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Interest in the implementation of nonlinear wave
phenomena in acoustic imaging systems for medical
purposes and nondestructive testing has noticeably
quickened in the last few years. For example, images of
biological objects obtained using the second harmonic
of an incident ultrasonic wave show a higher resolution
dueto the narrowing of thefocal distribution of the sec-
ond harmonic, as well as a reduction of the level of
sidelobes and reverberation noise in comparison with
the fundamental frequency wave [1-5]. An analysis of
the harmonics of anonlinearly propagating wave can be
easily adapted to existing diagnostic systems. It is
believed that “harmonic imaging” systems will soon
become common to ultrasonic medical diagnostics. Itis
necessary to note that the use of the second harmonicin
acoustic microscopy was apparently proposed for the
first time more than quarter of acentury ago [6]. Today,
the methods of nonlinear acoustics are implemented
more and more actively in ultrasonic nondestructive
evaluation [7, §].

Along with the aforementioned investigations, stud-
ies concerned with phase conjugation in acoustics have
been progressing rapidly [9-14]. The interest in the
application of phase conjugation in ultrasonic imaging
is connected with the well-known capability of phase-
conjugate waves to compensate for phase distortions
introduced by a propagation medium. A compensation
for phase distortions by phase conjugation was demon-
strated experimentally in acoustic microscopy [13, 14].
At the same time, the possibility of an extension of the
phase-conjugation technique to the case of nonlinear
ultrasonicimaging isnot a priori evident because of the
partial violation of the invariance of nonlinear acoustic
equations with respect to timereversal. The reasons for
this violation can be, in particular, an anomalously
strong sound attenuation at a shock wave front or anon-

coincidence of the amplitudes of incident and phase-
conjugate waves. The latter fact becomes especially
important under the conditions of phase conjugation
with amplification, which is of practical interest.

At ultrasonic frequencies, a giant amplification
(over 80 dB) is practicaly implemented in the case of
parametric phase conjugation beyond the threshold of
the absolute instability of phonons in magnetoacoustic
active media [15, 16]. Over-threshold (supercritical)
phase-conjugating amplifiers, which are the sources of
the stimulated radiation of phase-conjugate phonon
pairs, are how one of the basic instruments for the
experimental investigation of nonlinear wave processes
in the case of ultrasound phase conjugation [17]. Non-
linear distortions of quasi-plane phase-conjugate sound
beams generated by an over-threshold phase-conjugat-
ing amplifier were discovered and studied in [18]. In
[19, 20], the space-time structure and harmonic com-
position of focused nonlinear phase-conjugate beams
propagating in a homogeneous medium were studied.
The compensation for phase distortions in the case of
the retrofocusing of a nonlinear beam in an inhomoge-
neous medium was discovered in the process of imag-
ing atest object with the help of the second harmonic
of a phase-conjugate wave in an acoustic microscope
[21]. The theoretical interpretation of the phenomenon
on the basis of the nonlinear geometrical acoustics of
inhomogeneous refractive media without dispersion is
proposed in[21, 22]. An experimental study of thefield
structure of aparametrically amplified phase-conjugate
wave for a focused beam transmitted through an aber-
ration layer wasreported in [23]. A high quality of auto-
focusing of both the second and higher harmonicsinthe
focal region of an incident wave was demonstrated.
Narrowband parametric amplification basically pro-
vides an opportunity to perform phase conjugation of
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Fig. 1. Experimental scheme. Optical stroboscopic visualization of the incident and phase-conjugate beams is given on the right

side[19].

the single harmonics of nonlinear acoustic beams. In
this case, in particular, phase conjugation with amplifi-
cation of the second harmonic of an incident wave leads
(in the process of backward propagation) to the gener-
ation of the fourth and even higher (with respect to the
spectrum of the incident wave) harmonics. Thus, it
becomes possible to obtain acoustic images using
higher harmonics without increasing the order of the
nonlinearity of wave interactioninamedium. A similar
frequency multiplication for imaging of a test object
with the help of the fourth harmonic of the incident
wave in a phase-conjugating microscope was demon-
strated in [24]. In this case, the conservation of the
property of compensation for phase aberrations was
noted in the process of autofocusing under the condi-
tions of the selective phase conjugation of the single
harmonics of an incident wave.

The purpose of thisreview isto generalize the latest
results of experimental and theoretical research into the
phase conjugation of nonlinear ultrasonic beams and to
outline prospects for the development of nonlinear
phase-conjugation ultrasonic imaging.

1. FIELD STRUCTURE OF A NONLINEAR
PHASE-CONJUGATE FOCUSED WAVE

Because of the high amplification provided by over-
threshold parametric phase-conjugating amplifiers
employing magnetostrictive ceramics, the intensity of
ultrasonic phase-conjugate beams can be sufficiently
high (over 1 W/cm?) for an effective generation of har-
monics on the path of the backward propagation of such
beams to the source. Asis well known, this leads to a
nonlinear distortion of theinitial sinusoidal time profile
of a wave and, as a consequence, to the growth of its
attenuation. In the case of focused beams, which are
commonly used in ultrasonic imaging, nonlinear effects
manifest themselves most strongly. Apart from distort-
ing the time profile, the influence of nonlinearity mani-
festsitself, in particular, in ashift of the amplitude max-
imum on the beam axis towards the source. Moreover,
the shape of the wave front in a nonlinear beam that is

inhomogeneous over its cross section is distorted in
comparison with the linear case, which can lead to a
nonlinear focusing and defocusing of the beam [25].
All of these factors can affect the quality of phase-con-
jugate focusing in a nonlinear medium and, therefore,
they need special investigation and evaluation. In this
section, we give the results of experimental and numer-
ical simulation that were lately obtained [17-20] and
reflect on the major specific features of the behavior of
nonlinear focused phase-conjugate ultrasonic beamsin
a homogeneous medium.

A typical scheme for the experimental investigation
of such beams is given in Fig. 1, where, on the right
side, the optical visualization of fields of incident and
phase-conjugate beams is shown as an illustration. An
ultrasonic pulse with a frequency f = 5.0 MHz and a
duration of 30 ps was radiated into water by a spheri-
cally focused Panametrics VV307-SU transducer with a
diameter of 27 mm and afocal distance of 84 mm. The
pressure amplitude of the incident wave was small
(~0.2 MPa at the focus) and, therefore, its propagation
could be considered to be linear. The distance between
the transducer and a phase-conjugating amplifier was
202 mm. A direct measurement of acoustic field param-
eters was performed using a sound-transparent wide-
band membrane PVDF hydrophone with a sensitive
element 0.5 mm in diameter. This provided an opportu-
nity to conduct virtually nondistorting measurements
for both the incident and phase-conjugate beams. The
hydrophone was connected with a two-coordinate posi-
tioning system that scanned the acoustic field with a
minimum step of 0.2 mm. A signal from the hydro-
phone after amplification was digitized by a Tektronix
TDS-340A oscilloscope, and then the data were fed to
a computer. The generation of a phase-conjugate ultra-
sonic pulse at a carrier frequency of 5 MHz was per-
formed by an active magnetostriction phase-conjugat-
ing element on account of the over-threshold paramet-
ric interaction of a 10-MHz magnetic pumping field
and the incident acoustic field. The active el ement was
cylindrical, with alength of 150 mm and a diameter of
36 mm. To expand the angular operation range of the
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Fig. 2. (a) Wave profiles and (b) spectra of a phase conjugate wave at the focus point. (a) The solid line refers to measurements, dots
refer to exact calculation by the Khokhl ov—Zabol otskaya—K uznetsov equation, and the dotted line refers to calculations taking into
account only the four first harmonics. (b) Columns represent the experiment, and segments, the calculation [19].

system and to improve the quality of phase conjugation,
asystem of cylindrical grooveswasformed on the oper-
ation surface of the active element (see [26, 27]).
Because of the parametric pumping of electromagnetic
energy into the energy of acoustic waves, the amplitude
of the latter grows exponentially during the interaction
time and reaches levels sufficient for the intense devel-
opment of nonlinear effects in a phase-conjugate wave
in the process of its propagation in water towards the
transducer.

To numerically simulate the propagation of axisym-
metric ultrasonic beams in a nonlinear medium, one of
the most precise techniques based on the algorithms of
the numerical solution of the Khokhlov—Zabol otskaya—
Kuznetsov equation and taking into account nonlinear-
ity, absorption, and diffraction was used [28]. This
approach provides a good qualitative agreement with
experiment [19, 29]. A numerical simulation was con-
ducted with parameters corresponding to the experi-
mental conditions; i.e., linear propagation was assumed
for the incident beam and nonlinear propagation for the
phase-conjugate beam. Moreover, the finiteness of the
aperture of the phase-conjugating element was taken
into account, and finally, the amplitude distribution of a
phase-conjugate wave in the plane z = 202 mm, which
corresponded to the position of the output of the phase-
conjugating amplifier, was multiplied by a coefficient
determined by amplification in the phase-conjugating
system.

Theresults obtained are given in Figs. 2—4. Figure 2
shows the characteristic nonlinear wave profiles and the
spectra corresponding to them that are observed in the
focus of a phase-conjugate beam [19]. As one can see,
the measurements give a peak pressure value that is
lower than the calculated one, and the measured wave
profileitself does not have the shock front predicted by
the calculations. This discrepancy arises because of the
limiting character of the frequency range of the hydro-
phone, which provides an opportunity, in this case, to
measure correctly up to four harmonics in the phase-
conjugate wave (seethe frequency spectrumin Fig. 2b).
If, inthe process of calculation of waveforms, onetakes
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into account only four harmonics, then, as one can see
from Fig. 2a, abetter agreement of the calculationswith
the measurements is obtained.

A comparison of the measurements and cal cul ations
for axial and focal (in the plane z = 84 mm) pressure
distributions in the beams under investigation are given
in Fig. 3 [29] in the right and left parts of the figure,
respectively. The curvesin Fig. 3ademonstrate the lin-
ear character of the propagation of an incident beam.
Distributions for a phase-conjugate beam are given for
two values of the aperture of a phase-conjugating ele-
ment, namely, 36 mm (Fig. 3b) and 20 mm (Fig. 3¢), in
order to show the effect of diffraction together with the
influence of nonlinearity. One can see from Fig. 3b that
higher harmonics are also present in the phase-conju-
gate beam in the focal plane and that they constitute a
noticeabl e part of the amplitude of the fundamental har-
monic. For example, the second harmonic is only two
times smaller than the first one. However, as one can
see from the comparison of focal distributionsin Figs.
3a and 3b, nonlinearity practically does not affect the
guality of phase-conjugation focusing. At the same
time, the diffraction arising due to the finiteness of the
aperture of the phase-conjugating element, which wid-
ens the principal maximum of the focal pressure distri-
bution and smoothes the axial distribution in the phase-
conjugate beam (Fig. 3c), leadsto astrong deterioration
in the quality of phase conjugation.

The good agreement of the numerical calculations
and of the measurements provides the grounds and the
opportunity to monitor, viaanumerical simulation, the
behavior of phase-conjugate ultrasonic beams up to
high values of intensity that have not yet been reached
experimentally. The results of such a numerical calcu-
lation (in the case of the unrestricted aperture of a
phase-conjugating system) are givenin Fig. 4[20]. The
dimensionless nonlinear parameter N;, defined as the
ratio of thelength of the near field to thelength of shock
formation in a plane wave, takes on values from 0.1,
which corresponds to aweak nonlinearity, to 1.0, when
a pronounced shock front arises (Fig. 4c). One can see
that, as N; grows, the maximum of the axial pressure
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Fig. 3. Comparison of measured (solid line) and calculated (dotted line) data of axial (on the left side) and focal (on the right
side) pressure distributionsin the plane z= 84 mm in the incident (the first row) and phase-conjugate (the second and third rows)

beams [29].

distribution is shifted towards the source positioned at
o =0 (Fig. 4a) and the oscillations of the focal pressure
distribution become smoothed (Fig. 4b) together with a
simultaneous decrease in the pressure amplitude at the
beam axis (Figs. 4a, 4b). Nevertheless, it is possible to
assert that even the formation of a shock front in a
phase-conjugate beam is not an obstacle for retaining
its focusing ability. Thus, the major factor contributing
to the deterioration of the quality of phase conjugation
in a homogeneous medium and, in particular, the qual-
ity of the reproduction of the focal distribution, is the
finiteness of the aperture of the phase-conjugating ele-
ment.

2. PROPAGATION OF A PHASE-CONJUGATE
NONLINEAR WAVE
THROUGH AN ABERRATION LAYER

Asfollowsfrom the results of the preceding section,
nonlinearity does not hinder the high-quality phase-
conjugation focusing in a homogeneous medium even
under the conditions of shockwave formation. At the
same time, from a practical point of view, the case in
which some inhomogeneities are located in the path of
wave propagation is of major interest. If inhomogene-
ities introduce phase aberrations, then in the case of a
linear medium the distortions in an incident wave,
which are caused by these inhomogeneities, can be
compensated for by the effect of phase conjugation. In
this section, we present the main experimental results
concerning the transmission of a nonlinear phase-con-
jugate beam through an aberration layer and demon-
strating the possibility of phase-conjugation compensa-
tion of phase distortions in a nonlinear medium with
inhomogeneities [23].

The experimental scheme presented in Fig. 1 is
taken as the basis. A specia layer R that distorts the
acoustic field isintroduced into an acoustic path to sim-
ulate the inhomogeneities of amedium (Fig. 5).

The layer was manufactured of a silicon polymer.
The layer materia had the following acoustic parame-
ters: adensity of 850 kg/m?, asound velocity of 1160 m/s,
and an attenuation of 6 dB/cm at afrequency of 5 MHz.
Oneside of the layer wasflat and the other side had cha-
otically located conelike irregularities. The sizes of the
bases and heights of the irregularities lay within the
range 2-5 mm. Thus, the difference between the phase
shiftsin water and in the layer at for example, adistance
of 3 mm, was greater than 41t The acoustic impedance
of the layer provided sufficiently good acoustic cou-
pling with water. Taking into account the comparatively
small layer thickness, it was possible to assume that the
distortions introduced into the acoustic beam were
mainly of aphase character and that the contribution of
the amplitude losses was inessential.

The ability of the layer to introduce noticeable dis-
tortionsinto the transmitted wave at a sufficiently small
distance was studied in the case of its position as indi-
cated by number 1 in Fig. 5. The distance of the flat
layer surface from the focus was 20 mm. The field pro-
duced by the radiator in the focal plane was measured
under these conditions. The characteristic form of the
curve obtained isgiven in Fig. 6. The focal field distri-
bution in the absence of the layer isa so given for com-
parison. One can see that the presence of the layer that
destroys the focusing strongly affects the distribution
typical of a spherically focused beam. Multiple repeti-
tions of such measurements with parallel shifts of the
layer by retaining a constant distance to the source pro-
duced focus destruction results that were similar in
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Fig. 4. Numerical calculation of the evolution of axia (right side, top) and transverse (left side, bottom) pressure distributions in
the focal plane and the wave profiles at the focus (right side) for the phase-conjugate beam in the case of a varying nonlinearity
parameter Ny; o is the distance to the source normalized to the focal length d: o = z/d, where zisthe longitudinal coordinate [20].

form and differed in position, shape, and number of
peaks. Thereby, a satisfactory quality of the layer as a
medium that introduces phase aberrations was con-
firmed.

For experiments with a phase-conjugate wave, the
phase layer was shifted symmetrically with respect to
the focus from position 1 to position 2. In this geome-
try, aberrations were introduced into the incident wave
after it passed the focal area. In this case, it was neces-
sary to eliminate the losses connected with a part of a
scattered beam missing the aperture of the phase-con-
jugating amplifier. A metal tube T with an internal
diameter of 36 mm and a length of 101 mm, which
played the role of an acoustic waveguide, was posi-
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tioned between the layer and the amplifier for this pur-
pose. Otherwise, as was discovered in the correspond-
ing experiments, the reproduction of the spatial struc-
ture of thefield of the incident beam was violated.

The results of measurements of the field of a phase-
conjugate beam along the axis are given in Fig. 7. A
dotted line conditionally denotesthe layer position. The
scanning region started directly from the layer and had
alength of 30 mm. The dashed line shows, for compar-
ison, the pressure distribution in the incident wave. The
time profile of the phase-conjugate wave at the initial
scanning point is demonstrated in Fig. 7a on the right
side, at the bottom. At the left layer boundary, a phase-
conjugate wave is clearly nonlinear; i.e., the amplitude
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Fig. 5. A simplified scheme of the experiment. The dashed
lines show the propagation of incident and phase-conjugate
sound waves in the absence of the layer. Here, Sisan ultra-
sonic source, C is a phase-conjugating amplifier, T is a
metal tube, Risaphase layer, (1) and (2) are the layer posi-
tions, and X and Z are the directions of the hydrophone posi-
tioning axes [23].
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Fig. 6. Focal distribution of the normalized pressure ampli-
tude in the incident wave (1) in the absence of the phase
layer and (2) with the layer present at position 1. Here, X is
the distance from the beam axis [23].

of the second harmonic makes up 18% of the amplitude
of the first harmonic; the amplitude of the third har-
monic, 8%; and the amplitude of the fourth harmonic,
4%. The longitudinal profile of the phase-conjugate
beam, on the whole, reproduces well the profile of the
incident beam.

Figure 8 gives the transverse distributions of (a) the
effective pressure values and (b) the harmonic pressure
amplitude in the phase-conjugate beam that were mea-
sured in the focal plane of the source. The field distri-
bution in theincident beam is shown by the dashed line.
The time profile of the phase-conjugate wave in the
focus is plotted at the top in Fig. 8a, on the right side.
The amplitude ratio for the fundamental harmonics of
the phase-conjugate and incident waves was about 10.
In this case, the peak differential pressure in the phase-
conjugate wave, i.e., the difference between the positive
and negative peaks of the wave profile, was 6.95 MPa.

BRYSEV et al.

Despite the increase in the relative level of sidelobesin
the fundamental harmonic, the field of the nonlinear
phase-conjugate wave on the whole demonstrates a
high quality of phase-conjugation focusing of an ultra-
sonic beam in both the position with respect to the axis
of the incident beam and the width of the principal
maximum. From the point of view of nonlinear ultra-
sonic imaging, the fact that the energy of higher har-
monicsismuch better localized in the focusregion than
that of thefirst harmonicisespecially interesting. Thus,
this specific characteristic of homogeneous nonlinear
mediais also retained when the medium is inhomoge-
Neous.

The results of experiments on phase conjugation
with amplification that were described in the first sec-
tions provide an opportunity to judge the reproduction
quality of the acoustic field at the maximum pressure
amplitude of the phase-conjugate wave. One can see
that automated phase-conjugation focusing of ampli-
fied phase-conjugate waves with compensation for
phase aberrations produced by the inhomogeneities of
the propagation medium is possible even in the case of
aconsiderable nonlinear distortion of the waveform.

3. GENERATION OF THE SECOND ACOUSTIC
HARMONIC BY A PHASE-CONJUGATE WAVE
IN AN INHOMOGENEOUS REFRACTIVE
MEDIUM WITHOUT DISPERSION:
APPROXIMATION OF NONLINEAR
GEOMETRICAL ACOUSTICS

Results of experimental observations of the com-
pensation of phase distortions in the process of nonlin-
ear propagation of a phase-conjugate wave in the pres-
ence of aberration layers [21, 23, 24] were substanti-
ated theoretically in [21, 22]. In the approximation of
nonlinear geometrical acoustics, it was demonstrated
that retrofocusing in this case is a consequence of two
effects: the phase conjugation at the fundamental fre-
guency and the strong correlation of the phases of har-
monics generated by the phase-conjugate wave.

For example, within the framework of nonlinear
geometrical acoustics, i.e., the approach developed for
dispersionless inhomogeneous media in [21], the pro-
cess of the second harmonic generation in a quasi-lin-
ear approximation is described by the following set of
equations:

L{A} =0,
- : 2 (1)
L{A} = 2iwpA,

where A, are the amplitudes of harmonics (n =1, 2) and
the operator L is represented in the form

o 0
L=—+v+(EV,).
az (g D)
ACOUSTICAL PHYSICS Vol. 50 No.6 2004
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Fig. 7. Distribution of sound pressure aong the beam axis:
(a) the normalized effective value and (b) the amplitudes of
the first four harmonics. The solid curves correspond to the
phase-conjugate wave, and the dashed line, to the incident
wave. The dotted line indicates the position of the phase
layer R; numbers 14 indicate the numbers of the harmonics,
and Zisthe distance to the source. The shape of the phase-con-
jugate wave at the beam axis at the point Z = 97 mm s given
on theright side of Fig. 7a, at the bottom [23].

Here, & = cO; v = —a%lm/p_c + g(VéljJ); and p, C,

and 3 are the density, sound velocity, and normalized
nonlinear parameter, respectively. The ekond ¢,=
—-inwW(r) of the harmonics is described by the general
equation [30]

op . 1 c 2 _
5 + 2CCD(I’) + 2(VD¢') - 0! (2)

where @(r) is the inhomogeneous part of the refrac-
tive index of the medium. The identity of the eikonals
reflects the well-known specific feature of the interac-
tion of nonlinear wave harmonics in a dispersionless
medium that leads to their cascade generation up to
the shock front formation in the case of afully devel-
oped nonlinearity.
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Fig. 8. Focal distribution of the sound pressurefield: (a) the
normalized effective value and (b) the amplitudes of thefirst
four harmonics. The solid curves correspond to the phase-
conjugate wave, and the dashed line, to the incident wave;
numbers /—4 indicate the numbers of the harmonics, and X
is the distance from the beam axis. The shape of the phase-
conjugate wave at the point X = 0 is given at the top, on the
right side [23].

In the case of the second harmonic generation under
study, the amplitude of the second harmonic can be
obtained from Eq. (1) in the form

Ay(r) = Q(r)AL(r), 3)

where the function Q(r) depends on the eikonal gradi-
ent and the parameters of the medium and satisfies the
equation

9+ (&V)Q-vQ = 2iw. @

Equation (3) shows that, within the framework of
nonlinear geometrical acoustics, the spatial distribution
of the second harmonic amplitude is modulated by the
intensity of the fundamental component in a randomly
inhomogeneous medium. Due to the phase conjugation
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Fig. 9. Statement of the problem: IW refers to the incident
wave, and PCW, to the phase-conjugate wave [21].

of the fundamental component, one can expect that the
second harmonic is concentrated within the aperture of
the primary acoustic beam propagating from the focus
to the phase-conjugating amplifier.

The problem of propagation of the second harmonic
in a homogeneous medium between an aberration layer
and thefocal plane (see Fig. 9) isanalogousto the prob-
lem on the “ phase screen” studied in [31], as applied to
the propagation of shockwaves. In a homogeneous
medium with the parameters ¢,, p,, and [3,, the phase of
the focused primary beam is described by the expres-
sony = f(z)ré/co. According to the principle of phase
conjugation, it is necessary to assume that the funda-
mental harmonic reproduces its phase—amplitude dis-

tribution after being transmitted through an aberration
layer. In this case, Egs. (1-4) have the solution

A1, 2) = AL, 2)[Qu(2) + Qurp, 2], (5)
where

Q@) = 2iwosoy(—12) [v@z
0

Qx(re, 2) = Y(2)F[xy(2), yy(2)].

Here, F[x, y] is the function describing the boundary
conditions for the second harmonic amplitude at the
output of the aberration layer (z= 0):

z

0 0
Y(2) = eXpE)—If(z')dZD
(] 5 O (6)

= [1-(1+iGHzd] ™,

where G isthe gain factor of the focusing systemand d
is the distance between the layer and the focal plane.

Thefirst term in Eqg. (5) describes the generation of
the second harmonic in the region between the layer
and thefocal plane. The second term correspondsto the
generation in an inhomogeneous layer. The solution
Q(ro, 2 to EQ. (4) in the region z, < z < 0 with the

BRYSEV et al.
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Fig. 10. Acoustic ray patternin amultilayer mediumin the
case of a varzying refractive index according to the law
®(rp) = Asin“(qy + 0) [22].

boundary condition Q(r, Z,) = 0 at the output of the
phase-conjugating amplifier (z = z,) defines the func-
tion F asF[x, y] = Q(rg, z=0). The eikonal in Eq. (4)
istried as a solution to Eqg. (2) with the boundary con-
dition Y(z=0) = f(O)ré/zco. The latter condition is a
consequence of the identity of eikonals for the funda-
mental and second harmonics. The analysis of a series
of particular cases of inhomogeneity (transverse inho-
mogeneity with an arbitrary dependence on the longitu-
dina coordinate ®(rp, 2) = ®(2) and a linear or qua-
dratic dependence of ®(r;, 2) on the transverse coordi-
nater ) showsthat the solution Q(r , ) = Q(2) does not
depend on r; i.e., F[x, y] = const. A more complex
case, in which the inhomogeneity of the refractive
index distribution is a periodic function of the trans-
verse coordinate d(r ) = Asin’(qy + 0), isinvestigated
numerically in [22]. The corresponding pattern of
acoustic raysthat coincidesfor both harmonics because
of the aforementioned coincidence of eikonalsis given
in Fig. 10. The evolution of the transverse distribution
of the second harmonic amplitude in the course of
approaching the focal plane is shown in Fig. 11. One
can see that the major part of the energy of the second
harmonic is also concentrated near the focusin this suf-
ficiently complex case. A qualitatively analogous result
was obtained for the case of atransversely shifted layer,
inwhich 6 = 172.

The examples considered above provide an opportu-
nity to concludethat the high quality of retrofocusingin
the course of the nonlinear propagation of phase-conju-
gate beams in an inhomogeneous dispersionless acous-
tic medium is arule rather than an exception, which is
confirmed by the data from experiments conducted
under different conditions [21, 23, 24]. As for the
observed narrowing of the focal distribution of the sec-
ond harmonic of the phase-conjugate wave in compari-
sonwiththeincident wave, thiseffect isexplained qual-
itatively by the expressions of thetype of Egs. (3) and (5).
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A detail ed investigation of the behavior of phase-conju-
gate beams in the focal region requires one to go
beyond the framework of nonlinear geometrical acous-
tics and to apply some humerical techniques.

In concluding thissection, it isnecessary to note that
the time—space synchronization of harmonics that fol-
lows from the eikonal equation (Eq. (2)) occurs not
only in the process of second harmonic generation but
israther agenera property of the nonlinear retrofocus-
ing of phase-conjugate wavesin dispersionless acoustic
media. In the last section of thisreview, this property is
illustrated by the example of the phase conjugation of
the second harmonic of the primary wave of finite
amplitude with the further nonlinear propagation of a
phase-conjugate beam.

4. COMPENSATION OF PHASE DISTORTIONS
IN A PHASE-CONJUGATING MICROSCOPE
IN THE LINEAR MODE OF ULTRASONIC WAVE
PROPAGATION

Thefirst experiments on the application of paramet-
ric phase conjugation in linear ultrasonic imaging were
conducted using model objects with the employment of
a piezoceramic active medium in the subthreshold
mode of electromagnetic pumping [14]. Figure 12 pre-
sents an ultrasonic imaging scheme, and Fig. 13, acous-
ticimages of atest object under the conditionsin which
alayer introducing strong phase aberrations (Fig. 13a)
ispresent in the acoustic channdl: the picturein Fig. 13b
is obtained in a common “transmission” way, and the
picture in Fig. 13c, via parametric phase conjugation.
Comparison of Figs. 13b and 13c clearly demonstrates
the effect of compensation for phase distortions, which
makes the images of letters clearly visible, unlike the
images obtai ned with the conventional method.

In contrast to the subthreshold mode in piezoceram-
ics, the over-threshold mode implemented in magneto-
striction ceramics with pumping by a magnetic field
[15, 16] provides many more opportunities in different
areas of ultrasonic technology, including ultrasonic
imaging. By shifting the amplification necessary to
compensate for the attenuation losses from radio-elec-
tronic circuits to a phase-conjugating system, it is pos-
sibletoimprovethe signal-to-noiseratioin animage. In
contrast to the noise of receiving circuits, the noise (or
non-phase-conjugate) components of a phase-conjugat-
ing amplifier are subjected, asarule, to efficient spatial
filtration by means of the automated adaptation of
phase-conjugate waves to inhomogeneities of the
medium and to the geometry of the radiating—receiving
transducer. Such spatial filtration in the case of the
amplification of a phase-conjugate wave was observed
experimentally [32]. In this section, we present experi-
mental data on the visualization of theinternal structure
of astandard serially produced fracture microchip with
the help of over-threshold phase conjugation.
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Fig. 11. Evolution of the transverse distribution of the sec-
ond harmonic amplitude as the distance to the focal plane
decreases (A2 isthe relative amplitude) [22].
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Fig. 12. A model ultrasonic imaging scheme with a phase-
conjugating element employing piezoceramics [14].

A simplified scheme of ultrasonic imaging with a
phase-conjugating amplifier on the basis of magneto-
strictive ceramicsisshownin Fig. 14 [14]. A transducer
and an object were positioned in a water tank. The
object was placed in the focal plane of an ultrasonic
transducer with a diameter of 10 mm and afocal length
of 3cm (inwater). A cylindrical phase-conjugating ele-
ment with adiameter of 15 mm and alength of 35 mm,
which was made of Ni—Co magnetostrictive ceramics,
was located symmetrically with respect to the object in
such a way that the cylinder axis coincided with the
acoustic axis of the transducer. The distance between
the input plane of the phase-conjugating element and
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Fig. 13. (b, ¢) Test acoustic images obtained in the absence
of (a) thelayer by (b) the conventional transmission method
and (c) using the subthreshold parametric ultrasound phase

conjugation [13].
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Fig. 14. Simplified model ultrasonic imaging scheme with
a phase-conjugating amplifier employing magnetostriction

ceramics [14].

the transducer was 85 mm. The working surface of the
parametrically active element was introduced in water
through an aperture in the basin wall, which was cov-
ered by athin rubber membrane whose external surface
was coated with a special acoustic gel to provide an
acoustic contact with the ferrite. The transducer was
excited by radio pulses with a duration of 2 yus and a
carrier frequency of 10 MHz from generator 1. At the
moment when the probing ultrasonic pulse entered the
active zone of the phase-conjugating element, a pulse
of aternating magnetic field at double sound frequency
(i.e., 20 MHz) and with a duration of 20 ps was fed to
it from generator 2 through the pumping coil. Under
these conditions, the amplification of the phase-conju-
gating system was 80 dB. A pulse of a phase-conjugate
wave, focused at the sample and generated in the phase-
conjugating element, propagated in water and was
detected by the transducer. In this case, the processes of
spatial filtration of the noise component and compensa:
tion for phase distortions took place.

The sample that was studied was a standard fracture
microchip specially coated with a layer of colophony,
which played the role of the medium that introduced
aberrations. The layer with the average thickness 3.5 mm
was manufactured in several stages in such away that
each subsequent layer was deposited after the end of the
crystallization of the preceding one. This procedure
provided for the introduction of sufficiently strong dis-
tortions into the probing focused ultrasonic beam leav-
ing the layer.

The sample was moved at a step of 100 um in the
focal plane of the transducer with the help of a two-
dimensional positioning system. Thesize of theresulting
imageswas 10 x 5 mm?. In the case of line-by-line scan-
ning for each position of the object, asignal from the
transducer was digitized in a 10-bit oscilloscope
(Le Croy 9430), after which the dataarrays fed from the
oscilloscope to a computer were transformed into a two-
dimensional image obtained in grayscale. As was deter-
mined with the help of special measurements, the spatial
resolution of the system was 500 pum, which is close to
the theoretical limit for these experimental parameters.

Despite the fact that the same transducer was used to
radiate and receive the ultrasound, the scheme under
consideration is evidently close to the classical “trans-
mission” version of an acoustic microscope. Therefore,
to demonstrate the advantages of phase conjugation,
images of the same object were obtained using aconven-
tional scheme, in which the phase-conjugating element
was replaced by a receiving transducer identical to the
radiating one. Here, for the purpose of illustration, two
cases were studied: with an aberration layer and without
it. The image abtained in the latter case was the “refer-
ence” one.

Figure 15a presents a photographic picture of afrac-
ture microchip with the aberration layer deposited oniit.
The image of the internal structure of the fracture
microchip without alayer, which was obtained accord-
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Fig. 15. (a) Photograph of afracture microchip with acolophony aberration layer applied on top of it with arandom shape and structure.
(b) Image of the internal structure of the fracture microchip without the layer, with the use of the classical transmission scheme with
two transducers. (c) Image of the same fracture microchip region that is distorted by aberrations introduced by the layer. (d) Image
obtained using the effect of over-threshold phase-conjugation for the same conditions as in the case of image (c) [14].

ing to the classical “transmission” scheme with two
transducers, isgivenin Fig. 15b. Theimage of the same
fracture microchip region distorted due to the aberra-
tions introduced by the layer is shown in Fig. 15c.
Finally, Fig. 15d presents the image obtained using the
effect of over-threshold phase conjugation for the same
conditions as in Fig. 15c. From a comparison of Figs.
15b-15d, one can see that, although it was impossible
to achieve a complete reproduction of theimagein Fig.
15bin Fig. 15d, theimagein Fig. 15d, obtained with the
help of phase conjugation, demonstrates an evident
increase in the quality of reproduction of even the fine
details of the microcircuit’s internal structure in com-
parison with the image in Fig. 15¢, which was obtained
by the conventional method.

Generally speaking, it isimpossible to improve an
image with the help of phase conjugation if the aber-
ration layer located between the transducer and the
object introduces distortions that are so strong that
they almost completely destroy the focusing of the
probing beam. Nevertheless, as was indicated in [14],
when sufficiently thin layers are additionally depos-
ited on the side of the object that faces the transducer,
acoustic imaging with compensation for phase aberra-
tions proves to be possible.

5. PHASE-CONJUGATION MICROSCOPY
USING THE SECOND HARMONIC
OF THE PHASE-CONJUGATE WAVE

Thetechnology of over-threshold phase conjugation
provides an opportunity to combine the advantages
given by both the technique of phase conjugation and
the method of harmonic acoustic imaging. In this sec-
tion, we present the results of experiments designed to
demonstrate the feasibility of acoustic imaging with the
help of the second harmonic of the phase-conjugate
wave [21, 24].

The experimental scheme used in this case is basi-
cally analogous to the scheme given in Fig. 14 for the
linear mode. The differences are as follows: since, in
the receiving mode, a nonlinear ultrasonic wave
enriched with harmonics was incident on the trans-
ducer, the signal received by the transducer was repre-
sented in the form of a Fourier spectrum. The ampli-
tudes of two first harmonics of the received signal were
measured for each point of the scanning region, which

ACOUSTICAL PHYSICS  Vol. 50

No. 6 2004

provided an opportunity to obtain images using both
the first and second harmonics of the phase-conjugate
wave during a single cycle. A cylindrical phase-conju-
gating element of an increased size (with a length of
150 mm and a diameter of 29 mm) with a wavy work-
ing surface was used in this and subsequent experi-
ments to improve the quality of phase conjugation. The
object consisted of two crossed wires0.12 mmin diam-
eter, which provided an opportunity to determine, in a
sufficiently simple way, the resolution achieved in any
specific case according to the image obtained. The
transverse resol ution was measured as the minimal dis-
tance between two minimal amplitudes of the received
signal that were resolved in aline. The duration of the
probing and pumping pulses was 50 ps.

Thelayer introducing aberrations was manufactured
of a silicon polymer and was close in its properties to
the one described in Section 4. The average layer thick-
ness was 2 mm. The experimental evaluation of trans-
mission lossesin the layer was equal to 4.5 dB at afre-
guency of 5 MHz.

(a)

Fig. 16. Acoustic images of the region of wireintersection
(a, b) without and (c, d) with the layer. Images obtained at the
frequency of 10 MHz are on the |eft side, and those obtained
at the frequency of 20 MHz are on theright side [24].
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Fig. 17. Acoustic images of the region of wire intersection
that were obtained without a layer with the help of phase
conjugation. Images obtained at the frequency of 10 MHz
are on the left side, and those obtained at the frequency of
20 MHz are on the right side [24].
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Fig. 18. Distribution of signa level along the row 137 in
Fig. 17. The dashed line refers to the signa frequency of
10 MHz, and the solid line, to 20 MHz [24].

The resulting acoustic images of the intersection of
thewiresare shownin Figs. 16-17 [24]. The dimensions
of theregion presented intheimagesare 2.5 x 10 mm. In
the case of a scanning step equal to 50 um, the number
of image dots was 50 x 200 = 10000.

Figure 16 presentstwo pairs of images obtained (a, b)
without and (c, d) with the layer with the help of two
focused transducers in the transmission mode (see Sec-
tion 4). The images obtained using the first harmonic
(10 MHz2) are on the left side (a, ¢), and those obtained
using the second harmonic (20 MHz) are on the right
side (b, d). Imagesin Fig. 17 are grouped according to

BRYSEV et al.

the same principle, but the difference is that they were
obtai ned using phase conjugation. According to Figs. 16a
and 173, the resolution of the system in both conven-
tional and phase-conjugation versions was 450 and
250 um at frequencies of 10 and 20 MHz, respectively.

The following conclusions can be drawn from the
comparison of Figs. 16 and 17. All images correspond-
ing to the case without the layer differ only slightly.
Quite a different situation is observed in the case in
which aberrations are introduced into the acoustic
channel. One can see that the layer introduces such
strong distortions into the images obtained by the con-
ventional technique that the intersection image is
amost completely masked. At the same time, in the
images obtained with the help of phase conjugation at
both harmonics, the intersection can be seen fairly
clearly despite the presence of the dark spots originat-
ing from uncompensated amplitude distortions.
According to the results of Sections 2 and 3, the con-
junction of the phase of the second harmonic of the
wave radiated by the phase-conjugating element to the
phase of the fundamental component provides retrofo-
cusing for the second harmonic as well. Taking into
account the corresponding frequency increase, this pro-
vides an opportunity to use the nonlinearity of the
phase-conjugated wave for acoustic imaging in a
phase-inhomogeneous medium with a resolution
higher than that in the linear case. The latter property is
illustrated in Fig. 18, where the distributions of the sig-
nal level along the line shown by dashesin Fig. 17 are
shown. One can see that the minimum corresponding to
one of the wires is not observed for the signal of the
fundamental component (10 MHz), whilefor the signal
of the second harmonic (20 MHZz) it is clearly distin-
guished. In the experiment considered, the system res-
olution was 600 and 300 pm at frequencies of 10 and
20 MHz, respectively, which differslittle from the case
in which the object was located in a homogeneous
medium.

6. SELECTION OF HARMONICS
AT A PARAMETRIC PHASE CONJUGATION
OF ULTRASOUND AND THE FREQUENCY
MULTIPLICATION IN PHASE-CONJUGATING
MICROSCOPY

In the previous sections, we considered the specific
features of the formation of phase-conjugate ultrasonic
beams of finite amplitude in the mode of phase conju-
gation with an amplification and under the conditions
when the nonlinearity of the incident wave can be
ignored. In this case, the fundamental component of the
spectrum of the phase-conjugate wave amost repro-
duced the structure of thefield of the incident wave and
synchronized the phases of the harmonics generated in
the process of its propagation back to the source. At the
same time, the parametric technique of phase conjuga-
tion can also be used, dueto itsrelatively narrow band,
in the mode of selective phase conjugation of single
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harmonics of the incident wave, when its intensity is
sufficient for a noticeable manifestation of the propaga-
tion nonlinearity. A specific property of phase conjuga-
tion in this case is the fact that the field of the phase-
conjugate harmonic, even in the ideal case, cannot
reproduce thefield of the same harmonic in theincident
wave because of the lack of interaction with the har-
monic at the fundamental frequency that is necessary
for the time reversal. The feasibility of retrofocusing
under these conditions becomes questionable. At the
same time, the effects of selective phase conjugation of
single harmonics are of interest from the point of view
of applications and, in particular, because of the pros-
pect of a considerable increase in frequency in systems
of harmonic imaging already in the lower orders of
nonlinearity. Theincrease in the resolution of an acous-
tic microscope in the case of phase conjugation of the
second harmonic 2f of an incident nonlinear wave at a
frequency f with a further analysis of the image of the
test object at a frequency 4f was demonstrated experi-
mentally in [24]. It was demonstrated that the compen-
sation for phase distortions and the retrofocusing at the
object also occur for the 4f harmonic. The latter stimu-
lated detailed experimental studies and numerical sim-
ulations of the field of a phase-conjugate wave under
conditions of selective phase conjugation with amplifi-
cation of the second harmonic. The experimental
results and numerical simulations [33] confirmed that,
in the case of a homogeneous nonlinear medium, the
retrofocusing of a phase-conjugate harmonic is possi-
ble under these conditions, including the case of its
nonlinear propagation. A theoretical description of the
mechanism of compensation for phase distortions in
the process of phase conjugation of the second har-
monic with its further propagation in an inhomoge-
neous nonlinear medium isgiven in [22].

The simplified experimental scheme [33] is the
same asthat in Fig. 1. A focusing transducer (Panamet-
rics M307) with adiameter of 27 mm and afocal length

of 84 mm radiated an ultrasonic pulse into water. The
pulse duration was 30 us and the carrier frequency was
f =3 MHz. The wave excited by the radiator was suffi-
ciently intense so that the generation of higher harmon-
ics (2f, 3f, and so on) occurred in the process of propa
gation. The level of the second harmonic at distances of
20-25 mm from the radiator did not exceed —35 dB of
the level of the first harmonic, which agrees well with
the calculation for the case of purely monochromatic
radiation. A phase-conjugating element was installed
coaxially with the radiator at a distance of 206 mm
through an opening in the basin wall. The design and
the principle of operation of the phase-conjugating sys-
tem used and the method of the measurement of the
acoustic fields were described in Section 1. The phase
conjugation of the second harmonic of the incident
wave was provided by parametric pumping. It was a
pulse of aternating magnetic field with a duration of
50 us and a carrier frequency of 2 x 2f = 12 MHz,
which was generated by a special coil along the axis of
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the phase-conjugating element at the moment when a
pulse of the incident wave entered it. In this case, the
amplitude of the generated phase-conjugate wave (at
the frequency 2f = 6 MHz) was, initsturn, sufficient for
theintense generation of harmonics (41, 6f, 8f, ...) inthe
course of propagation, which is doubtless of interest for
many practical applications.

The simulation of the process considered was con-
ducted on the basis of the numerical solution of the
Khokhlov—Zabolotskaya—Kuznetsov equation in the
time domain. The nonlinear propagation of the incident
wave to the phase-conjugating element was calcul ated
under the assumption of piston radiation. The second
harmonic of the frequency spectrum (2f) was separated
with the help of aFourier transformation in the plane of
the working surface of the element, and the values of
the Fourier components outside the system aperture
were assumed to be equal to zero. The complex conju-
gatefield of the second harmonic was transformed back
into the time domain, and, in this case, the value of the
system amplification obtained in the experiments was
taken into account. Then, the nonlinear propagation of
the phase-conjugate and amplified wave back to the
radiator was calcul ated.

The results of measurements and the corresponding
calculations are given in Figs. 19-22. Figure 19 pre-
sents the (a) axial and (b) transverse distributions of
pressure in the incident beam. Transverse scanning was
performed at the point z = 82 mm, where the second
harmonic maximum, which is of interest, is located.
The measurements agree quite well with the calcula-
tions, and the dependences are typical of a focused
beam of finite amplitude. The generation of higher har-
monics is observed, their amplitudes grow with dis-
tance, and they reach their peaks near the focus. In the
focal region, the width of the principal maximum and
the relative level of side components decrease with the
increase of the harmonic numbers. The time profile of
the incident wave at the focal point had typical nonlin-
ear distortions, and the amplitudes of the harmonics 2f,
3f, and 4f made up 15.6, 3.5, and 2.8% of the first har-
monic amplitude, respectively.

The measured distributions of the fundamental har-
monic of the phase-conjugate wave (at the frequency
2f) are givenin Fig. 20 in comparison with the incident
wave component that is to be phase conjugated. One
can see that the phase-conjugate wave is focused. The
width of the focal maximum of the fundamental com-
ponent of the phase-conjugate beam and its axial posi-
tion differ little from that of the second harmonic of the
incident beam. The pressure distributions of the first
four harmonics of the beam to be phase conjugated (2f,
4f, of, and 8f) in the plane z = 82 mm and along the
beam axis are given in Figs. 21 and 22, respectively. It
follows from Fig. 21a that the data on the focal mea-
surements of the harmonics agree well with the numer-
ical modd. The calculated and experimental curves for
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Fig. 19. Distribution of pressure amplitudes for the first
three harmonics in the incident beam (&) along the axis and
(b) across the beam, at the focus of the second harmonic.
Here, zisthe distance from the source and x is the distance
from the beam axis. The solid lines correspond to the exper-
iment, and the dashed lines, to the calculations. Numbers |-
111 correspond to the numbers of harmonics with the fre-
quencies f = 3 MHz, 2f = 6 MHz, and 3f = 9 MHz, respec-
tively. The dashed lineindicates the position of the plane of
transverse scanning [33].

axial distributions are presented separately in Figs. 22a
and 22b for better clarity.

Thus, it was demonstrated both numericaly and
experimentally that the field of the phase-conjugate
wave is also focused and, on the whole, it reproduces
well the field of the second harmonic of the incident
wave.

As was dready indicated, it is possible to design
high-resolution systems of phase-conjugation ultra-
sonic imaging on the basis of the phase conjugation of
harmonics. In the case of the same frequency of the
phase-conjugate wave, the systems with phase-conju-
gation of the second harmonic can be better than sys-
tems implementing the phase conjugation of the funda-
mental component because of the reduction of rever-
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Fig. 20. Comparison of the fields of the fundamental har-
monic of a phase-conjugate wave and the second harmonic
of an incident wave (a) along the beam axis and (b) across
the axis, at the point z= 82 mm. The solid line corresponds
to the phase-conjugate wave, and the dashed line, to the sec-
ond harmonic of the incident wave [33].

beration in the course of propagation due to the reduced
relative level of side peaks in the second harmonic of
the incident wave and their weakening in the phase-
conjugate wave. In the case of a sufficient amplification
of the phase-conjugate wave, which provides for its
nonlinear propagation back to the source, an acoustic
image can be obtained using harmonics, for example, at
the fourfold frequency of the incident wave with a cor-
responding resolution increase.

A simplified scheme of a model of an acoustic
microscope implementing the indicated features[24] is
similar to that given in Fig. 14. The differences were as
follows: an Imasonic transducer with awide frequency
range was excited at afrequency of 5 MHz and used as
areceiver for the analysis of pulses at carrier frequen-
cies of 5, 10, and 20 MHz. The crossed thin wires
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Fig. 21. Transverse distribution of pressure in the phase-
conjugate beam at z = 82 mm. (a) Harmonic amplitudes.
The solid lines correspond to experiment, and the dashed
lines, to calculation. Here, 1-1V are the numbers of harmonics
with the frequencies 2f = 6 MHz, 4f = 12 MHz, 6f = 18 MHz,
and 8f = 24 MHz, respectively. (b) Comparison of experi-
mental data on phase-conjugation focusing with the help of
the phase conjugation of harmonics| and I1. (1) harmonic |
of the incident wave (2f = 6 MHz) is phase-conjugated;
(2) the fundamental harmonic of the linear incident wave at
the frequency of 6 MHz is phase-conjugated [33].

described in Section 5 were used as a test object. To
simulate a medium producing phase aberrations, a spe-
cial silicon layer, also described in detail in the preced-
ing sections, was used.

The pumping pulse duration was 50 ps, and the car-
rier frequency was 20 MHz, which provided the over-
threshold maode of parametric phase conjugation with
the amplification of ultrasonic pulses of the carrier fre-
guency of 10 MHz. According to the above description,
the version in which the carrier frequency of the pulse
radiated by the transducer wasf =5 MHz and the ampli-
tude was sufficiently large for the generation of har-
monics on the propagation path to the phase-conjugat-
2004
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Fig. 22. Dependences of pressure amplitude on the longitu-
dinal coordinate for the first four harmonics of the phase-
conjugate beam. (a) Calculation and (b) experiment. Here, z
isthe distanceto the source and I-1V are the numbers of har-
monics with the frequencies 2f = 6 MHz, 4f = 12 MHz, 6f =
18 MHz, and 8f = 24 MHz [33].

ing element was implemented. In this case, the effect of
parametric phase conjugation occurred for the second
harmonic (2f = 10 MHz) of the incident wave, and the
pumping frequency was 20 MHz, as before. After the
phase conjugation with amplification, asin thefirst case,
the amplitudes of the two first harmonics (10 and
20 MHz), corresponding to the second and fourth har-
monics of the incident wave, were measured.

Figure 23 shows the object images obtained accord-
ing to the conventional transmission scheme without
using an aberration layer. The “reference” images in
Figs. 23a and 23b were obtained according to the con-
ventional transmission scheme, in which a phase-con-
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(a)

Fig. 23. Acoustic images of the region of wireintersection (a,
b) without and (c, d) with the layer. Images obtained at the
frequency of 5 MHz are on theleft side, and images obtained
a the frequency of 10 MHz are on theright side[24].

n=137

Fig. 24. Acoustic images of the region of wire intersection
that were obtained in the presence of alayer with the help
of phase conjugation of the second harmonic of theincident
wave. Images obtained at the frequency of 10 MHz are on
the left side, and images obtained at the frequency of
20 MHz are on theright side [24].

jugating element was replaced by afocusing receiving
transducer that detected the first (5 MHz) and second
(10 MH2) harmonics of the acoustic signal. The analy-
sisof theseimages produced the following values of the
system resolution: 450 and 250 um at 10 and 20 MHz,

BRYSEV et al.

respectively. The images in Figs. 23c and 23d were
obtained in the same conventional way but in the pres-
ence of an aberration layer. At both frequencies, they
demonstrate an almost total masking of the object.

Theimages obtained using phase conjugation of the
second harmonic (10 MHz) of the incident wave in the
presence of the layer are given in Fig. 24. In this case,
the (@) first and (b) second harmonics of the phase-con-
jugate wave (10 and 20 MHz, respectively) were
detected. Thus, the experimental conditions were iden-
tical to the case shown in Fig. 23.

A comparison of the images obtained via the two
methods indicated the following. First, both images
obtained using phase conjugation demonstrate the
effect of distortion compensation: the object becomes
visible. Thiscan be explained by the synchronization of
the phase of the second harmonic of the phase-conju-
gate wave with the phase of the fundamental compo-
nent of the incident wave, which is reconstructed by
means of the effect of time reversal (see aso Section 3).
The field distribution for the second harmonic of the
phase-conjugate wave follows the distribution for the
focused first onein the course of its propagation through
the aberration layer. The plot in Fig. 25 shows the ampli-
tude distribution of the signal along one of the lines of
the images shown in Fig. 24. The measured value of the
resolution at the frequency of 10 MHz was equal to
500 pm, and it was 300 um at the frequency 20 MHz,
which is close to the values obtained according to the
data of Fig. 18. Note again that, in this case, the phase
conjugation was performed for the second harmonic of
the incident wave generated by aradiator operating at a
frequency of 5 MHz. The relatively high noise level in
Figs. 17b and 24b can be explained by the droop of the
amplitude—frequency characteristic of the transducer
with the resonance frequency 10 MHz. It is also clear
that the distortion compensation at the frequency
20 MHz isincomplete.

Theresultsgivenin Figs. 20-22, 24, and 25 provide
grounds for the following conclusions. Over-threshold
phase-conjugation can be used successfully for the
phase conjugation of selected harmonic components of
incident radiation. The amplitude of the phase-conju-
gate wave in the case of over-threshold phase conjuga-
tion with amplification can be sufficiently high for the
wave to evolve nonlinearly in the process of propaga
tion. In this case, the aberrations introduced by the
propagation medium are compensated by both the gen-
eral properties of the effect of phase conjugation and
the synchronization of harmonic phases in the nonlin-
ear acoustic wave. The resolution obtained for acertain
frequency of the received signa (10 or 20 MHz2) is
approximately the same, independently of which (the
first or the second) harmonic of incident radiation was
phase conjugated. Therefore, in the case of radiation of
an incident wave at a frequency of 5 MHz in the pres-
ence of strong phase distortions, a higher resolution
was obtained for the second and fourth harmonics.
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Fig. 25. Distribution of the signal level along row 137 in
Fig. 24. The dashed line correspondsto the signal frequency
of 10 MHz, and the solid line, to 20 MHz [24].

Implementation of the technique of over-threshold
phase conjugation provides an opportunity to combine
spectral selection with parametric phase conjugation
and a subsequent generation of higher harmonics. In
this case, a simultaneous growth of the system resolu-
tion and compensation for phase distortionsin acoustic
images are observed. It is necessary to note in conclu-
sion that, due to the high amplification realized in the
case of over-threshold phase conjugation, the scheme
considered above can be also used with higher harmon-
ics, for example, the third and fourth ones.

CONCLUSIONS

The experimental and theoretical results described
above demonstrate many fundamental features of the
phenomenon of phase conjugation under the conditions
of nonlinear propagation of ultrasonic waves. As has
been demonstrated above, a violation of the invariance
of the acoustic field with respect to time reversal under
the conditions of phase conjugation with amplification
does not prevent automated retrofocusing of phase-
conjugate wavesin dispersionless nonlinear media. The
compensation for phase distortionsintroduced by inho-
mogeneity of the propagation medium is observed in
the retrofocusing of a phase-conjugate wave not only in
the linear propagation mode but also under the condi-
tions of a cascade harmonic generation up to the forma-
tion of shockwave profiles. It is demonstrated that the
retrofocusing in an inhomogeneous refractive medium
is observed in both the phase conjugation of the funda-
mental harmonic and the sel ective phase conjugation of
the single harmonic components of the incident nonlin-
ear sound wave.

Theresults obtained can serve asabasisfor the appli-
cation of phase conjugation in nonlinear ultrasonic imag-
ing. The possibility of combining the advantages of the
phase-conjugation technique and harmonic imaging
with simultaneous compensation for phase distortions
and a higher resolution of acoustic imaging is demon-
strated.
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The experiments described above reveal the good
prospects for the utilization of phase-conjugation
amplifiers operating in the over-threshold mode of
magnetoacoustic parametric interaction as an efficient
instrument for physical studiesin nonlinear acoustics.
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Abstr act—M easurements of response, gain, and noise immunity are carried out for an underwater compensated
additive receiving array with randomly spaced hydrophones that is moored at the bottom of aman-made |ake with
multimode sound propagation. The in-sea locating ability of a similar array is demonstrated with the sources of
noiselike signals at frequencies of 5-100 Hz. A dedicated numerical processor isdeveloped and tested for process-
ing the signals received by arandom underwater array. © 2004 MAIK “ Nauka/Interperiodica” .

Receiving underwater acoustic arrays moored at the
sea bottom are used for monitoring ship traffic in
watched regions [1]; for exploring biological [2], seis-
mic [3], and other sources of sound signals; and for
studying sound propagation in the ocean. If some
hydrophones fail or shift from their positions, the array
elements become randomly spaced with a mean dis-
tance b > A/2 between the array nodes (A isthe acoustic
wavelength). By using the methods of acoustical posi-
tioning, one can measure the coordinates of the shifted
hydrophones and, by properly compensating the array,
restore its working ability [4].

Thetheory [5—7] offersaway of obtaining the char-
acteristics of random compensated thinned arraysin a
homogeneous medium that does not distort signals. In
natural underwater waveguides with inaccurately spec-
ified parameters and multimode propagation, the calcu-
lations of the array characteristics prove to be unreli-
able and experimental studies become important. In
natural environments, the array response, rather than its
directivity pattern, [8, 9] is usually measured. In some
cases, it isadvantageous to perform such measurements
in freshwater basins of sufficient size [9]. Such naviga-
ble basins are close to coastal sea regions in character
of sound propagation and in sources of ambient noise.
With some restrictions, data from measurements car-
ried out in freshwater basins can be recal culated to the
conditions of searegionswith an appropriate scale fac-
tor K, which characterizes the increase in all sizes,
including the acoustic wavelength. In comparison with
in-sea experiments, the freshwater measurements are
much less expensive, simpler in implementation, and
not limited by meteorological factors and time.

This paper reports on the measurements of the
response, gain, and noise immunity of a randomly
thinned compensated additive array in the Ivan’ kovskoe
freshwater man-made lake (the so-called Moscow Sea).
The specific feature of this lake is an abnormally low

velocity ¢, = 100-300 m/s of the compressional wavesin
the upper layer of the bottom sediments, which is caused
by the presence of small methane bubbles produced by
anaerobic bacteria [10-13]. Similar values of ¢, = 76—
168 m/s have been obtained in a freshwater basin in the
USA [14].

According to measurements at kH = tand r/H > 2-3,
normal-wave (mode) sound propagation takes place in
the lvan’ kovskoe lake [10]. Here, k= 217A, r isthe hor-
izontal distance between the transmission and reception
points, and H is the lake depth. At t< kH < 6.5, only
the first mode propagates (for single-mode propaga-
tion, the experimental data agree with the calculations).
At kH > 6.5, modes of thefirst and higher orders prop-
agate [10].

In view of the aforementioned considerations, let us
use the approximate expressions proposed in [12]:

p(t) = por Pexp(iwt)

N 1
xS my “exp(-imyr)sin(lz)sin(1,2), W
n=1

2 2.1/2
m, = (k _ln)
1/2

= [K* = (T/H)* —imtp,c,n’/pf HY -,

= (1+I8), €= puCylwpH,, N = 2Hy/A,
b

Hp = H+AH,

where p(t) isthe varying sound pressure, t is the current
time, r isthe distance, p, is the amplitude of the sound
pressure normalizedtor = 1 m, i isthe imaginary unit,
w = 27T, f is the frequency, m, and |,, are the horizontal
and vertical components of the wave vector, n is the
ordinal number of the mode, N is the maxima number

1063-7710/04/5006-0641$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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Tablel
f,Hz |H, m|H,m|Hg,m| kH kr N Ne
290 | 37 | 38 | 47 48 | 914 1 1
400| 39 | 40 | 49 | 112 |1261 2 1
3150 | 44 | 45 | 54 | 621 |993.2| 19 8

of the propagating mode, and AH = 0.15 m. A point
omnidirectional sound source is at a depth z,.

At ¢ < 1, one can set |, = ntyH,, and the phase
velocity of the signdl is
V= c[1 = (N\/2Hp)2] 2. )
The amplitude of the nth mode takes the form
Pa(r) = Por P exp (=0t *sin(1,2o),

(3)
m, = [K=(nrH)

The attenuation coefficient of the nth mode can be
written as

a, = puC,enAp F2HI[I — (MA2HY) A%, @)
and the amplitude distribution in thismode is
Pu(2) = sin(Ttnz/Hy)sin(tnzy/Hy). )

The aforementioned expressions were confirmed in
alaboratory experiment with the use of an experimental
system maodeling the underwater sound channel with
the given parameters and pressure-rel ease boundaries.
Qualitatively, the equations were also confirmed in
measurements [12] performed at the lvan’kovskoye
lake at afrequency of 3200 Hz with kH = 27.7.

In [13], the sound pressure and oscillation velocity
computer-calculated with a more accurate agorithm
were compared with the data obtained at the
Ivan’ kovskoye lake on the propagation of atonal signal
at N> 1. A qualitative but not quantitative confirmation
of the calculations was demonstrated. At kr > 1, the
phases of the modes are rather sensitive to changes in
their phase velocities under the influence of varying
depths and acoustic parameters of the bottom along the
propagation path. One cannot measure these parame-
ters with the required accuracy and detail, and reliable
calculations are impossible. However, the calculations
can serve as qualitative estimations and for the elucida-
tion of the experimental data.

Let us proceed to our experiments at the
Ivan’ kovskoye lake. First of all, the propagation con-
ditions were tested on the experimental path. The
depths were measured, and the water and sediments
were sampled along the path. Water temperature, wind
speed, and the height of wind waves were periodically
measured. The temperature was constant within the
water layer and equaled +7°C. The water salinity
proved to be lower than the sensitivity of the probe

BARDYSHEV

(less than 1%0). The calculated sound speed in the
water was ¢ = 1434.8 m/s. The wind speed was lower
than 2 m/s with aresulting rms elevation of the surface
of o =2 cm, which was much lower than the acoustic
wavelength <A; hence, the surface scattering was
weak. The distance wasr = 72 m, and the depths along

the propagation path deviated from the mean value H
by £0.9 m with a horizontal roughness scale of about
30 m. Table 1 summarizes the depths H, and H at the

transmission and reception points, the parameter kH ,
and the cal culated higher numbers N and N, of the prop-
agating and energy-dominating modes. The latter
modes are treated as those that, in total, contain 90% or
more of the signal energy at the distancer. Thedifferent
depthsin the measurements at different frequencies are
caused by the variable operation regime of the nearby
hydroelectric station and overflow dam during the
experiment. According to Eqg. (4), the attenuation coef-
ficient of the modes is approximately proportional to
n?, and the modes with numbers n > N, are strongly
attenuated at kr > 1. The quantities N and N, were cal-
culated according to Egs. (1)—(4).

The sound source was deployed on a cable at the
depth z,, which was measured from the water surface to
its geometric center. Thelifting device wasinstalled on
a platform mounted on piles. At the distancer = 72 m
from the source, a marked vertical mast, along which
the receiving hydrophone could move, was bottom-
moored. The mast was aso used to measure the water
level and the depth H. The ratio of the signal to the
interfering noise was higher than 20 dB. Figure 1 shows
the measured and calculated dependences |p(2)| of the
signal amplitudes on depth. The calcul ations were per-
formed according to Egs. (1)—(5). At frequencies of 290
and 400 Hz, the experimental dependences agree well
with the calculated ones. At 290 Hz, the first mode is
the only propagating one, while at 400 Hz the first and
second modes propagate. However, the attenuation
coefficient of the second mode is relatively high, and
the first mode predominates at the reception points. The
data obtained agree well with the model of the under-
water sound channel with pressure-release bound-
aries, whichisgiven by Egs. (1)—5). At the frequency
3150 Hz, the measured dependence |p(z)| does not coin-
cide with the calculated one but rather corresponds to
the interference of at least five energy-dominating
modes. These results are in qualitative agreement with
the channel model at hand.

On the whole, these results agree well with those
obtained earlier [10-13]. In further calculations, Egs. (1)—
(5) are used, and, according to the recommendations of
[10], the following values are specified: ¢, = 200 m/s
and p, = 1950 kg/m?.

On the extension of the path used in measuring
[p(2)|, arandom antennaarray was bottom-moored. The
signal source was at the same point specified earlier:
Z,=3mandH, =4.7 m. A continuous noise signal was
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Fig. 1. Calculated (dashed curve) and measured (dots and crosses) depth dependences of the pressure amplitude for tonal sound
signals. The amplitudes are normalized to their maximal values. The distance is 72 m from the source. The signal frequencies are
asfollows: f = (a) 290, (b) 400 (crosses indicate the results of a repeated measurement), and (c) 3150 Hz. According to [12], the

value of H isincreased by 0.15 min the calculations.

transmitted in the frequency band 2500-3000 Hz with

the central frequency f = 2750 Hz. At ¢ = 1434.8 m/s,
the mean acoustic wavelength A = 0.52 m corresponded
to the latter frequency. The array was mounted on aflat
rigid frame and then bottom-moored. The number of
hydrophones was J = 8, and their centers were at a
height of 0.5 m above the bottom. The depth of the

basinwas H = 4.2 m on the path and at the point where
the array was placed. Figure 2 shows the layout of the
experiment. The array isinscribed into a rectangle with
the dimensions 7.5 x 2.5 m. The random offsets of the
hydrophone phase centers from the ones shown was no
greater than 0.5 cm. The position of the array relativeto
the transmission point was determined by a measuring
tape and amended by acoustic means. In the latter pro-
cedure, the source of the noise signal was replaced by a
sparker that was deployed at the same point A and emit-
ted intense short pulses. The difference in the arrival
times t;; of the sound pulses was measured at the
receiver points 1 and j with the standard deviation ot =
1.3 x 107 s. The standard deviation of the distance dif-
ferences from point A to points 1 and j is or; = U,at,
where U, is the calculated group velocity of the first
mode. In our case, U, = c and ory; = 0.02 m at frequen-
cies of several kilohertz. According to the layout of the
experiment, the length of the array baselineisd = BC =
7.5 m = 14.4A. The rms deviation of the array nodes
from the baseline is 0.8 m. The rms deviation of the
nodes from those of the equivalent equidistant linear
array with the parameters N = 8, d = 7.5 m, and the
internode distance b = 1.07 mis 0.37 m along the base-
line. The array can be treated as a thinned one, because

ACOUSTICAL PHYSICS  Vol. 50
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b > A. The distance from the transmission point to the
array center is AD = r = 112.7 m with kr = 1361.8.
Table 2 summarizes the cal culated mode parameters at
point D. It is permissible to assume that the sound field
isformed by six initial modes at the array nodes. Modes
of higher numbers undergo strong attenuation in their
propagation or are only weakly excited.

In processing the outputs of the array hydrophones,
powers of both signals and noise were measured along
with the normalized cross-correlation functions of the
signals and noise received by pairs of hydrophones, the
array response as afunction of the compensation angle,
and the noise immunity of the array. A standard algo-

Fig. 2. Layout of the experimental random array in the hor-
izontal plane: (1-8) the array nodes; (BC) the array base
line; (DE) the perpendicular to the center of line BC (the
directrix); and (A) the transmission point. The distance to
the transmission point iSAD =r = 112.7 m; 5= 32°.
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Table?2
n apn Vy, M/s [Pnl/ IP4l
1 2.19 x 10°° 1434.4 0.66
2 8.82x 104 1445.2 0.77
3 2.02 x 1073 1458.6 0.54
4 3.62x 1073 1478.0 1.0
5 5.74 % 1073 1504.1 0.17
6 8.85x 1073 1537.8 0.15
7 1.18 x 1072 1581.0 0.005

rithm for processing the output of an additive compen-
sated array was used:

Q J 2

Dasp(e) = z DZ psp][t Tl](e)]D ’ (6)

ql]

where D,q,(0) is the measured array responsg, i.e., the
energy of the signal plus noise at the output of the pro-
cessing system at the compensation angle 6; q is the
ordina number of the signal sample; | is the ordina
number of the node and the corresponding array chan-
nel; J is the number of nodes; Pg; is the amplitude of
the input signal plus noise for the gth sample; T; (0) is
theinstrumental delay timein the jth channdl relative to
the first one at the compensation angle 6; T1,(0) =
d;jsinB/v,, B4 = (8 + 6y); 6;; is the angle between
the line connectlng the first and jth nodes and the
array baseline; and d;; is the distance between the first
and jth nodes. The trme of signal accumulation is

= (Q - D/fy, where f; is the sampling frequency. In
our case, Q=4096and T=0.2s.

Thus, the signal processing procedure consisted of
the time compensation in each array channel, then the
summing and squaring of the signals, and, finally, their
accumulating over the realization with duration T.

Daxp(e)/Daxp(:izo)
1.0

0.8
0.6
04}

0.2F

120 60 0

]
240
0, deg

0 |
150 300

Fig. 3. Measured array response versus the compensation
angle 6. Theresponse is normalized to its maximal value at
6 =0,
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The array response D,,,(6) to noise was determined
according to Eq. (6), Where the quantity pg; was
replaced by the noise sample p; at aswitched- off srgnal
source.

Upon averaging over al array channels at the input
of the processing system, the energy Dy, of the signal
plus noise, the energy D, of noise, and the energy D of
the signal were calcul ated asfollows:

J
sp - J z z psp](tq) Dp = %qzljzl p;ZJj(tq)a

q=1j=
D, = Dy, —D,.
The input signal-to-noise ratio averaged over al
channelsisE = DyD,, and, in our case, E = 1800 and
Ds=Dg,

The array response to the signal is D,(0) = D,g,(6) —
Dy(6). Thesignal-to-noiseratio at the output of thepro—
cessing system is Ey(6) = [Dg(0) - ap(e)]/D () =
Dasp(0)/Dp(8), Ex(0) > 1, and D(6) = asp(6) In our
case.

Figure 3 shows the measured dependence of the
array response for the compensation angle 6. This
dependenceisnormalized toitsmaximal valueat 6 = 6.,
The side lobes of the response are irregular, which is
common to arandom array, and all side lobes are lower
than the main one in their levels. The maximal level of
the sidelobesis0.56; thisvalueis 2.5 dB lower than the
level of the main lobe. Thus, a unilateral bearing of a
single sound source can be measured. The mean level
of the side lobes, which isequal to 0.21, ismuch higher
than the value of 1/E = 5.5 x 10, and, therefore, the
external noise practically does not distort the array
response.

The mean level of the side lobes must be closeto the
value 1/J = 0.125, which is 2.3 dB lower than the mea-
sured level, if thesignal isfully correlated (Ry; = 1) over
the array aperture for the compensation angle 0, and if
theinterfering noiseisfully decorrelated (Ry; = 0 i £])).

The measured angular width of the mainlobein the
array responseis A8, = 7° at alevel of -3 dB. For the
sake of comparison, we estimate the width A8+ of the
main lobein thedirectivity pattern of alinear compen-
sated array with our values of d, A, and 6. According
to[15],

AB; = 0,-0,, elz—arcsrn%nesilw —.t @

If A\=V,/f =0.52m, we obtain A8; = 5°.

The observed increase in the width of the main lobe
and the deterioration of other array characteristics can
be attributed to the decrease in the spatial signal corre-
lation in the course of multimode propagation in the
underwater sound channel. To prove this statement, let
us estimate the spatial correlation of the signal in view
of the phase velocities of the energy-dominating
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modes. Let the reception pointsi and j be positioned at
the same depthsin avertically stratified waveguide and
at the distances r; and r; from the transmission point:
r,—ry=Ar > 0. A noiselike signal with a uniform spec-
trumin the frequency band w, —w, = Aw > 0 propagates
as a sum of energy-dominating modes with the ordinal
numbers 1, ..., N, which have equa amplitudes and
phase velocities v, ..., vy, Vy— Vv, = Av > 0. At point
i, the phaseof atonal signd with frequency w, is¢;(w,) O

-y w7

for the frequency W, at point j. If the instrumental time
delay At = Ar/v, isintroduced into the signal at point j,
the phase of the signal will be within theinterval ¢;(w;) [

} Similar relations are valid

_ho _5h_Am
[ng ik Wy ™ Vlﬂ at the frequency w;.

Then, for the frequenciesw, and w, at pointsi and j, the
maximal phase difference of the signals will be
bijm(Wy) = Wl%—'rl‘A/‘; and §jjn(W,) = Wz?/rl‘A/: The
cross-correlation function r;; of the tona signals at
pointsi and j isrelated to their phase difference as fol-
lows: R;; = cos¢;;. Specifying ¢;; = ¢;,/2 for the mean
phase difference of the noiselike signal, we arrive at the
following estimate:

Dijm(W,)
I cosxdx

Wy

1
J ¢IJ(W2) ¢Ij( 1)

_ ansij(Wz)—S'nqiij(Wl)
qjij(WZ) —q5ij(W1)
At Oijm(W)), ijm(W,) < 1, SinX= X —X*/6, and

R;j =

1 ArAvy
Rj=1- 24%?/VE(VV§+W1W2+W§)
le rAv
- 654‘3/ D(f+ff+f2) )
_ o TCArAV I 1A _
- 1- 2vaND[1 35 } fo = JFif

Equation (8) shows the need for limiting the array
size, the central frequency, and the operative frequency
band in order to retain the spatia correlation of the sig-
nal over the array aperture. In addition, for lower signal
frequencies, the correlation undergoes a lower loss due
to scattering by random inhomogeneities in the under-
water sound channel and to errors in positioning the
array nodes.

In our measurements, f; = 2500 Hz, f, = 3000 Hz,
V; = 1437.4m/s, vy = 1537.8 m/s, and Av = 100.4 m/s,
and according to Eq. (8), R; 2 0.5 at Ar < 2.5 m. This
condition is met for the array nodes with numbers 2 to
ACOUSTICAL PHYSICS  Vol. 50

No. 6 2004

645

5, for which the aperture is d,s = 3.56 m and the angle
is B, = 2°. Hence, only haf of the array efficiently
works. Actually, Eq. (7) yields the following value for
asolid array with d,; = 3.56 m and 6, = 2°: AB;=7.5°,
which is close to the measured value.

With a full correlation of the signal at all array
nodes, the array gain isK;=20logJ. At J =8, K =
18.1 dB. In our case, the measured gain value is K, =
10logD,.(65)/Ds = 15.5 dB. The gain loss AK = K —
K. = 2.6 dB iscaused by the signal decorrelation. It can
be shown that

K = 10log{ J[(J-1)R+ 1]} )

if the signal powers are equal at al array nodes. Here,

R is the normalized cross-correlation function aver-
aged over al channel pairs:

R= 3062 1)ZZR'J’ %]

i=1lj=1

In our measurements, R = 0.5, J= 8, and, according
to Eq. (9), K=15.5dB.

Some loss in the gain may be caused by errors in
positioning the array nodes. This loss can be estimated
by the following formula [4]: AK = -10log[1 —
(2ar/A)?]. In our case, or = 0.02 m, A = 0.52 m, and
AK =0.15 dB.

According to [1, 15], the following expression can
be used to estimate the noise immunity Ttof an additive
array with equal signal-to-noiseratios at all its nodes:

J J J J
n= 1OIogZ z Rij/z z Ryj-

i=1j=1 i=1j=1

Here, Ry; is the normalized cross-correlation function
of noisein the pairs of nodeswith numbersi andj. With
Rjj=0ai#jandR,;=1ati=], weobtan

M = 10log[(J-1)R+1].

(10)

(11)

In our case R = 0.5, Ry = 0, and, according to
Eg. (11), N = 6.5 dB. The measured vaue is I, =
10logE,/E = 6.8 dB. With afull correlation of the sig-

nasR;=1andJ=8Tl;=10logJ =9dB. Thelossin
noise immunity due to the signal decorrelation will be
AN =nM,-MN,=22dB.

Thus, the observed deterioration of the useful prop-
erties of a randomly thinned additive compensated
array, namely, the broadening of the main Iobe in the
array response, the increase in the level of the side
lobes, and the losses in the gain and noise immunity,
can be explained by the decorrelation of the signalsin
the course of the multimode waveguide propagation
rather than by the drawbacks of the array itself. In such
an environment, the same losses would be aso
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observed with an equidistant half-wave array with the
same length. The measured losses were no higher than
3 dB. The array retained the ability to indicate the uni-
lateral bearing of the noise source, and, hence, it till
could operate efficiently.

On the basis of the results obtained, a dedicated
numerical processing system (DNPS) was developed
for processing signals of random fixed and drifting
arrays. In acompact casing of the DNPS, the following
devices were mounted: a 16-channel analog-to-digital
converter, adedicated processor, and adisplay terminal
at which the information was displayed in digital and
graphical forms. The frequency band of the input sig-
nalsis 2-100 Hz. The sampling frequencies are 250 to
2000 Hz. The accumulation time is 8.2 to 65.6 s. The
maximal length of the compensated array is3 km along
the direction to the source. The coordinates of the array
nodes are entered into the processor by a keyboard. An
operation mode is possible when the array nodes are
automatically positioned with the use of pulsed or con-
tinuous noiselike signals that are emitted from two or
more spaced points. Up to 32 lobes of the directivity
pattern can be formed, along with up to seven distance
focusing zonesif the sourceisin the Fresnel zone of the
array. Four responses of the array can be stored in the
system memory. The operator can display a chosen
response. From each array lobe, the signal can befed to
an additional external device, either in analog or in dig-
ital form.

The DNPS wastested in combination with an exper-
imental fixed underwater receiving array that waslinear
and equidistant. The array was laid on the bottom of a
sea shelf slope at adepth of 460 m. At the array nodes,
omnidirectonal hydrophones were placed at steps of
10 m. The array received the signals in the frequency
band of 5-100 Hz.

For processing by the DNPS, 16 hydrophones were
chosen and were randomly spaced at 1060 m. These
hydrophones formed a random linear array with a
600-m aperture. With the DNPS, 32 lobes were formed
within a sector of 180°. Because of the symmetry of the
array, similar lobes were also formed on the other side
of the array baseline. Thus, an all-around scanning took
place, which resulted in a bilateral bearing: two bear-
ings that were symmetric about the array baseline cor-
responded to each noise source. The signalsreceived in
each directivity lobewerefed to adigital spectrum ana-
lyzer with aresolution of 1 Hz. Simultaneously with the
acoustic measurements, the searegion was surveyed by
a radar station. The acoustic observations were per-
formed for severa days. One to six noise sources were
detected in the area scanned by the array. The spectra
analysis showed the existence of harmonic components
in al detected noise sources, which is characteristic of
signals produced by rotating ship propellers. According
to the radar observations, most of the noise sources
detected were ships passing at distances of 10-50 km
from the array. In some cases, the array—DNPS system

BARDYSHEV

detected the sounds of rotating propellers that were not
identified by the radar. The acoustically obtained bear-
ings coincided with those detected by the radar to an
accuracy of 1°-2° near the array directrix and 10°-20°
near the array baseline; these values corresponded to the
calculated widths of the lobes of the directivity pattern.
The angular accuracy of the radiol ocation was about 1°.

The experimental measurements and the tests carried
out in the freshwater basin and in the coastal sea region
demonstrated the possibility of using long, fixed, bot-
tom-moored compensated additive arrays with random
hydrophone positions for locating sources of noise sig-
nals that propagate in an underwater waveguide in the
form of a sum of norma waves. Also, the efficiency and
reliability of the system developed for the processing of
signals received by along (up to 600 m) random array
werereveaed at frequencies of several tens of hertz.
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Abstract—The method of active impedance matching is applied to the well-known problem of an acoustically
transparent body. Two laws of active force control, by velocity and by pressure, are obtained for solving the

problem. © 2004 MAIK “ Nauka/Interperiodica” .

The problem of making an arbitrary body acousti-
cally transparent (nonscattering) was formulated and
solved in the 1960s by several authors independently
[1-6]. All solutions obtained at that time were based on
the factorization of the acoustic field (i.e., on the sepa-
ration of the field into the incident and scattered com-
ponents) using the Helmholtz—Huygens integral opera-
tor and on the subsequent compensation of the scattered
field component by additional sources of sound (actua-
tors). In the method proposed by Malyuzhinets[2, 3], a
body is surrounded by four acoustically transparent
closed surfaces. Two inner surfaces carry continuously
distributed sensors for measuring the pressure and the
normal velocity, which are necessary for the factoriza-
tion of the field. Two outer surfaces (also called Huy-
gens surfaces) carry continuously distributed monopole
and dipole actuators, which radiate into the outer region
and thus compensate the scattered component without
distorting the total field in the inner region. The actua-
torsare controlled by the signals received from the sen-
sors. The main disadvantage of the Malyuzhinets solu-
tion and other solutions based on the Huygens princi-
ple is the difficulty of realizing in practice measuring
and active surfaces with the aforementioned proper-
ties: these surfaces, which are covered with closely
spaced material sensors or actuators, should be acous-
tically transparent. The use of discretely positioned
transducers instead of continuously distributed ones

partially overcomes the aforementioned difficulty but
also creates other ones [7-10]. Therefore, the problem
of an acoustically transparent body, a particular case of
the more general problem of the scattered acoustic
field control, which has a wide practical application,
continues to attract the interest of researchers (see,
e.g., [10-15)]).

The present paper suggests anew way of solving the
problem of an acoustically transparent body without
using the Huygens principle. The problem is solved by
the method of active impedance matching [16], which
requires no preliminary factorization of the field. In
practice, the solution is realized by a set of vibration
sensors and actuators positioned on the surface of a
body; for example, this may be a thin active (smart)
coating. The paper presents a theoretical solution illus-
trated by an example with a spherical scatterer.

Consider an inhomogeneous elastic body placed in
a medium that is not necessarily homogeneous and
unbounded. The body occupies a volume V and is
bounded by a surface S, which is the contact surface
between the body and the medium. In the medium out-
side the body, some sources are present. In the absence
of the body, they produce a pressure field p;(x), which
is called the incident field in the following consider-
ation. In the presence of the body, whose acoustic prop-
erties are assumed to be different from those of the
medium, the field component p(x) scattered by the

1063-7710/04/5006-0647$26.00 © 2004 MAIK “Nauka/ Interperiodica’



648

body is present. The problem is formulated as follows:
by using an additional (active) force f,(s) applied to the
contact surface and generating an active field compo-
nent p,(X), it is necessary to compensate the scattered
component so as to obtain pyXx) + p,(X) = 0, where x is
the coordinate of an arbitrary point of the medium out-
side the body.

Let usrefine the statement of the problem. The total
pressure field consists of three components:

P(X) = Pi(X) + Ps(X) + Pa(X). ey

The quantities available for the measurements are the
current values of pressure p(s) and normal velocity v(s)
of the total field at the surface of the body, s 0 S We
assume that the vibrations of the medium and the body
are linear with the conventional boundary conditions
that are satisfied at the contact surface S, namely, the
normal velocities of the body and the medium at the
surface are identical, the normal stresses in the elastic
body are equal to the pressure in the medium, and the
tangential stresses are equal to zero. The vibrations
are assumed to be harmonic in time, and the factor
exp(-iwt) is omitted in the following calculations.

The problem will be solved by the method of active
impedance matching [16], which, in the case under
consideration, is as follows. The surface Sis divided
into N small elementsAS, and, within each element, the
pressure and the normal velocity are taken to be con-
stant. Let usintroduce the vectors p and v, whose com-
ponents are the amplitudes of the forces and normal
velocities, respectively, of the total field (1) at the sur-
face S

P=[p(SPAS; ...; PSVAKIT, vV =[V(S); .. V(W] (2)

Here, 5 is the coordinate of a point of the surface ele-
ment AS. Similar notations can be introduced for each
component of thetotal field (1): for example, ps and v
are N-vectors of type (2) for the scattered field, etc.

Now, let usintroduce three square matrices of order
N: Z, Z, and Z.. Matrix Z isthe impedance matrix of the
body in vacuum. It determines the relation between the
vector of external forcesf = [f,, ..., f]" applied to sur-
face elements AS and the vector of normal velocities
v =[v,, ..., vy|" acquired by the surface elements
under the effect of these forces: f = Zv. The matrix Z; is
determined in asimilar way: it isan N x N impedance
matrix of the medium in the volume of the body, i.e.,
the impedance matrix of an isolated volume V filled
with the medium, with respect to N external forces f,,
each of which is uniformly distributed over its respec-
tive surface element AS (j = 1, ..., N). Finally, the third
matrix Z, is the impedance matrix of the medium out-
side the body, i.e., the radiation matrix of the body.
The positive direction of forces and normal velocities
at the surface Sis assumed to be the direction of the
outer normal.

BOBROVNITSKII

It can be easily verified that the field components
satisfy the relations:
pi+Zyv; =0,

ps_Zer = 01 pa_zrva = o!

_ (3)
pi + ps+Z(Vi + Vs) - O

For example, for theincident field, the quantity (—p,)
isthe N vector of forces acting on the medium enclosed
inthevolumeV from the side of the medium outside this
volume. Since, by definition, these forces are related to
the vector of response v; via the matrix Z, the first of
relations (3) is satisfied. Other relations are verified in
the same way.

Let us introduce two N x N matrices of scattering
coefficients, R and Q, for pressure and for normal
velacity, respectively, to describe the relation between
the scattered and incident field components on the sur-
face Sof the body:

Ps=Rp, Vs=Qv. 4)
Using relations (3), we obtain the formulas

Q= (Z+2)(Z-2) = (YZ,+1)(YZ-1), )
R= (Y, +Y)(Y,=Y) = (ZY, +1)(2Y, - 1),

where | isthe unit matrix of order N; and Y=Z1, Y, =
Z*,andY, = Z* aremobility matrices. Formulas (5)
represent the generalization of the known Fresnel for-
mulas, which describe the scattering (reflection and
transmission) of plane waves by flat obstacles, to an
arbitrary case of scattering. From Egs. (4) and (5), it
follows that the scattered field is completely deter-
mined by the three impedance matrices introduced
above and, naturally, by the incident field. From these
formulas, it aso follows that the scattered field is
absent and the body is acoustically transparent only if
the impedance matrix Z of the body in vacuum isiden-
tical to the matrix Z; of the medium enclosed in the vol-
umeV of the body; i.e., if the body does not differ from
the medium in terms of the response of the surface Sto
an external acoustic action. In particular, this means
that none of the bodies, neither active nor passive, with
a locally responding surface, i.e,, with a diagona
impedance matrix Z, can be acoustically transparent,
because the matrix Z; of the medium is nondiagonal.

Let an active force vector f, = [f,, ..., fan]" be
applied to the surface S of the body, where f is the
resultant of active forces acting on the surface element
AS. Then, the velocity vector given by Eq. (2) takesthe
form

v =V, + Qv+ (Z+Z)'f,. (6)

Assume that the active forces are proportional to the
amplitudes of the total normal velocity of the surface:
f, = Av, where Aisthe matrix to be determined. Substi-
tuting this expression in Eq. (6), we obtain that the total
No. 6
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velocity v of the surface is equal to the velocity of the
incident field, v;, on the conditionthat A=Z—-Z;. It can
be easily verified that, in this case, the total pressure p
on the surface coincides with the pressure p; of theinci-
dent field. Thus, under the effect of active forces

fa=(Z-2Z)v, )

the total field at the surface of the body does not differ
from the incident field; i.e., the scattered field compo-
nent proves to be compensated by the active compo-
nent. Consequently, the active field component aso
compensates the scattered component at any point out-
side the body (this statement can be proved, e.g., by
using the Helmholtz—Huygens integral) and the body
becomes nonscattering.

Now, let us assume that the active forces are propor-
tional to the pressure amplitudes of the total field given
by Eqg. (2) at the surface S f, = Bp. Then, from Eq. (6),
in the same manner as above, we obtainB=1 - ZY;, and
the active forces

fa= (I - ZY)p, ®)

applied to the surface of the body also completely com-
pensate the scattered field, which makes the body
acoustically transparent.

Thus, two laws are obtained for controlling the
active forces—EQs. (7) and (8)—and these laws solve
the problem under study. If law (7) is used, the active
forces are proportiona to the current velocity ampli-
tudes measured on the surface of the body. In the case
pertaining to law (8), the active forces are proportional
to the pressure amplitudes of the total field, which are
measured at the surface of the body. To decide which of
thetwo lawsis preferable, one should consider the spe-
cific (additional) conditions of the problem, for exam-
ple, which quantity is measured with the higher accu-
racy or whether or not the body itself isasource of radi-
ation. However, in both cases of control, either by
velacity or by pressure, the matricesZ and Z; (or ;) are
assumed to be known. The impedance matrix Z; of the
medium in the volume of the body is calculated from
the density of the medium p, the velocity of sound in
the medium c, and the geometric parameters of the
body. The matrix Z of the “dry” body can be calculated
in simple cases. In the general case, it can be obtained
experimentally by measuring the scattered field with a
special excitation by external sources of sound. One of
the versions of this method is described in [17].

The above consideration suggests the following
conclusions. An arbitrary body can be made acousti-
cally transparent by active methods only. No passive
coating can make the body nonscattering in the general
case. When any active method is used, the active forces
must act on the whole closed surface of the body, and
the control over these forces must be global in the sense
that the active force applied to each surface element
depends on the field amplitudes measured on all other
surface elements. No active system with local control
(when each active force is only controlled by the field
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measured at the point of its application) can provide a
complete compensation for the scattered field compo-
nent (except for certain limiting cases). Finally, from
the solution presented above, it follows that the prelim-
inary factorization of the field (the separation of the
scattered component) is not necessary for solving the
problem: the body can be made nonscattering by using
the active forces that are controlled by the current
amplitudes of the total field at the surface of the body.

As an example, let us consider a spherical body of
radius a in a homogeneous unbounded space. The aim
is to make this body acoustically transparent by using
an activeforce of type (7) or (8) distributed over its sur-
face. This problem can be solved analytically, and,
instead of dividing the surface of the body into ele-
ments, it is more convenient to use continuous depen-
dences and impedances with respect to the forces dis-
tributed in spherical harmonics.

Let an incident field pi(r, ©) (where r and 6 are
spherical coordinates), generated by some externa
source, be present in the space in the absence of the
body. For simplicity, thisfield is assumed to be axially
symmetric (independent of the third coordinate). At the
surfacer = a, thefield can be expanded in spherical har-
monics ,(0) as

P(28) = Y Pubn(8), Vi(a.8) = ¥ viy(8).

The expansion coefficients of these seriesarerel ated
by the formulas

L P in(ka)
in — ) o1 )

Zin in(ka)
Here, the quantity Z;, is the specific impedance of the
medium in the spherical volume of radius a with

respect to the external action in the form of the nth
spherical harmonic applied to the surfacer = a.

Now, let us place aspherical elastic body of radiusa
a the coordinates origin. The properties of this body
with respect to continuously distributed external
actions are assumed to be axially symmetric and,
hence, can be characterized by a set of surface imped-
ances in vacuum Z, (wheren= 0, 1, ...), which corre-
spond to distributionsin spherical harmonics. The pres-
ence of the body gives rise to a scattered field of the
form

Zi, = —ipc =01...09

c ha(k
P(1.6) = Y PO
n=0 n

At the surface of the body, the pressure and the
radial velocity of thisfield are expressed as

P(2,6) = 3 Pulin(0), V(a8 = § Vo (8),
n=0 n=0
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where
. h.(ka
Vg, = %‘ Zn= Ipch?gka;’ =01,.. (10
rn n

are the specific impedances of the exterior of the body,
or, in other words, the radiation impedances of the body
vibrating in spherical harmonics. At the surface of the
body, the following boundary conditions are satisfied:

p|n+psn+zn(vln+ VSn):O7 n:07 132»'”-

Substituting Egs. (9) and (10) in this expression, we
obtain the nth scattering coefficients for pressure and
velocity (by analogy with Egs. (5)) in the form

Rn - &1 _ Yin_Yn

- Zin_Zn
pin an + Yn,

Zrn + Zn.

4
Q = 50 =
" Vin

Let usapply avelocity-controlled active force to the
surface of the body:

00

fa(e) = Z Vn(zn_zin)wn(e)l

n=0

(11)

where v, isthe amplitude of the nth spherical harmonic
of the current radial velocity component of the vibrat-
ing surface of the body. For this velocity amplitude, the
following equation of the type of Eq. (6) isvalid:

Vh=Vint anin_ ann-

Thisyields v, = v;,,, and, performing some smple trans-
formations, we obtain p, = p,,. Thus, active force (11)
completely compensates for the scattering. In asimilar
way, it can be shown that a pressure-controlled active
force aso completely compensates for the scattered
field component and makesthe body acoustically trans-
parent.

BOBROVNITSKII
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Abstract—This study is devoted to the development of the ray theory of diffraction in application to arbitrary
(nonconvex) smooth obstacles in the scalar case. A three-dimensional problem is considered. An asymptotic
method of estimating the diffraction integrals is described. The method is based on the multidimensional sta-
tionary phase approach. The diffraction integrals are obtained on the basis of the generalization of the Kirchhoff
physical theory of diffraction. Explicit expressions are derived for the pressurein the reflected wave in the cases
of its single and double reflections. © 2004 MAIK “ Nauka/Interperiodica” .

A precise investigation of the scattering of high-fre-
guency waves by surfacesin continuous mediaencoun-
ters considerable difficulties when the wavelength is
much smaller than the average size of the obstacles[1].
In this case, numerical methods, such as the finite-ele-
ment and boundary-element methods, require a grid
with alarge number of nodes, which leads to an insta-
bility in the calculations.

To overcome this difficulty, different asymptotic
approaches have been developed, such as the Keller
geometrical theory of diffracted rays, the Kirchhoff
theory, creeping waves, etc. Analytical methods suit-
able for this class of problems are described in detail
in[2-5].

The main limitation of the ray methodsis related to
the fact that they mainly apply to convex obstacles,
because only for these objects can the “light” and
“shadow” zones be easily separated.

Among the recent publications, one should note the
paper [6], which uses a method based on the analytical
continuation of the scattered field, the idea of which
dates back to Rayleigh’s works.

The diffraction problem is considerably compli-
cated when the boundary surface of the scatterer allows
rereflections of waves. In principle, multiple reflections
can be studied in terms of the ray rereflections, for
example, on the basis of the Keller geometrical theory
of diffraction. However, no publications can be found
to provide the formulas for multiple reflections in an
explicit form. Only particular two-dimensional prob-
lems are known [ 7], the solutions to which are obtained
for reflectors of canonical shape in the case of twofold
reflections.

The aternative method developed in this paper is
based on the study of the Kirchhoff multiple diffraction
integrals with the use of the multidimensional station-

ary phase approach. The proposed method makes it
possible to represent the amplitude of the rereflected
wave fidd in a unique explicit form for an arbitrary
number of rereflections from the surface of one or sev-
eral scatterers [8]. The present paper is devoted to the
study of aparticular case of twofold reflections, which,
in the framework of the proposed method, provides the
basis for studying the problem of an arbitrary number
of multiple reflections.

Let usfirst describe the method for determining the
pressure in asingly reflected wave.

Let a high-frequency monochromatic spherical
wave originating from a paint x, of an acoustic medium
be incident on the surface S of an obstacle. One of the
main informative parameters of the scattered field isthe
pressure in the reflected wave at a point x. The pressure
in the reflected wave is known to be determined by the
direction of the wave incidence and by the small vicin-
ity of the point of specular reflection, y* U S Hence, for
higher frequencies, the pressure in the reflected wave
can be determined in terms of the ray concepts on the
basis of the stationary phase approach. This approach
was used earlier in solving the planar problem [9, 10].

If any ray of the form of x, —y — x isreflected from
thesurface S(y O S) only once (Fig. 1), then, according
to the Kirchhoff physical theory of diffraction, the pres-
sure p(x) inthereflected wave is determined by theinte-
gral [11]

p(x) = _[_[Zpi”‘:(y)g—fds, M
Yy
S

provided that the boundary S of the obstacle is acousti-
caly hard, i.e., dp/on|s= 0. Here, p'"(y) is the pressure
in the incident wave at the boundary S, @ is the poten-
tial of thefundamental solution (Green’sfunction), n,is
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Fig. 1. Single reflection of a high-frequency acoustic wave
from a smooth obstacle.

the outer normal to the surface Sat the point y, kisthe
wave number, and

P"(y) = |xo— Y| " exp(ik|xo—Yi),
@ = (4m) " x -yl "exp(ikix—yl).
For kK — oo,

2

0P _; kcosy(4m) Hx -y~
any (3)

x exp(ikix—y)[1+OK™],

where y is the angle between the normal n, and the
direction of incidence of theray x,—V; X, — Y| and [x—V|
are the distances between the points x, and y 0 Sand
between the points x and y, respectively.

When the ray is incident from the point x,, the sur-
face S has a point y* where the ray intersects it and
where the normal to the surface together with the inci-
dent ray determine the plane in which the reflected ray
lies. Let us denote |, — y*| = L, and |[x — y*| = L. Then,
from Egs. (1)—(3), we obtain the following basic repre-
sentation (the nonoscillating functions are factored out
from under the integral sign):

_ ik cosy .
PO = 5o T jsjexp(ukmds, @

0 = [%o—yl +Ix-yl.

Theray representation can be obtained from Eq. (4)

by using the stationary phase approach[12]. When esti-
mating integral (4), it is necessary to take into account
the pointsy from asmall vicinity of the point y*. Let us
relate the small vicinity of the point y* [ Sto the right-
handed coordinate system determined by the normal
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and the surface curvature lines at the point y* [ S Then,
an arbitrary point y O Sfrom the vicinity of the point y*
will have the coordinates y[As,, As,, —0.5(k,(As))?> +
k,(As))?)], where As, and As, are the arc increments

along the curvaturelines, k, = R;" andk, = R," arethe
principal curvaturesand R, and R, arethe principal cur-
vature radii of the surface S at the point y* 00 S and
k,(As))? + ky(As,)? is the second quadratic form of the
surface at the point y* of surface Swith respect to the
curvature lines.

Let us apply the cosine theorem to the triangles
Xoy*y and xy*y:

% —¥" = Lo+ |Ag” - 2Lo|AS cosTxgy* y, )
Ix—yI? = L%+ |Ag*—2L|AS cosOIxy*y.

From the scalar product of the vector {cosa, cosp,
cosy}, which isthe unit vector of y*x,, with As = {As,,

As,, —0.5[(k,(As))? + ky(As,)?]} and the scalar product
of the vector {—cosa, —cosp, cosy}, which is the unit
vector of y*x, with As, we obtain

|As coslIx,y*y = As,cosa +As,cosp
+0.5(ky(B8,)* + ky(Bs,)°) cosy,

|AS cos[Ixy*y = —As,cosa —As,cos
+0.5(ky (As,)? + ky(AS,)?) cosy.

If we ignore the quantities that are small compared
to (As))?, As As,, and (As,)?, from Egs. (5) we obtain the
representations

|Xo—Y| = Lo—As,cosa —As,cosf

+0.5(Lg'sin“a + k, cosy)(As,)’

— Ly coso cosBAS,As,

+0.5(Lg'sin’B + k,cosy)(As,)?,

[x—y|l = L+As,cosa +As,cosf
+0.5(L 7 sin"a + k, cosy)(As,)’
— L " coso cosBASs,As,
+0.5(L7"sin’B + k,cosy) (As,)°.
Hence,
0 = Lo+ L+0.5d;,(As)’ + dpAs,As,
+0.50,,(As,)?,
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where
_ -1 -1\ 2 .
d;; = (L +L7)sin"a + 2k, cosy;
dy, = —(Lg" + L") coso cosp;

dy, = (Lg"+ L) sin’B + 2k, cosy.

The absence of thefirst degrees of As, and As, inthe
phase ¢ means that the point y* of the direct ray reflec-
tion corresponds to a stationary value of the phase ¢.
Thus, the principal term of the asymptoticsof integral (4)
is determined by the coefficients multiplying (As,)?,
As,As,, and (As,)? and can be derived from Eq. (4) by
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applying the two-dimensional stationary phase
approach [12]:
exp][K(Lo+ 1) +2(5,+2) ]
O 4 0
p(x) = cosy

LoL./|det(D,)|

where D, is the Hessian of the symmetric structure
(dj=d;i,j=1,2)and , = signD, isthe difference
between the numbers of positive and negative eigenval -
ues of matrix D,.

With alowance for the equality d,, = d,,, the final
result has the following form:

exp%[k(Lo w1+ 05, + 2)}5
O 4 0

p(x) =

Here, K = k;k, is the Gaussian curvature of the sur-
face S at the point y* and {—cosa, —cos3, —cosy} is
the vector that determines the direction of incidence
of the ray x, — y* in the chosen coordinate system.

For formula (6), we consider two limiting cases. If
k, = k, = 0, EQ. (6) yields the known result for the
pressure in awave reflected from aplane: p(x) = —(L, +
L)-'explik(L, + L)].

In the case of backscattering in the far field,
Eqg. (6) coincides with the representation given in [11]:

PO = 0.5i L2 /RlRZexp[i DKL, + 5525}.

Formula (6) was derived for the case of a high-fre-
guency wave incident on a convex surface. If the wave
is incident on a concave surface, the principal curva
tures k; and k, should be considered as negative.

Formula (6) for the pressure in a wave singly
reflected from an acoustically hard surface is given in
[13]. There, it isderived in terms of the Keller geomet-
rical theory of diffraction. This means that the principal
term of the asymptotics of the diffraction integral coin-
cides with the result of calculating the pressure in the
reflected wave with the geometrical theory of diffrac-
tion. At the sametime, the application of the Keller geo-
metrical theory of diffraction, whichisbased onthe use
of divergence coefficients, becomesfairly cumbersome
even in the case of a twofold reflection. If we consider
the problem of an N-fold (N is arbitrary) reflection of a
high-frequency wave from a surface, it is more conve-
nient to rely on the estimate of a 2N-fold diffraction
integral using the multidimensiona stationary phase
approach. For studying the general case of an arbitrary
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J(Lo+ L)+ 2L0L (Lo + L) (kosina + kysin®B) cos 'y + 4L2L2K

(6)

number of rereflections, the basic problem is that of a
twofold reflection, which is considered below.

A direct application of the Kirchhoff approximation
is impossible in this case [4], because it does not
describe multiply reflected waves. If in Green’sformula
we replace p"(y) by the geometrical-optics primary
field, the Kirchhoff approximation will yield a singly
reflected wave. A twice-reflected wave is obtained only
when the boundary pressure p"™(y) includes both the
primary field and its single reflection. To solve the
problem of the twofold reflection, we begin with the
modification of the Kirchhoff approximation [4]. We
determine the twice-reflected waves by performing the
integration over the vicinity S, of the second point of

specular reflection y5 for the rays obtained as a result
of the single reflection from the vicinity S, of the first
point of specular reflection yi . This modification

means that, when determining the principal term of the
asymptotics of the fourfold diffraction integral, we
operate in the framework of calculating the pressure
amplitude in the twice-reflected wave in terms of the
geometrical theory of diffraction.

Let us consider the secondary reflection of the ray
Xo— Yi — Y5 — X, issuing from the point x, and arriving
at the point x; (Fig. 2). The points y; and y5; may
belong to one surface or to two different surfaces. The

pressure at the point of reception, p(X;), is given by the
formula

p(xe) = gzp(yz)g’—;tdsz.
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Fig. 2. Doublereflection of a high-frequency acoustic wave
from a smooth obstacle.

Here, p(y,) is the pressure in the incident wave at the
point y, O S, of the vicinity of the point y3 ; this pres-
sure is determined after the first reflection from the
vicinity S, of the point y;.

At the same time, the pressure p(y,) is expressed by
asimilar formula

p(Ys) = HZp‘“(yl)g—idsl.
S,

Taking into account that the pressure

inc

P"(y1) = [Xo—Yi| " exp(ik|Xo—yi|)

determinestheincident field caused by the point source
Xy, We can write the following basic representation:

0k ? cosy, Cosy,

PO%) = (5 oL HU e%ds,ds, (7)

O = |Xo=Yi| + Y1 -V +|Y2—Xq,

x * * * (8)
|Xo—Y1| = Lo, |Y1—y2| = Ly, |YZ—X3| = L,.

As in the case of a single reflection, we relate the
vicinities of the points of direct specular reflection,

y; O0S andy; OS, to the right-handed Cartesian
coordinates determined by the normalsn, and n, and by
the curvature lines. Along the curvature lines, we deter-

mine the arc lengths As{” and AsY” in the vicinity Sl
@

of the point y; and the arc lengths As(f) and As;
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thevicinity S, of the point y3 . Asabove, for small As(li)

and AsY) (i =1, 2), we obtain
[Xo—Yi = Lo—As;’cosa, —As” cosp,

+0.5(Lg sina, + kY cosy, ) (As! 1))

— Ly cosa, cosp,As{VAsy”

2
+0.5(Lg'sin"B, + K5 cosy,) (8sy”)
Vo= X4 = L,—As, cosa, + Asy’ cosB,

+0.5(L; sin’a, + k¥ cosy,) (As! 2))

— L, cosa,cosB,As?Asy?

+0.5(L; sin’B, + k¥ cosy,) (A 2’)
Let usfind theterm |y, — y,| = V.Y, | in the phase ¢ given
by EQ. (8). We consider this distance in the coordinate
system related to the point vy . In this coordinate sys-
tem, we denote the coordinates of the pointsy,(&,, N,, {,),

yl(El’ nl’ Zl)! and y;_r (E(ﬁi’ n(:z’ Zg) Then1 we r@resent
the vector y,y, in the form

VoY1 = Y2 Y1 +AYIYi— Y3 Yo,
Yo¥1 = {€1—-€,N1—N2 G —GF 5
yiye = {& % ¢},

vy, = {as), a8, 05k (as) + kP (as) )}

i =1,2.
Here, thematrix A= (ay) (i,] = 1, 2, 3) isan orthogonal
matrix determining the change from the basis of the
Cartesian coordinate system at the point y; tothebasis

of the Cartesian coordinate system at the point y7 .

Note that the second integral in Eq. (7) isonly deter-
mined by the distances [, — V|, [y, — Y»|, and |y, — X;| and
by the shapes of the surfaces S, and S, and does not
depend on their rotation about the ray y; — y; when
the relative positions of S, and x, and the relative posi-
tions of S, and X, are retained. In this connection, in the
case of thetwofold reflection of theray x,— Y7 — Y5 —Xs,
when the surfaces S, and S, with the planes formed by

the normal n, and theray x, — y; and by the normal n,
andtheray y5 — x;, respectively, rotate asasolid whole

about theray yi — Y5 , the pressure p(x;) at the point x,
will remain unchanged. In what follows, we consider
2004
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the pressure p(x;) whentheray x,— yi — Y —X; liesin

asingle plane.
Then, the elements a; of the orthogonal matrix A
have the form
Caud - 0cosB, 0
0 O = Gy cospi0
(Pl [—cosa ]
[cosa 4]
—cosa;J_ - [1C0s(y; +Vs) |,
[1C0SBA]
(Rad] 4 -cosPy]
O = Gy, cosa, [ O
(B [cosa,

[cosa 4]
—cosf; 7 0cos(y1 +Ya) |,
fcosPBz

[ud]  [G-cosOflsin(y; +Y,)
0O 0=0 —
[Pod] [1COSBg SNY2

%BG]H _ BCOSO(]Dsin(yl +Y2)
[Red] [COSB  SNV:

ag3 = —C0s(Y; +Y,), Gy = siny;siny,.

With allowance for the properties of an orthogonal

matrix and with the relations

0 0 0
a1+ ayn; +ayl;

L,(a;;cosa, + a,, Cosf3, + a, Cosy,)

= L,cosq,,

0 0 0
A&7+ ANy + axnl;

L,(a;,cos0, + a,,Cosf3, + a5, cosy,)

= L,cosp,,

0 0 0
A13&1 + ANy + ax(y

L,(a;5c0s0, + a,3CoS3, + a53cosy,)

= —L,cosy,

the term |y, — y,| in the phase ¢ given by Eq. (8) is

reduced to the form

2
lyi—ys = Li+ Z (—1)”1{As(1i)c030(i
i=1

0 R N )
+A52 COSBI + bI(ASl ) + CI(ASZ ) }

2
—L;*cosa; cosB,AsVASY + z mijAsi(l)Asﬁz’},

j=1
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L, O Oo+0 ,dcosy;
C0J

by Losnfapn ko
0.0 = 0570 , G+0 008,
Osin’B,0 kD

0 _ { Loeos’ag] KD }

O S\Lyg , 0+0 ,0cosy,
2N Ocos’B,0 kD
Oy _ 0 cosP, 0
O O = (L:Gy) ! cosPB;[J O
Mo ] [1-COSO 1]
[1COS0 4]
— COsa 1 [] 0Q12 |
[1CoSB4]
My _ 0 cosB, 0
0O 0= —(LiGyp) ' cosa; ] O
0MA] [-COSO 1]
[ICOSO ]
+ cosB,[J 0Q1 |,
[1cosBo]

Q., = COSy,CoSY,.
Hence, we have
b = [Xo=Yi + Y= Yo +]Y2— X
= Lo+ L, +L,+ 050y, (A + d,ASDASY
+ dypASAS? + dyAsPAs? +0.5d,,(As57)
+ 0SS + dys; AsS + 0.5055(As)’
+dy,ASPAS? + 0.5d,,(AsP),

where
] ~ _ Dsinzajjj (11)D
i = (L' +LH0O , 0+20 ]GOS,
247 Osin’B,0 k5“0
Msg7 . msnfag 0
g0 = (L11+ Lzl)lj , 0+20 (Z)DCOSVZ'
(O] Osin'B,0  [ky'O
dy, = —(Lg" + L") cosa, cosp,, )

ds, = —(L;" + L") cosar,cosP,,
dig = My, dyy = My, dyz = My, dy = My,
The absence of terms with the first degrees of As]’
(i,j =1, 2) inthe phase ¢ showsthat the pointsy; 0 S
and y; O S, of thedirect ray reflection correspond to a
stationary value of the phase ¢ (Eqg. (8)).
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The fina result can be obtained from Eq. (7) by
applying the stationary phase approach [6]:

[l u
o0 | k(Lo+ L+ L)+ 7(8,+4)
O L]

p(xs) =B , (10)

Lol L,/ det(D4)|
where B = cosy,cosy, and D, = (dy) (i,j =1, 2, 3, 4) is
the Hessian of the symmetric structure with its ele-
ments d;;, i < j being reduced to formula (9). Here, 8, =
signD, isthe difference between the numbers of posi-
tive and negative eigenvalues of the matrix D,.

Explicit expressions (6) and (10) obtained above
show that the pressure p(x) in the reflected wave is
determined by the principal curvatures, the Gaussian
curvature of the surface at the points of specular reflec-
tion, the distances between the points of specular
reflection, the distances of these points from the source
of waves and from the point of reception of the reflected
wave, and the directions of the incident waves.

The method devel oped above is asymptotic. Formu-
las (6) and (10) for calculating the amplitudes of singly
reflected and a twice-reflected waves, respectively, are

valid forkd > 1, kRS > 1, and kR > 1, whered is
the characteristic size of the scatterer and R(lm)

and
R (m= 1, 2) are the principal curvature radii of the
surface at the points of specular reflection y; and y5 .

The proposed method opens up the way for deter-
mining an expression in a closed form for the ray
amplitudein the case of an arbitrary number of rereflec-
tions of acoustic or elastic waves.
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Characteristics of Sound Signals on a Quasi-Stationary Track
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Abstract—Experimental data are presented on the measurement of the cross-correlation coefficients and the dif-
ferencesin the arrival times (temporal spectra) of acoustic signals transmitted through a 210-km-long quasi-sta-
tionary track in the Atlantic Ocean. At the summit of the Josephine Seamount, a continuous pseudonoise signal
was emitted in the one-third-octave band with amean frequency of 630 Hz. The signal wasreceived at theAmpere
Seamount by a 40-m flexible vertical array with a directivity pattern in the form of a static fan of 32 lobes. The
width of each lobewas~3°. At asignal-to-noiseratio of about 3 dB and with an incompl ete resol ution of multipath
signals by the array, the correl ation coefficients reached a value of 0.48. The rms fluctuations of the differencesin
the arrival times varied from 1.8 to 3.1 ms depending on the signal arrival angles. The factors responsible for the
low correlation coefficientsand therelatively high fluctuations of the arrival time differences are discussed. Appar-
ently, one of the factorsis the presence of short-period internal waves. © 2004 MAIK “ Nauka/Interperiodica” .

Recently, particular emphasis has been placed upon
the problems of sound propagation in complicated
acoustic oceanic conditions. Many publications are
devoted to modeling the sound fieldsfor the case of sig-
nal propagation in ashallow sea, on acoastal shelf, and
in the presence of internal waves [1-4]. However, to
make theoretical predictions about the sound field
structure that corresponds to actual characteristics and
their variability is rather difficult in many cases, espe-
cialy in complicated conditions of sound propagation.
Inlight of this, it is necessary to carry out experimental
measurements on stationary tracks with a subsequent
comparison of the field data with the results of calcula-
tions.

Theinterest in studying acoustic signal propagation
on a coastal shelf or on continent slopes is dictated by
the necessity of constructing stationary hydroacoustic
systems. These are necessary for monitoring certain
oceanic regions, aswell asfor the reception of acoustic
signals caused by some large-scale natural phenomena,
such as, e.g., underwater earthquakes generating tsu-
nami. In these cases, it is necessary to take into account
the spatial and tempora features of the sound field
structure that are caused not only by the hydrological
characteristics of a specific oceanic region but by the
bottom relief aswell.

It is known that the reasons for the instability of
sound waves propagating in a water medium can be
both spatial-temporal variations in the oceanic charac-
teristics, primarily in the sound velocity field, and a
change in the positions of the transmission and recep-
tion points, for example, during an experiment with
drifting ships. In order to separate the influence of the

spatia instability of the experimental geometry from
that of oceanic spatial-temporal variations on the char-
acteristics of signals propagating between the source
and the receiver, an attempt was made to construct a
stationary track. To construct such a track in the open
ocean with depths of several kilometersis a very diffi-
cult problem. Therefore, for carrying out such investi-
gations, two research vessels (transmitting and receiv-
ing) were anchored at the summits of the Josephine and
the Ampere seamounts. The seamounts are located in
the eastern part of the Atlantic Ocean, near the Strait of
Gibraltar. The ocean depth around them reaches 4000—
4900 m.

Let us consider acoustic-hydrological conditions of
the experimentsin more detail.

Just before the ships were anchored, extensive topo-
graphic surveys were made in the region of the sea-
mounts. For example, Fig. 1la presents the results of
such a survey around the Josephine Seamount, and
Fig. 1b shows the image of this seamount that was
obtai ned using special echo sounders. Several duplicate
images of the summit of this seamount in Fig. 1b were
obtained because of the multiple reflections of the
echo-sounder pulse from the summit itself and from the
ocean surface. It is seen that the summit represents an
amost smooth plateau with very steep (up to 30°)
slopes.

In accordance with the data on the bottom relief in
the region of the selected seamounts, the transmitting
ship was anchored at the summit of the Josephine Sea-
mount at the sea depth H ~ 180 m, while the receiving
ship was anchored at the summit of the Ampere Sea-
mount, at H ~ 140 m. The separation between the points

1063-7710/04/5006-0657$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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Fig. 1. (8) Results of atopographic survey around the Josephine Seamount and (b) the relief of the seamount obtained by a special
echo sounder. The cross indicates the position of the emitting ship.

of emission and reception was ~210 km. As is known,
the length of train cables put overboard is usually
greater than the sea depth by afactor of 1.5. Therefore,
the positions of the ships could be changed within some
limits determined by both the length of the train cables
and thewind situation or the underwater currents. Since
possible changes in the distance between the sound
source and the receiving system are generally small,
such tracks are commonly considered to be stationary.
However, in astrict sense, the experiments were carried
out on atrack that should be considered to be quasi-sta-
tionary.

In connection with the fact that the slopes of the sea-
mountsin the immediate vicinity of their summitswere
within 15° to 30°, the ocean depth reached 4000 m at a
distance of 20 km from the sound source and at a dis-
tance of 30 km from thereceiving system. The maximal
depth along the propagation track was ~4900 m. Thus,
the sea depth exceeded 4 km for the major part of the
210-km-long track of sound-signal propagation. The
source was put down to adepth of 110 m, and the center
of a40-m receiving system was at a depth of 55 m. Fig-
ure 2 shows the general bottom relief along the track,
and theinset in the middle of thisfigure showsthe mea-
sured depth dependence of the sound velocity c(2).

As is seen, the sound propagation conditions are
characterized by the presence of the two coupled
waveguides: the underwater sound channel with itsaxis
at adepth of ~500 m and the underwater sound channel
withits axis at adepth of ~2000 m. During the acoustic
experiments, the wind speed at the emission and recep-
tion points varied within 8-10 m/s. On the ocean sur-
face, the wind waves predominated and the surface

state corresponded to Beaufort 1V (the rms deviation of
the surface was 0.3-0.5 m).

The experiments were carried out as follows. An
omnidirectional sound source carried by the ship that
was anchored at the Josephine Seamount emitted acon-
tinuous pseudonoise signa in the one-third-octave
band from 560 to 710 Hz with a mean frequency of
630 Hz. The multipath signal was received on the other
ship anchored at the Ampere Seamount with the use of
a40-mvertical line array consisting of 296 nonequidis-
tantly arranged receivers. The latter were combined
into 74 phase centers. Being formed digitally, the static
fan of 32 lobes of the directivity pattern provided the
survey of the angular structure of the sound field in the
vertical plane in the range of +48° (here, the plus and
minus signsrefer to the signals arriving from above and
from below, respectively). At the mean signa fre-
guency of 630 Hz, the spatial resolution for each of the
32 lobes of the directivity pattern was ~3° (at the level
of 0.7). Note that the correlation interval determined by
the frequency band of the emitted signal was 7 ms.

For the correlation processing, we took only the
lobesthat wererelated to the signal arrival anglesin the
vertical plane and that had the highest signal-to-noise
ratio. The cross-correlation coefficients were deter-
mined, as were the arrival-time differences (the so-
called temporal spectrum) between the signal s received
by different lobes of the static fan, i.e., between the sig-
nals received under different angles.

Let us consider now the results of the correlation
processing of the signals.

Figure 3 (on the left) shows the signal amplitudes A
received by three lobes of the directivity pattern of the
ACOUSTICAL PHYSICS  Vol. 50
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Fig. 2. Genera bottom relief along the 210-km-long track and the sound velocity profile (the inset in the middle).

static fan. The amplitudes averaged over a one-second-
long realization of the received signals are represented
on alinear scalealong the ordinate axis; the observation
time (in minutes) t is represented by the abscissa; the
interval between the measurementsis 1 min. The slope
angles of the lobes of the directivity pattern of the static
fan a are indicated on top: a, = 2.7°, a, =-6.7°, and
05 =—5.4°. Itisnecessary to notethat all amplitudesin
the realizations under consideration (Figs. 3a-3c) are
normalized by the same maximum value that occurred
in one of them. Asareference for calculating the cross-
correlation functions, we choose the signal that had the
maximal signal-to-noiseratio. It is taken from the real-
ization for which the temporal amplitude variations of
the signal and its spectrum are shown in Fig. 3a. In each
of the plots of A(t) (Figs. 3a—3c), the first values (the
thicker lines) alow usto estimate the levels of interfer-
ence arriving under the indicated angles a, since they
wererecorded at theinstantswhen the useful signal was
not emitted.

The energy spectra Sf) of the received signals are
shown on the right of Fig. 3 (on the logarithmic scale).
As seen from the curves Sf), the signal-to-noise ratio
in the frequency range of 0.56-0.71 kHz does not
exceed 3 dB. The small value of the signal-to-noise
ratio in the experiment is explained not only by the
lossesin the signal levels dueto reflection from the bot-
tom and partially from the rough surface of the ocean
but also by the relatively high noise of the working
mechanisms of the receiving ship. In particular, the
center of the receiving array was at a distance of 55 m
from the ship hull, while the upper receivers were
only at adistance of 35 m from it.

The dependences of the cross-correl ation coefficient
R on the time delay T that were obtained by averaging
over 1.024 s are shown in Fig. 4. The cross-correlation
coefficient Risrepresented on the linear scale along the
ordinate axis, and the abscissa represents the delays t
ACOUSTICAL PHYSICS  Vol. 50
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between the signals in the interval of £100 ms. Here,
16 sequential redlizations R(T) corresponding to a
15-min observation are presented for two pairsof direc-
tions of the signal arrivals. Figure 4arefers to the case
in which the determination of the cross-correlation
between the signals falling into two lobes of the direc-
tivity pattern, one of which is directed under the angle
o, = 2.7° and the other under theangle a, = -6.7°. Fig-
ure 4b shows similar plots of the cross-correlation
between the signals with the arrival angles a, = 2.7°
and a; = -5.4°.

The multimodal character of R(1) is a consequence
of the multipath propagation. It is caused by the fact
that some signals, although they propagate over various
rays, have very close arrival angles and, therefore, fall
into a common lobe of the array directivity pattern. As
seen from Fig. 4, practically every subsequent realiza-
tion R(1) differs in the form of its correlation peaks
from the previous realization separated from it by only
al-mininterval. In addition, many realizations contain
different numbers (in some cases, up to 5-7) of correla
tion peaks. Naturally, the cross-correlation coefficient
for each of the signals received by two different lobes
of the directivity pattern noticeably decreases. Thisis
related to the fact that other signals that fall in the same
lobes but that arrive outside the correlation interval
determined by the frequency band play the role of sig-
nal-generated noise. Therefore, the values of the corre-
lation coefficients, even for the largest peaks in every
redlization, are small and liewithin 0.32-0.44 for thesig-
nals with the arrival angles a; and a, and within 0.27—
0.48 for the signals with the arrival anglesa, and a;.

Thetemporal spectra, i.e., the set of arrival-time dif-
ferences of the same signal received by various lobes,
are presented in Fig. 5. For the signals with the arrival
anglesa, and a,, they are shown in Fig. 5a, and for the
signals with the angles a, and a, in Fig. 5b. Here, the
time delays T corresponding to the positions of the cor-
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relation peaks onthe T axisin Fig. 4 are represented by
the ordinate, and the instants of their recording, by the
abscissa. Various symbols correspond to different val-
ues of the cross-correlation coefficient |R|: the dark cir-
clesrefer to |R| = 0.3, and the crosses, to |R| < 0.3. In
spite of theinstability of the delays T, one can trace sev-
eral more or less stable components in the temporal
spectra (Fig. 5). They precisely indicate that severa
signalsfall into the samelobes of the directivity pattern.
These signals propagate with the different arrival times
over various rays, which can be resolved in the correla-
tion processing. These components have the mean val-
ues of arrival-time differences ~-3, ~13, and ~43 ms
for the signals with the turning angles of thelobesa, =
2.7° and a, = -6.7° (Fig. 53), aswell as 0 and ~14 ms
for a, = 2.7° and a; = -5.4° (Fig. 5b). The rms fluctua-
tions o, (averaged over 9-15 measurements) vary
within 2.1-3.1 and 1.8-2.5 ms, respectively. These val-
ues of o, exceed similar values obtained in the experi-
ments studying sound propagation in an underwater
sound channel through the same distances in the deep
ocean.

A specia feature of the ray pattern of sound propa-
gation shown in Fig. 6a is the clear separation of the
raysinto two groups: one part of the signals propagates
only in the upper sound channel, and the other group
travels over the whol e thickness of the waveguide. The
calculation of the sound-field structure on the track
under study showed that the energy signals propagating
only in the upper sound channel have launch angles at
the source located over the summit of the Josephine

Seamount that do not exceed ~+5°-6°. In this case, the
signals are reflected no less than once from the sloping
bottom at the seamount summit. All the rest of the
energy signals traveling over the rays with launch
angles greater than 6° are also reflected from the bot-
tom, but now they pass over the whole waveguide thick-
ness. In the region of the Ampere Seamount, the signals
again are reflected from the sloping bottom and arrive
at the receiving array. The rays corresponding to the
arrival directions of these signals are shown in Fig. 6b.
Considering this end segment of the track, one can see
three groups of rays. According to the calculation, each
group contains several rays with close grazing angles.
One group has the arrival angle ~2°, the second has
~-8.5°, and the third, ~—6°.

Itisprecisely these three groups of signalsthat were
received in the experiment by three lobes of the static
fan of the directivity pattern of the array. Therest of the
29 lobes of the fan did not detect the signals, because
the latter were below the noise level. The reception of a
great number of the signals by each of the three lobes
of the pattern resulted in both the multimodal character
of the correlation functions and the decrease in each
separate peak. In addition, the structure of the correla-
tion functions undergoes noticeable changes within one
minute.

However, such variability of the temporal spectra
and the correlation coefficients should not be directly
related to the fact that the measurements were carried
out on a quasi-stationary track, i.e, under certain
changes in the distance between the emitting and
2004
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receiving systems because of the underwater currents
and the wind effect on the anchored ships. Under the
conditions of a quasi-stationary track, the separation
between the ships during such a short time could be
changed due to the above-mentioned factors only by
several tens of meters (2030 m). Moreover, asthe cal-
culations show, the distance between the anchored
ships during the whole experiment (under very adverse
conditions) could be changed by no more than severa
2004

ACOUSTICAL PHYSICS Vol.50 No. 6

hundreds of meters (200-300). Such changes, when
operating in the deep ocean at distances of ~200 km, do
not lead to noticeable modifications of the sound field
structure. Itisknown, for example, that even on drifting
ships the correlation characteristics of the signals, as
well as the angular and temporal spectra of the sound
field, prove to be stable and reproducible in subsequent
measurements [5—7], including during operation on the
deep-water part of thetrack under study [8]. A quitedif-
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ferent situation arisesin our case, in which the emission
and reception points are located in shallow water with
a sloping bottom. Their movement relative to the bot-
tom changes the sites from which the signals are
reflected, and the reflections are different for various
rays. Therefore, small changes in the positions of the
corresponding points influence in different ways the
temporal delays of signals falling onto the same lobe,
although the signals propagate over different rays.
However, calculations show that a small displacement
of the correspondents, which may happen during one
minute, should not lead to such changes of the field
structure as were observed in the experiments.

Another reason for the sound-field variations and,
apparently, the main one, may be the short-period inter-
nal waves that are related to the presence of a pro-
nounced thermocline (Fig. 2). This thermocline is
located at depths from 65 to 110 m, where the sound
velocity varies by 10.5 m/s. As the depth increases, the
sound velocity decreases to the very bottom at each of
the seamount summits but with smaller gradients. First,
such a depth dependence of the sound velocity leads to
a gituation in which all the rays are reflected from the
bottom at very short initial and end sites of the track (as
we noted previously). Second, in the test regions on
shallow-water parts of the track in the thermocline,
short-period internal waves must be present. Their
upper frequency corresponds to the Brunt—Vaisala fre-

GALKIN, PANKOVA

guency. Thelatter isdetermined from thefollowing for-
mula (see, for example, [9]):

=
NI

gdp gt _ rgdeo

pdz ™A ~pdzd”

where N isthe circular frequency, g isthe gravitational
acceleration, p isthe water density, zisthe depth, and ¢
is the sound velocity in water.

For the aforementioned velocity difference, Ap =

1.33 x 10~ g/cm? and, therefore, 3—2 =2.9 x 107 glem?;
then, N= 1.7 x 10 s7!, and the minimal period of an
internal waveis T = 6.5 min.

Thus, the experiments described above were most
likely carried out in the presence of the short-period
internal waves with a period of 10-20 min, which is
typical for the conditions under consideration. Such
waves, asisknown, propagate with aspeed of 1-1.5m/s.
Therefore, in shallow water, the hydrological condi-
tions in the narrow upper water layer, even within one
minute, continuously varied, which caused changes in
the vertical ray refraction. It should be noted that, con-
trary to horizontal refraction, the internal waves affect
the vertical refraction for any direction of their propa-
gation relative to the track. A variable vertical refrac-
tion in the upper layer leads to much greater spatial
changes of the sites on the sloping bottom where the
signal reflections happen, as compared to the small
movements of the corresponding points in space, with
all ensuing consequences.

Having considered the results of the experiments on
the quasi-stationary track including the Josephine and
the Ampere Seamounts, we can sum up our results.

The correlation characteristics of continuous pseud-
onoise signals in the frequency range 0.56-0.71 kHz
and the stability of their temporal spectra were investi-
gated on a 210-km-long track.

It is shown that almost each realization of the cross-
correlation function of the signals arriving in various
lobes of the directivity pattern differsfrom the previous
realization separated by a short one-minute interval.
This is related to the fact that each lobe of the pattern
receives several signals, sometimes up to seven in num-
ber. Therefore, even small fluctuations of the signal
intensity and the travel times over the rays connecting
corresponding points lead to noticeable changes in the
shapes of separate correlation peaks.

It is shown that, because of the multipath character of
the sound propagation that |eadsto the appearance of sig-
nal-generated noise, the maximum of the cross-correla-
tion coefficients of the signals received under different
anglesin the vertical plane does not exceed 0.44-0.48.

Different factors are considered that, in a short one-
minute interval, can change the cross-correlation func-
tions and the differences in the signal-arrival times a
thesiteof thereceiving system. Itisnoted that, most likely,

N =
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Fig. 6. (a) Ray pattern of the sound field between the Josephine and the Ampere seamounts and (b) a fragment at the site of the

receiving array.

the main factor is the presence of short-period internal
waves with a period of 10-20 min, which exigt in the
region of the summits of the Josephine and Ampere sea-
mounts. Owing to this, the rms fluctuation of the differ-
encesinthesignal arrival timesreaches 2.5-3.1 ms, which
noticeably exceeds the corresponding val ues obtained at
the same distances in the deep ocean.
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Abstract—A technique is developed for measuring the modulus of elasticity of a material with a Nanoscan
scanning force microscope on the basis of measuring the dependence of probe vibration frequency on the pen-
etration depth of the needle into the specimen. This technique makes it possible to study materials with elastic
moduli from 50 to 1000 GPa. The Young moduli of dense films of carbon nanotubes oriented at angles of 45°
and 90° to the quartz substrate are measured. From their ratio, the Young modulusin the direction perpendicular
to the tubes and the anisotropy of the elastic moduli are determined. A comparison of these values with the cor-
responding values obtained for a nanotube film deposited on a silicon substrate is carried out. On the basis of
this comparison, a conclusion is made concerning the interaction between single-layer nanotubes and between
nanotubesin a mixture of single-layer and multilayer ones. © 2004 MAIK “ Nauka/Interperiodica” .

Since the discovery of a new carbon modification,
namely, carbon nanotubes, in 1991, the physical prop-
erties of these objects have been intensively studied all
over the world [1, 2]. Experiments were carried out
with both isolated nanotubes and nanotube bundles, as
well as with layers formed by various methods. These
layers may consist of oriented and disoriented nano-
tubes, and the tubes may be single-layer or multilayer
ones, integrated into bundles or not integrated. The
properties of nanotubes and their layers proved to be
unique in many respects. In particular, carbon nanotubes
have a very high value of the Young modulus (above 1
TPa), with a considerably smaller shear modulus [3];
their electrical properties strongly depend on deforma-
tion [4]; they may be in a metallic or semiconductor
state, and ballistic electron transport with zero electric
resistance is possible in them; the interior of nanotubes
can befilled with atoms of various elements; and nano-
tube layers exhibit an intense autoelectronic emission.
Every year, new prospects arise for the application of
this unique material. The layers of nanotubes are used
to produce efficient “cold” cathodes [5]; nanotubes are
filled with various materials for their storage and slow
consuption; composites are strengthened with nano-
tubes [3]; nanotubes are used in the fabrication of vac-
uum microelectronic devices; and, finally, different
ways of using nanotubes in medicine are being investi-
gated.

Since many methods exist for fabricating nanotube
layers, and every method introduces its own structural
featuresin the material, no generally recognized values
of the physical parameters of nanotubelayers have been
determined until now. A somewhat better situation
occurs for isolated nanotubes.

The present paper is aimed at studying the elastic
properties of dense layers of oriented carbon nano-
tubes. We study films of nanotubes uniformly oriented
relative to the substrate at angles of 90° and 45°. These
are of particular interest because of the anisotropy of
the physical properties of individual nanotubes. Each
nanotube in the layers has an exit both to the substrate
and to the opposite side.

The nanotube layers were fabricated by depositing
carbon atoms on a substrate surface using an electron-
beam vacuum evaporation of pure graphite. The details
of this method can be found in [6]. We used silicon and
guartz substrates. The layers on the silicon substrate
consist of amixture of multilayer tubesfrom 3to 5 nm
in diameter and single-layer tubes of diameter 1.1 nm.
The layers deposited on a quartz substrate consist, for
the most part, of single-layer nanotubes about 1 nm in
diameter. Figure 1 shows a photograph of the structure
of a nanotube layer deposited on a quartz substrate,
which was obtained using a scanning tunnel micro-
scope. The tubes are arranged in bundles with abundle
radius of 3-5 nm and a distance of 1-2 nm between the

1063-7710/04/5006-0664%$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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bundles. The bonds between the nanotubes in the bun-
diesare covalent and, between the bundles, they arevan
der Wadls.

The measurements were performed with the use of
a Nanoscan scanning probe microscope (SPM)
intended for investigating the surfaces and mechanical
properties of materias (including superhard ones) and
thin films (coatings) [7].

A piezoceramic resonator with ahigh flexural rigid-
ity of the cantilever (k, ~ 10*~10° N/m) and aresonance
frequency of about 12 kHz was used as a probe. A tri-
hedral diamond pyramid with an apex angle of about
60° was used as aneedle; the effective radius of the nee-
dlepoint is about 100 nm. The instrument makesit pos-
sible to obtain an image of the relief and a map of the
distribution of the elastic properties, as well as to per-
form the measurements of the hardness and the elastic
modulus of materias, including materials with high val-
ues of mechanical parameters (hardness up to 100 GPa
and elastic modulus up to 1000 GPa). The values of
the Young modulus and Poisson’s ratio of the needle
are E = 1140 GPaand v = 0.07, respectively.

The procedure for measuring the elastic modulus of
the material is based on recording the changein the fre-
guency of probe vibration with the penetration of the
needle into the specimen. In the process of measure-
ment, the cantilever with the needle fixed to itsfree end
vibrates in the direction normal to the specimen sur-
face. The base of the cantilever moves step by step nor-
mally to the surface, and the change in the resonant fre-
guency Af = f — f,, is measured as afunction of the dis-
placement of the cantilever base. Unlike the widely
known “loading curves,” these dependences may be
called “advance curves,” since the displacement, rather
than theload, isthe quantity represented by the abscissa
axis.

For theinterpretation of the advance curves, amodel
of the interaction of the probe with the specimen and a
model of the contact of the needlepoint with the surface
were proposed (Figs. 2a, 2b). The mechanical model of
the interaction between the probe and the specimen can
be represented as a load vibrating between two springs
(Fig. 2a). The cantilever isrepresented as an elastic ele-
ment with arigidity k. Therigidity of the contact area
is designated by k. and is determined by the magnitude
of deformation and by the elastic properties of the nee-
dle and the material under study. The model of the con-
tact of the needlepoint with the surface is constructed
under the assumption that the main contribution to the
interaction between the needle and the specimen is
made by the elastic repulsive forces caused by the
deformation of the material.

In the models, the following designations are used:
k, is the constant of flexural rigidity of the cantilever in
the direction of vibrations, k. isthe rigidity of the con-
tact area, m= kK /(27t)* is the effective mass of the sys-
ACOUSTICAL PHYSICS  Vol. 50
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Fig. 1. A photograph of the structure of a layer of carbon
nanotubes deposited on a quartz substrate; the photograph
is taken by a scanning tunnel microscope.

Fig. 2. (8) Mechanical model of the interaction between the
needle and the specimen and (b) the model of the contact of
the needlepoint with the surface.

tem, f, is the natural resonance frequency of the canti-
lever in the absence of contact with the surface, histhe
displacement of the cantilever base, o is the deforma-
tion of the needle, and T is the deformation of the spec-
imen. The elastic moduli of the needle and the speci-
men are denoted by E,, and E, respectively.

Below, by the modulus of elasticity E we mean the
quantity E = E'/(1 — v?), where E' is the Young modu-
lusand v is Poisson’sratio. Since, for the great major-
ity of materials, Poisson’s ratio liesin the range from
0to 0.5, it is the Young modulus that plays the domi-
nant part in the quantity E. For the case of hard and
superhard materials, which are characterized by high
values of elastic moduli and low values of Poisson’'s
ratio, the difference between the quantities E' and E
usually does not exceed 5%.

The solution of the equation of motion of the system
represented in Fig. 2a gives the following dependence
of the variation in probe vibration frequency on the
rigidity of the contact area:

Af = (fo/2ky)k.(h). 1)
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Fig. 3. Pressing force as a function of the depth of needle
penetration into the film for the 90° and 45° films of nano-
tubes on a silicon substrate.

The rigidity of the contact area k (h) may be deter-
mined by using the Hertz model [8]. Denoting the force
arising owing to the summary deformation h in the
Hertz model by Fy and the needle radius by R, we
obtain

E.E
E =/h. )

The final formula for the dependence of the change
in the probe vibration frequency on the displacement of
its base h has the form

k.(h) = aF,/oh = 2./R

— 1:0’\/Ez En
Af = < EEn+Eﬁ" (3)
Taking the square of Eq. (3), we obtain
(Af)? = o2h,
where
_fo/R_E, _ fo/R_.
= EEn+E_ ” E* = c,E*.

P P

It is convenient to introduce the probe coefficient c,
for describing the combined parameters of the probe
and the needle, which are usualy known with insuffi-
cient accuracy. Thus, if we construct aplot of (Af)? ver-
sus h, a straight line will be observed in the operating
range. Measuring the slope of this line and taking the
square root of its value, it is possible to determine the
value of a, which isthe main quantity to be measured.

Before the measurement, the needle and the probe
should be calibrated using a standard specimen for
determining the coefficient c,. To determine c,, the
advance curve is measured for a standard specimen
with aknown value of its elastic modulus Eg. Then, the

slope aft is determined from the curve. The value of ¢,

is calculated from the expression ¢, = a4/ E5. The pro-
posed method makes it possible to measure the elastic

GOGOLINSKITI et al.

moduli of materials with respect to a standard mate-
rial with a known modulus of elasticity. The experi-
mental evaluation of this method was carried out with
a number of specimens with known values of elastic
moduli [9].

In the experiment involving the measurement the
elastic modulus of a layer of nanotubes, the condition
E, > E was satisfied so that the correction for the nee-
dle deformation could be neglected. Then, Eg. (3) can
be reduced to

for/R
kP

In[10], the advance curves were obtained for alayer
of nanotubes deposited on a silicon substrate with an
orientation of 90° relative to the substrate.

In [11], the dependence of the pressing force F on
the displacement of the cantilever base h for 90° and
45° films deposited on a silicon substrate was deter-
mined:

f-fy= -2 CE /. @)

h

F(h) = 2k, J’f;—ofodh. 5)
0

This plot, taken from [11], isgivenin Fig. 3.

In this study, we present the results of measuring the
dependence of the sguare of the frequency shift on the
probe displacement for 90° and 45° films deposited on
aquartz substrate. The corresponding curves are shown
inFig. 4. In these measurements, the needlepoint radius
Rwas about 100 nm and the constant of flexural rigidity
of the probe k, was about 6 x 10* N/m. Figure 5 shows
the relief of the surfaces of the investigated films. The
measured map of mechanical properties (moduli of
elagticity) practically reproduces the surface relief: the
convex parts of the surface have a greater modulus of
elagticity. Asis seen from Fig. 4, there are two rectilin-
ear portions of the curves with an inflection at the pen-
etration depth of 5-6 nm from the beginning of the fre-
guency rise or 3-4 nm from the point of touching the
film surface. We believe that the modulus of elasticity
of the film is determined by the first rectilinear portion
of the curve and that the inflection and the second por-
tion are connected with the beginning of the deforma-
tion of the substrate. The first rectilinear portion for a
90° film correspondsto the value of the'Young modulus
of 100 + 9 GPa, and the second rectilinear portion
corresponds to the value of 148 + 7 GPa. For the 45°
film, the first rectilinear portion corresponds to the
value of the Young modulus of 84 + 9 GPa, and the
second rectilinear portion corresponds to the val ue of
118 + 10 GPa.

Let usbriefly consider thefactorsresponsiblefor the
decrease by an order of magnitude in the Young modu-
lus of ananotube layer compared to the Young modulus
of asingle nanotube. The main factor isthe bend of the
nanotubes. The forces required bend to a nanotube that

ACOUSTICAL PHYSICS Vol. 50
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Fig. 4. Frequency shift squared as a function of the probe displacement for the (a) 45° and (b) 90° films of nanotubes on a quartz

substrate.

Fig. 5. Surface relief for the (a) 45° and (b) 90° films of nanotubes on a quartz substrate.

isalready bent are several times smaller than the forces
required for stretching or compressing a nanotube [3].
In the specimens under study, nanotubes are combined
into bundles. In the bundles, the nanotubes are bent. An
isolated bundle of nanotubes, unlike a separate nano-
tube, has aYoung modulus on the order of several hun-
dreds of GPa [3], which is close to the values deter-
mined for the nanotube layers under study. In[12], the
elastic modulus of alayer of normally oriented nano-
tubes (produced by a similar method) deposited on
plates made of yttrium aluminum garnet was measured
using a microwave resonator. The initially measured
elastic modulus across the layer was of the order of 1
TPa. However, after two weeks it became amost three
times smaller. In [12], this effect was explained by the
self-doping of the carbon nanotube layer with substrate
atoms. A similar effect cannot be completely ruled out
in our measurements.

Below we show that, using the results of our study
and the resultsreported in [11], it is possible to find the
yet unknown Young modulus corresponding to com-
pression in the direction perpendicular to the nanotube

ACOUSTICAL PHYSICS  Vol. 50
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orientation for both silicon and quartz substrates. The
comparison of these moduli will allow usto draw acon-
clusion regarding the character of interaction between
the nanotubes.

Let us consider a layer of nanotubes oriented at an
angle 3 to the substrate (Fig. 6). In Fig. 6, instead of a
layer, a single nanotube is shown. The upper surface of
the layer coincides with the xy plane. The origin of
coordinates coincides with the needlepoint at the first
instant of contact. The pressing force of the needle F,
which is directed along the z axis, can be resolved into
two components at the point of contact: along the nan-
otube and perpendicular to it (F=F, + F,). The compo-
nent F, produces a displacement u, along the nanotube,
and the component F, produces a displacement u, in
the perpendicular direction. These displacements, to a
certain accuracy, are connected with the force F by the
relations [8]

1

TE,r’ ©)

U = Fsin(B)%lr, u, = Fcos(p)



668

X

z

Fig. 6. lllustration to the calcul ation.

where E, and E, are the moduli of easticity along and
acrossthe nanotubes, respectively, and r = (X% + y* + )2,
The displacement along the z axisis

u = u,sin(p) + u,cos(B)

_ F[Sn (B) , cos (B)} @)

TE,r TIE,r

For E, = E, = E, we obtain the relation given in [8] for
the displacement in the z direction as a function of the
applied force for an isotropic medium;

1

TEr’
Thus, for the modulus of elasticity measured in the
direction of the z axis, we can write

_ [sin’(B) . cos’(B)T"
E—[El+ EZ}. (8)

For 3 = 45°, Eq. (6) for the elastic modulus takes the
form

1 -1

Ess = 2[—1 + gj . ©
Similarly, for B =90°, Ey, = E,. The difference A in the
elastic moduli, which wewill determine for the 90° and
45° films, isequal to

A= E1%1—2[1+§1} o

10
| (10)

The relative change in the elastic modulus at the transi-
tion from a 90° film to a 45° one equals

Table
h, nm Fas(h)/Fgo(h) = b
2 0.5
4 0.29
6 0.26
8 0.27

GOGOLINSKITI et al.

1
d=é=1 2[1+El} . (11)
1

2

From the experimental value of d, we determine the
modulus E,:

E. = Elgll+(cj5

It is possible to measure the ratio b of the elastic
modulus of a45° film to the e astic modulus of the 90°
film:

(12)

b_2D1 gt
E,LE, EJ

Using the quantity b, the modulus E, can be repre-
sented as

(13)

b O
E, = Elgz =
The values of b determined for various values of h
fromthecurvein Fig. 3aregivenin thetable. Theratio
F4s(h)/Fgo(h) coincides with the ratio b of the corre-
sponding moduli.

As follows from the table, the mean value of b is
equal t00.33. Then, thevalue of b/(2 — b) is0.20, so that
E, = 0.20E,. Aswas found in the present study, E, is
approximately equal to 100 GPa, which yields E, =
20 GPafor the film on the silicon substrate. The value
of b obtained in this study for the quartz substrate is
about 0.84, which gives b/(2 — b) = 0.72. In this case,
E, = 72 GPa. Thus, the forces arising with the displace-
ments in the direction normal to the tubes proved to be
3.5 times greater for the single-layer films compared to
the films consisting of a mixture of single-layer and
multilayer tubes.

In [13], the Young moduli were theoretically calcu-
lated for a film consisting of single-layer nanotubes
arranged parallel to each other according to the triangu-
lar lattice rule. The estimates made in [13] for the
Young modulus across the tubes give a value as small
as several GPa. As is shown in the present work, the
experiment gives an order of magnitude (or even two
orders of magnitude) greater value for this modulus.

(14)
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Abstract—The properties of dit electroacoustic waves that propagate in a system of two semi-infinite piezo-
electric mediaseparated by avacuum gap, in asystem consisting of athin piezoelectric plate and asemi-infinite
piezoelectric medium separated by a gap, and in a system consisting of two thin piezoel ectric plates separated
by avacuum gap are studied. The process of transformation of dlit electroacoustic wavesto generalized surface
acoustic waves or to Lamb wavesis considered. © 2004 MAIK “ Nauka/Interperiodica” .

As is known [1-4], dlit electroacoustic waves
(SEAWS) may propagate in a system of two semi-infi-
nite piezoelectric crystalline media separated by athin
air gap. The energy of these wavesislocalized near the
boundaries of the piezoelectric half-spaces and expo-
nentially decays on both sides of the gap toward the
depth of both piezoelectric media. Mechanical dis
placementsin the two piezoel ectric mediaarerelated to
each other through the air gap by the electrostatic field
accompanying the wave. It should be noted that an
SEAW can a so propagate in more complex configura-
tions of piezoelectric media. These include, for exam-
ple, a system consisting of a thin piezoelectric plate
and a piezoelectric half-space with a gap between
them or a system of two thin piezoelectric plates sep-
arated by a gap (when the plate thickness is H = A,
where A is the wavelength). The interest in studying
thistype of waves arises from the fact that the SEAWSs
can be used in designing various kinds of acoustoelec-
tronic pressure and temperature sensors or liquid and
gas analyzers[4, 5].

An analytical caculation of the properties of
SEAWS propagating in asystem of two identical piezo-
electric half-spaces separated by a gap wasfirst carried
out in[1-3]. Inthese publications, transverse slit acous-
tic waves with displacements u, in the boundary plane
were studied, because the piezoelectric crystal cuts
considered there satisfied the crystallographic symme-
try conditions [6]. From the theory of surface acoustic
waves (SAWSs), it is known that, if the X,X; saggital
planeis perpendicular to the axis of twofold rotation of
the crystal about one of the crystall ographic axes of the
crystal, i.e., the X, Y, or Z axis, then, X, isthe direction
of propagation of the “pure’” acoustic mode (the
Gulyaev-Bleustein mode) characterized by only one
purely transverse component of mechanical displace-
ment u, and an accompanying electric potential ¢. If the
saggital planeisamirror symmetry plane of the crystal,

the X, axisisthe direction of propagation of the “pure”
acoustic mode characterized by two components of
mechanical displacement, u, and u;, and an accompa:
nying electric potential ¢ (the pure Rayleigh mode). In
all other cases, a SAW has all three components of
mechanical displacement, namely, u,, u,, and u;, and an
electric potential (¢). The same crystallographic sym-
metry conditions can be applied to SEAWS.

In this paper, wetheoretically study the properties of
the general type of SEAWS propagating in a system of
two piezoelectric crystals of any crystallographic sym-
metry. In the most general case, in both media the
SEAWS will have not one transverse u, but rather all
three components of mechanical displacement u;,
wherei =1, 2, 3. We also study the properties of more
complex SEAWSs that propagate in a system of two dif-
ferent semi-infinite piezoel ectric media separated by an
air gap, in a system consisting of a thin piezoelectric
plate and a semi-infinite piezoelectric medium with a
gap between them, and in a system of two thin piezo-
electric plates separated by a gap. We theoretically cal-
culate the basic parameters of different modes of the
SEAWS (the phase velocity V, the electromechanical
coupling coefficient K2, and the temperature coefficient
of delay TCD).

Let us first consider a system that consists of two
semi-infinite piezoelectric media separated by a vac-
uum gap whose width H is smaller than the wave-
length A (Fig. 1). Let the plane X; = 0 liein the middle
of the gap. The X, axisis the direction of propagation
of a SEAW with awave number K = 217A. The electric
energy of the SEAW islocalized within the gap, and the
mechanical displacements reach their maxima at the
boundaries of the piezoelectric media, X, = +H/2, and
exponentially decay on both sides of the gap in the
depths of the two media. If the two piezoel ectric media
are identical and have the same orientation, the distri-
bution of the el ectric potential ¢ inthe gap may be sym-
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metric or antisymmetric and, hence, in this case, both
symmetric and antisymmetric modes of the SEAW may
propagate in the system under consideration. Unlikethe
classical SAW propagating over a free surface of the
crystal, the velocity V of the SEAW depends on the
wavelength A. This spatial dispersion is related to the
presence of afinite size (the gap width H) in the given
structure and is analogous to the dispersion of wavesin
waveguides[3].

The general solution for such a wave can be
obtained by solving the equations of the elasticity the-
ory and electrostatics for both media[6, 7]. In addition,
it is necessary to use ten boundary conditions. The
mechanical and electric boundary conditions at the
boundaries of piezoelectric medial and 2 (X; = £H/2)
with agap are asfollows:

the zero values of the normal components of the stress
tensor T;; are

Tél =0, Téz =0, Téa =0 at X3 = H/2, 0
T2,20, T5=0, T%=0at X, = —H/2,

and the continuity of the electric potential ¢ and the
normal component of the electric induction D; are

o' = ¢', D; H/2,
0" = ¢°, DI =Dy at Xy = —H/2.
In the general form, the displacements u; and the

potential ¢ in each piezoelectric medium (media 1l and
2) can be represented as a sum of four partial waves

(U, = 0):
U = ApCimeXp(jKBmXs) exp[ jK (X,
= By Dimexp(jKBaXs)exp[ jK(X,

= Dg at X3 =
2

=V,
~Vt)].

3)

<
|

Here, A,, Ci» By and D, are the amplitude factors,

Bi;z are the coefficients of attenuation along the X,

axis, Visthewave velocity, and i and maretheindices:
i = 1-4 (coordinates and potential) and m= 1-4 (partial
mode number), where a summation is implied over
repeated indices m.

Substituting these solutionsinto the set of equations
of the elasticity theory, we obtain the Christoffel equa-
tions, from which we can calculate the partial wave

amplitudes C;,,, and D, ,, and the coefficients Brﬂ ?.Since
the displacement amplitudes should decay in the depths
of the media, from the complex attenuation coefficients
Bi{ ? found for thefirst and second mediait is necessary

to chose the coefficients that have a physical meaning,

i.e., that comply with the condition of the wave local-

ization near the surfaces of the two crystals.
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Fig. 1. System of two semi-infinite piezoel ectric media sep-
arated by a gap.

The electric potential inside the vacuum gap, ¢V, is
determined from the solution to the Laplace equation
and can be represented in the form

bV = (P cosh(KXs;) + P, sinh(K X))
x exp(jK(X;—Vt)).

The unknown coefficients &, ®,, A,, and B, are
determined from the set of ten complex homogeneous
equations that are obtained from the boundary condi-
tions formulated above.

The number of unknowns and the number of equa-
tions can be reduced to eight if we preliminarily express
the coefficients d, and @, in terms of the potentias of
both media at their boundaries. The two ways of deter-
mining the coefficients &, ®,, A, and B, are fully
equivalent. Then, using the Farnell-Jones approach [6],
we can determine the phase velocity V of the SEAW by
solving the set of linear homogeneous boundary equa-
tions obtained from conditions (1) and (2).

As an example, in Fig. 2 we present the calculated
dependences of the phase velocity V on the normalized
width of the vacuum gap H/A for the antisymmetric
(curve A) and symmetric (curve S) modes of the SEAW
propagating in asystem of two identical lithium niobate
piezoelectric crystals specified as YX-cut LiNbO; with
the Eulerian angles ¢ = 0°, 8 = 90°, and W = 0° [8].
From Fig. 2, one can see that the velocity of the modes
of the SEAW exhibits a dispersion and, when H/A >
0.01, the modes of the SEAW transform to a common
SAW (Vguw = 3.7178 km/s) propagating in the given
direction of the piezoelectric crystal.

If two different piezoelectric crystals or identical
piezoelectric crystalsof different cutsare used, thevery
structure of the wave becomes asymmetric with respect
to the center of the gap. In this case, the existence of
purely symmetric and purely antisymmetric modes of
the SEAW is impossible. However, solutions exist for
the distorted quasi-symmetric and quasi-antisymmetric
modes of the SEAW. The greater the difference
between the piezodectric crystals in their material
properties and crystallographic symmetry, the stronger
the distortions of the SEAW modes are. As an example,
Fig. 3 presentsthe cal culated val ues of the phase veloc-
ity of the SEAW modes propagating in a system of two
identical piezoelectric media of different crystal cuts,
namely, YX-cut LiNbO4(0°, 90°, 0°) and XY-cut

“)
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Fig. 2. Dependence of the phase velocity V on H/A for the
(A) antisymmetric and (S) symmetric modes of the SEAW
in a system of two identical piezoelectric media, YX-cut
LiNbOs.

LiNbO;(90°, 90°, 0°), separated by a gap. For these
crystal cuts, the crystallographic symmetry conditions
[6] are not satisfied. From Fig. 3, one can seethat solu-
tions exist for two quasi-symmetric modes (curves S1
and S2) and two gquasi -antisymmetric modes (curves Al
and A2) of the SEAW. As the gap width increases
(H/A > 0.01), these modes are transformed to SAWs
propagating in the YX-cut (Vgayw = 3.7178 km/s) and
XY-cut lithium niobate (Vgay = 3.696 km/s), respec-
tively.

An analysisof the properties of SEAWS propagating
inasystem that consists of athin piezoel ectric plate and
a semi-infinite piezoelectric medium with a gap
between them is of special interest, because precisely
this type of structure seems to be promising for the
development of acoustoelectronic sensors. To find the
solutions, one can use the method described above.
However, if the thickness of the piezoelectric plate H2
is comparable with the wavelength A, the energy of the
wave will be distributed over the whole thickness of the
plate and, therefore, the solution for u; in the plate
should be represented as a sum of eight partial waves
with allowance for al eight attenuation coefficients 3,
(m=1,2, ..., 8) dong the X; axis. It is & so necessary
to add four boundary conditions for the upper free
boundary of the piezoelectric plate: the zero values of
the normal components of the stress tensor T,; and the
continuity of the normal component of the electric
induction. Then, one has to solve a set of 14 complex
homogeneous boundary equations (or 12 equations, if
the coefficients ®; and @, are preliminarily deter-
mined).

DVOESHERSTOV et al.
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Fig. 3. Dependence of the phase vel ocity of the SEAW modes
on H/A in a system of two piezoelectric media: YX-cut
LiNbO3 and XY-cut LiNbO3 with a gap between them.

Figure 4 shows a family of curves representing the
calculated phase velocities of the symmetric mode of
the SEAW versus the normalized gap width H/A in a
system consisting of a piezoelectric plate made of
YX-cut quartz SiO,(0°, 90°, 0°), a vacuum gap, and a
semi-infinite piezoelectric crystal of YX-cut quartz
SiO,(0°,90°, 0°) for different values of the thickness of
the upper plate: H2/A = 0.2, 5, 6, 7, and 10 (curves
denotedasH2=0.2, H2=5,H2=6,H2 =7, and H2 =
10). From this figure one can see that, as the thickness
of the upper plate H2/A decreases, the phase vel ocity of
the SEAW mode also decreases. When the gap width
increasesto H > 0.1A, the SEAW mode transforms to
a SAW propagating in the YX-cut quartz (Veaw =
3.1605 km/s). In addition, two solutions exist simulta-
neously for electroacoustic symmetric and antisymmet-
ric Lamb modes[9, 10] propagating in the upper piezo-
electric quartz plate. These Lamb modes exhibit a
velocity dispersion. Unlike the case of a single free
piezoelectric plate, in the system under consideration
the values of the Lamb mode velocities depend on both
the plate thickness H2 and the gap width H. Figure 5
shows the cal culated dependences of the velocity of the
antisymmetric Lamb mode on the gap width H/A for
two different values of the thickness of the YX-cut
guartz plate: H2/A = 0.2 with the Lamb mode velocity
V = 1.657 km/s (curve H2 = 0.2), and H2/A = 1 with the
Lamb mode velocity V = 2.97898 km/s (curve H2 = 1).

Note that the structure considered above is funda-
mentally asymmetric with respect to the center of the
gap. Therefore, even if the piezoelectric plate and the
medium are made of the same material and have iden-
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tical orientations, the SEAW modes will aso be quasi-
symmetric or quasi-antisymmetric. When the gap width
increases, one mode transforms to a SAW propagating
along the surface of the half-space and the other mode
transforms to a Lamb mode propagating in the upper
piezoelectric plate.

In a system consisting of two thin piezoelectric
plates separated by agap, the propagation of piezoelec-
trically active modes of the SEAW isalso possible. Let
us consider the system shown in Fig. 6. Here, H1 and
H2 are the thicknesses of the upper and lower piezo-
electric plates and H is the width of the gap between
them. This kind of system is of interest because it
allows oneto study the process of transformation of the
SEAW modes. For example, if the thicknesses of the
two plates are H1, H2 > A, in the general case we
obtain two classical modes of the SEAW that propagate
in a system of two piezoelectric half-spaces separated
by a gap. As the gap width increases, the SEAW trans-
forms to the common SAWSs propagating along the sur-
faces of the two piezoelectric media. If the thicknesses
of thetwo platesare H1, H2 = A, an increase in the gap
width will lead to a transformation of the SEAW to
electroacoustic Lamb modes propagating in the piezo-
electric plates. When the thickness of one plateis com-
parable to the wavelength A and the thickness of the
other plateismuch greater than A, the SEAW will trans-
form to a common SAW propagating in the piezoel ec-
tric medium and to Lamb modes propagating in the
piezoelectric plate.

A genera solution for the SEAW in such a system
can be obtained by representing the corresponding
solutions for the mechanical displacements and the
electric potential in the form of eight partial waves
propagating in each of the plates. In this case, the num-
ber of boundary conditionswill be greater, and it isnec-
essary to find a solution to a set of 18 complex homo-
geneous boundary equations (or 16 equations).

As an example, Fig. 7 shows the calculated veloci-
ties of the symmetric and antisymmetric modes of the
SEAW (the curves marked as mode 1 and mode 2)
propagating in the system of two identical piezoelectric
plates made of langasite (LGS) with the (0°, 140°, 25°)
orientation and with the thickness H2 = H1 = A versus
the gap width H/A. Asthe gap width increasesto H/A >
0.1, the velocities of these modes tend to the velocities
of the Lamb modes propagating in the piezoelectric
plates. This means that the SEAW modes transform to
the corresponding Lamb maodes. Figure 8 displays the
calculated velocities of the fundamental symmetric and
antisymmetric Lamb modes (curves Sand A) versusthe
plate thicknessH1/A. It should be noted that, inasingle
plate, an increasein its thicknessto H1 > 0.5A leads to
the appearance of a family of electroacoustic Lamb
modes of higher orders[9, 10] (not shown inthefigure),
which transform to common SAWS as the plate thick-
ness increases. In a system of two piezoelectric plates
separated by a gap, symmetric (Vg = 2.8153 km/s) and
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between them for different values of the plate thickness:
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Fig. 7. Dependences of the velocities of the symmetric and
antisymmetric modes of SEAW (modes 1 and 2) on H/A in
a system of two piezoelectric plates made of langasite
(LGS) with the orientation (0°, 140°, 25°).

antisymmetric (V, = 2.6773 km/s) modes of the SEAW
(see Fig. 7) transform to Lamb modes with an increase
in the gap width (see Fig. 8). Finally, when the thick-
nesses of the two langasite platesare H2, H1 > 5A, an
increase in the gap width to H > 0.1A leads to the
transformation of the SEAW to acommon SAW prop-
agating over the free surface of the langasite (Vgayw =
2.744 km/s).

It should be noted that one of the difficultiesin solv-
ing the equations described aboveis that, in such com-
plex piezoelectric crystal structures, severa solutions
simultaneoudly exist for one or another type of wave.
Therefore, when searching for a specific mode, it is
necessary to chose a sufficiently narrow interval of
velocities, because, according to the Farnell-Jones
approach, the phase velocity of the wave V is the
parameter of the problem that is scanned to find the
zero determinant of the boundary conditions [6, 11].

After calculating the phase velocity of thewave, itis
possible to determine all other parameters of the wave.
Asis known [6], the electromechanical coupling coef-
ficient K2 for a SAW, which determinesthe efficiency of
the wave excitation by an interdigital transducer posi-
tioned on the surface of the piezoelectric crystal, is cal-
culated by the formulaK? = 2(V,— V9)/V,, where V, and
Vg are the SAW velocities along the open and metal-
lized surfaces of the piezoelectric crystal.

Unlike SAWSs, SEAWS propagate in a system of two
piezoelectric crystals separated by a gap. If one of the
piezoelectric crystal surfaces is metallized, the SEAW
itself disappears, because the electric field connecting
the oscillationsin the two piezoel ectric mediaprovesto
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Fig. 8. Dependences of the velocities of the fundamental (S
symmetric and (A) antisymmetric Lamb modeson H/A inan
LGS(0°, 140°, 25°) piezoelectric plate.

be shorted out, and the two half-spaces become com-
pletely isolated. However, to estimate the efficiency of
excitation of the SEAW, it is possible to determine the
electromechanica coupling coefficient K2 in a similar
way. For example, if the SEAW is excited by an inter-
digital transducer positioned on the surface of the upper
piezoelectric crystal, we have

K2 = 2(Vo=Vo)lV,, 5)

where V, is the velocity of the SEAW and Vs is the
SAW vel ocity along the metallized surface of the upper
piezoelectric crystal. If the SEAW is excited by an
interdigital transducer placed on the surface of the

lower piezoelectric crystal, we have K, = 2(Vy— Vo/V,,
whereV, isthevelocity of the SEAW and Vsisthe SAW
velocity along the metallized surface of the lower
piezoelectric crystal.

For a system of two thin piezoelectric plates sepa-
rated by agap, the value of K? for SEAWSs can be deter-
mined for a greater number of variants, depending on
the positions of the interdigital transducers (four vari-
ants of positioning on one of the four surfaces) and on
the state of each of the outer surfaces (metallized or
free) that carries no interdigital transducer.

We used formula (5) to calculate the value of KS for

the SEAW as a function of the normalized gap width
H/A in a system of two piezoelectric media consisting
of langasite LGS with the orientation (0°, 140°, 25°).

The calculations showed that the value of K/, drasti-
cally decreases with increasing gap width. For exam-
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ple, for the gap width H = 0.0001A, we obtain KS =

0.22%, and for H = 0.05, K_ = 0.0046%. This means

that the efficiency of the excitation of SEAWS drasti-
cally decreases as the gap width increases.

Itiswell known [12, 13] that, in asingle thin piezo-
electric plate made of lithium niobate (lithium tantal ate,
etc.) of agiven orientation (an XY-cut, YX-cut, or ZX-cut
plate), the propagation of a quasi-SH-wave is aso pos-
sible, and this wave has a very high value of K? (up to
33%) at a certain plate thickness. For example, for an
XY-cut LiNbO; plate with the thickness H = 0.1A, the
value of K2 is K? = 36% and the phase velocity isV =
4.372 km/s [12, 13]. In fact, this is a fast transverse
shear-horizontal wave propagating in the piezoelectric
plate and containing almost no mechanical displace-
ment component u; normal to the surface. Hence, the
SH wave can propagate in aplate that isin contact with
aliquid without any radiation loss caused by the energy
transfer from the wave to the liquid medium.

In a system of two thin piezoelectric plates sepa-
rated by a gap, the propagation of afast SH mode of the
SEAW is possible, and this mode has a high value of K>
and avelocity V equal to that of the SH wave propagat-
ing in a single plate. Figure 9 shows the calculated
velocities V, of the fast SH mode of the SEAW (curves
V(0.1), V(0.2), and V(0.5)) and the values of K? (curves
K(0.1), K(0.2), and K(0.5)) for three values of the thick-
ness of both piezoelectric plates made of XY-cut
LiNbO; (H1/A = H2/A = 0.1, 0.2, and 0.5) versus the
gap width H/A. The value of K? was calculated in this
case under the condition that the interdigital transduc-
ers are placed on the outer surface of the upper plate
(i.e.,, Vsand V, informula(5) refer to thissurface) while
other three surfaces are free. From Fig. 9, one can see
that, asin the case of asingle plate, the maximal value
of K2 caculated from Eq. (5) is obtained for the SH
mode of the SEAW when the thickness of both platesis
H1/A = H2/A = 0.1. For example, when the gap width is
H/A = 0.01, we have K> = 9%, which is noticeably
greater than the value of K? for a SAW in lithium nio-

bate (KZ,w = 5.5%).

In a system of two plates separated by athin gap, as
well as in a single plate, many solutions and many
modes are possible. In addition to the solutions shown
in Fig. 9, there are modes with lower and higher veloc-
ities. For example, for the same conditionsasin Fig. 9,
for H1/A = H2/A = 0.1 (plates) and H/A = 0.01 (gap),
thereisawave with alower velocity V, = 4.04727 km/s
and K? = 20.7% and awave with a higher velocity V, =
6.4753 km/s and K? = 4.83%.

Another important parameter of the wave isthe tem-
perature coefficient of delay (TCD). For a SAW in a
single medium, TCD =a - TCV = a — 1/V x (dV/ot),
where a isthe coefficient of linear thermal expansion of
the medium, TCV is the temperature coefficient of
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Fig. 9. Velocity V of the fast mode of the SEAW (curves
V(0.1), V(0.2), and V(0.5)) and the electromechanical cou-
pling coefficient K2 (curves K(0.1), K(0.2), and K(0.5)) as
functions of the gap width H/A for three values of the piezo-
electric plate thickness: HI/A = 0.1, 0.2, and 0.5.

velocity of the SEAW, and t is the temperature. In the
case of the SEAW, the value of TCV for the SEAW is
uniquely determined. However, since we have a system
of two different piezoelectric media, an ambiguity
arises in the determination of the TCD for the SEAW,
because the value of a may be different in different
media. Hence, we can determine two values of the TCD
for the SEAW: one for the upper and one for the lower
piezoel ectric media with respective coefficients of lin-
ear expansion. The TCD of areal device will be deter-
mined by the coefficient of linear thermal expansion of
the medium on which the interdigital transducers are
placed, because the therma expansion of the other
medium will have no effect on them in this case.

Our calculations showed that, even in the case of
two identical piezoelectric media with the same orien-
tation, the values of TCD for SEAW somewhat differ
from the value of TCD calculated for common SAWS.
For example, in a system of two piezoelectric media
thermally stablefor SAWS, namely, LGS(0°, 140°, 25°)
(TCDgaw = —0.09 x 10¢/K), with a gap H = 0.5A
between them, the value of TCD for the SEAW is equal
to-1.5 x 107%/K and depends on the width of the gap.

The materials constants for LiNbO;, SIO,, and LGS
were taken from [14-16].

Thus, in this paper we described the method for a
numerical calculation of the parameters of various
kinds of SEAWS that propagate in piezoelectric media
of any crystallographic symmetry class and their con-
figurations. We considered the processes of transforma-
tion of SEAWSsto SAWs in the case of two half-spaces
or to electroacoustic Lamb modes in the case of a sys-
tem of two thin piezoel ectric plates separated by a gap.
We showed that the velocity of SEAW modes is deter-
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mined by the properties of both piezoel ectric mediaand
depends on the width of the gap. We proposed a system
of two thin piezoelectric plates made of XY-cut (or

YX-

whi

cut) lithium niobate with a gap between them, for
ch the dlit electroacoustic wave has a high value

of the electromechanical coupling coefficient. This
structure can be used in the design of high-efficiency
acoustoel ectronic pressure sensors and gas and liquid
analyzers.
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Abstract—Results of measuring the monochromatic sound field with a dipping probe in the deep ocean are
presented. The sound speed profile in the region of measurements had a minimum at a depth of 1600 m. The
experiment was carried out in the Atlantic Ocean with the use of two vessels separated by a distance of approx-
imately four ray cycles (~240 km). The experimental data are compared with the cal cul ations based on a new
concept of the Brillouin waves for describing the vertical structure of the sound field produced by rays. It is
shown that a satisfactory agreement between experiment and cal culation can be achieved by fitting the param-
eters of the experiment. Such a procedure allows oneto refine or even to determine the experimental conditions,
which not are always known. The proposed method of calculation offers an opportunity for solving inverse
problems of ocean acoustics. © 2004 MAIK “ Nauka/Interperiodica” .

INTRODUCTION AND THE STATEMENT
OF THE PROBLEM

In view of development of the methods of ocean
tomography, measurements of the vertical distribution
of the sound field become topical. This distribution is
what mainly determinesthe amplitudes of rays (modes)
in oceanic waveguides. The measurements of the verti-
cal structure are usually carried out with the use of ver-
tical arrays[1, 2]. However, they cover asmall range of
depths, because the development and installation of
sufficiently long arrays encounters engineering difficul-
ties. The usual length of vertical arrays is no greater
than 100 m [1, 2]. A different method of measuring the
vertical structure, which allows one to substantialy
increase the range of depths, is aso known. This
method involves using a dipping hydrological-acousti-
cal probe (DHAP), which simultaneously measures the
sound pressure and the depth of the receiving device
[3]. The use of the DHAP is advantageous in that, first,
an equivalent of acontinuousarray is obtained and, sec-
ond, this array can be rather long.

Different methods of processing the vertical profiles
of the sound field are known. In [4], aspecial method of
averaging was proposed to eliminate fine fluctuation
maxima and minima from the sound field amplitude.
By applying this method, the conclusion was drawn
that the positions of zones with a relatively high con-
centration of sound energy can be adequately predicted
by computations based on the ray theory. Another
method of averaging the fluctuations of the sound field
amplitudeisalso possible, namely, the spectral analysis
of experimental data. With this method, one changes
from the amplitude description of the sound field to the

spectral one, and the fluctuations are flattened out in the
calculated spectra.

To explain the results of the processing of experi-
mental records, a comparison with some theoretical
model isrequired. Nowadays, studies are in progressto
refine the methods of calculating the sound field in oce-
anic waveguides with an underwater sound channel
(USC) [3, 5-7].

The objectives of thiswork are to measure the verti-
cal structure of the sound field in the ocean by using a
uniformly deployed DHAP, to perform a spectral pro-
cessing of the measured structure, to calculate the ver-
tical sound field profile for the experimental conditions
with the use of the method described in [3, 6], and to
compare the experimental datawith the calculations.

EXPERIMENTAL PROCEDURE AND RESULTS

The experimental measurements of the vertical
sound field structure were performed in November
1989, in the deep-water part of the Atlantic Ocean. The
USC axis was at a depth of 1600 m. A near-surface
maximum in the sound speed occurred at a depth of
60 m. The sound speed near the bottom was higher than
in the near-surface maximum. The acoustic pressure
and the immersion depth were measured by the DHAPR,
which was uniformly lowered. The signal from the
DHAP was recorded on magnetic tape. The length of
the vertical survey with the DHAP was about 100-150 m
at depths of 360-520 m. A monochromatic sound
source that operated at a frequency of 233.3 Hz was at
the depth of the near-surface maximum of the sound
speed.

1063-7710/04/5006-0677$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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Fig. 1. Spatial spectra obtained from the records of the ver-
tical profile of the sound field: DHAP survey nos. (a) 11,
(b) 6, and (c) 12.

The ocean depth remained constant (5 km) on the
main part of the path between the sound source and
the receiving system. However, the experimental site
was above the flank of an underwater mount that was
located behind the propagation path. Therefore, the
ocean depth in the region of measurements was sub-
stantially smaller than the depth on the entire path,
namely, about 2.6 km. According to the bottom pro-
files available, the angle a between the mount flank
and the horizontal was about ~8°. With these values
of the depth and bottom slope, the length of the flank
towards the transmitting vessel was 17 km in the hor-
izontal.

DIDENKULOV et al.

During the experiment, both vessels, one with the
sound source and the other with the receiving DHAP
system, drifted at a distance of less than 230-240 km
from each other; thisdistance could vary only dueto the
drift. Approximately an hour before the experiment, the
ocean depth in the region of the DHAP immersion and
the coordinates of both vessels were measured. The
depth was 2.6 km, and the calculated distance was x =
233 km. This distance corresponds to the end of the
fourth cycle of the ray trajectories, between the turning
point near the bottom and the point of reflection from
the surface. Therelief and the exact value of the bottom
slope remained unknown. The rate of deployment of
the DHAP was constant. The duration of the recording
of the sound field varied from 100 to 150 s, depending
on the depth range surveyed. Thetimeinterval between
successive surveys, including the probing duration
itself, was 4 to 5 min. Twelve surveys were performed
in the experiment.

The processing of the records consisted in obtaining
the spatial spectrum for the vertical distribution of the
sound field. The specificity of processing of the DHAP
dataconsisted in that the signal was recorded in succes-
sive instants of time as the probe was lowered rather
than over the entire depth simultaneoudly, asin the case
of an ordinary vertical array. Therefore, the signal was
represented as a time sequence by taking into account
the dependences of the signal phase and the probe depth
ontime.

Because the signal recorded during the DHAP
immersion was actually atimesignal, its coherencewas
verified. To do so, the record of an individual survey
was broken up into two or three parts. The spectral anal-
ysis was performed for both the entire survey and its
parts. The result is that the main maximain the spectra
of the entire record and the parts coincide. Therefore,
one can treat the recorded sound field as a coherent one
for the wholeinterval of depths surveyed.

L et us consider the results of the spectral processing
of thevertical sound field profiles obtained. Figures 1a—
1c show the spatial spectrafor profilenos. 11, 6, and 12.
The depth intervalswere 127, 70.5, and 129 m, respec-
tively. The horizontal axis represents the spatial fre-
guency Y (in units of 21¢m) for the vertical profile of the
sound field. The vertical coordinate is the absolute
value of the spectral amplitude. The resolution of the
spectral analysis is individual to each plot and equals
the separation of the adjacent dots in the spectrum.

The spatia spectra noticeably differ from each
other. This feature indicates the changes in the bathy-
metric parameters for different profiles. The spectra
shown exhibit several maxima at both positive and neg-
ative gpatial frequencies (the same is true for other
spectra). For instance, negative frequencies predomi-
nate in the spectrum of profile no. 12. A sort of symme-
try can be seenin Figs. laand 1b. At the sametime, the
absolute values of the frequencies in the maxima are
different on either side of the point y= 0. Thus, they are
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equal to —0.34 and +0.3 21¥/m in Fig. 1b. Apart from a
dlight difference in these values, the spectrum can be
treated as that of a single mode excited in the
waveguide.

Thevaluesof the spatia frequencies (Y~ 0.3-0.4 217m)
are characteristic of rays propagating at high grazing
angles. Actually, the greatest value of y corresponds to
the USC axisfor the purely water-propagating rays. For
the conditions at hand, it does not exceed 0.25 21Ym.
Higher spatial frequencies correspond to rays propagat-
ing a higher grazing angles. However, such rays
undergo multiple reflections from the bottom and sur-
face aong the entire path, and their contribution to the
received signal isinsignificant. Therefore, the most prob-
able explanation for the values of y > 0.25 21¥m is the
assumption that the signal arrives at the DHAP after a
single reflection from the inclined bottom area in the
vicinity of the reception point. Actually, at the reflec-
tion from the inclined surface, the propagation angle of
the ray changes by a doubled value of the surface slope
a relative to the horizontal. The addition of 2a = 16° to
the propagation angle of the water rays leads to an
increase in the spatial frequency in the vertical spec-
trum to the values of 0.3-0.4 21Ym. Let us confirm the
experimental results and their explanation by calcula
tions.

CALCULATIONS AND COMPARISON
WITH EXPERIMENT

In addition to the sound speed, the main quantities
that govern the vertical structure of the sound field are
the distance to the source, the depth, and, in our case,
the slope of the bottom. We did not aim to achieve an
exact coincidence between the experimental data and
the calculations. Our task was, first, to obtain aqualita-
tive (and quantitative, as far as possible) agreement
between calculations and experiment and, second, to
determinetheinterval s of parameter variationsthat lead
to noticeable changes in the calculated spectra of the
sound field.

The calculations were performed using the method
describedin[3, 6]. The vertical coordinateswere calcu-
lated for the rays that intersect the plane x = const as a
function of the launch angle at the source. These coor-
dinates are denoted as z(6), where 8 isthe launch angle
(relative to the vertical). The projections y(2) of the
wave vector on the vertical axis zwere also computed.
From the values of the function y(2), the vertical sound
field profile produced by all rays was calculated. The
spectrum of the calculated sound field was compared
with the spectrum of the experimental profile for the
depth interval surveyed by the DHAP. Note that the
function z(8) indicates the vertical coordinates (at the
end points of the trajectories) for al raysin the vertica
plane x = const, and the function y(z) gives a general
idea of the spectrum of the vertical structure of the
sound field.
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To clarify the influence of the sloping bottom on the
formation of the vertical profile of the sound field along
the path, let us consider the sound propagation in a
waveguide with aflat bottom at a depth of 5 km, a =0.
Because of the source position at the horizon of the
near-surface maximum of the sound speed, all water
rays touch the surface.

Figures 2a and 2b show the vertical coordinates z(6)
for the rays leaving the source at the angle 6 and cross-
ing the plane x = 231 km. The projections y(z) of the
wave vectorson the zaxis are also shown for theserays.
The horizontal axis in Fig. 2a represents the absolute
value of the launch angle 8 (relative to the z axis). The
vertical coordinate is the waveguide depth measured
from the surface. The solid and dashed curves corre-
spond to the rays that |eave the source towards the sur-
face (6 < 0) and towards the bottom (8 > 0), respec-
tively. Figures 2a and 2b show how many rays arrive at
each point z. The water rays do not reach the depth z <
2 km or, hence, the DHAP. Here, we do not present the
calculated sound field and its spectrum for two rea-
sons. First, as was mentioned above, the rays do not
produce vertical structures with frequenciesy > 0.25
21¢m in the waveguide of the type at hand. Second, in
our case, the water rays do not reach the DHAP at all.
Such acalculation isdescribed in [3] fora =0and x =
240 km (a part of the rays that arrived at the DHAP in
this experiment). Let us consider the features of the
curves z(0) and y(2) (Figs. 2a and 2b) in more detail,
because these features are also characteristic of rays
reflected from the inclined bottom.

The specificity of the function z(8) isthe presence of
extrema. The vertical coordinates of the rays, z(0), first
decrease with a varying angle 6 and, then, upon reach-
ing the minimal value, increase as 6 monotonically var-
ies. As in an ideal waveguide, the rays produce two
branches of vertical coordinates, in which z changesin
opposite directions. These two branches of the function
Z(8) can be treated as an analog of counter-propagating
waves (the Brillouin waves) in an ideal waveguide,
where they exist because of the opposite-signed (but
equal-valued) projections of the wave vector on the
z axis. According to Fig. 2b, the projections of the wave
vector are different in value and equal in sign for the
rays corresponding to different branches of z(6). Thus,
the vertical structure of the sound field in the USC is
closeto that produced by the Brillouin wavesin anideal
waveguide but differs from it in both sign and value of
the wave-vector projection on the z axis. This situation
isconsidered in more detail in [6], where a generalized
concept of the Brillouin wavesisintroduced, as applied
to the USC. The fact that a sound field structure similar
to that produced by the Brillouin waves exists in the
USC allows one to assume that an analog of modes is
present in the spectrum of the sound field.

Let us consider a probable explanation for the
extrema of the function z(8). In considering the hori-
zontal structure of ray trgjectories, it is common to use
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at the z axis versus the launch angle, (b) projections y(2) of the wave vector of the rays on the z axis, (c) trajectories of adjacent rays

producing the caustic, and (d) caustic on an enlarged scale.

the concept of the envelope of the ray family (the caus-
tics) at which the focusing factor tends to infinity,
because the derivative of the horizontal coordinate with
respect to the launch angle tends to zero: dx/d® =0 [8].
When the vertical structure of the sound field is consid-

ered, the derivative of the zcoordinate will appear in the
focusing factor. Let us show that the point with the
coordinates x = 231 km and z = z,,,,, where dz/do = 0,
belongsto acaustic. Figure 2c showsagroup of ray tra-
jectories. The central trgjectory in the group is one that
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passes through the minimum of the function z(6) of
Fig. 2a for the rays that leave the source towards the
bottom. Two other curves are chosen so that their near-
bottom turning points are 25 m shallower or deeper,
respectively, than the turning point of the central curve.
A caustic domain can be clearly seen where the three
trajectories nearly coincide. This domain is shown in
Fig. 2d on alarger scale. The two trajectories adjacent
to the central one lie on the same side of the central
one. Moreinformation on caustics can be found in [8]
(page 48). Returning to Fig. 2a, note that the maximum
of the function z(0) on the solid curve near 6 ~ 90° is
not the caustic: it is produced by theraysin the vicinity
of the near-bottom turning point. This conclusion will
be confirmed below.

Let us consider the functions y(z), the projections of
the ray wave vector on the z axis at x = 231 km, from
Fig. 2b. Asusual, the positive direction of y(z) coincides
with the direction of the z axis. The notations of the
curves are the same asin Fig. 2a. The curves with dif-
ferent signs of the launch angles are close to each other,
except for the domains of the caustics. In our case,
V(2) < 0 for most of the rays. An exception is a small
group of rays leaving the source towards the surface at
anglescloseto 90°. For theserays, theturning point lies
near the bottom, where y(2) = 0. After turning, the func-
tion y(2) changes its sign, as seen from Fig. 2b. Note
that the absolute values of y(z) are much lower than the
experimental values of the spectral components of the
sound field (Figs. 1a-1c). The functions y(2) and z(0)
are both double-valued. The rays arriving at the same
point have different values of y(2). Thisdifference leads
to beatings in the sound field along the z axis, and two
close frequencies can be observed in the spatial spec-
trum if the resolution is sufficient [3].

L et us now consider the waveguide with aninclined
bottom. By fitting the distance, depth, and bottom slope
in computations, we tried to obtain a spectrum that is
close to that shown in Fig. 1a. This spectrum has the
simplest shape, with two main maxima. It is evident
that such a shape may correspond to a signal reflected
by a smooth area of the inclined bottom. The informa-
tion on the seadepth can be treated asreliable. Infitting
the parameters of the calculation, we specified the fol-
lowing values: the distance 231 km between the source
and the DHAP, the depth 2.6 km, and the bottom slope
o = 7°. The bottom surface is assumed to be smooth in
the computations.

Figures 3a and 3b show the curves z(6) and y(z) cal-
culated with the inclined bottom. The curves are much
more complicated than those in Figs. 2a and 2b. The
water rays remain only inthedomain z> 2 kmwith 6 ~
85°-87.2° and do not arrive at the DHAP. All rays,
except for the water ones, undergo a single reflection
from the flank. Thus, all rays arriving at the DHAP are
singly bottom-reflected rays. Their coordinates are
accentuated by solid curves. Thetrajectories of therays
leaving the source towards the bottom and arriving at
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Fig. 3. Calculated characteristics of the vertical profiles of
the sound field for x = 231 km, H =5 km, and o = 7°. The
solid and dashed curves correspond to the rays leaving the
source towards the surface and bottom, respectively:
(8) depth z(6) of ray arrivals at the z axis versus the launch
angle, (b) projections y(2) of the wave vector of the rays on
the z axis, and (c) trajectories of the boundary rays leaving
the source towards the bottom and arriving at the DHAP.

the DHAP at z=0.36-0.52 km are shown in Fig. 3c. As
in the case of a = 0, two opposite branches of the func-
tion z(0) exist. Theraysthat have positive projections of
the wave vector on the z axis appear: y(z2) <0 at 6 > 6,4
and y(2) > 0 at 6 < 6,«, Where B, is the launch angle of
the ray reflected from the surface at x = 231 km. Thus,
in contrast to Fig. 2b, y(2) > 0 for alarge number of rays
at thisdistance, the absolute value of the vertical spatial
frequencies increased up to 0.4 2rYm, and many rays
have become closer to the surface. In addition, the
structure of the vertical distribution has become more
complicated, and new caustics have appeared. The
functions z(8) and y(2) are now multivalued rather than
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the source: x = (&) 230, (b) 230.5, (c) 231, and (d) 232 km.

two-valued (asin Figs. 2aand 2b). Therefore, a greater
number of rays arrive at one point. For instance, nine
raysarriveat z= 0.8 km.

To estimate the effect of small changes in distance
from the source, the sound field and its spectrum were
caculated at four distances, 230, 230.5, 231, and 232 km,
for theraysthat arrived at the DHAP. Thefunctions z(0)
and y(2) for these distances are similar to those pre-
sented in Figs. 3aand 3b for x = 231 km. The difference
isin the number of caustics, in their positions on the 6,
z plane, and in the value of 6,.;. The calculated spatial
spectraare shown in Figs. 4a-4d. The spatial frequency
is expressed in units of 2rYm. At all four distances, the
spectrum consists of two maxima at positive and nega-
tive frequencies. The shape and amplitude of the max-
ima vary as the distance x changes. When x increases,
the amplitude of the negative-frequency maximum
decreases. At positive frequencies, the amplitude first
increases, then decreases. The difference in the shapes
of the maxima is caused by caustics occurring in the
depth interval surveyed by the DHAPR These caudtics
lead to either broadening of the maximum, asin Fig. 44,
or to an increase in the spectrum basement, asin Fig. 4d.

The absolute values of the frequencies correspond-
ing to two maxima are dightly different: —-0.39 and
+0.35. Their values do not vary asthe distance from the
source changes, except for in Fig. 1a, where the caustic
exists. The calculated spectrum shown in Fig. 4b, x =

230.5 km, is the one closest to the experimental spec-
trum shown in Fig. 1b. The frequencies of the maxima
in Fig. 1b are—-0.34 and +0.3 21¢m. The calculated and
measured values of the spatial frequencies coincide to
an accuracy of asingle interval of resolution. Thus, by
fitting a number of parameters, the calculated vertical
spectrum of the sound field is found to be rather close
to the experimental spectrum, both in its shape and in
the values of the spatia frequencies. In our case, small
variations of the distance |ead to noticeable changesin
the amplitudes of the spectral maxima. The frequencies
of the main maxima do not change as the distance from
the source varies. Only their shape and amplitude
exhibit variations. Note that, apart from a small differ-
ence in the frequencies of the maxima, both the calcu-
lated and experimental (Fig. 1a) spectra are similar to
the spectrum of asingle mode. This closeness confirms
the validity of the generalized concept of Brillouin
waves for the USC.

Let us consider how the change in the bottom slope
influences the spectrum of the sound field. Figures 5a—
5d show the spectra for different bottom slopes: a =
6.2°, 6.5°, 6.7°, and 8°, respectively. The spectra of
Figs. 5aand 5b are calculated for x = 230 km: those of
Figs. 5c and 5d correspond to x = 231 km. Generally, an
increasein the opefrom 6.2° to 8° leadsto an increase
in the absolute values of the frequencies corresponding
to the maxima. The similarity of the negative maxima
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in Figs. 5aand 5b and the positive maximain Figs. 5b
and 5c can be caused by the presence of caustics of the
function z(8) in the DHAP depth interval. The absolute
values of the frequencies corresponding to the max-
ima slightly increase as the bottom slope increases:
from —0.28 to —0.43 21v/m for y < 0 and from +0.31 to
+0.39 2rUm for y > 0.

Figures 6a and 6b illustrate the effect of depth vari-
ationsin the region of the DHAP immersion. Figure 6a
shows the calculated spectrum of the vertical structure
of the sound field for an ocean depth of 2.4 km, with a
distance of 230 km from the source and a bottom slope
of a =7°. With these values of the parameters, no neg-
ative frequencies occur in the spectrum, and the posi-
tive frequency of the maximum islower thanin Fig. 4a,
where the ocean depth is 2.6 km. Such a behavior
occurs despite the fact that the bottom slope did not
change. The decrease in the frequency of the maximum
can be explained by assuming that, prior to reflections
from the flank, the bottom-reflected rays had smaller
grazing angles than in Fig. 4a. In Fig. 6b, the bottom
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slopeis aso changed: a = 8°. As aresult, a maximum
appeared at the negative frequency, and the positive fre-
guency of the maximum became higher that in Fig. 6a.

The calculations performed above lead to the con-
clusion that changes in each of the three parameters
cause a change in the rays that constitute the sound
field. This phenomenon cannot be avoided, and, hence,
one cannot exactly predict how the spectrum will
change when a parameter changes.

Let us compare the experimental and calculated
characteristics of the sound field in more detail. First of
all, notethat thefitted distance and bottom slope lead to
agood agreement between the calculated spectrum and
one of the spectra obtained from the experimental data.
This agreement confirms the correctness of the fitted
parameters and proves the validity of the proposed
mechanism governing the formation of the vertical pro-
file of the sound field by the rays reflected from the
inclined bottom. As for other experimental spectra,
their complicated structure can be caused by the rough-
ness of the flank surface, that is, by differently inclined
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and a = (a) 7° and (b) 8°.

areas of the flank. Because of aslow drift of the vessels,
achangein the reflecting surfaces occurred, along with
a change in the ray tragjectory segments that touch the
bottom. All of these factors determined the complicated
structure of the spectra and caused their variation from
one survey to another.

We did not consider the effect of variations in the
sound speed profile, ¢(z), along the path on the vertical
structure of the sound field. Asit was mentioned above,
the maximal value of y(2) is determined by the value of
c(2) at the channel axis and by the maximal sound speed
a one of the waveguide boundaries. The variations of
these values will lead to a change in the maximal value
of y(2. In the experiment at hand, variations of c(2)
along the path were not measured. Evidently, such vari-
ations of ¢(z) will influence the depth of rays arriving at
a given distance. Therefore, the result of fitting all the
parameters that characterize the experiment will also
depend on the variations of c(z) along the path. The
effect of the variations can be taken into account in the
framework of the ray theory.

The study described in this paper led to the follow-
ing conclusions. The use of the DHAP for measuring
the vertical structure of the sound field proved to be
quite advantageous. This conclusion can be confirmed
by the good agreement of the calculated spectrum with
that obtained in one of the measurements. Such an
agreement offers an opportunity for solving some
inverse problems of ocean acoustics. By appropriate

calculations, one can determine unknown experimental
parameters or refine their values. From the sound field
profile measured in one region of the ocean, the sound
field in another region can be determined.
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Abstract—On the basis of earlier results (V. A. Zverev, Radiooptics (1975)), the principle of the time reversal
of waves (TRW) with the use of atime-reversed signal is considered (M. Fink et al., Time-Reversed Acoustics,
Rep. Prog. Phys. 63 (2000)). Both the common mathematical basis and the difference between the TRW and
holography are revealed. The following conclusions are drawn: (i) to implement the TRW, it is necessary that
the spatial and time coordinates be separated in the initial signal; (ii) two methods of implementing the TRW
are possible, namely, thetime reversal and the use of an inversefilter; (iii) certain differences exist in the spatial
focusing by the TRW and holography; and (iv) on the basis of the theory developed, a numerical modeling of
the TRW becomes possible. © 2004 MAIK “ Nauka/lInterperiodica” .

Earlier [1-5], an original concept of the time rever-
sal of waves was considered. Until now, this concept
has only found application in acoustics. To implement
the time reversal of waves (TRW) in propagation
through a complex (scattering and dispersion) medium,
one should store the received signal, reverse the direc-
tion of timeinit, and send the time-reversed signal into
the same medium. In [1-5], such atechnique is called
“time-reversed acoustics.” To clarify the essence of the
proposed technique and to prove its feasibility, the
authors of [1-5] refer to the general theoretical consid-
erations, athough they rely on brilliantly performed
experiments as well. Based on the general theoretical
considerations of [1-5], one cannot perform any quan-
titative estimations. These considerations also do not
provide the validity conditions of the TRW. The com-
parison [1-3] with the wave-front inversion (WFI),
which is carried out in a monochromatic wave field,
does not fully reveal the essence of the problem stated.
On the one hand, it is argued [1-3] that the procedure
of TRW is mathematically equivalent to that of WFI for
amonochromatic wave, because the time Fourier trans-
form of p(r, -t) isthe complex conjugate Fourier trans-
form of p(r, t). On the other hand, it was shown exper-
imentally [2] that there is no full analogy between the
TRW and WFI procedures. Actually, both statements
aretrue. Thereisacommon mathematical basis for the
TRW and WFI, which should be considered so as to
demonstrate both the similarity and the difference
between the two methods along with their applicability.
This is the main problem to be solved here. The solu-
tion of this problem is substantially simplified by the
fact that, as early as 1975 [6], a unified mathematical

approach was used to devel op two descriptions of wave
fields, namely, the spatial and time descriptions. The
spatia description of a monochromatic wave field was
related to WFI, while the time description, to the TRW.

According to [6], let us transform the mathematical
descriptions of WFI and TRW to a common form. Let
us begin with WFI. To describe the propagation of
monochromatic wave fields, the concept of a complex
amplitude p(x, y, 2) is usually applied. Such an ampli-
tude is a complex function whose modulus is the wave
amplitude and whose argument is the wave phase.
Here, X, y, and z are the coordinates in the Cartesian
coordinate system, with the z axis directed along the
direction of wave propagation. The propagation of a
monochromatic wave from the plane z= 0, at which the
initial distribution of the complex amplitudes is speci-
fied, to the plane z= zis described by the formula[6]

p(X y.2) = ﬁ[z ST SR,

x exp(iuyx +iu,y)du,du,.

Here, u, , are the spatial frequencies corresponding to
the transverse coordinates x and y, g(u,, U,) is the Fou-
rier spectrum of the complex amplitude p(x, y, 0) in the
plane z = 0, and {(z u,, U,) is the spatia frequency
response of the propagation channel between the planes
z=0and z= z For afree space, thisresponseis

Uz up, Uy) = exp(izk’ —us—u3), )

where zisthe distance passed by thewave in free space,
k =217A, and A isthe wavelength.
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Fig. 1. Functional diagram of the linear system: (1) the
input signal, (2) thefilter, and (3) the output signal.

In the spectral representation, Eqg. (1) takes the
form [6]

g,(ug, Uy) = {(z Uy, Uy)go(Uy, Up), 3)

whereg, isthe spatial spectrum of thefield in transverse
coordinates in the plane z = z and g, is the same spec-
trumintheplanez=0.

Equations like (1) and (3) can be interpreted, with
the use of the functional diagram of Fig. 1, asasignal
p(x, y, 0) passing through a filter with the frequency
response {(z u,, U,). Below, the WFI procedure for a
monochromatic wave is considered on the basis of
Eqg. (3). Such aform corresponds to wave propagation
in free space. If the space involves inhomogeneities,
such as lenses or other volume scatterers, the wave
propagation in such complex media cannot be
described by asingleformulaof form (3). Therefore, let
us restrict our consideration to the WFI procedure in
free space, which is quite sufficient for the problem at
hand.

To implement the WFI, one should take the complex
conjugate of function (1) obtained at the filter output
and useit astheinitial wavefield. Methods of obtaining
the complex conjugate distributions of complex ampli-
tudes by analog methods exist in both optics and acous-
tics. We do not consider these methods here. Let the
wave fields at hand be such that they can be stored and
then reproduced by introducing the required correc-
tionsinto them. The complex conjugate field p*(x, y, 2)
should be passed through the same filter (a fraction of
the free space with the same length). As aresult, substi-
tuting the complex conjugatefield p*(x, y, 2) into Eq. (3),
we abtain the relation

02.(Uy, Up) = L(Z Uy, Up)g; (Uy, Uy). “4)

By substituting the expression for g of Eqg. (3) into
Eq. (4), we derive

O2,(U1, Up) = L(Z Uy, Up)L* (2, Uy, Up) o (Ug, Up). (5)

The latter equation is just the desired form of the
mathematical representation of the WFI. The complex
amplitude of the signal obtained in the WFI procedure
will befound asthe inverse Fourier transform of Eq. (5).
Such atransformation of the wavefield is performed in
holography. Therefore, for the WFI in a monochro-

ZVEREV

matic field in free space, one can use the term “holog-
raphy.”

L et us consider the problem of representing the out-
put TRW signal in aform analogousto Eq. (5). To begin
with, let us generalize Eq. (1) to the case of polychro-
matic wavefields. In doing so, we use the method given
in[6]. Now, the polychromatic wave field A(x, y, 0, t) is
specified inthe planez= 0. Let usfind the Fourier spec-
trum of this field as a function of a single argument,
namely, time t. We denote this spectrum as C(X, Y, 0,
w). Then, the process of wave propagation can be again
represented inform (1), if theinitial complex amplitude
Ca(X, Y, 0, w) is specified as

P(x,y,z1t) = 8%-[3,[_[_[-9(:(“1’ Uy, W) {(w, Uy, Up) ©)

00 00 0O

x exp(iu X +iu,y—iwt)du,du,dw.

Here, gc(u,, U,, w) isthe spatial Fourier spectrum of the
function CA(x, y, 0, w).

To proceed to the TRW, it isnecessary that theinitial
function A(x, y, 0, t) be a function with independent
variables of the type[6]

A YZD = Y A Y DR, ()

A point wave source of the following form is an exam-
ple of such afunction:

A(X, Y, 0,t) = 8(X—Xo)0(y —Yo) F(t). ®)
Substituting Eq. (8) into Eq. (6), we obtain

P(x, Y, z1t)

9
= il—rJCF(w) p(X, Y, Z, w)exp(—iwt)dw, ©

where C(w) isthe Fourier spectrum of the function F(t)
and p(x, y, z, w) is the complex amplitude given by
Eq. (1); p(x, Y, z w) isafunction of w, because k = wyc,
where cisthevelocity of wave propagation. The depen-
dence obtained can be interpreted by the diagram of
Fig. 1, inanalogy with Eqg. (1). Thus, atime description
of wave propagation has been obtained that can be
applied to the case of Eq. (8). The complex amplitude
p(X, Y, z, w) as afunction of frequency can serve asthe
frequency response of the time filter obtained.

The resulting time-domain description of wave
propagation is the theoretical basis for the TRW proce-
dure. This process consists of two steps [1]. At the first
step, a short pulse is produced by a point source. The
transmitted signal propagates as a spherica wave,
which is scattered by the inhomogeneities of the
medium. As a result of scattering, a train of partially
overlapping pulses arrives at the reception point:
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y(t) = ZRJF(t—tj). (10)
i

Here, F(t) isthe form of the initially transmitted pulse,
t; is the time of signal propagation from the transmis-
sion to reception point with scattering by the jth scat-
terer, and R is the scattering coefficient for this scat-
terer.

In the spectral representation, Eq. (10) has the form

(11)

where z(w) is the tempora frequency response of the
propagation channel: z(w) = 21 R; exp(iot).

The received signal given by Eg. (10) is stored.
This procedureisobligatory for proceeding to the sec-
ond step. At the second step, the stored signal istime
reversed and again transmitted from the same recep-
tion point into the same medium, which is supposed to
be frozen for the time of the first and second steps of
the procedure. Thus, we have a time-reversed signal
y(-t) at the second step. Its spectrum is the complex
conjugate of the spectrum of the initial signal. The
spectrum of the signal transmitted at the second step
is the complex conjugate of spectrum (11): Cj(w).
The spectrum of the signal received at the transmis-
sion point can be found from a formula of the form of
Eqg. (11) under the assumption that the form and the
spectrum of the frequency response of the propagation
channel remain unchanged during the signal propaga-
tion in both directions, because the distribution of the
delays is independent of the propagation direction.
Thus, asaresult of the first and second steps, the spec-
trum of the signal received at the transmission point
takes the form

C,(®) = Cr(w)z(w),

Ci(w) = Z(w)z" (w)CE (). (12)
At the second step, the form of the signal at the trans-
mission point is given by the inverse Fourier transform
of Eq. (12).

Thus, we have obtained the result of the TRW in a
form analogous to that of holography (i.e., to the result
of the WFI in a monochromatic wave field in free
space), that result being expressed by Eq. (5).

Relations (5) and (12) can be interpreted in a com-
mon way with the use of the functional diagram of
Fig. 1. The two former factors, appearing in Egs. (5)
and (12), play therole of the frequency response of the
wave-reversing filter (WRF), and thethird factor isthe
spectrum of the signal at the WRF input. The fre-
guency responses of both WRFs are the squared abso-
lute values of the functions and contain a constant
component that does not depend on frequency. There-
fore, in both cases the input signal is produced at the
WRF output. In the case of the TRW, this signal is
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F(t), i.e, theinitial pulse as a function of time. In the
case of WFI, it is the input image. Because of the
interference phenomenain the medium, the WRF fre-
guency response of the TRW procedure is entirely
nonuniform, which resultsin the correlation noise [7].
In the transparency band, the WRF frequency
response of the WFI procedure is uniform and, hence,
free from the correlation noise.

The impulse responses (spectra of the frequency
responses) of both WRFs are the autocorrel ation func-
tions of the free-space impul se responses in the case of
holography or those of the time-domain wave systemin
the case of the TRW [6]. The properties of these fre-
guency responses differ entirely from each other, and,
respectively, the WFI and TRW procedures are differ-
ent in spite of the similar forms of Egs. (5) and (12) that
describe the procedures. Thus, the autocorrelation
function of the free-space impulse response, which is
the Fourier transform of the modulus of Eq. (2), hasthe
following form [6] at z> A:

k
d(x,y) = —ZZJl(k«/XZ*‘yz),
2T/ X+ Yy

where J,(r) isthefirst-order Bessel functionof r. At z>
A, such a frequency response transmits all spatial fre-
guencies without distortionsin the frequency band sat-
isfying the condition [6]

(13)

ul+ U< Ko (14)
This condition determines the maximum spatial
width of the spectrum of the signal with a complex
amplitude for the WFI procedure. According to Eq. (5),
the shape of the signal at the WFI output is governed by
the shape of the complex conjugate input signal p*(x, y,
0) in the spatial frequency band given by Eqg. (14). In
this case, if the initial signals have afinite spatial spec-
trum limited by Eq. (14) (the situation that is character-
istic of holography), the WFI procedure produces the
output wave field that isidentical to the input one.

Let us consider the TRW transformation from the
same point of view. The WRF frequency response of
the TRW procedure does not imply limitations like
Eq. (14). In the TRW, the time-domain spectrum of the
signa is limited by nothing but the passband of the
medium.

In contrast to the WFI, which is considered in the
spatial domain, the TRW transformation produces a
result that depends on both time and space. The time
dependence is directly governed by Eq. (12), but the
dependence on the spatial coordinates is not deter-
mined by this equation: it is rather described by asim-
ilar relation through the spatial dependence of the cor-
relation function of the time-domain impulse
responses. To obtain the spatial dependence of the
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Fig. 2. Shape of the pulses received at the second step. The
data are taken from [8] and transformed according Eq. (12)
with (@) full and (b) truncated realizations.

TRW, one must change the second step of the proce-
dure. If, at the second step, the signa is received at
some point differing from that of transmission, Eq. (12)
should be written as follows:
Cra(w) = Zy(w)z* (w)CE (). (15)
Here, asin Eq. (12), z*(w) isthe transfer function from
the transmission point to the reception point at the first
step of the procedure. A new function z,(w) appeared,
which is the transfer characteristic from the transmis-
sion point at the first step to the reception point at the
second step. The function
Z(a, ) = z,(w)z*(w), (16)
which is the spectrum of the cross-correlation func-
tion of the corresponding filter responses, determines
the spatial dependence of the TRW result or the
focusing of the TRW-produced signal. This feature
makes the spatial transformation produced by the
TRW considerably different from holography. Aswas
mentioned above, the WFI spatial transformation cor-
responds to the input signal (see Eqg. (14)). In the
TRW, the spatial transformation (focusing) does not
depend on the signal form and is fully determined by
Eq. (16) or by the cross-correlation of the filter
responses. Thus, one cannot accept the statement of
[2] that the TRW procedure is nothing but a broad-
band WRI and the WFI procedure is just a narrow-
band TRW.

For focusing of wavesin the TRW, the same restric-
tions are imposed on the spectrum of spatial frequen-

ZVEREV

cies as in the WFI. The point is that the signalsin the
TRW also propagate in the form of waves, and waves of
an arbitrary nature are limited by a condition similar
to Eqg. (14). Actually, waves with spatial frequencies
that do not satisfy inequality (14) are inhomogeneous
ones, and their amplitudes exponentially decrease with
distance.

This fact is clearly illustrated by the brilliant
experiment described in [8]. The two measurements of
[8], which differed from each other in time windows
at the second step of the procedure, led to entirely dif-
ferent sizes of the focal areas. With the shortened sig-
nal (measurement (a)), the size of the focal spot was
A/2, while the time window of the full length signal
(measurement (b)) led to a focal spot with a size of
A/14, equal to the size of the signal transmitter. If con-
dition (14) could be ignored, the results of measure-
ments (@) and (b) should coincide. A full-scale exper-
iment does not allow oneto ignoreinequality (14), but
anumerical experiment does. Figure 2 illustrates the
numerical experiment based on Eq. (12) with the same
parametersasin[8]. Thesignalsare shownintheform
of the second-step time dependences at the reception
point. The numerically obtained time dependences
corresponding to measurements (a) and (b) are rather
similar to each other: they both follow the shape of the
initial pulse (with the reversed time). Relation (15),
which governs the spatial focusing, has the same math-
ematica gtructure as Eq. (12). Therefore, according to
the numerical simulation, the results of the spatial
focusing in measurements (a) and (b) are also identi-
cal if oneignoresinequality (14).

The difference in the data of measurements (@) and
(b), which was clearly demonstrated by the experiment,
isthe consequence of the fact that, in measurement (b),
the signal traveled no distance in the medium, and,
hence, condition (14) had no influence on the experi-
mental results. Measurement (@) is quite different in
this sense. In this measurement, because of the shorter
transmitted pulse, the signal passed through some dis-
tance in the medium and underwent a spatial filtration
according to Eq. (14). Therefore, the size of the focal
spot increased to A/2. The difference in the distances
traveled by the signal in the medium in measurements (a)
and (b) is caused by the fact that the points of transmis-
sion and reception coincided in this experiment. In this
case, with the full-length window (measurement (b)) at
the first stage, the initial signal travels no path in the
medium and immediately arrives at the receiver where
it is stored. At the second step, the time-reversed signal
istransmitted. In this case, the initial part of the signal
changes to the last one, which also travels no distance
in the medium. The situation changes if the initial part
of the signal is eliminated. At both thefirst and the sec-
ond step, the signal passes through some distance in the
medium. Therefore, the result of the experiment is
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strongly influenced by the failure to satisfy condition
(14). Thisis the fact that was clearly confirmed by the
experiment described in [8], and that is why the data of
the experiment are far from confirming the effect of
overcoming the diffraction limit (as the authors of [8]
mistakenly argue). On the contrary, the experiment
clearly shows the existence of the diffraction limit. It
should be noted that the term “diffraction limit” is usu-
ally attributed to focusing systems, but no such systems
were present in the experiment of [8].

There is one more substantial difference between
the WFI and the TRW. While the WFI procedure can be
performed in aunique way, two methods can be used to
implement the TRW [7]. With the second method, the
signal processing at the second step changes. Namely,
instead of the time-reversed signal at the second step, a
signal isformed whose form is determined by the Fou-
rier spectrum of the inverse frequency spectrum and
then sent to the transmission point. The spectrum of
such asignal received at thetransmission pointisasfol-
lows:

Cy(w) = (17)

As a result, one obtains unity divided by the spec-
trum of the transmitted signal at the transmission point.
To find the form of the transmitted signal, the received
signal should be additionally processed. Namely, one
must divide unity by the spectrum of the received signal
and then take the Fourier transform of this fraction. No
additional processing is needed if the function F(t) has
auniform spectrum (F(t) = d(t)) in the entire frequency
band used. Let us denote this processing method as
inverse filtration. The inverse-filtration method has an
advantage in that it leads to no noise in the TRW time
realization. Theinversefiltration can be applied only to
those parts of the signal spectrum at which the modulus
of the function z(w) differs from zero. The parts at
which thismodulusis equal to zero should be excluded.
With the inverse filtering procedure, the TRW spatial
focusing is governed by the ratio of the frequency
responses. z(w)/z(w). This ratio is influenced by the
correlation noise.

The aforementioned considerations are sufficient to
numerically demonstrate a number of important TRW
features mentioned in [1-5]. Let us consider the exper-
iment reported in [1, 2], in which focusing was studied
in the course of wave propagation through a layer of
volume inhomogeneities. Figure 3 shows the layout of
the numerical implementation for the experiment simi-
lar to that described in [1, 2]. This layout corresponds
to that of the experiment discussed in [1] and shown in
Fig. 1 of this paper. A point source A of a short pulsed
signal isshown at theleft (Fig. 3). The pulseisspecified
so that the spectrum of function F(t) isequal to unity in
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Fig. 3. Layout of the numerical experiment. The z axis of
the Cartesian coordinate system is directed from the source
of the pulsed signal (point A) to the center of the b-b line,
along which the elements of the transmitting—receiving
array are positioned.

the frequency band at hand. In this case, the function
F(t) can be treated as a delta function. In Fig. 1 of [1],
areflector of the signal isshown asthe source. Notethat
the result of the experiment will agree with that
reported in [1] if the signal scattered by the reflector is
very short. Evidently, it is not always possible to excite
such a pulse by manipulating, from the transmission
point, the view of the propagation through an arbitrary
scattering layer.

At the right of Fig. 3, the receiving antenna array
consisting of 64 elementsis shown. Aswill be demon-
strated below, the number of antenna elementsis of no
fundamental importance. To obtain the effect of spatial
focusing shown [1], it is sufficient to use a receiving
array that consists of a single element. Between the
source A located at the origin of coordinates and the
receiving array, 32 point scatterers are placed to form
the scattering volume. It is supposed that each scatterer
scatterstheincident radiationin all directions. In[1, 2],
avolume scatterer is used that consists of a number of
wires, just asin our layout.

Note that the numerical experiment impliesasingle
scattering, whilethe experiment of [1, 2], asthe authors
of these works argue, was accompanied by multiple
scattering. Multiple scattering is difficult to numeri-
cally model, and one should be sure that it is realy
needed before making an attempt to do so. However,
the multiplicity of scattering isnot provenin[1, 2], and
one may suppose that there was actually a single scat-
tering. For the TRW procedure, the problem of the scat-
tering order is of no importance. Therefore, the experi-
mental results give no information on that subject, but
the experimental layout of illuminating the scatter does
give the necessary information. The illumination was
performed by the central element of the transmitting—
receiving antennaarray positioned behind the scatterer.
The specificity of such alayout is that the signal emit-
ted by the only central element and then scattered by
the scatterer is not composed of a single short pulse. It
rather takestheform shownin Fig. 4. With such apulse,
the experiment cannot yield theresult obtained in[1, 2].
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Fig. 4. Signals at the receiving element positioned at the center of the transmitting—receiving array.

Why, then, was this result nevertheless obtained in [1,
2]? The reason is that the scatterers used (wires) had a
small target strength. Therefore, the scattered signal
was observed on the background of a much more
intense signal transmitted through the medium sur-
rounding the wires. The shortness of thissignal allowed
the experimenters to use the method of illuminating the
scatterer that was reported in [1, 2]. Because the scat-
tering isweak in comparison with the direct signal, one
can neglect the effects of multiple scattering by the
wires and mathematically model the experiment [1, 2]
in the way used here.

The modeling was performed in the following way.
From the geometrical considerations (Fig. 3), the dis-
tance from the transmission point to each scatterer was
determined to be

Xt Yo+ Zon

Here, mis the ordinal number of the scatterer, and X,
Ym» @nd Z,, are the coordinates of this scatterer. Then, the
distance between the transmission point and each ele-
ment of the receiving array was found to be

R = (18)

Ram,n = /\/Xﬁw+(ym_an)2+(r_zm)2- (19)
Here, a, is the coordinate of the nth array element and
r isthe distanceto the transmitting—receiving array. The
distance between the transmission point and each array
element through each of the m scatterersis given by the
sum of Egs. (18) and (19):
Dm, n = Rm + Ram, n: (20)
Inview of Egs. (18)—(20), Eqg. (10) was used to find
the response of each element of the receiving array to
the pulse sent by the transmitter. Figure 4 shows an
example of such aresponse.

Then, the TRW procedure was modeled. Both the
aforementioned methods of implementing the TRW
were used in the modeling. Let us begin with the corre-
lation procedure (Eg. (15)) proposed in [1-5].

Let usfind the transfer characteristics of the channels
(filters) from the transmission point A to each element of
the receiving array. Such frequency characteristics are
fully determined by the delays given by Eqg. (20):

Zin = zexpBZT”kDm,%. Q1)

Neither the distribution nor the values of the delays
depend on the direction of wave propagation. Hence,
Eq. (21) equally describes the channel of signal propa-
gation in the reverse direction, from the output of the
filter to itsinput. Let us transform the signals received
by n elements of the array inaway implied by the TRW
procedure. One should change the sign of the time in
each received signal and then send it back to the trans-
mitter. The spectrum of the signal with the reversed
time is the complex conjugate (Eg. (21)). To find the
signal at thefilter output asafunction of time, let ususe
Eq. (12) with a subsequent Fourier transformation of
the result. We obtain

V(D) = =5 ZzaepHakE @)
k

This relation determines the response of the
matched filter to the function with which it is matched,
or the correlation function of the response of the device
at hand to the short pulse sent from point A (Fig. 3).
Thus, the result of the TRW procedure is obtained as a
function of time at point A. This result can be found in
[1,2].

It is advantageous to obtain the result of the TRW
procedure not only at point A but also at neighboring
points along the y axis (Fig. 3) in order to estimate the
effect of the focusing of the reversed wave. To do so,
according to Eq. (15) one should change the shape of
the frequency response of the filter through which the
time-reversed signal passes. To the frequency response,
it is necessary to add the differences in the path lengths
from each mth scatterer to each point g of they axis. (Let
No. 6
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us suppose that there are 64 such points with spacings
equa to unity.) The desired distance can be found to be

Rna = 4Xn* (Vm=0)" + 7, (23)
Thisrelation should replace the quantity Ry, in Eg. (20)
to specify the set of delaysfor the signal propagating in
the backward direction. The resulting formulatakes the
form

Yoal®) = 23 20% nazn@PHE0KE, @4
k

Here, zo, , 4 is the frequency response of the filter for
backward propagatlon This response is obtained from
Eqg. (21) in view of EqQ. (23).

To make use of the entire array aperture, one should
sum Eg. (24) over al n transmitting—receiving ele-
ments:

Yo = 3 Vo0, 25)

The second method of implementing the TRW,
which isbased on the use of theinversefilter (Eq. (17)),
is built from the same bricks as the first method, though
they put together in a different order. These bricks are
the filter frequency responses (Eq. (21)) and the quanti-
ties zo, , 4 appearing in Eq. (24). In the second TRW
method, the same frequency responsesare used in adif-
ferent combination. Thefinal formulahasthefollowing
form:

Y2,(t) = anz E k%.

Thereis acaveat in using Eq. (26): the quantity z ,
appearing in the denominator of Eq. (24) can become
zero at certain points. To avoid errors caused by these
zeros, it is sufficient to set Eq. (26) to be equal to zero
if the modulus of z , takes a value below some thresh-
old level.

Figures 57 illustrate the calculations performed
with Egs. (24)—(26). In Fig. 5, the responses of the
time-reversed signals are shown as functions of time.
These responses were obtained with the value of q that
correspondsto point A, i.e., to the point of transmission.
This figure illustrates both methods of implementation
of the TRW. Note that the entire receiving array is not
used. The plots show the TRW results obtained in trans-
mitting the time-reversed signal from a single point.
According to Fig. 5, ashort pulseis observed, which is
similar to the signal obtained in the experiment
described in [1, 2]. Figure 6 illustrates the focusing of
the signal in space and time. This focusing is humeri-

Z0
k, n, q (26)
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Fig. 5. The TRW result observed at point A (Fig. 2) as a
function of time. Only one element of the b—b array is used.
The upper and lower plots correspond to the correlation
transformation [1] and the inverse filtration, respectively.

cally obtained without using the entire transmitting—
receiving array: only individual (arbitrary) array ele-
ments are used. What, then, isthe role of the array, and
isit necessary at all?

The experiments described in [1, 2] show that the
signal is focused more sharply in the TRW procedure
than in using the array in free space. In [2], experi-
mental data are presented for various numbers of ele-
ments in the receiving array: from 1 to 128. In all
cases, the focusing effect was observed independently
of the number of array elements. The cal culations lead
to the same conclusion. To implement the focusing
observed, thereisno need for areceiving array: asingle
point receiver is quite sufficient. The focusing
obtained in the experiments is adirect consequence of
Egs. (25)—(27). The point is that the filter through
which the secondary signal passes is the matched one
only in the case in which the points of transmission
and reception coincide. Otherwise, Egs. (25) and (27)
differ from each other, and the filter provesto be par-
tially matched or completely unmatched. A similar
result will be obtained if the signal formed by the
TRW procedureisconsidered for adifferent direction
from point A. Near point A, the response is close to
thesignal at point Ainitsamplitude. But if one moves
away in an arbitrary direction to a considerable dis-
tance, the filter will become unmatched and the
response will decrease.

One could possibly draw the following conclusion:
that inthe experiment, one canrestrict thearray to asin-
gle element instead of the antenna consisting of 128 or
more receiving elements, and the result should be the
same. However, the situation is somewhat more com-
plex. The experiment with a single receiver instead of
the array may fail. Here, the key factor is not in the
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Fig. 6. TRW result as a function of time and y coordinate. Only one element of the transmitting—receiving array is used. The plots
(a, ¢) ontheleft and (b, d) on the right correspond to the correlation transformation [1] and the inverse filtration, respectively. Inthe
plots (c, d) with isocurves, the time and the y coordinate are represented by the vertical and horizontal axes, respectively.

directivity of the array but rather the noise immunity of
the 128 independent receiving channels in comparison
with a single one. This statement is confirmed by the
experiment described in [2], aswell as by calculations.
The TRW effect with a single receiver will exist, but it
will beweak. Instead, if the effects of 128 receiversare
summed, the TRW gain will significantly increase and
become quite noticeable. Figure 7 illustrates this state-
ment: here, the output of the entire array is shown
according to Egs. (25) and (26). The signal is substan-
tially stronger and less polluted than in Fig. 6 corre-
sponding to asingle array element.

Figures 6 and 7 show the data obtained both at the
second step of the TRW procedure and with the
method of inverse filtration. Both methods provide
spatial focusing. The inverse-filtering method offers
more noise immunity only in finding the time-domain
response. In other situations, this method leads to a
lower noise immunity. Figures 6 and 7 confirm the
latter statement. It is especially noticeable in the
isocurves of Figs. 6d and 7d, which illustrate the
space-time focusing: there is a white strip across the

plots. This strip is free of the correlation noise. With
the inverse filtration, the noise is higher in other
points of the time—coordinate plane. The origin of
such alower noise immunity is clear: small values of
Z(w) increase the noise. Nevertheless, the inverse-fil-
tration method is of fundamental importance in spite
of its evidently low noise immunity. The existence of
this method prevents efforts to fully reduce the TRW
procedure “to the time reversal of the signal,” asin
[1-5].

To conclude, let us emphasi ze the common features
of the TRW and WFI. Both the TRW and WFI proce-
dures realize wave inversion with focusing in space.
Both methods allow one to obtain the inverse field free
of the influence of the medium in which the waves
propagate. It is especially important that both the TRW
and WFI, when repeatedly applied, offer the opportu-
nity to separate the received signalsin their intensities,
asin[1,9, 10].

Because of its similarity to holography and the
simplicity of its implementation, the TRW method is
agreat advantage for acoustics. The TRW method has
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Fig. 7. The TRW result as a function of time and y coordinate. The entire transmitting—receiving array, consisting of 64 elements, is
used. Plots(a, ¢) ontheleft and (b, d) on theright correspond to the correlation transformation [1] and theinversefiltration, respectively.
In the plots (c, d) with isocurves, the time and the y coordinate are represented by the vertical and horizontal axes, respectively.

already given rise to a number of new ideas [7-13].
Undoubtedly, this method will also yield new interest-
ing resultsin future.
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Abstract—A plane acoustic layer bounded by elastic membranesis considered. Dispersion relations for symmetric
and antisymmetric waves are derived. Thelimit behavior of dispersion curvesisinvestigated for wave numberstend-
ing to zero and to infinity. With the use of the resulting asymptotic expansions, the two-point Pade approximations
are constructed. Theorthogonality relationsfor eigenmodes are presented. © 2004 MAIK “ Nauka/ Interperiodica” .

Multiple papers dealing with the Rayleigh-Lamb
transcendental equationsfor aplane elastic layer (see,
e.g., [1, 2]) form the current methodology of linear
waveguide dispersion analysis. This methodology
includes, in particular, the consideration of the limit
behavior of dispersion curves for different relation-
ships between the wave number and the angular fre-
guency. The corresponding asymptotic dependences
offer important initial information for constructing
universal models describing the dynamics of plates
and shells[3].

This paper extends the qualitative approach devel-
oped for the Rayleigh—-Lamb equation to the case of
wave dispersion in a plane acoustic layer bounded by
elastic membranes. Such a waveguide is of interest for
modeling a number of man-made and biological
hydroelastic systems with flexible walls. In this con-
text, we note that motions of the membranes are
described by the equations of the theory of elasticity for
a prestressed body in the low-frequency asymptotic
approximation [4].

In what follows, we derive asymptotic formulas for
the roots of the derived dispersion equation near the
zero and cutoff frequencies and for the wave number
tending to infinity. With these formulas, we determine
the asymptotic laws of acoustic pressure distribution
throughout the layer thickness. We suggest (possibly
for the first time) describing the dispersion curves in
terms of the two-point Pade approximations, which, in
the limiting cases, turn into the conventional long- and
short-wave approximations. The efficiency of the
approximate formulas is demonstrated by correlating
the approximate results with those obtained numeri-
cally from the initial dispersion equation. The disper-
sion analysis is concluded with a derivation of the
orthogonality conditions for oscillation modes, which

are, in acertain sense, similar to the orthogonality con-
ditionsfor the Lamb wavesin aplane elastic layer (see,

e.g. [9]).

1. DISPERSION RELATIONS

Consider a plane acoustic layer with flexible walls
in the form of membranes spaced by a distance 2H
(Fig. 1). The equations of motion for the membranes
and the acoustic medium can be written in the form

2 2 2
a_g+a_g_lza_§: , (1.1)
ox" 0y~ cyot

o°v _ _1op

ot*  Pody’

where x and y are the longitudinal and transverse coor-
dinates, t istime, c is the velocity of an elastic wavein
amembrane, ¢, is the velocity of sound in the acoustic
medium, h is the membrane thickness, p is the density
of the membrane materia, p, is the density of the
medium, w and v are the displacements of the mem-
branes and the medium, p is the acoustic pressure, and
the plus (minus) sign in the first equation corresponds
to the upper (lower) membrane (see Fig. 1). The condi-
tion of no leakage through the membranesisasfollows:

Vi]g=en = W. (1.2)

1063-7710/06/5006-0694%$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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We introduce dimensionless variables and unknowns
according to the formulas

[€,C,T] = [X Y, Cot]/H,
[w, v] = H[w*, v*], p = cipop*.

In the further analysis, we will omit the asterisk.

After a direct substitution of Egs. (1.3), system of
equations (1.1) assumes the dimensionless form

(1.3)

2 2
26_v;/_a_v;/i Kp = 0,
0&° o1

(1.4)

Consider the propagation of aharmonic wavewith a
dimensionless frequency w and a dimensionless wave
number ¥. We seek the solution in the form

[w, v, pl = [W,V(C), P(Q)]exp[i(wTt—X&)]. (1.5)
Then, system of equations (1.4) assumes the form
KP

82X2 —0.)2

W=+

d’P )
— +(w=-x)P =0, (1.6)
dz®
dp _
d¢
In the case of symmetric oscillation modes (the
amplitude P(¢) is an even function), the solution to the
boundary-value problem in (1.6) and (1.2) is given by
the formulas

2 .
_ w cosh(B{) sinh(BQ)
PO = —gamnp snhg v+ (1D
with a? = €2x? — w? and % = x> — w?, where wand X sat-
isfy the dispersion equation
oa’Btanh(B) _
> .

w B

In the antisymmetric case (the amplitude P({) is an
odd function), we have

W?W.

W, V(() =

(1.8)

_ w’snh(BY) _ cosh(BY)
PQ) = WW’ V() = TshBW (1.9)
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Fig. 1. Geometry of the problem.
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Fig. 2. Dispersion curves for the symmetric case.

under the condition that the dispersion relation

a’B’coth(B) _
w B
holds. Figures 2 and 3 show the dispersion curves of the

fundamental and higher-order modes for symmetric
and antisymmetric casesat € =0.1and k = 1.

(1.10)

2. ASYMPTOTIC ANALY SIS

Let us analyze the limit behavior of the dispersion
curves for the wave numbers tending to zero and to
infinity. Expanding Egs. (1.8) and (1.10) in powers of
the wave number x for x — 0, we obtain the long-
wave asymptotics of the fundamental mode. It has the
form

= Ev2ro0x* 2.1
A ﬁx (x") (2.1

in the symmetric case and

€ 3
w= +0
T X o0

in the antisymmetric case.

Asthe wave number tendsto infinity, the symmetric
and antisymmetric fundamental modes turn into the

2.2)
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Fig. 3. Dispersion curves for the antisymmetric case.

surface wave whose limiting velocity of propagation
coincides with the velocity ¢ of waves in the mem-
brane. Replacing the hyperbolic tangent and cotan-
gent in Egs. (1.8) and (1.10) with unity and setting
~ W, We obtain the asymptotic formula

KE
2./1-¢°

W= - +ex+0 x=1. @3

BiN
B

At x =0, dispersion equations (1.8) and (1. 10) yield
equations for cutoff frequenciesb,,n=1, 2, ...

b,tan(b,) = k; b,=m(n-1), n>1,
2.4
b,cot(b,) = —«; bn:—g+ mm, n> 1. o
The corresponding high-frequency long-wave
asymptotics have the form
A
@ = b+ £+ O(x"), 2.5)
where
1 €K
A= +——r. 2.6
2 pi+k’+k 0

Unlike the fundamental modes, the phase velocity
of higher-order modes at infinity tendsto the velocity of
bulk waves ¢, in the acoustic medium. We seek the
asymptotic behavior of these modes for Y — o in the
form

w = )(+9—+OD:LD

[kﬂ]

2.7

KAPLUNOV et al.

Substituting expansion (2.7) in dispersion rela-
tions (1.8) and (1.10), we obtain the equations for C,;:

/2C, tan,/2C, = 1_L2

2C,cot

C,= %T{Z(n—l)z, ns1,

- K
2o T (2.8)

= g(Zn—l)z, n> 1.

The method of the two-point Pade approximations
(see, e.0., [6]) alows the transformation of the asymp-
totics obtained above into fractionally rational formulas
that exhibit agiven limit behavior near zero and at infin-
ity. They have the form

€ 2 KE
=X - X +ex’
K
W = K 2f1-¢? 2.9)
1+x

for the symmetric fundamental mode,

€ KE

W = 21-¢" (2.10)
1+ x
for the antisymmetric fundamental mode, and
b, + ﬁ—”xz +Cx X
w = 1 3 (2.11)
1+x

for the higher-order modes.

Figures 4 and 5 show the dispersion curves obtained
for the fundamental modes from the exact solution and
asymptotic formulas (at € = 0.1, K = 1) suitable for esti-
mating the behavior of the dispersion equation roots
near the cutoff frequencies (Egs. (2.1) and (2.2)) and for
large wave numbers (Eg. (2.3)); in addition, these fig-
ures show the corresponding Pade approximations
(Egs. (2.9) and (2.10)). Figures 6 and 7 show similar
curves for higher-order modes. One can see that the
quality of Pade approximations degrades with increas-
ing mode number n, which is related to the increase in
the coefficient C,, in formula (2.11).

The above expansions offer the possibility of
obtaining the asymptotic laws for the acoustic pressure
distribution throughout the layer thickness. For funda-
mental modes, they have the form

P = %*E W, (x <1) (2.12)
in the symmetric case and
P(Q) = LW, (x<1) (2.13)
in the antisymmetric case.
ACOUSTICAL PHYSICS Vol. 50 No. 6 2004
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Fig. 4. Symmetric fundamental mode (solid line) and its
asymptotics (dotted lines) for x > 1 and X < 1, and the Pade
approximation (dashed line).

For the symmetric higher-order modes, we have

2
P(Z) = ‘m;)T\?&)[COS(b”Z)
[RA, -1
— EZH—bn a:ot(bn) + b%ECOS(an) (2.14)
. 0o
+sin(b,{)¢ 5}( } (x<1),
? 2C
P(7) = ‘*’2(‘;02(”( Z'é))w, (x>1). (215)

Similar formulasfor the antisymmetric higher-order
modes have the form

wW

P() = W[sin(bno
b,) - b
o 2b Ban( ) Sn( o) 2.16)
+ cos(b,2) Exz}, (X <1),
P(7) = J‘;_s’;ifzn_?)w, x>1). (@17

3. ORTHOGONALITY RELATIONS
Let usreduce Eq. (1.6) to the eigenvalue problem

g—E+)\P =0

d¢?

3.1
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Fig. 5. Antisymmetric fundamental mode (solid line) and its
asymptotics (dotted lines) for x > 1 and X < 1, and the
Pade approximation (dashed line).

with boundary conditions

dap .

gz £aP =0,

(¢ =+1), (3.2)

where

KW’
A+ w(1-¢9)

and introduce the spectral parameter A = —3*. Because
the boundary conditions depend on the spectral param-
eter, problem (3.1), (3.2) does not belong to the class of
problems described by the classical Sturm—Liouville
theory [7]. To determine the orthogonality relations in

a(A) =

X
5
4L
3L
21
1k
1 1 1 1 1 1 1 |
0 092 1.8 275 367 458 550
W

Fig. 6. Asymptotics for the symmetric higher-order modes
(solid lines) (n = 1, 2) and their asymptotics (dotted lines)
forx > 1 and x < 1, and the Pade approximations (dashed
lines).
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Fig. 7. Asymptotics for the antisymmetric higher-order
modes (solid lines) (n = 1, 2) and their asymptotics (dotted
lines) for x > 1 and X < 1, and the Pade approximations
(dashed lines).

our case, we write Eq. (3.1) for eigenfunctions P, and
P.,(n#m) and the corresponding eigenvalues A, and A,
and subtract the second equation from thefirst one. The
result will be

%[Pnp'm—PmP‘n] FQ=A)PPn = 0.  (33)

Integrating Eqg. (3.3) from —1 to 1 and taking into
account the fact that

e\ + wi(e-1) = Kooz—Pi,(l)
Pi(1)
P.(-1) 3.4
= ettt (i =n,m),
Pi(-1)
we obtain the integral form of Eq. (3.3):
2 1
€
)\n_)\m _an+ I:)n I:)m d = 01
( )[sz JPOPac0) z} 43)
n#m,
where
Fom = Pu(LPR(D) + Pi(-DPR(-1).  (.6)
As a conseguence, we obtain
2 1
3.7

Ks_wzF“”‘* _ijn(Z)Pm(a)dz =0, nzm.

KAPLUNOV et al.

Calculating now the left-hand side of Eq. (3.7) for
n= m, we obtain the orthogonality relation for the
eigenfunctions of problem (3.1), (3.2) in the form

> 1

£t [PrOPAQ)A = 8oy, (38)
KW 4
where
Fam = [Ph(1)]% + [Pi(=1)1", (3.9)
2 1
(3.10)

€ 2
Bn = _an+ I:)n Z dZ,
[P

and d,,,, is the Kronecker delta.

Note that similar orthogonality conditions for
acoustic waveguides with flexible walls were suggested
earlier in[8].
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Abstract—A monopol e scattering of sound by microparticlesin aliquidisconsidered for microparticles of two
types: spherically symmetric particles similar to gas bubbles in a liquid and disk-shaped gas-filled particles
whose bases may oscillate in antiphase. A transformation of the scattering amplitudeto the function that, in par-
ticular, describes the oscillations of a particle removed from the liquid is proposed. This function extends the
possibilities of the acoustic diagnostics of such particles. Estimates of the sound velocity in water containing
disk-shaped particles suggest that the sound velocity increase observed in sea water with plankton can be
explained by the monopol e scattering of sound from asingle plankton particle modeled as arigid gas-filled disk
with oscillating parts of its bases. © 2004 MAIK “ Nauka/Interperiodica” .

In problems of sound behavior in media with dis-
crete inhomogeneities (particles), it may be necessary
to develop amodd of acoustic wave scattering by indi-
vidual particles, which, in principle, alows one to
describethe acoustic field in the medium and, in anum-
ber of cases, to identify the particles. For example, in
[1], an attempt is made to determine the shape and type
of plankton from backscattered acoustic waves; in [2],
an anomalously high attenuation of acoustic wavesin a
liquid containing zero-buoyancy plankton is explained
by oscillations of particles whose center of massis off-
set from the point at which the buoyancy force is
applied. Of interest are the experimental measurements
of the velocity of sound in sea water containing plank-
ton [3, 4], where the velocity of sound was found to
increase with respect to that in the pureliquid in the fre-
guency range from afew kilohertz to hundreds of kilo-
hertz. Whereas the model developed in [1] refers to
acoustic wavelengths equal to anywhere from fractions
of the particle size to a few particle sizes, the wave-
lengths dealt with in [3, 4] are much longer than the
particle size, which allows one to categorize the inter-
action between the particles and sound by the type of
the scattering: monopole, dipole, etc. In this case, the
characteristics of individual scattering types can exper-
imentally be found by measuring this process for one
particle and revealing how the particle parameters
(elasticity, mass, added mass of theliquid, etc.) respon-
sible for this type of oscillations are related to the
amplitude of the scattered acoustic waves. Of course,
this study cannot do without theoretical models of par-
ticle oscillations, which should be individual for each
scattering type. In this paper, we discuss two model s of
the particles that cause a monopol e scattering of sound.
These are the spherical particle, whose properties are
close to those of agas bubblein the liquid, and the pla-

nar (disk-shaped) particle, whose bases oscillate with-
out deformation.

Consider the scattering of an acoustic wave by a
spherical particle whose radius R is small in terms of
wavelength. We represent the particle as a gasilled
space enclosed in ashell whose mass per unit areaism.
For harmonic oscillations at the circular frequency w,
the amplitude R(r) of the pressure of the scattered
acoustic wave P(t) = Pexp(iwt) can be written as

Ps(r) = X(R/r)exp(—ikr)P,, ey

where r is the distance from the particle center to the
observation point; k is the wave number; and x and P,
are the amplitudes of the scattered and incident waves,
respectively. To calculate X, we use the boundary con-
ditions at the surface of the particle and the gas law
inside it (see, e.g., [5, 6]). The only difference between
the description of the particle under study and that of a
gas bubble is the additional term in the relationship
between the pressure P, in gas and the pressure P, in
liquid:

P, = P—w'mg, )

where & isthe amplitude of oscillations of the particle’s
boundary. As a result, we obtain the following expres-
sion for the amplitude of the scattered wave:

X = [(wf/w’) —1—(m/R) .
+i(KR + (4v/wR?) + wlolw?)] ™,

where wy, = (1/R)(3yPy/p)'?; P4 isthe static pressurein
the particle; o is the internal loss factor; y is the adia-
batic index of gas in the particle; and p and v are the
density of liquid and its kinematic viscosity coefficient,
respectively. Exact values of wy, and o with allowance
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for heat-transfer processes and surface tension, which
can beregarded in this case aselasticity of the particle’s
surface, are given in [6]. An expression for the ampli-
tude x of the wave scattered by aparticle with an elastic
mass shell of a nonzero thicknessis obtained in [7].

The quantity x depends on the frequency win ares-
onance manner, and the position of the resonance (w =
;) on the frequency axis is determined by the condi-
tion

wolw = 1+ m/pR )

and depends on the added mass of the liquid 4TpR?, as
well as on the mass of the boundary 41vnR?. To retrieve
the parameters of the particle from the scattered field
according to Eqg. (1), one must measure the product R
and, if the particle radius Ris somehow determined, for
example from the float-up velocity asin [10], then w,
and o can be found from condition (4) of the resonance
and fromits Q factor at m= 0. Otherwise (Ris unknown
and m # 0), Rx must additionally be measured at other
points, for example, far from the resonance at low fre-
guencies, where

X(w— 0) = (w/w)[1—i(4wulweR) +0a]. (5)
In this situation, it may be useful to transform x to

the function W(w, Ry) by the formula
W = RX[Re + Rxexp(-ikRg)], (©6)

where Ry can be defined arbitrarily. Formulas (3) and
(6) yield the following expression for W (kR issmall):

W = ﬂRef/R)[——l—ﬁ
)

0 2 7
+igay _CE} 18
R w O O
It can be seen that function W haslost its emission loss
coefficient kR for all Ry while retaining the resonance
dependence on w, but not for all Ry. The position of the
resonance wy on the frequency axisis now given by the
formula

wolwy = 1+m/pR—R/Ry, ®)
which isvaid when
RIR, = (1 + M/pR). )

The quantity R¢ = R/(1 + m/pR) gives an infinite wy and
transforms Eq. (7) to the expression

W = (0/))[1-i(Awv/wiRE +0)], (10)

which isproportional to x from Eq. (5) but now isvalid
for the entire range of frequency w. At m = O, this
behavior of the function W in the vicinity of the reso-
nance of the amplitude x of the scattered wave deter-

KOBELEV

minesthe particleradiusR. Atm# 0 and Ry = R, EQ. (7)
takes the form

W = (pR/m){ (w/0’) —1

- ) (11)
+i[(4vp/Rm) + (wi/w")a]} -,
where w” = 3yPy/Rm is the eigenfrequency in the
absence of liquid.

Let us show how function W(w, Ry) can be used to
calculate the parameters of the particle. Let us assume
that, from the field scattered by the particle, using for-
mula (1), the resonance frequency w, and the values of
the product Ry are determined at the frequencies w, and
w,, for example to the left and to the right of the reso-
nance frequency wy, which are close enough to the coef-
ficient o to be constant. By substituting these values of
Ry into Eq. (6) for W and setting its real part equal to
ReW given by Eqg. (10), where the frequency w must be
taken equal to w, or w,, weobtain Ry =R, and Ry = R,,
which must be equal and satisfy equality (9), i.e.,

R/R, = 1+m/pR = wh/w’. (12)

Also, ImW(w;, R)) = A, and ImW(w,, R)) = A, must be
equal to the imaginary part of Eq. (10) at the corre-
sponding frequency. With formula (12), we obtain the
equations

A, = (1)) (4w,VR/WIRY) + 0] ;
A, = ~(w5lw))[(4w,v R /0 RY) + 0],

whichyield Rand o intheform

(13)

— { vV 1001002(001—(02)} .
wWoA;)

wf(wiAz - (14)
_ wf(ngl — wiAz)
wi(*)g(wl —w,)

Equality (12) can be used to calcul ate w, and m. Setting
m=v =0 =0 and R=R* in Eq. (3) produces expres-
sion (12) for R} from [7], while the above procedure
yields the value R*, which is equal to R, rather than R.

In the case we studly, it isthe viscosity of the liquid that
allowed usto separate Rand R;.

Thus, the transformation of the product Ry accord-
ing to Eq. (6) eliminates the radiation loss while retain-
ing, in general, the resonance frequency behavior of the
function W. At Ry = R, function W describes the oscil-
lations of the particle without the liquid, because the
added mass of the liquid disappears. At Ry = R/(1 +
m/pR), the resonance frequency behavior of W changes
to the quadratic behavior of itsreal part, whichis equal
to unity at the resonant frequency (w = w;) for any Ry.

Let us focus on the following significant drawback
of the above model. Let the parameters «, and R be
ACOUSTICAL PHYSICS Vol. 50
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found from Egs. (12) and (14). Then, the pressure Pq
may be calculated from the definition of w, (see com-
ments to Eqg. (3)), but this pressure may differ from the
actual pressure in the particle even with alowance for
the elasticity of its surface. For example, it may be
much lower than the external static pressure. In this
case, the model can be improved so as to introduce an
additional parameter affecting the frequency wy,. Tothis
end, consider the monopole scattering of sound on a
disk-shaped particle. Let the particle be planar (its
thickness be much less than the longitudinal dimen-
sion), arbitrarily shaped in the longitudinal plane, and
filled with gas of volume V. Let, at a certain point of the
particle, two aligned holesbe cut inits plane surfacesto
connect the internal and external spaces, and two pis-
tons of radiusa and mass M beinserted into these holes
and be capabl e of oscillating in antiphase with the same
amplitude & without deformation. The walls of the par-
ticle are also presumed to preserve their shape.

Two components can be distinguished in the field
scattered from this particle. One component is attrib-
uted to the scattering of sound from a perfectly rigid
particle and is equal to the monopole component of the
expansion of the incident field P, into spherical func-
tions. Therefore, its amplitude is proportional to k’b?
(bis the particle size) [8] and is small. The dominant
contribution to the scattering is produced by the particle
compressibility through the displacement of the pistons
in the holes. To describe this process, we introduce a
rigid boundary in the particle symmetry plane, which
allows usto reduce the problem to oscillations of acir-
cular rigid piston in arigid screen (see[9]). The acous-
tic field (here, the scattered field Py) produced at an
arbitrary point in space due to the displacement & of the
piston is given by the formula

PJ(r) = —(wsz/ZH)J'[exp(—i kr)/r']1dS, (15)
S

where the integration is performed over the piston sur-
faceS r'=|r —r,|; and r and r, are the vectors originat-
ing from the center of the piston and ending at the
observation point and at the center of the piston’s sur-
face element ds, respectively. Far from the piston, at
r2> a2, Eq. (15) yields

P.(r) = —w’pEa’exp(—ikr)/2r. (16)

The comparison of expressions (16) and (1) gives the
relationship
XRP, = —w’pa’/2,

where Ris as yet unknown and will be found.

Consider the oscillations of the piston: they are
described by Newton’s equation

(17)

~Mw’E = SP,— J'Ps(rs)dS—SPo. (18)
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Here, the integration is also performed over the piston
surface S, and the vector r ¢ goes from the center of the
piston to the element ds. The gas pressure P, in the par-
ticleisrelated to & through the gas law Wit?'n an alow-
ance for losses o (oscillations of the two pistons must
be taken into consideration):

Py = —(8YSPy/V)(1+i0)E. (19)

The third term on the right-hand side of Eq. (18)
describes the action of the field P, unperturbed by the
particle on the piston; the second term is the response
of the liquid to the oscillations of the piston, which is
also calculated in [9)]:

[Pulrads = —w’p(8/3)a’[1— (31016)ikalE. (20)

Thefirst term on the right-hand side of Eqg. (20) is pro-
portional to the added mass of the liquid

M. = (8/3)a’p, (21)

associated with piston oscillations, and the second
term, with the energy loss coefficient due to the acous-
tic emission. By substituting Egs. (19) and (20) into
Eq. (18), we obtain the equation for the piston displace-
ment

= (3MP,/8w’ap){ (wy/w’) —1—(M/M),

- . (22)
+i[(3/16)ka + (wp/w)ol} -,
where w, is given by the formula
W = (8YySP VM), 23)

Taking the radius R from Egs. (1) and (17) to be equal to
R = (31W16)a (24)

and substituting ¢ from Eq. (22) into Eq. (17), we
obtain the following expression for the scattering
amplitude:

X = {(w/w’) —1=(M/M,) o5)
+i[kr + (4VI0R?) + (wilwd)a]} .

This expression includes the loss coefficient 4v/wR?
due to the radia oscillations of the liquid. The follow-
ing reasoning can be advanced in favor of this
description. At theradius R given by Eq. (24), X given
by Eq. (25) coincides with expression (3), including
the loss coefficient kR due to the acoustic emission.
Furthermore, the added mass appears to be close to the
added mass of a pulsating sphere; therefore, the energy
loss due to the tangential component of the potential
velocity of liquid particles at the boundary |r| = R is
small; i.e., the planar particle oscillates as the spherical
one. The energy lossdueto the vortex component of the
velocity of theliquid near the piston is considered to be
included into the coefficient o. If the particle volumeis
represented as V = 41R%a/3, formula (23) yields the
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expression w, = (2/R) ,/3yPg/ap , which contains an
additional parameter a. The latter can be defined, with
the help of the procedure mentioned above, from the
known y and Py.

Unlike the scattering cross-section, which is deter-
mined by the magnitude of the scattering amplitude, to
obtain the scattering function itself the phase must be
known, which imposes more stringent requirements on
the accuracy of measuring thefield scattered by the par-
ticle. The measurement methods realized experimen-
tally—for example, the one proposed in [10], which
measures the acoustic field during its several periods—
cannot actually be used for this purpose. In this case,
the diagnostics of the particle placed at the center of a
spherical resonator seems to be methodically promis-
ing. Then, it is necessary to measure the coefficient of
reflection of a spherically converging acoustic wave
from the particle. For a gas bubble, the reflection coef-
ficient is determined in [5] using boundary conditions
on the bubble. For a particle of an arbitrary shape, this
method can hardly be used. We calculate this quantity
by a somewhat different method.

Let a unit-amplitude spherically converging pres-
sure wave (R/r)exp(ikr) be incident on the particle; the
reflected wave will have the form B(R/r)exp(—ikr),
where 3 is the reflection coefficient. For r> > R* and
(kr)?> < 1, the total field can be written in two ways:

(R/M)[exp(ikr) + Bexp(—ikr)]
= 2ikR+ (R/r)(1 + B)exp(—ikr).

According to Eq. (1), the second term on the right-hand
side of Eq. (26) can only describe the scattered field
produced by theincident field uniforminr and given by
the first term; i.e, 2ikRx(R/Mexp(-ikr) = (RN +
B)exp(-ikr), which yields the relationship between 3
and x:

(26)

B = —1+2ikRy. 27)

Interestingly, for abubble at afrequency w= w,, which
correspondsto the resonancein x described by Egs. (3)
or (25), we obtain the expression for 3

= — 1+ 2kR/[KR+ (4v/w,R?) + (wi/w?)o], (28)
which, under the condition
kR = (4v/w,R%) + (we/w))o, (29)

yields a zero B and a total absorption of the acoustic
field incident on the particle. For an air bubble, using
data on o borrowed from [6], we obtain in this case a
radius of 0.5 cm.

Finally, let us estimate the vel ocity of sound inwater
containing phytoplankton under the assumption that the
individual particles can be modeled by a circular gas-
filled disk with the following parameters. the disk
radiusisb = 25 um, the disk thicknessisd = 10 um, the
radius of the pistonsisa =5 um, and the gas volumeis
V =2 x 10* um’. With these parameters, Eq. (24) gives
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the radius as R = 3 um; the eigenfrequency expressed
from Eqg. (23) in terms of the radius and volume V is
given by the formula

fo = 2(yRP4/TpV)"? = 1.6x10° Hz,  (30)

wherey= 1.4 and P4 = 10° Pa. In[3], where the particle
parameters were close to those chosen above, the vol-
ume particle content in water was about 10*. Let the
volume gas content in the particle be 0.1, which pro-
vides an approximately zero particle buoyancy. Therest
of the volume is occupied by the disk walls; i.e., the
volume gas content in the water is 10-. The number of
particlesn per unit volumeis10-5/V=0.5 x 103 (/cm?).

The average wave number k,, of the acoustic field in
the liquid containing monopole scattering particles is
given by the formula[11]

K2 = K+ 4TRxN, (31)

which yields the following relative variation in the
velocity of sound A = (c,,,— ¢)/c:

A = —(Rnc’/2m(f2 - £%)). (32)

Here, c,,and c are the vel ocities of sound in the mixture
and the pure liquid, respectively; f is the frequency of
sound; and ¥ istaken from Eq. (25) at M = 0 and is suf-
ficiently far away in frequency f from the resonant fre-
guency f,, where the imaginary part may be neglected.
By substituting c= 1.5 x 10> m/s, f = 3 x 10° Hz, and
theabovevauesfor R, n, andf, into Eq. (32), we obtain
A =8.3 x 1073, which satisfactorily agreeswith the data
reported in [3]. For the sake of comparison, we provide
the estimates of the sound-velocity variation in water
containing gas bubbles with the same volume content
of 10~ but with two different radii determined by the
following conditions: (i) the area of the pistons equalsthe
bubble surface area, i.e.,, 2ma% = 4nRi ,WhichyidldsR, =
3.5um, n, =0.54 x 10° (L/cm?), and f,; = 0.9 x 10° Hz;
and (i) the gas volumein the particle equal s the bubble
volume. In thiscase, R, = 16 um, f,, =2 x 10° Hz, and
the particle concentration remains the same (equal to
the particle concentration n). Then, Eq. (32) at f =3 x
10° Hz yields a negative value A, = 0.6 x 107 in the
first case and a positive value A, = 6 x 1072 that is too
high in the second case. These estimates allow us to
assume that the effect of the sound velocity increase
observed in sea water containing plankton, at least at
frequencies above 100 kHz, can be attributed to the
monopole scattering of sound by individual plankton
particles, which can be modeled by the particle consid-
ered above.
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Abstract—Experimental studies of the scattering of a monochromatic sound signal by arough sea surface are
carried out. The signal is produced by apoint sourcein ashallow-water basin. The measurements are performed
with the use of horizontal and vertical linear receiving arrays. The experimental dataare compared with the esti-
mates obtained on the basis of the model developed by the authors for resonant sound scattering by surface
roughness. A satisfactory agreement between the experiments and the calculationsis achieved. It is shown that
the scattered signal is formed within small surface areas, whose sizes have the same order of magnitude as the
first Fresnel zone with respect to the source and the receiving system. © 2004 MAIK “ Nauka/Interperiodica” .

A number of publications ([1-3], for instance) con-
sider the amplitude and phase fluctuations that accom-
pany the propagation of low-frequency (up to 300—
400 Hz) sound waves in the sea. Such fluctuations can
be caused by various phenomena: the sound scattering
by thewavy surface or by moving volume inhomogene-
ities, theinfluence of turbulence and internal waves, the
interference produced by the motion of the sound
source and the receiver, and so on. A review of publica
tions on acoustic fluctuations in a shallow sea can be
found in [4], where ageneral approach is developed for
the case of several-mode sound propagation, with the
modes interacting due to random processes in the
medium. The directivity of the sound scattering by sur-
face wavesiswell known and thoroughly studied [1-3].
We should also mention the recent publication [5], in
which the scattering characteristics are studied for the
case of adirectional sound source.

The present paper presents the experimental dataon
the characteristics of the fluctuations caused by surface
waves on short shallow-water acoustic paths with tonal
sound sources. In the experiments, the sound wave-
length A was comparable to the length A of surface
gravity waves. The measurements were performed in
the Baltic Seaand on the Sankhar Lake (Vladimirskaya
oblast, Russig). The transmitted frequencies corre-
sponded to alarge number of propagating modes: 10A <
H, where H is the depth of the basin. The signals were
received by linear harizontal (in the seaand lake exper-
iments) and vertical (in the lake experiment) antenna
arrays. Simultaneoudy with the acoustic measurements
on the lake, the spectrum of the surface waves was a so
measured.

In this paper, we quantitatively compare the mea-
sured and calculated fluctuations of the sound signals.

It is shown that, with monopole (omnidirectional)
sound transmission with the wavelengths A ~ A, the
scattering of sound by the wavy surfaceis substantially
contributed to by localized areas of the surface. The
centers of such areas correspond to the conditions of
resonant scattering, and their sizes are determined by
the size of thefirst Fresnel zone with respect to the posi-
tions of the sound source and the receiver.

The paper has the following structure. In Section 1,
the conditions of resonant scattering and a model for
calculating the scattered signals are considered. Sec-
tion 2 presents the experimental data for short propa-
gation paths in the Baltic Sea and on the Sankhar
Lake. The results obtained and the validity domain of
the calculation model are discussed in Section 3. The
formulas used in the calculations are presented in
Appendix A.

1. CALCULATION OF THE LEVELS
OF RESONANT SOUND SCATTERING
BY SURFACE WAVES

The conditions of the Bragg or combination scatter-
ing can be written as follows [1]:

ke = ki £k, (D

where kg and k; are the horizontal projections of the
wave vectors in the scattered and incident waves and
is the wave vector of the surface roughness (k = 21Y\).
Figure 1 shows the layout of scattering for positive
Doppler frequencies of the scattered signal: k= Kk; + k.

Suppose that low grazing angles are responsible for
resonant scattering [ 1], so that the absolute values of the
horizontal projections are equal to each other: k; = k=

1063-7710/04/5006-0704$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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k= 217A. Inthiscase, theangles6,, 6, and @ (Fig. 1) are
related by the following equalities:

(QIPNG)
Tt n.67+6 + ¥
0 = osgne”+ =———, 6" =67, (@
+) _ QO
. -0.
_ S S
E - SnD 2 D: (3)
K A o + _
where§ = — The quantities Gé i) and 9; i) cor-

2k 2N
respond to scattering with positive and negative Dop-
pler shifts, respectively. The range of angles @ in which
the conditions of resonant scattering can be met is
determined by the expression

@ = (2% arcsing). @)

This angular sector is shadowed in Fig. 1. Thus, if the
transmitted frequency increases (the value of ¢
decreases), condition (1) is satisfied for vectors k that
are close to the normal SO. Evidently, the actual values
of angles §; ¢ and ¢ should satisfy the inequalities

2k>K or A>A/2. 3)

It can be shown that the areas of resonant scattering (A
and B in Fig. 1) belong to the arcs of circles of radius R,
which pass through the transmission and reception
points:

SO
481-¢°
Both at high frequencies, when A < A, and at low fre-
guencies, when A/2 ~ A, radius (6) of the circles tends
to infinity. However, the positions of the areas that are
responsible for resonant scattering (Eq. (1)) are differ-
ent. At high frequencies (§ < 1), these areas lie on the
arcsthat are close to the line connecting the source and
thereceiver. At low frequencies (§ ~ 1), the areas of res-
onant scattering lie on the arcs that are most distant
from the SO line (see Fig. 1).

It is shown in Appendix A that the sizes of the
regions A and B that are responsible for the resonant
scattering are determined by the sizes of the Fresnel
zones. With multimode propagation, the relative inten-
Sty of resonant scattering is given by Eq. (A8). This
intensity isgoverned by expression (A9") for low grazing
angles that correspond to the total interna reflection
from the bottom if the surface wave is a plane one.

Note that, in the first approximation of the perturba-
tion theory (Eq. (A1)), the scattered intensity (Eq. (A9))
is proportional to the squared Rayleigh parameter: R =

R,sinX,, where R, = 2k+/ T, [ 20 s the squared sur-
face deviation, and ¥, is the grazing angle of the inci-
dent plane sound wave. Equation (A9) isobtainedinthe
first approximation of the small-perturbation theory
[1]. Inthiscase, the problem isconsidered in relation to
the scattering of a cylindrical wave generated by a

R = (6)
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Fig. 1. Layout of the resonant scattering of sound by awavy
surface: Sisthe sound source, and O isthe center of the ver-
tical linear antenna array consisting of N hydrophones.
Gray ellipses lying on the circular arcs schematically indi-
cate possible positions of the surface areas responsible for
the resonant scattering. The sectors of angles W, , indicate
the possible directions of arrival of the scattered signals for
low (A/2 ~ A) and high (A < A) frequencies, respectively.
The dashed angular sector corresponds to possible direc-
tions of the wave vector K.

localized omnidirectional sound source. Within the
scattering area, the spatial structure of the surface
roughnessis supposed to be coherent, and condition (1)
is met. Then, the area Swill be limited by the Fresnel
sizes with respect to the positions of the source and the
receiver (see also Section 3), and the scattered intensity
will be proportional to the squared value of S because
the contributions of different roughness elements are
coherently combined.

The derivation of Eq. (A9) is somewhat tedious.
Therefore, let us obtain an expression similar to Eq. (A9)
from energy considerations. Equation (A2) defines the
field produced by a monopole sound source with a
capacity Q in the waveguide. By averaging the squared
sound pressure over the coordinates of the source and
the receiver (over the interference structure of the
waveguide), we arrive at the following estimate:

— 12X«
lo(r) = IOOrH ) @)
where r is the distance between the source and the
receiver (|SO| in Fig. 1), H is the waveguide thickness,
X[is the capture angle for the rays leaving the area of

2
excitation of the sound waves, |, = E%% , wisthe
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transmitted frequency, and p is the density of water.
The quantity 1,,/R? corresponds to the intensity of the
sound field produced by a monopole source in an infi-
nite homogeneous space.

With aperfectly reflecting bottom, the capture angle
isX 7= 1v2, and Eq. (7) coincides with Eq. (5.53) of [1]
if there isno lossin the sound propagation. Equation (7)
can be readily obtained from formulas presented in
Section 5.6 of [1] for the averaged sound intensity in
shallow water. In doing so, one should assume that the
number of reflections of the attenuated rayswith x > x
is so large that they contribute nothing to the receweg
signal.

The range dependence of intensity (7) implies that
thereis no sound attenuation for the rays corresponding
to X < xpand that the sound speed is constant in depth
(the |sovel ocity Pekeris waveguide without bottom
absorption). Equation (7) isvalid for agreat number of
propagating modes, that is, for sufficiently short dis-
tances at which the attenuation and decay of higher
modes can be neglected [1].

In the case of large-scale surface waves, the reflec-
tion coefficient is[1'] = 1 — 2k 2[Ein?X, where M 20s
the squared surface deviation from the mean level [1].
The distance between consecutive reflections is L 2
2H/tanX,. Thus, the distance between the source and
the receiver should be sufficiently short for the relation
[V'N =1 to be valid, where N = |SO|/L. Hence, the fol-
lowing restriction on the distance SO must be imposed:

SOl . __cosxe

H e,

The experimental data discussed bel ow satisfy inequal-
ity (8).

With a coherent summation of the contributions
within the scattering area S, the time-averaged intensity
I of the scattered signal is proportional to the squared
surface deviation M *Omultiplied by the squared area S
and by k*sin?x, sin®X,. The quantity | is also propor-
tional to the intensity produced by the source in
region A (Fig. 1). Inview of Eq. (7) for the field decay,
the integration over grazing angles x, , leads to the
expression

®)

k'S
16T°H?|SA||AQ|

Intensity (7) produced by the source at the reception

2l o X
|SOIH
the scattered field normalized to |, is given by the
expression

1(Q) _ S|SO|
lo PO *)2>\“H|SA||A0|’

n2x.)> (9)

s_ OOD] (ZX_

pointisl, = . The power spectra density | of

(10)
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where P(Q) isthe power spectral density of the surface
waves at the frequency Q, f(X) = X 7— sin2X)*/2X 5

If condition (1) of resonant scattering is satisfied for
regionsA or B (Fig. 1), the value of Sis determined by

the Fresnel sizesandisequal to 4/A® [JSA| OAQ| . This
expression is satisfied to the accuracy of aconstant fac-
tor that is unity in its order of magnitude and the
accounts for the orientation of region A relative to the
source-to-receiver direction (see Appendix A). By sub-
stituting the area in Eq. (10) by the product of the
Fresnel sizes, we arrive at expression (A9").

The assumptions accepted in deriving Eq. (10) have
simple physical meaning. The independence of the
resultson distances |[SA | and [AQ| is caused, first, by the
geometry of the wave front and, second, by the coher-
ent nature of scattering: 1(Q) O S. The dependence on
the ratio |SO|/H is governed by the cylindrical symme-
try of thewave front and by normalizing to theintensity
of the incident wave at the reception point. In deriving
Egs. (10) and (A9), the sound attenuation was
neglected. The monotone increase in the scattering
level as a function of distance will be limited by the
propagation loss and the loss due to the reflections from
the bottom and the rough surface (see inequality (8)).

The experimental data presented below lead to a
conclusion that the assumption on the coherent nature
of sound scattering by wind wavesis not as absurd asit
seems at thefirst glance. In Section 3, we will returnto
considering the validity limits of the theoretical model
proposed here.

2. RESULTS OF MEASUREMENTS

As we have mentioned in the Introduction, the
acoustic measurements were carried out in the Baltic
Sea and in a deep-water lake. In the lake experiment,
the sound-signal reception was accompanied by mea-
suring the hydrographic parameters: the wind speed
and direction, the vertical displacements of the lake
surface, the temperature distributionsin depth, and the
variations of the temperature field [6]. Therefore, in
calculating the level of fluctuations caused by the
waves on the lake surface, we used the measured
power spectrum P(Q) of surface waves. This spectrum
was not measured in the sea experiment. In analyzing
the experimental records obtained in the sea, we used
amodel spectral function 2(Q) in the Pierson—M osk-
owitz form [7]:

00740900

e N
P(Q) = ag™V ToLValn;

THvo ©P T (1)
where a = 0.0041, Q isthe cyclic frequency of surface
roughness, V is the wind speed (in m/s), and g is the
acceleration of gravity.
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600 m

800 m

Fig. 2. Layout of the experiment on the Sankhar Lake. Symbol E denotes the position of the source placed at adepth of 9 m, 1 m
above the bottom. Abbreviations VA and HA correspond to the vertical and horizontal antenna arrays, and S labels the sensor of
surface waves. The resonant scattering areas are labeled by symbols A and B. The arrow labeled as w shows the direction of the

southeast wind at the time of acoustic measurements.

2.1. Measurements on the Sankhar Lake

The Sankhar Lake is in the Vladimirskaya oblast of
Russia. Itisarather deep-water 1ake, which wasformed
at the site of a karstic dip. The deep-water part of the
lake has asize of 800 x 500 m, with adepth of 10-15 m.
The maximal length of the lake, with allowance for a
bay with a mean depth of 3-5 m, is 1.5 km. Figure 2
presents the map of the lake with approximate positions
of the measuring systems. On the right, an echo-
sounder record is presented, which was obtained in
passing along the propagation path.

To obtain the values of surface displacements and
their spectral levels, the measurements were performed
with the use of a capacitance sensor (Sin Fig. 2) that
was fixed to the lake bottom. Sensor S was placed at a
distance of about 50 m from the acoustic antenna
arrays. The power spectral density of surface wavesis
presented in Fig. 3. The measurements of June 17, 1998
were performed during the day, with a stable southeast
wind whose speed was 2.5 m/s and whose direction was
constant during the recording time. Thewind speed was
measured at a height of 3 m above the lake surface.

The wind-wave spectrum (Fig. 3) measured at the
Sankhar Lake differs from that of developed surface
waves for an open sea (Eg. (11)). The specificity of the
lake surface waves consists in the presence of spectral
components with frequencies lower than g/V. Such
components are caused by the finiteness of the basin
and by the existence of low-frequency resonances in

ACOUSTICAL PHYSICS  Vol. 50
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large-scale gravity waves (surface seiches), whose
lengths are comparable with the characteristic size of
the lake [6]. The measured spectral density of the sur-
face displacements is adequately described by the
dependence [8] P(Q) = Bg?Q> with B = 0.0123 (the
dotted curve in Fig. 3). Such a dependence is valid for

the equilibrium frequency band: Q,.,, < Q < 4/4g°/0 =
15s!, where Q.. ~ 9/V isthe frequency corresponding

to the maximum in the spectral density and o is the
coefficient of surface tension.

The spectra maximum “I” in Fig. 3 is shifted
towards higher frequenciesin comparison with Eq. (11),
and the maximum “I1” appears at the frequency corre-
sponding to the synchronism between waves and wind.
Such a spectrum shape has been observed earlier [8]
and iswell known for the case of short fetches. The dif-
ference between the measured and expected spectral
levelsin the domain of saturation can be attributed to a
weak decrease in the value of 3 for shorter fetches. The
experimental data[8] indicatethat the value of 3 isdou-
bled asthe dimensionlessfetch & = Lg/V? decreases by
a factor of 500. The value 3 = 0.0123 corresponds to
< ~10°. Inthe experiments at hand, & ~ 102,

The sound signals generated by the tonal source
werereceived by horizontal and vertical antennaarrays,
each of which consisted of 64 hydrophones. The length
of both arrayswas L, = 12 m. The horizontal array was
mounted at a depth of 7.5 m with the first hydrophone
at 30 cm from the bottom. The distance between the
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PSD, m%/Hz
1073 \ ® June 17, 1998
N —— Pierson—-Moskowitz
10—4 Philli PS
1073
1076
1077
L 1 1 1 1 1 1 1 ]
0 1 2 3 4

Fig. 3. Power spectral density of surface displacements. The dots indicate the experlmental data for the lake measurements. The
level of the instrumental noise (analog-to-digital converter and signal amplifier) is 1078 m2/Hz. The model spectrum (the solid
curve) is calculated according to Eq. (11) for awind speed V = 2.5 m/s. The dashed curve corresponds to the equilibrium spectrum.

1,/1,, dB
0~

—10+

-20

-30

50t

0 1 2
Q/21, Hz

Fig. 4. Spectrum of the sound signal obtained by incoherent averaging over the 64 hydrophones of the horizontal array (omnidirec-
tional reception). The calculated spectrum is shown by the thick curve.

arrays and the source was |SO| = 450 m. The mean lake
depth was H = 15 m along the propagation path. The
signals received by each hydrophone were heterodyned
(at the frequency of transmission) and digitally filtered.
The filter passband was 8 Hz, which allowed us to
receive scattered signals with frequencies [Q/21t|< 4 Hz.
The experiment at the Sankhar Lake is described in
more detail in [6, 9].

Figure 4 shows the spectra of the sound signals
received by the hydrophones of the horizonta array for

atransmission frequency of 1480.4 Hz. These data are
obtained by incoherent summation over the hydro-
phones: such a method corresponds to an omnidirec-
tional reception. By comparing the plots of Figs. 3 and
4, one can see that the spectrum of sound fluctuationsis
narrower than that of wind waves. The narrowing of the
fluctuation spectrum relative to the surface spectrum
has been mentioned by many researchers [10]. This
phenomenon can be explained in terms of the resonant
scattering. On the one hand, condition (1) cannot be sat-
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Fig. 5. Frequency-angular spectrum of the sound signal received by the horizontal array (averaged over 24 signal redlizations). The
circled area corresponds to the source position. Other marked areas correspond to scattering by surface waves.

isfied for frequencies of surface waves that are higher
than 1.8 Hz (§ > 1). On the other hand, the shores of the
lake limit the allowable values of the angles 6, and 6,
and additionally reduce the frequency band within
which the scattering of type (1) can be observed.

Figure 5 shows the frequency-angular spectrum of
the sound signa with a carrier frequency of 1480 Hz.
Here, the domains that correspond to the source (Q = 0,
Yo = 5°) and to the scattering by the surfaceroughnessare
accentuated. Table 1 summarizes the measured angles 6,
of scattering and the angles 6; and ¢ calcul ated according
to Eq. (2). Thedomainslabeled as“+” and “0” in Fig. 5
correspond to regions A and B in Fig. 2, respectively.

) _q®
s = es ]

The experimental value & = sinD = 0.57

2 0
agrees well with the estimate ¢ = 0.6 (Table 1).

It is worth mentioning that the direction of the wave
vector K of the surface wave nearly coincided with the
wind direction in the experiment: there was a stable
wind from the south east (Fig. 2). Maxima labeled by
symbols “x” and “0O0" in Fig. 2 correspond to region B
that is close to the lake shore, opposite the bay (this
region isindicated by dashesin Fig. 2). These maxima
are more pronounced thanthoselabeled by “+.” Thelat-
ter fact can be explained by the length of the fetch,
which is greater for region B than for region A with
south-east winds. The maximum “x” correspondsto the
bearing 6, that is close to that of the maximum “00,” but
2004
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with opposite sign of the Doppler frequency shift. The
maximum “x” in the spatial -angular spectrum seemsto
be caused by the reflection of the surface wave from the
nearby shore (Fig. 2, Table 1).

The sum of the levelsfor the signals scattered in the
domainsindicated in Fig. 4 is close to the levels of the
modulation components with omnidirectional recep-
tion (Fig. 4). Hence, it islocal areas of the lake surface
that are responsible for the scattering by the rough sur-
face.

Let us compare the measured levels of the modulation
components (Fig. 4) with the estimates of Appendix A.

Tablel. Angles 6, = —y correspond to the maxima of the fre-
quency-angular spectrum (Fig. 5). Thequantitiesqpand 6; are cal -
culated according to Eq. (2). The angle 6, for the maximum
labeled as “x” is calculated with Eq. (3) at & = 0.6, which
corresponds to the maximum in the power spectrum of sur-
face waves at the frequency Q/2mm= 1.1 Hz (Figs. 3 and 5)
and to dispersion relation (A5). The experiments are per-
formed for asmall Rayleigh parameter: %R, = 9.3 x 1073 (the
value of n? is obtained by integrating the measured power
spectrum presented in Fig. 3)

Scattering area | AngleB;, | Angle6;, | Angleq,
inFig. 5 deg deg deg
“+7 (Q>0) -59 +10 -114.5
“O0 (Q<0) +10 -59 -114.5
“x"(Q>0) +6 -59.4 +57.3
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Fig. 6. Angular spectrum of the sound signal received by the
vertical array. The signals are incoherently averaged over
five frequencies of transmission around 1.5 kHz: 1459,
1470, 1480, 1491, and 1502 Hz.

First of al, notethat propagating modeswith low grazing
angles correspond to the experimental conditions. The
angular spectrum of the sound signal received by the ver-
tical array is shown in Fig. 6. According to this figure,
90% of the energy comesfrom directions || < 35°. Such
valuesfor the angle agree with the estimate of the critical
angle X for a sandy lake bottom with ¢, = 1800 m/s.

X[J= arccos(c/c,) = 34°.

The calculation of the modulation componentsillus-
trated by Fig. 4 was carried out according to Eq. (A9")
with X7=35° H = 15m, and |SO| = 450 m, under the
assumption that the angular spectrum of wind wavesis
narrow. The measured power spectrum %P(Q) of wind
waves (Fig. 3) was used in the calculations. The esti-
mates obtained from the formulas of Appendix A agree
well with the measurements.

LEBEDEV, SALIN

Note the difference in the levels of the modulation
components for the frequencies Q > 0and Q < 0. This
difference seems to be caused by the difference in the
amplitudes of the surface oscillations in the vicinity of
the scattering areas of the lake (Fig. 5). It is clear that
local features in the surface spectrum can be governed
by the closure of the basin and by the influence of the
lake shores. It is advantageous to analyze the spectra of
acoustic fluctuations caused by sea surface waves.

2.2. Measurements in the Baltic Sea

For sound sources, bottom-moored tonal transduc-
erswith frequencies of 200400 Hz and acoustic power
of 0.1-1 kW were used in the sea experiments. The
direct and scattered signals were received by a linear
horizontal antenna array consisting of 32-64 hydro-
phones spaced at 3 m (the maximal length of the arrays
used was 200 m). The arrays were stationary mounted
at levelsthat were 1/3 to 1/2 of the sea depth. The main
objective of experimenting in the Baltic Seawasto esti-
mate the ultimate capability of the coherent signal pro-
cessing [9]. Therefore, weather conditions with the
lowest sea states were chosen. Table 2 presents the
description of the sea propagation paths on which the
acoustic measurements were performed. The data pre-
sented in Table 2 demonstrate the variability of wind
speeds during experimentation.

Figure 7 shows the frequency-angular spectra that
were used to determine the areas responsible for the
resonant scattering by the surface roughness. In the sea
experiment, the scattering patchesare moreclearly local-
ized than in the lake (compare with the data of Fig. 5).
There are no maxima produced by reflections of surface
waves from the shores, and two domains of increased
scattering levelsexist in the spectrum. Positive and neg-
ative Doppler shifts correspond to these two domains.
In Fig. 7, the arrows indicate the positions of the max-

Table 2. Experimental conditions on fixed propagation paths in the Baltic Sea. The expected values of \6(;) - e?\ are cal-

culated according to Eq. (3) for the value of A that corresponds to the frequency of the maximum in the power spectrum of
surface waves and to dispersion relation (A5). The maximal value of the Rayleigh parameter correspondsto path 1: %R, = 0.11 (the

value of [ (s obtained by integrating Eq. (11))

Ordinal number (1) 2 (3) 4 (5)
Date of measurements Sep. 9, 1990 |Aug. 23, 2001|Sep. 15, 1998|Aug. 26, 2001|Sep. 13, 1990
Path length, km 15 3 8 27 10
Mean depth, m 80 60 60 53 80
Transmitted frequency, Hz 206.1 246 420.17 246 2371.5
Number of hydrophones 64 48 32 48 64

V, m/s 58 14 35 26 34
Frequency of modulation maximum Q. /21, Hz +0.18 +0.24 +0.315 +0.33 +0.4
Vaue of §(Qma) 0.07 0.11 0.11 0.2 0.32
‘e(+) B 9(_)‘ measured 8.4° 14.3° 14.3° 18.4° _

s s 1 expected 8.5° 13° 13° 24.2°
ACOUSTICAL PHYSICS Vol.50 No.6 2004
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Fig. 7. Frequency-angular spectrum of fluctuations in the Baltic Sea. The brightness scale indicates the power spectral density of
the sound signal in decibels. The horizontal dashed lines indicate the angular positions of the sound source relative to the normal to
the horizontal linear array. The arrows indicate the positions of the maximain the power spectrum of the scattered signal.

imaof the fluctuation level. The measured values of the

scattering angles are presented in Table 3.

According to Table 3, the wind direction was

nearly perpendicular to the acoustic propagation path.
Such an orientation correspondsto the layouts of mea-

surements 1-4. The values of & (Table 2) correspond to
anarrow angular sector (record no. 4) of the directions
of vector K, in which the conditions of resonant scatter-
ing are met. Record no. 5 was obtained at low sea state,
when the direction of surface waves noticeably differed

Table 3. Positions and amplitudes of maximain the frequency-angular spectra (Fig. 7)

Marked domains
a b c d e f g h

Yo —4.2° +11.7° +34.8° +58.6°

A -10.5° -2.1° +4.7° +19° +32.3° +46.6° +50.8° +69.2°
05 =—(Ys—Yo) —-6.3° +2.1° -7° +7.3° —2.5° +11.8° -7.8° +10.6°
(0] +87.9° +90.2° +94.7° +91.4°

I/, dB —24° -23° -37° —29° —22° -22° —27° —26°

ACOUSTICAL PHYSICS Vol. 50 No.6 2004
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y, deg dB from the normal to the acoustic propagation path. In
-30 thiscase, according to Fig. 8, the scattered signal man-
—62.2 ifests itself as fuzzy and asymmetrical domains of
—49.3+ increased signal level in the band of surface-wave fre-
—ggg' quencies.
223 Suppose that, just as in the lake, the bottom of the
_14.6- Baltic Sea leads to a decay of modes with grazing
7.3+ angles higher than X~ 30°-40°. Let us compare the
0+ = measured scattering Qevels with the theoretical esti-
7.3 mates of Appendix A. Figure 9 shows the spectral(Q)
14.64 of the fluctuations for record nos. 1, 3, and 4. The spec-
gg'gz tra are obtained by incoherently averaging the signals
39 received by the hydrophones of the horizontal array
49.3 with the normalization to I,. In the sea experiments, the
62.2 hydrological parameterswere not measured. Therefore,
: 4 Ll 60 the spectrum of surface waves was defined by the

Q/21, Hz

model dependence (11). The wind speed changed over
awide range (Table 2), and the value of V appearing in
Eq. (11) was specified so that the frequency of the max-

Fig. 8. Frequency angular spectrum of the sound signal on
path 5 (Table 2). The modul ation components with frequen-
cies of wind waves are spread, and the localization of the

imum in the power spectrum corresponded to the exper-
imental data.

scattering areas on the wavy surface cannot be observed.

The sector of angles @that allow for condition (1) to
be met is narrow. Therefore, let us estimate the fluctua-
tion levelsfor aspatial spectrum of form &(¢— 172) with
X = 35°. In the experiment, the level of noise in the

15/, dB receiving channel was—30 dB relative to the value of |,
Or o To makethe datamoreillustrative, to the calcul ated val -
oo 4) ues of 141, (Fig. 9) we added a value of 0.001 that cor-
—10r responded to the instrumental noise.

According Fig. 9, a satisfactory agreement exists
-20r P S between the levels measured in the experiment and cal-
o /@@% o o culated by Egs. (A9) and (A9'). Thisagreement persists
=301 Coe0 xS s % o a0 for different distances between the source and the
0 receiver, at different depths, and at different sound fre-
[ - guencies. It is worth mentioning that, as the distance

o 3) > -
10l o between the sound source and the receiving system

-20

increases (record nos. 1, 3, and 4), the calculated and
measured scattering levels begin to differ from each
other at modulation frequencies that are higher than the
frequency Q. corresponding to the maximum in the

—30F power spectrum of surface waves.
0r °
1
ol o0 W 3. DISCUSSION OF THE RESULTS
L et us discuss the data obtained. The acoustic mea
—20 surements in the lake and in the Baltic Sea, together
74 ‘% with the cal cul ations performed, show that the signal of
~30hogp .3 a concentrated source is scattered by local areas of the

0.4 Q/ZTL Hz

Fig. 9. Spectrum of the sound signal for record nos. 1, 3, and
4. The symbols correspond the results of the measurements.
The solid and dashed curves correspond to the calculations
by Egs. (A9) and (A9, respectively. The function P(Q)
was specified by Eq. (11). The wind speed V was 6.5, 4.1,
and 3.9 m/s for record nos. 1, 3, and 4, respectively. The
arrows show the frequencies starting from which condi-
tion (1) of resonant scattering is violated.

surface to produce the sound fluctuation at the receiver.
This conclusion is true when the frequencies are low
and the lengths of the surface and acoustic waves are
comparable. The sizes of the scattering surface areas
are determined by the sizes of the first Fresnel zones
with respect to the source and the receiving system. The
calculated levels of the fluctuations proved to be close
to those measured in both the lake and the sea.

There are no experimental datafor long propagation
paths and high wind speeds. That is why we cannot
ACOUSTICAL PHYSICS Vol. 50
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determine the validity limits for the proposed method
of estimating the levels of fluctuations caused by coher-
ent sound scattering by a wavy surface. According to
the data of Section 1, the functional dependences (A9)
of the fluctuation levels can be obtained by using the
energy considerations while taking into account the
character of the field decay in the waveguide and the
fact that the scattering area is limited by the Fresnel
sizes. Estimation of the integral in Eq. (A6) by the sta-
tionary phase method implies that the spectral compo-
nents of P (Q) are produced by aregular spatial distri-
bution of surface displacements. Note that record nos. 3
and 4 are obtained in similar weather conditions (Table 2)
and with similar wind directions (Table 3). At the same
time, Fig. 9 shows that, for record no. 4, the estimated
scattering levels are 5-10 dB higher than the measured
levelsfor the frequencies Q > Q.. The decreasein the
measured scattering level, in comparison with the esti-
mate (A9) for the angular surface spectrum of the form
o(¢p — @), can be explained, first, by the broadening of
the spectrum at the frequencies Q > Q.. [11, 12] and,
second, by the degradation of the surface coherence for
large sizes of the scattering area.

Because measurements 3 and 4 were performed
under similar weather conditions, one can assume that
the angular distributions of vectors k weakly differ in
these two cases. According to Fig. 9, the experimental
data of record no. 3 agree with the calculations in the
entire band of the surface-wave frequencies. The
decrease in the level of fluctuations under the influence
of the broadened angular spectrum at Q > Q... depends

on the distance [SO| due to the factor € =
I . .
L2 in Eq. (A8). The value of € isclose to

AJrors(ro, 8o)

unity (compare the solid and dotted curves in Fig. 9)
and weakly depends on the coordinates of the station-
ary-phase point (hence, on the angle ¢ as well). There-
fore, for record no. 4, the disagreement between the cal-
culation and the experiment can be hardly explained by
the broadening of the angular surface spectrum at the
frequencies Q > Q...

L et us estimate the size of the scattering surface area
relative to the length of the surface wave: n =
D/A\(Q0)- For the Baltic experiment, the sizesD of the
Fresnel zonesare D, ~ 75, D5 ~ 120, and D, ~ 290 mfor
paths 1, 3, and 4, respectively. The values of naren, ~
1.6, n; ~ 8, and n, ~ 20 for these paths. The values of n,
and n; are rather small, which, presumably, accounts
for the highly localized scattering areas in Fig. 7 and
for the good agreement between the measured and cal-
culated levels of fluctuations (Fig. 9). The value n~

10-20 seemsto be a characteristic length of the train of
surface waves. If n > np the spatial distribution of the

deviations of the surface Sin Eq. (10) becomes irregu-
lar, and the coherence of the secondary sources respon-
sible for the scattering decreases. The maximal distance
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|SO| between the source and the receiver at which the
scattering is coherent is max|SO| = N2 AX(Qua)/A.

Equations (A9) and (A9") can be used with minimal
information on the experimental conditions, namely,
the transmitted frequency, the distance from the source
to the receiver, the mean depth along the propagation
path, and the angle of total internal reflection by the
bottom.

It is advantageous to analyze experimental data on
shallow-sea sound propagation for broader ranges of
the speed and direction of wind, the transmitted fre-
quency, the distance |SO|, and the angle X3 Such an
analysiswould allow one to determine the scale of spa-
tial coherence for surface waves and to establish the
validity limitsfor Egs. (A9) and (A9").
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APPENDIX A.
POSITIONS AND SIZES
OF RESONANT SCATTERING AREAS

The Rayleigh parameters were small in the experi-
ments. Therefore, one can use the small-perturbation
method. According to this method, the distribution of
the secondary dipole sources that are caused by the
small-scale surface roughness can be related to the
height of the surface wavesin the following way [1]:

— _0po(r,6,z1)

s(r,8,2,1)],-
ps( )z=0 =

n(r, 6,1). (A1)
0

Here, (r, 8, 2) are the distance, direction, and depthin a
cylindrical coordinate system with the z axis passing
through the sound source; p,(-) is the distribution of
sound pressure generated by the source; and n(-) isthe
distribution of surface roughness, which, being aver-

aged over time, yields n (r, 6, t)t =0.Thus,z=0isthe
unperturbed surface. The quantity n(r, 6, t) is supposed
to be a stationary uniform process.

L et us consider a monopol e source with capacity Q.
The pressure field generated by this source can be rep-
resented in the form of aseries[13]:

Po(r, 6, z,1)
- R (A2)
- e Hé)<Kmr)wm(z)wm(zo)}exp(—iww,

m=0
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where wisthe frequency of transmission, p isthe water

density, and H{" (-) isthe Hankel function of the zeroth
order (an isotropic monopole radiation) and of the first
kind. The use of the Hankel function correspondsto the
omnidirectional monopole source and satisfies the
Zommerfeld radiation condition (below, we omit the
index “1” in the Hankel function). In Eq. (A2), K,
denotes the horizontal projection of the wave vector
corresponding to the mth mode for the waveguide with
the pressure distribution Y2 in depth. The basis (2
is supposed to be orthonormalized, and the functions
W2 themselves satisfy the boundary conditions and

thedifferential equation Y, (2) + (0W/c*(2) — Kﬁ])qJ(z) =0,
where c(2) is the sound speed profile. The horizon z,
corresponds to the depth of the source.

To calculate the pressure field generated by the dis-
tributed dipole sources (A1), we use Green's function
for the power source. As a result, the field of the
sources (Eq. (Al)) isrepresented as an integral of the
convolution type:

Ps(R, 2,1)

prexp( i wt)

02T o

[ > [Ho(KnM)Ho(Kqror, 6))

oomn=0

X Win(0)Win(Zo) Wn(2) Wr(O)N(r, 6, ) ]rdrd,

(A3)

where ryr, 8) = JR?+r’—2RrcosB and R is the
source-to-receiver distance (|]SO|in Fig. 1).

It is the squared field characteristic, namely, the

scattered intensity I = |p_5|2t that must to be found. The

surface roughness is a statistically uniform and station-
ary. Therefore, by changing to the power spectral den-
sity and supposing the spatial distribution to be regular
at each frequency Q of the surface wave, we arrive at

the following expression for 1s(Q):

wpQ T

1(Q) = f1a0

X@(Q)Irdrj'rdrjdej'dejd(p z z Ho(Kml)

mn=0Ig=0
x Ho(Knr (T, 8))H3 (K HE (KT o(F, ) (Ad)
x A(Q, (p)exp[iK(rcos(e—(p)—Fcos(é—(p))]

X Win(0)Win(Zo) Wn(2) Wn(0) Wi (0) W (20) Wy (2) Wy (0).
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Here, (1)* denotes complex conjugation, 1s(Q) is the
power spectral density of scattering, Q is the modula
tion frequency (the frequency of wind waves, Q < w),
P(Q) isthe power spectral density of wind waves, and
A(Q, @) isthe angular spectrum of surface waves with

the normalization O"&Q(Q, @)do = 1 for al frequen-

cies Q. The wave number of the surface waves, K =
217/, is determined by the dispersion relation for
gravity waves. In deep water (A < H, where H is the
depth), we have [14]

K = Q%qg, (AS)

where g isthe acceleration of gravity.

The Hankel function of the first order has a weak
logarithmic singularity, which makes a small contribu-
tion to the quantity I in integration (below, it will be
shown that this statement is true when the conditions of
resonant scattering are met). Let us assume that the
main contribution to integral (A4) comes from areas
that are far from the source and the receiver. Then, one
can replace the Hanke function by its asymptotic expan-

sion [15]: Hy(X) = «/2/Tx exp(+i(X — T74)), X > 1.

To specify the model for the waveguide, we use the
Pekeris waveguide [1, 13]. At long distances from the
source in such a waveguide, the wave numbers K,/k >
c/c, (where ¢, is the sound speed in the bottom) corre-
spond to undamped modes (or to weakly attenuated
modes if the loss in the bottom is present). Let us per-
form averaging over the interference structure. Such an
approach is justified if many modes propagate in the

waveguide. Then, to calculate the functions ,,(0), we

specify the functions Y(2) as Y(2) = ~2/H sin{,z
(= T(2m+ 1)/2H, which correspond to a waveguide
with an acoustically stiff bottom. Equation (A4) can be
represented as follows:

(Q) SIPR? X, X, 2m
> . @(Q)_[dxljdxzj’dcp

lo AH

. .
x Esnlesnzxz&i(n, 0) (A6)

+00 +TU i 2
x| [ ede [ a0 exp(inf(e. ) | o
22 eY*4/1+€°—2¢ecos6| O

where u = k)R> 1 and € = r/R. Upon averaging over the
interference structure, the intensity of the unperturbed

2 2~2
wpQ
The
gr’RH
phasefunction ¥ (g, 0) intheintegral of Eq. (A6) isdeter-

field produced by the sourcewill bel, =
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mined by the following expression (€ = A/2A): S(g, 0) =

€(cosX; +2&cos(8— @) + cosx,A/1 + £’ —2ecosh.

Let us estimate integral (A6) with the use of the sta-
tionary phase method [13] by assuming that i > 1. It
can be shown that the position of the point of the sta-
tionary phase is determined by the conditions of reso-
nant (Bragg) scattering. Let us determine the centers
(€0, 6,) Of the regions that are responsible for resonant
scattering together with their sizes (1, 1,):

oS

oe
N (€9 — cosB,) cosy,
J1+€2—2¢,c088,

109
€00

cosy; + 2&cos(0,— @)

:0,

= —2&sin(8,— )
COoSX,SiNB,

J1+€2—2¢,c088,

In the vicinity of the point (g,, 8,), the phase varia-
tions are determined by the quadratic form: J(g, 6) —

= 0.

°S 19°F
F (€, 8p) = &y +28y,Xy + By’ = 5;3 X+ 2;,_06968)(y+
2
12('9_92) y?, wherex=¢€—¢g,andy = g,(0 — 6,). The quan-
€,00
tities a; are given by the expressions
S nzeocosx2
ay = 2 3!
(1+¢&5—2g,c0s6,)
_ (&° = cosB,) cosy,sinb,
ap = 32 !

(1+ sg —2g,c0s8,)

28 cos(8,—- @)

22 €

N c0osX,(2c0s0,(1 + sg) — (3 + c0os26,)¢,)
2e0(1 + sg - Zsocoseo)3/2

After rotating the coordinate system through an
angle a that is defined as tan2a =-2a,,/(a, — a,;), the
quadratic form [Ja;;|| becomes diagonal, so that S (g, 6)
— 9(80, 90) = 5.11;(2 + 5.2292 and é‘ll = aHCOSZCX +
a12sin2a + azzsinza, 5.22 = allsinzd — alzsiHZO( +
a,,cos?a. If the points of stationary phase exist (g, > 1,
Im(6,) = 0), the equal phase lines are ellipses in the
vicinity of (g, 6,). The semiaxes of the ellipses are
determined from the condition that the phase changes

by Tt |, = /AR/23,,, |, = ,/AR/2a,,. The quantity
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JAR isequal to the size of the first Fresnel zone with

respect to the source, and the integral can be calculated
as

P B
L[exp(lpa”r )dt| = 0GR (A7)

Thus, the resonant scattering by surface roughness
occurs within spatially localized surface areas with
sizes that are determined by the first Fresnel zones.
After simple transformationsin light of Eq. (A7), inte-
gra (A6) takesthe form

i(Q) _ _s8r

P(Q
lo N RHX, (@)

X X 2n 22 . 2 .2 (A8)
C o p A(Q, Plilzsin™X sin"Xe

x [dX, [dX2 do.
‘([ ‘(l: '0[ sojl + 8(2) —2€,C0s6,

If the capture angle of thewaveguideissmall, X< 1,

the trigonometric functions in integral (A8) can be
replaced with their asymptotic expansions with a small
argument: cosX; = 1, cosX, = 1, sinX; = X;, and sin¥, =
X,. Then, Eq. (A8) can be integrated over the grazing
angles, ». To calculate the integral over ¢, one should
specify the angular spectrum of surface waves. Many
models[1, 7, 8] exist for the angular distribution A(Q, ).
Near the maximum of the power spectrum, the spatial
spectrum is narrow, with apronounced maximum in the
direction of thewind [11, 12]. For the sake of simplic-
ity, let us assume the surface spectrum to be infinitely
narrow, so that s4(Q, @) = &(@ — @), and the wind
direction @, to be such as will allow for the existence
of the stationary-phase point (the conditions of reso-
nant scattering are met). Then, Eqg. (A8) is simplified

(ro=Rey, ryrg, 6p) = RJl + 8(2) —2¢€,C088,):

Q) _ TRIX,) i3
lo 2M°H Arory(ro, 6,)
where f(X) = (2X — sin2x)?/X = 16x3/9. It can be shown

4>

Arors(ro, 8o)
and significant deviations from unity occur if the reso-
nant scattering areas are near the source or the receiver.
Evidently, such situations cannot be described by
Eq. (A8), because this equation is obtained by using the
high-frequency asymptotic form of the Hankel func-
tions (Ko, Knl's = 1). Therefore, Eq. (A9) can be sim-
plified:

Q) _ TR (Xe)gp gy ~ BTRX: P(Q)
lo 2\*H 9A’H

P(Q), (A9)

that the quantity € = is close to unity,

.(A9")

X, <1
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Abstract—Using the theory of spheroidal wave functions, thetotal acousticimpedance isdetermined for apro-
late spheroid performing transverse trandational and rotational oscillatory movements. Expressions for the
radiation resistance, the added mass, and the added moment of inertia are derived. It is shown that, in the low-
frequency approximation, this mass and moment of inertia reach limiting values identical to hydrodynamic
ones. The components of the total acoustic impedance are calculated for spheroids of different relative thick-
nesses at an arbitrary frequency. © 2004 MAIK “ Nauka/Interperiodica” .

In solving the problems of sound radiation by bod-
ies of spheroidal shape, it is necessary to determine
their radiation resistances and the added liquid
masses. It is of interest to compare these quantities
with the results of solving asimilar classical problem
for an oscillating sphere. The present paper is devoted
to the determination of the radiation resistance, the
added mass, and the added moment of inertia of apro-
late spheroid performing transverse oscillatory move-
ments by means of determining its total acoustic
impedance. Let us denote the longitudinal axis of the
spheroid by z and consider harmonic translational
movements of the spheroid along the x axis and its
rotational movements about the y axis (Fig. 1). In this
paper, the dependence of the oscillatory processes on
timet is assumed to have the form exp(—jwt), where w
is the angular frequency.

Expressions for the total acoustic impedance of a
spheroid performing oscillations along the x axiswith a
linear velocity V, or rotations about the y axis with an
angular velocity w, Z,, or Z, have the form [1]

ey

respectively. Here, F, and M, are the driving force
and moment with which the spheroid acts on thelig-
uid when the two aforementioned types of oscilla-
tory motion take place, R, and R, are the respective
radiation resistances, M, is the added mass of the
liquid in the case of translational oscillations of the

spheroid, and ly is the added moment of inertia of
the liquid mass in the case of rotational movement.

Thedriving force and moment can be determined by
integrating the pressures produced in the liquid by the
oscillating spheroid (denote this pressure by p,) or by
the rotating spheroid (p,) over the spheroid surface:

F, = Ipxcos(n, x)ds,

(2)
M, = —Ipy[ cos(n, z)x — cos(n, x)Z] ds.

S

Here, n isthe outer normal to the spheroid surface; the
direction cosines are given by the formulas

n=0
X
L
d
&o \HL
¢/ o [ n=1
72 z
v
y / = t
o n = cons
Projection PE,n,¢)

onto the xoy plane

Fig. 1. Geometry of the problem and the prolate spheroidal
coordinate system.
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2
cos(n, x) = & 12_n2cos¢,
& —-n
2
cos(n,z) = N 52 _12, A3)
& -n

= S -1 @E-n)dnw;

&, n, ¢ arethe prolate spheroid coordinates[1]; anddis
the focus spacing of the spheroid (Fig. 1).

The pressures produced by the spheroid performing
oscillatory movements can be sought in the form of a
series:

z Py Rin(h &)Sin(h,n)cosd, @)

that satisfiesthe radiation condition at infinity. In Eq. (4),

R(lf? (h, &) are the prolate radial spheroidal functions of

the third kind, S;(h, n) are the prolate angular spheroi-
dal functions, h = kd/2 is the wave size of the spheroid,
and k is the wave number of sound in the liquid. This
approach is conventionally used in solving similar
problems (see, e.9., [2]). The unknown coefficients P, ,
can be determined from the boundary condition at the
spheroid surface:

1 op

_116p(E
~ jkpcon

jkpcge ¢’

where V,, is the normal component of the velocity
amplitude, p isthe density of theliquid, cisthevelocity
of sound in it, and g; is the metric tensor element
expressed as[1]

€os &)

n

_ g Ez_nzl
g1

The normal velocity component V,, is related to the
velocity V, by the formula

V, = V,cos(n, x).

When the spheroid performs rotational oscillations
about the y axis, the linear velocity of the points of its
surface along the x axisis

d
Vy=wz = wyonn.

The presence of the factor cos¢ in the direction cosine
cos(n, X) given by Eq. (3) corresponds to the geometry
of the problem under study and dictates the choice of
precisely thistype of dependence on ¢ in Eq. (4).

MAIZEL’

L et us substitute the latter formulas and Egs. (3) and
(4) into boundary condition (5), multiply its both sides
by the function S (h, n), and integrate them over n
from —1 to +1. Then, using the orthogonality property
of the prolate angular spheroidal functions [1],

+1

k=n
J’Smn(h N)Sw(h,n)dn =

D mn(N),
[p kK#£n,

we determine the coefficients P, , from expansion (4)
for both translational and rotational movements of the
spheroid. After performing the aforementioned proce-
dures, we arrive at the following results:

P, J hpc——cos¢

J—l

= dy"(hRY(h, 8)S,,(h,n)
2 N1 (R (h, &)

n=13,...

(6)

d
p, = wyéjhpc & cost

JEo—1

i dy"(h)RE)(h, £)S;,(h, )
N (WRY (h &)

n=24,..

Here, dg" (h) and d;" (h) are the expansion coefficients

for the prolate angular spheroidal function expansions
in terms of the associated L egendre functions [1].

Now, substituting expressions (6) into Egs. (1)—(3),
we abtain the desired expressions for the total acoustic
impedance:

® 1in (3)
3 [di"(h)]“RE (h, &) )

2TT. 2 .3
Zx = _prEOd
9 L N (MR (h &)

for an oscillating spheroid and

[d3" ()] *RE(h, &)
N1 ()R (h, &)

T . -
Zy = éﬁjwngd&; Z

n=24,..

for arotating spheroid.

The radiation resistances and the added mass and
moment of inertia can be derived from these series
either anaytically (in the low-frequency approxima-
tion) or by numerical calculation (for an arbitrary fre-
guency). Assuming that the wave size of the spheroid
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RS, R/l
0.50

025+

Fig. 2. Radiation resistance of aspheroid asafunction of its
wave half-length: (1) an oscillating spheroid, R/S &, =
1.01; (2) an oscillating spheroid, R/S, &, = 1.1; (3) an oscil-
lating sphere, R/S (4) a spheroid performing rotational
oscillatory movements, R/lg, & = 1.01; and (5) a spheroid
performing rotational oscillatory movements, R/lg, &y = 1.1.

tends to zero, from Eq. (7) with the use of [1, 3], we
obtain

T s

r['[nozx = éjwaod m = —jWAy, N
. 2s5QE)
" T 120 PR g ) T T

where Q; (,) and Q3 (£,)) are the associated Legendre
functions of the second kind; A, is the added mass of
theliquid in the case of auniform motion of the spher-
oid along the x axis, which iswidely used in hydrody-
namics[3]; and A5 isasimilar added moment of iner-
tia of the liquid massin the case of a uniform rotation
of the spheroid about the y axis[3]. From Eq. (8) one
can see that, in the low-frequency limit, acoustics and
hydrodynamics yield identical descriptions for the
added masses of a spheroid performing oscillatory
movements while its radiation resistances tend to
zero.

In the higher frequency region, the radiation resis-
tance, the added mass, and the added moment of inertia
of the spheroid can be determined by calculating the
real and imaginary parts of Eq. (7) and comparing them
with Eq. (1). However, unlike the hydrodynamic
approximation, owing to the use of the spheroidal wave
functions these quantities should depend on frequency
and should takeinto account the wave motion of thelig-
uid. The calculations were performed using the tables
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MM, I/I

kL/2

Fig. 3. Added mass and moment of inertia of a spheroid as
functions of its wave half-length: (1) an oscillating spher-
oid, My/M, &, = 1.01; (2) an oscillating spheroid, M,/M, &, =
1.1; (3) an oscillating sphere, M,/M; (4) aspheroid perform-
ing rotational oscillatory movements, I,/1, §, = 1.01; and
(5) aspheroid performing rotational osciﬁatory movements,
Iy/1,& =1.1.

of spheroidal wave functions [4—6]. The results of the
calculations were normalized as follows:

(i) R,, by the spheroid surface area S calculated as

md?

1
s= 1= Jg5-18/es -1+ Elarcsin=E;
2 EO EO EO E(J]

(ii) R, by the moment of inertia of the spheroid sur-
face areawith respect to the y axis, which is equal to

d* 1
|, = gl — 1| E(E + 58 - dyarcsins

0
_Jei-1(gh-582+ 2)};

(iii) M,, by the mass of the floating spheroid whose
density isequal to the density of theliquid,

M = Zpd°Eo(&5—1);

(iv) 1, by themoment of inertiaof thefloating spher-
oid with respect to the y axis,

.
120

Figures 2 and 3 show the calculated components of
the total acoustic impedance for two spheroids of dif-
ferent relative thickness as functions of the wave half-
length of the spheroid kL/2, where L is the spheroid
length. The first spheroid is characterized by &, = 1.01
(alength-to-width ratio of 7.12), and the second spher-
oid, by &, = 1.1 (a length-to-width ratio of 2.40). For
comparison, the same figures show the data from simi-

pd°Eo(80—1)(280 - 1).
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Abstract—The problem of the nonlinear interaction between the fourth sound and an acoustic wave propagat-
ing in aporous medium filled with superfluid helium is solved. Based on the L andau equations of quantum fluid
dynamics and on the Biot theory of mechanical waves in a porous medium, nonlinear wave equations are
derived for studying the aforementioned interaction. An expression is obtained for the vertex that determines
the excitation of an acoustic wave by two waves of the fourth sound. The possibility of an experimental obser-
vation of this processis estimated. © 2004 MAIK “ Nauka/Interperiodica” .

Fluid-filled porous media are the object of intensive
studies, both experimental and theoretical. This is
explained not only by the scientific interest in revealing
the physical properties of these complex systems but
also by the technological significance of such media. In
studying the dynamics of a porous medium, the use of
superfluid helium as aliquid for filling the pores proves
to be rather effective (see, e.g., [1-5]). If the transverse
size of the capillaries of a porous medium is compara-
ble to the mean free path of excitations or is smaller
than it, asituation is realized in which, in the course of
wave propagation in helium, the normal component of
the superfluid is decelerated and becomes stationary
with respect to the solid component of the porous
medium. This is the well-known effect of fourth sound
in superfluid helium (see, e.g., [6, 7]). According to the
Biot theory [8-10] of the acoustics of fluid-filled
porous solids, such mediaare characterized by the pres-
ence of two independent oscillation branches: the so-
called fast and slow compressional waves. While the
slow wave often represents a strongly attenuated relax-
ation oscillation with the solid and liquid components
moving in antiphase, the fast wave is, in essence, a
common sound wave with the solid and liquid compo-
nents moving amost in phase. In [11] it was shown
that, in the context of a porous medium, the fourth
sound inliquid helium is equivalent to the slow wave of
the Biot theory, which in this case is not a strongly
damped wave but an essentialy undamped wave,
because it only includes the motion of the superfluid
component containing no excitation gas. Various prob-
lems of linear wave propagation, including the propa-
gation of the fourth sound, in porous media filled with
superfluid helium are aso considered in [12]. The
velocity of the slow wave (the fourth sound) ¢, inadis-
ordered porous medium differs from the velocity of the
fourth sound in a straight capillary u, (which, at suffi-
ciently low temperatures, is equal to the velocity of the

first sound in helium to afair degree of accuracy): ¢, =
u,/a'”2, where a is the structure constant from the Biot
theory. This constant takes into account the complex
geometry of a porous medium with nonstraight chan-
nels (pores), which considerably changes the acoustic
path. The slow and fast oscillation branches of aporous
medium are independent in the linear approximation.
When the wave intensities are sufficiently high, nonlin-
ear interactions between these two branches may man-
ifest themselves.

The purpose of the present study is to consider the
nonlinear interaction between the slow wave (fourth
sound) and the fast (acoustic) wave in aporous medium
filled with asuperfluid. Until now, no such studies have
been carried out. Meanwhile, nonlinear wave interac-
tions may provide valuable information on the parame-
ters of the medium that govern these processes and on
the properties of the excitations and physical phenom-
ena that underlie the interactions of interest. In addi-
tion, by taking into account the nonlinear phenomena,
one gains a better insight into the phenomena observed
in experimentswith waves of relatively high intensities.

To solve the problem of nonlinear wave interaction
in a porous medium filled with a quantum fluid, let us
use the superfluid helium Il equations [13] together
with the Biot theory of mechanical waves in porous
media [8-10]. The nonlinear equations of a superfluid
in application to narrow capillaries can be represented
in the form

0P, ¢,
at+d|v1 =0,

Ny Vs, [
S tOgz+ig =0, ()

(% +div(psu) = 0.
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Here, p isthe density of helium; j isthe density of the
mass flux density of theliquid; p and v, are the density
and velocity of the superfluid component; p is the
chemical potentia; sisthe entropy per unit mass; and
u isthe velocity of the normal component of superfluid
helium, which in the given case coincides with the
velocity of the capillary wall, i.e., with the velocity of
the solid phase of the porous medium. For the differen-
tial of the chemical potential |, thefollowing relationis
valid [13]:
_ 1 Pn
dyu = —sdT + de_ B(u —vg)d(u—vy),

where P is the pressure in the superfluid and p,, is the
density of the normal component. Therefore, the sec-
ond equation of system (1), correct to the quadratic
nonlinearity in the velocities, can be represented in the
form

ovg 1 1

ﬁ + pDP sUT + 2Dv
Note that, according to [14], in afourth sound wavein
He* the relative amplitude of the temperature oscilla-
tions is much smaller than the relative amplitude of the
pressure oscillations:

T'IT, = KP'/P,,

where T, and P, are equilibrium values of temperature
and pressure and the coefficientisk ~—10"*at T= 1.5K.
Therefore, in the problem under consideration, we can
ignore the temperature oscillations. Moreover, it is
known that, at sufficiently low temperatures, the den-
sity of the normal component is much smaller than the
density of the superfluid component. For example,
aready at T = 1.5K, we have p,, = 0.1p.. Hence, with
reasonable accuracy, we can assumethat p.=p (p=p,+
po). Inthiscase, wecanignorethelast equation of system
(1), which is the equation of entropy conservation, the
entropy transfer being associated with normal motion.
Below, the velocity of the superfluid component v is
everywhere denoted as v.

Equation (1) is written for the case of a straight
channel. For a disordered porous medium, the equa
tions should be modified according to the Biot theory
[8], taking into account the geometry of the pores. The
Biot equations complemented with nonlinear terms
have the form

nD(u—vs)2 =

ov, 1 9v® ~ou 1 ou _ 0P
P15 T: 2p11 % plzat 2912 ox %’
du 1 ou? v 1 av?
Dzza + épzz& + plza + Eplzw @)
—_ a XX aP
= ox ~mmMgg

Equations (2) are represented in one-dimensional form,
because such a consideration is sufficient for revealing

PUSHKINA

the essential features of the nonlinear interactions dis-
cussed below. In these equations, v and u — x are the x
components of the particle velocities of the liquid and
solid phases; misthe porosity of the medium;

Pu = amp, Py, = —(a—-1)mp,
P2 = (L-m)p,+ (a—1)mp,
where p,, is the density of the solid phase and a is the

structure constant; o,, is the effective stress in the
porous medium; in the linear approximation [15],

I 4~ k
Oxx = B(+§I"IDUXX+ ESPI’ (4)

where k and k, are the bulk moduli of the frame and its

constituent grains, respectively; [ isthe shear modulus
of the frame; U, isthe frame strain tensor; and P, isthe
linear part of pressurein theliquid, which isdetermined
by the relations [16]

P, = G & —FdivU,

3)

& = mdiv(U-V).

Here, k; isthe bulk modulus of the liquid phase, V isthe
displacement of the liquid, U is the displacement of the
frame, and & is the liquid volume flowing into the vol-
ume element of the medium or out of it. Note that, in
reality, the bulk modulus of liquid helium k; is much
smaller than the bulk modulus of the solid phase k..
Therefore, in the case under consideration, G = myk,
provided that mis not too closeto zero. In relation (5),
it is convenient to change from the variables & and U to
the variables dp and dp,;

-1m \% O
—0p+ —O0pP, 6
FpOP+ 58P (6)

wherev = 1 — m - k/k.. Equation (2) does not involve
the Biot frequency correation function taking into
account the viscous loss due to the relative motion of
phases, because the superfluid component of the quan-
tum fluid has no viscosity. Generally speaking, if the
density of the normal component is not neglected, the
absorption of the fourth sound is caused by the viscous
mechanisms of dissipation and by heat conduction.
However (see, e.g., [17]), the contribution of heat con-
duction is vanishingly small compared to the viscous
loss, and the main mechanism of viscous absorption is
the dlip of the normal component relativeto thewalls of
the channels. The value of the absorption coefficient for
the fourth sound is virtually zero at sufficiently low
temperatures T < 1.2-1.5 K [17]. The absorption of a
wave propagating in the solid phase because of thefric-
tion inside the frame and other possible mechanisms
can theoretically be described by replacing the bulk
moduli and the shear moduli of the frame by operators
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describing the inelastic response of the solid compo-
nent of the porous medium [16, 18]. Below, it is noted
that the absorption inside the frame has virtually no
effect on the development of the nonlinear interactions
discussed in this paper.

The first equation of system (2) corresponds to the
second equation of system (1). Equation (2) should be
complemented with continuity equations for the liquid
and solid phases:

am imv—O

()

0
2(1-mp,+ Z(1-mp,u = 0.

Thefirst of these equations, written for an ordinary lig-
uid, corresponds to the first equation of system (1) for
the superfluid with allowance for the fact that, at the
temperatures under consideration, ps = p (as was noted
above).

Taking into account the nonlinear terms up to the
guadratic ones in systems of equations (2) and (7), we
reduce these equations to the form

0°p_Uro’p_a-1p9d Pm_xgu_fazpm
o2 U9x? A Ppot? MPRa 9x?

_ a=1p g 9Py, a=1p 90 P
o p2ot Prat0" "o patl oxD
v a-10 dug la-1 02u2+16P
paxz a0 oxPPatl 3 g 2 Ao
apm m p 262pm

1+(a—-1 }
t |: ( )1 mpm 2 aXZ
o .m dp v 29%
(a 1)1—mat gl P
. m 194k 0p]
(8)
—(a - __Q apnﬂ
1 mp,,0t0 axU
+(q_1)l£g aﬁﬂ
1—mp§]6t m gt U
# (- D72 B3 M0 (50y)
1- max ot 1 moxot
62v2
—(a- l)l m a
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e EE e
v o°P, 1 9°0),
1-myd 1-mae’

Here, the nonlinear terms are present on the right-hand
sides of the equations; ¢, is the velocity of the sound
branch; the nonlinear parts of pressure P, and stress

tensor oy, arethe subsequent quadratic terms of expan-
sionsfor Egs. (6) and (4), respectively.

Before solving the nonlinear problem, let us con-
tinue to the normal oscillations © (the slow wave) and
@ (the sound branch) in the respective linear equations:

op = O- ICD
- -1 voe )
l
0Py = ———F— + — _@+q)

Consider the nonlinear interaction of three waves:
two waves of the fourth sound, (Q,, g,) and (Q,, @,),
and the fast compressional wave (the acoustic wave)
(w, K), for which therdlationsw=Q, + Q, andk =q, +
g, are vaid. The fourth sound velocity ¢, is much
smaller than the acoustic wave velocity ¢,, and, correct
to the velocity ratio ¢,/c,, we have Q, = Q, = wy2; k=
g, — 4, <<€ qy, 0, (the case of interaction along a straight
line; the wave (Q,, 0,) isan inverse wave). We seek the
solution to the system of nonlinear equations (8) in the
form of a sum of three waves:

_ 1_ _ i(q;r —Qt)
=5 Z Qe

i=12

_1£ +}\Eq)ei(kr—wt)+c'cl1

m

el(qu—Q,-t) + %q)ei(kr—wt) tec

Here, A and ¢; are nonlinear corrections to linear rela-
tions (9). We assume that the amplitudes of waves
slowly vary along the propagation direction because of
nonlinearity. Consider, for example, the nonlinear exci-
tation of a sound wave @ by two sufficiently intense
waves of the fourth sound, @, and ©,. Substituting rela-
tions (10) and the corresponding expressions for the
velacities v and u, we perform some algebraic transfor-
mations and eliminate the nonlinear corrections A and
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¢ from the equations. Asaresult, we obtain an equation
for the amplitude of the sound wave @:

N _q)_m
dx ~ 4kc§[N(a 1)1—m+M]

where N and M are the respective right-hand sides of
Eq. (8), into which the normal coordinates are substi-
tuted. It should be noted that the problem under consid-
eration involves small parameters c,/c, and p/p,, (P =
0.1 g/lem® and p,, exceeds 1 g/cm’). Taking these
parameters into account and analyzing the right-hand
sides of nonlinear system (8), we find that the maximal
contribution to the interaction of interest is made by the
second term from M:

(11)

a-1m 9
plmat

Finaly, Eq. (11) takesthe form
die| _

2 dx

Thus, the effective vertex (the third-order anharmonic-

ity) that determines the interaction under consideration
isequa to

a0
patD

1 _(a-1)0)|0,. (12)

4p1 m

AOL 21— m(a 1).
Let us estimate the possibility of an experimental
observation of this nonlinear process. For example, let
us determine the order of magnitude of the distancel at
which the acoustic wave can be amplified to observable
magnitude. For this purpose, we use the numbers that
are redistic for an experiment with a porous medium
alowing the propagation of both the fourth sound and a
fast compressional wave: w=2 x 21t x10° s'!, ¢, =4 x
10° cm/s, a =2, and m= 0.3, p = 0.1 g/cm’. Theintensity
of the acoustic wave and the fourth sound can be repre-
sented in order of magnitude by the formulas:

I, Opm(1— m)csiépp"g .

(13)

2
ly mecf%%% ,

Then, taking into account Eq. (12), for the intensity of
the amplified fast compressional wave at adistancel we
obtain the expression

ﬂMﬁz
16p,c 1-m

If 1, = 102107 W/cn?, we have |, x 105-107 W/cm?
at adistance | ~ 10 cm, which is a rea value for an
experiment. Equation (12) ignores the sound absorp-
tion because, for the frequency under consideration, it
isfairly small: according to [2], the absorption of trans-
verse waves (even at higher frequencies), which is
much stronger than the absorption of longitudinal
sound waves, is very small at low temperatures. Note
that the effective interaction vertex (13) strongly depends

1,0
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on the quantity (a — 1), i.e, on p;, = —(a — 1)pm; the
quantity p,, describes the inertial action (unlike the vis-
cous one) of the liquid on the solid when the latter is
accelerated relative to the former and vice versa. The
structure constant o isapurely geometrical quantity and
does not depend on the densities of the liquid and solid
phases. Thus, we can conclude that the nonlinear interac-
tion under consideration strongly depends on the geom-
etry of the pores. In addition, it should be noted that the
fourth sound in porous media is often studied using
unconsolidated molding powders, which do not possess
the elastic properties necessary for sustaining the acous-
tic mode. Therefore, the consideration presented in this
paper refers to consolidated elastic media, in which, in
addition to the low wave, the fast compressiona wave,
i.e., the common acoustic wave, can propagate.
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Abstract—Evolution of a pulsed disturbance in a nonlinear medium whose properties irreversibly vary in the
course of wave propagation is studied. Equations describing the propagation process are obtained. It is demon-
strated that the waveform distortion and the dynamics of the field and energy characteristics of a signal notice-
ably differ from those observed in conventional nonlinear media. New nonlinear equations describing a pulse
in a medium with relaxation of its nonlinear properties are derived. A finite “delay time” for irreversible pro-
cessesisintroduced in the defining equation. The shape of a pulse reflected from the boundary between an ordi-
nary medium and a nonlinear hereditary medium is calculated. It is demonstrated that, in the case of a fixed
relation between the peak pressure in the incident pulse and the ratio of linear impedances of the two media, a
total transmission of thetrailing edge of the pulse into the compressed medium occurs. Possible applications of

the results to topical construction problems are discussed. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Nonlinear-acoustics methods have been used in
construction for testing materials, structures, and build-
ings since the early 1980s. The physical foundations of
these methods[1], as applied to objects of industrial and
civil engineering, are described in [2—4]. By now, the
testing of tens of bridges, transport trestleworks, ther-
mal power plants, underground structures, and archi-
tectural—-historical monuments in Russian and foreign
cities has been carried out.

It is necessary to note that the strong nonlinearity
connected with the presence of structural inhomogene-
ities in the medium and of internal defects in some
cases has manifested itself under a sudden external
action (as in the case of testing buildings in the region
of the Spitak earthquake) or as a result of the natural
deterioration of a structure (asin the case of testing the
state of the basement brickwork of architectural—histor-
ica monuments). In other cases, in laboratory and
bench tests, an anal ogous situation was created on pur-
pose by loading the models of structures up to the crit-
ical fracture stresses.

In addition, nonlinear phenomena were observed in
the technological testing of construction works, for
example, in the case of manufacturing and assembling
various types of piles and their impact tests.

This problem became most urgent in constructing
trestles for the third Moscow transport ring, where the
majority of piers were pile grillages constructed of

drilled-filling piles. These piles had alength of 40-50 m
and adiameter of up to 1.5 m. However, industrial piles
(in contrast to drilled-filling piles) have much smaller
dimensions and require the application of impact or
vibration loads for their mounting.

A drilled-filling pile is manufactured directly at a
construction site by performing several sequentia
operations: boreholedrilling, mounting of areinforcing
cage, concreting, testing of the concrete shaft for homo-
geneity, and impact testing of the force interaction of
the pile and the soil.

The appearance of various defects, such as partial
caving of a borehole, changes in its geometric dimen-
sions, and inhomogeneity of the concrete because of
the time intervals between the stages of borehole con-
creting is possible in the course of pile manufacture.
Therefore, pile testing is conducted to evaluate the pile
bearing strength. Both the values of compression stress
at the contact of the pile butt-end with the soil and the
quality of adherence of the concrete shaft of a pile with
soil along its lateral surface are determined.

Taking into account the relatively large diameters of
drilled-filling piles and their length, it is inexpedient to
perform static loading of apile being tested by increas-
ing the external force load and measuring the deforma-
tion until the critical value, since this requires the con-
struction of a special cumbersome structure, the instal-
lation of anchor piles, and prolonged testing. Instead, a
method of impact testing called TNO iswidely used in

1063-7710/04/5006-0725%$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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Russia and abroad to eval uate the bearing capability of
large drilled-filling piles|[5, 6].

The essence of the TNO method lies in periodic
impact loading of the upper (open) end of a pile by
dropping aload along alead bar. The impact excites a
pressure pulse in the pile (Fig. 1).

A wave propagates downwards and is partialy
reflected from the lower pile end-soil boundary, pro-
ducing anirreversible displacement both asthe result of
soil consolidation and dueto the“dippage” of the com-
pressed lateral surface. Recording this displacement as
afunction of the height of the load fall, load mass, and
number of impact loadings, it is possible to evaluate the
bearing capability of apile by the compression stressin
the pile end—soil region.

In the case of impact testing by the TNO method,
acceleration sensors and strain gauges are installed at
the upper end and adjoining lateral surface of a pile.
The parameters of signalsreflected from the lower end—
soil boundary and the inhomogeneities within the con-
crete are recorded. The mathematical model used for
processing the results is based on a linear wave equa:
tion for the pulse propagation in apile. In the numerical
algorithm, apile is replaced by a series of discrete vis-
coelastic elements. The boundary with the soil is also
simulated by a concentrated element, which, however,
permits nonlinear elastoplastic behavior.

Despite the wide application of the TNO method,
which is connected with its conveniencefor builders, its

RUDENKO, ROBSMAN

shortcomings are evident. These include both the math-
ematical model describing the waves in a pile (the
equations must be nonlinear) and the nonlinear pile
foundation—soil system (it must be treated as a distrib-
uted system). It is clear that the formulation of new
engineering and computer solutions goes beyond the
framework of this paper. However, in considering a
specific problem we examine here more general prob-
lems, which may be important for some applied prob-
lems, as well as for the physics of nonlinear waves.

2. PULSED SIGNAL IN A MEDIUM
WITH HYSTERESIS

Up to now, the foundations of the theory of nonlin-
ear wave propagation in media with hysteresis of the
stress—strain  dependence have been insufficiently
devel oped because of the difficulties of solving the cor-
responding problems. This is also true for nonlinear
acoustics of hysteretic media[7].

Therefore, it is necessary to develop a theory of
wave propagation in media with irreversible deforma-
tions depending on the history of the loading and
unloading processes. It is necessary to note that the
problem of pile interaction with the soil foundation is
not the only one in which hysteresis should be taken
into account. Similar problemsarisein road building, in
the case of vibration compression of the roadbed foun-
dation before laying asphalt surfacing and in testing
bridgesthat have beenin service for along time (which
leadsto the appearance of agreat number of defectsand
to the sag of span structures). Naturally, the solution of
the “hysteresis’ problems covers important problems
of seismic engineering and seismoacoustics.

A modd of a hysteretic medium used below for
describing a nonlinear pulsed signal is illustrated in
Fig. 2. In the course of the pressure growth, the density
of the medium changes as follows:

- PO __& P50, )
%L o, pD’ ot

Here, € isthenonlinear parameter of the medium and p,
and c, are the initial values of the soil density and the
sound velocity in soil, respectively. In the process of
unloading, the increments of density p' and pressure p'
arerelated by alinear dependence, but the properties of
the medium are altered by the previousloading process

and determined by the maximum load applied, p;, [8]:

p _ 'D Spm ap < O (2)
%l Clpl ‘1191 ot

Atp' = p;,, Egs. (1) and (2) yield coinciding values. As

follows from Eq. (2), a residual deformation pres =

€ p'nf/(c‘l1 p,) arisesin the medium after unloading.

ACOUSTICAL PHYSICS Vol.50 No.6 2004
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We assume that the physical nonlinearity of the
medium that is present in defining equations (1) and (2)
is greater than the geometric nonlinearity of the equa-
tions of motion [9], which can be linearized in this case
and reduced to a single equation:

2 2
1 a 1

B _ip 3)

X ot
Let a wave propagate along the x axis, which coin-
cidesin Fig. 1 with the pile axis. Assuming the nonlin-
earity to be weak and using the method of a slowly
changing profile [10], we obtain from Egs. (3) and (1)

an equation for the growing part of a pressure wave:

op'_ & 9p Op

, >0. “)
ox ¢lp, 0T 01

Analogously, we obtain for a discharge wave

op' - € op
X &, Pm(X )ar ot <0 )
Solutions to these equations have the forms
- & g op
p' = ¢1%+ciplp B S=>0, ©)
p' —dJEH p(x)de 6_p'<0 @)
2 J- m a.[ '

Here, @, and ®, are arbitrary functions of their argu-
ments. The solutions given by Egs. (6) and (7) should
be sawed combined at the point 1,(x), where the pres-

sure reaches its maximum vaue p'(x, T,) = py,(X) and
the derivative dp'/dT changesits sign.

Let us consider the simplest model of a pulsein the
form of a symmetric single disturbance of atriangular
shape (the curve corresponding to x = 0 in Fig. 3). The
specific form of the functions ®, and ®, is determined
according to the condition at the boundary x = 0. In the
case of the pulse under consideration, the solutions
given by Egs. (6) and (7) take on the forms

R::l;l, R::]__l_ EpO J—pm(x)d (8)
Po Tl_ EPoX  Po clplT
CiplT

respectively. Equating functions (8) at the point of the
maximum, we obtain several equations for two
unknown functions 1,(x) and p;, (X). The equations are
reduced to a solvable differential equation of the first
order. Taking into account the boundary conditions, we
obtain the following from this equation:

Pm(X) _ 1 _ Tn(X) _ 1 X
o =57 const, T =5 xSD' )
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Here and bel ow,

CiplT

XS = ]
€Po

(10)

is the characteristic nonlinear length or the distance of
shock formation [10].

In Fig. 3, z denotes the distance normalized by
length (10): z = x/x.. It is necessary to note that the
result given by Eq. (9) isvalid within the range of dis-
tances 0 < X < X, i.€., before the shock formation at the
wave front.

In the region x > X, it is necessary to use the equa-
tion of the wave-front motion in the moving coordinate
system, which is known from the theory of weak shock
waves (for example, see[11]):

dt,(x) _ €
dx ZCipl

Prm(X)-

(11)
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1.0

Fig. 4.

Now, we set p' = p,,(X) and T = T(X) in the second of
Egs. (8), differentiate the resulting expression with
respect to x, and use Eg. (11) to eliminate one of the
variables. Solving the equation obtained in this way
together with the evident conditions of joining with
Egs. (9) at x = X, we obtain an extension of Egs. (9) to
theregion x> xg

Pm(X) _ 1 [ X=Xg
2 00 2x
( )IOo S (42
Tn(X) _ _1_ B [ X=X
T 2[1 PO 21 D}'

One can see that, at large distances x > x, the peak
pressure at the front of a shock wave decreases and
tendsto zero. However, in this case, the front “ stops’: it
cannot move forward farther than by 1,(c0) =-0.5. This
isthe essential differencein the pulse behavior inahys-
teretic medium from common “nonlinear spreading”
[10, 11] leading to unrestricted growth of the pulse
length in a permanent area (i.e.,, momentum). As is
demonstrated below (Fig. 4), there are many other dif-
ferences in this pulse behavior from the known results
for a nonlinear pulse in a medium with an algebraic
equation of state (without “hereditary” properties).

All characteristics of a pulsed signal in Fig. 4 are
normalized to their peak values at x = 0.

Curves S and S, illustrate the dependence of the
pulse area

00

SDJ‘ p'(x, T)dt

on the distance traveled in the ordinary and hysteretic
media. While in an ordinary medium the momentum
remains congtant and S = const both before and after the
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shock formation, in a hysteretic medium, S, sarts to
decreaseimmediately even at arbitrarily small distancesx.

The pulse energy

00

E DI p'(x, T)dt

in an ordinary medium remains constant in the region
before the shock formation and then decreases because
of the nonlinear wave attenuation. In a hysteretic
medium, E,; starts to decrease immediately, since the
energy is spent for the generation of residual deforma-

tions (curve p,. (X) in Fig. 4) and, after the shock for-
mation, also for dissipation.

The velocity of propagation of thetrailing edge of a
waveisequal to

v, = c{l+§%@(x)}

where Q =1 at X < X, and Q = exp(—(X — X.)/2X,) at X >
X It exceeds the sound velocity ¢,, since the trailing
edge propagates in the medium already compressed by
the loading wave, and it is constant up to the shock for-
mation (in the region x < xJ). At distances x > X, the
velocity v, decreases asymptotically, tending to the
sound velocity c;,.

Theveocity of theleading edge v, coincideswith v, a
X< X, but after the shock formationitsvelocity dropsdown
stepwise and then starts to decrease according to the law

_ £ Po ] X— X4
=c |1+ )
Vs Cl[ 4cfplexpD 2Xs D}

Since v < v,, thetrailing edge tendsto catch up with
the leading edge, and the pulsetendsto “ collapse.” Nor-
malized increments of the propagation velocity of the
leading and trailing edges are shown by the dashed
curves Avgand Av, in Fig. 4.

3. SIGNAL IN A MEDIUM
WITH A RELAXING NONLINEARITY

Asisknown, soil issensitiveto deformation rate and
has rheological properties [12]. The processes of
motion, partial fracture of grains, and formation of
microflows of fluid in pores occur with certain charac-
teristic times, which, generally speaking, may differ
from the length of the pulsed signal. In contrast to the
Mandel’shtam—Leontovich acoustic relaxation [10,
13], here, the internal processes in the medium are not
only delayed but also irreversible. Moreover, they are
evidently nonlinear.

Relaxation may be significant for both increasing
and decreasing pressures. However, below we consider
asimplified model in which only the unloading waveis
assumed to be the relaxing. Thus, we refine the results
of Section 2.

ACOUSTICAL PHYSICS Vol. 50
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Let the front have avery small length, within which
internal processes are “frozen” and the unloading fol-
lows the same path (1) (the curvein Fig. 2) asthe load-
ing of the medium. On the contrary, avery slow unload-
ing followsadirect line 2 (thethinlinein Fig. 2). Inthe
intermediate region of deformation rates, it is possible
to write down the dynamic relation

dp’, P’
dt  Tg
where T isthe characteristic relaxation time. Here, the

dependence Py, (P) is given by Eq. (1) and pgow (),
by Eg. (2). The following defining equation can be
obtained from Eq. (13):

- g ' ] l ' 1
- dtpfast(p)+TRpsIow(p)a (13)

_p & .2
T 2T T4
Cy CiPg

1 (14)
%T—j[p(xt) Pr00]“expHrtHr

Cip

Substltutlng Eqg. (14) into Eq. (3) and using the
method of a slowly changing profile, we arrive at an
integro-differential equation

op'__& .0p
ox cfplp ot
(15)
— € OT-T1] T'|j
= X T m(¥)] “ex
P RarI[p( )= Pr(¥)] “exp T 7.0

Tn(X)

Asiswell known [10], in the case of an exponential
kernel equations of the type of Eg. (15) are reduced to
differential equations of the form

Q[O_p __& a_p} + i[%_L c')_p}
0T 0x Cipl ot TR 0X C3p P ot
. (16)

2C1p1TR

aT[ P — P(X)]°.

Equation (16) differs from the well-known equation
of evolution [10] for an ordinary relaxing mediuminits
right-hand side, which now is nonlinear.

To make the form of subsequent expressions more
convenient, we proceed to the dimensionless variables

- X -1 _ P

zZ= ) e " P - T

Xs T Po

where the nonlinear distance Xg is given by Eq. (10).

Equation (16) intermsof the variables given by Egs. (17)
takes on the form

a7

droP _oP P oP
a_e[E‘ ae}+ [az Prn( )ae} 0. (8
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In the limiting case of small relaxation times (T/Tg >
1) (a“strong” manifestation of hysteresis), Eq. (18) is
simplified:

P

T P25 (19)

Ra—z[P—P 2]
2Tae2 m '

In the other limiting case, of large relaxation times
(T/Tg < 1), the general equation (18) isalso simplified:

P _p® - T p2_2p, (2)P].
R

9z 00 ~ 2T (20)
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Now it ispossibleto calcul ate the pul se shape. To do
this, it is necessary to solve Eq. (18) (or its simplified
versions (19) and (20)) for an arbitrary function P.(2)
and then to join the solution at the profile point P =
P.(2, 6 = 6,(2 with the solution to Eq. (4), which
describes the leading edge of the pulse, by simulta-
neously determining the functions P, (2) and 8,(2) from
the conditions of joining. For T — 0, this procedure
was performed in Section 2. However, taking into
account the finiteness of the relaxation time makes it
much more difficult.

Equations (18) and (19) have an exact solutioninthe
form of afunction linear in time;

_1_p_Z_olr0y 70,0 _2
P=1-8-5-2= Zjln%l 5 1)
which describes the trailing edge of the pulsed signal.
Joining Eg. (21) with the leading edge given by thefirst
formula of Egs. (8), P = 6/(1 — 2), we determine the
parameters

_1 Tg 7]
P.(2) = 5—?|n%1—§D,
T (22)
0.(2) = %(1—2)——T—R(1—z)ln%1.—§%.

The nonlinear transformation of the signal in the
region before the shock formation is represented in
Fig. 5 for the ratio of the relaxation time to the pulse
length T/T = 0.2. The solid curves refer to the wave
profiles at the distancesz= 0, 0.4, 0.8, and 1. The trail-
ing edge in the absence of delay (T = 0) is shown by
dashed curves for comparison. One can see that the
delay leads to a “ spreading” of the signal and to a cer-
tain increase in its maximum. Correspondingly, the
momentum and wave energy decrease more slowly.

4. INTERACTION OF THE PULSE
WITH THE BOUNDARY

Let usnow consider the reflection of apulsed signal
from the pile—soil boundary (Fig. 1). Taking into
account only the physical nonlinearity of soil and
equating the acoustic pressures and velocities in the
media on both sides of the boundary x = 0, we obtain

the relation between the pressures in the incident p;
and reflected p_ pulses:

A(p.—p') = (P, + p-_)[l__fi(p;+ ] @3

CiP1

The derivation scheme for Eq. (23) is standard.
However, in this case, Eq. (1) is used, which is nonlin-
ear, and valid only for arising front (0p/ot > 0). Here,
A = p,C,/poCy istheratio of linear impedances.
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Assuming that

o _d-4An LN
p—__Eh_+ADp++1+Ap+

in Eqg. (23), we arrive at a parametric relation between
p. and p_:

_ 2 _ (1+A)0nin=(1-0)]

n_ 2 - 2
C1P1 (n+28) 4)

n =2t _ (1+A)n

cipy (n+20)°

The profile of the reflected pulse is shown in Fig. 6
for A = 0.9. The shape of the incident pulseis assumed
to be triangular in time, as before. Its leading edge is

M, =2N,0; N, = (2e/cip,) p., 0 <8 <0.5. Thecurves
inFig. 6 correspond to different values of the parameter
107M,,=1, 2, 4, 6, 8, 10, and 12, which are indicated
near the respective curves. For the dimensionless time
within 0 < 6 < 0.5, the pulse was constructed with the
help of solution (24). For 0.5 < 6 < 1, according to
equation of state (2), the unloading occurred by alin-
ear law.

In the case of small values of 10?1, the profile of
the reflected pulse repeats the shape of the incident
pulse and, since A = 0.9 < 1 (the reflection occurs from
a less “dense” medium), its polarity changes. As the
parameter 10°,,,increases, anonlinear distortion of the
reflected signal occurs because of the soil compression.
When this parameter is equal to ten, the difference in
the impedances of the two mediais compensated by the
nonlinear compression and the boundary becomes
completely “transparent” for the trailing edge. Within
the range of dimensionlesstime values0.5< 6 < 1, the
reflection is absent (see Fig. 6). In the case of even
greater peak values of pressure 1071, at acertain time
moment soil becomes denser than the pile, and a part of
the reflected pulse acquires the same (positive) polarity
asthe signal incident on the boundary.

The “sdf-clarification” phenomenon described
above must be observed at relatively small peak pres-
sures in media with large values of acoustic nonlinear-
ity € and with the ratio A dlightly below unity.

In the process of piletesting, theratio A = p,c,/pyCy
can be measured experimentally by detecting the
reflected pulse at the free (upper) end of the pilein the

linear mode (i.e., at small p,, corresponding to small
heights of load dropping).

Proceeding to measurementsin the nonlinear mode,
it is possible to observe the process of small deepening
of the pile at each impact because of the irreversible
compression of the medium.

ACOUSTICAL PHYSICS Vol. 50
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The pile displacement at an arbitrary value of A can
be estimated as

0 247 Dzip.z
A o™

Here, d isthe pile diameter and a is a constant of order
unity. The peak pressure in the pulse excited in the pile
is estimated according to the formula [14]

. _E[@
p”‘_cO 2’

o =ad (25)

where E is the Young modulus of the pile material and
h is the height of the load dropping. As can be readily
demonstrated, at a height on the order of 1 m, the parti-
cle velocity and the maximum pressure in the pile are
about 5 m/sand 108 Pa. In the case of a pile diameter of
about 50-80 cm, the downward displacement at an
impact must be about 1 cm. Simultaneous measure-
ments of the reflected pulse and the irreversible dis-
placement of the pile at different heights h of load drop-
ping form an array of experimental data sufficient for a
qualitative solution of the inverse problem, i.e., for the
evaluation of the soil properties under the pile and its
bearing strength. This problem is a purely engineering
one. Its analysis and the development of recommenda-
tions for builders goes beyond the framework of this

study.

5. CONCLUSIONS

Thus, we have studied the propagation of a pulsed
disturbance in a nonlinear medium whose properties
irreversibly vary after the wave propagation. Equations
describing the process of nonlinear propagation are
derived. It is demonstrated that, in contrast to an ordi-
nary nonlinear medium, the momentum and energy
decrease even in the region where the shock front is not
yet formed, because the compression of the medium
occurs under the effect of the leading edge. The pulsed
signal becomes shorter and is strongly attenuated. The
leading edge, in the coordinates accompanying the
wave, is shifted forward to only afinite distance.

New nonlinear egquations describing a pulse in a
medium with relaxation of itsnonlinear and irreversible
properties are obtained. The presence of a finite delay
time in the defining equation leads to signal “spread-
ing” and to a deceleration of the dissipative process.

The shape of the pulse reflected from the boundary
between an ordinary medium and a nonlinear heredi-
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tary mediumiscalculated. Itisdemonstrated that, inthe
case of afixed relation between the peak pressurein the
incident pulse and the ratio of nonlinear impedances of
the two media, atotal transmission of the trailing edge
of the pulse into the compressed medium occurs.

Possible applications of the results to some prob-
lems of transport engineering are discussed.
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Abstract—For a semibounded fine-layered magnetic superlattice of the ferrimagnet—superconductor type, it is
shown that the continuous acoustic contact of its outer surface with an elastically isotropic perfect diamagnet
gives rise to several specific features of the propagation and localization of a shear bulk magnetoel astic wave.
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Earlier [1], it was shown that, in an acoustically con-
tinuous semibounded (x > 0) fine-grained superlattice
consisting of tangentially magnetized layers of easy-
axis (the OZ axis) two-sublattice (with sublattice mag-
netizations M, ,) ferrimagnet [2] (medium 1 with a
shear modulus |, and adensity p,) and a perfect super-
conductor (medium 2 with a shear modulus |, and a
density p,), the conditions of the formation of a shear
elastic wave with awave vector u || OZ strongly depend
on the mutua orientation of the vectorsL =M, - M,
[2] (L |] O2) in the neighboring ferrimagnetic layers
that form the elementary period of the superlattice. In
[1], two types of equilibrium magnetic configurations
are considered: configuration A, in which the equilib-
rium directions of vectors L are parallel to each other
for any pair of neighboring tangentially magnetized fer-
rimagnetic layers separated by a superconducting inter-
layer, and configuration B, in which the equilibrium
directions of L are antiparallel. For such a geometry,
the only structure allowing the propagation of a shear
elasticwaveisn 0 OZ ||u (n isthe normal to the inter-
face). In addition, the superconducting medium is
assumed to be a perfect diamagnet. Then, in the case of
afine-layered superlattice, we have

kpd; < 1; Kpd, < 1, 1)

where kj; and kj, are the norma components of the
wave vector of a normal shear elastic wave in media 1
and 2, respectively. The propagating shear SH wave is
a one-partial excitation, even with allowance for the
magnetoelastic and magnetodipole interactions. Crite-
rion (1) requires that, in each of the layers forming the
elementary period of the superlattice, the inhomogene-
ity of thefield of elastic displacements along the normal
to the interface between the media must be much
smaller than the inverse thickness of the corresponding
layer. This makes it possible to study the dynamics of

the superlattice in the framework of the effective media
method without restricting the consideration to only the
long-wave limit of the partial oscillation spectrum [3-5].
On this basis, the propagation of shear elastic waves
along a dip boundary between two half-spaces was
studied in [1], where one half-space (x > 0) was
assumed to be occupied by a semibounded two-compo-
nent magnetic superlattice of the easy-axis ferrimag-
net—superconductor type and the second half-space, by
an elastically isotropic perfect superconductor (with a
shear modulus p and a density pp). Calculations

showed that the equilibrium magnetic configurations A
and B of the aforementioned superlattice are noticeably
different from the viewpoint of the dynamics of a shear
elastic wave. In the case of the equilibrium magnetic
configuration A, already in the long-wave limit a“mac-
roscopic” acoustic gyrotropy isformed in the superlat-
tice (when k 0 XY and n 00 OZ || u, the effective elastic
moduli averaged over the elementary period of the super-
lattice D = d, + d, satisfy therelation C,5 = —Cgy % 0).
In the case of configuration B, when k [J XY and n [J
OZ || u, the effective elastic moduli averaged over the
elementary period of the superlattice Dg = 2(d, + d,)

satisfy the relation ¢,5 = T, = 0 despite the fact that

each individual ferrimagnetic layer of the superlattice
retains its gyrotropic properties.

It is of interest to answer the following question:
how much is the elastic dynamics of a magnetic super-
lattice with equilibrium magnetic configuration A or B
influenced by the presence of a dlip boundary between
the semibounded magnetic superlattice (x = 0) and a
perfect superconductor (x < 0)?

In light of this, the purpose of thisstudy is, in terms
of the effective medium method, to analyze the gyrot-
ropy-induced features of the propagation and the local-
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LOCALIZATION OF A TRANSVERSE ELASTIC WAVE

ization of an elastic SH wave traveling along the surface
of a semibounded acoustic fine-layered superlattice of
the easy ferrimagnet—perfect superconductor type,
whose outer surface has arigid acoustic contact with a
perfect superconductor.

BASIC RELATIONS

Asin [1], we assume that the magnetic superlattice
under study isasystem of equidistant easy-axis (the OZ
axis) ferrimagnetic layers (medium 1) each of thick-
ness d,, which are acoustically coupled via identical
superconducting layers of a perfect superconductor
(medium 2) each with athickness d, (following [1], we
assume that, in the superconductor, the London pene-
tration depth A satisfies the relation 2A < d,). The nor-
mal n to the interface between the layers coincides with
the OX axis. In this case, a shear surface acoustic wave
(SAW) of the SH-wave type can propagate near the sur-
face of the easy-axis ferromagnet only when its elastic
displacement vector isu || OZ and its wave vector lies
in the XY plang, i.e.,, whenn Cu ||L Oky. We assume
that, at the interlayer boundaries of the acoustically
continuous magnetic superlattice under consideration,
the following elastic boundary conditions (whereN =0,
1, ..., & isthe running coordinate along the boundary
between the magnetic (medium 1) and nonmagnetic
(medium 2) layers of the superlattice) [6]

WY = & = di+ N(dy+dy), N(d; +da); ()
o'’ = oi'n;
& = d;+ N(d; +dy), N(d; +dy)

3)

and electrodynamic boundary conditions (where B is
the magnetic induction vector)

Bn=0 & =d;+N(d;+d;),N(d; +d;) (4)

are satisfied. Under condition (1), the propagation of an
H wave with u || OZ, k O XY, and n || OX can be
described in terms of the effective medium method by

the effective elastic moduli Cgs, Ty, Cs, aNd Ty,
which are calculated in[1] for the equilibrium magnetic
configurations of both A (1.22) and B (1.23) types.t
These elastic moduli relate the elastic stress (I6,[)) (G5}
and strain ([,0) W [) tensor components averaged over
the elementary period of the superlattice:

[0 = Cag U0+ iy U

5

LIn what follows, we refer to formulas from the first section of
paper [1] by using two numbers. For example, a reference to for-
mula (22) from paper [1] is given as (1.22).
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Ifwesety, =, = andp, =p,=p, weobtan

i (@i, — o) (@i~ o)
Css/M = € = > ; ;

(Wl — ) (W)~

2 2 2 2
o = o, = (@@ —0)

2 2, 2 2y
(W2 — 07) (W — ) ©

2
VW, W

Cis/ = =Tyl = Ci = ;
A R T A YO A
fy = dy/(dy+dy); f, = dy/(d; +dy)
for configuration A and

2 2 2 2
Wy — W) (W —w
el = ¢ = (=L -

(w5, — ) (05— )’

2 2 2 2 7
Culll = ¢ = (w5, —w) (w5 — W) (7

(0, — ) (W - )
Cis = Csy =0

for configuration B. In Eq. (6), we introduced the fol-
lowing notations: w, ., are the positive roots of the equa-
tion (W + W — (W — WP2) — V2WE & = 0 biqua-
dratic in w, w,, are the positive roots of the equation
(W + W — )08 +F, 0 — 6P) — V2 WE 6 = 0 biqua
dratic in w, and oof1i are the positive roots of the equa-
£ion (Wh + W — W)(WH — W2) —V2e &P + f,fL e =0
biguadratic in w. In addition, for any k-, the following

relationissatisfied: w,_ < w, <, <W,, <W;, < W,,.
In EQ. (7), w,, are the positive roots of the equation
(W — )W + FLwhe — WP) — V2wi P = 0 biquadratic
in w. In addition, for any k5 and f, < f,, the relation
W <W_<W, < Wy, <, <wW, issatisfied, whilefor
f, > 1f,, therelation w;_ < wW,_ < Wy, < W, < Wy, < Wy,
isvalid.

From Eq. (5) it follows that a shear SH wave propa-
gating in the superlattice under study is a one-partial
excitation in both configurations A and B:

[0 = Aexp(ikyx)exp(ikpy —iwt). ®)

For kﬁ > 0, we obtain a propagating bulk (trigonomet-

ric) elastic SH wave, whilefor ki <0, only ahyperbolic
shear elastic wave satisfying the condition

M,0— 0 at X — oo 9)

can propagate along the surface of the semibounded
magnetic superlattice under study (x = 0).
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SHEAR ELASTIC WAVE IN A SEMIBOUNDED
MAGNETIC SUPERLATTICE
WITH A SUPERCONDUCTING COATING

Let the outer surface of the effective medium under
study x = 0 and the outer surface of a perfect elastically
isotropic superconductor X < 0 (with adensity pand a
shear modulus P the superscript “<” mdmaFes the
guantities belongmg to the lower half-space) have a
continuous acoustic contact at x = 0:

o,0=0y, Wd=u; x=0. (10)

Then, calculations with Egs. (5)—8) show that the for-
mation of a shear SAW with

[[0X — 00) —= 0, (11)

a the acoustically continuous boundary between the
two mediais possiblefor the equilibrium magnetic con-
figuration A (the A-Sstructure):

U (X — —00) —» 0

K = o[(co—ca)s] ™

_co-aq __ kg (12)
=E—— O0=—
C K|
(0, — ) (wy_— )
CI| - 2 2 2 2
((1)2+—00 )(002——(0 )
(0, — @) (wf_— ).
(w5 — @) (05— %)’
_ VWi,
Ce = 2 2 2 2\’
(W — ) (W — ")

and for the equilibrium magnetic configuration B (the
B-Sstructure):
& = W(ca—ca’)s] (13)

(w5, — ) (ws_—w).

a=-a :
N — D (-

_ (0h, — ) (00— ).
=

(w5, — ) (w5 —w?)

(w5, — ) (w5 — )
-

(@, — ) (@i — &7
In both cases, we have @ = 1 — w/(s; k) > 0 and

sk =P a= UK (57> 9.
Applying a formal passage to the limita — 0 (a
dlip boundary) to Eq. (12), we obtain formula (1.30).
From the comparison of Egs. (12) and (13), it fol-
lows that the most important distinctive feature of the
spectrum of a collective shear SAW in the magnetic

TARASENKO et al.

superlattice with configuration B (Eg. (13)) isthe reci-
procity of the spectrum with respect to the inversion of
the propagation direction w(ky) = w(—ky), despite the
fact that each individual magnetic layer of the superlat-
tice possesses an acoustic gyrotropy in the given geom-
etry. The shear SAW given by Eg. (13) has two
branches. the low-frequency branch (we denote its dis-
persion law as Qg (k) and the high-frequency one
(with a dispersion law Qg,(kp)). In addition, we have
Wg, < Qg,(kp) < w,, and wgy < Qg (ko) < w,. Here,
g (Kn), oK) (Wp_(Ko) < wey(ko) < wg,(ky)) are the
characteristic frequencies determined from Eq. (13) by
the condition a = 0 (see aso [1]). Inthecase of f, < f,,
both branches have long-wave (at g = 0) and short-wave
boundaries (w = w, ; ky = kg for Qg (ko) and w= w,,;
kp = k) for Qg. (k) of the spectrum, which alows us,

according to the terminology used in polariton dynam-
ics[7], to consider such a surface elastic SH wave as a
virtual shear SAW or a shear SAW of the second type
(see dso [1]). The spectrum of the low-frequency
branch Qg (k) strongly depends on the relative thick-
nesses of the magnetic and nonmagnetic layers. d,/d,.
When d,/d, — 1, the wave number corresponding to
the short-wave boundary of the spectrum Qg (k)
unboundedly increases; i.e., when d, > d,, this branch
transforms to a SAW of thefirst type (see aso [1]). As
the wave number k; increases, its dispersion curve
asymptotically tendsto the frequency Qg (o), the equa-
tion for which, with allowance for the notation intro-
duced in Eqg. (13), can be represented as

C
—a =¢ [=.
e,

Whenf, — 0.5 (or f, — 0.5), wehave Qg () —
W, = wy,. Hereand below, thetrend to the limit k; — o
is understood as the elastostatic limit w/(sky) < 1 of
the el astodynamics equations, which agrees with con-
dition (1).

As for the second branch of the shear SAW spec-
trum Qg,(ky), it remains within the frequency interval
(g, w,,) and has both long-wave and short-wave
boundaries in its spectrum; i.e., it is a virtual SAW of
the second type.

In the case of the SH-type SAW formed near the
acoustically continuous boundary (x = 0) between the
superconducting medium and the superlattice with acol-
linear ordering of the equilibrium magnetic moments of
the neighboring ferromagnetic layers (configuration A),
its dispersion law, according to Eg. (12), remains nonre-
ciprocal with respect to the inversion of the propaga-
tiondirection for az 0 aswell: w(ky) # (k). Ato =1,
it has two branches, namely, the high- frequency branch

QA+(kD) and the low-frequency branch QA—(kD)
(QA—(kD) < QA+ (ko)), whileat 0 =—1, it hasone branch

(14)

ACOUSTICAL PHYSICS Vol.50 No.6 2004



LOCALIZATION OF A TRANSVERSE ELASTIC WAVE

Qo (kp). Under aformal passage to the limita — 0,
their dispersion curves transform to the respective
expressions from [1] (see (1.30)) for the spectrum of a
shear SAW propagating along a mechanically free sur-
face of a semibounded acoustlc magnetic superlattice:

QA+ (kp) —= Qau(ky) and QAO (kp) —= Qpy(ky). From
Egs. (12) and (13), it followsthat the presence of anon-
magnetic coating (a # 0) providesthe possibility for the
formation of short-wave spectrum boundaries in the
branches of the shear SAW under consideration; i.e.,
it provides the possibility for the transformation of
SAW-| to SAW-II. This is related to the fact that, for
certain a, w, and kg, the following equation may be sat-
isfied:

OVWEW 0 f; —aq(s, — ) (w5 —w’) = 0. (15)
From theanalysisof Eq. (15), it followsthat, in the case
of 0 =1 and any a = 1, this equation always has two
roots w,, (W, < w, < w,, < w,,); however, if 0 = -1,
the existence of positive roots w , (W, < W, < W,,)

is possible only when 0.25ag(ws, — w5 ) >
Ve W fw (w§ = 0.5(wj, + w3_)). Otherwise, for
o = -1, Eqg. (15) will have no positive roots. In particu-
lar this means that, for a# 0 and o = 1, the dispersion

curve of the high-frequency (f2A+ (kp)) branch of spec-
trum (12), asin the case of a=0(1.3), satisfiesthe con-

dition Qa+ (ko) > w,,(ky), but now, for any a > 1 and
f,/f,, it has not only the long-wave spectrum boundary
but also the short-wave spectrum boundary, whose fre-
guency is w = w,,; the corresponding wave number is

determined from Eq. (12) by therelation Q a+ (Ky) = w,,
(w > w,,). For the low-frequency branch of the spec-
trum of the SH wave under study (w, (Ko)), in the case
of 0 =1and a# 0, from Egs. (12) and (15) it follows

that the character of its dispersion curve Qa-(ky)
strongly depends on the relation between w, _ and w,_,
w,_ (W,_ < w, ). The condition for the formation of a
short-wave boundary of thisbranchistherelation w,_<
W,_ < wy . Inthis case, the SAW branch under consid-
eration correspondsto the virtual shear SAW. However,
if w,_>w, ,thedispersion curve w, (K- correspondsto
SAW-I and, as the wave number k- increases, it asymp-

totically tends to the frequency Qa (c0), which, in the
elastostatic limit, is determined from the relation

Cq
Ck—a = Cy |—.
Gy

If w,_>w,_, from Egs. (12) and (15) we obtain that the

dispersion curve ﬁA_(kD) corresponds to a SAW of
typel.

(16)
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Asfor the dispersion law of a SAW (12) in the case

of o =-1land a# 0 (Qao(ky)), an analysis shows that
the corresponding dispersion curve satisfies the condi-
tion Qao (k) > w,_for al allowed k; and that this curve
possesses a long-wave spectrum boundary determined
from Eqg. (12) by the condition q = 0. Starting from the
line g = 0O, as the wave number k; increases, the disper-
sion curve under consideration tends to the frequency
Qao () for o = -1, which, in the elastostatic limit
w/(sky) — 0 (g —= 1) with allowance for the nota-
tion introduced in Eqg. (6), is determined by the relation

c
Ce +a = —¢ |=.
Ci

From Egs. (16) and (17), it follows that, when d, > d,,
in the case of Y; = WU, = px, We have

(17)

Qn ()
= (w2 + wi.al(1 +a) + 0.25v%w?)* —0.5vwg,
Qao()

= (0 + wl.al(1+a) + 0.25v2wd) "

in the case of W, = W, = U«, we have

+0.5vwg; (18)

Qa(e)

= (00 + 0.502,, + 0.25v2w2)* ~ 0.5V,

Qa(w)

2 2.1/2

= (ooO +0. 5oome +0.25v°wg)  +0.5v0:.

If, in Egs. (18), weformally passto thelimita— 0 (a
dip boundary), we obtain Qag () —= Qu(0) and

Qa-(0) —= Qp (), where Qu(0) and Q, () are
determined by relations (1.31) and (1.32), respectively [1].

Until now, we studied the conditions of thelocaliza-
tion of ashear el astic wave near the surface of an acous-
tic magnetic superlattice whose outer boundary has
continuous acoustic contact with a perfect supercon-
ducting half-space. It is of interest to study the features
of the formation of localized acoustic excitations of the
H-wave type in the case of an unbounded magnetic
superlattice (with configuration A or B) containing a
“defect” superconducting layer (S) introduced intoit. In
the following section, we consider the structures of the
A-S-A and B-S-B types.

CONDITIONS OF THE FORMATION
OF A SLIT SH WAVE

We assume that the superconducting medium is a
perfect, elastically isotropic superconductor with a
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shear modulus pand density pjand that it has the
form of an infinite strip of thickness2d (-d < x < d). If
the elastic boundary conditions on both surfaces of this
layer (x = d) correspond to a dlip boundary (1.29),
then, in the long-wave limit (1), the conditions of the
formation of a shear elastic SAW in this structure will
be the same as in the case [1] of a dlip boundary
between a semibounded magnetic superlattice and a
semibounded perfect superconductor (1.30) for both x >
d and x < —d.

However, if the dlip condition (o, = 0) issatisfied at
one boundary of the superconducting layer (e.g., at X =
d), while a continuous acoustic contact (10) occurs at
the other boundary (at x = —d), then, in the long-wave
limit (1), the conditions of localization of an elastic SH
wave in asemibounded superlattice of the ferrimagnet—
superconductor type for x > d will coincide with (1.30),
while the dispersion law of ashear elastic SH waveina
semibounded superlattice of the ferrimagnet—supercon-
ductor typefor x < —d will be determined, depending on
the magnetic configuration (A or B), by relations (12) or
(13) with allowance for the substitution a —
aqtanh( gk-2d) (an acoustic contact of a semibounded
magnetic superlattice (x < —d) and a superconducting
layer of thickness 2d, whose outer surface (x = d) is
mechanically free).

In both cases, the structure of the field of the z com-
ponent of the elastic displacement vector u in the shear
SAW formed in a semibounded superlattice is deter-
mined with allowance for the magnetic configuration
by relations (8), (9) and (12), (13), and the formation
of ashear SAW localized near the surface of the super-
conducting defect (-d < x < d) occurs in each half-
space independently (for x > d k; — iakg, and for
X < —d k; — —iakpg, (a > 0)).

A qualitatively different situation takes place in the
case of arigid contact of both surfaces of the supercon-
ducting defect layer of thickness 2d with the surround-
ing acoustic magnetic superlattice, i.e., in the case in
which elastic boundary conditions (10) are satisfied at
x = x£d. Now, although as before we have n || OX, u ||
OZ, and k O XY and, for both x > d and x < —d, the spa-
tial structure of u, of the elastic SH wave is determined
by therelations similar to Egs. (8) and (9), thelocaliza-
tion of the shear elastic wave near the superconducting
defect (—d < x < d) does not occur independently in
each of the half-spaces. Such a wave is called a dlit
SAW of the SH type. Depending on the magnetic con-
figuration of the superlattice, the corresponding disper-
sion equation for the spectrum of this shear dlit wave,
with allowance for the notation introduced for ¢, cp,

TARASENKO et al.

and cin Egs. (12) and (13), can be represented in the
form (a2 = [c, — W/(STk2)/c):

(B, + Bo)kjcot(kyd) = ki —ByBy;

- (19)
ki = ws? —K2;

Bi=(ac +c.0)/a; B,=(ac;—c.0)la

for the A—S-A configuration and

(o, + agtanh(gkd))(ac, + aqcoth(gkyd)) = 0(20)

for the B-S-B configuration (¢ ké = —ﬁﬁ ).

From the comparison of Egs. (19) and (20), it fol-
lowsthat, asin the case of the SAW of the SH type con-
sidered above and described by Egs. (12) and (13), the
formation of the shear dit wave essentially depends on
the magnetic configuration of the acoustic superlattice
surrounding the superconducting defect (-d < x < d). In
the case of the magnetic configuration corresponding to
an acoustically nongyrotropic medium (B-S-B), from
Eqg. (20) it follows that the necessary condition for the
formation of ashear dit SAW isthat the following ine-
qualities be simultaneoudly satisfied:

a’>0, ¢,<0. 1)
Then, for preset w and k;, from Eq. (20) it follows that
the number of branchesin the dit SH wave with disper-
sion law (20) depends on the thickness of the supercon-
ducting defect layer 2d, which separates two semi-
bounded acoustic magnetic superlattices. This number
isequal to two when

lac| > a/(dkp) (22)

and to onein the opposite case.

Asfor the necessary conditions for the formation of
adit wavein the case when both sides of the supercon-
ducting layer (x = £d) have a continuous acoustic con-
tact with a semibounded acoustic magnetic superlattice
with configuration A-S-A, from Eq. (19) it followsthat,
for those w and k; at which conditions

a’>0, ac>0 (23)
are simultaneously satisfied, the spectrum of the dlit
SH wave has only one branch, and the following rela
tions should simultaneously be satisfied for this pur-
pose:

la®ci—ci|d>aale|; o’ci<ci. (24)
If we have
a’>0, ac <0, (25)
ACOUSTICAL PHYSICS Vol. 50 No.6 2004
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then the spectrum of the dlit SH wave (19) will havetwo
branches on the condition that the following relations
are simultaneously satisfied:

la’ci —ci|d<aale|; o’ch>ck. (26)

In the case of a>c]; < c& , the spectrum of the elastic SH

wave (19) localized near the superconducting layer
(-d < x < d) will a'so have only one branch intheregion
of w and k; determined by conditions (25).

In the limit d — oo (the thickness 2d of the intro-
duced superconducting layer unboundedly increases),
the expression for the spectrum of the slit SH wave (19)
transforms to Eq. (12), and Eq. (20) transforms to
Eq. (13), i.e., to the expressions for the spectrum of a
shear SAW traveling along the acoustically continuous
boundary between two half-spaces, namely, the mag-
netic superlattice and the superconductor.

Now, let us consider the relationship between the
conditions for the existence of adit SH wave |localized
near the surface of the acoustic magnetic superlattice
under study and the conditions of the reflection of a
bulk elastic wave with the same polarization that isinci-
dent on the surface of the introduced superconducting
layer (x = d) from the depth of the magnetic superlattice
(u]]0zZ, kO XY, x=0).

REFLECTION OF A BULK ELASTIC SH WAVE
FROM THE SURFACE OF A MAGNET-
SUPERCONDUCTOR ACOUSTIC SUPERLATTICE

Cdlculations show that, in terms of the effective
medium method, for an acoudtically continuous bound-
ary (x = 0) between two half-spaces (10) occupied by the
magnetic superlattice under study (x > 0) and the super-
conductor (x < 0Q), the reflection coefficient R of a bulk
transverse SH wave polarized perpendicularly to the
plane of incidence (u || OZ, k [0 XY) and incident from the
magnetic superlattice on its surface, depending on the
equilibrium magnetic configuration (A or B) of the super-
lattice, with allowancefor Egs. (12) and (13), can berep-

resented as follows (k! >0, kjj =—c?k > 0):

- for the A-Sstructure, (27)

where

_ (007, — ) (00— 7).

" (- @) (@ - o)

_ (0 — ) (0 — ),
T (-0 (W~ )

2
VW W W,

* = 2 2 2 2\’
(02, — ) (05— W)
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and
ky— ak
= 978 for the B-S structure, (28)
where
_ (wr -0 (W - 0Y).
T (- 0) (W —w?)
o = ((.O;. - wz) ((Dg_ _ wz)
I

(o - (0 -0)
With allowance for the substitutions k; — iakg

and k; — —igkp, thereflection coefficient R given by
Egs. (27) and (28) has a pole on the w—k; plane, and
this pole corresponds to the dispersion law determined
above for the SH SAW (Egs. (12), (13)) propagating in
these geometries dong the acousgtically continuous (a # 0)
boundary between the magnetic superlattice and the
superconductor with n ||OX; u || OZ, and k || OY.

In particular, from Egs. (27) and (28) it follows that,
if the boundary x = 0 between the two half-spaces (the
magnetic superlattice and the superconductor) isa dip
boundary (for this purpose, in Egs. (27) and (28) we
formally passto thelimit a — 0), we obtain R=1 for
configuration B at any angle of incidence of the shear
bulk eastic wave on the surface of the superlattice,
while, for the superlattice with magnetic configuration A,
the bulk elastic wave will experience a total internal
reflection at all angles of incidence: |[R| = 1. Inthiscase,
the reflected bulk SH wave will acquire an additional
gyrotropy-induced phase shift R = exp(i@) with respect
to theincident wave (see[1]).

Because of the gyrotropy effect c;# 0, for those w

and k;, for which kij > 0, in the case of a # 0 a total
transmission of the bulk SH wave with u || OZ through
the acoustically continuous interface of the A—S struc-
ture is impossible. In this case, both transmitted and
reflected shear bulk waves will have phase shifts rela-
tive to the bulk elastic SH wave incident on the surface
of the superlattice. At the same time, for the B-S struc-
ture (Eg. (28)), at a# 0, atotal transmission of the shear
bulk elastic wave incident from the depth of the super-
lattice onits surfaceis possible: R= 0. Asfor the values

of w and k5 at which the inequality kﬁ <OQisvdid, for
them the interaction of the bulk SH wave incident on
the interface at a # 0 is also characterized by a total
internal reflection |R| = 1, and the reflected wave
acquires an additional phase shift ¢ for both equilib-
rium magnetic configurations A and B. For preset val-
ues of the frequency w and wave humber k-, the quan-
tity @ in the case of configuration A is nonreciprocal
with respect to the substitution k; — k5 and, ata# 0,
is determined from Eq. (27) by not only the gyrotropic
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properties of the superlattice but also the relative values
of the acoustic parameters of the contacting media:

tan(@/2)

_ OVW W f 1 —ag(ws, —w)(ws_—w?)  (29)

(w5, — 00°) (05_— )

Asaresult,at w=w,, ando=1or a w=w_, and
o=-1,wehavep=0and, inEq. (27), R=1.

The presence of the “macroscopic” gyrotropy effect
for a superlattice with equilibrium magnetic configura-
tion A leadsto the situation in which, at the acoustically
continuous boundary between two identica semi-
bounded magnetic superlattices (n || OX), the coeffi-
cient of reflection of abulk elastic SH wavewith u ||OZ
and k O XY is nonzero if the easy magnetization direc-
tionsat x > 0 and x < 0 are anticollinear. Following the
notation introduced in Egs. (27) and (28), this structure

can be represented as A-A. Calculations show that, in
this case, unlike Egs. (27) and (28), we obtain

R = 2ic, ok,

= — 2" forthe A-A structure.
C Kk —ic,oky

(30)

Note that, with alowance for the substitution k; —
iaks, Eq. (30) suggeststhe possibility of the formation of
aspecific shear SAW at the boundary x = 0. According to
the genera theory of wave processes [5], the dispersion
law of this wave is determined by the pole of reflection
coefficient (30) and, as one can easily verify, coincides
with relation (1.30) for the spectrum of an SH SAW trav-
eling along adip boundary between two half-spaces, one
of which isoccupied by aperfect superconductor and the
second, by a magnetic superlattice with configuration A.

The gyrotropy-induced extra features of the reflec-
tion of a bulk eastic SH wave from the boundary
between the magnetic superlattice and a superconduc-
tor arise in a structure formed as a magnetic sandwich
of the magnetic superlatti ce—superconductor—-magnetic
superlattice type (A-S-A or B-S-B), i.e,, inthe casesin
which the formation of a dlit shear SH wave (Egs. (19),
(20)) takes place. Asin the case of Egs. (19) and (20),
we assume that we have an unbounded superlattice of
the easy-axis ferrimagnet (medium 1)—perfect super-
conductor (medium 2) type, into which an elastically
isotropic, perfectly superconducting layer of thickness
2d (-d < x < d) isintroduced. We assumethat thisthree-
layer structure is acoustically continuous (Egs. (2)—4)).
Then, in the framework of the effective medium
method (1), for a shear bulk elastic wave with u || OZ
and k O XY that is incident in the upper half-space on
the boundary between the magnetic superlattice and the
superconducting layer x = d, the reflection coefficient V
can be represented as

- Vg + Vi (1+ Vi +Vy) eXp(iArklld)

Y, =
1-Vy3Va exp(idkd)

, @3
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where

v - ~(ek=ic oko) +ak
23 —

_ — (K +ic, oko) + aky

V21 1 (32)

K +icCx OKj

Vg, = : =3 for the A-S-A structure and
Vo = Vy = Vg = _—C”k” s %k” (33)

for the B-S-B structure.

Here, according to the notation used in [5], V;
denotes the coefficient of reflection of a onehpartia‘
bulk SH wave incident from medium i on the boundary
between mediai and j; index 3 refersto the mediumin
theregion x > d, index 2, to the layer (—d < x < d), and
index 1, to the medium in the region x < —d.

When d — o, the expression for V given by
Egs. (31)«33) coincides with the expression for the
coefficient of reflection of a shear elastic SH wave,
V — R, in the case of an acoustically continuous
boundary between the magnetic superlattice and a
semibounded superconductor in both configuration A
(Eq. (27)) and configuration B (Eqg. (28)). With allow-
ance for the substitution k; —= tiaky (ikj — —0kp)
for x> d and ik, — ak for x < —d, the poles of reflec-
tion coefficient (31)—(33) on the w - k; plane coincide
with the spectrum determined above for the dlit SH
wave localized near the superconducting layer intro-
duced in magnetic superlattice in the case of configura-
tion A (Eg. (19)) or in the case of configuration B
(Eq. (20)).

Analyzing the magnitude of reflection coefficient V
(31)—33), one can see that, in addition to the situation
in which the superconducting layer is a half-wave one,

i.e., 2R||d =mr, wherem=1, 2... (Eﬁ > 0), the total
transmission (|V| = 0) of an elastic SH wave through the
structure under study is also possible on the condition
that

V,, = 0. (34)

In this case, the reflection coefficient V,, should be cal-
culated with alowance for the magnetic configuration
of the superlattice (32)—33). For preset wand ky, abulk

elastic SH wave (Rﬁ > 0) should be formed in the super-
conducting layer —d < x < d. For the A—S-A structure,
condition (34) cannot be satisfied.

If the acoustic properties of the magnetic superlat-
tice are such that the | atter is nongyrotropic (configura-
tion B), we have V,; = V,, = -V;,. As a conseguence, at
kj — 0 we obtain the following dependence: if

ACOUSTICAL PHYSICS Vol. 50

No. 6 2004



LOCALIZATION OF A TRANSVERSE ELASTIC WAVE

V;, — -1, we have V — %1, which corresponds to
the impossibility of the propagation of a bulk homoge-
neous elastic SH wave along the surface of the intro-
duced superconducting layer x = +d for both the A-S-A
and B-S-B structures.

In the case of amagnetic nongyrotropic superlattice,
the behavior of the coefficient of reflection of a shear
bulk wave Vs, (medium 2 isan elastically isotropic dia-
magnet and medium 3, afine-layered acoustic magnetic
superlattice) as a function of the angle of incidence is
illustrated in Figs. 1-3. These figures, for a fixed fre-
guency of theincident bulk SH wave w, present the sca-
lar surface impedances of both contacting media Z, ;
versusky (Vs, = (Z, — Z)/(Z, + Z;) [5]) for the three most

typical situations. For medium 3, Z, = pigJk (K > 0),

and for medium 2, Z, = U[lel (Eﬁ > 0). Asaresult, a a

given Kk the points at which Z,(kp) = Z;(ko) (points a,)
in Figs. 1, 2 correspond to the reflectionless (Eq. (34))
transmission of a bulk SH wave from medium 3 to
medium 2 (and in the opposite direction). The total

internal reflection of the SH wave (with kﬁ > Q) incident
ontheinterface from medium 3 (|V;,| = 1) isrealized for

those values of k; for which Eﬁ <0. Thecaseof apartial

transmission of theincident SH wave with kf > 0 from
medium 3 to medium 2 (|V;,| < 1) takes place when

ki >0andZ,#Z,. At Z, = 0, we have V;, = 1, while at
Z,=0,Vy, = 1.

From Egs. (31)—(33), it follows that a bulk elastic
H wave reflected from the superconducting layer is
shifted in phase Y (tany = ImV/ReV) with respect to
the incident wave. In the particular case of C =, a
any wave number k-, for the incident elastic SH wave
we have V| = 1 and ¢ = 0. However, if ¢; = 0, from
Egs. (31)—(33) it follows that, for any k-, V =-1.

Irrespective of the equilibrium magnetic configura-
tion of the superlattice into which the “ defect” layer is
introduced (A—S-A or B-S-B), for the coefficient of
reflection V of a bulk elastic SH wave incident from
the depth of the superlattice on the surface of the
superconducting layer (-d < x < d), weobtainV — 0
asd — 0.

Under the conditions of total internal reflection, i.e.,
when in Egs. (27), (28), (31)(33) [Rl=1and @# 0, a
beam of shear elastic waves incident from the depth of
the ferrimagnet—superconductor superlattice on its sur-
face acquires not only a phase shift @ at reflection but
also experiences a longitudinal displacement A =
—0q/0k along the interface (the Schoch effect) [5]. For
equilibrium magnetic configuration B and a full acous-
tic contact at the boundary between the semibounded
superlattice and a semibounded superconductor (the
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Fig. 1. Surface impedances of a semibounded superlattice
of the easy-axis ferrimagnet—perfect superconductor type
Z; and a semibounded nonmagnetic medium Z, versus kg

for ¢y > 0 and ¢y < 0: (I) Zz(ky, (I1) Zy(ko) (HAW >
J€549), and (1) Zy(ky) (M < /¢ Sf9)-

Fig. 2. Surface impedance of a semibounded superlattice of
the easy-axis ferrimagnet—perfect superconductor type Z;

and asemibounded nonmagnetic medium Z, versus kg (¢ <
0; ¢ > 0): (1) Z(ky, (11) Zy(ky) (cq > (549, and (1)
Zy(ko) (¢ < (S

B-Sstructure), the expression for A with allowance for
the notation used in Eq. (13) can be represented as

ki + k’K?

-a
k=24,
Gy

2
+ 20 2}; (35)
C||5*qkm

2 0
kﬁ>0; kﬁ = %—Cukéﬂl.

2
kk-c
+ O 2D

Cij

0C

Asfor the equilibrium magnetic configuration A, in[1]
it was shown that in this case, because of the gyrotropy,
the Schoch effect is aso possible for a dlip boundary
(see (1.38)). In the presence of a coating witha # 0, the
expression for the longitudinal displacement A with
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III

an

0 ko

Fig. 3. Surface impedance of a semibounded superlattice of
the easy-axis ferrimagnet—perfect superconductor type Z3
and a semibounded nonmagnetic medium Z, versus kp for

¢>0and ¢y > 0: (1) Zy(kp), (1) Zo(kp) (UK > SD«/EII /sand
cq> (59), (1) Za(ko) (M < s /cp/sand e > (s/9)?),
and (1IV) Zy(kp) (¢ < (S/9)% MEfH < S,/C /9)-

allowance for the notation from Eq. (12) structuraly
coincides with Eq. (35) on the condition that

—ag+c,0o
Cj '

K (36)

Compared to Eq. (35) (a nongyrotropic superlattice of
the magnetic—superconductor type), gyrotropic
medium (36) is characterized by the following extra
feature of the effect: for preset values of w and |k, the
magnitude and sign of the longitudinal displacement of
the reflected acoustic beam A prove to be nonreciprocal
with respect to the change of sign of the wave vector
projection onto the propagation direction of the inci-
dent SH wave; i.e., A(kp) # A(—Kp).

In this case, as in [1], the following dependence
takes place: if the medium in which the incident SH
wave propagates possesses no acoustic gyrotropy (con-
figuration B), under the conditions of a total internal
reflection the beam of reflected bulk SH waves will
have a negative longitudinal displacement A. If the
medium in which the incident shear bulk wave propa-
gatesisacoustically gyrotropic (configuration A), under
the conditions of atotal internal reflection the beam of
reflected bulk SH waves may have a negative longitudi-
nal displacement along the outer surface of the super-
lattice.

CONCLUSIONS

Thus, in this paper, on the basis of a simultaneous
consideration of the magnetoel astic and magnetodipole
interactions and in terms of the effective medium
method, we studied the characteristic features of the
propagation of a shear elastic wave in a semibounded

TARASENKO et al.

acoustic superlattice of the easy-axis ferrimagnet—
superconductor type whose surface has a continuous
acoustic contact with a perfect superconducting layer
(half-space). The analysis was performed for the cases
of the parallel (configuration A) and antiparallel (con-
figuration B) orientations of the equilibrium magnetic
moments of the tangentially magnetized neighboring
ferrimagnetic layers of the superlattice. Although, in
the Voigt geometry, an unbounded ferrimagnetic
medium possesses a gyrotropy, in the case of the mag-
netic superlattice with the same geometry of the elastic
wave propagation the first of the aforementioned con-
figurations possesses a “macroscopic” acoustic gyrot-
ropy (configuration A), while the second (configura-
tion B) is nongyrotropic. Calculations show that, for a
preset frequency and wave number, the necessary con-
ditions for the SH wave localization near the surface of
the magnetic acoustic superlattice under study also
noticeably vary depending on the type of the equilib-
rium magnetic configuration. In particular, unlike the
case of a dip boundary (see [1]), the presence of an
acoustically continuous coating (a perfect supercon-
ductor) on the outer surface of a semibounded magnetic
superl attice with equilibrium magnetic configuration B
provides the possihility for the following:

(i) the formation of a shear SAW. Depending on the
relative thickness of the magnetic and superconducting
layers forming the superlattice period, the correspond-
ing dispersion curve may have or not have a short-wave
end point of the spectrum;

(i) the realization of the effect of total internal
reflection for ashear bulk wave incident from the depth
of the magnetic superlattice on its surface. In this case,
the reflected bulk SH wave is shifted in phase with
respect to the incident wave;

(iii) the formation of the Schoch effect under the
conditions of total internal reflection for a beam of
shear bulk SH waves incident from the depth of the
magnetic superlattice on its surface; and

(iv) the absence of a homogeneous bulk SH wave
slipping along the surface of the magnetic superlattice.

As for the magnetic superlattice with configuration
A, the presence of gyrotropy in the case of an acousti-
cally continuous interface between the semibounded
superlattice and the superconductor half-space leads to
the following distinctive features, with respect to the
case of adlip boundary (see[1]):

(i) the possible formation of a short-wave boundary
of the spectrum in the dispersion curve of a shear SAW
of the first type, i.e., the possible transformation of a
SAW of thefirst type into a SAW of the second type (a
virtual SAW). However, its spectrum remains nonrecip-
rocal with respect to the inversion of the propagation
direction and consists of three branches;

(ii) part of the spectrum branches of the shear SAW
formed may possess a dispersion already in the elasto-
static limit.
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If a superconducting layer (S) isintroduced into the
magnetic superlattice under study with configuration A
or B, theformation of apropagating dlit elastic SH wave
is possible near this layer, while the spectrum of this
wave remainsreciprocal with respect to theinversion of
the propagation direction for both types of the equilib-
rium magnetic configuration of the superlattice. The
number of branchesin such adit wave with preset val-
ues of frequency w and wave number k; may vary
depending on the thickness of the “defect” supercon-
ducting layer introduced in the magnetic superlattice.
For al two- and three-component layered structures
considered in this paper, we studied the relation
between the conditions of the formation of dlit SH
waves and the characteristic features of the reflection of
abulk shear elastic wave incident from the depth of the
superlattice on its outer surface.

We have shown that, not only in the case of a dip
boundary (see [1]) but also in the case of a continuous
acoustic contact at the interface between a semi-
bounded magnetic superlattice and a semibounded per-
fect superconductor, the following dependences take
place:

(i) If, for a given frequency, the bulk SH wave inci-
dent from the depth of the superlattice on its surface
undergoes atotal internal reflection and the mediumin
which this wave propagates is acoustically gyrotropic,
the reflected beam of bulk shear waves will experience
anegative longitudinal displacement (A) along the sur-
face of the superlattice (A < 0);

(i) If, for a given frequency, the bulk shear wave
incident from the depth of the superlattice onits surface
undergoes atotal internal reflection and the mediumin
which this wave propagates is acoustically nongyrotro-
pic, the reflected beam of bulk SH waves will experi-
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ence a positive longitudinal displacement (A) along the
surface of the superlattice (A > 0).

Theinfluence of an inhomogeneous exchange inter-
action and finite dimensions of a real magnetic super-
lattice on the effects considered in this paper will be the
subject of afurther study.
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Abstract—The so-called circumferential normal modes propagating in an empty elastic cylinder are consid-
ered. A dispersion equation for the wave numbers of these waves, an equation for the critical frequencies, and
expressions for the eigenfunctions of such a waveguide are derived. Solutions to these equations are obtained
by numerical methods for different values of the parameter d representing the relative thickness of the cylinder.
Ananalysisof the solutionsis performed, and the main properties of the dispersion curves are described, includ-
ing those for the low-frequency waves of the new type, which correspond to the branches in the form of open
loops. Individual normal modes areidentified on the basis of the cal cul ations and subsequent analysis of eigen-

functions. © 2004 MAIK “ Nauka/Interperiodica” .

The waveguide properties of cylindrica elastic bod-
iesare of considerable scientific interest. Intheliterature,
one can find a great number of publications concerned
with this subject, including studies of bodiesin the form
of thick-walled cylindrical shells [1-3]. For the most
part, these publications deal with waves in which the
elagtic fields are periodic functions of the polar angle 6;
i.e., inthe genera case, the solutions are proportional to
the factor exp(inB), where n is an integer. Some papers
[4-6] consider the asymptotic solutions for waves prop-
agating in the direction of the angular coordinate; in this
case, the quantity nisn=v, wherev playstherole of the
angular wave number and, in the general case, isanon-
integer. Such waves are taken into account, in particular,
in solving the problems of diffraction by cylindrical
obstacles [7, 8]. Exact solutions for these waves were
obtained in the previous publication [9] devoted to the
waveguide properties of a plane ring-shaped plate with
flexural waves propagating in it.

The present paper considers the properties of cir-
cumferential norma modes propagating in an empty
elastic cylinder of infinite length (the wave front is par-
alel tothe zaxis).

Let us preset the geometric dimensions of such a
cylinder as follows. r = a is the outer boundary, r = br
isthe inner boundary, and 2L = a— b isthe thickness of
the waveguide.

To solve the problem, we introduce a scalar poten-
tial ¢ (r, 8) and (since the problem is two-dimensional)
a single component of the vector potential Y (r, 6) =
W(r, 8). These functions should satisfy the Helmholtz
equations

Ad(r, 8) + K (r, 0)
AY(r, 0) + K*W(r, 0)

0, ey

0, 2

@ 19 19°
where A = 3r—2 + T + —2—— k, is the longitudinal
wz
wave number, k|2 = —9———; k; is the shear wave num-

A+2u

berk poo

the density; and wisthe circular frequency.

; A and p are the Lame coefficients; p is

For boundary conditions, we use the absence of
stress on the cylinder surfaces:

o, =0, g =0;a r =ab, 3)

whereo,, and g, are the normal and tangential stresses,
respectively.

These quantities can be expressed viathe potentials
¢ and Y (see, eg., [1]):

9%, 10°0 13y
= -k e Gy @)

o, = 200 200, 10° o'y _loun
° " Wharae 1200 " ;7997 o2 rorl
According to the statement of the problem, we seek

the solution to the set of equations (1), (2) in the form of
elastic waves travelling in the direction of the angle 6:

¢(r,8) = @(r)exp(ive), (6)
W(r,8) = W(r)exp(ive). @)

1063-7710/04/5006-0742$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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Substituting Egs. (6) and (7) into Egs. (1) and (2),
we obtain a set of equations for determining the ampli-
tudes of normal modes:

2
AD + %ﬁ—‘r’—zgcb = 0, @®)

2
AW+ He-_Yhyw = o, ©)
E(t 2

Equations (4) and (5), with allowance for Egs. (6)
and (7), can be represented as

Op _ d®_ A 2, i, A0
2u " g uk' VarGro (10
Oro _ _d___‘“_l dren
Tl SkW+ived (11)

The solutionsto the set of equations (8), (9) havethe
form
,(r) =

Ad,(kr) +BY,(kr), (12)

qu(r) = C‘]v(klr) + DYv(kIr), (13)
where J, and Y,, are the Bessel and Neumann functions,

respectively, and A, B, C, and D are arbitrary constants.
Let us introduce the following dimensionless parame-

k
ters; x=kr, y=kr,anda = R—' = i’,wherethelattercan
t
be expressed via the Poisson ratio 0: ¢ = 1-20 .
2(1-o0)

Note that, in the following treatment, we use the value
0 =0.25, whichyieldsa = 0.58. With allowancefor this
expression and after some cumbersome transforma-
tions, Egs. (10) and (11) take the form

Orrz = L;(X)®D,(ax) + T, (X)W, (x), (14)
2pk;
——%2 = Ly(x) D, (ax) + To(x)W,(x), (15)
2uk;

where the operators L and T are determined by the for-
mulas

743
via-1+v) 17,
L = =S Mg
T = SHd -4

[ (%( (a—1X)v+1}

It should be noted that, at o = 1 (which is a physi-
caly unrealizable case), wehavel, =-T, and L, =T,.

Substituting expressions (12) and (13) into Egs. (14)
and (15), wefinally obtain

Grr

2 = ALl(X)‘]v(GX) + BI—]_(X)YV(GX)
2wk, (16)

+CT1(x)Jy(x) + DT1(X) Yu(X),

&5 = AL,(x)J,(ax) + BL,(X)Y,(ax)

2uk; (17)

+ CT,(x)Jy(X) + DT2(X) Yy ().
Introducing the notation x, = ka and x, = kb and
applying boundary conditions (3), we obtain ahomoge-

neous set of algebraic equations for determining the
guantities A, B, C, and D:

ALl(Xa)‘]v(aXa) + BLl(Xa)Yv(aXa)

(18)
+CT41(Xa) Jy(Xa) + DT1(Xa) Yo(Xa) = O,

ALZ(Xa) ‘]v((x Xa) + BLZ(Xa)Yv(G Xa)

(19)
+ CTo(Xa) Ju(Xa) + DTo(X5) Yy (Xa) = O,

AL (X) Iy (axp) + BL1(X,) Yy (01Xp)

(20)
+CT1(%p) v (Xp) + DT1(%) Yy (X,) = O,

AL, (X,) Iy (axp) + BLy(X,) Yy (01Xp)

21
+CT,(%p) Iy (Xp) + DT5(X,) Yy (%) = 0.
The dispersion equation for the unknown wave
number v is obtained as usual, by equating the determi-
nant of set (18)—21) to zero:

L1(%a) Ju(0Xa) Li(Xa) Yo (aXa) Ti(Xa)Iy(Xa) Ta(Xa)Yo(Xa)

Av) =

L2(Xa)‘]v(axa) L2(Xa)Yv(aXa) TZ(Xa)Jv(Xa) TZ(Xa)Yv(Xa)

(22)

L1(Xp) Iy (0 %p) Li(Xe) Yy(0Xp) T1(X6) Iy (Xp) T1(X6) Yy (Xs)
Lo(Xp) Iy (0 %p) Lo(X) Yy (0 Xp) To(Xp)dy(Xp) T2(Xs) Yo (Xs)

ACOUSTICAL PHYSICS Vol.50 No.6 2004
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The equation A(v) = 0 has many rootsv = v,(X,, Xp), BL,(X,)Y,(0X,) + CT,(X,) Iy (%)
where the subscript n determines different branches of (24)
the solution to the characteristic equation. For the pur- +DTa(Xa) Yo (Xa) = —La(Xa)Iy(0Xy),
pose of their identification and a so for testing the valid-
ity of boundary conditions (18)—21), we assume that BL,(Xp) Yy (ax,) + CT1(Xp)Jy(Xp)
the rootsv = v(x,, X,) are calculated and determine the _ (25)
eigenfunctions (modes of vibration) of the waveguide +DT1(%) Yo (Xp) = —L1(Xo)Ju(00Xp).
under study. We use thefirst three equations of set (18)— _ .
(21) (the fourth equation is their linear combination). The solution to set (23)25) can be represented in

Setting A = 1 (without loss of generality), we obtaina  theform
set of equations for determining the remaining coeffi-

cients, which depend on both v,, and n: Dg(Vvy) Ac(v,) Ap(Vy)
n= a0 Cn= v Dh=—77— (26)
BL,(%,) Yy (aX,) + CT1(x2) Iy () o3 A(vy) A(vy) A(vy)
+ DTl(Xa)Yv(Xa) = _Ll(xa)‘]v(axa)a where

Ll(xav Vn)Yv(aXa) Tl(xa’ Vn)Jv(Xa) Tl(xa1 Vn)Yv(Xa)
A(Vn) -~ LZ(Xafvn)Yv(aXa) TZ(Xaivn)‘]v(Xa) TZ(Xafvn)Yv(Xa) !
Ll(xbv Vn)Yv(aXb) Tl(xb’ Vn)‘]v(xb) Tl(xb1 Vn)Yv(Xb)

Ll(Xa! Vn)‘]v(axa) Tl(Xai Vn)Jv(Xa) Tl(xav Vn)Yv(Xa)
AB(V”) =~ L2(Xav Vn)‘]v(axa) T2(Xa’ Vn)Jv(Xa) T2(Xavvn)Yv(Xa) !
Ll(xb! Vn)‘]v(axb) Tl(xbi Vn)‘]v(xb) Tl(xbf Vn)Yv(Xb)

L1(Xar Vi) Yy (0Xa) Li(Xar Vi) Jy(0Xa) T1(Xa Vi) Yy (Xa)
AC(V”) =~ L2(Xa! Vn)Yv(aXa) LZ(Xaa Vn)‘]v(axa) TZ(Xavvn)Yv(Xa)
Ll(Xbl Vn)Yv(aXb) Ll(Xb! Vn)‘Jv(aXb) Tl(be Vn)Yv(Xb)

L1(Xa Vi) Yo (0 Xa) T1(Xa Vi) Jy(Xa) La(Xa Vi) Iy(OX,)
AD(V“) -7 LZ(Xal Vn)Yv(aXa) T2(Xa1 Vn)‘Jv(Xa) LZ(Xa’Vn)‘]v(GXa) '
L1 (X Vi) Yo (0 X) T1(Xor Vi) Iu(Xp) L1(Xp, Vi) Iy (O1Xp)

With the coefficients obtained above, the eigenfunc- Introducing the operators R, = d and Ry(v) = A ,
tions of the waveguide for stresses can be represented as _ dx , X
we represent displacements (29) corresponding to the

orlr(z = L,(x)3, (ax) + ByLs(X)Y, (%) root v,, of characteristic equation (22) in the form

2Hk @7 U = RO, (00 + RV, (30)
+CpT1()3,,(3) + Do T1(0) Y, (%), k “ “
Ug _
%8, = 1,(x)3,, (%) + ByLo(0)Y,, (%) K = Reln) @y (@R, X, Gl
2pk; (28)
where
+CT2(x)dy, (X) + DpTo(X) Y, (X).
! ! ®, (ax) = J, (ax) +B,Y, (ax),
The eigenfunctions for the radial u, and angular ug
displacements can be determined via the scalar and Y, (x) = C,J, (x)+D,Y, (x).
vector potentials: ! " !
Before discussing the results of the calculations, itis
_ 09, 10y o = 109 _a_llJ_ (29) hecessary to make some comments concerning their
" or ro@’ roe or representation. Above, it was noted that the desired

ACOUSTICAL PHYSICS Vol.50 No.6 2004
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Fig. 1. Dispersion curves for the circumferential normal modesin an empty elastic cylinder; X = k.a.

guantity v plays the role of the wave number involved
in the expression for the phase of the normal mode: ¢ =
vB. Asin the previous paper [9], this expression can be

transformed as ¢ = ‘F’re =k S wherek = \F) isthe*lin-

ear” wave number and S=r0 isthe arc length traveled
by the wave. Choosing this form of the result represen-
tation, we set r = a for the sake of definiteness; i.e., we
consider the wave number corresponding to the outer
boundary of the empty cylinder. Then, in the equations
given above, the unknown quantity v can be replaced
by v = ka (the subscript of kisomitted). The arguments
involved in the equations given above can be repre-
sented in the form x, = ka and x, = k(1 — d), whered =

L is the dimensionless thickness of the cylinder. The

Ro

velocity of wave propagation ¢ also depends on the

radius. Choosing the quantity X = k.a as the main argu-

ment, we represent the desired dimensionless velocity

K

intheformC= < = “a l,wherectisthevelocity
¢, Vv ka

of shear waves in the medium.

To solve Eq. (22) for the unknown quantity v = ka as
a function of the dimensionless frequency X = ka for
ACOUSTICAL PHYSICS  Vol. 50

No. 6 2004

different values of the dimensionless thickness of the
cylinder d, aspecial computer program was used.

Figure 1 shows the results of calculationsfor differ-
ent values of d. The plot istypical of al values of the
parameter 0 < d < 1. One can see three groups of dis-
persion curves: (a) single branches (n = 0) that begin at
zero frequency and have the value v = 1 at this point;
(b) single branches (n = 0") in the form of open loops
lying in the immediate vicinity of the origin of coordi-
nates (the latter branches are shown in more detail in
Fig. 2 for some of the values of the parameter d:
branches corresponding to the waves with n = 0' liein
the region ka < 1, and waves with n = 0 are partially
represented in the region ka > 1; similar branches were
also obtained for normal modesin [9]); and (c) an infi-
nite number of branches corresponding to the higher-
order normal modes, as in any waveguide (the number
of these waves increases with increasing d).

Figure 3 showsthe plotsfor the dimensionless phase

velocity C= cE of thewavewith n=0for certain values
t

of d. One can see that, near the origin of coordinates,
thisvelocity is proportional to the frequency. Whendis
large, the velocity as a function of frequency exhibits
maximaand, then, at X — oo, tends to aconstant value
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Fig. 2. Low-frequency half-closed loops; Y = ka and d = (1) 0.2, (2) 0.4, (3) 0.7, and (4) 0.9.

of C,, = 0.933, which does not depend on the parameter
d. When d is small, such maxima are absent and the
velocity tends to the same constant C,, but at much
higher frequencies. In its physical meaning, the veloc-
ity C = C,, isclose to the Rayleigh wave velocity.

To identify different branches of the dispersion
curves, eigenfunctionswere calculated for the displace-
ments u, and ug and for the stresses o,, and g, by using

c/C,
141

1.2

1.0

0.8

0.6

0.4

0.2

0 10 20 30 40 50 60 70 80

X

Fig. 3. Phase velocities of norma modes withn =0; d =
(1) 0.1, (2) 0.3, (3) 0.5, and (4) 0.9.

formulas (28)—(31) with different values of the param-
eter d at certain frequencies. The af orementioned quan-
tities were normalized to their maximal values, and the
dimensionless coordinate x was given in the form x =

+ . .
é - %O, so that the origin of coordinates corre-

sponded to the median surface of the cylinder and the
guantity x varied within —g <X< (—Zj In al subsequent

plots the factor i is omitted in the quantities ug and o,¢.

Figure 4 shows the plots for d = 0.9 (other parame-
ters are indicated in the figure caption). One can see
that, at low frequencies (Fig. 3d), the radial displace-
ment u, is aimost independent of the radius; i.e, a
quasi-flexural wave propagatesin the body. In thiscase,
the angular displacement uy and the stresses g,, and g,,
are maximal near the inner surface of the cylinder
and decrease toward the outer surface. Other cases
(Figs. 3b—-3d) correspond to the transformation of the
eigenmodes with increasing frequency, which consists
of the sequential displacement of all quantities toward
the outer surface and their concentration near it.

Figure 5 shows similar datafor d = 0.1. The behav-
ior of the quantities under consideration is approxi-
mately the same asfor d = 0.9, except that the maximal
stressvaluesinitialy occur at the median surface of the
cylinder (x = 0), and that the concentration of displace-
ments and stresses near the outer surface occurs at a
much higher frequency.

Figure 6 represents (for d = 0.9) the eigenfunctions
for the normal modes with n = 0', which are described
by open loops (Fig. 2). One can see that, independently

ACOUSTICAL PHYSICS  Vol. 50

No. 6 2004
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Fig. 4. Eigenfunctionsfor anorma modewithn =0 at d =0.9: (1) displacement u,, (2) displacement ug, (3) stresso,,, and (4) stress

O X=(a) 0.5, (b) 5, (c) 10, and (d) 32.

of frequency, all the functions differ little from each
other and from the corresponding functions for the
waveswith n =0 (Fig. 1a), except that the displacement
u, changes its phase for the opposite one. Cases (a) and
(c) correspond to the lower half of the loop, and cases
(b) and (d), to the upper half.

The data shown in Figs. 2 and 6 suggest the follow-
ing basic qualitative conclusions about the properties of
low-frequency waves withn=0"

(i) these waves have two different phase velocity
values at the same frequency (except for the frequency
at which the upper and lower branches merge);

(ii) the group velocity determined by the formula
o - do_ dX

£ dk Y
branch and positive for the lower (ascending) branch;

(iii) the waves are of quasi-flexural nature, with a
concentration of stresses near the inner surface of the
cylindrical body.

From Fig. 1, one can see that norma modes of
higher orders (n= 1) originate a v, = 0. The quantities
describing the corresponding normal mode field do not
depend on the polar angle 6. At the instant of origina-
tion of each of these waves, the wave front hasthe form

is negative for the upper (descending)

ACOUSTICAL PHYSICS Vol.50 No.6 2004

of acircle coaxial with the waveguide boundariesr = a
and r = b. In this case, the displacements are expressed
via cylindrical functions of zero order. In plane
waveguides, the process of normal mode origination is
analogous to that considered above: the wave front is
paralel to the plane waveguide boundary.

Asinthe plane waveguides, critical frequencies (the
frequencies of wave origination) exist in the cylinder
under study. The equation for the critical frequencies
can be easily obtained from Eq. (22) by settingv = v, =0.
Then, the operators L, ,(x) and T, ,(x) have the form

mod 17

L0 = o+ 3 L0 = T = 0;

To(x) =

’

X I
NI

d,
dx
and Eq. (22) takes the form

J(ax,) Y(ax,)
J(ax,) Y(axy)

1(Xa) K(X,)
1(%p) K(Xp)

=0, (32
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Fig. 5. Thesameasin Fig. 4 but for d =0.1; X = (a) 0.5, (b) 30, (c) 90, and (d) 148.

where additional notations are introduced:
a 1
J(x) = ;Jl(x)—é\lo(x);
a 1
Y(x) = ;Yl(x)—éYo(X);

10 = 23,00 + 335();

K(¥ = =2Y,(0 + 5Y,(%).

Thus, as one would expect, the equation for the crit-
ical freguencies consists of two independent equations,
thefirst of which refersto the waves originating as lon-
gitudinal, and the second to the waves originating as
transverse.

Figure 7 shows the dimensionless wave numbers kE

t
for the first four modes (n = 1-4) at d = 0.9. According
to Eg. (32), n =1 and n = 4 correspond to the modes
originating as longitudinal, and n = 2 and n = 3 to the
modes originating as transverse. It is essentia that,

when the wave size of the cylinder tends to infinity, the
velocity of al the normal modes tends to that of trans-
verse waves, which testifies that they belong to the
guasi-Lamb wave type. The difference between them
and the Lamb waves of an elastic layer consists, in par-
ticular, inthat the modewith n= 1 originates as atrans-
verse wave in the case of the Lamb waves and asalon-
gitudinal wave in the case under study.

Figure 8 represents the eigenmodes of the displace-
ments for n = 1-4 at a high dimensionless frequency
X = 80. Here, only positive values of the x coordinate
are used, because, for x < 0, both displacements and
forces are fairly small at this frequency, and all fields
concentrate near the outer surface of the cylinder. From
thisfigure, one can see that the number of amode (asin
plane waveguides) corresponds to the number of inter-
sections of the corresponding curves with the x axis.

The results obtained above can be used for studying
the characteristics of circumferential normal modes of a
shear-longitudinal type in aring-shaped thin plate (such
aproblem for flexural waves was solved in [9]). For this
purpose, it is necessary to replace the elastic modulus of
aplanewave A + 2 by the longitudinal elastic modulus

ACOUSTICAL PHYSICS  Vol. 50
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Fig. 7. Frequency characteristics of the dimensionless wave numbersforn= 1 (d = 0.9).
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Fig. 8. Displacement eigenfunctions for normal modeswithn=1; d=0.9, X=80, and n=(a) 1, (b) 2, (c) 3, and (d) 4.

of aplate E, =

5 and to represent the factor o in

k _
theforma = E" = 11—20. For the value 0 = 0.25 used
t

in the calculations, thisfactor isa J0.612.

In closing, it should be noted that the normal
modes studied in this paper can be considered as heli-
cal waves propagating in an empty elastic cylinder at

anangled = g toitsaxis. For helical waves with other

values of this angle, the aforementioned wave numbers
of circumferential waves can be determined as* critical
wave numbers’ (by analogy with critical frequencies).
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