinear terms up to the
quadratic ones in systems of equations (2) and (7), we
reduce these equations to the form

(8)
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Here, the nonlinear terms are present on the right-hand
sides of the equations; c2 is the velocity of the sound
branch; the nonlinear parts of pressure Pn and stress

tensor  are the subsequent quadratic terms of expan-
sions for Eqs. (6) and (4), respectively.

Before solving the nonlinear problem, let us con-
tinue to the normal oscillations Θ (the slow wave) and
Φ (the sound branch) in the respective linear equations:

(9)

Consider the nonlinear interaction of three waves:
two waves of the fourth sound, (Ω1, q1) and (Ω2, q2),
and the fast compressional wave (the acoustic wave)
(ω, k), for which the relations ω = Ω1 + Ω2 and k = q1 +
q2 are valid. The fourth sound velocity c1 is much
smaller than the acoustic wave velocity c2, and, correct
to the velocity ratio c1/c2, we have Ω1 ≈ Ω2 ≈ ω/2; k =
q1 – q2 ! q1, q2 (the case of interaction along a straight
line; the wave (Ω2, q2) is an inverse wave). We seek the
solution to the system of nonlinear equations (8) in the
form of a sum of three waves:

(10)

Here, λ and ej are nonlinear corrections to linear rela-
tions (9). We assume that the amplitudes of waves
slowly vary along the propagation direction because of
nonlinearity. Consider, for example, the nonlinear exci-
tation of a sound wave Φ by two sufficiently intense
waves of the fourth sound, Θ1 and Θ2. Substituting rela-
tions (10) and the corresponding expressions for the
velocities v  and u, we perform some algebraic transfor-
mations and eliminate the nonlinear corrections λ and
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ej from the equations. As a result, we obtain an equation
for the amplitude of the sound wave Φ:

(11)

where N and M are the respective right-hand sides of
Eq. (8), into which the normal coordinates are substi-
tuted. It should be noted that the problem under consid-
eration involves small parameters c1/c2 and ρ/ρm (ρ ≈
0.1 g/cm3 and ρm exceeds 1 g/cm3). Taking these
parameters into account and analyzing the right-hand
sides of nonlinear system (8), we find that the maximal
contribution to the interaction of interest is made by the
second term from M:

Finally, Eq. (11) takes the form

(12)

Thus, the effective vertex (the third-order anharmonic-
ity) that determines the interaction under consideration
is equal to

(13)

Let us estimate the possibility of an experimental
observation of this nonlinear process. For example, let
us determine the order of magnitude of the distance l at
which the acoustic wave can be amplified to observable
magnitude. For this purpose, we use the numbers that
are realistic for an experiment with a porous medium
allowing the propagation of both the fourth sound and a
fast compressional wave: ω = 2 × 2π × 105 s–1, c2 = 4 ×
105 cm/s, α ≈ 2, and m = 0.3, ρ = 0.1 g/cm3. The intensity
of the acoustic wave and the fourth sound can be repre-
sented in order of magnitude by the formulas:

Then, taking into account Eq. (12), for the intensity of
the amplified fast compressional wave at a distance l we
obtain the expression

If I1 ≈ 10–2–10–3 W/cm2, we have I2 × 10–5–10–6 W/cm2

at a distance l ~ 10 cm, which is a real value for an
experiment. Equation (12) ignores the sound absorp-
tion because, for the frequency under consideration, it
is fairly small: according to [2], the absorption of trans-
verse waves (even at higher frequencies), which is
much stronger than the absorption of longitudinal
sound waves, is very small at low temperatures. Note
that the effective interaction vertex (13) strongly depends

dΦ
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on the quantity (α – 1), i.e., on ρ12 = –(α – 1)ρm; the
quantity ρ12 describes the inertial action (unlike the vis-
cous one) of the liquid on the solid when the latter is
accelerated relative to the former and vice versa. The
structure constant α is a purely geometrical quantity and
does not depend on the densities of the liquid and solid
phases. Thus, we can conclude that the nonlinear interac-
tion under consideration strongly depends on the geom-
etry of the pores. In addition, it should be noted that the
fourth sound in porous media is often studied using
unconsolidated molding powders, which do not possess
the elastic properties necessary for sustaining the acous-
tic mode. Therefore, the consideration presented in this
paper refers to consolidated elastic media, in which, in
addition to the slow wave, the fast compressional wave,
i.e., the common acoustic wave, can propagate.
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Abstract—Evolution of a pulsed disturbance in a nonlinear medium whose properties irreversibly vary in the
course of wave propagation is studied. Equations describing the propagation process are obtained. It is demon-
strated that the waveform distortion and the dynamics of the field and energy characteristics of a signal notice-
ably differ from those observed in conventional nonlinear media. New nonlinear equations describing a pulse
in a medium with relaxation of its nonlinear properties are derived. A finite “delay time” for irreversible pro-
cesses is introduced in the defining equation. The shape of a pulse reflected from the boundary between an ordi-
nary medium and a nonlinear hereditary medium is calculated. It is demonstrated that, in the case of a fixed
relation between the peak pressure in the incident pulse and the ratio of linear impedances of the two media, a
total transmission of the trailing edge of the pulse into the compressed medium occurs. Possible applications of
the results to topical construction problems are discussed. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Nonlinear-acoustics methods have been used in
construction for testing materials, structures, and build-
ings since the early 1980s. The physical foundations of
these methods [1], as applied to objects of industrial and
civil engineering, are described in [2–4]. By now, the
testing of tens of bridges, transport trestleworks, ther-
mal power plants, underground structures, and archi-
tectural–historical monuments in Russian and foreign
cities has been carried out.

It is necessary to note that the strong nonlinearity
connected with the presence of structural inhomogene-
ities in the medium and of internal defects in some
cases has manifested itself under a sudden external
action (as in the case of testing buildings in the region
of the Spitak earthquake) or as a result of the natural
deterioration of a structure (as in the case of testing the
state of the basement brickwork of architectural–histor-
ical monuments). In other cases, in laboratory and
bench tests, an analogous situation was created on pur-
pose by loading the models of structures up to the crit-
ical fracture stresses.

In addition, nonlinear phenomena were observed in
the technological testing of construction works, for
example, in the case of manufacturing and assembling
various types of piles and their impact tests.

This problem became most urgent in constructing
trestles for the third Moscow transport ring, where the
majority of piers were pile grillages constructed of
1063-7710/04/5006- $26.00 © 20725
drilled-filling piles. These piles had a length of 40–50 m
and a diameter of up to 1.5 m. However, industrial piles
(in contrast to drilled-filling piles) have much smaller
dimensions and require the application of impact or
vibration loads for their mounting.

A drilled-filling pile is manufactured directly at a
construction site by performing several sequential
operations: borehole drilling, mounting of a reinforcing
cage, concreting, testing of the concrete shaft for homo-
geneity, and impact testing of the force interaction of
the pile and the soil.

The appearance of various defects, such as partial
caving of a borehole, changes in its geometric dimen-
sions, and inhomogeneity of the concrete because of
the time intervals between the stages of borehole con-
creting is possible in the course of pile manufacture.
Therefore, pile testing is conducted to evaluate the pile
bearing strength. Both the values of compression stress
at the contact of the pile butt-end with the soil and the
quality of adherence of the concrete shaft of a pile with
soil along its lateral surface are determined.

Taking into account the relatively large diameters of
drilled-filling piles and their length, it is inexpedient to
perform static loading of a pile being tested by increas-
ing the external force load and measuring the deforma-
tion until the critical value, since this requires the con-
struction of a special cumbersome structure, the instal-
lation of anchor piles, and prolonged testing. Instead, a
method of impact testing called TNO is widely used in
004 MAIK “Nauka/Interperiodica”
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Russia and abroad to evaluate the bearing capability of
large drilled-filling piles [5, 6].

The essence of the TNO method lies in periodic
impact loading of the upper (open) end of a pile by
dropping a load along a lead bar. The impact excites a
pressure pulse in the pile (Fig. 1).

A wave propagates downwards and is partially
reflected from the lower pile end–soil boundary, pro-
ducing an irreversible displacement both as the result of
soil consolidation and due to the “slippage” of the com-
pressed lateral surface. Recording this displacement as
a function of the height of the load fall, load mass, and
number of impact loadings, it is possible to evaluate the
bearing capability of a pile by the compression stress in
the pile end–soil region.

In the case of impact testing by the TNO method,
acceleration sensors and strain gauges are installed at
the upper end and adjoining lateral surface of a pile.
The parameters of signals reflected from the lower end–
soil boundary and the inhomogeneities within the con-
crete are recorded. The mathematical model used for
processing the results is based on a linear wave equa-
tion for the pulse propagation in a pile. In the numerical
algorithm, a pile is replaced by a series of discrete vis-
coelastic elements. The boundary with the soil is also
simulated by a concentrated element, which, however,
permits nonlinear elastoplastic behavior.

Despite the wide application of the TNO method,
which is connected with its convenience for builders, its

–L

0
x

ρ1c1

ρ0c0

Fig. 1.
shortcomings are evident. These include both the math-
ematical model describing the waves in a pile (the
equations must be nonlinear) and the nonlinear pile
foundation–soil system (it must be treated as a distrib-
uted system). It is clear that the formulation of new
engineering and computer solutions goes beyond the
framework of this paper. However, in considering a
specific problem we examine here more general prob-
lems, which may be important for some applied prob-
lems, as well as for the physics of nonlinear waves.

2. PULSED SIGNAL IN A MEDIUM
WITH HYSTERESIS

Up to now, the foundations of the theory of nonlin-
ear wave propagation in media with hysteresis of the
stress–strain dependence have been insufficiently
developed because of the difficulties of solving the cor-
responding problems. This is also true for nonlinear
acoustics of hysteretic media [7].

Therefore, it is necessary to develop a theory of
wave propagation in media with irreversible deforma-
tions depending on the history of the loading and
unloading processes. It is necessary to note that the
problem of pile interaction with the soil foundation is
not the only one in which hysteresis should be taken
into account. Similar problems arise in road building, in
the case of vibration compression of the roadbed foun-
dation before laying asphalt surfacing and in testing
bridges that have been in service for a long time (which
leads to the appearance of a great number of defects and
to the sag of span structures). Naturally, the solution of
the “hysteresis” problems covers important problems
of seismic engineering and seismoacoustics.

A model of a hysteretic medium used below for
describing a nonlinear pulsed signal is illustrated in
Fig. 2. In the course of the pressure growth, the density
of the medium changes as follows:

(1)

Here, ε is the nonlinear parameter of the medium and ρ1
and c1 are the initial values of the soil density and the
sound velocity in soil, respectively. In the process of
unloading, the increments of density ρ' and pressure p'
are related by a linear dependence, but the properties of
the medium are altered by the previous loading process
and determined by the maximum load applied,  [8]:

(2)

At p' = , Eqs. (1) and (2) yield coinciding values. As

follows from Eq. (2), a residual deformation  =

ε /( ρ1) arises in the medium after unloading.
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We assume that the physical nonlinearity of the
medium that is present in defining equations (1) and (2)
is greater than the geometric nonlinearity of the equa-
tions of motion [9], which can be linearized in this case
and reduced to a single equation:

(3)

Let a wave propagate along the x axis, which coin-
cides in Fig. 1 with the pile axis. Assuming the nonlin-
earity to be weak and using the method of a slowly
changing profile [10], we obtain from Eqs. (3) and (1)
an equation for the growing part of a pressure wave:

(4)

Analogously, we obtain for a discharge wave

(5)

Solutions to these equations have the forms

(6)

(7)

Here, Φ1 and Φ2 are arbitrary functions of their argu-
ments. The solutions given by Eqs. (6) and (7) should
be sewed combined at the point τm(x), where the pres-
sure reaches its maximum value p'(x, τm) = (x) and
the derivative ∂p'/∂τ changes its sign.

Let us consider the simplest model of a pulse in the
form of a symmetric single disturbance of a triangular
shape (the curve corresponding to x = 0 in Fig. 3). The
specific form of the functions Φ1 and Φ2 is determined
according to the condition at the boundary x = 0. In the
case of the pulse under consideration, the solutions
given by Eqs. (6) and (7) take on the forms

(8)

respectively. Equating functions (8) at the point of the
maximum, we obtain several equations for two
unknown functions τm(x) and (x). The equations are
reduced to a solvable differential equation of the first
order. Taking into account the boundary conditions, we
obtain the following from this equation:

(9)
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Here and below,

(10)

is the characteristic nonlinear length or the distance of
shock formation [10].

In Fig. 3, z denotes the distance normalized by
length (10): z = x/xs. It is necessary to note that the
result given by Eq. (9) is valid within the range of dis-
tances 0 < x < xs, i.e., before the shock formation at the
wave front.

In the region x > xs, it is necessary to use the equa-
tion of the wave-front motion in the moving coordinate
system, which is known from the theory of weak shock
waves (for example, see [11]):

(11)
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Fig. 3.
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Now, we set p' = (x) and τ = τm(x) in the second of
Eqs. (8), differentiate the resulting expression with
respect to x, and use Eq. (11) to eliminate one of the
variables. Solving the equation obtained in this way
together with the evident conditions of joining with
Eqs. (9) at x = xs, we obtain an extension of Eqs. (9) to
the region x > xs:

(12)

One can see that, at large distances x @ xs, the peak
pressure at the front of a shock wave decreases and
tends to zero. However, in this case, the front “stops”: it
cannot move forward farther than by τm(∞) = –0.5. This
is the essential difference in the pulse behavior in a hys-
teretic medium from common “nonlinear spreading”
[10, 11] leading to unrestricted growth of the pulse
length in a permanent area (i.e., momentum). As is
demonstrated below (Fig. 4), there are many other dif-
ferences in this pulse behavior from the known results
for a nonlinear pulse in a medium with an algebraic
equation of state (without “hereditary” properties).

All characteristics of a pulsed signal in Fig. 4 are
normalized to their peak values at x = 0.

Curves S and SH illustrate the dependence of the
pulse area

on the distance traveled in the ordinary and hysteretic
media. While in an ordinary medium the momentum
remains constant and S = const both before and after the
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Fig. 4.
shock formation, in a hysteretic medium, SH starts to
decrease immediately even at arbitrarily small distances x.

The pulse energy

in an ordinary medium remains constant in the region
before the shock formation and then decreases because
of the nonlinear wave attenuation. In a hysteretic
medium, EH starts to decrease immediately, since the
energy is spent for the generation of residual deforma-
tions (curve (x) in Fig. 4) and, after the shock for-
mation, also for dissipation.

The velocity of propagation of the trailing edge of a
wave is equal to

where Q = 1 at x < xs and Q = exp(–(x – xs)/2xs) at x >
xs. It exceeds the sound velocity c1, since the trailing
edge propagates in the medium already compressed by
the loading wave, and it is constant up to the shock for-
mation (in the region x < xs). At distances x > xs, the
velocity v t decreases asymptotically, tending to the
sound velocity c1.

The velocity of the leading edge vs coincides with v t at
x < xs, but after the shock formation its velocity drops down
stepwise and then starts to decrease according to the law

Since v s < v t, the trailing edge tends to catch up with
the leading edge, and the pulse tends to “collapse.” Nor-
malized increments of the propagation velocity of the
leading and trailing edges are shown by the dashed
curves ∆v s and ∆v t in Fig. 4.

3. SIGNAL IN A MEDIUM
WITH A RELAXING NONLINEARITY

As is known, soil is sensitive to deformation rate and
has rheological properties [12]. The processes of
motion, partial fracture of grains, and formation of
microflows of fluid in pores occur with certain charac-
teristic times, which, generally speaking, may differ
from the length of the pulsed signal. In contrast to the
Mandel’shtam–Leontovich acoustic relaxation [10,
13], here, the internal processes in the medium are not
only delayed but also irreversible. Moreover, they are
evidently nonlinear.

Relaxation may be significant for both increasing
and decreasing pressures. However, below we consider
a simplified model in which only the unloading wave is
assumed to be the relaxing. Thus, we refine the results
of Section 2.
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Let the front have a very small length, within which
internal processes are “frozen” and the unloading fol-
lows the same path (1) (the curve in Fig. 2) as the load-
ing of the medium. On the contrary, a very slow unload-
ing follows a direct line 2 (the thin line in Fig. 2). In the
intermediate region of deformation rates, it is possible
to write down the dynamic relation

(13)

where TR is the characteristic relaxation time. Here, the
dependence (p') is given by Eq. (1) and (p'),
by Eq. (2). The following defining equation can be
obtained from Eq. (13):

(14)

Substituting Eq. (14) into Eq. (3) and using the
method of a slowly changing profile, we arrive at an
integro-differential equation

(15)

As is well known [10], in the case of an exponential
kernel equations of the type of Eq. (15) are reduced to
differential equations of the form

(16)

Equation (16) differs from the well-known equation
of evolution [10] for an ordinary relaxing medium in its
right-hand side, which now is nonlinear.

To make the form of subsequent expressions more
convenient, we proceed to the dimensionless variables
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where the nonlinear distance xS is given by Eq. (10).
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In the limiting case of small relaxation times (T/TR @
1) (a “strong” manifestation of hysteresis), Eq. (18) is
simplified:

(19)

In the other limiting case, of large relaxation times
(T/TR ! 1), the general equation (18) is also simplified:

(20)
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Now it is possible to calculate the pulse shape. To do
this, it is necessary to solve Eq. (18) (or its simplified
versions (19) and (20)) for an arbitrary function Pm(z)
and then to join the solution at the profile point P =
Pm(z), θ = θm(z) with the solution to Eq. (4), which
describes the leading edge of the pulse, by simulta-
neously determining the functions Pm(z) and θm(z) from
the conditions of joining. For TR  0, this procedure
was performed in Section 2. However, taking into
account the finiteness of the relaxation time makes it
much more difficult.

Equations (18) and (19) have an exact solution in the
form of a function linear in time:

(21)

which describes the trailing edge of the pulsed signal.
Joining Eq. (21) with the leading edge given by the first
formula of Eqs. (8), P = θ/(1 – z), we determine the
parameters

(22)

The nonlinear transformation of the signal in the
region before the shock formation is represented in
Fig. 5 for the ratio of the relaxation time to the pulse
length TR/T = 0.2. The solid curves refer to the wave
profiles at the distances z = 0, 0.4, 0.8, and 1. The trail-
ing edge in the absence of delay (TR = 0) is shown by
dashed curves for comparison. One can see that the
delay leads to a “spreading” of the signal and to a cer-
tain increase in its maximum. Correspondingly, the
momentum and wave energy decrease more slowly.

4. INTERACTION OF THE PULSE
WITH THE BOUNDARY

Let us now consider the reflection of a pulsed signal
from the pile–soil boundary (Fig. 1). Taking into
account only the physical nonlinearity of soil and
equating the acoustic pressures and velocities in the
media on both sides of the boundary x = 0, we obtain
the relation between the pressures in the incident 

and reflected  pulses:

(23)

The derivation scheme for Eq. (23) is standard.
However, in this case, Eq. (1) is used, which is nonlin-
ear, and valid only for a rising front (∂p'/∂t > 0). Here,
∆ = ρ1c1/ρ0c0 is the ratio of linear impedances.
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in Eq. (23), we arrive at a parametric relation between
 and :

(24)

The profile of the reflected pulse is shown in Fig. 6
for ∆ = 0.9. The shape of the incident pulse is assumed
to be triangular in time, as before. Its leading edge is

Π+ = 2Πmθ; Πm = (2ε/ ρ1) , 0 < θ < 0.5. The curves
in Fig. 6 correspond to different values of the parameter
102Πm = 1, 2, 4, 6, 8, 10, and 12, which are indicated
near the respective curves. For the dimensionless time
within 0 < θ < 0.5, the pulse was constructed with the
help of solution (24). For 0.5 < θ < 1, according to
equation of state (2), the unloading occurred by a lin-
ear law.

In the case of small values of 102Πm, the profile of
the reflected pulse repeats the shape of the incident
pulse and, since ∆ = 0.9 < 1 (the reflection occurs from
a less “dense” medium), its polarity changes. As the
parameter 102Πm increases, a nonlinear distortion of the
reflected signal occurs because of the soil compression.
When this parameter is equal to ten, the difference in
the impedances of the two media is compensated by the
nonlinear compression and the boundary becomes
completely “transparent” for the trailing edge. Within
the range of dimensionless time values 0.5 < θ < 1, the
reflection is absent (see Fig. 6). In the case of even
greater peak values of pressure 102Πm, at a certain time
moment soil becomes denser than the pile, and a part of
the reflected pulse acquires the same (positive) polarity
as the signal incident on the boundary.

The “self-clarification” phenomenon described
above must be observed at relatively small peak pres-
sures in media with large values of acoustic nonlinear-
ity ε and with the ratio ∆ slightly below unity.

In the process of pile testing, the ratio ∆ = ρ1c1/ρ0c0
can be measured experimentally by detecting the
reflected pulse at the free (upper) end of the pile in the
linear mode (i.e., at small  corresponding to small
heights of load dropping).

Proceeding to measurements in the nonlinear mode,
it is possible to observe the process of small deepening
of the pile at each impact because of the irreversible
compression of the medium.
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The pile displacement at an arbitrary value of ∆ can
be estimated as

(25)

Here, d is the pile diameter and α is a constant of order
unity. The peak pressure in the pulse excited in the pile
is estimated according to the formula [14]

where E is the Young modulus of the pile material and
h is the height of the load dropping. As can be readily
demonstrated, at a height on the order of 1 m, the parti-
cle velocity and the maximum pressure in the pile are
about 5 m/s and 108 Pa. In the case of a pile diameter of
about 50–80 cm, the downward displacement at an
impact must be about 1 cm. Simultaneous measure-
ments of the reflected pulse and the irreversible dis-
placement of the pile at different heights h of load drop-
ping form an array of experimental data sufficient for a
qualitative solution of the inverse problem, i.e., for the
evaluation of the soil properties under the pile and its
bearing strength. This problem is a purely engineering
one. Its analysis and the development of recommenda-
tions for builders goes beyond the framework of this
study.

5. CONCLUSIONS

Thus, we have studied the propagation of a pulsed
disturbance in a nonlinear medium whose properties
irreversibly vary after the wave propagation. Equations
describing the process of nonlinear propagation are
derived. It is demonstrated that, in contrast to an ordi-
nary nonlinear medium, the momentum and energy
decrease even in the region where the shock front is not
yet formed, because the compression of the medium
occurs under the effect of the leading edge. The pulsed
signal becomes shorter and is strongly attenuated. The
leading edge, in the coordinates accompanying the
wave, is shifted forward to only a finite distance.

New nonlinear equations describing a pulse in a
medium with relaxation of its nonlinear and irreversible
properties are obtained. The presence of a finite delay
time in the defining equation leads to signal “spread-
ing” and to a deceleration of the dissipative process.

The shape of the pulse reflected from the boundary
between an ordinary medium and a nonlinear heredi-

δ αd
2∆

1 ∆+
------------ 

 
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4ρ1
2

---------- pm'
2
.=

pm'
E
c0
---- gh

2
------,=
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tary medium is calculated. It is demonstrated that, in the
case of a fixed relation between the peak pressure in the
incident pulse and the ratio of nonlinear impedances of
the two media, a total transmission of the trailing edge
of the pulse into the compressed medium occurs.

Possible applications of the results to some prob-
lems of transport engineering are discussed.
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Abstract—For a semibounded fine-layered magnetic superlattice of the ferrimagnet–superconductor type, it is
shown that the continuous acoustic contact of its outer surface with an elastically isotropic perfect diamagnet
gives rise to several specific features of the propagation and localization of a shear bulk magnetoelastic wave.
© 2004 MAIK “Nauka/Interperiodica”.
Earlier [1], it was shown that, in an acoustically con-
tinuous semibounded (x > 0) fine-grained superlattice
consisting of tangentially magnetized layers of easy-
axis (the OZ axis) two-sublattice (with sublattice mag-
netizations M1, 2) ferrimagnet [2] (medium 1 with a
shear modulus µ1 and a density ρ1) and a perfect super-
conductor (medium 2 with a shear modulus µ2 and a
density ρ2), the conditions of the formation of a shear
elastic wave with a wave vector u || OZ strongly depend
on the mutual orientation of the vectors L = M1 – M2
[2] (L || OZ) in the neighboring ferrimagnetic layers
that form the elementary period of the superlattice. In
[1], two types of equilibrium magnetic configurations
are considered: configuration A, in which the equilib-
rium directions of vectors L are parallel to each other
for any pair of neighboring tangentially magnetized fer-
rimagnetic layers separated by a superconducting inter-
layer, and configuration B, in which the equilibrium
directions of L are antiparallel. For such a geometry,
the only structure allowing the propagation of a shear
elastic wave is n ⊥  OZ || u (n is the normal to the inter-
face). In addition, the superconducting medium is
assumed to be a perfect diamagnet. Then, in the case of
a fine-layered superlattice, we have

(1)

where k||1 and k||2 are the normal components of the
wave vector of a normal shear elastic wave in media 1
and 2, respectively. The propagating shear SH wave is
a one-partial excitation, even with allowance for the
magnetoelastic and magnetodipole interactions. Crite-
rion (1) requires that, in each of the layers forming the
elementary period of the superlattice, the inhomogene-
ity of the field of elastic displacements along the normal
to the interface between the media must be much
smaller than the inverse thickness of the corresponding
layer. This makes it possible to study the dynamics of

k ||1d1 ! 1; k ||2d2 ! 1,
1063-7710/04/5006- $26.00 © 20732
the superlattice in the framework of the effective media
method without restricting the consideration to only the
long-wave limit of the partial oscillation spectrum [3–5].
On this basis, the propagation of shear elastic waves
along a slip boundary between two half-spaces was
studied in [1], where one half-space (x > 0) was
assumed to be occupied by a semibounded two-compo-
nent magnetic superlattice of the easy-axis ferrimag-
net–superconductor type and the second half-space, by
an elastically isotropic perfect superconductor (with a
shear modulus µ∗  and a density ρ∗ ). Calculations
showed that the equilibrium magnetic configurations A
and B of the aforementioned superlattice are noticeably
different from the viewpoint of the dynamics of a shear
elastic wave. In the case of the equilibrium magnetic
configuration A, already in the long-wave limit a “mac-
roscopic” acoustic gyrotropy is formed in the superlat-
tice (when k ∈  XY and n ⊥  OZ || u, the effective elastic
moduli averaged over the elementary period of the super-
lattice DA = d1 + d2 satisfy the relation  = –  ≠ 0).
In the case of configuration B, when k ∈  XY and n ⊥
OZ || u, the effective elastic moduli averaged over the
elementary period of the superlattice DB = 2(d1 + d2)
satisfy the relation  =  = 0 despite the fact that
each individual ferrimagnetic layer of the superlattice
retains its gyrotropic properties.

It is of interest to answer the following question:
how much is the elastic dynamics of a magnetic super-
lattice with equilibrium magnetic configuration A or B
influenced by the presence of a slip boundary between
the semibounded magnetic superlattice (x ≥ 0) and a
perfect superconductor (x < 0)?

In light of this, the purpose of this study is, in terms
of the effective medium method, to analyze the gyrot-
ropy-induced features of the propagation and the local-

c45 c54

c45 c54
004 MAIK “Nauka/Interperiodica”
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ization of an elastic SH wave traveling along the surface
of a semibounded acoustic fine-layered superlattice of
the easy ferrimagnet–perfect superconductor type,
whose outer surface has a rigid acoustic contact with a
perfect superconductor.

BASIC RELATIONS

As in [1], we assume that the magnetic superlattice
under study is a system of equidistant easy-axis (the OZ
axis) ferrimagnetic layers (medium 1) each of thick-
ness d1, which are acoustically coupled via identical
superconducting layers of a perfect superconductor
(medium 2) each with a thickness d2 (following [1], we
assume that, in the superconductor, the London pene-
tration depth λ satisfies the relation 2λ ! d2). The nor-
mal n to the interface between the layers coincides with
the OX axis. In this case, a shear surface acoustic wave
(SAW) of the SH-wave type can propagate near the sur-
face of the easy-axis ferromagnet only when its elastic
displacement vector is u || OZ and its wave vector lies
in the XY plane, i.e., when n ⊥  u || L ⊥  k⊥ . We assume
that, at the interlayer boundaries of the acoustically
continuous magnetic superlattice under consideration,
the following elastic boundary conditions (where N = 0,
1, …, ξ is the running coordinate along the boundary
between the magnetic (medium 1) and nonmagnetic
(medium 2) layers of the superlattice) [6]

(2)

(3)

and electrodynamic boundary conditions (where B is
the magnetic induction vector)

(4)

are satisfied. Under condition (1), the propagation of an
SH wave with u || OZ, k ∈  XY, and n || OX can be
described in terms of the effective medium method by
the effective elastic moduli , , , and ,
which are calculated in [1] for the equilibrium magnetic
configurations of both A (I.22) and B (I.23) types.1

These elastic moduli relate the elastic stress (〈σ4〉 , 〈σ5〉)
and strain (〈u4〉 , 〈u5〉) tensor components averaged over
the elementary period of the superlattice:

(5)

1 In what follows, we refer to formulas from the first section of
paper [1] by using two numbers. For example, a reference to for-
mula (22) from paper [1] is given as (I.22).

ui
1( ) ui

2( ); ξ d1 N d1 d2+( ) N d1 d2+( );,+= =

σik
1( )nk

1( ) σik
2( )nk

2( );=

ξ d1 N d1 d2+( ) N d1 d2+( ),+=

Bn 0 ξ d1 N d1 d2+( ) N d1 d2+( ),+= =

c55 c44 c45 c54

σ5〈 〉 c55 u5〈 〉 ic54 u4〈 〉 ;+=

σ4〈 〉 c44 u4〈 〉 ic45 u5〈 〉 .–=
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If we set µ1 = µ2 = µ and ρ1 = ρ2 = ρ, we obtain

(6)

for configuration A and

(7)

for configuration B. In Eq. (6), we introduced the fol-
lowing notations: ω1± are the positive roots of the equa-

tion (  +  – ω2)(  – ω2) – ν2 ω2 = 0 biqua-
dratic in ω, ω2± are the positive roots of the equation

(  +  – ω2)(  + f1  – ω2) – ν2 ω2 = 0 biqua-

dratic in ω, and  are the positive roots of the equa-

tion (  +  – ω2)(  – ω2) – ν2 ω2 + f1f2  = 0
biquadratic in ω. In addition, for any k⊥ , the following
relation is satisfied: ω1– < ω4– < ω2– < ω4+ < ω1+ < ω2+.
In Eq. (7), ω3± are the positive roots of the equation

(  – ω2)(  + f2  – ω2) – ν2 ω2 = 0 biquadratic
in ω. In addition, for any k⊥  and f1 < f2, the relation
ω3– < ω1– < ω2– < ω3+ < ω1+ < ω2+ is satisfied, while for
f1 > f2, the relation ω3– < ω1– < ω3+ < ω2– < ω1+ < ω2+
is valid.

From Eq. (5) it follows that a shear SH wave propa-
gating in the superlattice under study is a one-partial
excitation in both configurations A and B:

(8)

For  > 0, we obtain a propagating bulk (trigonomet-

ric) elastic SH wave, while for  < 0, only a hyperbolic
shear elastic wave satisfying the condition

〈uz〉   0 at x  ∞ (9)

can propagate along the surface of the semibounded
magnetic superlattice under study (x ≥ 0).
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WITH A SUPERCONDUCTING COATING
Let the outer surface of the effective medium under

study x ≥ 0 and the outer surface of a perfect elastically
isotropic superconductor x < 0 (with a density ρ∗  and a
shear modulus µ∗ ; the superscript “<” indicates the
quantities belonging to the lower half-space) have a
continuous acoustic contact at x = 0:

(10)

Then, calculations with Eqs. (5)–(8) show that the for-
mation of a shear SAW with

〈ui〉(x  ∞)  0, (x  –∞)  0 (11)

at the acoustically continuous boundary between the
two media is possible for the equilibrium magnetic con-
figuration A (the A–S structure):

(12)

and for the equilibrium magnetic configuration B (the
B–S structure):

(13)

In both cases, we have q2 ≡ 1 – ω2/( ) > 0 and

 ≡ µ∗ /ρ∗ ; a ≡ µ∗ /µ (s∗  > st).

Applying a formal passage to the limit a  0 (a
slip boundary) to Eq. (12), we obtain formula (I.30).

From the comparison of Eqs. (12) and (13), it fol-
lows that the most important distinctive feature of the
spectrum of a collective shear SAW in the magnetic
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superlattice with configuration B (Eq. (13)) is the reci-
procity of the spectrum with respect to the inversion of
the propagation direction ω(k⊥ ) = ω(–k⊥ ), despite the
fact that each individual magnetic layer of the superlat-
tice possesses an acoustic gyrotropy in the given geom-
etry. The shear SAW given by Eq. (13) has two
branches: the low-frequency branch (we denote its dis-
persion law as ΩB–(k⊥ )) and the high-frequency one
(with a dispersion law ΩB+(k⊥ )). In addition, we have
ωB+ < ΩB+(k⊥ ) < ω2+ and ωB0 < ΩB–(k⊥ ) < ω2–. Here,
ωB±(k⊥ ), ωB0(k⊥ ) (ωB–(k⊥ ) < ωB0(k⊥ ) < ωB+(k⊥ )) are the
characteristic frequencies determined from Eq. (13) by
the condition α = 0 (see also [1]). In the case of f1 < f2,
both branches have long-wave (at q = 0) and short-wave
boundaries (ω = ω2–; k⊥  = k∗ B for ΩB–(k⊥ ) and ω = ω2+;
k⊥  = k∗∗  for ΩB+(k⊥ )) of the spectrum, which allows us,
according to the terminology used in polariton dynam-
ics [7], to consider such a surface elastic SH wave as a
virtual shear SAW or a shear SAW of the second type
(see also [1]). The spectrum of the low-frequency
branch ΩB–(k⊥ ) strongly depends on the relative thick-
nesses of the magnetic and nonmagnetic layers: d1/d2.
When d1/d2  1, the wave number corresponding to
the short-wave boundary of the spectrum ΩB–(k⊥ )
unboundedly increases; i.e., when d1 > d2, this branch
transforms to a SAW of the first type (see also [1]). As
the wave number k⊥  increases, its dispersion curve
asymptotically tends to the frequency ΩB–(∞), the equa-
tion for which, with allowance for the notation intro-
duced in Eq. (13), can be represented as

(14)

When f1  0.5 (or f2  0.5), we have ΩB–(∞) 
ω2– = ω3+. Here and below, the trend to the limit k⊥   ∞
is understood as the elastostatic limit ω/(stk⊥ ) ! 1 of
the elastodynamics equations, which agrees with con-
dition (1).

As for the second branch of the shear SAW spec-
trum ΩB+(k⊥ ), it remains within the frequency interval
(ωB+, ω2+) and has both long-wave and short-wave
boundaries in its spectrum; i.e., it is a virtual SAW of
the second type.

In the case of the SH-type SAW formed near the
acoustically continuous boundary (x = 0) between the
superconducting medium and the superlattice with a col-
linear ordering of the equilibrium magnetic moments of
the neighboring ferromagnetic layers (configuration A),
its dispersion law, according to Eq. (12), remains nonre-
ciprocal with respect to the inversion of the propaga-
tion direction for a ≠ 0 as well: ω(k⊥ ) ≠ ω(–k⊥ ). At σ = 1,
it has two branches, namely, the high-frequency branch

(k⊥ ) and the low-frequency branch (k⊥ )

( (k⊥ ) < (k⊥ )), while at σ = –1, it has one branch

a– c||
c⊥

c||
-----.=

Ω̃A+ Ω̃A–

Ω̃A– Ω̃A+
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(k⊥ ). Under a formal passage to the limit a  0,
their dispersion curves transform to the respective
expressions from [1] (see (I.30)) for the spectrum of a
shear SAW propagating along a mechanically free sur-
face of a semibounded acoustic magnetic superlattice:

(k⊥ )  ΩA±(k⊥ ) and (k⊥ )  ΩA0(k⊥ ). From
Eqs. (12) and (13), it follows that the presence of a non-
magnetic coating (a ≠ 0) provides the possibility for the
formation of short-wave spectrum boundaries in the
branches of the shear SAW under consideration; i.e.,
it provides the possibility for the transformation of
SAW-I to SAW-II. This is related to the fact that, for
certain a, ω, and k⊥ , the following equation may be sat-
isfied:

(15)

From the analysis of Eq. (15), it follows that, in the case
of σ = 1 and any a ≥ 1, this equation always has two
roots ω+± (ω+– < ω2– < ω2+ < ω++); however, if σ = –1,
the existence of positive roots ω–± (ω2– < ω–± < ω2+)

is possible only when 0.25aq(  – )2 >

νωE f1ω∗  (  ≡ 0.5(  + )). Otherwise, for
σ = –1, Eq. (15) will have no positive roots. In particu-
lar this means that, for a ≠ 0 and σ = 1, the dispersion

curve of the high-frequency ( (k⊥ )) branch of spec-
trum (12), as in the case of a = 0 (I.3), satisfies the con-

dition (k⊥ ) > ω1+(k⊥ ), but now, for any a > 1 and
f1/f2, it has not only the long-wave spectrum boundary
but also the short-wave spectrum boundary, whose fre-
quency is ω = ω++; the corresponding wave number is

determined from Eq. (12) by the relation (k⊥ ) = ωA+

(ω > ω2+). For the low-frequency branch of the spec-
trum of the SH wave under study (ωA–(k⊥ )), in the case
of σ = 1 and a ≠ 0, from Eqs. (12) and (15) it follows

that the character of its dispersion curve (k⊥ )
strongly depends on the relation between ω+– and ω4–,
ω1– (ω1– < ω4–). The condition for the formation of a
short-wave boundary of this branch is the relation ω1– <
ω+– < ω4–. In this case, the SAW branch under consid-
eration corresponds to the virtual shear SAW. However,
if ω+– > ω4–, the dispersion curve ωA–(k⊥ ) corresponds to
SAW-I and, as the wave number k⊥  increases, it asymp-

totically tends to the frequency (∞), which, in the
elastostatic limit, is determined from the relation

(16)

If ω1– > ω+–, from Eqs. (12) and (15) we obtain that the

dispersion curve (k⊥ ) corresponds to a SAW of
type I.

Ω̃A0

Ω̃A± Ω̃A0

σνωEωωme
2 f 1 aq ω2+

2 ω2–( ) ω2–
2 ω2–( )– 0.=

ω2+
2 ω2–

2

ωme
2 ω*

2 ω2+
2 ω2–

2

Ω̃A+

Ω̃A+

Ω̃A+

Ω̃A–

Ω̃A–

c* a– c||
c⊥

c||
-----.=

Ω̃A–
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As for the dispersion law of a SAW (12) in the case

of σ = –1 and a ≠ 0 ( (k⊥ )), an analysis shows that
the corresponding dispersion curve satisfies the condi-

tion (k⊥ ) > ω1– for all allowed k⊥  and that this curve
possesses a long-wave spectrum boundary determined
from Eq. (12) by the condition q = 0. Starting from the
line q = 0, as the wave number k⊥  increases, the disper-
sion curve under consideration tends to the frequency

(∞) for σ = –1, which, in the elastostatic limit
ω/(stk⊥ )  0 (q  1) with allowance for the nota-
tion introduced in Eq. (6), is determined by the relation

 (17)

From Eqs. (16) and (17), it follows that, when d1 > d2,
in the case of µ1 = µ2 = µ*, we have

(18)

in the case of µ1 = µ2 = µ*, we have

If, in Eqs. (18), we formally pass to the limit a  0 (a

slip boundary), we obtain (∞)  ΩA0(∞) and

(∞)  ΩA–(∞), where ΩA0(∞) and ΩA–(∞) are
determined by relations (I.31) and (I.32), respectively [1].

Until now, we studied the conditions of the localiza-
tion of a shear elastic wave near the surface of an acous-
tic magnetic superlattice whose outer boundary has
continuous acoustic contact with a perfect supercon-
ducting half-space. It is of interest to study the features
of the formation of localized acoustic excitations of the
SH-wave type in the case of an unbounded magnetic
superlattice (with configuration A or B) containing a
“defect” superconducting layer (S) introduced into it. In
the following section, we consider the structures of the
A–S–A and B–S–B types.

CONDITIONS OF THE FORMATION
OF A SLIT SH WAVE

We assume that the superconducting medium is a
perfect, elastically isotropic superconductor with a

Ω̃A0

Ω̃A0

Ω̃A0

c* a+ c||–
c⊥

c||
-----.=

Ω̃A– ∞( )

=  ω0
2 ωme

2 a/ 1 a+( ) 0.25ν2ωE
2+ +( )1/2

0.5νωE,–

Ω̃A0 ∞( )

=  ω0
2 ωme

2 a/ 1 a+( ) 0.25ν2ωE
2+ +( )1/2

0.5νωE;+

Ω̃A– ∞( )

=  ω0
2 0.5ωme

2 0.25ν2ωE
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=  ω0
2 0.5ωme
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shear modulus µ∗  and density ρ∗  and that it has the
form of an infinite strip of thickness 2d (–d < x < d). If
the elastic boundary conditions on both surfaces of this
layer (x = ±d) correspond to a slip boundary (I.29),
then, in the long-wave limit (1), the conditions of the
formation of a shear elastic SAW in this structure will
be the same as in the case [1] of a slip boundary
between a semibounded magnetic superlattice and a
semibounded perfect superconductor (I.30) for both x >
d and x < –d.

However, if the slip condition (σzx = 0) is satisfied at
one boundary of the superconducting layer (e.g., at x =
d), while a continuous acoustic contact (10) occurs at
the other boundary (at x = –d), then, in the long-wave
limit (1), the conditions of localization of an elastic SH
wave in a semibounded superlattice of the ferrimagnet–
superconductor type for x > d will coincide with (I.30),
while the dispersion law of a shear elastic SH wave in a
semibounded superlattice of the ferrimagnet–supercon-
ductor type for x < –d will be determined, depending on
the magnetic configuration (A or B), by relations (12) or
(13) with allowance for the substitution a 
aq qk⊥ 2d) (an acoustic contact of a semibounded
magnetic superlattice (x < –d) and a superconducting
layer of thickness 2d, whose outer surface (x = d) is
mechanically free).

In both cases, the structure of the field of the z com-
ponent of the elastic displacement vector u in the shear
SAW formed in a semibounded superlattice is deter-
mined with allowance for the magnetic configuration
by relations (8), (9) and (12), (13), and the formation
of a shear SAW localized near the surface of the super-
conducting defect (–d < x < d) occurs in each half-
space independently (for x > d k||  iαk⊥ , and for
x < –d k||  –iαk⊥ , (α > 0)).

A qualitatively different situation takes place in the
case of a rigid contact of both surfaces of the supercon-
ducting defect layer of thickness 2d with the surround-
ing acoustic magnetic superlattice, i.e., in the case in
which elastic boundary conditions (10) are satisfied at
x = ±d. Now, although as before we have n || OX, u ||
OZ, and k ∈  XY and, for both x > d and x < –d, the spa-
tial structure of uz of the elastic SH wave is determined
by the relations similar to Eqs. (8) and (9), the localiza-
tion of the shear elastic wave near the superconducting
defect (−d < x < d) does not occur independently in
each of the half-spaces. Such a wave is called a slit
SAW of the SH type. Depending on the magnetic con-
figuration of the superlattice, the corresponding disper-
sion equation for the spectrum of this shear slit wave,
with allowance for the notation introduced for c||, c⊥ ,

(tanh
and c∗  in Eqs. (12) and (13), can be represented in the

form (α2 ≡ [c⊥  – ω2/( )]/c||):

(19)

for the A–S–A configuration and

(20)

for the B–S–B configuration (q2  ≡ – ).

From the comparison of Eqs. (19) and (20), it fol-
lows that, as in the case of the SAW of the SH type con-
sidered above and described by Eqs. (12) and (13), the
formation of the shear slit wave essentially depends on
the magnetic configuration of the acoustic superlattice
surrounding the superconducting defect (–d < x < d). In
the case of the magnetic configuration corresponding to
an acoustically nongyrotropic medium (B–S–B), from
Eq. (20) it follows that the necessary condition for the
formation of a shear slit SAW is that the following ine-
qualities be simultaneously satisfied:

(21)

Then, for preset ω and k||, from Eq. (20) it follows that
the number of branches in the slit SH wave with disper-
sion law (20) depends on the thickness of the supercon-
ducting defect layer 2d, which separates two semi-
bounded acoustic magnetic superlattices. This number
is equal to two when

(22)

and to one in the opposite case.

As for the necessary conditions for the formation of
a slit wave in the case when both sides of the supercon-
ducting layer (x = ±d) have a continuous acoustic con-
tact with a semibounded acoustic magnetic superlattice
with configuration A–S–A, from Eq. (19) it follows that,
for those ω and k⊥  at which conditions

(23)

are simultaneously satisfied, the spectrum of the slit
SH wave has only one branch, and the following rela-
tions should simultaneously be satisfied for this pur-
pose:

(24)

If we have

(25)

st
2k ⊥

2

β1 β2+( )k̃ || k̃ ||d( )cot k̃ ||
2 β1β2;–=
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2 ;–≡

β1 αc|| c*σ+( )/a; β2 αc|| c*σ–( )/a≡≡

αc|| aq qk ⊥ d( )tanh+( ) αc|| aq qk ⊥ d( )coth+( ) 0=

k ⊥
2 k̃ ||

2

α2 0, c|| 0.<>

αc|| a/ dk ⊥( )>

α2 0, αc|| 0> >
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then the spectrum of the slit SH wave (19) will have two
branches on the condition that the following relations
are simultaneously satisfied:

 (26)

In the case of α2  < , the spectrum of the elastic SH
wave (19) localized near the superconducting layer
(−d < x < d) will also have only one branch in the region
of ω and k⊥  determined by conditions (25).

In the limit d  ∞ (the thickness 2d of the intro-
duced superconducting layer unboundedly increases),
the expression for the spectrum of the slit SH wave (19)
transforms to Eq. (12), and Eq. (20) transforms to
Eq. (13), i.e., to the expressions for the spectrum of a
shear SAW traveling along the acoustically continuous
boundary between two half-spaces, namely, the mag-
netic superlattice and the superconductor.

Now, let us consider the relationship between the
conditions for the existence of a slit SH wave localized
near the surface of the acoustic magnetic superlattice
under study and the conditions of the reflection of a
bulk elastic wave with the same polarization that is inci-
dent on the surface of the introduced superconducting
layer (x = d) from the depth of the magnetic superlattice
(u || OZ, k ∈  XY, x ≥ 0).

REFLECTION OF A BULK ELASTIC SH WAVE 
FROM THE SURFACE OF A MAGNET–

SUPERCONDUCTOR ACOUSTIC SUPERLATTICE

Calculations show that, in terms of the effective
medium method, for an acoustically continuous bound-
ary (x = 0) between two half-spaces (10) occupied by the
magnetic superlattice under study (x > 0) and the super-
conductor (x < 0), the reflection coefficient R of a bulk
transverse SH wave polarized perpendicularly to the
plane of incidence (u || OZ, k ∈  XY) and incident from the
magnetic superlattice on its surface, depending on the
equilibrium magnetic configuration (A or B) of the super-
lattice, with allowance for Eqs. (12) and (13), can be rep-

resented as follows (  > 0,  ≡ –q2  > 0):

 for the A–S structure, (27)

where

α2c||
2 c*

2– d αa c|| ; α2c||
2 c*

2 .><

c||
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k ||
2 k̃ ||
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and

 for the B–S structure, (28)

where

With allowance for the substitutions k||  iαk⊥

and   –iqk⊥ , the reflection coefficient R given by
Eqs. (27) and (28) has a pole on the ω–k⊥  plane, and
this pole corresponds to the dispersion law determined
above for the SH SAW (Eqs. (12), (13)) propagating in
these geometries along the acoustically continuous (a ≠ 0)
boundary between the magnetic superlattice and the
superconductor with n || OX; u || OZ, and k⊥  || OY.

In particular, from Eqs. (27) and (28) it follows that,
if the boundary x = 0 between the two half-spaces (the
magnetic superlattice and the superconductor) is a slip
boundary (for this purpose, in Eqs. (27) and (28) we
formally pass to the limit a  0), we obtain R = 1 for
configuration B at any angle of incidence of the shear
bulk elastic wave on the surface of the superlattice,
while, for the superlattice with magnetic configuration A,
the bulk elastic wave will experience a total internal
reflection at all angles of incidence: |R| = 1. In this case,
the reflected bulk SH wave will acquire an additional
gyrotropy-induced phase shift R = exp(iφ) with respect
to the incident wave (see [1]).

Because of the gyrotropy effect c∗  ≠ 0, for those ω

and k⊥  for which  > 0, in the case of a ≠ 0 a total
transmission of the bulk SH wave with u || OZ through
the acoustically continuous interface of the A–S struc-
ture is impossible. In this case, both transmitted and
reflected shear bulk waves will have phase shifts rela-
tive to the bulk elastic SH wave incident on the surface
of the superlattice. At the same time, for the B–S struc-
ture (Eq. (28)), at a ≠ 0, a total transmission of the shear
bulk elastic wave incident from the depth of the super-
lattice on its surface is possible: R = 0. As for the values

of ω and k⊥  at which the inequality  < 0 is valid, for
them the interaction of the bulk SH wave incident on
the interface at a ≠ 0 is also characterized by a total
internal reflection |R| = 1, and the reflected wave
acquires an additional phase shift φ for both equilib-
rium magnetic configurations A and B. For preset val-
ues of the frequency ω and wave number k⊥ , the quan-
tity φ in the case of configuration A is nonreciprocal
with respect to the substitution k⊥   –k⊥  and, at a ≠ 0,
is determined from Eq. (27) by not only the gyrotropic

R
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properties of the superlattice but also the relative values
of the acoustic parameters of the contacting media:

(29)

As a result, at ω = ω+± and σ = 1 or at ω = ω–± and
σ = –1, we have φ = 0 and, in Eq. (27), R = 1.

The presence of the “macroscopic” gyrotropy effect
for a superlattice with equilibrium magnetic configura-
tion A leads to the situation in which, at the acoustically
continuous boundary between two identical semi-
bounded magnetic superlattices (n || OX), the coeffi-
cient of reflection of a bulk elastic SH wave with u || OZ
and k ∈  XY is nonzero if the easy magnetization direc-
tions at x > 0 and x < 0 are anticollinear. Following the
notation introduced in Eqs. (27) and (28), this structure
can be represented as A– . Calculations show that, in
this case, unlike Eqs. (27) and (28), we obtain

 for the A–  structure. (30)

Note that, with allowance for the substitution k|| 
iαk⊥ , Eq. (30) suggests the possibility of the formation of
a specific shear SAW at the boundary x = 0. According to
the general theory of wave processes [5], the dispersion
law of this wave is determined by the pole of reflection
coefficient (30) and, as one can easily verify, coincides
with relation (I.30) for the spectrum of an SH SAW trav-
eling along a slip boundary between two half-spaces, one
of which is occupied by a perfect superconductor and the
second, by a magnetic superlattice with configuration A.

The gyrotropy-induced extra features of the reflec-
tion of a bulk elastic SH wave from the boundary
between the magnetic superlattice and a superconduc-
tor arise in a structure formed as a magnetic sandwich
of the magnetic superlattice–superconductor–magnetic
superlattice type (A–S–A or B–S–B), i.e., in the cases in
which the formation of a slit shear SH wave (Eqs. (19),
(20)) takes place. As in the case of Eqs. (19) and (20),
we assume that we have an unbounded superlattice of
the easy-axis ferrimagnet (medium 1)–perfect super-
conductor (medium 2) type, into which an elastically
isotropic, perfectly superconducting layer of thickness
2d (–d < x < d) is introduced. We assume that this three-
layer structure is acoustically continuous (Eqs. (2)–(4)).
Then, in the framework of the effective medium
method (1), for a shear bulk elastic wave with u || OZ
and k ∈  XY that is incident in the upper half-space on
the boundary between the magnetic superlattice and the
superconducting layer x = d, the reflection coefficient V
can be represented as

(31)

φ/2( )tan

=  
σνωEωωme

2 f 1 aq ω2+
2 ω2–( ) ω2–

2 ω2–( )–

ω2+
2 ω2–( ) ω2–
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R
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1 V23V21 i4k̃ ||d( )exp–
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where

(32)

 for the A–S–A structure and

(33)

for the B–S–B structure.
Here, according to the notation used in [5], Vij

denotes the coefficient of reflection of a one-partial
bulk SH wave incident from medium i on the boundary
between media i and j; index 3 refers to the medium in
the region x > d, index 2, to the layer (–d < x < d), and
index 1, to the medium in the region x < –d.

When d  ∞, the expression for V given by
Eqs. (31)–(33) coincides with the expression for the
coefficient of reflection of a shear elastic SH wave,
V  R, in the case of an acoustically continuous
boundary between the magnetic superlattice and a
semibounded superconductor in both configuration A
(Eq. (27)) and configuration B (Eq. (28)). With allow-
ance for the substitution k||  ±iαk⊥  (ik||  –αk⊥ )
for x > d and ik||  αk⊥  for x < –d, the poles of reflec-
tion coefficient (31)–(33) on the ω – k⊥  plane coincide
with the spectrum determined above for the slit SH
wave localized near the superconducting layer intro-
duced in magnetic superlattice in the case of configura-
tion A (Eq. (19)) or in the case of configuration B
(Eq. (20)).

Analyzing the magnitude of reflection coefficient V
(31)–(33), one can see that, in addition to the situation
in which the superconducting layer is a half-wave one,

i.e., 2 d = mπ, where m = 1, 2… (  > 0), the total
transmission (|V| = 0) of an elastic SH wave through the
structure under study is also possible on the condition
that

V32 = 0. (34)

In this case, the reflection coefficient V32 should be cal-
culated with allowance for the magnetic configuration
of the superlattice (32)–(33). For preset ω and k⊥ , a bulk

elastic SH wave (  > 0) should be formed in the super-
conducting layer –d < x < d. For the A–S–A structure,
condition (34) cannot be satisfied.

If the acoustic properties of the magnetic superlat-
tice are such that the latter is nongyrotropic (configura-
tion B), we have V23 = V21 = –V32. As a consequence, at
k||  0 we obtain the following dependence: if

V23
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V32  –1, we have V  ±1, which corresponds to
the impossibility of the propagation of a bulk homoge-
neous elastic SH wave along the surface of the intro-
duced superconducting layer x = ±d for both the A–S–A
and B–S–B structures.

In the case of a magnetic nongyrotropic superlattice,
the behavior of the coefficient of reflection of a shear
bulk wave V32 (medium 2 is an elastically isotropic dia-
magnet and medium 3, a fine-layered acoustic magnetic
superlattice) as a function of the angle of incidence is
illustrated in Figs. 1–3. These figures, for a fixed fre-
quency of the incident bulk SH wave ω, present the sca-
lar surface impedances of both contacting media Z2, 3
versus k⊥  (V32 = (Z2 – Z3)/(Z2 + Z3) [5]) for the three most

typical situations. For medium 3, Z3 ≡ µ|c|||k|| (  > 0),

and for medium 2, Z2 ≡ µ∗  (  > 0). As a result, at a
given k⊥  the points at which Z2(k⊥ ) = Z3(k⊥ ) (points a±)
in Figs. 1, 2 correspond to the reflectionless (Eq. (34))
transmission of a bulk SH wave from medium 3 to
medium 2 (and in the opposite direction). The total

internal reflection of the SH wave (with  > 0) incident
on the interface from medium 3 (|V32| = 1) is realized for

those values of k⊥  for which  < 0. The case of a partial

transmission of the incident SH wave with  > 0 from
medium 3 to medium 2 (|V32| < 1) takes place when

 > 0 and Z2 ≠ Z3. At Z3 = 0, we have V32 = 1, while at
Z2 = 0, V32 = –1.

From Eqs. (31)–(33), it follows that a bulk elastic
SH wave reflected from the superconducting layer is
shifted in phase ψ (  = ImV/ReV) with respect to
the incident wave. In the particular case of c|| = ∞, at
any wave number k⊥ , for the incident elastic SH wave
we have |V| = 1 and ψ = 0. However, if c|| = 0, from
Eqs. (31)–(33) it follows that, for any k⊥ , V = –1.

Irrespective of the equilibrium magnetic configura-
tion of the superlattice into which the “defect” layer is
introduced (A–S–A or B–S–B), for the coefficient of
reflection V of a bulk elastic SH wave incident from
the depth of the superlattice on the surface of the
superconducting layer (–d < x < d), we obtain V  0
as d  0.

Under the conditions of total internal reflection, i.e.,
when in Eqs. (27), (28), (31)–(33) |R| = 1 and φ ≠ 0, a
beam of shear elastic waves incident from the depth of
the ferrimagnet–superconductor superlattice on its sur-
face acquires not only a phase shift φ at reflection but
also experiences a longitudinal displacement ∆ ≡
−∂φ/∂k⊥  along the interface (the Schoch effect) [5]. For
equilibrium magnetic configuration B and a full acous-
tic contact at the boundary between the semibounded
superlattice and a semibounded superconductor (the
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2
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2
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2
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B−S structure), the expression for ∆ with allowance for
the notation used in Eq. (13) can be represented as

(35)

As for the equilibrium magnetic configuration A, in [1]
it was shown that in this case, because of the gyrotropy,
the Schoch effect is also possible for a slip boundary
(see (I.38)). In the presence of a coating with a ≠ 0, the
expression for the longitudinal displacement ∆ with

∆
2k ||–

k ||
2 κ2k ⊥

2+
---------------------- κ

κk ⊥
2 c⊥

c||k ||
2

-------------- aω2

c||s*
2 qk ⊥

2
-------------------+ + ;=

κ aq–
c||

---------; k ||
2 0; k ||

2>≡ ω2

st
2

------ c⊥ k ⊥
2–

 
 
  1

c||
----.=

0 k⊥

III

II

I

Z2, 3

a a

0 k⊥

III

II

I

Z2, 3

a a

I

Fig. 1. Surface impedances of a semibounded superlattice
of the easy-axis ferrimagnet–perfect superconductor type
Z3 and a semibounded nonmagnetic medium Z2 versus k⊥
for c|| > 0 and c⊥  < 0: (I) Z3(k⊥ ), (II) Z2(k⊥ ) (µ∗ /µ >

s∗ /s), and (III) Z2(k⊥ ) (µ∗ /µ < s∗ /s).c|| c||

Fig. 2. Surface impedance of a semibounded superlattice of
the easy-axis ferrimagnet–perfect superconductor type Z3
and a semibounded nonmagnetic medium Z2 versus k⊥  (c|| <

0; c⊥  > 0): (I) Z3(k⊥ ), (II) Z2(k⊥ ) (c⊥  > (s∗ /s)2), and (III)

Z2(k⊥ ) (c⊥  < (s∗ /s)2).
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allowance for the notation from Eq. (12) structurally
coincides with Eq. (35) on the condition that

(36)

Compared to Eq. (35) (a nongyrotropic superlattice of
the magnetic–superconductor type), gyrotropic
medium (36) is characterized by the following extra
feature of the effect: for preset values of ω and |k⊥ |, the
magnitude and sign of the longitudinal displacement of
the reflected acoustic beam ∆ prove to be nonreciprocal
with respect to the change of sign of the wave vector
projection onto the propagation direction of the inci-
dent SH wave; i.e., ∆(k⊥ ) ≠ ∆(–k⊥ ).

In this case, as in [1], the following dependence
takes place: if the medium in which the incident SH
wave propagates possesses no acoustic gyrotropy (con-
figuration B), under the conditions of a total internal
reflection the beam of reflected bulk SH waves will
have a negative longitudinal displacement ∆. If the
medium in which the incident shear bulk wave propa-
gates is acoustically gyrotropic (configuration A), under
the conditions of a total internal reflection the beam of
reflected bulk SH waves may have a negative longitudi-
nal displacement along the outer surface of the super-
lattice.

CONCLUSIONS

Thus, in this paper, on the basis of a simultaneous
consideration of the magnetoelastic and magnetodipole
interactions and in terms of the effective medium
method, we studied the characteristic features of the
propagation of a shear elastic wave in a semibounded

κ
aq– c*σ+

c||
--------------------------.≡

0 k⊥

III

III

Z2, 3

a a

IV

Fig. 3. Surface impedance of a semibounded superlattice of
the easy-axis ferrimagnet–perfect superconductor type Z3
and a semibounded nonmagnetic medium Z2 versus k⊥  for

c|| > 0 and c⊥  > 0: (I) Z3(k⊥ ), (II) Z2(k⊥ ) (µ∗ /µ > s∗ /s and

c⊥  > (s∗ /s)2), (III) Z2(k⊥ ) (µ∗ /µ < s∗ /s and c⊥  > (s∗ /s)2),

and (IV) Z2(k⊥ ) (c⊥  < (s∗ /s)2, µ∗ /µ < s∗ /s).

c||

c⊥

c⊥
acoustic superlattice of the easy-axis ferrimagnet–
superconductor type whose surface has a continuous
acoustic contact with a perfect superconducting layer
(half-space). The analysis was performed for the cases
of the parallel (configuration A) and antiparallel (con-
figuration B) orientations of the equilibrium magnetic
moments of the tangentially magnetized neighboring
ferrimagnetic layers of the superlattice. Although, in
the Voigt geometry, an unbounded ferrimagnetic
medium possesses a gyrotropy, in the case of the mag-
netic superlattice with the same geometry of the elastic
wave propagation the first of the aforementioned con-
figurations possesses a “macroscopic” acoustic gyrot-
ropy (configuration A), while the second (configura-
tion B) is nongyrotropic. Calculations show that, for a
preset frequency and wave number, the necessary con-
ditions for the SH wave localization near the surface of
the magnetic acoustic superlattice under study also
noticeably vary depending on the type of the equilib-
rium magnetic configuration. In particular, unlike the
case of a slip boundary (see [1]), the presence of an
acoustically continuous coating (a perfect supercon-
ductor) on the outer surface of a semibounded magnetic
superlattice with equilibrium magnetic configuration B
provides the possibility for the following:

(i) the formation of a shear SAW. Depending on the
relative thickness of the magnetic and superconducting
layers forming the superlattice period, the correspond-
ing dispersion curve may have or not have a short-wave
end point of the spectrum;

(ii) the realization of the effect of total internal
reflection for a shear bulk wave incident from the depth
of the magnetic superlattice on its surface. In this case,
the reflected bulk SH wave is shifted in phase with
respect to the incident wave;

(iii) the formation of the Schoch effect under the
conditions of total internal reflection for a beam of
shear bulk SH waves incident from the depth of the
magnetic superlattice on its surface; and

(iv) the absence of a homogeneous bulk SH wave
slipping along the surface of the magnetic superlattice.

As for the magnetic superlattice with configuration
A, the presence of gyrotropy in the case of an acousti-
cally continuous interface between the semibounded
superlattice and the superconductor half-space leads to
the following distinctive features, with respect to the
case of a slip boundary (see [1]):

(i) the possible formation of a short-wave boundary
of the spectrum in the dispersion curve of a shear SAW
of the first type, i.e., the possible transformation of a
SAW of the first type into a SAW of the second type (a
virtual SAW). However, its spectrum remains nonrecip-
rocal with respect to the inversion of the propagation
direction and consists of three branches;

(ii) part of the spectrum branches of the shear SAW
formed may possess a dispersion already in the elasto-
static limit.
ACOUSTICAL PHYSICS      Vol. 50      No. 6      2004



LOCALIZATION OF A TRANSVERSE ELASTIC WAVE 741
If a superconducting layer (S) is introduced into the
magnetic superlattice under study with configuration A
or B, the formation of a propagating slit elastic SH wave
is possible near this layer, while the spectrum of this
wave remains reciprocal with respect to the inversion of
the propagation direction for both types of the equilib-
rium magnetic configuration of the superlattice. The
number of branches in such a slit wave with preset val-
ues of frequency ω and wave number k⊥  may vary
depending on the thickness of the “defect” supercon-
ducting layer introduced in the magnetic superlattice.
For all two- and three-component layered structures
considered in this paper, we studied the relation
between the conditions of the formation of slit SH
waves and the characteristic features of the reflection of
a bulk shear elastic wave incident from the depth of the
superlattice on its outer surface.

We have shown that, not only in the case of a slip
boundary (see [1]) but also in the case of a continuous
acoustic contact at the interface between a semi-
bounded magnetic superlattice and a semibounded per-
fect superconductor, the following dependences take
place:

(i) If, for a given frequency, the bulk SH wave inci-
dent from the depth of the superlattice on its surface
undergoes a total internal reflection and the medium in
which this wave propagates is acoustically gyrotropic,
the reflected beam of bulk shear waves will experience
a negative longitudinal displacement (∆) along the sur-
face of the superlattice (∆ < 0);

(ii) If, for a given frequency, the bulk shear wave
incident from the depth of the superlattice on its surface
undergoes a total internal reflection and the medium in
which this wave propagates is acoustically nongyrotro-
pic, the reflected beam of bulk SH waves will experi-
ACOUSTICAL PHYSICS      Vol. 50      No. 6      2004
ence a positive longitudinal displacement (∆) along the
surface of the superlattice (∆ > 0).

The influence of an inhomogeneous exchange inter-
action and finite dimensions of a real magnetic super-
lattice on the effects considered in this paper will be the
subject of a further study.
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Abstract—The so-called circumferential normal modes propagating in an empty elastic cylinder are consid-
ered. A dispersion equation for the wave numbers of these waves, an equation for the critical frequencies, and
expressions for the eigenfunctions of such a waveguide are derived. Solutions to these equations are obtained
by numerical methods for different values of the parameter d representing the relative thickness of the cylinder.
An analysis of the solutions is performed, and the main properties of the dispersion curves are described, includ-
ing those for the low-frequency waves of the new type, which correspond to the branches in the form of open
loops. Individual normal modes are identified on the basis of the calculations and subsequent analysis of eigen-
functions. © 2004 MAIK “Nauka/Interperiodica”.
The waveguide properties of cylindrical elastic bod-
ies are of considerable scientific interest. In the literature,
one can find a great number of publications concerned
with this subject, including studies of bodies in the form
of thick-walled cylindrical shells [1–3]. For the most
part, these publications deal with waves in which the
elastic fields are periodic functions of the polar angle θ;
i.e., in the general case, the solutions are proportional to
the factor exp(inθ), where n is an integer. Some papers
[4–6] consider the asymptotic solutions for waves prop-
agating in the direction of the angular coordinate; in this
case, the quantity n is n = ν, where ν plays the role of the
angular wave number and, in the general case, is a non-
integer. Such waves are taken into account, in particular,
in solving the problems of diffraction by cylindrical
obstacles [7, 8]. Exact solutions for these waves were
obtained in the previous publication [9] devoted to the
waveguide properties of a plane ring-shaped plate with
flexural waves propagating in it.

The present paper considers the properties of cir-
cumferential normal modes propagating in an empty
elastic cylinder of infinite length (the wave front is par-
allel to the z axis).

Let us preset the geometric dimensions of such a
cylinder as follows: r = a is the outer boundary, r = br
is the inner boundary, and 2L = a – b is the thickness of
the waveguide.

To solve the problem, we introduce a scalar poten-
tial ϕ (r, θ) and (since the problem is two-dimensional)
a single component of the vector potential ψZ(r, θ) ≡
ψ(r, θ). These functions should satisfy the Helmholtz
equations

(1)

(2)

∆ϕ r θ,( ) kl
2ϕ r θ,( )+ 0,=

∆ψ r 0,( ) kt
2ψ r 0,( )+ 0,=
1063-7710/04/5006- $26.00 © 20742
where ∆ =  +  + ; kl is the longitudinal

wave number,  = ; kt is the shear wave num-

ber,  = ; λ and µ are the Lame coefficients; ρ is

the density; and ω is the circular frequency.

For boundary conditions, we use the absence of
stress on the cylinder surfaces:

(3)

where σrr and σrθ are the normal and tangential stresses,
respectively.

These quantities can be expressed via the potentials
ϕ and ψ (see, e.g., [1]):

(4)

(5)

According to the statement of the problem, we seek
the solution to the set of equations (1), (2) in the form of
elastic waves travelling in the direction of the angle θ:

(6)

(7)

∂2

∂r2
------- 1

r
--- ∂

∂r
----- 1

r2
---- ∂2

∂θ2
--------

kl
2 ρω2

λ 2µ+
----------------

kt
2 ρω2

µ
---------

σrr 0, σrθ 0; at r a b,,= = =

σrr kl
2ϕ– 2µ ∂2ϕ

∂r2
---------

1
r
--- ∂2ψ

∂r∂θ
------------ 1

r2
----∂ψ

∂θ
-------–+ 

  ,+=

σrθ µ 2
r
--- ∂2ϕ

∂r∂θ
------------ 2

r2
----∂ϕ

∂θ
------–

1

r2
----∂2ψ

∂θ2
--------- ∂2ψ

∂r2
---------–

1
r
---∂ψ

∂r
-------–+ 

  .=

ϕ r θ,( ) Φ r( ) iνθ( ),exp=

ψ r θ,( ) Ψ r( ) iνθ( ).exp=
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Substituting Eqs. (6) and (7) into Eqs. (1) and (2),
we obtain a set of equations for determining the ampli-
tudes of normal modes:

(8)

(9)

Equations (4) and (5), with allowance for Eqs. (6)
and (7), can be represented as

(10)

(11)

The solutions to the set of equations (8), (9) have the
form

(12)

(13)

where Jν and Yν are the Bessel and Neumann functions,
respectively, and A, B, C, and D are arbitrary constants.
Let us introduce the following dimensionless parame-

ters: x = ktr, y = klr, and α =  = , where the latter can

be expressed via the Poisson ratio σ: σ = .

Note that, in the following treatment, we use the value
σ = 0.25, which yields α ≈ 0.58. With allowance for this
expression and after some cumbersome transforma-
tions, Eqs. (10) and (11) take the form

(14)

(15)

where the operators L and T are determined by the for-
mulas

∆Φ kl
2 ν2

r2
-----– 

  Φ+ 0,=

∆Ψ kt
2 ν2

r2
-----– 

  Ψ+ 0.=

σrr

2µ
------- d2Φ

dr2
----------

λ
2µ
------kl

2Φ– iν d
dr
----- Ψ

r
---- 

  ,+=

σrθ

2µ
------- d2Ψ

dr2
----------–

1
2
---kt

2Ψ– iν d
dr
----- Φ

r
---- 

  .+=

Φν r( ) AJν klr( ) BYν klr( ),+=

Ψν r( ) CJν klr( ) DYν klr( ),+=

kl

kt

---- y
x
--

1 2σ–
2 1 σ–( )
--------------------

σrr

2µkt
2

------------ L1 x( )Φν αx( ) T1 x( )Ψν x( ),+=

σrθ

2µkt
2

------------ L2 x( )Φν αx( ) T2 x( )Ψν x( ),+=
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It should be noted that, at α = 1 (which is a physi-
cally unrealizable case), we have L1 = –T2 and L2 = T1.

Substituting expressions (12) and (13) into Eqs. (14)
and (15), we finally obtain

(16)

(17)

Introducing the notation xa = kta and xb = ktb and
applying boundary conditions (3), we obtain a homoge-
neous set of algebraic equations for determining the
quantities A, B, C, and D:

(18)

(19)

(20)

(21)

The dispersion equation for the unknown wave
number ν is obtained as usual, by equating the determi-
nant of set (18)–(21) to zero:

L1 x( ) α
x
--- d

dx
------– ν α 1– ν+( )

x2
------------------------------ 1

2
---– ;+=

T1 x( ) iν
x
----- d

dx
------ 1

x
---– 

  ;=

L2 x( ) iν
x
----- α d

dx
------ α 1–( )ν 1+

x
------------------------------– ;=

T2 x( ) 1
x
--- d

dx
------ ν2

x2
----- 1

2
---– 

  .–=

σrr

2µkt
2

------------ AL1 x( )Jν αx( ) BL1 x( )Yν αx( )+=

+ CT1 x( )Jν x( ) DT1 x( )Yν x( ),+

σrθ

2µkt
2

------------ AL2 x( )Jν αx( ) BL2 x( )Yν αx( )+=

+ CT2 x( )Jν x( ) DT2 x( )Yν x( ).+

AL1 xa( )Jν α xa( ) BL1 xa( )Yν α xa( )+

+ CT1 xa( )Jν xa( ) DT1 xa( )Yν xa( )+ 0,=

AL2 xa( )Jν α xa( ) BL2 xa( )Yν α xa( )+

+ CT2 xa( )Jν xa( ) DT2 xa( )Yν xa( )+ 0,=

AL1 xb( )Jν α xb( ) BL1 xb( )Yν α xb( )+

+ CT1 xb( )Jν xb( ) DT1 xb( )Yν xb( )+ 0,=

AL2 xb( )Jν α xb( ) BL2 xb( )Yν α xb( )+

+ CT2 xb( )Jν xb( ) DT2 xb( )Yν xb( )+ 0.=
(22)∆ ν( )

L1 xa( )Jν α xa( ) L1 xa( )Yν α xa( ) T1 xa( )Jν xa( ) T1 xa( )Yν xa( )
L2 xa( )Jν α xa( ) L2 xa( )Yν α xa( ) T2 xa( )Jν xa( ) T2 xa( )Yν xa( )
L1 xb( )Jν α xb( ) L1 xb( )Yν α xb( ) T1 xb( )Jν xb( ) T1 xb( )Yν xb( )
L2 xb( )Jν α xb( ) L2 xb( )Yν α xb( ) T2 xb( )Jν xb( ) T2 xb( )Yν xb( )

0.= =
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The equation ∆(ν) = 0 has many roots ν = νn(xa, xb),
where the subscript n determines different branches of
the solution to the characteristic equation. For the pur-
pose of their identification and also for testing the valid-
ity of boundary conditions (18)–(21), we assume that
the roots ν = νn(xa, xb) are calculated and determine the
eigenfunctions (modes of vibration) of the waveguide
under study. We use the first three equations of set (18)–
(21) (the fourth equation is their linear combination).
Setting A = 1 (without loss of generality), we obtain a
set of equations for determining the remaining coeffi-
cients, which depend on both νn and n:

(23)
BL1 xa( )Yν α xa( ) CT1 xa( )Jν xa( )+

+ DT1 xa( )Yν xa( ) L1 xa( )Jν αxa( ),–=
(24)

(25)

The solution to set (23)–(25) can be represented in
the form

(26)

where

BL2 xa( )Yν α xa( ) CT2 xa( )Jν xa( )+

+ DT2 xa( )Yν xa( ) L2 xa( )Jν αxa( ),–=

BL1 xb( )Yν α xb( ) CT1 xb( )Jν xb( )+

+ DT1 xb( )Yν xb( ) L1 xb( )Jν αxb( ).–=

Bn

∆B νn( )
∆ νn( )
----------------, Cn

∆C νn( )
∆ νn( )
----------------, Dn

∆D νn( )
∆ νn( )

-----------------,===
∆ νn( )
L1 xa νn,( )Yν α xa( ) T1 xa νn,( )Jν xa( ) T1 xa νn,( )Yν xa( )
L2 xa νn,( )Yν α xa( ) T2 xa νn,( )Jν xa( ) T2 xa νn,( )Yν xa( )
L1 xb νn,( )Yν α xb( ) T1 xb νn,( )Jν xb( ) T1 xb νn,( )Yν xb( )

,–=

∆B νn( )
L1 xa νn,( )Jν α xa( ) T1 xa νn,( )Jν xa( ) T1 xa νn,( )Yν xa( )
L2 xa νn,( )Jν α xa( ) T2 xa νn,( )Jν xa( ) T2 xa νn,( )Yν xa( )
L1 xb νn,( )Jν α xb( ) T1 xb νn,( )Jν xb( ) T1 xb νn,( )Yν xb( )

,–=

∆C νn( )
L1 xa νn,( )Yν α xa( ) L1 xa νn,( )Jν α xa( ) T1 xa νn,( )Yν xa( )
L2 xa νn,( )Yν α xa( ) L2 xa νn,( )Jν α xa( ) T2 xa νn,( )Yν xa( )
L1 xb νn,( )Yν α xb( ) L1 xb νn,( )Jν α xb( ) T1 xb νn,( )Yν xb( )

,–=

∆D νn( )
L1 xa νn,( )Yν α xa( ) T1 xa νn,( )Jν xa( ) L1 xa νn,( )Jν αxa( )
L2 xa νn,( )Yν α xa( ) T2 xa νn,( )Jν xa( ) L2 xa νn,( )Jν αxa( )
L1 xb νn,( )Yν α xb( ) T1 xb νn,( )Jν xb( ) L1 xb νn,( )Jν α xb( )

.–=
With the coefficients obtained above, the eigenfunc-
tions of the waveguide for stresses can be represented as

(27)

(28)

The eigenfunctions for the radial ur and angular uθ
displacements can be determined via the scalar and
vector potentials:

(29)

σrr

2µkt
2

------------ L1 x( )Jνn
αx( ) BnL1 x( )Yνn

αx( )+=

+ CnT1 x( )Jνn
x( ) DnT1 x( )Yνn

x( ),+

σrθ

2µkt
2

------------ L2 x( )Jνn
αx( ) BnL2 x( )Yνn

αx( )+=

+ CnT2 x( )Jνn
x( ) DnT2 x( )Yνn

x( ).+

ur
∂ϕ
∂r
------

1
r
---∂ψ

∂θ
-------, uθ+

1
r
---∂ϕ

∂θ
------ ∂ψ

∂r
-------.–= =
Introducing the operators R1 =  and R2(ν) = ,

we represent displacements (29) corresponding to the
root νn of characteristic equation (22) in the form

(30)

(31)

where

Before discussing the results of the calculations, it is
necessary to make some comments concerning their
representation. Above, it was noted that the desired

d
dx
------ iν

x
-----

ur

kt

---- R1Φνn
αx( ) R2 νn( )Ψνn

x( ),+=

uθ

kt

----- R2 νn( )Φνn
αx( ) R1– Ψνn

x,=

Φνn
αx( ) Jνn

αx( ) BnYνn
αx( ),+=

Ψνn
x( ) CnJνn

x( ) DnYνn
x( ).+=
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Fig. 1. Dispersion curves for the circumferential normal modes in an empty elastic cylinder; X = kta.
quantity ν plays the role of the wave number involved
in the expression for the phase of the normal mode: ϕ =
νθ. As in the previous paper [9], this expression can be

transformed as ϕ =  = krS, where kr =  is the “lin-

ear” wave number and S = rθ is the arc length traveled
by the wave. Choosing this form of the result represen-
tation, we set r = a for the sake of definiteness; i.e., we
consider the wave number corresponding to the outer
boundary of the empty cylinder. Then, in the equations
given above, the unknown quantity ν can be replaced
by ν = ka (the subscript of k is omitted). The arguments
involved in the equations given above can be repre-
sented in the form xa = kta and xb = kt(1 – d), where d =

 is the dimensionless thickness of the cylinder. The

velocity of wave propagation c also depends on the
radius. Choosing the quantity X = kta as the main argu-
ment, we represent the desired dimensionless velocity

in the form C =  =  = , where ct is the velocity

of shear waves in the medium.

To solve Eq. (22) for the unknown quantity ν = ka as
a function of the dimensionless frequency X = kta for

ν
r
---rθ ν

r
---

L
R0
-----

c
ct

---
kta
ν

------- X
ka
------
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different values of the dimensionless thickness of the
cylinder d, a special computer program was used.

Figure 1 shows the results of calculations for differ-
ent values of d. The plot is typical of all values of the
parameter 0 < d < 1. One can see three groups of dis-
persion curves: (a) single branches (n = 0) that begin at
zero frequency and have the value ν = 1 at this point;
(b) single branches (n = 0') in the form of open loops
lying in the immediate vicinity of the origin of coordi-
nates (the latter branches are shown in more detail in
Fig. 2 for some of the values of the parameter d:
branches corresponding to the waves with n = 0' lie in
the region ka ≤ 1, and waves with n = 0 are partially
represented in the region ka ≥ 1; similar branches were
also obtained for normal modes in [9]); and (c) an infi-
nite number of branches corresponding to the higher-
order normal modes, as in any waveguide (the number
of these waves increases with increasing d).

Figure 3 shows the plots for the dimensionless phase

velocity C =  of the wave with n = 0 for certain values

of d. One can see that, near the origin of coordinates,
this velocity is proportional to the frequency. When d is
large, the velocity as a function of frequency exhibits
maxima and, then, at X  ∞, tends to a constant value

c
ct

---
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Fig. 2. Low-frequency half-closed loops; Y = ka and d = (1) 0.2, (2) 0.4, (3) 0.7, and (4) 0.9.
of C∞ . 0.933, which does not depend on the parameter
d. When d is small, such maxima are absent and the
velocity tends to the same constant C∞ but at much
higher frequencies. In its physical meaning, the veloc-
ity C = C∞ is close to the Rayleigh wave velocity.

To identify different branches of the dispersion
curves, eigenfunctions were calculated for the displace-
ments ur and uθ and for the stresses σrr and σrθ by using

C/Ct
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1.2
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0.8
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0.4
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0 10 20 30 40 50 60 70 80
X

1
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4

Fig. 3. Phase velocities of normal modes with n = 0; d =
(1) 0.1, (2) 0.3, (3) 0.5, and (4) 0.9.
formulas (28)–(31) with different values of the param-
eter d at certain frequencies. The aforementioned quan-
tities were normalized to their maximal values, and the
dimensionless coordinate x was given in the form x =

 – , so that the origin of coordinates corre-

sponded to the median surface of the cylinder and the

quantity x varied within –  ≤ x ≤ . In all subsequent

plots the factor i is omitted in the quantities uθ and σrθ.

Figure 4 shows the plots for d = 0.9 (other parame-
ters are indicated in the figure caption). One can see
that, at low frequencies (Fig. 3a), the radial displace-
ment ur is almost independent of the radius; i.e., a
quasi-flexural wave propagates in the body. In this case,
the angular displacement uθ and the stresses σrr and σr2
are maximal near the inner surface of the cylinder
and decrease toward the outer surface. Other cases
(Figs. 3b–3d) correspond to the transformation of the
eigenmodes with increasing frequency, which consists
of the sequential displacement of all quantities toward
the outer surface and their concentration near it.

Figure 5 shows similar data for d = 0.1. The behav-
ior of the quantities under consideration is approxi-
mately the same as for d = 0.9, except that the maximal
stress values initially occur at the median surface of the
cylinder (x = 0), and that the concentration of displace-
ments and stresses near the outer surface occurs at a
much higher frequency.

Figure 6 represents (for d = 0.9) the eigenfunctions
for the normal modes with n = 0', which are described
by open loops (Fig. 2). One can see that, independently

r
a
--- a b+

2a
------------

d
2
--- d

2
---
ACOUSTICAL PHYSICS      Vol. 50      No. 6      2004



CIRCUMFERENTIAL NORMAL MODES IN AN EMPTY ELASTIC CYLINDER 747
–0.5

–1.0
0

(c)

X

1

2

3 4

0

0.5

1.0

0.5–0.5 0

(d)

1

2

3 4

0.5–0.5

(b)

1

2

3 4

–0.5

–1.0

(‡)

1

2 3

4

0

0.5

1.0

Fig. 4. Eigenfunctions for a normal mode with n = 0 at d = 0.9: (1) displacement ur, (2) displacement uθ, (3) stress σrr, and (4) stress
σrθ; X = (a) 0.5, (b) 5, (c) 10, and (d) 32.
of frequency, all the functions differ little from each
other and from the corresponding functions for the
waves with n = 0 (Fig. 1a), except that the displacement
ur changes its phase for the opposite one. Cases (a) and
(c) correspond to the lower half of the loop, and cases
(b) and (d), to the upper half.

The data shown in Figs. 2 and 6 suggest the follow-
ing basic qualitative conclusions about the properties of
low-frequency waves with n = 0':

(i) these waves have two different phase velocity
values at the same frequency (except for the frequency
at which the upper and lower branches merge);

(ii) the group velocity determined by the formula

cg =  =  is negative for the upper (descending)

branch and positive for the lower (ascending) branch;
(iii) the waves are of quasi-flexural nature, with a

concentration of stresses near the inner surface of the
cylindrical body.

From Fig. 1, one can see that normal modes of
higher orders (n ≥ 1) originate at νn = 0. The quantities
describing the corresponding normal mode field do not
depend on the polar angle θ. At the instant of origina-
tion of each of these waves, the wave front has the form

dω
dk
------- ct

dX
dY
-------
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of a circle coaxial with the waveguide boundaries r = a
and r = b. In this case, the displacements are expressed
via cylindrical functions of zero order. In plane
waveguides, the process of normal mode origination is
analogous to that considered above: the wave front is
parallel to the plane waveguide boundary.

As in the plane waveguides, critical frequencies (the
frequencies of wave origination) exist in the cylinder
under study. The equation for the critical frequencies
can be easily obtained from Eq. (22) by setting ν = νn = 0.
Then, the operators L1, 2(x) and T1, 2(x) have the form

and Eq. (22) takes the form

(32)

L1 x( ) α
x
--- d

dx
------ 1

2
---+ 

  ; L2 x( )– T1 x( ) 0;= = =

T2 x( ) 1
x
--- d

dx
------ 1

2
---,+=

J α xa( ) Y α xa( )
J α xb( ) Y α xb( )

I xa( ) K xa( )
I xb( ) K xb( )

0,=
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Fig. 5. The same as in Fig. 4 but for d = 0.1; X = (a) 0.5, (b) 30, (c) 90, and (d) 148.
where additional notations are introduced:

Thus, as one would expect, the equation for the crit-
ical frequencies consists of two independent equations,
the first of which refers to the waves originating as lon-
gitudinal, and the second to the waves originating as
transverse.

Figure 7 shows the dimensionless wave numbers 

for the first four modes (n = 1–4) at d = 0.9. According
to Eq. (32), n = 1 and n = 4 correspond to the modes
originating as longitudinal, and n = 2 and n = 3 to the
modes originating as transverse. It is essential that,

J x( ) α
x
---J1 x( ) 1

2
---J0 x( );–=

Y x( ) α
x
---Y1 x( ) 1

2
---Y0 x( );–=

I x( ) 1
x
---– J1 x( ) 1

2
---J0 x( );+=

K x( ) 1
x
---Y1 x( )–

1
2
---Y0 x( ).+=

k
kt

----
when the wave size of the cylinder tends to infinity, the
velocity of all the normal modes tends to that of trans-
verse waves, which testifies that they belong to the
quasi-Lamb wave type. The difference between them
and the Lamb waves of an elastic layer consists, in par-
ticular, in that the mode with n = 1 originates as a trans-
verse wave in the case of the Lamb waves and as a lon-
gitudinal wave in the case under study.

Figure 8 represents the eigenmodes of the displace-
ments for n = 1–4 at a high dimensionless frequency
X = 80. Here, only positive values of the x coordinate
are used, because, for x < 0, both displacements and
forces are fairly small at this frequency, and all fields
concentrate near the outer surface of the cylinder. From
this figure, one can see that the number of a mode (as in
plane waveguides) corresponds to the number of inter-
sections of the corresponding curves with the x axis.

The results obtained above can be used for studying
the characteristics of circumferential normal modes of a
shear-longitudinal type in a ring-shaped thin plate (such
a problem for flexural waves was solved in [9]). For this
purpose, it is necessary to replace the elastic modulus of
a plane wave λ + 2µ by the longitudinal elastic modulus
ACOUSTICAL PHYSICS      Vol. 50      No. 6      2004
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Fig. 6. Eigenfunctions for the normal mode with n = 0' at d = 0.9; X = (a) 0.5, (b) 5, (c) 10, and (d) 32.
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Fig. 8. Displacement eigenfunctions for normal modes with n ≥ 1; d = 0.9, X = 80, and n = (a) 1, (b) 2, (c) 3, and (d) 4.
of a plate Ep =  and to represent the factor α in

the form α =  = . For the value σ = 0.25 used

in the calculations, this factor is α ≅  0.612.
In closing, it should be noted that the normal

modes studied in this paper can be considered as heli-
cal waves propagating in an empty elastic cylinder at

an angle ϑ  =  to its axis. For helical waves with other

values of this angle, the aforementioned wave numbers
of circumferential waves can be determined as “critical
wave numbers” (by analogy with critical frequencies).
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